Science.gov

Sample records for activated motor units

  1. Random motor unit activation by electrostimulation.

    PubMed

    Jubeau, M; Gondin, J; Martin, A; Sartorio, A; Maffiuletti, N A

    2007-11-01

    Whether the involvement of motor units is different between surface neuromuscular electrostimulation and voluntary activation remains an unresolved issue. The aim of this pilot study was to verify if motor unit activation during electrostimulation is nonselective/random (i.e., without obvious sequencing related to fibre type), as recently suggested by Gregory and Bickel [6]. Sixteen healthy men randomly performed submaximal isometric contractions (10-s duration) of the quadriceps femoris muscle at 20, 40 and 60 % of maximal voluntary torque under both stimulated and voluntary conditions. During the contractions, paired stimuli were delivered to the femoral nerve (twitch interpolation technique) and the characteristics of the superimposed doublet were compared between the two conditions. For each torque level, time-to-peak torque was significantly longer (p range = 0.05 - 0.0002) during electrostimulation compared to voluntary contractions. Moreover, time-to-peak torque during voluntary trials decreased significantly when increasing the torque level from 20 to 60 % of maximal voluntary torque (p range = 0.03 - 0.0001), whereas it was unchanged during electrostimulation. In conclusion, over-the-muscle electrostimulation would neither result in motor unit recruitment according to Henneman's size principle nor would it result in a reversal in voluntary recruitment order. During electrostimulation, muscle fibres are activated without obvious sequencing related to fibre type.

  2. Synchronization of motor unit activity during voluntary contraction in man.

    PubMed

    Datta, A K; Stephens, J A

    1990-03-01

    1. Motor unit synchronization has been studied in human first dorsal interosseous muscle. 2. Two needle electrodes were inserted into the muscle and the activity of pairs of motor units recorded. 3. Pre- and post-stimulus histograms of the firing of unit pairs showed a narrow central peak of duration 1.3-9.3 ms (88% of sample in the range 1-6 ms; mode 3.0 ms), together with a variable amount of synchronization of somewhat longer duration. 4. For the duration of the whole synchronization peak (85% sample in range 5-15 ms; mode between 6.1 and 8.0 ms (31% of sample], units fired between 8 and 485% times more often than would have been expected had the units been firing independently of one another. Amplitudes of the peak of the recorded histograms expressed as a proportion of control ranged from 1.8 to 10.9 (mean 3.9; bin width 160 microseconds). 5. The strength of synchronization between the firing of motor unit pairs was inversely related to differences in recruitment threshold. The largest amount of synchronization was observed for pairs of units in which both had recruitment thresholds less than 0.5 N or greater than 1.0 N. Less synchronization was found between pairs of units in which one had a recruitment threshold less than 0.05 N and the other a threshold greater than 1.0 N. 6. The time course of synchronization was well matched by the predictions of a theoretical model based on the hypothesis that underlying the observed synchronization is the joint arrival of EPSPs from branched last-order input fibres.

  3. Motor unit activity after eccentric exercise and muscle damage in humans.

    PubMed

    Semmler, J G

    2014-04-01

    It is well known that unaccustomed eccentric exercise leads to muscle damage and soreness, which can produce long-lasting effects on muscle function. How this muscle damage influences muscle activation is poorly understood. The purpose of this brief review is to highlight the effect of eccentric exercise on the activation of muscle by the nervous system, by examining the change in motor unit activity obtained from surface electromyography (EMG) and intramuscular recordings. Previous research shows that eccentric exercise produces unusual changes in the EMG–force relation that influences motor performance during isometric, shortening and lengthening muscle contractions and during fatiguing tasks. When examining the effect of eccentric exercise at the single motor unit level, there are substantial changes in recruitment thresholds, discharge rates, motor unit conduction velocities and synchronization, which can last for up to 1 week after eccentric exercise. Examining the time course of these changes suggests that the increased submaximal EMG after eccentric exercise most likely occurs through a decrease in motor unit conduction velocity and an increase in motor unit activity related to antagonist muscle coactivation and low-frequency fatigue. Furthermore, there is a commonly held view that eccentric exercise produces preferential damage to high-threshold motor units, but the evidence for this in humans is limited. Further research is needed to establish whether there is preferential damage to high-threshold motor units after eccentric exercise in humans, preferably by linking changes in motor unit activity with estimates of motor unit size using selective intramuscular recording techniques.

  4. Examination of Hand Muscle Activation and Motor Unit Indices Derived from Surface EMG in Chronic Stroke

    PubMed Central

    Li, Xiaoyan; Liu, Jie; Li, Sheng; Wang, Ying-Chih

    2014-01-01

    In this study, we used muscle and motor unit indices, derived from convenient surface electromyography (EMG) measurements, for examination of paretic muscle changes post stroke. For 12 stroke subjects, compound muscle action potential and voluntary surface EMG signals were recorded from paretic and contralateral first dorsal interosseous, abductor pollicis brevis, and abductor digiti minimi muscles. Muscle activation index (AI), motor unit number index (MUNIX), and motor unit size index (MUSIX) were then calculated for each muscle. There was a significant AI reduction for all the three muscles in paretic side compared with contralateral side, providing an evidence of muscle activation deficiency after stroke. The hand MUNIX (defined by summing the values from the three muscles) was significantly reduced in paretic side compared with contralateral side, whereas the hand MUSIX was not significantly different. Furthermore, diverse changes in MUNIX and MUSIX were observed from the three muscles. A major feature of the present examinations is the primary reliance on surface EMG, which offers practical benefits because it is noninvasive, induces minimal discomfort and can be performed quickly. PMID:24967982

  5. Distribution of the forces produced by motor unit activity in the human flexor digitorum profundus

    PubMed Central

    Kilbreath, S L; Gorman, R B; Raymond, J; Gandevia, S C

    2002-01-01

    In humans, the flexor digitorum profundus (FDP), which is a multi-tendoned muscle, produces forces that flex the four distal interphalangeal joints of the fingers. We determined whether the force associated with activity in a single motor unit in the FDP was confined to a single finger or distributed to more than one finger during a natural grasp. The discharge of single low-threshold motor units (n = 69) was recorded at sites across the muscle during weak voluntary grasping involving all fingers and spike-triggered averaging of the forces under each of the finger pads was used to assess the distribution pattern. Spike-triggered averaging revealed that time-locked changes in force occurred under the ‘test’ finger (that finger on which the unit principally acted) as well as under the ‘non-test’ fingers. However, for the index-, middle- and ring-finger units, the changes in force under non-test fingers were typically small (< 20 % of those under the test finger). For little-finger units, the mean changes in force under the adjacent ring finger were large (>50 % of those under the test finger). The distribution of forces by little-finger units differed significantly from that for each of the other three fingers. Apart from increases in force under non-test fingers, there was occasional unloading of adjacent fingers (22/267 combinations), usually affecting the index finger. The increases in force under the test finger correlated significantly with the background force for units acting on the middle, ring and little fingers. During a functional grasp, the activity of single units in the FDP allows for a relatively selective control of forces at the tips of the index, middle and ring fingers, but this is limited for little-finger units. PMID:12181299

  6. Relationships between sensory input, motor output and unit activity in interpositus and red nuclei during intentional movement.

    PubMed

    Soechting, J F; Burton, J E; Onoda, N

    1978-08-18

    The relationship between unit activity in interpositus (8 units) and red nuclei (11 units) and the EMG activity of the biceps during intentional elbow flexion movements was investigated by means of cross-correlation analysis. This analysis showed that there were long-lasting (200 msec) changes in the probability of EMG activity both before and after a single spike in neurons which covaried with the motor output. The dependence of the activity of these units on sensory inputs was investigated by (1) calculating the quantitative relationship between angular displacement and unit activity and (2) recording unit activity after the sensory input from peripheral afferents had been eliminated by dorsal rhizotomy.

  7. cVEMP morphology changes with recording electrode position, but single motor unit activity remains constant.

    PubMed

    Rosengren, Sally M; Colebatch, James G; Borire, Adeniyi; Straumann, Dominik; Weber, Konrad P

    2016-04-15

    Cervical vestibular evoked myogenic potentials (cVEMPs) recorded over the lower quarter of the sternocleidomastoid (SCM) muscle in normal subjects may have opposite polarity to those recorded over the midpoint. It has thus been suggested that vestibular projections to the lower part of SCM might be excitatory rather than inhibitory. We tested the hypothesis that the SCM muscle receives both inhibitory and excitatory vestibular inputs. We recorded cVEMPs in 10 normal subjects with surface electrodes placed at multiple sites along the anterior (sternal) component of the SCM muscle. We compared several reference sites: sternum, ipsilateral and contralateral earlobes, and contralateral wrist. In five subjects, single motor unit responses were recorded at the upper, middle, and lower parts of the SCM muscle using concentric needle electrodes. The surface cVEMP had the typical positive-negative polarity at the midpoint of the SCM muscle. In all subjects, as the recording electrode was moved toward each insertion point, p13 amplitude became smaller and p13 latency increased, then the polarity inverted to a negative-positive waveform (n1-p1). Changing the reference site did not affect reflex polarity. There was a significant short-latency change in activity in 61/63 single motor units, and in each case this was a decrease or gap in firing, indicating an inhibitory reflex. Single motor unit recordings showed that the reflex was inhibitory along the entire SCM muscle. The cVEMP surface waveform inversion near the mastoid and sternal insertion points likely reflects volume conduction of the potential occurring with increasing distance from the motor point.

  8. Modulation of motor unit activity in biceps brachii by neuromuscular electrical stimulation applied to the contralateral arm.

    PubMed

    Amiridis, Ioannis G; Mani, Diba; Almuklass, Awad; Matkowski, Boris; Gould, Jeffrey R; Enoka, Roger M

    2015-06-15

    The purpose of the study was to determine the influence of neuromuscular electrical stimulation (NMES) current intensity and pulse width applied to the right elbow flexors on the discharge characteristics of motor units in the left biceps brachii. Three NMES current intensities were applied for 5 s with either narrow (0.2 ms) or wide (1 ms) stimulus pulses: one at 80% of motor threshold and two that evoked contractions at either ∼10% or ∼20% of maximal voluntary contraction (MVC) force. The discharge times of 28 low-threshold (0.4-21.6% MVC force) and 16 high-threshold (31.7-56.3% MVC force) motor units in the short head of biceps brachii were determined before, during, and after NMES. NMES elicited two main effects: one involved transient deflections in the left-arm force at the onset and offset of NMES and the other consisted of nonuniform modulation of motor unit activity. The force deflections, which were influenced by NMES current intensity and pulse width, were observed only when low-threshold motor units were tracked. NMES did not significantly influence the discharge characteristics of tracked single-threshold motor units. However, a qualitative analysis indicated that there was an increase in the number of unique waveforms detected during and after NMES. The findings indicate that activity of motor units in the left elbow flexors can be modulated by NMES current and pulse width applied to right elbow flexors, but the effects are not distributed uniformly to the involved motor units.

  9. Recruitment and Decruitment of Motor Units Activities of M. Biceps Brachii During Isovelocity Movements

    DTIC Science & Technology

    2001-10-25

    haviors of motor units of m. biceps brachii (biceps short head muscle) during flexion movements in wide range of elbow joint angle. In this study, eight...range (from 0 [deg] to 120 [deg]) of elbow joint angle with a surface electrode array. We identified ac- tion potensials of each moitor unit and...ing flexion movements in wide range of elbow joint angle. In this study, eight surface electromyograms (EMGs) were measured during flexion movements

  10. Prolonged activity evokes potentiation and the "sag" phenomenon in slow motor units of rat soleus.

    PubMed

    Drzymała-Celichowska, Hanna; Raikova, Rositsa; Krutki, Piotr

    2016-01-01

    Slow motor units (MUs) have no sag in their unfused tetani. This study in anesthetized rats shows that the sag can be observed in slow soleus MUs after prolonged activity. Twitches and unfused tetanic contractions were recorded from male (n=35) and female (n=39) MUs before and after the four minutes of the fatigue test (trains of 13 pulses at 40 Hz repeated every second). After this activity twitch contractions potentiated and a shift in the steep part of the force-frequency curve towards lower frequencies was observed in both sexes. Initially no sag was visible in unfused tetani, but after the fatigue test the phenomenon was observed in 77% of male, while in 13% of female MUs, the result consistent with the previously reported higher content of IIa myosin and faster contraction of MUs in male soleus. The decomposition of tetani with sag into trains of twitch-shape responses to consecutive stimuli revealed higher forces of initial decomposed twitches than later. The revealed alterations the force development due to long-lasting activation of slow MUs were sex-related and more pronounced in male soleus.

  11. Motor unit activity when young and old adults perform steady contractions while supporting an inertial load.

    PubMed

    Pascoe, Michael A; Gould, Jeffrey R; Enoka, Roger M

    2013-02-01

    The purpose of the study was to compare the discharge characteristics of biceps brachii motor units of young and old adults when they performed steady, submaximal contractions while the arm supported different inertial loads. Young (28 ± 4 yr; n = 16) and old (75 ± 4 yr; n = 14) adults performed steady contractions with the elbow flexors at target forces set at either small (11.7 ± 4.4% maximum) or large (17.8 ± 6.5% maximum) differences below the recruitment threshold force of the motor unit (n = 40). The task was to maintain an elbow angle at 1.57 rad until the motor unit was recruited and discharged action potentials for ∼120 s. Time to recruitment was longer for the larger target force difference (187 ± 227 s vs. 23 ± 46 s, P < 0.001). Once recruited, motor units discharged action potentials either repetitively or intermittently, with a greater proportion of motor units exhibiting the repetitive pattern for old adults. Discharge rate at recruitment and during the steady contraction was similar for the two target force differences for old adults but was greater for the small target force difference for young adults. Discharge variability was similar at recruitment for the two age groups but less for the old adults during the steady contraction. The greatest difference between the present results and those reported previously when the arm pulled against a rigid restraint was that old adults modulated discharge rate less than young adults across the two contraction intensities for both load types.

  12. The relationship between soleus and gastrocnemius muscle activity in conscious cats--a model for motor unit recruitment?

    PubMed

    Hodgson, J A

    1983-04-01

    Force and electromyogram (e.m.g.) data were recorded from medial gastrocnemius and soleus muscles of conscious cats using chronically implanted devices. A digital computer was used to take simultaneous samples of the data from both muscles and construct two-dimensional frequency distributions relating the activities in the two muscles. The results show that posture is the only activity where soleus may be active without corresponding activity in the medial gastrocnemius muscle. In locomotion the ratio between soleus and medial gastrocnemius muscle activities changed with treadmill speed, although peak soleus force remained constant at approximately 80% of the isometric tetanic tension measured in terminal experiments. A hypothesis is put forward, associating these findings with the activities of slow and fast motor units and emphasizing the influence of neural activity in the determination of motor unit recruitment.

  13. Acute effects of alcohol on unit activity in the motor cortex of freely moving rabbits: comparison with the limbic cortex.

    PubMed

    Alexandrov, Y I; Grinchenko, Y V; Laukka, S; Järvilehto, T; Maz, V N

    1991-07-01

    Unit activity was recorded from the motor cortex of eight freely moving rabbits in order to examine the acute effect of ethanol (1 g kg-1) on organization of unit activity and to compare it with our earlier results from the limbic cortex. The rabbits performed a food-acquisition task in the experimental cage. Unit activity was recorded during behaviour in the control experiment followed by the alcohol experiment on the next day. After ethanol, behavioural mistakes and the duration of the behavioural cycle significantly increased. In the control experiments activation of 58% of the units had no constant relation to the phases of the behavioural cycle (non-involved units), whereas 42% of the units were constantly activated during certain phases (involved units). Two per cent of the latter units were activated in relation to newly learned behavioural acts (e.g. pedal pressing; L units), 28% in relation to food seizure and/or grinding (S units) and 12% in relation to certain movements during different behavioural acts (M units). Ethanol had no effect on the number of active units and the same relation between the number of non-involved and involved units or between the number of different types of involved units was found. However, the number of involved units decreased in the upper and increased in the lower cortical layers. Also the number of units with low background frequency increased, although the frequency within activations did not change. In our earlier study the number of active units in the limbic cortex decreased after ethanol by one third and the relation between the number of L and M units was reversed.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Periodic Modulation of Motor-Unit Activity in Extrinsic Hand Muscles During Multidigit Grasping

    PubMed Central

    Johnston, Jamie A.; Winges, Sara A.; Santello, Marco

    2007-01-01

    We recently examined the extent to which motor units of digit flexor muscles receive common input during multidigit grasping. This task elicited moderate to strong motor-unit synchrony (common input strength, CIS) across muscles (flexor digitorum profundus, FDP, and flexor pollicis longus, FPL) and across FDP muscle compartments, although the strength of this common input was not uniform across digit pairs. To further characterize the neural mechanisms underlying the control of multidigit grasping, we analyzed the relationship between firing of single motor units from these hand muscles in the frequency domain by computing coherence. We report three primary findings. First, in contrast to what has been reported in intrinsic hand muscles, motor units belonging to different muscles and muscle compartments of extrinsic digit flexors exhibited significant coherence in the 0- to 5- and 5- to 10-Hz frequency ranges and much weaker coherence in the higher 10–20 Hz range (maximum 0.0025 and 0.0008, respectively, pooled across all FDP compartment pairs). Second, the strength and incidence of coherence differed considerably across digit pairs. Third, contrary to what has been reported in the literature, across-muscle coherence can be stronger and more prevalent than within-muscle coherence, as FPL–FDP2 (thumb-index digit pair) exhibited the strongest and most prevalent coherence in our data (0.010 and 43% at 3 Hz, respectively). The heterogeneous organization of common input to these muscles and muscle compartments is discussed in relation to the functional role of individual digit pairs in the coordination of multiple digit forces in grasping. PMID:15744006

  15. Industrial motor repair in the United States

    SciTech Connect

    Schueler, V.; Leistner, P.; Douglass, J.

    1994-09-01

    This report characterizes the motor repair industry in the United States; summarizes current motor repair and testing practice; and identifies barriers to energy motor repair practice and recommends strategies for overcoming those barriers.

  16. Parsimonious design principles for motor unit models.

    PubMed

    Ban, Lan; Shapiro, Nicholas P; Lee, Robert H

    2007-01-01

    Motor units are known to display type-specific differences in passive and active electrical properties, and attempts to predict motor unit type based on the measurement of membrane properties have been rather successful. Quantitative models of motoneurons have also grown in complexity and their predictive power is predicated upon the accurate description of basic membrane properties. This paper presents results from a modeling study which sought to specify a small and simple set of "design rules" that motoneurons might obey during type-specific differentiation.

  17. Absence of lateral gastrocnemius activity and differential motor unit behavior in soleus and medial gastrocnemius during standing balance

    PubMed Central

    Héroux, Martin E.; Dakin, Christopher J.; Luu, Billy L.; Inglis, John Timothy

    2013-01-01

    In a standing position, the vertical projection of the center of mass passes in front of the ankle, which requires active plantar-flexor torque from the triceps surae to maintain balance. We recorded motor unit (MU) activity in the medial (MG) and lateral (LG) gastrocnemius muscle and the soleus (SOL) in standing balance and voluntary isometric contractions to understand the effect of functional requirements and descending drive from different neural sources on motoneuron behavior. Single MU activity was recorded in seven subjects with wire electrodes in the triceps surae. Two 3-min standing balance trials and several ramp-and-hold contractions were performed. Lateral gastrocnemius MU activity was rarely observed in standing. The lowest thresholds for LG MUs in ramp contractions were 20–35 times higher than SOL and MG MUs (P < 0.001). Compared with MUs from the SOL, MG MUs were intermittently active (P < 0.001), had higher recruitment thresholds (P = 0.022), and greater firing rate variability (P < 0.001); this difference in firing rate variability was present in standing balance and isometric contractions. In SOL and MG MUs, both recruitment of new MUs (R2 = 0.59–0.79, P < 0.01) and MU firing rates (R2 = 0.05–0.40, P < 0.05) were associated with anterior-posterior and medio-lateral torque in standing. Our results suggest that the two heads of the gastrocnemius may operate in different ankle ranges with the larger MG being of primary importance when standing, likely due to its fascicle orientation. These differences in MU discharge behavior were independent of the type of descending neural drive, which points to a muscle-specific optimization of triceps surae motoneurons. PMID:24311748

  18. Absence of lateral gastrocnemius activity and differential motor unit behavior in soleus and medial gastrocnemius during standing balance.

    PubMed

    Héroux, Martin E; Dakin, Christopher J; Luu, Billy L; Inglis, John Timothy; Blouin, Jean-Sébastien

    2014-01-15

    In a standing position, the vertical projection of the center of mass passes in front of the ankle, which requires active plantar-flexor torque from the triceps surae to maintain balance. We recorded motor unit (MU) activity in the medial (MG) and lateral (LG) gastrocnemius muscle and the soleus (SOL) in standing balance and voluntary isometric contractions to understand the effect of functional requirements and descending drive from different neural sources on motoneuron behavior. Single MU activity was recorded in seven subjects with wire electrodes in the triceps surae. Two 3-min standing balance trials and several ramp-and-hold contractions were performed. Lateral gastrocnemius MU activity was rarely observed in standing. The lowest thresholds for LG MUs in ramp contractions were 20-35 times higher than SOL and MG MUs (P < 0.001). Compared with MUs from the SOL, MG MUs were intermittently active (P < 0.001), had higher recruitment thresholds (P = 0.022), and greater firing rate variability (P < 0.001); this difference in firing rate variability was present in standing balance and isometric contractions. In SOL and MG MUs, both recruitment of new MUs (R(2) = 0.59-0.79, P < 0.01) and MU firing rates (R(2) = 0.05-0.40, P < 0.05) were associated with anterior-posterior and medio-lateral torque in standing. Our results suggest that the two heads of the gastrocnemius may operate in different ankle ranges with the larger MG being of primary importance when standing, likely due to its fascicle orientation. These differences in MU discharge behavior were independent of the type of descending neural drive, which points to a muscle-specific optimization of triceps surae motoneurons.

  19. Assessment of Motor Units in Neuromuscular Disease.

    PubMed

    Henderson, Robert D; McCombe, Pamela A

    2017-01-01

    The motor unit comprises the anterior horn cell, its axon, and the muscle fibers that it innervates. Although the true number of motor units is unknown, the number of motor units appears to vary greatly between different muscles and between different individuals. Assessment of the number and function of motor units is needed in diseases of the anterior horn cell and other motor nerve disorders. Amyotrophic lateral sclerosis is the most important disease of anterior horn cells. The need for an effective biomarker for assessing disease progression and for use in clinical trials in amyotrophic lateral sclerosis has stimulated the study of methods to measure the number of motor units. Since 1970 a number of different methods, including the incremental, F-wave, multipoint, and statistical methods, have been developed but none has achieved widespread applicability. Two methods (MUNIX and the multipoint incremental method) are in current use across multiple centres and are discussed in detail in this review, together with other recently published methods. Imaging with magnetic resonance and ultrasound is increasingly being applied to this area. Motor unit number estimates have also been applied to other neuromuscular diseases such as spinal muscular atrophy, compression neuropathies, and prior poliomyelitis. The need for an objective measure for the assessment of motor units remains tantalizingly close but unfulfilled in 2016.

  20. Role of motor unit structure in defining function

    NASA Technical Reports Server (NTRS)

    Monti, R. J.; Roy, R. R.; Edgerton, V. R.

    2001-01-01

    Motor units, defined as a motoneuron and all of its associated muscle fibers, are the basic functional units of skeletal muscle. Their activity represents the final output of the central nervous system, and their role in motor control has been widely studied. However, there has been relatively little work focused on the mechanical significance of recruiting variable numbers of motor units during different motor tasks. This review focuses on factors ranging from molecular to macroanatomical components that influence the mechanical output of a motor unit in the context of the whole muscle. These factors range from the mechanical properties of different muscle fiber types to the unique morphology of the muscle fibers constituting a motor unit of a given type and to the arrangement of those motor unit fibers in three dimensions within the muscle. We suggest that as a result of the integration of multiple levels of structural and physiological levels of organization, unique mechanical properties of motor units are likely to emerge. Copyright 2001 John Wiley & Sons, Inc.

  1. Acute infantile motor unit disorder. Infantile botulism?

    PubMed

    Clay, S A; Ramseyer, J C; Fishman, L S; Sedgwick, R P

    1977-04-01

    Eight infants with an acute reversible motor unit disorder are described, including two infants from whom Clostridum botulinum type A was isolated from stool specimens. The clinical spectrum includes constipation, cranial nerve deficits, pupillary involvement, and generalized hypotonic weakness. There were no deaths, and all infants have had complete clinical recovery. A characteristic electromyographic (EMG) pattern was present in part until clinical recovery. This distinctive pattern consisted of brief, small, abundant for power exerted motor unit potentials. This EMG pattern in the context of the clinical syndrome may well be diagnostic for acute infantile motor unit disorder.

  2. Human motor unit recordings: origins and insight into the integrated motor system.

    PubMed

    Duchateau, Jacques; Enoka, Roger M

    2011-08-29

    Soon after Edward Liddell [1895-1981] and Charles Sherrington [1857-1952] introduced the concept of a motor unit in 1925 and the necessary technology was developed, the recording of single motor unit activity became feasible in humans. It was quickly discovered by Edgar Adrian [1889-1977] and Detlev Bronk [1897-1975] that the force exerted by muscle during voluntary contractions was the result of the concurrent recruitment of motor units and modulation of the rate at which they discharged action potentials. Subsequent studies found that the relation between discharge frequency and motor unit force was characterized by a sigmoidal function. Based on observations on experimental animals, Elwood Henneman [1915-1996] proposed a "size principle" in 1957 and most studies in humans focussed on validating this concept during various types of muscle contractions. By the end of the 20th C, the experimental evidence indicated that the recruitment order of human motor units was determined primarily by motoneuron size and that the occasional changes in recruitment order were not an intended strategy of the central nervous system. Fundamental knowledge on the function of Sherrington's "common final pathway" was expanded with observations on motor unit rotation, minimal and maximal discharge rates, discharge variability, and self-sustained firing. Despite the great amount of work on characterizing motor unit activity during the first century of inquiry, however, many basic questions remain unanswered and these limit the extent to which findings on humans and experimental animals can be integrated and generalized to all movements.

  3. Convergence of pattern generator outputs on a common mechanism of diaphragm motor unit recruitment

    PubMed Central

    Mantilla, Carlos B.; Seven, Yasin B.; Sieck, Gary C.

    2014-01-01

    Motor units are the final element of neuromotor control. In manner analogous to the organization of neuromotor control in other skeletal muscles, diaphragm motor units comprise phrenic motoneurons located in the cervical spinal cord that innervate the diaphragm muscle, the main inspiratory muscle in mammals. Diaphragm motor units play a primary role in sustaining ventilation, but are also active in other non-ventilatory behaviors, including coughing, sneezing, vomiting, defecation and parturition. Diaphragm muscle fibers comprise all fiber types. Thus, diaphragm motor units display substantial differences in contractile and fatigue properties, but importantly properties of the motoneuron and muscle fibers within a motor unit are matched. As in other skeletal muscles, diaphragm motor units are recruited in order such that motor units that display greater fatigue resistance are recruited earlier and more often than more fatigable motor units. The properties of the motor unit population are critical determinants of the function of a skeletal muscle across the range of possible motor tasks. Accordingly, fatigue-resistant motor units are sufficient to generate the forces necessary for ventilatory behaviors whereas more fatigable units are only activated during expulsive behaviors important for airway clearance. Neuromotor control of diaphragm motor units may reflect selective inputs from distinct pattern generators distributed according to the motor unit properties necessary to accomplish these different motor tasks. In contrast, widely-distributed inputs to phrenic motoneurons from various pattern generators (e.g., for breathing, coughing or vocalization) would dictate recruitment order based on intrinsic electrophysiological properties. PMID:24746055

  4. Motor unit organization of human medial gastrocnemius.

    PubMed Central

    Garnett, R A; O'Donovan, M J; Stephens, J A; Taylor, A

    1979-01-01

    1. The properties of fifty-seven motor units in human medial gastrocnemius have been studied using controlled intramuscular microstimulation, glycogen depletion and muscle biopsy. 2. Motor units could be divided into three classes on the basis of their mechanical properties. Type S units were slow, small and fatigue resistant. Type FR units were fast, intermediate in size, and fatigue resistant. Type FF units were fast, large and fatigable. 3. Glycogen depletion of a number of type S and FF units revealed them to be composed of type 1 and type 2b muscle fibres respectively. 4. The results suggest that during slowly increasing voluntary contractions where units are recruited in order of size, type 1 and 2a muscle fibres would be employed at low force levels followed by type 2b muscle fibres in stronger contractions. Images Fig. 5 Fig. 6 PMID:430414

  5. Motor unit organization of human medial gastrocnemius.

    PubMed

    Garnett, R A; O'Donovan, M J; Stephens, J A; Taylor, A

    1979-02-01

    1. The properties of fifty-seven motor units in human medial gastrocnemius have been studied using controlled intramuscular microstimulation, glycogen depletion and muscle biopsy. 2. Motor units could be divided into three classes on the basis of their mechanical properties. Type S units were slow, small and fatigue resistant. Type FR units were fast, intermediate in size, and fatigue resistant. Type FF units were fast, large and fatigable. 3. Glycogen depletion of a number of type S and FF units revealed them to be composed of type 1 and type 2b muscle fibres respectively. 4. The results suggest that during slowly increasing voluntary contractions where units are recruited in order of size, type 1 and 2a muscle fibres would be employed at low force levels followed by type 2b muscle fibres in stronger contractions.

  6. From Single Motor Unit Activity to Multiple Grip Forces: Mini‐review of Multi‐digit Grasping1

    PubMed Central

    Winges, Sara A.; Santello, Marco

    2007-01-01

    SYNOPSIS This paper is a mini review of kinetic and kinematic evidence on the control of the hand with emphasis on grasping. It is not meant to be an exhaustive review, rather it summarizes current research examining the mechanisms through which specific patterns of coordination are elicited and observed during reach to grasp movements and static grasping. These coordination patterns include the spatial and temporal covariation of the rotation at multiple joints during reach to grasp movements. A basic coordination between grip forces produced by multiple digits also occurs during whole hand grasping such that normal forces tend to be produced in a synchronous fashion across pairs of digits. Finally, we address current research that suggests that motor unit synchrony across hand muscles and muscle compartments might be one of the neural mechanisms underlying the control of grasping. PMID:18414593

  7. Diaphragm Motor Unit Recruitment in Rats

    PubMed Central

    Mantilla, Carlos B.; Seven, Yasin B.; Zhan, Wen-Zhi; Sieck, Gary C.

    2010-01-01

    We hypothesized that considerable force reserve exists for the diaphragm muscle (DIAm) to generate transdiaphragmatic pressures (Pdi) necessary to sustain ventilation. In rats, we measured Pdi and DIAm EMG activity during different ventilatory (eupnea and hypoxia (10% O2) – hypercapnia (5% CO2)) and non-ventilatory (airway occlusion and sneezing induced by intranasal capsaicin) behaviors. Compared to maximum Pdi (Pdimax - generated by bilateral phrenic nerve stimulation), the Pdi generated during eupnea (21±2%) and hypoxia-hypercapnia (28±4%) were significantly less (P<0.0001) than that generated during airway occlusion (63±4%) and sneezing (94±5%). The Pdi generated during spontaneous sighs was 62±5% of Pdimax. Relative DIAm EMG activity (root mean square [RMS] amplitude) paralleled the changes in Pdi during different ventilatory and non-ventilatory behaviors (r2=0.78; p<0.0001). These results support our hypothesis of a considerable force reserve for the DIAm to accomplish ventilatory behaviors. A model for DIAm motor unit recruitment predicted that ventilatory behaviors would require activation of only fatigue resistant units. PMID:20620243

  8. Motor Unit Characteristics after Targeted Muscle Reinnervation

    PubMed Central

    Kapelner, Tamás; Jiang, Ning; Holobar, Aleš; Vujaklija, Ivan; Roche, Aidan D.; Farina, Dario; Aszmann, Oskar C.

    2016-01-01

    Targeted muscle reinnervation (TMR) is a surgical procedure used to redirect nerves originally controlling muscles of the amputated limb into remaining muscles above the amputation, to treat phantom limb pain and facilitate prosthetic control. While this procedure effectively establishes robust prosthetic control, there is little knowledge on the behavior and characteristics of the reinnervated motor units. In this study we compared the m. pectoralis of five TMR patients to nine able-bodied controls with respect to motor unit action potential (MUAP) characteristics. We recorded and decomposed high-density surface EMG signals into individual spike trains of motor unit action potentials. In the TMR patients the MUAP surface area normalized to the electrode grid surface (0.25 ± 0.17 and 0.81 ± 0.46, p < 0.001) and the MUAP duration (10.92 ± 3.89 ms and 14.03 ± 3.91 ms, p < 0.01) were smaller for the TMR group than for the controls. The mean MUAP amplitude (0.19 ± 0.11 mV and 0.14 ± 0.06 mV, p = 0.07) was not significantly different between the two groups. Finally, we observed that MUAP surface representation in TMR generally overlapped, and the surface occupied by motor units corresponding to only one motor task was on average smaller than 12% of the electrode surface. These results suggest that smaller MUAP surface areas in TMR patients do not necessarily facilitate prosthetic control due to a high degree of overlap between these areas, and a neural information—based control could lead to improved performance. Based on the results we also infer that the size of the motor units after reinnervation is influenced by the size of the innervating motor neuron. PMID:26901631

  9. Proteostasis and Diseases of the Motor Unit

    PubMed Central

    Rinaldi, Carlo; Mäger, Imre; Wood, Matthew J.

    2016-01-01

    The accumulation in neurons of aberrant protein species, the pathological hallmark of many neurodegenerative diseases, results from a global impairment of key cellular processes governing protein synthesis/degradation and repair mechanisms, also known as the proteostasis network (PN). The growing number of connections between dysfunction of this intricate network of pathways and diseases of the motor unit, where both motor neurons and muscle are primarily affected, has provided momentum to investigate the muscle- and motor neuron-specific response to physiological and pathological stressors and to explore the therapeutic opportunities that manipulation of this process may offer. Furthermore, these diseases offer an unparalleled opportunity to deepen our understanding of the molecular mechanisms behind the intertissue communication and transfer of signals of proteostasis. The most compelling aspect of these investigations is their immediate potential for therapeutic impact: targeting muscle to stem degeneration of the motor unit would represent a dramatic paradigm therapeutic shift for treating these devastating diseases. Here we will review the current state of the art of the research on the alterations of the PN in diseases of the motor unit and its potential to result in effective treatments for these devastating neuromuscular disorders. PMID:28082869

  10. Motor unit size in muscular dystrophy, a macro EMG and scanning EMG study.

    PubMed Central

    Hilton-Brown, P; Stålberg, E

    1983-01-01

    Patients with muscular dystrophy were investigated with Macro EMG to study activity from whole individual motor units, and with Scanning EMG to study the distribution of activity within the motor unit. Macro motor unit potentials were normal or only slightly reduced in amplitude. In Scanning EMG the units had unchanged mean length compared with normal, but an uneven distribution of the activity. This was also seen in severely weak muscles. The findings are interpreted to be the result of degenerative and regenerative processes, giving rise to remodelling of the motor unit. Images PMID:6655485

  11. Simulations of motor unit number estimation techniques

    NASA Astrophysics Data System (ADS)

    Major, Lora A.; Jones, Kelvin E.

    2005-06-01

    Motor unit number estimation (MUNE) is an electrodiagnostic procedure used to evaluate the number of motor axons connected to a muscle. All MUNE techniques rely on assumptions that must be fulfilled to produce a valid estimate. As there is no gold standard to compare the MUNE techniques against, we have developed a model of the relevant neuromuscular physiology and have used this model to simulate various MUNE techniques. The model allows for a quantitative analysis of candidate MUNE techniques that will hopefully contribute to consensus regarding a standard procedure for performing MUNE.

  12. Motor unit number in a small facial muscle, dilator naris

    PubMed Central

    Patel-Khurana, Nilam; Fregosi, Ralph F.

    2015-01-01

    A loss of functioning motor units underlies many neuromuscular disorders. The facial nerve innervates the muscles of facial expression, including nasal muscles, which also play an important role in the regulation of airflow resistance. It is difficult to accurately assess motor unit number in the facial muscles, because the muscles are difficult to activate in isolation. Here we apply the manual McComas method to estimate the number of motor units in a nasal dilator muscle. EMG of the dilator naris was recorded during graded stimulation of the zygomatic branch of the facial nerve in 26 subjects (12 M/14 F), aged 20–41 years. Each subject was studied twice, on separate days, to estimate method reproducibility. As a check on our use of the McComas method, we also estimated motor unit number in the first dorsal interosseus muscle (FDI) of 6 subjects, as the muscle is also small, and has been studied with the McComas method. Reproducibility was evaluated with a rigorous statistical approach, the Bland-Altman procedure. We estimate that dilator naris is composed of 75 ±15.6 (SD) motor units, compared to 144 ± 35.5 in FDI. The coefficient of variation for test-retest reproducibility of dilator naris motor unit estimates was 29.6%, similar to separate-day reproducibility reported for other muscles. Recording and stimulation were done with surface electrodes, and the recordings were of high quality and reproducible. This simple technique could be applied clinically to track motor neuron loss, and to monitor facial nerve integrity. PMID:26169101

  13. Electrical properties of motor units in Parkinsonism and a possible relationship with bradykinesia.

    PubMed

    Milner-Brown, H S; Fisher, M A; Weiner, W J

    1979-01-01

    The electrical activity of single motor units was recorded from the first dorsal interosseous muscles of nine patients with Parkinson's disease. Six of these patients had a combination of the following abnormal motor unit properies: (1) a variable delay period of 20 seconds to 3 minutes between the initiation of voluntary effort and the recruitment of the first group of motor units; (2) after recruitment, some of the motor units stopped firing for durations of 10s, 40s, 75s... 3 min.; (3) some of the motor units fired at abnormally low frequencies of 2-3 per second. All these six patients had slowed finger movement, and five of the six were studied while off levodopa for two to seven days. One of these patients, reinvestigated after levodopa therapy had been restarted, demonstrated improvement in motor unit control. The three remaining patients who were studied while on uninterrupted levodopa therapy could make rapid finger movements, could recruit motor units without delay, and could fire recruited motor units continuously at normal frequencies of 6-14 per second. These results suggest that levodopa therapy is effective in Parkinson's disease at least partly because of its ability to correct abnormalities in the recruitment of motor units. Levodopa also corrects the abnormal motor unit firing pattern. The abnormal motor unit properties found in these patients could account for some aspects of bradykinesia.

  14. Electrical properties of motor units in Parkinsonism and a possible relationship with bradykinesia

    PubMed Central

    Milner-Brown, H. S.; Fisher, M. A.; Weiner, W. J.

    1979-01-01

    The electrical activity of single motor units was recorded from the first dorsal interosseous muscles of nine patients with Parkinson's disease. Six of these patients had a combination of the following abnormal motor unit properies: (1) a variable delay period of 20 seconds to 3 minutes between the initiation of voluntary effort and the recruitment of the first group of motor units; (2) after recruitment, some of the motor units stopped firing for durations of 10s, 40s, 75s... 3 min.; (3) some of the motor units fired at abnormally low frequencies of 2-3 per second. All these six patients had slowed finger movement, and five of the six were studied while off levodopa for two to seven days. One of these patients, reinvestigated after levodopa therapy had been restarted, demonstrated improvement in motor unit control. The three remaining patients who were studied while on uninterrupted levodopa therapy could make rapid finger movements, could recruit motor units without delay, and could fire recruited motor units continuously at normal frequencies of 6-14 per second. These results suggest that levodopa therapy is effective in Parkinson's disease at least partly because of its ability to correct abnormalities in the recruitment of motor units. Levodopa also corrects the abnormal motor unit firing pattern. The abnormal motor unit properties found in these patients could account for some aspects of bradykinesia. PMID:762583

  15. Changes in the activity of units of the cat motor cortex with rapid conditioning and extinction of a compound eye blink movement.

    PubMed

    Aou, S; Woody, C D; Birt, D

    1992-02-01

    Patterns of spike activity were measured in the pericruciate cortex of conscious cats before and after development of a Pavlovian conditioned eye blink response. Unit activity was tested with presentations of a click conditioned stimulus (CS) and a hiss discriminative stimulus (DS) of similar intensity to the click. Unit discharge in response to the CS increased after conditioning, but not after backward conditioning when conditioned reflexes (CRs) were not performed. Rates of spontaneous, baseline discharge were not increased after conditioning with respect to rates of discharge measured in the naive state. It appeared that an increase in the ratio of CS-elicited discharge to background activity, together with an increase in the number of units responding to the CS after conditioning, supported discrimination of the CS from the DS and performance of the conditioned blink response. This is the first detailed characterization of patterns of a rapidly conditioned Pavlovian response. Activation of units by the CS preceded the onset of the CR, supporting the hypothesis that the activity played a role in initiating the conditioned eye blink movement. Extinction with retention of performance of the CR was associated with perseverance of the increased unit discharge in response to the CS. Extinction with substantially reduced performance of the CR was associated with diminution of the unit response to the CS below levels found with conditioning. Averages of patterns of spike activity elicited by the CS after conditioning showed components of discharge with onsets of 8-40 msec (alpha 1), 40-72 msec (alpha 2), 72-112 msec (beta), and greater than 112 msec (gamma), corresponding to each of four separate excitatory EMG components of the compound blink CR. Each component increased in magnitude after conditioning, relative to levels found in the naive state. The finding that long- as well as short-latency components of unit activation increased after conditioning supported the

  16. Motor patterns during active electrosensory acquisition

    PubMed Central

    Hofmann, Volker; Geurten, Bart R. H.; Sanguinetti-Scheck, Juan I.; Gómez-Sena, Leonel; Engelmann, Jacob

    2014-01-01

    Motor patterns displayed during active electrosensory acquisition of information seem to be an essential part of a sensory strategy by which weakly electric fish actively generate and shape sensory flow. These active sensing strategies are expected to adaptively optimize ongoing behavior with respect to either motor efficiency or sensory information gained. The tight link between the motor domain and sensory perception in active electrolocation make weakly electric fish like Gnathonemus petersii an ideal system for studying sensory-motor interactions in the form of active sensing strategies. Analyzing the movements and electric signals of solitary fish during unrestrained exploration of objects in the dark, we here present the first formal quantification of motor patterns used by fish during electrolocation. Based on a cluster analysis of the kinematic values we categorized the basic units of motion. These were then analyzed for their associative grouping to identify and extract short coherent chains of behavior. This enabled the description of sensory behavior on different levels of complexity: from single movements, over short behaviors to more complex behavioral sequences during which the kinematics alter between different behaviors. We present detailed data for three classified patterns and provide evidence that these can be considered as motor components of active sensing strategies. In accordance with the idea of active sensing strategies, we found categorical motor patterns to be modified by the sensory context. In addition these motor patterns were linked with changes in the temporal sampling in form of differing electric organ discharge frequencies and differing spatial distributions. The ability to detect such strategies quantitatively will allow future research to investigate the impact of such behaviors on sensing. PMID:24904337

  17. Action potentials and twitch forces of rabbit masseter motor units at optimum jaw angle.

    PubMed

    van Eijden, T M G J; Turkawski, S J J

    2002-08-01

    This study examines mutual correlations between electrical and contractile motor-unit properties. Action potentials and twitch force responses of 42 masseter motor units were recorded in 14 rabbits. Motor units were excited by stimulating motoneurones in the trigeminal motor nucleus. Action potentials and twitches were measured at different jaw gapes between 0 and 21 degrees, in steps of 3 degrees. For each motor unit, the jaw angle-active force interrelation was determined and variables for action potential and force were compared at the jaw angle at which the motor unit produced the largest force. The results showed a large variation in variables for action potential and force, possibly related to the variation in motor-unit morphology. A weak correlation was found between the variables for action-potential amplitude and the magnitude of optimum force, indicating that motor units producing larger forces tended to have action potentials with larger amplitudes. Twitch-contraction time and the moment arm of the motor unit correlated positively with both the median frequency and the duration of the action potential. This indicates that slower contracting motor units had longer action potentials and is in accord with the earlier observation that slower motor units are preferentially located in the anterior regions of the masseter.

  18. Activities for a Perceptual Motor Program.

    ERIC Educational Resources Information Center

    Brinning, Dorothy; And Others

    Perceptual motor activities for physically handicapped children are presented in the areas of fine and gross motor skills. Also detailed are activities to develop body image, visual motor skills, and tactile and auditory perception. (JD)

  19. Motor Activity Improves Temporal Expectancy

    PubMed Central

    Fautrelle, Lilian; Mareschal, Denis; French, Robert; Addyman, Caspar; Thomas, Elizabeth

    2015-01-01

    Certain brain areas involved in interval timing are also important in motor activity. This raises the possibility that motor activity might influence interval timing. To test this hypothesis, we assessed interval timing in healthy adults following different types of training. The pre- and post-training tasks consisted of a button press in response to the presentation of a rhythmic visual stimulus. Alterations in temporal expectancy were evaluated by measuring response times. Training consisted of responding to the visual presentation of regularly appearing stimuli by either: (1) pointing with a whole-body movement, (2) pointing only with the arm, (3) imagining pointing with a whole-body movement, (4) simply watching the stimulus presentation, (5) pointing with a whole-body movement in response to a target that appeared at irregular intervals (6) reading a newspaper. Participants performing a motor activity in response to the regular target showed significant improvements in judgment times compared to individuals with no associated motor activity. Individuals who only imagined pointing with a whole-body movement also showed significant improvements. No improvements were observed in the group that trained with a motor response to an irregular stimulus, hence eliminating the explanation that the improved temporal expectations of the other motor training groups was purely due to an improved motor capacity to press the response button. All groups performed a secondary task equally well, hence indicating that our results could not simply be attributed to differences in attention between the groups. Our results show that motor activity, even when it does not play a causal or corrective role, can lead to improved interval timing judgments. PMID:25806813

  20. Twitch and tetanic properties of human thenar motor units paralyzed by chronic spinal cord injury.

    PubMed

    Häger-Ross, C K; Klein, C S; Thomas, C K

    2006-07-01

    Little is known about how human motor units respond to chronic paralysis. Our aim was to record surface electromyographic (EMG) signals, twitch forces, and tetanic forces from paralyzed motor units in the thenar muscles of individuals (n = 12) with chronic (1.5-19 yr) cervical spinal cord injury (SCI). Each motor unit was activated by intraneural stimulation of its motor axon using single pulses and trains of pulses at frequencies between 5 and 100 Hz. Paralyzed motor units (n = 48) had small EMGs and weak tetanic forces (n = 32 units) but strong twitch forces, resulting in half-maximal force being achieved at a median of only 8 Hz. The distributions for cumulative twitch and tetanic forces also separated less for paralyzed units than for control units, indicating that increases in stimulation frequency made a smaller relative contribution to the total force output in paralyzed muscles. Paralysis also induced slowing of conduction velocities, twitch contraction times and EMG durations. However, the elevated ratios between the twitch and the tetanic forces, but not contractile speed, correlated significantly with the extent to which unit force summated in response to different frequencies of stimulation. Despite changes in the absolute values of many electrical and mechanical properties of paralyzed motor units, most of the distributions shifted uniformly relative to those of thenar units obtained from control subjects. Thus human thenar muscles paralyzed by SCI retain a population of motor units with heterogeneous contractile properties because chronic paralysis influenced all of the motor units similarly.

  1. Microgravity induced changes in the control of motor units

    NASA Astrophysics Data System (ADS)

    de Luca, C.; Roy, S.

    The goal of this project is to understand the effects of microgravity on the control of muscles. It is motivated by the notion that in order to adequately address microgravity-induced deterioration in the force generating capacity of muscles, one needs to understand the changes in the control aspects in addition to histochemical and morphological changes. The investigations into muscle control need to include the regulation of the firing activity of motor units that make up a muscle and the coordination of different muscles responsible for the control of a joint. In order to understand the effects of microgravity on these two aspects of muscle control, we will test astronauts before and after spaceflight. The investigations of the control of motor units will involve intramuscular EMG techniques developed in our laboratory. We will use a quadrifilar electrode to detect simultaneously three differential channels of EMG activity. These data will be decomposed accurately using a sophisticated set of algorithms constructed with artificial intelligence knowledge- based techniques. Particular attention will be paid to the firing rate and recruitment behavior of motor units and we will study the degree of cross-correlation of the firing rates. This approach will enable us to study the firing behavior of several (approx. 10) concurrently active motor units. This analysis will enable us to detect modifications in the control of motor units. We will perform these investigations in a hand muscle, which continues being used in prehensile tasks in space, and a leg muscle whose antigravity role is not needed in space. The comparison of the effects of weightlessness on these muscles will determine if continued use of muscles in space deters the possible deleterious effects of microgravity on the control of motor units, in addition to slowing down atrophy. We are particularly interested in comparing the results of this study to similar data already obtained from elderly subjects

  2. Motor unit recruitment during neuromuscular electrical stimulation: a critical appraisal.

    PubMed

    Bickel, C Scott; Gregory, Chris M; Dean, Jesse C

    2011-10-01

    Neuromuscular electrical stimulation (NMES) is commonly used in clinical settings to activate skeletal muscle in an effort to mimic voluntary contractions and enhance the rehabilitation of human skeletal muscles. It is also used as a tool in research to assess muscle performance and/or neuromuscular activation levels. However, there are fundamental differences between voluntary- and artificial-activation of motor units that need to be appreciated before NMES protocol design can be most effective. The unique effects of NMES have been attributed to several mechanisms, most notably, a reversal of the voluntary recruitment pattern that is known to occur during voluntary muscle contractions. This review outlines the assertion that electrical stimulation recruits motor units in a nonselective, spatially fixed, and temporally synchronous pattern. Additionally, it synthesizes the evidence that supports the contention that this recruitment pattern contributes to increased muscle fatigue when compared with voluntary actions and provides some commentary on the parameters of electrical stimulation as well as emerging technologies being developed to facilitate NMES implementation. A greater understanding of how electrical stimulation recruits motor units, as well as the benefits and limitations of its use, is highly relevant when using this tool for testing and training in rehabilitation, exercise, and/or research.

  3. Detail, unit 5, pump motor. This motor is also 1,100 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail, unit 5, pump motor. This motor is also 1,100 hp and is manufactured by the Electric Products Company. Note additional gauges and box attached to side. Unit 6 is identical to this unit - Wellton-Mohawk Irrigation System, Pumping Plant No. 1, Bounded by Gila River & Union Pacific Railroad, Wellton, Yuma County, AZ

  4. Electrical stimulation of transplanted motoneurons improves motor unit formation.

    PubMed

    Liu, Yang; Grumbles, Robert M; Thomas, Christine K

    2014-08-01

    Motoneurons die following spinal cord trauma and with neurological disease. Intact axons reinnervate nearby muscle fibers to compensate for the death of motoneurons, but when an entire motoneuron pool dies, there is complete denervation. To reduce denervation atrophy, we have reinnervated muscles in Fisher rats from local transplants of embryonic motoneurons in peripheral nerve. Since growth of axons from embryonic neurons is activity dependent, our aim was to test whether brief electrical stimulation of the neurons immediately after transplantation altered motor unit numbers and muscle properties 10 wk later. All surgical procedures and recordings were done in anesthetized animals. The muscle consequences of motoneuron death were mimicked by unilateral sciatic nerve section. One week later, 200,000 embryonic day 14 and 15 ventral spinal cord cells, purified for motoneurons, were injected into the tibial nerve 10-15 mm from the gastrocnemii muscles as the only neuron source for muscle reinnervation. The cells were stimulated immediately after transplantation for up to 1 h using protocols designed to examine differential effects due to pulse number, stimulation frequency, pattern, and duration. Electrical stimulation that included short rests and lasted for 1 h resulted in higher motor unit counts. Muscles with higher motor unit counts had more reinnervated fibers and were stronger. Denervated muscles had to be stimulated directly to evoke contractions. These results show that brief electrical stimulation of embryonic neurons, in vivo, has long-term effects on motor unit formation and muscle force. This muscle reinnervation provides the opportunity to use patterned electrical stimulation to produce functional movements.

  5. Electrical stimulation of transplanted motoneurons improves motor unit formation

    PubMed Central

    Liu, Yang; Grumbles, Robert M.

    2014-01-01

    Motoneurons die following spinal cord trauma and with neurological disease. Intact axons reinnervate nearby muscle fibers to compensate for the death of motoneurons, but when an entire motoneuron pool dies, there is complete denervation. To reduce denervation atrophy, we have reinnervated muscles in Fisher rats from local transplants of embryonic motoneurons in peripheral nerve. Since growth of axons from embryonic neurons is activity dependent, our aim was to test whether brief electrical stimulation of the neurons immediately after transplantation altered motor unit numbers and muscle properties 10 wk later. All surgical procedures and recordings were done in anesthetized animals. The muscle consequences of motoneuron death were mimicked by unilateral sciatic nerve section. One week later, 200,000 embryonic day 14 and 15 ventral spinal cord cells, purified for motoneurons, were injected into the tibial nerve 10–15 mm from the gastrocnemii muscles as the only neuron source for muscle reinnervation. The cells were stimulated immediately after transplantation for up to 1 h using protocols designed to examine differential effects due to pulse number, stimulation frequency, pattern, and duration. Electrical stimulation that included short rests and lasted for 1 h resulted in higher motor unit counts. Muscles with higher motor unit counts had more reinnervated fibers and were stronger. Denervated muscles had to be stimulated directly to evoke contractions. These results show that brief electrical stimulation of embryonic neurons, in vivo, has long-term effects on motor unit formation and muscle force. This muscle reinnervation provides the opportunity to use patterned electrical stimulation to produce functional movements. PMID:24848463

  6. Characterizing the complexity of spontaneous motor unit patterns of amyotrophic lateral sclerosis using approximate entropy

    NASA Astrophysics Data System (ADS)

    Zhou, Ping; Barkhaus, Paul E.; Zhang, Xu; Zev Rymer, William

    2011-10-01

    This paper presents a novel application of the approximate entropy (ApEn) measurement for characterizing spontaneous motor unit activity of amyotrophic lateral sclerosis (ALS) patients. High-density surface electromyography (EMG) was used to record spontaneous motor unit activity bilaterally from the thenar muscles of nine ALS subjects. Three distinct patterns of spontaneous motor unit activity (sporadic spikes, tonic spikes and high-frequency repetitive spikes) were observed. For each pattern, complexity was characterized by calculating the ApEn values of the representative signal segments. A sliding window over each segment was also introduced to quantify the dynamic changes in complexity for the different spontaneous motor unit patterns. We found that the ApEn values for the sporadic spikes were the highest, while those of the high-frequency repetitive spikes were the lowest. There is a significant difference in mean ApEn values between two arbitrary groups of the three spontaneous motor unit patterns (P < 0.001). The dynamic ApEn curve from the sliding window analysis is capable of tracking variations in EMG activity, thus providing a vivid, distinctive description for different patterns of spontaneous motor unit action potentials in terms of their complexity. These findings expand the existing knowledge of spontaneous motor unit activity in ALS beyond what was previously obtained using conventional linear methods such as firing rate or inter-spike interval statistics.

  7. Unsupervised discrimination of motor unit action potentials using spectrograms.

    PubMed

    Pham, Thuy T; Fuglevand, Andrew J; McEwan, Alistair L; Leong, Philip H W

    2014-01-01

    Single motor unit activity study is a major research interest because changes of MUAP morphology, MU activation, and MU recruitment provide the most informative part in diagnosis and treatment of neuromuscular disorders. Intramuscular recordings often provide a more than one motor unit activities, thus MUAP discrimination is a crucial task to study single unit activities. Most neurology laboratories worldwide still need specialists who spend hours to classify MUAPs. In this study, we present a new real-time unsupervised method for MUAP discrimination. After automatically detect MUAPs, we extract features of spectrogram images from the wavelet coefficients of MUAPs. Unlike benchmark methods, we do not calculate Euclidean distances which assumes a spherical distribution of data. Instead, we measure correlation between spectrogram images. Then MUAPs are automatically discriminated without any prior knowledge of the number of clusters as in previous works. MUAP were detected on a real data set with a precision PPV of 94% (tolerance of 2 ms). We obtained a similar result in MUAP classification to the reference. The difference in percentages of MU proportions between our method and the reference were 3% for MU1, 0.4% for MU2, and 12% for MU3. In contrast, F1-score for MU3 reached the highest level at 91% (PPV at the highest of 96.64% as well).

  8. Discharge properties of motor units of the abductor hallucis muscle during cramp contractions.

    PubMed

    Minetto, Marco A; Holobar, Ales; Botter, Alberto; Farina, Dario

    2009-09-01

    We analyzed individual motor units during electrically elicited cramp contractions with the aim of characterizing the variability and degree of common oscillations in their discharges. Intramuscular and surface electromyographic (EMG) signals were detected from the abductor hallucis muscle of 11 healthy subjects (age 27.0+/-3.7 yr) during electrically elicited cramps. In all, 48 motor units were identified from the intramuscular EMG. These motor units were active for 23.6+/-16.2 s, during which their average discharge rate was 14.5+/-5.1 pulses/s (pps) and their minimum and maximum rates were, respectively, 6.0+/-0.8 and 25.0+/-8.0 pps (P<0.001). The coefficient of variation for the interspike interval (ISI) was 44.6+/-9.7% and doublet discharges constituted 4.1+/-4.7% of the total number of discharges. In 38 motor units, the SD of the ISI was positively correlated to the mean ISI (R2=0.37, P<0.05). The coherence spectrum between smoothed discharge rates of pairs of motor units showed one significant peak at 1.4+/-0.4 Hz for 29 of the 96 motor unit pairs and two significant peaks at 1.3+/-0.5 and 1.5+/-0.5 Hz for 8 motor unit pairs. The cross-correlation function between pairs of discharge rates showed a significant peak (0.52+/-0.11) in 26 motor unit pairs. In conclusion, motor units active during cramps showed a range of discharge rates similar to that observed during voluntary contractions but larger ISI variability, probably due to large synaptic noise. Moreover, the discharge rates of the active motor units showed common oscillations.

  9. Motor unit populations in healthy and diseased muscles.

    PubMed

    McComas, A J; Galea, V; de Bruin, H

    1993-12-01

    The numbers of functioning motor units can be estimated in proximal and distal muscles of human limbs by an electrophysiological technique in which the mean sizes of the motor unit potentials are compared with the maximum M-waves of the same muscles. Although manual methods of estimation have been used successfully in the past, the introduction of automated techniques has brought considerable advantages, including greater objectivity and reduced contamination of the results by "alternation." In healthy subjects, the intrinsic muscles of the hand have approximately 100 motor units each, and the biceps brachii muscle has only slightly more. With advancing age, there is a loss of motor units, which appears to be more pronounced in distal muscles. The motor unit estimating methodology has been found to be of value in the diagnosis and assessment of patients suspected of having muscle denervation. In amyotrophic lateral sclerosis, the mean rate of motor unit loss is swift, whereas in late-onset cases of spinal muscular atrophy, the reduction in the motor unit population does not appear to progress. In only the most rapidly deteriorating cases of post-polio syndrome is it possible to demonstrate further loss of motor units. In all of these denervating disorders, and in peripheral neuropathies, the importance of collateral reinnervation as a compensatory mechanism is emphasized.

  10. 40 CFR 798.6200 - Motor activity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 32 2011-07-01 2011-07-01 false Motor activity. 798.6200 Section 798... (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Neurotoxicity § 798.6200 Motor activity. (a) Purpose—(1... the effects of administration of the substance on motor activity is useful when neurotoxicity...

  11. Motor activity under weightless conditions

    NASA Technical Reports Server (NTRS)

    Kasyan, I. I.; Kopanev, V. I.; Cherepakhin, M. A.; Yuganov, Y. M.

    1975-01-01

    The material presented on the motor activity under weightless conditions (brief and long) leads to the conclusion that it is not significantly disrupted, if those being examined are secured at the workplaces. Some discoordination of movement, moderately expressed disruption of the precision of reproduction of assigned muscular forces, etc., were observed. Motor disorders decrease significantly in proportion to the length of stay under weightless conditions. This apparently takes place, as a consequence of formation of a new functional system, adequate to the conditions of weightlessness. Tests on intact and labyrinthectomized animals have demonstrated that signaling from the inner ear receptors is superfluous in weightlessness, since it promotes the onset of disruptions in the combined work of the position analyzers.

  12. Motor unit reorganization in progressive muscular dystrophies and congenital myopathies.

    PubMed

    Szmidt-Sałkowska, Elżbieta; Gaweł, Małgorzata; Lipowska, Marta

    2015-01-01

    The aim of this study was to analyze motor unit reorganization in different types of progressive muscular dystrophies and congenital myopathies. The study population consisted of patients with genetically verified progressive muscular dystrophies: Duchenne (DMD) (n=54), Becker (BMD) (n=30), facio-scapulo-humeral (FSHD) (n=37), and Emery-Dreifuss (E-DD) (n=26). Patients with probable limb-girdle dystrophy (L-GD) (n=58) and congenital myopathies (n=35) were also included in the study. Quantitative EMG recordings were obtained from 469 muscles. Muscle activity at rest and during slight voluntary and maximal muscle contraction was analyzed. The motor unit activity potential (MUAP) duration, amplitude, area, size index (SI), polyphasicity, and the presence of "outliers" were evaluated. Diminished values of MUAP parameters and decreased maximal amplitude of maximal muscle contraction were recorded most frequently in DMD and mainly in the biceps brachii muscles. SI was the most frequently changed EMG parameter. "Outliers" with amplitude below the normal range were recorded more frequently then a decreased mean MUAP amplitude (what could indicate a very high sensitivity of this EMG parameter). Pathological interference pattern was recorded in 34.7% of biceps brachii and in 21.2% of rectus femoris muscles. In FSHD, decreased MUAP duration and SI and pathological interference pattern with low amplitude were recorded most frequently in the tibial anterior and deltoid muscles. The presence of potentials with reduced parameters is a result of decreasing motor unit area (reduced number and size of muscle fibers), while high amplitude potentials recorded in BMD and E-DD could indicate a slow and mild course of disease and muscle regeneration.

  13. Motor-unit coherence and its relation with synchrony are influenced by training.

    PubMed

    Semmler, John G; Sale, Martin V; Meyer, François G; Nordstrom, Michael A

    2004-12-01

    The purpose of the study was to quantify the strength of motor-unit coherence from the left and right first dorsal interosseous muscles in untrained, skill-trained (musicians), and strength-trained (weightlifters) individuals who had long-term specialized use of their hand muscles. The strength of motor-unit coherence was quantified from a total of 394 motor-unit pairs in 13 subjects using data from a previous study in which differences were found in the strength of motor-unit synchronization depending on training status. In the present study, we found that the strength of motor-unit coherence was significantly greater in the left compared with the right hand of untrained right-handed subjects with the largest differences observed between 21 and 24 Hz. The strength of motor-unit coherence was lower in both hands of skill-trained subjects (21-27 Hz) and the right (skilled) hand of untrained subjects (21-24 Hz), whereas the largest motor-unit coherence was observed in both hands of strength-trained subjects (3-9 and 21-27 Hz). A strong curvilinear association was observed between motor-unit synchronization and the integral of coherence at 10-30 Hz in all motor-unit pairs (r2 = 0.77), and was most pronounced in strength-trained subjects (r2 = 0.90). Furthermore, this association was accentuated when using synchronization data with broad peaks (>11 ms), suggesting that the 10- to 30-Hz coherence is due to oscillatory activity in indirect branched common inputs. The altered coherence with training may be due to an interaction between cortical inhibition and the number of direct common inputs to motor neurons in skill- or strength-trained hands.

  14. Recruitment stability in masseter motor units during isometric voluntary contractions.

    PubMed

    Scutter, S D; Türker, K S

    1998-10-01

    Recruitment of single motor units (SMUs) of the masseter muscle was studied using macro representation (MacroRep) as the indicator of motor unit size. When subjects followed a slow isometric force ramp, units were usually recruited in order of MacroRep size. However, pooling the data from repeated ramps in the same subject resulted in a weak relationship between MacroRep size and force recruitment threshold, probably due to marked variations in the relative contributions of the jaw muscles, and varying levels of cocontraction, in the development of total bite force in each ramp. The force recruitment thresholds of individual SMUs showed marked variability, but recruitment threshold stability was improved when expressed as a percentage of maximum surface electromyographic (SEMG) activity in the ipsilateral masseter. Therefore the SEMG recruitment threshold was concluded to be a more stable and accurate indicator of the SMU's position in the recruitment hierarchy in a given muscle. It was concluded that SMUs in masseter are recruited according to the size principle, and that when investigating recruitment in jaw muscles, SEMG recruitment threshold should be used in preference to force recruitment threshold.

  15. Motor Unit Number Estimation and Motor Unit Action Potential Analysis in Carpal Tunnel Syndrome

    PubMed Central

    Sohn, Min Kyun; Jee, Sung Ju; Kim, Young-Jae; Shin, Hyun-Dae

    2011-01-01

    Objective To evaluate the clinical significance of motor unit number estimation (MUNE) and quantitative analysis of motor unit action potential (MUAP) in carpal tunnel syndrome (CTS) according to electrophysiologic severity, ultrasonographic measurement and clinical symptoms. Method We evaluated 78 wrists of 45 patients, who had been diagnosed with CTS and 42 wrists of 21 healthy controls. Median nerve conduction studies, amplitude and duration of MUAP, and the MUNE of the abductor pollicis brevis were measured. The cross sectional area (CSA) of the median nerve at the pisiform and distal radioulnar joint level was determined by high resolution ultrasonography. Clinical symptom of CTS was assessed using the Boston Carpal Tunnel Questionnaire (BCTQ). Results The MUNE, the amplitude and the duration of MUAP of the CTS group were significantly different from those found in the control group. The area under the ROC curve was 0.944 for MUNE, 0.923 for MUAP amplitude and 0.953 for MUAP duration. MUNE had a negative correlation with electrophysiologic stage of CTS, amplitude and duration of MUAP, CSA at pisiform level, and the score of BCTQ. The amplitude and duration of MUAP had a positive correlation with the score of BCTQ. The electrophysiologic stage was correlated with amplitude but not with the duration of MUAP. Conclusion MUNE, amplitude and duration of MUAP are useful tests for diagnosis of CTS. In addition, the MUNE serves as a good indicator of CTS severity. PMID:22506210

  16. Motor unit firing behavior during prolonged 50% MVC dorsiflexion contractions in young and older adults.

    PubMed

    Christie, Anita; Kamen, Gary

    2009-08-01

    The purpose of this study was to investigate changes in motor unit firing behavior during prolonged contractions in young and older adults. Motor unit activity was recorded from the tibialis anterior of 16 subjects (8 young and 8 older), while they performed isometric dorsiflexion at 50% MVC until task failure. Mean motor unit firing rate, the standard deviation (SD), and coefficient of variation (CV) of the interspike intervals, and number of doublet discharges were calculated for a total of 52 motor units, tracked for an average of 92.9+/-68.6s. There was no age-related difference in the time to task failure. A modest decline in firing rate was observed in 71% of the motor units, with no significant age-related difference. The SD and CV of the interspike interval had a positive slope in 65% and 69% of the motor units, respectively, with no significant age-related differences. The number of doublet discharges remained stable throughout the contraction. Both groups exhibited motor unit dropout (discharge cessation) during the contraction. Thus, a fatiguing task producing modest changes in firing rate in young and older adults is accompanied by an appreciable increase in firing rate variability. The incidence of doublet discharges is not increased during fatiguing contractions.

  17. Looking north toward unit 1 pump motor, overhead crane, and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking north toward unit 1 pump motor, overhead crane, and double folding doors on the north side of the building - Wellton-Mohawk Irrigation System, Pumping Plant No. 2, Bounded by Interstate 8 to south, Wellton, Yuma County, AZ

  18. Benefit on motor and non-motor behavior in a specialized unit for Parkinson's disease.

    PubMed

    Müller, Thomas; Öhm, Gabi; Eilert, Kathrin; Möhr, Katharina; Rotter, Stephanie; Haas, Thomas; Küchler, Matthias; Lütge, Sven; Marg, Marion; Rothe, Hartmut

    2017-02-28

    Treatment of patients with Parkinson's disease in specialized units is quite common in Germany. Data on the benefit of this hospitalization of patients with Parkinson's disease on motor and non-motor symptoms in conjunction with standardized tests are rare. Objective was to determine the efficacy of this therapeutic setting. We scored disease severity and performed clinical tests, respectively, instrumental procedures under standardized conditions in consecutively referred in-patients initially and at the end of their hospital stay. There was a decrease of motor and non-motor symptoms. The extent of improvement of non-motor and motor symptoms correlated to each other. Performance of complex movement sequences became better, whereas execution of simple movement series did not ameliorate. The interval for the timed up and go test went down. We demonstrate the effectiveness of an in-patient stay in a specialized unit for Parkinson's disease. Objective standardized testing supplements subjective clinical scoring with established rating scales.

