Science.gov

Sample records for activated nkt cells

  1. Inhibition of type I NKT cells by retinoids or following sulfatide-mediated activation of type II NKT cells attenuates alcoholic liver disease

    PubMed Central

    Maricic, Igor; Sheng, Huiming; Marrero, Idania; Seki, Ehikiro; Kisseleva, Tatiana; Chaturvedi, Som; Molle, Natasha; Mathews, K. Stephanie; Gao, Bin; Kumar, Vipin

    2015-01-01

    Innate immune mechanisms leading to liver injury following chronic alcohol ingestion are poorly understood. Natural killer T (NKT) cells, enriched in the liver and comprised of at least two distinct subsets, type I and type II, recognize different lipid antigens presented by CD1d molecules. We have investigated whether differential activation of NKT cell subsets orchestrates inflammatory events leading to alcoholic liver disease (ALD). We found that following chronic plus binge feeding of Lieber-DeCarli liquid diet in male C57BL/6 mice, type I but not type II NKT cells are activated leading to recruitment of inflammatory Gr-1highCD11b+ cells into liver. A central finding is that liver injury following alcohol feeding is dependent upon type I NKT cells. Thus liver injury is significantly inhibited in Jα18−/− mice deficient in type I NKT cells as well as following their inactivation by sulfatide-mediated activation of type II NKT cells. Furthermore we have identified a novel pathway involving all-trans retinoic acid (ATRA) and its receptor RARγ signaling that inhibits type I NKT cells and consequently ALD. A semi-quantitative PCR analysis of hepatic gene expression of some of the key proinflammatory molecules shared in human disease indicated that their upregulation in ALD is dependent upon type I NKT cells. Conclusion Type I but not type II NKT cells become activated following alcohol feeding. Type I NKT cells-induced inflammation and neutrophil recruitment results in liver tissue damage while type II NKT cells protect from injury in ALD. Inhibition of type I NKT cells by retinoids or by sulfatide prevents ALD. Since the CD1d pathway is highly conserved between mice and humans, NKT cell subsets might be targeted for potential therapeutic intervention in ALD. PMID:25477000

  2. Chronic alcohol consumption enhances iNKT cell maturation and activation

    SciTech Connect

    Zhang, Hui Zhang, Faya; Zhu, Zhaohui; Luong, Dung; Meadows, Gary G.

    2015-01-15

    Alcohol consumption exhibits diverse effects on different types of immune cells. NKT cells are a unique T cell population and play important immunoregulatory roles in different types of immune responses. The effects of chronic alcohol consumption on NKT cells remain to be elucidated. Using a mouse model of chronic alcohol consumption, we found that alcohol increases the percentage of NKT cells, especially iNKT cells in the thymus and liver, but not in the spleen or blood. Alcohol consumption decreases the percentage of NK1.1{sup −} iNKT cells in the total iNKT cell population in all of the tissues and organs examined. In the thymus, alcohol consumption increases the number of NK1.1{sup +}CD44{sup hi} mature iNKT cells but does not alter the number of NK1.1{sup −} immature iNKT cells. A BrdU incorporation assay shows that alcohol consumption increases the proliferation of thymic NK1.1{sup −} iNKT cells, especially the NK1.1{sup −}CD44{sup lo} Stage I iNKT cells. The percentage of NKG2A{sup +} iNKT cells increases in all of the tissues and organs examined; whereas CXCR3{sup +} iNKT cells only increases in the thymus of alcohol-consuming mice. Chronic alcohol consumption increases the percentage of IFN-γ-producing iNKT cells and increases the blood concentration of IFN-γ and IL-12 after in vivo α-galactosylceramide (αGalCer) stimulation. Consistent with the increased cytokine production, the in vivo activation of iNKT cells also enhances the activation of dendritic cells (DC) and NK, B, and T cells in the alcohol-consuming mice. Taken together the data indicate that chronic alcohol consumption enhances iNKT cell maturation and activation, which favors the Th1 immune response. - Highlights: • Chronic alcohol consumption increases iNKT cells in the thymus and liver • Chronic alcohol consumption enhances thymic Stage I iNKT cell proliferation • Chronic alcohol consumption enhances iNKT cell maturation in thymus and periphery • Chronic alcohol

  3. IL-15 protects NKT cells from inhibition by tumor-associated macrophages and enhances antimetastatic activity.

    PubMed

    Liu, Daofeng; Song, Liping; Wei, Jie; Courtney, Amy N; Gao, Xiuhua; Marinova, Ekaterina; Guo, Linjie; Heczey, Andras; Asgharzadeh, Shahab; Kim, Eugene; Dotti, Gianpietro; Metelitsa, Leonid S

    2012-06-01

    Vα24-invariant NKT cells inhibit tumor growth by targeting tumor-associated macrophages (TAMs). Tumor progression therefore requires that TAMs evade NKT cell activity through yet-unknown mechanisms. Here we report that a subset of cells in neuroblastoma (NB) cell lines and primary tumors expresses membrane-bound TNF-α (mbTNF-α). These proinflammatory tumor cells induced production of the chemokine CCL20 from TAMs via activation of the NF-κB signaling pathway, an effect that was amplified in hypoxia. Flow cytometry analyses of human primary NB tumors revealed selective accumulation of CCL20 in TAMs. Neutralization of the chemokine inhibited in vitro migration of NKT cells toward tumor-conditioned hypoxic monocytes and localization of NKT cells to NB grafts in mice. We also found that hypoxia impaired NKT cell viability and function. Thus, CCL20-producing TAMs served as a hypoxic trap for tumor-infiltrating NKT cells. IL-15 protected antigen-activated NKT cells from hypoxia, and transgenic expression of IL-15 in adoptively transferred NKT cells dramatically enhanced their antimetastatic activity in mice. Thus, tumor-induced chemokine production in hypoxic TAMs and consequent chemoattraction and inhibition of NKT cells represents a mechanism of immune escape that can be reversed by adoptive immunotherapy with IL-15-transduced NKT cells.

  4. Border Patrol Gone Awry: Lung NKT Cell Activation by Francisella tularensis Exacerbates Tularemia-Like Disease.

    PubMed

    Hill, Timothy M; Gilchuk, Pavlo; Cicek, Basak B; Osina, Maria A; Boyd, Kelli L; Durrant, Douglas M; Metzger, Dennis W; Khanna, Kamal M; Joyce, Sebastian

    2015-06-01

    The respiratory mucosa is a major site for pathogen invasion and, hence, a site requiring constant immune surveillance. The type I, semi-invariant natural killer T (NKT) cells are enriched within the lung vasculature. Despite optimal positioning, the role of NKT cells in respiratory infectious diseases remains poorly understood. Hence, we assessed their function in a murine model of pulmonary tularemia--because tularemia is a sepsis-like proinflammatory disease and NKT cells are known to control the cellular and humoral responses underlying sepsis. Here we show for the first time that respiratory infection with Francisella tularensis live vaccine strain resulted in rapid accumulation of NKT cells within the lung interstitium. Activated NKT cells produced interferon-γ and promoted both local and systemic proinflammatory responses. Consistent with these results, NKT cell-deficient mice showed reduced inflammatory cytokine and chemokine response yet they survived the infection better than their wild type counterparts. Strikingly, NKT cell-deficient mice had increased lymphocytic infiltration in the lungs that organized into tertiary lymphoid structures resembling induced bronchus-associated lymphoid tissue (iBALT) at the peak of infection. Thus, NKT cell activation by F. tularensis infection hampers iBALT formation and promotes a systemic proinflammatory response, which exacerbates severe pulmonary tularemia-like disease in mice.

  5. Ascites Specific Inhibition of CD1d-Mediated Activation of NKT cells

    PubMed Central

    Webb, Tonya J.; Giuntoli, Robert L.; Rogers, Ophelia; Schneck, Jonathan; Oelke, Mathias

    2009-01-01

    Purpose Natural killer T (NKT) cells recognize lipid antigen presented by CD1 molecules. NKT cells can both directly, through cytotoxicity, and indirectly, through activation of other effector cells, mediate anti-tumor immunity. However, it has been shown that tumor associated lipids are frequently shed into the tumor microenvironment, which can mediate immunosuppressive activity. Given that ovarian cancer associated ascites has been reported to have increased levels of gangliosides, we examined the effect of tumor associated and other ascites on CD1d-mediated antigen presentation to NKT cells. Experimental Design To investigate the effects of ascites on NKT cell activation, we pretreated CD1d-expressing cells with the ascites and measured their ability to stimulate cytokine production in NKT cells. To determine whether antigen processing or editing was necessary, CD1d-Ig-based artificial Antigen Presenting Cells (aAPC) were also incubated with ascites. In addition, to examine specificity, we analyzed whether ascites fluid could influence the activation of classical CD8+ T cells. Results Pretreatment of CD1d-expressing cells with ascites from the majority of patients inhibited the cells’ ability to stimulate/activate NKT cells in a dose-dependent manner. Ascites treatment also partially blocked the ability of α-GalCer loaded CD1d-Ig-based artificial Antigen Presenting Cells (aAPC) to activate NKT cells. In addition, our data demonstrate that treatment with ascites does not inhibit HLA-A2 mediated activation of classical CD8+ T cells. Conclusions Together, these data suggest that ovarian and other cancers may have developed immune evasion mechanisms specifically targeting the CD1/NKT cell system. PMID:19047090

  6. Apoptotic Cells Activate NKT Cells through T Cell Ig-Like Mucin-Like–1 Resulting in Airway Hyperreactivity

    PubMed Central

    Lee, Hyun-Hee; Meyer, Everett H.; Goya, Sho; Pichavant, Muriel; Kim, Hye Young; Bu, Xia; Umetsu, Sarah E.; Jones, Jennifer C.; Savage, Paul B.; Iwakura, Yoichiro; Casasnovas, Jose M.; Kaplan, Gerardo; Freeman, Gordon J.; DeKruyff, Rosemarie H.; Umetsu, Dale T.

    2011-01-01

    T cell Ig-like mucin-like–1 (TIM-1) is an important asthma susceptibility gene, but the immunological mechanisms by which TIM-1 functions remain uncertain. TIM-1 is also a receptor for phosphatidylserine (PtdSer), an important marker of cells undergoing programmed cell death, or apoptosis. We now demonstrate that NKT cells constitutively express TIM-1 and become activated by apoptotic cells expressing PtdSer. TIM-1 recognition of PtdSer induced NKT cell activation, proliferation, and cytokine production. Moreover, the induction of apoptosis in airway epithelial cells activated pulmonary NKT cells and unexpectedly resulted in airway hyperreactivity, a cardinal feature of asthma, in an NKT cell-dependent and TIM-1–dependent fashion. These results suggest that TIM-1 serves as a pattern recognition receptor on NKT cells that senses PtdSer on apoptotic cells as a damage-associated molecular pattern. Furthermore, these results provide evidence for a novel innate pathway that results in airway hyperreactivity and may help to explain how TIM-1 and NKT cells regulate asthma. PMID:20889552

  7. CD252 regulates mast cell mediated, CD1d-restricted NKT-cell activation in mice.

    PubMed

    Gonzalez Roldan, Nestor; Orinska, Zane; Ewers, Hanno; Bulfone-Paus, Silvia

    2016-02-01

    The interaction between tissue-resident mast cells (MCs) and recruited immune cells contributes to tissue immunosurveillance. However, the cells, mechanisms, and receptors involved in this crosstalk remain ill defined. Invariant natural killer T (iNKT) cells are CD1d-restricted innate lymphocytes that recognize glycolipid antigens and have emerged as critical players in immunity. Here, we show that primary mouse peritoneal MCs express surface CD1d, which is upregulated in vivo following administration of alpha-galactosylceramide. In contrast, in BM-derived MCs CD1d was found to be stored intracellularly and to relocate at the cell surface upon IgE-mediated degranulation. Activated BM-derived MCs expressing surface CD1d and loaded with alpha-galactosylceramide were found to induce iNKT-cell proliferation and the release of IFN-γ, IL-13, and IL-4 in a CD1d-restricted manner. Moreover, the costimulatory molecules CD48, CD137L, CD252, CD274, and CD275 affected MC-induced IFN-γ release and iNKT-cell proliferation. Interestingly, among the costimulatory molecules, CD48 and CD252 exhibited a distinctly regulatory activity on iNKT-cell release of both IFN-γ and IL-13. In conclusion, we demonstrate that the crosstalk between MCs and iNKT cells may regulate inflammatory immune responses. PMID:26564814

  8. Highly Purified Mycobacterial Phosphatidylinositol Mannosides Drive Cell-Mediated Responses and Activate NKT Cells in Cattle

    PubMed Central

    Engel, Regina; Jones, Gareth J.; Holder, Thomas; Holst, Otto; Vordermeier, H. Martin

    2014-01-01

    Mycobacterial lipids play an important role in the modulation of the immune response upon contact with the host. Using novel methods, we have isolated highly purified phosphatidylinositol mannoside (PIM) molecules (phosphatidylinositol dimannoside [PIM2], acylphosphatidylinositol dimannoside [AcPIM2], diacyl-phosphatidylinositol dimannoside [Ac2PIM2], acylphosphatidylinositol hexamannoside [AcPIM6], and diacylphosphatidylinositol hexamannoside [Ac2PIM6]) from virulent Mycobacterium tuberculosis to assess their potential to stimulate peripheral blood mononuclear cell (PBMC) responses in Mycobacterium bovis-infected cattle. Of these molecules, one (AcPIM6) induced significant levels of gamma interferon (IFN-γ) in bovine PBMCs. Three PIM molecules (AcPIM6, Ac2PIM2, and Ac2PIM6) were shown to drive significant proliferation in bovine PBMCs. AcPIM6 was subsequently used to phenotype the proliferating cells by flow cytometry. This analysis demonstrated that AcPIM6 was predominantly recognized by CD3+ CD335+ NKT cells. In conclusion, we have identified PIM lipid molecules that interact with bovine lymphocyte populations, and these lipids may be useful as future subunit vaccines or diagnostic reagents. Further, these data demonstrate, for the first time, lipid-specific NKT activation in cattle. PMID:25499010

  9. Highly purified mycobacterial phosphatidylinositol mannosides drive cell-mediated responses and activate NKT cells in cattle.

    PubMed

    Pirson, Chris; Engel, Regina; Jones, Gareth J; Holder, Thomas; Holst, Otto; Vordermeier, H Martin

    2015-02-01

    Mycobacterial lipids play an important role in the modulation of the immune response upon contact with the host. Using novel methods, we have isolated highly purified phosphatidylinositol mannoside (PIM) molecules (phosphatidylinositol dimannoside [PIM2], acylphosphatidylinositol dimannoside [AcPIM2], diacyl-phosphatidylinositol dimannoside [Ac2PIM2], acylphosphatidylinositol hexamannoside [AcPIM6], and diacylphosphatidylinositol hexamannoside [Ac2PIM6]) from virulent Mycobacterium tuberculosis to assess their potential to stimulate peripheral blood mononuclear cell (PBMC) responses in Mycobacterium bovis-infected cattle. Of these molecules, one (AcPIM6) induced significant levels of gamma interferon (IFN-γ) in bovine PBMCs. Three PIM molecules (AcPIM6, Ac2PIM2, and Ac2PIM6) were shown to drive significant proliferation in bovine PBMCs. AcPIM6 was subsequently used to phenotype the proliferating cells by flow cytometry. This analysis demonstrated that AcPIM6 was predominantly recognized by CD3(+) CD335(+) NKT cells. In conclusion, we have identified PIM lipid molecules that interact with bovine lymphocyte populations, and these lipids may be useful as future subunit vaccines or diagnostic reagents. Further, these data demonstrate, for the first time, lipid-specific NKT activation in cattle. PMID:25499010

  10. Invariant NKT cells: regulation and function during viral infection.

    PubMed

    Juno, Jennifer A; Keynan, Yoav; Fowke, Keith R

    2012-01-01

    Natural killer T cells (NKT cells) represent a subset of T lymphocytes that express natural killer (NK) cell surface markers. A subset of NKT cells, termed invariant NKT cells (iNKT), express a highly restricted T cell receptor (TCR) and respond to CD1d-restricted lipid ligands. iNKT cells are now appreciated to play an important role in linking innate and adaptive immune responses and have been implicated in infectious disease, allergy, asthma, autoimmunity, and tumor surveillance. Advances in iNKT identification and purification have allowed for the detailed study of iNKT activity in both humans and mice during a variety of chronic and acute infections. Comparison of iNKT function between non-pathogenic simian immunodeficiency virus (SIV) infection models and chronic HIV-infected patients implies a role for iNKT activity in controlling immune activation. In vitro studies of influenza infection have revealed novel effector functions of iNKT cells including IL-22 production and modulation of myeloid-derived suppressor cells, but ex vivo characterization of human iNKT cells during influenza infection are lacking. Similarly, as recent evidence suggests iNKT involvement in dengue virus pathogenesis, iNKT cells may modulate responses to a number of emerging pathogens. This Review will summarize current knowledge of iNKT involvement in responses to viral infections in both human and mouse models and will identify critical gaps in knowledge and opportunities for future study. We will also highlight recent efforts to harness iNKT ligands as vaccine adjuvants capable of improving vaccination-induced cellular immune responses.

  11. Invariant NKT cells: regulation and function during viral infection.

    PubMed

    Juno, Jennifer A; Keynan, Yoav; Fowke, Keith R

    2012-01-01

    Natural killer T cells (NKT cells) represent a subset of T lymphocytes that express natural killer (NK) cell surface markers. A subset of NKT cells, termed invariant NKT cells (iNKT), express a highly restricted T cell receptor (TCR) and respond to CD1d-restricted lipid ligands. iNKT cells are now appreciated to play an important role in linking innate and adaptive immune responses and have been implicated in infectious disease, allergy, asthma, autoimmunity, and tumor surveillance. Advances in iNKT identification and purification have allowed for the detailed study of iNKT activity in both humans and mice during a variety of chronic and acute infections. Comparison of iNKT function between non-pathogenic simian immunodeficiency virus (SIV) infection models and chronic HIV-infected patients implies a role for iNKT activity in controlling immune activation. In vitro studies of influenza infection have revealed novel effector functions of iNKT cells including IL-22 production and modulation of myeloid-derived suppressor cells, but ex vivo characterization of human iNKT cells during influenza infection are lacking. Similarly, as recent evidence suggests iNKT involvement in dengue virus pathogenesis, iNKT cells may modulate responses to a number of emerging pathogens. This Review will summarize current knowledge of iNKT involvement in responses to viral infections in both human and mouse models and will identify critical gaps in knowledge and opportunities for future study. We will also highlight recent efforts to harness iNKT ligands as vaccine adjuvants capable of improving vaccination-induced cellular immune responses. PMID:22916008

  12. CD62L+ NKT cells have prolonged persistence and antitumor activity in vivo

    PubMed Central

    Tian, Gengwen; Courtney, Amy N.; Jena, Bipulendu; Heczey, Andras; Liu, Daofeng; Marinova, Ekaterina; Guo, Linjie; Xu, Xin; Torikai, Hiroki; Mo, Qianxing; Dotti, Gianpietro; Cooper, Laurence J.; Metelitsa, Leonid S.

    2016-01-01

    Vα24-invariant natural killer T cells (NKTs) localize to tumors and have inherent antitumor properties, making them attractive chimeric antigen receptor (CAR) carriers for redirected cancer immunotherapy. However, clinical application of CAR-NKTs has been impeded, as mechanisms responsible for NKT expansion and the in vivo persistence of these cells are unknown. Here, we demonstrated that antigen-induced expansion of primary NKTs in vitro associates with the accumulation of a CD62L+ subset and exhaustion of CD62L– cells. Only CD62L+ NKTs survived and proliferated in response to secondary stimulation. When transferred to immune-deficient NSG mice, CD62L+ NKTs persisted 5 times longer than CD62L– NKTs. Moreover, CD62L+ cells transduced with a CD19-specific CAR achieved sustained tumor regression in a B cell lymphoma model. Proliferating CD62L+ cells downregulated or maintained CD62L expression when activated via T cell receptor alone or in combination with costimulatory receptors. We generated HLAnull K562 cell clones that were engineered to express CD1d and costimulatory ligands. Clone B-8-2 (HLAnullCD1dmedCD86high4-1BBLmedOX40Lhigh) induced the highest rates of NKT expansion and CD62L expression. B-8-2–expanded CAR-NKTs exhibited prolonged in vivo persistence and superior therapeutic activities in models of lymphoma and neuroblastoma. Therefore, we have identified CD62L as a marker of a distinct NKT subset endowed with high proliferative potential and have developed artificial antigen-presenting cells that generate CD62L-enriched NKTs for effective cancer immunotherapy. PMID:27183388

  13. CD62L+ NKT cells have prolonged persistence and antitumor activity in vivo.

    PubMed

    Tian, Gengwen; Courtney, Amy N; Jena, Bipulendu; Heczey, Andras; Liu, Daofeng; Marinova, Ekaterina; Guo, Linjie; Xu, Xin; Torikai, Hiroki; Mo, Qianxing; Dotti, Gianpietro; Cooper, Laurence J; Metelitsa, Leonid S

    2016-06-01

    Vα24-invariant natural killer T cells (NKTs) localize to tumors and have inherent antitumor properties, making them attractive chimeric antigen receptor (CAR) carriers for redirected cancer immunotherapy. However, clinical application of CAR-NKTs has been impeded, as mechanisms responsible for NKT expansion and the in vivo persistence of these cells are unknown. Here, we demonstrated that antigen-induced expansion of primary NKTs in vitro associates with the accumulation of a CD62L+ subset and exhaustion of CD62L- cells. Only CD62L+ NKTs survived and proliferated in response to secondary stimulation. When transferred to immune-deficient NSG mice, CD62L+ NKTs persisted 5 times longer than CD62L- NKTs. Moreover, CD62L+ cells transduced with a CD19-specific CAR achieved sustained tumor regression in a B cell lymphoma model. Proliferating CD62L+ cells downregulated or maintained CD62L expression when activated via T cell receptor alone or in combination with costimulatory receptors. We generated HLAnull K562 cell clones that were engineered to express CD1d and costimulatory ligands. Clone B-8-2 (HLAnullCD1dmedCD86high4-1BBLmedOX40Lhigh) induced the highest rates of NKT expansion and CD62L expression. B-8-2-expanded CAR-NKTs exhibited prolonged in vivo persistence and superior therapeutic activities in models of lymphoma and neuroblastoma. Therefore, we have identified CD62L as a marker of a distinct NKT subset endowed with high proliferative potential and have developed artificial antigen-presenting cells that generate CD62L-enriched NKTs for effective cancer immunotherapy.

  14. CD62L+ NKT cells have prolonged persistence and antitumor activity in vivo.

    PubMed

    Tian, Gengwen; Courtney, Amy N; Jena, Bipulendu; Heczey, Andras; Liu, Daofeng; Marinova, Ekaterina; Guo, Linjie; Xu, Xin; Torikai, Hiroki; Mo, Qianxing; Dotti, Gianpietro; Cooper, Laurence J; Metelitsa, Leonid S

    2016-06-01

    Vα24-invariant natural killer T cells (NKTs) localize to tumors and have inherent antitumor properties, making them attractive chimeric antigen receptor (CAR) carriers for redirected cancer immunotherapy. However, clinical application of CAR-NKTs has been impeded, as mechanisms responsible for NKT expansion and the in vivo persistence of these cells are unknown. Here, we demonstrated that antigen-induced expansion of primary NKTs in vitro associates with the accumulation of a CD62L+ subset and exhaustion of CD62L- cells. Only CD62L+ NKTs survived and proliferated in response to secondary stimulation. When transferred to immune-deficient NSG mice, CD62L+ NKTs persisted 5 times longer than CD62L- NKTs. Moreover, CD62L+ cells transduced with a CD19-specific CAR achieved sustained tumor regression in a B cell lymphoma model. Proliferating CD62L+ cells downregulated or maintained CD62L expression when activated via T cell receptor alone or in combination with costimulatory receptors. We generated HLAnull K562 cell clones that were engineered to express CD1d and costimulatory ligands. Clone B-8-2 (HLAnullCD1dmedCD86high4-1BBLmedOX40Lhigh) induced the highest rates of NKT expansion and CD62L expression. B-8-2-expanded CAR-NKTs exhibited prolonged in vivo persistence and superior therapeutic activities in models of lymphoma and neuroblastoma. Therefore, we have identified CD62L as a marker of a distinct NKT subset endowed with high proliferative potential and have developed artificial antigen-presenting cells that generate CD62L-enriched NKTs for effective cancer immunotherapy. PMID:27183388

  15. NF-κB Is Activated in CD4+ iNKT Cells by Sickle Cell Disease and Mediates Rapid Induction of Adenosine A2A Receptors

    PubMed Central

    Yu, Jennifer C.; Ken, Ruey; Neuberg, Donna; Nathan, David G.; Linden, Joel

    2013-01-01

    Reperfusion injury following tissue ischemia occurs as a consequence of vaso-occlusion that is initiated by activation of invariant natural killer T (iNKT) cells. Sickle cell disease (SDC) results in widely disseminated microvascular ischemia and reperfusion injury as a result of vaso-occlusion by rigid and adhesive sickle red blood cells. In mice, iNKT cell activation requires NF-κB signaling and can be inhibited by the activation of anti-inflammatory adenosine A2A receptors (A2ARs). Human iNKT cells are divided into subsets of CD4+ and CD4- cells. In this study we found that human CD4+ iNKT cells, but not CD4- cells undergo rapid NF-κB activation (phosphorylation of NF-κB on p65) and induction of A2ARs (detected with a monoclonal antibody 7F6-G5-A2) during SCD painful vaso-occlusive crises. These findings indicate that SCD primarily activates the CD4+ subset of iNKT cells. Activation of NF-κB and induction of A2ARs is concordant, i.e. only CD4+ iNKT cells with activated NF-κB expressed high levels of A2ARs. iNKT cells that are not activated during pVOC express low levels of A2AR immunoreactivity. These finding suggest that A2AR transcription may be induced in CD4+ iNKT cells as a result of NF-κB activation in SCD. In order to test this hypothesis further we examined cultured human iNKT cells. In cultured cells, blockade of NF-κB with Bay 11–7082 or IKK inhibitor VII prevented rapid induction of A2AR mRNA and protein upon iNKT activation. In conclusion, NF-κB-mediated induction of A2ARs in iNKT cells may serve as a counter-regulatory mechanism to limit the extent and duration of inflammatory immune responses. As activated iNKT cells express high levels of A2ARs following their activation, they may become highly sensitive to inhibition by A2AR agonists. PMID:24124453

  16. The actin cytoskeleton modulates the activation of iNKT cells by segregating CD1d nanoclusters on antigen-presenting cells

    PubMed Central

    Torreno-Pina, Juan A.; Manzo, Carlo; Salio, Mariolina; Aichinger, Michael C.; Oddone, Anna; Lakadamyali, Melike; Shepherd, Dawn; Besra, Gurdyal S.; Cerundolo, Vincenzo

    2016-01-01

    Invariant natural killer T (iNKT) cells recognize endogenous and exogenous lipid antigens presented in the context of CD1d molecules. The ability of iNKT cells to recognize endogenous antigens represents a distinct immune recognition strategy, which underscores the constitutive memory phenotype of iNKT cells and their activation during inflammatory conditions. However, the mechanisms regulating such “tonic” activation of iNKT cells remain unclear. Here, we show that the spatiotemporal distribution of CD1d molecules on the surface of antigen-presenting cells (APCs) modulates activation of iNKT cells. By using superresolution microscopy, we show that CD1d molecules form nanoclusters at the cell surface of APCs, and their size and density are constrained by the actin cytoskeleton. Dual-color single-particle tracking revealed that diffusing CD1d nanoclusters are actively arrested by the actin cytoskeleton, preventing their further coalescence. Formation of larger nanoclusters occurs in the absence of interactions between CD1d cytosolic tail and the actin cytoskeleton and correlates with enhanced iNKT cell activation. Importantly and consistently with iNKT cell activation during inflammatory conditions, exposure of APCs to the Toll-like receptor 7/8 agonist R848 increases nanocluster density and iNKT cell activation. Overall, these results define a previously unidentified mechanism that modulates iNKT cell autoreactivity based on the tight control by the APC cytoskeleton of the sizes and densities of endogenous antigen-loaded CD1d nanoclusters. PMID:26798067

  17. Α-galactosylceramide analogs with weak agonist activity for human iNKT cells define new candidate anti-inflammatory agents.

    PubMed

    Bricard, Gabriel; Venkataswamy, Manjunatha M; Yu, Karl O A; Im, Jin S; Ndonye, Rachel M; Howell, Amy R; Veerapen, Natacha; Illarionov, Petr A; Besra, Gurdyal S; Li, Qian; Chang, Young-Tae; Porcelli, Steven A

    2010-12-17

    CD1d-restricted natural killer T cells with invariant T cell receptor α chains (iNKT cells) are a unique lymphocyte subset that responds to recognition of specific lipid and glycolipid antigens. They are conserved between mice and humans and exert various immunoregulatory functions through their rapid secretion of a variety of cytokines and secondary activation of dendritic cells, B cells and NK cells. In the current study, we analyzed the range of functional activation states of human iNKT cells using a library of novel analogs of α-galactosylceramide (αGalCer), the prototypical iNKT cell antigen. Measurement of cytokines secreted by human iNKT cell clones over a wide range of glycolipid concentrations revealed that iNKT cell ligands could be classified into functional groups, correlating with weak versus strong agonistic activity. The findings established a hierarchy for induction of different cytokines, with thresholds for secretion being consistently lowest for IL-13, higher for interferon-γ (IFNγ), and even higher for IL-4. These findings suggested that human iNKT cells can be intrinsically polarized to selective production of IL-13 by maintaining a low level of activation using weak agonists, whereas selective polarization to IL-4 production cannot be achieved through modulating the strength of the activating ligand. In addition, using a newly designed in vitro system to assess the ability of human iNKT cells to transactivate NK cells, we found that robust secondary induction of interferon-γ secretion by NK cells was associated with strong but not weak agonist ligands of iNKT cells. These results indicate that polarization of human iNKT cell responses to Th2-like or anti-inflammatory effects may best be achieved through selective induction of IL-13 and suggest potential discrepancies with findings from mouse models that may be important in designing iNKT cell-based therapies in humans.

  18. Optimizing NKT cell ligands as vaccine adjuvants.

    PubMed

    Carreño, Leandro J; Kharkwal, Shalu Sharma; Porcelli, Steven A

    2014-01-01

    NKT cells are a subpopulation of T lymphocytes with phenotypic properties of both T and NK cells and a wide range of immune effector properties. In particular, one subset of these cells, known as invariant NKT cells (iNKT cells), has attracted substantial attention because of their ability to be specifically activated by glycolipid antigens presented by a cell surface protein called CD1d. The development of synthetic α-galactosylceramides as a family of powerful glycolipid agonists for iNKT cells has led to approaches for augmenting a wide variety of immune responses, including those involved in vaccination against infections and cancers. Here, we review basic, preclinical and clinical observations supporting approaches to improving immune responses through the use of iNKT cell-activating glycolipids. Results from preclinical animal studies and preliminary clinical studies in humans identify many promising applications for this approach in the development of vaccines and novel immunotherapies.

  19. Invariant NKT cells reduce the immunosuppressive activity of influenza A virus–induced myeloid-derived suppressor cells in mice and humans

    PubMed Central

    De Santo, Carmela; Salio, Mariolina; Masri, S. Hajar; Lee, Laurel Yong-Hwa; Dong, Tao; Speak, Anneliese O.; Porubsky, Stefan; Booth, Sarah; Veerapen, Natacha; Besra, Gurdyal S.; Gröne, Hermann-Josef; Platt, Frances M.; Zambon, Maria; Cerundolo, Vincenzo

    2008-01-01

    Infection with influenza A virus (IAV) presents a substantial threat to public health worldwide, with young, elderly, and immunodeficient individuals being particularly susceptible. Inflammatory responses play an important role in the fatal outcome of IAV infection, but the mechanism remains unclear. We demonstrate here that the absence of invariant NKT (iNKT) cells in mice during IAV infection resulted in the expansion of myeloid-derived suppressor cells (MDSCs), which suppressed IAV-specific immune responses through the expression of both arginase and NOS, resulting in high IAV titer and increased mortality. Adoptive transfer of iNKT cells abolished the suppressive activity of MDSCs, restored IAV-specific immune responses, reduced IAV titer, and increased survival rate. The crosstalk between iNKT and MDSCs was CD1d- and CD40-dependent. Furthermore, IAV infection and exposure to TLR agonists relieved the suppressive activity of MDSCs. Finally, we extended these results to humans by demonstrating the presence of myeloid cells with suppressive activity in the PBLs of individuals infected with IAV and showed that their suppressive activity is substantially reduced by iNKT cell activation. These findings identify what we believe to be a novel immunomodulatory role of iNKT cells, which we suggest could be harnessed to abolish the immunosuppressive activity of MDSCs during IAV infection. PMID:19033672

  20. Repeated Activation of Lung Invariant NKT Cells Results in Chronic Obstructive Pulmonary Disease-Like Symptoms.

    PubMed

    Tsao, Cheng-Chiu; Tsao, Po-Nien; Chen, Yi-Guang; Chuang, Ya-Hui

    2016-01-01

    Chronic obstructive pulmonary disease (COPD) is characterized by chronic airway inflammation, mucus hypersecretion, and emphysema, which lead to reduced lung function and breathlessness. The pathologies of COPD are due to an abnormal immune response. Invariant natural killer T (iNKT) cells are an important population of innate lymphocytes and have been implicated in the regulation of immune responses associated with a broad range of diseases including COPD. We have here analyzed the role of iNKT cells in a model of COPD induced by repeated intranasal administration of iNKT cell agonist α-galactosylceramide (α-GalCer). Our results demonstrated that mice that received repeated intranasal administration of α-GalCer had molecular and inflammatory features of COPD including airway inflammation with significant increases in infiltration of macrophages and lymphocytes, CD8+ T cells, as well as proinflammatory cytokines IL-6 and TNF-α. In particular, these mice also showed the presence of pulmonary emphysema, mucus production, and pulmonary fibrosis. Furthermore, neutralization of IL-4 reduced α-GalCer induced emphysema. This study indicates the importance of iNKT cells in the pathogenesis of COPD by an IL-4 dependent mechanism.

  1. Repeated Activation of Lung Invariant NKT Cells Results in Chronic Obstructive Pulmonary Disease-Like Symptoms.

    PubMed

    Tsao, Cheng-Chiu; Tsao, Po-Nien; Chen, Yi-Guang; Chuang, Ya-Hui

    2016-01-01

    Chronic obstructive pulmonary disease (COPD) is characterized by chronic airway inflammation, mucus hypersecretion, and emphysema, which lead to reduced lung function and breathlessness. The pathologies of COPD are due to an abnormal immune response. Invariant natural killer T (iNKT) cells are an important population of innate lymphocytes and have been implicated in the regulation of immune responses associated with a broad range of diseases including COPD. We have here analyzed the role of iNKT cells in a model of COPD induced by repeated intranasal administration of iNKT cell agonist α-galactosylceramide (α-GalCer). Our results demonstrated that mice that received repeated intranasal administration of α-GalCer had molecular and inflammatory features of COPD including airway inflammation with significant increases in infiltration of macrophages and lymphocytes, CD8+ T cells, as well as proinflammatory cytokines IL-6 and TNF-α. In particular, these mice also showed the presence of pulmonary emphysema, mucus production, and pulmonary fibrosis. Furthermore, neutralization of IL-4 reduced α-GalCer induced emphysema. This study indicates the importance of iNKT cells in the pathogenesis of COPD by an IL-4 dependent mechanism. PMID:26811900

  2. The Transcriptional Repressor Gfi1 Plays a Critical Role in the Development of NKT1- and NKT2-Type iNKT Cells.

    PubMed

    Yasuoka, Toshiaki; Kuwahara, Makoto; Yamada, Takeshi; Maruyama, Saho; Suzuki, Junpei; Taniguchi, Masaru; Yasukawa, Masaki; Yamashita, Masakatsu

    2016-01-01

    Gfi1 plays an important role in the development and maintenance of many hematopoietic linage cells. However, the impact of Gfi1-deficiency on the iNKT cell differentiation remains unclear. We herein demonstrate a critical role of Gfi1 in regulating the development of iNKT cell subsets. In the thymus of T cell-specific Gfi1-deficient mice, iNKT cells normally developed up to stage 2, while the number of stage 3 NK1.1pos iNKT cells was significantly reduced. Furthermore, CD4pos iNKT cells were selectively reduced in the peripheral organs of T cell-specific Gfi1-deficient mice. The α-GalCer-dependent production of IFN-γand Th2 cytokines, but not IL-17A, was severely reduced in T cell-specific Gfi1-deficient mice. In addition, a reduction of the α-GalCer-induced anti-tumor activity was observed in Gfi1-deficient mice. These findings demonstrate the important role of Gfi1 in regulating the development and function of NKT1- and NKT2-type iNKT cell subsets.

  3. The Transcriptional Repressor Gfi1 Plays a Critical Role in the Development of NKT1- and NKT2-Type iNKT Cells

    PubMed Central

    Yasuoka, Toshiaki; Kuwahara, Makoto; Yamada, Takeshi; Maruyama, Saho; Suzuki, Junpei; Taniguchi, Masaru; Yasukawa, Masaki; Yamashita, Masakatsu

    2016-01-01

    Gfi1 plays an important role in the development and maintenance of many hematopoietic linage cells. However, the impact of Gfi1-deficiency on the iNKT cell differentiation remains unclear. We herein demonstrate a critical role of Gfi1 in regulating the development of iNKT cell subsets. In the thymus of T cell-specific Gfi1-deficient mice, iNKT cells normally developed up to stage 2, while the number of stage 3 NK1.1pos iNKT cells was significantly reduced. Furthermore, CD4pos iNKT cells were selectively reduced in the peripheral organs of T cell-specific Gfi1-deficient mice. The α-GalCer-dependent production of IFN-γand Th2 cytokines, but not IL-17A, was severely reduced in T cell-specific Gfi1-deficient mice. In addition, a reduction of the α-GalCer-induced anti-tumor activity was observed in Gfi1-deficient mice. These findings demonstrate the important role of Gfi1 in regulating the development and function of NKT1- and NKT2-type iNKT cell subsets. PMID:27284976

  4. Essential role for autophagy during invariant NKT cell development

    PubMed Central

    Salio, Mariolina; Puleston, Daniel J.; Mathan, Till S. M.; Shepherd, Dawn; Stranks, Amanda J.; Adamopoulou, Eleni; Veerapen, Natacha; Besra, Gurdyal S.; Hollander, Georg A.; Simon, Anna Katharina; Cerundolo, Vincenzo

    2014-01-01

    Autophagy is an evolutionarily conserved cellular homeostatic pathway essential for development, immunity, and cell death. Although autophagy modulates MHC antigen presentation, it remains unclear whether autophagy defects impact on CD1d lipid loading and presentation to invariant natural killer T (iNKT) cells and on iNKT cell differentiation in the thymus. Furthermore, it remains unclear whether iNKT and conventional T cells have similar autophagy requirements for differentiation, survival, and/or activation. We report that, in mice with a conditional deletion of the essential autophagy gene Atg7 in the T-cell compartment (CD4 Cre-Atg7−/−), thymic iNKT cell development—unlike conventional T-cell development—is blocked at an early stage and mature iNKT cells are absent in peripheral lymphoid organs. The defect is not due to altered loading of intracellular iNKT cell agonists; rather, it is T-cell–intrinsic, resulting in enhanced susceptibility of iNKT cells to apoptosis. We show that autophagy increases during iNKT cell thymic differentiation and that it developmentally regulates mitochondrial content through mitophagy in the thymus of mice and humans. Autophagy defects result in the intracellular accumulation of mitochondrial superoxide species and subsequent apoptotic cell death. Although autophagy-deficient conventional T cells develop normally, they show impaired peripheral survival, particularly memory CD8+ T cells. Because iNKT cells, unlike conventional T cells, differentiate into memory cells while in the thymus, our results highlight a unique autophagy-dependent metabolic regulation of adaptive and innate T cells, which is required for transition to a quiescent state after population expansion. PMID:25512546

  5. Regulatory roles for NKT cell ligands in environmentally induced autoimmunity.

    PubMed

    Vas, Jaya; Mattner, Jochen; Richardson, Stewart; Ndonye, Rachel; Gaughan, John P; Howell, Amy; Monestier, Marc

    2008-11-15

    The development of autoimmune diseases is frequently linked to exposure to environmental factors such as chemicals, drugs, or infections. In the experimental model of metal-induced autoimmunity, administration of subtoxic doses of mercury (a common environmental pollutant) to genetically susceptible mice induces an autoimmune syndrome with rapid anti-nucleolar Ab production and immune system activation. Regulatory components of the innate immune system such as NKT cells and TLRs can also modulate the autoimmune process. We examined the interplay among environmental chemicals and NKT cells in the regulation of autoimmunity. Additionally, we studied NKT and TLR ligands in a tolerance model in which preadministration of a low dose of mercury in the steady state renders animals tolerant to metal-induced autoimmunity. We also studied the effect of Sphingomonas capsulata, a bacterial strain that carries both NKT cell and TLR ligands, on metal-induced autoimmunity. Overall, NKT cell activation by synthetic ligands enhanced the manifestations of metal-induced autoimmunity. Exposure to S. capsulata exacerbated autoimmunity elicited by mercury. Although the synthetic NKT cell ligands that we used are reportedly similar in their ability to activate NKT cells, they displayed pronounced differences when coinjected with environmental agents or TLR ligands. Individual NKT ligands differed in their ability to prevent or break tolerance induced by low-dose mercury treatment. Likewise, different NKT ligands either dramatically potentiated or inhibited the ability of TLR9 agonistic oligonucleotides to disrupt tolerance to mercury. Our data suggest that these differences could be mediated by the modification of cytokine profiles and regulatory T cell numbers.

  6. Mouse Invariant Monoclonal Antibody NKT14: A Novel Tool to Manipulate iNKT Cell Function In Vivo

    PubMed Central

    Scheuplein, Felix; Lamont, Deanna J.; Poynter, Matthew E.; Boyson, Jonathan E.; Serreze, David; Lundblad, Lennart K. A.; Mashal, Robert; Schaub, Robert

    2015-01-01

    Invariant Natural Killer T (iNKT) cells are a T cell subset expressing an invariant T Cell Receptor (TCR) that recognizes glycolipid antigens rather than peptides. The cells have both innate-like rapid cytokine release, and adaptive-like thymic positive selection. iNKT cell activation has been implicated in the pathogenesis of allergic asthma and inflammatory diseases, while reduced iNKT cell activation promotes infectious disease, cancer and certain autoimmune diseases such as Type 1 diabetes (T1D). Therapeutic means to reduce or deplete iNKT cells could treat inflammatory diseases, while approaches to promote their activation may have potential in certain infectious diseases, cancer or autoimmunity. Thus, we developed invariant TCR-specific monoclonal antibodies to better understand the role of iNKT cells in disease. We report here the first monoclonal antibodies specific for the mouse invariant TCR that by modifying the Fc construct can specifically deplete or activate iNKT cells in vivo in otherwise fully immuno-competent animals. We have used both the depleting and activating version of the antibody in the NOD model of T1D. As demonstrated previously using genetically iNKT cell deficient NOD mice, and in studies of glycolipid antigen activated iNKT cells in standard NOD mice, we found that antibody mediated depletion or activation of iNKT cells respectively accelerated and retarded T1D onset. In BALB/c mice, ovalbumin (OVA) mediated airway hyper-reactivity (AHR) was abrogated with iNKT cell depletion prior to OVA sensitization, confirming studies in knockout mice. Depletion of iNKT cells after sensitization had no effect on AHR in the conducting airways but did reduce AHR in the lung periphery. This result raises caution in the interpretation of studies that use animals that are genetically iNKT cell deficient from birth. These activating and depleting antibodies provide a novel tool to assess the therapeutic potential of iNKT cell manipulation. PMID:26474487

  7. NK/T cell lymphoma associated with peripheral eosinophilia.

    PubMed

    Yap, E; Wan Jamaluddin, W F; Tumian, N R; Mashuri, F; Mohammed, F; Tan, G C; Masir, N; Abdul Wahid, F S

    2014-12-01

    NK/T cell lymphoma, nasal type is an aggressive and uncommon malignancy. Disease that occurs outside of the aerodigestive tract exhibits an even more aggressive clinical behaviour and does not respond as well to conventional therapy compared to its nasal counterpart. We report such a case of NK/T cell lymphoma, nasal type, that presented as an anterior chest wall mass, arising from the left pectoralis muscle. An interesting feature we wish to highlight is the associated eosinophilia that corresponded to disease activity, exhibiting fluctuations with surgical resection and chemotherapy. To the best of our knowledge this is the third reported case of NK/T cell lymphoma that is associated with peripheral eosinophilia. Our case highlights the role of certain NK cell subsets that play a major role in eosinophilic activation in NK/T lymphomas and calls for more research into further classification of this disease by virtue of its NK cell subsets. PMID:25500520

  8. Invariant NKT Cell Response to Dengue Virus Infection in Human

    PubMed Central

    Matangkasombut, Ponpan; Chan-in, Wilawan; Opasawaschai, Anunya; Pongchaikul, Pisut; Tangthawornchaikul, Nattaya; Vasanawathana, Sirijitt; Limpitikul, Wannee; Malasit, Prida; Duangchinda, Thaneeya; Screaton, Gavin; Mongkolsapaya, Juthathip

    2014-01-01

    Background Dengue viral infection is a global health threat without vaccine or specific treatment. The clinical outcome varies from asymptomatic, mild dengue fever (DF) to severe dengue hemorrhagic fever (DHF). While adaptive immune responses were found to be detrimental in the dengue pathogenesis, the roles of earlier innate events remain largely uninvestigated. Invariant natural killer T (iNKT) cells represent innate-like T cells that could dictate subsequent adaptive response but their role in human dengue virus infection is not known. We hypothesized that iNKT cells play a role in human dengue infection. Methods Blood samples from a well-characterized cohort of children with DF, DHF, in comparison to non-dengue febrile illness (OFI) and healthy controls at various time points were studied. iNKT cells activation were analyzed by the expression of CD69 by flow cytometry. Their cytokine production was then analyzed after α-GalCer stimulation. Further, the CD1d expression on monocytes, and CD69 expression on conventional T cells were measured. Results iNKT cells were activated during acute dengue infection. The level of iNKT cell activation associates with the disease severity. Furthermore, these iNKT cells had altered functional response to subsequent ex vivo stimulation with α-GalCer. Moreover, during acute dengue infection, monocytic CD1d expression was also upregulated and conventional T cells also became activated. Conclusion iNKT cells might play an early and critical role in the pathogenesis of severe dengue viral infection in human. Targeting iNKT cells and CD1d serve as a potential therapeutic strategy for severe dengue infection in the future. PMID:24945350

  9. NKG2D performs two functions in invariant NKT cells: Direct TCR-independent activation of NK-like cytolysis, and co-stimulation of activation by CD1d

    PubMed Central

    Kuylenstierna, Carlotta; Björkström, Niklas K.; Andersson, Sofia K.; Sahlström, Peter; Bosnjak, Lidija; Paquin-Proulx, Dominic; Malmberg, Karl-Johan; Ljunggren, Hans-Gustaf; Moll, Markus; Sandberg, Johan K.

    2012-01-01

    Invariant NKT cells are important in the activation and regulation of immune responses. They can also function as CD1d-restricted killer cells. However, the role of activating innate NK cell receptors expressed on NKT cells in triggering cytolytic function is poorly characterized. Here, we initially confirmed that the cellular stress-ligand receptor NKG2D is expressed on CD4− NKT cells, whereas most CD4+ NKT cells lack this receptor. Interestingly, NKG2D+ NKT cells frequently expressed perforin, and both NKG2D and perforin localized at the site of contact with NKG2D ligand-expressing target cells. CD4− NKT cells degranulated in response to NKG2D engagement in a redirected activation assay independently of stimulation via their invariant TCR. NKT cells killed P815 cells coated with anti-NKG2D mAb and CD1d-negative K562 tumor target cells in an NKG2D-dependent manner. Furthermore, NKG2D engagement co-stimulated TCR-mediated NKT cell activation in response to endogenous CD1d-presented ligands or suboptimal levels of anti-CD3 triggering. These data indicate that the CD4− subset of human NKT cells can mediate direct lysis of target cells via NKG2D engagement independently of CD1d, and that NKG2D also functions as a co-stimulatory receptor in these cells. NKG2D thus plays both a direct and a co-stimulatory role in the activation of NKT cells. PMID:21590763

  10. Blockade of IL-33 ameliorates Con A-induced hepatic injury by reducing NKT cell activation and IFN-γ production in mice.

    PubMed

    Chen, Jie; Duan, Lihua; Xiong, Ali; Zhang, Hongwei; Zheng, Fang; Tan, Zheng; Gong, Feili; Fang, Min

    2012-12-01

    IL-33, a recently described member of the IL-1 family, has been identified as a cytokine endowed with pro-Th2 type functions. To date, there are only limited data on its role in physiological and pathological hepatic immune responses. In this study, we examined the role of IL-33 in immune-mediated liver injury by exploring the model of concanavalin A (Con A)-induced hepatitis. We observed that the level of IL-33 expression in the liver was dramatically increased at 12 h after Con A injection. Meanwhile, ST2L, the receptor of IL-33, was significantly up-regulated in lymphocytes including T and natural killer T (NKT) cells, especially in NKT cells. Moreover, administration of recombinant IL-33 exacerbated Con A-induced hepatitis, while pretreatment of IL-33-blocking antibody or psST2-Fc plasmids showed a protective effect probably by inhibiting the activation of late stage of T cells and NKT cells and also decreasing the production of the cytokine IFN-γ. Furthermore, depletion of NKT cells abolished the protective effect of IL-33-blocking antibody, and IL-33 failed to exacerbate Con A-induced hepatitis in IFN-γ(-/-) mice. These data suggested the critical roles of NKT cells and IFN-γ in the involvement of IL-33 in Con A-induced hepatitis. Blockade of IL-33 may represent a novel therapeutic strategy through IL-33/ST2L signal to prevent immune-mediated liver injury.

  11. The adaptor molecule SAP plays essential roles during invariant NKT cell cytotoxicity and lytic synapse formation.

    PubMed

    Das, Rupali; Bassiri, Hamid; Guan, Peng; Wiener, Susan; Banerjee, Pinaki P; Zhong, Ming-Chao; Veillette, André; Orange, Jordan S; Nichols, Kim E

    2013-04-25

    The adaptor molecule signaling lymphocytic activation molecule-associated protein (SAP) plays critical roles during invariant natural killer T (iNKT) cell ontogeny. As a result, SAP-deficient humans and mice lack iNKT cells. The strict developmental requirement for SAP has made it difficult to discern its possible involvement in mature iNKT cell functions. By using temporal Cre recombinase-mediated gene deletion to ablate SAP expression after completion of iNKT cell development, we demonstrate that SAP is essential for T-cell receptor (TCR)-induced iNKT cell cytotoxicity against T-cell and B-cell leukemia targets in vitro and iNKT-cell-mediated control of T-cell leukemia growth in vivo. These findings are not restricted to the murine system: silencing RNA-mediated suppression of SAP expression in human iNKT cells also significantly impairs TCR-induced cytolysis. Mechanistic studies reveal that iNKT cell killing requires the tyrosine kinase Fyn, a known SAP-binding protein. Furthermore, SAP expression is required within iNKT cells to facilitate their interaction with T-cell targets and induce reorientation of the microtubule-organizing center to the immunologic synapse (IS). Collectively, these studies highlight a novel and essential role for SAP during iNKT cell cytotoxicity and formation of a functional IS.

  12. Transcription factor Bcl11b sustains iNKT1 and iNKT2 cell programs, restricts iNKT17 cell program, and governs iNKT cell survival.

    PubMed

    Uddin, Mohammad Nizam; Sultana, Dil Afroz; Lorentsen, Kyle J; Cho, Jonathan J; Kirst, Mariana E; Brantly, Mark L; Califano, Danielle; Sant'Angelo, Derek B; Avram, Dorina

    2016-07-01

    Invariant natural killer T (iNKT) cells are innate-like T cells that recognize glycolipid antigens and play critical roles in regulation of immune responses. Based on expression of the transcription factors (TFs) Tbet, Plzf, and Rorγt, iNKT cells have been classified in effector subsets that emerge in the thymus, namely, iNKT1, iNKT2, and iNKT17. Deficiency in the TF Bcl11b in double-positive (DP) thymocytes has been shown to cause absence of iNKT cells in the thymus and periphery due to defective self glycolipid processing and presentation by DP thymocytes and undefined intrinsic alterations in iNKT precursors. We used a model of cre-mediated postselection deletion of Bcl11b in iNKT cells to determine its intrinsic role in these cells. We found that Bcl11b is expressed equivalently in all three effector iNKT subsets, and its removal caused a reduction in the numbers of iNKT1 and iNKT2 cells, but not in the numbers of iNKT17 cells. Additionally, we show that Bcl11b sustains subset-specific cytokine production by iNKT1 and iNKT2 cells and restricts expression of iNKT17 genes in iNKT1 and iNKT2 subsets, overall restraining the iNKT17 program in iNKT cells. The total numbers of iNKT cells were reduced in the absence of Bcl11b both in the thymus and periphery, associated with the decrease in iNKT1 and iNKT2 cell numbers and decrease in survival, related to changes in survival/apoptosis genes. Thus, these results extend our understanding of the role of Bcl11b in iNKT cells beyond their selection and demonstrate that Bcl11b is a key regulator of iNKT effector subsets, their function, identity, and survival.

  13. NKT cells, Treg, and their interactions in bone marrow transplantation

    PubMed Central

    Kohrt, Holbrook E.; Pillai, Asha B.; Lowsky, Robert; Strober, Samuel

    2010-01-01

    Bone marrow transplantation (BMT) is a potentially curative treatment for patients with leukemia and lymphoma. Tumor eradication is promoted by the anti-tumor activity of donor T cells contained in the transplant; however, donor T cells also mediate the serious side effect of graft-versus-host disease (GVHD). Separation of GVHD from graft anti-tumor activity is an important goal of research in improving transplant outcome. One approach is to take advantage of the immunomodulatory activity of regulatory NKT cells and CD4+ CD25+ Treg of host and/or donor origin. Both host and donor NKT cells and donor Treg are able to prevent GVHD in murine models. In this review, we summarize the mechanisms of NKT cell- and Treg-mediated protection against GVHD in mice while maintaining graft anti-tumor activity. In addition, we also examine the interactions between NKT cells and Treg in the context of BMT, and integrate the data from murine experimental models with the observations made in humans. PMID:20583031

  14. Immunoregulation of NKT Cells in Systemic Lupus Erythematosus.

    PubMed

    Chen, Junwei; Wu, Meng; Wang, Jing; Li, Xiaofeng

    2015-01-01

    Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease with different variety of clinical manifestations. Natural killer T (NKT) cells are innate lymphocytes that play a regulatory role during broad range of immune responses. A number of studies demonstrated that the quantity and quality of invariant NKT (iNKT) cells showed marked defects in SLE patients in comparison to healthy controls. This finding suggests that iNKT cells may play a regulatory role in the occurrence and development of this disease. In this review, we mainly summarized the most recent findings about the behavior of NKT cells in SLE patients and mouse models, as well as how NKT cells affect the proportion of T helper cells and the production of autoreactive antibodies in the progress of SLE. This will help people better understand the role of NKT cells in the development of SLE and improve the therapy strategy. PMID:26819956

  15. Immunoregulation of NKT Cells in Systemic Lupus Erythematosus

    PubMed Central

    Chen, Junwei; Wu, Meng; Wang, Jing; Li, Xiaofeng

    2015-01-01

    Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease with different variety of clinical manifestations. Natural killer T (NKT) cells are innate lymphocytes that play a regulatory role during broad range of immune responses. A number of studies demonstrated that the quantity and quality of invariant NKT (iNKT) cells showed marked defects in SLE patients in comparison to healthy controls. This finding suggests that iNKT cells may play a regulatory role in the occurrence and development of this disease. In this review, we mainly summarized the most recent findings about the behavior of NKT cells in SLE patients and mouse models, as well as how NKT cells affect the proportion of T helper cells and the production of autoreactive antibodies in the progress of SLE. This will help people better understand the role of NKT cells in the development of SLE and improve the therapy strategy. PMID:26819956

  16. Pak2 Controls Acquisition of NKT Cell Fate by Regulating Expression of the Transcription Factors PLZF and Egr2.

    PubMed

    O'Hagan, Kyle L; Zhao, Jie; Pryshchep, Olga; Wang, Chyung-Ru; Phee, Hyewon

    2015-12-01

    NKT cells constitute a small population of T cells developed in the thymus that produce large amounts of cytokines and chemokines in response to lipid Ags. Signaling through the Vα14-Jα18 TCR instructs commitment to the NKT cell lineage, but the precise signaling mechanisms that instruct their lineage choice are unclear. In this article, we report that the cytoskeletal remodeling protein, p21-activated kinase 2 (Pak2), was essential for NKT cell development. Loss of Pak2 in T cells reduced stage III NKT cells in the thymus and periphery. Among different NKT cell subsets, Pak2 was necessary for the generation and function of NKT1 and NKT2 cells, but not NKT17 cells. Mechanistically, expression of Egr2 and promyelocytic leukemia zinc finger (PLZF), two key transcription factors for acquiring the NKT cell fate, were markedly diminished in the absence of Pak2. Diminished expression of Egr2 and PLZF were not caused by aberrant TCR signaling, as determined using a Nur77-GFP reporter, but were likely due to impaired induction and maintenance of signaling lymphocyte activation molecule 6 expression, a TCR costimulatory receptor required for NKT cell development. These data suggest that Pak2 controls thymic NKT cell development by providing a signal that links Egr2 to induce PLZF, in part by regulating signaling lymphocyte activation molecule 6 expression. PMID:26519537

  17. Role of SHIP1 in Invariant NKT Cell Development and Functions.

    PubMed

    Anderson, Courtney K; Salter, Alexander I; Toussaint, Leon E; Reilly, Emma C; Fugère, Céline; Srivastava, Neetu; Kerr, William G; Brossay, Laurent

    2015-09-01

    SHIP1 is a 5'-inositol phosphatase known to negatively regulate the signaling product of the PI3K pathway, phosphatidylinositol (3-5)-trisphosphate. SHIP1 is recruited to a large number of inhibitory receptors expressed on invariant NK (iNKT) cells. We hypothesized that SHIP1 deletion would have major effects on iNKT cell development by altering the thresholds for positive and negative selection. Germline SHIP1 deletion has been shown to affect T cells as well as other immune cell populations. However, the role of SHIP1 on T cell function has been controversial, and its participation on iNKT cell development and function has not been examined. We evaluated the consequences of SHIP1 deletion on iNKT cells using germline-deficient mice, chimeric mice, and conditionally deficient mice. We found that T cell and iNKT cell development are impaired in germline-deficient animals. However, this phenotype can be rescued by extrinsic expression of SHIP1. In contrast, SHIP1 is required cell autonomously for optimal iNKT cell cytokine secretion. This suggests that SHIP1 calibrates the threshold of iNKT cell reactivity. These data further our understanding of how iNKT cell activation is regulated and provide insights into the biology of this unique cell lineage. PMID:26232432

  18. Innate recognition of cell wall β-glucans drives invariant Natural Killer T (iNKT) cell responses against fungi

    PubMed Central

    Cohen, Nadia R.; Tatituri, Raju V.V.; Rivera, Amariliz; Watts, Gerald F.M.; Kim, Edy Y.; Chiba, Asako; Fuchs, Beth B.; Mylonakis, Eleftherios; Besra, Gurdyal S.; Levitz, Stuart M.; Brigl, Manfred; Brenner, Michael B.

    2016-01-01

    SUMMARY iNKT cells are innate T lymphocytes recognizing endogenous and foreign lipid antigens presented in the MHC-like molecule CD1d. The semi-invariant iNKT cell TCR can detect certain bacterial and parasitic lipids, and drive iNKT cell responses. How iNKT cells respond to fungi, however, is unknown. We found that CD1d-deficient mice, which lack iNKT cells, poorly control infection with the fungal pathogen Aspergillus fumigatus. Furthermore, A. fumigatus rapidly activates iNKT cells in vivo and in vitro in the presence of APCs. Surprisingly, despite a requirement for CD1d recognition, the anti-fungal iNKT cell response does not require fungal lipids. Instead, Dectin-1 and MyD88-mediated responses to β-1,3 glucans, major fungal cell-wall polysaccharides, trigger IL-12 production by APCs that drives self-reactive iNKT cells to secrete IFN-γ. Innate recognition of β-1,3 glucans also drives iNKT cell responses against Candida, Histoplasma and Alternaria, suggesting that this mechanism may broadly define the basis for anti-fungal iNKT cell responses. PMID:22100160

  19. Retinoic acid alleviates Con A-induced hepatitis and differentially regulates effector production in NKT cells.

    PubMed

    Lee, Kyoo-A; Song, You Chan; Kim, Ga-Young; Choi, Gyeyoung; Lee, Yoon-Sook; Lee, Jung-Mi; Kang, Chang-Yuil

    2012-07-01

    Retinoic acid (RA) is a diverse regulator of immune responses. Although RA promotes natural killer T (NKT) cell activation in vitro by increasing CD1d expression on antigen-presenting cells (APCs), the direct effects of RA on NKT-cell responses in vivo are not known. In the present study, we demonstrated the effect of RA on the severity of Con A-induced hepatitis and molecular changes of NKT cells. First, we demonstrated that Con A-induced liver damage was ameliorated by RA. In correlation with cytokine levels in serum, RA regulated the production of IFN-γ and IL-4 but not TNF-α by NKT cells without influencing the NKT-cell activation status. However, RA did not alleviate α-GalCer-induced liver injury, even though it reduced IFN-γ and IL-4 but not TNF-α levels in serum. This regulation was also detected when liver mononuclear cells (MNCs) or NKT hybridoma cells were treated with RA in vitro. The regulatory effect of RA on NKT cells was mediated by RAR-α, and RA reduced the phosphorylation of MAPK. These results suggest that RA differentially modulates the production of effector cytokines by NKT cells in hepatitis, and the suppressive effect of RA on hepatitis varies with the pathogenic mechanism of liver injury.

  20. Effects of Invariant NKT Cells on Parasite Infections and Hygiene Hypothesis

    PubMed Central

    Zhou, Yonghua

    2016-01-01

    Invariant natural killer T (iNKT) cells are unique subset of innate-like T cells recognizing glycolipids. iNKT cells can rapidly produce copious amounts of cytokines upon antigen stimulation and exert potent immunomodulatory activities for a wide variety of immune responses and diseases. We have revealed the regulatory effect of iNKT cells on autoimmunity with a serial of publications. On the other hand, the role of iNKT cells in parasitic infections, especially in recently attractive topic “hygiene hypothesis,” has not been clearly defined yet. Bacterial and parasitic cell wall is a cellular structure highly enriched in a variety of glycolipids and lipoproteins, some of which may serve as natural ligands of iNKT cells. In this review, we mainly summarized the recent findings on the roles and underlying mechanisms of iNKT cells in parasite infections and their cross-talk with Th1, Th2, Th17, Treg, and innate lymphoid cells. In most cases, iNKT cells exert regulatory or direct cytotoxic roles to protect hosts against parasite infections. We put particular emphasis as well on the identification of the natural ligands from parasites and the involvement of iNKT cells in the hygiene hypothesis. PMID:27563682

  1. Effects of Invariant NKT Cells on Parasite Infections and Hygiene Hypothesis.

    PubMed

    Yang, Jun-Qi; Zhou, Yonghua; Singh, Ram Raj

    2016-01-01

    Invariant natural killer T (iNKT) cells are unique subset of innate-like T cells recognizing glycolipids. iNKT cells can rapidly produce copious amounts of cytokines upon antigen stimulation and exert potent immunomodulatory activities for a wide variety of immune responses and diseases. We have revealed the regulatory effect of iNKT cells on autoimmunity with a serial of publications. On the other hand, the role of iNKT cells in parasitic infections, especially in recently attractive topic "hygiene hypothesis," has not been clearly defined yet. Bacterial and parasitic cell wall is a cellular structure highly enriched in a variety of glycolipids and lipoproteins, some of which may serve as natural ligands of iNKT cells. In this review, we mainly summarized the recent findings on the roles and underlying mechanisms of iNKT cells in parasite infections and their cross-talk with Th1, Th2, Th17, Treg, and innate lymphoid cells. In most cases, iNKT cells exert regulatory or direct cytotoxic roles to protect hosts against parasite infections. We put particular emphasis as well on the identification of the natural ligands from parasites and the involvement of iNKT cells in the hygiene hypothesis. PMID:27563682

  2. SAP expression in invariant NKT cells is required for cognate help to support B-cell responses.

    PubMed

    Detre, Cynthia; Keszei, Marton; Garrido-Mesa, Natividad; Kis-Toth, Katalin; Castro, Wilson; Agyemang, Amma F; Veerapen, Natacha; Besra, Gurdyal S; Carroll, Michael C; Tsokos, George C; Wang, Ninghai; Leadbetter, Elizabeth A; Terhorst, Cox

    2012-07-01

    One of the manifestations of X-linked lymphoproliferative disease (XLP) is progressive agammaglobulinemia, caused by the absence of a functional signaling lymphocyte activation molecule (SLAM)-associated protein (SAP) in T, invariant natural killer T (NKT) cells and NK cells. Here we report that α-galactosylceramide (αGalCer) activated NKT cells positively regulate antibody responses to haptenated protein antigens at multiple checkpoints, including germinal center formation and affinity maturation. Whereas NKT cell-dependent B cell responses were absent in SAP(-/-).B6 mice that completely lack NKT cells, the small number of SAP-deficient NKT cells in SAP(-/-).BALB/c mice adjuvated antibody production, but not the germinal center reaction. To test the hypothesis that SAP-deficient NKT cells can facilitate humoral immunity, SAP was deleted after development in SAP(fl/fl).tgCreERT2.B6 mice. We find that NKT cell intrinsic expression of SAP is dispensable for noncognate helper functions, but is critical for providing cognate help to antigen-specific B cells. These results demonstrate that SLAM-family receptor-regulated cell-cell interactions are not limited to T-B cell conjugates. We conclude that in the absence of SAP, several routes of NKT cell-mediated antibody production are still accessible. The latter suggests that residual NKT cells in XLP patients might contribute to variations in dysgammaglobulinemia.

  3. An Essential Role for Medullary Thymic Epithelial Cells during the Intrathymic Development of Invariant NKT Cells

    PubMed Central

    White, Andrea J.; Jenkinson, William E.; Cowan, Jennifer E.; Parnell, Sonia M.; Bacon, Andrea; Jones, Nick D.; Jenkinson, Eric J.

    2014-01-01

    In the thymus, interactions with both cortical and medullary microenvironments regulate the development of self-tolerant conventional CD4+ and CD8+ αβT cells expressing a wide range of αβTCR specificities. Additionally, the cortex is also required for the development of invariant NKT (iNKT) cells, a specialized subset of T cells that expresses a restricted αβTCR repertoire and is linked to the regulation of innate and adaptive immune responses. Although the role of the cortex in this process is to enable recognition of CD1d molecules expressed by CD4+CD8+ thymocyte precursors, the requirements for additional thymus microenvironments during iNKT cell development are unknown. In this study, we reveal a role for medullary thymic epithelial cells (mTECs) during iNKT cell development in the mouse thymus. This requirement for mTECs correlates with their expression of genes required for IL-15 trans-presentation, and we show that soluble IL-15/IL-15Rα complexes restore iNKT cell development in the absence of mTECs. Furthermore, mTEC development is abnormal in iNKT cell–deficient mice, and early stages in iNKT cell development trigger receptor activator for NF-κB ligand–mediated mTEC development. Collectively, our findings demonstrate that intrathymic iNKT cell development requires stepwise interactions with both the cortex and the medulla, emphasizing the importance of thymus compartmentalization in the generation of both diverse and invariant αβT cells. Moreover, the identification of a novel requirement for iNKT cells in thymus medulla development further highlights the role of both innate and adaptive immune cells in thymus medulla formation. PMID:24510964

  4. Diverse cytokine production by NKT cell subsets and identification of an IL-17–producing CD4−NK1.1− NKT cell population

    PubMed Central

    Coquet, Jonathan M.; Chakravarti, Sumone; Kyparissoudis, Konstantinos; McNab, Finlay W.; Pitt, Lauren A.; McKenzie, Brent S.; Berzins, Stuart P.; Smyth, Mark J.; Godfrey, Dale I.

    2008-01-01

    NKT cell subsets can be divided based on CD4 and NK1.1 expression and tissue of origin, but the developmental and functional relationships between the different subsets still are poorly understood. A comprehensive study of 19 cytokines across different NKT cell subsets revealed that no two NKT subpopulations exhibited the same cytokine profile, and, remarkably, the amounts of each cytokine produced varied by up to 100-fold or more among subsets. This study also revealed the existence of a population of CD4−NK1.1− NKT cells that produce high levels of the proinflammatory cytokine IL-17 within 2–3 h of activation. On intrathymic transfer these cells develop into mature CD4−NK1.1+ but not into CD4+NK1.1+ NKT cells, indicating that CD4−NK1.1− NKT cells include an IL-17–producing subpopulation, and also mark the elusive branch point for CD4+ and CD4− NKT cell sublineages. PMID:18685112

  5. Tight regulation of diacylglycerol-mediated signaling is critical for proper invariant NKT cell development

    PubMed Central

    Shen, Shudan; Wu, Jinhong; Srivatsan, Sruti; Gorentla, Balachandra; Shin, Jinwook; Xu, Li; Zhong, Xiao-Ping

    2011-01-01

    Type I natural killer T (NKT) cells, or iNKT cells, express a semi-invariant T cell receptor characterized by its unique V α 14-Jα 18 usage (iV α 14TCR). Upon interaction with glycolipid/CD1d complexes, the iV α 14TCRs transduce signals that are essential for iNKT selection and maturation. However, it remains unclear how these signals are regulated and how important such regulations are during iNKT development. Diacylglycerol (DAG) is an essential second messenger downstream of the TCR that activates the PKCθ-IKKα/β-NFκB pathway, known to be crucial for iNKT development, as well as the RasGRP1-Ras-Erk1/2 pathway in T cells. DAG kinases (DGKs) play an important role in controlling intracellular DAG concentration and thereby negatively regulate DAG signaling. Here we report that simultaneous absence of DAG kinase α and ζ causes severe defects in iNKT development, coincident with enhanced IKK-NFκB and Ras-Erk1/2 activation. Moreover, constitutive IKKβ and Ras activities also result in iNKT developmental defects. Thus, DAG-mediated signaling is not only essential but also needs to be tightly regulated for proper iNKT cell development. PMID:21775687

  6. Reduced iNKT cells numbers in type 1 diabetes patients and their first-degree relatives.

    PubMed

    Beristain-Covarrubias, Nonantzin; Canche-Pool, Elsy; Gomez-Diaz, Rita; Sanchez-Torres, Luvia E; Ortiz-Navarrete, Vianney

    2015-12-01

    Type 1 diabetes (T1D) is an autoimmune disease that is characterized by the specific destruction of insulin-producing pancreatic β cells. Invariant natural killer T (iNKT) cells have been associated with development of T1D. Class I MHC-restricted T cell-associated molecule (CRTAM) is expressed on activated iNKT, CD8(+), and CD4(+) T cells, and it is associated with the pro-inflammatory profiles of these cells. Crtam gene expression in CD3(+) lymphocytes from non-obese diabetic (NOD) mice is associated with T1D onset. However, expression of CRTAM on T cells from patients with T1D has not yet been evaluated. We compared iNKT cell (CD3(+)Vα24(+)Vβ11(+)) numbers and CRTAM expression in a Mexican population with recent-onset T1D and their first-degree relatives with control families. Remarkably, we found lower iNKT cell numbers in T1D families, and we identified two iNKT cell populations in some of the families. One iNKT cell population expressed high iTCR levels (iNKT(hi)), whereas another expressed low levels (iNKT(lo)) and also expressed CRTAM. These findings support a probable genetic determinant of iNKT cell numbers and a possible role for these cells in T1D development. This study also suggests that CRTAM identifies recently activated iNKT lymphocytes.

  7. Thymic and peripheral microenvironments differentially mediate development and maturation of iNKT cells by IL-15 transpresentation.

    PubMed

    Castillo, Eliseo F; Acero, Luis F; Stonier, Spencer W; Zhou, Dapeng; Schluns, Kimberly S

    2010-10-01

    Invariant NKT (iNKT) cells are an innate type of T cells, which respond rapidly on activation. iNKT cells acquire these innate-like abilities during development; however, the signals driving development and functional maturation remain only partially understood. Because interleukin-15 (IL-15) is crucial for iNKT development and is delivered by transpresentation, we set out to identify the cell types providing IL-15 to developing iNKT cells and determine their role at the various states of development and maturation. We report here that transpresentation of IL-15 by parenchymal cells was crucial for generating normal number of iNKTs in the thymus, whereas both hematopoietic and parenchymal cells regulated iNKT cell numbers in the periphery, particularly in the liver. Specifically, dendritic cells contributed to peripheral iNKT cell numbers by up-regulating Bcl-2 expression and promoting extrathymic iNKT cell ex-pansion and their homeostatic proliferation. Whether IL-15 affects functional maturation of iNKT cells was also examined. In IL-15Rα(-/-) mice, CD44(High)NK1.1(+) iNKT cells displayed decreased T-bet expression and in response to α-galactosylceramide, had deficient interferon-γ expression. Such defects could be reversed by exogenous IL-15 signals. Overall, these studies identify stage-specific functions of IL-15, which are determined by the tissue microenvironment and elucidate the importance of IL-15 in functional maturation.

  8. Thymic and peripheral microenvironments differentially mediate development and maturation of iNKT cells by IL-15 transpresentation

    PubMed Central

    Castillo, Eliseo F.; Acero, Luis F.; Stonier, Spencer W.; Zhou, Dapeng

    2010-01-01

    Invariant NKT (iNKT) cells are an innate type of T cells, which respond rapidly on activation. iNKT cells acquire these innate-like abilities during development; however, the signals driving development and functional maturation remain only partially understood. Because interleukin-15 (IL-15) is crucial for iNKT development and is delivered by transpresentation, we set out to identify the cell types providing IL-15 to developing iNKT cells and determine their role at the various states of development and maturation. We report here that transpresentation of IL-15 by parenchymal cells was crucial for generating normal number of iNKTs in the thymus, whereas both hematopoietic and parenchymal cells regulated iNKT cell numbers in the periphery, particularly in the liver. Specifically, dendritic cells contributed to peripheral iNKT cell numbers by up-regulating Bcl-2 expression and promoting extrathymic iNKT cell ex-pansion and their homeostatic proliferation. Whether IL-15 affects functional maturation of iNKT cells was also examined. In IL-15Rα−/− mice, CD44HighNK1.1+ iNKT cells displayed decreased T-bet expression and in response to α-galactosylceramide, had deficient interferon-γ expression. Such defects could be reversed by exogenous IL-15 signals. Overall, these studies identify stage-specific functions of IL-15, which are determined by the tissue microenvironment and elucidate the importance of IL-15 in functional maturation. PMID:20581314

  9. AIRE deficiency leads to impaired iNKT cell development.

    PubMed

    Lindh, Emma; Rosmaraki, Eleftheria; Berg, Louise; Brauner, Hanna; Karlsson, Mikael C I; Peltonen, Leena; Höglund, Petter; Winqvist, Ola

    2010-02-01

    Autoimmune Polyendocrine Syndrome type I (APS I) is caused by mutations in the Autoimmune Regulator gene (AIRE), and results in the immunological destruction of endocrine organs. Herein we have characterized the CD1d-restricted invariant NKT cells (iNKT) and NK cells in APS I patients and Aire(-/-) mice, two cell populations known to play a role in the regulation of autoimmune disease. We show that the frequency of circulating iNKT cells is reduced in APS I patients compared to healthy controls. In accordance with this, iNKT cells are significantly reduced in the thymus and peripheral organs of Aire(-/-) mice. Bone marrow transfer from wild type donors into lethally irradiated Aire(-/-) recipients led to a decreased iNKT cell population in the liver, suggesting an impaired development of iNKT cells in the absence of Aire expression in radio-resistant cells. In contrast to the iNKT cells, both conventional NK cells and thymus-derived NK cells were unaffected by Aire deficiency and differentiated normally in Aire(-/-) mice. Our results show that expression of Aire in radio-resistant cells is important for the development of iNKT cells, whereas NK cell development and function does not depend on Aire.

  10. Cell wall glycosphingolipids of Sphingomonas paucimobilis are CD1d-specific ligands for NKT cells.

    PubMed

    Sriram, Venkataraman; Du, Wenjun; Gervay-Hague, Jacquelyn; Brutkiewicz, Randy R

    2005-06-01

    The current consensus on characterization of NKT cells is based on their reactivity to the synthetic glycolipid, alpha-galactosylceramide (alpha-GalCer) in a CD1d-dependent manner. Because of the limited availability of alpha-GalCer, there is a constant search for CD1d-presented ligands that activate NKT cells. The alpha-anomericity of the carbohydrate is considered to be an important requisite for the CD1d-specific activation of NKT cells. The gram-negative, lipopolysaccharide-free bacterium Sphingomonas paucimobilis is known to contain glycosphingolipids (GSL) with alpha-anomeric sugars attached to the lipid chain. Here, we report that GSL extracted from this bacterium are able to stimulate NKT cells in a CD1d-specific manner. In addition, soluble CD1d-Ig dimers loaded with this lipid extract specifically bind to NKT cells (but not conventional T cells). Further studies on the S. paucimobilis GSL could potentially lead to other natural sources of CD1d-specific ligands useful for NKT cell analyses and aimed at identifying novel therapies for a variety of disease states.

  11. Natural killer T (NKT) cells accelerate Shiga toxin type 2 (Stx2) pathology in mice

    PubMed Central

    Obata, Fumiko; Subrahmanyam, Priyanka B.; Vozenilek, Aimee E.; Hippler, Lauren M.; Jeffers, Tynae; Tongsuk, Methinee; Tiper, Irina; Saha, Progyaparamita; Jandhyala, Dakshina M.; Kolling, Glynis L.; Latinovic, Olga; Webb, Tonya J.

    2015-01-01

    Shiga toxin-producing Escherichia coli (STEC) is a leading cause of childhood renal disease Hemolytic Uremic Syndrome (HUS). The involvement of renal cytokines and chemokines is suspected to play a critical role in disease progression. In current article, we tested the hypothesis that NKT cells are involved in Stx2-induced pathology in vivo. To address this hypothesis we compared Stx2 toxicity in WT and CD1 knockout (KO) mice. In CD1KO mice, which lack natural killer T (NKT) cells, Stx2-induced pathologies such as weight loss, renal failure, and death were delayed. In WT mice, Stx2-specific selective increase in urinary albumin occurs in later time points, and this was also delayed in NKT cell deficient mice. NKT cell-associated cytokines such as IL-2, IL-4, IFN-γ, and IL-17 were detected in kidney lysates of Stx2-injected WT mice with the peak around 36 h after Stx2 injection. In CD1KO, there was a delay in the kinetics, and increases in these cytokines were observed 60 h post Stx2 injection. These data suggest that NKT cells accelerate Stx2-induced pathology in mouse kidneys. To determine the mechanism by which NKT cells promote Stx2-associated disease, in vitro studies were performed using murine renal cells. We found that murine glomerular endothelial cells and podocytes express functional CD1d molecules and can present exogenous antigen to NKT cells. Moreover, we observed the direct interaction between Stx2 and the receptor Gb3 on the surface of mouse renal cells by 3D STORM-TIRF which provides single molecule imaging. Collectively, these data suggest that Stx2 binds to Gb3 on renal cells and leads to aberrant CD1d-mediated NKT cell activation. Therefore, strategies targeting NKT cells could have a significant impact on Stx2-associated renal pathology in STEC disease. PMID:25904903

  12. Bacterial CD1d-restricted glycolipids induce IL-10 production by human regulatory T cells upon cross-talk with invariant NKT cells.

    PubMed

    Venken, Koen; Decruy, Tine; Aspeslagh, Sandrine; Van Calenbergh, Serge; Lambrecht, Bart N; Elewaut, Dirk

    2013-09-01

    Invariant NKT (iNKT) cells and CD4(+)CD25(+)FOXP3(+) regulatory T cells (Tregs) are important immune regulatory T cells with Ag reactivity to glycolipids and peptides, respectively. However, the functional interplay between these cells in humans is poorly understood. We show that Tregs suppress iNKT cell proliferation induced by CD1d-restricted glycolipids, including bacterial-derived diacylglycerols, as well as by innate-like activation. Inhibition was related to the potency of iNKT agonists, making diacylglycerol iNKT responses very prone to suppression. Cytokine production by iNKT cells was differentially modulated by Tregs because IL-4 production was reduced more profoundly compared with IFN-γ. A compelling observation was the significant production of IL-10 by Tregs after cell contact with iNKT cells, in particular in the presence of bacterial diacylglycerols. These iNKT-primed Tregs showed increased FOXP3 expression and superior suppressive function. Suppression of iNKT cell responses, but not conventional T cell responses, was IL-10 dependent, suggesting that there is a clear difference in mechanism between the Treg-mediated inhibition of these cell types. Our data highlight a physiologically relevant interaction between human iNKT and Tregs upon pathogen-derived glycolipid recognition that has a significant impact on the design of iNKT cell-based therapeutics.

  13. iNKT Cell Emigration out of the Lung Vasculature Requires Neutrophils and Monocyte-Derived Dendritic Cells in Inflammation.

    PubMed

    Thanabalasuriar, Ajitha; Neupane, Arpan S; Wang, Jing; Krummel, Matthew F; Kubes, Paul

    2016-09-20

    iNKT cells are a subset of innate T cells that recognize glycolipids presented on CD1d molecules and protect against bacterial infections, including S. pneumoniae. Using lung intravital imaging, we examined the behavior and mechanism of pulmonary iNKT cell activation in response to the specific iNKT cell ligand α-galactosylceramide or S. pneumoniae infection. In untreated mice, the major fraction of iNKT cells resided in the vasculature, but a small critical population resided in the extravascular space in proximity to monocyte-derived DCs. Administration of either α-GalCer or S. pneumoniae induced CD1d-dependent rapid recruitment of neutrophils out of the vasculature. The neutrophils guided iNKT cells from the lung vasculature via CCL17. Depletion of monocyte-derived DCs abrogated both the neutrophil and subsequent iNKT cell extravasation. Moreover, impairing iNKT cell recruitment by blocking CCL17 increased susceptibility to S. pneumoniae infection, suggesting a critical role for the influx of iNKT cells in host defense.

  14. iNKT Cell Emigration out of the Lung Vasculature Requires Neutrophils and Monocyte-Derived Dendritic Cells in Inflammation.

    PubMed

    Thanabalasuriar, Ajitha; Neupane, Arpan S; Wang, Jing; Krummel, Matthew F; Kubes, Paul

    2016-09-20

    iNKT cells are a subset of innate T cells that recognize glycolipids presented on CD1d molecules and protect against bacterial infections, including S. pneumoniae. Using lung intravital imaging, we examined the behavior and mechanism of pulmonary iNKT cell activation in response to the specific iNKT cell ligand α-galactosylceramide or S. pneumoniae infection. In untreated mice, the major fraction of iNKT cells resided in the vasculature, but a small critical population resided in the extravascular space in proximity to monocyte-derived DCs. Administration of either α-GalCer or S. pneumoniae induced CD1d-dependent rapid recruitment of neutrophils out of the vasculature. The neutrophils guided iNKT cells from the lung vasculature via CCL17. Depletion of monocyte-derived DCs abrogated both the neutrophil and subsequent iNKT cell extravasation. Moreover, impairing iNKT cell recruitment by blocking CCL17 increased susceptibility to S. pneumoniae infection, suggesting a critical role for the influx of iNKT cells in host defense. PMID:27653688

  15. CD1d Expression and Invariant NKT Cell Responses in Herpesvirus Infections

    PubMed Central

    Chung, Brian K.; Priatel, John J.; Tan, Rusung

    2015-01-01

    Invariant natural killer T (iNKT) cells are a highly conserved subset of unconventional T lymphocytes that express a canonical, semi-invariant T cell receptor and surface markers shared with the natural killer cell lineage. iNKT cells recognize exogenous and endogenous glycolipid antigens restricted by non-polymorphic CD1d molecules, and are highly responsive to the prototypical agonist, α-galactosylceramide. Upon activation, iNKT cells rapidly coordinate signaling between innate and adaptive immune cells through the secretion of proinflammatory cytokines, leading to the maturation of antigen-presenting cells, and expansion of antigen-specific CD4+ and CD8+ T cells. Because of their potent immunoregulatory properties, iNKT cells have been extensively studied and are known to play a pivotal role in mediating immune responses against microbial pathogens including viruses. Here, we review evidence that herpesviruses manipulate CD1d expression to escape iNKT cell surveillance and establish lifelong latency in humans. Collectively, published findings suggest that iNKT cells play critical roles in anti-herpesvirus immune responses and could be harnessed therapeutically to limit viral infection and viral-associated disease. PMID:26161082

  16. iNKT cells require TSC1 for terminal maturation and effector lineage fate decisions

    PubMed Central

    Wu, Jinhong; Yang, Jialong; Yang, Kai; Wang, Hongxia; Gorentla, Balachandra; Shin, Jinwook; Qiu, Yurong; Que, Loretta G.; Foster, W. Michael; Xia, Zhenwei; Chi, Hongbo; Zhong, Xiao-Ping

    2014-01-01

    Terminal maturation of invariant NKT (iNKT) cells from stage 2 (CD44+NK1.1–) to stage 3 (CD44+NK1.1+) is accompanied by a functional acquisition of a predominant IFN-γ–producing (iNKT-1) phenotype; however, some cells develop into IL-17–producing iNKT (iNKT-17) cells. iNKT-17 cells are rare and restricted to a CD44+NK1.1– lineage. It is unclear how iNKT terminal maturation is regulated and what factors mediate the predominance of iNKT-1 compared with iNKT-17. The tumor suppressor tuberous sclerosis 1 (TSC1) is an important negative regulator of mTOR signaling, which regulates T cell differentiation, function, and trafficking. Here, we determined that mice lacking TSC1 exhibit a developmental block of iNKT differentiation at stage 2 and skew from a predominantly iNKT-1 population toward a predominantly iNKT-17 population, leading to enhanced airway hypersensitivity. Evaluation of purified iNKT cells revealed that TSC1 promotes T-bet, which regulates iNKT maturation, but downregulates ICOS expression in iNKT cells by inhibiting mTOR complex 1 (mTORC1). Furthermore, mice lacking T-bet exhibited both a terminal maturation defect of iNKT cells and a predominance of iNKT-17 cells, and increased ICOS expression was required for the predominance of iNKT-17 cells in the population of TSC1-deficient iNKT cells. Our data indicate that TSC1-dependent control of mTORC1 is crucial for terminal iNKT maturation and effector lineage decisions, resulting in the predominance of iNKT-1 cells. PMID:24614103

  17. RASAL3, a novel hematopoietic RasGAP protein, regulates the number and functions of NKT cells.

    PubMed

    Saito, Suguru; Kawamura, Toshihiko; Higuchi, Masaya; Kobayashi, Takahiro; Yoshita-Takahashi, Manami; Yamazaki, Maya; Abe, Manabu; Sakimura, Kenji; Kanda, Yasuhiro; Kawamura, Hiroki; Jiang, Shuying; Naito, Makoto; Yoshizaki, Takumi; Takahashi, Masahiko; Fujii, Masahiro

    2015-05-01

    Ras GTPase-activating proteins negatively regulate the Ras/Erk signaling pathway, thereby playing crucial roles in the proliferation, function, and development of various types of cells. In this study, we identified a novel Ras GTPase-activating proteins protein, RASAL3, which is predominantly expressed in cells of hematopoietic lineages, including NKT, B, and T cells. We established systemic RASAL3-deficient mice, and the mice exhibited a severe decrease in NKT cells in the liver at 8 weeks of age. The treatment of RASAL3-deficient mice with α-GalCer, a specific agonist for NKT cells, induced liver damage, but the level was less severe than that in RASAL3-competent mice, and the attenuated liver damage was accompanied by a reduced production of interleukin-4 and interferon-γ from NKT cells. RASAL3-deficient NKT cells treated with α-GalCer in vitro presented augmented Erk phosphorylation, suggesting that there is dysregulated Ras signaling in the NKT cells of RASAL3-deficient mice. Taken together, these results suggest that RASAL3 plays an important role in the expansion and functions of NKT cells in the liver by negatively regulating Ras/Erk signaling, and might be a therapeutic target for NKT-associated diseases.

  18. EBV-Induced Human CD8+ NKT Cells Synergise CD4+ NKT Cells Suppressing EBV-Associated Tumours Upon Induction of Th1-Bias

    PubMed Central

    Xiao, Wei; Li, Li; Zhou, Rui; Xiao, Ruijing; Wang, Yujuan; Ji, Xiang; Wu, Mengjun; Wang, Lan; Huang, Wei; Zheng, Xiaoling; Tan, Xinti; Chen, Lang; Xiong, Tao; Xiong, Jie; Jin, Youxin; Tan, Jinquan; He, Yuling

    2009-01-01

    CD8+ natural killer T (NKT) cells from EBV-associated tumour patients are quantitatively and functionally impaired. EBV-induced CD8+ NKT cells drive syngeneic T cells into a Th1-bias response to suppress EBV-associated malignancies. IL-4-biased CD4+ NKT cells do not affect either syngeneic T cell cytotoxicity or Th cytokine secretion. Circulating mDC1 cells from patients with EBV-associated malignancies impair the production of IFN-γ by CD8+ NKT cells. In this study, we have established a human-thymus-SCID chimaera model to further investigate the underlying mechanism of EBV-induced CD8+ NKT cells in suppressing EBV-associated malignancies. In the human-thymus-SCID chimera, EBV-induced CD8+ NKT cells suppress EBV-associated malignancies in a manner dependent on the Th1-bias response and syngeneic CD3+ T cells. However, adoptive transfer with CD4+ NKT cells alone inhibits T cell immunity. Interestingly, CD4+ NKT cells themselves secrete high levels of IL-2, enhancing the persistence of adoptively transferred CD8+ NKT cells and T cells, thereby leading to a more pronounced T cell anti-tumour response in chimaeras co-transferred with CD4+ CD8+ NKT cells. Thus, immune reconstitution with EBV-induced CD4+ and CD8+ NKT cells synergistically enhances T cell tumour immunity, providing a potential prophylactic and therapeutic treatment for EBV-associated malignancies. PMID:19887050

  19. Airborne lipid antigens mobilize resident intravascular NKT cells to induce allergic airway inflammation.

    PubMed

    Scanlon, Seth T; Thomas, Seddon Y; Ferreira, Caroline M; Bai, Li; Krausz, Thomas; Savage, Paul B; Bendelac, Albert

    2011-09-26

    Airborne exposure to microbial cell wall lipids such as lipopolysaccharide triggers innate immune responses that regulate susceptibility to allergic airway inflammation. α-Glycosylceramides represent another widespread class of microbial lipids that directly stimulate innate-like, IL-4- and IL-13-producing, CD1d-restricted NKT cells. In this study, we demonstrate that NKT cells constitutively accumulate and reside in the microvasculature of the mouse lung. After a single airborne exposure to lipid antigen, they promptly extravasate to orchestrate the formation of peribronchiolar and interstitial lymphohistiocytic granulomas containing numerous eosinophils. Concomitant airborne exposure to ovalbumin (OVA) induces the priming of OVA-specific Th2 cells and IgE antibodies by the same dendritic cell coexpressing CD1d and MHC class II. Although NKT cell activation remains confined to the lipid-exposed lung and draining lymph nodes, Th2 cells recirculate and seed the lung of a parabiotic partner, conferring susceptibility to OVA challenge months after the initial exposure, in a manner independent of NKT cells and CD1d. Thus, transient recruitment and activation of lung-resident intravascular NKT cells can trigger long-term susceptibility to allergic airway inflammation.

  20. The adaptor protein SAP regulates type II NKT-cell development, cytokine production, and cytotoxicity against lymphoma.

    PubMed

    Weng, Xiufang; Liao, Chia-Min; Bagchi, Sreya; Cardell, Susanna L; Stein, Paul L; Wang, Chyung-Ru

    2014-12-01

    CD1d-restricted NKT cells represent a unique lineage of immunoregulatory T cells that are divided into two groups, type I and type II, based on their TCR usage. Because there are no specific tools to identify type II NKT cells, little is known about their developmental requirements and functional regulation. In our previous study, we showed that signaling lymphocytic activation molecule associated protein (SAP) is essential for the development of type II NKT cells. Here, using a type II NKT-cell TCR transgenic mouse model, we demonstrated that CD1d-expressing hematopoietic cells, but not thymic epithelial cells, meditate efficient selection of type II NKT cells. Furthermore, we showed that SAP regulates type II NKT-cell development by controlling early growth response 2 protein and promyelocytic leukemia zinc finger expression. SAP-deficient 24αβ transgenic T cells (24αβ T cells) exhibited an immature phenotype with reduced Th2 cytokine-producing capacity and diminished cytotoxicity to CD1d-expressing lymphoma cells. The impaired IL-4 production by SAP-deficient 24αβ T cells was associated with reduced IFN regulatory factor 4 and GATA-3 induction following TCR stimulation. Collectively, these data suggest that SAP is critical for regulating type II NKT cell responses. Aberrant responses of these T cells may contribute to the immune dysregulation observed in X-linked lymphoproliferative disease caused by mutations in SAP.

  1. iNKT Cells Induce FGF21 for Thermogenesis and Are Required for Maximal Weight Loss in GLP1 Therapy.

    PubMed

    Lynch, Lydia; Hogan, Andrew E; Duquette, Danielle; Lester, Chantel; Banks, Alexander; LeClair, Katherine; Cohen, David E; Ghosh, Abhisek; Lu, Bing; Corrigan, Michelle; Stevanovic, Darko; Maratos-Flier, Eleftheria; Drucker, Daniel J; O'Shea, Donal; Brenner, Michael

    2016-09-13

    Adipose-resident invariant natural killer T (iNKT) cells are key players in metabolic regulation. iNKT cells are innate lipid sensors, and their activation, using their prototypic ligand α-galactosylceramide (αGalCer), induces weight loss and restores glycemic control in obesity. Here, iNKT activation induced fibroblast growth factor 21 (FGF21) production and thermogenic browning of white fat. Complete metabolic analysis revealed that iNKT cell activation induced increased body temperature, V02, VC02, and fatty acid oxidation, without affecting food intake or activity. FGF21 induction played a major role in iNKT cell-induced weight loss, as FGF21 null mice lost significantly less weight after αGalCer treatment. The glucagon-like peptide 1 (GLP-1) receptor agonist, liraglutide, also activated iNKT cells in humans and mice. In iNKT-deficient mice, liraglutide promoted satiety but failed to induce FGF21, resulting in less weight loss. These findings reveal an iNKT cell-FGF21 axis that defines a new immune-mediated pathway that could be targeted for glycemic control and weight regulation. PMID:27593966

  2. NKT cells mediate the recruitment of neutrophils by stimulating epithelial chemokine secretion during colitis.

    PubMed

    Huang, Enyu; Liu, Ronghua; Lu, Zhou; Liu, Jiajing; Liu, Xiaoming; Zhang, Dan; Chu, Yiwei

    2016-05-27

    Ulcerative colitis (UC) is a kind of inflammatory bowel diseases characterized by chronic inflammation and ulcer in colon, and UC patients have increased risk of getting colorectal cancer. NKT cells are cells that express both NK cell markers and semi-invariant CD1d-restricted TCRs, can regulate immune responses via secreting a variety of cytokines upon activation. In our research, we found that the NKT cell-deficient CD1d(-/-) mice had relieved colitis in the DSS-induced colitis model. Further investigations revealed that the colon of CD1d(-/-) mice expressed less neutrophil-attracting chemokine CXCL 1, 2 and 3, and had decreased neutrophil infiltration. Infiltrated neutrophils also produced less reactive oxygen species (ROS) and TNF-α, indicating they may cause less epithelial damage. In addition, colitis-associated colorectal cancer was also relieved in CD1d(-/-) mice. During colitis, NKT cells strongly expressed TNF-α, which could stimulate CXCL 1, 2, 3 expressions by the epithelium. In conclusion, NKT cells can regulate colitis via the NKT cell-epithelium-neutrophil axis. Targeting this mechanism may help to improve the therapy of UC and prevent colitis-associated colorectal cancer. PMID:27063801

  3. Extranodal NK/T Cell Lymphoma Causing Cardiorespiratory Failure

    PubMed Central

    2016-01-01

    Extranodal NK/T cell lymphoma is an uncommon malignancy usually involving the sinonasal area. We report an unusual case of extranodal NK/T cell lymphoma diagnosed in a 62-year-old Caucasian male who died of progressive cardiorespiratory failure but had no clinically detectable upper respiratory system lesions. The initial diagnosis was made cytologically on a sample of pericardial fluid that contained neoplastic lymphoid cells. These cells were positive for CD2, cytoplasmic CD3, and Epstein-Barr virus and negative for CD56. The diagnosis was confirmed at the autopsy, which disclosed lymphoma infiltrates in the myocardium, lungs, stomach, and pancreas. The death was caused by heart and lung failure due to uncontrollable arrhythmia and respiratory insufficiency due to the lymphoma infiltrates. To the best of our knowledge, this is the first case of extranodal NK/T cell lymphoma presenting with cardiopulmonary failure. PMID:27493813

  4. Extranodal NK/T Cell Lymphoma Causing Cardiorespiratory Failure.

    PubMed

    Li, Yiting; Damjanov, Ivan

    2016-01-01

    Extranodal NK/T cell lymphoma is an uncommon malignancy usually involving the sinonasal area. We report an unusual case of extranodal NK/T cell lymphoma diagnosed in a 62-year-old Caucasian male who died of progressive cardiorespiratory failure but had no clinically detectable upper respiratory system lesions. The initial diagnosis was made cytologically on a sample of pericardial fluid that contained neoplastic lymphoid cells. These cells were positive for CD2, cytoplasmic CD3, and Epstein-Barr virus and negative for CD56. The diagnosis was confirmed at the autopsy, which disclosed lymphoma infiltrates in the myocardium, lungs, stomach, and pancreas. The death was caused by heart and lung failure due to uncontrollable arrhythmia and respiratory insufficiency due to the lymphoma infiltrates. To the best of our knowledge, this is the first case of extranodal NK/T cell lymphoma presenting with cardiopulmonary failure. PMID:27493813

  5. Antigen mRNA-transfected, allogeneic fibroblasts loaded with NKT-cell ligand confer antitumor immunity.

    PubMed

    Fujii, Shin-ichiro; Goto, Akira; Shimizu, Kanako

    2009-04-30

    The maturation of dendritic cells (DCs) in situ by danger signals plays a central role in linking innate and adaptive immunity. We previously demonstrated that the activation of invariant natural killer T (iNKT) cells by administration of alpha-galactosylceramide (alpha-GalCer)-loaded tumor cells can act as a cellular adjuvant through the DC maturation. In the current study, we used allogeneic fibroblasts loaded with alpha-GalCer and transfected with antigen-encoding mRNA, thus combining the adjuvant effects of iNKT-cell activation with delivery of antigen to DCs in vivo. We found that these cells produce antigen protein and activate NK and iNKT cells. When injected into major histocompatibility complex (MHC)-mismatched mice, they elicited antigen-specific T-cell responses and provided tumor protection, suggesting that these immune responses depend on host DCs. In addition, antigen-expressing fibroblasts loaded with alpha-GalCer lead to a more potent T-cell response than those expressing NK cell ligands. Thus, glycolipid-loaded, mRNA-transfected allogeneic fibroblasts act as cellular vectors to provide iNKT-cell activation, leading to DC maturation and T-cell immunity. By harnessing the innate immune system and generating an adaptive immune response to a variety of antigens, this unique tool could prove clinically beneficial in the development of immunotherapies against malignant and infectious diseases. PMID:19164596

  6. Invariant NKT cells with chimeric antigen receptor provide a novel platform for safe and effective cancer immunotherapy.

    PubMed

    Heczey, Andras; Liu, Daofeng; Tian, Gengwen; Courtney, Amy N; Wei, Jie; Marinova, Ekaterina; Gao, Xiuhua; Guo, Linjie; Yvon, Eric; Hicks, John; Liu, Hao; Dotti, Gianpietro; Metelitsa, Leonid S

    2014-10-30

    Advances in the design of chimeric antigen receptors (CARs) have improved the antitumor efficacy of redirected T cells. However, functional heterogeneity of CAR T cells limits their therapeutic potential and is associated with toxicity. We proposed that CAR expression in Vα24-invariant natural killer T (NKT) cells can build on the natural antitumor properties of these cells while their restriction by monomorphic CD1d limits toxicity. Primary human NKT cells were engineered to express a CAR against the GD2 ganglioside (CAR.GD2), which is highly expressed by neuroblastoma (NB). We compared CAR.GD2 constructs that encoded the CD3ζ chain alone, with CD28, 4-1BB, or CD28 and 4-1BB costimulatory endodomains. CAR.GD2 expression rendered NKT cells highly cytotoxic against NB cells without affecting their CD1d-dependent reactivity. We observed a striking T helper 1-like polarization of NKT cells by 4-1BB-containing CARs. Importantly, expression of both CD28 and 4-1BB endodomains in the CAR.GD2 enhanced in vivo persistence of NKT cells. These CAR.GD2 NKT cells effectively localized to the tumor site had potent antitumor activity, and repeat injections significantly improved the long-term survival of mice with metastatic NB. Unlike T cells, CAR.GD2 NKT cells did not induce graft-versus-host disease. These results establish the potential of NKT cells to serve as a safe and effective platform for CAR-directed cancer immunotherapy.

  7. Invariant NKT cells with chimeric antigen receptor provide a novel platform for safe and effective cancer immunotherapy

    PubMed Central

    Heczey, Andras; Liu, Daofeng; Tian, Gengwen; Courtney, Amy N.; Wei, Jie; Marinova, Ekaterina; Gao, Xiuhua; Guo, Linjie; Yvon, Eric; Hicks, John; Liu, Hao; Dotti, Gianpietro

    2014-01-01

    Advances in the design of chimeric antigen receptors (CARs) have improved the antitumor efficacy of redirected T cells. However, functional heterogeneity of CAR T cells limits their therapeutic potential and is associated with toxicity. We proposed that CAR expression in Vα24-invariant natural killer T (NKT) cells can build on the natural antitumor properties of these cells while their restriction by monomorphic CD1d limits toxicity. Primary human NKT cells were engineered to express a CAR against the GD2 ganglioside (CAR.GD2), which is highly expressed by neuroblastoma (NB). We compared CAR.GD2 constructs that encoded the CD3ζ chain alone, with CD28, 4-1BB, or CD28 and 4-1BB costimulatory endodomains. CAR.GD2 expression rendered NKT cells highly cytotoxic against NB cells without affecting their CD1d-dependent reactivity. We observed a striking T helper 1–like polarization of NKT cells by 4-1BB-containing CARs. Importantly, expression of both CD28 and 4-1BB endodomains in the CAR.GD2 enhanced in vivo persistence of NKT cells. These CAR.GD2 NKT cells effectively localized to the tumor site had potent antitumor activity, and repeat injections significantly improved the long-term survival of mice with metastatic NB. Unlike T cells, CAR.GD2 NKT cells did not induce graft-versus-host disease. These results establish the potential of NKT cells to serve as a safe and effective platform for CAR-directed cancer immunotherapy. PMID:25049283

  8. Does an NKT-cell-based immunotherapeutic approach have a future in multiple myeloma?

    PubMed Central

    Favreau, Mérédis; Vanderkerken, Karin

    2016-01-01

    Natural killer T (NKT) cells constitute a unique subset of innate-like T lymphocytes which differ from conventional T cells by recognizing lipid antigens presented by the non-polymorphic major histocompatibility complex (MHC) I-like molecule CD1d. Despite being a relatively infrequent population of lymphocytes, NKT cells can respond rapidly upon activation with glycosphingolipids by production of cytokines which aim to polarize different axes of the immune system. Due to their dual effector capacities, NKT cells can play a vital role in cancer immunity, infection, inflammation and autoimmune diseases. It is believed that modulation of their activity towards immune activation can be a useful tool in anti-tumor immunotherapeutic strategies. Here we summarize the characteristics of NKT cells and discuss their involvement in immunosurveillance. Furthermore, an update is given about their role and the progress that has been made in the field of multiple myeloma (MM). Finally, some challenges are discussed that are currently hampering further progress. PMID:26895468

  9. Dietary fatty acids modulate antigen presentation to hepatic NKT cells in nonalcoholic fatty liver disease[S

    PubMed Central

    Hua, Jing; Ma, Xiong; Webb, Tonya; Potter, James J.; Oelke, Mathias; Li, Zhiping

    2010-01-01

    Dietary fatty acids are major contributors to the development and progression of insulin resistance and nonalcoholic fatty liver disease (NAFLD). Dietary fatty acids also alter hepatic NKT cells that are activated by antigens presented by CD1d. In the current study, we examine the mechanism of dietary fatty acid induced hepatic NKT cell deficiency and its causal relationship to insulin resistance and NAFLD. We discover that dietary saturated fatty acids (SFA) or monounsaturated fatty acids (MUFA), but not polyunsaturated fatty acids (PUFA), cause hepatic NKT cell depletion with increased apoptosis. Dietary SFA or MUFA also impair hepatocyte presentation of endogenous, but not exogenous, antigen to NKT cells, indicating alterations of the endogenous antigen processing or presenting pathway. In vitro treatment of normal hepatocytes with fatty acids also demonstrates impaired ability of CD1d to present endogenous antigen by dietary fatty acids. Furthermore, dietary SFA and MUFA activate the NFκB signaling pathway and lead to insulin resistance and hepatic steatosis. In conclusion, both dietary SFA and MUFA alter endogenous antigen presentation to hepatic NKT cells and contribute to NKT cell depletion, leading to further activation of inflammatory signaling, insulin resistance, and hepatic steatosis. PMID:20185414

  10. Invariant NKT Cells Regulate the CD8 T Cell Response during Theiler's Virus Infection

    PubMed Central

    Mars, Lennart T.; Mas, Magali; Beaudoin, Lucie; Bauer, Jan; Leite-de-Moraes, Maria; Lehuen, Agnès; Bureau, Jean-Francois; Liblau, Roland S.

    2014-01-01

    Invariant NKT cells are innate lymphocytes with a broad tissue distribution. Here we demonstrate that iNKT cells reside in the central nervous system (CNS) in the absence of inflammation. Their presence in the CNS dramatically augments following inoculation of C57Bl/6 mice with the neurotropic Theiler's murine encephalomyelitis virus (TMEV). At the peak of inflammation the cellular infiltrate comprises 45 000 iNKT cells for 1 250 CD8 T cells specific for the immunodominant TMEV epitope. To study the interaction between these two T cell subsets, we infected both iNKT cell deficient Jα18-/- mice and iNKT cell enriched Vα14 transgenic mice with TMEV. The CD8 T cell response readily cleared TMEV infection in the iNKT cell deficient mice. However, in the iNKT cell enriched mice TMEV infection persisted and was associated with significant mortality. This was caused by the inhibition of the CD8 T cell response in the cervical lymph nodes and spleen after T cell priming. Taken together we demonstrate that iNKT cells reside in the CNS in the absence of inflammation and that their enrichment is associated with the inhibition of the anti-viral CD8 T cell response and an augmented mortality during acute encephalomyelitis. PMID:24498175

  11. Are increased frequency of macrophage-like and natural killer (NK) cells, together with high levels of NKT and CD4+CD25high T cells balancing activated CD8+ T cells, the key to control Chagas’ disease morbidity?

    PubMed Central

    Vitelli-Avelar, D M; Sathler-Avelar, R; Massara, R L; Borges, J D; Lage, P S; Lana, M; Teixeira-Carvalho, A; Dias, J C P; Elói-Santos, S M; Martins-Filho, O A

    2006-01-01

    The immunological response during early human Trypanosoma cruzi infection is not completely understood, despite its role in driving the development of distinct clinical manifestations of chronic infection. Herein we report the results of a descriptive flow cytometric immunophenotyping investigation of major and minor peripheral blood leucocyte subpopulations in T. cruzi-infected children, characterizing the early stages of the indeterminate clinical form of Chagas’ disease. Our results indicated significant alterations by comparison with uninfected children, including increased values of pre-natural killer (NK)-cells (CD3– CD16+ CD56–), and higher values of proinflammatory monocytes (CD14+ CD16+ HLA-DR++). The higher values of activated B lymphocytes (CD19+ CD23+) contrasted with impaired T cell activation, indicated by lower values of CD4+ CD38+ and CD4+ HLA-DR+ lymphocytes, a lower frequency of CD8+ CD38+ and CD8+ HLA-DR+ cells; a decreased frequency of CD4+ CD25HIGH regulatory T cells was also observed. These findings reinforce the hypothesis that simultaneous activation of innate and adaptive immunity mechanisms in addition to suppression of adaptive cellular immune response occur during early events of Chagas’ disease. Comparative cross-sectional analysis of these immunophenotypes with those exhibited by patients with late chronic indeterminate and cardiac forms of disease suggested that a shift toward high values of macrophage-like cells extended to basal levels of proinflammatory monocytes as well as high values of mature NK cells, NKT and regulatory T cells, may account for limited tissue damage during chronic infection favouring the establishment/maintenance of a lifelong indeterminate clinical form of the disease. On the other hand, development of an adaptive cell-mediated inflammatory immunoprofile characterized by high levels of activated CD8+ cells and basal levels of mature NK cells, NKT and CD4+ CD25HIGH cells might lead to late chronic

  12. Targeted disruption of CD1d prevents NKT cell development in pigs

    PubMed Central

    Yang, Guan; Artiaga, Bianca L.; Hackmann, Timothy J.; Samuel, Melissa S.; Walters, Eric M; Salek-Ardakani, Shahram; Driver, John P.

    2016-01-01

    Studies in mice genetically lacking natural killer T (NKT) cells show that these lymphocytes make important contributions to both innate and adaptive immune responses. However, the usefulness of murine models to study human NKT cells is limited by the many differences between mice and humans, including that their NKT cell frequencies, subsets and distribution are dissimilar. A more suitable model may be swine that share many metabolic, physiological and growth characteristics with humans and are also similar for NKT cells. Thus, we analyzed genetically modified pigs made deficient for CD1d that is required for the development of Type I invariant NKT (iNKT) cells that express a semi-invariant T cell receptor (TCR) and Type II NKT cells that use variable TCRs. Peripheral blood analyzed by flow cytometry and interferon-γ (IFNγ) enzyme-linked immuno spot (ELISPOT) assays demonstrated that CD1d-knockout pigs completely lack iNKT cells while other leukocyte populations remain intact. CD1d and NKT cells have been shown to be involved in shaping the composition of the commensal microbiota in mice. Therefore, we also compared the fecal microbiota profile between pigs expressing and lacking NKT cells. However, no differences were found between pigs lacking or expressing CD1d. Our results are the first to show that knocking-out CD1d prevents the development of iNKT cells in a non-rodent species. CD1d-deficient pigs should offer a useful model to more accurately determine the contribution of NKT cells for human immune responses. They also have potential for understanding how NKT cells impact the health of commercial swine. PMID:25930071

  13. Homeostatic control of conjunctival mucosal goblet cells by NKT-derived IL-13

    PubMed Central

    De Paiva, CS; Raince, JK; McClellan, AJ; Shanmugam, KP; Pangelinan, SB; Volpe, EA; Corrales, RM; Farley, WJ; Corry, DB; Li, D-Q; Pflugfelder, SC

    2013-01-01

    Although the effects of the interleukin 13 (IL-13) on goblet cell (GC) hyperplasia have been studied in the gut and respiratory tracts, its effect on regulating conjunctival GC has not been explored. The purpose of this study was to determine the major IL-13-producing cell type and the role of IL-13 in GC homeostasis in normal murine conjunctiva. Using isolating techniques, we identified natural killer (NK)/natural killer T (NKT) cells as the main producers of IL-13. We also observed that IL-13 knockout (KO) and signal transducer and activator of transcription 6 knockout (STAT6KO) mice had a lower number of periodic acid Schiff (PAS) + GCs. We observed that desiccating stress (DS) decreases NK population, GCs, and IL-13, whereas it increases interferon-γ (IFN-γ) mRNA in conjunctiva. Cyclosporine A treatment during DS maintained the number of NK/NKT cells in the conjunctiva, increased IL-13 mRNA in NK + cells, and decreased IFN-γ and IL-17A mRNA transcripts in NK + and NK − populations. C57BL/6 mice chronically depleted of NK/NKT cells, as well as NKT cell-deficient RAG1KO and CD1dKO mice, had fewer filled GCs than their wild-type counterparts. NK depletion in CD1dKO mice had no further effect on the number of PAS + cells. Taken together, these findings indicate that NKT cells are major sources of IL-13 in the conjunctival mucosa that regulates GC homeostasis. PMID:21178983

  14. Human iNKT Cells Promote Protective Inflammation by Inducing Oscillating Purinergic Signaling in Monocyte-Derived DCs.

    PubMed

    Xu, Xuequn; Pocock, Ginger M; Sharma, Akshat; Peery, Stephen L; Fites, J Scott; Felley, Laura; Zarnowski, Robert; Stewart, Douglas; Berthier, Erwin; Klein, Bruce S; Sherer, Nathan M; Gumperz, Jenny E

    2016-09-20

    Invariant natural killer T (iNKT) cells are innate T lymphocytes that promote host defense against a variety of microbial pathogens. Whether microbial ligands are required for their protective effects remains unclear. Here, we show that iNKT cells stimulate human-monocyte-derived dendritic cells (DCs) to produce inflammatory mediators in a manner that does not require the presence of microbial compounds. Interleukin 2 (IL-2)-exposed iNKT cells selectively induced repeated cytoplasmic Ca(2+) fluxes in DCs that were dependent on signaling by the P2X7 purinergic receptor and mediated by ATP released during iNKT-DC interactions. Exposure to iNKT cells led to DC cyclooxygenase 2 (PTGS2) gene transcription, and release of PGE2 that was associated with vascular permeabilization in vivo. Additionally, soluble factors were released that induced neutrophil recruitment and activation and enhanced control of Candida albicans. These results suggest that sterile interactions between iNKT cells and monocyte-derived DCs lead to the production of non-redundant inflammatory mediators that promote neutrophil responses. PMID:27653689

  15. Innate Invariant NKT Cell Recognition of HIV-1-Infected Dendritic Cells Is an Early Detection Mechanism Targeted by Viral Immune Evasion.

    PubMed

    Paquin-Proulx, Dominic; Gibbs, Anna; Bächle, Susanna M; Checa, Antonio; Introini, Andrea; Leeansyah, Edwin; Wheelock, Craig E; Nixon, Douglas F; Broliden, Kristina; Tjernlund, Annelie; Moll, Markus; Sandberg, Johan K

    2016-09-01

    Invariant NKT (iNKT) cells are innate-like T cells that respond rapidly with a broad range of effector functions upon recognition of glycolipid Ags presented by CD1d. HIV-1 carries Nef- and Vpu-dependent mechanisms to interfere with CD1d surface expression, indirectly suggesting a role for iNKT cells in control of HIV-1 infection. In this study, we investigated whether iNKT cells can participate in the innate cell-mediated immune response to HIV-1. Infection of dendritic cells (DCs) with Nef- and Vpu-deficient HIV-1 induced upregulation of CD1d in a TLR7-dependent manner. Infection of DCs caused modulation of enzymes in the sphingolipid pathway and enhanced expression of the endogenous glucosylceramide Ag. Importantly, iNKT cells responded specifically to rare DCs productively infected with Nef- and Vpu-defective HIV-1. Transmitted founder viral isolates differed in their CD1d downregulation capacity, suggesting that diverse strains may be differentially successful in inhibiting this pathway. Furthermore, both iNKT cells and DCs expressing CD1d and HIV receptors resided in the female genital mucosa, a site where HIV-1 transmission occurs. Taken together, these findings suggest that innate iNKT cell sensing of HIV-1 infection in DCs is an early immune detection mechanism, which is independent of priming and adaptive recognition of viral Ag, and is actively targeted by Nef- and Vpu-dependent viral immune evasion mechanisms.

  16. Role of NK, NKT cells and macrophages in liver transplantation

    PubMed Central

    Fahrner, René; Dondorf, Felix; Ardelt, Michael; Settmacher, Utz; Rauchfuss, Falk

    2016-01-01

    Liver transplantation has become the treatment of choice for acute or chronic liver disease. Because the liver acts as an innate immunity-dominant organ, there are immunological differences between the liver and other organs. The specific features of hepatic natural killer (NK), NKT and Kupffer cells and their role in the mechanism of liver transplant rejection, tolerance and hepatic ischemia-reperfusion injury are discussed in this review. PMID:27468206

  17. Co-administration of α-GalCer analog and TLR4 agonist induces robust CD8+ T-cell responses to PyCS protein and WT-1 antigen and activates memory-like effector NKT cells

    PubMed Central

    Coelho-dos-Reis, Jordana G.; Huang, Jing; Tsao, Tiffany; Pereira, Felipe V.; Funakoshi, Ryota; Nakajima, Hiroko; Sugiyama, Haruo; Tsuji, Moriya

    2016-01-01

    In the present study, the combined adjuvant effect of 7DW8-5, a potent α-GalCer-analog, and monophosphoryl lipid A (MPLA), a TLR4 agonist, on the induction of vaccine-induced CD8+ T-cell responses and protective immunity was evaluated. Mice were immunized with peptides corresponding to the CD8+ T-cell epitopes of a malaria antigen, a circumsporozoite protein of Plasmodium yoelii, and a tumor antigen, a Wilms Tumor antigen-1 (WT-1), together with 7DW8-5 and MPLA, as an adjuvant. These immunization regimens were able to induce higher levels of CD8+ T-cell responses and, ultimately, enhanced levels of protection against malaria and tumor challenges compared to the levels induced by immunization with peptides mixed with 7DW8-5 or MPLA alone. Co-administration of 7DW8-5 and MPLA induces activation of memory-like effector natural killer T (NKT) cells, i.e. CD44+CD62L−NKT cells. Our study indicates that 7DW8-5 greatly enhances important synergistic pathways associated to memory immune responses when co-administered with MPLA, thus rendering this combination of adjuvants a novel vaccine adjuvant formulation. PMID:27132023

  18. Co-administration of α-GalCer analog and TLR4 agonist induces robust CD8(+) T-cell responses to PyCS protein and WT-1 antigen and activates memory-like effector NKT cells.

    PubMed

    Coelho-Dos-Reis, Jordana G; Huang, Jing; Tsao, Tiffany; Pereira, Felipe V; Funakoshi, Ryota; Nakajima, Hiroko; Sugiyama, Haruo; Tsuji, Moriya

    2016-07-01

    In the present study, the combined adjuvant effect of 7DW8-5, a potent α-GalCer-analog, and monophosphoryl lipid A (MPLA), a TLR4 agonist, on the induction of vaccine-induced CD8(+) T-cell responses and protective immunity was evaluated. Mice were immunized with peptides corresponding to the CD8(+) T-cell epitopes of a malaria antigen, a circumsporozoite protein of Plasmodium yoelii, and a tumor antigen, a Wilms Tumor antigen-1 (WT-1), together with 7DW8-5 and MPLA, as an adjuvant. These immunization regimens were able to induce higher levels of CD8(+) T-cell responses and, ultimately, enhanced levels of protection against malaria and tumor challenges compared to the levels induced by immunization with peptides mixed with 7DW8-5 or MPLA alone. Co-administration of 7DW8-5 and MPLA induces activation of memory-like effector natural killer T (NKT) cells, i.e. CD44(+)CD62L(-)NKT cells. Our study indicates that 7DW8-5 greatly enhances important synergistic pathways associated to memory immune responses when co-administered with MPLA, thus rendering this combination of adjuvants a novel vaccine adjuvant formulation. PMID:27132023

  19. Innate Invariant NKT Cell Recognition of HIV-1–Infected Dendritic Cells Is an Early Detection Mechanism Targeted by Viral Immune Evasion

    PubMed Central

    Paquin-Proulx, Dominic; Gibbs, Anna; Bächle, Susanna M.; Checa, Antonio; Introini, Andrea; Leeansyah, Edwin; Wheelock, Craig E.; Nixon, Douglas F.; Broliden, Kristina; Tjernlund, Annelie; Moll, Markus

    2016-01-01

    Invariant NKT (iNKT) cells are innate-like T cells that respond rapidly with a broad range of effector functions upon recognition of glycolipid Ags presented by CD1d. HIV-1 carries Nef- and Vpu-dependent mechanisms to interfere with CD1d surface expression, indirectly suggesting a role for iNKT cells in control of HIV-1 infection. In this study, we investigated whether iNKT cells can participate in the innate cell–mediated immune response to HIV-1. Infection of dendritic cells (DCs) with Nef- and Vpu-deficient HIV-1 induced upregulation of CD1d in a TLR7-dependent manner. Infection of DCs caused modulation of enzymes in the sphingolipid pathway and enhanced expression of the endogenous glucosylceramide Ag. Importantly, iNKT cells responded specifically to rare DCs productively infected with Nef- and Vpu-defective HIV-1. Transmitted founder viral isolates differed in their CD1d downregulation capacity, suggesting that diverse strains may be differentially successful in inhibiting this pathway. Furthermore, both iNKT cells and DCs expressing CD1d and HIV receptors resided in the female genital mucosa, a site where HIV-1 transmission occurs. Taken together, these findings suggest that innate iNKT cell sensing of HIV-1 infection in DCs is an early immune detection mechanism, which is independent of priming and adaptive recognition of viral Ag, and is actively targeted by Nef- and Vpu-dependent viral immune evasion mechanisms. PMID:27481843

  20. EBV-induced human CD8+ NKT cells suppress tumorigenesis by EBV-associated malignancies.

    PubMed

    Yuling, He; Ruijing, Xiao; Li, Li; Xiang, Ji; Rui, Zhou; Yujuan, Wang; Lijun, Zhang; Chunxian, Du; Xinti, Tan; Wei, Xiao; Lang, Chen; Yanping, Jiang; Tao, Xiong; Mengjun, Wu; Jie, Xiong; Youxin, Jin; Jinquan, Tan

    2009-10-15

    The underlying mechanism of the protective and suppressive role of NKT cells in human tumor immunosurveillance remains to be fully elucidated. We show that the frequencies of CD8(+) NKT cells in patients with EBV-associated Hodgkin's lymphoma or nasopharyngeal carcinoma are significantly lower than those in healthy EBV carriers. These CD8(+) NKT cells in tumor patients are also functionally impaired. In human-thymus-severe combined immunodeficient (hu-thym-SCID) chimeras, EBV challenge efficiently promotes the generation of IFN-gamma-biased CD8(+) NKT cells. These cells are strongly cytotoxic, drive syngeneic T cells into a Th1 bias, and enhance T-cell cytotoxicity to EBV-associated tumor cells. Interleukin-4-biased CD4(+) NKT cells are predominately generated in unchallenged chimeras. These cells are noncytotoxic, drive syngeneic T cells into a Th2 bias, and do not affect T-cell cytotoxicity. In humanized xenogeneic tumor-transplanted hu-thym-SCID chimeras, adoptive transfer with EBV-induced CD8(+) NKT cells significantly suppresses tumorigenesis by EBV-associated malignancies. EBV-induced CD8(+) NKT cells are necessary and sufficient to enhance the T-cell immunity to EBV-associated malignancies in the hu-thym-SCID chimeras. CD4(+) NKT cells are synergetic with CD8(+) NKT cells, leading to a more pronounced T-cell antitumor response in the chimeras cotransferred with CD4(+) and CD8(+) NKT cells. Thus, immune reconstitution with EBV-induced CD8(+) NKT cells could be a useful strategy in management of EBV-associated malignancies. PMID:19808969

  1. Testing the NKT cell hypothesis in lenalidomide-treated myelodysplastic syndrome patients.

    PubMed

    Chan, A C; Neeson, P; Leeansyah, E; Tainton, K; Quach, H; Prince, H M; Godfrey, D I; Ritchie, D; Berzins, S P

    2010-03-01

    Myelodysplastic syndrome (MDS) comprises a group of clonal bone marrow disorders characterized by ineffective hematopoiesis and increased predisposition to acute myeloid leukemia. The causes of MDS remain poorly defined, but several studies have reported the NKT cell compartment of patients with MDS is deficient in number and functionally defective. In support of a central role for NKT cells, a pilot clinical study reported that lenalidomide (an approved treatment for MDS) increased NKT cell numbers in patients with MDS, and several in vitro studies showed lenalidomide specifically promoted NKT cell proliferation and cytokine production. We tested this in a much larger study and confirm a moderate in vitro augmentation of some NKT cell functions by lenalidomide, but find no impact on the NKT cell compartment of patients treated with lenalidomide, despite a consistently positive clinical response. We further show that the frequency and cytokine production of NKT cells is normal in patients with MDS before treatment and remains stable throughout 10 months of lenalidomide therapy. Collectively, our data challenge the concept that NKT cell defects contribute to the development of MDS, and show that a clinical response to lenalidomide is not dependent on modulation of NKT cell frequency or function.

  2. CDR3β sequence motifs regulate autoreactivity of human invariant NKT cell receptors.

    PubMed

    Chamoto, Kenji; Guo, Tingxi; Imataki, Osamu; Tanaka, Makito; Nakatsugawa, Munehide; Ochi, Toshiki; Yamashita, Yuki; Saito, Akiko M; Saito, Toshiki I; Butler, Marcus O; Hirano, Naoto

    2016-04-01

    Invariant natural killer T (iNKT) cells are a subset of T lymphocytes that recognize lipid ligands presented by monomorphic CD1d. Human iNKT T cell receptor (TCR) is largely composed of invariant Vα24 (Vα24i) TCRα chain and semi-variant Vβ11 TCRβ chain, where complementarity-determining region (CDR)3β is the sole variable region. One of the characteristic features of iNKT cells is that they retain autoreactivity even after the thymic selection. However, the molecular features of human iNKT TCR CDR3β sequences that regulate autoreactivity remain unknown. Since the numbers of iNKT cells with detectable autoreactivity in peripheral blood is limited, we introduced the Vα24i gene into peripheral T cells and generated a de novo human iNKT TCR repertoire. By stimulating the transfected T cells with artificial antigen presenting cells (aAPCs) presenting self-ligands, we enriched strongly autoreactive iNKT TCRs and isolated a large panel of human iNKT TCRs with a broad range autoreactivity. From this panel of unique iNKT TCRs, we deciphered three CDR3β sequence motifs frequently encoded by strongly-autoreactive iNKT TCRs: a VD region with 2 or more acidic amino acids, usage of the Jβ2-5 allele, and a CDR3β region of 13 amino acids in length. iNKT TCRs encoding 2 or 3 sequence motifs also exhibit higher autoreactivity than those encoding 0 or 1 motifs. These data facilitate our understanding of the molecular basis for human iNKT cell autoreactivity involved in immune responses associated with human disease. PMID:26748722

  3. Invariant NKT cells require autophagy to coordinate proliferation and survival signals during differentiation.

    PubMed

    Pei, Bo; Zhao, Meng; Miller, Brian C; Véla, Jose Luis; Bruinsma, Monique W; Virgin, Herbert W; Kronenberg, Mitchell

    2015-06-15

    Autophagy regulates cell differentiation, proliferation, and survival in multiple cell types, including cells of the immune system. In this study, we examined the effects of a disruption of autophagy on the differentiation of invariant NKT (iNKT) cells. Using mice with a T lymphocyte-specific deletion of Atg5 or Atg7, two members of the macroautophagic pathway, we observed a profound decrease in the iNKT cell population. The deficit is cell-autonomous, and it acts predominantly to reduce the number of mature cells, as well as the function of peripheral iNKT cells. In the absence of autophagy, there is reduced progression of iNKT cells in the thymus through the cell cycle, as well as increased apoptosis of these cells. Importantly, the reduction in Th1-biased iNKT cells is most pronounced, leading to a selective reduction in iNKT cell-derived IFN-γ. Our findings highlight the unique metabolic and genetic requirements for the differentiation of iNKT cells.

  4. Cellular Adjuvant Properties, Direct Cytotoxicity of Re-differentiated Vα24 Invariant NKT-like Cells from Human Induced Pluripotent Stem Cells

    PubMed Central

    Kitayama, Shuichi; Zhang, Rong; Liu, Tian-Yi; Ueda, Norihiro; Iriguchi, Shoichi; Yasui, Yutaka; Kawai, Yohei; Tatsumi, Minako; Hirai, Norihito; Mizoro, Yasutaka; Iwama, Tatsuaki; Watanabe, Akira; Nakanishi, Mahito; Kuzushima, Kiyotaka; Uemura, Yasushi; Kaneko, Shin

    2016-01-01

    Summary Vα24 invariant natural killer T (iNKT) cells are a subset of T lymphocytes implicated in the regulation of broad immune responses. They recognize lipid antigens presented by CD1d on antigen-presenting cells and induce both innate and adaptive immune responses, which enhance effective immunity against cancer. Conversely, reduced iNKT cell numbers and function have been observed in many patients with cancer. To recover these numbers, we reprogrammed human iNKT cells to pluripotency and then re-differentiated them into regenerated iNKT cells in vitro through an IL-7/IL-15-based optimized cytokine combination. The re-differentiated iNKT cells showed proliferation and IFN-γ production in response to α-galactosylceramide, induced dendritic cell maturation and downstream activation of both cytotoxic T lymphocytes and NK cells, and exhibited NKG2D- and DNAM-1-mediated NK cell-like cytotoxicity against cancer cell lines. The immunological features of re-differentiated iNKT cells and their unlimited availability from induced pluripotent stem cells offer a potentially effective immunotherapy against cancer. PMID:26862702

  5. A novel glycolipid antigen for NKT cells that preferentially induces IFN-γ production

    PubMed Central

    Birkholz, Alysia M.; Girardi, Enrico; Wingender, Gerhard; Khurana, Archana; Wang, Jing; Zhao, Meng; Zahner, Sonja; Illarionov, Petr A.; Wen, Xiangshu; Li, Michelle; Yuan, Weiming; Porcelli, Steven A.; Besra, Gurdyal S.; Zajonc, Dirk M.; Kronenberg, Mitchell

    2015-01-01

    Here we characterize a novel Ag for invariant natural killer T-cells (iNKT cells) capable of producing an especially robust Th1 response. This glycosphingolipid (GSL), DB06-1, is similar in chemical structure to the well-studied α-galactosylceramide (αGalCer), the only change being in a single atom, the substitution of a carbonyl oxygen with a sulfur atom. Although DB06-1 is not a more effective Ag in vitro, the small chemical change has a marked impact on the ability of this lipid Ag to stimulate iNKT cells in vivo, with increased IFN-γ production at 24 h compared to αGalCer, increased IL-12, and increased activation of NK cells to produce IFN-γ. These changes are correlated with an enhanced ability of DB06-1 to load in the CD1d molecules expressed by DCs in vivo. Moreover, structural studies suggest a tighter fit into the CD1d binding groove by DB061 compared to αGalCer. Surprisingly, when iNKT cells previously exposed to DB06-1 are restimulated weeks later, they have greatly increased IL-10 production. Our data are therefore consistent with a model whereby augmented and or prolonged presentation of a glycolipid Ag leads to increased activation of NK cells and a Th1-skewed immune response, which may result in part from enhanced loading into CD1d. Furthermore, our data suggest that strong antigenic stimulation in vivo may lead to the expansion of IL-10 producing iNKT cells, which could counteract the benefits of increased, early IFN-γ production. PMID:26078271

  6. iNKT cell frequency in peripheral blood of Caucasian children and adolescent: the absolute iNKT cell count is stable from birth to adulthood.

    PubMed

    Bienemann, K; Iouannidou, K; Schoenberg, K; Krux, F; Reuther, S; Feyen, O; Bienemann, K; Schuster, F; Uhrberg, M; Laws, H-J; Borkhardt, A

    2011-10-01

    Human invariant natural killer T cells (iNKT cells) are a unique population of T cells that express a semi-invariantly rearranged T cell receptor (TCR) and are involved in a variety of immunoregulatory processes. We assessed the frequency of peripheral blood iNKT cells in 64 healthy Caucasian children from 7 months to 18 years of age and five cord blood samples by flow cytometry. iNKT cells were measured as CD3(+) cells co-expressing TCRVα24 and TCRVβ11 and using the monoclonal antibody 6B11, which recognizes specifically their invariant TCR rearrangement. The absolute number of iNKT cells ranged from 86 to 10,499 (CD3(+) /TCRVα24(+) / TCRVβ11(+)) and 233 to 11,167 (CD3(+) /6B11(+)) iNKT cells per millilitre of blood. This range is stable from birth to adulthood. The relative iNKT cell count was found to be 0.003-0.71% (CD3(+) /TCRVα24/TCRVβ11) and 0.019-0.776% (CD3/6B11) of peripheral blood T cells and shows only a slight increase with age.

  7. NK and NKT Cell Depletion Alters the Outcome of Experimental Pneumococcal Pneumonia: Relationship with Regulation of Interferon-γ Production.

    PubMed

    Christaki, Eirini; Diza, Evdoxia; Giamarellos-Bourboulis, Evangelos J; Papadopoulou, Nikoletta; Pistiki, Aikaterini; Droggiti, Dionysia-Irini; Georgitsi, Marianna; Machova, Alzbeta; Lambrelli, Dimitra; Malisiovas, Nicolaos; Nikolaidis, Pavlos; Opal, Steven M

    2015-01-01

    Background. Natural killer (NK) and natural killer T (NKT) cells contribute to the innate host defense but their role in bacterial sepsis remains controversial. Methods. C57BL/6 mice were infected intratracheally with 5 × 10(5) cfu of Streptococcus pneumoniae. Animals were divided into sham group (Sham); pretreated with isotype control antibody (CON) group; pretreated with anti-asialo GM1 antibody (NKd) group; and pretreated with anti-CD1d monoclonal antibody (NKTd) group before bacterial challenge. Serum and tissue samples were analyzed for bacterial load, cytokine levels, splenocyte apoptosis rates, and cell characteristics by flow cytometry. Splenocyte miRNA expression was also analyzed and survival was assessed. Results. NK cell depletion prolonged survival. Upon inhibition of NKT cell activation, spleen NK (CD3-/NK1.1+) cells increased compared to all other groups. Inhibition of NKT cell activation led to higher bacterial loads and increased levels of serum and splenocyte IFN-γ. Splenocyte miRNA analysis showed that miR-200c and miR-29a were downregulated, while miR-125a-5p was upregulated, in anti-CD1d treated animals. These changes were moderate after NK cell depletion. Conclusions. NK cells appear to contribute to mortality in pneumococcal pneumonia. Inhibition of NKT cell activation resulted in an increase in spleen NK (CD3-/NK1.1+) cells and a higher IFN-γ production, while altering splenocyte miRNA expression.

  8. The immunoregulatory role of type I and type II NKT cells in cancer and other diseases

    PubMed Central

    Terabe, Masaki; Berzofsky, Jay A.

    2014-01-01

    NKT cells are CD1d-restricted T cells that recognize lipid antigens. They also have been shown to play critical roles in the regulation of immune responses. In the immune responses against tumors, two subsets of NKT cells, type I and type II, play opposing roles and cross-regulate each other. As members of both the innate and adaptive immune systems, which form a network of multiple components, they also interact with other immune components. Here we discuss the function of NKT cells in tumor immunity and their interaction with other regulatory cells, especially CD4+CD25+Foxp3+ regulatory T cells. PMID:24384834

  9. Basic techniques for studies of iNKT cells and MAIT cells.

    PubMed

    Chiba, Asako; Miyake, Sachiko

    2014-01-01

    Invariant natural killer T (iNKT) cells and mucosal-associated invariant T cells (MAIT cells) are T cell subsets belonging to innate-like lymphocytes. These innate-like lymphocytes express semi-invariant T cell receptors, but exert diverse functions and thus are involved in various types of immune responses. As iNKT cells and MAIT cells are abundant in human peripheral blood, these cells may hold important physiological roles, and thus it is desired to reveal their functions. Here, we first describe the cell preparation techniques commonly used in studies of innate-like lymphocytes, and then introduce methods for the detection and functional analysis of iNKT cells and MAIT cells.

  10. The cytokine profile of human NKT cells and PBMCs is dependent on donor sex and stimulus.

    PubMed

    Bernin, Hannah; Fehling, Helena; Marggraff, Claudia; Tannich, Egbert; Lotter, Hannelore

    2016-08-01

    Sex-related variations in natural killer T (NKT) cells may influence immunoregulation and outcome of infectious and autoimmune diseases. We analyzed sex-specific differences in peripheral blood NKTs and peripheral blood mononuclear cells (PBMCs) from men and women and determined the frequencies of NKT cells and their subpopulations [CD4(+); CD8(+); double negative (DN)] and the levels of cytokine production following stimulation with the NKT cell ligands α-Galactosylceramide (αGalCer) and Entamoeba histolytica lipopeptidephosphoglycan (Lotter et al. in PLoS Pathog 5(5):e1000434, 2009). Total and DN NKT cells were more abundant in women than in men. In women, αGalCer induced higher production of intracellular IFNγ, IL-4, IL-17 and TNF by CD4(+) and DN(+)NKT cells. Both ligands induced expression of multiple cytokines in PBMCs and influenced the ratio of NKT cell subpopulations during long-term culture. Although the sex-specific differences in frequencies of NKT cells and their subpopulations were marginal, the significant sex-specific differences in cytokine production might influence disease outcomes. PMID:26895635

  11. Interaction between LPS-induced NO production and IDO activity in mouse peritoneal cells in the presence of activated Valpha14 NKT cells.

    PubMed

    Ohtaki, Hirofumi; Ito, Hiroyasu; Ando, Kazuki; Ishikawa, Tetsuya; Hoshi, Masato; Tanaka, Ryo; Osawa, Yosuke; Yokochi, Takashi; Moriwaki, Hisataka; Saito, Kuniaki; Seishima, Mitsuru

    2009-11-13

    In this study, we demonstrated that lipopolysaccharide (LPS) markedly increased nitric oxide (NO) production and indoleamine 2,3-dioxygenase (IDO) activity in mouse peritoneal cells in the presence of activated Valpha14 natural killer T cells. Moreover, LPS-induced NO production in peritoneal cells from IDO-knockout (KO) mice was more increased than that from wild-type mice. However, there was no significant difference in the expression of inducible nitric oxide synthase (iNOS) mRNA and protein between the wild-type and IDO-KO mice. No significant difference was also observed in the ratio of CD3- and DX5-positive cells and F4/80- and TLR4-positive cells in peritoneal cells between the wild-type and IDO-KO mice. Since the IDO activity was enhanced by an NO inhibitor, NO may be post-translationally consumed by inhibiting the IDO activity. IDO is well known to play an important role in immunosuppression during inflammatory disease. Therefore, the inhibition of IDO by NO may exacerbate inflammation in the peritoneal cavity.

  12. An efferocytosis-induced, IL-4-dependent macrophage-iNKT cell circuit suppresses sterile inflammation and is defective in murine CGD.

    PubMed

    Zeng, Melody Yue; Pham, Duy; Bagaitkar, Juhi; Liu, Jianyun; Otero, Karel; Shan, Ming; Wynn, Thomas A; Brombacher, Frank; Brutkiewicz, Randy R; Kaplan, Mark H; Dinauer, Mary C

    2013-04-25

    Efferocytosis of apoptotic neutrophils by macrophages following tissue injury is fundamental to the resolution of inflammation and initiation of tissue repair. Using a sterile peritonitis model in mice, we identified interleukin (IL)-4-producing efferocytosing macrophages in the peritoneum that activate invariant natural killer T (iNKT) cells to produce cytokines including IL-4, IL-13, and interferon-γ. Importantly, IL-4 from macrophages contributes to alternative activation of peritoneal exudate macrophages and augments type 2 cytokine production from NKT cells to suppress inflammation. The increased peritonitis in mice deficient in IL-4, NKT cells, or IL-4Rα expression on myeloid cells suggested that each is a key component for resolution of sterile inflammation. The reduced NAD phosphate oxidase is also critical for this model, because in mice with X-linked chronic granulomatous disease (X-CGD) that lack oxidase subunits, activation of iNKT cells by X-CGD peritoneal exudate macrophages was impaired during sterile peritonitis, resulting in enhanced and prolonged inflammation in these mice. Therefore, efferocytosis-induced IL-4 production and activation of IL-4-producing iNKT cells by macrophages are immunomodulatory events in an innate immune circuit required to resolve sterile inflammation and promote tissue repair.

  13. Novel immunostimulators with a thiazolidin-4-one ring promote the immunostimulatory effect of human iNKT cells on the stimulation of Th2-like immune responsiveness via GATA3 activation in vitro.

    PubMed

    Meng, Ming; Li, Chunxiao; Yang, Fei; Chen, Hua; Li, Xiaoliu; Yang, Yongbin; Chen, Dongzhi

    2016-10-01

    Invariant natural killer T cells (iNKTs) are important innate immune cells which get involved in various immune responses in both mice and humans. These immune reactions range from self-tolerance to development of autoimmunity and responses to pathogens and tumor development. In this study, we aimed to explore the effects of the novel immunostimulators (CH1b and CH2b) containing thiazolidin-4-one on the functions of human invariant natural killer T cells (iNKTs). First of all, iNKTs in peripheral blood mononuclear cells were expanded with α-Galactosylceramide (α-Galcer) in vitro. Then, the highly purified iNKTs were isolated from PBMCs using magnetic cells sorting (MACS). Next, we investigated the impacts of CH1b and CH2b on proliferation, cytokines production, cytotoxicity, and the associated signaling pathways in iNKT cells. Finally, we found that CH2b could significantly promote the activated iNKTs proliferation, increase the production of Th2 cytokines, and induce Th0 differentiation into Th2 subset via GATA 3 signaling pathway. Besides, CH2b could markedly enhance the cytotoxic ability of the activated iNKTs. Therefore, we concluded that CH2b, a promising candidate immunostimulator, might be used for the treatment of infections, tumors, autoimmune and allergic diseases, and for the correction of Th1/Th2 balance disorders in future. PMID:27543853

  14. 504 Participation of Invariant NKT Cells (Vα24Jα18) during Asthma Exacerbation in Children

    PubMed Central

    Carpio-Pedroza, Juan Carlos; del Rio-Navarro, Blanca Estela; del Río-Chivardí, Jaime Mariano; Morales-Flores, Amelia; Jiménez-Zamudio, Luis Antonio; Moreno-Lafont, Martha; Pedraza-Sánchez, Sigifredo; Vaughan-Figueroa, Juan Gilberto; Escobar-Gutiérrez, Alejandro

    2012-01-01

    Background Invariant NKT cells (or type 1 NKT cells) co-express CD3 marker and NK receptors (CD56, CD161) and use a single type of TCRα chain (Vα24Jα18 for humans), comprising CD4-CD8-, CD4+ and CD8+ subsets. Participation of these cells and their cytokines in asthmatic children, in stable conditions and under exacerbation, was studied. Methods Three groups on children (6–12 years old) were selected: 1) asthmatics under exacerbation attack (AE) within the first 24 hours after the attack and before starting any treatment; 2) asthmatics with stable asthma (SA), without symptoms for at least a month before bleeding; and 3) healthy controls (HC) without history of asthma, atopy and with normal lung function were selected in the Allergy and Clinical Immunology Service, Hospital Infantil de Mexico. Invariant NKT cells and subset levels as well as intracellular cytokines were evaluated in whole blood by 4-color flow cytometry (antibodies against CD3, CD4, CD8, CD161, Va24, IL-4 and IFN-g). Results Proportion of iNKT cells among total CD3+ cells in HC group was 0.9%, while in SA patients they were increased up to 2.6%; interestingly, during exacerbation such cells were dimished (1.8%). Concerning iNKT CD4+ cells were 0.6% in HC, 1.8% in SA, and 0.7% in AE, while iNKT CD8+ cells were 0.1% in HC, 0.7% in SA, and 0.4% in AE. Both iNKT cell subsets expressed intracellular IFN-g and IL-4 cytokines in AE, SA and HC but predominantly IFN-g in iNKT CD8+ cells from AE patients. Conclusions iNKT cells participation in asthma pathogenesis was confirmed. Increase of IFN-g production in patients with exacerbations, may provide a regulatory environment to stabilize the condition.

  15. Steady-state production of IL-4 modulates immunity in mouse strains and is determined by lineage diversity of iNKT cells.

    PubMed

    Lee, You Jeong; Holzapfel, Keli L; Zhu, Jinfang; Jameson, Stephen C; Hogquist, Kristin A

    2013-11-01

    Invariant natural killer T cells (iNKT cells) can produce copious amounts of interleukin 4 (IL-4) early during infection. However, indirect evidence suggests they may produce this immunomodulatory cytokine in the steady state. Through intracellular staining for transcription factors, we have defined three subsets of iNKT cells (NKT1, NKT2 and NKT17) that produced distinct cytokines; these represented diverse lineages and not developmental stages, as previously thought. These subsets exhibited substantial interstrain variation in numbers. In several mouse strains, including BALB/c, NKT2 cells were abundant and were stimulated by self ligands to produce IL-4. In those strains, steady-state IL-4 conditioned CD8(+) T cells to become 'memory-like', increased serum concentrations of immunoglobulin E (IgE) and caused dendritic cells to produce chemokines. Thus, iNKT cell-derived IL-4 altered immunological properties under normal steady-state conditions.

  16. Steady state production of IL-4 modulates immunity in different strains and is determined by lineage diversity of iNKT cells

    PubMed Central

    Lee, You Jeong; Holzapfel, Keli L.; Zhu, Jinfang; Jameson, Stephen C.; Hogquist, Kristin A.