  19. Motor unit recruitment by size does not provide functional advantages for motor performance

    PubMed Central

    Dideriksen, Jakob L; Farina, Dario

    2013-01-01

    It is commonly assumed that the orderly recruitment of motor units by size provides a functional advantage for the performance of movements compared with a random recruitment order. On the other hand, the excitability of a motor neuron depends on its size and this is intrinsically linked to its innervation number. A range of innervation numbers among motor neurons corresponds to a range of sizes and thus to a range of excitabilities ordered by size. Therefore, if the excitation drive is similar among motor neurons, the recruitment by size is inevitably due to the intrinsic properties of motor neurons and may not have arisen to meet functional demands. In this view, we tested the assumption that orderly recruitment is necessarily beneficial by determining if this type of recruitment produces optimal motor output. Using evolutionary algorithms and without any a priori assumptions, the parameters of neuromuscular models were optimized with respect to several criteria for motor performance. Interestingly, the optimized model parameters matched well known neuromuscular properties, but none of the optimization criteria determined a consistent recruitment order by size unless this was imposed by an association between motor neuron size and excitability. Further, when the association between size and excitability was imposed, the resultant model of recruitment did not improve the motor performance with respect to the absence of orderly recruitment. A consistent observation was that optimal solutions for a variety of criteria of motor performance always required a broad range of innervation numbers in the population of motor neurons, skewed towards the small values. These results indicate that orderly recruitment of motor units in itself does not provide substantial functional advantages for motor control. Rather, the reason for its near-universal presence in human movements is that motor functions are optimized by a broad range of innervation numbers. PMID:24144879

  20. RELATIONSHIP BETWEEN LINGUISTIC UNITS AND MOTOR COMMANDS.

    ERIC Educational Resources Information Center

    FROMKIN, VICTORIA A.

    ASSUMING THAT SPEECH IS THE RESULT OF A NUMBER OF DISCRETE NEUROMUSCULAR EVENTS AND THAT THE BRAIN CAN STORE ONLY A LIMITED NUMBER OF MOTOR COMMANDS WITH WHICH TO CONTROL THESE EVENTS, THE RESEARCH REPORTED IN THIS PAPER WAS DIRECTED TO A DETERMINATION OF THE SIZE AND NATURE OF THE STORED ITEMS AND AN EXPLANATION OF HOW SPEAKERS ENCODE A SEQUENCE…

  1. Perceptual Motor Activities in the Home.

    ERIC Educational Resources Information Center

    Brinning, Dorothy; And Others

    Designed for parents, the guide offers instructions for home activities to supplement the school program for children with perceptual motor disturbances. An individual program sheet is provided; behavioral characteristics and the child's need for structure are explained. Activities detailed include motor planning, body image, fine motor…

  2. Physiological characterization of motor unit properties in intact cats.

    PubMed

    O'Donovan, M J; Hoffer, J A; Loeb, G E

    1983-02-01

    Single motor units were isolated in intact cats, by microstimulation through chronically implanted microwires in the L5 ventral roots. Motor unit axonal and mechanical properties were obtained by stimulus-triggered averaging the signals from an implanted femoral nerve recording cuff and patellar tendon force transducer. All unit types were sampled with this technique, and it was also possible to stimulate in isolation an axon whose ventral root spike was recorded during treadmill locomotion. A new technique was described, spike-triggered microstimulation, for verifying the identity of a stimulated and a recorded axon.

  3. Motor unit number estimates in idiopathic Parkinson's disease.

    PubMed

    Caviness, J N; Smith, B E; Clarke Stevens, J; Adler, C H; Caselli, R J; Hentz, J G; Manfred, M S; Muenter, D

    2002-01-01

    We previously reported changes in motor unit morphology in patients with Parkinson's disease (PD) using subjective and computerized quantitative electromyography. Now, we present data on motor unit number estimates (MUNE) to address the hypothesis of motor neuron dropout in PD. Twenty patients with PD and 20 age-matched control subjects were screened by clinical criteria and nerve conduction studies to exclude those with neuropathy. Motor unit number estimates in the extensor digitorum brevis and hypothenar group were assessed by three different MUNE techniques. The MUNE technique types included (1) the statistical method developed by Daube, (2) a threshold method, and (3) an F-wave method. The overall multivariate comparison for the six MUNE measurements was significantly lower for the patients than the controls (P=0.02). The only significant difference in the individual measures was found in the threshold MUNE method of the hypothenar group (P<0.05). These results are consistent with those of our previous work, and both support the hypothesis that mild motor neuron dropout occurs in idiopathic PD. However, MUNE methods characteristically have large standard deviations which make it difficult to detect small changes. Progress in decreasing the variance of MUNEs will facilitate their use in detecting small motor unit number changes in neurodegenerative disease.

  4. Design, Synthesis, and Monitoring of Light-Activated Motorized Nanomachines

    NASA Astrophysics Data System (ADS)

    Chiang, Pinn-Tsong

    Our group has developed a family of single molecules termed nanocars, which are aimed at performing controllable motion on surfaces. In this work, a series of light-activated motorized nanomachines incorporated with a MHz frequency light-activated unidirectional rotary motor were designed and synthesized. We hope the light-activated motor can serve as the powering unit for the nanomachines, and perform controllable translational motion on surfaces or in solution. A series of motorized nanovehicles intended for scanning tunneling microscopy (STM) imaging were designed and synthesized. A p-carborane-wheeled motorized nanocar was synthesized and monitored by STM. Single-molecule imaging was accomplished on a Cu(111) surface. However, further manipulations did lead to motor induced lateral motion. We attributed this result to the strong molecule-surface interactions between the p-carborane-wheeled nanocar and the Cu(111) surface and possible energy transfer between the rotary motor and the Cu(111) surface. To fine-tune the molecule-surface interactions, an adamantane-wheeled motorized nanocar and a three-wheel nanoroadster were designed and synthesized. In addition, the STM substrates will be varied and different combinations of molecule-surface interactions will be studied. As a complimentary imaging method to STM, single-molecule fluorescence microscopy (SMFM) also provides single-molecule level resolution. Unlike STM experiment requires ultra-high vacuum and conductive substrate, SMFM experiment is conducted at ambient conditions and uses non-conductive substrate. This imaging method allows us to study another category of molecule-surface interactions. We plan to design a fluorescent motorized nanocar that is suitable for SMFM studies. However, both the motor and fluorophore are photochemically active molecules. In proximity, some undesired energy transfer or interference could occur. A cyanine 5- (cy5-) tagged motorized nanocar incorporated with the MHz motor was

  5. Motor Skill Competence and Physical Activity in Preschoolers: A Review.

    PubMed

    Figueroa, Roger; An, Ruopeng

    2017-01-01

    Objectives Preschoolers 3-5 years of age are in a crucial stage of motor skill competence. While preschoolers develop their motor skill competence through engagement in physical activity, a majority of them fail to meet guideline-recommended physical activity level. This study reviews scientific evidence on the relationship between motor skill competence and physical activity among preschoolers. Methods This systematic review followed the PRISMA framework. Keyword and reference search were conducted in PubMed, Cochrane Library, PsycINFO, Web of Science, and Google Scholar. Inclusion criteria included-age: 3-5 years of age; setting: preschool environment (e.g., preschool, childcare, head start); main outcomes: motor skill competence and physical activity; study design: cross-sectional study, case-control study, retrospective cohort study, prospective cohort study, or randomized controlled trial; language: English; and article type: peer-reviewed publication. Results Eleven studies met the inclusion criteria, including 6 randomized controlled trials and 5 cross-sectional studies. Studies were conducted in 5 countries: United States (5), United Kingdom (2), Australia (2), Switzerland (1), and Finland (1). Eight out of the 11 studies included in the review reported a significant relationship between motor skill competence and physical activity. The specific pattern and strength of the relationship tend to differ by gender, physical activity intensity, motor skill type, and day of the week (weekdays versus weekends). Conclusions An association has been consistently documented between motor skill competence and physical activity. Future research is warranted to elucidate the underlining causal link, examine potential heterogeneity, and determine the role of environment in the relationship between motor skill competence and physical activity among preschoolers.

  6. Ballistic contractions in fast or slow human muscles; discharge patterns of single motor units

    PubMed Central

    Desmedt, John E.; Godaux, Emile

    1978-01-01

    1. Single motor units were recorded from the masseter, soleus and first dorsal interosseous muscles of normal adult man. An analysis of discharge patterns was carried out either during slow ramp voluntary contractions, or during self-initiated isolated ballistic voluntary contractions. The isometric myogram was simultaneously recorded. 2. Each motor unit was only recruited when the peak force of a brisk contraction exceeded a certain value and a `ballistic force threshold' (in kg) was estimated for the unit from a large series of brisk contractions of different strengths. For each muscle, the ranking order for recruitment of different motor units recorded from one electrode position was virtually identical in slow ramp versus brisk ballistic contractions of different force (Kendall rank correlation coefficient = 0·91-1·0). There was no evidence for any consistent selective activation of fast twitch motor units in ballistic contractions. 3. The ballistic force threshold is considerably reduced with respect to the slow ramp force threshold for the motor units of the soleus muscle. This drop is also marked for the units of the first interosseous and tibialis anterior muscles, whereas it is only small for the units of the masseter muscle. These data have been validated after consideration of the complicating factor related to the possible differential involvement of synergic muscles in ramp or ballistic contractions. 4. In the masseter and first interosseous muscles, the time to peak is about 80 msec in small ballistic voluntary contractions and it increases to about 150 msec in strong contractions. This effect appears related to repetitive discharges of single motor units when their force threshold is exceeded. By contrast, in the soleus muscle, the time to peak remains at about 150 msec both in small and in strong ballistic contractions and most soleus motor units fire only one spike in the ballistic burst. 5. Brisk ballistic contractions are graded in force by the

  7. Experimental simulation of cat electromyogram: evidence for algebraic summation of motor-unit action-potential trains.

    PubMed

    Day, S J; Hulliger, M

    2001-11-01

    Prompted by the observation that the slope of the relationship between average rectified electromyography (EMG) and the ensemble activation rate of a pool of motor units progressively decreased (showing a downward nonlinearity), an experimental study was carried out to test the widely held notion that the EMG is the simple algebraic sum of motor-unit action-potential trains. The experiments were performed on the cat soleus muscle under isometric conditions, using electrical stimulation of alpha-motor axons isolated in ventral root filaments. The EMG signals were simulated experimentally under conditions where the activation of nearly the entire pool of motor units or of subsets of motor units was completely controlled by the experimenter. Sets of individual motor units or of small groups of motor units were stimulated independently, using stimulation profiles that were strictly repeatable between trials. This permitted a rigorous quantitative comparison of EMGs that were recorded during combined activation of multiple motor filaments with EMGs that were synthesized from the algebraic summation of motor unit action potential trains generated by individual nerve filaments. These were recorded separately by individually stimulating the same filaments with the same activation profiles that were employed during combined stimulation. During combined activation of up to 10 motor filaments, experimentally recorded and computationally synthesized EMGs were virtually identical. This indicates that EMG signals indeed are the outcome of the simple algebraic summation of motor-unit action-potential trains generated by concurrently active motor units. For both recorded and synthesized EMGs, it was confirmed that EMG magnitude increased nonlinearly with the ensemble activation rate of a pool of motor units. The nonlinearity was largely abolished when EMG magnitude was estimated as the sum of rectified, instead of raw, motor-unit action-potential trains. This suggests that the

  8. Aberrant supplementary motor complex and limbic activity during motor preparation in motor conversion disorder.

    PubMed

    Voon, Valerie; Brezing, Christina; Gallea, Cecile; Hallett, Mark

    2011-11-01

    Conversion disorder (CD) is characterized by unexplained neurological symptoms presumed related to psychological issues. The main hypotheses to explain conversion paralysis, characterized by a lack of movement, include impairments in either motor intention or disruption of motor execution, and further, that hyperactive self-monitoring, limbic processing or top-down regulation from higher order frontal regions may interfere with motor execution. We have recently shown that CD with positive abnormal or excessive motor symptoms was associated with greater amygdala activity to arousing stimuli along with greater functional connectivity between the amygdala and supplementary motor area. Here we studied patients with such symptoms focusing on motor initiation. Subjects performed either an internally or externally generated 2-button action selection task in a functional MRI study. Eleven CD patients without major depression and 11 age- and gender-matched normal volunteers were assessed. During both internally and externally generated movement, conversion disorder patients relative to normal volunteers had lower left supplementary motor area (SMA) (implicated in motor initiation) and higher right amygdala, left anterior insula, and bilateral posterior cingulate activity (implicated in assigning emotional salience). These findings were confirmed in a subgroup analysis of patients with tremor symptoms. During internally versus externally generated action in CD patients, the left SMA had lower functional connectivity with bilateral dorsolateral prefrontal cortices. We propose a theory in which previously mapped conversion motor representations may in an arousing context hijack the voluntary action selection system, which is both hypoactive and functionally disconnected from prefrontal top-down regulation.

  9. Motor Activity and the Education of Retardates.

    ERIC Educational Resources Information Center

    Cratty, Bryant J.

    Presented are chapters concerned with the relationship of motor activity to education. The topics discussed are research, movement and performance in infants and children, principles of teaching motor skills; arousal level and attention; scribbling, drawing, writing, strength, flexibility, endurance, and control of large muscles; music and rhythm;…

  10. Behaviour of human motor units in different muscles during linearly varying contractions

    PubMed Central

    de Luca, C. J.; LeFever, R. S.; McCue, M. P.; Xenakis, A. P.

    1982-01-01

    1. The electrical activity of up to eight concurrently active motor units has been recorded from the human deltoid and first dorsal interosseous (f.d.i.) muscles. The detected myoelectric signals have been decomposed into their constituent motor-unit action potential trains using a recently developed technique. 2. Concurrently active motor unit behaviour has been examined during triangular force-varying isometric contractions reaching 40 and 80% of maximal voluntary contraction (m.v.c.). Experiments were performed on four normal subjects and three groups of highly trained performers (long-distance swimmers, powerlifters and pianists). 3. Results revealed a highly ordered recruitment and decruitment scheme, based on motoneurone excitability, in both muscles and in all subject groups. 4. Differences were observed between the initial (recruitment) and final (decruitment) firing rates in each muscle. These parameters were invariant with respect to the force rates studied, although some differences were observed among subject groups. 5. In general, firing rates of f.d.i. motor units increased steadily with increasing force (up to 80% m.v.c.). The firing rates of deltoid motor units rose sharply just after recruitment and then increased only slightly thereafter. 6. Recruitment was found to be the major mechanism for generating extra force between 40 and 80% m.v.c. in the deltoid, while rate coding played the major role in the f.d.i. 7. The potential of rate coding for increasing force levels up to m.v.c. is discussed. PMID:7143246

  11. The contractile properties of the medial gastrocnemius motor units innervated by L4 and L5 spinal nerves in the rat.

    PubMed

    Celichowski, Jan; Taborowska, Malwina

    2011-01-01

    When a muscle innervation originates from more than one spinal cord segment, the injury of one of the respective ventral roots evokes an overload, and alters the activity and properties of the remaining motor units. However, it is not well documented if the three types of motor units are equally represented within the innervating ventral roots. Single motor units in the rat medial gastrocnemius muscle were studied and their contractile properties as well as distribution of different types of motor units belonging to subpopulations innervated by axons in L4 and L5 ventral roots were analyzed. The composition of the three physiological types of motor units in the two subpopulations was similar. Force parameters were similar for motor units belonging to the two subpopulations. However, the twitch time parameters were slightly longer in L4 in comparison to L5 motor units although the difference was significant only for fast resistant to fatigue motor units. The force-frequency relationships in the two subpopulations of motor units were not different. Concluding, the two subpopulations of motor units in the studied muscle differ in the number of motor units, but contain similar proportions of the three physiological types of these units and their contractile properties are similar. Therefore, the injury of one ventral root evokes various degrees of muscle denervation, but is non-selective in relation to the three types of motor units.

  12. Hermatically sealed motor blower unit with stator inside hollow armature

    DOEpatents

    Donelian, Khatchik O.

    1976-01-20

    13. A hermetically sealed motor blower unit comprising, in combination, a sealed housing having a thrust plate mounted therein and having a re-entrant wall forming a central cavity in said housing, a rotor within said housing, said rotor comprising an impeller, a hollow shaft embracing said cavity and a thrust collar adapted to cooperate with said thrust plate to support the axial thrust of said shaft, one or more journal bearings within said housing for supporting the radial load of said shaft and electric motor means for rotating said rotor, said motor means comprising a motor-stator located within said cavity and adapted to cooperate through a portion of said re-entrant wall with a motor-rotor mounted within said hollow shaft, the portion of said re-entrant wall located between said motor-stator and said motor-rotor being made relatively thin to reduce electrical losses, the bearing surfaces of said thrust plate, thrust collar and journal bearings being in communication with the discharge of said impeller, whereby fluid pumped by said impeller can flow directly to said bearing surfaces to lubricate them.

  13. Physiological recruitment of motor units by high-frequency electrical stimulation of afferent pathways.

    PubMed

    Dideriksen, Jakob L; Muceli, Silvia; Dosen, Strahinja; Laine, Christopher M; Farina, Dario

    2015-02-01

    Neuromuscular electrical stimulation (NMES) is commonly used in rehabilitation, but electrically evoked muscle activation is in several ways different from voluntary muscle contractions. These differences lead to challenges in the use of NMES for restoring muscle function. We investigated the use of low-current, high-frequency nerve stimulation to activate the muscle via the spinal motoneuron (MN) pool to achieve more natural activation patterns. Using a novel stimulation protocol, the H-reflex responses to individual stimuli in a train of stimulation pulses at 100 Hz were reliably estimated with surface EMG during low-level contractions. Furthermore, single motor unit recruitment by afferent stimulation was analyzed with intramuscular EMG. The results showed that substantially elevated H-reflex responses were obtained during 100-Hz stimulation with respect to a lower stimulation frequency. Furthermore, motor unit recruitment using 100-Hz stimulation was not fully synchronized, as it occurs in classic NMES, and the discharge rates differed among motor units because each unit was activated only after a specific number of stimuli. The most likely mechanism behind these observations is the temporal summation of subthreshold excitatory postsynaptic potentials from Ia fibers to the MNs. These findings and their interpretation were also verified by a realistic simulation model of afferent stimulation of a MN population. These results suggest that the proposed stimulation strategy may allow generation of considerable levels of muscle activation by motor unit recruitment that resembles the physiological conditions.

  14. Association between Laryngeal Airway Aperture and the Discharge Rates of Genioglossus Motor Units

    PubMed Central

    LaCross, Amy; Watson, Peter J.; Bailey, E. Fiona

    2017-01-01

    We know very little about how muscles and motor units in one region of the upper airway are impacted by adjustments in an adjacent airway region. In this case, the focus is on regulation of the expiratory airstream by the larynx and how changes in laryngeal aperture impact muscle motor unit activities downstream in the pharynx. We selected sound production as a framework for study as it requires (i) sustained expiratory airflow, (ii) laryngeal airway regulation for production of whisper and voice, and (iii) pharyngeal airway regulation for production of different vowel sounds. We used these features as the means of manipulating expiratory airflow, pharyngeal, and laryngeal airway opening to compare the effect of each on the activation of genioglossus (GG) muscle motor units in the pharynx. We show that some GG muscle motor units (a) discharge stably on expiration associated with production of vowel sounds, (b) are exquisitely sensitive to subtle alterations in laryngeal airflow, and (c) discharge at higher firing rates in high flow vs. low flow conditions even when producing the same vowel sound. Our results reveal subtle changes in GG motor unit discharge rates that correlate with changes imposed at the larynx, and which may contribute to the regulation of the expiratory airstream. PMID:28179887

  15. Using spike-triggered averaging to characterize motor unit twitch vectors in the first dorsal interosseous.

    PubMed

    Suresh, Nina; Kuo, Art; Heckman, C J; Rymer, William Zev

    2012-01-01

    Earlier studies in multifunctional muscles such as the first dorsal interosseous (FDI) have demonstrated that the selection and control of motor units (MUs) can vary as a function of generated force direction. While directionally dependent motor unit recruitment and rate properties imply that there may also be differential mechanical action, this has yet to be directly demonstrated. Our objective was to determine whether there exists a range of force vectors from different motor units in the FDI muscle within individual subjects. We utilized the spike-triggered averaging (STA) method to derive force twitch estimates from single motor units. We derived MU twitch direction from the ratio of individual twitch estimates recorded concurrently from the load cell. Fifteen units from 2 subjects were used to determine MU force vectors. We were able to estimate force twitch vectors from 7-8 different MUs in each subject. The results of our study suggest that there is varied mechanical action of motor units in the FDI. It is thus possible that differential activation of individual MUs in the FDI is a function of varied mechanical action.

  16. 40 CFR 798.6200 - Motor activity.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... systematically related to treatment. Among the variables which can affect motor activity are sound level, size and shape of the test cage, temperature, relative humidity, lighting conditions, odors, use of...

  17. 40 CFR 798.6200 - Motor activity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... systematically related to treatment. Among the variables which can affect motor activity are sound level, size and shape of the test cage, temperature, relative humidity, lighting conditions, odors, use of...

  18. Innervation zones of fasciculating motor units: observations by a linear electrode array.

    PubMed

    Jahanmiri-Nezhad, Faezeh; Barkhaus, Paul E; Rymer, William Z; Zhou, Ping

    2015-01-01

    This study examines the innervation zone (IZ) in the biceps brachii muscle in healthy subjects and those with amyotrophic lateral sclerosis (ALS) using a 20-channel linear electromyogram (EMG) electrode array. Raster plots of individual waveform potentials were studied to estimate the motor unit IZ. While this work mainly focused on fasciculation potentials (FPs), a limited number of motor unit potentials (MUPs) from voluntary activity of 12 healthy and seven ALS subjects were also examined. Abnormal propagation of MUPs and scattered IZs were observed in fasciculating units, compared with voluntarily activated MUPs in healthy and ALS subjects. These findings can be related to muscle fiber reinnervation following motor neuron degeneration in ALS and the different origin sites of FPs compared with voluntary MUPs.

  19. Cutaneous silent period in human FDI motor units.

    PubMed

    Kahya, Mehmet C; Yavuz, S Utku; Türker, Kemal S

    2010-09-01

    In this study, we aimed to use both the probability-based and the frequency-based analyses methods simultaneously to examine cutaneous silent period (CSP) induced by strong electrical currents. Subjects were asked to contract their first dorsal interosseus muscles so that one motor unit monitored via intramuscular wire electrodes discharged at a rate of approximately 8 Hz. Strong electrical stimuli were delivered to the back of the hand that created a subjective discomfort level of between 4 and 7 [0-10 visual analogue scale] and induced cutaneous silent period in all units. It was found that the duration of the CSP was significantly longer when the same data were analysed using frequency-based analysis method compared with the probability-based methods. Frequency-based analysis indicated that the strong electrical stimuli induce longer lasting inhibitory currents than what was indicated using the probability-based analyses such as surface electromyogram and peristimulus time histogram. Usage of frequency-based analysis for bringing out the synaptic activity underlying CSP seems essential as its characteristics have been subject to a large number of studies in experimental and clinical settings.

  20. Properties of motor units of the frog iliofibularis muscle.

    PubMed

    Luff, A R; Proske, U

    1979-01-01

    The tension developed by single motor units of the iliofibularis muscle of the frog Litoria aurea was recorded in response to single-shock and repetitive stimulation of motor axons. The majority of units in each muscle, 13 on the average, were of the twitch type; an additional 4 units were slow or tonic. It appeared that slow units comprised a single homogeneous population, but two types of twitch units could be recognized: small fatigue-resistant units with long twitch times to peak (20--40 ms) and larger, fatigable units with briefer times to peak (16--27 ms). Evidence from a comparison of unit tetanic tensions indicated the presence of polyneuronal innervation of both slow and twitch muscle fibers. The relatively low incidence of polyneuronal innervation of twitch fibers in iliofibularis, when compared with a muscle like sartorius (9), was attributed to the difference in lengths of muscle fibers in the two muscles. It was argued that slow muscle fibers probably receive a multiterminal as well as polyneuronal innervation, with the terminals of any one axon lying widely spaced along the muscle fiber.

  1. Task-Dependent Intermuscular Motor Unit Synchronization between Medial and Lateral Vastii Muscles during Dynamic and Isometric Squats

    PubMed Central

    Mohr, Maurice; Nann, Marius; von Tscharner, Vinzenz; Eskofier, Bjoern; Nigg, Benno Maurus

    2015-01-01

    Purpose Motor unit activity is coordinated between many synergistic muscle pairs but the functional role of this coordination for the motor output is unclear. The purpose of this study was to investigate the short-term modality of coordinated motor unit activity–the synchronized discharge of individual motor units across muscles within time intervals of 5ms–for the Vastus Medialis (VM) and Lateralis (VL). Furthermore, we studied the task-dependency of intermuscular motor unit synchronization between VM and VL during static and dynamic squatting tasks to provide insight into its functional role. Methods Sixteen healthy male and female participants completed four tasks: Bipedal squats, single-leg squats, an isometric squat, and single-leg balance. Monopolar surface electromyography (EMG) was used to record motor unit activity of VM and VL. For each task, intermuscular motor unit synchronization was determined using a coherence analysis between the raw EMG signals of VM and VL and compared to a reference coherence calculated from two desynchronized EMG signals. The time shift between VM and VL EMG signals was estimated according to the slope of the coherence phase angle spectrum. Results For all tasks, except for singe-leg balance, coherence between 15–80Hz significantly exceeded the reference. The corresponding time shift between VM and VL was estimated as 4ms. Coherence between 30–60Hz was highest for the bipedal squat, followed by the single-leg squat and the isometric squat. Conclusion There is substantial short-term motor unit synchronization between VM and VL. Intermuscular motor unit synchronization is enhanced for contractions during dynamic activities, possibly to facilitate a more accurate control of the joint torque, and reduced during single-leg tasks that require balance control and thus, a more independent muscle function. It is proposed that the central nervous system scales the degree of intermuscular motor unit synchronization according to the

  2. Limitations of the spike-triggered averaging for estimating motor unit twitch force: a theoretical analysis.

    PubMed

    Negro, Francesco; Yavuz, Ş Utku; Yavuz, Utku Ş; Farina, Dario

    2014-01-01

    Contractile properties of human motor units provide information on the force capacity and fatigability of muscles. The spike-triggered averaging technique (STA) is a conventional method used to estimate the twitch waveform of single motor units in vivo by averaging the joint force signal. Several limitations of this technique have been previously discussed in an empirical way, using simulated and experimental data. In this study, we provide a theoretical analysis of this technique in the frequency domain and describe its intrinsic limitations. By analyzing the analytical expression of STA, first we show that a certain degree of correlation between the motor unit activities prevents an accurate estimation of the twitch force, even from relatively long recordings. Second, we show that the quality of the twitch estimates by STA is highly related to the relative variability of the inter-spike intervals of motor unit action potentials. Interestingly, if this variability is extremely high, correct estimates could be obtained even for high discharge rates. However, for physiological inter-spike interval variability and discharge rate, the technique performs with relatively low estimation accuracy and high estimation variance. Finally, we show that the selection of the triggers that are most distant from the previous and next, which is often suggested, is not an effective way for improving STA estimates and in some cases can even be detrimental. These results show the intrinsic limitations of the STA technique and provide a theoretical framework for the design of new methods for the measurement of motor unit force twitch.

  3. 12. Turbine Pit Servo Motors of Unit 1, view to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Turbine Pit Servo Motors of Unit 1, view to the southeast. The servo motors are set into wall recesses and operated by the governors. Note the wicket gate linkages visible in the lower center of the photograph, between the deck plates and the operating ring. Also note the wicket gate linkage grease lines along the wall just below the lights. - Washington Water Power Clark Fork River Noxon Rapids Hydroelectric Development, Powerhouse, South bank of Clark Fork River at Noxon Rapids, Noxon, Sanders County, MT

  4. Electric Motors. An Instructional Unit for High School Teachers of Vocational Agriculture.

    ERIC Educational Resources Information Center

    Dalton, Delmer; Carpenter, Bruce

    Designed as a 3-week course of study in the agricultural mechanics curriculum to be taught at the junior or senior high school level, this unit on electric motors is divided into 11 major performance objectives. Each objective is subdivided into the areas of content, suggested teaching and learning activities, resources, and evaluation. Topics for…

  5. Antennal motor activity induced by pilocarpine in the American cockroach.

    PubMed

    Okada, Jiro; Morimoto, Yusuke; Toh, Yoshihiro

    2009-04-01

    The antennal motor system is activated by the muscarinic agonist pilocarpine in the American cockroach Periplaneta americana, and its output patterns were examined both in restrained intact animals and in isolated CNS preparations. The three-dimensional antennal movements induced by the hemocoelic drug injection were analyzed in in vivo preparations. Pilocarpine effectively induced prolonged rhythmic movements of both antennae. The antennae tended to describe a spatially patterned trajectory, forming loops or the symbol of infinity (infinity). Such spatial regularity is comparable to that during spontaneous tethered-walking. Rhythmic bursting activities of the antennal motor nerves in in vitro preparations were also elicited by bath application of pilocarpine. Cross-correlation analyses of the bursting spike activities revealed significant couplings among certain motor units, implying the spatial regularity of the antennal trajectory. The pilocarpine-induced rhythmic activity of antennal motor nerves was effectively suppressed by the muscarinic antagonist atropine. These results indicate that the activation of the antennal motor system is mediated by muscarinic receptors.

  6. Thumb and finger forces produced by motor units in the long flexor of the human thumb

    PubMed Central

    Yu, W S; Kilbreath, S L; Fitzpatrick, R C; Gandevia, S C

    2007-01-01

    The uncommonly good proprioceptive performance of the long flexor of the thumb, flexor pollicis longus (FPL), may add significantly to human manual dexterity. We investigated the forces produced by FPL single motor units during a weak static grip involving all digits by spike-triggered averaging from single motor units, and by averaging from twitches produced by intramuscular stimulation. Nine adult subjects were studied. The forces produced at each digit were used to assess how forces produced in FPL are distributed to the fingers. Most FPL motor units produced very low forces on the thumb and were positively correlated with the muscle force at recruitment. Activity in FPL motor units commonly loaded the index finger (42/55 units), but less commonly the other fingers (P < 0.001). On average, these motor units produced small but significant loading forces on the index finger (∼5.3% of their force on the thumb) with the same time-to-peak force as the thumb (∼50 ms), but had no significant effect on other fingers. However, intramuscular stimulation within FPL did not produce significant forces in any finger. Coherence at 2–10 Hz between the thumb and index finger force was twice that for the other finger forces and the coherence to the non-index fingers was not altered when the index finger did not participate in the grasp. These results indicate that, within the long-term coordinated forces of all digits during grasping, FPL motor units generate forces highly focused on the thumb with minimal peripheral transfer to the fingers and that there is a small but inflexible neural coupling to the flexors of the index finger. PMID:17656436

  7. Repression of inactive motor nerve terminals in partially denervated rat muscle after regeneration of active motor axons.

    PubMed Central

    Ribchester, R R; Taxt, T

    1984-01-01

    The fourth deep lumbrical muscle in the hind foot of adult rats was partially denervated by crushing the sural nerve (s.n.). The denervated muscle fibres became completely reinnervated by sprouts from lateral plantar nerve (l.p.n.) motor axons. By about 20 days after the nerve crush, s.n. motor axons started to reinnervate the muscle. In control muscles, a small proportion of the muscle fibres--about 2.5% of the muscle per motor unit--was reinnervated by s.n. motor axons over the following 20 days. Hence the regenerating terminals were able to re-establish functional synapses, despite the fact that all the muscle fibres were functionally innervated by l.p.n. terminals. When nerve impulse conduction in the l.p.n. was blocked with tetrodotoxin for up to 2 weeks, starting from the time when s.n. axons returned to the muscle, s.n. motor axons retrieved a much larger proportion of the muscle fibres--about 6.5% of the muscle per motor unit. There was a concomitant decrease in the tension produced by the sprouted l.p.n. motor axons. Intracellular recordings showed that many muscle fibres became innervated exclusively by regenerated s.n. motor nerve terminals. Measurements of end-plate potentials suggested that l.p.n. sprouts and the original nerve terminals were eliminated non-selectively. These results suggest that regenerating, active motor nerve terminals have an additional competitive advantage in reinnervating innervated muscles, if the intact terminals are inactive. When the l.p.n. was cut, rather than blocked, extensive reinnervation by the s.n. occurred-about 30% of the muscle per motor unit. This suggests that the absence of an intact nerve terminal in the motor end-plate provides a stronger stimulus than inactivity for synapse formation by regenerating motor axons. PMID:6707966

  8. Activities to Develop Your Students' Motor Skills.

    ERIC Educational Resources Information Center

    Eastman, Mary Kay; Safran, Joan S.

    1986-01-01

    Instructions and illustrations support this discussion of learning activities designed to remediate deficiences and build skills in balance and/or motor skills for mildly handicapped students who may not have access to physical therapy or adaptive physical education. Appropriate for both regular and special classes, activities include arm…

  9. Effect of motor unit recruitment on functional vasodilatation in hamster retractor muscle

    PubMed Central

    Van Teeffelen, Jurgen W G E; Segal, Steven S

    2000-01-01

    The effect of motor unit recruitment on functional vasodilatation was investigated in hamster retractor muscle. Recruitment (i.e. peak tension) was controlled with voltage applied to the spinal accessory nerve (high = maximum tension; intermediate = ∼50% maximum; low = ∼25% maximum). Vasodilatory responses (diameter × time integral, DTI) to rhythmic contractions (1 per 2 s for 65 s) were evaluated in first, second and third orderarterioles and in feed arteries. Reciprocal changes in duty cycle (range, 2·5–25 %) effectively maintained the total active tension (tension × time integral, TTI) constant across recruitment levels. With constant TTI and stimulation frequency (40 Hz), DTI in all vessels increased with motor unit recruitment. DTI increased from distal arterioles up through proximal feed arteries. To determine whether the effect of recruitment on DTI was due to increased peak tension, the latter was controlled with stimulation frequency (15, 20 and 40 Hz) during maximum (high) recruitment. With constant TTI, DTI then decreased as peak tension increased. To explore the interaction between recruitment and duty cycle on DTI, each recruitment level was applied at 2.5, 10 and 20 % duty cycle (at 40 Hz). For a given increase in TTI, recruitment had a greater effect on DTI than did duty cycle. Functional vasodilatation in response to rhythmic contractions is facilitated by motor unit recruitment. Thus, vasodilatory responses are determined not only by the total tension produced, but also by the number of active motor units. PMID:10747197

  10. Diverse firing properties of single motor units in the inner and outer portions of the guinea pig anterior digastric muscle.

    PubMed

    Lev-Tov, A; Tal, M; Lavy, R

    1993-02-01

    Microwire recordings from the histochemically heterogeneous inner compartment of the guinea pig anterior digastric muscle (ADG) revealed tonic firing of single motor units, which were spontaneously active and could also be recruited following orofacial afferent stimulation and during rhythmic jaw movements (RJM). As units with tonic firing were not observed in the homogeneously fast-twitch outer ADG, the tonic units were classified as slow-twitch motor units. Irregular patterns of motor-unit firing at variable frequencies were observed after orofacial stimulation and during RJM in the outer and inner compartments. The irregular firing pattern of units in the fast-twitch outer compartment was characterized by shorter and less variable bursts than that of units in the heterogeneous inner compartment. A phasic, centrally driven firing pattern was observed during RJM in outer and inner ADG units. The firing frequency of some of these units was modulated during the rhythmical bursts. It is suggested that, as in limb muscles, functionally specialized ADG motor units are recruited in an orderly sequence, starting with spontaneously active, slow-twitch units in the inner compartment, continuing with fast-twitch units recruited upon enhancement of the synaptic drive (as in the case of orofacial stimulation), and ending with massive, rhythmical recruitment of slow- and fast-twitch units during RJM.

  11. IH activity is increased in populations of slow versus fast motor axons of the rat

    PubMed Central

    Lorenz, Chad; Jones, Kelvin E.

    2014-01-01

    Much is known about the electrophysiological variation in motoneuron somata across different motor units. However, comparatively less is known about electrophysiological variation in motor axons and how this could impact function or electrodiagnosis in healthy or diseased states. We performed nerve excitability testing on two groups of motor axons in Sprague–Dawley rats that are known to differ significantly in their chronic daily activity patterns and in the relative proportion of motor unit types: one group innervating the soleus (“slow motor axons”) and the other group innervating the tibialis anterior (“fast motor axons”) muscles. We found that slow motor axons have significantly larger accommodation compared to fast motor axons upon application of a 100 ms hyperpolarizing conditioning stimulus that is 40% of axon threshold (Z = 3.24, p = 0.001) or 20% of axon threshold (Z = 2.67, p = 0.008). Slow motor axons had larger accommodation to hyperpolarizing currents in the current-threshold measurement (-80% Z = 3.07, p = 0.002; -90% Z = 2.98, p = 0.003). In addition, we found that slow motor axons have a significantly smaller rheobase than fast motor axons (Z = -1.99, p = 0.047) accompanied by a lower threshold in stimulus-response curves. The results provide evidence that slow motor axons have greater activity of the hyperpolarization-activated inwardly rectifying cation conductance (IH) than fast motor axons. It is possible that this difference between fast and slow axons is caused by an adaptation to their chronic differences in daily activity patterns, and that this adaptation might have a functional effect on the motor unit. Moreover, these findings indicate that slow and fast motor axons may react differently to pathological conditions. PMID:25309406

  12. Segmentation of the mouse fourth deep lumbrical muscle connectome reveals concentric organisation of motor units.

    PubMed

    Hirst, Theodore C; Ribchester, Richard R

    2013-10-01

    Connectomic analysis of the nervous system aims to discover and establish principles that underpin normal and abnormal neural connectivity and function. Here we performed image analysis of motor unit connectivity in the fourth deep lumbrical muscle (4DL) of mice, using transgenic expression of fluorescent protein in motor neurones as a morphological reporter. We developed a method that accelerated segmentation of confocal image projections of 4DL motor units, by applying high resolution (63×, 1.4 NA objective) imaging or deconvolution only where either proved necessary, in order to resolve axon crossings that produced ambiguities in the correct assignment of axon terminals to identified motor units imaged at lower optical resolution (40×, 1.3 NA). The 4DL muscles contained between 4 and 9 motor units and motor unit sizes ranged in distribution from 3 to 111 motor nerve terminals per unit. Several structural properties of the motor units were consistent with those reported in other muscles, including suboptimal wiring length and distribution of motor unit size. Surprisingly, however, small motor units were confined to a region of the muscle near the nerve entry point, whereas their larger counterparts were progressively more widely dispersed, suggesting a previously unrecognised form of segregated motor innervation in this muscle. We also found small but significant differences in variance of motor endplate length in motor units, which correlated weakly with their motor unit size. Thus, our connectomic analysis has revealed a pattern of concentric innervation that may perhaps also exist in other, cylindrical muscles that have not previously been thought to show segregated motor unit organisation. This organisation may be the outcome of competition during postnatal development based on intrinsic neuronal differences in synaptic size or synaptic strength that generates a territorial hierarchy in motor unit size and disposition.

  13. Disturbances of motor unit rate modulation are prevalent in muscles of spastic-paretic stroke survivors

    PubMed Central

    Heckman, C. J.; Powers, R. K.; Rymer, W. Z.; Suresh, N. L.

    2014-01-01

    Stroke survivors often exhibit abnormally low motor unit firing rates during voluntary muscle activation. Our purpose was to assess the prevalence of saturation in motor unit firing rates in the spastic-paretic biceps brachii muscle of stroke survivors. To achieve this objective, we recorded the incidence and duration of impaired lower- and higher-threshold motor unit firing rate modulation in spastic-paretic, contralateral, and healthy control muscle during increases in isometric force generated by the elbow flexor muscles. Impaired firing was considered to have occurred when firing rate became constant (i.e., saturated), despite increasing force. The duration of impaired firing rate modulation in the lower-threshold unit was longer for spastic-paretic (3.9 ± 2.2 s) than for contralateral (1.4 ± 0.9 s; P < 0.001) and control (1.1 ± 1.0 s; P = 0.005) muscles. The duration of impaired firing rate modulation in the higher-threshold unit was also longer for the spastic-paretic (1.7 ± 1.6 s) than contralateral (0.3 ± 0.3 s; P = 0.007) and control (0.1 ± 0.2 s; P = 0.009) muscles. This impaired firing rate of the lower-threshold unit arose, despite an increase in the overall descending command, as shown by the recruitment of the higher-threshold unit during the time that the lower-threshold unit was saturating, and by the continuous increase in averages of the rectified EMG of the biceps brachii muscle throughout the rising phase of the contraction. These results suggest that impairments in firing rate modulation are prevalent in motor units of spastic-paretic muscle, even when the overall descending command to the muscle is increasing. PMID:24572092

  14. Disturbances of motor unit rate modulation are prevalent in muscles of spastic-paretic stroke survivors.

    PubMed

    Mottram, C J; Heckman, C J; Powers, R K; Rymer, W Z; Suresh, N L

    2014-05-01

    Stroke survivors often exhibit abnormally low motor unit firing rates during voluntary muscle activation. Our purpose was to assess the prevalence of saturation in motor unit firing rates in the spastic-paretic biceps brachii muscle of stroke survivors. To achieve this objective, we recorded the incidence and duration of impaired lower- and higher-threshold motor unit firing rate modulation in spastic-paretic, contralateral, and healthy control muscle during increases in isometric force generated by the elbow flexor muscles. Impaired firing was considered to have occurred when firing rate became constant (i.e., saturated), despite increasing force. The duration of impaired firing rate modulation in the lower-threshold unit was longer for spastic-paretic (3.9 ± 2.2 s) than for contralateral (1.4 ± 0.9 s; P < 0.001) and control (1.1 ± 1.0 s; P = 0.005) muscles. The duration of impaired firing rate modulation in the higher-threshold unit was also longer for the spastic-paretic (1.7 ± 1.6 s) than contralateral (0.3 ± 0.3 s; P = 0.007) and control (0.1 ± 0.2 s; P = 0.009) muscles. This impaired firing rate of the lower-threshold unit arose, despite an increase in the overall descending command, as shown by the recruitment of the higher-threshold unit during the time that the lower-threshold unit was saturating, and by the continuous increase in averages of the rectified EMG of the biceps brachii muscle throughout the rising phase of the contraction. These results suggest that impairments in firing rate modulation are prevalent in motor units of spastic-paretic muscle, even when the overall descending command to the muscle is increasing.

  15. Motor unit involvement in human acute Chagas' disease.

    PubMed

    Benavente, O R; Patiño, O L; Peña, L B; Lugònes, H; Kalala, E; Meneclier, C R; Genovese, O; Sica, R E

    1989-09-01

    Thirty five patients with acute Chagas' disease who demonstrated parasitaemia at the time of the investigation were submitted to a detailed electromyographical study. With their muscles at rest, 12 patients showed fibrillation potentials and/or positive sharp waves. On volitional contraction, 7 had short duration motor unit potentials (MUPs) and low polyphasic MUPs. On motor and sensory nerve fibers conduction studies, 20 disclosed values below the lower control limit within one or more nerves. Finally, 12 patients produced a muscle decremental response on nerve supramaximal repetitive stimulation. The findings signal that primary muscle involvement, neuropathy and impairement of the neuromuscular transmission, either isolated or combined, may be found in the acute stage of human Chagas' disease.

  16. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT XIX, LEARNING ABOUT CRANKING MOTORS.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATING PRINCIPLES OF CRANKING MOTORS USED ON DIESEL POWERED EQUIPMENT, TOPICS ARE (1) CRANKING MOTORS. (2) MOTOR PINCIPLES, (3) CRANKING MOTOR CIRCUITS, (4) TYPES OF CRANKING MOTOR DRIVES, AND (5) CRANKING MOTOR SOLENOID CIRCUITS. THE MODULE CONSISTS OF A…

  17. Antigravity posture for analysis of motor unit recruitment: the "45 degree test".

    PubMed

    Petajan, J H

    1990-04-01

    The maximum number of different motor unit action potentials (MUAPs), their firing rates, and total MUAP spikes/second recorded by monopolar needle electrode were determined for the biceps brachii muscle during 45-degree elbow flexion. There were 4.2 +/- 1.6 different MUAPs exceeding 100 microV. Mean firing rate was 10.0 +/- 1.7 Hz, and total MUAP spikes/second were 40.3 +/- 18. Recordings from 16 patients with neurogenic atrophy (NA) and just detectable weakness revealed corresponding values of 3.1 +/- 1.7 different MUAPs, a mean rate of 10.2 +/- 1.5 Hz and 30.6 +/- 19 total MUAP spikes/second, not different from normal. In these patients, increased force of muscle contraction was required to activate high threshold motor units firing at high rates. In each of 4 patients just able to hold the arm against gravity, 1 or 2 "overdriven" motor units firing at a mean rate greater than 20 Hz were recorded. In 8 patients with myopathy and just detectable weakness, greater than 100 total MUAP spikes/second were recorded. Antigravity posture as a reference level of innervation has the advantage that motor unit firing rate is set about that of physiologic tremor (10-13 Hz). Its application was helpful in quantifying recruitment.

  18. Motor unit number estimates and neuromuscular transmission in the tibialis anterior of master athletes: evidence that athletic older people are not spared from age-related motor unit remodeling.

    PubMed

    Piasecki, Mathew; Ireland, Alex; Coulson, Jessica; Stashuk, Dan W; Hamilton-Wright, Andrew; Swiecicka, Agnieszka; Rutter, Martin K; McPhee, Jamie S; Jones, David A

    2016-10-01

    Muscle motor unit numbers decrease markedly in old age, while remaining motor units are enlarged and can have reduced neuromuscular junction transmission stability. However, it is possible that regular intense physical activity throughout life can attenuate this remodeling. The aim of this study was to compare the number, size, and neuromuscular junction transmission stability of tibialis anterior (TA) motor units in healthy young and older men with those of exceptionally active master runners. The distribution of motor unit potential (MUP) size was determined from intramuscular electromyographic signals recorded in healthy male Young (mean ± SD, 26 ± 5 years), Old (71 ± 4 years) and Master Athletes (69 ± 3 years). Relative differences between groups in numbers of motor units was assessed using two methods, one comparing MUP size and muscle cross-sectional area (CSA) determined with MRI, the other comparing surface recorded MUPs with maximal compound muscle action potentials and commonly known as a "motor unit number estimate (MUNE)". Near fiber (NF) jiggle was measured to assess neuromuscular junction transmission stability. TA CSA did not differ between groups. MUNE values for the Old and Master Athletes were 45% and 40%, respectively, of the Young. Intramuscular MUPs of Old and Master Athletes were 43% and 56% larger than Young. NF jiggle was slightly higher in the Master Athletes, with no difference between Young and Old. These results show substantial and similar motor unit loss and remodeling in Master Athletes and Old individuals compared with Young, which suggests that lifelong training does not attenuate the age-related loss of motor units.

  19. [The dependence of the thermoregulating activity of motor units and of the rate of muscle contraction on body mass in mammals].

    PubMed

    Pavlova, I V; Sorokina, L V; Lupandin, Iu V

    1996-01-01

    Regression analysis corroborated the trend towards an increase in the units firing rate and the muscle contraction velocity occurring in diminishing of the mammals' body mass. These relationships seem to be universal and can be the basis for explanation of the reverse dependence of basal metabolism on the body size.

  20. 49 CFR 565.14 - Motor vehicles imported into the United States.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Motor vehicles imported into the United States...) REQUIREMENTS VIN Requirements § 565.14 Motor vehicles imported into the United States. (a) Importers shall utilize the VIN assigned by the original manufacturer of the motor vehicle. (b) All passenger...

  1. 49 CFR 565.14 - Motor vehicles imported into the United States.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 6 2011-10-01 2011-10-01 false Motor vehicles imported into the United States...) REQUIREMENTS VIN Requirements § 565.14 Motor vehicles imported into the United States. (a) Importers shall utilize the VIN assigned by the original manufacturer of the motor vehicle. (b) All passenger...

  2. Vibrissa motor cortex activity suppresses contralateral whisking behavior.

    PubMed

    Ebbesen, Christian Laut; Doron, Guy; Lenschow, Constanze; Brecht, Michael

    2017-01-01

    Anatomical, stimulation and lesion data implicate vibrissa motor cortex in whisker motor control. Work on motor cortex has focused on movement generation, but correlations between vibrissa motor cortex activity and whisking are weak. The exact role of vibrissa motor cortex remains unknown. We recorded vibrissa motor cortex neurons during various forms of vibrissal touch, which were invariably associated with whisker protraction and movement. Free whisking, object palpation and social touch all resulted in decreased cortical activity. To understand this activity decrease, we performed juxtacellular recordings, nanostimulation and in vivo whole-cell recordings. Social touch resulted in decreased spiking activity, decreased cell excitability and membrane hyperpolarization. Activation of vibrissa motor cortex by intracortical microstimulation elicited whisker retraction, as if to abort vibrissal touch. Various vibrissa motor cortex inactivation protocols resulted in contralateral protraction and increased whisker movements. These data collectively point to movement suppression as a prime function of vibrissa motor cortex activity.

  3. Active training paradigm for motor imagery BCI.

    PubMed

    Li, Junhua; Zhang, Liqing

    2012-06-01

    Brain-computer interface (BCI) allows the use of brain activities for people to directly communicate with the external world or to control external devices without participation of any peripheral nerves and muscles. Motor imagery is one of the most popular modes in the research field of brain-computer interface. Although motor imagery BCI has some advantages compared with other modes of BCI, such as asynchronization, it is necessary to require training sessions before using it. The performance of trained BCI system depends on the quality of training samples or the subject engagement. In order to improve training effect and decrease training time, we proposed a new paradigm where subjects participated in training more actively than in the traditional paradigm. In the traditional paradigm, a cue (to indicate what kind of motor imagery should be imagined during the current trial) is given to the subject at the beginning of a trial or during a trial, and this cue is also used as a label for this trial. It is usually assumed that labels for trials are accurate in the traditional paradigm, although subjects may not have performed the required or correct kind of motor imagery, and trials may thus be mislabeled. And then those mislabeled trials give rise to interference during model training. In our proposed paradigm, the subject is required to reconfirm the label and can correct the label when necessary. This active training paradigm may generate better training samples with fewer inconsistent labels because it overcomes mistakes when subject's motor imagination does not match the given cues. The experiments confirm that our proposed paradigm achieves better performance; the improvement is significant according to statistical analysis.

  4. Enhanced Multisensory Integration and Motor Reactivation after Active Motor Learning of Audiovisual Associations

    ERIC Educational Resources Information Center

    Butler, Andrew J.; James, Thomas W.; James, Karin Harman

    2011-01-01

    Everyday experience affords us many opportunities to learn about objects through multiple senses using physical interaction. Previous work has shown that active motor learning of unisensory items enhances memory and leads to the involvement of motor systems during subsequent perception. However, the impact of active motor learning on subsequent…

  5. Motor unit number estimation as a complementary test to routine electromyography in the diagnosis of amyotrophic lateral sclerosis.

    PubMed

    Gawel, Malgorzata; Zalewska, Ewa; Lipowska, Marta; Kostera-Pruszczyk, Anna; Szmidt-Salkowska, Elzbieta; Kaminska, Anna

    2016-02-01

    Electromyographic (EMG) abnormalities that reveal denervation and reinnervation caused by lower motor neuron degeneration do not reflect the number of motor units that determines muscle strength. Consequently, motor unit activity potential (MUAP) parameters do not reflect muscle dysfunction. The aim of the study was to compare the value of motor unit number estimation (MUNE) and MUAP parameters as indicators of clinical muscle dysfunction in patients with amyotrophic lateral sclerosis (ALS), and to analyze the role of MUNE as a supplement to the EMG criteria for the diagnosis of ALS. In 25 patients with ALS, MUNE by the multipoint incremental method in the abductor digiti minimi (ADM) and quantitative EMG in the first dorsal interosseous (FDI) were obtained. The Medical Research Council (MRC) scale was used to evaluate clinical muscle dysfunction. A strong correlation between the number of motor units evaluated by MUNE and ADM clinical function by the MRC scale was found (P<0.001). An increased value of surface-detected single motor action potential was associated with a decreased MRC score for ADM (P<0.1). No relation was found between MUAP parameters in FDI and MRC scores. Our data support the value of the MUNE method for the detection of motor unit loss in ALS, and it could be postulated that MUNE studies may be considered complementary tests for ALS in a future revision of ALS criteria.

  6. Motor imagery muscle contraction strength influences spinal motor neuron excitability and cardiac sympathetic nerve activity.

    PubMed

    Bunno, Yoshibumi; Suzuki, Toshiaki; Iwatsuki, Hiroyasu

    2015-12-01

    [Purpose] The aim of this study was to investigate the changes in spinal motor neuron excitability and autonomic nervous system activity during motor imagery of isometric thenar muscle activity at 10% and 50% maximal voluntary contraction (MVC). [Methods] The F-waves and low frequency/high frequency (LF/HF) ratio were recorded at rest, during motor imagery, and post-trial. For motor imagery trials, subjects were instructed to imagine thenar muscle activity at 10% and 50% MVC while holding the sensor of a pinch meter for 5 min. [Results] The F-waves and LF/HF ratio during motor imagery at 50% MVC were significantly increased compared with those at rest, whereas those during motor imagery at 10% MVC were not significantly different from those at rest. The relative values of the F/M amplitude ratio during motor imagery at 50% MVC were significantly higher than those at 10% MVC. The relative values of persistence and the LF/HF ratio during motor imagery were similar during motor imagery at the two muscle contraction strengths. [Conclusion] Motor imagery can increase the spinal motor neuron excitability and cardiac sympathetic nerve activity. Motor imagery at 50% MVC may be more effective than motor imagery at 10% MVC.

  7. Examination of Post-stroke Alteration in Motor Unit Firing Behavior Using High Density Surface EMG Decomposition

    PubMed Central

    Li, Xiaoyan; Holobar, Aleš; Gazzoni, Marco; Merletti, Roberto; Rymer, William Z.; Zhou, Ping

    2014-01-01

    Recent advances in high density surface electromyogram (EMG) decomposition have made it a feasible task to discriminate single motor unit activity from surface EMG interference patterns, thus providing a noninvasive approach for examination of motor unit control properties. In the current study we applied high density surface EMG recording and decomposition techniques to assess motor unit firing behavior alterations post-stroke. Surface EMG signals were collected using a 64-channel 2-dimensional electrode array from the paretic and contralateral first dorsal interosseous (FDI) muscles of nine hemiparetic stroke subjects at different isometric discrete contraction levels between 2 N to 10 N with a 2 N increment step. Motor unit firing rates were extracted through decomposition of the high density surface EMG signals, and compared between paretic and contralateral muscles. Across the nine tested subjects, paretic FDI muscles showed decreased motor unit firing rates compared with contralateral muscles at different contraction levels. Regression analysis indicated a linear relation between the mean motor unit firing rate and the muscle contraction level for both paretic and contralateral muscles (p < 0.001), with the former demonstrating a lower increment rate (0.32 pulses per second (pps)/N) compared with the latter (0.67 pps/N). The coefficient of variation (CoV, averaged over the contraction levels) of the motor unit firing rates for the paretic muscles (0.21 ± 0.012) was significantly higher than for the contralateral muscles (0.17 ± 0.014) (p < 0.05). This study provides direct evidence of motor unit firing behavior alterations post-stroke using surface EMG, which can be an important factor contributing to hemiparetic muscle weakness. PMID:25389239

  8. Age-related changes in motor unit firing pattern of vastus lateralis muscle during low-moderate contraction.

    PubMed

    Watanabe, Kohei; Holobar, Aleš; Kouzaki, Motoki; Ogawa, Madoka; Akima, Hiroshi; Moritani, Toshio

    2016-06-01

    Age-related changes in motor unit activation properties remain unclear for locomotor muscles such as quadriceps muscles, although these muscles are preferentially atrophied with aging and play important roles in daily living movements. The present study investigated and compared detailed motor unit firing characteristics for the vastus lateralis muscle during isometric contraction at low to moderate force levels in the elderly and young. Fourteen healthy elderly men and 15 healthy young men performed isometric ramp-up contraction to 70 % of the maximal voluntary contractions (MVC) during knee extension. Multichannel surface electromyograms were recorded from the vastus lateralis muscle using a two-dimensional grid of 64 electrodes and decomposed with the convolution kernel compensation technique to extract individual motor units. Motor unit firing rates in the young were significantly higher (~+29.7 %) than in the elderly (p < 0.05). There were significant differences in firing rates among motor units with different recruitment thresholds at each force level in the young (p < 0.05) but not in the elderly (p > 0.05). Firing rates at 60 % of the MVC force level for the motor units recruited at <20 % of MVC were significantly correlated with MVC force in the elderly (r = 0.885, p < 0.0001) but not in the young (r = 0.127, p > 0.05). These results suggest that the motor unit firing rate in the vastus lateralis muscle is affected by aging and muscle strength in the elderly and/or age-related strength loss is related to motor unit firing/recruitment properties.

  9. Distinguishing intrinsic from extrinsic factors underlying firing rate saturation in human motor units.

    PubMed

    Fuglevand, Andrew J; Lester, Rosemary A; Johns, Richard K

    2015-03-01

    During voluntary contraction, firing rates of individual motor units (MUs) increase modestly over a narrow force range beyond which little additional increase in firing rate is seen. Such saturation of MU discharge may be a consequence of extrinsic factors that limit net synaptic excitation acting on motor neurons (MNs) or may be due to intrinsic properties of the MNs. Two sets of experiments involving recording of human biceps brachii MUs were carried out to evaluate saturation. In the first set, the extent of saturation was quantified for 136 low-threshold MUs during isometric ramp contractions. Firing rate-force data were best fit by a saturating function for 90% of MUs recorded with a maximum rate of 14.8 ± 2.0 impulses/s. In the second set of experiments, to distinguish extrinsic from intrinsic factors underlying saturation, we artificially augmented descending excitatory drive to biceps MNs by activation of muscle spindle afferents through tendon vibration. We examined the change in firing rate caused by tendon vibration in 96 MUs that were voluntarily activated at rates below and at saturation. Vibration had little effect on the discharge of MUs that were firing at saturation frequencies but strongly increased firing rates of the same units when active at lower frequencies. These results indicate that saturation is likely caused by intrinsic mechanisms that prevent further increases in firing rate in the presence of increasing synaptic excitation. Possible intrinsic cellular mechanisms that limit firing rates of motor units during voluntary effort are discussed.

  10. Computing motor unit number index of the first dorsal interosseous muscle with two different contraction tasks.

    PubMed

    Zhou, Ping; Li, Xiaoyan; Rymer, William Zev

    2012-10-01

    Motor unit number index (MUNIX) is a recently developed novel neurophysiological technique providing an index proportional to the number of motor units in a muscle. The MUNIX is derived from maximum M wave and voluntary surface electromyogram (EMG) recordings. The objective of this study was to address a practical question for computing MUNIX in the first dorsal interosseous (FDI), a multifunctional muscle that generates torque about the second metacarpophalangeal joint, i.e., how will different lines of muscle activation influence its MUNIX estimates? To address this question, the MUNIX technique was applied in the FDI muscle of 15 neurologically intact subjects, using surface EMG signals from index finger abduction and flexion, respectively, while the maximum M wave remained the same. Across all subjects, the average MUNIX value of the FDI muscle was 228 ± 45 for index finger abduction, slightly smaller than the MUNIX estimate of 251 ± 56 for index finger flexion. Different FDI muscle activation patterns resulted in an approximately 10% difference in MUNIX estimates. The findings from this study suggest that appropriate definition of voluntary activation of the FDI muscle should be kept to ensure consistency in measurements and avoid source of error. The current study is limited by only assessing neurologically intact muscles. It is important to perform a similar analysis for patients with amyotrophic lateral sclerosis (ALS), given that ALS is the primary intention of the MUNIX method as a potential follow-up measurement for motor unit loss.

  11. Motor units are recruited in a task-dependent fashion during locomotion.

    PubMed

    Wakeling, James M

    2004-10-01

    Muscle fibres have a range of contractile properties from fast to slow. Traditional understanding of muscle fibre recruitment suggests that the slower fibres within a mixed muscle are used for all contractions including those at rapid speeds. However, mechanical arguments predict that some locomotor tasks are best performed by solely the faster fibres. Motor recruitment patterns can be indicated by the spectral properties of the myoelectric signals. High- and low-frequency myoelectric spectra that have similar spectral power indicate the activity of faster and slower motor units, respectively. In this study, the myoelectric signals in humans were measured from nine muscles of the leg during walking and running at 1.5, 3 and 4.5 m s(-1). The myoelectric spectra for 20 points in each stride were calculated using wavelet techniques, and the spectral properties quantified using principal component analysis. Bursts of muscle activity were characterized by hysteresis in the myoelectric frequencies, with different frequencies occurring at different times, indicating time-varying shifts in the motor recruitment patterns. This hysteresis occurred at all locomotor speeds tested. It is likely that the different types of motor unit are recruited in a task-dependent fashion during locomotion.

  12. Can standard surface EMG processing parameters be used to estimate motor unit global firing rate?

    NASA Astrophysics Data System (ADS)

    Zhou, Ping; Zev Rymer, William

    2004-06-01

    The relations between motor unit global firing rates and established quantitative measures for processing the surface electromyogram (EMG) signals were explored using a simulation approach. Surface EMG signals were simulated using the reported properties of the first dorsal interosseous muscle in man, and the models were varied systematically, using several hypothetical relations between motor unit electrical and force output, and also using different motor unit firing rate strategies. The utility of using different EMG processing parameters to help estimate global motor unit firing rate was evaluated based on their relations to the number of motor unit action potentials (MUAPs) in the simulated surface EMG signals. Our results indicate that the relation between motor unit electrical and mechanical properties, and the motor unit firing rate scheme are all important factors determining the form of the relation between surface EMG amplitude and motor unit global firing rate. Conversely, these factors have less impact on the relations between turn or zero-crossing point counts and the number of MUAPs in surface EMG. We observed that the number of turn or zero-crossing points tends to saturate with the increase in the MUAP number in surface EMG, limiting the utility of these measures as estimates of MUAP number. The simulation results also indicate that the mean or median frequency of the surface EMG power spectrum is a poor indicator of the global motor unit firing rate.

  13. 49 CFR 565.24 - Motor vehicles imported into the United States.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 6 2011-10-01 2011-10-01 false Motor vehicles imported into the United States...) REQUIREMENTS Alternative VIN Requirements In Effect for Limited Period § 565.24 Motor vehicles imported into... motor vehicle. (b) A passenger car certified by a Registered Importer under 49 CFR part 592 shall have...

  14. 49 CFR 565.24 - Motor vehicles imported into the United States.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Motor vehicles imported into the United States...) REQUIREMENTS Alternative VIN Requirements In Effect for Limited Period § 565.24 Motor vehicles imported into... motor vehicle. (b) A passenger car certified by a Registered Importer under 49 CFR part 592 shall have...

  15. Functional over-load saves motor units in the SOD1-G93A transgenic mouse model of amyotrophic lateral sclerosis.

    PubMed

    Gordon, T; Tyreman, N; Li, S; Putman, C T; Hegedus, J

    2010-02-01

    The fastest, most forceful motor units are lost progressively during asymptomatic disease in the SOD1(G93A) transgenic mouse model of amyotrophic lateral sclerosis. As the disease progresses the surviving motor units must increase their levels of activity to sustain posture and movement. If activity-dependent conversion of motor units to more fatigue resistant types increased their resilience and hence survival, we hypothesized that an experimental increase in motor unit activity in the hindlimb muscles of the SOD1(G93A) transgenic mouse should "save" those motor units that are normally lost in the first 90 days of age. To test this hypothesis, we partially denervated hindlimb muscles in SOD1(G93A) and their corresponding control SOD1(WT) transgenic mice by avulsion of either L4 or L5 spinal roots at 40 days of age. Whole muscle and single motor unit isometric twitch forces were recorded and the numbers intact motor units in fast-twitch tibialis anterior, medial gastrocnemius, extensor digitorum longus muscles and the slow-twitch soleus muscle were calculated at 90 days of age. We found that the rapid age-dependent decline in numbers of functional motor units in fast-twitch muscles of the SOD1(G93A) transgenic mice was dramatically reduced by the functional hyperactivity in the partially denervated muscles and, that these muscles comprised a significantly higher component of type IIA and type IID/X fibers than those muscles that were innervated by nerves in intact spinal roots. We conclude that the vulnerable motor units are saved by increasing their neuromuscular activity and consequently, converting them to slower, less forceful, fatigue resistant motor units.

  16. Motor Behavior Activates Bergmann Glial Networks

    PubMed Central

    Nimmerjahn, Axel; Mukamel, Eran A.; Schnitzer, Mark J.

    2010-01-01

    SUMMARY Although it is firmly established neuronal activity is a prime determinant of animal behavior, relationships between astrocytic excitation and animal behavior have remained opaque. Cerebellar Bergmann glia are radial astrocytes that are implicated in motor behavior and exhibit Ca2+-excitation. However, Ca2+-excitation in these cells has not previously been studied in behaving animals. Using two-photon microscopy we found that Bergmann glia exhibit three forms of Ca2+-excitation in awake behaving mice. Two of these are ongoing within the cerebellar vermis. During locomotor performance concerted Ca2+-excitation arises in networks of at least hundreds of Bergmann glia extending across several hundred microns or more. Concerted Ca2+-excitation was abolished by anesthesia or blockade of either neural activity or glutamatergic transmission. Thus, large networks of Bergmann glia can be activated by specific animal behaviors and undergo excitation of sufficient magnitude to potentially initiate macroscopic changes in brain dynamics or blood flow. PMID:19447095

  17. Enhanced multisensory integration and motor reactivation after active motor learning of audiovisual associations.

    PubMed

    Butler, Andrew J; James, Thomas W; James, Karin Harman

    2011-11-01

    Everyday experience affords us many opportunities to learn about objects through multiple senses using physical interaction. Previous work has shown that active motor learning of unisensory items enhances memory and leads to the involvement of motor systems during subsequent perception. However, the impact of active motor learning on subsequent perception and recognition of associations among multiple senses has not been investigated. Twenty participants were included in an fMRI study that explored the impact of active motor learning on subsequent processing of unisensory and multisensory stimuli. Participants were exposed to visuo-motor associations between novel objects and novel sounds either through self-generated actions on the objects or by observing an experimenter produce the actions. Immediately after exposure, accuracy, RT, and BOLD fMRI measures were collected with unisensory and multisensory stimuli in associative perception and recognition tasks. Response times during audiovisual associative and unisensory recognition were enhanced by active learning, as was accuracy during audiovisual associative recognition. The difference in motor cortex activation between old and new associations was greater for the active than the passive group. Furthermore, functional connectivity between visual and motor cortices was stronger after active learning than passive learning. Active learning also led to greater activation of the fusiform gyrus during subsequent unisensory visual perception. Finally, brain regions implicated in audiovisual integration (e.g., STS) showed greater multisensory gain after active learning than after passive learning. Overall, the results show that active motor learning modulates the processing of multisensory associations.

  18. Recruitment and derecruitment characteristics of motor units in a hand muscle of young and old adults.

    PubMed

    Jesunathadas, Mark; Marmon, Adam R; Gibb, James M; Enoka, Roger M

    2010-06-01

    The significant decline in motor neuron number after approximately 60 yr of age is accompanied by a remodeling of the neuromuscular system so that average motor unit force increases and the ability of old adults to produce an intended force declines. One possible explanation for the loss of movement precision is that the remodeling increases the difference in recruitment forces between successively recruited motor units in old adults and this augments force variability at motor unit recruitment. The purpose of the study was to compare the forces and discharge characteristics of motor units in a hand muscle of young and old adults at motor unit recruitment and derecruitment. The difference in recruitment force between pairs of motor units did not differ between young (n=54) and old adults (n=56; P=0.702). However, old adults had a greater proportion of contractions in which motor units discharged action potentials transiently before discharging continuously during the ramp increase in force (young: 0.32; old: 0.41; P=0.045). Force variability at motor unit recruitment was greater for old adults compared with young adults (Por=0.729). These results suggest that the difference in force between the recruitment of successive motor units does not differ between age groups, but that motor unit recruitment may be more transient and could contribute to the greater variability in force observed in old adults during graded ramp contractions.

  19. Processing abstract language modulates motor system activity.

    PubMed

    Glenberg, Arthur M; Sato, Marc; Cattaneo, Luigi; Riggio, Lucia; Palumbo, Daniele; Buccino, Giovanni

    2008-06-01

    Embodiment theory proposes that neural systems for perception and action are also engaged during language comprehension. Previous neuroimaging and neurophysiological studies have only been able to demonstrate modulation of action systems during comprehension of concrete language. We provide neurophysiological evidence for modulation of motor system activity during the comprehension of both concrete and abstract language. In Experiment 1, when the described direction of object transfer or information transfer (e.g., away from the reader to another) matched the literal direction of a hand movement used to make a response, speed of responding was faster than when the two directions mismatched (an action-sentence compatibility effect). In Experiment 2, we used single-pulse transcranial magnetic stimulation to study changes in the corticospinal motor pathways to hand muscles while reading the same sentences. Relative to sentences that do not describe transfer, there is greater modulation of activity in the hand muscles when reading sentences describing transfer of both concrete objects and abstract information. These findings are discussed in relation to the human mirror neuron system.

  20. Length regulation of active biopolymers by molecular motors.

    PubMed

    Johann, Denis; Erlenkämper, Christoph; Kruse, Karsten

    2012-06-22

    For biopolymers like cytoskeletal actin filaments and microtubules, assembly and disassembly are inherently dissipative processes. Molecular motors can affect the rates of subunit removal at filament ends. We introduce a driven lattice-gas model to study the effects of motor-induced depolymerization on the length of active biopolymers and find that increasing motor activity sharpens unimodal steady-state length distributions. Furthermore, for sufficiently fast moving motors, the relative width of the length distribution is determined only by the attachment rate of motors. Our results show how established molecular processes can be used to robustly regulate the size of cytoskeletal structures like mitotic spindles.

  1. In Vivo Imaging of Human Sarcomere Twitch Dynamics in Individual Motor Units.

    PubMed

    Sanchez, Gabriel N; Sinha, Supriyo; Liske, Holly; Chen, Xuefeng; Nguyen, Viet; Delp, Scott L; Schnitzer, Mark J

    2015-12-16

    Motor units comprise a pre-synaptic motor neuron and multiple post-synaptic muscle fibers. Many movement disorders disrupt motor unit contractile dynamics and the structure of sarcomeres, skeletal muscle's contractile units. Despite the motor unit's centrality to neuromuscular physiology, no extant technology can image sarcomere twitch dynamics in live humans. We created a wearable microscope equipped with a microendoscope for minimally invasive observation of sarcomere lengths and contractile dynamics in any major skeletal muscle. By electrically stimulating twitches via the microendoscope and visualizing the sarcomere displacements, we monitored single motor unit contractions in soleus and vastus lateralis muscles of healthy individuals. Control experiments verified that these evoked twitches involved neuromuscular transmission and faithfully reported muscle force generation. In post-stroke patients with spasticity of the biceps brachii, we found involuntary microscopic contractions and sarcomere length abnormalities. The wearable microscope facilitates exploration of many basic and disease-related neuromuscular phenomena never visualized before in live humans.

  2. Subthreshold electrical stimulation reduces motor unit discharge variability and decreases the force fluctuations of plantar flexion.

    PubMed

    Kouzaki, Motoki; Kimura, Tetsuya; Yoshitake, Yasuhide; Hayashi, Tatsuya; Moritani, Toshio

    2012-04-04

    The purpose of this study was to examine the influence of subthreshold electrical stimulation on the force fluctuations and motor-unit discharge variability during low-level, steady contraction of the plantar flexor muscles. Seven subjects performed a force-matching task of isometric plantar flexion at 5% of maximal voluntary contraction with and without random electrical stimulation applied to the tibial nerve. During the task, the motor unit action potential was continuously recorded with fine-wire electrodes, and the inter-spike intervals of a single motor unit were calculated. The coefficient of variation (CV) of the force fluctuations and the inter-spike intervals of the motor unit discharge were significantly decreased by the intervention of subthreshold electrical stimulation, although there were no changes in the mean values. These results suggest that subthreshold stimulation reduced the motor-unit discharge variability, which in turn, increased the steadiness of the force.

  3. Discharge behaviors of trapezius motor units during exposure to low and high levels of acute psychosocial stress

    PubMed Central

    Stephenson, Jennifer L; Maluf, Katrina S

    2010-01-01

    This study investigated the effects of acute psychosocial stress on trapezius single motor unit discharge behaviors. Twenty-one healthy women performed feedback-controlled isometric contractions under conditions of low and high psychosocial stress in the same experimental session. Psychosocial stress was manipulated using a verbal math task combined with social evaluative threat which significantly increased perceived anxiety, heart rate, and blood pressure (P<0.001). Motor unit discharge behaviors including the threshold and discharge rate at recruitment (7.7 (5.7) %MVC and 7.3 (6.8) pps, P>0.121, N=103) and derecruitment (6.0(4.4) %MVC and 6.5(4.1) pps, P>0.223, N=99), the mean (11.3 (2.3) pps, P=0.309, N=106) and variability (2.5 (0.91) pps, P=0.958, N=106) of discharge rate, and the proportion of motor units exhibiting double discharges (21%, P=0.446) did not change across stress conditions. Discharge rate modulation with changes in contraction intensity was highly variable and similar across stress conditions (P>0.308, N=89). Rate-rate modulation of concurrently active motor units was also highly variable (r=−0.84–1.00, N=75). Estimates of ΔF for motor unit pairs with rate-rate modulation ≥0.7 were positive and similar across stress conditions (4.7(2.0) pps, P=0.405, N=16). Results indicate that acute psychosocial stress does not alter trapezius motor unit discharge behaviors during a precisely controlled motor task in healthy women. PMID:20087201

  4. Influence of motor activities on the release of transmitter quanta from motor nerve terminals in mice.

    PubMed

    Taquahashi, Y; Yonezawa, K; Nishimura, M

    1999-05-01

    We investigated the effects of motor activities on transmitter release in mouse nerve-muscle preparations of the diaphragm muscle (DPH), extensor digitorum longus muscle (EDL), and soleus muscle (SOL). Mice were divided into a control group, a motor-restricted (RST) group, and a motor-compelled (CMP) group. The quantal content (m) of endplate potentials was measured intracellularly. In DPH the motor activity was unaffected. In the CMP group the m value of the EDL group increased with increases in the cooperativity of Ca2+ in transmitter release. Compared with the CMP group, the SOL of the RST group had a smaller m value with increases in the cooperativity of Ca2+ in transmitter release. These results suggest that motor activities can influence neuromuscular activity specific to different systems, however, the motor compulsion specifically activated the function of EDL and the motor restriction activated the function of SOL, and these effects might lead to altered activity of the release of transmitter quanta in motor nerve terminals of mice.

  5. Hemispheric asymmetry of ipsilateral motor cortex activation in motor skill learning.

    PubMed

    Suzuki, Tomotaka; Higashi, Toshio; Takagi, Mineko; Sugawara, Kenichi

    2013-09-11

    In this study, we investigated how ipsilateral motor cortex (M1) activation during unimanual hand movements and hemispheric asymmetry changed after motor skill learning. Eleven right-handed participants preformed a two-ball-rotation motor task with the right and the left hand, separately, in all experimental sessions. Before and after exercise sessions, the degree of ipsilateral M1 activation during brief execution of the motor task was measured as changes in the size of motor-evoked potentials (MEPs) of the thenar and the first dorsal interosseous muscle of the nontask hand using transcranial magnetic stimulation. Before exercise, MEPs of the nontask hand were significantly facilitated on both sides during the motor task. After exercise, facilitation of MEPs of the nontask hand during the motor task was significantly reduced for the right hand (thenar: P=0.014, first dorsal interosseous: P=0.022) but not for the left hand. We conclude that ipsilateral M1 activation, associated with a complex motor task, is first symmetrical in both hemispheres. However, on exercise, ipsilateral activation is reduced only in left M1, indicating a stronger learning-dependent modification of motor networks within the left hemisphere.

  6. Emergence of gamma motor activity in an artificial neural network model of the corticospinal system.

    PubMed

    Grandjean, Bernard; Maier, Marc A

    2017-02-01

    Muscle spindle discharge during active movement is a function of mechanical and neural parameters. Muscle length changes (and their derivatives) represent its primary mechanical, fusimotor drive its neural component. However, neither the action nor the function of fusimotor and in particular of γ-drive, have been clearly established, since γ-motor activity during voluntary, non-locomotor movements remains largely unknown. Here, using a computational approach, we explored whether γ-drive emerges in an artificial neural network model of the corticospinal system linked to a biomechanical antagonist wrist simulator. The wrist simulator included length-sensitive and γ-drive-dependent type Ia and type II muscle spindle activity. Network activity and connectivity were derived by a gradient descent algorithm to generate reciprocal, known target α-motor unit activity during wrist flexion-extension (F/E) movements. Two tasks were simulated: an alternating F/E task and a slow F/E tracking task. Emergence of γ-motor activity in the alternating F/E network was a function of α-motor unit drive: if muscle afferent (together with supraspinal) input was required for driving α-motor units, then γ-drive emerged in the form of α-γ coactivation, as predicted by empirical studies. In the slow F/E tracking network, γ-drive emerged in the form of α-γ dissociation and provided critical, bidirectional muscle afferent activity to the cortical network, containing known bidirectional target units. The model thus demonstrates the complementary aspects of spindle output and hence γ-drive: i) muscle spindle activity as a driving force of α-motor unit activity, and ii) afferent activity providing continuous sensory information, both of which crucially depend on γ-drive.

  7. Summation of forces from multiple motor units in the cat soleus muscle.

    PubMed

    Perreault, Eric J; Day, Scott J; Hulliger, Manuel; Heckman, C J; Sandercock, Thomas G

    2003-02-01

    Nearly all muscle models and most motor control concepts assume that forces from individual muscle fibers and motor units sum in an additive manner once effects of in-series tendon compliance are taken into account. Due to the numerous mechanical linkages between individual fibers, though, it is unclear whether this assumption is warranted. This work examined motor unit force summation over a wide range of muscle forces in the cat soleus. Nonadditive summation implies a nonlinear summation of motor unit forces. Summation nonlinearities were quantified during interactions of 10 individual motor units and 4 motor unit bundles containing approximately 10 units each. These protocols allowed motor unit force summation to be examined from approximately 0 to 25% of tetanic muscle force. Nonlinear summation was assessed by comparing the actual forces to the algebraic sum of individual units and bundles stimulated in isolation. Superadditive summation meant that the actual force exceeded the algebraic sum, whereas subadditive summation meant that the actual force was smaller than the algebraic sum. Experiments tested the hypothesis that superadditive summation occurs at low force levels when few motor units are recruited, whereas subadditive summation prevails above 10% of tetanic force. Results were consistent with this hypothesis. As in previous studies, nonlinear summation in the soleus was modest, but a clear transition from predominately superadditive to predominantly subadditive summation occurred in the range of 6-8% of tetanic force. The largest nonlinearities were transient and appeared at the onset of recruitment and derecruitment of groups of motor units. The results are discussed in terms of the mechanical properties of the connective tissue forming the tendon and linking muscle fibers.

  8. Oscillations in the power spectra of motor unit signals caused by refractoriness variations

    NASA Astrophysics Data System (ADS)

    Hu, X. L.; Tong, K. Y.; Hung, L. K.

    2004-09-01

    The refractory period of a motor unit is an important mechanism that regulates the motor unit firing, and its variation has been found in many physiological cases. In this study, a new observation that an increase in the motor unit refractoriness results in an enhancement of oscillations, or ripple effects, in the motor unit output power density spectra (PDS) has been identified and studied. The effects of the refractoriness variation on the PDS of motor unit firing were investigated on three levels: theoretical modeling, simulation and electromyographic (EMG) experimentation on human subjects. Both theoretical modeling and simulation showed the enhanced oscillations, ripple effects, in MUAPT PDS, given the increase in the refractoriness. It was also found that the extent of the increment in output PDS oscillation could be related to the motor unit size and the mean firing rate of the stimulation. A needle EMG experiment on biceps brachii muscles of five healthy human subjects was carried out during isometric contraction at 20% maximum voluntary contraction (MVC) for 20 s with a fatigue effort proceeded by MVC. The increased oscillations in the PDS of the real MUAPTs were observed with the rising of the motor unit refractoriness due to fatigue. The study gives new information for EMG spectra interpretation, and also provides a potential method for accessing neuromuscular transmission failure (NTF) due to fatigue during voluntary contraction.

  9. Modified Motor Unit Number Index: A Simulation Study of the First Dorsal Interosseous Muscle

    PubMed Central

    Li, Xiaoyan; Nandedkar, Sanjeev D; Zhou, Ping

    2015-01-01

    The motor unit number index (MUNIX) technique has provided a quick and convenient approach to estimating motor unit population changes in a muscle. Reduction in motor unit action potential (MUAP) amplitude can lead to underestimation of motor unit numbers using the standard MUNIX technique. This study aims to overcome this limitation by developing a modified MUNIX (mMUNIX) technique. The mMUNIX uses a variable that is associated with the area of compound muscle action potential (CMAP) rather than an arbitrary fixed value (20 mV·ms) as used in the standard MUNIX to define the output. The performance of the mMUNIX was evaluated using motoneuron pool and surface electromyography (EMG) models. With a fixed motor unit number, the mMUNIX output remained relatively constant with varying degrees of MUAP amplitude changes, while the standard MUNIX substantially underestimated the motor unit number in such cases. However, when MUAP amplitude remained unchanged, the mMUNIX showed less sensitivity than the standard MUNIX in tracking motor unit loss. The current simulation study demonstrated both the advantages and limitations of the standard and modified MUNIX techniques, which can help guide appropriate application and interpretation of MUNIX measurements. PMID:26639774

  10. Child Development Associate Training Program. Unit IV: Motor Development in Young Children. Module 1: Fostering the Development of Gross Motor Skills in Young Children. Unit Overview.

    ERIC Educational Resources Information Center

    Office of Child Development (DHEW), Washington, DC.

    This Child Development Associate (CDA) training module enables CDA interns to identify, prescribe, plan and implement activities and lessons which foster the development of gross motor skills in young children. At a satisfactoy level of proficiency the trainee will be able to identify levels of gross motor maturation, select appropriate equipment,…

  11. Intestinal motor activity, endoluminal motion and transit.

    PubMed

    de Iorio, F; Malagelada, C; Azpiroz, F; Maluenda, M; Violanti, C; Igual, L; Vitrià, J; Malagelada, J-R

    2009-12-01

    A programme for evaluation of intestinal motility has been recently developed based on endoluminal image analysis using computer vision methodology and machine learning techniques. Our aim was to determine the effect of intestinal muscle inhibition on wall motion, dynamics of luminal content and transit in the small bowel. Fourteen healthy subjects ingested the endoscopic capsule (Pillcam, Given Imaging) in fasting conditions. Seven of them received glucagon (4.8 microg kg(-1) bolus followed by a 9.6 microg kg(-1) h(-1) infusion during 1 h) and in the other seven, fasting activity was recorded, as controls. This dose of glucagon has previously shown to inhibit both tonic and phasic intestinal motor activity. Endoluminal image and displacement was analyzed by means of a computer vision programme specifically developed for the evaluation of muscular activity (contractile and non-contractile patterns), intestinal contents, endoluminal motion and transit. Thirty-minute periods before, during and after glucagon infusion were analyzed and compared with equivalent periods in controls. No differences were found in the parameters measured during the baseline (pretest) periods when comparing glucagon and control experiments. During glucagon infusion, there was a significant reduction in contractile activity (0.2 +/- 0.1 vs 4.2 +/- 0.9 luminal closures per min, P < 0.05; 0.4 +/- 0.1 vs 3.4 +/- 1.2% of images with radial wrinkles, P < 0.05) and a significant reduction of endoluminal motion (82 +/- 9 vs 21 +/- 10% of static images, P < 0.05). Endoluminal image analysis, by means of computer vision and machine learning techniques, can reliably detect reduced intestinal muscle activity and motion.

  12. Motor unit estimation in a muscle supplied by the radial nerve.

    PubMed Central

    Defaria, C R; Toyonaga, K

    1978-01-01

    The number of motor units in a muscle, the abductor pollicis longus (APL), supplied by the radial nerve was estimated. In 40 APL muscles of control subjects, the mean number of motor units was found to be 421 +/- 99 (SD). Ten patients underwent conventional EMG examination to confirm the clinical suspicion of denervation in radial nerve territory. All presented a significant reduction in the number of motor units in the APL muscle. These results show that this method is useful in the evaluation of muscles supplied by the radial nerve. PMID:690650

  13. Dopamine Promotes Motor Cortex Plasticity and Motor Skill Learning via PLC Activation.

    PubMed

    Rioult-Pedotti, Mengia-Seraina; Pekanovic, Ana; Atiemo, Clement Osei; Marshall, John; Luft, Andreas Rüdiger

    2015-01-01

    Dopaminergic neurons in the ventral tegmental area, the major midbrain nucleus projecting to the motor cortex, play a key role in motor skill learning and motor cortex synaptic plasticity. Dopamine D1 and D2 receptor antagonists exert parallel effects in the motor system: they impair motor skill learning and reduce long-term potentiation. Traditionally, D1 and D2 receptor modulate adenylyl cyclase activity and cyclic adenosine monophosphate accumulation in opposite directions via different G-proteins and bidirectionally modulate protein kinase A (PKA), leading to distinct physiological and behavioral effects. Here we show that D1 and D2 receptor activity influences motor skill acquisition and long term synaptic potentiation via phospholipase C (PLC) activation in rat primary motor cortex. Learning a new forelimb reaching task is severely impaired in the presence of PLC, but not PKA-inhibitor. Similarly, long term potentiation in motor cortex, a mechanism involved in motor skill learning, is reduced when PLC is inhibited but remains unaffected by the PKA inhibitor. Skill learning deficits and reduced synaptic plasticity caused by dopamine antagonists are prevented by co-administration of a PLC agonist. These results provide evidence for a role of intracellular PLC signaling in motor skill learning and associated cortical synaptic plasticity, challenging the traditional view of bidirectional modulation of PKA by D1 and D2 receptors. These findings reveal a novel and important action of dopamine in motor cortex that might be a future target for selective therapeutic interventions to support learning and recovery of movement resulting from injury and disease.

  14. Global Motor Unit Number Index sum score for assessing the loss of lower motor neurons in amyotrophic lateral sclerosis.

    PubMed

    Grimaldi, Stephan; Duprat, Lauréline; Grapperon, Aude-Marie; Verschueren, Annie; Delmont, Emilien; Attarian, Shahram

    2017-02-06

    Introduction Our objective was to propose a motor unit number index (MUNIX) global sum score in amyotrophic lateral sclerosis (ALS) to estimate the loss of functional motor units. Methods MUNIX was assessed for 18 ALS patients and 17 healthy controls in seven muscles: the abductor pollicis brevis (APB), abductor digiti minimi (ADM), tibialis anterior (TA), deltoid, trapezius, submental complex (SMC) and orbicularis oris. Results MUNIX was significantly lower in ALS patients than in healthy controls for the APB, ADM, TA and the trapezius muscles. The MUNIX sum score of 4 muscles (ADM + APB + Trapezius + TA) was lower in ALS patients (P = 0.01) and was correlated with clinical scores. Discussion The global MUNIX sum score proposed in this study estimates the loss of lower motor neurons in several body regions including the trapezius, and is correlated with clinical impairment in ALS patients. This article is protected by copyright. All rights reserved.

  15. Reduced Motor Cortex Activity during Movement Preparation following a Period of Motor Skill Practice

    PubMed Central

    Wright, David J.; Holmes, Paul; Di Russo, Francesco; Loporto, Michela; Smith, Dave

    2012-01-01

    Experts in a skill produce movement-related cortical potentials (MRCPs) of smaller amplitude and later onset than novices. This may indicate that, following long-term training, experts require less effort to plan motor skill performance. However, no longitudinal evidence exists to support this claim. To address this, EEG was used to study the effect of motor skill training on cortical activity related to motor planning. Ten non-musicians took part in a 5-week training study learning to play guitar. At week 1, the MRCP was recorded from motor areas whilst participants played the G Major scale. Following a period of practice of the scale, the MRCP was recorded again at week 5. Results showed that the amplitude of the later pre-movement components were smaller at week 5 compared to week 1. This may indicate that, following training, less activity at motor cortex sites is involved in motor skill preparation. This supports claims for a more efficient motor preparation following motor skill training. PMID:23251647

  16. Daily update of motor predictions by physical activity.

    PubMed

    Gueugneau, Nicolas; Schweighofer, Nicolas; Papaxanthis, Charalambos

    2015-12-03

    Motor prediction, i.e., the ability to predict the sensory consequences of motor commands, is critical for adapted motor behavior. Like speed or force, the accuracy of motor prediction varies in a 24-hour basis. Although the prevailing view is that basic biological markers regulate this circadian modulation, behavioral factors such as physical activity, itself modulated by the alternation of night and day, can also regulate motor prediction. Here, we propose that physical activity updates motor prediction on a daily basis. We tested our hypothesis by up- and down-regulating physical activity via arm-immobilization and high-intensity training, respectively. Motor prediction was assessed by measuring the timing differences between actual and mental arm movements. Results show that although mental movement time was modulated during the day when the arm was unconstrained, it remained constant when the arm was immobilized. Additionally, increase of physical activity, via release from immobilization or intense bout of training, significantly reduced mental movement time. Finally, mental and actual times were similar in the afternoon in the unconstrained condition, indicating that predicted and actual movements match after sufficient amount of physical activity. Our study supports the view that physical activity calibrates motor predictions on a daily basis.

  17. Detail, unit 4, 1,850 horsepower (hp) synchronous pump motor manufactured ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail, unit 4, 1,850 horsepower (hp) synchronous pump motor manufactured by The Electric Products Company, Cleveland , Ohio. Pump units 1, 2, and 3 are identical to this unit. View to the west - Wellton-Mohawk Irrigation System, Pumping Plant No. 3, South of Interstate 8, Wellton, Yuma County, AZ

  18. Detail, unit 4, 3,000 hp synchronous pump motor. Manufactured by ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail, unit 4, 3,000 hp synchronous pump motor. Manufactured by The Electric Products Company, Cleveland, Ohio. Unit 5 is identical to this unit - Wellton-Mohawk Irrigation System, Pumping Plant No. 2, Bounded by Interstate 8 to south, Wellton, Yuma County, AZ

  19. Detail, unit 3, 1,100 horsepower (hp) pump motor. Manufactured by ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail, unit 3, 1,100 horsepower (hp) pump motor. Manufactured by the Electric Products Company, Cleveland, Ohio, USA. Units 1,2, and 4 are identical to this unit - Wellton-Mohawk Irrigation System, Pumping Plant No. 1, Bounded by Gila River & Union Pacific Railroad, Wellton, Yuma County, AZ

  20. Detail, unit 1, 3,000 horsepower (hp) synchronous pump motor. Manufactured ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail, unit 1, 3,000 horsepower (hp) synchronous pump motor. Manufactured by The Electric Machinery Manufacturing Company, Minneapolis, Minnesota. Units 2 and 3 are identical to this unit - Wellton-Mohawk Irrigation System, Pumping Plant No. 2, Bounded by Interstate 8 to south, Wellton, Yuma County, AZ

  1. Common Input to Motor Units of Intrinsic and Extrinsic Hand Muscles During Two-Digit Object Hold

    PubMed Central

    Winges, Sara A.; Kornatz, Kurt W.; Santello, Marco

    2014-01-01

    Anatomical and physiological evidence suggests that common input to motor neurons of hand muscles is an important neural mechanism for hand control. To gain insight into the synaptic input underlying the coordination of hand muscles, significant effort has been devoted to describing the distribution of common input across motor units of extrinsic muscles. Much less is known, however, about the distribution of common input to motor units belonging to different intrinsic muscles and to intrinsic-extrinsic muscle pairs. To address this void in the literature, we quantified the incidence and strength of near-simultaneous discharges of motor units residing in either the same or different intrinsic hand muscles (m. first dorsal, FDI, and m. first palmar interosseus, FPI) during two-digit object hold. To extend the characterization of common input to pairs of extrinsic muscles (previous work) and pairs of intrinsic muscles (present work), we also recorded electromyographic (EMG) activity from an extrinsic thumb muscle (m. flexor pollicis longus, FPL). Motor-unit synchrony across FDI and FPI was weak (common input strength, CIS, mean ± SE: 0.17 ± 0.02). Similarly, motor units from extrinsic-intrinsic muscle pairs were characterized by weak synchrony (FPL-FDI: 0.25 ± 0.02; FPL-FPI: 0.29 ± 0.03) although stronger than FDI-FPI. Last, CIS from within FDI and FPI was more than three times stronger (0.70 ± 0.06 and 0.66 ± 0.06, respectively) than across these muscles. We discuss present and previous findings within the framework of muscle-pair specific distribution of common input to hand muscles based on their functional role in grasping. PMID:18171707

  2. Common input to motor units of intrinsic and extrinsic hand muscles during two-digit object hold.

    PubMed

    Winges, Sara A; Kornatz, Kurt W; Santello, Marco

    2008-03-01

    Anatomical and physiological evidence suggests that common input to motor neurons of hand muscles is an important neural mechanism for hand control. To gain insight into the synaptic input underlying the coordination of hand muscles, significant effort has been devoted to describing the distribution of common input across motor units of extrinsic muscles. Much less is known, however, about the distribution of common input to motor units belonging to different intrinsic muscles and to intrinsic-extrinsic muscle pairs. To address this void in the literature, we quantified the incidence and strength of near-simultaneous discharges of motor units residing in either the same or different intrinsic hand muscles (m. first dorsal, FDI, and m. first palmar interosseus, FPI) during two-digit object hold. To extend the characterization of common input to pairs of extrinsic muscles (previous work) and pairs of intrinsic muscles (present work), we also recorded electromyographic (EMG) activity from an extrinsic thumb muscle (m. flexor pollicis longus, FPL). Motor-unit synchrony across FDI and FPI was weak (common input strength, CIS, mean +/- SE: 0.17 +/- 0.02). Similarly, motor units from extrinsic-intrinsic muscle pairs were characterized by weak synchrony (FPL-FDI: 0.25 +/- 0.02; FPL-FPI: 0.29 +/- 0.03) although stronger than FDI-FPI. Last, CIS from within FDI and FPI was more than three times stronger (0.70 +/- 0.06 and 0.66 +/- 0.06, respectively) than across these muscles. We discuss present and previous findings within the framework of muscle-pair specific distribution of common input to hand muscles based on their functional role in grasping.

  3. 78 FR 46677 - Agency Information Collection Activities; New Information Collection Request: Commercial Motor...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-01

    ... Transportation, Federal Motor Carrier Safety Administration, 1200 New Jersey Avenue SE., Washington, DC, 20590... Federal Motor Carrier Safety Administration Agency Information Collection Activities; New Information Collection Request: Commercial Motor Vehicle Marking Requirements AGENCY: Federal Motor Carrier...

  4. 78 FR 21704 - Agency Information Collection Activities; New Information Collection: Commercial Motor Vehicle...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-11

    ... Federal Motor Carrier Safety Administration Agency Information Collection Activities; New Information Collection: Commercial Motor Vehicle Marking Requirements AGENCY: Federal Motor Carrier Safety Administration... require marking of vehicles and intermodal equipment by motor carriers, freight forwarders and...

  5. A structural pathway for activation of the kinesin motor ATPase

    PubMed Central

    Yun, Mikyung; Zhang, Xiaohua; Park, Cheon-Gil; Park, Hee-Won; Endow, Sharyn A.

    2001-01-01

    Molecular motors move along actin or microtubules by rapidly hydrolyzing ATP and undergoing changes in filament-binding affinity with steps of the nucleotide hydrolysis cycle. It is generally accepted that motor binding to its filament greatly increases the rate of ATP hydrolysis, but the structural changes in the motor associated with ATPase activation are not known. To identify the conformational changes underlying motor movement on its filament, we solved the crystal structures of three kinesin mutants that decouple nucleotide and microtubule binding by the motor, and block microtubule-activated, but not basal, ATPase activity. Conformational changes in the structures include a disordered loop and helices in the switch I region and a visible switch II loop, which is disordered in wild-type structures. Switch I moved closer to the bound nucleotide in two mutant structures, perturbing water-mediated interactions with the Mg2+. This could weaken Mg2+ binding and accelerate ADP release to activate the motor ATPase. The structural changes we observe define a signaling pathway within the motor for ATPase activation that is likely to be essential for motor movement on microtubules. PMID:11387196

  6. Motor unit firing and its relation to tremor in the tonic vibration reflex of the decerebrate cat.

    PubMed Central

    Clark, F J; Matthews, P B; Muir, R B

    1981-01-01

    1. The discharge of single motor units has been recorded from the soleus muscle of the decerebrate cat during the tonic vibration reflex elicited isometrically, to further understanding of the tremor that is seen in the reflex contraction. The reflex was elicited by pulses of vibration of 50 micrometers amplitude at 150 Hz, and up to four units were studied concurrently. 2. Individual units fired rather regularly and at a low frequency (range 4-14 Hz). The rate of firing of any unit normally fell within the frequency band of the tremor recorded at the same time. On comparing different preparations a higher frequency of tremor was associated with a higher frequency of motor firing. 3. The responses of pairs of motor units recorded concurrently during repeated production of the reflex were compared by cross-correlation analysis; over 1000 spikes from each train were normally used for this. The major of the cross-correlograms were flat with no overt sign of any synchronization between the units other than that due to the vibration. 4. Clear indications of correlated motor unit firing could be produced deliberately by modulating the amplitude of vibration at a frequency comparable to that of the normal tremor and thereby introducing a rhythmic component into the tonic vibration reflex. 5. About 20% of the cross-correlograms obtained during normal tremor showed varying amounts of an irregular 'waviness' suggesting a possible correlation between the times of firing of a pair of units. But such waves never developed steadily throughout the period of analysis, in contrast to the comparable waves produced on modulating the vibration. Similar waves were seen on cross-correlating a motor unit with an electronic oscillator, confirming that their occurrence does not necessarily demonstrate the existence of active neural interactions. 6. It is concluded that there is no strong and widespread neural synchronizing mechanism active during the tonic vibration reflex, although the

  7. Role of across‐muscle motor unit synchrony for the coordination of forces

    PubMed Central

    Santello, Marco; Fuglevand, Andrew J.

    2007-01-01

    Evidence from five‐digit grasping studies indicates that grip forces exerted by pairs of digits tend to be synchronized. It has been suggested that motor unit synchronization might be a mechanism responsible for constraining the temporal relationships between grip forces. To evaluate this possibility and quantify the effect of motor unit synchrony on force relationships, we used a motor unit model to simulate force produced by two muscles using three physiological levels of motor unit synchrony across the two muscles. In one condition, motor units in the two muscles discharged independently of one another. In the other two conditions, the timing of randomly selected motor unit discharges in one muscle was adjusted to impose low or high levels of synchrony with motor units in the other muscle. Fast Fourier transform analysis was performed to compute the phase differences between forces from 0.5 to 17 Hz. We used circular statistics to assess whether the phase differences at each frequency were randomly or non‐randomly distributed (Rayleigh test). The mean phase difference was then computed on the non‐random distributions. We found that the number of significant phase‐difference distributions increased markedly with increasing synchronization strength from 18% for no synchrony to 65% and 82% for modest and strong synchrony conditions, respectively. Importantly, most of the mean angles clustered at very small phase difference values (∼0 to 10°), indicating a strong tendency for forces to be exerted in a synchronous fashion. These results suggest that motor unit synchronization could play a significant functional role in the coordination of grip forces. PMID:15558252

  8. Innovative Perceptual Motor Activities: Programing Techniques That Work.

    ERIC Educational Resources Information Center

    Sorrell, Howard M.

    1978-01-01

    A circuit approach and station techniques are used to depict perceptual motor games for handicapped and nonhandicapped children. Twenty activities are described in terms of objectives, materials, and procedures, and their focus on visual tracking, visual discrimination and copying of forms, spatial body perception, fine motor coordination, tactile…

  9. Motor unit rate coding is severely impaired during forceful and fast muscular contractions in individuals post stroke.

    PubMed

    Chou, Li-Wei; Palmer, Jacqueline A; Binder-Macleod, Stuart; Knight, Christopher A

    2013-06-01

    Information regarding how motor units are controlled to produce forces in individuals with stroke and the mechanisms behind muscle weakness and movement slowness can potentially inform rehabilitation strategies. The purpose of this study was to describe the rate coding mechanism in individuals poststroke during both constant (n = 8) and rapid (n = 4) force production tasks. Isometric ankle dorsiflexion force, motor unit action potentials, and surface electromyography were recorded from the paretic and nonparetic tibialis anterior. In the paretic limb, strength was 38% less and the rate of force development was 63% slower. Linear regression was used to describe and compare the relationships between motor unit and electromyogram (EMG) measures and force. During constant force contractions up to 80% maximal voluntary contraction (MVC), rate coding was compressed and discharge rates were lower in the paretic limb. During rapid muscle contractions up to 90% MVC, the first interspike interval was prolonged and the rate of EMG rise was less in the paretic limb. Future rehabilitation strategies for individuals with stroke could focus on regaining these specific aspects of motor unit rate coding and neuromuscular activation.

  10. Learning new gait patterns: Exploratory muscle activity during motor learning is not predicted by motor modules.

    PubMed

    Ranganathan, Rajiv; Krishnan, Chandramouli; Dhaher, Yasin Y; Rymer, William Z

    2016-03-21

    The motor module hypothesis in motor control proposes that the nervous system can simplify the problem of controlling a large number of muscles in human movement by grouping muscles into a smaller number of modules. Here, we tested one prediction of the modular organization hypothesis by examining whether there is preferential exploration along these motor modules during the learning of a new gait pattern. Healthy college-aged participants learned a new gait pattern which required increased hip and knee flexion during the swing phase while walking in a lower-extremity robot (Lokomat). The new gait pattern was displayed as a foot trajectory in the sagittal plane and participants attempted to match their foot trajectory to this template. We recorded EMG from 8 lower-extremity muscles and we extracted motor modules during both baseline walking and target-tracking using non-negative matrix factorization (NMF). Results showed increased trajectory variability in the first block of learning, indicating that participants were engaged in exploratory behavior. Critically, when we examined the muscle activity during this exploratory phase, we found that the composition of motor modules changed significantly within the first few strides of attempting the new gait pattern. The lack of persistence of the motor modules under even short time scales suggests that motor modules extracted during locomotion may be more indicative of correlated muscle activity induced by the task constraints of walking, rather than reflecting a modular control strategy.

  11. Motor Cortex Activity Organizes the Developing Rubrospinal System

    PubMed Central

    Williams, Preston T.J.A.

    2015-01-01

    The corticospinal and rubrospinal systems function in skilled movement control. A key question is how do these systems develop the capacity to coordinate their motor functions and, in turn, if the red nucleus/rubrospinal tract (RN/RST) compensates for developmental corticospinal injury? We used the cat to investigate whether the developing rubrospinal system is shaped by activity-dependent interactions with the developing corticospinal system. We unilaterally inactivated M1 by muscimol microinfusion between postnatal weeks 5 and 7 to examine activity-dependent interactions and whether the RN/RST compensates for corticospinal tract (CST) developmental motor impairments and CST misprojections after M1 inactivation. We examined the RN motor map and RST cervical projections at 7 weeks of age, while the corticospinal system was inactivated, and at 14 weeks, after activity returned. During M1 inactivation, the RN on the same side showed normal RST projections and reduced motor thresholds, suggestive of precocious development. By contrast, the RN on the untreated/active M1 side showed sparse RST projections and an immature motor map. After M1 activity returned later in adolescent cat development, RN on the active M1/CST side continued to show a substantial loss of spinal terminations and an impaired motor map. RN/RST on the inactivated side regressed to a smaller map and fewer axons. Our findings suggest that the developing rubrospinal system is under activity-dependent regulation by the corticospinal system for establishing mature RST connections and RN motor map. The lack of RS compensation on the non-inactivated side can be explained by development of ipsilateral misprojections from the active M1 that outcompete the RST. SIGNIFICANCE STATEMENT Skilled movements reflect the activity of multiple descending motor systems and their interactions with spinal motor circuits. Currently, there is little insight into whether motor systems interact during development to

  12. Learning to associate novel words with motor actions: language-induced motor activity following short training.

    PubMed

    Fargier, Raphaël; Paulignan, Yves; Boulenger, Véronique; Monaghan, Padraic; Reboul, Anne; Nazir, Tatjana A

    2012-07-01

    Action words referring to face, arm or leg actions activate areas along the motor strip that also control the planning and execution of the actions specified by the words. This electroencephalogram (EEG) study aimed to test the learning profile of this language-induced motor activity. Participants were trained to associate novel verbal stimuli to videos of object-oriented hand and arm movements or animated visual images on two consecutive days. Each training session was preceded and followed by a test-session with isolated videos and verbal stimuli. We measured motor-related brain activity (reflected by a desynchronization in the μ frequency bands; 8-12 Hz range) localized at centro-parietal and fronto-central electrodes. We compared activity from viewing the videos to activity resulting from processing the language stimuli only. At centro-parietal electrodes, stable action-related μ suppression was observed during viewing of videos in each test-session of the two days. For processing of verbal stimuli associated with motor actions, a similar pattern of activity was evident only in the second test-session of Day 1. Over the fronto-central regions, μ suppression was observed in the second test-session of Day 2 for the videos and in the second test-session of Day 1 for the verbal stimuli. Whereas the centro-parietal μ suppression can be attributed to motor events actually experienced during training, the fronto-central μ suppression seems to serve as a convergence zone that mediates underspecified motor information. Consequently, sensory-motor reactivations through which concepts are comprehended seem to differ in neural dynamics from those implicated in their acquisition.

  13. The reaction time of single motor units in the human muscle.

    PubMed

    Kosarov, D

    1979-01-01

    The reaction time for activating a single motor unit (MU) with one impulse only, upon visual and auditory feed-back was studied in six healthy subjects. Use was made of MUs from m.abductor dig.V. The subjects were trained until they achieved more than 50% correct performances. One hundred responses were investigated in each series of experiments. The stimulus to which the subjects should have to respond was a beam presented on the screen of a "Disa" 14A30 electromyograph. Simultaneously with the beam the stimulator switched on a digital chronometer which was switched off by the MU impulse. Another two series of experiments were also performed in which the subjects responded with a train of impulses from the MU or with a burst of impulses from the whole muscle. It was been found that the mean reaction time for one impulse from one MU is longer (300 ms), for a train of impulses from one MU it is shorter (260 ms) and for a burst of impulses it is the shortest (200 ms). The histogram of distribution in the first series of experiments deviated from the normal distribution and showed a second maximum at 120 ms after the first maximum. The latter did not differ from the maxima in the distributions of the second and third series of experiments--about 200 ms after the visual stimulus presentation. The difference in the mean reaction time for the three series of experiments is due to the differences in the motor tasks connected with different velocity of increase of the muscle tension, as increasing velocity decreases the MU recruitment thresholds. The separate MUs might be activated in the same short periods as the whole muscle but they showed some specificities in the time distribution of the responses which might be due to some discrete mechanisms of the motor control system.

  14. Individual variation in sleep and motor activity in rats.

    PubMed

    Tang, Xiangdong; Yang, Linghui; Sanford, Larry D

    2007-06-04

    We examined individual differences in sleep and motor activity across 2 consecutive days in rats. EEG and motor activity were recorded via telemetry in Wistar rats (n=29) for 48h under well-habituated conditions. Rats were grouped based on sleep amounts and stability across days (short [SS, n=7], intermediate [IS, n=15] and long [LS, n=7] sleep) and comparisons were conducted to determine group differences for measures of sleep and motor activity. We found that correlations across recording days were significant for all selected sleep measures and motor activity counts. Rankings for 24h total sleep time and non-rapid eye movement sleep (NREM) were SSmotor activity counts (per waking min) were greater (32-38%) in SS compared to LS rats on both recording days. The results indicate that individual differences in sleep and motor activity in Wistar rats are stable across days. Differences between SS and LS rats have parallels to those reported for short and long sleep humans.

  15. Motor cortex activity predicts response alternation during sensorimotor decisions

    PubMed Central

    Pape, Anna-Antonia; Siegel, Markus

    2016-01-01

    Our actions are constantly guided by decisions based on sensory information. The motor cortex is traditionally viewed as the final output stage in this process, merely executing motor responses based on these decisions. However, it is not clear if, beyond this role, the motor cortex itself impacts response selection. Here, we report activity fluctuations over motor cortex measured using MEG, which are unrelated to choice content and predict responses to a visuomotor task seconds before decisions are made. These fluctuations are strongly influenced by the previous trial's response and predict a tendency to switch between response alternatives for consecutive decisions. This alternation behaviour depends on the size of neural signals still present from the previous response. Our results uncover a response-alternation bias in sensorimotor decision making. Furthermore, they suggest that motor cortex is more than an output stage and instead shapes response selection during sensorimotor decision making. PMID:27713396

  16. Chained Activation of the Motor System during Language Understanding

    PubMed Central

    Marino, Barbara F.; Borghi, Anna M.; Buccino, Giovanni; Riggio, Lucia

    2017-01-01

    Two experiments were carried out to investigate whether and how one important characteristic of the motor system, that is its goal-directed organization in motor chains, is reflected in language processing. This possibility stems from the embodied theory of language, according to which the linguistic system re-uses the structures of the motor system. The participants were presented with nouns of common tools preceded by a pair of verbs expressing grasping or observational motor chains (i.e., grasp-to-move, grasp-to-use, look-at-to-grasp, and look-at-to-stare). They decided whether the tool mentioned in the sentence was the same as that displayed in a picture presented shortly after. A primacy of the grasp-to-use motor chain over the other motor chains in priming the participants' performance was observed in both the experiments. More interestingly, we found that the motor information evoked by the noun was modulated by the specific motor-chain expressed by the preceding verbs. Specifically, with the grasping chain aimed at using the tool, the functional motor information prevailed over the volumetric information, and vice versa with the grasping chain aimed at moving the tool (Experiment 2). Instead, the functional and volumetric information were balanced for those motor chains that comprise at least an observational act (Experiment 1). Overall our results are in keeping with the embodied theory of language and suggest that understanding sentences expressing an action directed toward a tool drives a chained activation of the motor system. PMID:28265247

  17. Chained Activation of the Motor System during Language Understanding.

    PubMed

    Marino, Barbara F; Borghi, Anna M; Buccino, Giovanni; Riggio, Lucia

    2017-01-01

    Two experiments were carried out to investigate whether and how one important characteristic of the motor system, that is its goal-directed organization in motor chains, is reflected in language processing. This possibility stems from the embodied theory of language, according to which the linguistic system re-uses the structures of the motor system. The participants were presented with nouns of common tools preceded by a pair of verbs expressing grasping or observational motor chains (i.e., grasp-to-move, grasp-to-use, look-at-to-grasp, and look-at-to-stare). They decided whether the tool mentioned in the sentence was the same as that displayed in a picture presented shortly after. A primacy of the grasp-to-use motor chain over the other motor chains in priming the participants' performance was observed in both the experiments. More interestingly, we found that the motor information evoked by the noun was modulated by the specific motor-chain expressed by the preceding verbs. Specifically, with the grasping chain aimed at using the tool, the functional motor information prevailed over the volumetric information, and vice versa with the grasping chain aimed at moving the tool (Experiment 2). Instead, the functional and volumetric information were balanced for those motor chains that comprise at least an observational act (Experiment 1). Overall our results are in keeping with the embodied theory of language and suggest that understanding sentences expressing an action directed toward a tool drives a chained activation of the motor system.

  18. Speech Motor Development: Integrating Muscles, Movements, and Linguistic Units

    ERIC Educational Resources Information Center

    Smith, Anne

    2006-01-01

    A fundamental problem for those interested in human communication is to determine how ideas and the various units of language structure are communicated through speaking. The physiological concepts involved in the control of muscle contraction and movement are theoretically distant from the processing levels and units postulated to exist in…

  19. Effects on motor unit potentiation and ground reaction force from treadmill exercise

    NASA Technical Reports Server (NTRS)

    Elam, Reid P.

    1989-01-01

    This study was conducted to analyze the characteristics of motor unit potentiation (MUP) and ground reaction force (GRF) in treadmill exercise at the inclines of 0, 5.5 and 11 percent with conjuctive speeds of 7.5, 6, and 5 mph respectively. These speeds and corresponding inclines were set to provide equivalent physiological workloads at 12.5 METS. EMG recordings were taken from the rectus femoris and gastrocnemius of the right leg from 5 subjects. Simultaneous GRF recordings were obtained from a Delmar Avionic treadmill rigged with load cells. Measures for MUP and GRF were taken over a period containing 10 strides at steady pace. It was concluded that the gastrocnemius was more evident in EMG activity in all speed/incline settings over the rectus femoris, and that inclines from 5.5 to 11 percent produced greater GRF's over 0 percent. Recommendations for future studies was made.

  20. Observing shadow motions: resonant activity within the observer's motor system?

    PubMed

    Alaerts, Kaat; Van Aggelpoel, Tinne; Swinnen, Stephan P; Wenderoth, Nicole

    2009-09-25

    Several studies have demonstrated that the human motor cortex is activated by the mere observation of actions performed by others. In the present study, we explored whether the perception of 'impoverished motion stimuli', such as shadow animations, is sufficient to activate motor areas. To do so, transcranial magnetic stimulation (TMS) was applied over the hand area of the primary motor cortex (M1) while subjects observed shadow animations depicting finger motions. Data showed that resonant motor responses in M1 were only found when a biological effector was recognized from the observed shadow animation. Interestingly, M1 responses were similar for observing shadow or real motions. Therefore, the loss of 'pictorial' movement features in a shadow animation appeared to have no effect on motor resonance in M1. In summary, these findings suggest that the 'recognition' of biological motion from sparse visual input is both necessary and sufficient to recruit motor areas. This supports the hypothesis that the motor system is involved in recognizing the actions performed by others.

  1. Emergence of reproducible spatiotemporal activity during motor learning.

    PubMed

    Peters, Andrew J; Chen, Simon X; Komiyama, Takaki

    2014-06-12

    The motor cortex is capable of reliably driving complex movements yet exhibits considerable plasticity during motor learning. These observations suggest that the fundamental relationship between motor cortex activity and movement may not be fixed but is instead shaped by learning; however, to what extent and how motor learning shapes this relationship are not fully understood. Here we addressed this issue by using in vivo two-photon calcium imaging to monitor the activity of the same population of hundreds of layer 2/3 neurons while mice learned a forelimb lever-press task over two weeks. Excitatory and inhibitory neurons were identified by transgenic labelling. Inhibitory neuron activity was relatively stable and balanced local excitatory neuron activity on a movement-by-movement basis, whereas excitatory neuron activity showed higher dynamism during the initial phase of learning. The dynamics of excitatory neurons during the initial phase involved the expansion of the movement-related population which explored various activity patterns even during similar movements. This was followed by a refinement into a smaller population exhibiting reproducible spatiotemporal sequences of activity. This pattern of activity associated with the learned movement was unique to expert animals and not observed during similar movements made during the naive phase, and the relationship between neuronal activity and individual movements became more consistent with learning. These changes in population activity coincided with a transient increase in dendritic spine turnover in these neurons. Our results indicate that a novel and reproducible activity-movement relationship develops as a result of motor learning, and we speculate that synaptic plasticity within the motor cortex underlies the emergence of reproducible spatiotemporal activity patterns for learned movements. These results underscore the profound influence of learning on the way that the cortex produces movements.

  2. Cross-reinnervated motor units in cat muscle. I. Flexor digitorum longus muscle units reinnervated by soleus motoneurons.

    PubMed

    Dum, R P; O'Donovan, M J; Toop, J; Burke, R E

    1985-10-01

    The properties of flexor digitorum longus (FDL) muscles and of individual motor units were studied in cats 30-50 wk after self-reinnervation by FDL motoneurons (FDL----FDL) or cross-reinnervation by soleus (SOL) motoneurons (SOL----FDL). Individual motor units were functionally isolated by intracellular recording and stimulation of identified SOL alpha-motoneurons. Glycogen-depletion methods permitted histochemical study of muscle fibers belonging to physiologically characterized muscle units. The observations were compared with data from normal cat FDL muscles and motor units (27). Intentionally self-reinnervated FDL muscles (FDL----FDL; n = 5) were normal in size and wet weight. FDL----FDL motor units could be classified into the same physiological categories found in normal FDL [types: fast contracting, fatigable (FF), fast contracting, fatigue resistant (FR), and slow (S); n = 24], with approximately the same proportions as normal. The histochemical muscle fiber types associated with these categories were also qualitatively normal although there was evidence of marked distortion of the normal histochemical mosaic. These data confirm other studies of self-reinnervation and suggest that self-reinnervation can produce complete interconversion of muscle fiber types. Cross-reinnervation of FDL muscle by SOL motoneurons (SOL----FDL; n = 12) produced muscles that were smaller (about half the normal wet weight) and more red than normal. SOL----FDL muscle contracted more slowly than normal or FDL----FDL muscles and had much higher proportions of histochemical type I muscle fibers. In those SOL----FDL muscles, in which little or no unwanted self-reinnervation could be demonstrated, greater than 95% of the muscle fibers were type I. Forty-one individual motor units in SOL----FDL muscles were isolated by intracellular penetration in functionally identified SOL alpha-motoneurons. Their muscle units were all type S by physiological criteria (absence of "sag" in unfused

  3. Emergency department visits for motor vehicle traffic injuries: United States, 2010-2011.

    PubMed

    Albert, Michael; McCaig, Linda F

    2015-01-01

    Data from the National Hospital Ambulatory Medical Care Survey, 2010-2011. In 2010-2011, the emergency department (ED) visit rate for motor vehicle traffic injuries was highest among persons aged 16-24 years. The rates declined with age after 16-24, with rates for those aged 0-15 similar to those 65 and over. The overall ED visit rate for motor vehicle traffic injuries was higher among non-Hispanic black persons compared with non-Hispanic white and Hispanic persons. Imaging services were ordered or provided at 70.2% of ED visits for motor vehicle traffic injuries, which was higher than for other injury-related ED visits (55.9%). About one-half of ED visits for motor vehicle traffic injuries had a primary diagnosis of sprains and strains of the neck and back, contusion with intact skin surface, or spinal disorders. In spite of improvements in motor vehicle safety in recent years, motor vehicle crashes remain a major source of morbidity and mortality in the United States (1-3). Motor vehicle-related deaths and injuries also result in substantial economic and societal costs related to medical care and lost productivity (4). This report describes the rates and characteristics of emergency department (ED) visits for motor vehicle traffic injuries during 2010-2011 based on nationally representative data from the National Hospital Ambulatory Medical Care Survey (NHAMCS).

  4. Motor units in a skeletal muscle of neonatal rat: mechanical properties and weak neuromuscular transmission.

    PubMed Central

    Jones, S P; Ridge, R M

    1987-01-01

    1. Isometric twitch and tetanic tensions were recorded from whole muscles and single motor units in isolated fourth deep lumbrical muscles from neonatal rats (most at 3-5 days old) and from older rats of various ages. 2. Whole-muscle time to peak contraction reduced from about 120 ms at birth to about 20-25 ms at 20 days and older. 3. The number of motor units in the muscle was constant with age (eleven on average) and there was no significant branching of motor axons below the common peroneal nerve branching point in the thigh. 4. In the 3-5 days age range, mean twitch:tetanus ratio for whole muscles was 0.299 and for single units was 0.177. As a consequence, mean motor unit size (as a percentage of whole-muscle tension) was greater for tetani (29.7%) than for twitches (19.9%). This was not the case in muscles from animals 22 days or older. Evidence is given that the cause of this is low junctional efficacy in some neuromuscular junctions in neonatal muscle. Intracellular recordings supported this view. 5. The relationships of motor-unit size to the contraction time, to the ratio of contraction time:half-relaxation time, and to fatigue index are given. There was no indication of clear segregation of motor units into more than one population, but it is concluded that small motor units are more likely to contain a higher proportion of slowly contracting, fatigue-resistant fibres than large units. 6. The level of overlap by axons in the lateral plantar nerve onto muscle fibres in a single sural nerve motor unit was greater in tetani than in twitches. The results indicate that the distribution of weak and strong inputs was not random, but that there was a tendency for one strong input to accompany a number of weak inputs (on average about two) on each muscle fibre. 7. Intracellular recording indicates that about 12% of fibres at 3-5 days may be electrically coupled. PMID:2824760

  5. Inflammation Effects on Motivation and Motor Activity: Role of Dopamine.

    PubMed

    Felger, Jennifer C; Treadway, Michael T

    2017-01-01

    Motivational and motor deficits are common in patients with depression and other psychiatric disorders, and are related to symptoms of anhedonia and motor retardation. These deficits in motivation and motor function are associated with alterations in corticostriatal neurocircuitry, which may reflect abnormalities in mesolimbic and mesostriatal dopamine (DA). One pathophysiologic pathway that may drive changes in DAergic corticostriatal circuitry is inflammation. Biomarkers of inflammation such as inflammatory cytokines and acute-phase proteins are reliably elevated in a significant proportion of psychiatric patients. A variety of inflammatory stimuli have been found to preferentially target basal ganglia function to lead to impaired motivation and motor activity. Findings have included inflammation-associated reductions in ventral striatal neural responses to reward anticipation, decreased DA and DA metabolites in cerebrospinal fluid, and decreased availability, and release of striatal DA, all of which correlated with symptoms of reduced motivation and/or motor retardation. Importantly, inflammation-associated symptoms are often difficult to treat, and evidence suggests that inflammation may decrease DA synthesis and availability, thus circumventing the efficacy of standard pharmacotherapies. This review will highlight the impact of administration of inflammatory stimuli on the brain in relation to motivation and motor function. Recent data demonstrating similar relationships between increased inflammation and altered DAergic corticostriatal circuitry and behavior in patients with major depressive disorder will also be presented. Finally, we will discuss the mechanisms by which inflammation affects DA neurotransmission and relevance to novel therapeutic strategies to treat reduced motivation and motor symptoms in patients with high inflammation.

  6. Motor activity after colon replacement of esophagus. Manometric evaluation.

    PubMed

    Benages, A; Moreno-Ossett, E; Paris, F; Ridocci, M T; Blasco, E; Pastor, J; Tarazona, V; Molina, R; Mora, F

    1981-09-01

    Motor activity of the colon transplant for esophageal reconstruction is a point of controversy. In this paper we present manometric studies carried out in 15 patients subjected to isoperistaltic colon interposition. Manometric studies were carried out with two polyvinyl water-filled catheters inserted through pressure transducers. Basal colonic activity and motor activity following several stimuli and "dry swallows" were registered. The type of waves after stimuli were classified as (1) synchronous, (2) sequential or progressive, and (3) segmental. Details of the basal colonic waves and colon contractions after stimuli are given: i.e., rate, duration, amplitude, interval from the stimulus, and percentage of motor activity. The data reported here indicate the good motor response of the isoperistaltic colon to intraluminal injection of water or 0. 1 N hydrochloric acid and to chachet swallowing. Only two free-symptoms patients did not have motor activity. One of them was submitted to manometric studies too soon after the operation. We conclude that the presence of sequential waves in the interposed segment likely can help to propel the contents of the colon into the stomach and to clear gastric juice if reflux from the stomach should occur.

  7. [Study of cardiac, respiratory, and motor activity in rat fetuses].

    PubMed

    Timofeeva, O P; Vdovichenko, N D

    2009-01-01

    Development of the cardiac, respiratory, and motor activity was studied in rat fetuses with preserved placenta circulation was studied at the 16th, 18th, and 20th gestation days. The presence of three main movement types has been found: complexes of generalization activity, local movements, and jerks. In development of respiratory function, there is observed a gradual transition from individual inspirations to series of respiratory movements and then to formation of periodic respiration episodes. At the studied period, the heart rate has been found to increase. The existence of the slow-wave modulations it the heart rate with a period of 20-40 s has been revealed. Analysis of interrelations between the respiratory and motor systems has shown that in the 16-day fetuses, each respiratory movement is accompanied by extensor jerk. By the 20th days of embryonic development (E20), uncoupling of the respiratory and motor activities occurs. Comparison of the activity observed in the cardiac and somatomotor systems has shown that at E16, the cardiac rhythm fluctuations do not depend on the motor excitation jerks. In the 18-day fetuses, brief slowing down (decelerations) of the cardiac rhythm appeared during the motor activity jerks, whereas at E20, on the contrary, an increase of frequency (accelerations) of the cardiac rhythm occurred.

  8. Some effects of auditory stimulation on perioral motor unit discharge and their implications for speech production.

    PubMed

    McClean, M D; Sapir, S

    1981-05-01

    The objective of this investigation was to describe the electrophysiological properties of short-latency reflexive pathways existing between the auditory system and the motoneurons involved in the control of lower lip movements for speech. The general procedure involved binaural presentation of auditory clicks (60--75 dB SL) at constant rates while subjects maintained a steady firing rate in a perioral motor unit. Post-stimulus time histograms were used to assess the effects of stimulation on the probability of firing of individual motor units. Data collected on 33 motor units in four subjects revealed a significant short-latency change in the probability of firing of 16 of these units. The mean latency of this effect was 20.4 ms. There was some indication that the direction and latency of the initial response to stimulation was dependent on the location and function of individual motor units. The likely neural pathways mediating these effects and their potential role in speech production are discussed.

  9. Characteristics of the Motor Units during Sternocleidomastoid Isometric Flexion among Patients with Mechanical Neck Disorder and Asymptomatic Individuals

    PubMed Central

    Yang, Chia-Chi; Su, Fong-Chin; Yang, Po-Ching; Lin, Hwai-Ting

    2016-01-01

    Mechanical neck disorder is a widespread and non-neurological musculoskeletal condition resulting from modern lifestyles. Presently, the fundamental electrophysiological properties of the motor units of the sternocleidomastoid muscles and the characteristics of the short-term synchronization of the motor unit in patients with neck pain are ambiguous. This study therefore aims to clarify the fundamental electrophysiological properties of the motor units of the sternocleidomastoid muscles in patients with mechanical neck disorder and in asymptomatic individuals. We further investigated whether alterations in the degree of motor unit short-term synchronization occur. The surface electrophysiological signals of the bilateral sternal heads of the sternocleidomastoid muscles of twelve patients with mechanical neck disorder and asymptomatic individuals were detected at 25% of the maximum voluntary contraction during cervical isometric flexion and then decomposed into individual motor unit action potential trains. We found that the patients with mechanical neck disorder showed significantly higher initial and mean firing rates of the sternocleidomastoid muscles and displayed substantially lower motor unit short-term synchronization values compared with the asymptomatic subjects. Consequently, these convincing findings support the assertion that patients with mechanical neck disorder display altered neuromuscular control strategies, such as the reinforcement of motor unit recruitment firing rates in the sternocleidomastoid muscles. The motor units of these patients also revealed neural recruitment strategies with relatively poor efficiency when executing the required motor tasks. PMID:27941995

  10. Characteristics of the Motor Units during Sternocleidomastoid Isometric Flexion among Patients with Mechanical Neck Disorder and Asymptomatic Individuals.

    PubMed

    Yang, Chia-Chi; Su, Fong-Chin; Yang, Po-Ching; Lin, Hwai-Ting; Guo, Lan-Yuen

    2016-01-01

    Mechanical neck disorder is a widespread and non-neurological musculoskeletal condition resulting from modern lifestyles. Presently, the fundamental electrophysiological properties of the motor units of the sternocleidomastoid muscles and the characteristics of the short-term synchronization of the motor unit in patients with neck pain are ambiguous. This study therefore aims to clarify the fundamental electrophysiological properties of the motor units of the sternocleidomastoid muscles in patients with mechanical neck disorder and in asymptomatic individuals. We further investigated whether alterations in the degree of motor unit short-term synchronization occur. The surface electrophysiological signals of the bilateral sternal heads of the sternocleidomastoid muscles of twelve patients with mechanical neck disorder and asymptomatic individuals were detected at 25% of the maximum voluntary contraction during cervical isometric flexion and then decomposed into individual motor unit action potential trains. We found that the patients with mechanical neck disorder showed significantly higher initial and mean firing rates of the sternocleidomastoid muscles and displayed substantially lower motor unit short-term synchronization values compared with the asymptomatic subjects. Consequently, these convincing findings support the assertion that patients with mechanical neck disorder display altered neuromuscular control strategies, such as the reinforcement of motor unit recruitment firing rates in the sternocleidomastoid muscles. The motor units of these patients also revealed neural recruitment strategies with relatively poor efficiency when executing the required motor tasks.

  11. Activity Analysis for Cognitive-Perceptual-Motor Dysfunction

    ERIC Educational Resources Information Center

    Llorens, Lela A.

    1973-01-01

    This paper presents a review of several approaches to activity and task analysis for their selection for use in occupational therapy and proposes a neuro-behavioral approach to activity analysis and selection for use in treatment of cognitive-perceptual-motor dysfunction. (Editors/JA)

  12. The Dynamic Association between Motor Skill Development and Physical Activity

    ERIC Educational Resources Information Center

    Stodden, David F.; Goodway, Jacqueline D.

    2007-01-01

    Although significant attention has been given to promoting physical activity among children, little attention has been given to the developmental process of how children learn to move or to the changing role that motor skill development plays in children's physical activity levels as they grow. In order to successfully address the obesity…

  13. Probing the Mechanism of Oscillations in Newborn Motor Activity.

    ERIC Educational Resources Information Center

    Robertson, Steven S.

    1993-01-01

    Cyclical fluctuation in spontaneous motor activity (CM) emerges in fetus and persists in newborn. This "resetting" experiment perturbed CM by noise stimulus during infants' active sleep. Pre- and postperturbation CM were measured and compared. Subjects were 33 infants between 1 and 3 days of age. The stimulus induced a relative slowing of CM…

  14. Electrophysiological Motor Unit Number Estimation (MUNE) Measuring Compound Muscle Action Potential (CMAP) in Mouse Hindlimb Muscles.

    PubMed

    Arnold, W David; Sheth, Kajri A; Wier, Christopher G; Kissel, John T; Burghes, Arthur H; Kolb, Stephen J

    2015-09-25

    Compound muscle action potential (CMAP) and motor unit number estimation (MUNE) are electrophysiological techniques that can be used to monitor the functional status of a motor unit pool in vivo. These measures can provide insight into the normal development and degeneration of the neuromuscular system. These measures have clear translational potential because they are routinely applied in diagnostic and clinical human studies. We present electrophysiological techniques similar to those employed in humans to allow recordings of mouse sciatic nerve function. The CMAP response represents the electrophysiological output from a muscle or group of muscles following supramaximal stimulation of a peripheral nerve. MUNE is an electrophysiological technique that is based on modifications of the CMAP response. MUNE is a calculated value that represents the estimated number of motor neurons or axons (motor control input) supplying the muscle or group of muscles being tested. We present methods for recording CMAP responses from the proximal leg muscles using surface recording electrodes following the stimulation of the sciatic nerve in mice. An incremental MUNE technique is described using submaximal stimuli to determine the average single motor unit potential (SMUP) size. MUNE is calculated by dividing the CMAP amplitude (peak-to-peak) by the SMUP amplitude (peak-to-peak). These electrophysiological techniques allow repeated measures in both neonatal and adult mice in such a manner that facilitates rapid analysis and data collection while reducing the number of animals required for experimental testing. Furthermore, these measures are similar to those recorded in human studies allowing more direct comparisons.

  15. Does motor interference arise from mirror system activation? The effect of prior visuo-motor practice on automatic imitation.

    PubMed

    Capa, Rémi L; Marshall, Peter J; Shipley, Thomas F; Salesse, Robin N; Bouquet, Cédric A

    2011-03-01

    Action perception may involve a mirror-matching system, such that observed actions are mapped onto the observer's own motor representations. The strength of such mirror system activation should depend on an individual's experience with the observed action. The motor interference effect, where an observed action interferes with a concurrently executed incongruent action, is thought to arise from mirror system activation. However, this view was recently challenged. If motor interference arises from mirror system activation, this effect should be sensitive to prior sensorimotor experience with the observed action. To test this prediction, we measured motor interference in two groups of participants observing the same incongruent movements. One group had received brief visuo-motor practice with the observed incongruent action, but not the other group. Action observation induced a larger motor interference in participants who had practiced the observed action. This result thus supports a mirror system account of motor interference.

  16. Motor unit loss estimation by the multipoint incremental MUNE method in children with spinal muscular atrophy--a preliminary study.

    PubMed

    Gawel, Malgorzata; Kostera-Pruszczyk, Anna; Lusakowska, Anna; Jedrzejowska, Maria; Ryniewicz, Barbara; Lipowska, Marta; Gawel, Damian; Kaminska, Anna

    2015-03-01

    Quantitative EMG reflects denervation of muscles after lower motor neuron degeneration in spinal muscular atrophy (SMA) but does not reflect actual motor unit loss. The aim of our study was to assess the value of the multipoint incremental motor unit number estimation (MUNE) method in the modification by Shefner in estimating motor unit loss in SMA. The number of motor units, the mean amplitude of an average surface-detected single motor unit potential (SMUP), and the amplitude of compound motor action potentials (CMAP) were estimated in 14 children with SMA in the abductor pollicis brevis (ABP). Significant differences in MUNE values and SMUP and CMAP amplitude were found between the SMA and control groups (P < 0.0001). MUNE values correlated with Hammersmith Functional Motor Scale (HFMS) scores (P < 0.05). Increased SMUP amplitude values correlated with decreased HFMS scores (P < 0.05). The study confirms that MUNE method in the modification by Shefner is a useful tool reflecting motor unit loss in SMA, and it is easy to perform and well tolerated. MUNE and SMUP amplitude seemed to be sensitive parameters reflecting motor dysfunction in SMA but a longitudinal study in a larger number of subjects is needed.

  17. Mushroom bodies enhance initial motor activity in Drosophila.

    PubMed

    Serway, Christine N; Kaufman, Rebecca R; Strauss, Roland; de Belle, J Steven

    2009-01-01

    The central body (or central complex, CCX) and the mushroom bodies (MBs) are brain structures in most insect phyla that have been shown to influence aspects of locomotion. The CCX regulates motor coordination and enhances activity while MBs have, thus far, been shown to suppress motor activity levels measured over time intervals ranging from hours to weeks. In this report, we investigate MB involvement in motor behavior during the initial stages (15 minutes) of walking in Buridan's paradigm. We measured aspects of walking in flies that had MB lesions induced by mutations in six different genes and by chemical ablation. All tested flies were later examined histologically to assess MB neuroanatomy. Mutant strains with MB structural defects were generally less active in walking than wild-type flies. Most mutants in which MBs were also ablated with hydroxyurea (HU) showed additional activity decrements. Variation in measures of velocity and orientation to landmarks among wild-type and mutant flies was attributed to pleiotropy, rather than to MB lesions. We conclude that MBs upregulate activity during the initial stages of walking, but suppress activity thereafter. An MB influence on decision making has been shown in a wide range of complex behaviors. We suggest that MBs provide appropriate contextual information to motor output systems in the brain, indirectly fine tuning walking by modifying the quantity (i.e., activity) of behavior.

  18. Autonomic nervous system activities during motor imagery in elite athletes.

    PubMed

    Oishi, Kazuo; Maeshima, Takashi

    2004-01-01

    Motor imagery (MI), a mental simulation of voluntary motor actions, has been used as a training method for athletes for many years. It is possible that MI techniques might similarly be useful as part of rehabilitative strategies to help people regain skills lost as a consequence of diseases or stroke. Mental activity and stress induce several different autonomic responses as part of the behavioral response to movement (e.g., motor anticipation) and as part of the central planning and preprogramming of movement. However, the interrelationships between MI, the autonomic responses, and the motor system have not yet been worked out. The authors compare a number of autonomic responses (respiration, heart rate, electro skin resistance) and motoneuron excitability (soleus H-reflex) in elite and nonelite speed skaters during MI. In contrast to the nonelite athletes, MI of elite speed skaters is characterized by larger changes in heart rate and respiration, a greater reliance on an internal perspective for MI, a more vivid MI, a more accurate correspondence between the MI and actual race times, and decreased motoneuron excitability. Two observations suggest that the changes in the autonomic responses and motoneuron excitability for the elite speed skaters are related to the effects of central motor programming: (1) there was no correlation between the autonomic responses for MI and those recorded during mental arithmetic; and (2) mental arithmetic did not significantly alter motoneuron activity. It is suggested that in elite speed skaters, the descending neural mechanisms that reduce motoneuron excitability are activated even when full, vivid MI is performed internally. These inhibitory responses of the motor system may enhance actual motor performance under conditions of remarkably high mental stress, such as that which occurs in the Olympic games.