    2013-01-01

    iNKT cells can produce high levels of IL-4 early during infection. However, indirect evidence suggests they may produce this immunomodulatory cytokine in the steady state. Through intracellular staining for transcription factors, we define 3 subsets of iNKT cells that produce distinct cytokines (NKT1, NKT2, and NKT17), which represent diverse lineages and not developmental stages as previously thought. These subsets exhibit substantial inter-strain variation in numbers. In several strains, including BALB/c, NKT2 cells are abundant and stimulated by self-ligands to produce IL-4. In these strains, steady state IL-4 conditions CD8 T cells to become “memory-like”, increases serum IgE levels, and causes dendritic cells to produce chemokines. Thus iNKT cell derived IL-4 alters immune properties under normal steady state conditions. PMID:24097110

  17. Mouse Hobit is a homolog of the transcriptional repressor Blimp-1 that regulates NKT cell effector differentiation.

    PubMed

    van Gisbergen, Klaas P J M; Kragten, Natasja A M; Hertoghs, Kirsten M L; Wensveen, Felix M; Jonjic, Stipan; Hamann, Jörg; Nolte, Martijn A; van Lier, Rene A W

    2012-09-01

    The transcriptional repressor Blimp-1 mediates the terminal differentiation of many cell types, including T cells. Here we identified Hobit (Znf683) as a previously unrecognized homolog of Blimp-1 that was specifically expressed in mouse natural killer T cells (NKT cells). Through studies of Hobit-deficient mice, we found that Hobit was essential for the formation of mature thymic NKT cells. In the periphery, Hobit repressed the accumulation of interferon-γ (IFN-γ)-producing NK1.1(lo) NKT cells at steady state. After antigenic stimulation, Hobit repressed IFN-γ expression, whereas after innate stimulation, Hobit induced granzyme B expression. Thus, reminiscent of the function of Blimp-1 in other lymphocytes, Hobit controlled the maintenance of quiescent, fully differentiated NKT cells and regulated their immediate effector functions.

  18. The Role of Hepatic Invariant (I)NKT Cells in Systemic/Local Inflammation and Mortality During Polymicrobial Septic Shock1

    PubMed Central

    Hu, Caroline K.; Venet, Fabienne; Heffernan, David S.; Wang, Yvonne L.; Horner, Brian; Huang, Xin; Chung, Chun-Shiang; Gregory, Stephen H.; Ayala, Alfred

    2009-01-01

    Natural killer T (NKT)4 cells have been described as “innate regulatory cells” because of their rapid response to conserved glycolipids presented on CD1d via their invariant TCR. However, little is known about the contribution of the hepatic NKT cell to the development of a local and/or systemic immune response to acute septic challenge (cecal ligation & puncture; CLP). We found not only that mice deficient in invariant [i] NKT cells (Jα18 -/-) had a marked attenuation in CLP induced mortality, but also exhibited an oblation of the systemic inflammatory response (with little effect on splenic/ peritoneal immune responsiveness). Flow cytometric data indicated that following CLP, there was a marked decline in the % of CD3+αGalCer-CD1d-tetramer+ cells in the mouse C57BL/6J and Balb/c liver non-parenchymal cell population. This was associated with the marked activation of these cells (increased expression of CD69 and CD25) as well as a rise in the frequency of NKT cells positive for both Th1 and Th2 intracellular cytokines. In this respect, when mice were pre-treated in vivo with anti-CD1d blocking antibody we observed not only that this inhibited the systemic rise of IL-6 and IL-10 levels in septic mice and improved overall septic survival, but that the CLP induced changes in liver macrophage IL-6 and IL-10 expressions were inversely effected by this treatment. Together, these findings suggest that the activation of hepatic iNKT cells plays a critical role in regulating the innate immune/ systemic inflammatory response and survival in a model of acute septic shock. PMID:19201902

  19. Sublingual injection of microparticles containing glycolipid ligands for NKT cells and subunit vaccines induces antibody responses in oral cavity

    PubMed Central

    DeLyria, Elizabeth S; Zhou, Dapeng; Lee, Jun Soo; Singh, Shailbala; Song, Wei; Li, Fenge; Sun, Qing; Lu, Hongzhou; Wu, Jinhui; Qiao, Qian; Hu, Yiqiao; Zhang, Guodong; Li, Chun; Sastry, K. Jagannadha; Shen, Haifa

    2014-01-01

    Natural Killer T (NKT) cells are a unique type of innate immune cells which exert paradoxical roles in animal models through producing either Th1 or Th2 cytokines and activating dendritic cells. Alpha-galactosylceramide (αGalCer), a synthetic antigen for NKT cells, was found to be safe and immune stimulatory in cancer and hepatitis patients. We recently developed microparticle-formulated αGalCer, which is selectively presented by dendritic cells and macrophages, but not B cells, and thus can avoid the anergy of NKT cells. In this study, we have examined the immunogenicity of microparticles containing αGalCer and protein vaccine components through sublingual injection in mice. The results showed that sublingual injection of microparticles containing αGalCer and ovalbumin triggered IgG responses in serum (titer >1:100,000), which persisted for more than 3 months. Microparticles containing ovalbumin alone also induced comparable level of IgG responses. However, immunoglobulin subclass analysis showed that sublingually injected microparticles containing αGalCer and ovalbumin induced 20 fold higher Th1 biased antibody (IgG2c) than microparticles containing OVA alone (1:20,000 as compared to 1:1000 titer). Sublingual injection of microparticles containing αGalCer and ovalbumin induced secretion of both IgG (titer >1:1000) and IgA (titer =1:80) in saliva secretion, while microparticles containing ovalbumin alone only induced secretion of IgG in saliva. Our results suggest that sublingual injection of microparticles and their subsequent trafficking to draining lymph nodes may induce adaptive immune responses in mucosal compartments. Ongoing studies are focused on the mechanism of antigen presentation and lymphocyte biology in the oral cavity, as well as the toxicity and efficacy of these candidate microparticles for future applications. PMID:25555750

  20. Sublingual injection of microparticles containing glycolipid ligands for NKT cells and subunit vaccines induces antibody responses in oral cavity.

    PubMed

    DeLyria, Elizabeth S; Zhou, Dapeng; Lee, Jun Soo; Singh, Shailbala; Song, Wei; Li, Fenge; Sun, Qing; Lu, Hongzhou; Wu, Jinhui; Qiao, Qian; Hu, Yiqiao; Zhang, Guodong; Li, Chun; Sastry, K Jagannadha; Shen, Haifa

    2015-03-20

    Natural Killer T (NKT) cells are a unique type of innate immune cells which exert paradoxical roles in animal models through producing either Th1 or Th2 cytokines and activating dendritic cells. Alpha-galactosylceramide (αGalCer), a synthetic antigen for NKT cells, was found to be safe and immune stimulatory in cancer and hepatitis patients. We recently developed microparticle-formulated αGalCer, which is selectively presented by dendritic cells and macrophages, but not B cells, and thus can avoid the anergy of NKT cells. In this study, we have examined the immunogenicity of microparticles containing αGalCer and protein vaccine components through sublingual injection in mice. The results showed that sublingual injection of microparticles containing αGalCer and ovalbumin triggered IgG responses in serum (titer >1:100,000), which persisted for more than 3months. Microparticles containing ovalbumin alone also induced comparable level of IgG responses. However, immunoglobulin subclass analysis showed that sublingually injected microparticles containing αGalCer and ovalbumin induced 20 fold higher Th1 biased antibody (IgG2c) than microparticles containing OVA alone (1:20,000 as compared to 1:1000 titer). Sublingual injection of microparticles containing αGalCer and ovalbumin induced secretion of both IgG (titer >1:1000) and IgA (titer=1:80) in saliva secretion, while microparticles containing ovalbumin alone only induced secretion of IgG in saliva. Our results suggest that sublingual injection of microparticles and their subsequent trafficking to draining lymph nodes may induce adaptive immune responses in mucosal compartments. Ongoing studies are focused on the mechanism of antigen presentation and lymphocyte biology in the oral cavity, as well as the toxicity and efficacy of these candidate microparticles for future applications.

  1. A case of primary pulmonary NK/T cell lymphoma presenting as pneumonia.

    PubMed

    Lee, Sangho; Shin, Bongkyung; Yoon, Hyungseok; Lee, Jung Yeon; Chon, Gyu Rak

    2016-01-01

    Primary pulmonary lymphoma, particularly non-B cell lymphomas involving lung parenchyma, is very rare. A 46-year-old male was admitted to the hospital with fever and cough. Chest X-ray showed left lower lobe consolidation, which was considered pneumonia. However, because the patient showed no response to empirical antibiotic therapy, bronchoscopic biopsy was performed for proper diagnosis. The biopsied specimen showed infiltrated atypical lymphocytes with angiocentric appearance. On immunohistochemical staining, these atypical cells were positive for CD3, CD30, CD56, MUM-1, and granzyme B, and labeled for Epstein-Barr virus encoded RNA in situ hybridization. These findings were consistent with NK/T cell lymphoma. We report on a case of primary pulmonary NK/T cell lymphoma presenting as pneumonic symptoms and review the literature on the subject.

  2. iNKT Cells Are Responsible for the Apoptotic Reduction of Basophils That Mediate Th2 Immune Responses Elicited by Papain in Mice Following γPGA Stimulation.

    PubMed

    Park, Hyun Jung; Lee, Sung Won; Park, Se-Ho; Hong, Seokmann

    2016-01-01

    Recent studies have demonstrated that Bacillus subtilis-derived poly-gamma glutamic acid (γPGA) treatment suppresses the development of allergic diseases such as atopic dermatitis (AD). Although basophils, an innate immune cell, are known to play critical roles in allergic immune responses and repeated long-term administration of γPGA results in decreased splenic basophils in an AD murine model, the underlying mechanisms by which γPGA regulates basophil frequency remain unclear. To investigate how γPGA modulates basophils, we employed basophil-mediated Th2 induction in vivo model elicited by the allergen papain protease. Repeated injection of γPGA reduced the abundance of basophils and their production of IL4 in mice, consistent with our previous study using NC/Nga AD model mice. The depletion of basophils by a single injection of γPGA was dependent on the TLR4/DC/IL12 axis. CD1d-dependent Vα14 TCR invariant natural killer T (iNKT) cells are known to regulate a variety of immune responses, such as allergy. Because iNKT cell activation is highly sensitive to IL12 produced by DCs, we evaluated whether the effect of γPGA on basophils is mediated by iNKT cell activation. We found that in vivo γPGA treatment did not induce the reduction of basophils in iNKT cell-deficient CD1d KO mice, suggesting the critical role of iNKT cells in γPGA-mediated basophil depletion at the early time points. Furthermore, increased apoptotic basophil reduction triggered by iNKT cells upon γPGA stimulation was mainly attributed to Th1 cytokines such as IFNγ and TNFα, consequently resulting in inhibition of papain-induced Th2 differentiation via diminishing basophil-derived IL4. Taken together, our results clearly demonstrate that γPGA-induced iNKT cell polarization toward the Th1 phenotype induces apoptotic basophil depletion, leading to the suppression of Th2 immune responses. Thus, elucidation of the crosstalk between innate immune cells will contribute to the design and

  3. Adjuvant effects of invariant NKT cell ligand potentiates the innate and adaptive immunity to an inactivated H1N1 swine influenza virus vaccine in pigs.

    PubMed

    Dwivedi, Varun; Manickam, Cordelia; Dhakal, Santosh; Binjawadagi, Basavaraj; Ouyang, Kang; Hiremath, Jagadish; Khatri, Mahesh; Hague, Jacquelyn Gervay; Lee, Chang Won; Renukaradhya, Gourapura J

    2016-04-15

    Pigs are considered as the source of some of the emerging human flu viruses. Inactivated swine influenza virus (SwIV) vaccine has been in use in the US swine herds, but it failed to control the flu outbreaks. The main reason has been attributed to lack of induction of strong local mucosal immunity in the respiratory tract. Invariant natural killer T (iNKT) cell is a unique T cell subset, and activation of iNKT cell using its ligand α-Galactosylceramide (α-GalCer) has been shown to potentiate the cross-protective immunity to inactivated influenza virus vaccine candidates in mice. Recently, we discovered iNKT cell in pig and demonstrated its activation using α-GalCer. In this study, we evaluated the efficacy of an inactivated H1N1 SwIV coadministered with α-GalCer intranasally against a homologous viral challenge. Our results demonstrated the potent adjuvant effects of α-GalCer in potentiating both innate and adaptive immune responses to SwIV Ags in the lungs of pigs, which resulted in reduction in the lung viral load by 3 logs compared to without adjuvant. Immunologically, in the lungs of pigs vaccinated with α-GalCer an increased virus specific IgA response, IFN-α secretion and NK cell-cytotoxicity was observed. In addition, iNKT cell-stimulation enhanced the secretion of Th1 cytokines (IFN-γ and IL-12) and reduced the production of immunosuppressive cytokines (IL-10 and TGF-β) in the lungs of pigs⋅ In conclusion, we demonstrated for the first time iNKT cell adjuvant effects in pigs to SwIV Ags through augmenting the innate and adaptive immune responses in the respiratory tract.

  4. Primary Esophageal Extranasal NK/T Cell Lymphoma With Biphasic Morphology

    PubMed Central

    Ye, Zi-Yin; Cao, Qing-Hua; Liu, Fang; Lu, Xiao-Fang; Li, Shu-Rong; Li, Chang-Zhao; Chen, Shao-Hong

    2015-01-01

    Abstract We report a case of esophageal extranasal NK/T cell lymphoma with biphasic morphologic features revealed by a deep large piecemeal biopsy. A 40-year-old man present with pharyngalgia, dysphagia, recurrent fever, and 5-kg weight loss for 8 months. Endoscopy demonstrated progressing longitudinal ulcers and mucosal bridges along the esophagus. The first and second biopsies obtained superficial mucosa with scattered bland-looking small lymphocytes. A subsequent large piecemeal snare abscission for biopsy showed atypical lymphoid cells infiltrating into the deep lamina propria and muscularis mucosae, whereas the superficial lamina propria was highly edematous with scant small lymphocytes. Immunohistochemical studies confirmed that both underlying atypical cells and superficial small lymphocytes were neoplastic, sharing an identical immunophenotype: positive for CD2, CD3, CD43, CD8, CD56, TIA-1 and granzyme B. Epstein-Barr virus–encoded small RNAs were found in both cells. The histologic findings were diagnostic of primary esophageal extranasal NK/T cell lymphoma. However, the patient developed bone marrow depression during chemotherapy and died of massive cerebral hemorrhage after the first cycle of chemotherapy. Primary esophageal extranodal NK/T cell lymphoma nasal type is extremely rare. We show the biphasic morphology of this disease, which highlights the importance of deep biopsy for accurate diagnosis. PMID:26181557

  5. Jarid2 is induced by TCR signalling and controls iNKT cell maturation.

    PubMed

    Pereira, Renata M; Martinez, Gustavo J; Engel, Isaac; Cruz-Guilloty, Fernando; Barboza, Bianca A; Tsagaratou, Ageliki; Lio, Chan-Wang J; Berg, Leslie J; Lee, Youngsook; Kronenberg, Mitchell; Bandukwala, Hozefa S; Rao, Anjana

    2014-08-08

    Jarid2 is a reported component of three lysine methyltransferase complexes, polycomb repressive complex 2 (PRC2) that methylates histone 3 lysine 27 (H3K27), and GLP-G9a and SETDB1 complexes that methylate H3K9. Here we show that Jarid2 is upregulated upon TCR stimulation and during positive selection in the thymus. Mice lacking Jarid2 in T cells display an increase in the frequency of IL-4-producing promyelocytic leukemia zinc finger (PLZF)(hi) immature invariant natural killer T (iNKT) cells and innate-like CD8(+) cells; Itk-deficient mice, which have a similar increase of innate-like CD8(+) cells, show blunted upregulation of Jarid2 during positive selection. Jarid2 binds to the Zbtb16 locus, which encodes PLZF, and thymocytes lacking Jarid2 show increased PLZF and decreased H3K9me3 levels. Jarid2-deficient iNKT cells perturb Th17 differentiation, leading to reduced Th17-driven autoimmune pathology. Our results establish Jarid2 as a novel player in iNKT cell maturation that regulates PLZF expression by modulating H3K9 methylation.

  6. Establishment of a vascular endothelial cell-reactive type II NKT cell clone from a rat model of autoimmune vasculitis.

    PubMed

    Iinuma, Chihiro; Waki, Masashi; Kawakami, Ai; Yamaguchi, Madoka; Tomaru, Utano; Sasaki, Naomi; Masuda, Sakiko; Matsui, Yuki; Iwasaki, Sari; Baba, Tomohisa; Kasahara, Masanori; Yoshiki, Takashi; Paletta, Daniel; Herrmann, Thomas; Ishizu, Akihiro

    2015-02-01

    We previously generated a rat model that spontaneously developed small vessel vasculitis (SVV). In this study, a T cell clone reactive with rat vascular endothelial cells (REC) was established and named VASC-1. Intravenous injection of VASC-1 induced SVV in normal recipients. VASC-1 was a TCRαβ/CD3-positive CD4/CD8 double-negative T cell clone with expression of NKG2D. The cytokine mRNA profile under unstimulated condition was positive for IL-4 and IFN-γ but negative for IL-2 and IL-10. After interaction with REC, the mRNA expression of IL-2, IL-5 and IL-6 was induced in VASC-1, which was inhibited by blocking of CD1d on the REC surface. Although the protein levels of these cytokines seemed to be lower than the detection limit in the culture medium, IFN-γ was detectable. The production of IFN-γ from the VASC-1 stimulated with LPS-pre-treated REC was inhibited by the CD1d blockade on the REC. These findings indicated VASC-1 as an NKT cell clone. The NKT cell pool includes two major subsets, namely types I and II. Type I NKT cells are characterized by expression of semi-invariant TCRs and the potential to bind to marine sponge-derived α-galactosylceramide (α-GalCer) loaded on CD1d; whereas, type II NKT cells do not manifest these characteristics. VASC-1 exhibited a usage of TCR other than the type I invariant TCR α chain and did not bind to α-GalCer-loaded CD1d; therefore, it was determined as a type II NKT cell clone. The collective evidence suggested that REC-reactive type II NKT cells could be involved in the pathogenesis of SVV in rats.

  7. Increased Intraepithelial Vα24 Invariant NKT Cells in the Celiac Duodenum.

    PubMed

    Montalvillo, Enrique; Bernardo, David; Martínez-Abad, Beatriz; Allegretti, Yessica; Fernández-Salazar, Luis; Calvo, Carmen; Chirdo, Fernando G; Garrote, José A; Arranz, Eduardo

    2015-11-01

    Celiac Disease (CD) is an interferon (IFN)γ-mediated duodenal hypersensitivity to wheat gluten occurring in genetically predisposed individuals. Gluten-free diet (GFD) leads to a complete remission of the disease. Vα24-restricted invariant NKT (iNKT) cells are important to maintain immune homeostasis in the gut mucosa because of their unique capacity to rapidly produce large quantities of both T-helper (Th)1 and Th2 cytokines upon stimulation. We studied the presence of these cells in the CD duodenum. Duodenal biopsies were obtained from 45 untreated-CD patients (uCD), 15 Gluten Free Diet-CD patients (GFD-CD), 44 non-inflamed non-CD controls (C-controls) and 15 inflamed non-CD controls (I-controls). Two populations from Spain and Argentina were recruited. Messenger RNA (mRNA) expression of Vα24-Jα18 (invariant TCRα chain of human iNKT cells), IFNγ and intracellular transcription factor Forkhead Box P3 (Foxp3), and flow cytometry intraepithelial lymphocyte (IEL) profile were determined. Both uCD and GFD-CD patients had higher Vα24-Jα18 mRNA levels than non-CD controls (I and C-controls). The expression of Vα24-Jα18 correlated with Marsh score for the severity of mucosal lesion and also with increased mRNA IFNγ levels. uCD and GFD-CD patients had decreased mRNA expression of FoxP3 but increased expression of Vα24-Jα18, which revealed a CD-like molecular profile. Increased numbers of iNKT cells were confirmed by flow cytometry within the intraepithelial lymphocyte compartment of uCD and GFD-CD patients and correlated with Vα24-Jα18 mRNA expression. In conclusion, we have found an increased number of iNKT cells in the duodenum from both uCD and GFD-CD patients, irrespective of the mucosal status. A CD-like molecular profile, defined by an increased mRNA expression of Vα24-Jα18 together with a decreased expression of FoxP3, may represent a pro-inflammatory signature of the CD duodenum. PMID:26529008

  8. MicroRNA-181a/b-1 Is Not Required for Innate γδ NKT Effector Cell Development.

    PubMed

    Sandrock, Inga; Ziętara, Natalia; Łyszkiewicz, Marcin; Oberdörfer, Linda; Witzlau, Katrin; Krueger, Andreas; Prinz, Immo

    2015-01-01

    Thymic development of αβ T lymphocytes into invariant natural killer (NK) T cells depends on their selection via agonistic lipid antigen presented by CD1d. If successful, newly selected NKT cells gain effector functions already in the thymus. Some γδ T cell subsets also acquire effector functions in the thymus. However, it is not clear whether agonistic TCR stimulation is involved in thymic γδ T cell selection and development. Here we combine two genetic models to address this question. MiR-181a/b-1-/-mice, which show impaired agonistic T cell selection of invariant αβ NKT cells, were crossed to Tcrd-H2BeGFP reporter mice to monitor selection, intra-thymic expansion and differentiation of γδ T cells. We found that miR-181a/b-1-deficiency had no effect on numbers of thymic γδ T cell or on their differentiation towards an IL-17- or IFN-γ-producing effector phenotype. Also, the composition of peripheral lymph node γδ T cells was not affected by miR-181a/b-1-deficiency. Dendritic epidermal γδ T cells were normally present in knock-out animals. However, we observed elevated frequencies and numbers of γδ NKT cells in the liver, possibly because γδ NKT cells can expand and replace missing αβ NKT cells in peripheral niches. In summary, we investigated the role of miR-181a/b-1 for selection, intrathymic development and homeostasis of γδ T cells. We conclude that miR-181a/b-1-dependent modulation of T cell selection is not critically required for innate development of γδ NKT cells or of any other γδ T cell subtypes. PMID:26673421

  9. Effect of age and latent CMV infection on CD8+ CD56+ T cells (NKT-like) frequency and functionality.

    PubMed

    Hassouneh, Fakhri; Campos, Carmen; López-Sejas, Nelson; Alonso, Corona; Tarazona, Raquel; Solana, Rafael; Pera, Alejandra

    2016-09-01

    Changes in the T cell pool caused by CMV infection have been proposed to contribute to immunosenescence, but it has been postulated that CMV can also have some beneficial effects in young individuals improving the immune response to other pathogens. T cells expressing CD56 (NKT-like cells) are cytotoxic effector cells with a significant role in the immune response against cancer. We have studied how age and latent CMV infection affect the frequency of NKT-like cells (CD8+ CD56+ T cells) and their response to Staphylococcal Enterotoxin B (SEB) in the context of CMV and ageing. NKT-like cell percentage increases with the combination of both CMV and age. The response to SEB and the polyfunctional index of NKT-like cells also increase with age in CMV-seropositive individuals. In young individuals, CMV infection induces a shift on the polyfunctional profile of CD8+ CD56- T cells not observed on the NKT-like cells response. NKT-like cells expressing CD57 are expanded in CMV-seropositive individuals and are more polyfunctional than their CD57-  counterpart. In addition CD57- NKT-like cells are more polyfunctional than CD8+ CD56- CD57- T cells. The results support that the expansion of polyfunctional NKT-cells may have a beneficial effect on the immune response against pathogens.

  10. CD155/CD226-interaction impacts on the generation of innate CD8(+) thymocytes by regulating iNKT-cell differentiation.

    PubMed

    Georgiev, Hristo; Ravens, Inga; Shibuya, Akira; Förster, Reinhold; Bernhardt, Günter

    2016-04-01

    The cell surface receptor CD155 influences a variety of immune processes by binding to its ligands CD226, CD96, or TIGIT. Here, we report that the interaction of CD155 with CD226 in the thymus of BALB/c mice has a dual function. It directly influences the dwell time of memory-like CD8(+) T cells, while it is indirectly involved in generating these cells. It was shown earlier that a massive emergence of memory-like CD8 T cells in thymus crucially depends on abundant IL-4, secreted in steady state by iNKT2 (where iNKT is invariant NKT) cells, a subclass of iNKT cells. Here, we show that absence of either CD155 or CD226 in BALB/c mice causes a profound shift in the iNKT subtype composition in thymus, expanding the frequency and numbers of iNKT1 cells at the expense of iNKT2 cells, as well as iNKT17 cells. This shift results in a drop of available IL-4 and creates a scenario similar to that observed in C57BL/6 mice, where iNKT1 cells predominate and iNKT2 cells are much less frequent when compared with BALB/c mice. Yet also in C57BL/6 mice, lack of CD155 or CD226 provokes a further decline in iNKT2 cells, suggesting that the observed effects are not restricted to a particular inbred strain. PMID:26689152

  11. IL-13Rα2-Bearing, Type II NKT Cells Reactive to Sulfatide Self-Antigen Populate the Mucosa of Ulcerative Colitis

    PubMed Central

    Fuss, Ivan J.; Joshi, Bharat; Yang, Zhiqiong; Degheidy, Heba; Fichtner-Feigl, Stefan; de Souza, Heitor; Rieder, Florian; Scaldaferri, Franco; Schirbel, Anja; Scarpa, Melania; West, Gail; Yi, Chuli; Xu, Lili; Leland, Pamela; Yao, Michael; Mannon, Peter; Puri, Raj K.; Fiocchi, Claudio; Strober, Warren

    2016-01-01

    Objective Previous studies have shown that ulcerative colitis (UC) is associated with the presence of lamina propria non-invariant (Type II) NKT cells producing IL-13 and mediating epithelial cell cytotoxicity. Here we sought to define the antigen(s) stimulating the NKT cells and to quantitate these cells in the UC lamina propria. Design Detection of Type II NKT cells in UC lamina propria mononuclear cells (LPMCs) with lysosulfatide loaded tetramer and quantum dot-based flow cytometry and staining. Culture of UC LPMCs with lyso-sulfatide glycolipid to determine sulfatide induction of epithelial cell cytotoxicity, IL-13 production and IL-13Rα2 expression. Blinded quantum dot-based phenotypic analysis to assess UC LPMC expression of IL-13Rα2, CD161 and IL-13. Results Approximately 36% of UC LPMC were lyso-sulfatide tetramer positive whereas few if any control LPMC were positive. When tested, the positive cells were also CD3 and IL-13Rα2 positive. Culture of UC LPMC with lyso-sulfatide glycolipid showed that sulfatide stimulates UC LPMC production of IL-13 and induces UC CD161+ LPMC-mediated cytotoxicity of activated epithelial cells; in addition, lyso-sulfatide induces enhanced expression of IL-13Rα2. Finally, blinded phenotypic analysis of UC LP MC using multi-color quantum dot staining technology showed that approximately 60% of the LPMC bear both IL-13Rα2 and CD161 and most of these cells also produce IL-13. Conclusion These studies show that UC lamina propria is replete with Type II NKT cells responsive to lyso-sulfatide glycolipid and bearing IL-13Rα2. Since lyso-sulfatide is a self-antigen these data suggest that an autoimmune response is involved in UC pathogenesis. PMID:24515806

  12. Enhancement of Mucosal Immunogenicity of Viral Vectored Vaccines by the NKT Cell Agonist Alpha-Galactosylceramide as Adjuvant

    PubMed Central

    Singh, Shailbala; Nehete, Pramod N.; Yang, Guojun; He, Hong; Nehete, Bharti; Hanley, Patrick W.; Barry, Michael A.; Sastry, K. Jagannadha

    2014-01-01

    Gene-based vaccination strategies, specifically viral vectors encoding vaccine immunogens are effective at priming strong immune responses. Mucosal routes offer practical advantages for vaccination by ease of needle-free administration, and immunogen delivery at readily accessible oral/nasal sites to efficiently induce immunity at distant gut and genital tissues. However, since mucosal tissues are inherently tolerant for induction of immune responses, incorporation of adjuvants for optimal mucosal vaccination strategies is important. We report here the effectiveness of alpha-galactosylceramide (α-GalCer), a synthetic glycolipid agonist of natural killer T (NKT) cells, as an adjuvant for enhancing immunogenicity of vaccine antigens delivered using viral vectors by mucosal routes in murine and nonhuman primate models. Significant improvement in adaptive immune responses in systemic and mucosal tissues was observed by including α-GalCer adjuvant for intranasal immunization of mice with vesicular stomatitis virus vector encoding the model antigen ovalbumin and adenoviral vectors expressing HIV env and Gag antigens. Activation of NKT cells in systemic and mucosal tissues along with significant increases in adaptive immune responses were observed in rhesus macaques immunized by intranasal and sublingual routes with protein or adenovirus vectored antigens when combined with α-GalCer adjuvant. These results support the utility of α-GalCer adjuvant for enhancing immunogenicity of mucosal vaccines delivered using viral vectors. PMID:25553254

  13. Innate and cytokine-driven signals, rather than microbial antigens, dominate in natural killer T cell activation during microbial infection

    PubMed Central

    Tatituri, Raju V.V.; Watts, Gerald F.M.; Bhowruth, Veemal; Leadbetter, Elizabeth A.; Barton, Nathaniel; Cohen, Nadia R.; Hsu, Fong-Fu; Besra, Gurdyal S.

    2011-01-01

    Invariant natural killer T cells (iNKT cells) are critical for host defense against a variety of microbial pathogens. However, the central question of how iNKT cells are activated by microbes has not been fully explained. The example of adaptive MHC-restricted T cells, studies using synthetic pharmacological α-galactosylceramides, and the recent discovery of microbial iNKT cell ligands have all suggested that recognition of foreign lipid antigens is the main driver for iNKT cell activation during infection. However, when we compared the role of microbial antigens versus innate cytokine-driven mechanisms, we found that iNKT cell interferon-γ production after in vitro stimulation or infection with diverse bacteria overwhelmingly depended on toll-like receptor–driven IL-12. Importantly, activation of iNKT cells in vivo during infection with Sphingomonas yanoikuyae or Streptococcus pneumoniae, pathogens which are known to express iNKT cell antigens and which require iNKT cells for effective protection, also predominantly depended on IL-12. Constitutive expression of high levels of IL-12 receptor by iNKT cells enabled instant IL-12–induced STAT4 activation, demonstrating that among T cells, iNKT cells are uniquely equipped for immediate, cytokine-driven activation. These findings reveal that innate and cytokine-driven signals, rather than cognate microbial antigen, dominate in iNKT cell activation during microbial infections. PMID:21555485

  14. A case of rapid growing colonic NK/T cell lymphoma complicated by Crohn’s disease

    PubMed Central

    Zheng, Shumei; Xu, Hui; Xue, Linyun; Zhang, Yong; Cui, Dejun

    2013-01-01

    A 37-year-old man developed abdominal pain and bloody diarrhea 11 months before admission. The colonoscopy revealed multifocal ulcers in the colon. Histology showed active chronic inflammation. Although anti-tuberculosis medication was effective, his symptoms repeated 2 months later. The subsequent colonoscopy revealed more extensive irregular ulcers than before, and he was clinically suspected with intestinal malignant lymphoma. He underwent subtotal colectomy and was histologically suggested Crohn’s disease, then 5-aminosalicylic and a combination of prednisone and azathioprine were administered in succession postoperatively, but they achieved minimal relief of symptoms for a period of 7 months. The third colonoscopy showed a large irregular ulcer in the ileocolon stomas, and primary colonic NK/T cell lymphoma was diagnosed through histological and immunophenotypic studies. Malignant lymphoma should be taken into consideration when clinically diagnosed Crohn’s disease was refractory to medication or when its clinical course became aggressive. PMID:23372350

  15. Role for lysosomal phospholipase A2 in iNKT cell-mediated CD1d recognition

    PubMed Central

    Paduraru, Crina; Bezbradica, Jelena S.; Kunte, Amit; Kelly, Robert; Shayman, James A.; Veerapen, Natacha; Cox, Liam R.; Besra, Gurdyal S.; Cresswell, Peter

    2013-01-01

    Invariant natural killer T (iNKT) cells recognize self lipid antigens presented by CD1d molecules. The nature of the self-antigens involved in the development and maturation of iNKT cells is poorly defined. Lysophospholipids are self-antigens presented by CD1d that are generated through the action of phospholipases A1 and A2. Lysosomal phospholipase A2 (LPLA2, group XV phospholipase A2) resides in the endocytic system, the main site where CD1d antigen acquisition occurs, suggesting that it could be particularly important in CD1d function. We find that Lpla2−/− mice show a decrease in iNKT cell numbers that is neither the result of a general effect on the development of lymphocyte populations nor of effects on CD1d expression. However, endogenous lipid antigen presentation by CD1d is reduced in the absence of LPLA2. Our data suggest that LPLA2 plays a role in the generation of CD1d complexes with thymic lipids required for the normal selection and maturation of iNKT cells. PMID:23493550

  16. B1a cells enhance susceptibility to infection with virulent Francisella tularensis via modulation of NK/NKT cell responses*

    PubMed Central

    Crane, Deborah D.; Griffin, Amanda J.; Wehrly, Tara D.; Bosio, Catharine M.

    2013-01-01

    B1a cells are an important source of natural antibodies, antibodies directed against T-independent antigens, and are a primary source of IL-10. Bruton's tyrosine kinase (btk) is a cytoplasmic kinase that is essential for mediating signals from the B cell receptor and is critical for development of B1a cells. Consequentially, animals lacking btk have few B1a cells, minimal antibody responses, and can preferentially generate Th1 type immune responses following infection. B1a cells have been shown to aid in protection against infection with attenuated Francisella tularensis but their role in infection mediated by fully virulent F. tularensis is not known. Therefore, we utilized mice with defective btk (XID mice) to determine the contribution of B1a cells in defense against the virulent, F. tularensis ssp. tularensis strain SchuS4. Surprisingly, XID mice displayed increased resistance to pulmonary infection with F. tularensis. Specifically, XID mice had enhanced clearance of bacteria from the lung and spleen and significantly greater survival of infection compared to wild type controls. We revealed that resistance to infection in XID mice was associated with decreased numbers of IL-10 producing B1a cells and concomitant increased numbers of IL-12 producing macrophages and IFN-γ producing NK/NKT cells. Adoptive transfer of wild type B1a cells into XID mice reversed the control of bacterial replication. Similarly, depletion of NK/NKT cells also increased bacterial burdens in XID mice. Together, our data suggest B cell-NK/NKT cell crosstalk is a critical pivot controlling survival of infection with virulent F. tularensis. PMID:23378429

  17. ITK tunes IL-4-induced development of innate memory CD8+ T cells in a γδ T and invariant NKT cell-independent manner

    PubMed Central

    Huang, Weishan; Huang, Fei; Kannan, Arun Kumar; Hu, Jianfang; August, Avery

    2014-01-01

    True memory CD8+ T cells develop post antigenic exposure and can provide life-long immune protection. More recently, other types of memory CD8+ T cells have been described, such as the memory-like CD8+ T cells (IMP; CD44hiCD122+) that arise spontaneously in Itk−/− mice, which are suggested to develop as a result of IL-4 secreted by NKT-like γδ T or PLZF+ NKT cells found in Itk−/− mice. However, we report here that whereas IMP CD8+ T cell development in Itk−/− mice is dependent on IL-4/STAT6 signaling, it is not dependent on any γδ T or iNKT cells. Our experiments suggest that the IMP develops as a result of tuning of the CD8+ T cell response to exogenous IL-4 and TCR triggering by ITK and challenge the current model of IMP CD8+ T cell development as a result of NKT-like γδ T or iNKT cells. These findings suggest that some naive CD8+ T cells may be preprogrammed by weak homeostatic TCR signals in the presence of IL-4 to become memory phenotype cells with the ability to elaborate effector function rapidly. The role of ITK in this process suggests a mechanism by which IMP CD8+ T cells can be generated rapidly in response to infection. PMID:24620029

  18. NK cells and CD1d-restricted NKT cells respond in different ways with divergent kinetics to IL-2 treatment in primary HIV-1 infection.

    PubMed

    Kuylenstierna, C; Snyder-Cappione, J E; Loo, C P; Long, B R; Gonzalez, V D; Michaëlsson, J; Moll, M; Spotts, G; Hecht, F M; Nixon, D F; Sandberg, J K

    2011-02-01

    Cytokine immunotherapy is being evaluated as adjunct treatment in infectious diseases. The effects on innate and adaptive immunity in vivo are insufficiently known. Here, we investigate whether combination treatment with antiretroviral therapy (ART) and Interleukin-2 (IL-2) of patients with primary HIV-1 infection induces sustained increases in circulating NKT cell and NK cell numbers and effector functions and investigate how changes are coordinated in the two compartments. Patients with primary HIV-1 infection starting ART were analyzed for numbers, phenotype and function of NKT cells, NK cells and dendritic cells (DC) in peripheral blood before, during and after IL-2 treatment. NKT cells expanded during IL-2 treatment as expected from previous studies. However, their response to α-galactosyl ceramide antigen were retained but not boosted. Myeloid DC did not change their numbers or CD1d-expression during treatment. In contrast, the NK cell compartment responded with rapid expansion of the CD56(dim) effector subset and enhanced IFNγ production. Expansions of NKT cells and NK cells retracted back towards baseline values at 12 months after IL-2 treatment ended. In summary, NKT cells and NK cells respond to IL-2 treatment with different kinetics. Effects on cellular function are distinct between the cell types and the effects appear not to be sustained after IL-2 treatment ends. These results improve our understanding of the effects of cytokine immunotherapy on innate cellular immunity in early HIV-1 infection.

  19. Assessment of peripheral blood and bone marrow T, NK, NKT and dendritic cells in patients with multiple myeloma.

    PubMed

    Pasiarski, Marcin; Grywalska, Ewelina; Kosmaczewska, Agata; Góźdź, Stanisław; Steckiewicz, Paweł; Garus, Bartosz; Bilski, Mateusz; Hymos, Anna; Roliński, Jacek; Bilski, Mateusz; Roliński, Jacek

    2015-12-31

    Symptoms of multiple myeloma (MM) include bone destruction with pathological fractures, kidney failure and frequent infections, which are the major causes of patient mortality. In our recent research, we demonstrated that the degree of dendritic cell (DC) subpopulation deficit could be related to MM progression, which in consequence may contribute to the MM-related impairment of the immune responses. In the present study, we determined by flow cytometry the frequencies of CD4+ and CD8+ T cells, NK, and NKT-like cells as well as their correlation with myeloid and lymphoid populations of DCs in patients with MM. The study involved 50 patients diagnosed with MM at the Department of Hematology in the Holycross Cancer Center in Kielce. The research samples were collected after the MM diagnosis and before the initiation of anticancer therapy. The obtained results revealed the relations between the percentages of DC subpopulations and lymphocyte subsets, especially the activated ones, in the peripheral blood (PB) and bone marrow (BM). The described role of DCs in the process of the immunological response, either adaptive or innate, leads us to conclude that the decrease of the number or percentage of these cells may have a negative impact on the process of activation of effector cells and, consequently, on the effectiveness of a response to foreign as well as neoplastic antigens in patients with MM.

  20. Sulfatide-Mediated Activation of Type II Natural Killer T Cells Prevents Hepatic Ischemic Reperfusion Injury In Mice

    PubMed Central

    Arrenberg, Philomena; Maricic, Igor; Kumar, Vipin

    2011-01-01

    Background & Aims Hepatic ischemic reperfusion injury (IRI) is a major complication of liver transplantation and resectional hepatic surgeries. Natural killer T (NKT) cells predominate in liver, where they recognize lipid antigens bound to CD1d molecules. Type I NKT cells utilize a semi-invariant T-cell receptor and react with α-galactosylceramide; type II NKT cells use diverse T-cell receptors. Some type II NKT cells recognize the self-glycolipid sulfatide. It is not clear whether or how these distinct NKT cell subsets mediate hepatocellular damage following IRI. Methods We examined the roles of type I and type II NKT cells in mice with partial hepatic, warm ischemia and reperfusion injury. Results Mice that lack type I NKT cells (Jα18−/−) were protected from hepatic IRI, indicated by reduced hepatocellular necrosis and serum levels of alanine aminotransferase. Sulfatide-mediated activation of type II NKT cells reduced IFN-γ secretion by type I NKT cells and prevented IRI. Protection from hepatic IRI by sulfatide-mediated inactivation of type I NKT cells was associated with significant reductions in hepatic recruitment of myeloid cell subsets, especially the CD11b+Gr-1int, Gr-1−, and NK cells. Conclusion In mice, subsets of NKT cells have opposing roles in hepatic IRI: type I NKT cells promote injury whereas sulfatide-reactive type II NKT cells protect against injury. CD1d activation of NKT cells is conserved from mice to humans, so strategies to modify these processes might be developed to treat patients with hepatic reperfusion injury. PMID:20950612

  1. Herpes Simplex Virus 1 Glycoprotein B and US3 Collaborate To Inhibit CD1d Antigen Presentation and NKT Cell Function ▿

    PubMed Central

    Rao, Ping; Pham, Hong Thanh; Kulkarni, Arpita; Yang, Yang; Liu, Xueqiao; Knipe, David M.; Cresswell, Peter; Yuan, Weiming

    2011-01-01

    Herpes simplex viruses (HSVs) are prevalent human pathogens that establish latency in human neuronal cells and efficiently evade the immune system. It has been a major medical challenge to eradicate them and, despite intensive efforts, an effective vaccine is not available. We previously showed that upon infection of antigen-presenting cells, HSV type 1 (HSV-1) rapidly and efficiently downregulates the major histocompatibility complex class I-like antigen-presenting molecule, CD1d, and potently inhibits its recognition by CD1d-restricted natural killer T (NKT) cells. It suppresses CD1d expression primarily by inhibiting its recycling to the cell surface after endocytosis. We identify here the viral glycoprotein B (gB) as the predominant CD1d-interacting protein. gB initiates the interaction with CD1d in the endoplasmic reticulum and stably associates with it throughout CD1d trafficking. However, an additional HSV-1 component, the serine-threonine kinase US3, is required for optimal CD1d downregulation. US3 expression in infected cells leads to gB enrichment in the trans-Golgi network (TGN) and enhances the relocalization of both gB and CD1d to this compartment, suggesting that following internalization CD1d is translocated from the endocytic pathway to the TGN by its association with gB. Importantly, both US3 and gB are required for efficient inhibition of CD1d antigen presentation and NKT cell activation. In summary, our results suggest that HSV-1 uses gB and US3 to rapidly inhibit NKT cell function in the initial antiviral response. PMID:21653669

  2. Vγ4 γδ T cell-derived IL-17A negatively regulates NKT cell function in Con A-induced fulminant hepatitis.

    PubMed

    Zhao, Na; Hao, Jianlei; Ni, Yuanyuan; Luo, Wei; Liang, Ruifang; Cao, Guangchao; Zhao, Yapu; Wang, Puyue; Zhao, Liqing; Tian, Zhigang; Flavell, Richard; Hong, Zhangyong; Han, Jihong; Yao, Zhi; Wu, Zhenzhou; Yin, Zhinan

    2011-11-15

    Con A-induced fulminant hepatitis is a well-known animal model for acute liver failure. However, the role of γδ T cells in this model is undefined. In this report, using TCR δ(-/-) mice, we demonstrated a protective role of γδ T cells in Con A-induced hepatitis model. TCR δ(-/-) mice showed significantly decreased levels of IL-17A and IL-17F in the Con A-treated liver tissue, and reconstitution of TCR δ(-/-) mice with wild-type (Wt), but not IL-17A(-/-), γδ T cells significantly reduced hepatitis, strongly suggesting a critical role of IL-17A in mediating the protective effect of γδ T cells. Interestingly, only Vγ4, but not Vγ1, γδ T cells exerted such a protective effect. Furthermore, depletion of NKT cells in TCR δ(-/-) mice completely abolished hepatitis, and NKT cells from Con A-challenged liver tissues of TCR δ(-/-) mice expressed significantly higher amounts of proinflammatory cytokine IFN-γ than those from Wt mice, indicating that γδ T cells protected hepatitis through targeting NKT cells. Finally, abnormal capacity of IFN-γ production by NKT cells of TCR δ(-/-) mice could only be downregulated by transferring Wt, but not IL-17(-/-), Vγ4 γδ T cells, confirming an essential role of Vγ4-derived IL-17A in regulating the function of NKT cells. In summary, our report thus demonstrated a novel function of Vγ4 γδ T cells in mediating a protective effect against Con A-induced fulminant hepatitis through negatively regulating function of NKT cells in an IL-17A-dependent manner, and transferring Vγ4 γδ T cells may provide a novel therapeutic approach for this devastating liver disease.

  3. The role of CD1d-restricted NKT cells in the clearance of Pseudomonas aeruginosa from the lung is dependent on the host genetic background.

    PubMed

    Benoit, Patrick; Sigounas, Vaia Yioula; Thompson, Jenna L; van Rooijen, Nico; Poynter, Matthew E; Wargo, Matthew J; Boyson, Jonathan E

    2015-06-01

    Pseudomonas aeruginosa is an important human opportunistic pathogen, accounting for a significant fraction of hospital-acquired lung infections. CD1d-restricted NKT cells comprise an unusual innate-like T cell subset that plays important roles in both bacterial and viral infections. Previous reports have differed in their conclusions regarding the role of NKT cells in clearance of P. aeruginosa from the lung. Since there is significant strain-dependent variation in NKT cell number and function among different inbred strains of mice, we investigated whether the role of NKT cells was dependent on the host genetic background. We found that NKT cells did indeed play a critical role in the clearance of P. aeruginosa from the lungs of BALB/c mice but that they played no discernible role in clearance from the lungs of C57BL/6 mice. We found that the strain-dependent role of NKT cells was associated with significant strain-dependent differences in cytokine production by lung NKT cells and that impaired clearance of P. aeruginosa in BALB/c CD1d(-/-) mice was associated with an increase in neutrophil influx to the lung and increased levels of proinflammatory cytokines and chemokines after infection. Finally, we found that the role of alveolar macrophages was also dependent on the genetic background. These data provide further support for a model in which the unusually high level of variability in NKT cell number and function among different genetic backgrounds may be an important contributor to infectious-disease susceptibility and pathology. PMID:25870224

  4. Characterization of the subsets of human NKT-like cells and the expression of Th1/Th2 cytokines in patients with unexplained recurrent spontaneous abortion.

    PubMed

    Yuan, Jing; Li, Jian; Huang, Shi-Yun; Sun, Xin

    2015-08-01

    The objective was to investigate the subsets of natural killer T (NKT)-like cells and the expression of Th1/Th2 cytokines in the peripheral blood (PB) and/or decidual tissue of patients with unexplained recurrent spontaneous abortion (URSA). The percentages of NKT-like cells in the PB and deciduas of URSA patients in early pregnancy and in the PB of nonpregnant women were analyzed by flow cytometry. The expression of interferon (IFN)-γ (Th1 cytokine) and Th2 cytokines, interleukin (IL)-4 and IL-10, in the PB and decidual tissue was measured by quantitative RT-PCR and enzyme-linked immunosorbent assay (ELISA). Most percentages of subsets of NKT-like cells (CD3(+)CD56(+), CD3(+)CD56(+)CD16(+)) in the PB and deciduas were significantly greater in URSA patients than in normal pregnant and nonpregnant women. A cut-off value of 3.75% for the increased percentage of CD3(+)CD56(+)CD16(+) NKT-like cells in the PB appeared to be predictive of pregnancy failure. Moreover, we found that in the decidua, IFN-γ expression was significantly higher, while IL-4 and IL-10 expression was significantly lower in URSA patients compared with those with a normal pregnancy. The ratio of decidual Th1/Th2 cytokines in URSA patients was significantly increased compared with that in normal pregnant women. Decidual IL-4 expression correlated negatively with the percentages of blood CD3(+)CD56(+)CD16(+) NKT-like cells and the decidual CD3(+)CD56(+) and CD3(+)CD56(+)CD16(+) NKT-like cells. NKT-like cells may play an important role in maintaining normal pregnancy. Measurement of CD3(+)CD56(+)CD16(+) NKT-like cells in the PB may provide a potential tool for assessing patients' risk of spontaneous abortion.

  5. Antibody-dependent cellular cytotoxicity toward neuroblastoma enhanced by activated invariant natural killer T cells.

    PubMed

    Mise, Naoko; Takami, Mariko; Suzuki, Akane; Kamata, Toshiko; Harada, Kazuaki; Hishiki, Tomoro; Saito, Takeshi; Terui, Keita; Mitsunaga, Tetsuya; Nakata, Mitsuyuki; Ikeuchi, Takayuki; Nakayama, Toshinori; Yoshida, Hideo; Motohashi, Shinichiro

    2016-03-01

    Anti-ganglioside GD2 antibodies mainly work through antibody-dependent cellular cytotoxicity (ADCC) and have demonstrated clinical benefit for children with neuroblastoma. However, high-risk neuroblastoma still has a high recurrence rate. For further improvement in patient outcomes, ways to maximize the cytotoxic effects of anti-GD2 therapies with minimal toxicity are required. Activated invariant natural killer T (iNKT) cells enhance both innate and type I acquired anti-tumor immunity by producing several kinds of cytokines. In this report, we investigated the feasibility of combination therapy using iNKT cells and an anti-GD2 antibody. Although some of the expanded iNKT cells expressed natural killer (NK) cell markers, including FcγR, iNKT cells were not directly associated with ADCC. When co-cultured with activated iNKT cells, granzyme A, granzyme B and interferon gamma (IFNγ) production from NK cells were upregulated, and the cytotoxicity of NK cells treated with anti-GD2 antibodies was increased. Not only cytokines produced by activated iNKT cells, but also NK-NKT cell contact or NK cell-dendritic cell contact contributed to the increase in NK cell cytotoxicity and further IFNγ production by iNKT cells and NK cells. In conclusion, iNKT cell-based immunotherapy could be an appropriate candidate for anti-GD2 antibody therapy for neuroblastoma.

  6. Turned on by danger: activation of CD1d-restricted invariant natural killer T cells.

    PubMed

    Lawson, Victoria

    2012-09-01

    CD1d-restricted invariant natural killer T (iNKT) cells bear characteristics of innate and adaptive lymphocytes, which allow them to bridge the two halves of the immune response and play roles in many disease settings. Recent work has characterized precisely how their activation is initiated and regulated. Novel antigens from important pathogens have been identified, as has an abundant self-antigen, β-glucopyranosylcaramide, capable of mediating an iNKT-cell response. Studies of the iNKT T-cell receptor (TCR)-antigen-CD1d complex show how docking between CD1d-antigen and iNKT TCR is highly conserved, and how small sequence differences in the TCR establish intrinsic variation in iNKT TCR affinity. The sequence of the TCR CDR3β loop determines iNKT TCR affinity for ligand-CD1d, independent of ligand identity. CD1d ligands can promote T helper type 1 (Th1) or Th2 biased cytokine responses, depending on the composition of their lipid tails. Ligands loaded into CD1d on the cell surface promote Th2 responses, whereas ligands with long hydrophobic tails are loaded endosomally and promote Th1 responses. This information is informing the design of synthetic iNKT-cell antigens. The iNKT cells may be activated by exogenous antigen, or by a combination of dendritic cell-derived interleukin-12 and iNKT TCR-self-antigen-CD1d engagement. The iNKT-cell activation is further modulated by recent foreign or self-antigen encounter. Activation of dendritic cells through pattern recognition receptors alters their antigen presentation and cytokine production, strongly influencing iNKT-cell activation. In a range of bacterial infections, dendritic cell-dependent innate activation of iNKT cells through interleukin-12 is the dominant influence on their activity.

  7. Artificial antigen presenting cell (aAPC) mediated activation and expansion of natural killer T cells.

    PubMed

    East, James E; Sun, Wenji; Webb, Tonya J

    2012-01-01

    a fundamental requirement of NKT cell activation, antigen: CD1d-Ig complexes provide a reliable method to isolate, activate, and expand effector NKT cell populations. PMID:23299308

  8. Lymphomatoidgastropathy mimicking extranodal NK/T cell lymphoma, nasal type: A case report

    PubMed Central

    Terai, Tomohiro; Sugimoto, Mitsushige; Uozaki, Hiroki; Kitagawa, Tetsushi; Kinoshita, Mana; Baba, Satoshi; Yamada, Takanori; Osawa, Satoshi; Sugimoto, Ken

    2012-01-01

    Extranodal natural killer (NK)/T-cell lymphoma, nasal type, exhibits aggressive tumor behavior and carries a poor prognosis. Recently, lymphomatoid gastropathy with NK/T cell infiltration into gastric mucosa has been recognized as a pseudo-malignant disease which regresses without treatment. Because the conventional immunohistochemical criteria of lymphomatoid gastropathy is similar to that of extranodal NK/T-cell lymphoma nasal type, it is difficult to distinguish between the two conditions by histopathological evaluation only. Here, we report a rare case of lymphomatoid gastropathy in a 57-year-old female. Gastroendoscopy on routine check-up revealed elevated reddish lesions < 1 cm in diameter in the gastric fornix and body. Although repeat endoscopies at 1 and 6 mo later revealed no gastric lesions at any locations without any treatments, at 12 mo later gastric lymphomatoid lesions recurred at gastric fornix and body. Histological examination of endoscopic biopsy specimens at 12 mo showed atypical NK cell infiltration with CD3+, CD4-, CD5-, CD7+, CD8-, CD20-, CD30-, CD56+, CD79a- and T-cell-restricted intracellular antigen-1+ into gastric mucosa. After treatment for Helicobacter pylori (H. pylori) eradication, the lesions disappeared in all locations of the gastric fornix and body over the subsequent 12 mo. Here, we report a case of H. pylori-positive lymphomatoid gastropathy with massive NK-cell proliferation, and also review the literature concerning newly identified lymphomatoid gastropathy based on comparison of extra nodal NK/T-cell lymphoma nasal type. In any case, these lesions are evaluated with biopsy specimens, the possibility of this benign entity should be considered, and excessive treatment should be carefully avoided. Close follow-up for this case of lymphomatoid gastropathy is necessary to exclude any underlying malignancy. PMID:22563204

  9. CRISPR-Mediated Triple Knockout of SLAMF1, SLAMF5 and SLAMF6 Supports Positive Signaling Roles in NKT Cell Development

    PubMed Central

    Huang, Bonnie; Gomez-Rodriguez, Julio; Preite, Silvia; Garrett, Lisa J.; Harper, Ursula L.; Schwartzberg, Pamela L.

    2016-01-01

    The SLAM family receptors contribute to diverse aspects of lymphocyte biology and signal via the small adaptor molecule SAP. Mutations affecting SAP lead to X-linked lymphoproliferative syndrome Type 1, a severe immunodysregulation characterized by fulminant mononucleosis, dysgammaglobulinemia, and lymphoproliferation/lymphomas. Patients and mice having mutations affecting SAP also lack germinal centers due to a defect in T:B cell interactions and are devoid of invariant NKT (iNKT) cells. However, which and how SLAM family members contribute to these phenotypes remains uncertain. Three SLAM family members: SLAMF1, SLAMF5 and SLAMF6, are highly expressed on T follicular helper cells and germinal center B cells. SLAMF1 and SLAMF6 are also implicated in iNKT development. Although individual receptor knockout mice have limited iNKT and germinal center phenotypes compared to SAP knockout mice, the generation of multi-receptor knockout mice has been challenging, due to the genomic linkage of the genes encoding SLAM family members. Here, we used Cas9/CRISPR-based mutagenesis to generate mutations simultaneously in Slamf1, Slamf5 and Slamf6. Genetic disruption of all three receptors in triple-knockout mice (TKO) did not grossly affect conventional T or B cell development and led to mild defects in germinal center formation post-immunization. However, the TKO worsened defects in iNKT cells development seen in SLAMF6 single gene-targeted mice, supporting data on positive signaling and potential redundancy between these receptors. PMID:27258160

  10. Distinct gene expression patterns correlate with developmental and functional traits of iNKT subsets

    PubMed Central

    Georgiev, Hristo; Ravens, Inga; Benarafa, Charaf; Förster, Reinhold; Bernhardt, Günter

    2016-01-01

    Invariant natural killer T (iNKT) cells comprise a subpopulation of innate lymphocytes developing in thymus. A new model proposes subdividing murine iNKT cells into iNKT1, 2 and 17 cells. Here, we use transcriptome analyses of iNKT1, 2 and 17 subsets isolated from BALB/c and C57BL/6 thymi to identify candidate genes that may affect iNKT cell development, migration or function. We show that Fcɛr1γ is involved in generation of iNKT1 cells and that SerpinB1 modulates frequency of iNKT17 cells. Moreover, a considerable proportion of iNKT17 cells express IL-4 and IL-17 simultaneously. The results presented not only validate the usefulness of the iNKT1/2/17-concept but also provide new insights into iNKT cell biology. PMID:27721447

  11. IL-15 Superagonist Expands mCD8+ T, NK and NKT Cells after Burn Injury but Fails to Improve Outcome during Burn Wound Infection

    PubMed Central

    Patil, Naeem K.; Luan, Liming; Bohannon, Julia K.; Guo, Yin; Hernandez, Antonio; Fensterheim, Benjamin; Sherwood, Edward R.

    2016-01-01

    Background Severely burned patients are highly susceptible to opportunistic infections and sepsis, owing to the loss of the protective skin barrier and immunological dysfunction. Interleukin-15 (IL-15) belongs to the IL-2 family of common gamma chain cytokines and stimulates the proliferation and activation of T (specifically memory CD8), NK and NKT cells. It has been shown to preserve T cell function and improve survival during cecal ligation and puncture (CLP)-induced sepsis in mice. However, the therapeutic efficacy of IL-15 or IL-15 superagonist (SA) during infection after burn injury has not been evaluated. Moreover, very few, if any, studies have examined, in detail, the effect of burn injury and infection on the adaptive immune system. Thus, we examined the effect of burn and sepsis on adaptive immune cell populations and the effect of IL-15 SA treatment on the host response to infection. Methods Mice were subjected to a 35% total body surface area burn, followed by wound infection with Pseudomonas aeruginosa. In some experiments, IL-15 SA was administered after burn injury, but before infection. Leukocytes in spleen, liver and peritoneal cavity were characterized using flow cytometry. Bacterial clearance, organ injury and survival were also assessed. Results Burn wound infection led to a significant decline in total white blood cell and lymphocyte counts and induced organ injury and sepsis. Burn injury caused decline in CD4+ and CD8+ T cells in the spleen, which was worsened by infection. IL-15 treatment inhibited this decline and significantly increased cell numbers and activation, as determined by CD69 expression, of CD4+, CD8+, B, NK and NKT cells in the spleen and liver after burn injury. However, IL-15 SA treatment failed to prevent burn wound sepsis-induced loss of CD4+, CD8+, B, NK and NKT cells and failed to improve bacterial clearance and survival. Conclusion Cutaneous burn injury and infection cause significant adaptive immune dysfunction. IL-15

  12. CD1d-dependent expansion of NKT follicular helper cells in vivo and in vitro is a product of cellular proliferation and differentiation.

    PubMed

    Rampuria, Pragya; Lang, Mark L

    2015-05-01

    NKT follicular helper cells (NKTfh cells) are a recently discovered functional subset of CD1d-restricted NKT cells. Given the potential for NKTfh cells to promote specific antibody responses and germinal center reactions, there is much interest in determining the conditions under which NKTfh cells proliferate and/or differentiate in vivo and in vitro. We confirm that NKTfh cells expressing the canonical semi-invariant Vα14 TCR were CXCR5(+)/ICOS(+)/PD-1(+)/Bcl6(+) and increased in number following administration of the CD1d-binding glycolipid α-galactosylceramide (α-GC) to C57Bl/6 mice. We show that the α-GC-stimulated increase in NKTfh cells was CD1d-dependent since the effect was diminished by reduced CD1d expression. In vivo and in vitro treatment with α-GC, singly or in combination with IL-2, showed that NKTfh cells increased in number to a greater extent than total NKT cells, but proliferation was near-identical in both populations. Acquisition of the NKTfh phenotype from an adoptively transferred PD-1-depleted cell population was also evident, showing that peripheral NKT cells differentiated into NKTfh cells. Therefore, the α-GC-stimulated, CD1d-dependent increase in peripheral NKTfh cells is a result of cellular proliferation and differentiation. These findings advance our understanding of the immune response following immunization with CD1d-binding glycolipids.

  13. Disseminated Mycobacterium marinum Infection With a Destructive Nasal Lesion Mimicking Extranodal NK/T Cell Lymphoma

    PubMed Central

    Asakura, Takanori; Ishii, Makoto; Kikuchi, Taku; Kameyama, Kaori; Namkoong, Ho; Nakata, Noboru; Sugita, Kayoko; Tasaka, Sadatomo; Shimizu, Takayuki; Hoshino, Yoshihiko; Okamoto, Shinichiro; Betsuyaku, Tomoko; Hasegawa, Naoki

    2016-01-01

    Abstract Mycobacterium marinum is a ubiquitous waterborne organism that mainly causes skin infection in immunocompetent patients, and its disseminated infection is rare. Extranodal NK/T cell lymphoma, nasal type (ENKL) usually localizes at the nasal and/or paranasal area, but occasionally disseminates into the skin/soft tissue and gastrointestinal tract. Compromised immunity is a risk factor for developing nontuberculous mycobacterial (NTM) infection and malignant lymphoma, and the 2 diseases may share similar clinical presentation; however, only a few reports have described NTM infection mimicking malignant lymphoma. A 43-year-old Japanese man presented to our hospital complaining of multiple progressive skin nodules and purulent nasal discharge for 3 weeks. He was diagnosed with Crohn disease with refractory enteropathic arthritis and has been treated with anti-tumor necrosis factor alpha agents for 25 years. Fiberoptic nasal examination revealed septal perforation with hemorrhagic mucus and purulent rhinorrhea. Histological examination of the nasal septum revealed the infiltration of atypical medium-to-large-sized cells with erosion. The cells were positive for cytoplasmic CD3, granzyme B, and Epstein–Barr virus-encoded small RNA. Histological examination of the skin nodules and auricle also showed infiltration of atypical lymphocytes. The patient was tentatively diagnosed with ENKL, and chemotherapy was considered. However, the skin lesions decreased in size after discontinuation of immunosuppressive agents and minocycline administration. Two weeks later, nasal septum and lavage fluid and left leg skin cultures were positive for M marinum, and minocycline was discontinued. The skin and the nasal lesions improved after 2 months. To the best of our knowledge, this is the first case of disseminated M marinum infection with a destructive nasal lesion mimicking ENKL. The differentiation between M marinum infection and ENKL is clinically important because

  14. A unique case of nasal NK/T cell lymphoma with frequent remission and relapse showing different histological features during 12 years of follow up.

    PubMed

    Watanabe, Kazuko; Hanamura, Akitoshi; Mori, Naoyoshi

    2010-01-01

    Nasal natural killer (NK)/T cell lymphoma is an aggressive subtype of non-Hodgkin lymphomas, usually with a broad morphological spectrum, necrosis and angioinvasion, and is closely associated with Epstein-Barr virus (EBV) infection. We herein report a unique case of nasal NK/T cell lymphoma with frequent complete remission and relapse 12 years of follow up. A 9-year-old girl was diagnosed as having nasal NK/T cell lymphoma in 1995. The histological features were typical with diffuse lymphoid cell infiltration and angiocentric destruction. At the time of third relapse, however, biopsy showed infiltration of small sized lymphoid cells without necrosis and ulceration. These lymphoid cells were positive for both NK/T cell phenotype and EBV-encoded small RNAs. The tumor regressed spontaneously after biopsy and her clinical symptoms subsided. When she was admitted to the hospital in 2006 she had an extensive destructive lesion in the nasal cavity. These findings represent a rare case, in which histological findings changed in each time of relapse.

  15. Differential Recognition of CD1d-[alpha]-Galactosyl Ceramide by the V[beta]8.2 and V[beta]7 Semi-invariant NKT T Cell Receptors

    SciTech Connect

    Pellicci, Daniel G.; Patel, Onisha; Kjer-Nielsen, Lars; Pang, Siew Siew; Sullivan, Lucy C.; Kyparissoudis, Konstantinos; Brooks, Andrew G.; Reid, Hugh H.; Gras, Stephanie; Lucet, Isabelle S.; Koh, Ruide; Smyth, Mark J.; Mallevaey, Thierry; Matsuda, Jennifer L.; Gapin, Laurent; McCluskey, James; Godfrey, Dale I.; Rossjohn, Jamie; PMCI-A; Monash; UCHSC; Melbourne

    2009-09-02

    The semi-invariant natural killer T cell receptor (NKT TCR) recognizes CD1d-lipid antigens. Although the TCR{alpha} chain is typically invariant, the {beta} chain expression is more diverse, where three V{beta} chains are commonly expressed in mice. We report the structures of V{alpha}14-V{beta}8.2 and V{alpha}14-V{beta}7 NKT TCRs in complex with CD1d-{alpha}-galactosylceramide ({alpha}-GalCer) and the 2.5 {angstrom} structure of the human NKT TCR-CD1d-{alpha}-GalCer complex. Both V{beta}8.2 and V{beta}7 NKT TCRs and the human NKT TCR ligated CD1d-{alpha}-GalCer in a similar manner, highlighting the evolutionarily conserved interaction. However, differences within the V{beta} domains of the V{beta}8.2 and V{beta}7 NKT TCR-CD1d complexes resulted in altered TCR{beta}-CD1d-mediated contacts and modulated recognition mediated by the invariant {alpha} chain. Mutagenesis studies revealed the differing contributions of V{beta}8.2 and V{beta}7 residues within the CDR2{beta} loop in mediating contacts with CD1d. Collectively we provide a structural basis for the differential NKT TCR V{beta} usage in NKT cells.

  16. Activation of decidual invariant natural killer T cells promotes lipopolysaccharide-induced preterm birth.

    PubMed

    Li, Liping; Yang, Jing; Jiang, Yao; Tu, Jiaoqin; Schust, Danny J

    2015-04-01

    Invariant natural killer T (iNKT) cells are crucial for host defense against a variety of microbial pathogens, but the underlying mechanisms of iNKT cells activation by microbes are not fully explained. In this study, we investigated the molecular mechanisms of iNKT cell activation in lipopolysaccharide (LPS)-stimulated preterm birth using an adoptive transfer system and diverse neutralizing antibodies (Abs) and inhibitors. We found that adoptive transfer of decidual iNKT cells to LPS-stimulated iNKT cell deficient Jα18(-/-) mice that lack invariant Vα14Jα281T cell receptor (TCR) expression significantly decreased the time to delivery and increased the percentage of decidual iNKT cells. Neutralizing Abs against Toll-like receptor 4 (TLR-4), CD1d, interleukin (IL)-12 and IL-18, and inhibitors blocking the activation of nuclear factor κB (NF-κB), mitogen-activated protein kinase (MAPK) p38 and extracellular signal-regulated kinase (ERK) significantly reduced in vivo percentages of decidual iNKT cells, their intracellular interferon (IFN)-γ production and surface CD69 expression. In vitro, in the presence of the same Abs and inhibitors used as in vivo, decidual iNKT cells co-cultured with LPS-pulsed dendritic cells (DCs) showed significantly decreased extracellular and intracellular IFN-γ secretion and surface CD69 expression. Our data demonstrate that the activation of decidual iNKT cells plays an important role in inflammation-induced preterm birth. Activation of decidual iNKT cells also requires TLR4-mediated NF-κB, MAPK p38 and ERK pathways, the proinflammatory cytokines IL-12 and IL-18, and endogenous glycolipid antigens presented by CD1d.

  17. IL-10 Production Is Critical for Sustaining the Expansion of CD5+ B and NKT Cells and Restraining Autoantibody Production in Congenic Lupus-Prone Mice.

    PubMed

    Baglaenko, Yuriy; Manion, Kieran P; Chang, Nan-Hua; Gracey, Eric; Loh, Christina; Wither, Joan E

    2016-01-01

    The development and progression of systemic lupus erythematosus is mediated by the complex interaction of genetic and environmental factors. To decipher the genetics that contribute to pathogenesis and the production of pathogenic autoantibodies, our lab has focused on the generation of congenic lupus-prone mice derived from the New Zealand Black (NZB) strain. Previous work has shown that an NZB-derived chromosome 4 interval spanning 32 to 151 Mb led to expansion of CD5+ B and Natural Killer T (NKT) cells, and could suppress autoimmunity when crossed with a lupus-prone mouse strain. Subsequently, it was shown that CD5+ B cells but not NKT cells derived from these mice could suppress the development of pro-inflammatory T cells. In this paper, we aimed to further resolve the genetics that leads to expansion of these two innate-like populations through the creation of additional sub-congenic mice and to characterize the role of IL-10 in the suppression of autoimmunity through the generation of IL-10 knockout mice. We show that expansion of CD5+ B cells and NKT cells localizes to a chromosome 4 interval spanning 91 to 123 Mb, which is distinct from the region that mediates the majority of the suppressive phenotype. We also demonstrate that IL-10 is critical to restraining autoantibody production and surprisingly plays a vital role in supporting the expansion of innate-like populations. PMID:26964093

  18. IL-10 Production Is Critical for Sustaining the Expansion of CD5+ B and NKT Cells and Restraining Autoantibody Production in Congenic Lupus-Prone Mice

    PubMed Central

    Baglaenko, Yuriy; Manion, Kieran P.; Chang, Nan-Hua; Gracey, Eric; Loh, Christina; Wither, Joan E.

    2016-01-01

    The development and progression of systemic lupus erythematosus is mediated by the complex interaction of genetic and environmental factors. To decipher the genetics that contribute to pathogenesis and the production of pathogenic autoantibodies, our lab has focused on the generation of congenic lupus-prone mice derived from the New Zealand Black (NZB) strain. Previous work has shown that an NZB-derived chromosome 4 interval spanning 32 to 151 Mb led to expansion of CD5+ B and Natural Killer T (NKT) cells, and could suppress autoimmunity when crossed with a lupus-prone mouse strain. Subsequently, it was shown that CD5+ B cells but not NKT cells derived from these mice could suppress the development of pro-inflammatory T cells. In this paper, we aimed to further resolve the genetics that leads to expansion of these two innate-like populations through the creation of additional sub-congenic mice and to characterize the role of IL-10 in the suppression of autoimmunity through the generation of IL-10 knockout mice. We show that expansion of CD5+ B cells and NKT cells localizes to a chromosome 4 interval spanning 91 to 123 Mb, which is distinct from the region that mediates the majority of the suppressive phenotype. We also demonstrate that IL-10 is critical to restraining autoantibody production and surprisingly plays a vital role in supporting the expansion of innate-like populations. PMID:26964093

  19. In contrast to other species, α-Galactosylceramide (α-GalCer) is not an immunostimulatory NKT cell agonist in horses.

    PubMed

    Dossa, Robson G; Alperin, Debra C; Garzon, Diana; Mealey, Robert H; Brown, Wendy C; Jervis, Peter J; Besra, Gurdyal S; Cox, Liam R; Hines, Stephen A

    2015-03-01

    α-GalCer is a potent immunomodulatory molecule that is presented to NKT cells via the CD1 antigen-presenting system. We hypothesized that when used as an adjuvant α-GalCer would induce protective immune responses against Rhodococcus equi, an important pathogen of young horses. Here we demonstrate that the equine CD1d molecule shares most features found in CD1d from other species and has a suitable lipid-binding groove for presenting glycolipids to NKT cells. However, equine CTL stimulated with α-GalCer failed to kill cells infected with R. equi, and α-GalCer did not increase killing by CTL co-stimulated with R. equi antigen. Likewise, α-GalCer did not induce the lymphoproliferation of equine PBMC or increase the proliferation of R. equi-stimulated cells. Intradermal injection of α-GalCer in horses did not increase the recruitment of lymphocytes or cytokine production. Furthermore, α-GalCer-loaded CD1d tetramers, which have been shown to be broadly cross-reactive, did not bind equine lymphocytes. Altogether, our results demonstrate that in contrast to previously described species, horses are unable to respond to α-GalCer. This raises questions about the capabilities and function of NKT cells and other lipid-specific T lymphocytes in horses.

  20. Preventing and curing citrulline-induced autoimmune arthritis in a humanized mouse model using a Th2-polarizing iNKT cell agonist.