  19. Automatic motor activation in the executive control of action

    PubMed Central

    McBride, Jennifer; Boy, Frédéric; Husain, Masud; Sumner, Petroc

    2012-01-01

    Although executive control and automatic behavior have often been considered separate and distinct processes, there is strong emerging and convergent evidence that they may in fact be intricately interlinked. In this review, we draw together evidence showing that visual stimuli cause automatic and unconscious motor activation, and how this in turn has implications for executive control. We discuss object affordances, alien limb syndrome, the visual grasp reflex, subliminal priming, and subliminal triggering of attentional orienting. Consideration of these findings suggests automatic motor activation might form an intrinsic part of all behavior, rather than being categorically different from voluntary actions. PMID:22536177

  20. Strength training, but not endurance training, reduces motor unit discharge rate variability.

    PubMed

    Vila-Chã, Carolina; Falla, Deborah

    2016-02-01

    This study evaluates and compares the effects of strength and endurance training on motor unit discharge rate variability and force steadiness of knee extensor muscles. Thirty sedentary healthy men (age, 26.0±3.8yrs) were randomly assigned to strength training, endurance training or a control group. Conventional endurance and strength training was performed 3days per week, over a period of 6weeks. Maximum voluntary contraction (MVC), time to task failure (at 30% MVC), coefficient of variation (CoV) of force and of the discharges rates of motor units from the vastus medialis obliquus and vastus lateralis were determined as subjects performed 20% and 30% MVC knee extension contractions before and after training. CoV of motor unit discharges rates was significantly reduced for both muscles following strength training (P<0.001), but did not change in the endurance (P=0.875) or control group (P=0.995). CoV of force was reduced after the strength training intervention only (P<0.01). Strength training, but not endurance training, reduces motor unit discharge rate variability and enhances force steadiness of the knee extensors. These results provide new insights into the neuromuscular adaptations that occur with different training methods.

  1. Developing an Industry-Education Community: The United Auto Workers/General Motors Quality Educator Program

    ERIC Educational Resources Information Center

    Jacobson, Stephen; Walline, James

    2010-01-01

    In this paper we review the evolution of the Quality Educator Program (QEP), a program sponsored by the United Auto Workers (UAW)/General Motors (GM) that employs school teachers, administrators, and college and university faculty each summer in GM assembly plants. The QEP provides educators and those in industry the unique opportunity to interact…

  2. The Effects of Exercise on the Firing Patterns of Single Motor Units.

    ERIC Educational Resources Information Center

    Cracraft, Joe D.

    In this study, the training effects of static and dynamic exercise programs on the firing patterns of 450 single motor units (SMU) in the human tibialis anterior muscle were investigated. In a six week program, the static group (N=5) participated in daily high intensity, short duration, isometric exercises while the dynamic group (N=5)…

  3. Synchronization of motor unit firings: an epiphenomenon of firing rate characteristics not common inputs

    PubMed Central

    Kline, Joshua C.

    2015-01-01

    Synchronous motor unit firing instances have been attributed to anatomical inputs shared by motoneurons. Yet, there is a lack of empirical evidence confirming the notion that common inputs elicit synchronization under voluntary conditions. We tested this notion by measuring synchronization between motor unit action potential trains (MUAPTs) as their firing rates progressed within a contraction from a relatively low force level to a higher one. On average, the degree of synchronization decreased as the force increased. The common input notion provides no empirically supported explanation for the observed synchronization behavior. Therefore, we investigated a more probable explanation for synchronization. Our data set of 17,546 paired MUAPTs revealed that the degree of synchronization varies as a function of two characteristics of the motor unit firing rate: the similarity and the slope as a function of force. Both are measures of the excitation of the motoneurons. As the force generated by the muscle increases, the firing rate slope decreases, and the synchronization correspondingly decreases. Different muscles have motor units with different firing rate characteristics and display different amounts of synchronization. Although this association is not proof of causality, it consistently explains our observations and strongly suggests further investigation. So viewed, synchronization is likely an epiphenomenon, subject to countless unknown neural interactions. As such, synchronous firing instances may not be the product of a specific design and may not serve a specific physiological purpose. Our explanation for synchronization has the advantage of being supported by empirical evidence, whereas the common input does not. PMID:26490288

  4. A Circuit for Motor Cortical Modulation of Auditory Cortical Activity

    PubMed Central

    Nelson, Anders; Schneider, David M.; Takatoh, Jun; Sakurai, Katsuyasu; Wang, Fan

    2013-01-01

    Normal hearing depends on the ability to distinguish self-generated sounds from other sounds, and this ability is thought to involve neural circuits that convey copies of motor command signals to various levels of the auditory system. Although such interactions at the cortical level are believed to facilitate auditory comprehension during movements and drive auditory hallucinations in pathological states, the synaptic organization and function of circuitry linking the motor and auditory cortices remain unclear. Here we describe experiments in the mouse that characterize circuitry well suited to transmit motor-related signals to the auditory cortex. Using retrograde viral tracing, we established that neurons in superficial and deep layers of the medial agranular motor cortex (M2) project directly to the auditory cortex and that the axons of some of these deep-layer cells also target brainstem motor regions. Using in vitro whole-cell physiology, optogenetics, and pharmacology, we determined that M2 axons make excitatory synapses in the auditory cortex but exert a primarily suppressive effect on auditory cortical neuron activity mediated in part by feedforward inhibition involving parvalbumin-positive interneurons. Using in vivo intracellular physiology, optogenetics, and sound playback, we also found that directly activating M2 axon terminals in the auditory cortex suppresses spontaneous and stimulus-evoked synaptic activity in auditory cortical neurons and that this effect depends on the relative timing of motor cortical activity and auditory stimulation. These experiments delineate the structural and functional properties of a corticocortical circuit that could enable movement-related suppression of auditory cortical activity. PMID:24005287

  5. A circuit for motor cortical modulation of auditory cortical activity.

    PubMed

    Nelson, Anders; Schneider, David M; Takatoh, Jun; Sakurai, Katsuyasu; Wang, Fan; Mooney, Richard

    2013-09-04

    Normal hearing depends on the ability to distinguish self-generated sounds from other sounds, and this ability is thought to involve neural circuits that convey copies of motor command signals to various levels of the auditory system. Although such interactions at the cortical level are believed to facilitate auditory comprehension during movements and drive auditory hallucinations in pathological states, the synaptic organization and function of circuitry linking the motor and auditory cortices remain unclear. Here we describe experiments in the mouse that characterize circuitry well suited to transmit motor-related signals to the auditory cortex. Using retrograde viral tracing, we established that neurons in superficial and deep layers of the medial agranular motor cortex (M2) project directly to the auditory cortex and that the axons of some of these deep-layer cells also target brainstem motor regions. Using in vitro whole-cell physiology, optogenetics, and pharmacology, we determined that M2 axons make excitatory synapses in the auditory cortex but exert a primarily suppressive effect on auditory cortical neuron activity mediated in part by feedforward inhibition involving parvalbumin-positive interneurons. Using in vivo intracellular physiology, optogenetics, and sound playback, we also found that directly activating M2 axon terminals in the auditory cortex suppresses spontaneous and stimulus-evoked synaptic activity in auditory cortical neurons and that this effect depends on the relative timing of motor cortical activity and auditory stimulation. These experiments delineate the structural and functional properties of a corticocortical circuit that could enable movement-related suppression of auditory cortical activity.

  6. THE ORIGIN OF SEGMENTATION MOTOR ACTIVITY IN THE INTESTINE

    PubMed Central

    Huizinga, Jan D.; Chen, Ji-Hong; Zhu, Yong Fang; Pawelka, Andrew; McGinn, Ryan J.; Bardakjian, Berj L.; Parsons, Sean P.; Kunze, Wolfgang A.; Wu, Richard You; Bercik, Premysl; Khoshdel, Amir; Chen, Sifeng; Yin, Sheng; Zhang, Qian; Yu, Yuanjie; Gao, Qingmin; Li, Kongling; Hu, Xinghai; Zarate, Natalia; Collins, Phillip; Pistilli, Marc; Ma, Junling; Zhang, Ruixue; Chen, David

    2016-01-01

    The segmentation motor activity of the gut that facilitates absorption of nutrients, was first described in the late 19th century but the fundamental mechanisms underlying it remain poorly understood. The dominant theory suggests alternate excitation and inhibition from the enteric nervous system. Here we demonstrate that typical segmentation can occur after total nerve blockade. The segmentation motor pattern emerges when the amplitude of the dominant pacemaker, the slow wave generated by ICC associated with the myenteric plexus (ICC-MP), is modulated by the phase of induced lower frequency rhythmic transient depolarizations, generated by ICC associated with the deep muscular plexus (ICC-DMP), resulting in a waxing and waning of the amplitude of the slow wave and a rhythmic checkered pattern of segmentation motor activity. Phase amplitude modulation of the slow waves points to an underlying system of coupled nonlinear oscillators originating in ICC. PMID:24561718

  7. The origin of segmentation motor activity in the intestine.

    PubMed

    Huizinga, Jan D; Chen, Ji-Hong; Zhu, Yong Fang; Pawelka, Andrew; McGinn, Ryan J; Bardakjian, Berj L; Parsons, Sean P; Kunze, Wolfgang A; Wu, Richard You; Bercik, Premysl; Khoshdel, Amir; Chen, Sifeng; Yin, Sheng; Zhang, Qian; Yu, Yuanjie; Gao, Qingmin; Li, Kongling; Hu, Xinghai; Zarate, Natalia; Collins, Phillip; Pistilli, Marc; Ma, Junling; Zhang, Ruixue; Chen, David

    2014-01-01

    The segmentation motor activity of the gut that facilitates absorption of nutrients was first described in the late 19th century, but the fundamental mechanisms underlying it remain poorly understood. The dominant theory suggests alternate excitation and inhibition from the enteric nervous system. Here we demonstrate that typical segmentation can occur after total nerve blockade. The segmentation motor pattern emerges when the amplitude of the dominant pacemaker, the slow wave generated by interstitial cells of Cajal associated with the myenteric plexus (ICC-MP), is modulated by the phase of induced lower frequency rhythmic transient depolarizations, generated by ICC associated with the deep muscular plexus (ICC-DMP), resulting in a waxing and waning of the amplitude of the slow wave and a rhythmic checkered pattern of segmentation motor activity. Phase-amplitude modulation of the slow waves points to an underlying system of coupled nonlinear oscillators originating in the networks of ICC.

  8. Actigraphic motor activity during sleep from infancy to adulthood.

    PubMed

    Tonetti, Lorenzo; Scher, Anat; Atun-Einy, Osnat; Samuel, Moran; Boreggiani, Michele; Natale, Vincenzo

    2017-01-01

    A secondary analysis of longitudinal and cohort studies was carried out to quantitatively investigate the motor activity pattern, recorded through actigraphy, during the first six hours of nocturnal sleep. The first study was of longitudinal nature. Ten healthy participants (four females) were monitored three times, at baseline (T1) when they were infants (mean age 7.10 ± 0.32 months), at the first follow-up examination (T2) around 4 months later (mean age 11.20 ± 0.63 months) and at the second follow-up (T3) around three years later, when they were preschoolers (mean age 4.68 ± 0.14 years). At T1, T2 and T3 each participant wore the actigraph Basic Mini-Motionlogger (Ambulatory Monitoring, Inc., Ardsley, NY, USA) over at least two consecutive nycthemeral cycles, with the aim to measure the mean hourly motor activity count. Seven- and 11-month-old infants had a higher level of motor activity over the night compared to preschoolers. Furthermore, motor activity increased as the night progressed, with a pronounced increment at both T1 and T2, while at T3 such an increase was less marked. The second study was cross-sectional and aimed to explore the motor activity pattern, using actigraphy, during the first six hours of nocturnal sleep in multiple-age healthy groups, from infancy to adulthood. We assigned participants to eight groups according to age: 20 (five females) aged around 10 months old (mean age 10.65 ± 0.67 months); 13 (nine females) aged around 4 years (mean age 4.38 ± 0.51 years); 21 (10 females) aged around 10 years (mean age 9.67 ± 0.91 years); 21 (nine females) aged around 20 years (mean age 19.33 ± 2.44 years); 20 (10 females) aged around 30 years (mean age 29.80 ± 1.99 years); 20 (15 females) aged around 40 years (mean age 40.70 ± 1.26 years); 20 (11 females) aged around 50 years (mean age 50.15 ± 2.80 years) and 20 (nine females) aged around 60 years (mean age 59.25 ± 3.23 years). The participants aged between 10 and 60 years wore the

  9. Abstract art and cortical motor activation: an EEG study

    PubMed Central

    Umilta', M. Alessandra; Berchio, Cristina; Sestito, Mariateresa; Freedberg, David; Gallese, Vittorio

    2012-01-01

    The role of the motor system in the perception of visual art remains to be better understood. Earlier studies on the visual perception of abstract art (from Gestalt theory, as in Arnheim, 1954 and 1988, to balance preference studies as in Locher and Stappers, 2002, and more recent work by Locher et al., 2007; Redies, 2007, and Taylor et al., 2011), neglected the question, while the field of neuroesthetics (Ramachandran and Hirstein, 1999; Zeki, 1999) mostly concentrated on figurative works. Much recent work has demonstrated the multimodality of vision, encompassing the activation of motor, somatosensory, and viscero-motor brain regions. The present study investigated whether the observation of high-resolution digitized static images of abstract paintings by Lucio Fontana is associated with specific cortical motor activation in the beholder's brain. Mu rhythm suppression was evoked by the observation of original art works but not by control stimuli (as in the case of graphically modified versions of these works). Most interestingly, previous visual exposure to the stimuli did not affect the mu rhythm suppression induced by their observation. The present results clearly show the involvement of the cortical motor system in the viewing of static abstract art works. PMID:23162456

  10. Microfluidic device for the formation of optically excitable, three-dimensional, compartmentalized motor units

    PubMed Central

    Uzel, Sebastien G. M.; Platt, Randall J.; Subramanian, Vidya; Pearl, Taylor M.; Rowlands, Christopher J.; Chan, Vincent; Boyer, Laurie A.; So, Peter T. C.; Kamm, Roger D.

    2016-01-01

    Motor units are the fundamental elements responsible for muscle movement. They are formed by lower motor neurons and their muscle targets, synapsed via neuromuscular junctions (NMJs). The loss of NMJs in neurodegenerative disorders (such as amyotrophic lateral sclerosis or spinal muscle atrophy) or as a result of traumatic injuries affects millions of lives each year. Developing in vitro assays that closely recapitulate the physiology of neuromuscular tissues is crucial to understand the formation and maturation of NMJs, as well as to help unravel the mechanisms leading to their degeneration and repair. We present a microfluidic platform designed to coculture myoblast-derived muscle strips and motor neurons differentiated from mouse embryonic stem cells (ESCs) within a three-dimensional (3D) hydrogel. The device geometry mimics the spinal cord–limb physical separation by compartmentalizing the two cell types, which also facilitates the observation of 3D neurite outgrowth and remote muscle innervation. Moreover, the use of compliant pillars as anchors for muscle strips provides a quantitative functional readout of force generation. Finally, photosensitizing the ESC provides a pool of source cells that can be differentiated into optically excitable motor neurons, allowing for spatiodynamic, versatile, and noninvasive in vitro control of the motor units. PMID:27493991

  11. Immunity to nerve growth factor and the effect on motor unit reinnervation in the rabbit.

    PubMed

    Finkelstein, D I; Luff, A R; Schuijers, J A

    1992-05-01

    The trophic effects of nerve growth factor (NGF) on sympathetic, peripheral afferent, and other neural crest-derived cells have been intensively investigated. More recently, NGF has been shown to have an influence on motoneurons. This study was undertaken to investigate whether NGF had any influence on the mechanical or histological properties of reinnervated motor units. Three groups of rabbits were used: normal rabbits, rabbits in which the nerve to medial gastrocnemius (MG) was cut and allowed to reinnervate for 56 days, and rabbits in which the MG nerve reinnervated in the presence of immunity to NGF. Immunity to NGF did not affect the ability of motor axons to reinnervate a muscle, nor were the contractile characteristics of the motor units altered. The size of horseradish peroxidase-labeled motoneurons was not influenced by immunization against NGF; however, the distribution of afferent neuron sizes was altered. Conduction velocity of motor axons proximal to the neuroma was significantly faster after immunization against NGF. Transection and subsequent reinnervation by a peripheral nerve normally causes an increase in myelin thickness proximal to the neuroma. However, immunization against NGF appeared to decrease the magnitude of myelin thickening. It was concluded that immunization against NGF affects motor axonal conduction velocity via an influence on the neural crest-derived Schwann cells.

  12. Face Preference in Infancy and Its Relation to Motor Activity

    ERIC Educational Resources Information Center

    Libertus, Klaus; Needham, Amy

    2014-01-01

    Infants' preference for faces was investigated in a cross-sectional sample of 75 children, aged 3 to 11 months, and 23 adults. A visual preference paradigm was used where pairs of faces and toys were presented side-by-side while eye gaze was recorded. In addition, motor activity was assessed via parent report and the relation between motor…

  13. Brains and Brawn: Complex Motor Activities to Maximize Cognitive Enhancement

    ERIC Educational Resources Information Center

    Moreau, David

    2015-01-01

    The target articles in this special issue address the timely question of embodied cognition in the classroom, and in particular the potential of this approach to facilitate learning in children. The interest for motor activities within settings that typically give little space to nontraditional content is proof of a shift from a Cartesian…

  14. Recreational Activities and Motor Skills of Children in Kindergarten

    ERIC Educational Resources Information Center

    Temple, Viviene A.; Crane, Jeff R.; Brown, Amy; Williams, Buffy-Lynne; Bell, Rick I.

    2016-01-01

    Background: Developmental theorists suggest that physical activity during early childhood promotes fundamental motor skill (FMS) proficiency; and that differences in FMS proficiency are largely related to children's experiences. Aim: To examine associations between participation in different types of recreation/leisure and FMS proficiency of boys…

  15. Sport and Other Motor Activities of Warsaw Students

    ERIC Educational Resources Information Center

    Biernat, Elzbieta

    2011-01-01

    Study aim: To assess the engagement of students of Warsaw university schools in sports and in recreational motor activities. Material and methods: A cohort (n = 1100) of students attending B.S. or M.S. courses at 6 university schools in Warsaw were studied by applying questionnaire techniques. The questions pertained to participation in…

  16. Correlation between discharge timings of pairs of motor units reveals the presence but not the proportion of common synaptic input to motor neurons.

    PubMed

    Rodriguez-Falces, Javier; Negro, Francesco; Farina, Dario

    2017-04-01

    We investigated whether correlation measures derived from pairs of motor unit (MU) spike trains are reliable indicators of the degree of common synaptic input to motor neurons. Several 50-s isometric contractions of the biceps brachii muscle were performed at different target forces ranging from 10 to 30% of the maximal voluntary contraction relying on force feedback. Forty-eight pairs of MUs were examined at various force levels. Motor unit synchrony was assessed by cross-correlation analysis using three indexes: the output correlation as the peak of the cross-histogram (ρ) and the number of synchronous spikes per second (CIS) and per trigger (E). Individual analysis of MU pairs revealed that ρ, CIS, and E were most often positively associated with discharge rate (87, 85, and 76% of the MU pairs, respectively) and negatively with interspike interval variability (69, 65, and 62% of the MU pairs, respectively). Moreover, the behavior of synchronization indexes with discharge rate (and interspike interval variability) varied greatly among the MU pairs. These results were consistent with theoretical predictions, which showed that the output correlation between pairs of spike trains depends on the statistics of the input current and motor neuron intrinsic properties that differ for different motor neuron pairs. In conclusion, the synchronization between MU firing trains is necessarily caused by the (functional) common input to motor neurons, but it is not possible to infer the degree of shared common input to a pair of motor neurons on the basis of correlation measures of their output spike trains.NEW & NOTEWORTHY The strength of correlation between output spike trains is only poorly associated with the degree of common input to the population of motor neurons. The synchronization between motor unit firing trains is necessarily caused by the (functional) common input to motor neurons, but it is not possible to infer the degree of shared common input to a pair of

  17. Discharge properties of motor units during steady isometric contractions performed with the dorsiflexor muscles.

    PubMed

    Jesunathadas, Mark; Klass, Malgorzata; Duchateau, Jacques; Enoka, Roger M

    2012-06-01

    The purpose of this study was to record the discharge characteristics of tibialis anterior motor units over a range of target forces and to import these data, along with previously reported observations, into a computational model to compare experimental and simulated measures of torque variability during isometric contractions with the dorsiflexor muscles. The discharge characteristics of 44 motor units were quantified during brief isometric contractions at torques that ranged from recruitment threshold to an average of 22 ± 14.4% maximal voluntary contraction (MVC) torque above recruitment threshold. The minimal [range: 5.8-19.8 pulses per second (pps)] and peak (range: 8.6-37.5 pps) discharge rates of motor units were positively related to the recruitment threshold torque (R(2) ≥ 0.266; P < 0.001). The coefficient of variation for interspike interval at recruitment was positively associated with recruitment threshold torque (R(2) = 0.443; P < 0.001) and either decreased exponentially or remained constant as target torque increased above recruitment threshold torque. The variability in the simulated torque did not differ from the experimental values once the recruitment range was set to ∼85% MVC torque, and the association between motor twitch contraction times and peak twitch torque was defined as a weak linear association (R(2) = 0.096; P < 0.001). These results indicate that the steadiness of isometric contractions performed with the dorsiflexor muscle depended more on the distributions of mechanical properties than discharge properties across the population of motor units in the tibialis anterior.

  18. Self-organizing model of motor cortical activities during drawing

    NASA Astrophysics Data System (ADS)

    Lin, Siming H.; Si, Jennie; Schwartz, Andrew B.

    1996-05-01

    The population vector algorithm has been developed to combine the simultaneous direction- related activities of a population of motor cortical neurons to predict the trajectory of the arm movement. In our study, we consider a self-organizing model of a neural representation of the arm trajectory based on neuronal discharge rates. Self-organizing feature mapping (SOFM) is used to select the optimal set of weights in the model to determine the contribution of individual neuron to the overall movement. The correspondence between the movement directions and the discharge patterns of the motor cortical neurons is established in the output map. The topology preserving property of the SOFM is used to analyze real recorded data of a behavior monkey. The data used in this analysis were taken while the monkey was drawing spirals and doing the center out movement. Using such a statistical model, the monkey's arm moving directions could be well predicted based on the motor cortex neuronal firing information.

  19. 3D visualization of movements can amplify motor cortex activation during subsequent motor imagery

    PubMed Central

    Sollfrank, Teresa; Hart, Daniel; Goodsell, Rachel; Foster, Jonathan; Tan, Tele

    2015-01-01

    A repetitive movement practice by motor imagery (MI) can influence motor cortical excitability in the electroencephalogram (EEG). This study investigated if a realistic visualization in 3D of upper and lower limb movements can amplify motor related potentials during subsequent MI. We hypothesized that a richer sensory visualization might be more effective during instrumental conditioning, resulting in a more pronounced event related desynchronization (ERD) of the upper alpha band (10–12 Hz) over the sensorimotor cortices thereby potentially improving MI based brain-computer interface (BCI) protocols for motor rehabilitation. The results show a strong increase of the characteristic patterns of ERD of the upper alpha band components for left and right limb MI present over the sensorimotor areas in both visualization conditions. Overall, significant differences were observed as a function of visualization modality (VM; 2D vs. 3D). The largest upper alpha band power decrease was obtained during MI after a 3-dimensional visualization. In total in 12 out of 20 tasks the end-user of the 3D visualization group showed an enhanced upper alpha ERD relative to 2D VM group, with statistical significance in nine tasks.With a realistic visualization of the limb movements, we tried to increase motor cortex activation during subsequent MI. The feedback and the feedback environment should be inherently motivating and relevant for the learner and should have an appeal of novelty, real-world relevance or aesthetic value (Ryan and Deci, 2000; Merrill, 2007). Realistic visual feedback, consistent with the participant’s MI, might be helpful for accomplishing successful MI and the use of such feedback may assist in making BCI a more natural interface for MI based BCI rehabilitation. PMID:26347642

  20. 3D visualization of movements can amplify motor cortex activation during subsequent motor imagery.

    PubMed

    Sollfrank, Teresa; Hart, Daniel; Goodsell, Rachel; Foster, Jonathan; Tan, Tele

    2015-01-01

    A repetitive movement practice by motor imagery (MI) can influence motor cortical excitability in the electroencephalogram (EEG). This study investigated if a realistic visualization in 3D of upper and lower limb movements can amplify motor related potentials during subsequent MI. We hypothesized that a richer sensory visualization might be more effective during instrumental conditioning, resulting in a more pronounced event related desynchronization (ERD) of the upper alpha band (10-12 Hz) over the sensorimotor cortices thereby potentially improving MI based brain-computer interface (BCI) protocols for motor rehabilitation. The results show a strong increase of the characteristic patterns of ERD of the upper alpha band components for left and right limb MI present over the sensorimotor areas in both visualization conditions. Overall, significant differences were observed as a function of visualization modality (VM; 2D vs. 3D). The largest upper alpha band power decrease was obtained during MI after a 3-dimensional visualization. In total in 12 out of 20 tasks the end-user of the 3D visualization group showed an enhanced upper alpha ERD relative to 2D VM group, with statistical significance in nine tasks.With a realistic visualization of the limb movements, we tried to increase motor cortex activation during subsequent MI. The feedback and the feedback environment should be inherently motivating and relevant for the learner and should have an appeal of novelty, real-world relevance or aesthetic value (Ryan and Deci, 2000; Merrill, 2007). Realistic visual feedback, consistent with the participant's MI, might be helpful for accomplishing successful MI and the use of such feedback may assist in making BCI a more natural interface for MI based BCI rehabilitation.

  1. Perceptual Motor Activities for Specific Cognitive Goals.

    ERIC Educational Resources Information Center

    Stewart, Charlene Kimbro

    The slide presentation depicts movement activities through which children can perceive and form concepts, thus building cognitive skills in certain areas. The presentation is based on the fact that children interact with their environments through all their senses and benefit from perceiving through their kinesthetic senses. The areas presented…

  2. Motor units in the human medial gastrocnemius muscle are not spatially localized or functionally grouped

    PubMed Central

    Héroux, Martin E; Brown, Harrison J; Inglis, J Timothy; Siegmund, Gunter P; Blouin, Jean-Sébastien

    2015-01-01

    Human medial gastrocnemius (MG) motor units (MUs) are thought to occupy small muscle territories, with low-threshold units preferentially located distally. In this study, subjects (n = 8) performed ramped and sustained isometric contractions (ankle plantar flexion and knee flexion; range: ∼1–40% maximal voluntary contraction) and we measured MU territory size with spike-triggered averages from fine-wire electrodes inserted along the length (seven electrodes) or across the width (five electrodes) of the MG muscle. Of 69 MUs identified along the length of the muscle, 32 spanned at least half the muscle length (≥ 6.9 cm), 11 of which spanned all recording sites (13.6–17.9 cm). Distal fibres had smaller pennation angles (P < 0.05), which were accompanied by larger territories in MUs with fibres located distally (P < 0.05). There was no distal-to-proximal pattern of muscle activation in ramp contraction (P = 0.93). Of 36 MUs identified across the width of the muscle, 24 spanned at least half the muscle width (≥ 4.0 cm), 13 of which spanned all recording sites (8.0–10.8 cm). MUs were not localized (length or width) based on recruitment threshold or contraction type, nor was there a relationship between MU territory size and recruitment threshold (Spearman's rho = −0.20 and 0.13, P > 0.18). MUs in the human MG have larger territories than previously reported and are not localized based on recruitment threshold or joint action. This indicates that the CNS does not have the means to selectively activate regions of the MG muscle based on task requirements. PMID:26047061

  3. Vicarious motor activation during action perception: beyond correlational evidence

    PubMed Central

    Avenanti, Alessio; Candidi, Matteo; Urgesi, Cosimo

    2013-01-01

    Neurophysiological and imaging studies have shown that seeing the actions of other individuals brings about the vicarious activation of motor regions involved in performing the same actions. While this suggests a simulative mechanism mediating the perception of others' actions, one cannot use such evidence to make inferences about the functional significance of vicarious activations. Indeed, a central aim in social neuroscience is to comprehend how vicarious activations allow the understanding of other people's behavior, and this requires to use stimulation or lesion methods to establish causal links from brain activity to cognitive functions. In the present work, we review studies investigating the effects of transient manipulations of brain activity or stable lesions in the motor system on individuals' ability to perceive and understand the actions of others. We conclude there is now compelling evidence that neural activity in the motor system is critical for such cognitive ability. More research using causal methods, however, is needed in order to disclose the limits and the conditions under which vicarious activations are required to perceive and understand actions of others as well as their emotions and somatic feelings. PMID:23675338

  4. Hyperactivity and Motoric Activity in ADHD: Characterization, Assessment, and Intervention

    PubMed Central

    Gawrilow, Caterina; Kühnhausen, Jan; Schmid, Johanna; Stadler, Gertraud

    2014-01-01

    The aim of the present literature review is threefold. (1) We will review theories, models, and studies on symptomatic hyperactivity and motoric activity in attention-deficit/hyperactivity disorder (ADHD). (2) Another focus will be on assessment methods that have been proven to be effective in the detection of hyperactivity and motoric activity in children, adolescents, and adults with and without ADHD and emerging areas of research in the field of ADHD. We will compare subjective methods (i.e., rating scales) and objective methods (i.e., accelerometers). (3) Finally, physical activity intervention studies aiming at a modification of activity and overactive behavior will be summarized that seem to be promising candidates for alleviating hyperactivity symptoms in children, adolescents, and adults with ADHD. PMID:25506329

  5. Motor unit potential morphology differences in individuals with non-specific arm pain and lateral epicondylitis

    PubMed Central

    Calder, Kristina M; Stashuk, Daniel W; McLean, Linda

    2008-01-01

    Background The pathophysiology of non-specific arm pain (NSAP) is unclear and the diagnosis is made by excluding other specific upper limb pathologies, such as lateral epicondylitis or cervical radiculopathy. The purpose of this study was to determine: (i) if the quantitative parameters related to motor unit potential morphology and/or motor unit firing patterns derived from electromyographic (EMG) signals detected from an affected muscle of patients with NSAP are different from those detected in the same muscle of individuals with lateral epicondylitis (LE) and/or control subjects and (ii) if the quantitative EMG parameters suggest that the underlying pathophysiology in NSAP is either myopathic or neuropathic in nature. Methods Sixteen subjects with NSAP, 11 subjects with LE, eight subjects deemed to be at-risk for developing a repetitive strain injury, and 37 control subjects participated. A quantitative electromyography evaluation was completed using decomposition-based quantitative electromyography (DQEMG). Needle- and surface-detected EMG signals were collected during low-level isometric contractions of the extensor carpi radialis brevis (ECRB) muscle. DQEMG was used to extract needle-detected motor unit potential trains (MUPTs), and needle-detected motor unit potential (MUP) and surface detected motor unit potential (SMUP) morphology and motor unit (MU) firing rates were compared among the four groups using one-way analysis of variance (ANOVA). Post hoc analyses were performed using Tukey's pairwise comparisons. Results Significant group differences were found for all MUP variables and for MU firing rate (p < 0.006). The post-hoc analyses revealed that patients with NSAP had smaller MUP amplitude and SMUP amplitude and area compared to the control and LE groups (p < 0.006). MUP duration and AAR values were significantly larger in the NSAP, LE and at-risk groups compared to the control group (p < 0.006); while MUP amplitude, duration and AAR values were

  6. Paradigm Shifts in Voluntary Force Control and Motor Unit Behaviors with the Manipulated Size of Visual Error Perception

    PubMed Central

    Chen, Yi-Ching; Lin, Yen-Ting; Chang, Gwo-Ching; Hwang, Ing-Shiou

    2017-01-01

    The detection of error information is an essential prerequisite of a feedback-based movement. This study investigated the differential behavior and neurophysiological mechanisms of a cyclic force-tracking task using error-reducing and error-enhancing feedback. The discharge patterns of a relatively large number of motor units (MUs) were assessed with custom-designed multi-channel surface electromyography following mathematical decomposition of the experimentally-measured signals. Force characteristics, force-discharge relation, and phase-locking cortical activities in the contralateral motor cortex to individual MUs were contrasted among the low (LSF), normal (NSF), and high scaling factor (HSF) conditions, in which the sizes of online execution errors were displayed with various amplification ratios. Along with a spectral shift of the force output toward a lower band, force output with a more phase-lead became less irregular, and tracking accuracy was worse in the LSF condition than in the HSF condition. The coherent discharge of high phasic (HP) MUs with the target signal was greater, and inter-spike intervals were larger, in the LSF condition than in the HSF condition. Force-tracking in the LSF condition manifested with stronger phase-locked EEG activity in the contralateral motor cortex to discharge of the (HP) MUs (LSF > NSF, HSF). The coherent discharge of the (HP) MUs during the cyclic force-tracking predominated the force-discharge relation, which increased inversely to the error scaling factor. In conclusion, the size of visualized error gates motor unit discharge, force-discharge relation, and the relative influences of the feedback and feedforward processes on force control. A smaller visualized error size favors voluntary force control using a feedforward process, in relation to a selective central modulation that enhance the coherent discharge of (HP) MUs. PMID:28348530

  7. Motor unit recruitment when neuromuscular electrical stimulation is applied over a nerve trunk compared with a muscle belly: triceps surae.

    PubMed

    Bergquist, A J; Clair, J M; Collins, D F

    2011-03-01

    Neuromuscular electrical stimulation (NMES) can be delivered over a nerve trunk or muscle belly and can generate contractions by activating motor (peripheral pathway) and sensory (central pathway) axons. In the present experiments, we compared the peripheral and central contributions to plantar flexion contractions evoked by stimulation over the tibial nerve vs. the triceps surae muscles. Generating contractions through central pathways follows Henneman's size principle, whereby low-threshold motor units are activated first, and this may have advantages for rehabilitation. Statistical analyses were performed on data from trials in which NMES was delivered to evoke 10-30% maximum voluntary torque 2-3 s into the stimulation (Time(1)). Two patterns of stimulation were delivered: 1) 20 Hz for 8 s; and 2) 20-100-20 Hz for 3-2-3 s. Torque and soleus electromyography were quantified at the beginning (Time(1)) and end (Time(2); 6-7 s into the stimulation) of each stimulation train. H reflexes (central pathway) and M waves (peripheral pathway) were quantified. Motor unit activity that was not time-locked to each stimulation pulse as an M wave or H reflex ("asynchronous" activity) was also quantified as a second measure of central recruitment. Torque was not different for stimulation over the nerve or the muscle. In contrast, M waves were approximately five to six times smaller, and H reflexes were approximately two to three times larger during NMES over the nerve vs. the muscle. Asynchronous activity increased by 50% over time, regardless of the stimulation location or pattern, and was largest during NMES over the muscle belly. Compared with NMES over the triceps surae muscles, NMES over the tibial nerve produced contractions with a relatively greater central contribution, and this may help reduce muscle atrophy and fatigue when NMES is used for rehabilitation.

  8. Catalytic turnover triggers exchange of subunits of the magnesium chelatase AAA+ motor unit.

    PubMed

    Lundqvist, Joakim; Braumann, Ilka; Kurowska, Marzena; Müller, André H; Hansson, Mats

    2013-08-16

    The ATP-dependent insertion of Mg(2+) into protoporphyrin IX is the first committed step in the chlorophyll biosynthetic pathway. The reaction is catalyzed by magnesium chelatase, which consists of three gene products: BchI, BchD, and BchH. The BchI and BchD subunits belong to the family of AAA+ proteins (ATPases associated with various cellular activities) and form a two-ring complex with six BchI subunits in one layer and six BchD subunits in the other layer. This BchID complex is a two-layered trimer of dimers with the ATP binding site located at the interface between two neighboring BchI subunits. ATP hydrolysis by the BchID motor unit fuels the insertion of Mg(2+) into the porphyrin by the BchH subunit. In the present study, we explored mutations that were originally identified in semidominant barley (Hordeum vulgare L.) mutants. The resulting recombinant BchI proteins have marginal ATPase activity and cannot contribute to magnesium chelatase activity although they apparently form structurally correct complexes with BchD. Mixing experiments with modified and wild-type BchI in various combinations showed that an exchange of BchI subunits in magnesium chelatase occurs during the catalytic cycle, which indicates that dissociation of the complex may be part of the reaction mechanism related to product release. Mixing experiments also showed that more than three functional interfaces in the BchI ring structure are required for magnesium chelatase activity.

  9. Tremor-related motor unit firing in Parkinson's disease: implications for tremor genesis.

    PubMed

    Christakos, C N; Erimaki, S; Anagnostou, E; Anastasopoulos, D

    2009-10-15

    Muscle tremors reflect rhythmical motor unit (MU) activities. Therefore, the MU firing patterns and synchrony determine the properties of the parkinsonian force tremor (FT) and the neurogenic components of associated limb tremors. They may also be indicative of the neural mechanisms of tremor genesis which to date remain uncertain. We examined these MU behaviours during isometric contractions of a finger muscle in 19 parkinsonian subjects. Our results reveal that the parkinsonian FT is abnormally large. Like the physiological FT, it is accompanied by in-phase rhythms in all MU activities. However, there exist two important differences. Firstly, the synchrony during the parkinsonian FT is stronger than the normal one and therefore contributes to the FT enhancement. Secondly, the synchronous MU components partly represent rhythmical sequences of spike doublets and triplets whose incidences directly reflect the differences of the MU firing rates to the FT frequency. According to our analyses, the latter frequency coincides with the MU recruitment rate. Consequently, the numerous medium- and small-sized active MUs contribute rhythmical twitch doublets and triplets, i.e. large force pulses, to the parkinsonian FT. The impact of this effect on the FT amplitude is found to predominate over the impact of the augmented synchrony. Importantly, apart from the rule governing the occurrence of doublets/triplets, the mean interspike intervals within such spike events are fairly fixed around 50 ms. Such regularities in MU activities may reflect properties of the neural input underlying the FT, and thus represent a basis for more focused studies of the generator(s) of parkinsonian tremors.

  10. Motor unit number estimation in human neurological diseases and animal models.

    PubMed

    Shefner, J M

    2001-06-01

    Motor unit number estimation (MUNE) was introduced in 1971 as a way of providing an objective and meaningful estimate of axon loss in diseases affecting the motor system. Over the last 30 years, different methods of MUNE have been proposed, with each having specific strengths and limitations. The goal of this paper is to review the available methods, and to present data generated using MUNE in a variety of disease entities. The incremental, multiple point stimulation, spike-triggered averaging, F-wave, and statistical methods of MUNE are reviewed, along with data obtained using these methods in patients with neuropathy, motor neuron disorders, and muscle disease. All methods reviewed have theoretical concerns associated with them. However, with the exception of the spike-triggered averaging method, all give results in normal subjects that are quite similar. MUNE has been of great value in assessing progression of motor neuron disease, and has also shown promise in the assessment of generalized neuropathy. Despite the lack of a perfect method for performing MUNE, it has great clinical value in the assessment of progressive motor axon loss. Further refinements in the method will likely increase its utility in the future.

  11. Subcortical evoked activity and motor enhancement in Parkinson's disease.

    PubMed

    Anzak, Anam; Tan, Huiling; Pogosyan, Alek; Khan, Sadaquate; Javed, Shazia; Gill, Steven S; Ashkan, Keyoumars; Akram, Harith; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Green, Alexander L; Aziz, Tipu; Brown, Peter

    2016-03-01

    Enhancements in motor performance have been demonstrated in response to intense stimuli both in healthy subjects and in the form of 'paradoxical kinesis' in patients with Parkinson's disease. Here we identify a mid-latency evoked potential in local field potential recordings from the region of the subthalamic nucleus, which scales in amplitude with both the intensity of the stimulus delivered and corresponding enhancements in biomechanical measures of maximal handgrips, independent of the dopaminergic state of our subjects with Parkinson's disease. Recordings of a similar evoked potential in the related pedunculopontine nucleus - a key component of the reticular activating system - provide support for this neural signature in the subthalmic nucleus being a novel correlate of ascending arousal, propagated from the reticular activating system to exert an 'energizing' influence on motor circuitry. Future manipulation of this system linking arousal and motor performance may provide a novel approach for the non-dopaminergic enhancement of motor performance in patients with hypokinetic disorders such as Parkinson's disease.

  12. Subcortical evoked activity and motor enhancement in Parkinson's disease

    PubMed Central

    Anzak, Anam; Tan, Huiling; Pogosyan, Alek; Khan, Sadaquate; Javed, Shazia; Gill, Steven S.; Ashkan, Keyoumars; Akram, Harith; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Green, Alexander L.; Aziz, Tipu; Brown, Peter

    2016-01-01

    Enhancements in motor performance have been demonstrated in response to intense stimuli both in healthy subjects and in the form of ‘paradoxical kinesis’ in patients with Parkinson's disease. Here we identify a mid-latency evoked potential in local field potential recordings from the region of the subthalamic nucleus, which scales in amplitude with both the intensity of the stimulus delivered and corresponding enhancements in biomechanical measures of maximal handgrips, independent of the dopaminergic state of our subjects with Parkinson's disease. Recordings of a similar evoked potential in the related pedunculopontine nucleus – a key component of the reticular activating system – provide support for this neural signature in the subthalmic nucleus being a novel correlate of ascending arousal, propagated from the reticular activating system to exert an ‘energizing’ influence on motor circuitry. Future manipulation of this system linking arousal and motor performance may provide a novel approach for the non-dopaminergic enhancement of motor performance in patients with hypokinetic disorders such as Parkinson's disease. PMID:26687971

  13. Assessing altered motor unit recruitment patterns in paretic muscles of stroke survivors using surface electromyography

    NASA Astrophysics Data System (ADS)

    Hu, Xiaogang; Suresh, Aneesha K.; Rymer, William Z.; Suresh, Nina L.

    2015-12-01

    Objective. The advancement of surface electromyogram (sEMG) recording and signal processing techniques has allowed us to characterize the recruitment properties of a substantial population of motor units (MUs) non-invasively. Here we seek to determine whether MU recruitment properties are modified in paretic muscles of hemispheric stroke survivors. Approach. Using an advanced EMG sensor array, we recorded sEMG during isometric contractions of the first dorsal interosseous muscle over a range of contraction levels, from 20% to 60% of maximum, in both paretic and contralateral muscles of stroke survivors. Using MU decomposition techniques, MU action potential amplitudes and recruitment thresholds were derived for simultaneously activated MUs in each isometric contraction. Main results. Our results show a significant disruption of recruitment organization in paretic muscles, in that the size principle describing recruitment rank order was materially distorted. MUs were recruited over a very narrow force range with increasing force output, generating a strong clustering effect, when referenced to recruitment force magnitude. Such disturbances in MU properties also correlated well with the impairment of voluntary force generation. Significance. Our findings provide direct evidence regarding MU recruitment modifications in paretic muscles of stroke survivors, and suggest that these modifications may contribute to weakness for voluntary contractions.

  14. Reassessment of Non-Monosynaptic Excitation from the Motor Cortex to Motoneurons in Single Motor Units of the Human Biceps Brachii.

    PubMed

    Nakajima, Tsuyoshi; Tazoe, Toshiki; Sakamoto, Masanori; Endoh, Takashi; Shibuya, Satoshi; Elias, Leonardo A; Mezzarane, Rinaldo A; Komiyama, Tomoyoshi; Ohki, Yukari

    2017-01-01

    Corticospinal excitation is mediated by polysynaptic pathways in several vertebrates, including dexterous monkeys. However, indirect non-monosynaptic excitation has not been clearly observed following transcranial electrical stimulation (TES) or cervicomedullary stimulation (CMS) in humans. The present study evaluated indirect motor pathways in normal human subjects by recording the activities of single motor units (MUs) in the biceps brachii (BB) muscle. The pyramidal tract was stimulated with weak TES, CMS, and transcranial magnetic stimulation (TMS) contralateral to the recording side. During tasks involving weak co-contraction of the BB and hand muscles, all stimulation methods activated MUs with short latencies. Peristimulus time histograms (PSTHs) showed that responses with similar durations were induced by TES (1.9 ± 1.4 ms) and CMS (2.0 ± 1.4 ms), and these responses often showed multiple peaks with the PSTH peak having a long duration (65.3% and 44.9%, respectively). Such long-duration excitatory responses with multiple peaks were rarely observed in the finger muscles following TES or in the BB following stimulation of the Ia fibers. The responses obtained with TES were compared in the same 14 BB MUs during the co-contraction and isolated BB contraction tasks. Eleven and three units, respectively, exhibited activation with multiple peaks during the two tasks. In order to determine the dispersion effects on the axon conduction velocities (CVs) and synaptic noise, a simulation study that was comparable to the TES experiments was performed with a biologically plausible neuromuscular model. When the model included the monosynaptic-pyramidal tract, multiple peaks were obtained in about 34.5% of the motoneurons (MNs). The experimental and simulation results indicated the existence of task-dependent disparate inputs from the pyramidal tract to the MNs of the upper limb. These results suggested that intercalated interneurons are present in the spinal cord and

  15. Reassessment of Non-Monosynaptic Excitation from the Motor Cortex to Motoneurons in Single Motor Units of the Human Biceps Brachii

    PubMed Central

    Nakajima, Tsuyoshi; Tazoe, Toshiki; Sakamoto, Masanori; Endoh, Takashi; Shibuya, Satoshi; Elias, Leonardo A.; Mezzarane, Rinaldo A.; Komiyama, Tomoyoshi; Ohki, Yukari

    2017-01-01

    Corticospinal excitation is mediated by polysynaptic pathways in several vertebrates, including dexterous monkeys. However, indirect non-monosynaptic excitation has not been clearly observed following transcranial electrical stimulation (TES) or cervicomedullary stimulation (CMS) in humans. The present study evaluated indirect motor pathways in normal human subjects by recording the activities of single motor units (MUs) in the biceps brachii (BB) muscle. The pyramidal tract was stimulated with weak TES, CMS, and transcranial magnetic stimulation (TMS) contralateral to the recording side. During tasks involving weak co-contraction of the BB and hand muscles, all stimulation methods activated MUs with short latencies. Peristimulus time histograms (PSTHs) showed that responses with similar durations were induced by TES (1.9 ± 1.4 ms) and CMS (2.0 ± 1.4 ms), and these responses often showed multiple peaks with the PSTH peak having a long duration (65.3% and 44.9%, respectively). Such long-duration excitatory responses with multiple peaks were rarely observed in the finger muscles following TES or in the BB following stimulation of the Ia fibers. The responses obtained with TES were compared in the same 14 BB MUs during the co-contraction and isolated BB contraction tasks. Eleven and three units, respectively, exhibited activation with multiple peaks during the two tasks. In order to determine the dispersion effects on the axon conduction velocities (CVs) and synaptic noise, a simulation study that was comparable to the TES experiments was performed with a biologically plausible neuromuscular model. When the model included the monosynaptic-pyramidal tract, multiple peaks were obtained in about 34.5% of the motoneurons (MNs). The experimental and simulation results indicated the existence of task-dependent disparate inputs from the pyramidal tract to the MNs of the upper limb. These results suggested that intercalated interneurons are present in the spinal cord and

  16. Effects of whole body vibration on motor unit recruitment and threshold.

    PubMed

    Pollock, Ross D; Woledge, Roger C; Martin, Finbarr C; Newham, Di J

    2012-02-01

    Whole body vibration (WBV) has been suggested to elicit reflex muscle contractions but this has never been verified. We recorded from 32 single motor units (MU) in the vastus lateralis of 7 healthy subjects (34 ± 15.4 yr) during five 1-min bouts of WBV (30 Hz, 3 mm peak to peak), and the vibration waveform was also recorded. Recruitment thresholds were recorded from 38 MUs before and after WBV. The phase angle distribution of all MUs during WBV was nonuniform (P < 0.001) and displayed a prominent peak phase angle of firing. There was a strong linear relationship (r = -0.68, P < 0.001) between the change in recruitment threshold after WBV and average recruitment threshold; the lowest threshold MUs increased recruitment threshold (P = 0.008) while reductions were observed in the higher threshold units (P = 0.031). We investigated one possible cause of changed thresholds. Presynaptic inhibition in the soleus was measured in 8 healthy subjects (29 ± 4.6 yr). A total of 30 H-reflexes (stimulation intensity 30% Mmax) were recorded before and after WBV: 15 conditioned by prior stimulation (60 ms) of the antagonist and 15 unconditioned. There were no significant changes in the relationship between the conditioned and unconditioned responses. The consistent phase angle at which each MU fired during WBV indicates the presence of reflex muscle activity similar to the tonic vibration reflex. The varying response in high- and low-threshold MUs may be due to the different contributions of the mono- and polysynaptic pathways but not presynaptic inhibition.

  17. The Molecular Basis of Cardiac Mechanics: Regulation of Motor Unit Recruitment

    DTIC Science & Technology

    2007-11-02

    bridges determines the affinity of the regulatory proteins for calcium. The force response to sarcomere length oscillations was measured at...strain gauge. Sarcomere oscillations were imposed with a fast servomotor. The force response lagged the sarcomere length oscillations at frequency...mm2) since each cubic millimeter of the cardiac or skeletal muscle contains 100•1012 motor units (The length of half sarcomere is around 1.0µm

  18. Primary motor cortex activity is elevated with incremental exercise intensity.

    PubMed

    Brümmer, V; Schneider, S; Strüder, H K; Askew, C D

    2011-05-05

    While the effects of exercise on brain cortical activity from pre-to post-exercise have been thoroughly evaluated, few studies have investigated the change in activity during exercise. As such, it is not clear to what extent changes in exercise intensity influence brain cortical activity. Furthermore, due to the difficulty in using brain-imaging methods during complex whole-body movements like cycling, it is unclear to what extent the activity in specific brain areas is altered with incremental exercise intensity over time. Latterly, active electroencephalography (EEG) electrodes combined with source localization methods allow for the assessment of brain activity, measured as EEG current density, within specific cortical regions. The present study aimed to investigate the application of this method during exercise on a cycle ergometer, and to investigate the effect of increasing exercise intensity on the magnitude and location of any changes in electrocortical current density. Subjects performed an incremental cycle ergometer test until subjective exhaustion. Current density of the EEG recordings during each test stage, as well as before and after exercise, was determined. Spatial changes in current density were localized using low-resolution brain electromagnetic tomography (LORETA) to three regions of interest; the primary motor cortex, primary sensory cortex and prefrontal cortex, and were expressed relative to current density within the local lobe. It was demonstrated that the relative current density of the primary motor cortex was intensified with increasing exercise intensity, whereas activity of the primary sensory cortex and that of the prefrontal cortex were not altered with exercise. The results indicate that the combined active EEG/LORETA method allows for the recording of brain cortical activity during complex movements and incremental exercise. These findings indicate that primary motor cortex activity is elevated with incremental exercise intensity

  19. Activity Parameters of Subthalamic Nucleus Neurons Selectively Predict Motor Symptom Severity in Parkinson's Disease

    PubMed Central

    Gulberti, Alessandro; Zittel, Simone; Tudor Jones, Adam A.; Fickel, Ulrich; Münchau, Alexander; Köppen, Johannes A.; Gerloff, Christian; Westphal, Manfred; Buhmann, Carsten; Hamel, Wolfgang; Engel, Andreas K.

    2014-01-01

    Parkinson's disease (PD) is a heterogeneous disorder that leads to variable expression of several different motor symptoms. While changes in firing rate, pattern, and oscillation of basal ganglia neurons have been observed in PD patients and experimental animals, there is limited evidence linking them to specific motor symptoms. Here we examined this relationship using extracellular recordings of subthalamic nucleus neurons from 19 PD patients undergoing surgery for deep brain stimulation. For each patient, ≥10 single units and/or multi-units were recorded in the OFF medication state. We correlated the proportion of neurons displaying different activities with preoperative Unified Parkinson's Disease Rating Scale subscores (OFF medication). The mean spectral power at sub-beta frequencies and percentage of units oscillating at beta frequencies were positively correlated with the axial and limb rigidity scores, respectively. The percentage of units oscillating at gamma frequency was negatively correlated with the bradykinesia scores. The mean intraburst rate was positively correlated with both bradykinesia and axial scores, while the related ratio of interspike intervals below/above 10 ms was positively correlated with these symptoms and limb rigidity. None of the activity parameters correlated with tremor. The grand average of all the significantly correlated subthalamic nucleus activities accounted for >60% of the variance of the combined bradykinetic-rigid and axial scores. Our results demonstrate that the occurrence of alterations in the rate and pattern of basal ganglia neurons could partly underlie the variability in parkinsonian phenotype. PMID:24790198

  20. Activity parameters of subthalamic nucleus neurons selectively predict motor symptom severity in Parkinson's disease.

    PubMed

    Sharott, Andrew; Gulberti, Alessandro; Zittel, Simone; Tudor Jones, Adam A; Fickel, Ulrich; Münchau, Alexander; Köppen, Johannes A; Gerloff, Christian; Westphal, Manfred; Buhmann, Carsten; Hamel, Wolfgang; Engel, Andreas K; Moll, Christian K E

    2014-04-30

    Parkinson's disease (PD) is a heterogeneous disorder that leads to variable expression of several different motor symptoms. While changes in firing rate, pattern, and oscillation of basal ganglia neurons have been observed in PD patients and experimental animals, there is limited evidence linking them to specific motor symptoms. Here we examined this relationship using extracellular recordings of subthalamic nucleus neurons from 19 PD patients undergoing surgery for deep brain stimulation. For each patient, ≥ 10 single units and/or multi-units were recorded in the OFF medication state. We correlated the proportion of neurons displaying different activities with preoperative Unified Parkinson's Disease Rating Scale subscores (OFF medication). The mean spectral power at sub-beta frequencies and percentage of units oscillating at beta frequencies were positively correlated with the axial and limb rigidity scores, respectively. The percentage of units oscillating at gamma frequency was negatively correlated with the bradykinesia scores. The mean intraburst rate was positively correlated with both bradykinesia and axial scores, while the related ratio of interspike intervals below/above 10 ms was positively correlated with these symptoms and limb rigidity. None of the activity parameters correlated with tremor. The grand average of all the significantly correlated subthalamic nucleus activities accounted for >60% of the variance of the combined bradykinetic-rigid and axial scores. Our results demonstrate that the occurrence of alterations in the rate and pattern of basal ganglia neurons could partly underlie the variability in parkinsonian phenotype.

  1. Alterations in multidimensional motor unit number index of hand muscles after incomplete cervical spinal cord injury

    PubMed Central

    Li, Le; Li, Xiaoyan; Liu, Jie; Zhou, Ping

    2015-01-01

    The objective of this study was to apply a novel multidimensional motor unit number index (MD-MUNIX) technique to examine hand muscles in patients with incomplete cervical spinal cord injury (SCI). The MD-MUNIX was estimated from the compound muscle action potential (CMAP) and different levels of surface interference pattern electromyogram (EMG) at multiple directions of voluntary isometric muscle contraction. The MD-MUNIX was applied in the first dorsal interosseous (FDI), thenar and hypothenar muscles of SCI (n = 12) and healthy control (n = 12) subjects. The results showed that the SCI subjects had significantly smaller CMAP and MD-MUNIX in all the three examined muscles, compared to those derived from the healthy control subjects. The multidimensional motor unit size index (MD-MUSIX) demonstrated significantly larger values for the FDI and hypothenar muscles in SCI subjects than those from healthy control subjects, whereas the MD-MUSIX enlargement was marginally significant for the thenar muscles. The findings from the MD-MUNIX analyses provide an evidence of motor unit loss in hand muscles of cervical SCI patients, contributing to hand function deterioration. PMID:26005410

  2. Chemical and thermal modulation of molecular motor activities

    NASA Astrophysics Data System (ADS)

    Hong, Weili

    Molecular motors of kinesin and dynein families are responsible for various intracellular activities, from long distance movement of organelles, vesicles, protein complexes, and mRNAs to powering mitotic processes. They can take nanometer steps using chemical energy from the hydrolysis of ATP (adenosine triphosphate), and their dysfunction is involved in many neurodegenerative diseases that require long distance transport of cargos. Here I report on the study of the properties of molecular motors at a single-molecule level using optical trappings. I first studied the inhibition properties of kinesin motors by marine natural compound adociasulfates. I showed that adociasulfates compete with microtubules for binding to kinesins and thus inhibit kinesins' activity. Although adociasulfates are a strong inhibitor for all kinesin members, they show a much higher inhibition effect for conventional kinesins than for mitotic kinesins. Thus adociasulfates can be used to specifically inhibit conventional kinesins. By comparing the inhibition of kinesins by two structurally similar adociasulfates, one can see that the negatively charged sulfate residue of adociasulfates can be replaced by other negative residues and thus make it possible for adociasulfate-derived compounds to be more cell permeable. Kinesins and dyneins move cargos towards opposite directions along a microtubule. Cargos with both kinesins and dyneins attached often move bidirectionally due to undergoing a tug-of-war between the oppositely moving kinesin and dynein motors. Here I studied the effect of temperature on microtubule-based kinesin and dynein motor transport. While kinesins' and dyneins' velocities are closely matched above 15 °C, below this temperature the dyneins' velocity decreases much faster than the kinesins'. The kinesins' and dyneins' forces do not measurably change with temperature. The results suggest that temperature has significant effects on bidirectional transport and can be used to

  3. Activation of sensory-motor areas in sentence comprehension.

    PubMed

    Desai, Rutvik H; Binder, Jeffrey R; Conant, Lisa L; Seidenberg, Mark S

    2010-02-01

    The sensory-motor account of conceptual processing suggests that modality-specific attributes play a central role in the organization of object and action knowledge in the brain. An opposing view emphasizes the abstract, amodal, and symbolic character of concepts, which are thought to be represented outside the brain's sensory-motor systems. We conducted a functional magnetic resonance imaging study in which the participants listened to sentences describing hand/arm action events, visual events, or abstract behaviors. In comparison to visual and abstract sentences, areas associated with planning and control of hand movements, motion perception, and vision were activated when understanding sentences describing actions. Sensory-motor areas were activated to a greater extent also for sentences with actions that relied mostly on hands, as opposed to arms. Visual sentences activated a small area in the secondary visual cortex, whereas abstract sentences activated superior temporal and inferior frontal regions. The results support the view that linguistic understanding of actions partly involves imagery or simulation of actions, and relies on some of the same neural substrate used for planning, performing, and perceiving actions.

  4. Differential actigraphy for monitoring asymmetry in upper limb motor activities.

    PubMed

    Rabuffetti, M; Meriggi, P; Pagliari, C; Bartolomeo, P; Ferrarin, M

    2016-09-21

    Most applications of accelerometry-based actigraphy require a single sensor, properly located onto the body, to estimate, for example, the level of activity or the energy expenditure. Some approaches adopt a multi-sensor setup to improve those analyses or to classify different types of activity. The specific case of two symmetrically placed actigraphs allowing, by some kind of differential analysis, for the assessment of asymmetric motor behaviors, has been considered in relatively few studies. This article presents a novel method for differential actigraphy, which requires the synchronized measurements of two triaxial accelerometers (programmable eZ430-Chronos, Texas Instruments, USA) placed symmetrically on both wrists. The method involved the definition of a robust epoch-related activity index and its implementation on-board the adopted programmable platform. Finally, the activity recordings from both sensors allowed us to define a novel asymmetry index AR24 h ranging from  -100% (only the left arm moves) to  +100% (only the right arm moves) with null value marking a perfect symmetrical behavior. The accuracy of the AR24 h index was 1.3%. Round-the-clock monitoring on 31 healthy participants (20-79 years old, 10 left handed) provided for the AR24 h reference data (range  -5% to 21%) and a fairly good correlation to the clinical handedness index (r  =  0.66, p  <  0.001). A subset of 20 participants repeated the monitoring one week apart evidencing an excellent test-retest reliability (r  =  0.70, p  <  0.001). Such figures support future applications of the methodology for the study of pathologies involving motor asymmetries, such as in patients with motor hemisyndromes and, in general, for those subjects for whom a quantification of the asymmetry in daily motor performances is required to complement laboratory tests.

  5. Altered motor unit discharge patterns in paretic muscles of stroke survivors assessed using surface electromyography

    NASA Astrophysics Data System (ADS)

    Hu, Xiaogang; Suresh, Aneesha K.; Rymer, William Z.; Suresh, Nina L.

    2016-08-01

    Objective. Hemispheric stroke survivors often show impairments in voluntary muscle activation. One potential source of these impairments could come from altered control of muscle, via disrupted motor unit (MU) firing patterns. In this study, we sought to determine whether MU firing patterns are modified on the affected side of stroke survivors, as compared with the analogous contralateral muscle. Approach. Using a novel surface electromyogram (EMG) sensor array, coupled with advanced template recognition software (dEMG) we recorded surface EMG signals over the first dorsal interosseous (FDI) muscle on both paretic and contralateral sides. Recordings were made as stroke survivors produced isometric index finger abductions over a large force range (20%-60% of maximum). Utilizing the dEMG algorithm, MU firing rates, recruitment thresholds, and action potential amplitudes were estimated for concurrently active MUs in each trial. Main results. Our results reveal significant changes in the firing rate patterns in paretic FDI muscle, in that the discharge rates, characterized in relation to recruitment force threshold and to MU size, were less clearly correlated with recruitment force than in contralateral FDI muscles. Firing rates in the affected muscle also did not modulate systematically with the level of voluntary muscle contraction, as would be expected in intact muscles. These disturbances in firing properties also correlated closely with the impairment of muscle force generation. Significance. Our results provide strong evidence of disruptions in MU firing behavior in paretic muscles after a hemispheric stroke, suggesting that modified control of the spinal motoneuron pool could be a contributing factor to muscular weakness in stroke survivors.

  6. 76 FR 23787 - Voluntary Termination of Foreign-Trade Subzone 18B; New United Motor Manufacturing, Inc., Fremont...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-28

    ... Manufacturing, Inc., Fremont, CA Pursuant to its authority under the Foreign-Trade Zones Act of June 18, 1934... establishment of Foreign-Trade Subzone 18B at the New United Motor Manufacturing, Inc., facility in...

  7. Design of voice coil motor dynamic focusing unit for a laser scanner

    SciTech Connect

    Lee, Moon G.; Kim, Gaeun; Lee, Chan-Woo; Lee, Soo-Hun; Jeon, Yongho

    2014-04-15

    Laser scanning systems have been used for material processing tasks such as welding, cutting, marking, and drilling. However, applications have been limited by the small range of motion and slow speed of the focusing unit, which carries the focusing optics. To overcome these limitations, a dynamic focusing system with a long travel range and high speed is needed. In this study, a dynamic focusing unit for a laser scanning system with a voice coil motor (VCM) mechanism is proposed to enable fast speed and a wide focusing range. The VCM has finer precision and higher speed than conventional step motors and a longer travel range than earlier lead zirconium titanate actuators. The system has a hollow configuration to provide a laser beam path. This also makes it compact and transmission-free and gives it low inertia. The VCM's magnetics are modeled using a permeance model. Its design parameters are determined by optimization using the Broyden–Fletcher–Goldfarb–Shanno method and a sequential quadratic programming algorithm. After the VCM is designed, the dynamic focusing unit is fabricated and assembled. The permeance model is verified by a magnetic finite element method simulation tool, Maxwell 2D and 3D, and by measurement data from a gauss meter. The performance is verified experimentally. The results show a resolution of 0.2 μm and travel range of 16 mm. These are better than those of conventional focusing systems; therefore, this focusing unit can be applied to laser scanning systems for good machining capability.

  8. Design of voice coil motor dynamic focusing unit for a laser scanner

    NASA Astrophysics Data System (ADS)

    Lee, Moon G.; Kim, Gaeun; Lee, Chan-Woo; Lee, Soo-Hun; Jeon, Yongho

    2014-04-01

    Laser scanning systems have been used for material processing tasks such as welding, cutting, marking, and drilling. However, applications have been limited by the small range of motion and slow speed of the focusing unit, which carries the focusing optics. To overcome these limitations, a dynamic focusing system with a long travel range and high speed is needed. In this study, a dynamic focusing unit for a laser scanning system with a voice coil motor (VCM) mechanism is proposed to enable fast speed and a wide focusing range. The VCM has finer precision and higher speed than conventional step motors and a longer travel range than earlier lead zirconium titanate actuators. The system has a hollow configuration to provide a laser beam path. This also makes it compact and transmission-free and gives it low inertia. The VCM's magnetics are modeled using a permeance model. Its design parameters are determined by optimization using the Broyden-Fletcher-Goldfarb-Shanno method and a sequential quadratic programming algorithm. After the VCM is designed, the dynamic focusing unit is fabricated and assembled. The permeance model is verified by a magnetic finite element method simulation tool, Maxwell 2D and 3D, and by measurement data from a gauss meter. The performance is verified experimentally. The results show a resolution of 0.2 μm and travel range of 16 mm. These are better than those of conventional focusing systems; therefore, this focusing unit can be applied to laser scanning systems for good machining capability.

  9. Design of voice coil motor dynamic focusing unit for a laser scanner.

    PubMed

    Lee, Moon G; Kim, Gaeun; Lee, Chan-Woo; Lee, Soo-Hun; Jeon, Yongho

    2014-04-01

    Laser scanning systems have been used for material processing tasks such as welding, cutting, marking, and drilling. However, applications have been limited by the small range of motion and slow speed of the focusing unit, which carries the focusing optics. To overcome these limitations, a dynamic focusing system with a long travel range and high speed is needed. In this study, a dynamic focusing unit for a laser scanning system with a voice coil motor (VCM) mechanism is proposed to enable fast speed and a wide focusing range. The VCM has finer precision and higher speed than conventional step motors and a longer travel range than earlier lead zirconium titanate actuators. The system has a hollow configuration to provide a laser beam path. This also makes it compact and transmission-free and gives it low inertia. The VCM's magnetics are modeled using a permeance model. Its design parameters are determined by optimization using the Broyden-Fletcher-Goldfarb-Shanno method and a sequential quadratic programming algorithm. After the VCM is designed, the dynamic focusing unit is fabricated and assembled. The permeance model is verified by a magnetic finite element method simulation tool, Maxwell 2D and 3D, and by measurement data from a gauss meter. The performance is verified experimentally. The results show a resolution of 0.2 μm and travel range of 16 mm. These are better than those of conventional focusing systems; therefore, this focusing unit can be applied to laser scanning systems for good machining capability.

  10. A comparison of peripheral and rubrospinal synaptic input to slow and fast twitch motor units of triceps surae.

    PubMed

    Burke, R E; Jankowska, E; ten Bruggencate, G

    1970-05-01

    1. Post-synaptic potentials (PSPs) evoked by electrical stimulation of a variety of input systems have been compared in triceps surae motoneurones innervating slow and fast muscle units, the speed of contraction of which was also determined.2. Stimulation of high threshold afferents in both flexor and extensor muscle nerves, and of joint afferents, evoked polysynaptic PSPs which were predominantly hyperpolarizing in both fast and slow twitch motor units.3. Volleys in cutaneous afferents in the sural and saphenous nerves evoked polysynaptic PSPs composed of mixtures of inhibitory and excitatory components. The inhibitory components were predominant in slow twitch motor units, while in fast twitch units there was a trend towards excitatory predominance.4. Repetitive stimulation of the red nucleus caused predominantly inhibitory PSPs in slow twitch units and mixed or predominantly excitatory PSPs in fast twitch units. There was a correlation in the excitatory/inhibitory balance between PSPs of cutaneous and rubrospinal origin in those motoneurones in which both types of PSPs were studied.5. The amplitudes of group Ia disynaptic inhibitory PSPs were found to be correlated with motor unit twitch type: IPSPs in slow twitch units were larger than those in fast twitch units. Rubrospinal conditioning volleys were found to facilitate group Ia IPSPs in both fast and slow twitch motor units.6. The results suggest that there may be several basic patterns of synaptic input organization to motoneurones within a given motor unit pool. In addition to quantitative variation in synaptic distribution, there is evidence that qualitative differences in excitatory to inhibitory balance also exist in the pathways conveying input from cutaneous afferents and rubrospinal systems to triceps surae motoneurones. These qualitative differences are correlated with the motor unit twitch type.