    PubMed

    Walker, Kyle M; Rytelewski, Mateusz; Mazzuca, Delfina M; Meilleur, Shannon A; Mannik, Lisa A; Yue, David; Brintnell, William C; Welch, Ian; Cairns, Ewa; Haeryfar, S M Mansour

    2012-07-01

    Invariant natural killer T (iNKT) cells are innate lymphocytes with unique reactivity to glycolipid antigens bound to non-polymorphic CD1d molecules. They are capable of rapidly releasing pro- and/or anti-inflammatory cytokines and constitute attractive targets for immunotherapy of a wide range of diseases including autoimmune disorders. In this study, we have explored the beneficial effects of OCH, a Th2-polarizing glycolipid agonist of iNKT cells, in a humanized mouse model of rheumatoid arthritis (RA) in which citrullinated human proteins are targeted by autoaggressive immune responses in mice expressing an RA susceptibility human leukocyte antigen (HLA) DR4 molecule. We found for the first time that treatment with OCH both prevents and cures citrulline-induced autoimmune arthritis as evidenced by resolved ankle swelling and reversed histopathological changes associated with arthritis. Also importantly, OCH treatment blocked the arthritogenic capacity of citrullinated antigen-experienced splenocytes without compromising their global responsiveness or altering the proportion of splenic naturally occurring CD4(+)CD25(+)FoxP3(+) regulatory T cells. Interestingly, administering the Th1-promoting iNKT cell glycolipid ligand α-C-galactosylceramide into HLA-DR4 transgenic mice increased the incidence of arthritis in these animals and exacerbated their clinical symptoms, strongly suggesting a role for Th1 responses in the pathogenesis of citrulline-induced arthritis. Therefore, our findings indicate a role for Th1-mediated immunopathology in citrulline-induced arthritis and provide the first evidence that iNKT cell manipulation by Th2-skewing glycolipids may be of therapeutic value in this clinically relevant model, a finding that is potentially translatable to human RA. PMID:21912419

  1. Differential dependence on nuclear factor-κB-inducing kinase among natural killer T-cell subsets in their development

    PubMed Central

    Noma, Haruka; Eshima, Koji; Satoh, Masashi; Iwabuchi, Kazuya

    2015-01-01

    Natural killer T cells (NKT cells) are comprised of several subsets. However, the possible differences in their developmental mechanisms have not been fully investigated. To evaluate the dependence of some NKT subpopulations on nuclear factor-κB-inducing kinase (NIK) for their generation, we analysed the differentiation of NKT cells, dividing them into subsets in various tissues of alymphoplasia (aly/aly), a mutant mouse strain that lacks functional NIK. The results indicated that the efficient differentiation of both invariant NKT (iNKT) and non-iNKT cells relied on NIK expression in non-haematopoietic cells; however, the dependence of non-iNKT cells was lower than that of iNKT cells. Especially, the differentiation of CD8+ non-iNKT cells was markedly resistant to the aly mutation. The proportion of two other NKT cell subsets, NK1.1+ γδ T cells and NK1.1− iNKT cells, was also significantly reduced in aly/aly mice, and this defect in their development was reversed in wild-type host mice given aly/aly bone marrow cells. In exerting effector functions, NIK in NKT-αβ cells appeared dispensable, as NIK-deficient NKT-αβ cells could secrete interleukin-4 or interferon-γ and exhibit cytolytic activity at a level comparable to that of aly/+ NKT-αβ cells. Collectively, these results imply that the NIK in thymic stroma may be critically involved in the differentiation of most NKT cell subsets (although the level of NIK dependence may vary among the subsets), and also that NIK in NKT-αβ cells may be dispensable for their effector function. PMID:25988531

  2. Influence of In Vitro IL-2 or IL-15 Alone or in Combination with Hsp 70 Derived 14-Mer Peptide (TKD) on the Expression of NK Cell Activatory and Inhibitory Receptors on Peripheral Blood T Cells, B Cells and NKT Cells

    PubMed Central

    Hromadnikova, Ilona; Li, Shuang; Kotlabova, Katerina; Dickinson, Anne M.

    2016-01-01

    Previous studies from Multhoff and colleagues reported that plasma membrane Hsp70 acts as a tumour-specific recognition structure for activated NK cells, and that the incubation of NK cells with Hsp70 and/or a 14-mer peptide derived from the N-terminal sequence of Hsp70 (TKDNNLLGRFELSG, TKD, aa 450–463) plus a low dose of IL-2 triggers NK cell proliferation and migration, and their capacity to kill cancer cells expressing membrane Hsp70. Herein, we have used flow cytometry to determine the influence of in vitro stimulation of peripheral blood mononuclear cells from healthy individuals with IL-2 or IL-15, either alone or in combination with TKD peptide on the cell surface expression of CD94, NK cell activatory receptors (CD16, NK2D, NKG2C, NKp30, NKp44, NKp46, NKp80, KIR2DL4, DNAM-1 and LAMP1) and NK cell inhibitory receptors (NKG2A, KIR2DL2/L3, LIR1/ILT-2 and NKR-P1A) by CD3+CD56+ (NKT), CD3+CD4+, CD3+CD8+ and CD19+ populations. NKG2D, DNAM-1, LAMP1 and NKR-P1A expression was upregulated after the stimulation with IL-2 or IL-15 alone or in combination with TKD in NKT, CD8+ T cells and B cells. CD94 was upregulated in NKT and CD8+ T cells. Concurrently, an increase in a number of CD8+ T cells expressing LIR1/ILT-2 and CD4+ T cells positive for NKR-P1A was observed. The proportion of CD8+ T cells that expressed NKG2D was higher after IL-2/TKD treatment, when compared with IL-2 treatment alone. In comparison with IL-15 alone, IL-15/TKD treatment increased the proportion of NKT cells that were positive for CD94, LAMP1 and NKRP-1A. The more potent effect of IL-15/TKD on cell surface expression of NKG2D, LIR1/ILT-2 and NKRP-1A was observed in B cells compared with IL-15 alone. However, this increase was not of statistical significance. IL-2/TKD induced significant upregulation of LAMP1 in CD8+ T cells compared with IL-2 alone. Besides NK cells, other immunocompetent cells present within the fraction of peripheral blood mononuclear cells were influenced by the treatment

  3. Influence of In Vitro IL-2 or IL-15 Alone or in Combination with Hsp 70 Derived 14-Mer Peptide (TKD) on the Expression of NK Cell Activatory and Inhibitory Receptors on Peripheral Blood T Cells, B Cells and NKT Cells.

    PubMed

    Hromadnikova, Ilona; Li, Shuang; Kotlabova, Katerina; Dickinson, Anne M

    2016-01-01

    Previous studies from Multhoff and colleagues reported that plasma membrane Hsp70 acts as a tumour-specific recognition structure for activated NK cells, and that the incubation of NK cells with Hsp70 and/or a 14-mer peptide derived from the N-terminal sequence of Hsp70 (TKDNNLLGRFELSG, TKD, aa 450-463) plus a low dose of IL-2 triggers NK cell proliferation and migration, and their capacity to kill cancer cells expressing membrane Hsp70. Herein, we have used flow cytometry to determine the influence of in vitro stimulation of peripheral blood mononuclear cells from healthy individuals with IL-2 or IL-15, either alone or in combination with TKD peptide on the cell surface expression of CD94, NK cell activatory receptors (CD16, NK2D, NKG2C, NKp30, NKp44, NKp46, NKp80, KIR2DL4, DNAM-1 and LAMP1) and NK cell inhibitory receptors (NKG2A, KIR2DL2/L3, LIR1/ILT-2 and NKR-P1A) by CD3+CD56+ (NKT), CD3+CD4+, CD3+CD8+ and CD19+ populations. NKG2D, DNAM-1, LAMP1 and NKR-P1A expression was upregulated after the stimulation with IL-2 or IL-15 alone or in combination with TKD in NKT, CD8+ T cells and B cells. CD94 was upregulated in NKT and CD8+ T cells. Concurrently, an increase in a number of CD8+ T cells expressing LIR1/ILT-2 and CD4+ T cells positive for NKR-P1A was observed. The proportion of CD8+ T cells that expressed NKG2D was higher after IL-2/TKD treatment, when compared with IL-2 treatment alone. In comparison with IL-15 alone, IL-15/TKD treatment increased the proportion of NKT cells that were positive for CD94, LAMP1 and NKRP-1A. The more potent effect of IL-15/TKD on cell surface expression of NKG2D, LIR1/ILT-2 and NKRP-1A was observed in B cells compared with IL-15 alone. However, this increase was not of statistical significance. IL-2/TKD induced significant upregulation of LAMP1 in CD8+ T cells compared with IL-2 alone. Besides NK cells, other immunocompetent cells present within the fraction of peripheral blood mononuclear cells were influenced by the treatment

  4. Generation and characterization of gp100 peptide-specific NK-T cell clones.

    PubMed

    Saeterdal, I; thor Straten, P; Myklebust, J H; Kirkin, A F; Gjertsen, M K; Gaudernack, G

    1998-03-01

    MHC-restricted cytotoxic T lymphocytes (CTLs) specific for antigens expressed by malignant cells are important components of immune responses against human cancer. Peripheral blood monocytes of HLA-A2+ healthy donors were used to induce dendritic cells (DCs) by granulocyte-macrophage colony-stimulating factor and interleukin-4 and loaded with a gp100 peptide (YLEPGPVTA). By applying these peptide-loaded DCs, a CTL line that displayed high cytotoxic reactivity with peptide-loaded target cells was generated. A total of 11 gp100 peptide-specific CTL clones were generated from this cell line. Several of these CTL clones were studied in detail. Of particular interest was clone CTL-45, which, contrary to the parental cell line, displayed strong NK activity and, by flow-cytometric analysis, revealed a CD3+, TCR BV17, CD8+ and CD56+ phenotype. This clone was strictly peptide-specific and effectively killed a panel of melanoma cells expressing HLA-A2 and gp100. Tumor-specific T cells with this kind of dual function are potentially of great clinical importance as they have a backup mechanism that may go into action when tumor cells escape specific killing by losing their HLA-class I molecules.

  5. Thymus medulla fosters generation of natural Treg cells, invariant γδ T cells, and invariant NKT cells: what we learn from intrathymic migration.

    PubMed

    Cowan, Jennifer E; Jenkinson, William E; Anderson, Graham

    2015-03-01

    The organization of the thymus into distinct cortical and medullary regions enables it to control the step-wise migration and development of immature T-cell precursors. Such a process provides access to specialized cortical and medullary thymic epithelial cells at defined stages of maturation, ensuring the generation of self-tolerant and MHC-restricted conventional CD4(+) and CD8(+) αβ T cells. The migratory cues and stromal cell requirements that regulate the development of conventional αβ T cells have been well studied. However, the thymus also fosters the generation of several immunoregulatory T-cell populations that form key components of both innate and adaptive immune responses. These include Foxp3(+) natural regulatory T cells, invariant γδ T cells, and CD1d-restricted invariant natural killer T cells (iNKT cells). While less is known about the intrathymic requirements of these nonconventional T cells, recent studies have highlighted the importance of the thymus medulla in their development. Here, we review recent findings on the mechanisms controlling the intrathymic migration of distinct T-cell subsets, and relate this to knowledge of the microenvironmental requirements of these cells.

  6. Thymus medulla fosters generation of natural Treg cells, invariant γδ T cells, and invariant NKT cells: What we learn from intrathymic migration

    PubMed Central

    Cowan, Jennifer E; Jenkinson, William E; Anderson, Graham

    2015-01-01

    The organization of the thymus into distinct cortical and medullary regions enables it to control the step-wise migration and development of immature T-cell precursors. Such a process provides access to specialized cortical and medullary thymic epithelial cells at defined stages of maturation, ensuring the generation of self-tolerant and MHC-restricted conventional CD4+ and CD8+ αβ T cells. The migratory cues and stromal cell requirements that regulate the development of conventional αβ T cells have been well studied. However, the thymus also fosters the generation of several immunoregulatory T-cell populations that form key components of both innate and adaptive immune responses. These include Foxp3+ natural regulatory T cells, invariant γδ T cells, and CD1d-restricted invariant natural killer T cells (iNKT cells). While less is known about the intrathymic requirements of these nonconventional T cells, recent studies have highlighted the importance of the thymus medulla in their development. Here, we review recent findings on the mechanisms controlling the intrathymic migration of distinct T-cell subsets, and relate this to knowledge of the microenvironmental requirements of these cells. PMID:25615828

  7. Co-delivery of PLGA encapsulated invariant NKT cell agonist with antigenic protein induce strong T cell-mediated antitumor immune responses

    PubMed Central

    Dölen, Yusuf; Kreutz, Martin; Gileadi, Uzi; Tel, Jurjen; Vasaturo, Angela; van Dinther, Eric A. W.; van Hout-Kuijer, Maaike A.; Cerundolo, Vincenzo; Figdor, Carl G.

    2016-01-01

    ABSTRACT Antitumor immunity can be enhanced by the coordinated release and delivery of antigens and immune-stimulating agents to antigen-presenting cells via biodegradable vaccine carriers. So far, encapsulation of TLR ligands and tumor-associated antigens augmented cytotoxic T cell (CTLs) responses. Here, we compared the efficacy of the invariant NKT (iNKT) cell agonist α-galactosylceramide (α-GalCer) and TLR ligands (R848 and poly I:C) as an adjuvant for the full length ovalbumin (OVA) in PLGA nanoparticles. We observed that OVA+α-GalCer nanoparticles (NP) are superior over OVA+TLR-L NP in generating and stimulating antigen-specific cytotoxic T lymphocytes without the need for CD4+ T cell help. Not only a 4-fold higher induction of antigen-specific T cells was observed, but also a more profound IFN-γ secretion was obtained by the addition α-GalCer. Surprisingly, we observed that mixtures of OVA containing NP with α-GalCer were ineffective, demonstrating that co-encapsulation of both α-GalCer and antigen within the same nanoparticle is essential for the observed T cell responses. Moreover, a single immunization with OVA+α-GalCer NP provided substantial protection from tumor formation and even delayed the growth of already established tumors, which coincided with a prominent and enhanced antigen-specific CD8+ T cell infiltration. The provided evidence on the advantage of antigen and α-GalCer coencapsulation should be considered in the design of future nanoparticle vaccines for therapeutic purposes. PMID:26942088

  8. Maternal low protein diet leads to dysregulation of placental iNKT cells and M1/M2 macrophage ratio, body weight loss in male, neonate Sprague-Dawley rats and increased UCP-1 mediated thermogenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Placental immune cells provide cytokines and growth factors that are necessary for placenta development and function. Invariant natural killer T (iNKT) cells are innate cells specific for glycolipid antigens presented by the CD1d molecule and secrete Th1 cytokines in the placenta, suggesting an imm...

  9. Pollution of mycological surfaces in hospital emergency departments correlates positively with blood NKT CD3+ 16+ 56+ and negatively with CD4+ cell levels of their staff

    PubMed Central

    Suska, Milena; Kiepura, Anna; Winnicka, Izabela; Leszczyński, Paweł; Bielawska-Drózd, Agata; Cieślik, Piotr; Kubiak, Leszek; Depczyńska, Daria; Brewczyńska, Aleksandra; Skopińska-Różewska, Ewa; Kocik, Janusz

    2016-01-01

    The aim of the present study was the assessment of the putative influence of yeast and filamentous fungi in healthcare and control (office) workplaces (10 of each kind) on immune system competence measured by NK (natural killer), CD4+, and NKT (natural killer T lymphocyte) cell levels in the blood of the personnel employed at these workplaces. Imprints from floors and walls were collected in winter. The blood was taken in spring the following year, from 40 men, 26 to 53 years old, healthcare workers of hospital emergency departments (HED), who had been working for at least five years in their current positions, and from 36 corresponding controls, working in control offices. Evaluation of blood leukocyte subpopulations was done by flow cytometry. The qualitative analysis of the surface samples revealed a prevalence of strains belonging to Aspergillus spp. and Penicillium spp. genus. There was no statistically significant difference between the level of NKT; however, the percentage of NK cells was lower in the blood of HED workers than in the blood of offices personnel. Spearman analysis revealed the existence of positive correlation (r = 0.4677, p = 0.002) between the total CFU/25 cm2 obtained by imprinting method from walls and floors of HED and the percentage of NKT (CD3+16+56+) lymphocytes collected from the blood of their personnel, and negative correlation (r = –0. 3688, p = 0.019) between this parameter of fungal pollution and the percentage of CD4+ lymphocytes in the blood of HED staff. No other correlations were found. PMID:27095925

  10. Pollution of mycological surfaces in hospital emergency departments correlates positively with blood NKT CD3(+) 16(+) 56(+) and negatively with CD4(+) cell levels of their staff.

    PubMed

    Suska, Milena; Lewicki, Sławomir; Kiepura, Anna; Winnicka, Izabela; Leszczyński, Paweł; Bielawska-Drózd, Agata; Cieślik, Piotr; Kubiak, Leszek; Depczyńska, Daria; Brewczyńska, Aleksandra; Skopińska-Różewska, Ewa; Kocik, Janusz

    2016-01-01

    The aim of the present study was the assessment of the putative influence of yeast and filamentous fungi in healthcare and control (office) workplaces (10 of each kind) on immune system competence measured by NK (natural killer), CD4(+), and NKT (natural killer T lymphocyte) cell levels in the blood of the personnel employed at these workplaces. Imprints from floors and walls were collected in winter. The blood was taken in spring the following year, from 40 men, 26 to 53 years old, healthcare workers of hospital emergency departments (HED), who had been working for at least five years in their current positions, and from 36 corresponding controls, working in control offices. Evaluation of blood leukocyte subpopulations was done by flow cytometry. The qualitative analysis of the surface samples revealed a prevalence of strains belonging to Aspergillus spp. and Penicillium spp. genus. There was no statistically significant difference between the level of NKT; however, the percentage of NK cells was lower in the blood of HED workers than in the blood of offices personnel. Spearman analysis revealed the existence of positive correlation (r = 0.4677, p = 0.002) between the total CFU/25 cm(2) obtained by imprinting method from walls and floors of HED and the percentage of NKT (CD3(+)16(+)56(+)) lymphocytes collected from the blood of their personnel, and negative correlation (r = -0. 3688, p = 0.019) between this parameter of fungal pollution and the percentage of CD4(+) lymphocytes in the blood of HED staff. No other correlations were found.

  11. Assessment of Some Immune Parameters in Occupationally Exposed Nuclear Power Plants Workers: Flowcytometry Measurements of T, B, NK and NKT Cells.

    PubMed

    Gyuleva, Ilona; Panova, Delyana; Djounova, Jana; Rupova, Ivanka; Penkova, Kalina

    2015-01-01

    The purpose of this article is to analyze the results of a 10-year survey of the radiation effects of some immune parameters of occupationally exposed personnel from the Nuclear Power Plant "Kozloduy", Bulgaria. 438 persons working in NPP with cumulative doses between 0.06 mSv and 766.36mSv and a control group with 65 persons were studied. Flow cytometry measurements of T, B, natural killer (NK) and natural killer T (NKT) cell lymphocyte populations were performed. Data were interpreted with regard to cumulative doses, length of service and age. The average values of the studied parameters of cellular immunity were in the reference range relative to age and for most of the workers were not significantly different from the control values. Low doses of ionizing radiation showed some trends of change in the number of CD3+CD4+ helper-inducer lymphocytes, CD3+ CD8+ and NKT cell counts. The observed changes in some of the studied parameters could be interpreted in terms of adaptation processes at low doses. At doses above 100-200 mSv, compensatory mechanisms might be involved to balance deviations in lymphocyte subsets. The observed variations in some cases could not be attributed only to the radiation exposure because of the impact of a number of other exogenous and endogenous factors on the immune system. PMID:26675014

  12. Critical roles of RasGRP1 for invariant natural killer T cell development

    PubMed Central

    Shen, Shudan; Chen, Yong; Gorentla, Balachandra; Lu, Jianxin; Stone, James C.; Zhong, Xiao-Ping

    2011-01-01

    The invariant NKT (iNKT) cell lineage contains CD4+ and CD4- subsets. The mechanisms that control such subset differentiation and iNKT cell maturation in general have not been fully understood. RasGRP1, a guanine nucleotide exchange factor for T cell receptor-induced activation of the Ras-Erk1/2 pathway, is critical for conventional αβ T cell development but dispensable for generating regulatory T cells. Its role in iNKT cells has been unknown. Here we report severe decreases of iNKT cells in RasGRP1-/- mice through cell intrinsic mechanisms. In the remaining iNKT cells in RasGRP1-/- mice, there is a selective absence of the CD4+ subset. Furthermore, RasGRP1-/- iNKT cells are defective in T cell receptor induced proliferation in vitro. These observations establish that RasGRP1 is not only important for early iNKT cell development, but also for the generation/maintenance of the CD4+ iNKT cells. Our data provides genetic evidence that the CD4+ and CD4- iNKT cells are distinct sub-lineages with differential signaling requirements for their development. PMID:21957144

  13. Ex vivo induction and expansion of Natural Killer T cells by CD1d1-Ig coated artificial antigen presenting cells

    PubMed Central

    Webb, Tonya J.; Bieler, Joan G.; Schneck, Jonathan P.; Oelke, Mathias

    2009-01-01

    Natural killer T (NKT) cells play a pivotal role in maintaining immune homostasis. They recognize lipid antigen in the context of CD1d molecules and subsequently produce cytokines that activate cells of both the innate and adaptive immune responses. Many studies examining patients with autoimmune disease or cancer have shown that there is a reduction in both NKT cell number and function. Due to the complexities of manipulating NKT cells in vivo, ex vivo expanded effector NKT cells would be an excellent therapeutic modality. To date, immunotherapy utilizing the NKT/CD1d system has been dependent on the use of autologous DC in the presence or absence of a synthetic glycolipid, α-galactocylceramide. Here we report a novel technique that facilitates the growth and analysis of NKT cells through the use of CD1d-expressing aAPC. CD1d-based aAPC can effectively propagate both canonical (iNKT cells) and noncanonical (Vα14−) NKT cells. Importantly, CD1d-Ig aAPC can expand NKT cells from cancer patients. Thus, CD1d-expressing aAPC will enhance our knowledge of NKT cell biology and could potentially be used as a novel tool in adoptive immunotherapeutic strategies. PMID:19446558

  14. Ex vivo induction and expansion of natural killer T cells by CD1d1-Ig coated artificial antigen presenting cells.

    PubMed

    Webb, Tonya J; Bieler, Joan G; Schneck, Jonathan P; Oelke, Mathias

    2009-07-31

    Natural killer T (NKT) cells play a pivotal role in maintaining immune homostasis. They recognize lipid antigen in the context of CD1d molecules and subsequently produce cytokines that activate cells of both the innate and adaptive immune responses. Many studies examining patients with autoimmune disease or cancer have shown that there is a reduction in both NKT cell number and function. Due to the complexities of manipulating NKT cells in vivo, ex vivo expanded effector NKT cells would be an excellent therapeutic modality. To date, immunotherapy utilizing the NKT/CD1d system has been dependent on the use of autologous DC in the presence or absence of a synthetic glycolipid, alpha-galactocylceramide. Here we report a novel technique that facilitates the growth and analysis of NKT cells through the use of CD1d-expressing aAPC. CD1d-based aAPC can effectively propagate both canonical (iNKT cells) and noncanonical (Valpha14(-)) NKT cells. Importantly, CD1d-Ig aAPC can expand NKT cells from cancer patients. Thus, CD1d-expressing aAPC will enhance our knowledge of NKT cell biology and could potentially be used as a novel tool in adoptive immunotherapeutic strategies. PMID:19446558

  15. KLRG+ invariant natural killer T cells are long-lived effectors.

    PubMed

    Shimizu, Kanako; Sato, Yusuke; Shinga, Jun; Watanabe, Takashi; Endo, Takaho; Asakura, Miki; Yamasaki, Satoru; Kawahara, Kazuyoshi; Kinjo, Yuki; Kitamura, Hiroshi; Watarai, Hiroshi; Ishii, Yasuyuki; Tsuji, Moriya; Taniguchi, Masaru; Ohara, Osamu; Fujii, Shin-ichiro

    2014-08-26

    Immunological memory has been regarded as a unique feature of the adaptive immune response mediated in an antigen-specific manner by T and B lymphocytes. However, natural killer (NK) cells and γδT cells, which traditionally are classified as innate immune cells, have been shown in recent studies to have hallmark features of memory cells. Invariant NKT cell (iNKT cell)-mediated antitumor effects indicate that iNKT cells are activated in vivo by vaccination with iNKT cell ligand-loaded CD1d(+) cells, but not by vaccination with unbound NKT cell ligand. In such models, it previously was thought that the numbers of IFN-γ-producing cells in the spleen returned to the basal level around 1 wk after the vaccination. In the current study, we demonstrate the surprising presence of effector memory-like iNKT cells in the lung. We found long-term antitumor activity in the lungs of mice was enhanced after vaccination with iNKT cell ligand-loaded dendritic cells. Further analyses showed that the KLRG1(+) (Killer cell lectin-like receptor subfamily G, member 1-positive) iNKT cells coexpressing CD49d and granzyme A persisted for several months and displayed a potent secondary response to cognate antigen. Finally, analyses of CDR3β by RNA deep sequencing demonstrated that some particular KLRG1(+) iNKT-cell clones accumulated, suggesting the selection of certain T-cell receptor repertoires by an antigen. The current findings identifying effector memory-like KLRG1(+) iNKT cells in the lung could result in a paradigm shift regarding the basis of newly developed extrathymic iNKT cells and could contribute to the future development of antitumor immunotherapy by uniquely energizing iNKT cells. PMID:25118276

  16. Synthetic glycolipid activators of natural killer T cells as immunotherapeutic agents

    PubMed Central

    Carreño, Leandro J; Saavedra-Ávila, Noemí A; Porcelli, Steven A

    2016-01-01

    Certain types of glycolipids have been found to have remarkable immunomodulatory properties as a result of their ability to activate specific T lymphocyte populations with an extremely wide range of immune effector properties. The most extensively studied glycolipid reactive T cells are known as invariant natural killer T (iNKT) cells. The antigen receptors of these cells specifically recognize certain glycolipids, most notably glycosphingolipids with α-anomeric monosaccharides, presented by the major histocompatibility complex class I-like molecule CD1d. Once activated, iNKT cells can secrete a very diverse array of pro- and anti-inflammatory cytokines to modulate innate and adaptive immune responses. Thus, glycolipid-mediated activation of iNKT cells has been explored for immunotherapy in a variety of disease states, including cancer and a range of infections. In this review, we discuss the design of synthetic glycolipid activators for iNKT cells, their impact on adaptive immune responses and their use to modulate iNKT cell responses to improve immunity against infections and cancer. Current challenges in translating results from preclinical animal studies to humans are also discussed. PMID:27195112

  17. Identification and Simian Immunodeficiency Virus Infection of CD1d-Restricted Macaque Natural Killer T Cells

    PubMed Central

    Motsinger, Alison; Azimzadeh, Agnes; Stanic, Aleksandar K.; Johnson, R. Paul; Van Kaer, Luc; Joyce, Sebastian; Unutmaz, Derya

    2003-01-01

    Natural killer T (NKT) cells express a highly conserved T-cell receptor (TCR) and recognize glycolipids in the context of CD1d molecules. We recently demonstrated that CD4+ NKT cells are highly susceptible to human immunodeficiency virus type 1 (HIV-1) infection and are selectively depleted in HIV-infected individuals. Here, we identified macaque NKT cells using CD1d tetramers and human Vα24 antibodies. Similar to human NKT cells, α-galactosylceramide (α-GalCer)-pulsed dendritic cells activate and expand macaque NKT cells. Upon restimulation with α-GalCer-pulsed CD1d+ cells, macaque NKT cells secreted high levels of cytokines, a characteristic of these T cells. Remarkably, the majority of resting and activated macaque NKT cells expressed CD8, and a smaller portion expressed CD4. Macaque NKT cells also expressed the HIV-1/simian immunodeficiency virus (SIV) coreceptor CCR5, and the CD4+ subset was susceptible to SIV infection. Identification of macaque NKT cells has major implications for delineating the role of these cells in nonhuman primate disease models of HIV as well as other pathological conditions, such as allograft rejection and autoimmunity. PMID:12829854

  18. Interleukin-13 Pathway Alterations Impair Invariant Natural Killer T-Cell-Mediated Regulation of Effector T Cells in Type 1 Diabetes.

    PubMed

    Usero, Lorena; Sánchez, Ana; Pizarro, Eduarda; Xufré, Cristina; Martí, Mercè; Jaraquemada, Dolores; Roura-Mir, Carme

    2016-08-01

    Many studies have shown that human natural killer T (NKT) cells can promote immunity to pathogens, but their regulatory function is still being investigated. Invariant NKT (iNKT) cells have been shown to be effective in preventing type 1 diabetes in the NOD mouse model. Activation of plasmacytoid dendritic cells, modulation of B-cell responses, and immune deviation were proposed to be responsible for the suppressive effect of iNKT cells. We studied the regulatory capacity of human iNKT cells from control subjects and patients with type 1 diabetes (T1D) at disease clinical onset. We demonstrate that control iNKT cells suppress the proliferation of effector T cells (Teffs) through a cell contact-independent mechanism. Of note, suppression depended on the secretion of interleukin-13 (IL-13) by iNKT cells because an antibody blocking this cytokine resulted from the abrogation of Teff suppression; however, T1D-derived iNKT cells showed impaired regulation that could be attributed to the decrease in IL-13 secretion. Thus, alteration of the IL-13 pathway at disease onset may lead to the progression of the autoimmune response in T1D. Advances in the study of iNKT cells and the selection of agonists potentiating IL-13 secretion should permit new therapeutic strategies to prevent the development of T1D. PMID:27207542

  19. CRISPR-Mediated Slamf1Δ/Δ Slamf5Δ/Δ Slamf6Δ/Δ Triple Gene Disruption Reveals NKT Cell Defects but Not T Follicular Helper Cell Defects.

    PubMed

    Hu, Joyce K; Crampton, Jordan C; Locci, Michela; Crotty, Shane

    2016-01-01

    SAP (SH2D1A) is required intrinsically in CD4 T cells to generate germinal center responses and long-term humoral immunity. SAP binds to SLAM family receptors, including SLAM, CD84, and Ly108 to enhance cytokine secretion and sustained T cell:B cell adhesion, which both improve T follicular helper (Tfh) cell aid to germinal center (GC) B cells. To understand the overlapping roles of multiple SLAM family receptors in germinal center responses, Slamf1Δ/Δ Slamf5Δ/Δ Slamf6Δ/Δ triple gene disruption (Slamf1,5,6Δ/Δ) mice were generated using CRISPR-Cas9 gene editing to eliminate expression of SLAM (CD150), CD84, and Ly108, respectively. Gene targeting was highly efficient, with 6 of 6 alleles disrupted in 14 of 23 pups and the majority of alleles disrupted in the remaining pups. NKT cell differentiation in Slamf1,5,6Δ/Δ mice was defective, but not completely absent. The remaining NKT cells exhibited substantially increased 2B4 (SLAMF4) expression. Surprisingly, there were no overt defects in germinal center responses to acute viral infections or protein immunizations in Slamf1,5,6Δ/Δ mice, unlike Sh2d1a-/- mice. Similarly, in the context of a competitive environment, SLAM family receptor expressing GC Tfh cell, GC B cell, and plasma cell responses exhibited no advantages over Slamf1,5,6Δ/Δ cells.

  20. CXCL16-positive dendritic cells enhance invariant natural killer T cell-dependent IFNγ production and tumor control

    PubMed Central

    Veinotte, Linnea; Gebremeskel, Simon; Johnston, Brent

    2016-01-01

    ABSTRACT Crosstalk interactions between dendritic cells (DCs) and invariant natural killer T (iNKT) cells are important in regulating antitumor responses elicited by glycolipid antigens. iNKT cells constitutively express the chemokine receptor CXCR6, while cytokine-activated DCs upregulate the transmembrane chemokine ligand, CXCL16. This study examined the co-stimulatory role of CXCR6/CXCL16 interactions in glycolipid-dependent iNKT cell activation and tumor control. Spleen and liver DCs in wild-type mice, but not iNKT cell deficient (Jα18−/−) mice, transiently upregulated surface CXCL16 following in vivo administration of the glycolipid antigen α-galactosylceramide. Recombinant CXCL16 did not directly induce iNKT cell activation in vitro but enhanced interferon (IFN)-γ production when mouse or human iNKT cells were stimulated with plate-bound anti-CD3. Compared with glycolipid-loaded CXCL16neg DCs, CXCL16hi DCs induced higher levels of IFNγ production in iNKT cell cultures and following adoptive transfer in vivo. The number of IFNγ+ iNKT cells and expansion of T-bet+ iNKT cells were reduced in vivo when CXCL16−/− DCs were used to activate iNKT cells. Enhanced IFNγ production in vivo was not dependent on CXCR6 expression on natural killer (NK) cells. Adoptive transfer of glycolipid-loaded CXCL16hi DCs provided superior protection against tumor metastasis compared to CXCL16neg DC transfers. Similarly, wild-type DCs provided superior protection against metastasis compared with CXCL16−/− DCs. These experiments implicate an important role for CXCR6/CXCL16 interactions in regulating iNKT cell IFNγ production and tumor control. The selective use of CXCL16hi DCs in adoptive transfer immunotherapies may prove useful for enhancing T helper (Th) type 1 responses and clinical outcomes in cancer patients. PMID:27471636

  1. Natural Killer T Cell Activation Protects Mice Against Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Singh, Avneesh K.; Wilson, Michael T.; Hong, Seokmann; Olivares-Villagómez, Danyvid; Du, Caigan; Stanic, Aleksandar K.; Joyce, Sebastian; Sriram, Subramaniam; Koezuka, Yasuhiko; Van Kaer, Luc

    2001-01-01

    Experimental autoimmune encephalomyelitis (EAE) serves as a prototypic model for T cell–mediated autoimmunity. Vα14 natural killer T (NKT) cells are a subset of T lymphocytes that recognize glycolipid antigens presented by the nonpolymorphic major histocompatibility complex (MHC) class I–like protein CD1d. Here, we show that activation of Vα14 NKT cells by the glycosphingolipid α-galactosylceramide (α-GalCer) protects susceptible mice against EAE. β-GalCer, which binds CD1d but is not recognized by NKT cells, failed to protect mice against EAE. Furthermore, α-GalCer was unable to protect CD1d knockout (KO) mice against EAE, indicating the requirement for an intact CD1d antigen presentation pathway. Protection of disease conferred by α-GalCer correlated with its ability to suppress myelin antigen-specific Th1 responses and/or to promote myelin antigen-specific Th2 cell responses. α-GalCer was unable to protect IL-4 KO and IL-10 KO mice against EAE, indicating a critical role for both of these cytokines. Because recognition of α-GalCer by NKT cells is phylogenetically conserved, our findings have identified NKT cells as novel target cells for treatment of inflammatory diseases of the central nervous system. PMID:11748281

  2. MHC-dependent and -independent modulation of endogenous Ly49 receptors on NK1.1+ T lymphocytes directed by T-cell receptor type

    PubMed Central

    Sköld, Markus; Stenström, Martin; Sidobre, Stephane; Höglund, Petter; Kronenberg, Mitchell; Cardell, Susanna

    2003-01-01

    Natural killer (NK) T lymphocytes are thought to act as regulatory cells directing early events during immune responses. Murine NKT cells express inhibitory receptors of the Ly49 family. These receptors have a well-established and crucial role in modulating NK cell activities, but their physiological role in regulating NKT cells is not well understood, nor is the influence of major histocompatibility (MHC) ligands on endogenous Ly49 expression. We have further investigated how the expression of inhibitory NK receptors is regulated on NKT cells, and demonstrate a non-random expression of ligated Ly49 molecules on CD1d-restricted NKT cells. The nature of the T-cell receptor on the NKT cell crucially determines the profile of expressed Ly49 isoforms. Further, we show that MHC class I ligands efficiently modulate the expression levels of the inhibitory receptors, and the frequencies of cells positive for the Ly49 members. In addition, we find a several-fold increase in Ly49C/I-expressing NKT cells in adult thymus, apparently independent of MHC class I molecules. Abundant expression of Ly49 receptors on NKT cells, and the striking differences found in Ly49 isoform patterns on NKT-cell subsets differing in T-cell receptor expression, suggest that the pattern of Ly49 expression is tuned to fit the T-cell receptor and to emphasize further a role for these receptors in NKT immunity. PMID:14632658

  3. Lipid and Carbohydrate Modifications of α-Galactosylceramide Differently Influence Mouse and Human Type I Natural Killer T Cell Activation*

    PubMed Central

    Birkholz, Alysia; Nemčovič, Marek; Yu, Esther Dawen; Girardi, Enrico; Wang, Jing; Khurana, Archana; Pauwels, Nora; Farber, Elisa; Chitale, Sampada; Franck, Richard W.; Tsuji, Moriya; Howell, Amy; Van Calenbergh, Serge; Kronenberg, Mitchell; Zajonc, Dirk M.

    2015-01-01

    The ability of different glycosphingolipids (GSLs) to activate type I natural killer T cells (NKT cells) has been known for 2 decades. The possible therapeutic use of these GSLs has been studied in many ways; however, studies are needed in which the efficacy of promising GSLs is compared under identical conditions. Here, we compare five unique GSLs structurally derived from α-galactosylceramide. We employed biophysical and biological assays, as well as x-ray crystallography to study the impact of the chemical modifications of the antigen on type I NKT cell activation. Although all glycolipids are bound by the T cell receptor of type I NKT cells in real time binding assays with high affinity, only a few activate type I NKT cells in in vivo or in vitro experiments. The differences in biological responses are likely a result of different pharmacokinetic properties of each lipid, which carry modifications at different parts of the molecule. Our results indicate a need to perform a variety of assays to ascertain the therapeutic potential of type I NKT cell GSL activators. PMID:26018083

  4. Lipid and Carbohydrate Modifications of α-Galactosylceramide Differently Influence Mouse and Human Type I Natural Killer T Cell Activation.

    PubMed

    Birkholz, Alysia; Nemčovič, Marek; Yu, Esther Dawen; Girardi, Enrico; Wang, Jing; Khurana, Archana; Pauwels, Nora; Farber, Elisa; Chitale, Sampada; Franck, Richard W; Tsuji, Moriya; Howell, Amy; Van Calenbergh, Serge; Kronenberg, Mitchell; Zajonc, Dirk M

    2015-07-10

    The ability of different glycosphingolipids (GSLs) to activate type I natural killer T cells (NKT cells) has been known for 2 decades. The possible therapeutic use of these GSLs has been studied in many ways; however, studies are needed in which the efficacy of promising GSLs is compared under identical conditions. Here, we compare five unique GSLs structurally derived from α-galactosylceramide. We employed biophysical and biological assays, as well as x-ray crystallography to study the impact of the chemical modifications of the antigen on type I NKT cell activation. Although all glycolipids are bound by the T cell receptor of type I NKT cells in real time binding assays with high affinity, only a few activate type I NKT cells in in vivo or in vitro experiments. The differences in biological responses are likely a result of different pharmacokinetic properties of each lipid, which carry modifications at different parts of the molecule. Our results indicate a need to perform a variety of assays to ascertain the therapeutic potential of type I NKT cell GSL activators. PMID:26018083

  5. Nasal NK/T cell lymphoma presents with long-term nasal blockage and fever: a rare case report and literature review

    PubMed Central

    Zou, Hai; Pan, Ke-Hua; Wu, Liang; Pan, Hong-Ying; Ding, Ya-Hui; Zheng, Ming-Hua

    2016-01-01

    NK/T cell lymphoma (NKTCL) is a common disease which is a threat to human health. Nasal NKTCL is a rare but serious type of systemic lymphoma because of its high mortality rate and serious complications. In this case report, we describe a male who presented with nasal blockage in the right side, a fever of one month duration and a soy-like, painless and gradually increasing mass in the right submandibular region due to nasal NKTCL. The patient had no significant medical history and the initial clinical symptoms were nasal blockage. Contrast computed tomography showed that the nasopharyngeal mucosa was thickened and that the celiac and retroperitoneal lymphaden was intumescent. Finally a biopsy, guided by nasal endoscopy and examined using flow cytometry confirmed a diagnosis of NKTCL. Nasal NKTCL is rare and has no unique characteristics at first presentation, such as epidemiology and obvious clinical manifestation. As no effective therapy is currently available for this disease, early diagnosis and therapy of nasal NKTCL remains challenging. PMID:26885897

  6. Synthesis and evaluation of immunostimulant plasmalogen lysophosphatidylethanolamine and analogues for natural killer T cells.

    PubMed

    Ni, Guanghui; Li, Zhiyuan; Liang, Kangjiang; Wu, Ting; De Libero, Gennaro; Xia, Chengfeng

    2014-06-01

    Plasmalogen lysophosphatidylethanolamine (pLPE) had been identified as a self antigen for natural killer T cells (NKT cells). It is very important in the development, maturation and activation of NKT cells in thymus. Besides, pLPE is a novel type of antigen for NKT cells. To evaluate the structure-activity relationship (SAR) of this new antigen, pLPE and its analogues referred to different aliphatic chains and linkages at the sn-1 position of the glycerol backbone were synthesized, and the biological activities of these analogues was characterized. It is discovered that the linkages between phosphate and lipid moiety are not important for the antigens' activities. The pLPE analogues 1, 3, 4, 7 and 9, which have additional double bonds on lipid parts, were identified as new NKT agonists. Moreover, the analogues 4, 7 and 9 were discovered as potent Th2 activators for NKT cells.

  7. Homeostatic regulation of marginal zone B cells by invariant natural killer T cells.

    PubMed

    Wen, Xiangshu; Yang, Jun-Qi; Kim, Peter J; Singh, Ram Raj

    2011-01-01

    Marginal zone B cells (MZB) mount a rapid antibody response, potently activate naïve T cells, and are enriched in autoreactive B cells. MZBs express high levels of CD1d, the restriction element for invariant natural killer T cells (iNKT). Here, we examined the effect of iNKT cells on MZB cell activation and numbers in vitro and in vivo in normal and autoimmune mice. Results show that iNKT cells activate MZBs, but restrict their numbers in vitro and in vivo in normal BALB/c and C57/BL6 mice. iNKT cells do so by increasing the activation-induced cell death and curtailing proliferation of MZB cells, whereas they promote the proliferation of follicular B cells. Sorted iNKT cells can directly execute this function, without help from other immune cells. Such MZB regulation by iNKTs is mediated, at least in part, via CD1d on B cells in a contact-dependent manner, whereas iNKT-induced proliferation of follicular B cells occurs in a contact- and CD1d-independent manner. Finally, we show that iNKT cells reduce 'autoreactive' MZB cells in an anti-DNA transgenic model, and limit MZB cell numbers in autoimmune-prone (NZB×NZW)F1 and non-obese diabetic mice, suggesting a potentially new mechanism whereby iNKT cells might regulate pathologic autoimmunity. Differential regulation of follicular B cells versus potentially autoreactive MZBs by iNKT cells has important implications for autoimmune diseases as well as for conditions that require a rapid innate B cell response.

  8. An Optimized Method for Isolating and Expanding Invariant Natural Killer T Cells from Mouse Spleen.

    PubMed

    Govindarajan, Srinath; Elewaut, Dirk; Drennan, Michael

    2015-01-01

    The ability to rapidly secrete cytokines upon stimulation is a functional characteristic of the invariant natural killer T (iNKT) cell lineage. iNKT cells are therefore characterized as an innate T cell population capable of activating and steering adaptive immune responses. The development of improved techniques for the culture and expansion of murine iNKT cells facilitates the study of iNKT cell biology in in vitro and in vivo model systems. Here we describe an optimized procedure for the isolation and expansion of murine splenic iNKT cells. Spleens from C57Bl/6 mice are removed, dissected and strained and the resulting cellular suspension is layered over density gradient media. Following centrifugation, splenic mononuclear cells (MNCs) are collected and CD5-positive (CD5(+)) lymphocytes are enriched for using magnetic beads. iNKT cells within the CD5(+) fraction are subsequently stained with αGalCer-loaded CD1d tetramer and purified by fluorescence activated cell sorting (FACS). FACS sorted iNKT cells are then initially cultured in vitro using a combination of recombinant murine cytokines and plate-bound T cell receptor (TCR) stimuli before being expanded in the presence of murine recombinant IL-7. Using this technique, approximately 10(8) iNKT cells can be generated within 18-20 days of culture, after which they can be used for functional assays in vitro, or for in vivo transfer experiments in mice. PMID:26555769

  9. CRISPR-Mediated Slamf1Δ/Δ Slamf5Δ/Δ Slamf6Δ/Δ Triple Gene Disruption Reveals NKT Cell Defects but Not T Follicular Helper Cell Defects

    PubMed Central

    Hu, Joyce K.; Crampton, Jordan C.; Locci, Michela; Crotty, Shane

    2016-01-01

    SAP (SH2D1A) is required intrinsically in CD4 T cells to generate germinal center responses and long-term humoral immunity. SAP binds to SLAM family receptors, including SLAM, CD84, and Ly108 to enhance cytokine secretion and sustained T cell:B cell adhesion, which both improve T follicular helper (Tfh) cell aid to germinal center (GC) B cells. To understand the overlapping roles of multiple SLAM family receptors in germinal center responses, Slamf1Δ/Δ Slamf5Δ/Δ Slamf6Δ/Δ triple gene disruption (Slamf1,5,6Δ/Δ) mice were generated using CRISPR-Cas9 gene editing to eliminate expression of SLAM (CD150), CD84, and Ly108, respectively. Gene targeting was highly efficient, with 6 of 6 alleles disrupted in 14 of 23 pups and the majority of alleles disrupted in the remaining pups. NKT cell differentiation in Slamf1,5,6Δ/Δ mice was defective, but not completely absent. The remaining NKT cells exhibited substantially increased 2B4 (SLAMF4) expression. Surprisingly, there were no overt defects in germinal center responses to acute viral infections or protein immunizations in Slamf1,5,6Δ/Δ mice, unlike Sh2d1a-/- mice. Similarly, in the context of a competitive environment, SLAM family receptor expressing GC Tfh cell, GC B cell, and plasma cell responses exhibited no advantages over Slamf1,5,6Δ/Δ cells. PMID:27223891

  10. Lipid and glycolipid antigens of CD1d-restricted natural killer T cells

    PubMed Central

    Venkataswamy, Manjunatha M.; Porcelli, Steven A.

    2009-01-01

    In spite of their relatively limited antigen receptor repertoire, CD1d-restricted NKT cells recognize a surprisingly diverse range of lipid and glycolipid antigens. Recent studies of natural and synthetic CD1d presented antigens provide an increasingly detailed picture of how the specific structural features of these lipids and glycolipids influence their ability to be presented to NKT cells and stimulate their diverse immunologic functions. Particularly for synthetic analogues of α-galactosylceramides which have been the focus of intense recent investigation, it is becoming clear that the design of glycolipid antigens with the ability to precisely control the specific immunologic activities of NKT cells is likely to be feasible. The emerging details of the mechanisms underlying the structure-activity relationship of NKT cell antigens will assist greatly in the design and production of immunomodulatory agents for the precise manipulation of NKT cells and the many other components of the immune system that they influence. PMID:19945296

  11. Human Dendritic Cells Derived From Embryonic Stem Cells Stably Modified With CD1d Efficiently Stimulate Antitumor Invariant Natural Killer T Cell Response

    PubMed Central

    2014-01-01

    Invariant natural killer T (iNKT) cells are a unique lymphocyte subpopulation that mediates antitumor activities upon activation. A current strategy to harness iNKT cells for cancer treatment is endogenous iNKT cell activation using patient-derived dendritic cells (DCs). However, the limited number and functional defects of patient DCs are still the major challenges for this therapeutic approach. In this study, we investigated whether human embryonic stem cells (hESCs) with an ectopically expressed CD1d gene could be exploited to address this issue. Using a lentivector carrying an optimized expression cassette, we generated stably modified hESC lines that consistently overexpressed CD1d. These modified hESC lines were able to differentiate into DCs as efficiently as the parental line. Most importantly, more than 50% of such derived DCs were CD1d+. These CD1d-overexpressing DCs were more efficient in inducing iNKT cell response than those without modification, and their ability was comparable to that of DCs generated from monocytes of healthy donors. The iNKT cells expanded by the CD1d-overexpressing DCs were functional, as demonstrated by their ability to lyse iNKT cell-sensitive glioma cells. Therefore, hESCs stably modified with the CD1d gene may serve as a convenient, unlimited, and competent DC source for iNKT cell-based cancer immunotherapy. PMID:24292792

  12. Mutation of the Traj18 gene segment using TALENs to generate Natural Killer T cell deficient mice

    PubMed Central

    Zhang, Jingjing; Bedel, Romain; Krovi, S. Harsha; Tuttle, Kathryn D.; Zhang, Bicheng; Gross, James; Gapin, Laurent; Matsuda, Jennifer L.

    2016-01-01

    Invariant Natural Killer T (iNKT) cells are a unique subset of T lymphocytes that have been implicated in both promoting and suppressing a multitude of immune responses. In mice, iNKT cells express T cell antigen receptors (TCRs) comprising a unique TCRα rearrangement between the Trav11 and Traj18 gene segments. When paired with certain Trbv TCRβ chains, these TCRs recognize lipid antigens presented by the major histocompatibility complex (MHC) class I-like molecule, CD1d. Until recently, the sole model of iNKT deficiency targeted the Jα18, which is absolutely required to form the TCR with the appropriate antigenic specificity. However, these mice were demonstrated to have a large reduction in TCR repertoire diversity, which could confound results arising from studies using these mice. Here, we have created a new NKT-deficient mouse strain using transcription activator-like effector nuclease (TALEN) technology to only disrupt the expression of Jα18, leaving the remaining Jα repertoire unperturbed. We confirm that these mice lack iNKT cells and do not respond to lipid antigen stimulation while the development of conventional T cells, regulatory T cells, and type Ib NKT cells is normal. This new mouse strain will serve as a new model of iNKT cell deficiency to facilitate our understanding of iNKT biology. PMID:27256918

  13. Invariant Natural Killer T cells in lupus patients promote IgG and IgG autoantibody production

    PubMed Central

    Shen, Lei; Zhang, Hong; Caimol, Maria; Benike, Claudia J.; Chakravarty, Eliza F.; Strober, Samuel; Engleman, Edgar G.

    2014-01-01

    IgG autoantibodies, including antibodies to double-stranded DNA (dsDNA), are pathogenic in systemic lupus erythematosus, but the mechanisms controlling their production are not understood. To assess the role of invariant natural killer T (iNKT) cells in this process, we studied 44 lupus patients. We took advantage of the propensity of PBMCs from patients with active disease to spontaneously secrete IgG, in vitro. Despite the rarity of iNKT cells in lupus blood (0.002∼0.05% of CD3-positive T cells), antibody blockade of the conserved iNKT TCR or its ligand, CD1d, or selective depletion of iNKT cells, inhibited spontaneous secretion of total IgG and anti-dsDNA IgG by lupus PBMCs. Addition of anti-iNKT or anti-CD1d antibody to PBMC cultures also reduced the frequency of plasma cells, suggesting that lupus iNKT cells induce B cell maturation. Like fresh iNKT cells, expanded iNKT cell lines from lupus patients, but not healthy subjects, induced autologous B cells to secrete antibodies, including IgG anti-dsDNA. This activity was inhibited by anti-CD40L antibody, as well as anti-CD1d antibody, confirming a role for CD40L-CD40 and TCR-CD1d interactions in lupus iNKT mediated help. These results reveal a critical role for iNKT cells in B cell maturation and autoantibody production in patients with lupus. PMID:25352488

  14. [Molecular pathogenesis of peripheral T cell lymphoma (2): extranodal NK/T cell lymphoma, nasal type, adult T cell leukemia/lymphoma and enteropathy associated T cell lymphoma].

    PubMed

    Couronné, Lucile; Bastard, Christian; Gaulard, Philippe; Hermine, Olivier; Bernard, Olivier

    2015-11-01

    Peripheral T-cell lymphomas (PTCL) belong to the group of non-Hodgkin lymphoma and particularly that of mature T /NK cells lymphoproliferative neoplasms. The 2008 WHO classification describes different PTCL entities with varying prevalence. With the exception of histologic subtype "ALK positive anaplastic large cell lymphoma", PTCL are characterized by a poor prognosis. The mechanisms underlying the pathogenesis of these lymphomas are not yet fully understood, but development of genomic high-throughput analysis techniques now allows to extensively identify the molecular abnormalities present in tumor cells. This review aims to summarize the current knowledge and recent advances about the molecular events occurring at the origin or during the natural history of main entities of PTCL. The first part published in the October issue was focused on the three more frequent entities, i.e. angioimmunoblastic T-cell lymphoma, peripheral T-cell lymphoma, not otherwise specified, and anaplastic large cell lymphoma. The second part presented herein will describe other subtypes less frequent and of poor prognosis : extranodal NK/T-cell lymphoma, nasal type, adult T-cell leukemia/lymphoma, and enteropathy-associated T-cell lymphoma. PMID:26576610

  15. Extranodal NK/T cell lymphoma, nasal type, of the small intestine diagnosed by double-balloon endoscopy.

    PubMed

    Wakabayashi, Shihoko; Arai, Ayako; Oshikawa, Gaku; Araki, Akihiro; Watanabe, Mamoru; Uchida, Naoyuki; Taniguchi, Shuichi; Miura, Osamu

    2009-12-01

    Extranodal NK/T-cell lymphoma (ENKL), nasal type, is rare and the small intestine is quite extraordinary as a primary lesion site. We report a 47-year-old man with ENKL of the small intestine. He was referred to our hospital because of bloody stool and the diagnosis was made by double-balloon endoscopy (DBE) of the small intestine without surgical procedure. His clinical stage was IVB and he was categorized in group 4 by prognostic index of ENKL. He went into complete remission (CR) after intensive chemotherapy (DeVIC) and subsequently underwent allogeneic bone marrow transplantation (BMT). Although he remained in CR for about 8 months after BMT, he died of disease recurrence 14 months after the diagnosis was made. ENKL of the small intestine follows a highly aggressive course. We describe the usefulness of DBE for diagnosis and management for ENKL of the small intestine. Additional cases, however, should be accumulated to establish optimal treatment strategy. PMID:19936878

  16. Optimization of natural killer T cell-mediated immunotherapy in cancer using cell-based and nanovector vaccines.

    PubMed

    Faveeuw, C; Trottein, F

    2014-03-15

    α-Galactosylceramide (α-GalCer) represents a new class of immune stimulators and vaccine adjuvants that activate type I natural killer T (NKT) cells to swiftly release cytokines and to exert helper functions for acquired immune responses. This unique property prompted clinicians to exploit the antitumor potential of NKT cells. Here, we review the effects of α-GalCer in (pre)clinics and discuss current and future strategies that aim to optimize NKT cell-mediated antitumor therapy, with a particular focus on cell-based and nanovector vaccines.

  17. Natural killer T cells in adipose tissue are activated in lean mice.

    PubMed

    Kondo, Taisuke; Toyoshima, Yujiro; Ishii, Yoshiyuki; Kyuwa, Shigeru

    2013-01-01

    Adipose tissues are closely connected with the immune system. It has been suggested that metabolic syndromes such as type 2 diabetes, arteriosclerosis and liver steatosis can be attributed to adipose tissue inflammation characterized by macrophage infiltration. To understand a physiological and pathological role of natural killer T (NKT) cells on inflammation in adipose tissue, we characterized a subset of NKT cells in abdominal and subcutaneous adipose tissues in C57BL/6J mice fed normal or high-fat diets. NKT cells comprised a larger portion of lymphocytes in adipose tissues compared with the spleen and peripheral blood, with epididymal adipose tissue having the highest number of NKT cells. Furthermore, some NKT cells in adipose tissues expressed higher levels of CD69 and intracellular interferon-γ, whereas the Vβ repertoires of NKT cells in adipose tissues were similar to other cells. In obese mice fed a high-fat diet, adipose tissue inflammation had little effect on the Vβ repertoire of NKT cells in epididymal adipose tissues. We speculate that the NKT cells in adipose tissues may form an equivalent subset in other tissues and that these subsets are likely to participate in adipose tissue inflammation. Additionally, the high expression level of CD69 and intracellular IFN-γ raises the possibility that NKT cells in adipose tissue may be stimulated by some physiological mechanism.

  18. Testosterone Increases Susceptibility to Amebic Liver Abscess in Mice and Mediates Inhibition of IFNγ Secretion in Natural Killer T Cells

    PubMed Central

    Lotter, Hannelore; Helk, Elena; Bernin, Hannah; Jacobs, Thomas; Prehn, Cornelia; Adamski, Jerzy; González-Roldán, Nestor; Holst, Otto; Tannich, Egbert

    2013-01-01

    Amebic liver abscess (ALA), a parasitic disease due to infection with the protozoan Entamoeba histolytica, occurs age and gender dependent with strong preferences for adult males. Using a mouse model for ALA with a similar male bias for the disease, we have investigated the role of female and male sexual hormones and provide evidence for a strong contribution of testosterone. Removal of testosterone by orchiectomy significantly reduced sizes of abscesses in male mice, while substitution of testosterone increased development of ALA in female mice. Activation of natural killer T (NKT) cells, which are known to be important for the control of ALA, is influenced by testosterone. Specifically activated NKT cells isolated from female mice produce more IFNγ compared to NKT cells derived from male mice. This high level production of IFNγ in female derived NKT cells was inhibited by testosterone substitution, while the IFNγ production in male derived NKT cells was increased by orchiectomy. Gender dependent differences were not a result of differences in the total number of NKT cells, but a result of a higher activation potential for the CD4− NKT cell subpopulation in female mice. Taken together, we conclude that the hormone status of the host, in particular the testosterone level, determines susceptibility to ALA at least in a mouse model of the disease. PMID:23424637

  19. Third-party CD4+ invariant natural killer T cells protect from murine GVHD lethality.

    PubMed

    Schneidawind, Dominik; Baker, Jeanette; Pierini, Antonio; Buechele, Corina; Luong, Richard H; Meyer, Everett H; Negrin, Robert S

    2015-05-28

    Graft-versus-host disease (GVHD) is driven by extensive activation and proliferation of alloreactive donor T cells causing significant morbidity and mortality following allogeneic hematopoietic cell transplantation (HCT). Invariant natural killer T (iNKT) cells are a potent immunoregulatory T-cell subset in both humans and mice. Here, we explored the role of adoptively transferred third-party CD4(+) iNKT cells for protection from lethal GVHD in a murine model of allogeneic HCT across major histocompatibility barriers. We found that low numbers of CD4(+) iNKT cells from third-party mice resulted in a significant survival benefit with retained graft-versus-tumor effects. In vivo expansion of alloreactive T cells was diminished while displaying a T helper cell 2-biased phenotype. Notably, CD4(+) iNKT cells from third-party mice were as protective as CD4(+) iNKT cells from donor mice although third-party CD4(+) iNKT cells were rejected early after allogeneic HCT. Adoptive transfer of third-party CD4(+) iNKT cells resulted in a robust expansion of donor CD4(+)CD25(+)FoxP3(+) regulatory T cells (Tregs) that were required for protection from lethal GVHD. However, in vivo depletion of myeloid-derived suppressor cells abrogated both Treg expansion and protection from lethal GVHD. Despite the fact that iNKT cells are a rare cell population, the almost unlimited third-party availability and feasibility of in vitro expansion provide the basis for clinical translation.

  20. Characterization of the natural killer T-cell response in an adoptive transfer model of atherosclerosis.

    PubMed

    VanderLaan, Paul A; Reardon, Catherine A; Sagiv, Yuval; Blachowicz, Lydia; Lukens, John; Nissenbaum, Michael; Wang, Chyung-Ru; Getz, Godfrey S

    2007-03-01

    Natural killer T (NKT) cells have recently been implicated in atherogenesis, primarily for their ability to recognize and respond to lipid antigens. Because the atherosclerotic lesion is characterized by the retention and modification of lipids in the vascular wall, NKT cells may be involved in promoting the local vascular inflammatory response. Here, we investigate the proatherogenic role of NKT cells in an adoptive transfer model of atherosclerosis, using as recipients immune-deficient, atherosclerosis-susceptible RAG1(-/-)LDLR(-/-) mice. The adoptive transfer of an NKT cell-enriched splenocyte population from Valpha14Jalpha18 T-cell receptor transgenic mice resulted in a 73% increase in aortic root lesion area compared with recipients of NKT cell-deficient splenocytes derived from CD1d(-/-) mice after 12 weeks of Western-type diet feeding. The total serum from hypercholesterolemic mice leads to a small but significant activation of Valpha14Jalpha18 T-cell receptor-expressing hybridoma line by dendritic cells that is CD1d-dependent. Therefore, these studies demonstrate that NKT cells are proatherogenic in the absence of exogenous stimulation, and this activity is likely associated with endogenous lipid antigens carried by lipoproteins in the circulation and perhaps also in the atherosclerotic plaque.

  1. Characterization of the Natural Killer T-Cell Response in an Adoptive Transfer Model of Atherosclerosis

    PubMed Central

    VanderLaan, Paul A.; Reardon, Catherine A.; Sagiv, Yuval; Blachowicz, Lydia; Lukens, John; Nissenbaum, Michael; Wang, Chyung-Ru; Getz, Godfrey S.

    2007-01-01

    Natural killer T (NKT) cells have recently been implicated in atherogenesis, primarily for their ability to recognize and respond to lipid antigens. Because the atherosclerotic lesion is characterized by the retention and modification of lipids in the vascular wall, NKT cells may be involved in promoting the local vascular inflammatory response. Here, we investigate the proatherogenic role of NKT cells in an adoptive transfer model of atherosclerosis, using as recipients immune-deficient, atherosclerosis-susceptible RAG1−/−LDLR−/− mice. The adoptive transfer of an NKT cell-enriched splenocyte population from Vα14Jα18 T-cell receptor transgenic mice resulted in a 73% increase in aortic root lesion area compared with recipients of NKT cell-deficient splenocytes derived from CD1d−/− mice after 12 weeks of Western-type diet feeding. The total serum from hypercholesterolemic mice leads to a small but significant activation of Vα14Jα18 T-cell receptor-expressing hybridoma line by dendritic cells that is CD1d-dependent. Therefore, these studies demonstrate that NKT cells are proatherogenic in the absence of exogenous stimulation, and this activity is likely associated with endogenous lipid antigens carried by lipoproteins in the circulation and perhaps also in the atherosclerotic plaque. PMID:17322392

  2. Contribution of Invariant Natural Killer T Cells to Skin Wound Healing.

    PubMed

    Tanno, Hiromasa; Kawakami, Kazuyoshi; Ritsu, Masae; Kanno, Emi; Suzuki, Aiko; Kamimatsuno, Rina; Takagi, Naoyuki; Miyasaka, Tomomitsu; Ishii, Keiko; Imai, Yoshimichi; Maruyama, Ryoko; Tachi, Masahiro

    2015-12-01

    In the present study, we determined the contribution of invariant natural killer T (iNKT) cells to the skin wound healing process. In iNKT cell-deficient (Jα18KO) mice lacking iNKT cells, wound closure was significantly delayed compared with wild-type mice. Collagen deposition, expression of α-smooth muscle actin and CD31, and wound breaking strength were significantly attenuated in Jα18KO mice. The adoptive transfer of liver mononuclear cells from wild-type but not from Jα18KO or interferon (IFN)-γ gene-disrupted (IFN-γKO) mice resulted in the reversal of this impaired wound healing in Jα18KO mice. IFN-γ expression was induced in the wounded tissues, which was significantly decreased at 6, 12, and 24 hours, but increased on day 3 after wounding in Jα18KO mice. The main source of the late-phase IFN-γ production in Jα18KO mice were neutrophils rather than NK cells and T cells. Administration of α-galactosylceramide, an activator of iNKT cells, resulted in the acceleration of wound healing on day 3 in wild-type mice. This effect was not observed in IFN-γKO mice. These results indicate that iNKT cells play important roles in wound healing. The iNKT cell-induced IFN-γ production may regulate the wound healing process in the early phase.

  3. Contribution of Invariant Natural Killer T Cells to Skin Wound Healing.

    PubMed

    Tanno, Hiromasa; Kawakami, Kazuyoshi; Ritsu, Masae; Kanno, Emi; Suzuki, Aiko; Kamimatsuno, Rina; Takagi, Naoyuki; Miyasaka, Tomomitsu; Ishii, Keiko; Imai, Yoshimichi; Maruyama, Ryoko; Tachi, Masahiro

    2015-12-01

    In the present study, we determined the contribution of invariant natural killer T (iNKT) cells to the skin wound healing process. In iNKT cell-deficient (Jα18KO) mice lacking iNKT cells, wound closure was significantly delayed compared with wild-type mice. Collagen deposition, expression of α-smooth muscle actin and CD31, and wound breaking strength were significantly attenuated in Jα18KO mice. The adoptive transfer of liver mononuclear cells from wild-type but not from Jα18KO or interferon (IFN)-γ gene-disrupted (IFN-γKO) mice resulted in the reversal of this impaired wound healing in Jα18KO mice. IFN-γ expression was induced in the wounded tissues, which was significantly decreased at 6, 12, and 24 hours, but increased on day 3 after wounding in Jα18KO mice. The main source of the late-phase IFN-γ production in Jα18KO mice were neutrophils rather than NK cells and T cells. Administration of α-galactosylceramide, an activator of iNKT cells, resulted in the acceleration of wound healing on day 3 in wild-type mice. This effect was not observed in IFN-γKO mice. These results indicate that iNKT cells play important roles in wound healing. The iNKT cell-induced IFN-γ production may regulate the wound healing process in the early phase. PMID:26468976

  4. Intravital Imaging – Dynamic Insights into Natural Killer T Cell Biology

    PubMed Central

    Liew, Pei Xiong; Kubes, Paul

    2015-01-01

    Natural killer T (NKT) cells were first recognized more than two decades ago as a separate and distinct lymphocyte lineage that modulates an expansive range of immune responses. As innate immune cells, NKT cells are activated early during inflammation and infection, and can subsequently stimulate or suppress the ensuing immune response. As a result, researchers hope to harness the immunomodulatory properties of NKT cells to treat a variety of diseases. However, many questions still remain unanswered regarding the biology of NKT cells, including how these cells traffic from the thymus to peripheral organs and how they play such contrasting roles in different immune responses and diseases. In this new era of intravital fluorescence microscopy, we are now able to employ this powerful tool to provide quantitative and dynamic insights into NKT cell biology including cellular dynamics, patrolling, and immunoregulatory functions with exquisite resolution. This review will highlight and discuss recent studies that use intravital imaging to understand the spectrum of NKT cell behavior in a variety of animal models. PMID:26042123

  5. Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells.

    PubMed

    An, Dingding; Oh, Sungwhan F; Olszak, Torsten; Neves, Joana F; Avci, Fikri Y; Erturk-Hasdemir, Deniz; Lu, Xi; Zeissig, Sebastian; Blumberg, Richard S; Kasper, Dennis L

    2014-01-16

    Coevolution of beneficial microorganisms with the mammalian intestine fundamentally shapes mammalian physiology. Here, we report that the intestinal microbe Bacteroides fragilis modifies the homeostasis of host invariant natural killer T (iNKT) cells by supplementing the host's endogenous lipid antigen milieu with unique inhibitory sphingolipids. The process occurs early in life and effectively impedes iNKT cell proliferation during neonatal development. Consequently, total colonic iNKT cell numbers are restricted into adulthood, and hosts are protected against experimental iNKT cell-mediated, oxazolone-induced colitis. In studies with neonatal mice lacking access to bacterial sphingolipids, we found that treatment with B. fragilis glycosphingolipids-exemplified by an isolated peak (MW = 717.6) called GSL-Bf717-reduces colonic iNKT cell numbers and confers protection against oxazolone-induced colitis in adulthood. Our results suggest that the distinctive inhibitory capacity of GSL-Bf717 and similar molecules may prove useful in the treatment of autoimmune and allergic disorders in which iNKT cell activation is destructive.

  6. Cell-autonomous requirement for TCF1 and LEF1 in the development of Natural Killer T cells.

    PubMed

    Berga-Bolaños, Rosa; Zhu, Wandi S; Steinke, Farrah C; Xue, Hai-Hui; Sen, Jyoti Misra

    2015-12-01

    Natural killer T (NKT) cells develop from common CD4(+) CD8(+) thymocyte precursors. Transcriptional programs that regulate the development of NKT cells in the thymus development remain to be fully delineated. Here, we demonstrate a cell-intrinsic requirement for transcription factors TCF1 and LEF1 for the development of all subsets of NKT cells. Conditional deletion of TCF1 alone results in a substantial reduction in NKT cells. The remaining NKT cells are eliminated when TCF1 and LEF1 are both deleted. These data reveal an essential role for TCF1 and LEF1 in development of NKT cells.

  7. S100A9 and ORM1 serve as predictors of therapeutic response and prognostic factors in advanced extranodal NK/T cell lymphoma patients treated with pegaspargase/gemcitabine

    PubMed Central

    Zhou, Zhiyuan; Li, Zhaoming; Sun, Zhenchang; Zhang, Xudong; Lu, Lisha; Wang, Yingjun; Zhang, Mingzhi

    2016-01-01

    Pegaspargase combined with gemcitabine have greatly improved the outcomes of advanced extranodal NK/T cell lymphoma (ENKL). However, patients frequently undergo recurrent disease due to chemoresistance, and few predictive parameters are available. The present study explored potential biomarkers to predict the therapeutic response of advanced ENKL treated with pegaspargase/gemcitabine and evaluate the prognostic significance. Through serum proteomic analysis, we identified 61 upregulated and 22 downregulated proteins in nonresponders compared with responders. We further validated that patients with unfavourable treatment outcomes displayed higher levels of S100A9 and ORM1 via enzyme-linked immunosorbent assay (ELISA). Moreover, the sensitivity and specificity for detecting refractory patients were 81.5% and 71.4% for S100A9 > 62.0 ng/ml, 85.2% and 77.1% for ORM1 > 1436 ug/ml, 100% and 57.1% for S100A9 combined with ORM1. Furthermore, in multivariate analysis elevated levels of S100A9 were associated with poor 2-year OS (40.2% vs. 76.6%, RR = 2.92, p = 0.005) and 2-year PFS (33.1% vs. 61.1%, RR = 2.61 p = 0.011). High ORM1 also predicted inferior 2-year OS (38.7% vs.76.1, RR = 2.46, p = 0.023) and 2-year PFS (18.4% vs. 73.2%, RR = 2.86, p = 0.009). Our results indicated that S100A9 and ORM1 could serve as reliable predictors of therapeutic response and independent prognostic factors of survival in advanced ENKL patients treated with pegaspargase/gemcitabine. PMID:27021626

  8. Evaluation of antibody-dependent cell-mediated cytotoxicity activity and cetuximab response in KRAS wild-type metastatic colorectal cancer patients

    PubMed Central

    Lo Nigro, Cristiana; Ricci, Vincenzo; Vivenza, Daniela; Monteverde, Martino; Strola, Giuliana; Lucio, Francesco; Tonissi, Federica; Miraglio, Emanuela; Granetto, Cristina; Fortunato, Mirella; Merlano, Marco Carlo

    2016-01-01

    AIM: To investigate the prognostic role of invariant natural killer T (iNKT) cells and antibody-dependent cell-mediated cytotoxicity (ADCC) in wild type KRAS metastatic colorectal cancer (mCRC) patients treated with cetuximab. METHODS: Forty-one KRAS wt mCRC patients, treated with cetuximab and irinotecan-based chemotherapy in II and III lines were analyzed. Genotyping of single nucleotide polymorphism (SNP)s in the FCGR2A, FCGR3A and in the 3’ untranslated regions of KRAS and mutational analysis for KRAS, BRAF and NRAS genes was determined either by sequencing or allelic discrimination assays. Enriched NK cells were obtained from lymphoprep-peripheral blood mononuclear cell and iNKT cells were defined by co-expression of CD3, TCRVα24, TCRVβ11. ADCC was evaluated as ex vivo NK-dependent activity, measuring lactate dehydrogenase release. RESULTS: At basal, mCRC patients performing ADCC activity above the median level (71%) showed an improved overall survival (OS) compared to patients with ADCC below (median 16 vs 8 mo; P = 0.026). We did not find any significant correlation of iNKT cells with OS (P = 0.19), albeit we observed a trend to a longer survival after 10 mo in patients with iNKT above median basal level (0.382 cells/microliter). Correlation of OS and progression-free survival (PFS) with interesting SNPs involved in ADCC ability revealed not to be significant. Patients carrying alleles both with A in FCGR2A and TT in FCGR3A presented a trend of longer PFS (median 9 vs 5 mo; P = 0.064). Chemotherapy impacted both iNKT cells and ADCC activity. Their prognostic values get lost when we analysed them after 2 and 4 mo of treatment. CONCLUSION: Our results suggest a link between iNKT cells, basal ADCC activity, genotypes in FCGR2A and FCGR3A, and efficacy of cetuximab in KRAS wt mCRC patients. PMID:26909137

  9. Recognition of Microbial Glycolipids by Natural Killer T Cells.

    PubMed

    Zajonc, Dirk M; Girardi, Enrico

    2015-01-01

    T cells can recognize microbial antigens when presented by dedicated antigen-presenting molecules. While peptides are presented by classical members of the major histocompatibility complex (MHC) family (MHC I and II), lipids, glycolipids, and lipopeptides can be presented by the non-classical MHC member, CD1. The best studied subset of lipid-reactive T cells are type I natural killer T (iNKT) cells that recognize a variety of different antigens when presented by the non-classical MHCI homolog CD1d. iNKT cells have been shown to be important for the protection against various microbial pathogens, including B. burgdorferi, the causative agents of Lyme disease, and S. pneumoniae, which causes pneumococcal meningitis and community-acquired pneumonia. Both pathogens carry microbial glycolipids that can trigger the T cell antigen receptor (TCR), leading to iNKT cell activation. iNKT cells have an evolutionary conserved TCR alpha chain, yet retain the ability to recognize structurally diverse glycolipids. They do so using a conserved recognition mode, in which the TCR enforces a conserved binding orientation on CD1d. TCR binding is accompanied by structural changes within the TCR binding site of CD1d, as well as the glycolipid antigen itself. In addition to direct recognition of microbial antigens, iNKT cells can also be activated by a combination of cytokines (IL-12/IL-18) and TCR stimulation. Many microbes carry TLR antigens, and microbial infections can lead to TLR activation. The subsequent cytokine response in turn lower the threshold of TCR-mediated iNKT cell activation, especially when weak microbial or even self-antigens are presented during the cause of the infection. In summary, iNKT cells can be directly activated through TCR triggering of strong antigens, while cytokines produced by the innate immune response may be necessary for TCR triggering and iNKT cell activation in the presence of weak antigens. Here, we will review the molecular basis of iNKT cell

  10. Recognition of Microbial Glycolipids by Natural Killer T Cells

    PubMed Central

    Zajonc, Dirk M.; Girardi, Enrico

    2015-01-01

    T cells can recognize microbial antigens when presented by dedicated antigen-presenting molecules. While peptides are presented by classical members of the major histocompatibility complex (MHC) family (MHC I and II), lipids, glycolipids, and lipopeptides can be presented by the non-classical MHC member, CD1. The best studied subset of lipid-reactive T cells are type I natural killer T (iNKT) cells that recognize a variety of different antigens when presented by the non-classical MHCI homolog CD1d. iNKT cells have been shown to be important for the protection against various microbial pathogens, including B. burgdorferi, the causative agents of Lyme disease, and S. pneumoniae, which causes pneumococcal meningitis and community-acquired pneumonia. Both pathogens carry microbial glycolipids that can trigger the T cell antigen receptor (TCR), leading to iNKT cell activation. iNKT cells have an evolutionary conserved TCR alpha chain, yet retain the ability to recognize structurally diverse glycolipids. They do so using a conserved recognition mode, in which the TCR enforces a conserved binding orientation on CD1d. TCR binding is accompanied by structural changes within the TCR binding site of CD1d, as well as the glycolipid antigen itself. In addition to direct recognition of microbial antigens, iNKT cells can also be activated by a combination of cytokines (IL-12/IL-18) and TCR stimulation. Many microbes carry TLR antigens, and microbial infections can lead to TLR activation. The subsequent cytokine response in turn lower the threshold of TCR-mediated iNKT cell activation, especially when weak microbial or even self-antigens are presented during the cause of the infection. In summary, iNKT cells can be directly activated through TCR triggering of strong antigens, while cytokines produced by the innate immune response may be necessary for TCR triggering and iNKT cell activation in the presence of weak antigens. Here, we will review the molecular basis of iNKT cell

  11. Specific deletion of LDL receptor-related protein on macrophages has skewed in vivo effects on cytokine production by invariant natural killer T cells.

    PubMed

    Covarrubias, Roman; Wilhelm, Ashley J; Major, Amy S

    2014-01-01

    Expression of molecules involved in lipid homeostasis such as the low density lipoprotein receptor (LDLr) on antigen presenting cells (APCs) has been shown to enhance invariant natural killer T (iNKT) cell function. However, the contribution to iNKT cell activation by other lipoprotein receptors with shared structural and ligand binding properties to the LDLr has not been described. In this study, we investigated whether a structurally related receptor to the LDLr, known as LDL receptor-related protein (LRP), plays a role in iNKT cell activation. We found that, unlike the LDLr which is highly expressed on all immune cells, the LRP was preferentially expressed at high levels on F4/80+ macrophages (MΦ). We also show that CD169+ MΦs, known to present antigen to iNKT cells, exhibited increased expression of LRP compared to CD169- MΦs. To test the contribution of MΦ LRP to iNKT cell activation we used a mouse model of MΦ LRP conditional knockout (LRP-cKO). LRP-cKO MΦs pulsed with glycolipid alpha-galactosylceramide (αGC) elicited normal IL-2 secretion by iNKT hybridoma and in vivo challenge of LRP-cKO mice led to normal IFN-γ, but blunted IL-4 response in both serum and intracellular expression by iNKT cells. Flow cytometric analyses show similar levels of MHC class-I like molecule CD1d on LRP-cKO MΦs and normal glycolipid uptake. Survey of the iNKT cell compartment in LRP-cKO mice revealed intact numbers and percentages and no homeostatic disruption as evidenced by the absence of programmed death-1 and Ly-49 surface receptors. Mixed bone marrow chimeras showed that the inability iNKT cells to make IL-4 is cell extrinsic and can be rescued in the presence of wild type APCs. Collectively, these data demonstrate that, although MΦ LRP may not be necessary for IFN-γ responses, it can contribute to iNKT cell activation by enhancing early IL-4 secretion.

  12. Lower numbers of natural killer T cells in HIV-1 and Mycobacterium leprae co-infected patients.

    PubMed

    Carvalho, Karina I; Bruno, Fernanda R; Snyder-Cappione, Jennifer E; Maeda, Solange M; Tomimori, Jane; Xavier, Marilia B; Haslett, Patrick A; Nixon, Douglas F; Kallas, Esper G

    2012-05-01

    Natural killer T (NKT) cells are a heterogeneous population of lymphocytes that recognize antigens presented by CD1d and have attracted attention because of their potential role linking innate and adaptive immune responses. Peripheral NKT cells display a memory-activated phenotype and can rapidly secrete large amounts of pro-inflammatory cytokines upon antigenic activation. In this study, we evaluated NKT cells in the context of patients co-infected with HIV-1 and Mycobacterium leprae. The volunteers were enrolled into four groups: 22 healthy controls, 23 HIV-1-infected patients, 20 patients with leprosy and 17 patients with leprosy and HIV-1-infection. Flow cytometry and ELISPOT assays were performed on peripheral blood mononuclear cells. We demonstrated that patients co-infected with HIV-1 and M. leprae have significantly lower NKT cell frequencies [median 0.022%, interquartile range (IQR): 0.007-0.051] in the peripheral blood when compared with healthy subjects (median 0.077%, IQR: 0.032-0.405, P < 0.01) or HIV-1 mono-infected patients (median 0.072%, IQR: 0.030-0.160, P < 0.05). Also, more NKT cells from co-infected patients secreted interferon-γ after stimulation with DimerX, when compared with leprosy mono-infected patients (P = 0.05). These results suggest that NKT cells are decreased in frequency in HIV-1 and M. leprae co-infected patients compared with HIV-1 mono-infected patients alone, but are at a more activated state. Innate immunity in human subjects is strongly influenced by their spectrum of chronic infections, and in HIV-1-infected subjects, a concurrent mycobacterial infection probably hyper-activates and lowers circulating NKT cell numbers.

  13. Long-term Outcome of Extranodal NK/T Cell Lymphoma Patients Treated With Postremission Therapy Using EBV LMP1 and LMP2a-specific CTLs.

    PubMed

    Cho, Seok-Goo; Kim, Nayoun; Sohn, Hyun-Jung; Lee, Suk Kyeong; Oh, Sang Taek; Lee, Hyun-Joo; Cho, Hyun-Il; Yim, Hyeon Woo; Jung, Seung Eun; Park, Gyeongsin; Oh, Joo Hyun; Choi, Byung-Ock; Kim, Sung Won; Kim, Soo Whan; Chung, Nak Gyun; Lee, Jong Wook; Hong, Young Seon; Kim, Tai-Gyu

    2015-08-01

    Extranodal NK/T-cell lymphoma (ENKTCL) is associated with latent Epstein-Barr virus (EBV) infection and frequent relapse even after complete response (CR) to intensive chemotherapy and radiotherapy. The expression of EBV proteins in the tumor provides targets for adoptive immunotherapy with antigen-specific cytotoxic T cells (CTL). To evaluate the efficacy and safety of EBV latent membrane protein (LMP)-1 and LMP-2a-specific CTLs (LMP1/2a CTLs) stimulated with LMP1/2a RNA-transferred dendritic cells, we treated 10 ENKTCL patients who showed complete response to induction therapy. Patients who completed and responded to chemotherapy, radiotherapy, and/or high-dose therapy followed by stem cell transplantation (HDT/SCT) were eligible to receive eight doses of 2 × 10(7) LMP1/2a CTLs/m(2). Following infusion, there were no immediate or delayed toxicities. The 4-year overall survival (OS) and progression-free survival (PFS) were 100%, and 90% (95% CI: 71.4 to 100%) respectively with a median follow-up of 55·5 months. Circulating IFN-γ secreting LMP1 and LMP2a-specific T cells within the peripheral blood corresponded with decline in plasma EBV DNA levels in patients. Adoptive transfer of LMP1/2a CTLs in ENKTCL patients is a safe and effective postremission therapeutic approach. Further randomized studies will be needed to define the role of EBV-CTLs in preventing relapse of ENKTCL. PMID:26017177

  14. Clinical impact of induction treatment modalities and optimal timing of radiotherapy for the treatment of limited-stage NK/T cell lymphoma.

    PubMed

    Moon, Joon-Ho; Lee, Bo-Hee; Kim, Jeong-A; Lee, Yoo Jin; Chae, Yee Soo; Yhim, Ho-Young; Kwak, Jae-Yong; Do, Young Rok; Park, Yong; Song, Moo-Kon; Shin, Ho-Jin; Kim, Therasa; Lee, Je-Jung; Yang, Deok-Hwan

    2016-10-01

    This study retrospectively investigated the optimal timing of radiotherapy (RT) in patients with limited-stage extranodal NK/T-cell lymphoma (ENTKL). Among 158 patients with newly diagnosed stage I/II ENKTL, 61 patients were treated with sequential chemotherapy followed by radiotherapy (SCRT), 55 with concurrent chemoradiotherapy followed by non-anthracycline-based chemotherapy (CCRT/CT), and 42 with chemotherapy (CT) only. The 5-year overall survival (OS) rate did not differ between SCRT (77.7±5.5%) and CCRT/CT (68.9±6.8%; p=0.234). In the SCRT group, 18 patients (29.5%) relapsed within the RT field and 6 (9.8%) at systemic sites, while in the CCRT/CT group, 9 patients (16.4%) relapsed at the primary site and 14 (25.5%) at systemic sites. The 5-year cumulative incidence of relapse (CIR) at primary sites was 26.3% and 19.2% after SCRT and CCRT/CT (p=0.308), while the 5-year CIR of systemic sites was 8.7% and 26.5% after SCRT and CCRT/CT, respectively (p=0.010). In the multivariate analysis, NK/T-cell Prognostic Index score and CR achievement were the most important prognostic factors for survival. Although up-front RT had limitations in systemic disease control and was associated with an increased risk of systemic relapse during RT compared to SCRT, timing of RT did not significantly affect survival outcomes. PMID:27608179

  15. Human Invariant Natural Killer T cells possess immune-modulating functions during Aspergillus infection.

    PubMed

    Beitzen-Heineke, Antonia; Bouzani, Maria; Schmitt, Anna-Lena; Kurzai, Oliver; Hünniger, Kerstin; Einsele, Hermann; Loeffler, Juergen

    2016-02-01

    Aspergillus fumigatus is the most common cause for invasive fungal infections, a disease associated with high mortality in immune-compromised patients. CD1d-restricted invariant natural killer T (iNKT) cells compose a small subset of T cells known to impact the immune response toward various infectious pathogens. To investigate the role of human iNKT cells during A. fumigatus infection, we studied their activation as determined by CD69 expression and cytokine production in response to distinct fungal morphotypes in the presence of different CD1d(+) antigen presenting cells using flow cytometry and multiplex enzyme-linked immunosorbent assay (ELISA). Among CD1d(+) subpopulations, CD1d(+)CD1c(+) mDCs showed the highest potential to activate iNKT cells on a per cell basis. The presence of A. fumigatus decreased this effect of CD1d(+)CD1c(+) mDCs on iNKT cells and led to reduced secretion of TNF-α, G-CSF and RANTES. Production of other Th1 and Th2 cytokines was not affected by the fungus, suggesting an immune-modulating function for human iNKT cells during A. fumigatus infection.

  16. Intranasal but not intravenous delivery of the adjuvant α-galactosylceramide permits repeated stimulation of natural killer T cells in the lung

    PubMed Central

    Courtney, Amy N.; Thapa, Prakash; Singh, Shailbala; Wishahy, Ameerah M.; Zhou, Dapeng; Sastry, Jagannadha

    2013-01-01

    Efficient induction of antigen-specific immunity is achieved by delivering multiple doses of vaccine formulated with appropriate adjuvants that can harness the benefits of innate immune mediators. The synthetic glycolipid α-galactosylceramide (α-GalCer) is a potent activator of NKT cells, a major innate immune mediator cell type effective in inducing maturation of DCs for efficient presentation of co-administered antigens. However, systemic administration of α-GalCer results in NKT cell anergy in which the cells are unresponsive to subsequent doses of α-GalCer. We show here that α-GalCer delivered as an adjuvant by the intranasal route, as opposed to the intravenous route, enables repeated activation of NKT cells and DCs, resulting in efficient induction of cellular immune responses to co-administered antigens. We show evidence that after intranasal delivery, α-GalCer is selectively presented by DCs for the activation of NKT cells, not B cells. Furthermore, higher levels of PD-1 expression, a potential marker for functional exhaustion of the NKT cells when α-GalCer is delivered by the intravenous route, are not observed after intranasal delivery. These results support a mucosal route of delivery for the utility of α-GalCer as an adjuvant for vaccines, which often requires repeated dosing to achieve durable protective immunity. PMID:21818755

  17. Activation of natural killer T cells in NZB/W mice induces Th1-type immune responses exacerbating lupus.

    PubMed

    Zeng, Defu; Liu, Yinping; Sidobre, Stephane; Kronenberg, Mitchell; Strober, Samuel

    2003-10-01

    In vivo treatment of mice with the natural killer T (NKT) cell ligand, alpha-galactosylceramide (alphaGalCer), ameliorates autoimmune diabetes and experimental autoimmune encephalomyelitis (EAE) by shifting pathogenic Th1-type immune responses to nonpathogenic Th2-type responses. In the current study, in vivo activation of NKT cells in adult NZB/W mice by multiple injections of alphaGalCer induced an abnormal Th1-type immune response as compared with the Th2-type response observed in nonautoimmune C57BL/6 mice. This resulted in decreased serum levels of IgE, increased levels of IgG2a and IgG2a anti-double-stranded DNA (anti-dsDNA) Ab's, and exacerbated lupus. Conversely, treatment of NZB/W mice with blocking anti-CD1d mAb augmented Th2-type responses, increased serum levels of IgE, decreased levels of IgG2a and IgG2a anti-dsDNA Ab's, and ameliorated lupus. While total CD4+ T cells markedly augmented in vitro IgM anti-dsDNA Ab secretion by splenic B cells, the non-CD1d-reactive (CD1d-alphaGalCer tetramer-negative) CD4+ T cells (accounting for 95% of all CD4+ T cells) failed to augment Ab secretion. The CD1d-reactive tetramer-positive CD4+ T cells augmented anti-dsDNA Ab secretion about tenfold. In conclusion, activation of NKT cells augments Th1-type immune responses and autoantibody secretion that contribute to lupus development in adult NZB/W mice, and anti-CD1d mAb might be useful for treating lupus.

  18. Invariant natural killer T cells and their ligands: focus on multiple sclerosis

    PubMed Central

    O'Keeffe, Joan; Podbielska, Maria; Hogan, Edward L

    2015-01-01

    Invariant natural killer T (iNKT) cells are an innate population of T cells identified by the expression of an invariant T-cell receptor and reactivity to lipid-based antigens complexed with CD1d. They account for a small percentage of lymphocytes, but are extremely potent and play central roles in immunity to infection, in some cancers, and in autoimmunity. The list of relevant stimulatory lipids and glycolipid antigens now includes a range of endogenous self-antigens including the myelin-derived acetylated galactosylceramides. Recent progress in studies to identify the nature of lipid recognition for iNKT cells in autoimmune diseases like multiple sclerosis is likely to foster the development of therapeutic strategies aimed at harnessing iNKT cell activity. PMID:25976210

  19. SAP-Dependent and -Independent Regulation of Innate T Cell Development Involving SLAMF Receptors.

    PubMed

    De Calisto, Jaime; Wang, Ninghai; Wang, Guoxing; Yigit, Burcu; Engel, Pablo; Terhorst, Cox

    2014-01-01

    Signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) plays an essential role in the immune system mediating the function of several members of the SLAM family (SLAMF) of receptors, whose expression is essential for T, NK, and B-cell responses. Additionally, the expression of SAP in double-positive thymocytes is mandatory for natural killer T (NKT) cells and, in mouse, for innate CD8(+) T cell development. To date, only two members of the SLAMF of receptors, Slamf1 and Slamf6, have been shown to positively cooperate during NKT cell differentiation in mouse. However, it is less clear whether other members of this family may also participate in the development of these innate T cells. Here, we show that Slamf[1 + 6](-/-) and Slamf[1 + 5 + 6](-/-) B6 mice have ~70% reduction of NKT cells compared to wild-type B6 mice. Unexpectedly, the proportion of innate CD8(+) T cells slightly increased in the Slamf[1 + 5 + 6](-/-) , but not in the Slamf[1 + 6](-/-) strain, suggesting that Slamf5 may function as a negative regulator of innate CD8(+) T cell development. Accordingly, Slamf5(-/-) B6 mice showed an exclusive expansion of innate CD8(+) T cells, but not NKT cells. Interestingly, the SAP-independent Slamf7(-/-) strain showed an expansion of both splenic innate CD8(+) T cells and thymic NKT cells. On the other hand, and similar to what was recently shown in Slamf3(-/-) BALB/c mice, the proportions of thymic promyelocytic leukemia zinc finger (PLZF(hi)) NKT cells and innate CD8(+) T cells significantly increased in the SAP-independent Slamf8(-/-) BALB/c strain. In summary, these results show that NKT and innate CD8(+) T cell development can be regulated in a SAP-dependent and -independent fashion by SLAMF receptors, in which Slamf1, Slamf6, and Slamf8 affect development of NKT cells, and that Slamf5, Slamf7, and Slamf8 affect the development of innate CD8(+) T cells.

  20. Innate lymphoid cells and natural killer T cells in the gastrointestinal tract immune system.

    PubMed

    Montalvillo, Enrique; Garrote, José Antonio; Bernardo, David; Arranz, Eduardo

    2014-05-01

    The gastrointestinal tract is equipped with a highly specialized intrinsic immune system. However, the intestine is exposed to a high antigenic burden that requires a fast, nonspecific response -so-called innate immunity- to maintain homeostasis and protect the body from incoming pathogens. In the last decade multiple studies helped to unravel the particular developmental requirements and specific functions of the cells that play a role in innate immunity. In this review we shall focus on innate lymphoid cells, a newly discovered, heterogeneous set of cells that derive from an Id2-dependent lymphoid progenitor cell population. These cells have been categorized on the basis of the pattern of cytokines that they secrete, and the transcription factors that regulate their development and functions. Innate lymphoid cells play a role in the early response to pathogens, the anatomical contention of the commensal flora, and the maintenance of epithelial integrity.Amongst the various innate lymphoid cells we shall lay emphasis on a subpopulation with several peculiarities, namely that of natural killer T cells, a subset of T lymphocytes that express both T-cell and NK-cell receptors. The most numerous fraction of the NKT population are the so-called invariant NKT or iNKT cells. These iNKT cells have an invariant TCR and recognize the glycolipidic structures presented by the CD1d molecule, a homolog of class-I MHC molecules. Following activation they rapidly acquire cytotoxic activity and secrete both Th1 and Th2 cytokines, including IL-17. While their specific role is not yet established, iNKT cells take part in a great variety of intestinal immune responses ranging from oral tolerance to involvement in a number of gastrointestinal conditions.

  1. T-Cell-Specific Deletion of Map3k1 Reveals the Critical Role for Mekk1 and Jnks in Cdkn1b-Dependent Proliferative Expansion

    PubMed Central

    Suddason, Tesha; Anwar, Saba; Charlaftis, Nikolaos; Gallagher, Ewen

    2016-01-01

    Summary MAPK signaling is important for T lymphocyte development, homeostasis, and effector responses. To better understand the role of Mekk1 (encoded by Map3k1) in T cells, we conditionally deleted Map3k1 in LckCre/+Map3k1f/f mice, and these display larger iNKT cell populations within the liver, spleen, and bone marrow. Mekk1 signaling controls splenic and liver iNKT cell expansion in response to glycolipid antigen. LckCre/+Map3k1f/f mice have enhanced liver damage in response to glycolipid antigen. Mekk1 regulates Jnk activation in iNKT cells and binds and transfers Lys63-linked poly-ubiquitin onto Carma1. Map3k1 is critical for the regulation of p27Kip1 (encoded by Cdkn1b). PMID:26774476

  2. Sleep-deprivation reduces NK cell number and function mediated by β-adrenergic signalling.

    PubMed

    De Lorenzo, Beatriz H P; de Oliveira Marchioro, Laís; Greco, Carollina Ribeiro; Suchecki, Deborah

    2015-07-01

    Reduction of sleep time triggers a stress response, leading to augmented levels of glucocorticoids and adrenaline. These hormones regulate components of the innate immune system such as natural killer (NK) and NKT cells. In the present study, we sought to investigate whether and how stress hormones could alter the population and function of NK and NKT cells of mice submitted to different lengths of paradoxical sleep deprivation (PSD, from 24 to 72 h). Results showed that 72h of PSD decreased not only NK and NKT cell counts, but also their cytotoxic activity against B16F10 melanoma cells in vitro. Propranolol treatment during PSD reversed these effects, indicating a major inhibitory role of beta-adrenergic receptors (β-AR) on NK cells function. Moreover, both corticosterone plasma levels and expression of beta 2-adrenergic receptors (β2-AR) in NK cells increased by 48 h of PSD. In vitro incubation of NK cells with dexamethasone augmented the level of β2-AR in the cell surface, suggesting that glucocorticoids could induce β2-AR expression. In summary, we propose that reduction of NK and NKT cell number and cytotoxic activity appears to be mediated by glucocorticoids-induced increased expression of β2-AR in these cells. PMID:25929826

  3. NKG2D is a Key Receptor for Recognition of Bladder Cancer Cells by IL-2-Activated NK Cells and BCG Promotes NK Cell Activation

    PubMed Central

    García-Cuesta, Eva María; López-Cobo, Sheila; Álvarez-Maestro, Mario; Esteso, Gloria; Romera-Cárdenas, Gema; Rey, Mercedes; Cassady-Cain, Robin L.; Linares, Ana; Valés-Gómez, Alejandro; Reyburn, Hugh Thomson; Martínez-Piñeiro, Luis; Valés-Gómez, Mar

    2015-01-01

    Intravesical instillation of bacillus Calmette–Guérin (BCG) is used to treat superficial bladder cancer, either papillary tumors (after transurethral resection) or high-grade flat carcinomas (carcinoma in situ), reducing recurrence in about 70% of patients. Initially, BCG was proposed to work through an inflammatory response, mediated by phagocytic uptake of mycobacterial antigens and cytokine release. More recently, other immune effectors such as monocytes, natural killer (NK), and NKT cells have been suggested to play a role in this immune response. Here, we provide a comprehensive study of multiple bladder cancer cell lines as putative targets for immune cells and evaluated their recognition by NK cells in the presence and absence of BCG. We describe that different bladder cancer cells can express multiple activating and inhibitory ligands for NK cells. Recognition of bladder cancer cells depended mainly on NKG2D, with a contribution from NKp46. Surprisingly, exposure to BCG did not affect the immune phenotype of bladder cells nor increased NK cell recognition of purified IL-2-activated cell lines. However, NK cells were activated efficiently when BCG was included in mixed lymphocyte cultures, suggesting that NK activation after mycobacteria treatment requires the collaboration of various immune cells. We also analyzed the percentage of NK cells in peripheral blood of a cohort of bladder cancer patients treated with BCG. The total numbers of NK cells did not vary during treatment, indicating that a more detailed study of NK cell activation in the tumor site will be required to evaluate the response in each patient. PMID:26106390

  4. Mycobacterial phosphatidylinositol mannoside is a natural antigen for CD1d-restricted T cells

    PubMed Central

    Fischer, Karsten; Scotet, Emmanuel; Niemeyer, Marcus; Koebernick, Heidrun; Zerrahn, Jens; Maillet, Sophie; Hurwitz, Robert; Kursar, Mischo; Bonneville, Marc; Kaufmann, Stefan H. E.; Schaible, Ulrich E.

    2004-01-01

    A group of T cells recognizes glycolipids presented by molecules of the CD1 family. The CD1d-restricted natural killer T cells (NKT cells) are primarily considered to be self-reactive. By employing CD1d-binding and T cell assays, the following structural parameters for presentation by CD1d were defined for a number of mycobacterial and mammalian lipids: two acyl chains facilitated binding, and a polar head group was essential for T cell recognition. Of the mycobacterial lipids tested, only a phosphatidylinositol mannoside (PIM) fulfilled the requirements for CD1d binding and NKT cell stimulation. This PIM activated human and murine NKT cells via CD1d, thereby triggering antigen-specific IFN-γ production and cell-mediated cytotoxicity, and PIM-loaded CD1d tetramers identified a subpopulation of murine and human NKT cells. This phospholipid, therefore, represents a mycobacterial antigen recognized by T cells in the context of CD1d. PMID:15243159

  5. Natural killer cells and natural killer T cells in Lyme arthritis

    PubMed Central

    2013-01-01

    Introduction Natural killer (NK) and natural killer T (NKT) cells provide a first line of defense against infection. However, these cells have not yet been examined in patients with Lyme arthritis, a late disease manifestation. Lyme arthritis usually resolves with antibiotic treatment. However, some patients have persistent arthritis after spirochetal killing, which may result from excessive inflammation, immune dysregulation and infection-induced autoimmunity. Methods We determined the frequencies and phenotypes of NK cells and invariant NKT (iNKT) cells in paired peripheral blood (PB) and synovial fluid (SF) samples from eight patients with antibiotic-responsive arthritis and fifteen patients with antibiotic-refractory arthritis using flow cytometry and cytokine analyses. Results In antibiotic-responsive patients, who were seen during active infection, high frequencies of CD56bright NK cells were found in SF, the inflammatory site, compared with PB (P <0.001); at both sites, a high percentage of cells expressed the activation receptor NKG2D and the chaperone CD94, a low percentage expressed inhibitory killer immunoglobulin-like receptors (KIR), and a high percentage produced IFN-γ. In antibiotic-refractory patients, who were usually evaluated near the conclusion of antibiotics when few if any live spirochetes remained, the phenotype of CD56bright cells in SF was similar to that in patients with antibiotic-responsive arthritis, but the frequency of these cells was significantly less (P = 0.05), and the frequencies of CD56dim NK cells tended to be higher. However, unlike typical NKdim cells, these cells produced large amounts of IFN-γ, suggesting that they were not serving a cytotoxic function. Lastly, iNKT cell frequencies in the SF of antibiotic-responsive patients were significantly greater compared with that of antibiotic-refractory patients where these cells were often absent (P = 0.003). Conclusions In patients with antibiotic-responsive arthritis

  6. Cytotoxic T lymphocytes and natural killer cells display impaired cytotoxic functions and reduced activation in patients with alcoholic hepatitis.

    PubMed

    Støy, Sidsel; Dige, Anders; Sandahl, Thomas Damgaard; Laursen, Tea Lund; Buus, Christian; Hokland, Marianne; Vilstrup, Hendrik

    2015-02-15

    The dynamics and role of cytotoxic T lymphocytes (CTLs), natural killer (NK) cells, and NKT cells in the life-threatening inflammatory disease alcoholic hepatitis is largely unknown. These cells directly kill infected and damaged cells through, e.g., degranulation and interferon-γ (IFNγ) production, but cause tissue damage if overactivated. They also assist tissue repair via IL-22 production. We, therefore, aimed to investigate the frequency, functionality, and activation state of such cells in alcoholic hepatitis. We analyzed blood samples from 24 severe alcoholic hepatitis patients followed for 30 days after diagnosis. Ten healthy abstinent volunteers and 10 stable abstinent alcoholic cirrhosis patients were controls. Using flow cytometry we assessed cell frequencies, NK cell degranulation capacity following K562 cell stimulation, activation by natural killer group 2 D (NKG2D) expression, and IL-22 and IFNγ production. In alcoholic hepatitis we found a decreased frequency of CTLs compared with healthy controls (P < 0.001) and a similar trend for NK cells (P = 0.089). The NK cell degranulation capacity was reduced by 25% compared with healthy controls (P = 0.02) and by 50% compared with cirrhosis patients (P = 0.04). Accordingly, the NKG2D receptor expression was markedly decreased on NK cells, CTLs, and NKT cells (P < 0.05, all). The frequencies of IL-22-producing CTLs and NK cells were doubled compared with healthy controls (P < 0.05, all) but not different from cirrhosis patients. This exploratory study for the first time showed impaired cellular cytotoxicity and activation in alcoholic hepatitis. This is unlikely to cause hepatocyte death but may contribute toward the severe immune incompetence. The results warrant detailed and mechanistic studies.

  7. PyNTTTTGT and CpG immunostimulatory oligonucleotides: effect on granulocyte/monocyte colony-stimulating factor (GM-CSF) secretion by human CD56+ (NK and NKT) cells.

    PubMed

    Rodriguez, Juan M; Marchicio, José; López, Mariela; Ziblat, Andrea; Elias, Fernanda; Fló, Juan; López, Ricardo A; Horn, David; Zorzopulos, Jorge; Montaner, Alejandro D

    2015-01-01

    CD56+ cells have been recognized as being involved in bridging the innate and acquired immune systems. Herein, we assessed the effect of two major classes of immunostimulatory oligonucleotides (ODNs), PyNTTTTGT and CpG, on CD56+ cells. Incubation of human peripheral blood mononuclear cells (hPBMC) with some of these ODNs led to secretion of significant amounts of interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α) and granulocyte/monocyte colony-stimulating factor (GM-CSF), but only if interleukin 2 (IL2) was present. IMT504, the prototype of the PyNTTTTGT ODN class, was the most active. GM-CSF secretion was very efficient when non-CpG ODNs with high T content and PyNTTTTGT motifs lacking CpGs were used. On the other hand, CpG ODNs and IFNα inhibited this GM-CSF secretion. Selective cell type removal from hPBMC indicated that CD56+ cells were responsible for GM-CSF secretion and that plasmacytoid dendritic cells (PDCs) regulate this process. In addition, PyNTTTTGT ODNs inhibited the IFNα secretion induced by CpG ODNs in PDCs by interference with the TLR9 signaling pathway. Since IFNα is essential for CD56+ stimulation by CpG ODNs, there is a reciprocal interference of CpG and PyNTTTTGT ODNs when acting on this cell population. This suggests that these synthetic ODNs mimic different natural alarm signals for activation of the immune system. PMID:25706946

  8. PyNTTTTGT and CpG Immunostimulatory Oligonucleotides: Effect on Granulocyte/Monocyte Colony-Stimulating Factor (GM-CSF) Secretion by Human CD56+ (NK and NKT) Cells

    PubMed Central

    Rodriguez, Juan M.; Marchicio, José; López, Mariela; Ziblat, Andrea; Elias, Fernanda; Fló, Juan; López, Ricardo A.; Horn, David; Zorzopulos, Jorge; Montaner, Alejandro D.

    2015-01-01

    CD56+ cells have been recognized as being involved in bridging the innate and acquired immune systems. Herein, we assessed the effect of two major classes of immunostimulatory oligonucleotides (ODNs), PyNTTTTGT and CpG, on CD56+ cells. Incubation of human peripheral blood mononuclear cells (hPBMC) with some of these ODNs led to secretion of significant amounts of interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α) and granulocyte/monocyte colony-stimulating factor (GM-CSF), but only if interleukin 2 (IL2) was present. IMT504, the prototype of the PyNTTTTGT ODN class, was the most active. GM-CSF secretion was very efficient when non-CpG ODNs with high T content and PyNTTTTGT motifs lacking CpGs were used. On the other hand, CpG ODNs and IFNα inhibited this GM-CSF secretion. Selective cell type removal from hPBMC indicated that CD56+ cells were responsible for GM-CSF secretion and that plasmacytoid dendritic cells (PDCs) regulate this process. In addition, PyNTTTTGT ODNs inhibited the IFNα secretion induced by CpG ODNs in PDCs by interference with the TLR9 signaling pathway. Since IFNα is essential for CD56+ stimulation by CpG ODNs, there is a reciprocal interference of CpG and PyNTTTTGT ODNs when acting on this cell population. This suggests that these synthetic ODNs mimic different natural alarm signals for activation of the immune system. PMID:25706946

  9. PyNTTTTGT and CpG immunostimulatory oligonucleotides: effect on granulocyte/monocyte colony-stimulating factor (GM-CSF) secretion by human CD56+ (NK and NKT) cells.

    PubMed

    Rodriguez, Juan M; Marchicio, José; López, Mariela; Ziblat, Andrea; Elias, Fernanda; Fló, Juan; López, Ricardo A; Horn, David; Zorzopulos, Jorge; Montaner, Alejandro D

    2015-01-01

    CD56+ cells have been recognized as being involved in bridging the innate and acquired immune systems. Herein, we assessed the effect of two major classes of immunostimulatory oligonucleotides (ODNs), PyNTTTTGT and CpG, on CD56+ cells. Incubation of human peripheral blood mononuclear cells (hPBMC) with some of these ODNs led to secretion of significant amounts of interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α) and granulocyte/monocyte colony-stimulating factor (GM-CSF), but only if interleukin 2 (IL2) was present. IMT504, the prototype of the PyNTTTTGT ODN class, was the most active. GM-CSF secretion was very efficient when non-CpG ODNs with high T content and PyNTTTTGT motifs lacking CpGs were used. On the other hand, CpG ODNs and IFNα inhibited this GM-CSF secretion. Selective cell type removal from hPBMC indicated that CD56+ cells were responsible for GM-CSF secretion and that plasmacytoid dendritic cells (PDCs) regulate this process. In addition, PyNTTTTGT ODNs inhibited the IFNα secretion induced by CpG ODNs in PDCs by interference with the TLR9 signaling pathway. Since IFNα is essential for CD56+ stimulation by CpG ODNs, there is a reciprocal interference of CpG and PyNTTTTGT ODNs when acting on this cell population. This suggests that these synthetic ODNs mimic different natural alarm signals for activation of the immune system.

  10. Innate immune control of EBV-infected B cells by invariant natural killer T cells.

    PubMed

    Chung, Brian K; Tsai, Kevin; Allan, Lenka L; Zheng, Dong Jun; Nie, Johnny C; Biggs, Catherine M; Hasan, Mohammad R; Kozak, Frederick K; van den Elzen, Peter; Priatel, John J; Tan, Rusung

    2013-10-10

    Individuals with X-linked lymphoproliferative disease lack invariant natural killer T (iNKT) cells and are exquisitely susceptible to Epstein-Barr virus (EBV) infection. To determine whether iNKT cells recognize or regulate EBV, resting B cells were infected with EBV in the presence or absence of iNKT cells. The depletion of iNKT cells increased both viral titers and the frequency of EBV-infected B cells. However, EBV-infected B cells rapidly lost expression of the iNKT cell receptor ligand CD1d, abrogating iNKT cell recognition. To determine whether induced CD1d expression could restore iNKT recognition in EBV-infected cells, lymphoblastoid cell lines (LCL) were treated with AM580, a synthetic retinoic acid receptor-α agonist that upregulates CD1d expression via the nuclear protein, lymphoid enhancer-binding factor 1 (LEF-1). AM580 significantly reduced LEF-1 association at the CD1d promoter region, induced CD1d expression on LCL, and restored iNKT recognition of LCL. CD1d-expressing LCL elicited interferon γ secretion and cytotoxicity by iNKT cells even in the absence of exogenous antigen, suggesting an endogenous iNKT antigen is expressed during EBV infection. These data indicate that iNKT cells may be important for early, innate control of B cell infection by EBV and that downregulation of CD1d may allow EBV to circumvent iNKT cell-mediated immune recognition.

  11. Genetic engineering of hematopoietic stem cells to generate invariant natural killer T cells

    PubMed Central

    Smith, Drake J.; Liu, Siyuan; Ji, Sunjong; Li, Bo; McLaughlin, Jami; Cheng, Donghui; Witte, Owen N.; Yang, Lili

    2015-01-01

    Invariant natural killer T (iNKT) cells comprise a small population of αβ T lymphocytes. They bridge the innate and adaptive immune systems and mediate strong and rapid responses to many diseases, including cancer, infections, allergies, and autoimmunity. However, the study of iNKT cell biology and the therapeutic applications of these cells are greatly limited by their small numbers in vivo (∼0.01–1% in mouse and human blood). Here, we report a new method to generate large numbers of iNKT cells in mice through T-cell receptor (TCR) gene engineering of hematopoietic stem cells (HSCs). We showed that iNKT TCR-engineered HSCs could generate a clonal population of iNKT cells. These HSC-engineered iNKT cells displayed the typical iNKT cell phenotype and functionality. They followed a two-stage developmental path, first in thymus and then in the periphery, resembling that of endogenous iNKT cells. When tested in a mouse melanoma lung metastasis model, the HSC-engineered iNKT cells effectively protected mice from tumor metastasis. This method provides a powerful and high-throughput tool to investigate the in vivo development and functionality of clonal iNKT cells in mice. More importantly, this method takes advantage of the self-renewal and longevity of HSCs to generate a long-term supply of engineered iNKT cells, thus opening up a new avenue for iNKT cell-based immunotherapy. PMID:25605948

  12. Genetic engineering of hematopoietic stem cells to generate invariant natural killer T cells.

    PubMed

    Smith, Drake J; Liu, Siyuan; Ji, Sunjong; Li, Bo; McLaughlin, Jami; Cheng, Donghui; Witte, Owen N; Yang, Lili

    2015-02-01

    Invariant natural killer T (iNKT) cells comprise a small population of αβ T lymphocytes. They bridge the innate and adaptive immune systems and mediate strong and rapid responses to many diseases, including cancer, infections, allergies, and autoimmunity. However, the study of iNKT cell biology and the therapeutic applications of these cells are greatly limited by their small numbers in vivo (∼0.01-1% in mouse and human blood). Here, we report a new method to generate large numbers of iNKT cells in mice through T-cell receptor (TCR) gene engineering of hematopoietic stem cells (HSCs). We showed that iNKT TCR-engineered HSCs could generate a clonal population of iNKT cells. These HSC-engineered iNKT cells displayed the typical iNKT cell phenotype and functionality. They followed a two-stage developmental path, first in thymus and then in the periphery, resembling that of endogenous iNKT cells. When tested in a mouse melanoma lung metastasis model, the HSC-engineered iNKT cells effectively protected mice from tumor metastasis. This method provides a powerful and high-throughput tool to investigate the in vivo development and functionality of clonal iNKT cells in mice. More importantly, this method takes advantage of the self-renewal and longevity of HSCs to generate a long-term supply of engineered iNKT cells, thus opening up a new avenue for iNKT cell-based immunotherapy.

  13. Selective Loss of Innate CD4+ Vα24 Natural Killer T Cells in Human Immunodeficiency Virus Infection

    PubMed Central

    Sandberg, Johan K.; Fast, Noam M.; Palacios, Emil H.; Fennelly, Glenn; Dobroszycki, Joanna; Palumbo, Paul; Wiznia, Andrew; Grant, Robert M.; Bhardwaj, Nina; Rosenberg, Michael G.; Nixon, Douglas F.

    2002-01-01

    Vα24 natural killer T (NKT) cells are innate immune cells involved in regulation of immune tolerance, autoimmunity, and tumor immunity. However, the effect of human immunodeficiency virus type 1 (HIV-1) infection on these cells is unknown. Here, we report that the Vα24 NKT cells can be subdivided into CD4+ or CD4− subsets that differ in their expression of the homing receptors CD62L and CD11a. Furthermore, both CD4+ and CD4− NKT cells frequently express both CXCR4 and CCR5 HIV coreceptors. We find that the numbers of NKT cells are reduced in HIV-infected subjects with uncontrolled viremia and marked CD4+ T-cell depletion. The number of CD4+ NKT cells is inversely correlated with HIV load, indicating depletion of this subset. In contrast, CD4− NKT-cell numbers are unaffected in subjects with high viral loads. HIV infection experiments in vitro show preferential depletion of CD4+ NKT cells relative to regular CD4+ T cells, in particular with virus that uses the CCR5 coreceptor. Thus, HIV infection causes a selective loss of CD4+ lymph node homing (CD62L+) NKT cells, with consequent skewing of the NKT-cell compartment to a predominantly CD4− CD62L− phenotype. These data indicate that the key immunoregulatory NKT-cell compartment is compromised in HIV-1-infected patients. PMID:12097565

  14. Deficiencies of Circulating Mucosal-associated Invariant T Cells and Natural Killer T Cells in Patients with Acute Cholecystitis.

    PubMed

    Kim, Jung-Chul; Jin, Hye-Mi; Cho, Young-Nan; Kwon, Yong-Soo; Kee, Seung-Jung; Park, Yong-Wook

    2015-05-01

    Mucosal-associated invariant T (MAIT) cells and natural killer T (NKT) cells are known to play crucial roles in a variety of diseases, including autoimmunity, infectious diseases, and cancers. However, little is known about the roles of these invariant T cells in acute cholecystitis. The purposes of this study were to examine the levels of MAIT cells and NKT cells in patients with acute cholecystitis and to investigate potential relationships between clinical parameters and these cell levels. Thirty patients with pathologically proven acute cholecystitis and 47 age- and sex-matched healthy controls were enrolled. Disease grades were classified according to the revised Tokyo guidelines (TG13) for the severity assessment for acute cholecystitis. Levels of MAIT and NKT cells in peripheral blood were measured by flow cytometry. Circulating MAIT and NKT cell numbers were significantly lower in acute cholecystitis patients than in healthy controls, and these deficiencies in MAIT cells and NKT cell numbers were associated with aging in acute cholecystitis patients. Notably, a reduction in NKT cell numbers was found to be associated with severe TG13 grade, death, and high blood urea nitrogen levels. The study shows numerical deficiencies of circulating MAIT and NKT cells and age-related decline of these invariant T cells. In addition, NKT cell deficiency was associated with acute cholecystitis severity and outcome. These findings provide an information regarding the monitoring of these changes in circulating MAIT and NKT cell numbers during the course of acute cholecystitis and predicting prognosis.

  15. Immunotherapeutic strategies targeting natural killer T cell responses in cancer.

    PubMed

    Shissler, Susannah C; Bollino, Dominique R; Tiper, Irina V; Bates, Joshua P; Derakhshandeh, Roshanak; Webb, Tonya J

    2016-08-01

    Natural killer T (NKT) cells are a unique subset of lymphocytes that bridge the innate and adaptive immune system. NKT cells possess a classic αβ T cell receptor (TCR) that is able to recognize self and foreign glycolipid antigens presented by the nonclassical class I major histocompatibility complex (MHC) molecule, CD1d. Type I NKT cells (referred to as invariant NKT cells) express a semi-invariant Vα14Jα18 TCR in mice and Vα24Jα18 TCR in humans. Type II NKT cells are CD1d-restricted T cells that express a more diverse set of TCR α chains. The two types of NKT cells often exert opposing effects especially in tumor immunity, where type II cells generally suppress tumor immunity while type I NKT cells can enhance anti-tumor immune responses. In this review, we focus on the role of NKT cells in cancer. We discuss their effector and suppressive functions, as well as describe preclinical and clinical studies utilizing therapeutic strategies focused on harnessing their potent anti-tumor effector functions, and conclude with a discussion on potential next steps for the utilization of NKT cell-targeted therapies for the treatment of cancer. PMID:27393665

  16. Expression of CD11c Is Associated with Unconventional Activated T Cell Subsets with High Migratory Potential.

    PubMed

    Qualai, Jamal; Li, Lin-Xi; Cantero, Jon; Tarrats, Antoni; Fernández, Marco Antonio; Sumoy, Lauro; Rodolosse, Annie; McSorley, Stephen J; Genescà, Meritxell

    2016-01-01

    CD11c is an α integrin classically employed to define myeloid dendritic cells. Although there is little information about CD11c expression on human T cells, mouse models have shown an association of CD11c expression with functionally relevant T cell subsets. In the context of genital tract infection, we have previously observed increased expression of CD11c in circulating T cells from mice and women. Microarray analyses of activated effector T cells expressing CD11c derived from naïve mice demonstrated enrichment for natural killer (NK) associated genes. Here we find that murine CD11c+ T cells analyzed by flow cytometry display markers associated with non-conventional T cell subsets, including γδ T cells and invariant natural killer T (iNKT) cells. However, in women, only γδ T cells and CD8+ T cells were enriched within the CD11c fraction of blood and cervical tissue. These CD11c+ cells were highly activated and had greater interferon (IFN)-γ secretory capacity than CD11c- T cells. Furthermore, circulating CD11c+ T cells were associated with the expression of multiple adhesion molecules in women, suggesting that these cells have high tissue homing potential. These data suggest that CD11c expression distinguishes a population of circulating T cells during bacterial infection with innate capacity and mucosal homing potential. PMID:27119555

  17. Expression of CD11c Is Associated with Unconventional Activated T Cell Subsets with High Migratory Potential

    PubMed Central

    Cantero, Jon; Tarrats, Antoni; Fernández, Marco Antonio; Sumoy, Lauro; Rodolosse, Annie; McSorley, Stephen J.

    2016-01-01

    CD11c is an α integrin classically employed to define myeloid dendritic cells. Although there is little information about CD11c expression on human T cells, mouse models have shown an association of CD11c expression with functionally relevant T cell subsets. In the context of genital tract infection, we have previously observed increased expression of CD11c in circulating T cells from mice and women. Microarray analyses of activated effector T cells expressing CD11c derived from naïve mice demonstrated enrichment for natural killer (NK) associated genes. Here we find that murine CD11c+ T cells analyzed by flow cytometry display markers associated with non-conventional T cell subsets, including γδ T cells and invariant natural killer T (iNKT) cells. However, in women, only γδ T cells and CD8+ T cells were enriched within the CD11c fraction of blood and cervical tissue. These CD11c+ cells were highly activated and had greater interferon (IFN)-γ secretory capacity than CD11c- T cells. Furthermore, circulating CD11c+ T cells were associated with the expression of multiple adhesion molecules in women, suggesting that these cells have high tissue homing potential. These data suggest that CD11c expression distinguishes a population of circulating T cells during bacterial infection with innate capacity and mucosal homing potential. PMID:27119555

  18. Chronic alcohol consumption inhibits melanoma growth but decreases the survival of mice immunized with tumor cell lysate and boosted with α-galactosylceramide

    PubMed Central

    Zhang, Faya; Zhu, Zhaohui; Meadows, Gary G.; Zhang, Hui

    2015-01-01

    Alcohol consumption increases the incidence of multiple types of cancer. However, how chronic alcohol consumption affects tumor progression and host survival remains largely unexplored. Using a mouse B16BL6 melanoma model, we studied the effects of chronic alcohol consumption on s.c. tumor growth, iNKT cell antitumor immune response, and host survival. The results indicate that although chronic alcohol consumption inhibits melanoma growth, this does not translate into increased host survival. Immunizing mice with a melanoma cell lysate does not significantly increase the median survival of water-drinking, melanoma-bearing mice, but significantly increases the median survival of alcohol-consuming, melanoma-bearing mice. Even though survival is extended in the alcohol-consuming mice after immunization, the mean survival is not different from the immunized mice in the water-drinking group. Immunization with tumor cell lysate combined with α-galatosylceramide activation of iNKT cells significantly increases host survival of both groups of melanoma-bearing mice compared to their respective non-immunized counterparts; however, the median survival of the alcohol-consuming group is significantly lower than that of the water-drinking group. Alcohol consumption increases NKT cells in the thymus and blood and skews NKT cell cytokine profile from Th1 dominant to Th2 dominant in the tumor-bearing mice. In summary, these results indicate that chronic alcohol consumption activates the immune system, which leads to the inhibition of s.c. melanoma growth and enhances the immune response to immunization with melanoma lysate. With tumor progression, alcohol consumption accelerates iNKT cell dysfunction and compromises antitumor immunity, which leads to decreased survival of melanoma-bearing mice. PMID:26118634

  19. The tumor antigen N-glycolyl-GM3 is a human CD1d ligand capable of mediating B cell and natural killer T cell interaction.

    PubMed

    Gentilini, M Virginia; Pérez, M Eugenia; Fernández, Pablo Mariano; Fainboim, Leonardo; Arana, Eloísa

    2016-05-01

    The expression of N-glycolyl-monosialodihexosyl-ganglioside (NGcGM3) in humans is restricted to cancer cells; therefore, it is a tumor antigen. There are measurable quantities of circulating anti-NGcGM3 antibodies (aNGcGM3 Abs) in human serum. Interestingly, some people have circulating Ag-specific immunoglobulins G (IgGs) that are capable of complement mediated cytotoxicity against NGcGM3 positive cells, which is relevant for tumor surveillance. In light of the chemical nature of Ag, we postulated it as a candidate ligand for CD1d. Furthermore, we hypothesize that the immune mechanism involved in the generation of these Abs entails cross talk between B lymphocytes (Bc) and invariant natural killer T cells (iNKT). Combining cellular techniques, such as flow cytometry and biochemical assays, we demonstrated that CD1d binds to NGcGM3 and that human Bc present NGcGM3 in a CD1d context according to two alternative strategies. We also showed that paraformaldehyde treatment of cells expressing CD1d affects the presentation. Finally, by co-culturing primary human Bc with iNKT and measuring Ki-67 expression, we detected a reproducible increment in the proliferation of the iNKT population when Ag was on the medium. Our findings identify a novel, endogenous, human CD1d ligand, which is sufficiently competent to stimulate iNKT. We postulate that CD1d-restricted Bc presentation of NGcGM3 drives effective iNKT activation, an immunological mechanism that has not been previously described for humans, which may contribute to understanding aNGcGM3 occurrence.

  20. The tumor antigen N-glycolyl-GM3 is a human CD1d ligand capable of mediating B cell and natural killer T cell interaction.

    PubMed

    Gentilini, M Virginia; Pérez, M Eugenia; Fernández, Pablo Mariano; Fainboim, Leonardo; Arana, Eloísa

    2016-05-01

    The expression of N-glycolyl-monosialodihexosyl-ganglioside (NGcGM3) in humans is restricted to cancer cells; therefore, it is a tumor antigen. There are measurable quantities of circulating anti-NGcGM3 antibodies (aNGcGM3 Abs) in human serum. Interestingly, some people have circulating Ag-specific immunoglobulins G (IgGs) that are capable of complement mediated cytotoxicity against NGcGM3 positive cells, which is relevant for tumor surveillance. In light of the chemical nature of Ag, we postulated it as a candidate ligand for CD1d. Furthermore, we hypothesize that the immune mechanism involved in the generation of these Abs entails cross talk between B lymphocytes (Bc) and invariant natural killer T cells (iNKT). Combining cellular techniques, such as flow cytometry and biochemical assays, we demonstrated that CD1d binds to NGcGM3 and that human Bc present NGcGM3 in a CD1d context according to two alternative strategies. We also showed that paraformaldehyde treatment of cells expressing CD1d affects the presentation. Finally, by co-culturing primary human Bc with iNKT and measuring Ki-67 expression, we detected a reproducible increment in the proliferation of the iNKT population when Ag was on the medium. Our findings identify a novel, endogenous, human CD1d ligand, which is sufficiently competent to stimulate iNKT. We postulate that CD1d-restricted Bc presentation of NGcGM3 drives effective iNKT activation, an immunological mechanism that has not been previously described for humans, which may contribute to understanding aNGcGM3 occurrence. PMID:26969612

  1. Interleukin-15 enhances the expansion and function of natural killer T cells from adult peripheral and umbilical cord blood.

    PubMed

    Lin, Syh-Jae; Huang, Ying-Cheng; Cheng, Po-Jen; Lee, Pei-Tzu; Hsiao, Hsiu-Shan; Kuo, Ming-Ling

    2015-12-01

    Invariant natural killer T cells (iNKT cells) are innate-like non-conventional T cells restricted by the CD1d molecule that are unique in their ability to play a pivotal role in immune regulation. Deficient iNKT function has been reported in patients receiving umbilical cord blood (UCB) transplantation. We sought to determine the effect of interleukin (IL)-15 on α-galactosylceramide (α-GalCer)-expanded iNKT cell function from UCB and adult peripheral blood (APB) mononuclear cells (MNCs). Fresh APB and UCB MNCs were cultured with IL-15 (50 ng/ml) in the presence or absence of α-GalCer (100 ng/ml) for 10 days. Cells were harvested for examination of cell yield, apoptosis, cytokine production and cytotoxic function of Vα24(+)/Vβ11(+) iNKT cells. We observed that α-GalCer-expanded APB and UCB iNKT cells and such expansion was further enhanced with IL-15. The percentage of CD3(+)CD56(+) NKT-like cells in both APB and UCB MNCs was increased with IL-15 but not with α-GalCer. Apoptosis of UCB iNKT cells was ameliorated by IL-15. Although APB and UCB iNKT cells secreted lower IFN-γ, it could be enhanced with IL-15. The expression of perforin in APB iNKT cells can also be enhanced with IL-15. UCB Vα24(+)Vβ11(+) iNKT cells further augmented K562 cytotoxicity mediated by IL-15. Taken together, these results demonstrated the relative functional deficiencies of α-GalCer induced UCB iNKT cells, which can be ameliorated by IL-15. Our findings suggest a therapeutic benefit of IL-15 immunotherapy during the post-UCB transplant period when iNKT function remains poor.

  2. CD1d-restricted peripheral T cell lymphoma in mice and humans.

    PubMed

    Bachy, Emmanuel; Urb, Mirjam; Chandra, Shilpi; Robinot, Rémy; Bricard, Gabriel; de Bernard, Simon; Traverse-Glehen, Alexandra; Gazzo, Sophie; Blond, Olivier; Khurana, Archana; Baseggio, Lucile; Heavican, Tayla; Ffrench, Martine; Crispatzu, Giuliano; Mondière, Paul; Schrader, Alexandra; Taillardet, Morgan; Thaunat, Olivier; Martin, Nadine; Dalle, Stéphane; Le Garff-Tavernier, Magali; Salles, Gilles; Lachuer, Joel; Hermine, Olivier; Asnafi, Vahid; Roussel, Mikael; Lamy, Thierry; Herling, Marco; Iqbal, Javeed; Buffat, Laurent; Marche, Patrice N; Gaulard, Philippe; Kronenberg, Mitchell; Defrance, Thierry; Genestier, Laurent

    2016-05-01

    Peripheral T cell lymphomas (PTCLs) are a heterogeneous entity of neoplasms with poor prognosis, lack of effective therapies, and a largely unknown pathophysiology. Identifying the mechanism of lymphomagenesis and cell-of-origin from which PTCLs arise is crucial for the development of efficient treatment strategies. In addition to the well-described thymic lymphomas, we found that p53-deficient mice also developed mature PTCLs that did not originate from conventional T cells but from CD1d-restricted NKT cells. PTCLs showed phenotypic features of activated NKT cells, such as PD-1 up-regulation and loss of NK1.1 expression. Injections of heat-killed Streptococcus pneumonia, known to express glycolipid antigens activating NKT cells, increased the incidence of these PTCLs, whereas Escherichia coli injection did not. Gene expression profile analyses indicated a significant down-regulation of genes in the TCR signaling pathway in PTCL, a common feature of chronically activated T cells. Targeting TCR signaling pathway in lymphoma cells, either with cyclosporine A or anti-CD1d blocking antibody, prolonged mice survival. Importantly, we identified human CD1d-restricted lymphoma cells within Vδ1 TCR-expressing PTCL. These results define a new subtype of PTCL and pave the way for the development of blocking anti-CD1d antibody for therapeutic purposes in humans. PMID:27069116

  3. Inflammatory mechanisms in sepsis: elevated invariant natural killer T-cell numbers in mouse and their modulatory effect on macrophage function.

    PubMed

    Heffernan, Daithi S; Monaghan, Sean F; Thakkar, Rajan K; Tran, Mai L; Chung, Chun-Shiang; Gregory, Stephen H; Cioffi, William G; Ayala, Alfred

    2013-08-01

    Invariant natural killer T cells (iNKT) cells are emerging as key mediators of innate immune cellular and inflammatory responses to sepsis and peritonitis. Invariant natural killer T cells mediate survival following murine septic shock. Macrophages are pivotal to survival following sepsis. Invariant natural killer T cells have been shown to modulate various mediators of the innate immune system, including macrophages. We demonstrate sepsis-inducing iNKT-cell exodus from the liver appearing in the peritoneal cavity, the source of the sepsis. This migration was affected by programmed death receptor 1. Programmed death receptor 1 is an inhibitory immune receptor, reported as ubiquitously expressed at low levels on iNKT cells. Programmed death receptor 1 has been associated with markers of human critical illness. Programmed death receptor 1-deficient iNKT cells failed to demonstrate similar migration. To the extent that iNKT cells affected peritoneal macrophage function, we assessed peritoneal macrophages' ability to phagocytose bacteria. Invariant natural killer T(-/-) mice displayed dysfunctional macrophage phagocytosis and altered peritoneal bacterial load. This dysfunction was reversed when peritoneal macrophages from iNKT(-/-) mice were cocultured with wild-type iNKT cells. Together, our results indicate that sepsis induces liver iNKT-cell exodus into the peritoneal cavity mediated by programmed death receptor 1, and these peritoneal iNKT cells appear critical to regulation of peritoneal macrophage phagocytic function. Invariant natural killer T cells offer therapeutic targets for modulating immune responses and detrimental effects of sepsis.

  4. Modulation of invariant natural killer T cell cytokine responses by indoleamine 2,3-dioxygenase

    PubMed Central

    Molano, Alberto; Illarionov, Petr A.; Besra, Gurdyal S.; Putterman, Chaim; Porcelli, Steven A.

    2008-01-01

    1. SUMMARY The intracellular enzyme indoleamine 2,3-dioxygenase (IDO), which degrades the rare and essential aminoacid tryptophan and converts it into a series of biologically active catabolites, has been linked to the regulation of immune tolerance by specific dendritic cell subsets, and to the downmodulation of exacerbated immune responses. Although the immunoregulatory effects of IDO may be in part due to generalized suppression of cell proliferation caused by tryptophan starvation, there is also evidence that tryptophan catabolites could be directly responsible for some of the observed effects. In this report, we investigated the consequences of IDO activity, particularly with regard to the effects of tryptophan-derived catabolites, on the cytokine responses of activated invariant natural killer T (iNKT) cells, a specialized T cell subset known to have immunoregulatory properties. Our results showed that pharmacologic inhibition of IDO skewed cytokine responses of iNKT cells towards a Th1 profile. In contrast, the presence at low micromolar concentrations of the tryptophan catabolites L-kynurenine, 3-hydroxy-kynurenine, or 3-hydroxy-anthranilic acid shifted the cytokine balance towards a Th2 pattern. These findings have implications for our current understanding of immunoregulation, and the mechanisms by which iNKT cells participate in the modulation of immune responses. PMID:18272236

  5. Natural killer T cells in multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis.

    PubMed

    Van Kaer, Luc; Wu, Lan; Parekh, Vrajesh V

    2015-09-01

    Multiple sclerosis (MS) is a chronic inflammatory disease that causes demyelination of neurons in the central nervous system. Traditional therapies for MS have involved anti-inflammatory and immunosuppressive drugs with significant side effects that often only provide short-term relief. A more desirable outcome of immunotherapy would be to protect against disease before its clinical manifestation or to halt disease after its initiation. One attractive approach to accomplish this goal would be to restore tolerance by targeting immunoregulatory cell networks. Although much of the work in this area has focused on CD4(+) Foxp3(+) regulatory T cells, other studies have investigated natural killer T (NKT) cells, a subset of T cells that recognizes glycolipid antigens in the context of the CD1d glycoprotein. Studies with human MS patients have revealed alterations in the numbers and functions of NKT cells, which have been partially supported by studies with the experimental autoimmune encephalomyelitis model of MS. Additional studies have shown that activation of NKT cells with synthetic lipid antigens can, at least under certain experimental conditions, protect mice against the development of MS-like disease. Although mechanisms of this protection remain to be fully investigated, current evidence suggests that it involves interactions with other immunoregulatory cell types such as regulatory T cells and immunosuppressive myeloid cells. These studies have provided a strong foundation for the rational design of NKT-cell-based immunotherapies for MS that induce tolerance while sparing overall immune function. Nevertheless, additional pre-clinical and clinical studies will be required to bring this goal to fruition.

  6. Coevolution of MHC genes (LMP/TAP/class Ia; NKT-class Ib; NKp30-B7H6): Lessons from cold-blooded vertebrates

    PubMed Central

    Ohta, Yuko; Flajnik, Martin F.

    2015-01-01

    Summary Comparative immunology provides the long view of what is conserved across all vertebrate taxa versus what is specific to particular organisms or group of organisms. Regarding the major histocompatibility complex (MHC) and coevolution, three striking cases have been revealed in cold-blooded vertebrates: lineages of class Ia antigen-processing and -presenting genes, evolutionary conservation of NKT-class Ib recognition, and the ancient emergence of the natural cytotoxicity receptor NKp30 and its ligand B7H6. While coevolution of transporter associated with antigen processing (TAP) and class Ia has been documented in endothermic birds and two mammals, lineages of LMP7 are restricted to ectotherms. The unambiguous discovery of natural killer T (NKT) cells in Xenopus demonstrated that NKT cells are not restricted to mammals and are likely to have emerged at the same time in evolution as classical α/β and γ/δ T cells. NK cell receptors evolve at a rapid rate, and orthologues are nearly impossible to identify in different vertebrate classes. By contrast, we have detected NKp30 in all gnathostomes, except in species where it was lost. The recently discovered ligand of NKp30, B7H6, shows strong signs of coevolution with NKp30 throughout evolution, i.e. coincident loss or expansion of both genes in some species. NKp30 also offers an attractive IgSF candidate for the invasion of the RAG transposon, which is believed to have initiated T-cell receptor/immunoglobulin adaptive immunity. Besides reviewing these intriguing features of MHC evolution and coevolution, we offer suggestions for future studies and propose a model for the primordial or proto MHC. PMID:26284468

  7. Coevolution of MHC genes (LMP/TAP/class Ia, NKT-class Ib, NKp30-B7H6): lessons from cold-blooded vertebrates.

    PubMed

    Ohta, Yuko; Flajnik, Martin F

    2015-09-01

    Comparative immunology provides the long view of what is conserved across all vertebrate taxa versus what is specific to particular organisms or group of organisms. Regarding the major histocompatibility complex (MHC) and coevolution, three striking cases have been revealed in cold-blooded vertebrates: lineages of class Ia antigen-processing and -presenting genes, evolutionary conservation of NKT-class Ib recognition, and the ancient emergence of the natural cytotoxicity receptor NKp30 and its ligand B7H6. While coevolution of transporter associated with antigen processing (TAP) and class Ia has been documented in endothermic birds and two mammals, lineages of LMP7 are restricted to ectotherms. The unambiguous discovery of natural killer T (NKT) cells in Xenopus demonstrated that NKT cells are not restricted to mammals and are likely to have emerged at the same time in evolution as classical α/β and γ/δ T cells. NK cell receptors evolve at a rapid rate, and orthologues are nearly impossible to identify in different vertebrate classes. By contrast, we have detected NKp30 in all gnathostomes, except in species where it was lost. The recently discovered ligand of NKp30, B7H6, shows strong signs of coevolution with NKp30 throughout evolution, i.e. coincident loss or expansion of both genes in some species. NKp30 also offers an attractive IgSF candidate for the invasion of the RAG transposon, which is believed to have initiated T-cell receptor/immunoglobulin adaptive immunity. Besides reviewing these intriguing features of MHC evolution and coevolution, we offer suggestions for future studies and propose a model for the primordial or proto MHC. PMID:26284468

  8. ISCOMATRIX Adjuvant Combines Immune Activation with Antigen Delivery to Dendritic Cells In Vivo Leading to Effective Cross-Priming of CD8+ T Cells

    PubMed Central

    Duewell, Peter; Kisser, Ulrich; Heckelsmiller, Klaus; Hoves, Sabine; Stoitzner, Patrizia; Koernig, Sandra; Morelli, Adriana B.; Clausen, Björn E.; Dauer, Marc; Eigler, Andreas; Anz, David; Bourquin, Carole; Maraskovsky, Eugene; Endres, Stefan; Schnurr, Max

    2014-01-01

    Cancer vaccines aim to induce CTL responses against tumors. Challenges for vaccine design are targeting Ag to dendritic cells (DCs) in vivo, facilitating cross-presentation, and conditioning the microenvironment for Th1 type immune responses. In this study, we report that ISCOM vaccines, which consist of ISCOMATRIX adjuvant and protein Ag, meet these challenges. Subcutaneous injection of an ISCOM vaccine in mice led to a substantial influx and activation of innate and adaptive immune effector cells in vaccine site-draining lymph nodes (VDLNs) as well as IFN-γ production by NK and NKT cells. Moreover, an ISCOM vaccine containing the model Ag OVA (OVA/ISCOM vaccine) was efficiently taken up by CD8α+ DCs in VDLNs and induced their maturation and IL-12 production. Adoptive transfer of transgenic OT-I T cells revealed highly efficient cross-presentation of the OVA/ISCOM vaccine in vivo, whereas cross-presentation of soluble OVA was poor even at a 100-fold higher concentration. Cross-presenting activity was restricted to CD8α+ DCs in VDLNs, whereas Langerin+ DCs and CD8α− DCs were dispensable. Remarkably, compared with other adjuvant systems, the OVA/ISCOM vaccine induced a high frequency of OVA-specific CTLs capable of tumor cell killing in different tumor models. Thus, ISCOM vaccines combine potent immune activation with Ag delivery to CD8α+ DCs in vivo for efficient induction of CTL responses. PMID:21613613

  9. TLR9-induced miR-155 and Ets-1 decrease expression of CD1d on B cells in SLE.

    PubMed

    Liu, Fei; Fan, Hongye; Ren, Deshan; Dong, Guanjun; Hu, Erling; Ji, Jianjian; Hou, Yayi

    2015-07-01

    B cells present lipid antigens to CD1d-restricted invariant natural killer T (iNKT) cells to maintain autoimmune tolerance, and this process is disrupted in systemic lupus erythematosus (SLE). Inflammation may inhibit CD1d expression to exacerbate the pathology of lupus. However, how inflammation regulates CD1d expression on B cells is unclear in SLE. In the present study, we showed that the surface expression of CD1d on B cells from SLE mice was decreased and that stimulation of inflammatory responses through TLR9 decreased the membrane and total CD1d levels of CD1d on B cells. Moreover, inflammation-related microRNA-155 (miR-155) negatively correlated with the expression of CD1d in B cells. miR-155 directly targeted the 3'-untranslated region (3'-UTR) of CD1d upon TLR9 activation in both humans and mice. The inhibitory effects of miR-155 on CD1d expression in B cells impaired their antigen-presenting capacity to iNKT cells. In addition, Ets-1, a susceptibility gene of SLE, also directly regulated the expression of the CD1d gene at the transcriptional level. These findings provide new insight into the mechanism underlying decreased CD1d expression on B cells in SLE, suggesting that inhibition of inflammation may increase CD1d expression in B cells to ameliorate SLE via modulating iNKT cells.

  10. Pit cells as liver-associated natural killer cells: morphology and function.

    PubMed

    Nakatani, Kazuki; Kaneda, Kenji; Seki, Shuichi; Nakajima, Yuji

    2004-03-01

    Pit cells are one type of hepatic sinusoidal cells, defined morphologically as large granular lymphocytes (LGLs) and functionally as liver-associated natural killer (NK) cells. They are situated inside the sinusoidal lumen, adhering to the endothelial cells and Kupffer cells. They contain multivesicular body-related dense granules and rod-cored vesicles. The number and size of granules and vesicles differ between hepatic NK cells and peripheral blood cells, suggesting possible differentiation of the latter into the former in the microenvironment of the liver. In addition to NK cells, natural killer T (NKT) cells are also abundant in the liver. They share several morphological properties with NK cells, and at least some are probably observed as pit cells under an electron microscope. NK cells recognize target cells with their surface receptors such as inhibitory and activating receptors. They exert antitumor functions by exocytosis of perforin/granzyme-containing granules, induction of death receptor-mediated apoptosis in target cells, and production of various cytokines that augment the activities of other immune cells. NKT cells play important roles in initiating and assisting the function of NK cells by producing interferon-gamma.

  11. Mnk1 and 2 are dispensable for T-cell development and activation but important for the pathogenesis of experimental autoimmune encephalitis

    PubMed Central

    Gorentla, Balachandra K; Krishna, Sruti; Shin, Jinwook; Inoue, Makoto; Shinohara, Mari L.; Grayson, Jason M.; Fukunaga, Rikiro; Zhong, Xiao-Ping

    2012-01-01

    T-cell development and activation are usually accompanied by expansion and production of numerous proteins that require active translation. The eukaryotic translation initiation factor 4E (eIF4E) binds to the 5' cap structure of mRNA and is critical for cap-dependent translational initiation. It has been hypothesized that MAPK-interacting kinase 1 and 2 (Mnk1/2) promote cap-dependent translation by phosphorylating eIF4E at serine 209 (S209). Pharmacological studies utilizing inhibitors have suggested that Mnk1/2 play important roles in T-cells. However, genetic evidence supporting such conclusions is lacking. Moreover, the signaling pathways that regulate Mnk1/2 in T-cells remain unclear. We demonstrated here that T-cell receptor (TCR) engagement activates Mnk1/2 in primary T-cells. Such activation is dependent on Ras-Erk1/2 signaling and is inhibited by diacylglycerol kinases α and ζ. Mnk1/2 double deficiency in mice abolishes TCR-induced eIF4E S209 phosphorylation, indicating their absolute requirement for eIF4E S209 phosphorylation. However, Mnk1/2 double deficiency does not affect the development of conventional αβ T-cells, regulatory T-cells, or NKT-cells. Furthermore, T-cell activation, in vivo primary and memory CD8 T-cell responses to microbial infection, and NKT-cell cytokine production were not obviously altered by Mnk1/2 deficiency. Although Mnk1/2 deficiency causes decreased IL-17 and IFNγ production by CD4 T-cells following immunization of mice with myelin oligodendrocyte glycoprotein peptide in complete Freud's adjuvant, correlating with milder experimental autoimmune encephalitis scores, it does not affect T helper cell differentiation in vitro. Together, these data suggest that Mnk1/2 play a minimal role in T-cell development and activation but may regulate non-T-cell lineages to control Th1/Th17 differentiation in vivo. PMID:23269249

  12. Identification of a potent microbial lipid antigen for diverse Natural Killer T cells1

    PubMed Central

    Wolf, Benjamin J.; Tatituri, Raju V. V.; Almeida, Catarina F.; Le Nours, Jérôme; Bhowruth, Veemal; Johnson, Darryl; Uldrich, Adam P.; Hsu, Fong-Fu; Brigl, Manfred; Besra, Gurdyal S.; Rossjohn, Jamie; Godfrey, Dale I.; Brenner, Michael B.

    2016-01-01

    Invariant Natural Killer T (iNKT) cells are a well-characterized CD1d-restricted T cell subset. The availability of potent antigens and tetramers for iNKT cells has allowed this population to be extensively studied and has revealed their central roles in infection, autoimmunity, and tumor immunity. In contrast, diverse Natural Killer T (dNKT) cells are poorly understood because the lipid antigens they recognize are largely unknown. We sought to identify dNKT cell lipid antigen(s) by interrogating a panel of dNKT mouse cell hybridomas with lipid extracts from the pathogen Listeria monocytogenes. We identified Listeria phosphatidylglycerol (PG) as a microbial antigen that was significantly more potent than a previously characterized dNKT cell antigen, mammalian PG. Further, while mammalian PG loaded CD1d tetramers did not stain dNKT cells, the Listeria-derived PG loaded tetramers did. The structure of Listeria PG was distinct from mammalian PG since it contained shorter, fully-saturated anteiso fatty acid lipid tails. CD1d binding lipid displacement studies revealed that the microbial PG antigen binds significantly better to CD1d than counterparts with the same headgroup. These data reveal a highly-potent microbial lipid antigen for a subset of dNKT cells and provide an explanation for its increased antigen potency compared to the mammalian counterpart. PMID:26254340

  13. A radio-resistant perforin-expressing lymphoid population controls allogeneic T cell engraftment, activation, and onset of graft-versus-host disease in mice.

    PubMed

    Davis, Joanne E; Harvey, Michael; Gherardin, Nicholas A; Koldej, Rachel; Huntington, Nicholas; Neeson, Paul; Trapani, Joseph A; Ritchie, David S

    2015-02-01

    Immunosuppressive pretransplantation conditioning is essential for donor cell engraftment in allogeneic bone marrow transplantation (BMT). The role of residual postconditioning recipient immunity in determining engraftment is poorly understood. We examined the role of recipient perforin in the kinetics of donor cell engraftment. MHC-mismatched BMT mouse models demonstrated that both the rate and proportion of donor lymphoid cell engraftment and expansion of effector memory donor T cells in both spleen and BM were significantly increased within 5 to 7 days post-BMT in perforin-deficient (pfn(-/-)) recipients, compared with wild-type. In wild-type recipients, depletion of natural killer (NK) cells before BMT enhanced donor lymphoid cell engraftment to that seen in pfn(-/-) recipients. This demonstrated that a perforin-dependent, NK-mediated, host-versus-graft (HVG) effect limits the rate of donor engraftment and T cell activation. Radiation-resistant natural killer T (NKT) cells survived in the BM of lethally irradiated mice and may drive NK cell activation, resulting in the HVG effect. Furthermore, reduced pretransplant irradiation doses in pfn(-/-) recipients permitted long-term donor lymphoid cell engraftment. These findings suggest that suppression of perforin activity or selective depletion of recipient NK cells before BMT could be used to improve donor stem cell engraftment, in turn allowing for the reduction of pretransplant conditioning.