  11. Activation of attention networks using frequency analysis of a simple auditory-motor paradigm.

    PubMed

    Astrakas, Loukas G; Teicher, Martin; Tzika, A Aria

    2002-04-01

    The purpose of this study was to devise a paradigm that stimulates attention using a frequency-based analysis of the data acquired during a motor task. Six adults (30-40 years of age) and one child (10 years) were studied. Each subject was requested to attend to "start" and "stop" commands every 20 s alternatively and had to respond with the motor task every second time. Attention was stimulated during a block-designed, motor paradigm in which a start-stop commands cycle produced activation at the fourth harmonic of the motor frequency. We disentangled the motor and attention functions using statistical analysis with subspaces spanned by vectors generated by a truncated trigonometric series of motor and attention frequency. During our auditory-motor paradigm, all subjects showed activation in areas that belong to an extensive attention network. Attention and motor functions were coactivated but with different frequencies. While the motor-task-related areas were activated with slower frequency than attention, the activation in the attention-related areas was enhanced every time the subject had to start or end the motor task. We suggest that although a simple block-designed, auditory-motor paradigm stimulates the attention network, motor preparation, and motor inhibition concurrently, a frequency-based analysis can distinguish attention from motor functions. Due to its simplicity the paradigm can be valuable in studying children with attention deficit disorders.

  12. A self-referential outlier detection method for quantitative motor unit action potential analysis.

    PubMed

    Sheean, Geoffrey L

    2012-04-01

    Quantitative MUAP analysis is often based on outlier detection, in the case of neurogenic conditions, the finding of MUAPs that are larger than the limit determined from a reference normal population. Such reference data is available from only a few sources and for only a few muscles. It would be desirable if muscles could serve as their own controls. The Henneman size principle determines the order of recruitment, following an exponential distribution of twitch force, motor neurone, motor unit, and MUAP size. Therefore, an outlier could be detected by being too large for the level of recruitment, as judged by its size relative to the other MUAPs. This would improve the sensitivity of detecting neurogenic muscles and obviate the need for external reference data.

  13. Brain acetylcholinesterase activity in Wistar and August rats with low and high motor activity (a cytochemical study).

    PubMed

    Sergutina, A V; Rakhmanova, V I

    2014-08-01

    Acetylcholinesterase activity was quantitatively evaluated by cytochemical method in brain structures (layers III and V of the sensorimotor cortex, caudate nucleus, nucleus accumbens, hippocampus CA3 field) of August and Wistar rats demonstrating high and low motor activity in the open field test. In August rats, acetylcholinesterase activity in the analyzed brain structures prevailed in animals with high motor activity in comparison with rats with low motor activity. In Wistar rats, the differences between the animals demonstrating high and low motor activity were less pronounced, but varied depending on the experimental series of studies. Comparisons of August rats with low motor activity and Wistar rats with high motor activity (maximum difference of motor function in these animals) revealed significant excess of acetylcholinesterase activity in layer III of the sensorimotor cortex in August rats and no differences in other brain structures of the examined animals.

  14. Cortical activity predicts good variation in human motor output.

    PubMed

    Babikian, Sarine; Kanso, Eva; Kutch, Jason J

    2017-02-04

    Human movement patterns have been shown to be particularly variable if many combinations of activity in different muscles all achieve the same task goal (i.e., are goal-equivalent). The nervous system appears to automatically vary its output among goal-equivalent combinations of muscle activity to minimize muscle fatigue or distribute tissue loading, but the neural mechanism of this "good" variation is unknown. Here we use a bimanual finger task, electroencephalography (EEG), and machine learning to determine if cortical signals can predict goal-equivalent variation in finger force output. 18 healthy participants applied left and right index finger forces to repeatedly perform a task that involved matching a total (sum of right and left) finger force. As in previous studies, we observed significantly more variability in goal-equivalent muscle activity across task repetitions compared to variability in muscle activity that would not achieve the goal: participants achieved the task in some repetitions with more right finger force and less left finger force (right > left) and in other repetitions with less right finger force and more left finger force (left > right). We found that EEG signals from the 500 milliseconds (ms) prior to each task repetition could make a significant prediction of which repetitions would have right > left and which would have left > right. We also found that cortical maps of sites contributing to the prediction contain both motor and pre-motor representation in the appropriate hemisphere. Thus, goal-equivalent variation in motor output may be implemented at a cortical level.

  15. Relation between cooperative molecular motors and active Brownian particles

    NASA Astrophysics Data System (ADS)

    Touya, Clément; Schwalger, Tilo; Lindner, Benjamin

    2011-05-01

    Active Brownian particles (ABPs), obeying a nonlinear Langevin equation with speed-dependent drift and noise amplitude, are well-known models used to describe self-propelled motion in biology. In this paper we study a model describing the stochastic dynamics of a group of coupled molecular motors (CMMs). Using two independent numerical methods, one based on the stationary velocity distribution of the motors and the other one on the local increments (also known as the Kramers-Moyal coefficients) of the velocity, we establish a connection between the CMM and the ABP models. The parameters extracted for the ABP via the two methods show good agreement for both symmetric and asymmetric cases and are independent of N, the number of motors, provided that N is not too small. This indicates that one can indeed describe the CMM problem with a simpler ABP model. However, the power spectrum of velocity fluctuations in the CMM model reveals a peak at a finite frequency, a peak which is absent in the velocity spectrum of the ABP model. This implies richer dynamic features of the CMM model which cannot be captured by an ABP model.

  16. Active Fault Tolerant Control for Ultrasonic Piezoelectric Motor

    NASA Astrophysics Data System (ADS)

    Boukhnifer, Moussa

    2012-07-01

    Ultrasonic piezoelectric motor technology is an important system component in integrated mechatronics devices working on extreme operating conditions. Due to these constraints, robustness and performance of the control interfaces should be taken into account in the motor design. In this paper, we apply a new architecture for a fault tolerant control using Youla parameterization for an ultrasonic piezoelectric motor. The distinguished feature of proposed controller architecture is that it shows structurally how the controller design for performance and robustness may be done separately which has the potential to overcome the conflict between performance and robustness in the traditional feedback framework. A fault tolerant control architecture includes two parts: one part for performance and the other part for robustness. The controller design works in such a way that the feedback control system will be solely controlled by the proportional plus double-integral PI2 performance controller for a nominal model without disturbances and H∞ robustification controller will only be activated in the presence of the uncertainties or an external disturbances. The simulation results demonstrate the effectiveness of the proposed fault tolerant control architecture.

  17. F-wave of single firing motor units: correct or misleading criterion of motoneuron excitability in humans?

    PubMed

    Kudina, Lydia P; Andreeva, Regina E

    2017-03-01

    Motoneuron excitability is a critical property for information processing during motor control. F-wave (a motoneuronal recurrent discharge evoked by a motor antidromic volley) is often used as a criterion of motoneuron pool excitability in normal and neuromuscular diseases. However, such using of F-wave calls in question. The present study was designed to explore excitability of single low-threshold motoneurons during their natural firing in healthy humans and to ascertain whether F-wave is a correct measure of motoneuronal excitability. Single motor units (MUs) were activated by gentle voluntary muscle contractions. MU peri-stimulus time histograms and motoneuron excitability changes within a target interspike interval were analysed during testing by motor antidromic and Ia-afferent volleys. It was found that F-waves could be occasionally recorded in some low-threshold MUs. However, during evoking F-wave, in contrast with the H-reflex, peri-stimulus time histograms revealed no statistically significant increase in MU discharge probability. Moreover, surprisingly, motoneurons appeared commonly incapable to fire a recurrent discharge within the most excitable part of a target interval. Thus, the F-wave, unlike the H-reflex, is the incorrect criterion of motoneuron excitability resulting in misleading conclusions. However, it does not exclude the validity of the F-wave as a clinical tool for other aims. It was concluded that the F-wave was first explored in low-threshold MUs during their natural firing. The findings may be useful at interpretations of changes in the motoneuron pool excitability in neuromuscular diseases.

  18. Sympathetic-induced changes in discharge rate and spike-triggered average twitch torque of low-threshold motor units in humans.

    PubMed

    Roatta, Silvestro; Arendt-Nielsen, Lars; Farina, Dario

    2008-11-15

    Animal and in vitro studies have shown that the sympathetic nervous system modulates the contractility of skeletal muscle fibres, which may require adjustments in the motor drive to the muscle in voluntary contractions. In this study, these mechanisms were investigated in the tibialis anterior muscle of humans during sympathetic activation induced by the cold pressor test (CPT; left hand immersed in water at 4 degrees C). In the first experiment, 11 healthy men performed 20 s isometric contractions at 10% of the maximal torque, before, during and after the CPT. In the second experiment, 12 healthy men activated a target motor unit at the minimum stable discharge rate for 5 min in the same conditions as in experiment 1. Intramuscular electromyographic (EMG) signals and torque were recorded and used to assess the motor unit discharge characteristics (experiment 1) and spike-triggered average twitch torque (experiment 2). CPT increased the diastolic blood pressure and heart rate by (mean +/- S.D.) 18 +/- 9 mmHg and 4.7 +/- 6.5 beats min(-1) (P < 0.01), respectively. In experiment 1, motor unit discharge rate increased from 10.4 +/- 1.0 pulses s(-1) before to 11.1 +/- 1.4 pulses s(-1) (P < 0.05) during the CPT. In experiment 2, the twitch half-relaxation time decreased by 15.8 +/- 9.3% (P < 0.05) during the CPT with respect to baseline. These results provide the first evidence of an adrenergic modulation of contractility of muscle fibres in individual motor units in humans, under physiological sympathetic activation.

  19. Sympathetic-induced changes in discharge rate and spike-triggered average twitch torque of low-threshold motor units in humans

    PubMed Central

    Roatta, Silvestro; Arendt-Nielsen, Lars; Farina, Dario

    2008-01-01

    Animal and in vitro studies have shown that the sympathetic nervous system modulates the contractility of skeletal muscle fibres, which may require adjustments in the motor drive to the muscle in voluntary contractions. In this study, these mechanisms were investigated in the tibialis anterior muscle of humans during sympathetic activation induced by the cold pressor test (CPT; left hand immersed in water at 4°C). In the first experiment, 11 healthy men performed 20 s isometric contractions at 10% of the maximal torque, before, during and after the CPT. In the second experiment, 12 healthy men activated a target motor unit at the minimum stable discharge rate for 5 min in the same conditions as in experiment 1. Intramuscular electromyographic (EMG) signals and torque were recorded and used to assess the motor unit discharge characteristics (experiment 1) and spike-triggered average twitch torque (experiment 2). CPT increased the diastolic blood pressure and heart rate by (mean ±s.d.) 18 ± 9 mmHg and 4.7 ± 6.5 beats min−1 (P < 0.01), respectively. In experiment 1, motor unit discharge rate increased from 10.4 ± 1.0 pulses s−1 before to 11.1 ± 1.4 pulses s−1 (P < 0.05) during the CPT. In experiment 2, the twitch half-relaxation time decreased by 15.8 ± 9.3% (P < 0.05) during the CPT with respect to baseline. These results provide the first evidence of an adrenergic modulation of contractility of muscle fibres in individual motor units in humans, under physiological sympathetic activation. PMID:18818247

  20. Associations between force and fatigue in fast-twitch motor units of a cat hindlimb muscle.

    PubMed

    Laouris, Y; Bevan, L; Reinking, R M; Stuart, D G

    2004-01-01

    Associations were quantified between the control force and fatigue-induced force decline in 22 single fast-twitch-fatigable motor units of 5 deeply anesthetized adult cats. The units were subjected to intermittent stimulation at 1 train/s for 360 s. Two stimulation patterns were delivered in a pseudo-random manner. The first was a 500-ms train with constant interpulse intervals. The second pattern had the same number of stimuli, mean stimulus rate, and stimulus duration, but the stimulus pulses were rearranged to increase the force produced by the units in the control (prefatigue) state. The associations among the control peak tetanic force of these units, 3 indices of fatigue, and total cumulative force during fatiguing contractions were dependent, in part, on the stimulation pattern used to produce fatigue. The associations were also dependent, albeit to a lesser extent, on the force measure (peak vs. integrated) and the fatigue index used to quantify fatigue. It is proposed that during high-force fatiguing contractions, neural mechanisms are potentially available to delay and reduce the fatigue of fast-twitch-fatigable units for brief, but functionally relevant, periods. In contrast, the fatigue of slow-twitch fatigue-resistant units seems more likely to be controlled largely, if not exclusively, by metabolic processes within their muscle cells.

  1. Active learning of novel sound-producing objects: motor reactivation and enhancement of visuo-motor connectivity.

    PubMed

    Butler, Andrew J; James, Karin Harman

    2013-02-01

    Our experience with the world commonly involves physical interaction with objects enabling us to learn associations between multisensory information perceived during an event and our actions that create an event. The interplay among active interactions during learning and multisensory integration of object properties is not well understood. To better understand how action might enhance multisensory associative recognition, we investigated the interplay among motor and perceptual systems after active learning. Fifteen participants were included in an fMRI study during which they learned visuo-auditory-motor associations between novel objects and the sounds they produce, either through self-generated actions on the objects (active learning) or by observing an experimenter produce the actions (passive learning). Immediately after learning, behavioral and BOLD fMRI measures were collected while perceiving the objects used during unisensory and multisensory training in associative perception and recognition tasks. Active learning was faster and led to more accurate recognition of audiovisual associations than passive learning. Functional ROI analyses showed that in motor, somatosensory, and cerebellar regions there was greater activation during both the perception and recognition of actively learned associations. Finally, functional connectivity between visual- and motor-related processing regions was enhanced during the presentation of actively learned audiovisual associations. Overall, the results of the current study clarify and extend our own previous work [Butler, A. J., James, T. W., & Harman James, K. Enhanced multisensory integration and motor reactivation after active motor learning of audiovisual associations. Journal of Cognitive Neuroscience, 23, 3515-3528, 2011] by providing several novel findings and highlighting the task-based nature of motor reactivation and retrieval after active learning.

  2. Videourodynamic and sphincter motor unit potential analyses in Parkinson's disease and multiple system atrophy

    PubMed Central

    Sakakibara, R; Hattori, T; Uchiyama, T; Yamanishi, T

    2001-01-01

    OBJECTIVES—Urinary dysfunction is a prominent autonomic feature in Parkinson's disease (PD) and multiple system atrophy (MSA), which is not only troublesome but also a cause of morbidity in these disorders. Recent advances in investigative uroneurology offer a better insight into the underlying pathophysiology and appropriate management for urinary dysfunction.
METHODS—twenty one patients with PD (15 men, six women, mean age 64 (49-76), mean disease duration 4 years (1-8 years), median Hoehn and Yahr grade 3 (1-4), all taking 300 mg/day of levodopa (100-500 mg)) and 15 with MSA (eight men, seven women, mean age 59 (48-72), mean disease duration 3 years (0.5-6 years)) were recruited. Videourodynamic and sphincter motor unit potential analyses in the patients with PD and MSA were carried out, looking for distinguishing hallmarks that might be useful in the differential diagnosis of these two diseases.
RESULTS—Urinary symptoms were found in 72% of patients with PD and in 100% with MSA. Filling phase abnormalities in the videourodynamic study included detrusor hyperreflexia in 81% of patients with PD and 56% with MSA, and uninhibited external sphincter relaxation in 33% of patients with PD and 33% of those with MSA. However, open bladder neck at the start of filling was not seen in patients with PD but was present in 53% of those with MSA, suggestive of internal sphincter denervation. Sphincter motor unit potential analysis showed neurogenic motor unit potentials in 5% of patients with PD and in 93% of those with MSA, suggestive of external sphincter denervation. On voiding, detrusor-external sphincter dyssynergia was not seen in patients with PD but was present in 47% of those with MSA. Pressure-flow analysis showed that the Abrams-Griffiths number, a grading of urethral obstruction (outflow obstruction >40), in PD (40 in women and 43 in men) was larger than that in MSA (12 in women and 28 in men). Weak detrusor in PD (66% of women and 40% of men) was less

  3. Tracking motor units longitudinally across experimental sessions with high‐density surface electromyography

    PubMed Central

    Martinez‐Valdes, E.; Negro, F.; Laine, C. M.; Falla, D.; Mayer, F.

    2017-01-01

    Key points Classic motor unit (MU) recording and analysis methods do not allow the same MUs to be tracked across different experimental sessions, and therefore, there is limited experimental evidence on the adjustments in MU properties following training or during the progression of neuromuscular disorders.We propose a new processing method to track the same MUs across experimental sessions (separated by weeks) by using high‐density surface electromyography.The application of the proposed method in two experiments showed that individual MUs can be identified reliably in measurements separated by weeks and that changes in properties of the tracked MUs across experimental sessions can be identified with high sensitivity.These results indicate that the behaviour and properties of the same MUs can be monitored across multiple testing sessions.The proposed method opens new possibilities in the understanding of adjustments in motor unit properties due to training interventions or the progression of pathologies. Abstract A new method is proposed for tracking individual motor units (MUs) across multiple experimental sessions on different days. The technique is based on a novel decomposition approach for high‐density surface electromyography and was tested with two experimental studies for reliability and sensitivity. Experiment I (reliability): ten participants performed isometric knee extensions at 10, 30, 50 and 70% of their maximum voluntary contraction (MVC) force in three sessions, each separated by 1 week. Experiment II (sensitivity): seven participants performed 2 weeks of endurance training (cycling) and were tested pre–post intervention during isometric knee extensions at 10 and 30% MVC. The reliability (Experiment I) and sensitivity (Experiment II) of the measured MU properties were compared for the MUs tracked across sessions, with respect to all MUs identified in each session. In Experiment I, on average 38.3% and 40.1% of the identified MUs could be

  4. Advanced Motor Control Test Facility for NASA GRC Flywheel Energy Storage System Technology Development Unit

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Kascak, Peter E.; Hofmann, Heath; Mackin, Michael; Santiago, Walter; Jansen, Ralph

    2001-01-01

    This paper describes the flywheel test facility developed at the NASA Glenn Research Center with particular emphasis on the motor drive components and control. A four-pole permanent magnet synchronous machine, suspended on magnetic bearings, is controlled with a field orientation algorithm. A discussion of the estimation of the rotor position and speed from a "once around signal" is given. The elimination of small dc currents by using a concurrent stationary frame current regulator is discussed and demonstrated. Initial experimental results are presented showing the successful operation and control of the unit at speeds up to 20,000 rpm.

  5. Comparison of contraction times of a muscle and its motor units

    NASA Technical Reports Server (NTRS)

    Eldred, E.; Smith, L.; Edgerton, V. R.

    1992-01-01

    The twitch contraction time (CT) for each of 13 soleus (SOL) and 13 medial gastrocnemius (MG) muscles was compared with the mean CT from a sample of its motor units (MUs; 356 total) to see if the CT of a whole muscle when tested at its optimal length (Lo) differed systematically from that of its MUs tested at their individual Lo's. The CTs of the whole muscle were significantly longer in the ratio of 1.13. This is consistent with a hypothesis that electrical-field effects result in a more protracted contraction of the individual muscle fiber.

  6. Motor unit changes in thoracic paraspinal muscles in amyotrophic lateral sclerosis.

    PubMed

    de Carvalho, Mamede; Pinto, Susana; Swash, Michael

    2009-01-01

    In 38 amyotrophic lateral sclerosis (ALS) patients and 28 controls, we performed motor unit potential (MUP) analysis in the C-6 and T-5 paraspinal and biceps muscles. In ALS cases, we found similar abnormalities in MUPs in paraspinal and limb muscles. Fasciculation potentials (FPs) were more frequent in biceps than in paraspinal muscles, but fibrillation potentials and positive sharp waves (fibs-sw) were equally frequent in all three muscles. These results confirm the value of paraspinal MUP analysis in the diagnosis of ALS.

  7. Fluoxetine modulates motor performance and cerebral activation of patients recovering from stroke.

    PubMed

    Pariente, J; Loubinoux, I; Carel, C; Albucher, J F; Leger, A; Manelfe, C; Rascol, O; Chollet, F

    2001-12-01

    In order to determine the influence of a single dose of fluoxetine on the cerebral motor activation of lacunar stroke patients in the early phase of recovery, we conducted a prospective, double-blind, crossover, placebo-controlled study on 8 patients with pure motor hemiparesia. Each patient underwent two functional magnetic resonance imaging (fMRI) examinations: one under fluoxetine and one under placebo. The first was performed 2 weeks after stroke onset and the second a week later. During the two fMRI examinations, patients performed an active controlled motor task with the affected hand and a passive one conducted by the examiner with the same hand. Motor performance was evaluated by motor tests under placebo and under fluoxetine immediately before the examinations to investigate the effect of fluoxetine on motor function. Under fluoxetine, during the active motor task, hyperactivation in the ipsilesional primary motor cortex was found. Moreover, fluoxetine significantly improved motor skills of the affected side. We found that a single dose of fluoxetine was enough to modulate cerebral sensory-motor activation in patients. This redistribution of activation toward the motor cortex output activation was associated with an enhancement of motor performance.

  8. Dynamic and Active Proteins: Biomolecular Motors in Engineered Nanostructures.

    PubMed

    Vélez, Marisela

    In Nature, proteins perform functions that go well beyond controlled self-assembly at the nano scale. They are the principal components of diverse "biological machines" that can self-assemble into dynamic aggregates that achieve the cold conversion of chemical energy into motion to realize complex functions involved in cell division, cellular transport and cell motility. Nowadays, we have identified many of the proteins involved in these "molecular machines" and know much about their biochemistry, structure and biophysical behavior. Additionally, we have a rich toolbox of resources to engineer the basic dynamic working units into nanostructures to provide them with motion and the capacity to manipulate, transport, separate or sense single molecules to develop in vitro sensors and bioassays. This chapter summarizes some of the progress made in incorporating bio-molecular motors and dynamic self-organizing proteins into protein based functional nanostructures.

  9. Time required for motor activity in lucid dreams.

    PubMed

    Erlacher, Daniel; Schredl, Michael

    2004-12-01

    The present study investigated the relationship between the time required for specific tasks (counting and performing squats) in lucid dreams and in the waking state. Five proficient lucid dreamers (26-34 yr. old, M=29.8, SD=3.0; one woman and four men) participated. Analysis showed that the time needed for counting in a lucid dream is comparable to the time needed for counting in wakefulness, but motor activities required more time in lucid dreams than in the waking state.

  10. Decreased Activation of Subcortical Brain Areas in the Motor Fatigue State: An fMRI Study

    PubMed Central

    Hou, Li J.; Song, Zheng; Pan, Zhu J.; Cheng, Jia L.; Yu, Yong; Wang, Jun

    2016-01-01

    One aspect of motor fatigue is the exercise-induced reduction of neural activity to voluntarily drive the muscle or muscle group. Functional magnetic resonance imaging provides access to investigate the neural activation on the whole brain level and studies observed changes of activation intensity after exercise-induced motor fatigue in the sensorimotor cortex. However, in human, little evidence exists to demonstrate the role of subcortical brain regions in motor fatigue, which is contradict to abundant researches in rodent indicating that during simple movement, the activity of the basal ganglia is modulated by the state of motor fatigue. Thus, in present study, we explored the effect of motor fatigue on subcortical areas in human. A series of fMRI data were collected from 11 healthy subjects while they were executing simple motor tasks in two conditions: before and under the motor fatigue state. The results showed that in both conditions, movements evoked activation volumes in the sensorimotor areas, SMA, cerebellum, thalamus, and basal ganglia. Of primary importance are the results that the intensity and size of activation volumes in the subcortical areas (i.e., thalamus and basal ganglia areas) are significantly decreased during the motor fatigue state, implying that motor fatigue disturbs the motor control processing in a way that both sensorimotor areas and subcortical brain areas are less active. Further study is needed to clarify how subcortical areas contribute to the overall decreased activity of CNS during motor fatigue state. PMID:27536264

  11. From Spontaneous Motor Activity to Coordinated Behaviour: A Developmental Model

    PubMed Central

    Marques, Hugo Gravato; Bharadwaj, Arjun; Iida, Fumiya

    2014-01-01

    In mammals, the developmental path that links the primary behaviours observed during foetal stages to the full fledged behaviours observed in adults is still beyond our understanding. Often theories of motor control try to deal with the process of incremental learning in an abstract and modular way without establishing any correspondence with the mammalian developmental stages. In this paper, we propose a computational model that links three distinct behaviours which appear at three different stages of development. In order of appearance, these behaviours are: spontaneous motor activity (SMA), reflexes, and coordinated behaviours, such as locomotion. The goal of our model is to address in silico four hypotheses that are currently hard to verify in vivo: First, the hypothesis that spinal reflex circuits can be self-organized from the sensor and motor activity induced by SMA. Second, the hypothesis that supraspinal systems can modulate reflex circuits to achieve coordinated behaviour. Third, the hypothesis that, since SMA is observed in an organism throughout its entire lifetime, it provides a mechanism suitable to maintain the reflex circuits aligned with the musculoskeletal system, and thus adapt to changes in body morphology. And fourth, the hypothesis that by changing the modulation of the reflex circuits over time, one can switch between different coordinated behaviours. Our model is tested in a simulated musculoskeletal leg actuated by six muscles arranged in a number of different ways. Hopping is used as a case study of coordinated behaviour. Our results show that reflex circuits can be self-organized from SMA, and that, once these circuits are in place, they can be modulated to achieve coordinated behaviour. In addition, our results show that our model can naturally adapt to different morphological changes and perform behavioural transitions. PMID:25057775

  12. Active learning: learning a motor skill without a coach.

    PubMed

    Huang, Vincent S; Shadmehr, Reza; Diedrichsen, Jörn

    2008-08-01

    When we learn a new skill (e.g., golf) without a coach, we are "active learners": we have to choose the specific components of the task on which to train (e.g., iron, driver, putter, etc.). What guides our selection of the training sequence? How do choices that people make compare with choices made by machine learning algorithms that attempt to optimize performance? We asked subjects to learn the novel dynamics of a robotic tool while moving it in four directions. They were instructed to choose their practice directions to maximize their performance in subsequent tests. We found that their choices were strongly influenced by motor errors: subjects tended to immediately repeat an action if that action had produced a large error. This strategy was correlated with better performance on test trials. However, even when participants performed perfectly on a movement, they did not avoid repeating that movement. The probability of repeating an action did not drop below chance even when no errors were observed. This behavior led to suboptimal performance. It also violated a strong prediction of current machine learning algorithms, which solve the active learning problem by choosing a training sequence that will maximally reduce the learner's uncertainty about the task. While we show that these algorithms do not provide an adequate description of human behavior, our results suggest ways to improve human motor learning by helping people choose an optimal training sequence.

  13. [Gallbladder motor activity in patients with virus hepatitis B].

    PubMed

    Mamos, Arkadiusz; Wichan, Paweł; Chojnacki, Jan; Grzegorczyk, Krzysztof

    2003-12-01

    In acute stage of virus hepatitis B patients often complain of dyspeptic discomfort. They may be a consequence of alimentary tract motor activity disorders including these of gallbladder. Routine ultrasonography in an early phase of virus hepatitis often reveals gallbladder wall thickening what may confirm the above thesis. Thus, a group of 15 patients in an acute phase of virus hepatitis B was subjected to examinations. Gallbladder motor activity was assessed by ultrasonographic method determining its total volume and ejection fraction and volume after test meal stimulus. First examination was performed in the first week since the appearance of yellowing of the walls, successive in 4 and 8 week of the disease. Obtained results were compared to the values obtained in the group of 25 healthy volunteers. It was found out that gallbladder volume was significantly decreased and ejection fraction increased in the acute phase of virus hepatitis B than in the controls. This may speak for gallbladder hyperreactivity in patients in the course of virus hepatitis B. These disorders decreased during two-month observation but even in the 8 week the investigated parameters differed from those found in the control group.

  14. Motor unit size estimation: confrontation of surface EMG with macro EMG.

    PubMed

    Roeleveld, K; Stegeman, D F; Falck, B; Stålberg, E V

    1997-06-01

    Surface EMG (SEMG) is little used for diagnostic purposes in clinical neurophysiology, mainly because it provides little direct information on individual motor units (MUs). One of the techniques to estimate the MU size is intra-muscular Macro EMG. The present study compares SEMG with Macro EMG. Fifty-eight channel SEMG was recorded simultaneously with Macro EMG. Individual MUPs were obtained by single fiber triggered averaging. All recordings were made from the biceps brachii of healthy subjects during voluntary contraction at low force. High positive correlations were found between all Macro and Surface motor unit potential (MUP) parameters: area, peak-to-peak amplitude, negative peak amplitude and positive peak amplitude. The MUPs recorded with SEMG were dependent on the distance between the MU and the skin surface. Normalizing the SEMG parameters for MU location did not improve the correlation coefficient between the parameters of both techniques. The two measurement techniques had almost the same relative range in MUP parameters in any individual subject compared to the others, especially after normalizing the surface MUP parameters for MU location. MUPs recorded with this type of SEMG provide useful information about the MU size.

  15. Motor unit action potential conduction velocity estimated from surface electromyographic signals using image processing techniques.

    PubMed

    Soares, Fabiano Araujo; Carvalho, João Luiz Azevedo; Miosso, Cristiano Jacques; de Andrade, Marcelino Monteiro; da Rocha, Adson Ferreira

    2015-09-17

    In surface electromyography (surface EMG, or S-EMG), conduction velocity (CV) refers to the velocity at which the motor unit action potentials (MUAPs) propagate along the muscle fibers, during contractions. The CV is related to the type and diameter of the muscle fibers, ion concentration, pH, and firing rate of the motor units (MUs). The CV can be used in the evaluation of contractile properties of MUs, and of muscle fatigue. The most popular methods for CV estimation are those based on maximum likelihood estimation (MLE). This work proposes an algorithm for estimating CV from S-EMG signals, using digital image processing techniques. The proposed approach is demonstrated and evaluated, using both simulated and experimentally-acquired multichannel S-EMG signals. We show that the proposed algorithm is as precise and accurate as the MLE method in typical conditions of noise and CV. The proposed method is not susceptible to errors associated with MUAP propagation direction or inadequate initialization parameters, which are common with the MLE algorithm. Image processing -based approaches may be useful in S-EMG analysis to extract different physiological parameters from multichannel S-EMG signals. Other new methods based on image processing could also be developed to help solving other tasks in EMG analysis, such as estimation of the CV for individual MUs, localization and tracking of innervation zones, and study of MU recruitment strategies.

  16. Familiarity modulates motor activation while other species' actions are observed: a magnetic stimulation study.

    PubMed

    Amoruso, Lucia; Urgesi, Cosimo

    2016-03-01

    Observing other people's actions facilitates the observer's motor system as compared with observing the same individuals at rest. This motor activation is thought to result from mirror-like activity in fronto-parietal areas, which enhances the excitability of the primary motor cortex via cortico-cortical pathways. Although covert motor activation in response to observed actions has been widely investigated between conspecifics, how humans cope with other species' actions has received less attention. For example, it remains unclear whether the human motor system is activated by observing other species' actions, and whether prior familiarity with the non-conspecific agent modulates this activation. Here, we combined single-pulse transcranial magnetic stimulation and motor-evoked potential recording to explore the impact of familiarity on motor activation during the observation of non-conspecific actions. Videos displaying actions performed either by a conspecific (human) or by a non-conspecific (dog) were shown to individuals who had prior familiarity or no familiarity at all with the non-conspecific agent. We found that, whereas individuals with long-lasting familiarity showed similar levels of motor activation for human and canine actions, individuals who had no familiarity showed higher motor activation for human than for canine actions. These findings suggest that the human motor system is flexible enough to resonate with other species, and that familiarity plays a key role in tuning this ability.

  17. Determining the effects of electrical stimulation on functional recovery of denervated rat gastrocnemius muscle using motor unit number estimation.

    PubMed

    Willand, Michael P; Holmes, Michael; Bain, James R; Fahnestock, Margaret; de Bruin, Hubert

    2011-01-01

    The use of electrical muscle stimulation to treat denervated muscle prior to delayed reinnervation has been widely debated. There is evidence showing both positive and negative results following different protocols of electrical stimulation. In this study we investigated the role electrical stimulation has on muscle reinnervation following immediate and delayed nerve repair using motor unit estimation techniques. Rat gastrocnemius muscle was denervated and repaired using the peroneal nerve either immediately or following three-months with and without electrical stimulation. Motor unit counts, average motor unit sizes, and maximum compound action potentials were measured three-months following peroneal nerve repair. Motor unit counts in animals that were denervated and stimulated were significantly higher than those that were denervated and not stimulated. Both average motor unit sizes and maximum compound action potentials showed no significant differences between denervated and denervated-stimulated animals. These results provide evidence that electrical stimulation prior to delayed nerve repair increases muscle receptivity to regenerating axons and may be a worthwhile treatment for peripheral nerve injuries.

  18. Tendon organ sensitivity to steady-state isotonic contraction of in-series motor units in feline peroneus tertius muscle.

    PubMed Central

    Petit, J; Scott, J J; Reynolds, K J

    1997-01-01

    1. Measurements have been made of the sensitivity of tendon organs to steady-state, isotonic contractions of single and groups of in-series motor units in the peroneus tertius muscle of the cat hindlimb. 2. Linear relationships were found between the Ib afferent discharge and the contractile tension generated by tetanic stimulation of single motor units. These relationships held for the fast, fatiguable (FF) units and for all but the lowest tensions generated by the slow (S) and some fast, fatigue resistant (FR) units. The sensitivity of the organs was independent of the contractile properties of the units. 3. Groups of three motor units were stimulated isotonically at low rates (around 30 Hz), but asynchronously to produce a smooth tension profile. Again, linear relationships pertained between the discharge rate and the tension, and the sensitivity was the same for different motor unit types. 4. Under isotonic conditions, therefore, the tendon organs showed linear responses to the tension with similar sensitivities, indicating that tendon organs may have the capacity to signal faithfully steady-state contractile tensions. PMID:9097946

  19. 75 FR 28656 - New United Motor Manufacturing, Inc., Formerly a Joint Venture of General Motors Corporation, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ..., ABM Janitorial, and Toyota Engineering and Manufacturing North America, Fremont, CA; Amended... and Toyota Motor Corporation, including on-site leased workers from Corestaff and ABM Janitorial... leased workers from Corestaff, ABM Janitorial, and Toyota Engineering and Manufacturing North...

  20. Activity-based intervention in motor skill development.

    PubMed

    Apache, R R Goyakla

    2005-06-01

    This study assessed the effectiveness of an activity-based intervention program and a direct instruction program for preschool children with disabilities. Two groups of preschool students (average age=4.1 yr.), classified as having developmental delays or at risk for such delays, were selected. They were provided 15 weeks of physical education through activity-based intervention and 15 weeks of physical education by direct instruction. Instruction was provided three times a week for 30-min. each session. In the fall semester the morning group received physical education through activity-based intervention, while the afternoon group received physical education through direct instruction. In the spring semester delivery of instruction was reversed for each group. The curriculum and activities provided to each group were identical with only the instructional delivery format altered. Two sets of pre- and post-tests using the Test of Gross Motor Development were administered before and after each 15-wk. instructional period. Group improvement in skills was compared between instructional methods. Significant improvement in both locomotor and object control skills through the activity-based intervention was found compared to direct instruction. Activity-based intervention was shown to be easily adapted to a naturalistic educational setting befitting that of preschool education.

  1. Active magnetic suspension in main magnetic field of electric motor

    NASA Astrophysics Data System (ADS)

    Urusov, I. D.; Galkin, V. I.; Likhoshvay, I. P.

    1985-10-01

    An active magnetic suspension for the rotor of an electric motor is considered, especially in small or miniature high-speed devices such as gyros, microturbomachines, and machine-tool spindle drives where it would eliminate the need for extra bearings and contribute to size and weight reduction. A disk-type rotor made of a ferromagnetic material is located horizontally inside the bore of a vertical stator so that weight and external loads compensate the magnetic pull upward. This pull is generated by the magnetic field in the air gap and can be automatically controlled by an electronic feedback circuit which regulates the stator input voltage depending on the rotor position along the stator bore, with a displacement transducer on the rotor indicating the position. The performance of such a suspension with automatic control in a 3-phase induction motor is analyzed on the basis of the system of differential equations describing the behavior of the electromechanical system during axial oscillations of the rotor, assuming a constant rotor speed during the transient periods.

  2. Active fluidization of polymer networks through molecular motors.

    PubMed

    Humphrey, D; Duggan, C; Saha, D; Smith, D; Käs, J

    2002-03-28

    Entangled polymer solutions and melts exhibit elastic, solid-like resistance to quick deformations and a viscous, fluid-like response to slow deformations. This viscoelastic behaviour reflects the dynamics of individual polymer chains driven by brownian motion: since individual chains can only move in a snake-like fashion through the mesh of surrounding polymer molecules, their diffusive transport, described by reptation, is so slow that the relaxation of suddenly imposed stress is delayed. Entangled polymer solutions and melts therefore elastically resist deforming motions that occur faster than the stress relaxation time. Here we show that the protein myosin II permits active control over the viscoelastic behaviour of actin filament solutions. We find that when each actin filament in a polymerized actin solution interacts with at least one myosin minifilament, the stress relaxation time of the polymer solution is significantly shortened. We attribute this effect to myosin's action as a 'molecular motor', which allows it to interact with randomly oriented actin filaments and push them through the solution, thus enhancing longitudinal filament motion. By superseding reptation with sliding motion, the molecular motors thus overcome a fundamental principle of complex fluids: that only depolymerization makes an entangled, isotropic polymer solution fluid for quick deformations.

  3. Application of Super-Synchronization Speed Control Technology in Two 80 MVA Motor-Generator Units of HL-2A

    NASA Astrophysics Data System (ADS)

    Li, Huajun; Du, Chang; Xuan, Weiming; Pen, Jianfei; Hu, Haotian; Liu, Lin; Kang, Li; Xu, Lirong; Huang, Zhaorong; Wang, Fen; Wang, Xiaoping

    2007-04-01

    Two sets of super-synchronization speed control assemblies for two 80 MVA motor-generator units have been developed successfully in order to satisfy the demand of the toroidal field system in the HL-2A tokamak. Based on the three-phase logical no-circumfluence a.c./a.c. cycloconverter, the speeds of two 2500 kW double fed drive motors have been regulated by means of the vector control technology. The maximum operating speed of each motor- generator unit has been raised from 1488 rpm (revolutions per minute) to 1650 rpm and the released energy of each unit during a pulsed discharge can reach 500 MJ. As a result, the toroidal field system has the capacity to provide 2.8 tesla (T) in HL-2A experiments.

  4. Acute effects of dynamic exercises on the relationship between the motor unit firing rate and the recruitment threshold.

    PubMed

    Ye, Xin; Beck, Travis W; DeFreitas, Jason M; Wages, Nathan P

    2015-04-01

    The aim of this study was to compare the acute effects of concentric versus eccentric exercise on motor control strategies. Fifteen men performed six sets of 10 repetitions of maximal concentric exercises or eccentric isokinetic exercises with their dominant elbow flexors on separate experimental visits. Before and after the exercise, maximal strength testing and submaximal trapezoid isometric contractions (40% of the maximal force) were performed. Both exercise conditions caused significant strength loss in the elbow flexors, but the loss was greater following the eccentric exercise (t=2.401, P=.031). The surface electromyographic signals obtained from the submaximal trapezoid isometric contractions were decomposed into individual motor unit action potential trains. For each submaximal trapezoid isometric contraction, the relationship between the average motor unit firing rate and the recruitment threshold was examined using linear regression analysis. In contrast to the concentric exercise, which did not cause significant changes in the mean linear slope coefficient and y-intercept of the linear regression line, the eccentric exercise resulted in a lower mean linear slope and an increased mean y-intercept, thereby indicating that increasing the firing rates of low-threshold motor units may be more important than recruiting high-threshold motor units to compensate for eccentric exercise-induced strength loss.

  5. Actin network architecture can determine myosin motor activity.

    PubMed

    Reymann, Anne-Cécile; Boujemaa-Paterski, Rajaa; Martiel, Jean-Louis; Guérin, Christophe; Cao, Wenxiang; Chin, Harvey F; De La Cruz, Enrique M; Théry, Manuel; Blanchoin, Laurent

    2012-06-08

    The organization of actin filaments into higher-ordered structures governs eukaryotic cell shape and movement. Global actin network size and architecture are maintained in a dynamic steady state through regulated assembly and disassembly. Here, we used experimentally defined actin structures in vitro to investigate how the activity of myosin motors depends on network architecture. Direct visualization of filaments revealed myosin-induced actin network deformation. During this reorganization, myosins selectively contracted and disassembled antiparallel actin structures, while parallel actin bundles remained unaffected. The local distribution of nucleation sites and the resulting orientation of actin filaments appeared to regulate the scalability of the contraction process. This "orientation selection" mechanism for selective contraction and disassembly suggests how the dynamics of the cellular actin cytoskeleton can be spatially controlled by actomyosin contractility.

  6. Mephedrone (‘bath salt’) elicits conditioned place preference and dopamine-sensitive motor activation

    PubMed Central

    Lisek, Renata; Xu, Wei; Yuvasheva, Ekaterina; Chiu, Yi-Ting; Reitz, Allen B.; Liu-Chen, Lee-Yuan; Rawls, Scott M.

    2012-01-01

    Abuse of a dangerous street drug called mephedrone (4-methylmethcathinone) has become commonplace in the United States. Mephedrone is hypothesized to possess abuse liability, share pharmacological properties with psychostimulants, and display toxicity that has been linked to fatalities and non-fatal overdoses. Knowledge about the pharmacology of mephedrone has been obtained primarily from surveys of drug abusers and emergency room visits rather than experimental studies. The present study used motor activity and conditioned place preference (CPP) assays to investigate behavioral effects of mephedrone. Acute mephedrone (3, 5, 10, 30 mg/kg, ip) administration increased ambulatory activity in rats. Mephedrone (5 mg/kg, ip)-induced ambulation was inhibited by pretreatment with a dopamine D1 receptor antagonist (SCH 23390) (0.5, 1, 2 mg/kg, ip) and enhanced by pretreatment with a dopamine D2 receptor antagonist (sulpiride) (2 mg/kg, ip). Rats injected for 5 days with low dose mephedrone (0.5 mg/kg, ip) and then challenged with mephedrone (0.5 mg/kg, ip) following 10 days of abstinence displayed sensitization of ambulatory activity. In CPP experiments, mephedrone (30 mg/kg, ip) conditioning elicited a preference shift in both rats and mice. The CPP and dopamine-sensitive motor activation produced by mephedrone is suggestive of abuse liability and indicates commonalities between the neuropharmacological profiles of mephedrone and established drugs of abuse. PMID:22652295

  7. Modulation of motor cortex neuronal activity and motor behavior during subthalamic nucleus stimulation in the normal primate.

    PubMed

    Johnson, Luke A; Xu, Weidong; Baker, Kenneth B; Zhang, Jianyu; Vitek, Jerrold L

    2015-04-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a well-established surgical therapy for advanced Parkinson's disease (PD). An emerging hypothesis is that the therapeutic benefit of DBS is derived from direct modulation of primary motor cortex (M1), yet little is known about the influence of STN DBS on individual neurons in M1. We investigated the effect of STN DBS, delivered at discrete interval intensities (20, 40, 60, 80, and 100%) of corticospinal tract threshold (CSTT), on motor performance and M1 neuronal activity in a naive nonhuman primate. Motor performance during a food reach and retrieval task improved during low-intensity stimulation (20% CSTT) but worsened as intensity approached the threshold for activation of corticospinal fibers (80% and 100% CSTT). To assess cortical effects of STN DBS, spontaneous, extracellular neuronal activity was collected from M1 neurons before, during, and after DBS at the same CSTT stimulus intensities. STN DBS significantly modulated the firing of a majority of M1 neurons; however, the direction of effect varied with stimulus intensity such that, at 20% CSTT, most neurons were suppressed, whereas at the highest stimulus intensities the majority of neurons were activated. At a population level, firing rates increased as stimulus intensity increased. These results show that STN DBS influences both motor performance and M1 neuronal activity systematically according to stimulus intensity. In addition, the unanticipated reduction in reach times suggests that STN DBS, at stimulus intensities lower than typically used for treatment of PD motor signs, can enhance normal motor performance.

  8. Motor Neuron Activation in Peripheral Nerves Using Infrared Neural Stimulation

    PubMed Central

    Peterson, EJ; Tyler, DJ

    2014-01-01

    Objective Localized activation of peripheral axons may improve selectivity of peripheral nerve interfaces. Infrared neural stimulation (INS) employs localized delivery to activate neural tissue. This study investigated INS to determine whether localized delivery limited functionality in larger mammalian nerves. Approach The rabbit sciatic nerve was stimulated extraneurally with 1875 nm-wavelength infrared light, electrical stimulation, or a combination of both. Infrared-sensitive regions (ISR) of the nerve surface and electromyogram (EMG) recruitment of the Medial Gastrocnemius, Lateral Gastrocnemius, Soleus, and Tibialis Anterior were the primary output measures. Stimulation applied included infrared-only, electrical-only, and combined infrared and electrical. Main results 81% of nerves tested were sensitive to INS, with 1.7± 0.5 ISR detected per nerve. INS was selective to a single muscle within 81% of identified ISR. Activation energy threshold did not change significantly with stimulus power, but motor activation decreased significantly when radiant power was decreased. Maximum INS levels typically recruited up to 2–9% of any muscle. Combined infrared and electrical stimulation differed significantly from electrical recruitment in 7% of cases. Significance The observed selectivity of INS indicates it may be useful in augmenting rehabilitation, but significant challenges remain in increasing sensitivity and response magnitude to improve the functionality of INS. PMID:24310923

  9. Motor neuron activation in peripheral nerves using infrared neural stimulation

    NASA Astrophysics Data System (ADS)

    Peterson, E. J.; Tyler, D. J.

    2014-02-01

    Objective. Localized activation of peripheral axons may improve selectivity of peripheral nerve interfaces. Infrared neural stimulation (INS) employs localized delivery to activate neural tissue. This study investigated INS to determine whether localized delivery limited functionality in larger mammalian nerves. Approach. The rabbit sciatic nerve was stimulated extraneurally with 1875 nm wavelength infrared light, electrical stimulation, or a combination of both. Infrared-sensitive regions (ISR) of the nerve surface and electromyogram (EMG) recruitment of the Medial Gastrocnemius, Lateral Gastrocnemius, Soleus, and Tibialis Anterior were the primary output measures. Stimulation applied included infrared-only, electrical-only, and combined infrared and electrical. Main results. 81% of nerves tested were sensitive to INS, with 1.7 ± 0.5 ISR detected per nerve. INS was selective to a single muscle within 81% of identified ISR. Activation energy threshold did not change significantly with stimulus power, but motor activation decreased significantly when radiant power was decreased. Maximum INS levels typically recruited up to 2-9% of any muscle. Combined infrared and electrical stimulation differed significantly from electrical recruitment in 7% of cases. Significance. The observed selectivity of INS indicates that it may be useful in augmenting rehabilitation, but significant challenges remain in increasing sensitivity and response magnitude to improve the functionality of INS.

  10. Fluoride exposure from hydrofluoric acid in a motor gasoline alkylation unit

    SciTech Connect

    Brown, M.G.

    1985-11-01

    To assess the possible health risks associated with occupational exposure to gaseous fluoride, air and biological monitoring surveys were carried out at a motor gasoline alkylation unit within an oil refinery. Pre- and post-shift urinary fluoride measurements were obtained from 27 male operators and maintenance workers attached to the plant; personal fluoride-in-air monitoring was carried out simultaneously for 23 of these men. All readings were below NIOSH recommendations and Australia exposure standards. Significant exposure identified by changes in urine level during the shift could be demonstrated only in sub-groups of workers whose jobs involved higher routine exposures. No significant correlation between air levels and changes in urinary fluoride during the shift could be demonstrated. This survey indicates that the workers in this plant are not at risk of chronic fluorosis.

  11. Dopamine activates the motor pattern for crawling in the medicinal leech.

    PubMed

    Puhl, Joshua G; Mesce, Karen A

    2008-04-16

    Locomotion in segmented animals is thought to be based on the coupling of "unit burst generators," but the biological nature of the unit burst generator has been revealed in only a few animal systems. We determined that dopamine (DA), a universal modulator of motor activity, is sufficient to activate fictive crawling in the medicinal leech, and can exert its actions within the smallest division of the animal's CNS, the segmental ganglion. In the entire isolated nerve cord or in the single ganglion, DA induced slow antiphasic bursting (approximately 15 s period) of motoneurons known to participate in the two-step elongation-contraction cycle underlying crawling behavior. During each cycle, the dorsal (DE-3) and ventral (VE-4) longitudinal excitor motoneurons fired approximately 180 degrees out of phase from the ventrolateral circular excitor motoneuron (CV), which marks the elongation phase. In many isolated whole nerve cords, DE-3 bursting progressed in an anterior to posterior direction with intersegmental phase delays appropriate for crawling. In the single ganglion, the dorsal (DI-1) and ventral (VI-2) inhibitory longitudinal motoneurons fired out of phase with each DE-3 burst, further confirming that the crawl unit burst generator exists in the single ganglion. All isolated ganglia of the CNS were competent to produce DA-induced robust fictive crawling, which typically lasted uninterrupted for 5-15 min. A quantitative analysis indicated that DA-induced crawling was not significantly different from electrically evoked or spontaneous crawling. We conclude that DA is sufficient to activate the full crawl motor program and that the kernel for crawling resides within each segmental ganglion.

  12. Experimental muscle pain increases variability of neural drive to muscle and decreases motor unit coherence in tremor frequency band

    PubMed Central

    Yavuz, Utku Ş.; Negro, Francesco; Falla, Deborah

    2015-01-01

    It has been observed that muscle pain influences force variability and low-frequency (<3 Hz) oscillations in the neural drive to muscle. In this study, we aimed to investigate the effect of experimental muscle pain on the neural control of muscle force at higher frequency bands, associated with afferent feedback (alpha band, 5–13 Hz) and with descending cortical input (beta band, 15–30 Hz). Single-motor unit activity was recorded, in two separate experimental sessions, from the abductor digiti minimi (ADM) and tibialis anterior (TA) muscles with intramuscular wire electrodes, during isometric abductions of the fifth finger at 10% of maximal force [maximum voluntary contraction (MVC)] and ankle dorsiflexions at 25% MVC. The contractions were repeated under three conditions: no pain (baseline) and after intramuscular injection of isotonic (0.9%, control) and hypertonic (5.8%, painful) saline. The results showed an increase of the relative power of both the force signal and the neural drive at the tremor frequency band (alpha, 5–13 Hz) between the baseline and hypertonic (painful) conditions for both muscles (P < 0.05) but no effect on the beta band. Additionally, the strength of motor unit coherence was lower (P < 0.05) in the hypertonic condition in the alpha band for both muscles and in the beta band for the ADM. These results indicate that experimental muscle pain increases the amplitude of the tremor oscillations because of an increased variability of the neural control (common synaptic input) in the tremor band. Moreover, the concomitant decrease in coherence suggests an increase in independent input in the tremor band due to pain. PMID:26019314

  13. Magnetic stimulation of the human motor cortex evokes skin sympathetic nerve activity.

    PubMed

    Silber, D H; Sinoway, L I; Leuenberger, U A; Amassian, V E

    2000-01-01

    Single-pulse magnetic coil stimulation (Cadwell MES 10) over the cranium induces without pain an electric pulse in the underlying cerebral cortex. Stimulation over the motor cortex can elicit a muscle twitch. In 10 subjects, we tested whether motor cortical stimulation could also elicit skin sympathetic nerve activity (SSNA; n = 8) and muscle sympathetic nerve activity (MSNA; n = 5) in the peroneal nerve. Focal motor cortical stimulation predictably elicited bursts of SSNA but not MSNA; with successive stimuli, the SSNA responses did not readily extinguish (94% of discharges to the motor cortex evoked SSNA responses) and had predictable latencies [739 +/- 33 (SE) to 895 +/- 13 ms]. The SSNA responses were similar after stimulation of dominant and nondominant sides. Focal stimulation posterior to the motor cortex elicited extinguishable SSNA responses. In three of six subjects, anterior cortical stimulation evoked SSNA responses similar to those seen with motor cortex stimulation but without detectable movement; in the other subjects, anterior stimulation evoked less SSNA discharge than that seen with motor cortex stimulation. Contrasting with motor cortical stimulation, evoked SSNA responses were more readily extinguished with 1) peripheral stimulation that directly elicited forearm muscle activation accompanied by electromyograms similar to those with motor cortical stimulation; 2) auditory stimulation by the click of the energized coil when off the head; and 3) in preliminary experiments, finger afferent stimulation sufficient to cause tingling. Our findings are consistent with the hypothesis that motor cortex stimulation can cause activation of both alpha-motoneurons and SSNA.

  14. Subthreshold activation of the superior colliculus drives saccade motor learning.

    PubMed

    Soetedjo, Robijanto; Fuchs, Albert F; Kojima, Yoshiko

    2009-12-02

    How the brain learns and maintains accurate precision movements is currently unknown. At times throughout life, rapid gaze shifts (saccades) become inaccurate, but the brain makes gradual adjustments so they again stop on target. Previously, we showed that complex spikes (CSs) in Purkinje cells of the oculomotor cerebellum report the direction and amplitude by which saccades are in error. Anatomical studies indicate that this error signal could originate in the superior colliculus (SC). Here, we deliver subthreshold electrical stimulation of the SC after the saccade lands to signal an apparent error. The size of saccades in the same direction as the simulated error gradually increase; those in the opposite direction decrease. The electrically adapted saccades endure after stimulation is discontinued, exhibit an adaptation field, can undergo changes in direction, and depend on error timing. These electrically induced adaptations were virtually identical with those produced by the visually induced adaptations that we report here for comparable visual errors in the same monkeys. Therefore, our experiments reveal that an additional role for the SC in the generation of saccades is to provide a vector error signal that drives dysmetric saccades to adapt. Moreover, the characteristics of the electrically induced adaptation reflect those of error-related CS activity in the oculomotor cerebellum, suggesting that CS activity serves as the learning signal. We speculate that CS activity may serve as the error signal that drives other kinds of motor learning as well.

  15. Molecular motors robustly drive active gels to a critically connected state

    NASA Astrophysics Data System (ADS)

    Alvarado, José; Sheinman, Michael; Sharma, Abhinav; Mackintosh, Fred C.; Koenderink, Gijsje H.

    2013-09-01

    Living systems naturally exhibit internal driving: active, molecular processes drive non-equilibrium phenomena such as metabolism or migration. Active gels constitute a fascinating class of internally driven matter, in which molecular motors exert localized stresses inside polymer networks. There is evidence that network crosslinking is required to allow motors to induce macroscopic contraction. Yet a quantitative understanding of how network connectivity enables contraction is lacking. Here we show experimentally that myosin motors contract crosslinked actin polymer networks to clusters with a scale-free size distribution. This critical behaviour occurs over an unexpectedly broad range of crosslink concentrations. To understand this robustness, we developed a quantitative model of contractile networks that takes into account network restructuring: motors reduce connectivity by forcing crosslinks to unbind. Paradoxically, to coordinate global contractions, motor activity should be low. Otherwise, motors drive initially well-connected networks to a critical state where ruptures form across the entire network.

  16. A HRP study of the relation between cell size and motor unit type in cat ankle extensor motoneurons.

    PubMed

    Burke, R E; Dum, R P; Fleshman, J W; Glenn, L L; Lev-Tov, A; O'Donovan, M J; Pinter, M J

    1982-07-20

    The dimensions of the somata and stem dendrites of 57 alpha- and three gamma-motoneurons, identified as to motor unit type and labeled by intracellular injection of horseradish peroxidase, were measured in the triceps surae and plantaris motor pools. The somata of type S motoneurons tended to be smaller (mean diameter 47.9 micrometers) than those of FF and FR units (52.5 and 53.1 micrometer, respectively) but these mean values were not significantly different and the data distributions showed considerable overlap between the unit types. The mean numbers and diameters of stem dendrites exhibited somewhat larger differences related to motor unit type and some of these were statistically significant. The total membrane area (AN) of each cell was estimated from measurements of the soma and stem dendrites, by using recent data and Ulfhake and Kellerth ('81) to calculate the membrane area of a dendritic tree from stem dendrite diameter. Mean AN varied with motor unit type in the sequence FF greater than FR greater than S (average values: 369 X 100(3) micrometers 2, 323 X 100(3) micrometers 2, and 250 X 100(3) micrometers 2, respectively). There was covariation between AN and the conduction velocity of the motor axon as well as with the force output from the muscle unit. Comparison of AN and motoneuron input resistance (RN) in 19 alpha-motoneurons suggested that the specific resistivity of the cell membrane in type S motoneurons was systematically higher than that characteristic of type FF or FR motoneurons.

  17. Child Development Associate Training Program. Unit IV: Motor Development in Young Children. Module 2: Fostering the Development of Fine Motor Skills in Young Children.

    ERIC Educational Resources Information Center

    Office of Child Development (DHEW), Washington, DC.

    Skills necessary for fostering fine motor development in young children are indicated and discussed in this training module for Child Development Associate (CDA) trainees. Trainees are taught to identify appropriate classroom equipment and materials, plan lessons and activities, assess children's skills, and finally teach a lesson or guide an…

  18. Post-tetanic potentiation of twitch motor units in snake costocutaneous muscle.

    PubMed Central

    Hammond, G R; Ridge, R M

    1978-01-01

    1. Isometric twitch responses of single motor units in snake costocutaneous muscle have been recorded before and after conditioning tetanic stimulation. 2. Most units showed post-tetanic potentiation of twitch tension, associated with increased maximal rate of rise of twitch tension, and in some cases also associated with prolongation of twitch contraction time. A few units showed a short phase of actual depression of the post-tetanic twich responses, followed by potentiation. 3. The time course and magnitude of post-tetanic changes of twitch tension and maximal rate of rise of tension could be described by the sum of three processes which are assumed to be maximal close to the end of the conditioning tetanus: (i) a rapidly declining potentiation (called here early potentiation, which lasted less than 2 sec) which may have a purely mechanical origin; (ii) a much slower-declining potentiation (called here prolonged potentiation, which lasted up to 15 min); and (iii) a process which lasted up to 60 sec during which twitch potentiation was reduced. The latter process (called here depressed potentiation) was usually apparent as a marked trough in the plots of twitch amplitude versus time after the conditioning tetanus, and occassionally was evident as an actual transient depression of twitch amplitude after the tetanus compared with that before. 4. The effects of the prolonged potentiation and the depressed potentiation on the maximal effect of each process close to the end of the tetanus were extracted by fitting single exponential equations to different portions of the data, using a computer program. 5. Twitch potentiation associated with increased maximal rate of rise of tension seemed to be a separate phenomenon to that associated with prolongation of contraction time, seen when conditioning tetani of higher frequency and numbers of stimuli were employed. The depressed potentiation of twitch tension tended to be partly masked in cases where contraction time was

  19. Training in the Motor Vehicle Repair and Sales Sector in the United Kingdom. Report for the FORCE Programme. First Edition.

    ERIC Educational Resources Information Center

    Rhys, Garel

    An international team of researchers studied the following aspects of training in the United Kingdom's motor vehicle repair and sales sector: structure and characteristics; institutional and social context; relationship to the labor market; changing structural, economic, and organizational conditions; and training/recruitment and relationship to…

  20. Asymmetry of motor unit number estimate and its rate of decline in patients with amyotrophic lateral sclerosis.

    PubMed

    Ahn, Suk-Won; Kim, Jee-Eun; Sung, Jung-Joon; Lee, Kwang-Woo; Hong, Yoon-Ho

    2011-10-01

    This study was performed to investigate the asymmetry of motor unit number estimate (MUNE) and its longitudinal course in patients with amyotrophic lateral sclerosis. A modified statistical MUNE was performed at the hypothenar muscles bilaterally in a total of 135 patients, and 18 of these patients underwent a follow-up study. The degree of asymmetry varied considerably among those patients whose average MUNE of both sides was moderately reduced, whereas it tended to be low in those whose average MUNE was either severely reduced or close to normal. The rate of motor unit loss was also asymmetric, and two distinct patterns were identified. In patients whose MUNE was greater than 30 in both sides (n = 7), the rate of motor unit loss tended to be greater in the initially more affected side compared with the contralateral one, yielding the so-called lead phenomenon. In contrast, the other patients (n = 11) tended to show the opposite pattern of "catch-up," that is, MUNE declined faster in the initially less affected side compared with the contralateral one. This study shows that not only the MUNE but also the rate of motor unit loss are frequently asymmetric in amyotrophic lateral sclerosis patients.

  1. Activation of thalamus in motor imagery results from gating by hypnosis.

    PubMed

    Müller, Katharina; Bacht, Katrin; Prochnow, Denise; Schramm, Stefanie; Seitz, Rüdiger J

    2013-02-01

    The ability to mentally imagine the performance of automatic movements has been well-established being employed in sports and physiotherapy as a tool for motor learning and rehabilitation. This is probably mediated by engagement of the same brain areas as during real motor performance. Here we investigated the effect of hypnotic trance on the cerebral activation pattern engaged in motor imagery in 16 healthy, right-handed subjects using fMRI. Motor imagery as compared with rest was related to activations in the left medial frontal areas (preSMA/SMA), prefrontal- and frontal areas, putamen and inferior parietal areas. When compared with performance of the same movements motor imagery resulted in activation of the left middle frontal cortex, precuneus, and posterior cingulate. Under hypnotic trance there was one extra-activation in the left thalamus which occurred specifically in the motor imagery condition. The regional beta indices were highly correlated among the areas of the cortical-subcortical motor network. Our data accord with the notion that hypnotic trance enhances the motor control circuit engaged in motor imagery by modulating the gating function of the thalamus.

  2. Multimotor transport in a system of active and inactive kinesin-1 motors.

    PubMed

    Scharrel, Lara; Ma, Rui; Schneider, René; Jülicher, Frank; Diez, Stefan

    2014-07-15

    Long-range directional transport in cells is facilitated by microtubule-based motor proteins. One example is transport in a nerve cell, where small groups of motor proteins, such as kinesins and cytoplasmic dynein, work together to ensure the supply and clearance of cellular material along the axon. Defects in axonal transport have been linked to Alzheimer's and other neurodegenerative diseases. However, it is not known in detail how multimotor-based cargo transport is impaired if a fraction of the motors are defective. To mimic impaired multimotor transport in vitro, we performed gliding motility assays with varying fractions of active kinesin-1 motors and inactive kinesin-1 motor mutants. We found that impaired transport manifests in multiple motility regimes: 1), a fast-motility regime characterized by gliding at velocities close to the single-molecule velocity of the active motors; 2), a slow-motility regime characterized by gliding at close-to zero velocity or full stopping; and 3), a regime in which fast and slow motilities coexist. Notably, the transition from the fast to the slow regime occurred sharply at a threshold fraction of active motors. Based on single-motor parameters, we developed a stochastic model and a mean-field theoretical description that explain our experimental findings. Our results demonstrate that impaired multimotor transport mostly occurs in an either/or fashion: depending on the ratio of active to inactive motors, transport is either performed at close to full speed or is out of action.

  3. One central oscillatory drive is compatible with experimental motor unit behaviour in essential and Parkinsonian tremor

    NASA Astrophysics Data System (ADS)

    Dideriksen, Jakob L.; Gallego, Juan A.; Holobar, Ales; Rocon, Eduardo; Pons, Jose L.; Farina, Dario

    2015-08-01

    Objective. Pathological tremors are symptomatic to several neurological disorders that are difficult to differentiate and the way by which central oscillatory networks entrain tremorogenic contractions is unknown. We considered the alternative hypotheses that tremor arises from one oscillator (at the tremor frequency) or, as suggested by recent findings from the superimposition of two separate inputs (at the tremor frequency and twice that frequency). Approach. Assuming one central oscillatory network we estimated analytically the relative amplitude of the harmonics of the tremor frequency in the motor neuron output for different temporal behaviors of the oscillator. Next, we analyzed the bias in the relative harmonics amplitude introduced by superimposing oscillations at twice the tremor frequency. These findings were validated using experimental measurements of wrist angular velocity and surface electromyography (EMG) from 22 patients (11 essential tremor, 11 Parkinson’s disease). The ensemble motor unit action potential trains identified from the EMG represented the neural drive to the muscles. Main results. The analytical results showed that the relative power of the tremor harmonics in the analytical models of the neural drive was determined by the variability and duration of the tremor bursts and the presence of the second oscillator biased this power towards higher values. The experimental findings accurately matched the analytical model assuming one oscillator, indicating a negligible functional role of secondary oscillatory inputs. Furthermore, a significant difference in the relative power of harmonics in the neural drive was found across the patient groups, suggesting a diagnostic value of this measure (classification accuracy: 86%). This diagnostic power decreased substantially when estimated from limb acceleration or the EMG. Signficance. The results indicate that the neural drive in pathological tremor is compatible with one central network

  4. Central command does not decrease cardiac parasympathetic efferent nerve activity during spontaneous fictive motor activity in decerebrate cats.

    PubMed

    Kadowaki, Akito; Matsukawa, Kanji; Wakasugi, Rie; Nakamoto, Tomoko; Liang, Nan

    2011-04-01

    To examine whether withdrawal of cardiac vagal efferent nerve activity (CVNA) predominantly controls the tachycardia at the start of exercise, the responses of CVNA and cardiac sympathetic efferent nerve activity (CSNA) were directly assessed during fictive motor activity that occurred spontaneously in unanesthetized, decerebrate cats. CSNA abruptly increased by 71 ± 12% at the onset of the motor activity, preceding the tachycardia response. The increase in CSNA lasted for 4-5 s and returned to the baseline, even though the motor activity was not ended. The increase of 6 ± 1 beats/min in heart rate appeared with the same time course of the increase in CSNA. In contrast, CVNA never decreased but increased throughout the motor activity, in parallel with a rise in mean arterial blood pressure (MAP). The peak increase in CVNA was 37 ± 9% at 5 s after the motor onset. The rise in MAP gradually developed to 21 ± 2 mmHg and was sustained throughout the spontaneous motor activity. Partial sinoaortic denervation (SAD) blunted the baroreflex sensitivity of the MAP-CSNA and MAP-CVNA relationship to 22-33% of the control. Although partial SAD blunted the initial increase in CSNA to 53% of the control, the increase in CSNA was sustained throughout the motor activity. In contrast, partial SAD almost abolished the increase in CVNA during the motor activity, despite the augmented elevation of 31 ± 1 mmHg in MAP. Because afferent inputs from both muscle receptors and arterial baroreceptors were absent or greatly attenuated in the partial SAD condition, only central command was operating during spontaneous fictive motor activity in decerebrate cats. Therefore, it is likely that central command causes activation of cardiac sympathetic outflow but does not produce withdrawal of cardiac parasympathetic outflow during spontaneous motor activity.

  5. Brain activation patterns of motor imagery reflect plastic changes associated with intensive shooting training.

    PubMed

    Baeck, Jong-Su; Kim, Yang-Tae; Seo, Jee-Hye; Ryeom, Hun-Kyu; Lee, Jongmin; Choi, Sung-Mook; Woo, Minjung; Kim, Woojong; Kim, Jin Gu; Chang, Yongmin

    2012-09-01

    Evidence from previous studies has suggested that motor imagery and motor action engage overlapping brain systems. As a result of this observation that motor imagery can activate brain regions associated with actual motor movement, motor imagery is expected to enhance motor skill performance and become an underlying principle for physical training in sports and physical rehabilitation. However, few studies have examined the effects of physical training on motor imagery in beginners. Also, differences in neural networks related to motor imagery before and after training have seldom been studied. In the current study, using functional magnetic resonance imaging (fMRI), we investigated the question of whether motor imagery can reflect plastic changes of neural correlates associated with intensive training. In fact, motor imagery was used in this study as a tool to assess the brain areas involved in shooting and involved in learning of shooting. We discovered that use of motor imagery resulted in recruitment of widely distributed common cortical areas, which were suggested to play a role in generation and maintenance of mental images before and after 90 h of shooting training. In addition to these common areas, brain activation before and after 90 h of shooting practice showed regionally distinct patterns of activity change in subcortical motor areas. That is, basal ganglia showed increased activity after 90 h of shooting practice, suggesting the occurrence of plastic change in association with gains in performance and reinforcement learning. Therefore, our results suggest that, in order to reach a level of expertise, the brain would change through initial reinforcement of preexistent connections during the training period and then use more focused neural correlates through formation of new connections.

  6. Stem cell cytoskeleton is slaved to active motors

    NASA Astrophysics Data System (ADS)

    Rehfeldt, Florian; Brown, Andre; Engler, Adam; Discher, Dennis

    2007-03-01

    Cells feel their physical microenvironment through their adhesion and respond to it in various ways. Indeed, matrix elasticity can even guide the differentiation of human adult mesenchymal stem cells (MSCs) [Engler et al. Cell 2006]. Sparse cultures of MSCs on elastic collagen--coated substrates that are respectively soft, stiff, or extremely stiff were shown to induce neurogenesis, myogenesis, and osteogenesis. Lineage commitment was evaluated by morphological analysis, protein expression profiles, and transcription microarrays. Differentiation could be completely blocked with a specific non-muscle myosin II (NMM II) inhibitor, suggesting that contractile motor activity is essential for the cells to sense matrix elasticity. Current studies by AFM and near-field fluorescence imaging show that NMM II inhibition in stem cells on rigid glass surfaces promotes actin-rich dendritic outgrowth resembling neurite extension. Dynamic cell studies have been conducted to elucidate the complex molecular interplay of the contractile apparatus in response to selected physical and biochemical stimuli. Additional insight is being gained by using AFM to investigate the local elasticity of the cell's cytoskeletal force sensing machinery.