  14. Invariant natural killer T cells generated from human adult hematopoietic stem-progenitor cells are poly-functional.

    PubMed

    Sun, Wenji; Wang, Yi; East, James E; Kimball, Amy S; Tkaczuk, Katherine; Kesmodel, Susan; Strome, Scott E; Webb, Tonya J

    2015-03-01

    Invariant natural killer T (iNKT) cells constitute an important subset of T cells that can both directly and indirectly mediate anti-tumor immunity. However, cancer patients have a reduction in both iNKT cell number and function, and these deficits limit the potential clinical application of iNKT cells for cancer therapy. To overcome the problem of limited iNKT cell numbers, we investigated whether iNKT cells can be generated in vitro from bone marrow-derived adult hematopoietic stem-progenitor cells (HSPC). Our data demonstrate that co-culture of HSPC with OP9-DL1 stromal cells, results in a functional CD3(+) T cell population. These T cells can be further differentiated into iNKT cells by secondary culture with CD1d-Ig-based artificial antigen-presenting cells (aAPC). Importantly, these in vitro-generated iNKT cells are functional, as demonstrated by their ability to proliferate and secrete IFN-γ and GM-CSF following stimulation. PMID:25569376

  15. Invariant natural killer T cells generated from human adult hematopoietic stem-progenitor cells are poly-functional

    PubMed Central

    Sun, Wenji; Wang, Yi; East, James E.; Kimball, Amy S.; Tkaczuk, Katherine; Kesmodel, Susan; Strome, Scott E.; Webb, Tonya J.

    2014-01-01

    Invariant natural killer T (iNKT) cells constitute an important subset of T cells that can both directly and indirectly mediate anti-tumor immunity. However, cancer patients have a reduction in both iNKT cell number and function, and these deficits limit the potential clinical application of iNKT cells for cancer therapy. To overcome the problem of limited iNKT cell numbers, we investigated whether iNKT cells can be generated in vitro from bone marrow-derived adult hematopoietic stem-progenitor cells (HSPC). Our data demonstrate that co-culture of HSPC with OP9-DL1 stromal cells, results in a functional CD3+ T cell population. These T cells can be further differentiated into iNKT cells by secondary culture with CD1d-Ig-based artificial antigen-presenting cells (aAPC). Importantly, these in vitro-generated iNKT cells are functional, as demonstrated by their ability to proliferate and secrete IFN-γ and GM-CSF following stimulation. PMID:25569376

  16. Larger number of invariant natural killer T cells in PBSC allografts correlates with improved GVHD-free and progression-free survival.

    PubMed

    Malard, Florent; Labopin, Myriam; Chevallier, Patrice; Guillaume, Thierry; Duquesne, Alix; Rialland, Fanny; Derenne, Sophie; Peterlin, Pierre; Leauté, Anne-Gaelle; Brissot, Eolia; Gregoire, Marc; Moreau, Philippe; Saas, Philippe; Gaugler, Béatrice; Mohty, Mohamad

    2016-04-01

    We studied the impact of a set of immune cells contained within granulocyte colony-stimulating factor-mobilized peripheral blood stem cell grafts (naïve and memory T-cell subsets, B cells, regulatory T cells, invariant natural killer T cells [iNKTs], NK cells, and dendritic cell subsets) in patients (n = 80) undergoing allogeneic stem cell transplantation (SCT), using the composite end point of graft-versus-host disease (GVHD)-free and progression-free survival (GPFS) as the primary end point. We observed that GPFS incidences in patients receiving iNKT doses above and below the median were 49% vs 22%, respectively (P= .007). In multivariate analysis, the iNKT dose was the only parameter with a significant impact on GPFS (hazard ratio = 0.48; 95% confidence interval, 0.27-0.85;P= .01). The incidences of severe grade III to IV acute GVHD and National Institutes of Health grade 2 to 3 chronic GVHD (12% and 16%, respectively) were low and associated with the use of antithymocyte globulin in 91% of patients. No difference in GVHD incidence was reported according to the iNKT dose. In conclusion, a higher dose of iNKTs within the graft is associated with an improved GPFS. These data may pave the way for prospective and active interventions aiming to manipulate the graft content to improve allo-SCT outcome.

  17. Interferon-γ constrains cytokine production of group 2 innate lymphoid cells.

    PubMed

    Kudo, Fujimi; Ikutani, Masashi; Seki, Yoichi; Otsubo, Takeshi; Kawamura, Yuki I; Dohi, Taeko; Oshima, Kenshiro; Hattori, Masahira; Nakae, Susumu; Takatsu, Kiyoshi; Takaki, Satoshi

    2016-01-01

    Group 2 innate lymphoid cells (ILC2s) produce a significant amount of interleukin-5 (IL-5), which supports eosinophil responses in various tissues; they also produce IL-13, which induces mucus production and contributes to tissue repair or fibrosis. The ILC2s are activated by alarmins, such as IL-33 released from epithelia, macrophages and natural killer T (NKT) cells in response to infection and allergen exposure, leading to epithelial injury. We examined gene expression in lung ILC2s and found that ILC2s expressed Ifngr1, the receptor for interferon-γ (IFN-γ). Interferon-γ severely inhibited IL-5 and IL-13 production by lung and kidney ILC2s. To evaluate the effects in vivo, we used α-galactosylceramide (α-GalCer) to induce NKT cells to produce IL-33 and IFN-γ. Intraperitoneal injection of α-GalCer in mice induced NKT cell activation resulting in IL-5 and IL-13 production by ILC2s. Administration of anti-IFN-γ together with α-GalCer significantly enhanced the production of IL-5 and IL-13 by ILC2s in lung and kidney. Conversely, cytokine production from ILC2s was markedly suppressed after injection of exogenous IL-33 in Il33(-/-) mice pre-treated with α-GalCer. Hence, IFN-γ induced or already present in tissues can impact downstream pleiotropic functions mediated by ILC2s, such as inflammation and tissue repair.

  18. Human CD1d knock-in mouse model demonstrates potent antitumor potential of human CD1d-restricted invariant natural killer T cells

    PubMed Central

    Wen, Xiangshu; Rao, Ping; Carreño, Leandro J.; Kim, Seil; Lawrenczyk, Agnieszka; Porcelli, Steven A.; Cresswell, Peter; Yuan, Weiming

    2013-01-01

    Despite a high degree of conservation, subtle but important differences exist between the CD1d antigen presentation pathways of humans and mice. These differences may account for the minimal success of natural killer T (NKT) cell-based antitumor therapies in human clinical trials, which contrast strongly with the powerful antitumor effects in conventional mouse models. To develop an accurate model for in vivo human CD1d (hCD1d) antigen presentation, we have generated a hCD1d knock-in (hCD1d-KI) mouse. In these mice, hCD1d is expressed in a native tissue distribution pattern and supports NKT cell development. Reduced numbers of invariant NKT (iNKT) cells were observed, but at an abundance comparable to that in most normal humans. These iNKT cells predominantly expressed mouse Vβ8, the homolog of human Vβ11, and phenotypically resembled human iNKT cells in their reduced expression of CD4. Importantly, iNKT cells in hCD1d knock-in mice exert a potent antitumor function in a melanoma challenge model. Our results show that replacement of mCD1d by hCD1d can select a population of functional iNKT cells closely resembling human iNKT cells. These hCD1d knock-in mice will allow more accurate in vivo modeling of human iNKT cell responses and will facilitate the preclinical assessment of iNKT cell-targeted antitumor therapies. PMID:23382238

  19. Atypical natural killer T-cell receptor recognition of CD1d–lipid antigens

    PubMed Central

    Le Nours, Jérôme; Praveena, T.; Pellicci, Daniel G.; Gherardin, Nicholas A.; Ross, Fiona J.; Lim, Ricky T.; Besra, Gurdyal S.; Keshipeddy, Santosh; Richardson, Stewart K.; Howell, Amy R.; Gras, Stephanie; Godfrey, Dale I.; Rossjohn, Jamie; Uldrich, Adam P.

    2016-01-01

    Crucial to Natural Killer T (NKT) cell function is the interaction between their T-cell receptor (TCR) and CD1d-antigen complex. However, the diversity of the NKT cell repertoire and the ensuing interactions with CD1d-antigen remain unclear. We describe an atypical population of CD1d–α-galactosylceramide (α-GalCer)-reactive human NKT cells that differ markedly from the prototypical TRAV10-TRAJ18-TRBV25-1+ type I NKT cell repertoire. These cells express a range of TCR α- and β-chains that show differential recognition of glycolipid antigens. Two atypical NKT TCRs (TRAV21-TRAJ8-TRBV7–8 and TRAV12-3-TRAJ27-TRBV6-5) bind orthogonally over the A′-pocket of CD1d, adopting distinct docking modes that contrast with the docking mode of all type I NKT TCR-CD1d-antigen complexes. Moreover, the interactions with α-GalCer differ between the type I and these atypical NKT TCRs. Accordingly, diverse NKT TCR repertoire usage manifests in varied docking strategies and specificities towards CD1d–α-GalCer and related antigens, thus providing far greater scope for diverse glycolipid antigen recognition. PMID:26875526

  20. Mouse and Human CD1d-Self-Lipid Complexes Are Recognized Differently by Murine Invariant Natural Killer T Cell Receptors

    PubMed Central

    Guo, Tingxi; Chamoto, Kenji; Nakatsugawa, Munehide; Ochi, Toshiki; Yamashita, Yuki; Anczurowski, Mark; Butler, Marcus O.; Hirano, Naoto

    2016-01-01

    Invariant natural killer T (iNKT) cells recognize self-lipids presented by CD1d through characteristic TCRs, which mainly consist of the invariant Vα14-Jα18 TCRα chain and Vβ8.2, 7 or 2 TCRβ chains with hypervariable CDR3β sequences in mice. The iNKT cell-CD1d axis is conserved between humans and mice, and human CD1d reactivity of murine iNKT cells have been described. However, the detailed differences between the recognition of human and mouse CD1d bound to various self-lipids by mouse iNKT TCRs are largely unknown. In this study, we generated a de novo murine iNKT TCR repertoire with a wider range of autoreactivity compared with that of naturally occurring peripheral iNKT TCRs. Vβ8.2 mouse iNKT TCRs capable of recognizing the human CD1d-self-lipid tetramer were identified, although such clones were not detectable in the Vβ7 or Vβ2 iNKT TCR repertoire. In line with previously reports, clonotypic Vβ8.2 iNKT TCRs with unique CDR3β loops did not discriminate among lipids presented by mouse CD1d. Unexpectedly, however, these iNKT TCRs showed greater ligand selectivity toward human CD1d presenting the same lipids. Our findings demonstrated that the recognition of mouse and human CD1d-self-lipid complexes by murine iNKT TCRs is not conserved, thereby further elucidating the differences between cognate and cross-species reactivity of self-antigens by mouse iNKT TCRs. PMID:27213277

  1. Cell sedimentation with gravity activation.

    PubMed

    Czerlinski, G; Goldman-Leikin, R; Reid, D

    1988-12-01

    Murine monoclonal antibody T101 has been coupled to thinly polymer-coated heavy alloy particles (LaMn2Ge2). These conjugates are coupled to cultured cells of the human T-cell leukemia line RPMI 8402 (T8402). The sedimentation velocities of cells, of particles, and of cells with particles attached are measured. After determining the mean radii of cells, of particles, and of cells with particles attached, one may compute a mean number of 33 particles attached to a cell. Independently one may compute a mean number of 144 particles/cell for surface saturation. The Appendix handles the underlying theory in three parts: number of particles/cell, saturation number of particles/cell, and resolution for gravity activation. Regarding the latter, cell radii from 4 to 10 microns and particle radii from 0.01 to 1 micron are considered.

  2. Understanding the Regulatory Roles of Natural Killer T Cells in Rheumatoid Arthritis: T Helper Cell Differentiation Dependent or Independent?

    PubMed

    Chen, J; Yang, J; Qiao, Y; Li, X

    2016-10-01

    Rheumatoid arthritis (RA) is the most common chronic systemic autoimmune disease. This disease is thought to be caused by pathogenic T cells. Th1, Th2, Th17 and Treg cells have been implicated in the pathogenesis of RA. These Th cells differentiate from CD4+ T cells primarily due to the effects of cytokines. Natural killer T (NKT) cells are a distinct subset of lymphocytes that can rapidly secrete massive amount of cytokines, including IL-2, IL-4, IL-12 and IFN-γ. Numerous studies showed that NKT cells can influence the differentiation of CD4+ T cells via cytokines in vitro. These findings suggest that NKT cells play an important role in RA by polarizing Th1, Th2, Th17 and Treg cells. In view of the complexity of RA, we discussed whether NKT cells really influence the development of RA through regulating the differentiation of Th cells. PMID:27384545

  3. Invariant natural killer T cells act as an extravascular cytotoxic barrier for joint-invading Lyme Borrelia.

    PubMed

    Lee, Woo-Yong; Sanz, Maria-Jesus; Wong, Connie H Y; Hardy, Pierre-Olivier; Salman-Dilgimen, Aydan; Moriarty, Tara J; Chaconas, George; Marques, Adriana; Krawetz, Roman; Mody, Christopher H; Kubes, Paul

    2014-09-23

    CXCR6-GFP(+) cells, which encompass 70% invariant natural killer T cells (iNKT cells), have been found primarily patrolling inside blood vessels in the liver. Although the iNKT cells fail to interact with live pathogens, they do respond to bacterial glycolipids presented by CD1d on liver macrophage that have caught the microbe. In contrast, in this study using dual laser multichannel spinning-disk intravital microscopy of joints, the CXCR6-GFP, which also made up 60-70% iNKT cells, were not found in the vasculature but rather closely apposed to and surrounding the outside of blood vessels, and to a lesser extent throughout the extravascular space. These iNKT cells also differed in behavior, responding rapidly and directly to joint-homing pathogens like Borrelia burgdorferi, which causes Lyme disease. These iNKT cells interacted with B. burgdorferi at the vessel wall and disrupted dissemination attempts by these microbes into joints. Successful penetrance of B. burgdorferi out of the vasculature and into the joint tissue was met by a lethal attack by extravascular iNKT cells through a granzyme-dependent pathway, an observation also made in vitro for iNKT cells from joint but not liver or spleen. These results suggest a novel, critical extravascular iNKT cell immune surveillance in joints that functions as a cytotoxic barrier and explains a large increase in pathogen burden of B. burgdorferi in the joint of iNKT cell-deficient mice, and perhaps the greater susceptibility of humans to this pathogen because of fewer iNKT cells in human joints.

  4. Invariant natural killer T cells act as an extravascular cytotoxic barrier for joint-invading Lyme Borrelia

    PubMed Central

    Lee, Woo-Yong; Sanz, Maria-Jesus; Wong, Connie H. Y.; Hardy, Pierre-Olivier; Salman-Dilgimen, Aydan; Moriarty, Tara J.; Chaconas, George; Marques, Adriana; Krawetz, Roman; Mody, Christopher H.; Kubes, Paul

    2014-01-01

    CXCR6-GFP+ cells, which encompass 70% invariant natural killer T cells (iNKT cells), have been found primarily patrolling inside blood vessels in the liver. Although the iNKT cells fail to interact with live pathogens, they do respond to bacterial glycolipids presented by CD1d on liver macrophage that have caught the microbe. In contrast, in this study using dual laser multichannel spinning-disk intravital microscopy of joints, the CXCR6-GFP, which also made up 60–70% iNKT cells, were not found in the vasculature but rather closely apposed to and surrounding the outside of blood vessels, and to a lesser extent throughout the extravascular space. These iNKT cells also differed in behavior, responding rapidly and directly to joint-homing pathogens like Borrelia burgdorferi, which causes Lyme disease. These iNKT cells interacted with B. burgdorferi at the vessel wall and disrupted dissemination attempts by these microbes into joints. Successful penetrance of B. burgdorferi out of the vasculature and into the joint tissue was met by a lethal attack by extravascular iNKT cells through a granzyme-dependent pathway, an observation also made in vitro for iNKT cells from joint but not liver or spleen. These results suggest a novel, critical extravascular iNKT cell immune surveillance in joints that functions as a cytotoxic barrier and explains a large increase in pathogen burden of B. burgdorferi in the joint of iNKT cell-deficient mice, and perhaps the greater susceptibility of humans to this pathogen because of fewer iNKT cells in human joints. PMID:25205813

  5. Reduced proportions of natural killer T cells are present in the relatives of lupus patients and are associated with autoimmunity

    PubMed Central

    Wither, Joan; Cai, Yong-chun; Lim, Sooyeol; McKenzie, Tamara; Roslin, Nicole; Claudio, Jaime O; Cooper, Glinda S; Hudson, Thomas J; Paterson, Andrew D; Greenwood, Celia MT; Gladman, Dafna; Pope, Janet; Pineau, Christian A; Smith, C Douglas; Hanly, John G; Peschken, Christine; Boire, Gilles; Fortin, Paul R

    2008-01-01

    Introduction Systemic lupus erythematosus is a genetically complex disease. Currently, the precise allelic polymorphisms associated with this condition remain largely unidentified. In part this reflects the fact that multiple genes, each having a relatively minor effect, act in concert to produce disease. Given this complexity, analysis of subclinical phenotypes may aid in the identification of susceptibility alleles. Here, we used flow cytometry to investigate whether some of the immune abnormalities that are seen in the peripheral blood lymphocyte population of lupus patients are seen in their first-degree relatives. Methods Peripheral blood mononuclear cells were isolated from the subjects, stained with fluorochrome-conjugated monoclonal antibodies to identify various cellular subsets, and analyzed by flow cytometry. Results We found reduced proportions of natural killer (NK)T cells among 367 first-degree relatives of lupus patients as compared with 102 control individuals. There were also slightly increased proportions of memory B and T cells, suggesting increased chronic low-grade activation of the immune system in first-degree relatives. However, only the deficiency of NKT cells was associated with a positive anti-nuclear antibody test and clinical autoimmune disease in family members. There was a significant association between mean parental, sibling, and proband values for the proportion of NKT cells, suggesting that this is a heritable trait. Conclusions The findings suggest that analysis of cellular phenotypes may enhance the ability to detect subclinical lupus and that genetically determined altered immunoregulation by NKT cells predisposes first-degree relatives of lupus patients to the development of autoimmunity. PMID:18783591

  6. STAT3 transcription factor is constitutively activated and is oncogenic in nasal-type NK/T-cell lymphoma

    PubMed Central

    Coppo, Paul; Gouilleux-Gruart, Valérie; Huang, Yenlin; Bouhlal, Hicham; Bouamar, Hakim; Bouchet, Sandrine; Perrot, Christine; Vieillard, Vincent; Dartigues, Peggy; Gaulard, Philippe; Agbalika, Félix; Douay, Luc; Lassoued, Kaiss; Gorin, Norbert-Claude

    2009-01-01

    Nasal-type natural killer (NK) cell lymphoma is an infrequent aggressive malignant disease with very poor prognosis. We aimed to explore the possible role of the transcription factor STAT3 in the pathophysiology of this malignancy, as it was involved in oncogenesis and chemoresistance. For this, we established and characterized a continuous interleukin 2-dependent NK cell line (MEC04) from a patient with a fatal nasal-type NK cell lymphoma. Cells harbored poor cytotoxic activity against K562 cells, and spontaneously secreted interferon-γ, IL-10 and vascular-endothelium growth factor in vitro. STAT3 was phosphorylated in Y705 dimerization residue in MEC04 cells and restricted to the nucleus. Y705 STAT3 phosphorylation involved JAK2, since exposure of cells to AG490 inhibitor inhibited Y705 STAT3 phosphorylation. By using recombinant transducible TAT-STAT3β (βisoform), TAT-STAT3Y705F (a STAT3 protein mutated on Y705 residue which prevents STAT3 dimerization), and peptides inhibiting specifically STAT3 dimerization, we inhibited STAT3 phosphorylation and cell growth, with cell death induction. Finally, STAT3 was phosphorylated in Y705 residue in the nuclei of lymphoma cells in 8/9 patients with nasal-type NK/T cell lymphoma and in YT, another NK cell line. Our results suggest that STAT3 protein has a major role in the oncogenic process of nasal-type NK cell lymphomas, and may represent a promising therapeutical target. PMID:19421230

  7. CD1d- and MR1-Restricted T Cells in Sepsis

    PubMed Central

    Szabo, Peter A.; Anantha, Ram V.; Shaler, Christopher R.; McCormick, John K.; Haeryfar, S.M. Mansour

    2015-01-01

    Dysregulated immune responses to infection, such as those encountered in sepsis, can be catastrophic. Sepsis is typically triggered by an overwhelming systemic response to an infectious agent(s) and is associated with high morbidity and mortality even under optimal critical care. Recent studies have implicated unconventional, innate-like T lymphocytes, including CD1d- and MR1-restricted T cells as effectors and/or regulators of inflammatory responses during sepsis. These cell types are typified by invariant natural killer T (iNKT) cells, variant NKT (vNKT) cells, and mucosa-associated invariant T (MAIT) cells. iNKT and vNKT cells are CD1d-restricted, lipid-reactive cells with remarkable immunoregulatory properties. MAIT cells participate in antimicrobial defense, and are restricted by major histocompatibility complex-related protein 1 (MR1), which displays microbe-derived vitamin B metabolites. Importantly, NKT and MAIT cells are rapid and potent producers of immunomodulatory cytokines. Therefore, they may be considered attractive targets during the early hyperinflammatory phase of sepsis when immediate interventions are urgently needed, and also in later phases when adjuvant immunotherapies could potentially reverse the dangerous state of immunosuppression. We will highlight recent findings that point to the significance or the therapeutic potentials of NKT and MAIT cells in sepsis and will also discuss what lies ahead in research in this area. PMID:26322041

  8. Acoustofluidic Fluorescence Activated Cell Sorter.

    PubMed

    Nawaz, Ahmad Ahsan; Chen, Yuchao; Nama, Nitesh; Nissly, Ruth Helmus; Ren, Liqiang; Ozcelik, Adem; Wang, Lin; McCoy, J Philip; Levine, Stewart J; Huang, Tony Jun

    2015-12-15

    Selective isolation of cell subpopulations with defined biological characteristics is crucial for many biological studies and clinical applications. In this work, we present the development of an acoustofluidic fluorescence activated cell sorting (FACS) device that simultaneously performs on-demand, high-throughput, high-resolution cell detection and sorting, integrated onto a single chip. Our acoustofluidic FACS device uses the "microfluidic drifting" technique to precisely focus cells/particles three dimensionally and achieves a flow of single-file particles/cells as they pass through a laser interrogation region. We then utilize short bursts (150 μs) of standing surface acoustic waves (SSAW) triggered by an electronic feedback system to sort fluorescently labeled particles/cells with desired biological properties. We have demonstrated continuous isolation of fluorescently labeled HeLa cells from unlabeled cells at a throughput of ∼1200 events/s with a purity reaching 92.3 ± 3.39%. Furthermore, 99.18% postsort cell viability indicates that our acoustofluidic sorting technique maintains a high integrity of cells. Therefore, our integrated acoustofluidic FACS device is demonstrated to achieve two-way cell sorting with high purity, biocompatibility, and biosafety. We believe that our device has significant potential for use as a low-cost, high-performance, portable, and user-friendly FACS instrument.

  9. CD4+ invariant natural killer T cells protect from murine GVHD lethality through expansion of donor CD4+CD25+FoxP3+ regulatory T cells.

    PubMed

    Schneidawind, Dominik; Pierini, Antonio; Alvarez, Maite; Pan, Yuqiong; Baker, Jeanette; Buechele, Corina; Luong, Richard H; Meyer, Everett H; Negrin, Robert S

    2014-11-20

    Dysregulated donor T cells lead to destruction of host tissues resulting in graft-versus-host disease (GVHD) after allogeneic hematopoietic cell transplantation (HCT). We investigated the impact of highly purified (>95%) donor CD4(+) invariant natural killer T (iNKT) cells on GVHD in a murine model of allogeneic HCT. We found that low doses of adoptively transferred donor CD4(+) iNKT cells protect from GVHD morbidity and mortality through an expansion of donor CD4(+)CD25(+)FoxP3(+) regulatory T cells (Tregs). These Tregs express high levels of the Ikaros transcription factor Helios and expand from the Treg pool of the donor graft. Furthermore, CD4(+) iNKT cells preserve T-cell-mediated graft-versus-tumor effects. Our studies reveal new aspects of the cellular interplay between iNKT cells and Tregs in the context of tolerance induction after allogeneic HCT and set the stage for clinical translation. PMID:25293774

  10. Natural killer T cell strategies to combat Epstein–Barr virus infection

    PubMed Central

    Priatel, John J; Chung, Brian K; Tsai, Kevin; Tan, Rusung

    2014-01-01

    Epstein–Barr virus (EBV) infection results in rapid loss of CD1d expression from the surface of infected B cells, thus enabling the virus to evade immune recognition by natural killer T (NKT) cells. Using pharmacologic means to boost CD1d expression, potent NKT cell effector functions can be elicited toward EBV-infected B cells, suggesting the promise of novel strategies to target EBV-associated diseases such as some B-cell malignancies. PMID:25050206

  11. CD1d induction in solid tumor cells by histone deacetylase inhibitors through inhibition of HDAC1/2 and activation of Sp1.

    PubMed

    Yang, Pei-Ming; Lin, Pei-Jie; Chen, Ching-Chow

    2012-04-01

    CD1d is a MHC class-like molecule that presents glycolipids to natural killer T (NKT) cells, then regulates innate and adaptive immunity. The regulation of CD1d gene expression in solid tumors is still largely unknown. Gene expression can be epigenetically regulated by DNA methylation and histone acetylation. We found that histone deacetylase inhibitors, trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA), induced CD1d gene expression in human (A549 and NCI-H292) and mouse (TC-1 and B16/F0) cancer cells. Simultaneous knockdown of HDAC1 and 2 induced CD1d gene expression. Sp1 inhibitor mitramycin A (MTM) blocked TSA- and SAHA-induced CD1d mRNA expression and Sp1 luciferase activity. Co-transfection of GAL4-Sp1 and Fc-luciferase reporters demonstrated that TSA and SAHA induced Sp1 luciferase reporter activity by enhancing Sp1 transactivation activity. The binding of Sp1 to CD1d promoter and histone H3 acetylation on Sp1 sites were increased by TSA and SAHA. These results indicate that TSA and SAHA could up-regulate CD1d expression in tumor cells through inhibition of HDAC1/2 and activation of Sp1. PMID:22419072

  12. Multifocal primary cutaneous extranodal NK/T lymphoma nasal type*

    PubMed Central

    de Vasconcelos, Pedro; Ferreira, Cristina; Soares-Almeida, Luís; Filipe, Paulo

    2016-01-01

    Nasal type extranodal NK/T-cell lymphoma is a distinct entity according to the World Health Organization classification. Although 60% to 90% of patients with this disease present with a destructive mass in the midline facial tissues, it may also primarily or secondarily involve extranasal sites, like the skin. We report the case of a 77-year-old patient that came to our department with erythematous plaques of the right leg and eczematous lesions of the trunk. These lesions were biopsied and the patient was diagnosed with extranodal NK/T-cell lymphoma, nasal type. He was treated with multi-agent systemic chemotherapy but died 5 months after diagnosis. This case highlights the rarity and variability of cutaneous features of this disease and its aggressive course and poor prognosis. PMID:27192524

  13. Hemopoietic cell kinase (Hck) and p21-activated kinase 2 (PAK2) are involved in the down-regulation of CD1a lipid antigen presentation by HIV-1 Nef in dendritic cells.

    PubMed

    Shinya, Eiji; Shimizu, Masumi; Owaki, Atsuko; Paoletti, Samantha; Mori, Lucia; De Libero, Gennaro; Takahashi, Hidemi

    2016-01-01

    Dendritic cells (DCs) play a major role in in vivo pathogenesis of HIV-1 infection. Therefore, DCs may provide a promising strategy to control and eventually overcome the fatal infection. Especially, immature DCs express all CD1s, the non-MHC lipid antigen -presenting molecules, and HIV-1 Nef down-regulates CD1 expression besides MHC. Moreover, CD1d-restricted CD4(+) NKT cells are infected by HIV-1, reducing the number of these cells in HIV-1-infected individuals. To understand the exact role of DCs and CD1-mediated immune response during HIV-1 infection, Nef down-regulation of CD1a-restricted lipid/glycolipid Ag presentation in iDCs was analyzed. We demonstrated the involvement of the association of Nef with hemopoietic cell kinase (Hck) and p21-activated kinase 2 (PAK2), and that Hck, which is expressed strongly in iDCs, augmented this mutual interaction. Hck might be another therapeutic target to preserve the function of HIV-1 infected DCs, which are potential reservoirs of HIV-1 even after antiretroviral therapy.

  14. Estrogen Therapy Delays Autoimmune Diabetes and Promotes the Protective Efficiency of Natural Killer T-Cell Activation in Female Nonobese Diabetic Mice.

    PubMed

    Gourdy, Pierre; Bourgeois, Elvire A; Levescot, Anaïs; Pham, Linh; Riant, Elodie; Ahui, Marie-Louise; Damotte, Diane; Gombert, Jean-Marc; Bayard, Francis; Ohlsson, Claes; Arnal, Jean-François; Herbelin, André

    2016-01-01

    Therapeutic strategies focused on restoring immune tolerance remain the main avenue to prevent type 1 diabetes (T1D). Because estrogens potentiate FoxP3+ regulatory T cells (Treg) and invariant natural killer T (iNKT) cells, two regulatory lymphocyte populations that are functionally deficient in nonobese diabetic (NOD) mice, we investigated whether estradiol (E2) therapy influences the course of T1D in this model. To this end, female NOD mice were sc implanted with E2- or placebo-delivering pellets to explore the course of spontaneous and cyclophosphamide-induced diabetes. Treg-depleted and iNKT-cell-deficient (Jα18(-/-)) NOD mice were used to assess the respective involvement of these lymphocyte populations in E2 effects. Early E2 administration (from 4 wk of age) was found to preserve NOD mice from both spontaneous and cyclophosphamide-induced diabetes, and a complete protection was also observed throughout treatment when E2 treatment was initiated after the onset of insulitis (from 12 wk of age). This delayed E2 treatment remained fully effective in Treg-depleted mice but failed to entirely protect Jα18(-/-) mice. Accordingly, E2 administration was shown to restore the cytokine production of iNKT cells in response to in vivo challenge with the cognate ligand α-galactosylceramide. Finally, transient E2 administration potentiated the previously described protective action of α-galactosylceramide treatment in NOD females. This study provides original evidence that E2 therapy strongly protects NOD mice from T1D and reveals the estrogen/iNKT cell axis as a new effective target to counteract diabetes onset at the stage of insulitis. Estrogen-based therapy should thus be considered for T1D prevention. PMID:26485613

  15. Estrogen Therapy Delays Autoimmune Diabetes and Promotes the Protective Efficiency of Natural Killer T-Cell Activation in Female Nonobese Diabetic Mice.

    PubMed

    Gourdy, Pierre; Bourgeois, Elvire A; Levescot, Anaïs; Pham, Linh; Riant, Elodie; Ahui, Marie-Louise; Damotte, Diane; Gombert, Jean-Marc; Bayard, Francis; Ohlsson, Claes; Arnal, Jean-François; Herbelin, André

    2016-01-01

    Therapeutic strategies focused on restoring immune tolerance remain the main avenue to prevent type 1 diabetes (T1D). Because estrogens potentiate FoxP3+ regulatory T cells (Treg) and invariant natural killer T (iNKT) cells, two regulatory lymphocyte populations that are functionally deficient in nonobese diabetic (NOD) mice, we investigated whether estradiol (E2) therapy influences the course of T1D in this model. To this end, female NOD mice were sc implanted with E2- or placebo-delivering pellets to explore the course of spontaneous and cyclophosphamide-induced diabetes. Treg-depleted and iNKT-cell-deficient (Jα18(-/-)) NOD mice were used to assess the respective involvement of these lymphocyte populations in E2 effects. Early E2 administration (from 4 wk of age) was found to preserve NOD mice from both spontaneous and cyclophosphamide-induced diabetes, and a complete protection was also observed throughout treatment when E2 treatment was initiated after the onset of insulitis (from 12 wk of age). This delayed E2 treatment remained fully effective in Treg-depleted mice but failed to entirely protect Jα18(-/-) mice. Accordingly, E2 administration was shown to restore the cytokine production of iNKT cells in response to in vivo challenge with the cognate ligand α-galactosylceramide. Finally, transient E2 administration potentiated the previously described protective action of α-galactosylceramide treatment in NOD females. This study provides original evidence that E2 therapy strongly protects NOD mice from T1D and reveals the estrogen/iNKT cell axis as a new effective target to counteract diabetes onset at the stage of insulitis. Estrogen-based therapy should thus be considered for T1D prevention.

  16. Tracking and treating activated T cells

    PubMed Central

    Kim, N.H.; Nadithe, V.; Elsayed, M.; Merkel, O.M.

    2014-01-01

    Upon activation, T cells of various subsets are the most important mediators in cell-mediated immune responses. Activated T cells play an important role in immune system related diseases such as chronic inflammatory diseases, viral infections, autoimmune disease, transplant rejection, Crohn disease, diabetes, and many more. Therefore, efforts have been made to both visualize and treat activated T cells specifically. This review summarizes imaging approaches and selective therapeutics for activated T cells and gives an outlook on how tracking and treating can be combined into theragnositc agents for activated T cells. PMID:24660025

  17. Viral Evasion of Natural Killer Cell Activation

    PubMed Central

    Ma, Yi; Li, Xiaojuan; Kuang, Ersheng

    2016-01-01

    Natural killer (NK) cells play a key role in antiviral innate defenses because of their abilities to kill infected cells and secrete regulatory cytokines. Additionally, NK cells exhibit adaptive memory-like antigen-specific responses, which represent a novel antiviral NK cell defense mechanism. Viruses have evolved various strategies to evade the recognition and destruction by NK cells through the downregulation of the NK cell activating receptors. Here, we review the recent findings on viral evasion of NK cells via the impairment of NK cell-activating receptors and ligands, which provide new insights on the relationship between NK cells and viral actions during persistent viral infections. PMID:27077876

  18. Viral Evasion of Natural Killer Cell Activation.

    PubMed

    Ma, Yi; Li, Xiaojuan; Kuang, Ersheng

    2016-04-12

    Natural killer (NK) cells play a key role in antiviral innate defenses because of their abilities to kill infected cells and secrete regulatory cytokines. Additionally, NK cells exhibit adaptive memory-like antigen-specific responses, which represent a novel antiviral NK cell defense mechanism. Viruses have evolved various strategies to evade the recognition and destruction by NK cells through the downregulation of the NK cell activating receptors. Here, we review the recent findings on viral evasion of NK cells via the impairment of NK cell-activating receptors and ligands, which provide new insights on the relationship between NK cells and viral actions during persistent viral infections.

  19. Dormancy activation mechanism of tracheal stem cells

    PubMed Central

    Li, Xin; Xu, Jing-xian; Jia, Xin-Shan; Li, Wen-ya; Han, Yi-chen; Wang, En-hua; Li, Fang

    2016-01-01

    Accurate markers and molecular mechanisms of stem cell dormancy and activation are poorly understood. In this study, the anti-cancer drug, 5-fluorouracil, was used to selectively kill proliferating cells of human bronchial epithelial (HBE) cell line. This method can enrich and purify stem cell population. The dormant versus active status of stem cells was determined by phosphorylation of RNAp II Ser2. The surviving stem cells were cultured to form stem cell spheres expressing stem cell markers and transplanted into nude mice to form a teratoma. The results demonstrated the properties of stem cells and potential for multi-directional differentiation. Bisulfite sequencing polymerase chain reaction showed that demethylation of the Sox2 promoter by 5-FU resulted in Sox2 expression in the dormant stem cells. This study shows that the dormancy and activation of HBE stem cells is closely related to epigenetic modification. PMID:27009861

  20. Retinoic acid regulates CD1d gene expression at the transcriptional level in human and rodent monocytic cells.

    PubMed

    Chen, Qiuyan; Ross, A Catharine

    2007-04-01

    CD1d belongs to a group of nonclassical antigen-presenting molecules that present glycolipid antigens and thereby activate natural killer T (NKT) cells, a subset of bifunctional T cells. Little is known so far regarding the expression and physiologic regulation of CD1d. Here we show that all-trans-retinoic acid (RA), the active metabolite of vitamin A, rapidly (1 hr after treatment) increases CD1d mRNA in human and rodent monocytic cells at a physiologic dose (10 nM). The induction is RA specific and RA receptor (RAR) dependent-RA and an RARalpha agonist, Am580, both had a pronounced positive effect, whereas the addition of RARalpha antagonist partially blocked the increase in CD1d mRNA induced by RA and Am580. The induction was also completely blocked by the presence of actinomycin D. A putative RA-response element was identified in the distal 5' flanking region of the CD1d gene, which binds nuclear retinoid receptors and was responsive to RA in both gel mobility shift assay and transient transfection assay in THP-1 cells. These results further confirmed the transcriptional regulation of RA in CD1d gene expression. Moreover, RA significantly increased alpha-galactosylceramide-induced spleen cell proliferation. These studies together provide evidence for a previously unknown mechanism of CD1d gene expression regulation by RA and suggest that RA is a significant modulator of NKT cell activation.

  1. Antibacterial activity of human natural killer cells

    PubMed Central

    1989-01-01

    The in vitro effects of human NK cells on viability of Gram-negative and Gram-positive bacteria was investigated. PBLs depleted of glass- adherent cells showed a significant antibacterial activity that was increased as the concentration of NK cells became higher. Leu-11- enriched cells exhibited the most efficient bactericidal activity. Stimulation of NK cells with staphylococcal enterotoxin B for 16 h produced a significant increase in the antibacterial activity of all NK cells tested. The antibacterial activity of monocyte-depleted cells and Leu-11-enriched cells was also enhanced after culturing in vitro for 16- 24 h without exogenous cytokines. Dependence of the antibacterial activity on the presence of serum in the culture medium was not found. Ultrastructural studies revealed close contact between NK cell membranes and bacteria, no evidence of phagocytosis, and extracellular bacterial ghosts, after incubation at 37 degrees C. Supernatants from purified NK cells exhibited potent bactericidal activity with kinetics and target specificity similar to that of effector cells. These results document the potent antibacterial activity of purified NK cells and suggest an extracellular mechanism of killing. PMID:2642532

  2. Myosin II Activity Softens Cells in Suspension.

    PubMed

    Chan, Chii J; Ekpenyong, Andrew E; Golfier, Stefan; Li, Wenhong; Chalut, Kevin J; Otto, Oliver; Elgeti, Jens; Guck, Jochen; Lautenschläger, Franziska

    2015-04-21

    The cellular cytoskeleton is crucial for many cellular functions such as cell motility and wound healing, as well as other processes that require shape change or force generation. Actin is one cytoskeleton component that regulates cell mechanics. Important properties driving this regulation include the amount of actin, its level of cross-linking, and its coordination with the activity of specific molecular motors like myosin. While studies investigating the contribution of myosin activity to cell mechanics have been performed on cells attached to a substrate, we investigated mechanical properties of cells in suspension. To do this, we used multiple probes for cell mechanics including a microfluidic optical stretcher, a microfluidic microcirculation mimetic, and real-time deformability cytometry. We found that nonadherent blood cells, cells arrested in mitosis, and naturally adherent cells brought into suspension, stiffen and become more solidlike upon myosin inhibition across multiple timescales (milliseconds to minutes). Our results hold across several pharmacological and genetic perturbations targeting myosin. Our findings suggest that myosin II activity contributes to increased whole-cell compliance and fluidity. This finding is contrary to what has been reported for cells attached to a substrate, which stiffen via active myosin driven prestress. Our results establish the importance of myosin II as an active component in modulating suspended cell mechanics, with a functional role distinctly different from that for substrate-adhered cells. PMID:25902426

  3. Myosin II Activity Softens Cells in Suspension

    PubMed Central

    Chan, Chii J.; Ekpenyong, Andrew E.; Golfier, Stefan; Li, Wenhong; Chalut, Kevin J.; Otto, Oliver; Elgeti, Jens; Guck, Jochen; Lautenschläger, Franziska

    2015-01-01

    The cellular cytoskeleton is crucial for many cellular functions such as cell motility and wound healing, as well as other processes that require shape change or force generation. Actin is one cytoskeleton component that regulates cell mechanics. Important properties driving this regulation include the amount of actin, its level of cross-linking, and its coordination with the activity of specific molecular motors like myosin. While studies investigating the contribution of myosin activity to cell mechanics have been performed on cells attached to a substrate, we investigated mechanical properties of cells in suspension. To do this, we used multiple probes for cell mechanics including a microfluidic optical stretcher, a microfluidic microcirculation mimetic, and real-time deformability cytometry. We found that nonadherent blood cells, cells arrested in mitosis, and naturally adherent cells brought into suspension, stiffen and become more solidlike upon myosin inhibition across multiple timescales (milliseconds to minutes). Our results hold across several pharmacological and genetic perturbations targeting myosin. Our findings suggest that myosin II activity contributes to increased whole-cell compliance and fluidity. This finding is contrary to what has been reported for cells attached to a substrate, which stiffen via active myosin driven prestress. Our results establish the importance of myosin II as an active component in modulating suspended cell mechanics, with a functional role distinctly different from that for substrate-adhered cells. PMID:25902426

  4. Myosin II Activity Softens Cells in Suspension.

    PubMed

    Chan, Chii J; Ekpenyong, Andrew E; Golfier, Stefan; Li, Wenhong; Chalut, Kevin J; Otto, Oliver; Elgeti, Jens; Guck, Jochen; Lautenschläger, Franziska

    2015-04-21

    The cellular cytoskeleton is crucial for many cellular functions such as cell motility and wound healing, as well as other processes that require shape change or force generation. Actin is one cytoskeleton component that regulates cell mechanics. Important properties driving this regulation include the amount of actin, its level of cross-linking, and its coordination with the activity of specific molecular motors like myosin. While studies investigating the contribution of myosin activity to cell mechanics have been performed on cells attached to a substrate, we investigated mechanical properties of cells in suspension. To do this, we used multiple probes for cell mechanics including a microfluidic optical stretcher, a microfluidic microcirculation mimetic, and real-time deformability cytometry. We found that nonadherent blood cells, cells arrested in mitosis, and naturally adherent cells brought into suspension, stiffen and become more solidlike upon myosin inhibition across multiple timescales (milliseconds to minutes). Our results hold across several pharmacological and genetic perturbations targeting myosin. Our findings suggest that myosin II activity contributes to increased whole-cell compliance and fluidity. This finding is contrary to what has been reported for cells attached to a substrate, which stiffen via active myosin driven prestress. Our results establish the importance of myosin II as an active component in modulating suspended cell mechanics, with a functional role distinctly different from that for substrate-adhered cells.

  5. Revisiting the liver in human yellow fever: virus-induced apoptosis in hepatocytes associated with TGF-beta, TNF-alpha and NK cells activity.

    PubMed

    Quaresma, Juarez A S; Barros, Vera L R S; Pagliari, Carla; Fernandes, Elaine R; Guedes, Fernanda; Takakura, Cleusa F H; Andrade, Heitor F; Vasconcelos, Pedro F C; Duarte, Maria I S

    2006-02-01

    Flavivirus infection as dengue and yellow fever persists as a terrible menace to pandemics, due to Aedes prevalence in the Americas. Yellow fever is characterized by hepatocyte damage, with steatosis, apoptosis and necrosis, mainly in the midzonal region of the liver, but the injury mechanism has not been studied at the light of recent knowledge, such as the advances in cell death mechanisms, inflammatory response and cytokine cell expression tools. We studied 53 human liver paraffin embedded blocks from patients who died with yellow fever, all with histological demonstration of higher prevalence of apoptosis over necrosis and mild disproportionate inflammatory response. Viral antigens were found most frequently in hepatocytes from the midzonal area than other lobule areas, as detected by specific immunohistochemistry. Infiltrating cell subpopulations showed mainly CD4+ T lymphocytes, with small numbers of CD8+ cytotoxic lymphocytes, CD20+ B lymphocytes, NKT+ cells and S100+ dendritic cells in the sites of inflammation, as compared to normal and leptospirosis liver blocks. Some cells expressed TNF-alpha and IFN-gamma, but a much more intense proportion of TGF-beta expressing cells were found, suggesting both a Th1 and Th3 patterns of immune response in yellow fever. Most affected hepatocyte presented apoptosis markers that appear at the cell death main pathway in this infection. Viral antigens, which production could interfere in hepatocyte biology, could induce the activation of apoptosis cascade, but TGF-beta was also an apoptosis promoter. Our finding supports the key effect of the yellow fever virus in hepatocyte injury, resulting in prevalence of apoptosis over necrosis, aside from a TGF-beta action induced by the inflammatory response.

  6. Active cell mechanics: Measurement and theory.

    PubMed

    Ahmed, Wylie W; Fodor, Étienne; Betz, Timo

    2015-11-01

    Living cells are active mechanical systems that are able to generate forces. Their structure and shape are primarily determined by biopolymer filaments and molecular motors that form the cytoskeleton. Active force generation requires constant consumption of energy to maintain the nonequilibrium activity to drive organization and transport processes necessary for their function. To understand this activity it is necessary to develop new approaches to probe the underlying physical processes. Active cell mechanics incorporates active molecular-scale force generation into the traditional framework of mechanics of materials. This review highlights recent experimental and theoretical developments towards understanding active cell mechanics. We focus primarily on intracellular mechanical measurements and theoretical advances utilizing the Langevin framework. These developing approaches allow a quantitative understanding of nonequilibrium mechanical activity in living cells. This article is part of a Special Issue entitled: Mechanobiology.

  7. Cell death sensitization of leukemia cells by opioid receptor activation

    PubMed Central

    Friesen, Claudia; Roscher, Mareike; Hormann, Inis; Fichtner, Iduna; Alt, Andreas; Hilger, Ralf A.; Debatin, Klaus-Michael; Miltner, Erich

    2013-01-01

    Cyclic AMP (cAMP) regulates a number of cellular processes and modulates cell death induction. cAMP levels are altered upon stimulation of specific G-protein-coupled receptors inhibiting or activating adenylyl cyclases. Opioid receptor stimulation can activate inhibitory Gi-proteins which in turn block adenylyl cyclase activity reducing cAMP. Opioids such as D,L-methadone induce cell death in leukemia cells. However, the mechanism how opioids trigger apoptosis and activate caspases in leukemia cells is not understood. In this study, we demonstrate that downregulation of cAMP induced by opioid receptor activation using the opioid D,L-methadone kills and sensitizes leukemia cells for doxorubicin treatment. Enhancing cAMP levels by blocking opioid-receptor signaling strongly reduced D,L-methadone-induced apoptosis, caspase activation and doxorubicin-sensitivity. Induction of cell death in leukemia cells by activation of opioid receptors using the opioid D,L-methadone depends on critical levels of opioid receptor expression on the cell surface. Doxorubicin increased opioid receptor expression in leukemia cells. In addition, the opioid D,L-methadone increased doxorubicin uptake and decreased doxorubicin efflux in leukemia cells, suggesting that the opioid D,L-methadone as well as doxorubicin mutually increase their cytotoxic potential. Furthermore, we found that opioid receptor activation using D,L-methadone alone or in addition to doxorubicin inhibits tumor growth significantly in vivo. These results demonstrate that opioid receptor activation via triggering the downregulation of cAMP induces apoptosis, activates caspases and sensitizes leukemia cells for doxorubicin treatment. Hence, opioid receptor activation seems to be a promising strategy to improve anticancer therapies. PMID:23633472

  8. Stem cell tracking with optically active nanoparticles

    PubMed Central

    Gao, Yu; Cui, Yan; Chan, Jerry KY; Xu, Chenjie

    2013-01-01

    Stem-cell-based therapies hold promise and potential to address many unmet clinical needs. Cell tracking with modern imaging modalities offers insight into the underlying biological process of the stem-cell-based therapies, with the goal to reveal cell survival, migration, homing, engraftment, differentiation, and functions. Adaptability, sensitivity, resolution, and non-invasiveness have contributed to the longstanding use of optical imaging for stem cell tracking and analysis. To identify transplanted stem cells from the host tissue, optically active probes are usually used to label stem cells before the administration. In comparison to the traditional fluorescent probes like fluorescent proteins and dyes, nanoparticle-based probes are advantageous in terms of the photo-stabilities and minimal changes to the cell phenotype. The main focus here is to overview the recent development of optically active nanoparticles for stem cells tracking. The related optical imaging modalities include fluorescence imaging, photoacoustic imaging, Raman and surface enhanced Raman spectroscopy imaging. PMID:23638335

  9. Measurement of myeloid cell immune suppressive activity.

    PubMed

    Dolcetti, Luigi; Peranzoni, Elisa; Bronte, Vincenzo

    2010-11-01

    This unit presents simple methods to assess the immunosuppressive properties of immunoregulatory cells of myeloid origin, such as myeloid-derived suppressor cells (MDSCs), both in vitro and in vivo. These methods are general and could be adapted to test the impact of different suppressive populations on T cell activation, proliferation, and cytotoxic activity; moreover they could be useful to assess the influence exerted on immune suppressive pathways by genetic modifications, chemical inhibitors, and drugs.

  10. Vesicular Stomatitis Virus Matrix Protein Impairs CD1d-Mediated Antigen Presentation through Activation of the p38 MAPK Pathway▿

    PubMed Central

    Renukaradhya, Gourapura J.; Khan, Masood A.; Shaji, Daniel; Brutkiewicz, Randy R.

    2008-01-01

    Natural killer T (NKT) cells are unique T lymphocytes that recognize CD1d-bound lipid antigens and play an important role in both innate and acquired immune responses against infectious diseases and tumors. We have already shown that a vesicular stomatitis virus (VSV) infection results in the rapid inhibition of murine CD1d-mediated antigen presentation to NKT cells. In the present study, it was found that the VSV matrix (VSV-M) protein is an important element in this decrease in antigen presentation postinfection. The VSV-M protein altered the intracellular distribution of murine CD1d molecules, resulting in qualitative (but not quantitative) changes in cell surface CD1d expression. The M protein was distributed throughout the infected cell, and it was found to activate the mitogen-activated protein kinase (MAPK) p38 very early postinfection. Infection of CD1d+ cells with a temperature-sensitive VSV-M mutant at the nonpermissive temperature both substantially reversed the inhibition of antigen presentation by CD1d and delayed the activation of p38. Thus, the VSV-M protein plays an important role in permitting the virus to evade important components of the innate immune response by regulating specific MAPK pathways. PMID:18815300

  11. Type I natural killer T cells: naturally born for fighting

    PubMed Central

    Tan, Jin-quan; Xiao, Wei; Wang, Lan; He, Yu-ling

    2010-01-01

    Type І natural killer T cells (NKT cells), a subset of CD1d-restricted T cells with invariant Vαβ TCR, are characterized by prompt production of large amounts of Th1 and/or Th2 cytokines upon primary stimulation through the TCR complex. The rapid release of cytokines implies that type І NKT cells may play a critical role in modulating the upcoming immune responses, such as anti-tumor response, protection against infection, and autoimmunity. As a bridge between innate and adaptive immunity, type І NKT cells differentiate and mature upon stimulations to achieve and maintain a homeostasis. Orchestrating with other arms of adaptive immunity, type І NKT cells show strong cytotoxic effects in response to various tumors in a direct and/or indirect manner(s). This review will focus primarily on type І NKT cell development, homeostasis, and effector functions, especially in anti-tumor immunity, and followed by their potential applications in treatment of cancers. PMID:20694020

  12. Activity-driven fluctuations in living cells

    NASA Astrophysics Data System (ADS)

    Fodor, É.; Guo, M.; Gov, N. S.; Visco, P.; Weitz, D. A.; van Wijland, F.

    2015-05-01

    We propose a model for the dynamics of a probe embedded in a living cell, where both thermal fluctuations and nonequilibrium activity coexist. The model is based on a confining harmonic potential describing the elastic cytoskeletal matrix, which undergoes random active hops as a result of the nonequilibrium rearrangements within the cell. We describe the probe's statistics and we bring forth quantities affected by the nonequilibrium activity. We find an excellent agreement between the predictions of our model and experimental results for tracers inside living cells. Finally, we exploit our model to arrive at quantitative predictions for the parameters characterizing nonequilibrium activity, such as the typical time scale of the activity and the amplitude of the active fluctuations.

  13. Single Cell Analysis of Transcriptional Activation Dynamics

    PubMed Central

    Rafalska-Metcalf, Ilona U.; Powers, Sara Lawrence; Joo, Lucy M.; LeRoy, Gary; Janicki, Susan M.

    2010-01-01

    Background Gene activation is thought to occur through a series of temporally defined regulatory steps. However, this process has not been completely evaluated in single living mammalian cells. Methodology/Principal Findings To investigate the timing and coordination of gene activation events, we tracked the recruitment of GCN5 (histone acetyltransferase), RNA polymerase II, Brd2 and Brd4 (acetyl-lysine binding proteins), in relation to a VP16-transcriptional activator, to a transcription site that can be visualized in single living cells. All accumulated rapidly with the VP16 activator as did the transcribed RNA. RNA was also detected at significantly more transcription sites in cells expressing the VP16-activator compared to a p53-activator. After α-amanitin pre-treatment, the VP16-activator, GCN5, and Brd2 are still recruited to the transcription site but the chromatin does not decondense. Conclusions/Significance This study demonstrates that a strong activator can rapidly overcome the condensed chromatin structure of an inactive transcription site and supercede the expected requirement for regulatory events to proceed in a temporally defined order. Additionally, activator strength determines the number of cells in which transcription is induced as well as the extent of chromatin decondensation. As chromatin decondensation is significantly reduced after α-amanitin pre-treatment, despite the recruitment of transcriptional activation factors, this provides further evidence that transcription drives large-scale chromatin decondensation. PMID:20422051

  14. Role and regulation of CD1d in normal and pathological B cells

    PubMed Central

    Chaudhry, Mohammed S.; Karadimitris, Anastasios

    2015-01-01

    CD1d is a non-polymorphic, MHC class I-like molecule, which presents phosphoand glycosphingo-lipid antigens to a subset of CD1d-restricted T cells called invariant NKT (iNKT) cells. This CD1d-iNKT cell axis regulates nearly all aspects of both the innate and adaptive immune response. Expression of CD1d on B cells is suggestive of the ability of these cells to present antigen to and form cognate interactions with iNKT cells. Herein we summarise key evidence regarding the role and regulation of CD1d in normal B cells and in humoral immunity. We then extend the discussion to B cell disorders, with emphasis on autoimmune disease, viral infection and neoplastic transformation of B lineage cells, where CD1d expression can be altered as a mechanism of immune evasion, and can have both diagnostic and prognostic importance. Finally we highlight current and future therapeutic strategies that aim to target the CD1d-iNKT axis in B cells. PMID:25381357

  15. Lysophospholipid presentation by CD1d and recognition by a human Natural Killer T-cell receptor

    PubMed Central

    López-Sagaseta, Jacinto; Sibener, Leah V; Kung, Jennifer E; Gumperz, Jenny; Adams, Erin J

    2012-01-01

    Invariant Natural Killer T (iNKT) cells use highly restricted αβ T cell receptors (TCRs) to probe the repertoire of lipids presented by CD1d molecules. Here, we describe our studies of lysophosphatidylcholine (LPC) presentation by human CD1d and its recognition by a native, LPC-specific iNKT TCR. Human CD1d presenting LPC adopts an altered conformation from that of CD1d presenting glycolipid antigens, with a shifted α1 helix resulting in an open A' pocket. Binding of the iNKT TCR requires a 7-Å displacement of the LPC headgroup but stabilizes the CD1d–LPC complex in a closed conformation. The iNKT TCR CDR loop footprint on CD1d–LPC is anchored by the conserved positioning of the CDR3α loop, whereas the remaining CDR loops are shifted, due in part to amino-acid differences in the CDR3β and Jβ segment used by this iNKT TCR. These findings provide insight into how lysophospholipids are presented by human CD1d molecules and how this complex is recognized by some, but not all, human iNKT cells. PMID:22395072

  16. Lysophospholipid presentation by CD1d and recognition by a human Natural Killer T-cell receptor

    SciTech Connect

    López-Sagaseta, Jacinto; Sibener, Leah V.; Kung, Jennifer E.; Gumperz, Jenny; Adams, Erin J.

    2014-10-02

    Invariant Natural Killer T (iNKT) cells use highly restricted {alpha}{beta} T cell receptors (TCRs) to probe the repertoire of lipids presented by CD1d molecules. Here, we describe our studies of lysophosphatidylcholine (LPC) presentation by human CD1d and its recognition by a native, LPC-specific iNKT TCR. Human CD1d presenting LPC adopts an altered conformation from that of CD1d presenting glycolipid antigens, with a shifted {alpha}1 helix resulting in an open A pocket. Binding of the iNKT TCR requires a 7-{angstrom} displacement of the LPC headgroup but stabilizes the CD1d-LPC complex in a closed conformation. The iNKT TCR CDR loop footprint on CD1d-LPC is anchored by the conserved positioning of the CDR3{alpha} loop, whereas the remaining CDR loops are shifted, due in part to amino-acid differences in the CDR3{beta} and J{beta} segment used by this iNKT TCR. These findings provide insight into how lysophospholipids are presented by human CD1d molecules and how this complex is recognized by some, but not all, human iNKT cells.

  17. Survival of mature T cells depends on signaling through HOIP

    PubMed Central

    Okamura, Kazumi; Kitamura, Akiko; Sasaki, Yoshiteru; Chung, Doo Hyun; Kagami, Shoji; Iwai, Kazuhiro; Yasutomo, Koji

    2016-01-01

    T cell development in the thymus is controlled by a multistep process. The NF-κB pathway regulates T cell development as well as T cell activation at multiple differentiation stages. The linear ubiquitin chain assembly complex (LUBAC) is composed of Sharpin, HOIL-1L and HOIP, and it is crucial for regulating the NF-κB and cell death pathways. However, little is known about the roles of LUBAC in T-cell development and activation. Here, we show that in T-HOIPΔlinear mice lacking the ubiquitin ligase activity of LUBAC, thymic CD4+ or CD8+ T cell numbers were markedly reduced with severe defects in NKT cell development. HOIPΔlinear CD4+ T cells failed to phosphorylate IκBα and JNK through T cell receptor-mediated stimulation. Mature CD4+ and CD8+ T cells in T-HOIPΔlinear mice underwent apoptosis more rapidly than control T cells, and it was accompanied by lower CD127 expression on CD4+CD24low and CD8+CD24low T cells in the thymus. The enforced expression of CD127 in T-HOIPΔlinear thymocytes rescued the development of mature CD8+ T cells. Collectively, our results showed that LUBAC ligase activity is key for the survival of mature T cells, and suggest multiple roles of the NF-κB and cell death pathways in activating or maintaining T cell-mediated adaptive immune responses. PMID:27786304

  18. Kinetic discrimination in T-cell activation.

    PubMed Central

    Rabinowitz, J D; Beeson, C; Lyons, D S; Davis, M M; McConnell, H M

    1996-01-01

    We propose a quantitative model for T-cell activation in which the rate of dissociation of ligand from T-cell receptors determines the agonist and antagonist properties of the ligand. The ligands are molecular complexes between antigenic peptides and proteins of the major histocompatibility complex on the surfaces of antigen-presenting cells. Binding of ligand to receptor triggers a series of biochemical reactions in the T cell. If the ligand dissociates after these reactions are complete, the T cell receives a positive activation signal. However, dissociation of ligand after completion of the first reaction but prior to generation of the final products results in partial T-cell activation, which acts to suppress a positive response. Such a negative signal is brought about by T-cell ligands containing the variants of antigenic peptides referred to as T-cell receptor antagonists. Results of recent experiments with altered peptide ligands compare favorably with T-cell responses predicted by this model. PMID:8643643

  19. Kinetic Discrimination in T-Cell Activation

    NASA Astrophysics Data System (ADS)

    Rabinowitz, Joshua D.; Beeson, Craig; Lyons, Daniel S.; Davis, Mark M.; McConnell, Harden M.

    1996-02-01

    We propose a quantitative model for T-cell activation in which the rate of dissociation of ligand from T-cell receptors determines the agonist and antagonist properties of the ligand. The ligands are molecular complexes between antigenic peptides and proteins of the major histocompatibility complex on the surfaces of antigen-presenting cells. Binding of ligand to receptor triggers a series of biochemical reactions in the T cell. If the ligand dissociates after these reactions are complete, the T cell receives a positive activation signal. However, dissociation of ligand after completion of the first reaction but prior to generation of the final products results in partial T-cell activation, which acts to suppress a positive response. Such a negative signal is brought about by T-cell ligands containing the variants of antigenic peptides referred to as T-cell receptor antagonists. Results of recent experiments with altered peptide ligands compare favorably with T-cell responses predicted by this model.

  20. Active oxygen and cell death in cereal aleurone cells.

    PubMed

    Fath, Angelika; Bethke, Paul; Beligni, Veronica; Jones, Russell

    2002-05-01

    The cereal aleurone layer is a secretory tissue whose function is regulated by gibberellic acid (GA) and abscisic acid (ABA). Aleurone cells lack functional chloroplasts, thus excluding photosynthesis as a source of active oxygen species (AOS) in cell death. Incubation of barley aleurone layers or protoplasts in GA initiated the cell death programme, but incubation in ABA delays programmed cell death (PCD). Light, especially blue and UV-A light, and H(2)O(2) accelerate PCD of GA-treated aleurone cells, but ABA-treated aleurone cells are refractory to light and H(2)O(2) and are not killed. It was shown that light elevated intracellular H(2)O(2), and that the rise in H(2)O(2) was greater in GA-treated cells compared to cells in ABA. Experiments with antioxidants show that PCD in aleurone is probably regulated by AOS. The sensitivity of GA-treated aleurone to light and H(2)O(2) is a result of lowered amounts of enzymes that metabolize AOS. mRNAs encoding catalase, ascorbate peroxidase and superoxide dismutase are all reduced during 6-18 h of incubation in GA, but these mRNAs were present in higher amounts in cells incubated in ABA. The amounts of protein and enzyme activities encoded by these mRNAs were also dramatically reduced in GA-treated cells. Aleurone cells store and metabolize neutral lipids via the glyoxylate cycle in response to GA, and glyoxysomes are one potential source of AOS in the GA-treated cells. Mitochondria are another potential source of AOS in GA-treated cells. AOS generated by these organelles bring about membrane rupture and cell death.

  1. Bursts of activity in collective cell migration

    PubMed Central

    Chepizhko, Oleksandr; Giampietro, Costanza; Mastrapasqua, Eleonora; Nourazar, Mehdi; Ascagni, Miriam; Sugni, Michela; Fascio, Umberto; Leggio, Livio; Malinverno, Chiara; Scita, Giorgio; Santucci, Stéphane; Alava, Mikko J.; Zapperi, Stefano; La Porta, Caterina A. M.

    2016-01-01

    Dense monolayers of living cells display intriguing relaxation dynamics, reminiscent of soft and glassy materials close to the jamming transition, and migrate collectively when space is available, as in wound healing or in cancer invasion. Here we show that collective cell migration occurs in bursts that are similar to those recorded in the propagation of cracks, fluid fronts in porous media, and ferromagnetic domain walls. In analogy with these systems, the distribution of activity bursts displays scaling laws that are universal in different cell types and for cells moving on different substrates. The main features of the invasion dynamics are quantitatively captured by a model of interacting active particles moving in a disordered landscape. Our results illustrate that collective motion of living cells is analogous to the corresponding dynamics in driven, but inanimate, systems. PMID:27681632

  2. Active lithium chloride cell for spacecraft power

    NASA Technical Reports Server (NTRS)

    Fleischmann, C. W.; Horning, R. J.

    1988-01-01

    An active thionyl chloride high rate battery is under development for spacecraft operations. It is a 540kC (150 Ah) battery capable of pulses up to 75A. This paper describes the design and initial test data on a 'state-of-the-art' cell that has been selected to be the baseline for the prototype cell for that battery. Initial data indicate that the specification can be met with fresh cells. Data for stored cells and additional environmental test data are in the process of being developed.

  3. Candida albicans up-regulates the Fas-L expression in liver Natural Killer and Natural Killer T cells.

    PubMed

    Renna, María Sol; Figueredo, Carlos Mauricio; Rodríguez-Galán, María Cecilia; Icely, Paula Alejandra; Cejas, Hugo; Cano, Roxana; Correa, Silvia Graciela; Sotomayor, Claudia Elena

    2015-11-01

    After Candida albicans arrival to the liver, the local production of proinflammatory cytokines and the expanded intrahepatic lymphocytes (IHL) can be either beneficial or detrimental to the host. Herein we explored the balance between protective inflammatory reaction and liver damage, focusing our study on the contribution of TNF-α and Fas-Fas-L pathways in the hepatocellular apoptosis associated to C. albicans infection. A robust tissue reaction and a progressive increase of IL-1β, IL-6 and TNF-α were observed in infected animals. Blocking the biological activity of TNF-α did not modify the number of apoptotic cells observed in C. albicans infected animals. Fas-L molecule was up regulated on purified hepatic mononuclear cells and its expression progressed with the infection. In the IHL compartment, the absolute number of Fas-L+ NK and NKT cells increased on days 1 and 3 of the infection. C. albicans was also able to up regulate Fas-L expression in normal liver NK and NKT cells after in vitro contact. The innate receptor TLR2 was involved in this phenomenon. In the interplay between host factors and evasion strategies exploited by pathogens, the mechanism supported here could represent an additional way that allows this fungus to circumvent protective immune responses in the liver.

  4. Trypanosoma brucei Co-opts NK Cells to Kill Splenic B2 B Cells.

    PubMed

    Frenkel, Deborah; Zhang, Fengqiu; Guirnalda, Patrick; Haynes, Carole; Bockstal, Viki; Radwanska, Magdalena; Magez, Stefan; Black, Samuel J

    2016-07-01

    After infection with T. brucei AnTat 1.1, C57BL/6 mice lost splenic B2 B cells and lymphoid follicles, developed poor parasite-specific antibody responses, lost weight, became anemic and died with fulminating parasitemia within 35 days. In contrast, infected C57BL/6 mice lacking the cytotoxic granule pore-forming protein perforin (Prf1-/-) retained splenic B2 B cells and lymphoid follicles, developed high-titer antibody responses against many trypanosome polypeptides, rapidly suppressed parasitemia and did not develop anemia or lose weight for at least 60 days. Several lines of evidence show that T. brucei infection-induced splenic B cell depletion results from natural killer (NK) cell-mediated cytotoxicity: i) B2 B cells were depleted from the spleens of infected intact, T cell deficient (TCR-/-) and FcγRIIIa deficient (CD16-/-) C57BL/6 mice excluding a requirement for T cells, NKT cell, or antibody-dependent cell-mediated cytotoxicity; ii) administration of NK1.1 specific IgG2a (mAb PK136) but not irrelevant IgG2a (myeloma M9144) prevented infection-induced B cell depletion consistent with a requirement for NK cells; iii) splenic NK cells but not T cells or NKT cells degranulated in infected C57BL/6 mice co-incident with B cell depletion evidenced by increased surface expression of CD107a; iv) purified NK cells from naïve C57BL/6 mice killed purified splenic B cells from T. brucei infected but not uninfected mice in vitro indicating acquisition of an NK cell activating phenotype by the post-infection B cells; v) adoptively transferred C57BL/6 NK cells prevented infection-induced B cell population growth in infected Prf1-/- mice consistent with in vivo B cell killing; vi) degranulated NK cells in infected mice had altered gene and differentiation antigen expression and lost cytotoxic activity consistent with functional exhaustion, but increased in number as infection progressed indicating continued generation. We conclude that NK cells in T. brucei infected mice

  5. Trypanosoma brucei Co-opts NK Cells to Kill Splenic B2 B Cells

    PubMed Central

    Frenkel, Deborah; Guirnalda, Patrick; Haynes, Carole; Bockstal, Viki; Magez, Stefan; Black, Samuel J.

    2016-01-01

    After infection with T. brucei AnTat 1.1, C57BL/6 mice lost splenic B2 B cells and lymphoid follicles, developed poor parasite-specific antibody responses, lost weight, became anemic and died with fulminating parasitemia within 35 days. In contrast, infected C57BL/6 mice lacking the cytotoxic granule pore-forming protein perforin (Prf1-/-) retained splenic B2 B cells and lymphoid follicles, developed high-titer antibody responses against many trypanosome polypeptides, rapidly suppressed parasitemia and did not develop anemia or lose weight for at least 60 days. Several lines of evidence show that T. brucei infection-induced splenic B cell depletion results from natural killer (NK) cell-mediated cytotoxicity: i) B2 B cells were depleted from the spleens of infected intact, T cell deficient (TCR-/-) and FcγRIIIa deficient (CD16-/-) C57BL/6 mice excluding a requirement for T cells, NKT cell, or antibody-dependent cell-mediated cytotoxicity; ii) administration of NK1.1 specific IgG2a (mAb PK136) but not irrelevant IgG2a (myeloma M9144) prevented infection-induced B cell depletion consistent with a requirement for NK cells; iii) splenic NK cells but not T cells or NKT cells degranulated in infected C57BL/6 mice co-incident with B cell depletion evidenced by increased surface expression of CD107a; iv) purified NK cells from naïve C57BL/6 mice killed purified splenic B cells from T. brucei infected but not uninfected mice in vitro indicating acquisition of an NK cell activating phenotype by the post-infection B cells; v) adoptively transferred C57BL/6 NK cells prevented infection-induced B cell population growth in infected Prf1-/- mice consistent with in vivo B cell killing; vi) degranulated NK cells in infected mice had altered gene and differentiation antigen expression and lost cytotoxic activity consistent with functional exhaustion, but increased in number as infection progressed indicating continued generation. We conclude that NK cells in T. brucei infected mice

  6. Trypanosoma brucei Co-opts NK Cells to Kill Splenic B2 B Cells.

    PubMed

    Frenkel, Deborah; Zhang, Fengqiu; Guirnalda, Patrick; Haynes, Carole; Bockstal, Viki; Radwanska, Magdalena; Magez, Stefan; Black, Samuel J

    2016-07-01

    After infection with T. brucei AnTat 1.1, C57BL/6 mice lost splenic B2 B cells and lymphoid follicles, developed poor parasite-specific antibody responses, lost weight, became anemic and died with fulminating parasitemia within 35 days. In contrast, infected C57BL/6 mice lacking the cytotoxic granule pore-forming protein perforin (Prf1-/-) retained splenic B2 B cells and lymphoid follicles, developed high-titer antibody responses against many trypanosome polypeptides, rapidly suppressed parasitemia and did not develop anemia or lose weight for at least 60 days. Several lines of evidence show that T. brucei infection-induced splenic B cell depletion results from natural killer (NK) cell-mediated cytotoxicity: i) B2 B cells were depleted from the spleens of infected intact, T cell deficient (TCR-/-) and FcγRIIIa deficient (CD16-/-) C57BL/6 mice excluding a requirement for T cells, NKT cell, or antibody-dependent cell-mediated cytotoxicity; ii) administration of NK1.1 specific IgG2a (mAb PK136) but not irrelevant IgG2a (myeloma M9144) prevented infection-induced B cell depletion consistent with a requirement for NK cells; iii) splenic NK cells but not T cells or NKT cells degranulated in infected C57BL/6 mice co-incident with B cell depletion evidenced by increased surface expression of CD107a; iv) purified NK cells from naïve C57BL/6 mice killed purified splenic B cells from T. brucei infected but not uninfected mice in vitro indicating acquisition of an NK cell activating phenotype by the post-infection B cells; v) adoptively transferred C57BL/6 NK cells prevented infection-induced B cell population growth in infected Prf1-/- mice consistent with in vivo B cell killing; vi) degranulated NK cells in infected mice had altered gene and differentiation antigen expression and lost cytotoxic activity consistent with functional exhaustion, but increased in number as infection progressed indicating continued generation. We conclude that NK cells in T. brucei infected mice

  7. Immunomodulation of activated hepatic stellate cells by mesenchymal stem cells

    SciTech Connect

    Parekkadan, Biju; Poll, Daan van; Megeed, Zaki; Kobayashi, Naoya; Tilles, Arno W.; Berthiaume, Francois; Yarmush, Martin L.

    2007-11-16

    Bone marrow-derived mesenchymal stem cells (MSCs) have been reported to prevent the development of liver fibrosis in a number of pre-clinical studies. Marked changes in liver histopathology and serological markers of liver function have been observed without a clear understanding of the therapeutic mechanism by which stem cells act. We sought to determine if MSCs could modulate the activity of resident liver cells, specifically hepatic stellate cells (SCs) by paracrine mechanisms using indirect cocultures. Indirect coculture of MSCs and activated SCs led to a significant decrease in collagen deposition and proliferation, while inducing apoptosis of activated SCs. The molecular mechanisms underlying the modulation of SC activity by MSCs were examined. IL-6 secretion from activated SCs induced IL-10 secretion from MSCs, suggesting a dynamic response of MSCs to the SCs in the microenvironment. Blockade of MSC-derived IL-10 and TNF-{alpha} abolished the inhibitory effects of MSCs on SC proliferation and collagen synthesis. In addition, release of HGF by MSCs was responsible for the marked induction of apoptosis in SCs as determined by antibody-neutralization studies. These findings demonstrate that MSCs can modulate the function of activated SCs via paracrine mechanisms provide a plausible explanation for the protective role of MSCs in liver inflammation and fibrosis, which may also be relevant to other models of tissue fibrosis.