  7. Cross-reinnervated motor units in cat muscle. II. Soleus muscle reinnervated by flexor digitorum longus motoneurons.

    PubMed

    Dum, R P; O'Donovan, M J; Toop, J; Tsairis, P; Pinter, M J; Burke, R E

    1985-10-01

    The properties of whole soleus (SOL) muscles and of individual motor units were studied in cats 30-50 wk after self-reinnervation by soleus (SOL) motoneurons (SOL----SOL) or cross-reinnervation by flexor digitorum longus (FDL) motoneurons (FDL----SOL). As in the preceding paper (22), intracellular and glycogen-depletion methods were used to examine the physiological and histochemical properties of individual motor units. The results were compared with data from normal SOL motor units (8, 12). Intentionally self-reinnervated SOL muscles (SOL----SOL; n = 6) were normal in size and wet weight, and all of the five SOL----SOL motor units studied had physiological and histochemical characteristics that matched those of normal SOL units. Cross-reinnervation of SOL by FDL alpha-motoneurons (FDL----SOL; n = 7) produced muscles with wet weights and appearance essentially identical to normal SOL. However, whole-muscle twitch contraction times were much shorter (mean 60.4 ms) than those of normal (mean 136.9 ms, n = 18) or SOL----SOL muscles (mean 115.3 ms; n = 6). Despite this difference, none of the FDL----SOL muscles contained more than 7% histochemical type II muscle fibers, all of which were type IIA. Normal cat SOL muscles can contain up to 5% type IIA fibers, but none of our SOL----SOL muscles showed any type II fibers. Two FDL----SOL muscles had significant amounts of unintended self-reinnervation, permitting side-by-side comparison of FDL----SOL and SOL----SOL muscle fibers. The twitch contraction times of the two populations differed markedly, but they were histochemically indistinguishable except for the fact that SOL----SOL fibers had high neutral fat content (as do normal SOL fibers), whereas FDL----SOL showed much lower fat content. The 23 FDL----SOL muscle units studied were classified as physiological type S by criteria ("sag" test and fatigue resistance) used to identify motor-unit types in normal cat muscles. All five of the FDL----SOL units studied

  8. Recruitment of faster motor units is associated with greater rates of fascicle strain and rapid changes in muscle force during locomotion

    PubMed Central

    Lee, Sabrina S. M.; de Boef Miara, Maria; Arnold, Allison S.; Biewener, Andrew A.; Wakeling, James M.

    2013-01-01

    SUMMARY Animals modulate the power output needed for different locomotor tasks by changing muscle forces and fascicle strain rates. To generate the necessary forces, appropriate motor units must be recruited. Faster motor units have faster activation–deactivation rates than slower motor units, and they contract at higher strain rates; therefore, recruitment of faster motor units may be advantageous for tasks that involve rapid movements or high rates of work. This study identified motor unit recruitment patterns in the gastrocnemii muscles of goats and examined whether faster motor units are recruited when locomotor speed is increased. The study also examined whether locomotor tasks that elicit faster (or slower) motor units are associated with increased (or decreased) in vivo tendon forces, force rise and relaxation rates, fascicle strains and/or strain rates. Electromyography (EMG), sonomicrometry and muscle-tendon force data were collected from the lateral and medial gastrocnemius muscles of goats during level walking, trotting and galloping and during inclined walking and trotting. EMG signals were analyzed using wavelet and principal component analyses to quantify changes in the EMG frequency spectra across the different locomotor conditions. Fascicle strain and strain rate were calculated from the sonomicrometric data, and force rise and relaxation rates were determined from the tendon force data. The results of this study showed that faster motor units were recruited as goats increased their locomotor speeds from level walking to galloping. Slow inclined walking elicited EMG intensities similar to those of fast level galloping but different EMG frequency spectra, indicating that recruitment of the different motor unit types depended, in part, on characteristics of the task. For the locomotor tasks and muscles analyzed here, recruitment patterns were generally associated with in vivo fascicle strain rates, EMG intensity and tendon force. Together, these

  9. Oxytocin stimulates colonic motor activity in healthy women.

    PubMed

    Ohlsson, B; Ringström, G; Abrahamsson, H; Simrén, M; Björnsson, E S

    2004-04-01

    The effects of oxytocin in the gastrointestinal tract are unclear. The aim of this study was to examine the effect of infusion of oxytocin on colonic motility and sensitivity in healthy women. Fourteen healthy women were investigated twice. A 6-channel perfusion catheter, with three recording points (2 cm apart) proximally and three recording points distally to a barostat balloon, was inserted to the splenic flexure. An intestinal feeding tube was placed in the mid-duodenum. A 90-min duodenal lipid infusion of 3 kcal min(-1) was administered. Thirty minutes after the start of the lipid infusion, the subject randomly received either 20 or 40 mU min(-1) of oxytocin, or isotonic saline as intravenous infusions for 90 min. Meanwhile, the colonic motility was recorded. During the last 30 min of oxytocin and saline infusion, the visceral sensitivity to balloon distensions was examined. During lipid infusion the number of antegrade contractions per hour was 0.7 +/- 0.3 after saline and 3.9 +/- 1.4 after oxytocin (P = 0.03), indicating more pronounced lumen-occlusive contractile activity after oxytocin administration. Some of these consisted of high-amplitude (> 103 mmHg in amplitude) antegrade contractions. Lipid infusion evoked a decrease of the balloon volume, reflecting increased colonic tone, but there was no difference between saline and oxytocin. Sensory thresholds did not differ significantly between saline and oxytocin. Infusion of oxytocin stimulates antegrade peristaltic contractions in stimulated colon in healthy women. The effects of oxytocin on colonic motor activity deserve to be further explored, especially in patients with colonic peristaltic dysfunction.

  10. Motor Neurons Tune Premotor Activity in a Vertebrate Central Pattern Generator.

    PubMed

    Lawton, Kristy J; Perry, Wick M; Yamaguchi, Ayako; Zornik, Erik

    2017-03-22

    Central patterns generators (CPGs) are neural circuits that drive rhythmic motor output without sensory feedback. Vertebrate CPGs are generally believed to operate in a top-down manner in which premotor interneurons activate motor neurons that in turn drive muscles. In contrast, the frog (Xenopus laevis) vocal CPG contains a functionally unexplored neuronal projection from the motor nucleus to the premotor nucleus, indicating a recurrent pathway that may contribute to rhythm generation. In this study, we characterized the function of this bottom-up connection. The X. laevis vocal CPG produces a 50-60 Hz "fast trill" song used by males during courtship. We recorded "fictive vocalizations" in the in vitro CPG from the laryngeal nerve while simultaneously recording premotor activity at the population and single-cell level. We show that transecting the motor-to-premotor projection eliminated the characteristic firing rate of premotor neurons. Silencing motor neurons with the intracellular sodium channel blocker QX-314 also disrupted premotor rhythms, as did blockade of nicotinic synapses in the motor nucleus (the putative location of motor neuron-to-interneuron connections). Electrically stimulating the laryngeal nerve elicited primarily IPSPs in premotor neurons that could be blocked by a nicotinic receptor antagonist. Our results indicate that an inhibitory signal, activated by motor neurons, is required for proper CPG function. To our knowledge, these findings represent the first example of a CPG in which precise premotor rhythms are tuned by motor neuron activity.SIGNIFICANCE STATEMENT Central pattern generators (CPGs) are neural circuits that produce rhythmic behaviors. In vertebrates, motor neurons are not commonly known to contribute to CPG function, with the exception of a few spinal circuits where the functional significance of motor neuron feedback is still poorly understood. The frog hindbrain vocal circuit contains a previously unexplored connection from

  11. Transport dynamics of molecular motors that switch between an active and inactive state.

    PubMed

    Pinkoviezky, I; Gov, N S

    2013-08-01

    Molecular motors are involved in key transport processes in the cell. Many of these motors can switch from an active to a nonactive state, either spontaneously or depending on their interaction with other molecules. When active, the motors move processively along the filaments, while when inactive they are stationary. We treat here the simple case of spontaneously switching motors, between the active and inactive states, along an open linear track. We use our recent analogy with vehicular traffic, where we go beyond the mean-field description. We map the phase diagram of this system, and find that it clearly breaks the symmetry between the different phases, as compared to the standard total asymmetric exclusion process. We make several predictions that may be testable using molecular motors in vitro and in living cells.

  12. Innovative Perceptual-Motor Activities: Programing Techniques that Work--Part II.

    ERIC Educational Resources Information Center

    Sorrell, Howard M.

    1979-01-01

    The article describes tasks that promote perceptual motor coordination in handicapped students. An introductory section provides suggestions for implementation and charts the activities in terms of emphasis on visual tracking, visual discrimination and/or copying of forms, spatial body perception, fine motor coordination, tactile discrimination,…

  13. Children Move to Learn: A Guide to Planning Gross Motor Activities.

    ERIC Educational Resources Information Center

    Kline, Judy

    This guide for persons working with young children with gross motor delays is designed to be used in the assessment of gross motor abilities, the detection and identification of delays and the planning and implementation of appropriate Individual Activity Plans (IAP) for correcting the delays. Observation guidelines in the form of questions (Can…

  14. Motor unit synchronization in FDI and biceps brachii muscles of strength-trained males.

    PubMed

    Fling, Brett W; Christie, Anita; Kamen, Gary

    2009-10-01

    Motor unit (MU) synchronization is the simultaneous or near-simultaneous firing of two MUs which occurs more often than would be expected by chance. The present study sought to investigate the effects of exercise training, muscle group, and force level, by comparing the magnitude of synchronization in the biceps brachii (BB) and first dorsal interosseous (FDI) muscles of untrained and strength-trained college-aged males at two force levels, 30% of maximal voluntary contraction (MVC) and 80% MVC. MU action potentials were recorded directly via an intramuscular needle electrode. The magnitude of synchronization was assessed using previously-reported synchronization indices: k', E, and CIS. Synchronization was significantly higher in the FDI than in the BB. Greater synchronization was observed in the strength-trained group with CIS, but not with E or k'. Also, synchronization was significantly greater at 80% MVC than at 30% MVC with E, but only moderately greater with CIS and there was no force difference with k'. Synchronization prevalence was found to be greater in the BB (80.1%) than in the FDI (71.5%). Thus, although the evidence is a bit equivocal, it appears that MU synchronization is greater at higher forces, and greater in strength-trained individuals than in untrained subjects.

  15. Motor unit firing rates of the gastrocnemii during maximal brief steady-state contractions in humans.

    PubMed

    Graham, Mitchell T; Rice, Charles L; Dalton, Brian H

    2016-02-01

    The human triceps surae (soleus, medial (MG) and lateral (LG) gastrocnemii) is complex and important for posture and gait. The soleus exhibits markedly lower motor unit firing rates (MUFRs; ∼16Hz) during maximal voluntary isometric contraction (MVC) than other limb muscles, but this information is unknown for the MG and LG. During multiple visits, subjects performed a series of 5-7, ∼7-s plantar flexor MVCs with tungsten microelectrodes inserted into the MG and LG. During a separate testing session, another group of subjects performed submaximal isometric contractions at 25%, 50%, and 75% MVC with inserted fine-wires in the MG, LG and soleus. Maximum steady-state MUFRs for MG and LG (∼23Hz) were not different, but faster than prior reports for the soleus. No differences between the three triceps surae components were detected for 25% or 50% MVC, but at 75% MVC, the MG MUFRs were 31% greater than soleus. The triceps surae exhibit similar torque modulation strategies at <75% MVC, but to achieve higher contraction intensities (>75% MVC) the gastrocnemii rely on faster rates to generate maximal torque than the soleus. Therefore, the MG and LG exhibit a larger range of MUFR capacities.

  16. Effects of muscle fibre shortening on the characteristics of surface motor unit potentials.

    PubMed

    Rodriguez-Falces, Javier; Place, Nicolas

    2014-02-01

    Traditionally, studies dealing with muscle shortening have concentrated on assessing its impact on conduction velocity, and to this end, electrodes have been located between the end-plate and tendon regions. Possible morphologic changes in surface motor unit potentials (MUPs) as a result of muscle shortening have not, as yet, been evaluated or characterized. Using a convolutional MUP model, we investigated the effects of muscle shortening on the shape, amplitude, and duration characteristics of MUPs for different electrode positions relative to the fibre-tendon junction and for different depths of the MU in the muscle (MU-to-electrode distance). It was found that the effects of muscle shortening on MUP morphology depended not only on whether the electrodes were between the end-plate and the tendon junction or beyond the tendon junction, but also on the specific distance to this junction. When the electrodes lie between the end-plate and tendon junction, it was found that (1) the muscle shortening effect is not important for superficial MUs, (2) the sensitivity of MUP amplitude to muscle shortening increases with MU-to-electrode distance, and (3) the amplitude of the MUP negative phase is not affected by muscle shortening. This study provides a basis for the interpretation of the changes in MUP characteristics in experiments where both physiological and geometrical aspects of the muscle are varied.

  17. Voluntary contraction direction dependence of motor unit number index in patients with amyotrophic lateral sclerosis.

    PubMed

    Zhou, Ping; Nandedkar, Sanjeev D; Barkhaus, Paul E

    2014-09-01

    We investigated the voluntary contraction direction dependence of motor unit number index (MUNIX) for multifunctional muscles in patients with amyotrophic lateral sclerosis (ALS). The MUNIX technique was applied in nine first dorsal interosseous muscles of eight ALS subjects, using surface electromyography (EMG) signals from index finger abduction and flexion, respectively. In seven examined muscles, the MUNIX derived from the index finger abduction mode was smaller than that from the flexion mode. For the remaining two muscles, one had the same MUNIX; the other showed an abduction mode MUNIX much higher than the flexion mode MNUIX. Across all muscles, the median MUNIX was 96 for the index finger abduction mode and 161 for the flexion mode. The findings reveal the dependence of multifunctional muscle MUNIX on voluntary contraction directions in ALS patients. Based on this analysis, we further explored the concept of "multidimensional MUNIX" for an appropriate performance or interpretation of MUNIX in multifunctional muscles of ALS patients. An effort towards such a development was presented using both abduction and flexion mode surface EMG for MUNIX calculation.

  18. [The neuronal level of motor activity: determination of motor cortex excitability by TMS].

    PubMed

    Eichhammer, Peter; Langguth, Berthold; Müller, Jürgen; Hajak, Göran

    2005-04-01

    Transcranial magnetic stimulation as mapping method offers the possibility to measure aspects of motor cortex excitability painlessly and non-invasively. Using this neurophysiological tool, new insights into the effects of central-acting drugs are possible. Particularly striking seems to be the potential of this approach to gain new insights into neurobiological processes associated with neuropsychiatric diseases like schizophrenia or major depression. In combination with genetic aspects, TMS is able to bridge the gap between molecular research and clinical approach.

  19. Relationship between motor activity-related cortical potential and voluntary muscle activation.

    PubMed

    Siemionow, V; Yue, G H; Ranganathan, V K; Liu, J Z; Sahgal, V

    2000-08-01

    The purpose of this study was to investigate the relationship between EEG-derived motor activity-related cortical potential (MRCP) and voluntary muscle activation. Eight healthy volunteers participated in two experimental sessions. In one session, subjects performed isometric elbow-flexion contractions at four intensity levels [10%, 35%, 60%, and 85% maximal voluntary contraction (MVC)]. In another session, a given elbow-flexion force (35% MVC) was generated at three different rates (slow, intermediate, and fast). Thirty to 40 contractions were performed at each force level or rate. EEG signals were recorded from the scalp overlying the supplementary motor area (SMA) and contralateral sensorimotor cortex, and EMG signals were recorded from the skin surface overlying the belly of the biceps brachii and brachioradialis muscles during all contractions. In each trial, the force was used as the triggering signal for MRCP averaging. MRCP amplitude was measured from the beginning to the peak of the negative slope. The magnitude of MRCP from both EEG recording locations (sensorimotor cortex and SMA) was highly correlated with elbow-flexion force, rate of rising of force, and muscle EMG signals. These results suggest that MRCP represents cortical motor commands that scale the level of muscle activation.

  20. Activity-dependent plasticity improves M1 motor representation and corticospinal tract connectivity.

    PubMed

    Chakrabarty, S; Friel, K M; Martin, J H

    2009-03-01

    Motor cortex (M1) activity between postnatal weeks 5 and 7 is essential for normal development of the corticospinal tract (CST) and visually guided movements. Unilateral reversible inactivation of M1, by intracortical muscimol infusion, during this period permanently impairs development of the normal dorsoventral distribution of CST terminations and visually guided motor skills. These impairments are abrogated if this M1 inactivation is followed by inactivation of the contralateral, initially active M1, from weeks 7 to 11 (termed alternate inactivation). This later period is when the M1 motor representation normally develops. The purpose of this study was to determine the effects of alternate inactivation on the motor representation of the initially inactivated M1. We used intracortical microstimulation to map the left M1 1 to 2 mo after the end of left M1 muscimol infusion. We compared representations in the unilateral inactivation and alternate inactivation groups. Alternate inactivation converted the sparse proximal M1 motor representation produced by unilateral inactivation to a complete and high-resolution proximal-distal representation. The motor map was restored by week 11, the same age that our present and prior studies demonstrated that alternate inactivation restored CST spinal connectivity. Thus M1 motor map developmental plasticity closely parallels plasticity of CST spinal terminations. After alternate inactivation reestablished CST connections and the motor map, an additional 3 wk was required for motor skill recovery. Since motor map recovery preceded behavioral recovery, our findings suggest that the representation is necessary for recovering motor skills, but additional time, or experience, is needed to learn to take advantage of the restored CST connections and motor map.

  1. Muscle activation described with a differential equation model for large ensembles of locally coupled molecular motors.

    PubMed

    Walcott, Sam

    2014-10-01

    Molecular motors, by turning chemical energy into mechanical work, are responsible for active cellular processes. Often groups of these motors work together to perform their biological role. Motors in an ensemble are coupled and exhibit complex emergent behavior. Although large motor ensembles can be modeled with partial differential equations (PDEs) by assuming that molecules function independently of their neighbors, this assumption is violated when motors are coupled locally. It is therefore unclear how to describe the ensemble behavior of the locally coupled motors responsible for biological processes such as calcium-dependent skeletal muscle activation. Here we develop a theory to describe locally coupled motor ensembles and apply the theory to skeletal muscle activation. The central idea is that a muscle filament can be divided into two phases: an active and an inactive phase. Dynamic changes in the relative size of these phases are described by a set of linear ordinary differential equations (ODEs). As the dynamics of the active phase are described by PDEs, muscle activation is governed by a set of coupled ODEs and PDEs, building on previous PDE models. With comparison to Monte Carlo simulations, we demonstrate that the theory captures the behavior of locally coupled ensembles. The theory also plausibly describes and predicts muscle experiments from molecular to whole muscle scales, suggesting that a micro- to macroscale muscle model is within reach.

  2. Cerebral-cortical networking and activation increase as a function of cognitive-motor task difficulty.

    PubMed

    Rietschel, Jeremy C; Miller, Matthew W; Gentili, Rodolphe J; Goodman, Ronald N; McDonald, Craig G; Hatfield, Bradley D

    2012-05-01

    Excessive increases in task difficulty typically result in marked attenuation of cognitive-motor performance. The psychomotor efficiency hypothesis suggests that poor performance is mediated by non-essential neural activity and cerebral cortical networking (inefficient cortical dynamics). This phenomenon may underlie the inverse relationship between excessive task difficulty and performance. However, investigation of the psychomotor efficiency hypothesis as it relates to task difficulty has not been conducted. The present study used electroencephalography (EEG) to examine cerebral cortical dynamics while participants were challenged with both Easy and Hard conditions during a cognitive-motor task (Tetris(®)). In accord with the psychomotor efficiency hypothesis, it was predicted that with increases in task difficulty, participants would demonstrate greater 'neural effort,' as indexed by EEG spectral power and cortical networking (i.e., EEG coherence) between the premotor (motor planning) region and sensory, executive, and motor regions. Increases in neural activation and cortical networking were observed during the Hard condition relative to the Easy condition, thus supporting the psychomotor efficiency hypothesis. To further determine the unique contributions of cognitive versus sensory-motor demands, a control experiment was conducted in which cognitive demand was increased while sensory-motor demand was held constant. This experiment revealed that regionally specific neural activation was influenced by changes in cognitive demand, whereas cortical networking to the motor planning region was sensitive only to changes in sensory-motor demand. Crucially, the present study is the first, to our knowledge, to characterize the separate impact of cognitive versus sensory-motor demands on cerebral cortical dynamics. The findings further inform the dynamics of the cortical processes that underlie the quality of cognitive-motor performance particularly with regard to task

  3. Opposing regulation of dopaminergic activity and exploratory motor behavior by forebrain and brainstem cholinergic circuits.

    PubMed

    Patel, Jyoti C; Rossignol, Elsa; Rice, Margaret E; Machold, Robert P

    2012-01-01

    Dopamine transmission is critical for exploratory motor behaviour. A key regulator is acetylcholine; forebrain acetylcholine regulates striatal dopamine release, whereas brainstem cholinergic inputs regulate the transition of dopamine neurons from tonic to burst firing modes. How these sources of cholinergic activity combine to control dopamine efflux and exploratory motor behaviour is unclear. Here we show that mice lacking total forebrain acetylcholine exhibit enhanced frequency-dependent striatal dopamine release and are hyperactive in a novel environment, whereas mice lacking rostral brainstem acetylcholine are hypoactive. Exploratory motor behaviour is normalized by the removal of both cholinergic sources. Involvement of dopamine in the exploratory motor phenotypes observed in these mutants is indicated by their altered sensitivity to the dopamine D2 receptor antagonist raclopride. These results support a model in which forebrain and brainstem cholinergic systems act in tandem to regulate striatal dopamine signalling for proper control of motor activity.

  4. Progress toward motor recovery with active neuromuscular stimulation: muscle activation pattern evidence after a stroke.

    PubMed

    Cauraugh, James H; Kim, Sangbum

    2003-03-15

    Chronic cerebrovascular accident individuals with partial paralysis in an upper extremity typically demonstrate difficulty in voluntarily controlling movement initiation. This study investigated patterns of electromyogram (EMG) activation levels while stroke subjects voluntarily initiated their impaired wrist and finger extensor muscles. Twenty subjects were randomly assigned to either a unilateral movement/stimulation group or a bilateral movement/stimulation group. Participants completed 4 days (6 h over 2 weeks) of active neuromuscular stimulation (i.e., 5 s/trial, 90 trials/day, biphasic waveform) on the wrist and finger extensors according to group assignments. The EMG activation levels were analyzed with a three-factor mixed design Motor recovery protocol x Session block x Trial block (2 x 2 x 3) ANOVA with repeated measures on the second and third factors. This robust analysis revealed higher EMG activation levels for the coupled bilateral movement/stimulation group than the unilateral movement/stimulation group. In addition, higher muscle activation levels were found for the second session block as well as trial blocks 2 and 3. Overall, these findings indicated improved motor capabilities of the impaired muscles as evidenced by the higher voluntary EMG activation levels.

  5. Analysis of automated quantification of motor activity in REM sleep behaviour disorder.

    PubMed

    Frandsen, Rune; Nikolic, Miki; Zoetmulder, Marielle; Kempfner, Lykke; Jennum, Poul

    2015-10-01

    Rapid eye movement (REM) sleep behaviour disorder (RBD) is characterized by dream enactment and REM sleep without atonia. Atonia is evaluated on the basis of visual criteria, but there is a need for more objective, quantitative measurements. We aimed to define and optimize a method for establishing baseline and all other parameters in automatic quantifying submental motor activity during REM sleep. We analysed the electromyographic activity of the submental muscle in polysomnographs of 29 patients with idiopathic RBD (iRBD), 29 controls and 43 Parkinson's (PD) patients. Six adjustable parameters for motor activity were defined. Motor activity was detected and quantified automatically. The optimal parameters for separating RBD patients from controls were investigated by identifying the greatest area under the receiver operating curve from a total of 648 possible combinations. The optimal parameters were validated on PD patients. Automatic baseline estimation improved characterization of atonia during REM sleep, as it eliminates inter/intra-observer variability and can be standardized across diagnostic centres. We found an optimized method for quantifying motor activity during REM sleep. The method was stable and can be used to differentiate RBD from controls and to quantify motor activity during REM sleep in patients with neurodegeneration. No control had more than 30% of REM sleep with increased motor activity; patients with known RBD had as low activity as 4.5%. We developed and applied a sensitive, quantitative, automatic algorithm to evaluate loss of atonia in RBD patients.

  6. 75 FR 62424 - New United Motor Manufacturing, Inc. Formerly a Joint Venture of General Motors Corporation and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-08

    ... Manufacturing North America, NPA Coatings, Inc., Premier Manufacturing and MacLellan Integrated Services, Inc... workers leased from MacLellan Integrated Services, Inc. were employed on-site at the Fremont, California... MacLellan Integrated Services working on-site at the Fremont, California location of New United...

  7. Drosophila non-muscle myosin II motor activity determines the rate of tissue folding.

    PubMed

    Vasquez, Claudia G; Heissler, Sarah M; Billington, Neil; Sellers, James R; Martin, Adam C

    2016-12-30

    Non-muscle cell contractility is critical for tissues to adopt shape changes. Although, the non-muscle myosin II holoenzyme (myosin) is a molecular motor that powers contraction of actin cytoskeleton networks, recent studies have questioned the importance of myosin motor activity cell and tissue shape changes. Here, combining the biochemical analysis of enzymatic and motile properties for purified myosin mutants with in vivo measurements of apical constriction for the same mutants, we show that in vivo constriction rate scales with myosin motor activity. We show that so-called phosphomimetic mutants of the Drosophila regulatory light chain (RLC) do not mimic the phosphorylated RLC state in vitro. The defect in the myosin motor activity in these mutants is evident in developing Drosophila embryos where tissue recoil following laser ablation is decreased compared to wild-type tissue. Overall, our data highlights that myosin activity is required for rapid cell contraction and tissue folding in developing Drosophila embryos.

  8. CORRELATIONS OF PESTICIDE-INDUCED CHOLINESTERASE INHIBITION AND MOTOR ACTIVITY CHANGES IN ADULT RATS.

    EPA Science Inventory

    The acute neurobehavioral effects of acetylcholinesterase-inhibiting pesticides are primarily due to overstimulation of the cholinergic system. Lowered motor activity levels represent a sensitive endpoint with which to monitor functional changes in laboratory animals exposed to ...

  9. Indatraline: synthesis and effect on the motor activity of Wistar rats.

    PubMed

    Kameyama, Márcia; Siqueira, Fernanda A; Garcia-Mijares, Miriam; Silva, Luiz F; Silva, Maria T A

    2011-11-10

    A new approach for the synthesis of indatraline was developed using as the key step an iodine(III)-mediated ring contraction of a 1,2-dihydronaphthalene derivative. Behavioral tests were conducted to evaluate the effect of indatraline and of its precursor indanamide on the motor activity of Wistar rats. Specific indexes for ambulation, raising and stereotypy were computed one, two and three hours after i.p. drug administration. Indatraline effects on motor activity lasted for at least three hours. On the other hand, no significant differences in motor activity were observed using indanamide. The results suggest that indatraline has a long lasting effect on motor activity and add evidence in favor of the potential use of that compound as a substitute in cocaine addiction.

  10. Demonstration of motor imagery movement and phantom movement-related neuronal activity in human thalamus.

    PubMed

    Anderson, William S; Weiss, Nirit; Lawson, Herman Christopher; Ohara, Shinji; Rowland, Lance; Lenz, Frederick A

    2011-01-26

    Functional imaging studies show that motor imagery activates multiple structures in the human forebrain. We now show that phantom movements in an amputee and imagined movements in intact individuals elicit responses from neurons in several human thalamic nuclei. These include the somatic sensory nucleus receiving input from the periphery (ventral caudal), and the motor nuclei receiving input from the cerebellum [ventral intermediate (Vim)] and the basal ganglia [ventral oral posterior (Vop)]. Seven neurons in the amputee showed phantom movement-related activity (three Vim, two Vop, and two ventral caudal). In addition, seven neurons in a group of three controls showed motor imagery-related activity (four Vim and three Vop). These studies were performed during single neuron recording sessions in patients undergoing therapeutic treatment of phantom pain, tremor, and chronic pain conditions by thalamic stimulation. The activity of neurons in these sensory and motor nuclei, respectively, may encode the expected sensory consequences and the dynamics of planned movements.

  11. Kinesin-Binding Protein Controls Microtubule Dynamics and Cargo Trafficking by Regulating Kinesin Motor Activity.

    PubMed

    Kevenaar, Josta T; Bianchi, Sarah; van Spronsen, Myrrhe; Olieric, Natacha; Lipka, Joanna; Frias, Cátia P; Mikhaylova, Marina; Harterink, Martin; Keijzer, Nanda; Wulf, Phebe S; Hilbert, Manuel; Kapitein, Lukas C; de Graaff, Esther; Ahkmanova, Anna; Steinmetz, Michel O; Hoogenraad, Casper C

    2016-04-04

    Kinesin motor proteins play a fundamental role for normal neuronal development by controlling intracellular cargo transport and microtubule (MT) cytoskeleton organization. Regulating kinesin activity is important to ensure their proper functioning, and their misregulation often leads to severe human neurological disorders. Homozygous nonsense mutations in kinesin-binding protein (KBP)/KIAA1279 cause the neurological disorder Goldberg-Shprintzen syndrome (GOSHS), which is characterized by intellectual disability, microcephaly, and axonal neuropathy. Here, we show that KBP regulates kinesin activity by interacting with the motor domains of a specific subset of kinesins to prevent their association with the MT cytoskeleton. The KBP-interacting kinesins include cargo-transporting motors such as kinesin-3/KIF1A and MT-depolymerizing motor kinesin-8/KIF18A. We found that KBP blocks KIF1A/UNC-104-mediated synaptic vesicle transport in cultured hippocampal neurons and in C. elegans PVD sensory neurons. In contrast, depletion of KBP results in the accumulation of KIF1A motors and synaptic vesicles in the axonal growth cone. We also show that KBP regulates neuronal MT dynamics by controlling KIF18A activity. Our data suggest that KBP functions as a kinesin inhibitor that modulates MT-based cargo motility and depolymerizing activity of a subset of kinesin motors. We propose that misregulation of KBP-controlled kinesin motors may represent the underlying molecular mechanism that contributes to the neuropathological defects observed in GOSHS patients.

  12. A Guide for Perceptual-Motor Training Activities.

    ERIC Educational Resources Information Center

    South Euclid - Lyndhurst City Schools, Lyndhurst, OH.

    This document has been prepared as part of a kindergarten perceptual-training program of the South Euclid-Lyndhurst City School District near Cleveland, Ohio. The guide contains information on training and procedures related to perceptual-motor learning. This information is structured primarily into 150 lesson plans, devised as 30-minute sessions…

  13. The relationship between actual motor competence and physical activity in children: mediating roles of perceived motor competence and health-related physical fitness.

    PubMed

    Khodaverdi, Zeinab; Bahram, Abbas; Stodden, David; Kazemnejad, Anoshirvan

    2016-08-01

    The purpose of this study was to investigate whether perceived motor competence and components of health-related physical fitness mediated the relationship between actual motor competence and physical activity in 8- to 9-year-old Iranian girls. A convenience sample of 352 girls (mean age = 8.7, SD = 0.3 years) participated in the study. Actual motor competence, perceived motor competence and children's physical activity were assessed using the Test of Gross Motor Development-2, the physical ability sub-scale of Marsh's Self-Description Questionnaire and Physical Activity Questionnaire for Older Children, respectively. Body mass index, the 600 yard run/walk, curl-ups, push-ups, and back-saver sit and reach tests assessed health-related physical fitness. Preacher & Hayes (2004) bootstrap method was used to assess the potential mediating effects of fitness and perceived competence on the direct relationship between actual motor competence and physical activity. Regression analyses revealed that aerobic fitness (b = .28, 95% CI = [.21, .39]), as the only fitness measure, and perceived competence (b = .16, 95% CI = [.12, .32]) were measures that mediated the relationship between actual motor competence and physical activity with the models. Development of strategies targeting motor skill acquisition, children's self-perceptions of competence and cardiorespiratory fitness should be targeted to promote girls' moderate-to-vigorous physical activity.

  14. Averaging methods for extracting representative waveforms from motor unit action potential trains.

    PubMed

    Malanda, Armando; Navallas, Javier; Rodriguez-Falces, Javier; Rodriguez-Carreño, Ignacio; Gila, Luis

    2015-08-01

    In the context of quantitative electromyography (EMG), it is of major interest to obtain a waveform that faithfully represents the set of potentials that constitute a motor unit action potential (MUAP) train. From this waveform, various parameters can be determined in order to characterize the MUAP for diagnostic analysis. The aim of this work was to conduct a thorough, in-depth review, evaluation and comparison of state-of-the-art methods for composing waveforms representative of MUAP trains. We evaluated nine averaging methods: Ensemble (EA), Median (MA), Weighted (WA), Five-closest (FCA), MultiMUP (MMA), Split-sweep median (SSMA), Sorted (SA), Trimmed (TA) and Robust (RA) in terms of three general-purpose signal processing figures of merit (SPMF) and seven clinically-used MUAP waveform parameters (MWP). The convergence rate of the methods was assessed as the number of potentials per MUAP train (NPM) required to reach a level of performance that was not significantly improved by increasing this number. Test material comprised 78 MUAP trains obtained from the tibialis anterioris of seven healthy subjects. Error measurements related to all SPMF and MWP parameters except MUAP amplitude descended asymptotically with increasing NPM for all methods. MUAP amplitude showed a consistent bias (around 4% for EA and SA and 1-2% for the rest). MA, TA and SSMA had the lowest SPMF and MWP error figures. Therefore, these methods most accurately preserve and represent MUAP physiological information of utility in clinical medical practice. The other methods, particularly WA, performed noticeably worse. Convergence rate was similar for all methods, with NPM values averaged among the nine methods, which ranged from 10 to 40, depending on the waveform parameter evaluated.

  15. Motor cortex plasticity induced by paired associative stimulation is enhanced in physically active individuals.

    PubMed

    Cirillo, John; Lavender, Andrew P; Ridding, Michael C; Semmler, John G

    2009-12-15

    Recent evidence indicates that regular physical activity enhances brain plasticity (i.e. the ability to reorganise neural connections) and improves neurocognitive function. However, the effect of regular physical activity on human motor cortex function is unknown. The purpose of this study was to examine motor cortex plasticity for a small hand muscle in highly active and sedentary individuals. Electromyographic recordings were obtained from the left abductor pollicis brevis (APB) muscle of 14 active and 14 sedentary subjects (aged 18-38 yrs). The extent of physical activity was assessed by questionnaire, where the physically active subjects performed >150 min per day moderate-to-vigorous aerobic activity on at least 5 days per week, whereas the sedentary group performed <20 min per day of physical activity on no more than 3 days per week. Transcranial magnetic stimulation (TMS) of the right hemisphere was used to assess changes in APB motor-evoked potentials (MEPs), input-output curve (IO curve), short-interval intracortical inhibition (SICI) and cortical silent period (CSP). Neuroplastic changes were induced using paired-associative stimulation (PAS), which consisted of 90 paired stimuli (0.05 Hz for 30 min) of median nerve electrical stimulation at the wrist followed 25 ms later by TMS to the hand area of motor cortex. The IO curve slope was 35% steeper in individuals with increased physical activity (combined before and after PAS, P < 0.05), suggesting increased motor cortex excitability, although there was no difference in SICI or CSP between groups. PAS induced an increase in MEP amplitude in the physically active subjects (54% increase compared with before, P < 0.01), but no significant facilitation in the sedentary subjects. We conclude that participation in regular physical activity may offer global benefits to motor cortex function that enhances neuroplasticity, which could improve motor learning and neurorehabilitation in physically active individuals.

  16. Exercise-induced Alteration in Brain Activity during Motor Performance under Cognitive Stress

    DTIC Science & Technology

    2014-07-02

    stress . It is possible that the correlated activity between EEG and EMG is used for “fine-tuning” brain activity during the performance of fine motor...brain and muscle during simple fine motor performance under stress after high-intensity physical exertion. Healthy young adults were assigned to...leg resistance exercise. Oscillations in EEG and corticomuscular coherence in beta band both tended to decrease 1. REPORT DATE (DD-MM-YYYY) 4. TITLE

  17. Limb girdle muscular dystrophy type 2G with myopathic-neurogenic motor unit potentials and a novel muscle image pattern

    PubMed Central

    2014-01-01

    Background Limb girdle muscular dystrophy type 2G (LGMD2G) is a subtype of autosomal recessive muscular dystrophy caused by mutations in the telethonin gene. There are few LGMD2G patients worldwide reported, and this is the first description associated with early tibialis anterior sparing on muscle image and myopathic-neurogenic motor unit potentials. Case presentation Here we report a 31 years old caucasian male patient with progressive gait disturbance, and severe lower limb proximal weakness since the age of 20 years, associated with subtle facial muscle weakness. Computed tomography demonstrated soleus, medial gastrocnemius, and diffuse thigh muscles involvement with tibialis anterior sparing. Electromyography disclosed both neurogenic and myopathic motor unit potentials. Muscle biopsy demonstrated large groups of atrophic and hypertrophic fibers, frequent fibers with intracytoplasmic rimmed vacuoles full of autophagic membrane and sarcoplasmic debris, and a total deficiency of telethonin. Molecular investigation identified the common homozygous c.157C > T in the TCAP gene. Conclusion This report expands the phenotypic variability of telethoninopathy/ LGMD2G, including: 1) mixed neurogenic and myopathic motor unit potentials, 2) facial weakness, and 3) tibialis anterior sparing. Appropriate diagnosis in these cases is important for genetic counseling and prognosis. PMID:25298746

  18. Esterases activity in the axolotl Ambystoma mexicanum exposed to chlorpyrifos and its implication to motor activity.

    PubMed

    Robles-Mendoza, Cecilia; Zúñiga-Lagunes, Sebastian R; Ponce de León-Hill, Claudia A; Hernández-Soto, Jesús; Vanegas-Pérez, Cecilia

    2011-10-01

    The axolotl Ambystoma mexicanum is a neotenic salamander considered a good biological model due to its ability to regenerate limbs, tail, brain and heart cells. Nevertheless, severe reduction of A. mexicanum wild populations in the lacustrine area of Xochimilco, the natural habitat of the axolotl, could be related to several environmental pressures as the presence of organophosphate pesticides (OPPs), intensively applied in agricultural activities in Xochimilco. Thus the aim of this study was to evaluate the effect of environmentally realistic chlorpyrifos (CPF) concentrations, a OPP commonly used in this zone, on esterases activity (acetylcholinesterase and carboxylesterase) and bioconcentration of CPF and to relate them with the motor activity of A. mexicanum juveniles. Axolotls were exposed 48 h to 0.05 and 0.1mg CPF/L, and the responses were evaluated at the end of the CPF exposure. Results suggest that CPF is bioconcentrated into axolotls and that the CPF internal concentrations are related with the observed inhibition activity of AChE (>50%) and CbE (≈ 50%). CPF concentration responsible of the inhibition of the 50% of AChE activity (IC50) was estimated in 0.04 mg CPF/L; however IC50 for CbE activity was not possible to calculate since inhibition levels were lower than 50%, results that suggest a higher resistance of CbE enzymatic activity to CPF. However, motor activity was a more sensitive endpoint to CPF poisoning since time that axolotls spent active and walking, frequency and speed of swimming, frequency of prey attack were reduced >90% of control groups. The motor activity alterations in the axolotl could be related with the registered esterases inhibition. Thus important alterations on axolotls were identified even at short time and low concentrations of CPF exposure. Also, it was possible to link biochemical responses as esterases activity with higher levels of biological organization as behavior. This study provides tools for the regulation of the

  19. Muscle activation patterns and motor anatomy of Anna's hummingbirds Calypte anna and zebra finches Taeniopygia guttata.

    PubMed

    Donovan, Edward R; Keeney, Brooke K; Kung, Eric; Makan, Sirish; Wild, J Martin; Altshuler, Douglas L

    2013-01-01

    Flying animals exhibit profound transformations in anatomy, physiology, and neural architecture. Although much is known about adaptations in the avian skeleton and musculature, less is known about neuroanatomy and motor unit integration for bird flight. Hummingbirds are among the most maneuverable and specialized of vertebrate fliers, and two unusual neuromuscular features have been previously reported: (1) the pectoralis major has a unique distribution pattern of motor end plates (MEPs) compared with all other birds and (2) electromyograms (EMGs) from the hummingbird's pectoral muscles, the pectoralis major and the supracoracoideus, show activation bursts composed of one or a few spikes that appear to have a very consistent pattern. Here, we place these findings in a broader context by comparing the MEPs, EMGs, and organization of the spinal motor neuron pools of flight muscles of Anna's hummingbird Calypte anna, zebra finches Taeniopygia guttata, and, for MEPs, several other species. The previously shown MEP pattern of the hummingbird pectoralis major is not shared with its closest taxonomic relative, the swift, and appears to be unique to hummingbirds. MEP arrangements in previously undocumented wing muscles show patterns that differ somewhat from other avian muscles. In the parallel-fibered strap muscles of the shoulder, MEP patterns appear to relate to muscle length, with the smallest muscles having fibers that span the entire muscle. MEP patterns in pennate distal wing muscles were the same regardless of size, with tightly clustered bands in the middle portion of the muscle, not evenly distributed bands over the muscle's entire length. Muscle activations were examined during slow forward flight in both species, during hovering in hummingbirds, and during slow ascents in zebra finches. The EMG bursts of a wing muscle, the pronator superficialis, were highly variable in peak number, size, and distribution across wingbeats for both species. In the pectoralis

  20. Motor-Enriched Learning Activities Can Improve Mathematical Performance in Preadolescent Children

    PubMed Central

    Beck, Mikkel M.; Lind, Rune R.; Geertsen, Svend S.; Ritz, Christian; Lundbye-Jensen, Jesper; Wienecke, Jacob

    2016-01-01

    Objective: An emerging field of research indicates that physical activity can benefit cognitive functions and academic achievements in children. However, less is known about how academic achievements can benefit from specific types of motor activities (e.g., fine and gross) integrated into learning activities. Thus, the aim of this study was to investigate whether fine or gross motor activity integrated into math lessons (i.e., motor-enrichment) could improve children's mathematical performance. Methods: A 6-week within school cluster-randomized intervention study investigated the effects of motor-enriched mathematical teaching in Danish preadolescent children (n = 165, age = 7.5 ± 0.02 years). Three groups were included: a control group (CON), which received non-motor enriched conventional mathematical teaching, a fine motor math group (FMM) and a gross motor math group (GMM), which received mathematical teaching enriched with fine and gross motor activity, respectively. The children were tested before (T0), immediately after (T1) and 8 weeks after the intervention (T2). A standardized mathematical test (50 tasks) was used to evaluate mathematical performance. Furthermore, it was investigated whether motor-enriched math was accompanied by different effects in low and normal math performers. Additionally, the study investigated the potential contribution of cognitive functions and motor skills on mathematical performance. Results: All groups improved their mathematical performance from T0 to T1. However, from T0 to T1, the improvement was significantly greater in GMM compared to FMM (1.87 ± 0.71 correct answers) (p = 0.02). At T2 no significant differences in mathematical performance were observed. A subgroup analysis revealed that normal math-performers benefitted from GMM compared to both CON 1.78 ± 0.73 correct answers (p = 0.04) and FMM 2.14 ± 0.72 correct answers (p = 0.008). These effects were not observed in low math-performers. The effects were partly

  1. Motor-Enriched Learning Activities Can Improve Mathematical Performance in Preadolescent Children.

    PubMed

    Beck, Mikkel M; Lind, Rune R; Geertsen, Svend S; Ritz, Christian; Lundbye-Jensen, Jesper; Wienecke, Jacob

    2016-01-01

    Objective: An emerging field of research indicates that physical activity can benefit cognitive functions and academic achievements in children. However, less is known about how academic achievements can benefit from specific types of motor activities (e.g., fine and gross) integrated into learning activities. Thus, the aim of this study was to investigate whether fine or gross motor activity integrated into math lessons (i.e., motor-enrichment) could improve children's mathematical performance. Methods: A 6-week within school cluster-randomized intervention study investigated the effects of motor-enriched mathematical teaching in Danish preadolescent children (n = 165, age = 7.5 ± 0.02 years). Three groups were included: a control group (CON), which received non-motor enriched conventional mathematical teaching, a fine motor math group (FMM) and a gross motor math group (GMM), which received mathematical teaching enriched with fine and gross motor activity, respectively. The children were tested before (T0), immediately after (T1) and 8 weeks after the intervention (T2). A standardized mathematical test (50 tasks) was used to evaluate mathematical performance. Furthermore, it was investigated whether motor-enriched math was accompanied by different effects in low and normal math performers. Additionally, the study investigated the potential contribution of cognitive functions and motor skills on mathematical performance. Results: All groups improved their mathematical performance from T0 to T1. However, from T0 to T1, the improvement was significantly greater in GMM compared to FMM (1.87 ± 0.71 correct answers) (p = 0.02). At T2 no significant differences in mathematical performance were observed. A subgroup analysis revealed that normal math-performers benefitted from GMM compared to both CON 1.78 ± 0.73 correct answers (p = 0.04) and FMM 2.14 ± 0.72 correct answers (p = 0.008). These effects were not observed in low math-performers. The effects were partly

  2. Opposite-polarity motors activate one another to trigger cargo transport in live cells

    PubMed Central

    Ally, Shabeen; Larson, Adam G.; Barlan, Kari; Rice, Sarah E.

    2009-01-01

    Intracellular transport is typically bidirectional, consisting of a series of back and forth movements. Kinesin-1 and cytoplasmic dynein require each other for bidirectional transport of intracellular cargo along microtubules; i.e., inhibition or depletion of kinesin-1 abolishes dynein-driven cargo transport and vice versa. Using Drosophila melanogaster S2 cells, we demonstrate that replacement of endogenous kinesin-1 or dynein with an unrelated, peroxisome-targeted motor of the same directionality activates peroxisome transport in the opposite direction. However, motility-deficient versions of motors, which retain the ability to bind microtubules and hydrolyze adenosine triphosphate, do not activate peroxisome motility. Thus, any pair of opposite-polarity motors, provided they move along microtubules, can activate one another. These results demonstrate that mechanical interactions between opposite-polarity motors are necessary and sufficient for bidirectional organelle transport in live cells. PMID:20038680

  3. Acute Exposure to Pacific Ciguatoxin Reduces Electroencephalogram Activity and Disrupts Neurotransmitter Metabolic Pathways in Motor Cortex.

    PubMed

    Kumar, Gajendra; Au, Ngan Pan Bennett; Lei, Elva Ngai Yu; Mak, Yim Ling; Chan, Leanne Lai Hang; Lam, Michael Hon Wah; Chan, Leo Lai; Lam, Paul Kwan Sing; Ma, Chi Him Eddie

    2016-09-10

    Ciguatera fish poisoning (CFP) is a common human food poisoning caused by consumption of ciguatoxin (CTX)-contaminated fish affecting over 50,000 people worldwide each year. CTXs are classified depending on their origin from the Pacific (P-CTXs), Indian Ocean (I-CTXs), and Caribbean (C-CTXs). P-CTX-1 is the most toxic CTX known and the major source of CFP causing an array of neurological symptoms. Neurological symptoms in some CFP patients last for several months or years; however, the underlying electrophysiological properties of acute exposure to CTXs remain unknown. Here, we used CTX purified from ciguatera fish sourced in the Pacific Ocean (P-CTX-1). Delta and theta electroencephalography (EEG) activity was reduced remarkably in 2 h and returned to normal in 6 h after a single exposure. However, second exposure to P-CTX-1 induced not only a further reduction in EEG activities but also a 2-week delay in returning to baseline EEG values. Ciguatoxicity was detected in the brain hours after the first and second exposure by mouse neuroblastoma assay. The spontaneous firing rate of single motor cortex neuron was reduced significantly measured by single-unit recording with high spatial resolution. Expression profile study of neurotransmitters using targeted profiling approach based on liquid chromatography-tandem mass spectrometry revealed an imbalance between excitatory and inhibitory neurotransmitters in the motor cortex. Our study provides a possible link between the brain oscillations and neurotransmitter release after acute exposure to P-CTX-1. Identification of EEG signatures and major metabolic pathways affected by P-CTX-1 provides new insight into potential biomarker development and therapeutic interventions.

  4. Brain Activation Patterns Characterizing Different Phases of Motor Action: Execution, Choice and Ideation.

    PubMed

    Gardini, Simona; Venneri, Annalena; McGeown, William Jonathan; Toraci, Cristian; Nocetti, Luca; Porro, Carlo Adolfo; Caffarra, Paolo

    2016-09-01

    Motor behaviour is controlled by a large set of interacting neural structures, subserving the different components involved in hierarchical motor processes. Few studies have investigated the neural substrate of higher-order motor ideation, i.e. the mental operation of conceiving a movement. The aim of this functional magnetic resonance imaging study was to segregate the neural structures involved in motor ideation from those involved in movement choice and execution. An index finger movement paradigm was adopted, including three different conditions: performing a pre-specified movement, choosing and executing a movement and ideating a movement of choice. The tasks involved either the right or left hand, in separate runs. Neuroimaging results were obtained by comparing the different experimental conditions and computing conjunction maps of the right and left hands for each contrast. Pre-specified movement execution was supported by bilateral fronto-parietal motor regions, the cerebellum and putamen. Choosing and executing finger movement involved mainly left fronto-temporal areas and the anterior cingulate. Motor ideation activated almost exclusively left hemisphere regions, including the inferior, middle and superior frontal regions, middle temporal and middle occipital gyri. These findings show that motor ideation is controlled by a cortical network mainly involved in abstract thinking, cognitive and motor control, semantic and visual imagery processes.

  5. Motor neuron-specific overexpression of the presynaptic choline transporter: impact on motor endurance and evoked muscle activity.

    PubMed

    Lund, D; Ruggiero, A M; Ferguson, S M; Wright, J; English, B A; Reisz, P A; Whitaker, S M; Peltier, A C; Blakely, R D

    2010-12-29

    The presynaptic, hemicholinium-3 sensitive, high-affinity choline transporter (CHT) supplies choline for acetylcholine (ACh) synthesis. In mice, a homozygous deletion of CHT (CHT-/-) leads to premature cessation of spontaneous or evoked neuromuscular signaling and is associated with perinatal cyanosis and lethality within 1 h. Heterozygous (CHT+/-) mice exhibit diminished brain ACh levels and demonstrate an inability to sustain vigorous motor activity. We sought to explore the contribution of CHT gene dosage to motor function in greater detail using transgenic mice where CHT is expressed under control of the motor neuron promoter Hb9 (Hb9:CHT). On a CHT-/- background, the Hb9:CHT transgene conferred mice with the ability to move and breath for a postnatal period of ∼24 h, thus increasing survival. Conversely, Hb9:CHT expression on a wild-type background (CHT+/+;Hb9:CHT) leads to an increased capacity for treadmill running compared to wild-type littermates. Analysis of the stimulated compound muscle action potential (CMAP) in these animals under basal conditions established that CHT+/+;Hb9:CHT mice display an unexpected, bidirectional change, producing either elevated or reduced CMAP amplitude, relative to CHT+/+ animals. To examine whether these two groups arise from underlying changes in synaptic properties, we used high-frequency stimulation of motor axons to assess CMAP recovery kinetics. Although CHT+/+; Hb9:CHT mice in the two groups display an equivalent, time-dependent reduction in CMAP amplitude, animals with a higher basal CMAP amplitude demonstrate a significantly enhanced rate of recovery. To explain our findings, we propose a model whereby CHT support for neuromuscular signaling involves contributions to ACh synthesis as well as cholinergic synaptic vesicle availability.

  6. How Actin Initiates the Motor Activity of Myosin

    PubMed Central

    Llinas, Paola; Isabet, Tatiana; Song, Lin; Ropars, Virginie; Zong, Bin; Benisty, Hannah; Sirigu, Serena; Morris, Carl; Kikuti, Carlos; Safer, Dan; Sweeney, H. Lee; Houdusse, Anne

    2015-01-01

    SUMMARY Fundamental to cellular processes are directional movements driven by molecular motors. A common theme for these and other molecular machines driven by ATP is that controlled release of hydrolysis products is essential to use the chemical energy efficiently. Mechanochemical transduction by myosin motors on actin is coupled to unknown structural changes that result in the sequential release of inorganic phosphate (Pi) and MgADP. We present here a myosin structure possessing an actin-binding interface and a tunnel (back door) that creates an escape route for Pi with a minimal rotation of the myosin lever arm that drives movements. We propose that this state represents the beginning of the powerstroke on actin, and that Pi translocation from the nucleotide pocket triggered by actin binding initiates myosin force generation. This elucidates how actin initiates force generation and movement, and may represent a strategy common to many molecular machines. PMID:25936506

  7. Predictive motor control of sensory dynamics in auditory active sensing.

    PubMed

    Morillon, Benjamin; Hackett, Troy A; Kajikawa, Yoshinao; Schroeder, Charles E

    2015-04-01

    Neuronal oscillations present potential physiological substrates for brain operations that require temporal prediction. We review this idea in the context of auditory perception. Using speech as an exemplar, we illustrate how hierarchically organized oscillations can be used to parse and encode complex input streams. We then consider the motor system as a major source of rhythms (temporal priors) in auditory processing, that act in concert with attention to sharpen sensory representations and link them across areas. We discuss the circuits that could mediate this audio-motor interaction, notably the potential role of the somatosensory system. Finally, we reposition temporal predictions in the context of internal models, discussing how they interact with feature-based or spatial predictions. We argue that complementary predictions interact synergistically according to the organizational principles of each sensory system, forming multidimensional filters crucial to perception.

  8. How actin initiates the motor activity of Myosin.

    PubMed

    Llinas, Paola; Isabet, Tatiana; Song, Lin; Ropars, Virginie; Zong, Bin; Benisty, Hannah; Sirigu, Serena; Morris, Carl; Kikuti, Carlos; Safer, Dan; Sweeney, H Lee; Houdusse, Anne

    2015-05-26

    Fundamental to cellular processes are directional movements driven by molecular motors. A common theme for these and other molecular machines driven by ATP is that controlled release of hydrolysis products is essential for using the chemical energy efficiently. Mechanochemical transduction by myosin motors on actin is coupled to unknown structural changes that result in the sequential release of inorganic phosphate (Pi) and MgADP. We present here a myosin structure possessing an actin-binding interface and a tunnel (back door) that creates an escape route for Pi with a minimal rotation of the myosin lever arm that drives movements. We propose that this state represents the beginning of the powerstroke on actin and that Pi translocation from the nucleotide pocket triggered by actin binding initiates myosin force generation. This elucidates how actin initiates force generation and movement and may represent a strategy common to many molecular machines.

  9. Movement observation specifies motor programs activated by the action observed objective.

    PubMed

    Lago, Angel; Fernandez-del-Olmo, Miguel

    2011-04-15

    There are human cortical areas that fire both when a person executes an action and when he observes someone performing a similar action. The observer activates a motor program that resembles the observed action. However, it is not known whether the motor program activated via action observation is muscle specific. In this study, using simple pulse transcranial magnetic stimulation (TMS) applied over the primary motor cortex (M1), we investigated whether the Mirror System activates a muscle specific motor program, or codes the observed action in terms of its goal. The results showed that when subjects observed a static effector in front of an object, cortical excitability was enhanced even in muscles not involved in the observed movement, but that are able to achieve the goal of the action. When there was an effector-object interaction the motor program activated via action observation is muscle specific. These results suggest that when subjects observe an object related action there is an activation of a motor program based on the observed action goal, that is transformed into a muscle specific program when the subject shows an effector-object interaction.

  10. Physical activity and obesity mediate the association between childhood motor function and adolescents’ academic achievement

    PubMed Central

    Kantomaa, Marko T.; Stamatakis, Emmanuel; Kankaanpää, Anna; Kaakinen, Marika; Rodriguez, Alina; Taanila, Anja; Ahonen, Timo; Järvelin, Marjo-Riitta; Tammelin, Tuija

    2013-01-01

    The global epidemic of obesity and physical inactivity may have detrimental implications for young people’s cognitive function and academic achievement. This prospective study investigated whether childhood motor function predicts later academic achievement via physical activity, fitness, and obesity. The study sample included 8,061 children from the Northern Finland Birth Cohort 1986, which contains data about parent-reported motor function at age 8 y and self-reported physical activity, predicted cardiorespiratory fitness (cycle ergometer test), obesity (body weight and height), and academic achievement (grades) at age 16 y. Structural equation models with unstandardized (B) and standardized (β) coefficients were used to test whether, and to what extent, physical activity, cardiorespiratory fitness, and obesity at age 16 mediated the association between childhood motor function and adolescents’ academic achievement. Physical activity was associated with a higher grade-point average, and obesity was associated with a lower grade-point average in adolescence. Furthermore, compromised motor function in childhood had a negative indirect effect on adolescents’ academic achievement via physical inactivity (B = –0.023, 95% confidence interval = –0.031, –0.015) and obesity (B = –0.025, 95% confidence interval = –0.039, –0.011), but not via cardiorespiratory fitness. These results suggest that physical activity and obesity may mediate the association between childhood motor function and adolescents’ academic achievement. Compromised motor function in childhood may represent an important factor driving the effects of obesity and physical inactivity on academic underachievement. PMID:23277558

  11. Postural challenge affects motor cortical activity in young and old adults.

    PubMed

    Papegaaij, Selma; Taube, Wolfgang; van Keeken, Helco G; Otten, Egbert; Baudry, Stéphane; Hortobágyi, Tibor

    2016-01-01

    When humans voluntarily activate a muscle, intracortical inhibition decreases. Such a decrease also occurs in the presence of a postural challenge and more so with increasing age. Here, we examined age-related changes in motor cortical activity during postural and non-postural contractions with varying levels of postural challenge. Fourteen young (age 22) and twelve old adults (age 70) performed three conditions: (1) voluntary contraction of the soleus muscle in sitting and (2) leaning forward while standing with and (3) without being supported. Subthreshold transcranial magnetic stimulation was applied to the soleus motor area suppressing ongoing EMG, as an index of motor cortical activity. The area of EMG suppression was ~60% smaller (p<0.05) in unsupported vs. supported leaning and sitting, with no difference between these latter two conditions (p>0.05). Even though in absolute terms young compared with old adults leaned farther (p=0.018), there was no age effect or an age by condition interaction in EMG suppression. Leaning closer to the maximum without support correlated with less EMG suppression (rho=-0.44, p=0.034). We conclude that the critical factor in modulating motor cortical activity was postural challenge and not contraction aim or posture. Age did not affect the motor control strategy as quantified by the modulation of motor cortical activity, but the modulation appeared at a lower task difficulty with increasing age.

  12. Physical activity and obesity mediate the association between childhood motor function and adolescents' academic achievement.

    PubMed

    Kantomaa, Marko T; Stamatakis, Emmanuel; Kankaanpää, Anna; Kaakinen, Marika; Rodriguez, Alina; Taanila, Anja; Ahonen, Timo; Järvelin, Marjo-Riitta; Tammelin, Tuija

    2013-01-29

    The global epidemic of obesity and physical inactivity may have detrimental implications for young people's cognitive function and academic achievement. This prospective study investigated whether childhood motor function predicts later academic achievement via physical activity, fitness, and obesity. The study sample included 8,061 children from the Northern Finland Birth Cohort 1986, which contains data about parent-reported motor function at age 8 y and self-reported physical activity, predicted cardiorespiratory fitness (cycle ergometer test), obesity (body weight and height), and academic achievement (grades) at age 16 y. Structural equation models with unstandardized (B) and standardized (β) coefficients were used to test whether, and to what extent, physical activity, cardiorespiratory fitness, and obesity at age 16 mediated the association between childhood motor function and adolescents' academic achievement. Physical activity was associated with a higher grade-point average, and obesity was associated with a lower grade-point average in adolescence. Furthermore, compromised motor function in childhood had a negative indirect effect on adolescents' academic achievement via physical inactivity (B = -0.023, 95% confidence interval = -0.031, -0.015) and obesity (B = -0.025, 95% confidence interval = -0.039, -0.011), but not via cardiorespiratory fitness. These results suggest that physical activity and obesity may mediate the association between childhood motor function and adolescents' academic achievement. Compromised motor function in childhood may represent an important factor driving the effects of obesity and physical inactivity on academic underachievement.

  13. High-resolution genetic mapping of mammalian motor activity levels in mice.

    PubMed

    Kas, M J H; de Mooij-van Malsen, J G; de Krom, M; van Gassen, K L I; van Lith, H A; Olivier, B; Oppelaar, H; Hendriks, J; de Wit, M; Groot Koerkamp, M J A; Holstege, F C P; van Oost, B A; de Graan, P N E

    2009-02-01

    The generation of motor activity levels is under tight neural control to execute essential behaviors, such as movement toward food or for social interaction. To identify novel neurobiological mechanisms underlying motor activity levels, we studied a panel of chromosome substitution (CS) strains derived from mice with high (C57BL/6J strain) or low motor activity levels (A/J strain) using automated home cage behavioral registration. In this study, we genetically mapped the expression of baseline motor activity levels (horizontal distance moved) to mouse chromosome 1. Further genetic mapping of this trait revealed an 8.3-Mb quantitative trait locus (QTL) interval. This locus is distinct from the QTL interval for open-field anxiety-related motor behavior on this chromosome. By data mining, an existing phenotypic and genotypic data set of 2445 genetically heterogeneous mice (http://gscan.well.ox.ac.uk/), we confirmed linkage to the peak marker at 79 970 253 bp and refined the QTL to a 312-kb interval containing a single gene (A830043J08Rik). Sequence analysis showed a nucleotide deletion in the 3' untranslated region of the Riken gene. Genome-wide microarray gene expression profiling in brains of discordant F(2) individuals from CS strain 1 showed a significant upregulation of Epha4 in low-active F(2) individuals. Inclusion of a genetic marker for Epha4 confirmed that this gene is located outside of the QTL interval. Both Epha4 and A830043J08Rik are expressed in brain motor circuits, and similar to Epha4 mutants, we found linkage between reduced motor neurons number and A/J chromosome 1. Our findings provide a novel QTL and a potential downstream target underlying motor circuitry development and the expression of physical activity levels.

  14. United States industrial electric motor systems market opportunities assessment: Executive summary

    SciTech Connect

    None, None

    1998-12-01

    The Market Assessment is designed to be of value to manufacturers, distributors, engineers, and others in the supply channels for motor systems. It provides a detailed and highly differentiated portrait of their end-use markets.

  15. Symposium FF: Molecular Motors, Nanomachines, and Active Nanostructures

    DTIC Science & Technology

    2008-06-23

    effects . Contributed talks by Francisco Raymo and Dongwhan Lee were followed by the second invited talk by Miguel Garcia-Garibay from UCLA...to 100 scientists in the audience for almost all talks. The large fraction of invited talks resulted in a consistently high quality of presentations...and engineers, and the large number of parallel symposia draws in attendees who are more peripherally interested in molecular motors. The main

  16. Non-invasive assessment of single motor unit mechanomyographic response and twitch force by spike-triggered averaging.

    PubMed

    Cescon, C; Gazzoni, M; Gobbo, M; Orizio, C; Farina, D

    2004-07-01

    A method for non-invasive assessment of single motor unit (MU) properties from electromyographic (EMG), mechanomyographic (MMG) and force signals is proposed. The method is based on the detection and classification of single MU action potentials from interference multichannel surface EMG signals and on the spike-triggered average of the MMG (detected by an accelerometer) and force signals. The first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles were investigated at contraction levels of 2% and 5% of the maximum voluntary contraction (MVC) force. A third contraction was performed by selective activation of a single MU with surface MU action potential visual feedback provided to the subject. At 5% MVC, the mean (+/-standard error) single MU MMG peak-to-peak value was 11.0+/-1.8 mm s(-2) (N= 17) and 32.3+/-6.5 mm s(-2) (N=20) for the FDI and ADM muscles, respectively. The peak of the twitch force was, at the same contraction level, 7.41+/-1.34 mN and 14.42+/-2.92 mN, for the FDI and ADM muscles, respectively. The peak-to-peak value of the MMG was significantly different for the same MU at different contraction levels, indicating a non-linear summation of the single MU contributions. For the FDI muscle, the MMG peak-to-peak value of individual MUs was 21.5+/-7.8 mm s(-2), when such MUs were activated with visual feedback provided to the subject, whereas, for the same MUs, it was 11.8+/-3.8 mm s(-2), when the subject maintained a constant force level of 2% MVC. The method proposed allows the non-invasive assessment of single MU membrane and contractile properties during voluntary contractions.

  17. Advances in selective activation of muscles for non-invasive motor neuroprostheses.

    PubMed

    Koutsou, Aikaterini D; Moreno, Juan C; Del Ama, Antonio J; Rocon, Eduardo; Pons, José L

    2016-06-13

    Non-invasive neuroprosthetic (NP) technologies for movement compensation and rehabilitation remain with challenges for their clinical application. Two of those major challenges are selective activation of muscles and fatigue management. This review discusses how electrode arrays improve the efficiency and selectivity of functional electrical stimulation (FES) applied via transcutaneous electrodes. In this paper we review the principles and achievements during the last decade on techniques for artificial motor unit recruitment to improve the selective activation of muscles. We review the key factors affecting the outcome of muscle force production via multi-pad transcutaneous electrical stimulation and discuss how stimulation parameters can be set to optimize external activation of body segments. A detailed review of existing electrode array systems proposed by different research teams is also provided. Furthermore, a review of the targeted applications of existing electrode arrays for control of upper and lower limb NPs is provided. Eventually, last section demonstrates the potential of electrode arrays to overcome the major challenges of NPs for compensation and rehabilitation of patient-specific impairments.

  18. A Field-Based Testing Protocol for Assessing Gross Motor Skills in Preschool Children: The Children's Activity and Movement in Preschool Study Motor Skills Protocol

    ERIC Educational Resources Information Center

    Williams, Harriet G.; Pfeiffer, Karin A.; Dowda, Marsha; Jeter, Chevy; Jones, Shaverra; Pate, Russell R.

    2009-01-01

    The purpose of this study was to develop a valid and reliable tool for use in assessing motor skills in preschool children in field-based settings. The development of the Children's Activity and Movement in Preschool Study Motor Skills Protocol included evidence of its reliability and validity for use in field-based environments as part of large…

  19. The effects of earmuff on physiologic and motor responses in premature infants admitted in neonatal intensive care unit

    PubMed Central

    Abdeyazdan, Zahra; Ghassemi, Sara; Marofi, Maryam

    2014-01-01

    Background: Continuous high-intensity noise in the Neonatal Intensive Care Unit (NICU) is stressful for premature infants and its reduction is considered as a nursing care. This study aimed to evaluate the effects of earmuffs’ use on the physiologic and motor responses of premature infants. Materials and Methods: This is a clinical trial conducted on 64 premature infants admitted to the NICU, who met the inclusion criteria, and were randomly assigned to study and control groups. Earmuffs were used for premature infants for 2 h in the morning and 2 h in the afternoon for two consecutive days to reduce the noise intensity in the busiest time of the NICU. The group with earmuff (study group) was compared with the control group receiving only routine care. Infants’ physiologic and motor responses were observed before, during, immediately, and 1 h after the intervention. Analysis of covariance and repeated measure analysis of variance (ANOVA) were used to analyze the data. Results: When infants wore the earmuffs, they had significantly higher mean arterial oxygen saturation, the less frequent motor response, and a decrease in their pulse and respiratory rate. Conclusion: Paying attention to environmental noise can help the patients, especially the neonates in the NICU, and can be considered as a nursing care. Wearing earmuffs can protect premature infants against noise in the NICU and improve their physiological and motor state. PMID:24834077

  20. Orientation-dependent changes in single motor neuron activity during adaptive soft-bodied locomotion.

    PubMed

    Metallo, Cinzia; Trimmer, Barry A

    2015-01-01

    Recent major advances in understanding the organizational principles underlying motor control have focused on a small number of animal species with stiff articulated skeletons. These model systems have the advantage of easily quantifiable mechanics, but the neural codes underlying different movements are difficult to characterize because they typically involve a large population of neurons controlling each muscle. As a result, studying how neural codes drive adaptive changes in behavior is extremely challenging. This problem is highly simplified in the tobacco hawkmoth Manduca sexta, which, in its larval stage (caterpillar), is predominantly soft-bodied. Since each M. sexta muscle is innervated by one, occasionally two, excitatory motor neurons, the electrical activity generated by each muscle can be mapped to individual motor neurons. In the present study, muscle activation patterns were converted into motor neuron frequency patterns by identifying single excitatory junction potentials within recorded electromyographic traces. This conversion was carried out with single motor neuron resolution thanks to the high signal selectivity of newly developed flexible microelectrode arrays, which were specifically designed to record from M. sexta muscles. It was discovered that the timing of motor neuron activity and gait kinematics depend on the orientation of the plane of motion during locomotion. We report that, during climbing, the motor neurons monitored in the present study shift their activity to correlate with movements in the animal's more anterior segments. This orientation-dependent shift in motor activity is in agreement with the expected shift in the propulsive forces required for climbing. Our results suggest that, contrary to what has been previously hypothesized, M.sexta uses central command timing for adaptive load compensation.

  1. Activation of the motor cortex during phasic rapid eye movement sleep

    PubMed Central

    De Carli, Fabrizio; Proserpio, Paola; Morrone, Elisa; Sartori, Ivana; Ferrara, Michele; Gibbs, Steve Alex; De Gennaro, Luigi; Lo Russo, Giorgio

    2016-01-01

    When dreaming during rapid eye movement (REM) sleep, we can perform complex motor behaviors while remaining motionless. How the motor cortex behaves during this state remains unknown. Here, using intracerebral electrodes sampling the human motor cortex in pharmacoresistant epileptic patients, we report a pattern of electroencephalographic activation during REM sleep similar to that observed during the performance of a voluntary movement during wakefulness. This pattern is present during phasic REM sleep but not during tonic REM sleep, the latter resembling relaxed wakefulness. This finding may help clarify certain phenomenological aspects observed in REM sleep behavior disorder. Ann Neurol 2016;79:326–330 PMID:26575212

  2. [Characteristics of pilot motor activity when different control systems are used during landing approaches].

    PubMed

    Brusnichkina, R I

    1980-01-01

    Complex motor acts of pilots during their professional work were investigated with control information presented in a different manner. Two experimental series were run: in a real flight and in a simulator. Parameters of muscle bioelectric activity, control movements and performance efficiency were used. Differences in the formation of motor acts were shown to depend on the scope and quality of the information presented. During required transfer from one mode to another the structure of working movements and performance efficiency obeyed at large changes in the information necessary for piloting. This was accompanied by an alteration in the developed stereotype of actions, including motor acts.

  3. Motor co-activation in siblings of patients with juvenile myoclonic epilepsy: an imaging endophenotype?

    PubMed Central

    Wandschneider, Britta; Centeno, Maria; Vollmar, Christian; Symms, Mark; Thompson, Pamela J.; Duncan, John S.

    2014-01-01

    Juvenile myoclonic epilepsy is a heritable idiopathic generalized epilepsy syndrome, characterized by myoclonic jerks and frequently triggered by cognitive effort. Impairment of frontal lobe cognitive functions has been reported in patients with juvenile myoclonic epilepsy and their unaffected siblings. In a recent functional magnetic resonance imaging study we reported abnormal co-activation of the motor cortex and increased functional connectivity between the motor system and prefrontal cognitive networks during a working memory paradigm, providing an underlying mechanism for cognitively triggered jerks. In this study, we used the same task in 15 unaffected siblings (10 female; age range 18–65 years, median 40) of 11 of those patients with juvenile myoclonic epilepsy (six female; age range 22–54 years, median 35) and compared functional magnetic resonance imaging activations with 20 age- and gender-matched healthy control subjects (12 female; age range 23–46 years, median 30.5). Unaffected siblings showed abnormal primary motor cortex and supplementary motor area co-activation with increasing cognitive load, as well as increased task-related functional connectivity between motor and prefrontal cognitive networks, with a similar pattern to patients (P < 0.001 uncorrected; 20-voxel threshold extent). This finding in unaffected siblings suggests that altered motor system activation and functional connectivity is not medication- or seizure-related, but represents a potential underlying mechanism for impairment of frontal lobe functions in both patients and siblings, and so constitutes an endophenotype of juvenile myoclonic epilepsy. PMID:25001494

  4. Cytoskeletal motor-driven active self-assembly in in vitro systems

    DOE PAGES

    Lam, A. T.; VanDelinder, V.; Kabir, A. M. R.; ...

    2015-11-11

    Molecular motor-driven self-assembly has been an active area of soft matter research for the past decade. Because molecular motors transform chemical energy into mechanical work, systems which employ molecular motors to drive self-assembly processes are able to overcome kinetic and thermodynamic limits on assembly time, size, complexity, and structure. Here, we review the progress in elucidating and demonstrating the rules and capabilities of motor-driven active self-assembly. Lastly, we focus on the types of structures created and the degree of control realized over these structures, and discuss the next steps necessary to achieve the full potential of this assembly mode whichmore » complements robotic manipulation and passive self-assembly.« less

  5. Measurements of Myosin-II Motor Activity During Cytokinesis in Fission Yeast.

    PubMed

    Tang, Qing; Pollard, Luther W; Lord, Matthew

    2016-01-01

    Fission yeast myosin-II (Myo2p) represents the critical actin-based motor protein that drives actomyosin ring assembly and constriction during cytokinesis. We detail three different methods to measure Myo2p motor function. Actin-activated ATPases provide a readout of actomyosin ATPase motor activity in a bulk assay; actin filament motility assays reveal the speed and efficiency of myosin-driven actin filament gliding (when motors are anchored); myosin-bead motility assays reveal the speed and efficiency of myosin ensembles traveling along actin filaments (when actin is anchored). Collectively, these methods allow us to combine the standard in vivo approaches common to fission yeast with in vitro biochemical methods to learn more about the mechanistic action of myosin-II during cytokinesis.

  6. Cytoskeletal motor-driven active self-assembly in in vitro systems

    SciTech Connect

    Lam, A. T.; VanDelinder, V.; Hess, H.; Bachand, G. D.

    2015-11-11

    Molecular motor-driven self-assembly has been an active area of soft matter research for the past decade. Because molecular motors transform chemical energy into mechanical work, systems which employ molecular motors to drive self-assembly processes are able to overcome kinetic and thermodynamic limits on assembly time, size, complexity, and structure. Here, we review the progress in elucidating and demonstrating the rules and capabilities of motor-driven active self-assembly. Lastly, we focus on the types of structures created and the degree of control realized over these structures, and discuss the next steps necessary to achieve the full potential of this assembly mode which complements robotic manipulation and passive self-assembly.

  7. Chapter 6: Children's Environmental Access in Relation to Motor Competence, Physical Activity, and Fitness

    ERIC Educational Resources Information Center

    Erwin, Heather E.; Woods, Amelia Mays; Woods, Martha K.; Castelli, Darla M.

    2007-01-01

    The purpose of this study was to examine levels of physical activity engagement, motor competence, and physical fitness as related to child access to physical activity facilities in the home and school environments. The present investigation attempts to further efforts to examine the relationship between physical activity levels and access.…

  8. Get Kids Moving: Simple Activities To Build Gross-Motor Skills.

    ERIC Educational Resources Information Center

    Texas Child Care, 2003

    2003-01-01

    Highlights the importance of activities to build gross motor skills and provides hints for encouraging such activities. Specific areas of activities presented are: (1) running and jumping; (2) music games; (3) action games; (4) races; (5) bed sheets or parachutes; (6) hula hoops; (7) balls; (8) batting; (9) balance; and (10) creative movement. (SD)

  9. Neurotensin Changes Propulsive Activity into a Segmental Motor Pattern in the Rat Colon

    PubMed Central

    Li, Hongfei; Chen, Ji-Hong; Yang, Zixian; Huang, Min; Yu, Yuanjie; Tan, Shiyun; Luo, Hesheng; Huizinga, Jan D

    2016-01-01

    Background/Aims Neurotensin is a gut-brain peptide with both inhibitory and excitatory actions on the colonic musculature; our objective was to understand the implications of this for motor patterns occurring in the intact colon of the rat. Methods The effects of neurotensin with concentrations ranging from 0.1–100 nM were studied in the intact rat colon in vitro, by investigating spatio-temporal maps created from video recordings of colonic motility before and after neurotensin. Results Low concentration of neurotensin (0.1–1 nM) inhibited propagating long distance contractions and rhythmic propagating motor complexes; in its place a slow propagating rhythmic segmental motor pattern developed. The neurotensin receptor 1 antagonist SR-48692 prevented the development of the segmental motor pattern. Higher concentrations of neurotensin (10 nM and 100 nM) were capable of restoring long distance contraction activity and inhibiting the segmental activity. The slow propagating segmental contraction showed a rhythmic contraction—relaxation cycle at the slow wave frequency originating from the interstitial cells of Cajal associated with the myenteric plexus pacemaker. High concentrations given without prior additions of low concentrations did not evoke the segmental motor pattern. These actions occurred when neurotensin was given in the bath solution or intraluminally. The segmental motor pattern evoked by neurotensin was inhibited by the neural conduction blocker lidocaine. Conclusions Neurotensin (0.1–1 nM) inhibits the dominant propulsive motor patterns of the colon and a distinct motor pattern of rhythmic slow propagating segmental contractions develops. This motor pattern has the hallmarks of haustral boundary contractions. PMID:26882114

  10. [Participation of the primary motor cortex in programming of muscle activity during catching of falling object].

    PubMed

    Kazennikov, O V; Lipshits, M I

    2011-01-01

    Object fell into the cup that sitting subject held between thumb and index fingers. Transcranial magnetic stimulation (TMS) of the primary motor cortex was performed early before and during anticipatory grip force increasing. Comparison of current EMG activity of adductor pollicis brevis and first dorsal interosseous muscles and responses of these muscles on TMS showed that responses were increased before the raising of muscle activity. From the other side only slight augmentation of responses was observed during subsequent strong muscle activation. It is assumed that the increasing of the TMS responses that occurred before the initiation of muscle activity reflects the enhancement ofthe motor cortex excitability associated to specific processes related to the motor cortex participation in programming of the muscles activities.

  11. Convergence of inhibitory neural inputs regulate motor activity in the murine and monkey stomach.

    PubMed

    Shaylor, Lara A; Hwang, Sung Jin; Sanders, Kenton M; Ward, Sean M

    2016-11-01

    Inhibitory motor neurons regulate several gastric motility patterns including receptive relaxation, gastric peristaltic motor patterns, and pyloric sphincter opening. Nitric oxide (NO) and purines have been identified as likely candidates that mediate inhibitory neural responses. However, the contribution from each neurotransmitter has received little attention in the distal stomach. The aims of this study were to identify the roles played by NO and purines in inhibitory motor responses in the antrums of mice and monkeys. By using wild-type mice and mutants with genetically deleted neural nitric oxide synthase (Nos1(-/-)) and P2Y1 receptors (P2ry1(-/-)) we examined the roles of NO and purines in postjunctional inhibitory responses in the distal stomach and compared these responses to those in primate stomach. Activation of inhibitory motor nerves using electrical field stimulation (EFS) produced frequency-dependent inhibitory junction potentials (IJPs) that produced muscle relaxations in both species. Stimulation of inhibitory nerves during slow waves terminated pacemaker events and associated contractions. In Nos1(-/-) mice IJPs and relaxations persisted whereas in P2ry1(-/-) mice IJPs were absent but relaxations persisted. In the gastric antrum of the non-human primate model Macaca fascicularis, similar NO and purine neural components contributed to inhibition of gastric motor activity. These data support a role of convergent inhibitory neural responses in the regulation of gastric motor activity across diverse species.

  12. BDNF heightens the sensitivity of motor neurons to excitotoxic insults through activation of TrkB

    NASA Technical Reports Server (NTRS)

    Hu, Peter; Kalb, Robert G.; Walton, K. D. (Principal Investigator)

    2003-01-01

    The survival promoting and neuroprotective actions of brain-derived neurotrophic factor (BDNF) are well known but under certain circumstances this growth factor can also exacerbate excitotoxic insults to neurons. Prior exploration of the receptor through which BDNF exerts this action on motor neurons deflects attention away from p75. Here we investigated the possibility that BDNF acts through the receptor tyrosine kinase, TrkB, to confer on motor neurons sensitivity to excitotoxic challenge. We blocked BDNF activation of TrkB using a dominant negative TrkB mutant or a TrkB function blocking antibody, and found that this protected motor neurons against excitotoxic insult in cultures of mixed spinal cord neurons. Addition of a function blocking antibody to BDNF to mixed spinal cord neuron cultures is also neuroprotective indicating that endogenously produced BDNF participates in vulnerability to excitotoxicity. We next examined the intracellular signaling cascades that are engaged upon TrkB activation. Previously we found that inhibition of the phosphatidylinositide-3'-kinase (PI3'K) pathway blocks BDNF-induced excitotoxic sensitivity. Here we show that expression of a constitutively active catalytic subunit of PI3'K, p110, confers excitotoxic sensitivity (ES) upon motor neurons not incubated with BDNF. Parallel studies with purified motor neurons confirm that these events are likely to be occuring specifically within motor neurons. The abrogation of BDNF's capacity to accentuate excitotoxic insults may make it a more attractive neuroprotective agent.

  13. White matter microstructure and volitional motor activity in schizophrenia: A diffusion kurtosis imaging study.

    PubMed

    Docx, Lise; Emsell, Louise; Van Hecke, Wim; De Bondt, Timo; Parizel, Paul M; Sabbe, Bernard; Morrens, Manuel

    2017-02-28

    Avolition is a core feature of schizophrenia and may arise from altered brain connectivity. Here we used diffusion kurtosis imaging (DKI) to investigate the association between white matter (WM) microstructure and volitional motor activity. Multi-shell diffusion MRI and 24-h actigraphy data were obtained from 20 right-handed patients with schizophrenia and 16 right-handed age and gender matched healthy controls. We examined correlations between fractional anisotropy (FA), mean diffusivity (MD), mean kurtosis (MK), and motor activity level, as well as group differences in these measures. In the patient group, increasing motor activity level was positively correlated with MK in the inferior, medial and superior longitudinal fasciculus, the corpus callosum, the posterior fronto-occipital fasciculus and the posterior cingulum. This association was not found in control subjects or in DTI measures. These results show that a lack of volitional motor activity in schizophrenia is associated with potentially altered WM microstructure in posterior brain regions associated with cognitive function and motivation. This could reflect both illness related dysconnectivity which through altered cognition, manifests as reduced volitional motor activity, and/or the effects of reduced physical activity on brain WM.

  14. Gender-dependent reduction of spontaneous motor activity and growth in rats subjected to portacaval shunt.

    PubMed

    Conjeevaram, H S; Mullen, K D; May, E J; McCullough, A J

    1994-02-01

    Alterations in behavior are frequently described in rats subjected to portacaval shunt. Previous work has reported reduced spontaneous motor activity in various settings (nighttime, red light, decreased illumination) in this animal model. We investigated this phenomenon in rats of both genders subjected to portacaval shunt to determine whether our previously observed divergent growth patterns (males reduced, females unchanged) had any impact on the alterations in spontaneous motor activity in this model. Dietary intake, growth, motor activity and serum ammonia and amino acid concentrations were measured, in addition to final liver and spleen weights, in each animal after 3 to 4 wk of observation. Our results reconfirm the differential impact of portacaval shunt on growth in male (35% reduction p < 0.01) but not female rats (5% reduction, NS) compared with their respective-gender sham-operated controls. In addition, spontaneous motor activity was significantly reduced in male (congruent to 50%, p = 0.01) but not female rats subjected to portacaval shunt. The reduction of activity in male rats subjected to portacaval shunt did not correlate with any of the measured biochemical data or calculated nutritional/growth parameters. Thus we observed gender-dependent reduction in spontaneous motor activity after portacaval shunt in the rat. The mechanism for this phenomenon is unknown, but it is easily investigated with this reproducible model.

  15. Common Coding and Dynamic Interactions Between Observed, Imagined, and Experienced Motor and Somatosensory Activity

    PubMed Central

    Case, Laura K; Pineda, Jaime; Ramachandran, Vilayanur S

    2015-01-01

    Motor imagery and perception- considered generally as forms of motor simulation- share overlapping neural representations with motor production. While much research has focused on the extent of this “common coding,” less attention has been paid to how these overlapping representations interact. How do imagined, observed, or produced actions influence one another, and how do we maintain control over our perception and behavior? In the first part of this review we describe interactions between motor production and motor simulation, and explore apparent regulatory mechanisms that balance these processes. Next, we consider the somatosensory system. Numerous studies now support a “sensory mirror system” comprised of neural representations activated by either afferent sensation or vicarious sensation. In the second part of this review we summarize evidence for shared representations of sensation and sensory simulation (including imagery and observed sensation), and suggest that similar interactions and regulation of simulation occur in the somatosensory domain as in the motor domain. We suggest that both motor and somatosensory simulations are flexibly regulated to support simulations congruent with our sensorimotor experience and goals and suppress or separate the influence of those that are not. These regulatory mechanisms are frequently revealed by cases of brain injury but can also be employed to facilitate sensorimotor rehabilitation. PMID:25863237

  16. Motor Skill Development in Italian Pre-School Children Induced by Structured Activities in a Specific Playground

    PubMed Central

    Tortella, Patrizia; Haga, Monika; Loras, Håvard

    2016-01-01

    This study examined the effects and specificity of structured and unstructured activities played at the playground Primo Sport 0246 in Northern Italy on motor skill competence in five years old children. The playground was specifically designed to promote gross motor skills in preschool children; in this study 71 children from local kindergartens came to the park once a week for ten consecutive weeks and were exposed to 30 minutes of free play and 30 minutes of structured activities. Before and after the ten visits, each child completed nine tests to assess levels of motor skills, three for fine-motor skills and six for gross-motor skills. As control, motor skills were also assessed on 39 children from different kindergartens who did not come to the park. The results show that the experimental group who practiced gross-motor activities in the playground for 1 hour a week for 10 weeks improved significantly in 4 out of the 6 gross motor tasks and in none of the fine motor tasks. The data indicate that limited transfer occurred between tasks referring to different domains of motor competences while suggesting cross feeding for improvement of gross-motor skills between different exercises when domains related to physical fitness and strength of specific muscle groups are involved. These results are relevant to the issue of condition(s) appropriate for maintaining and developing motor skills in this age group as well as for the planning, organization and implementation of play and physical activities in kindergartens. PMID:27462985

  17. You can count on the motor cortex: Finger counting habits modulate motor cortex activation evoked by numbers

    PubMed Central

    Tschentscher, Nadja; Hauk, Olaf; Fischer, Martin H.; Pulvermüller, Friedemann

    2012-01-01

    The embodied cognition framework suggests that neural systems for perception and action are engaged during higher cognitive processes. In an event-related fMRI study, we tested this claim for the abstract domain of numerical symbol processing: is the human cortical motor system part of the representation of numbers, and is organization of numerical knowledge influenced by individual finger counting habits? Developmental studies suggest a link between numerals and finger counting habits due to the acquisition of numerical skills through finger counting in childhood. In the present study, digits 1 to 9 and the corresponding number words were presented visually to adults with different finger counting habits, i.e. left- and right-starters who reported that they usually start counting small numbers with their left and right hand, respectively. Despite the absence of overt hand movements, the hemisphere contralateral to the hand used for counting small numbers was activated when small numbers were presented. The correspondence between finger counting habits and hemispheric motor activation is consistent with an intrinsic functional link between finger counting and number processing. PMID:22133748

  18. Endogenous rhythm of absence epilepsy: relationship with general motor activity and sleep-wake states.

    PubMed

    Smyk, Magdalena K; Coenen, Anton M L; Lewandowski, Marian H; van Luijtelaar, Gilles

    2011-02-01

    The rhythms of spontaneously occurring seizures (spike-wave discharges, SWD) and motor activity, as well as the relationship between SWD and sleep-wake states were investigated in the WAG/Rij rat model of absence epilepsy. In order to establish whether SWD are controlled by external (Zeitgebers) or by endogenous factors such as circadian influences or the state of vigilance, the study was performed in entrained and constant dim light conditions. EEG and motor activity were recorded in the 12:12 light-dark cycle and in constant dim light conditions. Circadian rhythmicity was found both for motor activity and the occurrence of SWD in conditions of entrainment. In constant dim light conditions also circadian rhythms emerged, however, the change in circadian parameters was opposite for the rhythm of SWD and motor activity. SWD were preceded mostly by passive wakefulness and by slow-wave sleep in both experimental conditions. It can be concluded that the rhythm of SWD seems to be generated and controlled by an endogenous mechanism distinct from that which controls the rhythm of motor activity. The relationship between SWD and sleep-wake states preceding their occurrences appeared to be unchanged, suggesting that the mechanism of generation of SWD is independent of the circadian timing system.

  19. MOTOR DEVELOPMENT AND PHYSICAL ACTIVITY: A LONGITUDINAL DISCORDANT TWIN-PAIR STUDY

    PubMed Central

    Aaltonen, Sari; Latvala, Antti; Rose, Richard J.; Pulkkinen, Lea; Kujala, Urho M.; Kaprio, Jaakko; Silventoinen, Karri

    2015-01-01

    Introduction Previous longitudinal research suggests that motor proficiency in early life predicts physical activity in adulthood. Familial effects including genetic and environmental factors could explain the association, but no long-term follow-up studies have taken into account potential confounding by genetic and social family background. The present twin study investigated whether childhood motor skill development is associated with leisure-time physical activity levels in adulthood independent of family background. Methods Altogether, 1 550 twin pairs from the FinnTwin12 study and 1 752 twin pairs from the FinnTwin16 study were included in the analysis. Childhood motor development was assessed by the parents’ report of whether one of the co-twins had been ahead of the other in different indicators of motor skill development in childhood. Leisure-time physical activity (MET hours/day) was self-reported by the twins in young adulthood and adulthood. Statistical analyses included conditional and ordinary linear regression models within twin pairs. Results Using all activity-discordant twin pairs, the within-pair difference in a sum score of motor development in childhood predicted the within-pair difference in the leisure-time physical activity level in young adulthood (p<0.001). Within specific motor development indicators, learning to stand unaided earlier in infancy predicted higher leisure-time MET values in young adulthood statistically significantly in both samples (FinnTwin12 p=0.02, FinnTwin16 p=0.001) and also in the pooled dataset of the FinnTwin12 and FinnTwin16 studies (p<0.001). Having been more agile than the co-twin as a child predicted higher leisure-time MET values up to adulthood (p=0.03). Conclusions More advanced childhood motor development is associated with higher leisure-time MET values in young adulthood at least partly independent of family background, in both men and women. PMID:26378945

  20. Enhanced activation of motor execution networks using action observation combined with imagination of lower limb movements.

    PubMed

    Villiger, Michael; Estévez, Natalia; Hepp-Reymond, Marie-Claude; Kiper, Daniel; Kollias, Spyros S; Eng, Kynan; Hotz-Boendermaker, Sabina

    2013-01-01

    The combination of first-person observation and motor imagery, i.e. first-person observation of limbs with online motor imagination, is commonly used in interactive 3D computer gaming and in some movie scenes. These scenarios are designed to induce a cognitive process in which a subject imagines himself/herself acting as the agent in the displayed movement situation. Despite the ubiquity of this type of interaction and its therapeutic potential, its relationship to passive observation and imitation during observation has not been directly studied using an interactive paradigm. In the present study we show activation resulting from observation, coupled with online imagination and with online imitation of a goal-directed lower limb movement using functional MRI (fMRI) in a mixed block/event-related design. Healthy volunteers viewed a video (first-person perspective) of a foot kicking a ball. They were instructed to observe-only the action (O), observe and simultaneously imagine performing the action (O-MI), or imitate the action (O-IMIT). We found that when O-MI was compared to O, activation was enhanced in the ventralpremotor cortex bilaterally, left inferior parietal lobule and left insula. The O-MI and O-IMIT conditions shared many activation foci in motor relevant areas as confirmed by conjunction analysis. These results show that (i) combining observation with motor imagery (O-MI) enhances activation compared to observation-only (O) in the relevant foot motor network and in regions responsible for attention, for control of goal-directed movements and for the awareness of causing an action, and (ii) it is possible to extensively activate the motor execution network using O-MI, even in the absence of overt movement. Our results may have implications for the development of novel virtual reality interactions for neurorehabilitation interventions and other applications involving training of motor tasks.

  1. Discharges of aortic and carotid sinus baroreceptors during spontaneous motor activity and pharmacologically evoked pressor interventions.

    PubMed

    Matsukawa, Kanji; Ishii, Kei; Kadowaki, Akito; Ishida, Tomoko; Idesako, Mitsuhiro; Liang, Nan

    2014-07-01

    Our laboratory has demonstrated that the cardiomotor component of aortic baroreflex is temporarily inhibited at the onset of spontaneous motor activity in decerebrate cats, without altering carotid sinus baroreflex. A reason for this dissociation may be attributed to a difference in the responses between aortic nerve activity (AoNA) and carotid sinus nerve activity (CsNA) during spontaneous motor activity. The stimulus-response curves of AoNA and CsNA against mean arterial blood pressure (MAP) were compared between the pressor interventions evoked by spontaneous motor activity and by intravenous administration of phenylephrine or norepinephrine, in which the responses in heart rate (HR) were opposite (i.e., tachycardia vs. baroreflex bradycardia), despite the identical increase in MAP of 34-40 mmHg. In parallel to the pressor response, mean AoNA and CsNA increased similarly by 78-81 and by 88 % of the baseline control, respectively, irrespective of whether the pressor response was evoked by spontaneous motor activity or by a pharmacological intervention. The slope of the stimulus-response curve of the mean AoNA became greater (P < 0.05) during spontaneous motor activity as compared to the pharmacological intervention. On the other hand, the stimulus-response curve of the mean CsNA and its slope were equal (P > 0.05) between the two pressor interventions. Furthermore, the slopes of the stimulus-response curves of both diastolic AoNA and CsNA (defined as the minimal value within a beat) exhibited a greater increase during spontaneous motor activity. All differences in the slopes of the stimulus-response curves were abolished by restraining HR at the intrinsic cardiac frequency. In conclusion, mean mass activities of both aortic and carotid sinus baroreceptors are able to encode the beat-by-beat changes in MAP not only at rest but also during spontaneous motor activity and spontaneous motor activity-related reduction of aortic baroreceptor activity is denied

  2. Complementary interactions between command-like interneurons that function to activate and specify motor programs.

    PubMed

    Wu, Jin-Sheng; Wang, Nan; Siniscalchi, Michael J; Perkins, Matthew H; Zheng, Yu-Tong; Yu, Wei; Chen, Song-an; Jia, Ruo-nan; Gu, Jia-Wei; Qian, Yi-Qing; Ye, Yang; Vilim, Ferdinand S; Cropper, Elizabeth C; Weiss, Klaudiusz R; Jing, Jian

    2014-05-07

    Motor activity is often initiated by a population of command-like interneurons. Command-like interneurons that reliably drive programs have received the most attention, so little is known about how less reliable command-like interneurons may contribute to program generation. We study two electrically coupled interneurons, cerebral-buccal interneuron-2 (CBI-2) and CBI-11, which activate feeding motor programs in the mollusk Aplysia californica. Earlier work indicated that, in rested preparations, CBI-2, a powerful activator of programs, can trigger ingestive and egestive programs. CBI-2 reliably generated ingestive patterns only when it was repeatedly stimulated. The ability of CBI-2 to trigger motor activity has been attributed to the two program-promoting peptides it contains, FCAP and CP2. Here, we show that CBI-11 differs from CBI-2 in that it contains FCAP but not CP2. Furthermore, it is weak in its ability to drive programs. On its own, CBI-11 is therefore less effective as a program activator. When it is successful, however, CBI-11 is an effective specifier of motor activity; that is, it drives mostly ingestive programs. Importantly, we found that CBI-2 and CBI-11 complement each other's actions. First, prestimulation of CBI-2 enhanced the ability of CBI-11 to drive programs. This effect appears to be partly mediated by CP2. Second, coactivation of CBI-11 with CBI-2 makes CBI-2 programs immediately ingestive. This effect may be mediated by specific actions that CBI-11 exerts on pattern-generating interneurons. Therefore, different classes of command-like neurons in a motor network may make distinct, but potentially complementary, contributions as either activators or specifiers of motor activity.

  3. Combustion-Characteristic-Based Active Thrust Modulation of a Solid Rocket Motor

    NASA Astrophysics Data System (ADS)

    Tanaka, Masafumi; Gaspard, Guillaume; Urakawa, Katsuya

    A new concept of thrust modulation of solid propellant rocket motor is proposed. Some propellants cannot burn at intermediate pressure, while they can burn at lower and higher pressures. When one applies such a propellant to a motor, two combustion modes or two thrust levels are attainable without any change of the nozzle configuration. In the experiments different ignition conditions brought independent two combustion modes (low mode and high mode) in the same motor geometry. Some motors showed a natural transition from low mode to high mode. As an example, the alternative thrust levels were 50 N and 180 N. The natural transition was restricted with use of the partitioned grain. An active transition method was explored by exerting pressure perturbation through a vent hole with a ball valve. The valve system worked for the transition from high mode to low mode, but the reverse transition was not achieved well.

  4. Induction Motor Drive System Based on Linear Active Disturbance Rejection Controller

    NASA Astrophysics Data System (ADS)

    Liu, Liying; Zhang, Yongli; Yao, Qingmei

    It is difficult to establish an exact mathematical model for the induction motor and the robustness is poor of the vector control system using PI regulator. This paper adopts the linear active disturbance rejection controller (LADRC) to control inductor motor. LADRC doesn't need the exact mathematical model of motor and it can not only estimate but also compensate the general disturbance that includes the coupling items in model of motor and parameters perturbations by linear extended state observer (LESO), so the rotor flux and torque fully decouple. As a result, the performance is improved. To prove the above control scheme, the proposed control system has been simulated in MATLAB/SIMULINK, and the comparison was made with PID. Simulation results show that LADRC' has better performance and robustness than PID.

  5. Cerebral Activation During Initial Motor Learning Forecasts Subsequent Sleep-Facilitated Memory Consolidation in Older Adults.

    PubMed

    King, Bradley R; Saucier, Philippe; Albouy, Genevieve; Fogel, Stuart M; Rumpf, Jost-Julian; Klann, Juliane; Buccino, Giovanni; Binkofski, Ferdinand; Classen, Joseph; Karni, Avi; Doyon, Julien

    2016-01-21

    Older adults exhibit deficits in motor memory consolidation; however, little is known about the cerebral correlates of this impairment. We thus employed fMRI to investigate the neural substrates underlying motor sequence memory consolidation, and the modulatory influence of post-learning sleep, in healthy older adults. Participants were trained on a motor sequence and retested following an 8-h interval including wake or diurnal sleep as well as a 22-h interval including a night of sleep. Results demonstrated that a post-learning nap improved offline consolidation across same- and next-day retests. This enhanced consolidation was reflected by increased activity in the putamen and the medial temporal lobe, including the hippocampus, regions that have previously been implicated in sleep-dependent neural plasticity in young adults. Moreover, for the first time in older adults, the neural substrates subserving initial motor learning, including the putamen, cerebellum, and parietal cortex, were shown to forecast subsequent consolidation depending on whether a post-learning nap was afforded. Specifically, sufficient activation in a motor-related network appears to be necessary to trigger sleep-facilitated consolidation in older adults. Our findings not only demonstrate that post-learning sleep can enhance motor memory consolidation in older adults, but also provide the system-level neural correlates of this beneficial effect.

  6. Striatal dopamine release and biphasic pattern of locomotor and motor activity under gas narcosis.

    PubMed

    Balon, Norbert; Risso, Jean-Jacques; Blanc, François; Rostain, Jean-Claude; Weiss, Michel

    2003-05-02

    Inert gas narcosis is a neurological syndrome appearing when humans or animals are exposed to hyperbaric inert gases (nitrogen, argon) composed by motor and cognitive impairments. Inert gas narcosis induces a decrease of the dopamine release at the striatum level, structure involved in the regulation of the extrapyramidal motricity. We have investigated, in freely moving rats exposed to different narcotic conditions, the relationship between the locomotor and motor activity and the striatal dopamine release, using respectively a computerized device that enables a quantitative analysis of this behavioural disturbance and voltammetry. The use of 3 MPa of nitrogen, 2 MPa of argon and 0.1 MPa of nitrous oxide, revealed after a transient phase of hyperactivity, a lower level of the locomotor and motor activity, in relation with the decrease of the striatal dopamine release. It is concluded that the striatal dopamine decrease could be related to the decrease of the locomotor and motor hyperactivity, but that other(s) neurotransmitter(s) could be primarily involved in the behavioural motor disturbances induced by narcotics. This biphasic effect could be of major importance for future pharmacological investigations, and motor categorization, on the basic mechanisms of inert gas at pressure.

  7. [Characterization of electrical brain activity related to hand motor imagery in healthy subjects].

    PubMed

    Cantillo-Negrete, Jessica; Gutiérrez-Martínez, Josefina; Flores-Rodríguez, Teodoro B; Cariño-Escobar, Rubén I; Elías-Viñas, David

    2014-07-01

    Brain computer interface systems (BCI) translate the intentions of patients affected with locked-in syndrome through the EEG signal characteristics, which are converted into commands used to control external devices. One of the strategies used, is to decode the motor imagery of the subject, which can modify the neuronal activity in the sensory-motor areas in a similar way to which it is observed in real movement. The present study shows the activation patterns that are registered in motor and motor imagery tasks of right and left hand movement in a sample of young healthy subjects of Mexican nationality. By means of frequency analysis it was possible to determine the difference conditions of motor imagery and movement. Using U Mann- Whitney tests, differences with statistical significance (p < 0.05) where obtained, in the EEG channels C3, Cz, C4, T3 and P3 in the mu and beta rhythms, for subjects with similar characteristics (age, gender, and education). With these results, it would be possible to define a classifier or decoder by gender that improves the performance rate and diminishes the training time, with the goal of designing a functional BCI system that can be transferred from the laboratory to the clinical application in patients with motor disabilities.

  8. ELECTRICAL AND ELECTRONIC INDUSTRIAL CONTROL. D-C MAGNETIC MOTOR CONTROL, UNIT 7, INSTRUCTOR'S GUIDE.

    ERIC Educational Resources Information Center

    SUTTON, MACK C.

    THIS GUIDE IS FOR TEACHER USE IN DIRECTING INDIVIDUAL STUDY OF DIRECT CURRENT MAGNETIC MOTOR CONTROL IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. EACH OF THE 15 INSTRUCTOR'S SHEETS GIVES THE LESSON SUBJECT, PURPOSE, INTRODUCTORY INFORMATION, REFERENCES, AND STEP-BY-STEP SOLUTIONS OF THE…

  9. Assessment of Perceptual Motor Skills Contribution to Psycho-Evaluation: Unit 4

    ERIC Educational Resources Information Center

    Peabody, Albert D. Jr.

    2005-01-01

    According to (Koppitz, 1975) manual suggests, "the use of the BVMGT is a rough test of intelligence. The BVMGT is not an intelligence test but a measure of a child's skill in coping geometric designs. It provides a very limited sample of behavior. Although perceptual motor development has emerged as a very important instrument for the development…

  10. ELECTRICAL AND ELECTRONIC INDUSTRIAL CONTROL. D-C MAGNETIC MOTOR CONTROL, UNIT 7, ASSIGNMENTS.

    ERIC Educational Resources Information Center

    SUTTON, MACK C.

    THIS GUIDE IS FOR INDIVIDUAL STUDENT USE IN STUDYING DIRECT CURRENT MAGNETIC MOTOR CONTROL IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. EACH OF THE 15 ASSIGNMENT SHEETS PROVIDES THE LESSON SUBJECT, PURPOSE, INTRODUCTORY INFORMATION, STUDY REFERENCES, AND PROBLEMS. SOME OF THE LESSONS…

  11. Ambient Cured Alkali Activated Flyash Masonry Units

    NASA Astrophysics Data System (ADS)

    Venugopal, K.; Radhakrishna; Sasalatti, Vinod M.

    2016-09-01

    Geopolymers belong to a category of non-conventional and non-Portland cement based cementitious binders which are produced using industrial by products like fly ash and ground granulated blast furnace slag (GGBFS). This paper reports on the development of geopolymer mortars for production of masonry units. The geopolymer mortars were prepared by mixing various by products with manufactured sand and a liquid mixture of sodium silicate and sodium hydroxide solutions. After curing at ambient conditions, the masonry units were tested for strength properties such as water absorption, initial rate of absorption, compression, shear- bond, and stress-strain behaviour etc. It was observed that the flexural strength of the blocks is more than 2 MPa and shear bond strength is more than 0.4MPa. It was found that the properties of geopolymer blocks were superior to the traditional masonry units. Hence they can be recommended for structural masonry.

  12. The Longitudinal Course of Gross Motor Activity in Schizophrenia - Within and between Episodes.

    PubMed

    Walther, Sebastian; Stegmayer, Katharina; Horn, Helge; Rampa, Luca; Razavi, Nadja; Müller, Thomas J; Strik, Werner

    2015-01-01

    Schizophrenia is associated with heterogeneous course of positive and negative symptoms. In addition, reduced motor activity as measured by wrist actigraphy has been reported. However, longitudinal studies of spontaneous motor activity are missing. We aimed to explore whether activity levels were stable within and between psychotic episodes. Furthermore, we investigated the association with the course of negative symptoms. In 45 medicated patients, we investigated motor behavior within a psychotic episode. In addition, we followed 18 medicated patients across 2 episodes. Wrist actigraphy and psychopathological ratings were applied. Within an episode symptoms changed but activity levels did not vary systematically. Activity at baseline predicted the course of negative symptoms. Between two episodes activity recordings were much more stable. Again, activity at the index episode predicted the outcome of negative symptoms. In sum, spontaneous motor activity shares trait and state characteristics, the latter are associated with negative symptom course. Actigraphy may therefore become an important ambulatory instrument to monitor negative symptoms and treatment outcome in schizophrenia.

  13. The Longitudinal Course of Gross Motor Activity in Schizophrenia – Within and between Episodes

    PubMed Central

    Walther, Sebastian; Stegmayer, Katharina; Horn, Helge; Rampa, Luca; Razavi, Nadja; Müller, Thomas J.; Strik, Werner

    2015-01-01

    Schizophrenia is associated with heterogeneous course of positive and negative symptoms. In addition, reduced motor activity as measured by wrist actigraphy has been reported. However, longitudinal studies of spontaneous motor activity are missing. We aimed to explore whether activity levels were stable within and between psychotic episodes. Furthermore, we investigated the association with the course of negative symptoms. In 45 medicated patients, we investigated motor behavior within a psychotic episode. In addition, we followed 18 medicated patients across 2 episodes. Wrist actigraphy and psychopathological ratings were applied. Within an episode symptoms changed but activity levels did not vary systematically. Activity at baseline predicted the course of negative symptoms. Between two episodes activity recordings were much more stable. Again, activity at the index episode predicted the outcome of negative symptoms. In sum, spontaneous motor activity shares trait and state characteristics, the latter are associated with negative symptom course. Actigraphy may therefore become an important ambulatory instrument to monitor negative symptoms and treatment outcome in schizophrenia. PMID:25698981

  14. Microscopic origins of anistropic active stress in motor-driven nematic liquid crystals

    PubMed Central

    Blackwell, Robert; Sweezy-Schindler, Oliver; Baldwin, Christopher; Hough, Loren E.; Glaser, Matthew A.; Betterton, M. D.

    2016-01-01

    The cytoskeleton, despite comprising relatively few building blocks, drives an impressive variety of cellular phenomena ranging from cell division to motility. These building blocks include filaments, motor proteins, and static crosslinkers. Outside of cells, these same components can form novel materials exhibiting active flows and nonequilibrium contraction or extension. While dipolar extensile or contractile active stresses are common in nematic motor-filament systems, their microscopic origin remains unclear. Here we study a minimal physical model of filaments, crosslinking motors, and static crosslinkers to dissect the microscopic mechanisms of stress generation in a two-dimensional system of orientationally aligned rods. We demonstrate the essential role of filament steric interactions which have not previously be considered to significantly contribute to active stresses. With this insight, we are able to tune contractile or extensile behavior through control of motor-driven filament sliding and crosslinking. This work provides a roadmap for engineering stresses in active liquid crystals. The mechanisms we study may help explain why flowing nematic motor-filament mixtures are extensile while gelled systems are contractile. PMID:26742483

  15. Emerging principles and neural substrates underlying tonic sleep-state-dependent influences on respiratory motor activity.

    PubMed

    Horner, Richard L

    2009-09-12

    Respiratory muscles with dual respiratory and non-respiratory functions (e.g. the pharyngeal and intercostal muscles) show greater suppression of activity in sleep than the diaphragm, a muscle almost entirely devoted to respiratory function. This sleep-related suppression of activity is most apparent in the tonic component of motor activity, which has functional implications of a more collapsible upper airspace in the case of pharyngeal muscles, and decreased functional residual capacity in the case of intercostal muscles. A major source of tonic drive to respiratory motoneurons originates from neurons intimately involved in states of brain arousal, i.e. neurons not classically involved in generating respiratory rhythm and pattern per se. The tonic drive to hypoglossal motoneurons, a respiratory motor pool with both respiratory and non-respiratory functions, is mediated principally by noradrenergic and glutamatergic inputs, these constituting the essential components of the wakefulness stimulus. These tonic excitatory drives are opposed by tonic inhibitory glycinergic and gamma-amino butyric acid (GABA) inputs that constrain the level of respiratory-related motor activity, with the balance determining net motor tone. In sleep, the excitatory inputs are withdrawn and GABA release into the brainstem is increased, thus decreasing respiratory motor tone and predisposing susceptible individuals to hypoventilation and obstructive sleep apnoea.

  16. Wavelet methodology to improve single unit isolation in primary motor cortex cells

    PubMed Central

    Ortiz-Rosario, Alexis; Adeli, Hojjat; Buford, John A.

    2016-01-01

    The proper isolation of action potentials recorded extracellularly from neural tissue is an active area of research in the fields of neuroscience and biomedical signal processing. This paper presents an isolation methodology for neural recordings using the wavelet transform (WT), a statistical thresholding scheme, and the principal component analysis (PCA) algorithm. The effectiveness of five different mother wavelets was investigated: biorthogonal, Daubachies, discrete Meyer, symmetric, and Coifman; along with three different wavelet coefficient thresholding schemes: fixed form threshold, Stein’s unbiased estimate of risk, and minimax; and two different thresholding rules: soft and hard thresholding. The signal quality was evaluated using three different statistical measures: mean-squared error, root-mean squared, and signal to noise ratio. The clustering quality was evaluated using two different statistical measures: isolation distance, and L-ratio. This research shows that the selection of the mother wavelet has a strong influence on the clustering and isolation of single unit neural activity, with the Daubachies 4 wavelet and minimax thresholding scheme performing the best. PMID:25794461

  17. KIF4 motor regulates activity-dependent neuronal survival by suppressing PARP-1 enzymatic activity.

    PubMed

    Midorikawa, Ryosuke; Takei, Yosuke; Hirokawa, Nobutaka

    2006-04-21

    In brain development, apoptosis is a physiological process that controls the final numbers of neurons. Here, we report that the activity-dependent prevention of apoptosis in juvenile neurons is regulated by kinesin superfamily protein 4 (KIF4), a microtubule-based molecular motor. The C-terminal domain of KIF4 is a module that suppresses the activity of poly (ADP-ribose) polymerase-1 (PARP-1), a nuclear enzyme known to maintain cell homeostasis by repairing DNA and serving as a transcriptional regulator. When neurons are stimulated by membrane depolarization, calcium signaling mediated by CaMKII induces dissociation of KIF4 from PARP-1, resulting in upregulation of PARP-1 activity, which supports neuron survival. After dissociation from PARP-1, KIF4 enters into the cytoplasm from the nucleus and moves to the distal part of neurites in a microtubule-dependent manner. We suggested that KIF4 controls the activity-dependent survival of postmitotic neurons by regulating PARP-1 activity in brain development.

  18. Associations among Elementary School Children’s Actual Motor Competence, Perceived Motor Competence, Physical Activity and BMI: A Cross-Sectional Study

    PubMed Central

    Stodden, David; Brian, Ali; True, Larissa; Cardon, Greet; Tallir, Isabel; Haerens, Leen

    2016-01-01

    Background Positive associations between motor competence and physical activity have been identified by means of variable-centered analyses. To expand the understanding of these associations, this study used a person-centered approach to investigate whether different combinations (i.e., profiles) of actual and perceived motor competence exist (aim 1); and to examine differences in physical activity levels (aim 2) and weight status (aim 3) among children with different motor competence-based profiles. Materials and Methods Children’s (N = 361; 180 boys = 50%; Mage = 9.50±1.24yrs) actual motor competence was measured with the Test of Gross Motor Development-2 and their perceived motor competence via the Self Perception Profile for Children. We assessed physical activity via accelerometers; height through stadiometers, and weight through scales. Cluster analyses (aim 1) and MANCOVAs (aim 2 & 3) were used to analyze the data. Results The analysis generated two predictable groups: one group displaying relatively high levels of both actual (M TGMD-2 percentile = 42.54, SD = 2.33) and perceived motor competence (M = 3.42, SD = .37; high-high), and one group with relatively low levels of both (M percentile = 9.71, SD = 3.21; M PMC = 2.52, SD = .35; low-low). One additional group was also identified as having relatively low levels of actual motor competence (M percentile = 4.22, SD = 2.85) but relatively high levels of perceived motor competence (M = 3.52, SD = .30; low-high). The high-high group demonstrated higher daily physical activity (M = 48.39±2.03) and lower BMI (M = 18.13±.43) than the low-low group (MMVPA = 37.93±2.01; MBMI = 20.22±.42). The low-high group had similar physical activity-levels as the low-low group (M = 36.21±2.18) and did not significantly differ in BMI (M = 19.49±.46) from the other two groups. Conclusions A combination of high actual and perceived motor competence is related to higher physical activity and lower weight status. It is thus

  19. Effects of clonidine and methylphenidate on motor activity in Fmr1 knockout mice.

    PubMed

    Wrenn, Craige C; Heitzer, Andrew M; Roth, Alexandra K; Nawrocki, Lauren; Valdovinos, Maria G

    2015-01-12

    Fragile X syndrome (FXS), a disorder caused by a mutation in the FMR1 gene, is often associated with Attention Deficit Hyperactivity Disorder (ADHD). Common treatments for the hyperactivity often seen in ADHD involve the use of stimulants and α2-adrenergic agonists. The Fmr1 knockout (KO) mouse has been found to be a valid model for FXS both biologically and behaviorally. Of particular interest to our research, the Fmr1 KO mouse has been demonstrated to show increased locomotion in comparison to wild type (WT) littermates. In the present study, we assessed the effects of clonidine (0.05 mg/kg) and methylphenidate (5 mg/kg) on motor activity in Fmr1 KO mice and their WT littermates in the open field test. Results showed that methylphenidate increased motor activity in both genotypes. Clonidine decreased motor activity in both genotypes, but the effect was delayed in the Fmr1 KO mice.

  20. Effects of a low alcohol dose on static balance, fine motor activity, and mental performance.

    PubMed

    Mangold, S; Läubli, T; Krueger, H

    1996-01-01

    The effects of a single low alcohol dose (men 0.54 g and women 0.44 g alcohol per kg body weight) were measured by static balance, fine motor activity, and mental performance. In 10 healthy volunteers balance was registered by a temporally and spatially high resolution platform measuring the center of foot pressure and a three-dimensional coordination measurement system. Fine motor activity and mental performance were tested with selected experiments from the NES2 (Neurobehavioral Evaluation System) neuropsychological test battery. Changes of bipedal and monopedal balance could be detected after the alcohol consumption. Neither the fine motor activity nor the mental performance test demonstrated significant effects. Thus, the static balance test proved to be a sensitive, fast, and atraumatic method to identify slight neurotoxic disturbances.

  1. Twenty four hour manometric recording of colonic motor activity in healthy man.

    PubMed Central

    Narducci, F; Bassotti, G; Gaburri, M; Morelli, A

    1987-01-01

    The motor activity of the transverse, descending, and sigmoid colon was recorded for 24 hours in 14 healthy volunteers with a colonoscope positioned catheter. During the study the patients ate two 1000 kcal mixed meals and one continental breakfast. Colonic motor activity was low before meals and minimal during sleep; the motility index increased significantly after meals and at morning awakening. Most of the motor activity was represented by low amplitude contractions present singly or in bursts, which showed no recognisable pattern. All but two subjects also showed isolated high amplitude (up to 200 mmHg) contractions that propagated peristaltically over long distances at approximately 1 cm/sec. Most of these contractions occurred after morning awakening, and some in the late postprandial period, with a mean of 4.4/subject/24 h. The peristaltic contractions were often felt as an urge to defecate or preceded defecation, and could represent the manometric equivalent of the mass movements. PMID:3817580

  2. Inductance and Active Phase Vector Based Torque Control for Switched Reluctance Motor Drives.

    NASA Astrophysics Data System (ADS)

    Kalpathi, Ramani Raman

    The Switched Reluctance Motor (SRM) drive technology has developed significantly over the last few years. The simplicity in both motor design and power converter requirement along with the availability of high frequency, high power semiconductor switches have made SRMs compete with conventional adjustable speed drive technologies. The subject of winding current control in switched reluctance machines has always been associated with the shaft position information. The use of inductance for direct commutation control is the central subject of this dissertation. In contrast to the conventional methods based on position commutation, new methods of control based on inductance commutation are presented. The object of a commutation algorithm is to switch the currents in the phase coils, in order to provide continuous energy conversion with maximum torque output for a given unit of input current. Since torque production in a SRM is based on the concept of variable reluctance, it makes more sense to observe the instantaneous phase inductance or reluctance instead of estimating the rotor position. The inductance sensors observe the machine parameters and provide sufficient information on the electrical characteristics of the coils. This control strategy avoids the inductance to position transformation blocks conventionally used in SRM control systems. In a typical SRM, the phase coils have a nonlinear behavior of inductance due to effects of current saturation. Also the parameters of one phase coil differ from those of the other due to manufacturing tolerances or due to bearing wear. In such cases, the algorithms written during the stage of manufacturing may not be valid after parameter changes. Optimizing torque production in the event of phase asymmetry and saturation is developed in this research. Indirect sensors connected to the active phase coil of the SRM are based on sensing the flux level in the active coil. New commutation algorithms based on flux sensing concepts

  3. Effect of an altered rest-activity or feeding schedule on the shift of motor activity rhythm of mice.

    PubMed

    Murakami, H; Murakami, Y

    1980-04-01

    Preflight acclimatization to the rhythm of destination and postflight daytime activity are assumed to be effective countermeasures against the jet lag syndrome. Regarding this idea, resynchronization of motor activity rhythm was investigated in mice subjected to daytime exercises on a driven belt before or after the reversal of lighting regimen. In addition, the effect of prior daytime feeding was studied. No evidence was manifested that the forced exercises or feeding schedule would hasten synchronization. This result indicates that the central control system of motor activity rhythm could not be manipulated favorably by such method in mice. On the basis of the result obtained, the applicability of countermeasures to human beings was discussed.

  4. Motor cortex activation in Parkinson's disease: dissociation of electrocortical and peripheral measures of response generation.

    PubMed

    Praamstra, P; Plat, E M; Meyer, A S; Horstink, M W

    1999-09-01

    This study investigated characteristics of motor cortex activation and response generation in Parkinson's disease with measures of electrocortical activity (lateralized readiness potential [LRP]), electromyographic activity (EMG), and isometric force in a noise-compatibility task. When presented with stimuli consisting of incompatible target and distractor elements asking for responses of opposite hands, patients were less able than control subjects to suppress activation of the motor cortex controlling the wrong response hand. This was manifested in the pattern of reaction times and in an incorrect lateralization of the LRP. Onset latency and rise time of the LRP did not differ between patients and control subjects, but EMG and response force developed more slowly in patients. Moreover, in patients but not in control subjects, the rate of development of EMG and response force decreased as reaction time increased. We hypothesize that this dissociation between electrocortical activity and peripheral measures in Parkinson's disease is the result of changes in motor cortex function that alter the relation between signal-related and movement-related neural activity in the motor cortex. In the LRP, this altered balance may obscure an abnormal development of movement-related neural activity.

  5. Motor vehicle crashes among active duty U.S. Army personnel, 1999 to 2006.

    PubMed

    Rossen, Lauren M; Pollack, Keshia M; Canham-Chervak, Michelle; Canada, Sara; Baker, Susan P

    2011-09-01

    In the U.S. Army, motor vehicle crashes (MVCs), both privately owned and military, are a leading cause of injury and death. Few studies have described the distribution and trends of MVCs among Army personnel, which may have been impacted by current military missions. This descriptive study of risk factors and select outcomes is from safety report data maintained by the U.S. Army Combat Readiness/Safety Center on 11,469 active duty Army personnel involved in MVCs, 1999-2006. The majority (66%) of Soldiers in MVCs were in military vehicles within the continental United States (68%). The average age of individuals involved in MVCs was 27.7 years old. Males had a consistently higher MVC rate than females. The average cost per MVC related to property damage and injuries was $36,039 and $24,038, respectively. Results suggest a need for additional exploration of MVCs involving Army vehicles, which were the most common and among the most costly.

  6. Acute motor-sensory axonal neuropathy associated with active systemic lupus erythematosus and anticardiolipin antibodies.

    PubMed

    Ubogu, E E; Zaidat, O O; Suarez, J I

    2001-10-01

    Acute motor-sensory axonal neuropathy (AMSAN) is an axonal variant of Guillian-Barré syndrome (GBS) that presents with acute ascending quadriparesis. This has generally been described in association with Campylobacter jejuni infections or with anti-ganglioside antibodies. Known cases have shown a slow recovery and a poor prognosis. We report a case with clinical and electrophysiological evidence of AMSAN in association with active systemic lupus erythematosus (SLE) and anticardiolipin antibodies but not the other associations, with a rapid response to combination immunosuppressant and intravenous immunoglobulin (IVIg) therapy. The association between AMSAN and SLE has not been previously described. This case illustrates that early recognition and the utilization of electrophysiologic techniques may be beneficial in the diagnosis and management of GBS associated with SLE. Fulminant or rapidly progressive cases should be managed in specialized intensive care units. Combination therapy of immunosuppressants and IVIg may be beneficial in non-vasculitic axonal radiculo-neuropathies associated with SLE, resulting in good outcomes.

  7. Cortical current density oscillations in the motor cortex are correlated with muscular activity during pedaling exercise.

    PubMed

    Schneider, S; Rouffet, D M; Billaut, F; Strüder, H K

    2013-01-03

    Despite modern imaging techniques, assessing and localizing changes in brain activity during whole-body exercise is still challenging. Using an active electroencephalography (EEG) system in combination with source localization algorithms, this study aimed to localize brain cortical oscillations patterns in the motor cortex and to correlate these with surface electromyography (EMG)-detected muscular activity during pedaling exercise. Eight subjects performed 2-min isokinetic (90 rpm) cycling bouts at intensities ranging from 1 to 5 Wkg(-1) body mass on a cycle ergometer. These bouts were interspersed by a minimum of 2 min of passive rest to limit to development of peripheral muscle fatigue. Brain cortical activity within the motor cortex was analyzed using a 32-channel active EEG system combined with source localization algorithms. EMG activity was recorded from seven muscles on each lower limb. EEG and EMG activity revealed comparatively stable oscillations across the different exercise intensities. More importantly, the oscillations in cortical activity within the motor cortex were significantly correlated with EMG activity during the high-intensity cycling bouts. This study demonstrates that it is possible to localize oscillations in brain cortical activity during moderate- to high-intensity cycling exercise using EEG in combination with source localization algorithms, and that these oscillations match the activity of the active muscles in time and amplitude. Results of this study might help to further evaluate the effects of central vs. peripheral fatigue during exercise.

  8. Effects of age at cordotomy and subsequent exercise on contraction times of motor units in the cat.

    PubMed

    Smith, L A; Eldred, E; Edgerton, V R

    1993-12-01

    The contraction times (CTs) of functionally isolated motor units (MUs) in the soleus (SOL) and medial gastrocnemius (MG) muscles were determined in cats that had been spinalized at ages 2 (n = 15) or 12 (n = 9) wk and then either subjected to exercise on a treadmill or simply given manipulative care of the hindlimbs. The MUs were tested approximately 12 wk after the low-thoracic cordotomy, and comparisons were made with data from control animals. The CT of 50.9 ms obtained for SOL units (n = 163) in the spinal cats was 22% shorter than the mean of 65.0 ms for MUs (n = 57) from control cats (n = 4). Contrary to expectation, the CT in animals spinalized at 12 wk was significantly shorter than that in the 2-wk group. The CT for MG units (n = 105) in spinal cats was also significantly shorter (11%) than that in controls cats (n = 66, 6 cats), and those units identified by their high fatigue index as being of slow or fatigue-resistant type had a shorter CT than units with a low index. No distinction in CT of exercised and nonexercised groups was detected for either muscle. These findings are discussed in relation to the bearing influences of supraspinal and segmental origin have on CT duration in SOL and MG muscles during growth of the kitten. A slight, significant decrease (6%) in the fatigue index of SOL MUs (n = 144) was detected, but the values remained high (mean 0.87).

  9. Altered motor activity of alternative splice variants of the mammalian kinesin-3 protein KIF1B.

    PubMed

    Matsushita, Masafumi; Yamamoto, Ruri; Mitsui, Keiji; Kanazawa, Hiroshi

    2009-11-01

    Several mammalian kinesin motor proteins exist as multiple isoforms that arise from alternative splicing of a single gene. However, the roles of many motor protein splice variants remain unclear. The kinesin-3 motor protein KIF1B has alternatively spliced isoforms distinguished by the presence or absence of insertion sequences in the conserved amino-terminal region of the protein. The insertions are located in the loop region containing the lysine-rich cluster, also known as the K-loop, and in the hinge region adjacent to the motor domain. To clarify the functions of these alternative splice variants of KIF1B, we examined the biochemical properties of recombinant KIF1B with and without insertion sequences. In a microtubule-dependent ATPase assay, KIF1B variants that contained both insertions had higher activity and affinity for microtubules than KIF1B variants that contained no insertions. Mutational analysis of the K-loop insertion revealed that variants with a longer insertion sequence at this site had higher activity. However, the velocity of movement in motility assays was similar between KIF1B with and without insertion sequences. Our results indicate that splicing isoforms of KIF1B that vary in their insertion sequences have different motor activities.

  10. When Action Observation Facilitates Visual Perception: Activation in Visuo-Motor Areas Contributes to Object Recognition.

    PubMed

    Sim, Eun-Jin; Helbig, Hannah B; Graf, Markus; Kiefer, Markus

    2015-09-01

    Recent evidence suggests an interaction between the ventral visual-perceptual and dorsal visuo-motor brain systems during the course of object recognition. However, the precise function of the dorsal stream for perception remains to be determined. The present study specified the functional contribution of the visuo-motor system to visual object recognition using functional magnetic resonance imaging and event-related potential (ERP) during action priming. Primes were movies showing hands performing an action with an object with the object being erased, followed by a manipulable target object, which either afforded a similar or a dissimilar action (congruent vs. incongruent condition). Participants had to recognize the target object within a picture-word matching task. Priming-related reductions of brain activity were found in frontal and parietal visuo-motor areas as well as in ventral regions including inferior and anterior temporal areas. Effective connectivity analyses suggested functional influences of parietal areas on anterior temporal areas. ERPs revealed priming-related source activity in visuo-motor regions at about 120 ms and later activity in the ventral stream at about 380 ms. Hence, rapidly initiated visuo-motor processes within the dorsal stream functionally contribute to visual object recognition in interaction with ventral stream processes dedicated to visual analysis and semantic integration.

  11. Afferent and efferent activity control in the design of brain computer interfaces for motor rehabilitation.

    PubMed

    Cho, Woosang; Vidaurre, Carmen; Hoffmann, Ulrich; Birbaumer, Niels; Ramos-Murguialday, Ander

    2011-01-01

    Stroke is a cardiovascular accident within the brain resulting in motor and sensory impairment in most of the survivors. A stroke can produce complete paralysis of the limb although sensory abilities are normally preserved. Functional electrical stimulation (FES), robotics and brain computer interfaces (BCIs) have been used to induce motor rehabilitation. In this work we measured the brain activity of healthy volunteers using electroencephalography (EEG) during FES, passive movements, active movements, motor imagery of the hand and resting to compare afferent and efferent brain signals produced during these motor related activities and to define possible features for an online FES-BCI. In the conditions in which the hand was moved we limited the movement range in order to control the afferent flow. Although we observed that there is a subject dependent frequency and spatial distribution of efferent and afferent signals, common patterns between conditions and subjects were present mainly in the low beta frequency range. When averaging all the subjects together the most significant frequency bin comparing each condition versus rest was exactly the same for all conditions but motor imagery. These results suggest that to implement an on-line FES-BCI, afferent brain signals resulting from FES have to be filtered and time-frequency-spatial features need to be used.

  12. Can Kinesiological Activities Change "Pure" Motor Development in Preschool Children during One School Year?

    PubMed

    Krneta, Željko; Casals, Cristina; Bala, Gustav; Madić, Dejan; Pavlović, Slobodan; Drid, Patrik

    2015-07-01

    The purpose of this study was to evaluate the effects of an additional, organized, and more intensive kinesiological treatment on "pure" motor abilities in preschool children. In the present study an experimental treatment was carried out on a sample of 37 preschool boys by applying kinesiological activities. The 60 minute treatment was applied over a period of one school year (9 months), twice a week. A control group of 31 boys were trained according to the regular program for preschool institutions. Treatment effects were assessed by 8 motor ability tests and 5 anthropometric measures. The significant differences between the groups, which were observed after the final measurement and compared to the initial one, proved that the kinesiological treatment had a positive impact on the general development of "pure" motor abilities. The most significant effect of experimental kinesiological treatment was the improvement in whole body force, flexibility and coordination of preschool boys. These findings, obtained only in one school year, point to the importance of physical exercise and the application of additional kinesiological activities with various modalities, to improve motor development, even morphological growth and development in preschool children. The effects of the perennial application of kinesiological activities, under the supervision of kinesiological professionals, could be beneficial and could form the basis for a better biological and motor development in older age.

  13. A novel approach in automatic estimation of rats' loco-motor activity

    NASA Astrophysics Data System (ADS)

    Anishchenko, Lesya N.; Ivashov, Sergey I.; Vasiliev, Igor A.

    2014-05-01

    The paper contains feasibility study of a method for bioradar monitoring of small laboratory animals loco-motor activity improved by using a corner reflector. It presents results of mathematical simulation of bioradar signal reflection from the animal with the help of finite-difference time-domain method. It was proved both by theoretical and experimental results that a corner reflector usage during monitoring of small laboratory animals loco-motor activity improved the effectiveness of the method by reducing the dependency of the power flux density level from the distance between antennas block and the object.

  14. Non-exercise physical activity attenuates motor symptoms in Parkinson disease independent from nigrostriatal degeneration

    PubMed Central

    Snider, Jon; Müller, Martijn L.T.M; Kotagal, Vikas; Koeppe, Robert A; Scott, Peter J.H.; Frey, Kirk A; Albin, Roger L.; Bohnen, Nicolaas I.

    2015-01-01

    Objective To investigate the relationship between time spent in non-exercise and exercise physical activity and severity of motor functions in Parkinson disease (PD). Background Increasing motor impairments of PD incline many patients to a sedentary lifestyle. We investigated the relationship between duration of both non-exercise and exercise physical activity over a 4-week period using the Community Health Activities Model Program for Seniors (CHAMPS) questionnaire and severity of clinical motor symptoms in PD. We accounted for the magnitude of nigrostriatal degeneration. Methods Cross-sectional study. PD subjects, n=48 (40M); 69.4±7.4 (56–84) years old; 8.4±4.2 (2.5–20) years motor disease duration, mean UPDRS motor score 27.5 ± 10.3 (7–53) and mean MMSE score 28.4 ± 1.9 (22–30) underwent [11C]dihydrotetrabenazine (DTBZ) PET imaging to assess nigrostriatal denervation and completed the CHAMPS questionnaire and clinical assessment. Results Bivariate correlations showed an inverse relationship between motor UPDRS severity scores and duration of non-exercise physical activity (R= −0.37, P=0.0099) but not with duration of exercise physical activity (R= −0.05, P= 0.76) over 4 weeks. Multiple regression analysis using UPDRS motor score as outcome variable demonstrated a significant regressor effect for duration of non-exercise physical activity (F=6.15, P=0.017) while accounting for effects of nigrostriatal degeneration (F=4.93, P=0.032), levodopa-equivalent dose (LED; F=1.07, P=0.31), age (F=4.37, P=0.043) and duration of disease (F=1.46, P=0.23; total model (F=5.76, P=0.0004). Conclusions Non-exercise physical activity is a correlate of motor symptom severity in PD independent of the magnitude of nigrostriatal degeneration. Non-exercise physical activity may have positive effects on functional performance in PD. PMID:26330028

  15. [Glutamatergic neurotransmitter system in regulation of the gastrointestinal tract motor activity].

    PubMed

    Alekseeva, E V; Popova, T S; Sal'nikov, P S

    2015-01-01

    The review include actual facts, demonstrating high probability of glutamatergic neurotransmitter system role in the regulation of the gastrointestinal tract motor activity. These facts suggest significant role of the glutamatergic neurotransmitter system dysfunction in forming motor activity disorders of the digestive tract, including in patients in critical condition. The analysis is based on results of multiple experimental and clinical researches of glutamic acid and other components of the glutamatergic neurotransmitter system in central nervous system and autonomic nervous system (with the accent on the enteral nervous system) in normal conditions and with functioning changes of the glutamatergic neurotransmitter system in case of inflammation, hupoxia, stress and in critical condition.

  16. Effect of percutaneous stimulation at different spinal levels on the activation of sensory and motor roots.

    PubMed

    Roy, François D; Gibson, Grady; Stein, Richard B

    2012-11-01

    Percutaneous spinal stimulation is a promising new technique for understanding human spinal reflexes and for evaluating the pathophysiology of motor roots. Previous studies have generally stimulated the T11/T12 or T12/L1 vertebral junctions, sites that overlie the lumbosacral enlargement. The present study sought to determine the best location for targeting sensory and motor roots during sitting. We used paired stimuli, 50 ms apart, to distinguish the contribution of the reflex and motor components which make up the root evoked potential. This assumed that post-stimulation attenuation, primarily through homosynaptic depression, would abolish the second potential if it was trans-synaptic in origin. Conversely, successive responses would be unchanged if motor roots were being stimulated. Here, we show that sensory root reflexes were optimally elicited with percutaneous stimulation over the L1-L3 vertebrae. However, the optimal position varied between subjects and depended on the target muscle being studied. A collision test showed that the reflex recorded in pre-tibial flexors was low in amplitude and was prone to crosstalk from neighbouring muscles. In contrast to the reflex response, direct motor root activation was optimal with stimulation over the more caudal L5-S1 vertebrae. The present results support the utility of paired stimulation for evaluating the topographical recruitment of sensory and motor roots to human leg muscles.

  17. A non-mitotic CENP-E homolog in Dictyostelium discoideum with slow motor activity.

    PubMed

    Kösem, Süleyman; Ökten, Zeynep; Ho, Thi-Hieu; Trommler, Gudrun; Koonce, Michael P; Samereier, Matthias; Müller-Taubenberger, Annette

    2013-02-15

    Kinesins are ATP-dependent molecular motors that mediate unidirectional intracellular transport along microtubules. Dictyostelium discoideum has 13 different kinesin isoforms including two members of the kinesin-7 family, Kif4 and Kif11. While Kif4 is structurally and functionally related to centromere-associated CENP-E proteins involved in the transport of chromosomes to the poles during mitosis, the function of the unusually short CENP-E variant Kif11 is unclear. Here we show that orthologs of short CENP-E variants are present in plants and fungi, and analyze functional properties of the Dictyostelium CENP-E version, Kif11. Gene knockout mutants reveal that Kif11 is not required for mitosis or development. Imaging of GFP-labeled Kif11 expressing Dictyostelium cells indicates that Kif11 is a plus-end directed motor that accumulates at microtubule plus ends. By multiple motor gliding assays, we show that Kif11 moves with an average velocity of 38nm/s, thus defining Kif11 as a very slow motor. The activity of the Kif11 motor appears to be modulated via interactions with the non-catalytic tail region. Our work highlights a subclass of kinesin-7-like motors that function outside of a role in mitosis.