  8. [The cell immunity in patients with arterial hypertension and obesity].

    PubMed

    Trushina, É N; Mustafina, O K; Soto, S Kh; Bogdanov, A R; Sentsova, T B; Zaletova, T S; Kuznetsov, V D

    2012-01-01

    In the present study the relative quantity subpopulations of lymphocytes, activated T- lymphocytes and CD95-antigen (Fas/APO-1) expression on lymphocytes in the peripheral blood of patients with arterial hypertension and obesity in comparison with the healthy persons was determined. The cells were analyzed by the method of flow cytometry using Beckman Coulter FC 500 cytometer. The following of cells subsets: CD19+, CD3+, CD3+CD4+, CD3+CD8+, CD3-CD16+CD56+, CD3+CD16+CD56+, CD3+CD25+, CD3+HLA-DR+, CD45+CD95+ were investigated. In this research was establish the rise of immunoregulatory index (CD3+CD4+/CD3+CD8+) in consequence of increase the percentages of T-helper and decrease the cytotoxic T-lymphocytes in patients with arterial hypertension and obesity in comparison with the healthy persons. In the peripheral blood of patients with arterial hypertension and obesity were observed a greater level of activated T-lymphocytes (CD3+CD25+, CD3+HLA-DR+), that reflect the increase activity of T-cell immunity. In these patients a greater level of NKT-cells (CD3+CD16+CD56+) and lymphocytes expression of CD95-antigen in comparison with the healthy persons also was noted. The direct correlation between the increased quantity of T-helper lymphocytes, activated T-lymphocytes, NKT-cells, lymphocytes expression of CD95-antigen, and index of body mass in patients with arterial hypertension and obesity was found.

  9. Activation of Natural Killer T Cells by α-Galactosylceramide Rapidly Induces the Full Maturation of Dendritic Cells In Vivo and Thereby Acts as an Adjuvant for Combined CD4 and CD8 T Cell Immunity to a Coadministered Protein

    PubMed Central

    Fujii, Shin-ichiro; Shimizu, Kanako; Smith, Caroline; Bonifaz, Laura; Steinman, Ralph M.

    2003-01-01

    The maturation of dendritic cells (DCs) allows these antigen-presenting cells to initiate immunity. We pursued this concept in situ by studying the adjuvant action of α-galactosylceramide (αGalCer) in mice. A single i.v. injection of glycolipid induced the full maturation of splenic DCs, beginning within 4 h. Maturation was manifest by marked increases in costimulator and major histocompatibility complex class II expression, interferon (IFN)-γ production, and stimulation of the mixed leukocyte reaction. These changes were not induced directly by αGalCer but required natural killer T (NKT) cells acting independently of the MyD88 adaptor protein. To establish that DC maturation was responsible for the adjuvant role of αGalCer, mice were given αGalCer together with soluble or cell-associated ovalbumin antigen. Th1 type CD4+ and CD8+ T cell responses developed, and the mice became resistant to challenge with ovalbumin-expressing tumor. DCs from mice given ovalbumin plus adjuvant, but not the non-DCs, stimulated ovalbumin-specific proliferative responses and importantly, induced antigen-specific, IFN-γ producing, CD4+ and CD8+ T cells upon transfer into naive animals. In the latter instance, immune priming did not require further exposure to ovalbumin, αGalCer, NKT, or NK cells. Therefore a single dose of αGalCer i.v. rapidly stimulates the full maturation of DCs in situ, and this accounts for the induction of combined Th1 CD4+ and CD8+ T cell immunity to a coadministered protein. PMID:12874260

  10. Activation of natural killer T cells by alpha-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein.

    PubMed

    Fujii, Shin-Ichiro; Shimizu, Kanako; Smith, Caroline; Bonifaz, Laura; Steinman, Ralph M

    2003-07-21

    The maturation of dendritic cells (DCs) allows these antigen-presenting cells to initiate immunity. We pursued this concept in situ by studying the adjuvant action of alpha-galactosylceramide (alphaGalCer) in mice. A single i.v. injection of glycolipid induced the full maturation of splenic DCs, beginning within 4 h. Maturation was manifest by marked increases in costimulator and major histocompatibility complex class II expression, interferon (IFN)-gamma production, and stimulation of the mixed leukocyte reaction. These changes were not induced directly by alphaGalCer but required natural killer T (NKT) cells acting independently of the MyD88 adaptor protein. To establish that DC maturation was responsible for the adjuvant role of alphaGalCer, mice were given alphaGalCer together with soluble or cell-associated ovalbumin antigen. Th1 type CD4+ and CD8+ T cell responses developed, and the mice became resistant to challenge with ovalbumin-expressing tumor. DCs from mice given ovalbumin plus adjuvant, but not the non-DCs, stimulated ovalbumin-specific proliferative responses and importantly, induced antigen-specific, IFN-gamma producing, CD4+ and CD8+ T cells upon transfer into naive animals. In the latter instance, immune priming did not require further exposure to ovalbumin, alphaGalCer, NKT, or NK cells. Therefore a single dose of alphaGalCer i.v. rapidly stimulates the full maturation of DCs in situ, and this accounts for the induction of combined Th1 CD4+ and CD8+ T cell immunity to a coadministered protein.

  11. Entangled active matter: From cells to ants

    NASA Astrophysics Data System (ADS)

    Hu, D. L.; Phonekeo, S.; Altshuler, E.; Brochard-Wyart, F.

    2016-07-01

    Both cells and ants belong to the broad field of active matter, a novel class of non-equilibrium materials composed of many interacting units that individually consume energy and collectively generate motion or mechanical stresses. However cells and ants differ from fish and birds in that they can support static loads. This is because cells and ants can be entangled, so that individual units are bound by transient links. Entanglement gives cells and ants a set of remarkable properties usually not found together, such as the ability to flow like a fluid, spring back like an elastic solid, and self-heal. In this review, we present the biology, mechanics and dynamics of both entangled cells and ants. We apply concepts from soft matter physics and wetting to characterize these systems as well as to point out their differences, which arise from their differences in size. We hope that our viewpoints will spur further investigations into cells and ants as active materials, and inspire the fabrication of synthetic active matter.

  12. Critical telomerase activity for uncontrolled cell growth

    NASA Astrophysics Data System (ADS)

    Wesch, Neil L.; Burlock, Laura J.; Gooding, Robert J.

    2016-08-01

    The lengths of the telomere regions of chromosomes in a population of cells are modelled using a chemical master equation formalism, from which the evolution of the average number of cells of each telomere length is extracted. In particular, the role of the telomere-elongating enzyme telomerase on these dynamics is investigated. We show that for biologically relevant rates of cell birth and death, one finds a critical rate, R crit, of telomerase activity such that the total number of cells diverges. Further, R crit is similar in magnitude to the rates of mitosis and cell death. The possible relationship of this result to replicative immortality and its associated hallmark of cancer is discussed.

  13. Hippo Pathway Activity Influences Liver Cell Fate

    PubMed Central

    Yimlamai, Dean; Christodoulou, Constantina; Galli, Giorgio G.; Yanger, Kilangsungla; Pepe-Mooney, Brian; Gurung, Basanta; Shrestha, Kriti; Cahan, Patrick; Stanger, Ben Z.; Camargo, Fernando D.

    2014-01-01

    The Hippo signaling pathway is an important regulator of cellular proliferation and organ size. However, little is known about the role of this cascade in the control of cell fate. Employing a combination of lineage tracing, clonal analysis, and organoid culture approaches, we demonstrate that Hippo-pathway activity is essential for the maintenance of the differentiated hepatocyte state. Remarkably, acute inactivation of Hippo-pathway signaling in vivo is sufficient to de-differentiate, at very high efficiencies, adult hepatocytes into cells bearing progenitor characteristics. These hepatocyte-derived progenitor cells demonstrate self-renewal and engraftment capacity at the single cell level. We also identify the NOTCH signaling pathway as a functional important effector downstream of the Hippo transducer YAP. Our findings uncover a potent role for Hippo/YAP signaling in controlling liver cell fate, and reveal an unprecedented level of phenotypic plasticity in mature hepatocytes, which has implications for the understanding and manipulation of liver regeneration. PMID:24906150

  14. Critical telomerase activity for uncontrolled cell growth.

    PubMed

    Wesch, Neil L; Burlock, Laura J; Gooding, Robert J

    2016-01-01

    The lengths of the telomere regions of chromosomes in a population of cells are modelled using a chemical master equation formalism, from which the evolution of the average number of cells of each telomere length is extracted. In particular, the role of the telomere-elongating enzyme telomerase on these dynamics is investigated. We show that for biologically relevant rates of cell birth and death, one finds a critical rate, R crit, of telomerase activity such that the total number of cells diverges. Further, R crit is similar in magnitude to the rates of mitosis and cell death. The possible relationship of this result to replicative immortality and its associated hallmark of cancer is discussed. PMID:27500377

  15. Activated mast cells promote differentiation of B cells into effector cells

    PubMed Central

    Palm, Anna-Karin E.; Garcia-Faroldi, Gianni; Lundberg, Marcus; Pejler, Gunnar; Kleinau, Sandra

    2016-01-01

    Based on the known accumulation of mast cells (MCs) in B cell-dependent inflammatory diseases, including rheumatoid arthritis, we hypothesized that MCs directly modulate B cells. We show here that degranulated, and to a lesser extent naïve or IgE-sensitized, MCs activate both naïve and B cell receptor-activated B cells. This was shown by increased proliferation, blast formation, and expression of CD19, MHC class II and CD86 in the B cells. Further, MCs stimulated the secretion of IgM and IgG in IgM+ B cells, indicating that MCs can induce class-switch recombination in B cells. We also show that coculture of MCs with B cells promotes surface expression of L-selectin, a homing receptor, on the B cells. The effects of MCs on B cells were partly dependent on cell-cell contact and both follicular and marginal zone B cells could be activated by MCs. Our findings suggest that degranulated MCs support optimal activation of B cells, a finding that is in line with in vivo studies showing that MCs frequently degranulate in the context of B-cell driven pathologies such as arthritis. Together, our findings show that MCs have the capacity to differentiate B cells to effector cells. PMID:26847186

  16. Intracellular mechanisms of lymphoid cell activation.

    PubMed

    Fresa, K; Hameed, M; Cohen, S

    1989-01-01

    Activation of lymphocytes for proliferation is associated with the appearance of an intracellular factor (ADR) that can induce DNA synthesis in isolated quiescent nuclei. ADR plays a role in the sequence of intracellular events leading to activation for IL-2-mediated proliferation. Because of the nature of the defining assay, the locus of ADR action appears to be near the terminal end of the transduction pathway. Interestingly, although lymphocytes from aged individuals respond poorly to proliferative stimuli, they appear to produce normal to above-normal levels of ADR. In contrast, their nuclei are only poorly responsive to stimulation by ADR. Preparations rich in ADR activity have proteolytic activity as well. In addition, aprotinin, as well as a variety of other protease inhibitors, suppresses ADR-induced DNA synthesis in a dose-dependent manner. ADR activity can be removed from active extracts by absorption with aprotinin-conjugated agarose beads, and can be removed from the beads by elution at pH 5.0. This latter suggests that ADR itself is a protease. However, its endogenous substrate is not yet known. We have also detected an inhibitor of ADR activity in the cytoplasm of resting lymphocytes. This is a heat-stable protein of approximately 60,000 Da. In addition to suppressing the interaction of ADR with quiescent nuclei, the inhibitor can suppress DNA synthetic activity of replicative nuclei isolated from mitogen-activated lymphocytes. Interestingly, these preparations had little or no activity on replicative nuclei derived from several neoplastic cell lines. The resistance of tumor cell nuclei to spontaneously occurring cytoplasmic inhibitory factors such as the one described here may provide one explanation for the loss of growth control in neoplastic cells. PMID:2642767

  17. Active mechanics and geometry of adherent cells and cell colonies

    NASA Astrophysics Data System (ADS)

    Banerjee, Shiladitya

    2014-03-01

    Measurements of traction stresses exerted by adherent cells or cell colonies on elastic substrates have yielded new insight on how the mechanical and geometrical properties of the substrate regulate cellular force distribution, mechanical energy, spreading, morphology or stress ber architecture. We have developed a generic mechanical model of adherent cells as an active contractile gel mechanically coupled to an elastic substrate and to neighboring cells in a tissue. The contractile gel model accurately predicts the distribution of cellular and traction stresses as observed in single cell experiments, and captures the dependence of cell shape, traction stresses and stress ber polarization on the substrate's mechanical and geometrical properties. The model further predicts that the total strain energy of an adherent cell is solely regulated by its spread area, in agreement with recent experiments on micropatterned substrates with controlled geometry. When used to describe the behavior of colonies of adherent epithelial cells, the model demonstrates the crucial role of the mechanical cross-talk between intercellular and extracellular adhesion in regulating traction force distribution. Strong intercellular mechanical coupling organizes traction forces to the colony periphery, whereas weaker intercellular coupling leads to the build up of traction stresses at intercellular junctions. Furthermore, in agreement with experiments on large cohesive keratinocyte colonies, the model predicts a linear scaling of traction forces with the colony size. This scaling suggests the emergence of an effective surface tension as a scale-free material property of the adherent tissue, originating from actomyosin contractility.

  18. Place cell activation predicts subsequent memory.

    PubMed

    Robitsek, R Jonathan; White, John A; Eichenbaum, Howard

    2013-10-01

    A major quandary in memory research is how hippocampal place cells, widely recognized as elements of a spatial map, contribute to episodic memory, our capacity to remember unique experiences that depends on hippocampal function. Here we recorded from hippocampal neurons as rats performed a T-maze alternation task in which they were required to remember a preceding experience over a delay in order to make a subsequent spatial choice. As it has been reported previously in other variations of this task, we observed differential firing that predicted correct subsequent choices, even as the animal traversed identical locations prior to the choice. Here we also observed that most place cells also fired differently on correct as compared to error trials. Among these cells, a large majority fired strongly before the delay or during the retrieval phase but were less active or failed to activate when the animal subsequently made an error. These findings join the place cell phenomenon with episodic memory performance dependent on the hippocampus, revealing that memory accuracy can be predicted by the activation of single place cells in the hippocampus.

  19. Mechanically activated artificial cell by using microfluidics

    PubMed Central

    Ho, Kenneth K. Y.; Lee, Lap Man; Liu, Allen P.

    2016-01-01

    All living organisms sense mechanical forces. Engineering mechanosensitive artificial cell through bottom-up in vitro reconstitution offers a way to understand how mixtures of macromolecules assemble and organize into a complex system that responds to forces. We use stable double emulsion droplets (aqueous/oil/aqueous) to prototype mechanosensitive artificial cells. In order to demonstrate mechanosensation in artificial cells, we develop a novel microfluidic device that is capable of trapping double emulsions into designated chambers, followed by compression and aspiration in a parallel manner. The microfluidic device is fabricated using multilayer soft lithography technology, and consists of a control layer and a deformable flow channel. Deflections of the PDMS membrane above the main microfluidic flow channels and trapping chamber array are independently regulated pneumatically by two sets of integrated microfluidic valves. We successfully compress and aspirate the double emulsions, which result in transient increase and permanent decrease in oil thickness, respectively. Finally, we demonstrate the influx of calcium ions as a response of our mechanically activated artificial cell through thinning of oil. The development of a microfluidic device to mechanically activate artificial cells creates new opportunities in force-activated synthetic biology. PMID:27610921

  20. Mechanically activated artificial cell by using microfluidics.

    PubMed

    Ho, Kenneth K Y; Lee, Lap Man; Liu, Allen P

    2016-01-01

    All living organisms sense mechanical forces. Engineering mechanosensitive artificial cell through bottom-up in vitro reconstitution offers a way to understand how mixtures of macromolecules assemble and organize into a complex system that responds to forces. We use stable double emulsion droplets (aqueous/oil/aqueous) to prototype mechanosensitive artificial cells. In order to demonstrate mechanosensation in artificial cells, we develop a novel microfluidic device that is capable of trapping double emulsions into designated chambers, followed by compression and aspiration in a parallel manner. The microfluidic device is fabricated using multilayer soft lithography technology, and consists of a control layer and a deformable flow channel. Deflections of the PDMS membrane above the main microfluidic flow channels and trapping chamber array are independently regulated pneumatically by two sets of integrated microfluidic valves. We successfully compress and aspirate the double emulsions, which result in transient increase and permanent decrease in oil thickness, respectively. Finally, we demonstrate the influx of calcium ions as a response of our mechanically activated artificial cell through thinning of oil. The development of a microfluidic device to mechanically activate artificial cells creates new opportunities in force-activated synthetic biology. PMID:27610921

  1. Mechanically activated artificial cell by using microfluidics.

    PubMed

    Ho, Kenneth K Y; Lee, Lap Man; Liu, Allen P

    2016-01-01

    All living organisms sense mechanical forces. Engineering mechanosensitive artificial cell through bottom-up in vitro reconstitution offers a way to understand how mixtures of macromolecules assemble and organize into a complex system that responds to forces. We use stable double emulsion droplets (aqueous/oil/aqueous) to prototype mechanosensitive artificial cells. In order to demonstrate mechanosensation in artificial cells, we develop a novel microfluidic device that is capable of trapping double emulsions into designated chambers, followed by compression and aspiration in a parallel manner. The microfluidic device is fabricated using multilayer soft lithography technology, and consists of a control layer and a deformable flow channel. Deflections of the PDMS membrane above the main microfluidic flow channels and trapping chamber array are independently regulated pneumatically by two sets of integrated microfluidic valves. We successfully compress and aspirate the double emulsions, which result in transient increase and permanent decrease in oil thickness, respectively. Finally, we demonstrate the influx of calcium ions as a response of our mechanically activated artificial cell through thinning of oil. The development of a microfluidic device to mechanically activate artificial cells creates new opportunities in force-activated synthetic biology.

  2. Phenotypic models of T cell activation.

    PubMed

    Lever, Melissa; Maini, Philip K; van der Merwe, P Anton; Dushek, Omer

    2014-09-01

    T cell activation is a crucial checkpoint in adaptive immunity, and this activation depends on the binding parameters that govern the interactions between T cell receptors (TCRs) and peptide-MHC complexes (pMHC complexes). Despite extensive experimental studies, the relationship between the TCR-pMHC binding parameters and T cell activation remains controversial. To make sense of conflicting experimental data, a variety of verbal and mathematical models have been proposed. However, it is currently unclear which model or models are consistent or inconsistent with experimental data. A key problem is that a direct comparison between the models has not been carried out, in part because they have been formulated in different frameworks. For this Analysis article, we reformulated published models of T cell activation into phenotypic models, which allowed us to directly compare them. We find that a kinetic proofreading model that is modified to include limited signalling is consistent with the majority of published data. This model makes the intriguing prediction that the stimulation hierarchy of two different pMHC complexes (or two different TCRs that are specific for the same pMHC complex) may reverse at different pMHC concentrations.

  3. Epigenetic Changes during Hepatic Stellate Cell Activation

    PubMed Central

    Götze, Silke; Schumacher, Eva C.; Kordes, Claus; Häussinger, Dieter

    2015-01-01

    Background and Aims Hepatic stellate cells (HSC), which can participate in liver regeneration and fibrogenesis, have recently been identified as liver-resident mesenchymal stem cells. During their activation HSC adopt a myofibroblast-like phenotype accompanied by profound changes in the gene expression profile. DNA methylation changes at single genes have been reported during HSC activation and may participate in the regulation of this process, but comprehensive DNA methylation analyses are still missing. The aim of the present study was to elucidate the role of DNA methylation during in vitro activation of HSC. Methods and Results The analysis of DNA methylation changes by antibody-based assays revealed a strong decrease in the global DNA methylation level during culture-induced activation of HSC. To identify genes which may be regulated by DNA methylation, we performed a genome-wide Methyl-MiniSeq EpiQuest sequencing comparing quiescent and early culture-activated HSC. Approximately 400 differentially methylated regions with a methylation change of at least 20% were identified, showing either hypo- or hypermethylation during activation. Further analysis of selected genes for DNA methylation and expression were performed revealing a good correlation between DNA methylation changes and gene expression. Furthermore, global DNA demethylation during HSC activation was investigated by 5-bromo-2-deoxyuridine assay and L-mimosine treatment showing that demethylation was independent of DNA synthesis and thereby excluding a passive DNA demethylation mechanism. Conclusions In summary, in vitro activation of HSC initiated strong DNA methylation changes, which were associated with gene regulation. These results indicate that epigenetic mechanisms are important for the control of early HSC activation. Furthermore, the data show that global DNA demethylation during activation is based on an active DNA demethylation mechanism. PMID:26065684

  4. Shape memory polymers for active cell culture.

    PubMed

    Davis, Kevin A; Luo, Xiaofan; Mather, Patrick T; Henderson, James H

    2011-07-04

    Shape memory polymers (SMPs) are a class of "smart" materials that have the ability to change from a fixed, temporary shape to a pre-determined permanent shape upon the application of a stimulus such as heat(1-5). In a typical shape memory cycle, the SMP is first deformed at an elevated temperature that is higher than its transition temperature, T(trans;) [either the melting temperature (T(m;)) or the glass transition temperature (T(g;))]. The deformation is elastic in nature and mainly leads to a reduction in conformational entropy of the constituent network chains (following the rubber elasticity theory). The deformed SMP is then cooled to a temperature below its T(trans;) while maintaining the external strain or stress constant. During cooling, the material transitions to a more rigid state (semi-crystalline or glassy), which kinetically traps or "freezes" the material in this low-entropy state leading to macroscopic shape fixing. Shape recovery is triggered by continuously heating the material through T(trans;) under a stress-free (unconstrained) condition. By allowing the network chains (with regained mobility) to relax to their thermodynamically favored, maximal-entropy state, the material changes from the temporary shape to the permanent shape. Cells are capable of surveying the mechanical properties of their surrounding environment(6). The mechanisms through which mechanical interactions between cells and their physical environment control cell behavior are areas of active research. Substrates of defined topography have emerged as powerful tools in the investigation of these mechanisms. Mesoscale, microscale, and nanoscale patterns of substrate topography have been shown to direct cell alignment, cell adhesion, and cell traction forces(7-14). These findings have underscored the potential for substrate topography to control and assay the mechanical interactions between cells and their physical environment during cell culture, but the substrates used to date

  5. STAT3 is a critical cell-intrinsic regulator of human unconventional T cell numbers and function

    PubMed Central

    Wilson, Robert P.; Ives, Megan L.; Rao, Geetha; Lau, Anthony; Payne, Kathryn; Kobayashi, Masao; Arkwright, Peter D.; Peake, Jane; Wong, Melanie; Adelstein, Stephen; Smart, Joanne M.; French, Martyn A.; Fulcher, David A.; Picard, Capucine; Bustamante, Jacinta; Boisson-Dupuis, Stephanie; Gray, Paul; Stepensky, Polina; Warnatz, Klaus; Freeman, Alexandra F.; Rossjohn, Jamie; McCluskey, James; Holland, Steven M.; Casanova, Jean-Laurent; Uzel, Gulbu; Ma, Cindy S.

    2015-01-01

    Unconventional T cells such as γδ T cells, natural killer T cells (NKT cells) and mucosal-associated invariant T cells (MAIT cells) are a major component of the immune system; however, the cytokine signaling pathways that control their development and function in humans are unknown. Primary immunodeficiencies caused by single gene mutations provide a unique opportunity to investigate the role of specific molecules in regulating human lymphocyte development and function. We found that individuals with loss-of-function mutations in STAT3 had reduced numbers of peripheral blood MAIT and NKT but not γδ T cells. Analysis of STAT3 mosaic individuals revealed that this effect was cell intrinsic. Surprisingly, the residual STAT3-deficient MAIT cells expressed normal levels of the transcription factor RORγt. Despite this, they displayed a deficiency in secretion of IL-17A and IL-17F, but were able to secrete normal levels of cytokines such as IFNγ and TNF. The deficiency in MAIT and NKT cells in STAT3-deficient patients was mirrored by loss-of-function mutations in IL12RB1 and IL21R, respectively. Thus, these results reveal for the first time the essential role of STAT3 signaling downstream of IL-23R and IL-21R in controlling human MAIT and NKT cell numbers. PMID:25941256

  6. STAT3 is a critical cell-intrinsic regulator of human unconventional T cell numbers and function.

    PubMed

    Wilson, Robert P; Ives, Megan L; Rao, Geetha; Lau, Anthony; Payne, Kathryn; Kobayashi, Masao; Arkwright, Peter D; Peake, Jane; Wong, Melanie; Adelstein, Stephen; Smart, Joanne M; French, Martyn A; Fulcher, David A; Picard, Capucine; Bustamante, Jacinta; Boisson-Dupuis, Stephanie; Gray, Paul; Stepensky, Polina; Warnatz, Klaus; Freeman, Alexandra F; Rossjohn, Jamie; McCluskey, James; Holland, Steven M; Casanova, Jean-Laurent; Uzel, Gulbu; Ma, Cindy S; Tangye, Stuart G; Deenick, Elissa K

    2015-06-01

    Unconventional T cells such as γδ T cells, natural killer T cells (NKT cells) and mucosal-associated invariant T cells (MAIT cells) are a major component of the immune system; however, the cytokine signaling pathways that control their development and function in humans are unknown. Primary immunodeficiencies caused by single gene mutations provide a unique opportunity to investigate the role of specific molecules in regulating human lymphocyte development and function. We found that individuals with loss-of-function mutations in STAT3 had reduced numbers of peripheral blood MAIT and NKT but not γδ T cells. Analysis of STAT3 mosaic individuals revealed that this effect was cell intrinsic. Surprisingly, the residual STAT3-deficient MAIT cells expressed normal levels of the transcription factor RORγt. Despite this, they displayed a deficiency in secretion of IL-17A and IL-17F, but were able to secrete normal levels of cytokines such as IFNγ and TNF. The deficiency in MAIT and NKT cells in STAT3-deficient patients was mirrored by loss-of-function mutations in IL12RB1 and IL21R, respectively. Thus, these results reveal for the first time the essential role of STAT3 signaling downstream of IL-23R and IL-21R in controlling human MAIT and NKT cell numbers.

  7. Cernunnos Deficiency Reduces Thymocyte Life Span and Alters the T Cell Repertoire in Mice and Humans

    PubMed Central

    Vera, Gabriella; Rivera-Munoz, Paola; Abramowski, Vincent; Malivert, Laurent; Lim, Annick; Bole-Feysot, Christine; Martin, Christelle; Florkin, Benoit; Latour, Sylvain; Revy, Patrick

    2013-01-01

    Cernunnos is a DNA repair factor of the nonhomologous end-joining machinery. Its deficiency in humans causes radiosensitive severe combined immune deficiency (SCID) with microcephaly, characterized in part by a profound lymphopenia. In contrast to the human condition, the immune system of Cernunnos knockout (KO) mice is not overwhelmingly affected. In particular, Cernunnos is dispensable during V(D)J recombination in lymphoid cells. Nevertheless, the viability of thymocytes is reduced in Cernunnos KO mice, owing to the chronic activation of a P53-dependent DNA damage response. This translates into a qualitative alteration of the T cell repertoire to one in which the most distal Vα and Jα segments are missing. This results in the contraction of discrete T cell populations, such as invariant natural killer T (iNKT) and mucosa-associated invariant T (MAIT) cells, in both humans and mice. PMID:23207905

  8. Transition metals activate TFEB in overexpressing cells.

    PubMed

    Peña, Karina A; Kiselyov, Kirill

    2015-08-15

    Transition metal toxicity is an important factor in the pathogenesis of numerous human disorders, including neurodegenerative diseases. Lysosomes have emerged as important factors in transition metal toxicity because they handle transition metals via endocytosis, autophagy, absorption from the cytoplasm and exocytosis. Transcription factor EB (TFEB) regulates lysosomal biogenesis and the expression of lysosomal proteins in response to lysosomal and/or metabolic stresses. Since transition metals cause lysosomal dysfunction, we proposed that TFEB may be activated to drive gene expression in response to transition metal exposure and that such activation may influence transition metal toxicity. We found that transition metals copper (Cu) and iron (Fe) activate recombinant TFEB and stimulate the expression of TFEB-dependent genes in TFEB-overexpressing cells. In cells that show robust lysosomal exocytosis, TFEB was cytoprotective at moderate levels of Cu exposure, decreasing oxidative stress as reported by the expression of heme oxygenase-1 (HMOX1) gene. However, at high levels of Cu exposure, particularly in cells with low levels of lysosomal exocytosis, activation of overexpressed TFEB was toxic, increasing oxidative stress and mitochondrial damage. Based on these data, we conclude that TFEB-driven gene network is a component of the cellular response to transition metals. These data suggest limitations and disadvantages of TFEB overexpression as a therapeutic approach. PMID:26251447

  9. Transition metals activate TFEB in overexpressing cells

    PubMed Central

    Peña, Karina A.; Kiselyov, Kirill

    2015-01-01

    Transition metal toxicity is an important factor in the pathogenesis of numerous human disorders, including neurodegenerative diseases. Lysosomes have emerged as important factors in transition metal toxicity because they handle transition metals via endocytosis, autophagy, absorption from the cytoplasm and exocytosis. Transcription factor EB (TFEB) regulates lysosomal biogenesis and the expression of lysosomal proteins in response to lysosomal and/or metabolic stresses. Since transition metals cause lysosomal dysfunction, we proposed that TFEB may be activated to drive gene expression in response to transition metal exposure and that such activation may influence transition metal toxicity. We found that transition metals copper (Cu) and iron (Fe) activate recombinant TFEB and stimulate the expression of TFEB-dependent genes in TFEB-overexpressing cells. In cells that show robust lysosomal exocytosis, TFEB was cytoprotective at moderate levels of Cu exposure, decreasing oxidative stress as reported by the expression of heme oxygenase-1 (HMOX1) gene. However, at high levels of Cu exposure, particularly in cells with low levels of lysosomal exocytosis, activation of overexpressed TFEB was toxic, increasing oxidative stress and mitochondrial damage. Based on these data, we conclude that TFEB-driven gene network is a component of the cellular response to transition metals. These data suggest limitations and disadvantages of TFEB overexpression as a therapeutic approach. PMID:26251447

  10. Fluorescence activated cell sorting of plant protoplasts.

    PubMed

    Bargmann, Bastiaan O R; Birnbaum, Kenneth D

    2010-01-01

    High-resolution, cell type-specific analysis of gene expression greatly enhances understanding of developmental regulation and responses to environmental stimuli in any multicellular organism. In situ hybridization and reporter gene visualization can to a limited extent be used to this end but for high resolution quantitative RT-PCR or high-throughput transcriptome-wide analysis the isolation of RNA from particular cell types is requisite. Cellular dissociation of tissue expressing a fluorescent protein marker in a specific cell type and subsequent Fluorescence Activated Cell Sorting (FACS) makes it possible to collect sufficient amounts of material for RNA extraction, cDNA synthesis/amplification and microarray analysis. An extensive set of cell type-specific fluorescent reporter lines is available to the plant research community. In this case, two marker lines of the Arabidopsis thaliana root are used: P(SCR;)::GFP (endodermis and quiescent center) and P(WOX5;)::GFP (quiescent center). Large numbers (thousands) of seedlings are grown hydroponically or on agar plates and harvested to obtain enough root material for further analysis. Cellular dissociation of plant material is achieved by enzymatic digestion of the cell wall. This procedure makes use of high osmolarity-induced plasmolysis and commercially available cellulases, pectinases and hemicellulases to release protoplasts into solution. FACS of GFP-positive cells makes use of the visualization of the green versus the red emission spectra of protoplasts excited by a 488 nm laser. GFP-positive protoplasts can be distinguished by their increased ratio of green to red emission. Protoplasts are typically sorted directly into RNA extraction buffer and stored for further processing at a later time. This technique is revealed to be straightforward and practicable. Furthermore, it is shown that it can be used without difficulty to isolate sufficient numbers of cells for transcriptome analysis, even for very scarce

  11. Fluorescence activated cell sorting of plant protoplasts.

    PubMed

    Bargmann, Bastiaan O R; Birnbaum, Kenneth D

    2010-02-18

    High-resolution, cell type-specific analysis of gene expression greatly enhances understanding of developmental regulation and responses to environmental stimuli in any multicellular organism. In situ hybridization and reporter gene visualization can to a limited extent be used to this end but for high resolution quantitative RT-PCR or high-throughput transcriptome-wide analysis the isolation of RNA from particular cell types is requisite. Cellular dissociation of tissue expressing a fluorescent protein marker in a specific cell type and subsequent Fluorescence Activated Cell Sorting (FACS) makes it possible to collect sufficient amounts of material for RNA extraction, cDNA synthesis/amplification and microarray analysis. An extensive set of cell type-specific fluorescent reporter lines is available to the plant research community. In this case, two marker lines of the Arabidopsis thaliana root are used: P(SCR;)::GFP (endodermis and quiescent center) and P(WOX5;)::GFP (quiescent center). Large numbers (thousands) of seedlings are grown hydroponically or on agar plates and harvested to obtain enough root material for further analysis. Cellular dissociation of plant material is achieved by enzymatic digestion of the cell wall. This procedure makes use of high osmolarity-induced plasmolysis and commercially available cellulases, pectinases and hemicellulases to release protoplasts into solution. FACS of GFP-positive cells makes use of the visualization of the green versus the red emission spectra of protoplasts excited by a 488 nm laser. GFP-positive protoplasts can be distinguished by their increased ratio of green to red emission. Protoplasts are typically sorted directly into RNA extraction buffer and stored for further processing at a later time. This technique is revealed to be straightforward and practicable. Furthermore, it is shown that it can be used without difficulty to isolate sufficient numbers of cells for transcriptome analysis, even for very scarce

  12. Oral administration of a non-absorbable plant cell-expressed recombinant anti-TNF fusion protein induces immunomodulatory effects and alleviates nonalcoholic steatohepatitis

    PubMed Central

    Ilan, Yaron; Ben Ya'acov, Ami; Shabbat, Yehudit; Gingis-Velitski, Svetlana; Almon, Einat; Shaaltiel, Yoseph

    2016-01-01

    AIM To evaluate the immunomodulatory effect of oral administration of PRX-106 in the high-fat diet model. METHODS For 22 wk, C57BL/6 HFD-fed mice received daily oral treatments with BY-2 cells expressing recombinant anti-tumor necrosis factor alpha fusion protein (PRX-106). Mice were followed for serum liver enzyme and triglyceride levels, liver histology and intrahepatic and systemic FACS. RESULTS The orally administered non-absorbable PRX-106 was biologically active. Altered distribution of CD4+CD25+FoxP3+ between the liver and spleen and an increase in the intrasplenic-to-intrahepatic CD4+CD25+FoxP3+ ratio and a decrease in the intrasplenic-to-intrahepatic CD8+CD25+FoxP3+ ratio were observed. An increase in intrahepatic NKT cells and a decrease in the intrasplenic-to-intrahepatic NKT ratio were noted. Assessment of the CD4-to-CD8 ratios showed sequestration of CD8+ lymphocytes in the liver. These effects were associated with a decrease in serum triglyceride levels, decrease in the aspartate aminotransferase levels, serum glucose levels, and HOMA-IR score. A decrease in hepatic triglycerides content was observed in the high dose-treated mice. CONCLUSION Orally administered PRX-106 shows biological activity and exerts an immunomodulatory effect, alleviating liver damage. The data suggest that PRX-106 may provide an oral immunotherapy for nonalcoholic steatohepatitis.

  13. Insect cells respiratory activity in bioreactor

    PubMed Central

    Jorge, Soraia Athie Calil; Santos, Mariza Gerdulo; Yokomizo, Adriana Yurie; Pereira, Carlos Augusto; Tonso, Aldo

    2008-01-01

    Specific respiration rate ( \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ Q_{{{\\text{O}}_{2} }} $$\\end{document}) is a key parameter to understand cell metabolism and physiological state, providing useful information for process supervision and control. In this work, we cultivated different insect cells in a very controlled environment, being able to measure \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ Q_{{{\\text{O}}_{2} }} $$\\end{document}. Spodoptera frugiperda (Sf9) cells have been used through virus infection as host for foreign protein expression and bioinsecticide production. Transfected Drosophila melanogaster (S2) cells can be used to produce different proteins. The objective of this work is to investigate respiratory activity and oxygen transfer during the growth of different insect cells lines as Spodoptera frugiperda (Sf9), Drosophila melanogaster (S2) wild and transfected for the expression of GPV and EGFP. All experiments were performed in a well-controlled 1-L bioreactor, with SF900II serum free medium. Spodoptera frugiperda (Sf9) cells reached 10.7 × 106 cells/mL and maximum specific respiration rate (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ Q_{{{\\text{O}}_{2} \\max }} $$\\end{document}) of 7.3 × 10−17 molO2/cell s. Drosophila melanogaster (S2) cells achieved 51.2 × 106 cells/mL and \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage

  14. Chronic variable stress activates hematopoietic stem cells

    PubMed Central

    Courties, Gabriel; Dutta, Partha; Iwamoto, Yoshiko; Zaltsman, Alex; von zur Muhlen, Constantin; Bode, Christoph; Fricchione, Gregory L.; Denninger, John; Lin, Charles P.; Vinegoni, Claudio; Libby, Peter; Swirski, Filip K.; Weissleder, Ralph; Nahrendorf, Matthias

    2014-01-01

    Exposure to psychosocial stress is a risk factor for many diseases, including atherosclerosis1,2. While incompletely understood, interaction between the psyche and the immune system provides one potential mechanism linking stress and disease inception and progression. Known crosstalk between the brain and immune system includes the hypothalamic–pituitary–adrenal axis, which centrally drives glucocorticoid production in the adrenal cortex, and the sympathetic–adrenal–medullary axis, which controls stress–induced catecholamine release in support of the fight–or–flight reflex3,4. It remains unknown however if chronic stress changes hematopoietic stem cell activity. Here we show that stress increases proliferation of these most primitive progenitors, giving rise to higher levels of disease–promoting inflammatory leukocytes. We found that chronic stress induced monocytosis and neutrophilia in humans. While investigating the source of leukocytosis in mice, we discovered that stress activates upstream hematopoietic stem cells. Sympathetic nerve fibers release surplus noradrenaline, which uses the β3 adrenergic receptor to signal bone marrow niche cells to decrease CXCL12 levels. Consequently, elevated hematopoietic stem cell proliferation increases output of neutrophils and inflammatory monocytes. When atherosclerosis–prone ApoE−/− mice encounter chronic stress, accelerated hematopoiesis promotes plaque features associated with vulnerable lesions that cause myocardial infarction and stroke in humans. PMID:24952646

  15. Persistent neural activity in head direction cells

    NASA Technical Reports Server (NTRS)

    Taube, Jeffrey S.; Bassett, Joshua P.; Oman, C. M. (Principal Investigator)

    2003-01-01

    Many neurons throughout the rat limbic system discharge in relation to the animal's directional heading with respect to its environment. These so-called head direction (HD) cells exhibit characteristics of persistent neural activity. This article summarizes where HD cells are found, their major properties, and some of the important experiments that have been conducted to elucidate how this signal is generated. The number of HD and angular head velocity cells was estimated for several brain areas involved in the generation of the HD signal, including the postsubiculum, anterior dorsal thalamus, lateral mammillary nuclei and dorsal tegmental nucleus. The HD cell signal has many features in common with what is known about how neural integration is accomplished in the oculomotor system. The nature of the HD cell signal makes it an attractive candidate for using neural network models to elucidate the signal's underlying mechanisms. The conditions that any network model must satisfy in order to accurately represent how the nervous system generates this signal are highlighted and areas where key information is missing are discussed.

  16. CD1d Mediates T-Cell-Dependent Resistance to Secondary Infection with Encephalomyocarditis Virus (EMCV) In Vitro and Immune Response to EMCV Infection In Vivo

    PubMed Central

    Ilyinskii, Petr O.; Wang, Ruojie; Balk, Steven P.; Exley, Mark A.

    2006-01-01

    The innate and adaptive immune responses have evolved distinct strategies for controlling different viral pathogens. Encephalomyocarditis virus (EMCV) is a picornavirus that can cause paralysis, diabetes, and myocarditis within days of infection. The optimal innate immune response against EMCV in vivo requires CD1d. Interaction of antigen-presenting cell CD1d with distinct natural killer T-cell (“NKT”) populations can induce rapid gamma interferon (IFN-γ) production and NK-cell activation. The T-cell response of CD1d-deficient mice (lacking all NKT cells) against acute EMCV infection was further studied in vitro and in vivo. EMCV persisted at higher levels in CD1d-knockout (KO) splenocyte cultures infected in vitro. Furthermore, optimal resistance to repeat cycles of EMCV infection in vitro was also shown to depend on CD1d. However, this was not reflected in the relative levels of NK-cell activation but rather by the responses of both CD4+ and CD8+ T-cell populations. Repeated EMCV infection in vitro induced less IFN-γ and alpha interferon (IFN-α) from CD1d-deficient splenocytes than with the wild type. Furthermore, the level of EMCV replication in wild-type splenocytes was markedly and specifically increased by addition of blocking anti-CD1d antibody. Depletion experiments demonstrated that dendritic cells contributed less than the combination of NK and NKT cells to anti-EMCV responses and that none of these cell types was the main source of IFN-α. Finally, EMCV infection in vivo produced higher levels of viremia in CD1d-KO mice than in wild-type animals, coupled with significantly less lymphocyte activation and IFN-α production. These results point to the existence of a previously unrecognized mechanism of rapid CD1d-dependent stimulation of the antiviral adaptive cellular immune response. PMID:16809320

  17. IL-15 Superagonist–Mediated Immunotoxicity: Role of NK Cells and IFN-γ

    PubMed Central

    Guo, Yin; Luan, Liming; Rabacal, Whitney; Bohannon, Julia K.; Fensterheim, Benjamin A.; Hernandez, Antonio

    2015-01-01

    IL-15 is currently undergoing clinical trials to assess its efficacy for treatment of advanced cancers. The combination of IL-15 with soluble IL-15Rα generates a complex termed IL-15 superagonist (IL-15 SA) that possesses greater biological activity than IL-15 alone. IL-15 SA is considered an attractive antitumor and antiviral agent because of its ability to selectively expand NK and memory CD8+ T (mCD8+ T) lymphocytes. However, the adverse consequences of IL-15 SA treatment have not been defined. In this study, the effect of IL-15 SA on physiologic and immunologic functions of mice was evaluated. IL-15 SA caused dose- and time-dependent hypothermia, weight loss, liver injury, and mortality. NK (especially the proinflammatory NK subset), NKT, and mCD8+ T cells were preferentially expanded in spleen and liver upon IL-15 SA treatment. IL-15 SA caused NK cell activation as indicated by increased CD69 expression and IFN-γ, perforin, and granzyme B production, whereas NKT and mCD8+ T cells showed minimal, if any, activation. Cell depletion and adoptive transfer studies showed that the systemic toxicity of IL-15 SA was mediated by hyperproliferation of activated NK cells. Production of the proinflammatory cytokine IFN-γ, but not TNF-α or perforin, was essential to IL-15 SA–induced immunotoxicity. The toxicity and immunological alterations shown in this study are comparable to those reported in recent clinical trials of IL-15 in patients with refractory cancers and advance current knowledge by providing mechanistic insights into IL-15 SA–mediated immunotoxicity. PMID:26216888

  18. Cell Micromanipulation with an Active Handheld Micromanipulator

    PubMed Central

    Tabarés, Jaime Cuevas; MacLachlan, Robert A.; Ettensohn, Charles A.

    2012-01-01

    The paper describes the use of an active handheld micromanipulator, known as Micron, for micromanipulation of cells. The device enables users to manipulate objects on the order of tens of microns in size, with the natural ease of use of a fully handheld tool. Micron senses its own position using a purpose-built microscale optical tracker, estimates the erroneous or undesired component of hand motion, and actively corrects it by deflecting its own tool tip using piezoelectric actuators. Benchtop experiments in tip positioning show that active compensation can reduce positioning error by up to 51% compared to unaided performance. Preliminary experiments in bisection of sea urchin embryos exhibit an increased success rate when performed with the help of Micron. PMID:21096452

  19. Transgelin-2 in B-Cells Controls T-Cell Activation by Stabilizing T Cell - B Cell Conjugates

    PubMed Central

    Chae, Myoung-Won; Kim, Hye-Ran; Kim, Chang-Hyun; Jun, Chang-Duk; Park, Zee-Yong

    2016-01-01

    The immunological synapse (IS), a dynamic and organized junction between T-cells and antigen presenting cells (APCs), is critical for initiating adaptive immunity. The actin cytoskeleton plays a major role in T-cell reorganization during IS formation, and we previously reported that transgelin-2, an actin-binding protein expressed in T-cells, stabilizes cortical F-actin, promoting T-cell activation in response to antigen stimulation. Transgelin-2 is also highly expressed in B-cells, although no specific function has been reported. In this study, we found that deficiency in transgelin-2 (TAGLN2-/-) in B-cells had little effect on B-cell development and activation, as measured by the expression of CD69, MHC class II molecules, and CD80/86. Nevertheless, in B-cells, transgelin-2 accumulated in the IS during the interaction with T-cells. These results led us to hypothesize that transgelin-2 may also be involved in IS stability in B-cells, thereby influencing T-cell function. Notably, we found that transgelin-2 deficiency in B-cells reduced T-cell activation, as determined by the release of IL-2 and interferon-γ and the expression of CD69. Furthermore, the reduced T-cell activation was correlated with reduced B-cell–T-cell conjugate formation. Collectively, these results suggest that actin stability in B-cells during IS formation is critical for the initiation of adaptive T-cell immunity. PMID:27232882

  20. Active stochastic stress fluctuations in the cell cytoskeleton stir the cell and activate primary cilia

    NASA Astrophysics Data System (ADS)

    Schmidt, Christoph F.; Fakhri, Nikta; Battle, Christopher; Ott, Carolyn M.; Wessel, Alok D.; Lippincott-Schwartz, Jennifer; Mackintosh, Frederick C.

    2015-03-01

    Cells are active systems with molecular force generation that drives complex dynamics at the supramolecular scale. Much of cellular dynamics is driven by myosin motors interacting with the actin cytoskeleton. We discovered active random ``stirring'' driven by cytoplasmic myosin as an intermediate mode of transport, different from both thermal diffusion and directed motor activity. We found a further manifestation of cytoskeletal dynamics in the active motion patterns of primary cilia generated by epithelial cells. These cilia were thought to be immotile due to the absence of dynein motors, but it turns out that their anchoring deeper inside the cell in combination with the strongly fluctuating cortex results in clearly measurable non-equilibrium fluctuations.

  1. Effect of Broccoli Sprouts and Live Attenuated Influenza Virus on Peripheral Blood Natural Killer Cells: A Randomized, Double-Blind Study

    PubMed Central

    Müller, Loretta; Meyer, Megan; Bauer, Rebecca N.; Zhou, Haibo; Zhang, Hongtao; Jones, Shannon; Robinette, Carole; Noah, Terry L.; Jaspers, Ilona

    2016-01-01

    Enhancing antiviral host defense responses through nutritional supplementation would be an attractive strategy in the fight against influenza. Using inoculation with live attenuated influenza virus (LAIV) as an infection model, we have recently shown that ingestion of sulforaphane-containing broccoli sprout homogenates (BSH) reduces markers of viral load in the nose. To investigate the systemic effects of short-term BSH supplementation in the context of LAIV-inoculation, we examined peripheral blood immune cell populations in non-smoking subjects from this study, with a particular focus on NK cells. We carried out a randomized, double-blinded, placebo-controlled study measuring the effects of BSH (N = 13) or placebo (alfalfa sprout homogenate, ASH; N = 16) on peripheral blood mononuclear cell responses to a standard nasal vaccine dose of LAIV in healthy volunteers. Blood was drawn prior to (day-1) and post (day2, day21) LAIV inoculation and analyzed for neutrophils, monocytes, macrophages, T cells, NKT cells, and NK cells. In addition, NK cells were enriched, stimulated, and assessed for surface markers, intracellular markers, and cytotoxic potential by flow cytometry. Overall, LAIV significantly reduced NKT (day2 and day21) and T cell (day2) populations. LAIV decreased NK cell CD56 and CD158b expression, while significantly increasing CD16 expression and cytotoxic potential (on day2). BSH supplementation further increased LAIV-induced granzyme B production (day2) in NK cells compared to ASH and in the BSH group granzyme B levels appeared to be negatively associated with influenza RNA levels in nasal lavage fluid cells. We conclude that nasal influenza infection may induce complex changes in peripheral blood NK cell activation, and that BSH increases virus-induced peripheral blood NK cell granzyme B production, an effect that may be important for enhanced antiviral defense responses. Trial Registration: ClinicalTrials.gov NCT01269723 PMID:26820305

  2. Hymenoptera Allergy and Mast Cell Activation Syndromes.

    PubMed

    Bonadonna, Patrizia; Bonifacio, Massimiliano; Lombardo, Carla; Zanotti, Roberta

    2016-01-01

    Mast cell activation syndrome (MCAS) can be diagnosed in patients with recurrent, severe symptoms from mast cell (MC)-derived mediators, which are transiently increased in serum and are attenuated by mediator-targeting drugs. When KIT-mutated, clonal MC are detected in these patients, a diagnosis of primary MCAS can be made. Severe systemic reactions to hymenoptera venom (HV) represent the most common form of anaphylaxis in patients with mastocytosis. Patients with primary MCAS and HV anaphylaxis are predominantly males and do not have skin lesions in the majority of cases, and anaphylaxis is characterized by hypotension and syncope in the absence of urticaria and angioedema. A normal value of tryptase (≤11.4 ng/ml) in these patients does not exclude a diagnosis of mastocytosis. Patients with primary MCAS and HV anaphylaxis have to undergo lifelong venom immunotherapy, in order to prevent further potentially fatal severe reactions. PMID:26714690

  3. Hymenoptera Allergy and Mast Cell Activation Syndromes.

    PubMed

    Bonadonna, Patrizia; Bonifacio, Massimiliano; Lombardo, Carla; Zanotti, Roberta

    2016-01-01

    Mast cell activation syndrome (MCAS) can be diagnosed in patients with recurrent, severe symptoms from mast cell (MC)-derived mediators, which are transiently increased in serum and are attenuated by mediator-targeting drugs. When KIT-mutated, clonal MC are detected in these patients, a diagnosis of primary MCAS can be made. Severe systemic reactions to hymenoptera venom (HV) represent the most common form of anaphylaxis in patients with mastocytosis. Patients with primary MCAS and HV anaphylaxis are predominantly males and do not have skin lesions in the majority of cases, and anaphylaxis is characterized by hypotension and syncope in the absence of urticaria and angioedema. A normal value of tryptase (≤11.4 ng/ml) in these patients does not exclude a diagnosis of mastocytosis. Patients with primary MCAS and HV anaphylaxis have to undergo lifelong venom immunotherapy, in order to prevent further potentially fatal severe reactions.

  4. 3-fluoro- and 3,3-difluoro-3,4-dideoxy-KRN7000 analogues as new potent immunostimulator agents: total synthesis and biological evaluation in human invariant natural killer T cells and mice.

    PubMed

    Hunault, Julie; Diswall, Mette; Frison, Jean-Cédric; Blot, Virginie; Rocher, Jézabel; Marionneau-Lambot, Séverine; Oullier, Thibauld; Douillard, Jean-Yves; Guillarme, Stéphane; Saluzzo, Christine; Dujardin, Gilles; Jacquemin, Denis; Graton, Jérôme; Le Questel, Jean-Yves; Evain, Michel; Lebreton, Jacques; Dubreuil, Didier; Le Pendu, Jacques; Pipelier, Muriel

    2012-02-01

    We propose here the synthesis and biological evaluation of 3,4-dideoxy-GalCer derivatives. The absence of the 3- and 4-hydroxyls on the sphingoid base is combined with the introduction of mono or difluoro substituent at C3 (analogues 8 and 9, respectively) to evaluate their effect on the stability of the ternary CD1d/GalCer/TCR complex which strongly modulate the immune responses. Biological evaluations were performed in vitro on human cells and in vivo in mice and results discussed with support of modeling studies. The fluoro 3,4-dideoxy-GalCer analogues appears as partial agonists compared to KRN7000 for iNKT cell activation, inducing T(H)1 or T(H)2 biases that strongly depend of the mode of antigen presentation, including human vs mouse differences. We evidenced that if a sole fluorine atom is not able to balance the loss of the 3-OH, the presence of a difluorine group at C3 of the sphingosine can significantly restore human iNKT activation.

  5. Bursts of active transport in living cells.

    PubMed

    Wang, Bo; Kuo, James; Granick, Steve

    2013-11-15

    We show, using a large new data set, that the temporally resolved speed of active cargo transport in living cells follows a scaling law over several decades of time and length. The statistical regularities display a time-averaged shape that we interpret to reflect stress buildup, followed by rapid release. The scaling power law agrees quantitatively with those reported in inanimate systems (jammed colloids and granular media, and magnetic Barkhausen noise), suggesting a common origin in pushing through a crowded environment in a weak force regime. The implied regulation of the speed of active cellular transport due to environmental obstruction results in bursts of speed and acceleration. These findings extend the classical notion of molecular crowding.

  6. T helper cell activation and human retroviral pathogenesis.

    PubMed Central

    Copeland, K F; Heeney, J L

    1996-01-01

    T helper (Th) cells are of central importance in regulating many critical immune effector mechanisms. The profile of cytokines produced by Th cells correlates with the type of effector cells induced during the immune response to foreign antigen. Th1 cells induce the cell-mediated immune response, while Th2 cells drive antibody production. Th cells are the preferential targets of human retroviruses. Infections with human T-cell leukemia virus (HTLV) or human immunodeficiency virus (HIV) result in the expansion of Th cells by the action of HTLV (adult T-cell leukemia) or the progressive loss of T cells by the action of HIV (AIDS). Both retrovirus infections impart a high-level activation state in the host immune cells as well as systemically. However, diverging responses to this activation state have contrasting effects on the Th-cell population. In HIV infection, Th-cell loss has been attributed to several mechanisms, including a selective elimination of cells by apoptosis. The induction of apoptosis in HIV infection is complex, with many different pathways able to induce cell death. In contrast, infection of Th cells with HTLV-1 affords the cell a protective advantage against apoptosis. This advantage may allow the cell to escape immune surveillance, providing the opportunity for the development of Th-cell cancer. In this review, we will discuss the impact of Th-cell activation and general immune activation on human retrovirus expression with a focus upon Th-cell function and the progression to disease. PMID:8987361

  7. Kinase Activity Studied in Living Cells Using an Immunoassay

    ERIC Educational Resources Information Center

    Bavec, Aljos?a

    2014-01-01

    This laboratory exercise demonstrates the use of an immunoassay for studying kinase enzyme activity in living cells. The advantage over the classical method, in which students have to isolate the enzyme from cell material and measure its activity in vitro, is that enzyme activity is modulated and measured in living cells, providing a more…

  8. Circulating CD56dim natural killer cells and CD56+ T cells that produce interferon-γ or interleukin-10 are expanded in asymptomatic, E antigen-negative patients with persistent hepatitis B virus infection.

    PubMed

    Conroy, M J; Mac Nicholas, R; Grealy, R; Taylor, M; Otegbayo, J A; O'Dea, S; Mulcahy, F; Ryan, T; Norris, S; Doherty, D G

    2015-03-01

    Infection with hepatitis B virus (HBV) can result in spontaneous resolution or chronic infection, which can remain asymptomatic or can progress to cirrhosis and/or hepatocellular carcinoma. The host immune response is thought to be a major determinant of the outcome of HBV infection and virus-specific cytotoxic T lymphocytes (CTL) can mediate immunity against the virus and cause liver pathology. Antigen-nonspecific innate lymphocytes may also contribute to HBV infection and liver disease, therefore, we examined the frequencies, phenotypes, cytolytic activities and cytokine profiles of circulating natural killer (NK) cells, CD1d-restricted invariant natural killer T (iNKT) cells and CD56(+) T cells in 102 asymptomatic HBV-infected patients and compared them with those in 66 uninfected control subjects. NK cells expressing low levels of CD56 (CD56(dim)) and CD56(+) T cells were significantly expanded in the circulation of HBV-infected patients compared with control subjects. CD1d expression and iNKT cell frequencies were similar in both groups. Despite these expansions, we did not detect augmented natural or cytokine-induced cytotoxicity in the HBV-infected subjects. All lymphocyte populations studied produced interferon-γ (IFN-γ) significantly more frequently when taken from HBV-infected patients compared with when taken from healthy controls. Additionally, NK cells from the patients more frequently produced interleukin-10. As our HBV-infected cohort consisted of asymptomatic patients with low viral loads, we propose that CD56(dim) NK cells and CD56(+) T cells control HBV infection by noncytolytic mechanisms.

  9. Regulation of polymorphonuclear cell activation by thrombopoietin.

    PubMed Central

    Brizzi, M F; Battaglia, E; Rosso, A; Strippoli, P; Montrucchio, G; Camussi, G; Pegoraro, L

    1997-01-01

    Thrombopoietin (TPO) regulates early and late stages of platelet formation as well as platelet activation. TPO exerts its effects by binding to the receptor, encoded by the protooncogene c-mpl, that is expressed in a large number of cells of hematopoietic origin. In this study, we evaluated the expression of c-Mpl and the effects of TPO on human polymorphonuclear cells (PMN). We demonstrate that PMN express the TPO receptor c-Mpl and that TPO induces STAT1 tyrosine phosphorylation and the formation of a serum inducible element complex containing STAT1. The analysis of biological effects of TPO on PMN demonstrated that TPO, at concentrations of 1-10 ng/ml, primes the response of PMN to n-formyl-met-leu-phe (FMLP) by inducing an early oxidative burst. TPO-induced priming on FMLP-stimulated PMN was also detected on the tyrosine phosphorylation of a protein with a molecular mass of approximately 28 kD. Moreover, we demonstrated that TPO by itself was able to stimulate, at doses ranging from 0.05 to 10 ng/ml, early release and delayed synthesis of interleukin 8 (IL-8). Thus, our data indicate that, in addition to sustaining megakaryocytopoiesis, TPO may have an important role in regulating PMN activation. PMID:9120001

  10. The panoply of αβT cells in the skin.

    PubMed

    Nomura, Takashi; Kabashima, Kenji; Miyachi, Yoshiki

    2014-10-01

    Skin protects body from continual attack by microbial pathogens and environmental factors. Such barrier function of skin is achieved by multiple components including immune system, which is mainly regulated by lymphocytes. T lymphocytes (T cells) that express T cell receptor (TCR) α and β chains (αβT cells) control the strength and the type of immune response. CD4T cell population consists of helper T (Th) cell-subsets and immunosuppressive regulatory T (Treg) cells. Th1 cells produce IFN-γ and protect against intracellular pathogens. Th2 cells produce IL-4 family cytokines and participate in allergic skin diseases, including atopic dermatitis (AD). Th17 cells secrete IL-17, recruit granulocytes to fight against extracellular microorganisms, and play a role in psoriasis and AD. Th22 cells produce IL-22 that activates epithelial cells and mediates acanthosis in psoriasis and AD. On the other hand, Foxp3+ Treg cells attenuate immune responses partly via TGF-β or IL-10. Tissue resident memory T (Trm) cells in the skin-most of which are epidermal CD8T cells-constitute the first line of the defense against repeated infections. CD8 T cells are also engaged in psoriasis, lichen planus, and drug eruptions. Skin harbors innate-like αβT cells such as natural killer T (NKT) cells as well, whose function is not fully revealed. Understanding these αβT cells helps to comprehend skin diseases. PMID:25190363

  11. Immune Reconstitution After Antithymocyte Globulin-Conditioned Hematopoietic Cell Transplantation

    PubMed Central

    Bosch, Mark; Dhadda, Manveer; Hoegh-Petersen, Mette; Liu, Yiping; Hagel, Laura M; Podgorny, Peter; Ugarte-Torres, Alejandra; Khan, Faisal M.; Luider, Joanne; Auer-Grzesiak, Iwona; Mansoor, Adnan; Russell, James A; Daly, Andrew; Stewart, Douglas A.; Maloney, David; Boeckh, Michael; Storek, Jan

    2013-01-01

    Background Antithymocyte globulin (ATG) has been increasingly used to prevent graft-vs-host disease (GVHD), however, its impact on immune reconstitution is relatively unknown. Here we studied (1) immune reconstitution after ATG-conditioned hematopoietic cell transplantation (HCT), (2) determined factors influencing the reconstitution, and (3) compared it to non-ATG-conditioned HCT. Methods Immune cell subset counts were determined at 1–24 months posttransplant in 125 HCT recipients who received ATG during conditioning. The subset counts were also determined in 46 non-ATG-conditioned patients (similarly treated). Results (1) Reconstitution after ATG-conditioned HCT was fast for innate immune cells, intermediate for B cells and CD8 T cells, and very slow for CD4 T cells and invariant NKT (iNKT) cells. (2) Faster reconstitution after ATG-conditioned HCT was associated with higher number of cells of the same subset transferred with the graft in case of memory B cells, naïve CD4 T cells, naïve CD8 T cells, iNKT cells and myeloid dendritic cells; lower recipient age in case of naïve CD4 T cells and naïve CD8 T cells; cytomegalovirus recipient seropositivity in case of memory/effector T cells; absence of GVHD in case of naïve B cells; lower ATG serum levels in case of most T cell subsets including iNKT cells, and higher ATG levels in case of NK cells and B cells. (3) Compared to non-ATG-conditioned HCT, reconstitution after ATG-conditioned HCT was slower for CD4 T cells, and faster for NK cells and B cells. Conclusions ATG worsens reconstitution of CD4 T cells but improves reconstitution of NK and B cells. PMID:22985195

  12. Salivary gland NK cells are phenotypically and functionally unique.

    PubMed

    Tessmer, Marlowe S; Reilly, Emma C; Brossay, Laurent

    2011-01-13

    Natural killer (NK) cells and CD8(+) T cells play vital roles in containing and eliminating systemic cytomegalovirus (CMV). However, CMV has a tropism for the salivary gland acinar epithelial cells and persists in this organ for several weeks after primary infection. Here we characterize a distinct NK cell population that resides in the salivary gland, uncommon to any described to date, expressing both mature and immature NK cell markers. Using RORγt reporter mice and nude mice, we also show that the salivary gland NK cells are not lymphoid tissue inducer NK-like cells and are not thymic derived. During the course of murine cytomegalovirus (MCMV) infection, we found that salivary gland NK cells detect the infection and acquire activation markers, but have limited capacity to produce IFN-γ and degranulate. Salivary gland NK cell effector functions are not regulated by iNKT or T(reg) cells, which are mostly absent in the salivary gland. Additionally, we demonstrate that peripheral NK cells are not recruited to this organ even after the systemic infection has been controlled. Altogether, these results indicate that viral persistence and latency in the salivary glands may be due in part to the presence of unfit NK cells and the lack of recruitment of peripheral NK cells.

  13. The Epstein-Barr Virus Glycoprotein gp150 Forms an Immune-Evasive Glycan Shield at the Surface of Infected Cells

    PubMed Central

    Gram, Anna M.; Oosenbrug, Timo; Lindenbergh, Marthe F. S.; Büll, Christian; Comvalius, Anouskha; Dickson, Kathryn J. I.; Wiegant, Joop; Vrolijk, Hans; Lebbink, Robert Jan; Wolterbeek, Ron; Adema, Gosse J.; Griffioen, Marieke; Heemskerk, Mirjam H. M.; Tscharke, David C.; Hutt-Fletcher, Lindsey M.; Ressing, Maaike E.

    2016-01-01

    Cell-mediated immunity plays a key role in host control of viral infection. This is exemplified by life-threatening reactivations of e.g. herpesviruses in individuals with impaired T-cell and/or iNKT cell responses. To allow lifelong persistence and virus production in the face of primed immunity, herpesviruses exploit immune evasion strategies. These include a reduction in viral antigen expression during latency and a number of escape mechanisms that target antigen presentation pathways. Given the plethora of foreign antigens expressed in virus-producing cells, herpesviruses are conceivably most vulnerable to elimination by cell-mediated immunity during the replicative phase of infection. Here, we show that a prototypic herpesvirus, Epstein-Barr virus (EBV), encodes a novel, broadly acting immunoevasin, gp150, that is expressed during the late phase of viral replication. In particular, EBV gp150 inhibits antigen presentation by HLA class I, HLA class II, and the non-classical, lipid-presenting CD1d molecules. The mechanism of gp150-mediated T-cell escape does not depend on degradation of the antigen-presenting molecules nor does it require gp150’s cytoplasmic tail. Through its abundant glycosylation, gp150 creates a shield that impedes surface presentation of antigen. This is an unprecedented immune evasion mechanism for herpesviruses. In view of its likely broader target range, gp150 could additionally have an impact beyond escape of T cell activation. Importantly, B cells infected with a gp150-null mutant EBV displayed rescued levels of surface antigen presentation by HLA class I, HLA class II, and CD1d, supporting an important role for iNKT cells next to classical T cells in fighting EBV infection. At the same time, our results indicate that EBV gp150 prolongs the timespan for producing viral offspring at the most vulnerable stage of the viral life cycle. PMID:27077376

  14. MAIT cells are activated during human viral infections.

    PubMed

    van Wilgenburg, Bonnie; Scherwitzl, Iris; Hutchinson, Edward C; Leng, Tianqi; Kurioka, Ayako; Kulicke, Corinna; de Lara, Catherine; Cole, Suzanne; Vasanawathana, Sirijitt; Limpitikul, Wannee; Malasit, Prida; Young, Duncan; Denney, Laura; Moore, Michael D; Fabris, Paolo; Giordani, Maria Teresa; Oo, Ye Htun; Laidlaw, Stephen M; Dustin, Lynn B; Ho, Ling-Pei; Thompson, Fiona M; Ramamurthy, Narayan; Mongkolsapaya, Juthathip; Willberg, Christian B; Screaton, Gavin R; Klenerman, Paul

    2016-01-01

    Mucosal-associated invariant T (MAIT) cells are abundant in humans and recognize bacterial ligands. Here, we demonstrate that MAIT cells are also activated during human viral infections in vivo. MAIT cells activation was observed during infection with dengue virus, hepatitis C virus and influenza virus. This activation-driving cytokine release and Granzyme B upregulation-is TCR-independent but dependent on IL-18 in synergy with IL-12, IL-15 and/or interferon-α/β. IL-18 levels and MAIT cell activation correlate with disease severity in acute dengue infection. Furthermore, HCV treatment with interferon-α leads to specific MAIT cell activation in vivo in parallel with an enhanced therapeutic response. Moreover, TCR-independent activation of MAIT cells leads to a reduction of HCV replication in vitro mediated by IFN-γ. Together these data demonstrate MAIT cells are activated following viral infections, and suggest a potential role in both host defence and immunopathology. PMID:27337592

  15. Activated Muscle Satellite Cells Chase Ghosts.

    PubMed

    Mourikis, Philippos; Relaix, Frédéric

    2016-02-01

    The in vivo behaviors of skeletal muscle stem cells, i.e., satellite cells, during homeostasis and after injury are poorly understood. In this issue of Cell Stem Cell, Webster et al. (2016) now perform a tour de force intravital microscopic analysis of this population, showing that "ghost fiber" remnants act as scaffolds to guide satellite cell divisions after injury. PMID:26849298

  16. Apoptotic cells actively inhibit the expression of CD69 on Con A activated T lymphocytes.

    PubMed

    Sun, E; Zhang, L; Zeng, Y; Ge, Q; Zhao, M; Gao, W

    2000-03-01

    Although apoptosis is commonly viewed as a silent cell death without damage to adjacent tissues, the effect of apoptosis on immunity has been unclear. We have investigated the influence of apoptotic cells on T-cell activation. The K562 or HL-60 human leukemia cell lines that had been induced apoptosis by FTY720 or cycloheximide (CHX) were added into the culture of mouse spleen cells stimulated with Con A. Six to 20 h later, the expression of CD69, an early T-cell activation antigen, was detected using flowcytometry. Living cells and necrotic cells served as control groups. Apoptotic K562 or HL-60 cells induced by either FTY720 or CHX unanimously inhibited CD69 expression on the CD3+ mouse T cells while living and necrotic cells did not. The inhibition was proportional to the number of apoptotic cells and was different in the T-cell subsets, showing a rapid and transient inhibition on the CD3+CD8+ T-cell activation but with a slow and continuous inhibition on CD3+CD8- T-cell activation. In conclusion, the apoptotic cells actively inhibit a T-cell activation that is independent of the cell lines or the apoptotic inducers, indicating that the apoptotic cells dominantly regulate T-cell immunity. PMID:10736091

  17. Phagocytic cell function in active brucellosis.

    PubMed Central

    Ocon, P; Reguera, J M; Morata, P; Juarez, C; Alonso, A; Colmenero, J D

    1994-01-01

    In this study, we analyzed phagocytic cell function in 51 patients with active brucellosis and its relationship with different clinical, serological, and evolutionary variables. A control group was made up of 30 blood donors of similar geographic extraction, age, and sex, with no previous history of brucellosis or known exposure ot the infection or specific antibodies. The investigations were carried out at the time of diagnosis, at the conclusion of treatment, and after 6 months of follow-up. Polymorphonuclear leukocyte adherence and nitroblue tetrazolium reduction in response to Brucella antigen were significantly increased in the patients at the time of diagnosis with respect to the control group. In contrast, chemotaxis in response to Brucella antigen and phagocytosis were significantly reduced in the patients with respect to the control group. The alterations in phagocytic cell function were greater in patients with bacteremia, with focal forms of the disease, or with a longer diagnostic delay. Most of these initial alterations tended to normalize with treatment, indicating their transient character. PMID:8112863

  18. Hyperoxia Inhibits T Cell Activation in Mice

    NASA Astrophysics Data System (ADS)

    Hughes-Fulford, M.; Meissler, J.; Aguayo, E. T.; Globus, R.; Aguado, J.; Candelario, T.

    2013-02-01

    , spleens were removed and the splenocytes were isolated and kept as individual biological samples. We have also examined transcription factors (JASPAR) and pathways of the immune system to help us understand the mechanism of regulation. Results: Our recent mouse immunology experiment aboard STS-131 suggests that the early T cell immune response was inhibited in animals that have been exposed to spaceflight, even 24 hours after return to earth. Moreover, recent experiments in hyperoxic mice show that many of the same genes involved in early T cell activation were altered. Specifically, expression of IL-2Rα, Cxcl2, TNFα, FGF2, LTA and BCL2 genes are dysregulated in mice exposed to hyperoxia. Conclusions: If these hyperoxia-induced changes of gene expression in early T cell activation are additive to the changes seen in the microgravity of spaceflight, there could be an increased infection risk to EVA astronauts, which should be addressed prior to conducting a Mars or other long-term mission.

  19. Elasticity of adherent active cells on a compliant substrate

    NASA Astrophysics Data System (ADS)

    Banerjee, Shiladitya; Mertz, Aaron F.; Dufresne, Eric R.; Marchetti, M. Cristina

    2012-02-01

    We present a continuum mechanical model of rigidity sensing by livings cells adhering to a compliant substrate. The cell or cell colony is modeled as an elastic active gel, adapting recently developed continuum theories of active viscoelastic fluids. The coupling to the substrate enters as a boundary condition that relates the cell's deformation field to local stress gradients. In the presence of activity, the substrate induces spatially inhomogeneous contractile stresses and deformations, with a power law dependence of the total traction forces on cell or colony size. This is in agreement with recent experiments on keratinocyte colonies adhered to fibronectin coated surfaces. In the presence of acto-myosin activity, the substrate also enhances the cell polarization, breaking the cell's front-rear symmetry. Maximal polarization is observed when the substrate stiffness matches that of the cell, in agreement with experiments on stem cells.