  18. ATP-dependent motor activity of the transcription termination factor Rho from Mycobacterium tuberculosis.

    PubMed

    D'Heygère, François; Schwartz, Annie; Coste, Franck; Castaing, Bertrand; Boudvillain, Marc

    2015-07-13

    The bacterial transcription termination factor Rho-a ring-shaped molecular motor displaying directional, ATP-dependent RNA helicase/translocase activity-is an interesting therapeutic target. Recently, Rho from Mycobacterium tuberculosis (MtbRho) has been proposed to operate by a mechanism uncoupled from molecular motor action, suggesting that the manner used by Rho to dissociate transcriptional complexes is not conserved throughout the bacterial kingdom. Here, however, we demonstrate that MtbRho is a bona fide molecular motor and directional helicase which requires a catalytic site competent for ATP hydrolysis to disrupt RNA duplexes or transcription elongation complexes. Moreover, we show that idiosyncratic features of the MtbRho enzyme are conferred by a large, hydrophilic insertion in its N-terminal 'RNA binding' domain and by a non-canonical R-loop residue in its C-terminal 'motor' domain. We also show that the 'motor' domain of MtbRho has a low apparent affinity for the Rho inhibitor bicyclomycin, thereby contributing to explain why M. tuberculosis is resistant to this drug. Overall, our findings support that, in spite of adjustments of the Rho motor to specific traits of its hosting bacterium, the basic principles of Rho action are conserved across species and could thus constitute pertinent screening criteria in high-throughput searches of new Rho inhibitors.

  19. Aberrant neuromagnetic activation in the motor cortex in children with acute migraine: a magnetoencephalography study.

    PubMed

    Guo, Xinyao; Xiang, Jing; Wang, Yingying; O'Brien, Hope; Kabbouche, Marielle; Horn, Paul; Powers, Scott W; Hershey, Andrew D

    2012-01-01

    Migraine attacks have been shown to interfere with normal function in the brain such as motor or sensory function. However, to date, there has been no clinical neurophysiology study focusing on the motor function in children with migraine during headache attacks. To investigate the motor function in children with migraine, twenty-six children with acute migraine, meeting International Classification of Headache Disorders criteria and age- and gender-matched healthy children were studied using a 275-channel magnetoencephalography system. A finger-tapping paradigm was designed to elicit neuromagnetic activation in the motor cortex. Children with migraine showed significantly prolonged latency of movement-evoked magnetic fields (MEF) during finger movement compared with the controls. The correlation coefficient of MEF latency and age in children with migraine was significantly different from that in healthy controls. The spectral power of high gamma (65-150 Hz) oscillations during finger movement in the primary motor cortex is also significantly higher in children with migraine than in controls. The alteration of responding latency and aberrant high gamma oscillations suggest that the developmental trajectory of motor function in children with migraine is impaired during migraine attacks and/or developmentally delayed. This finding indicates that childhood migraine may affect the development of brain function and result in long-term problems.

  20. United Nations geothermal activities in developing countries

    SciTech Connect

    Beredjick, N.

    1987-07-01

    The United Nations implements technical cooperation projects in developing countries through its Department of Technical Cooperation for Development (DTCD). The DTCD is mandated to explore for and develop natural resources (water, minerals, and relevant infrastructure) and energy - both conventional and new and renewable energy sources. To date, the United Nations has been involved in over 30 geothermal exploration projects (completed or underway) in 20 developing countries: 8 in Africa (Djibouti, Ethiopia, Kenya, Madagascar); 8 in Asia (China, India, Jordan, Philippines, Thailand); 9 in Latin America (Bolivia, Chile, El Salvador, Honduras, Mexico, Nicaragua, Panama) and 6 in Europe (Greece, Romania, Turkey, Yugoslavia). Today, the DTCD has seven UNDP geothermal projects in 6 developing countries. Four of these (Bolivia, China, Honduras, and Kenya) are major exploration projects whose formulation and execution has been possible thanks to the generous contributions under cost-sharing arrangements from the government of Italy. These four projects are summarized.

  1. Regulation of pumping function of the heart in developing body under changing regimens of motor activity.

    PubMed

    Vafina, E Z; Abzalov, R A; Abzalov, N I; Nikitin, A S; Gulyakov, A A

    2014-06-01

    We analyzed parameters of the pumping function of the heart in rats subjected to enhanced motor activity after a preliminary 70-day hypokinesia under conditions of α- and β-adrenergic receptor stimulation with norepinephrine followed by blockade of β-adrenergic receptor with propranolol (obsidian) and α1-adrenergic receptors with doxazosin. After norepinephrine administration, the HR and cardiac output were higher in rats with enhanced physical activity after preliminary hypokinesia than in rats with low physical activity. After propranolol administration, stroke volume and cardiac output in 100-day-old rats with limited activity were lower, and HR higher was than in rats with enhanced physical activity after preliminary 70-day hypokinesia. After administration of doxazosin, rats with limited motor activity demonstrated more pronounced changes in HR than rats with enhanced physical activity after preliminary 70-day hypokinesia.

  2. The Promotion of Gross and Fine Motor Development for Infants and Toddlers: Developmentally Appropriate Activities for Parents and Teachers.

    ERIC Educational Resources Information Center

    Thompson, Debra S.

    In recognition of the close relationship between motor skill and cognitive development in the first 2 years of life, this guide presents 78 developmentally appropriate activities that parents and teachers can use to enhance infant and toddler motor development. Activities are categorized by age group as follows: (1) 16 activities for newborn to…

  3. Gross Motor Development in Children Aged 3-5 Years, United States 2012.

    PubMed

    Kit, Brian K; Akinbami, Lara J; Isfahani, Neda Sarafrazi; Ulrich, Dale A

    2017-02-14

    Objective Gross motor development in early childhood is important in fostering greater interaction with the environment. The purpose of this study is to describe gross motor skills among US children aged 3-5 years using the Test of Gross Motor Development (TGMD-2). Methods We used 2012 NHANES National Youth Fitness Survey (NNYFS) data, which included TGMD-2 scores obtained according to an established protocol. Outcome measures included locomotor and object control raw and age-standardized scores. Means and standard errors were calculated for demographic and weight status with SUDAAN using sample weights to calculate nationally representative estimates, and survey design variables to account for the complex sampling methods. Results The sample included 339 children aged 3-5 years. As expected, locomotor and object control raw scores increased with age. Overall mean standardized scores for locomotor and object control were similar to the mean value previously determined using a normative sample. Girls had a higher mean locomotor, but not mean object control, standardized score than boys (p < 0.05). However, the mean locomotor standardized scores for both boys and girls fell into the range categorized as "average." There were no other differences by age, race/Hispanic origin, weight status, or income in either of the subtest standardized scores (p > 0.05). Conclusions In a nationally representative sample of US children aged 3-5 years, TGMD-2 mean locomotor and object control standardized scores were similar to the established mean. These results suggest that standardized gross motor development among young children generally did not differ by demographic or weight status.

  4. A threat to a virtual hand elicits motor cortex activation.

    PubMed

    González-Franco, Mar; Peck, Tabitha C; Rodríguez-Fornells, Antoni; Slater, Mel

    2014-03-01

    We report an experiment where participants observed an attack on their virtual body as experienced in an immersive virtual reality (IVR) system. Participants sat by a table with their right hand resting upon it. In IVR, they saw a virtual table that was registered with the real one, and they had a virtual body that substituted their real body seen from a first person perspective. The virtual right hand was collocated with their real right hand. Event-related brain potentials were recorded in two conditions, one where the participant's virtual hand was attacked with a knife and a control condition where the knife only struck the virtual table. Significantly greater P450 potentials were obtained in the attack condition confirming our expectations that participants had a strong illusion of the virtual hand being their own, which was also strongly supported by questionnaire responses. Higher levels of subjective virtual hand ownership correlated with larger P450 amplitudes. Mu-rhythm event-related desynchronization in the motor cortex and readiness potential (C3-C4) negativity were clearly observed when the virtual hand was threatened-as would be expected, if the real hand was threatened and the participant tried to avoid harm. Our results support the idea that event-related potentials may provide a promising non-subjective measure of virtual embodiment. They also support previous experiments on pain observation and are placed into context of similar experiments and studies of body perception and body ownership within cognitive neuroscience.

  5. VAV-1 acts in a single interneuron to inhibit motor circuit activity in Caenorhabditis elegans.

    PubMed

    Fry, Amanda L; Laboy, Jocelyn T; Norman, Kenneth R

    2014-11-21

    The complex molecular and cellular mechanisms underlying neuronal control of animal movement are not well understood. Locomotion of Caenorhabditis elegans is mediated by a neuronal circuit that produces coordinated sinusoidal movement. Here we utilize this simple, yet elegant, behaviour to show that VAV-1, a conserved guanine nucleotide exchange factor for Rho-family GTPases, negatively regulates motor circuit activity and the rate of locomotion. While vav-1 is expressed in a small subset of neurons, we find that VAV-1 function is required in a single interneuron, ALA, to regulate motor neuron circuit activity. Furthermore, we show by genetic and optogenetic manipulation of ALA that VAV-1 is required for the excitation and activation of this neuron. We find that ALA signalling inhibits command interneuron activity by abrogating excitatory signalling in the command interneurons, which is responsible for promoting motor neuron circuit activity. Together, our data describe a novel neuromodulatory role for VAV-1-dependent signalling in the regulation of motor circuit activity and locomotion.

  6. Carbohydrate in the mouth enhances activation of brain circuitry involved in motor performance and sensory perception.

    PubMed

    Turner, Clare E; Byblow, Winston D; Stinear, Cathy M; Gant, Nicholas

    2014-09-01

    The presence of carbohydrate in the human mouth has been associated with the facilitation of motor output and improvements in physical performance. Oral receptors have been identified as a potential mode of afferent transduction for this novel form of nutrient signalling that is distinct from taste. In the current study oral exposure to carbohydrate was combined with a motor task in a neuroimaging environment to identify areas of the brain involved in this phenomenon. A mouth-rinsing protocol was conducted whilst carbohydrate (CHO) and taste-matched placebo (PLA) solutions were delivered and recovered from the mouths of 10 healthy volunteers within a double-blind, counterbalanced design. This protocol eliminates post-oral factors and controls for the perceptual qualities of solutions. Functional magnetic resonance imaging of the brain was used to identify cortical areas responsive to oral carbohydrate during rest and activity phases of a hand-grip motor task. Mean blood-oxygen-level dependent signal change experienced in the contralateral primary sensorimotor cortex was larger for CHO compared with PLA during the motor task when contrasted with a control condition. Areas of activation associated with CHO exclusively were observed over the primary taste cortex and regions involved in visual perception. Regions in the limbic system associated with reward were also significantly more active with CHO. This is the first demonstration that oral carbohydrate signalling can increase activation within the primary sensorimotor cortex during physical activity and enhance activation of neural networks involved in sensory perception.

  7. High-resolution tracking of motor disorders in Parkinson's disease during unconstrained activity.

    PubMed

    Roy, Serge H; Cole, Bryan T; Gilmore, L Don; De Luca, Carlo J; Thomas, Cathi A; Saint-Hilaire, Marie M; Nawab, S Hamid

    2013-07-01

    Parkinson's disease (PD) can present with a variety of motor disorders that fluctuate throughout the day, making assessment a challenging task. Paper-based measurement tools can be burdensome to the patient and clinician and lack the temporal resolution needed to accurately and objectively track changes in motor symptom severity throughout the day. Wearable sensor-based systems that continuously monitor PD motor disorders may help to solve this problem, although critical shortcomings persist in identifying multiple disorders at high temporal resolution during unconstrained activity. The purpose of this study was to advance the current state of the art by (1) introducing hybrid sensor technology to concurrently acquire surface electromyographic (sEMG) and accelerometer data during unconstrained activity and (2) analyzing the data using dynamic neural network algorithms to capture the evolving temporal characteristics of the sensor data and improve motor disorder recognition of tremor and dyskinesia. Algorithms were trained (n=11 patients) and tested (n=8 patients; n=4 controls) to recognize tremor and dyskinesia at 1-second resolution based on sensor data features and expert annotation of video recording during 4-hour monitoring periods of unconstrained daily activity. The algorithms were able to make accurate distinctions between tremor, dyskinesia, and normal movement despite the presence of diverse voluntary activity. Motor disorder severity classifications averaged 94.9% sensitivity and 97.1% specificity based on 1 sensor per symptomatic limb. These initial findings indicate that new sensor technology and software algorithms can be effective in enhancing wearable sensor-based system performance for monitoring PD motor disorders during unconstrained activities.

  8. The Impact of Physical Activity on Non-Motor Symptoms in Parkinson's Disease: A Systematic Review.

    PubMed

    Cusso, Melanie E; Donald, Kenneth J; Khoo, Tien K

    2016-01-01

    Parkinson's disease (PD) is a neurological disorder that is associated with both motor and non-motor symptoms (NMS). The management of PD is primarily via pharmaceutical treatment; however, non-pharmaceutical interventions have become increasingly recognized in the management of motor and NMS. In this review, the efficacy of physical activity, including physiotherapy and occupational therapy, as an intervention in NMS will be assessed. The papers were extracted between the 20th and 22nd of June 2016 from PubMed, Web of Science, Medline, Ovid, SportsDiscuss, and Scopus using the MeSH search terms "Parkinson's," "Parkinson," and "Parkinsonism" in conjunction with "exercise," "physical activity," "physiotherapy," "occupational therapy," "physical therapy," "rehabilitation," "dance," and "martial arts." Twenty studies matched inclusion criteria of having 10 or more participants with diagnosed idiopathic PD participating in the intervention as well as having to evaluate the effects of physical activity on NMS in PD as controlled, randomized intervention studies. The outcomes of interest were NMS, including depression, cognition, fatigue, apathy, anxiety, and sleep. Risk of bias in the studies was evaluated using the Cochrane Collaboration's tool for assessing risk of bias. Comparability of the various intervention methods, however, was challenging due to demographic variability and methodological differences. Nevertheless, physical activity can positively impact the global NMS burden including depression, apathy, fatigue, day time sleepiness, sleep, and cognition, thus supporting its therapeutic potential in neurodegenerative conditions such as PD. It is recommended that further adequately powered studies are conducted to assess the therapeutic role of physical activity on both motor and non-motor aspects of PD. These studies should be optimally designed to assess non-motor elements of disease using instruments validated in PD.

  9. Commercial Motor Vehicle Driver Obstructive Sleep Apnea Screening and Treatment in the United States: An Update and Recommendation Overview

    PubMed Central

    Colvin, Loretta J.; Collop, Nancy A.

    2016-01-01

    No regulatory mandate exists in the United States (U.S.) for comprehensive obstructive sleep apnea (OSA) risk assessment and stratification for commercial motor vehicle (CMV) drivers. Current Federal Motor Carrier Safety Administration (FMCSA) requirements are outdated and depend largely on subjective report, a less reliable strategy in an occupational setting. Without FMCSA standards, sleep specialists, occupational medical examiners and employers rely on a collection of medical consensus recommendations to establish standards of care. These recommendations advise OSA risk assessment through a combination of focused medical history, physical examination, questionnaires, and accident history, which increase OSA detection compared to current FMCSA standards. For those diagnosed with OSA, consensus-based risk stratification helps identify CMV drivers who may benefit from OSA treatment and establish minimum standards for assessing treatment efficacy and adherence. Unfortunately no consolidated recommendation exists; rather, publications span medical and governmental literature in a patchwork fashion that no longer fully reflect current practice due to subsequent advances in OSA diagnosis, treatment, and technology. Based on searches of medical literature, internet materials, and reference lists from existing publications, an overview and discussion of key published recommendations regarding OSA assessment and treatment in CMV operators is provided. Suggestions for incorporating these recommendations into clinical sleep medicine practice in the U.S. are presented. The challenge for sleep specialists is maintaining the delicate balance between recommendations impacting standard of care and associated medico-legal impact with stakeholder interests from medical, regulatory, industry and public perspectives while providing high quality and efficient care. Citation: Colvin LJ, Collop NA. Commercial motor vehicle driver obstructive sleep apnea screening and treatment in the

  10. Adjustments of Motor Pattern for Load Compensation Via Modulated Activations of Muscle Synergies During Natural Behaviors

    PubMed Central

    Cheung, Vincent C. K.; d'Avella, Andrea; Bizzi, Emilio

    2009-01-01

    It has been suggested that the motor system may circumvent the difficulty of controlling many degrees of freedom in the musculoskeletal apparatus by generating motor outputs through a combination of discrete muscle synergies. How a discretely organized motor system compensates for diverse perturbations has remained elusive. Here, we investigate whether motor responses observed after an inertial-load perturbation can be generated by altering the recruitment of synergies normally used for constructing unperturbed movements. Electromyographic (EMG, 13 muscles) data were collected from the bullfrog hindlimb during natural behaviors before, during, and after the same limb was loaded by a weight attached to the calf. Kinematic analysis reveals the absence of aftereffect on load removal, suggesting that load-related EMG changes were results of immediate motor pattern adjustments. We then extracted synergies from EMGs using the nonnegative matrix factorization algorithm and developed a procedure for assessing the extent of synergy sharing across different loading conditions. Most synergies extracted were found to be activated in all loaded and unloaded conditions. However, for certain synergies, the amplitude, duration, and/or onset time of their activation bursts were up- or down-modulated during loading. Behavioral parameterizations reveal that load-related modulation of synergy activations depended on the behavioral variety (e.g., kick direction and amplitude) and the movement phase performed. Our results suggest that muscle synergies are robust across different dynamic conditions and immediate motor adjustments can be accomplished by modulating synergy activations. An appendix describes the novel procedure we developed, useful for discovering shared and specific features from multiple data sets. PMID:19091930

  11. Motor imagery evokes increased somatosensory activity in Parkinson's disease patients with tremor.

    PubMed

    Helmich, Rick C; Bloem, Bastiaan R; Toni, Ivan

    2012-08-01

    Parkinson's disease (PD) is surprisingly heterogeneous: some patients have a prominent resting tremor, while others never develop this symptom. Here we investigate whether the functional organization of the voluntary motor system differs between PD patients with and without resting tremor, and whether these differences relate to the cerebral circuit producing tremor. We compared 18 PD patients with marked tremor, 20 PD patients without tremor, and 19 healthy controls. Subjects performed a controlled motor imagery task during fMRI scanning. We quantified imagery-related cerebral activity by contrasting imagery of biomechanically difficult and easy movements. Tremor-related activity was identified by relating cerebral activity to fluctuations in tremor amplitude, using electromyography during scanning. PD patients with tremor had better behavioral performance than PD patients without tremor. Furthermore, tremulous PD patients showed increased imagery-related activity in somatosensory area 3a, as compared with both healthy controls and to nontremor PD patients. This effect was independent from tremor-related activity, which was localized to the motor cortex, cerebellum, and thalamic ventral intermediate nucleus (VIM). The VIM, with known projections to area 3a, was unique in showing both tremor- and imagery-related responses. We conclude that parkinsonian tremor influences motor imagery by modulating central somatosensory processing through the VIM. This mechanism may explain clinical differences between PD patients with and without tremor.

  12. [2 stages in the development of spontaneous motor activity in the early postnatal ontogeny of rats].

    PubMed

    Bursian, A V; Dmitrieva, L E

    1994-01-01

    In ontogenesis of rats, similar to many other animals, in the development of the spontaneous motor activity two qualitatively different stages are observed. The first one is characterized by periodic, mainly sensor-independent generalized motor excitation which at the second stage is substituted by stereotypic specialized motor programs (locomotion, grooming). Both stages exhibit similar age dynamics: the increase in the activity, its maximum and subsequent inhibition with a shift of the corresponding phases for about two weeks. This dynamics is mainly associated with heterochronous maturation of excitatory and inhibitory systems of regulation of the nervous activity. Change in the stages depends on changes of functional role of motor activity in ontogenesis from mainly morphogenetic one (and promotion of a necessary level of vegetative functions) to directional behavior. Inhibition at the first stage results in deep functional rearrangement in the central nervous system serving as a background for the onset of specialized behavioural activity. The development of the latter is also excessive, the subsequent inhibition being less deep and reversible.

  13. Spatiotemporal relations of primary sensorimotor and secondary motor activation patterns mapped by NIR imaging

    PubMed Central

    Khan, Bilal; Chand, Pankaj; Alexandrakis, George

    2011-01-01

    Functional near infrared (fNIR) imaging was used to identify spatiotemporal relations between spatially distinct cortical regions activated during various hand and arm motion protocols. Imaging was performed over a field of view (FOV, 12 x 8.4 cm) including the secondary motor, primary sensorimotor, and the posterior parietal cortices over a single brain hemisphere. This is a more extended FOV than typically used in current fNIR studies. Three subjects performed four motor tasks that induced activation over this extended FOV. The tasks included card flipping (pronation and supination) that, to our knowledge, has not been performed in previous functional magnetic resonance imaging (fMRI) or fNIR studies. An earlier rise and a longer duration of the hemodynamic activation response were found in tasks requiring increased physical or mental effort. Additionally, analysis of activation images by cluster component analysis (CCA) demonstrated that cortical regions can be grouped into clusters, which can be adjacent or distant from each other, that have similar temporal activation patterns depending on whether the performed motor task is guided by visual or tactile feedback. These analyses highlight the future potential of fNIR imaging to tackle clinically relevant questions regarding the spatiotemporal relations between different sensorimotor cortex regions, e.g. ones involved in the rehabilitation response to motor impairments. PMID:22162826

  14. Greater activation of secondary motor areas is related to less arm use after stroke

    PubMed Central

    Kokotilo, Kristen J; Eng, Janice J; Boyd, Lara A; McKeown, Martin J

    2011-01-01

    Background Past studies have identified reorganization of brain activity in relation to motor outcome through standardized laboratory measures, which are quantifiable surrogates for arm use in real-life. In contrast, accelerometers can provide a real-life estimate of arm and hand usage. Methods Ten persons with chronic, subcortical stroke and ten healthy controls of similar age performed a squeeze motor task at 40% maximum voluntary contraction during fMRI. Use of the upper extremity was quantified over 3 consecutive days using wrist accelerometers. Correlations were performed between arm use and peak percent signal change (PSC) during grasp force production in six regions of interest (ROIs): bilateral primary motor cortex (M1), supplementary motor area (SMA) and premotor cortex (PM). Results Results demonstrate that in healthy controls, PSC across all ROIs did not show a relationship between arm use and brain activation during force production. In contrast, after stroke, contralesional PM and M1 showed a significant (P ≤ 0.05) correlation between increasing activation and decreasing paretic arm use, while ipsilesional PM showed a significant correlation (P ≤ 0.05) between increasing activation and decreasing non-paretic arm use. Conclusions The results of this pilot study demonstrate a negative relationship between brain activation and actual arm use after stroke. Larger studies using accelerometers that can detect amount and types of movement may offer further insight into brain reorganization and rehabilitation interventions. PMID:19737873

  15. Brain oscillatory activity during motor imagery in EEG-fMRI coregistration.

    PubMed

    Formaggio, Emanuela; Storti, Silvia Francesca; Cerini, Roberto; Fiaschi, Antonio; Manganotti, Paolo

    2010-12-01

    The purpose of the present work was to investigate the correlation between topographical changes in brain oscillatory activity and the blood oxygenation level-dependent (BOLD) signal during a motor imagery (MI) task using electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) coregistration. EEG was recorded in 7 healthy subjects inside a 1.5 T MR scanner during the imagination of the kinesthetic experience of movement. A Fast Fourier Transform was applied to EEG signal in the rest and active conditions. We used the event-related-synchronization (ERS)/desynchronization (ERD) approach to characterize where the imagination of movement produces a decrease in alpha and beta power. The mean alpha map showed ERD decrease localized over the contralateral sensory motor area (SM1c) and a light desynchronization in the ipsilateral sensory motor area (SM1i); whereas the mean beta map showed ERD decrease over the supplementary motor area (SMA). fMRI showed significant activation in SMA, SM1c, SM1i. The correlation is negative in the contralateral side and positive in the ipsilateral side. Using combined EEG-fMRI signals we obtained useful new information on the description of the changes in oscillatory activity in alpha and beta bands during MI and on the investigation of the sites of BOLD activity as possible sources in generating these rhythms. By correlating BOLD and ERD/ERS we may identify more accurately which regions contribute to changes of the electrical response.

  16. Effect of the Children’s Health Activity Motor Program on Motor Skills and Self-Regulation in Head Start Preschoolers: An Efficacy Trial

    PubMed Central

    Robinson, Leah E.; Palmer, Kara K.; Bub, Kristen L.

    2016-01-01

    Self-regulatory skills are broadly defined as the ability to manage emotions, focus attention, and inhibit some behaviors while activating others in accordance with social expectations and are an established indicator of academic success. Growing evidence links motor skills and physical activity to self-regulation. This study examined the efficacy of a motor skills intervention (i.e., the Children’s Health Activity Motor Program, CHAMP) that is theoretically grounded in Achievement Goal Theory on motor skill performance and self-regulation in Head Start preschoolers. A sample of 113 Head Start preschoolers (Mage = 51.91 ± 6.5 months; 49.5% males) were randomly assigned to a treatment (n = 68) or control (n = 45) program. CHAMP participants engaged in 15, 40-min sessions of a mastery climate intervention that focused on the development of motor skills over 5 weeks while control participants engaged in their normal outdoor recess period. The Delay of Gratification Snack Task was used to measure self-regulation and the Test of Gross Motor Development-2nd Edition was used to assess motor skills. All measures were assessed prior to and following the intervention. Linear mixed models were fit for both self-regulation and motor skills. Results revealed a significant time × treatment interaction (p < 0.001). In regard to motor skills, post hoc comparisons found that all children improved their motor skills (p < 0.05), but the CHAMP group improved significantly more than the control group (p < 0.001). Children in CHAMP maintained their self-regulation scores across time, while children in the control group scored significantly lower than the CHAMP group at the posttest (p < 0.05). CHAMP is a mastery climate movement program that enhance skills associated with healthy development in children (i.e., motor skills and self-regulation). This efficacy trial provided evidence that CHAMP helped maintain delay of gratification in preschool

  17. Effect of the Children's Health Activity Motor Program on Motor Skills and Self-Regulation in Head Start Preschoolers: An Efficacy Trial.

    PubMed

    Robinson, Leah E; Palmer, Kara K; Bub, Kristen L

    2016-01-01

    Self-regulatory skills are broadly defined as the ability to manage emotions, focus attention, and inhibit some behaviors while activating others in accordance with social expectations and are an established indicator of academic success. Growing evidence links motor skills and physical activity to self-regulation. This study examined the efficacy of a motor skills intervention (i.e., the Children's Health Activity Motor Program, CHAMP) that is theoretically grounded in Achievement Goal Theory on motor skill performance and self-regulation in Head Start preschoolers. A sample of 113 Head Start preschoolers (Mage = 51.91 ± 6.5 months; 49.5% males) were randomly assigned to a treatment (n = 68) or control (n = 45) program. CHAMP participants engaged in 15, 40-min sessions of a mastery climate intervention that focused on the development of motor skills over 5 weeks while control participants engaged in their normal outdoor recess period. The Delay of Gratification Snack Task was used to measure self-regulation and the Test of Gross Motor Development-2nd Edition was used to assess motor skills. All measures were assessed prior to and following the intervention. Linear mixed models were fit for both self-regulation and motor skills. Results revealed a significant time × treatment interaction (p < 0.001). In regard to motor skills, post hoc comparisons found that all children improved their motor skills (p < 0.05), but the CHAMP group improved significantly more than the control group (p < 0.001). Children in CHAMP maintained their self-regulation scores across time, while children in the control group scored significantly lower than the CHAMP group at the posttest (p < 0.05). CHAMP is a mastery climate movement program that enhance skills associated with healthy development in children (i.e., motor skills and self-regulation). This efficacy trial provided evidence that CHAMP helped maintain delay of gratification in preschool

  18. Out of control: Diminished prefrontal activity coincides with impaired motor performance due to choking under pressure

    PubMed Central

    Lee, Taraz G.; Grafton, Scott T.

    2014-01-01

    There are three non-exclusive theoretical explanations for the paradoxical collapse of performance due to large financial incentives. It has been proposed that “choking under pressure” is either due to distraction, interference via an increase in top-down control and performance monitoring, or excessive levels of arousal in the face of large losses. Given the known neural architecture involved in executive control and reward, we used fMRI of human participants during incentivized motor performance to provide evidence to support and/or reconcile these competing models in a visuomotor task. We show that the execution of a pre-trained motor task during neuroimaging is impaired by high rewards. BOLD activity occurring prior to movement onset is increased in dorsolateral prefrontal cortex and functional connectivity between this region and motor cortex is likewise increased just prior to choking. However, the extent of this increase in functional connectivity is inversely related to a participant's propensity to choke, suggesting that a failure in exerting top-down influence on motor control underlies choking under pressure due to large incentives. These results are consistent with a distraction account of choking and suggest that frontal influences on motor activity are necessary to protect performance from vulnerability under pressure. PMID:25449744

  19. Spinal segment-specific transcutaneous stimulation differentially shapes activation pattern among motor pools in humans

    PubMed Central

    Atkinson, Darryn A.; Dy, Christine J.; Gurley, Katelyn M.; Smith, Valerie L.; Angeli, Claudia; Harkema, Susan J.; Edgerton, V. Reggie; Gerasimenko, Yury P.

    2015-01-01

    Transcutaneous and epidural electrical spinal cord stimulation techniques are becoming more valuable as electrophysiological and clinical tools. Recently, we observed selective activation of proximal and distal motor pools during epidural spinal stimulation. In the present study, we hypothesized that the characteristics of recruitment curves obtained from leg muscles will reflect a relative preferential activation of proximal and distal motor pools based on their arrangement along the lumbosacral enlargement. The purpose was to describe the electrophysiological responses to transcutaneous stimulation in leg muscles innervated by motoneurons from different segmental levels. Stimulation delivered along the rostrocaudal axis of the lumbosacral enlargement in the supine position resulted in a selective topographical recruitment of proximal and distal leg muscles, as described by threshold intensity, slope of the recruitment curves, and plateau point intensity and magnitude. Relatively selective recruitment of proximal and distal motor pools can be titrated by optimizing the site and intensity level of stimulation to excite a given combination of motor pools. The slope of the recruitment of particular muscles allows characterization of the properties of afferents projecting to specific motoneuron pools, as well as to the type and size of the motoneurons. The location and intensity of transcutaneous spinal electrical stimulation are critical to target particular neural structures across different motor pools in investigation of specific neuromodulatory effects. Finally, the asymmetry in bilateral evoked potentials is inevitable and can be attributed to both anatomical and functional peculiarities of individual muscles or muscle groups. PMID:25814642

  20. Out of control: diminished prefrontal activity coincides with impaired motor performance due to choking under pressure.

    PubMed

    Lee, Taraz G; Grafton, Scott T

    2015-01-15

    There are three non-exclusive theoretical explanations for the paradoxical collapse of performance due to large financial incentives. It has been proposed that "choking under pressure" is either due to distraction, interference via an increase in top-down control and performance monitoring, or excessive levels of arousal in the face of large losses. Given the known neural architecture involved in executive control and reward, we used fMRI of human participants during incentivized motor performance to provide evidence to support and/or reconcile these competing models in a visuomotor task. We show that the execution of a pre-trained motor task during neuroimaging is impaired by high rewards. BOLD activity occurring prior to movement onset is increased in dorsolateral prefrontal cortex and functional connectivity between this region and motor cortex is likewise increased just prior to choking. However, the extent of this increase in functional connectivity is inversely related to a participant's propensity to choke, suggesting that a failure in exerting top-down influence on motor control underlies choking under pressure due to large incentives. These results are consistent with a distraction account of choking and suggest that frontal influences on motor activity are necessary to protect performance from vulnerability under pressure.

  1. Dissection of perceptual, motor and autonomic components of brain activity evoked by noxious stimulation.

    PubMed

    Piché, M; Arsenault, M; Rainville, P

    2010-06-01

    In the past two decades, functional brain imaging has considerably advanced our knowledge of cerebral pain processing. However, many important links are still missing in our understanding of brain activity in relation to the regulation of pain-related physiological responses. This fMRI study investigates the cerebral correlates of pain (rating), motor responses (RIII-reflex) and autonomic activity (skin conductance response; SCR) evoked by noxious electrical stimulation. Stimulus intensity was adjusted individually based on the RIII threshold to control for differences in peripheral processes and baseline spinal activation. Covariance analyses were used to reveal individual differences in brain activity uniquely associated with individual differences in pain, RIII and SCR. Shock-evoked activity in cingulate, medial orbitofrontal and parahippocampal regions predicted pain sensitivity. Moreover, lateral orbitofrontal and cingulate areas showed strong positive associations with individual differences in motor reactivity but negative associations with autonomic reactivity. Notably, individual differences in OFC activation was almost fully accounted by the combination of individual measures of autonomic and motor reactivity (R(2)=0.93). Additionally, trial-to-trial fluctuations of RIII-reflex and SCR (within-subjects) were proportional to shock-evoked responses in subgenual cingulate cortex (RIII), anterior insula (SCR) and midcingulate cortex (SCR and RIII). Together, these results confirm that individual differences in perceptual, motor, and autonomic components of pain reflect robust individual differences in brain activity. Furthermore, the brain correlates of trial-to-trial fluctuations in pain responses provide additional evidence for a partial segregation of sub-systems involved more specifically in the ongoing monitoring, and possibly the regulation, of pain-related motor and autonomic responses.

  2. Using hierarchical clustering methods to classify motor activities of COPD patients from wearable sensor data

    PubMed Central

    Sherrill, Delsey M; Moy, Marilyn L; Reilly, John J; Bonato, Paolo

    2005-01-01

    Background Advances in miniature sensor technology have led to the development of wearable systems that allow one to monitor motor activities in the field. A variety of classifiers have been proposed in the past, but little has been done toward developing systematic approaches to assess the feasibility of discriminating the motor tasks of interest and to guide the choice of the classifier architecture. Methods A technique is introduced to address this problem according to a hierarchical framework and its use is demonstrated for the application of detecting motor activities in patients with chronic obstructive pulmonary disease (COPD) undergoing pulmonary rehabilitation. Accelerometers were used to collect data for 10 different classes of activity. Features were extracted to capture essential properties of the data set and reduce the dimensionality of the problem at hand. Cluster measures were utilized to find natural groupings in the data set and then construct a hierarchy of the relationships between clusters to guide the process of merging clusters that are too similar to distinguish reliably. It provides a means to assess whether the benefits of merging for performance of a classifier outweigh the loss of resolution incurred through merging. Results Analysis of the COPD data set demonstrated that motor tasks related to ambulation can be reliably discriminated from tasks performed in a seated position with the legs in motion or stationary using two features derived from one accelerometer. Classifying motor tasks within the category of activities related to ambulation requires more advanced techniques. While in certain cases all the tasks could be accurately classified, in others merging clusters associated with different motor tasks was necessary. When merging clusters, it was found that the proposed method could lead to more than 12% improvement in classifier accuracy while retaining resolution of 4 tasks. Conclusion Hierarchical clustering methods are relevant

  3. Primary motor cortex of the parkinsonian monkey: altered encoding of active movement

    PubMed Central

    Pasquereau, Benjamin; DeLong, Mahlon R.

    2016-01-01

    Abnormalities in the movement-related activation of the primary motor cortex (M1) are thought to be a major contributor to the motor signs of Parkinson’s disease. The existing evidence, however, variably indicates that M1 is under-activated with movement, overactivated (due to a loss of functional specificity) or activated with abnormal timing. In addition, few models consider the possibility that distinct cortical neuron subtypes may be affected differently. Those gaps in knowledge were addressed by studying the extracellular activity of antidromically-identified lamina 5b pyramidal-tract type neurons (n = 153) and intratelencephalic-type corticostriatal neurons (n = 126) in the M1 of two monkeys as they performed a step-tracking arm movement task. We compared movement-related discharge before and after the induction of parkinsonism by administration of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and quantified the spike rate encoding of specific kinematic parameters of movement using a generalized linear model. The fraction of M1 neurons with movement-related activity declined following MPTP but only marginally. The strength of neuronal encoding of parameters of movement was reduced markedly (mean 29% reduction in the coefficients from the generalized linear model). This relative decoupling of M1 activity from kinematics was attributable to reductions in the coefficients that estimated the spike rate encoding of movement direction (−22%), speed (−40%), acceleration (−49%) and hand position (−33%). After controlling for MPTP-induced changes in motor performance, M1 activity related to movement itself was reduced markedly (mean 36% hypoactivation). This reduced activation was strong in pyramidal tract-type neurons (−50%) but essentially absent in corticostriatal neurons. The timing of M1 activation was also abnormal, with earlier onset times, prolonged response durations, and a 43% reduction in the prevalence of movement-related changes

  4. Evidence for Dose-Additive Effects of Pyrethroids on Motor Activity in Rats

    EPA Science Inventory

    BACKGROUND: Pyrethroids are neurotoxic insecticides used in a variety of indoor and outdoor applications. Previous research characterized the acute dose-effect functions for 11 pyrethroids administered orally in corn oil (1 mL/kg) based on assessment of motor activity. OBJECTIVES...

  5. The influence of motor activity on the development of cardiac arrhythmias during experimental emotional stress

    NASA Technical Reports Server (NTRS)

    Ulyaninskiy, L. S.; Urmancheyeva, T. G.; Stepanyan, Y. P.; Fufacheva, A. A.; Gritsak, A. V.; Kuznetsova, B. A.; Kvitka, A. A.

    1982-01-01

    Experimental emotional stress which can produce various disorders of cardiac rhythm: sinus tachycardia, atrial fibrillation, ventricular, extrasystoles and paroxysmal ventricular tachysystoles was studied. In these conditions the adrenalin content in the blood and myocardium is increased 3 to 4 times. It is found that moderate motor activity leads to a relative decrease of adrenalin in the myocardium and arrest of cardiac arrhythmias.

  6. Indices of free radical activity in the cerebrospinal fluid in motor neuron disease.

    PubMed Central

    Mitchell, J D; Jackson, M J; Pentland, B

    1987-01-01

    Indices of free-radical activity and lipid peroxidation were studied in cerebrospinal fluid samples obtained from 11 patients with motor neuron disease and 11 reference subjects. No differences were found between the two groups. The significance of this finding is discussed in relation to current views of the possible pathogenesis of this disease. PMID:3625217

  7. Educational Gymnastics: The Effectiveness of Montessori Practical Life Activities in Developing Fine Motor Skills in Kindergartners

    ERIC Educational Resources Information Center

    Bhatia, Punum; Davis, Alan; Shamas-Brandt, Ellen

    2015-01-01

    Research Findings: A quasi-experiment was undertaken to test the effect of Montessori practical life activities on kindergarten children's fine motor development and hand dominance over an 8-month period. Participants were 50 children age 5 in 4 Montessori schools and 50 students age 5 in a kindergarten program in a high-performing suburban…

  8. MOTOR ACTIVITY IN DEVELOPMENTAL NEUROTOXICITY TESTING: A CROSS-LABORATORY COMPARISON OF CONTROL DATA.

    EPA Science Inventory

    The USEPA Developmental Neurotoxicity (DNT) Study Test Guideline (OPPTS 870.6300) calls for a battery of functional and neuropathological assessments in offspring during and following maternal exposure. The battery includes measurement of motor activity on post-natal days (PND) ...

  9. GHB differentially affects morphine actions on motor activity and social behaviours in male mice.

    PubMed

    Maldonado, C; Rodriíuez-Arias, M; Aguilar, M A; Miñarro, J

    2003-09-01

    There are several reports suggesting that gamma-hydroxybutyric acid (GHB) influences the endogenous opioid system. The present study aimed to investigate the effects of GHB on motor and social activities and to examine its influence on morphine's actions on these behaviours. In a first experiment, several doses of GHB were studied but only the highest (200 and 400 mg/kg) produced a decrease in spontaneous motor activity measured in an actimeter cage. When hyperactivity induced by injecting 50 mg/kg of morphine was evaluated, all the GHB doses efficiently counteracted this morphine action. Using the paradigm of isolation-induced aggression, administration of 200 mg/kg of GHB significantly decreased threat and attack without impairing motor activity and, in addition, increased time spent in social contact. GHB increased morphine's suppression of threat or nonsocial exploratory behaviours. In conclusion, the interaction between GHB and the opioid systems was confirmed, with the drug having an additive effect on morphine-affected social behaviours but counteracting morphine-induced increases in motor activity.

  10. NEUROBEHAVIORAL DATA INTERPRETATION IN NEUROTOXICITY STUDIES: FOB, MOTOR ACTIVITY AND FUNCTION

    EPA Science Inventory

    Neurobehavioral evaluations are emerging as a key component in neurotoxicity testing. The tests most often used for screening are the functional observational battery (FOB) and motor activity. The FOB is a series of non-invasive observational and manipulative measures which ass...

  11. TOLERANCE AND SENSITIZATION TO WEEKLY NICOTINE EXPOSURES ON THE MOTOR ACTIVITY OF RATS.

    EPA Science Inventory

    Motor activity was examined in adult female Long-Evans rats in a photocell device during daily (M-F) 30-min sessions. Following adaptation to the testing routine the rats were divided into six groups of eight that were designated to receive either nothing (non-injected control),...

  12. Real-Time Control of Biological Motor Activity using Graphene-polymer Hybrid Bioenergy Storage Device

    NASA Astrophysics Data System (ADS)

    Lee, Dong; Byun, Kyung-Eun; Choi, Dong; Kim, Eunji; Kim, Daesan; Seo, David; Yang, Heejun; Seo, Sunae; Hong, Seunghun; Hybrid Nanodevice Lab Team; Samsung Research Park Team

    2013-03-01

    Biological motors have been drawing an attention as a key component for highly efficient nanomechanical systems. For such applications, many researchers have tried to control the activity of motor proteins through various methods such as microfluidics or UV-active compounds. However, these methods have some limitations such as the incapability of controlling local biomotor activity and a slow response rate. Herein, we developed a graphene-polymer hybrid nanostructure-based bioenergy storage device which enables the real-time control of biomotor activity. In this strategy, graphene layers functionalized with amine groups were utilized as a transparent electrode supporting the motility of biomotors. And conducting polymer patterns doped with adenosine triphosphate (ATP) were electrically deposited on the graphene and utilized for the fast release of ATP by electrical stimuli through the graphene. Such controlled release of ATP allowed us to control the motility of actin filaments propelled by myosin biomotors in real time. This strategy should enable integrated nanodevices for the real-time control of biological motors to the nanodevices, which can be a significant stepping stone toward hybrid nanomechanical systems based on motor proteins.

  13. SENSITIZATION AND TOLERANCE WITH EPISODIC (WEEKLY) NICOTINE ON MOTOR ACTIVITY IN RATS.

    EPA Science Inventory

    These studies grew out of an unexpected finding from investigations of the neurobehavioral toxicity of PCBs. This paper shows that episodic, or recurring intermittent acute exposures to nicotine produce dramatic and long-lasting changes in the motor activity of laboratory rats. ...

  14. Drosophila non-muscle myosin II motor activity determines the rate of tissue folding

    PubMed Central

    Vasquez, Claudia G; Heissler, Sarah M; Billington, Neil; Sellers, James R; Martin, Adam C

    2016-01-01

    Non-muscle cell contractility is critical for tissues to adopt shape changes. Although, the non-muscle myosin II holoenzyme (myosin) is a molecular motor that powers contraction of actin cytoskeleton networks, recent studies have questioned the importance of myosin motor activity cell and tissue shape changes. Here, combining the biochemical analysis of enzymatic and motile properties for purified myosin mutants with in vivo measurements of apical constriction for the same mutants, we show that in vivo constriction rate scales with myosin motor activity. We show that so-called phosphomimetic mutants of the Drosophila regulatory light chain (RLC) do not mimic the phosphorylated RLC state in vitro. The defect in the myosin motor activity in these mutants is evident in developing Drosophila embryos where tissue recoil following laser ablation is decreased compared to wild-type tissue. Overall, our data highlights that myosin activity is required for rapid cell contraction and tissue folding in developing Drosophila embryos. DOI: http://dx.doi.org/10.7554/eLife.20828.001 PMID:28035903

  15. Supplementary motor area and primary auditory cortex activation in an expert break-dancer during the kinesthetic motor imagery of dance to music.

    PubMed

    Olshansky, Michael P; Bar, Rachel J; Fogarty, Mary; DeSouza, Joseph F X

    2015-01-01

    The current study used functional magnetic resonance imaging to examine the neural activity of an expert dancer with 35 years of break-dancing experience during the kinesthetic motor imagery (KMI) of dance accompanied by highly familiar and unfamiliar music. The goal of this study was to examine the effect of musical familiarity on neural activity underlying KMI within a highly experienced dancer. In order to investigate this in both primary sensory and motor planning cortical areas, we examined the effects of music familiarity on the primary auditory cortex [Heschl's gyrus (HG)] and the supplementary motor area (SMA). Our findings reveal reduced HG activity and greater SMA activity during imagined dance to familiar music compared to unfamiliar music. We propose that one's internal representations of dance moves are influenced by auditory stimuli and may be specific to a dance style and the music accompanying it.

  16. Chronic hyperammonemia alters the circadian rhythms of corticosteroid hormone levels and of motor activity in rats.

    PubMed

    Ahabrach, Hanan; Piedrafita, Blanca; Ayad, Abdelmalik; El Mlili, Nisrin; Errami, Mohammed; Felipo, Vicente; Llansola, Marta

    2010-05-15

    Patients with liver cirrhosis may present hepatic encephalopathy with a wide range of neurological disturbances and alterations in sleep quality and in the sleep-wake circadian rhythm. Hyperammonemia is a main contributor to the neurological alterations in hepatic encephalopathy. We have assessed, in an animal model of chronic hyperammonemia without liver failure, the effects of hyperammonemia per se on the circadian rhythms of motor activity, temperature, and plasma levels of adrenal corticosteroid hormones. Chronic hyperammonemia alters the circadian rhythms of locomotor activity and of cortisol and corticosterone levels in blood. Different types of motor activity are affected differentially. Hyperammonemia significantly alters the rhythm of spontaneous ambulatory activity, reducing strongly ambulatory counts and slightly average velocity during the night (the active phase) but not during the day, resulting in altered circadian rhythms. In contrast, hyperammonemia did not affect wheel running at all, indicating that it affects spontaneous but not voluntary activity. Vertical activity was affected only very slightly, indicating that hyperammonemia does not induce anxiety. Hyperammonemia abolished completely the circadian rhythm of corticosteroid hormones in plasma, completely eliminating the peaks of cortisol and corticosterone present in control rats at the start of the dark period. The data reported show that chronic hyperammonemia, similar to that present in patients with liver cirrhosis, alters the circadian rhythms of corticosteroid hormones and of motor activity. This suggests that hyperammonemia would be a relevant contributor to the alterations in corticosteroid hormones and in circadian rhythms in patients with liver cirrhosis.

  17. Motor Cortex Microcircuit Simulation Based on Brain Activity Mapping

    PubMed Central

    Chadderdon, George L.; Mohan, Ashutosh; Suter, Benjamin A.; Neymotin, Samuel A.; Kerr, Cliff C.; Francis, Joseph T.; Shepherd, Gordon M. G.; Lytton, William W.

    2016-01-01

    The deceptively simple laminar structure of neocortex belies the complexity of intra- and interlaminar connectivity. We developed a computational model based primarily on a unified set of brain activity mapping studies of mouse M1. The simulation consisted of 775 spiking neurons of 10 cell types with detailed population-to-population connectivity. Static analysis of connectivity with graph-theoretic tools revealed that the corticostriatal population showed strong centrality, suggesting that would provide a network hub. Subsequent dynamical analysis confirmed this observation, in addition to revealing network dynamics that cannot be readily predicted through analysis of the wiring diagram alone. Activation thresholds depended on the stimulated layer. Low stimulation produced transient activation, while stronger activation produced sustained oscillations where the threshold for sustained responses varied by layer: 13% in layer 2/3, 54% in layer 5A, 25% in layer 5B, and 17% in layer 6. The frequency and phase of the resulting oscillation also depended on stimulation layer. By demonstrating the effectiveness of combined static and dynamic analysis, our results show how static brain maps can be related to the results of brain activity mapping. PMID:24708371

  18. The effect of cerebellar transplantation and enforced physical activity on motor skills and spatial learning in adult Lurcher mutant mice.

    PubMed

    Cendelín, Jan; Korelusová, Ivana; Vozeh, Frantisek

    2009-03-01

    Lurcher mutant mice represent a model of olivocerebellar degeneration. They are used to investigate cerebellar functions, consequences of cerebellar degeneration and methods of therapy influencing them. The aim of the work was to assess the effect of foetal cerebellar graft transplantation, repeated enforced physical activity and the combination of both these types of treatment on motor skills, spontaneous motor activity and spatial learning ability in adult B6CBA Lurcher mice. Foetal cerebellar grafts were applied into the cerebellum of Lurchers in the form of solid tissue pieces. Enforced motor activity was realised through rotarod training. Motor functions were examined using bar, ladder and rotarod tests. Spatial learning was tested in the Morris water maze. Spontaneous motor activity in the open field was observed. The presence of the graft was examined histologically. Enforced physical activity led to moderate improvement of some motor skills and to a significant amelioration of spatial learning ability in Lurchers. The transplantation of cerebellar tissue did not influence motor functions significantly but led to an improvement of spatial learning ability. Mutual advancement of the effects of both types of treatment was not observed. Spontaneous motor activity was influenced neither by physical activity nor by the transplantation. Physical activity did not influence the graft survival and development. Because nerve sprouting and cell migration from the graft to the host cerebellum was poor, the functional effects of the graft should be explained with regard to its trophic influence rather than with any involvement of the grafted cells into neural circuitries.

  19. Age effects on the asymmetry of the motor system: evidence from cortical oscillatory activity.

    PubMed

    Vallesi, Antonino; McIntosh, Anthony R; Kovacevic, Natasa; Chan, Sam C C; Stuss, Donald T

    2010-10-01

    Functional hemispheric asymmetry can be lost with aging. In this electroencephalographic study, we assessed hemispheric asymmetries in regulating motor responses by analyzing oscillatory brain activity during a go/nogo task in younger and older right-handed participants. Three conditions were embedded in the task: go, high-conflict and low-conflict nogo. The hand used to respond to go stimuli was varied block-wise. Independently of the go/nogo conditions and responding hand, young participants showed asymmetric desynchronizations in the mu (10 Hz) and beta (18-22 Hz) frequency bands that was stronger in the scalp sensorimotor region contralateral to the hand used for the go responses, while older adults showed a more symmetric pattern of desynchronization. These findings indicate that a loss of hemispheric asymmetry is a hallmark of the aging motor system, consistent with a decline of inter-hemispheric motor inhibition in normal aging.

  20. Central command differentially affects aortic and carotid sinus baroreflexes at the onset of spontaneous motor activity.

    PubMed

    Matsukawa, Kanji; Ishii, Kei; Idesako, Mitsuhiro; Ishida, Tomoko; Endo, Kana; Liang, Nan

    2013-12-01

    Our laboratory has recently demonstrated that central command provides selective inhibition of the cardiomotor component of aortic (AOR) baroreflex during exercise, preserving carotid sinus (CS) baroreflex. To further explore the differential effects of central command on the arterial baroreflexes, we surgically separated the AOR and CS baroreflex systems, to identify the input-output relationship of each baroreflex system using brief occlusion of the abdominal aorta in decerebrate cats. Baroreflex sensitivity for heart rate (HR) was estimated from the baroreflex ratio between the pressor and bradycardia responses during aortic occlusion and from the slope of the baroreflex curve between the changes in mean arterial blood pressure (ΔMAP) and ΔHR. Spontaneous motor activity accompanied the abrupt increases in HR and MAP. When aortic occlusion was given at the onset of spontaneous motor activity, the baroreflex ratio was blunted to 11-25% of the preexercise value in either intact or AOR baroreflex. The slope of the ΔMAP-ΔHR curve was similarly attenuated at the onset of spontaneous motor activity to 11-18% of the slope during the preexercise period. In contrast, in the CS baroreflex, the baroreflex ratio and curve slope were not significantly (P>0.05) altered by spontaneous motor activity. An upward shift of the baroreflex curve appeared at the onset of spontaneous motor activity, irrespective of the intact, AOR, and CS baroreflex conditions. Taken together, it is concluded that central command provides selective inhibition for the cardiomotor limb of the aortic baroreflex at the onset of exercise, which in turn contributes to an instantaneous increase in HR.

  1. Changing ideas about others' intentions: updating prior expectations tunes activity in the human motor system.

    PubMed

    Jacquet, Pierre O; Roy, Alice C; Chambon, Valérian; Borghi, Anna M; Salemme, Roméo; Farnè, Alessandro; Reilly, Karen T

    2016-05-31

    Predicting intentions from observing another agent's behaviours is often thought to depend on motor resonance - i.e., the motor system's response to a perceived movement by the activation of its stored motor counterpart, but observers might also rely on prior expectations, especially when actions take place in perceptually uncertain situations. Here we assessed motor resonance during an action prediction task using transcranial magnetic stimulation to probe corticospinal excitability (CSE) and report that experimentally-induced updates in observers' prior expectations modulate CSE when predictions are made under situations of perceptual uncertainty. We show that prior expectations are updated on the basis of both biomechanical and probabilistic prior information and that the magnitude of the CSE modulation observed across participants is explained by the magnitude of change in their prior expectations. These findings provide the first evidence that when observers predict others' intentions, motor resonance mechanisms adapt to changes in their prior expectations. We propose that this adaptive adjustment might reflect a regulatory control mechanism that shares some similarities with that observed during action selection. Such a mechanism could help arbitrate the competition between biomechanical and probabilistic prior information when appropriate for prediction.

  2. Changing ideas about others’ intentions: updating prior expectations tunes activity in the human motor system

    PubMed Central

    Jacquet, Pierre O.; Roy, Alice C.; Chambon, Valérian; Borghi, Anna M.; Salemme, Roméo; Farnè, Alessandro; Reilly, Karen T.

    2016-01-01

    Predicting intentions from observing another agent’s behaviours is often thought to depend on motor resonance – i.e., the motor system’s response to a perceived movement by the activation of its stored motor counterpart, but observers might also rely on prior expectations, especially when actions take place in perceptually uncertain situations. Here we assessed motor resonance during an action prediction task using transcranial magnetic stimulation to probe corticospinal excitability (CSE) and report that experimentally-induced updates in observers’ prior expectations modulate CSE when predictions are made under situations of perceptual uncertainty. We show that prior expectations are updated on the basis of both biomechanical and probabilistic prior information and that the magnitude of the CSE modulation observed across participants is explained by the magnitude of change in their prior expectations. These findings provide the first evidence that when observers predict others’ intentions, motor resonance mechanisms adapt to changes in their prior expectations. We propose that this adaptive adjustment might reflect a regulatory control mechanism that shares some similarities with that observed during action selection. Such a mechanism could help arbitrate the competition between biomechanical and probabilistic prior information when appropriate for prediction. PMID:27243157

  3. Chronotype predicts activity patterns in the neural underpinnings of the motor system during the day.

    PubMed

    Peres, Isabella; Vetter, Céline; Blautzik, Janusch; Reiser, Maximilian; Pöppel, Ernst; Meindl, Thomas; Roenneberg, Till; Gutyrchik, Evgeny

    2011-12-01

    Neuroimaging is increasingly used to study the motor system in vivo. Despite many reports of time-of-day influences on motor function at the behavioral level, little is known about these influences on neural motor networks and their activations recorded in neuroimaging. Using functional magnetic resonance imaging (fMRI), the authors studied 15 healthy subjects (9 females; mean ± SD age: 23 ± 3 yrs) performing a self-paced finger-tapping task at different times of day (morning, midday, afternoon, and evening). Blood-oxygenation-level-dependent signal showed systematic differences across the day in task-related motor areas of the brain, specifically in the supplementary motor area, parietal cortex, and rolandic operculum (p(corr)< .0125). The authors found that these time-of-day-dependent hemodynamic modulations are associated with chronotype and not with homeostatic sleep pressure. These results show that consideration of time-of-day for the analysis of fMRI studies is imperative.

  4. Effect of hindlimb unloading on motor activity in adult rats: impact of prenatal stress.

    PubMed

    Canu, M H; Darnaudéry, M; Falempin, M; Maccari, S; Viltart, O

    2007-02-01

    Environmental changes that occur in daily life or, in particular, in situations like actual or simulated microgravity require neuronal adaptation of sensory and motor functions. Such conditions can exert long-lasting disturbances on an individual's adaptive ability. Additionally, prenatal stress also leads to behavioral and physiological abnormalities in adulthood. Therefore, the aims of the present study were (a) to evaluate in adult rats the behavioral motor adaptation that follows 14 days of exposure to simulated microgravity (hindlimb unloading) and (b) to determine whether restraint prenatal stress influences this motor adaptation. For this purpose, the authors assessed rats' motor reactivity to novelty, their skilled walking on a ladder, and their swimming performance. Results showed that unloading severely impaired motor activity and skilled walking. By contrast, it had no effect on swimming performance. Moreover, results demonstrated for the first time that restraint prenatal stress exacerbates the effects of unloading. These results are consistent with the role of a steady prenatal environment in allowing an adequate development and maturation of sensorimotor systems to generate adapted responses to environmental challenges during adulthood.

  5. Tritium activities in the United States

    SciTech Connect

    Anderson, J.L.; LaMarche, P.

    1995-07-01

    There have been many significant changes in the status of tritium activities in the US since the 4th Tritium Conference in October, 1991. The replacement Tritium Facility (RTF) at Savannah River Site and the Weapons Engineering Tritium Facility (WETF) at the Los Alamos National Laboratory are now operational with tritium. The Tokamak Fusion Test Reactor (TFTR) has initiated a highly successful experimental campaign studying DT plasmas, and has produced more than 10 Megawatts (MW) of fusion power in a D-T plasma. Sandia National Laboratory has ceased tritium operations at the Tritium Research Laboratory (TRL) and many of the activities previously performed there have been transferred to Los Alamos and Savannah River. The tritium laboratory at Lawrence Livermore National Laboratory has reduced the tritium inventory to <5 grams. The Tritium Systems Test Assembly (TSTA) at Los Alamos continues to be at the forefront of tritium technology and safety development for the fusion energy program.

  6. Cerebral Activity Associated with Transient Sleep-Facilitated Reduction in Motor Memory Vulnerability to Interference

    PubMed Central

    Albouy, Geneviève; King, Bradley R.; Schmidt, Christina; Desseilles, Martin; Dang-Vu, Thien Thanh; Balteau, Evelyne; Phillips, Christophe; Degueldre, Christian; Orban, Pierre; Benali, Habib; Peigneux, Philippe; Luxen, André; Karni, Avi; Doyon, Julien; Maquet, Pierre; Korman, Maria

    2016-01-01

    Motor memory consolidation is characterized, in part, by a sleep-facilitated decrease in susceptibility to subsequent interfering experiences. Surprisingly, the cerebral substrates supporting this phenomenon have never been examined. We used fMRI to investigate the neural correlates of the influence of sleep on interference to motor memory consolidation. Healthy young adults were trained on a sequential motor task, and subsequently practiced a second competing sequence after an interval including diurnal sleep or wakefulness. Participants were then retested on the initial sequence 8 h and 24 h (including nocturnal sleep) after training. Results demonstrated that a post-training nap significantly protected memory against interference at 8 h and modulated the link between cerebral activity and behavior, such that a smaller post-interference decrease in cortico-striatal activity was associated with better performance. Interestingly, the protective effect of a nap was only transitory, as both groups performed similarly at 24 h. Activity in cortico-striatal areas that was disrupted during the day, presumably due to interference and accentuated in the absence of a nap, was restored overnight. Altogether, our findings offer the first evidence that cortico-striatal areas play a critical role in the transient sleep-facilitated reduction in motor memory vulnerability and in the overnight restoration of previously degraded memories. PMID:27725727

  7. Cerebral Activity Associated with Transient Sleep-Facilitated Reduction in Motor Memory Vulnerability to Interference.

    PubMed

    Albouy, Geneviève; King, Bradley R; Schmidt, Christina; Desseilles, Martin; Dang-Vu, Thien Thanh; Balteau, Evelyne; Phillips, Christophe; Degueldre, Christian; Orban, Pierre; Benali, Habib; Peigneux, Philippe; Luxen, André; Karni, Avi; Doyon, Julien; Maquet, Pierre; Korman, Maria

    2016-10-11

    Motor memory consolidation is characterized, in part, by a sleep-facilitated decrease in susceptibility to subsequent interfering experiences. Surprisingly, the cerebral substrates supporting this phenomenon have never been examined. We used fMRI to investigate the neural correlates of the influence of sleep on interference to motor memory consolidation. Healthy young adults were trained on a sequential motor task, and subsequently practiced a second competing sequence after an interval including diurnal sleep or wakefulness. Participants were then retested on the initial sequence 8 h and 24 h (including nocturnal sleep) after training. Results demonstrated that a post-training nap significantly protected memory against interference at 8 h and modulated the link between cerebral activity and behavior, such that a smaller post-interference decrease in cortico-striatal activity was associated with better performance. Interestingly, the protective effect of a nap was only transitory, as both groups performed similarly at 24 h. Activity in cortico-striatal areas that was disrupted during the day, presumably due to interference and accentuated in the absence of a nap, was restored overnight. Altogether, our findings offer the first evidence that cortico-striatal areas play a critical role in the transient sleep-facilitated reduction in motor memory vulnerability and in the overnight restoration of previously degraded memories.

  8. Population decoding of motor cortical activity using a generalized linear model with hidden states.

    PubMed

    Lawhern, Vernon; Wu, Wei; Hatsopoulos, Nicholas; Paninski, Liam

    2010-06-15

    Generalized linear models (GLMs) have been developed for modeling and decoding population neuronal spiking activity in the motor cortex. These models provide reasonable characterizations between neural activity and motor behavior. However, they lack a description of movement-related terms which are not observed directly in these experiments, such as muscular activation, the subject's level of attention, and other internal or external states. Here we propose to include a multi-dimensional hidden state to address these states in a GLM framework where the spike count at each time is described as a function of the hand state (position, velocity, and acceleration), truncated spike history, and the hidden state. The model can be identified by an Expectation-Maximization algorithm. We tested this new method in two datasets where spikes were simultaneously recorded using a multi-electrode array in the primary motor cortex of two monkeys. It was found that this method significantly improves the model-fitting over the classical GLM, for hidden dimensions varying from 1 to 4. This method also provides more accurate decoding of hand state (reducing the mean square error by up to 29% in some cases), while retaining real-time computational efficiency. These improvements on representation and decoding over the classical GLM model suggest that this new approach could contribute as a useful tool to motor cortical decoding and prosthetic applications.

  9. [Effect of the sharply strengthened motor activity on heart pumping ability of rats and mechanisms of its regulation].

    PubMed

    Nikitin, A S; Abzalov, R A; Abzalov, N I; Vafina, E Z

    2013-08-01

    The indicators of heart pumping ability of rats at a muscular loading of the maximum power and also in the conditions of transition from sharply strengthened motor activity regime on a strengthened motor activity regime at adrenergic influence stimulation and blockade were investigated. At rats of 100-daily age at the strengthened motor activity heart rate is less, and blood stroke volume is more, than in the rats, subject to muscular loading of the maximum power. The adrenergic influence on the heart's pumping ability of sharply strengthened motor activity rats is much more, than of unlimited motor activity rats. At the α1-adrenoreceptors blockade at 100-daily rats the decreasing in intensity of muscular loading causes increased in adrenergic influence on heart pumping ability.

  10. Increased activity in frontal motor cortex compensates impaired speech perception in older adults

    PubMed Central

    Du, Yi; Buchsbaum, Bradley R.; Grady, Cheryl L.; Alain, Claude

    2016-01-01

    Understanding speech in noisy environments is challenging, especially for seniors. Although evidence suggests that older adults increasingly recruit prefrontal cortices to offset reduced periphery and central auditory processing, the brain mechanisms underlying such compensation remain elusive. Here we show that relative to young adults, older adults show higher activation of frontal speech motor areas as measured by functional MRI during a syllable identification task at varying signal-to-noise ratios. This increased activity correlates with improved speech discrimination performance in older adults. Multivoxel pattern classification reveals that despite an overall phoneme dedifferentiation, older adults show greater specificity of phoneme representations in frontal articulatory regions than auditory regions. Moreover, older adults with stronger frontal activity have higher phoneme specificity in frontal and auditory regions. Thus, preserved phoneme specificity and upregulation of activity in speech motor regions provide a means of compensation in older adults for decoding impoverished speech representations in adverse listening conditions. PMID:27483187

  11. Impact of texting laws on motor vehicular fatalities in the United States.

    PubMed

    Ferdinand, Alva O; Menachemi, Nir; Sen, Bisakha; Blackburn, Justin L; Morrisey, Michael; Nelson, Leonard

    2014-08-01

    Using a panel study design, we examined the effects of different types of texting bans on motor vehicular fatalities. We used the Fatality Analysis Reporting System and a difference-in-differences approach to examine the incidence of fatal crashes in 2000 through 2010 in 48 US states with and without texting bans. Age cohorts were constructed to examine the impact of these bans on age-specific traffic fatalities. Primarily enforced laws banning all drivers from texting were significantly associated with a 3% reduction in traffic fatalities in all age groups, and those banning only young drivers from texting had the greatest impact on reducing deaths among those aged 15 to 21 years. Secondarily enforced restrictions were not associated with traffic fatality reductions in any of our analyses.

  12. Impact of Texting Laws on Motor Vehicular Fatalities in the United States

    PubMed Central

    Ferdinand, Alva O.; Blackburn, Justin L.; Morrisey, Michael; Nelson, Leonard

    2014-01-01

    Using a panel study design, we examined the effects of different types of texting bans on motor vehicular fatalities. We used the Fatality Analysis Reporting System and a difference-in-differences approach to examine the incidence of fatal crashes in 2000 through 2010 in 48 US states with and without texting bans. Age cohorts were constructed to examine the impact of these bans on age-specific traffic fatalities. Primarily enforced laws banning all drivers from texting were significantly associated with a 3% reduction in traffic fatalities in all age groups, and those banning only young drivers from texting had the greatest impact on reducing deaths among those aged 15 to 21 years. Secondarily enforced restrictions were not associated with traffic fatality reductions in any of our analyses. PMID:24922151

  13. Dynamic modeling of brushless dc motor-power conditioner unit for electromechanical actuator application

    NASA Technical Reports Server (NTRS)

    Demerdash, N. A.; Nehl, T. W.

    1979-01-01

    A comprehensive digital model for the analysis of the dynamic-instantaneous performance of a power conditioner fed samarium-cobalt permanent magnet brushless DC motor is presented. The particular power conditioner-machine system at hand, for which this model was developed, is a component of an actual prototype electromechanical actuator built for NASA-JSC as a possible alternative to hydraulic actuators as part of feasibility studies for the shuttle orbiter applications. Excellent correlation between digital simulated and experimentally obtained performance data was achieved for this specific prototype. This is reported on in this paper. Details of one component of the model, its applications and the corresponding results are given in this paper.

  14. [Control of recruitment of muscle motor units by optimization of energy expenditure].

    PubMed

    Kaufman, F; Cheliout, F; de la Bruslerie, J; Brocas, J; Cherruault, Y

    1982-11-01

    In order to vary the force it is exerting a muscle calls upon a variable number of motor elements (spatial mobilisation) and modulates the contraction frequency of each of the fibers (temporal mobilisation). We have studied the frequency distribution as a function of the strength developed and of the elongation of the muscle, as well as the number of fibers recruited. Based on a double approach, experimental and mathematical, we propose a function controlling this two-fold muscular mobilisation: the optimisation of the energy expenditure. In other words, to develop a particular force, the number of fibers called upon and the contraction frequencies of each of them are such that the quantity of energy required by the muscle is a minimum. The study is limited to voluntary isometric muscular contraction. Using optimization techniques, numerical results corresponding to the model's simulation has been obtained by using a digital computer.

  15. Pulsed Light Stimulation Increases Boundary Preference and Periodicity of Episodic Motor Activity in Drosophila melanogaster

    PubMed Central

    Qiu, Shuang; Xiao, Chengfeng; Robertson, R. Meldrum

    2016-01-01

    There is considerable interest in the therapeutic benefits of long-term sensory stimulation for improving cognitive abilities and motor performance of stroke patients. The rationale is that such stimulation would activate mechanisms of neural plasticity to promote enhanced coordination and associated circuit functions. Experimental approaches to characterize such mechanisms are needed. Drosophila melanogaster is one of the most attractive model organisms to investigate neural mechanisms responsible for stimulation-induced behaviors with its powerful accessibility to genetic analysis. In this study, the effect of chronic sensory stimulation (pulsed light stim