  20. MAIT cells are activated during human viral infections

    PubMed Central

    van Wilgenburg, Bonnie; Scherwitzl, Iris; Hutchinson, Edward C.; Leng, Tianqi; Kurioka, Ayako; Kulicke, Corinna; de Lara, Catherine; Cole, Suzanne; Vasanawathana, Sirijitt; Limpitikul, Wannee; Malasit, Prida; Young, Duncan; Denney, Laura; Barnes, Eleanor; Ball, Jonathan; Burgess, Gary; Cooke, Graham; Dillon, John; Gore, Charles; Foster, Graham; Guha, Neil; Halford, Rachel; Herath, Cham; Holmes, Chris; Howe, Anita; Hudson, Emma; Irving, William; Khakoo, Salim; Koletzki, Diana; Martin, Natasha; Mbisa, Tamyo; McKeating, Jane; McLauchlan, John; Miners, Alec; Murray, Andrea; Shaw, Peter; Simmonds, Peter; Spencer, Chris; Targett-Adams, Paul; Thomson, Emma; Vickerman, Peter; Zitzmann, Nicole; Moore, Michael D.; Fabris, Paolo; Giordani, Maria Teresa; Oo, Ye Htun; Laidlaw, Stephen M.; Dustin, Lynn B.; Ho, Ling-Pei; Thompson, Fiona M.; Ramamurthy, Narayan; Mongkolsapaya, Juthathip; Willberg, Christian B.; Screaton, Gavin R.; Klenerman, Paul

    2016-01-01

    Mucosal-associated invariant T (MAIT) cells are abundant in humans and recognize bacterial ligands. Here, we demonstrate that MAIT cells are also activated during human viral infections in vivo. MAIT cells activation was observed during infection with dengue virus, hepatitis C virus and influenza virus. This activation—driving cytokine release and Granzyme B upregulation—is TCR-independent but dependent on IL-18 in synergy with IL-12, IL-15 and/or interferon-α/β. IL-18 levels and MAIT cell activation correlate with disease severity in acute dengue infection. Furthermore, HCV treatment with interferon-α leads to specific MAIT cell activation in vivo in parallel with an enhanced therapeutic response. Moreover, TCR-independent activation of MAIT cells leads to a reduction of HCV replication in vitro mediated by IFN-γ. Together these data demonstrate MAIT cells are activated following viral infections, and suggest a potential role in both host defence and immunopathology. PMID:27337592

  1. Functionally Active Gap Junctions between Connexin 43-Positive Mesenchymal Stem Cells and Glioma Cells.

    PubMed

    Gabashvili, A N; Baklaushev, V P; Grinenko, N F; Levinskii, A B; Mel'nikov, P A; Cherepanov, S A; Chekhonin, V P

    2015-05-01

    The formation of functional gap junctions between mesenchymal stem cells and cells of low-grade rat glioma C6 cells was studied in in vitro experiments. Immunocytochemical analysis with antibodies to connexin 43 extracellular loop 2 showed that mesenchymal stem cells as well as C6 glioma cells express the main astroglial gap junction protein connexin 43. Analysis of migration activity showed that mesenchymal stem cells actively migrate towards C6 glioma cells. During co-culturing, mesenchymal stem cells and glioma C6 form functionally active gap junctions mediating the transport of cytoplasmic dye from glioma cells to mesenchymal stem cells in the opposite direction. Fluorometry showed that the intensity of transport of low-molecular substances through heterologous gap junctions between mesenchymal stem cells and glioma cells is similar to that through homologous gap junctions between glioma cells. This phenomenon can be used for the development of new methods of cell therapy of high-grade gliomas.

  2. Activation of Complement by Cells Infected with Respiratory Syncytial Virus

    PubMed Central

    Smith, Thomas F.; Mcintosh, Kenneth; Fishaut, Mark; Henson, Peter M.

    1981-01-01

    The ability of respiratory syncytial virus (RSV)-infected HEp-2 cells in culture to activate complement was investigated. After incubation of cells with various complement sources and buffer, binding of C3b to surfaces of infected cells was demonstrated by immunofluorescence with a double-staining technique. Nonsyncytial and syncytial (i.e., fused, multinucleated) cells were separately enumerated. Also, lysis of RSV-infected cells was assessed by lactic dehydrogenase release. In this system only RSV-infected cells stained for C3b, and they did so only after incubation with functionally active complement. Blocking of classical pathway activation with ethylenediaminetetraacetic acid diminished the number of infected nonsyncytial cells positively stained for C3b, but had no effect on staining of syncytial cells. Blocking of alternative pathway activation with either zymosan incubation or heat treatment decreased the number of both syncytial and nonsyncytial cells stained for C3b. Decreasing immunoglobulin concentration of the serum used as the complement source also decreased numbers of both cell types stained for C3b. Eliminating specific anti-RSV antibody diminished numbers of both cell types stained for C3b, but staining was not eliminated. Lastly, incubation with functionally active complement markedly increased lactic dehydrogenase release from infected cells. This study demonstrated that RSV-infected nonsyncytial and syncytial cells are able to activate complement by both classical and alternative pathways. Activation of complement by syncytial cells appears to be less dependent on the classical pathway than is activation by nonsyncytial cells, and activation by syncytial cells may require immunoglobulin but not specific antibody. These experiments suggest the possibility of complement activation during respiratory tract infection by RSV. Implications of this are discussed. Images PMID:7263071

  3. Hydrogen peroxide activates activator protein-1 and mitogen-activated protein kinases in pancreatic stellate cells.

    PubMed

    Kikuta, Kazuhiro; Masamune, Atsushi; Satoh, Masahiro; Suzuki, Noriaki; Satoh, Kennichi; Shimosegawa, Tooru

    2006-10-01

    Activated pancreatic stellate cells (PSCs) are implicated in the pathogenesis of pancreatic inflammation and fibrosis, where oxidative stress is thought to play a key role. Reactive oxygen species such as hydrogen peroxide (H(2)O(2)) may act as a second messenger to mediate the actions of growth factors and cytokines. But the role of reactive oxygen species in the activation and regulation of cell functions in PSCs remains largely unknown. We here examined the effects of H(2)O(2) on the activation of signal transduction pathways and cell functions in PSCs. PSCs were isolated from the pancreas of male Wistar rats, and used in their culture-activated, myofibroblast-like phenotype unless otherwise stated. Activation of transcription factors was examined by electrophoretic mobility shift assay and luciferase assay. Activation of mitogen-activated protein (MAP) kinases was assessed by Western blotting using anti-phosphospecific antibodies. The effects of H(2)O(2) on proliferation, alpha(1)(I)procollagen gene expression, and monocyte chemoattractant protein-1 production were evaluated. The effect of H(2)O(2) on the transformation of freshly isolated PSCs in culture was also assessed. H(2)O(2) at non-cytotoxic concentrations (up to 100 microM) induced oxidative stress in PSCs. H(2)O(2) activated activator protein-1, but not nuclear factor kappaB. In addition, H(2)O(2) activated three classes of MAP kinases: extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 MAP kinase. H(2)O(2) induced alpha(1)(I)procollagen gene expression but did not induce proliferation or monocyte chemoattractant protein-1 production. H(2)O(2) did not initiate the transformation of freshly isolated PSCs to myofibroblast-like phenotype. Specific activation of these signal transduction pathways and collagen gene expression by H(2)O(2) may play a role in the pathogenesis of pancreatic fibrosis.

  4. Dendritic cell exosomes directly kill tumor cells and activate natural killer cells via TNF superfamily ligands

    PubMed Central

    Munich, Stephan; Sobo-Vujanovic, Andrea; Buchser, William J.; Beer-Stolz, Donna; Vujanovic, Nikola L.

    2012-01-01

    Autocrine and paracrine cell communication can be conveyed by multiple mediators, including membrane-associate proteins, secreted proteins and exosomes. Exosomes are 30–100 nm endosome-derived vesicles consisting in cytosolic material surrounded by a lipid bilayer containing transmembrane proteins. We have previously shown that dendritic cells (DCs) express on their surface multiple TNF superfamily ligands (TNFSFLs), by which they can induce the apoptotic demise of tumor cells as well as the activation of natural killer (NK) cells. In the present study, we demonstrate that, similar to DCs, DC-derived exosomes (DCex) express on their surface TNF, FasL and TRAIL, by which they can trigger caspase activation and apoptosis in tumor cells. We also show that DCex activate NK cells and stimulate them to secrete interferonγ (IFNγ) upon the interaction of DCex TNF with NK-cell TNF receptors. These data demonstrate that DCex can mediate essential innate immune functions that were previously ascribed to DCs. PMID:23170255

  5. A Simple Laboratory Exercise Illustrating Active Transport in Yeast Cells.

    ERIC Educational Resources Information Center

    Stambuk, Boris U.

    2000-01-01

    Describes a simple laboratory activity illustrating the chemiosmotic principles of active transport in yeast cells. Demonstrates the energy coupling mechanism of active a-glucoside uptake by Saccaromyces cerevisiae cells with a colorimetric transport assay using very simple equipment. (Contains 22 references.) (Author/YDS)

  6. Active unjamming of confluent cell layers

    NASA Astrophysics Data System (ADS)

    Marchetti, M. Cristina

    Cell motion inside dense tissues governs many biological processes, including embryonic development and cancer metastasis, and recent experiments suggest that these tissues exhibit collective glassy behavior. Motivated by these observations, we have studied a model of dense tissues that combines self-propelled particle models and vertex models of confluent cell layers. In this model, referred to as self-propelled Voronoi (SPV), cells are described as polygons in a Voronoi tessellation with directed noisy cell motility and interactions governed by a shape energy that incorporates the effects of cell volume incompressibility, contractility and cell-cell adhesion. Using this model, we have demonstrated a new density-independent solid-liquid transition in confluent tissues controlled by cell motility and a cell-shape parameter measuring the interplay of cortical tension and cell-cell adhesion. An important insight of this work is that the rigidity and dynamics of cell layers depends sensitively on cell shape. We have also used the SPV model to test a new method developed by our group to determine cellular forces and tissue stresses from experimentally accessible cell shapes and traction forces, hence providing the spatio-temporal distribution of stresses in motile dense tissues. This work was done with Dapeng Bi, Lisa Manning and Xingbo Yang. MCM was supported by NSF-DMR-1305184 and by the Simons Foundation.

  7. Human Liver Stem Cells Suppress T-Cell Proliferation, NK Activity, and Dendritic Cell Differentiation.

    PubMed

    Bruno, Stefania; Grange, Cristina; Tapparo, Marta; Pasquino, Chiara; Romagnoli, Renato; Dametto, Ennia; Amoroso, Antonio; Tetta, Ciro; Camussi, Giovanni

    2016-01-01

    Human liver stem cells (HLSCs) are a mesenchymal stromal cell-like population resident in the adult liver. Preclinical studies indicate that HLSCs could be a good candidate for cell therapy. The aim of the present study was to evaluate the immunogenicity and the immunomodulatory properties of HLSCs on T-lymphocytes, natural killer cells (NKs), and dendritic cells (DCs) in allogeneic experimental settings. We found that HLSCs inhibited T-cell proliferation by a mechanism independent of cell contact and dependent on the release of prostaglandin E2 (PGE2) and on indoleamine 2,3-dioxygenase activity. When compared with mesenchymal stromal cells (MSCs), HLSCs were more efficient in inhibiting T-cell proliferation. At variance with MSCs, HLSCs did not elicit NK degranulation. Moreover, HLSCs inhibited NK degranulation against K562, a NK-sensitive target, by a mechanism dependent on HLA-G release. When tested on DC generation from monocytes, HLSCs were found to impair DC differentiation and DCs ability to induce T-cell proliferation through PGE2. This study shows that HLSCs have immunomodulatory properties similar to MSCs, but, at variance with MSCs, they do not elicit a NK response. PMID:27127520

  8. Normal Development and Function of T Cells in Proline Rich 7 (Prr7) Deficient Mice

    PubMed Central

    Hrdinka, Matous; Sudan, Kritika; Just, Sissy; Drobek, Ales; Stepanek, Ondrej; Schlüter, Dirk; Reinhold, Dirk; Jordan, Bryen A.; Gintschel, Patricia; Schraven, Burkhart; Kreutz, Michael R.

    2016-01-01

    Transmembrane adaptor proteins (TRAPs) are important organisers for the transduction of immunoreceptor-mediated signals. Prr7 is a TRAP that regulates T cell receptor (TCR) signalling and potently induces cell death when overexpressed in human Jurkat T cells. Whether endogenous Prr7 has a similar functional role is currently unknown. To address this issue, we analysed the development and function of the immune system in Prr7 knockout mice. We found that loss of Prr7 partially impairs development of single positive CD4+ T cells in the thymus but has no effect on the development of other T cell subpopulations, B cells, NK cells, or NKT cells. Moreover, Prr7 does not affect the TCR signalling pathway as T cells derived from Prr7 knockout and wild-type animals and stimulated in vitro express the same levels of the activation marker CD69, and retain their ability to proliferate and activate induced cell death programs. Importantly, Prr7 knockout mice retained the capacity to mount a protective immune response when challenged with Listeria monocytogenes infection in vivo. In addition, T cell effector functions (activation, migration, and reactivation) were normal following induction of experimental autoimmune encephalomyelitis (EAE) in Prr7 knockout mice. Collectively, our work shows that loss of Prr7 does not result in a major immune system phenotype and suggests that Prr7 has a dispensable function for TCR signalling. PMID:27657535

  9. Molecular Programming of Tumor-Infiltrating CD8+ T Cells and IL15 Resistance.

    PubMed

    Doedens, Andrew L; Rubinstein, Mark P; Gross, Emilie T; Best, J Adam; Craig, David H; Baker, Megan K; Cole, David J; Bui, Jack D; Goldrath, Ananda W

    2016-09-01

    Despite clinical potential and recent advances, durable immunotherapeutic ablation of solid tumors is not routinely achieved. IL15 expands natural killer cell (NK), natural killer T cell (NKT) and CD8(+) T-cell numbers and engages the cytotoxic program, and thus is under evaluation for potentiation of cancer immunotherapy. We found that short-term therapy with IL15 bound to soluble IL15 receptor α-Fc (IL15cx; a form of IL15 with increased half-life and activity) was ineffective in the treatment of autochthonous PyMT murine mammary tumors, despite abundant CD8(+) T-cell infiltration. Probing of this poor responsiveness revealed that IL15cx only weakly activated intratumoral CD8(+) T cells, even though cells in the lung and spleen were activated and dramatically expanded. Tumor-infiltrating CD8(+) T cells exhibited cell-extrinsic and cell-intrinsic resistance to IL15. Our data showed that in the case of persistent viral or tumor antigen, single-agent systemic IL15cx treatment primarily expanded antigen-irrelevant or extratumoral CD8(+) T cells. We identified exhaustion, tissue-resident memory, and tumor-specific molecules expressed in tumor-infiltrating CD8(+) T cells, which may allow therapeutic targeting or programming of specific subsets to evade loss of function and cytokine resistance, and, in turn, increase the efficacy of IL2/15 adjuvant cytokine therapy. Cancer Immunol Res; 4(9); 799-811. ©2016 AACR.

  10. Mycoplasma pneumoniae induces cytotoxic activity in guinea pig bronchoalveolar cells

    SciTech Connect

    Kist, M.; Koester, H.; Bredt, W.

    1985-06-01

    Precultured guinea pig alveolar macrophages (AM) and freshly harvested alveolar cells (FHAC) activated by interaction with Mycoplasma pneumoniae were cytotoxic for xenogeneic /sup 75/selenomethionine-labeled tumor target cells. Phagocytosis of whole opsonized or nonopsonized M. pneumoniae cells was more effective in eliciting cytotoxicity than uptake of sonicated microorganisms. The addition of living mycoplasma cells to the assay system enhanced the cytotoxic effect considerably. Target cells were significantly more susceptible to the cytotoxic action of phagocytes if they were coated with mycoplasma antigen or cocultured together with M. pneumoniae. The activation of the phagocytes could be inhibited by 2-deoxy-D-glucose but not by antimicrobial substances suppressing mycoplasma protein synthesis. It was accompanied by /sup 51/Cr release without detectable signs of cell damage. The supernatants of activated cells were cytotoxic for approximately 24 h. Inhibition, release, and cytotoxic activity indicate the necessity of an intact metabolism of the effector cells and suggest a secretion of cytotoxic substances.

  11. Mycoplasma arthritidis mitogen up-regulates human NK cell activity.

    PubMed Central

    D'Orazio, J A; Cole, B C; Stein-Streilein, J

    1996-01-01

    While the effects of superantigens on T lymphocytes are well characterized, how superantigens interact with other immune cells is less clear. This report examines the effects of Mycoplasma arthritidis mitogen (MAM) on human natural killer (NK) cell activity. Incubation of peripheral blood mononuclear cells (PBMC) with MAM for 16 to 20 h augmented NK cytotoxicity (against K562) in a dose-dependent manner (P < or = 0.05). Superantigen-dependent cellular cytotoxicity, an activity of superantigen-activated cytotoxic T cells, was not involved in lysis of K562 cells because the erythroleukemic tumor target cells expressed no class II major histocompatibility complex by fluorescence-activated cell sorter analysis. Kinetic experiments showed that the largest increase in NK activity induced by MAM occurred within 48 h. Incubation with MAM caused a portion of NK cells to become adherent to tissue culture flasks, a quality associated with activation, and augmented NK activity was found in both adherent and nonadherent subpopulations. Experiments using cytokine-specific neutralizing antibodies showed that interleukin-2 contributed to enhancement of the NK activity observed in superantigen-stimulated PBMC. Interestingly, MAM was able to augment NK lysis of highly purified NK (CD56+) cells in the absence of other immune cells in 9 of 12 blood specimens, with the augmented lytic activity ranging from 110 to 170% of unstimulated NK activity. In summary, data presented in this report show for the first time that MAM affects human NK cells directly by increasing their lytic capacity and indirectly in PBMC as a consequence of cytokines produced by T cells. Results of this work suggest that, in vivo, one consequence of interaction with superantigen-secreting microorganisms may be up-regulation of NK lytic activity. These findings may have clinical application as a means of generating augmented NK effector cells useful in the immunotherapy of parasitic infections or neoplasms. PMID

  12. Dengue Virus Directly Stimulates Polyclonal B Cell Activation

    PubMed Central

    Papa, Michelle Premazzi; de Morais, Ana Theresa Silveira; Peçanha, Ligia Maria Torres; de Arruda, Luciana Barros

    2015-01-01

    Dengue infection is associated to vigorous inflammatory response, to a high frequency of activated B cells, and to increased levels of circulating cross-reactive antibodies. We investigated whether direct infection of B cells would promote activation by culturing primary human B lymphocytes from healthy donors with DENV in vitro. B cells were susceptible, but poorly permissive to infection. Even though, primary B cells cultured with DENV induced substantial IgM secretion, which is a hallmark of polyclonal B cell activation. Notably, DENV induced the activation of B cells obtained from either DENV immune or DENV naïve donors, suggesting that it was not dependent on DENV-specific secondary/memory response. B cell stimulation was dependent on activation of MAPK and CD81. B cells cultured with DENV also secreted IL-6 and presented increased expression of CD86 and HLA-DR, which might contribute to B lymphocyte co-stimulatory function. Indeed, PBMCs, but not isolated B cells, secreted high amounts of IgG upon DENV culture, suggesting that interaction with other cell types in vivo might promote Ig isotype switching and IgG secretion from different B cell clones. These findings suggest that activation signaling pathways triggered by DENV interaction with non-specific receptors on B cells might contribute to the exacerbated response observed in dengue patients. PMID:26656738

  13. Frequent CTLA4-CD28 gene fusion in diverse types of T-cell lymphoma.

    PubMed

    Yoo, Hae Yong; Kim, Pora; Kim, Won Seog; Lee, Seung Ho; Kim, Sangok; Kang, So Young; Jang, Hye Yoon; Lee, Jong-Eun; Kim, Jaesang; Kim, Seok Jin; Ko, Young Hyeh; Lee, Sanghyuk

    2016-06-01

    CTLA4 and CD28 are co-regulatory receptors with opposite roles in T-cell signaling. By RNA sequencing, we identified a fusion between the two genes from partial gene duplication in a case of angioimmunoblastic T-cell lymphoma. The fusion gene, which codes for the extracellular domain of CTLA4 and the cytoplasmic region of CD28, is likely capable of transforming inhibitory signals into stimulatory signals for T-cell activation. Ectopic expression of the fusion transcript in Jurkat and H9 cells resulted in enhanced proliferation and AKT and ERK phosphorylation, indicating activation of downstream oncogenic pathways. To estimate the frequency of this gene fusion in mature T-cell lymphomas, we examined 115 T-cell lymphoma samples of diverse subtypes using reverse transcriptase polymerase chain reaction analysis and Sanger sequencing. We identified the fusion in 26 of 45 cases of angioimmunoblastic T-cell lymphomas (58%), nine of 39 peripheral T-cell lymphomas, not otherwise specified (23%), and nine of 31 extranodal NK/T cell lymphomas (29%). We further investigated the mutation status of 70 lymphoma-associated genes using ultra-deep targeted resequencing for 74 mature T-cell lymphoma samples. The mutational landscape we obtained suggests that T-cell lymphoma results from diverse combinations of multiple gene mutations. The CTLA4-CD28 gene fusion is likely a major contributor to the pathogenesis of T-cell lymphomas and represents a potential target for anti-CTLA4 cancer immunotherapy. PMID:26819049

  14. Frequent CTLA4-CD28 gene fusion in diverse types of T-cell lymphoma

    PubMed Central

    Yoo, Hae Yong; Kim, Pora; Kim, Won Seog; Lee, Seung Ho; Kim, Sangok; Kang, So Young; Jang, Hye Yoon; Lee, Jong-Eun; Kim, Jaesang; Kim, Seok Jin; Ko, Young Hyeh; Lee, Sanghyuk

    2016-01-01

    CTLA4 and CD28 are co-regulatory receptors with opposite roles in T-cell signaling. By RNA sequencing, we identified a fusion between the two genes from partial gene duplication in a case of angioimmunoblastic T-cell lymphoma. The fusion gene, which codes for the extracellular domain of CTLA4 and the cytoplasmic region of CD28, is likely capable of transforming inhibitory signals into stimulatory signals for T-cell activation. Ectopic expression of the fusion transcript in Jurkat and H9 cells resulted in enhanced proliferation and AKT and ERK phosphorylation, indicating activation of downstream oncogenic pathways. To estimate the frequency of this gene fusion in mature T-cell lymphomas, we examined 115 T-cell lymphoma samples of diverse subtypes using reverse transcriptase polymerase chain reaction analysis and Sanger sequencing. We identified the fusion in 26 of 45 cases of angioimmunoblastic T-cell lymphomas (58%), nine of 39 peripheral T-cell lymphomas, not otherwise specified (23%), and nine of 31 extranodal NK/T cell lymphomas (29%). We further investigated the mutation status of 70 lymphoma-associated genes using ultra-deep targeted resequencing for 74 mature T-cell lymphoma samples. The mutational landscape we obtained suggests that T-cell lymphoma results from diverse combinations of multiple gene mutations. The CTLA4-CD28 gene fusion is likely a major contributor to the pathogenesis of T-cell lymphomas and represents a potential target for anti-CTLA4 cancer immunotherapy. PMID:26819049

  15. Shape control and compartmentalization in active colloidal cells

    PubMed Central

    Spellings, Matthew; Engel, Michael; Klotsa, Daphne; Sabrina, Syeda; Drews, Aaron M.; Nguyen, Nguyen H. P.; Bishop, Kyle J. M.; Glotzer, Sharon C.

    2015-01-01

    Small autonomous machines like biological cells or soft robots can convert energy input into control of function and form. It is desired that this behavior emerges spontaneously and can be easily switched over time. For this purpose we introduce an active matter system that is loosely inspired by biology and which we term an active colloidal cell. The active colloidal cell consists of a boundary and a fluid interior, both of which are built from identical rotating spinners whose activity creates convective flows. Similarly to biological cell motility, which is driven by cytoskeletal components spread throughout the entire volume of the cell, active colloidal cells are characterized by highly distributed energy conversion. We demonstrate that we can control the shape of the active colloidal cell and drive compartmentalization by varying the details of the boundary (hard vs. flexible) and the character of the spinners (passive vs. active). We report buckling of the boundary controlled by the pattern of boundary activity, as well as formation of core–shell and inverted Janus phase-separated configurations within the active cell interior. As the cell size is increased, the inverted Janus configuration spontaneously breaks its mirror symmetry. The result is a bubble–crescent configuration, which alternates between two degenerate states over time and exhibits collective migration of the fluid along the boundary. Our results are obtained using microscopic, non–momentum-conserving Langevin dynamics simulations and verified via a phase-field continuum model coupled to a Navier–Stokes equation. PMID:26253763

  16. The DNA methylation profile of activated human natural killer cells.

    PubMed

    Wiencke, John K; Butler, Rondi; Hsuang, George; Eliot, Melissa; Kim, Stephanie; Sepulveda, Manuel A; Siegel, Derick; Houseman, E Andres; Kelsey, Karl T

    2016-05-01

    Natural killer (NK) cells are now recognized to exhibit characteristics akin to cells of the adaptive immune system. The generation of adaptive memory is linked to epigenetic reprogramming including alterations in DNA methylation. The study herein found reproducible genome wide DNA methylation changes associated with human NK cell activation. Activation led predominately to CpG hypomethylation (81% of significant loci). Bioinformatics analysis confirmed that non-coding and gene-associated differentially methylated sites (DMS) are enriched for immune related functions (i.e., immune cell activation). Known DNA methylation-regulated immune loci were also identified in activated NK cells (e.g., TNFA, LTA, IL13, CSF2). Twenty-one loci were designated high priority and further investigated as potential markers of NK activation. BHLHE40 was identified as a viable candidate for which a droplet digital PCR assay for demethylation was developed. The assay revealed high demethylation in activated NK cells and low demethylation in naïve NK, T- and B-cells. We conclude the NK cell methylome is plastic with potential for remodeling. The differentially methylated region signature of activated NKs revealed similarities with T cell activation, but also provided unique biomarker candidates of NK activation, which could be useful in epigenome-wide association studies to interrogate the role of NK subtypes in global methylation changes associated with exposures and/or disease states. PMID:26967308

  17. Remote Control of T Cell Activation Using Magnetic Janus Particles.

    PubMed

    Lee, Kwahun; Yi, Yi; Yu, Yan

    2016-06-20

    We report a strategy for using magnetic Janus microparticles to control the stimulation of T cell signaling with single-cell precision. To achieve this, we designed Janus particles that are magnetically responsive on one hemisphere and stimulatory to T cells on the other side. By manipulating the rotation and locomotion of Janus particles under an external magnetic field, we could control the orientation of the particle-cell recognition and thereby the initiation of T cell activation. This study demonstrates a step towards employing anisotropic material properties of Janus particles to control single-cell activities without the need of complex magnetic manipulation devices.

  18. Anthocyanidins inhibit activator protein 1 activity and cell transformation: structure-activity relationship and molecular mechanisms.

    PubMed

    Hou, De-Xing; Kai, Keiko; Li, Jian-Jian; Lin, Shigang; Terahara, Norihiko; Wakamatsu, Mika; Fujii, Makoto; Young, Mattew R; Colburn, Nancy

    2004-01-01

    Anthocyanins are the chemical components that give the intense color to many fruits and vegetables, such as blueberries, red cabbages and purple sweet potatoes. Extensive studies have indicated that anthocyanins have strong antioxidant activities. To investigate the mechanism of anthocyanidins as an anticancer food source, six kinds of anthocyanidins representing the aglycons of most anthocyanins, were used to examine their effects on tumor promotion in mouse JB6 cells, a validated model for screening cancer chemopreventive agents and elucidating the molecular mechanisms. Of the six anthocyanins tested, only those with an ortho-dihydroxyphenyl structure on the B-ring suppressed 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cell transformation and activator protein-1 transactivation, suggesting that the ortho-dihydroxyphenyl may contribute to the inhibitory action. Delphinidin, but not peonidin, blocked the phosphorylation of protein kinases in the extracellular signal-regulated protein kinase (ERK) pathway at early times and the c-Jun N-terminal kinase (JNK) signaling pathway at later times. p38 kinase was not inhibited by delphinidin. Furthermore, two mitogen-activated protein kinase (MAPK) specific inhibitors (SP600125 for JNK and UO126 for ERK) could specifically block the activation of JNK and ERK and cell transformation. Those results demonstrate that anthocyanidins contribute to the inhibition of tumorigenesis by blocking activation of the MAPK pathway. These findings provide the first molecular basis for the anticarcinogenic action of anthocyanidins. PMID:14514663

  19. Anthocyanidins inhibit activator protein 1 activity and cell transformation: structure-activity relationship and molecular mechanisms.

    PubMed

    Hou, De-Xing; Kai, Keiko; Li, Jian-Jian; Lin, Shigang; Terahara, Norihiko; Wakamatsu, Mika; Fujii, Makoto; Young, Mattew R; Colburn, Nancy

    2004-01-01

    Anthocyanins are the chemical components that give the intense color to many fruits and vegetables, such as blueberries, red cabbages and purple sweet potatoes. Extensive studies have indicated that anthocyanins have strong antioxidant activities. To investigate the mechanism of anthocyanidins as an anticancer food source, six kinds of anthocyanidins representing the aglycons of most anthocyanins, were used to examine their effects on tumor promotion in mouse JB6 cells, a validated model for screening cancer chemopreventive agents and elucidating the molecular mechanisms. Of the six anthocyanins tested, only those with an ortho-dihydroxyphenyl structure on the B-ring suppressed 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cell transformation and activator protein-1 transactivation, suggesting that the ortho-dihydroxyphenyl may contribute to the inhibitory action. Delphinidin, but not peonidin, blocked the phosphorylation of protein kinases in the extracellular signal-regulated protein kinase (ERK) pathway at early times and the c-Jun N-terminal kinase (JNK) signaling pathway at later times. p38 kinase was not inhibited by delphinidin. Furthermore, two mitogen-activated protein kinase (MAPK) specific inhibitors (SP600125 for JNK and UO126 for ERK) could specifically block the activation of JNK and ERK and cell transformation. Those results demonstrate that anthocyanidins contribute to the inhibition of tumorigenesis by blocking activation of the MAPK pathway. These findings provide the first molecular basis for the anticarcinogenic action of anthocyanidins.

  20. Senescence of activated stellate cells limits liver fibrosis

    PubMed Central

    Krizhanovsky, Valery; Yon, Monica; Dickins, Ross A.; Hearn, Stephen; Simon, Janelle; Miething, Cornelius; Yee, Herman; Zender, Lars; Lowe, Scott W.

    2011-01-01

    Summary Cellular senescence acts as a potent mechanism of tumor suppression; however, its functional contribution to non-cancer pathologies has not been examined. Here we show that senescent cells accumulate in murine livers treated to produce fibrosis, a precursor pathology to cirrhosis. The senescent cells are derived primarily from activated hepatic stellate cells, which initially proliferate in response to liver damage and produce the extracellular matrix deposited in the fibrotic scar. In mice lacking key senescence regulators, stellate cells continue to proliferate, leading to excessive liver fibrosis. Furthermore, senescent activated stellate cells exhibit gene expression profile consistent with cell cycle exit, reduced secretion of extracellular matrix components, enhanced secretion of extracellular matrix degrading enzymes, and enhanced immune surveillance. Accordingly natural killer cells preferentially kill senescent activated stellate cells in vitro and in vivo, thereby facilitating the resolution of fibrosis. Therefore, the senescence program limits the fibrogenic response to acute tissue damage. PMID:18724938

  1. Immobilization of Pichia pastoris cells containing alcohol oxidase activity

    PubMed Central

    Maleknia, S; Ahmadi, H; Norouzian, D

    2011-01-01

    Background and Objectives The attempts were made to describe the development of a whole cell immobilization of P. pastoris by entrapping the cells in polyacrylamide gel beads. The alcohol oxidase activity of the whole cell Pichia pastoris was evaluated in comparison with yeast biomass production. Materials and Methods Methylotrophic yeast P. pastoris was obtained from Collection of Standard Microorganisms, Department of Bacterial Vaccines, Pasteur Institute of Iran (CSMPI). Stock culture was maintained on YPD agar plates. Alcohol oxidase was strongly induced by addition of 0.5% methanol as the carbon source. The cells were harvested by centrifugation then permeabilized. Finally the cells were immobilized in polyacrylamide gel beads. The activity of alcohol oxidase was determined by method of Tane et al. Results At the end of the logarithmic phase of cell culture, the alcohol oxidase activity of the whole cell P. Pastoris reached the highest level. In comparison, the alcohol oxidase activity was measured in an immobilized P. pastoris when entrapped in polyacrylamide gel beads. The alcohol oxidase activity of cells was induced by addition of 0.5% methanol as the carbon source. The cells were permeabilized by cetyltrimethylammonium bromide (CTAB) and immobilized. CTAB was also found to increase the gel permeability. Alcohol oxidase activity of immobilized cells was then quantitated by ABTS/POD spectrophotometric method at OD 420. There was a 14% increase in alcohol oxidase activity in immobilized cells as compared with free cells. By addition of 2-butanol as a substrate, the relative activity of alcohol oxidase was significantly higher as compared with other substrates added to the reaction media. Conclusion Immobilization of cells could eliminate lengthy and expensive procedures of enzyme separation and purification, protect and stabilize enzyme activity, and perform easy separation of the enzyme from the reaction media. PMID:22530090

  2. Heteronomous rhythmic activity of neurosecretory cells in the silkmoth.

    PubMed

    Ichikawa, Toshio; Kamimoto, Satoshi

    2003-08-21

    Electrical action potentials of neurosecretory cells producing pheromone biosynthesis-activating neuropeptide (PBAN) and electrocardiograms were recorded from female pupae of Bombyx mori and the correlation between firing activity of the cells and cardiac activity was analyzed. PBAN producing cells localized in the suboesophageal ganglion (SOG) generated clusters of action potentials at an interval of 30-60 min. The firing activity rhythm at a middle pupal period was closely related to heartbeat reversal rhythm: an active phase of the cells was usually apparent during anterograde pulse phases. Electrocardiograms at a late pupal period often revealed brief oscillatory potentials (15-25 Hz in frequency) of unknown origin. The firing activity rhythm of PBAN cells closely correlated with the rhythmic appearance of clustered oscillatory potentials. Transection of connectives between the brain and SOG abolished rhythmic activity of the cells. These results suggest that a rhythmic firing activity of the PBAN cell system is heteronomously generated by a cerebral neuronal mechanism and the cerebral mechanism relates the cell system to other neuronal mechanisms controlling cardiac activity and oscillatory potential rhythms. PMID:12873731

  3. Activated leukocyte cell adhesion molecule regulates the interaction between pancreatic cancer cells and stellate cells

    PubMed Central

    Zhang, Wei-Wei; Zhan, Shu-Hui; Geng, Chang-Xin; Sun, Xin; Erkan, Mert; Kleeff, Jörg; Xie, Xiang-Jun

    2016-01-01

    Activated leukocyte cell adhesion molecule (ALCAM/CD166) is a transmembrane glycoprotein that is involved in tumor progression and metastasis. In the present study, the expression and functional role of ALCAM in pancreatic cancer cells and pancreatic stellate cells (PSCs) was investigated. Tissue specimens were obtained from patients with pancreatic ductal adenocarcinoma (n=56) or chronic pancreatitis (CP; n=10), who underwent pancreatic resection, and from normal pancreatic tissue samples (n=10). Immunohistochemistry was used to analyze the localization and expression of ALCAM in pancreatic tissues. Subsequently, reverse transcription-quantitative polymerase chain reaction and immunoblotting were applied to assess the expression of ALCAM in pancreatic cancer Panc-1 and T3M4 cells, as well as in PSCs. An enzyme-linked immunosorbent assay was used to measure ALCAM levels in cell culture medium stimulated by hypoxia, tumor necrosis factor (TNF)-α and transforming growth factor-β. Silencing of ALCAM was performed using ALCAM small interfering (si)RNA and immunocytochemistry was used to analyze the inhibition efficiency. An invasion assay and a cell interaction assay were performed to assess the invasive ability and co-cultured adhesive potential of Panc-1 and T3M4 cells, as well as PSCs. Histologically, ALCAM expression was generally weak or absent in pancreatic cancer cells, but was markedly upregulated in PSCs in pancreatic cancer tissues. ALCAM was highly expressed in PSCs from CP tissues and PSCs surrounding pancreatic intraepithelial neoplasias, as well as in pancreatic cancer cells. ALCAM mRNA was highly expressed in PSCs, with a low to moderate expression in T3M4 and Panc-1 cells. Similar to the mRNA expression, immunoblotting demonstrated that ALCAM protein levels were high in PSCs and T3M4 cells, but low in Panc-1 cells. The expression of TNF-α increased, while hypoxia decreased the secretion of ALCAM in pancreatic cancer Panc-1 and T3M4 cells, and also in

  4. Close Encounters of Lymphoid Cells and Bacteria

    PubMed Central

    Cruz-Adalia, Aranzazu; Veiga, Esteban

    2016-01-01

    During infections, the first reaction of the host against microbial pathogens is carried out by innate immune cells, which recognize conserved structures on pathogens, called pathogen-associated molecular patterns. Afterward, some of these innate cells can phagocytose and destroy the pathogens, secreting cytokines that would modulate the immune response to the challenge. This rapid response is normally followed by the adaptive immunity, more specific and essential for a complete pathogen clearance in many cases. Some innate immune cells, usually named antigen-presenting cells, such as macrophages or dendritic cells, are able to process internalized invaders and present their antigens to lymphocytes, triggering the adaptive immune response. Nevertheless, the traditional boundary of separated roles between innate and adaptive immunity has been blurred by several studies, showing that very specialized populations of lymphocytes (cells of the adaptive immunity) behave similarly to cells of the innate immunity. These “innate-like” lymphocytes include γδ T cells, invariant NKT cells, B-1 cells, mucosal-associated invariant T cells, marginal zone B cells, and innate response activator cells, and together with the newly described innate lymphoid cells are able to rapidly respond to bacterial infections. Strikingly, our recent data suggest that conventional CD4+ T cells, the paradigm of cells of the adaptive immunity, also present innate-like behavior, capturing bacteria in a process called transinfection. Transinfected CD4+ T cells digest internalized bacteria like professional phagocytes and secrete large amounts of proinflammatory cytokines, protecting for further bacterial challenges. In the present review, we will focus on the data showing such innate-like behavior of lymphocytes following bacteria encounter. PMID:27774092

  5. Borrelia burgdorferi Spirochetes Induce Mast Cell Activation and Cytokine Release

    PubMed Central

    Talkington, Jeffrey; Nickell, Steven P.

    1999-01-01

    The Lyme disease spirochete, Borrelia burgdorferi, is introduced into human hosts via tick bites. Among the cell types present in the skin which may initially contact spirochetes are mast cells. Since spirochetes are known to activate a variety of cell types in vitro, we tested whether B. burgdorferi spirochetes could activate mast cells. We report here that freshly isolated rat peritoneal mast cells or mouse MC/9 mast cells cultured in vitro with live or freeze-thawed B. burgdorferi spirochetes undergo low but detectable degranulation, as measured by [5-3H] hydroxytryptamine release, and they synthesize and secrete the proinflammatory cytokine tumor necrosis factor alpha (TNF-α). In contrast to findings in previous studies, where B. burgdorferi-associated activity was shown to be dependent upon protein lipidation, mast cell TNF-α release was not induced by either lipidated or unlipidated recombinant OspA. This activity was additionally shown to be protease sensitive and surface expressed. Finally, comparisons of TNF-α-inducing activity in known low-, intermediate-, and high-passage B. burgdorferi B31 isolates demonstrated passage-dependent loss of activity, indicating that the activity is probably plasmid encoded. These findings document the presence in low-passage B. burgdorferi spirochetes of a novel lipidation-independent activity capable of inducing cytokine release from host cells. PMID:10024550

  6. Automatically activated, 300 ampere-hour silver-zinc cell

    NASA Technical Reports Server (NTRS)

    Hennigan, T. J.

    1972-01-01

    A prototype silver zinc cell is reported for which the electrolyte is being stored in a separate tank; the cell is being activated when additional power is required by collapsing the neoprene bellows container and thus forcing the electrolyte into cell through a plastic connection. A solar array is proposed as main power source for the flow actuator.

  7. Evolution of nonclassical MHC-dependent invariant T cells

    PubMed Central

    Edholm, Eva-Stina; Grayfer, Leon; Robert, Jacques

    2014-01-01

    TCR-mediated specific recognition of antigenic peptides in the context of classical MHC molecules is a cornerstone of adaptive immunity of jawed vertebrate. Ancillary to these interactions, the T cell repertoire also includes unconventional T cells that recognize endogenous and/or exogenous antigens in a classical MHC-unrestricted manner. Among these, the mammalian nonclassical MHC class I-restricted invariant T cell (iT) subsets, such as iNKT and MAIT cells, are now believed to be integral to immune response initiation as well as in orchestrating subsequent adaptive immunity. Until recently the evolutionary origins of these cells were unknown. Here we review our current understanding of a nonclassical MHC class I-restricted iT cell population in the amphibian Xenopus laevis. Parallels with the mammalian iNKT and MAIT cells underline the crucial biological roles of these evolutionarily ancient immune subsets. PMID:25117267

  8. Balance of inflammatory pathways and interplay of immune cells in the liver during homeostasis and injury

    PubMed Central

    Baeck, Christer; Tacke, Frank

    2014-01-01

    Multiple potentially harmful stimuli challenge the liver, the chief metabolic and detoxifying organ of the human body. Due to its central anatomical location, continuous blood flow from the gastrointestinal tract through the hepatic sinusoids allows the metabolically active hepatocytes, the non-parenchymal cells and the various immune cell populations residing and patrolling in the liver to interact with antigens and microbiological components coming from the intestine. Cytokines are key mediators within the complex interplay of intrahepatic immune cells and hepatocytes, because they can activate effector functions of immune cells as well as hepatocytic intracellular signaling pathways controlling cellular homeostasis. Kupffer cells and liver-infiltrating monocyte-derived macrophages are primary sources of cytokines such as tumor necrosis factor (TNF). The liver is also enriched in natural killer (NK) and natural killer T (NKT) cells, which fulfill functions in pathogen defense, T cell recruitment and modulation of fibrogenic responses. TNF can activate specific intracellular pathways in hepatocytes that influence cell fate in different manners, e.g. pro-apoptotic signals via the caspase cascade, but also survival pathways, namely the nuclear factor (NF)-kappaB pathway. NF-kappaB regulates important functions in liver physiology and pathology. The exact dissection of the contribution of recruited and resident immune cells, their soluble cytokine and chemokine mediators and the intracellular hepatocytic response in liver homeostasis and injury could potentially identify novel targets for the treatment of acute and chronic liver disease, liver fibrosis or cirrhosis. PMID:26417243

  9. Regulation of Lipid Signaling by Diacylglycerol Kinases during T Cell Development and Function

    PubMed Central

    Krishna, Sruti; Zhong, Xiao-Ping

    2013-01-01

    Diacylglycerol (DAG) and phosphatidic acid (PA) are bioactive lipids synthesized when the T cell receptor binds to a cognate peptide-MHC complex. DAG triggers signaling by recruiting Ras guanyl-releasing protein 1, PKCθ, and other effectors, whereas PA binds to effector molecules that include mechanistic target of rapamycin, Src homology region 2 domain-containing phosphatase 1, and Raf1. While DAG-mediated pathways have been shown to play vital roles in T cell development and function, the importance of PA-mediated signals remains less clear. The diacylglycerol kinase (DGK) family of enzymes phosphorylates DAG to produce PA, serving as a molecular switch that regulates the relative levels of these critical second messengers. Two DGK isoforms, α and ζ, are predominantly expressed in T lineage cells and play an important role in conventional αβ T cell development. In mature T cells, the activity of these DGK isoforms aids in the maintenance of self-tolerance by preventing T cell hyper-activation and promoting T cell anergy. In this review, we discuss the roles of DAG-mediated pathways, PA-effectors, and DGKs in T cell development and function. We also highlight recent work that has uncovered previously unappreciated roles for DGK activity, for instance in invariant NKT cell development, anti-tumor and anti-viral CD8 responses, and the directional secretion of soluble effectors. PMID:23847619

  10. Apoptotic Cells Activate AMP-activated Protein Kinase (AMPK) and Inhibit Epithelial Cell Growth without Change in Intracellular Energy Stores*

    PubMed Central

    Patel, Vimal A.; Massenburg, Donald; Vujicic, Snezana; Feng, Lanfei; Tang, Meiyi; Litbarg, Natalia; Antoni, Angelika; Rauch, Joyce; Lieberthal, Wilfred; Levine, Jerrold S.

    2015-01-01

    Apoptosis plays an indispensable role in the maintenance and development of tissues. We have shown that receptor-mediated recognition of apoptotic target cells by viable kidney proximal tubular epithelial cells (PTECs) inhibits the proliferation and survival of PTECs. Here, we examined the effect of apoptotic targets on PTEC cell growth (cell size during G1 phase of the cell cycle). Using a cell culture model, we show that apoptotic cells potently activate AMP-activated protein kinase (AMPK), a highly sensitive sensor of intracellular energy stores. AMPK activation leads to decreased activity of its downstream target, ribosomal protein p70 S6 kinase (p70S6K), and concomitant inhibition of cell growth. Importantly, these events occur without detectable change in intracellular levels of AMP, ADP, or ATP. Inhibition of AMPK, either pharmacologically by compound C or molecularly by shRNA, diminishes the effects of apoptotic targets and largely restores p70S6K activity and cell size to normal levels. Apoptotic targets also inhibit Akt, a second signaling pathway regulating cell growth. Expression of a constitutively active Akt construct partially relieved cell growth inhibition but was less effective than inhibition of AMPK. Inhibition of cell growth by apoptotic targets is dependent on physical interaction between apoptotic targets and PTECs but independent of phagocytosis. We conclude that receptor-mediated recognition of apoptotic targets mimics the effects of intracellular energy depletion, activating AMPK and inhibiting cell growth. By acting as sentinels of environmental change, apoptotic death may enable nearby viable cells, especially nonmigratory epithelial cells, to monitor and adapt to local stresses. PMID:26183782

  11. Experimental evaluation of decrease in bacterial activity due to cell death and activity decay in activated sludge.

    PubMed

    Hao, Xiaodi; Wang, Qilin; Zhang, Xiangping; Cao, Yali; van Mark Loosdrecht, C M

    2009-08-01

    Decrease in bacterial activity (cell decay) in activated sludge can be attributed to cell death (reduction in the amount of active bacteria) and activity decay (reduction in the specific activity of active bacteria). The aim of this study was to experimentally differentiate between cell death and activity decay as a source of decrease in microbial activity. By means of measuring maximal oxygen uptake rates, verifying membrane integrity by live/dead staining and verifying presence of 16S rRNA with fluorescence in-situ hybridization, the decay rates and the death rates of ammonium oxidizing bacteria (AOB), nitrite oxidizing bacteria (NOB) and ordinary heterotrophic organisms (OHOs) were determined respectively in a nitrifying sequencing batch reactor (SBR) and a heterotrophic SBR. The experiments revealed that in the nitrifying system activity decay contributed 47% and 82% to the decreased activities of AOB and NOB and that cell death was responsible for 53% and 18% of decreases in their respective activities. In the heterotrophic system, activity decay took a share of 78% in the decreased activity of OHOs, and cell death was only responsible for 22% of decrease in their activity. The difference between the importance of cell death on the decreased activities of AOB and OHOs might be caused by the mechanisms of substrate storage and/or cryptic growth/death-regeneration of OHOs. The different nutrient sources for AOB and NOB might be the reason for a relatively smaller fraction of cell death in NOB.

  12. GATA3 inhibits GCM1 activity and trophoblast cell invasion

    PubMed Central

    Chiu, Yueh Ho; Chen, Hungwen

    2016-01-01

    Development of human placenta involves the invasion of trophoblast cells from anchoring villi into the maternal decidua. Placental transcription factor GCM1 regulates trophoblast cell invasion via transcriptional activation of HtrA4 gene, which encodes a serine protease enzyme. The GATA3 transcription factor regulates trophoblast cell differentiation and is highly expressed in invasive murine trophoblast giant cells. The regulation of trophoblastic invasion by GCM1 may involve novel cellular factors. Here we show that GATA3 interacts with GCM1 and inhibits its activity to suppress trophoblastic invasion. Immunohistochemistry demonstrates that GATA3 and GCM1 are coexpressed in villous cytotrophoblast cells, syncytiotrophoblast layer, and extravillous trophoblast cells of human placenta. Interestingly, GATA3 interacts with GCM1, but not the GCM2 homologue, through the DNA-binding domain and first transcriptional activation domain in GCM1 and the transcriptional activation domains and zinc finger 1 domain in GATA3. While GATA3 did not affect DNA-binding activity of GCM1, it suppressed transcriptional activity of GCM1 and therefore HtrA4 promoter activity. Correspondingly, GATA3 knockdown elevated HtrA4 expression in BeWo and JEG-3 trophoblast cell lines and enhanced the invasion activities of both lines. This study uncovered a new GATA3 function in placenta as a negative regulator of GCM1 activity and trophoblastic invasion. PMID:26899996

  13. Cystatin F regulates proteinase activity in IL-2-activated natural killer cells.

    PubMed

    Maher, Katarina; Konjar, Spela; Watts, Colin; Turk, Boris; Kopitar-Jerala, Natasa

    2014-01-01

    Cystatin F is a unique member of the cystatin family of cysteine protease inhibitors, which is synthesized as an inactive dimer and it is activated by N-terminal cleavage in the endolysosomes. It is expressed in the cells of the immune system: myeloid cells and the cells involved in target cell killing: natural killer (NK) cells and cytotoxic T cells (CTLs). Upon activation of the NK cells with interleukin 2 (IL-2), cystatin F was found upregulated and co-localized in cytotoxic granules with cathepsin C (CatC) and CatV. However, cystatin F inhibits the CatC in cells only when its N-terminal part is processed. Although cystatin F could inhibit both CatV and CatC, the IL-2 stimulation of the YT cells resulted in an increased CatV activity, while the CatC activity was unchanged. The incubation of IL-2 activated NK cells with a cysteine proteinase inhibitor E-64d increased the cystatin F dimer formation. Our results suggest that cystatin F not only inhibits CatV, but it is processed by the CatV in order to inhibit the CatC activity in cytotoxic granules. The regulation of the CatC activity in the cytotoxic granules of the NK cells by the cystatin F could be important for the processing and activation of granule-associated serine proteases - granzymes.

  14. Preparation of cell lines for single-cell analysis of transcriptional activation dynamics.

    PubMed

    Rafalska-Metcalf, Ilona U; Janicki, Susan M

    2013-01-01

    Imaging molecularly defined regions of chromatin in single living cells during transcriptional activation has the potential to provide new insight into gene regulatory mechanisms. Here, we describe a method for isolating cell lines with multi-copy arrays of reporter transgenes, which can be used for real-time high-resolution imaging of transcriptional activation dynamics in single cells.

  15. Microwave-induced thermogenetic activation of single cells

    SciTech Connect

    Safronov, N. A.; Fedotov, I. V.; Ermakova, Yu. G.; Matlashov, M. E.; Belousov, V. V.; Sidorov-Biryukov, D. A.; Fedotov, A. B.; Zheltikov, A. M.

    2015-04-20

    Exposure to a microwave field is shown to enable thermogenetic activation of individual cells in a culture of cell expressing thermosensitive ion channels. Integration of a microwave transmission line with an optical fiber and a diamond quantum thermometer has been shown to allow thermogenetic single-cell activation to be combined with accurate local online temperature measurements based on an optical detection of electron spin resonance in nitrogen–vacancy centers in diamond.

  16. Calcium alloy as active material in secondary electrochemical cell

    DOEpatents

    Roche, Michael F.; Preto, Sandra K.; Martin, Allan E.

    1976-01-01

    Calcium alloys such as calcium-aluminum and calcium-silicon, are employed as active material within a rechargeable negative electrode of an electrochemical cell. Such cells can use a molten salt electrolyte including calcium ions and a positive electrode having sulfur, sulfides, or oxides as active material. The calcium alloy is selected to prevent formation of molten calcium alloys resulting from reaction with the selected molten electrolytic salt at the cell operating temperatures.

  17. Effects of Neuroendocrine CB1 Activity on Adult Leydig Cells

    PubMed Central

    Cobellis, Gilda; Meccariello, Rosaria; Chianese, Rosanna; Chioccarelli, Teresa; Fasano, Silvia; Pierantoni, Riccardo

    2016-01-01

    Endocannabinoids control male reproduction acting at central and local level via cannabinoid receptors. The cannabinoid receptor CB1 has been characterized in the testis, in somatic and germ cells of mammalian and non-mammalian animal models, and its activity related to Leydig cell differentiation, steroidogenesis, spermiogenesis, sperm quality, and maturation. In this short review, we provide a summary of the insights concerning neuroendocrine CB1 activity in male reproduction focusing on adult Leydig cell ontogenesis and steroid biosynthesis. PMID:27375550

  18. Neural progenitor cells regulate microglia functions and activity.

    PubMed

    Mosher, Kira I; Andres, Robert H; Fukuhara, Takeshi; Bieri, Gregor; Hasegawa-Moriyama, Maiko; He, Yingbo; Guzman, Raphael; Wyss-Coray, Tony

    2012-11-01

    We found mouse neural progenitor cells (NPCs) to have a secretory protein profile distinct from other brain cells and to modulate microglial activation, proliferation and phagocytosis. NPC-derived vascular endothelial growth factor was necessary and sufficient to exert at least some of these effects in mice. Thus, neural precursor cells may not only be shaped by microglia, but also regulate microglia functions and activity.

  19. Signal transduction pathways in mast cell granule-mediated endothelial cell activation.

    PubMed Central

    Chi, Luqi; Stehno-Bittel, Lisa; Smirnova, Irina; Stechschulte, Daniel J; Dileepan, Kottarappat N

    2003-01-01

    BACKGROUND: We have previously shown that incubation of human endothelial cells with mast cell granules results in potentiation of lipopolysaccharide-induced production of interleukin-6 and interleukin-8. AIMS: The objective of the present study was to identify candidate molecules and signal transduction pathways involved in the synergy between mast cell granules and lipopolysaccharide on endothelial cell activation. METHODS: Human umbilical vein endothelial cells were incubated with rat mast cell granules in the presence and absence of lipopolysaccharide, and IL-6 production was quantified. The status of c-Jun amino-terminal kinase and extracellular signal-regulated kinase 1/2 activation, nuclear factor-kappaB translocation and intracellular calcium levels were determined to identify the mechanism of synergy between mast cell granules and lipopolysaccaride. RESULTS: Mast cell granules induced low levels of interleukin-6 production by endothelial cells, and this effect was markedly enhanced by lipopolysaccharide. The results revealed that both serine proteases and histamine present in mast cell granules were involved in this activation process. Mast cell granules increased intracellular calcium, and activated c-Jun amino-terminal kinase and extracellular signal-regulated kinase 1/2. The combination of lipopolysaccharide and mast cell granules prolonged c-Jun amino-terminal kinase activity beyond the duration of induction by either stimulant alone and was entirely due to active proteases. However, both proteases and histamine contributed to calcium mobilization and extracellular signal-regulated kinase 1/2 activation. The nuclear translocation of nuclear factor-kappaB proteins was of greater magnitude in endothelial cells treated with the combination of mast cell granules and lipopolysaccharide. CONCLUSIONS:Mast cell granule serine proteases and histamine can amplify lipopolysaccharide-induced endothelial cell activation, which involves calcium mobilization, mitogen-activated

  20. In-vivo stimulation of macaque natural killer T cells with α-galactosylceramide.

    PubMed

    Fernandez, C S; Jegaskanda, S; Godfrey, D I; Kent, S J

    2013-09-01

    Natural killer T cells are a potent mediator of anti-viral immunity in mice, but little is known about the effects of manipulating NKT cells in non-human primates. We evaluated the delivery of the NKT cell ligand, α-galactosylceramide (α-GalCer), in 27 macaques by studying the effects of different dosing (1-100 μg), and delivery modes [directly intravenously (i.v.) or pulsed onto blood or peripheral blood mononuclear cells]. We found that peripheral NKT cells were depleted transiently from the periphery following α-GalCer administration across all delivery modes, particularly in doses of ≥10 μg. Furthermore, NKT cell numbers frequently remained depressed at i.v. α-GalCer doses of >10 μg. Levels of cytokine expression were also not enhanced after α-GalCer delivery to macaques. To evaluate the effects of α-GalCer administration on anti-viral immunity, we administered α-GalCer either together with live attenuated influenza virus infection or prior to simian immunodeficiency virus (SIV) infection of two macaques. There was no clear enhancement of influenza-specific T or B cell immunity following α-GalCer delivery. Further, there was no modulation of pathogenic SIVmac251 infection following α-GalCer delivery to a further two macaques in a pilot study. Accordingly, although macaque peripheral NKT cells are modulated by α-GalCer in vivo, at least for the dosing regimens tested in this study, this does not appear to have a significant impact on anti-viral immunity in macaque models.

  1. Light activated cell migration in synthetic extracellular matrices.

    PubMed

    Guo, Qiongyu; Wang, Xiaobo; Tibbitt, Mark W; Anseth, Kristi S; Montell, Denise J; Elisseeff, Jennifer H

    2012-11-01

    Synthetic extracellular matrices provide a framework in which cells can be exposed to defined physical and biological cues. However no method exists to manipulate single cells within these matrices. It is desirable to develop such methods in order to understand fundamental principles of cell migration and define conditions that support or inhibit cell movement within these matrices. Here, we present a strategy for manipulating individual mammalian stem cells in defined synthetic hydrogels through selective optical activation of Rac, which is an intracellular signaling protein that plays a key role in cell migration. Photoactivated cell migration in synthetic hydrogels depended on mechanical and biological cues in the biomaterial. Real-time hydrogel photodegradation was employed to create geometrically defined channels and spaces in which cells could be photoactivated to migrate. Cell migration speed was significantly higher in the photo-etched channels and cells could easily change direction of movement compared to the bulk hydrogels.

  2. Tubular solid oxide fuel cell demonstration activities

    SciTech Connect

    Ray, E.R.; Veyo, S.E.

    1995-12-31

    This reports on a solid oxide fuel cell demonstration program in which utilities are provided fully integrated, automatically controlled, packaged solid oxide fuel cell power generation systems. These field units serve to demonstrate to customers first hand the beneficial attributes of the SOFC, to expose deficiencies through experience in order to guide continued development, and to garner real world feedback and data concerning not only cell and stack parameters, but also transportation, installation, permitting and licensing, start-up and shutdown, system alarming, fault detection, fault response, and operator interaction.

  3. Effects of dexamethasone on palate mesenchymal cell phospholipase activity

    SciTech Connect

    Bulleit, R.F.; Zimmerman, E.F.

    1984-09-15

    Corticosteroids will induce cleft palate in mice. One suggested mechanism for this effect is through inhibition of phospholipase activity. This hypothesis was tested by measuring the effects of dexamethasone, a synthetic corticosteroid, on phospholipase activity in cultures of palate mesenchymal cells. Palate mesenchymal cells were prelabeled with (3H)arachidonic acid. The cells were subsequently treated with various concentrations of dexamethasone. Concurrently, cultures of M-MSV-transformed 3T3 cells were prepared identically. After treatment, phospholipase activity was stimulated by the addition of serum or epidermal growth factor (EGF), and radioactivity released into the medium was taken as a measure of phospholipase activity. Dexamethasone (1 X 10(-5) or 1 X 10(-4) M) could inhibit serum-stimulated phospholipase activity in transformed 3T3 cells after 1 to 24 hr of treatment. However, no inhibition of activity was measured in palate mesenchymal cells following this period of treatment. Not until 120 hr of treatment with dexamethasone (1 X 10(-4) M) was any significant inhibition of serum-stimulated phospholipase activity observed in palate mesenchymal cells. When EGF was used to stimulate phospholipase activity, dexamethasone (1 X 10(-5) M) caused an increase in phospholipase activity in palate mesenchymal cells. These observations suggested that phospholipase in transformed 3T3 cells was sensitive to inhibition by dexamethasone. However, palate mesenchymal cell phospholipase is only minimally sensitive to dexamethasone, and in certain instances can be enhanced. These results cannot support the hypothesis that corticosteroids mediate their teratogenic effect via inhibition of phospholipase activity.

  4. Molecular dissection of AKT activation in lung cancer cell lines

    PubMed Central

    Guo, Yanan; Du, Jinyan; Kwiatkowski, David J

    2013-01-01

    AKT is a critical signaling node downstream of PI3K, which is often activated in cancer. We analyzed the state of activation of AKT in 80 human non-small cell lung cancer cell lines under serum starvation conditions. We identified 13 lines which showed persistent AKT activation in the absence of serum. In 12 of the 13 lines, AKT activation could be attributed to loss of PTEN, activating mutation in EGFR or PIK3CA, or amplification of ERBB2. HCC2429 was the only cell line that had no alterations in those genes, but had high phospho-AKT(Ser473) levels under serum starvation conditions. However, the activation of AKT in HCC2429 was PI3K- and mTORC2-dependent based upon use of specific inhibitors. Kinome tyrosine phosphorylation profiling showed that both Notch and SRC were highly activated in this cell line. Despite the activation of Notch, AKT activation and cell survival were not affected by Notch inhibitors DAPT or Compound E. In contrast, SRC inhibitors PP2 and dasatinib both significantly decreased pAKT(Ser473) levels and reduced cell survival by inducing apoptosis. Further, a combination of SRC and mTOR inhibition synergistically blocked activation of AKT and induced apoptosis. Over-expression of SRC has been identified previously in human lung cancers, and these results suggest that a combination of SRC and mTOR inhibitors may have unique therapeutic benefit for a subset of lung cancers with these molecular features. PMID:23319332

  5. Activation of peripheral blood mononuclear cells in bronchoalveolar lavage fluid from patients with sarcoidosis: visualisation of single cell activation products.

    PubMed Central

    Pantelidis, P.; Southcott, A. M.; Cambrey, A. D.; Laurent, G. J.; du Bois, R. M.

    1994-01-01

    BACKGROUND--Interstitial lung diseases are characterised by the recruitment of mononuclear cells to disease sites where maturation occurs and activation products, including lysozyme (LZM), are released. Analysis of in vitro cell culture supernatants for activation products masks the functional heterogeneity of cell populations. It is therefore necessary to examine the secretion of activation products by single cells to assess whether the activation of newly recruited mononuclear phagocytes at the sites of disease in the lung is uniform and controlled by the local microenvironment. METHODS--The reverse haemolytic plaque assay was used to evaluate, at a single cell level, the ability of bronchoalveolar lavage (BAL) fluid from seven patients with sarcoidosis to activate Ficoll-Hypaque-separated peripheral blood mononuclear cells by comparison with BAL fluid from six normal volunteers and nine patients with systemic sclerosis. Monolayers of peripheral blood mononuclear cells and sheep red blood cells were cultured either alone or in the presence of 20% (v/v) BAL fluid with a polyclonal anti-LZM antibody. LZM/anti-LZM complexes bound to red blood cells surrounding the secreting cells were disclosed following complement lysis of red blood cells and quantification of plaque dimensions using microscopy and image analysis. RESULTS--Bronchoalveolar lavage fluid from all the patients with sarcoidosis increased LZM secretion by peripheral blood mononuclear cells compared with unstimulated mononuclear cells. By contrast, BAL fluid from the other individuals had no effect on LZM secretion. CONCLUSIONS--Single cells activated by BAL fluid can be evaluated by the reverse haemolytic plaque assay. BAL fluid from patients with sarcoidosis, but not from patients with systemic sclerosis or normal individuals, contains components capable of activating mononuclear phagocytes to secrete lysozyme. Images PMID:7831632

  6. Mast cells and dendritic cells form synapses that facilitate antigen transfer for T cell activation

    PubMed Central

    Carroll-Portillo, Amanda; Cannon, Judy L.; te Riet, Joost; Holmes, Anna; Kawakami, Yuko; Kawakami, Toshiaki; Cambi, Alessandra

    2015-01-01

    Mast cells (MCs) produce soluble mediators such as histamine and prostaglandins that are known to influence dendritic cell (DC) function by stimulating maturation and antigen processing. Whether direct cell–cell interactions are important in modulating MC/DC function is unclear. In this paper, we show that direct contact between MCs and DCs occurs and plays an important role in modulating the immune response. Activation of MCs through FcεRI cross-linking triggers the formation of stable cell–cell interactions with immature DCs that are reminiscent of the immunological synapse. Direct cellular contact differentially regulates the secreted cytokine profile, indicating that MC modulation of DC populations is influenced by the nature of their interaction. Synapse formation requires integrin engagement and facilitates the transfer of internalized MC-specific antigen from MCs to DCs. The transferred material is ultimately processed and presented by DCs and can activate T cells. The physiological outcomes of the MC–DC synapse suggest a new role for intercellular crosstalk in defining the immune response. PMID:26304724

  7. Regulation and antimetastatic functions of liver-associated natural killer cells.

    PubMed

    Wiltrout, R H

    2000-04-01

    The liver is a complex organ composed of hepatic parenchymal cells and a variety of non-parenchymal cells that consist of endothelial cells, Kupffer cells, and several subsets of resident lymphocytes, including natural killer (NK), T, and NK1.1+/CD3+ (NK/T) cells. The regulation of these various lymphoid subpopulations and their relative contributions to antiviral, antitumor and pathogenic inflammatory responses in the liver remain topics of much interest. Studies from our laboratory have shown that various immune stimulants and cytokines can augment liver-associated NK activity at least partially through the mobilization of NK cells from the bone marrow to the liver. The mobilization process can be dependent on the induction of interferon (IFN)-gamma and/or tumor necrosis factor-alpha and on very late activation antigen-4/vascular cell adhesion molecule-1 interaction. The induction of IFN-gamma by cytokines such as interleukin (IL)-12 also rapidly triggers the induction of chemokine genes in parenchymal cells that may contribute to the localization of NK and T cells. Both IL-2 and IL-12 trigger changes in the number and functions of liver-associated leukocyte subsets, and induce antimetastatic effects that are likely mediated through several direct and indirect mechanisms. The overall goal of these studies is to understand the interactions and functions of liver-associated NK1.1+ cells in the context of innate and adaptive immune responses to neoplasia.

  8. Activation-induced necroptosis contributes to B-cell lymphopenia in active systemic lupus erythematosus

    PubMed Central

    Fan, H; Liu, F; Dong, G; Ren, D; Xu, Y; Dou, J; Wang, T; Sun, L; Hou, Y

    2014-01-01

    B-cell abnormality including excessive activation and lymphopenia is a central feature of systemic lupus erythematosus (SLE). Although activation threshold, auto-reaction and death of B cells can be affected by intrinsical and/or external signaling, the underlying mechanisms are unclear. Herein, we demonstrate that co-activation of Toll-like receptor 7 (TLR7) and B-cell receptor (BCR) pathways is a core event for the survival/dead states of B cells in SLE. We found that the mortalities of CD19+CD27- and CD19+IgM+ B-cell subsets were increased in the peripheral blood mononuclear cells (PBMCs) of SLE patients. The gene microarray analysis of CD19+ B cells from active SLE patients showed that the differentially expressed genes were closely correlated to TLR7, BCR, apoptosis, necroptosis and immune pathways. We also found that co-activation of TLR7 and BCR could trigger normal B cells to take on SLE-like B-cell characters including the elevated viability, activation and proliferation in the first 3 days and necroptosis in the later days. Moreover, the necroptotic B cells exhibited mitochondrial dysfunction and hypoxia, along with the elevated expression of necroptosis-related genes, consistent with that in both SLE B-cell microarray and real-time PCR verification. Expectedly, pretreatment with the receptor-interacting protein kinase 1 (RIPK1) inhibitor Necrostatin-1, and not the apoptosis inhibitor zVAD, suppressed B-cell death. Importantly, B cells from additional SLE patients also significantly displayed high expression levels of necroptosis-related genes compared with those from healthy donors. These data indicate that co-activation of TLR7 and BCR pathways can promote B cells to hyperactivation and ultimately necroptosis. Our finding provides a new explanation on B-cell lymphopenia in active SLE patients. These data suggest that extrinsic factors may increase the intrinsical abnormality of B cells in SLE patients. PMID:25210799

  9. Tubular solid oxide fuel cell demonstration activities

    SciTech Connect

    Veyo, S.E.

    1995-08-01

    The development of a viable fuel cell driven electrical power generation system involves not only the development of cell and stack technology, but also the development of the overall system concept, the strategy for control, and the ancillary subsystems. The design requirements used to guide system development must reflect a customer focus in order to evolve a commercial product. In order to obtain useful customer feedback, Westinghouse has practiced the deployment with customers of fully integrated, automatically controlled, packaged solid oxide fuel cell power generation systems. These field units have served to demonstrate to customers first hand the beneficial attributes of the SOFC, to expose deficiencies through experience in order to guide continued development, and to garner real world feedback and data concerning not only cell and stack parameters, but also transportation, installation, permitting and licensing, start-up and shutdown, system alarming, fault detection, fault response, and operator interaction.

  10. Magnetic Field-Induced T Cell Receptor Clustering by Nanoparticles Enhances T Cell Activation and Stimulates Antitumor Activity

    PubMed Central

    2015-01-01

    Iron–dextran nanoparticles functionalized with T cell activating proteins have been used to study T cell receptor (TCR) signaling. However, nanoparticle triggering of membrane receptors is poorly understood and may be sensitive to physiologically regulated changes in TCR clustering that occur after T cell activation. Nano-aAPC bound 2-fold more TCR on activated T cells, which have clustered TCR, than on naive T cells, resulting in a lower threshold for activation. To enhance T cell activation, a magnetic field was used to drive aggregation of paramagnetic nano-aAPC, resulting in a doubling of TCR cluster size and increased T cell expansion in vitro and after adoptive transfer in vivo. T cells activated by nano-aAPC in a magnetic field inhibited growth of B16 melanoma, showing that this novel approach, using magnetic field-enhanced nano-aAPC stimulation, can generate large numbers of activated antigen-specific T cells and has clinically relevant applications for adoptive immunotherapy. PMID:24564881

  11. [The presence of an endogenous peroxidase activity in hairy cell leukemia cells].

    PubMed

    Reyes, F; Gourdin, M F; Farcet, J P; Dreyfus, B; Breton-Gorius, J

    1977-02-01

    Mononuclear cells from hairy cell leukemia have been studied in three cases by ultrastructural immunocytochemistry. Cells have fairly detectable surface immunoglobulins, without monoclonal distribution however. In addition these cells have a peroxidatic activity which is revealed in the perinuclear space and strands of endoplasmic reticulum. PMID:404081

  12. Interleukin-7 and Toll-Like Receptor 7 Induce Synergistic B Cell and T Cell Activation

    PubMed Central

    Bikker, Angela; Kruize, Aike A.; van der Wurff-Jacobs, Kim M. G.; Peters, Rogier P.; Kleinjan, Marije; Redegeld, Frank; de Jager, Wilco; Lafeber, Floris P. J. G.; van Roon, Joël A. G.

    2014-01-01

    Objectives To investigate the potential synergy of IL-7-driven T cell-dependent and TLR7-mediated B cell activation and to assess the additive effects of monocyte/macrophages in this respect. Methods Isolated CD19 B cells and CD4 T cells from healthy donors were co-cultured with TLR7 agonist (TLR7A, Gardiquimod), IL-7, or their combination with or without CD14 monocytes/macrophages (T/B/mono; 1 : 1 : 0,1). Proliferation was measured using 3H-thymidine incorporation and Ki67 expression. Activation marker (CD19, HLA-DR, CD25) expression was measured by FACS analysis. Immunoglobulins were measured by ELISA and release of cytokines was measured by Luminex assay. Results TLR7-induced B cell activation was not associated with T cell activation. IL-7-induced T cell activation alone and together with TLR7A synergistically increased numbers of both proliferating (Ki67+) B cells and T cells, which was further increased in the presence of monocytes/macrophages. This was associated by up regulation of activation markers on B cells and T cells. Additive or synergistic induction of production of immunoglobulins by TLR7 and IL-7 was associated by synergistic induction of T cell cytokines (IFNγ, IL-17A, IL-22), which was only evident in the presence of monocytes/macrophages. Conclusions IL-7-induced CD4 T cell activation and TLR7-induced B cell activation synergistically induce T helper cell cytokine and B cell immunoglobulin production, which is critically dependent on monocytes/macrophages. Our results indicate that previously described increased expression of IL-7 and TLR7 together with increased numbers of macrophages at sites of inflammation in autoimmune diseases like RA and pSS significantly contributes to enhanced lymphocyte activation. PMID:24740301

  13. T Cell Activation Thresholds are Affected by Gravitational

    NASA Technical Reports Server (NTRS)

    Adams, Charley; Gonzalez, M.; Nelman-Gonzalez, M.

    1999-01-01

    T cells stimulated in space flight by various mitogenic signals show a dramatic reduction in proliferation and expression of early activation markers. Similar results are also obtained in a ground based model of microgravity, clinorotation, which provides a vector-averaged reduction of the apparent gravity on cells without significant shear force. Here we demonstrate that T cell inhibition is due to an increase in the required threshold for activation. Dose response curves indicate that cells activated during clinorotation require higher stimulation to achieve the same level of activation, as measured by CD69 expression. Interleukin 2 receptor expression, and DNA synthesis. The amount of stimulation necessary for 50% activation is 5 fold in the clinostat relative to static. Correlation of TCR internalization with activation also exhibit a dramatic right shift in clinorotation, demonstrating unequivocally that signal transduction mechanism independent of TCR triggering account for the increased activation threshold. Previous results from space flight experiments are consistent with the dose response curves obtained for clinorotation. Activation thresholds are important aspects of T cell memory, autoimmunity and tolerance Clinorotation is a useful, noninvasive tool for the study of cellular and biochemical event regulating T cell activation threshold and the effects of gravitation forces on these systems.

  14. CD27-CD70 interactions regulate B-cell activation by T cells.

    PubMed Central

    Kobata, T; Jacquot, S; Kozlowski, S; Agematsu, K; Schlossman, S F; Morimoto, C

    1995-01-01

    CD27, a member of the tumor necrosis factor (TNF) receptor family, binds to its ligand CD70, a member of the TNF family, and subsequently induces T-cell costimulation and B-cell activation. CD27 is expressed on resting T and B cells, whereas CD70 is expressed on activated T and B cells. Utilizing transfected murine pre-B-cell lines expressing human CD27 or CD70, we have examined the effect of such transfectant cells on human B-cell IgG production and B-cell proliferation. We show that the addition of CD27-transfected cells to a T-cell-dependent, pokeweed mitogen-driven B-cell IgG synthesis system resulted in marked inhibition of IgG production, whereas the addition of CD70-transfected cells enhanced IgG production. The inhibition and enhancement of pokeweed mitogen-driven IgG production by CD27 and CD70 transfectants were abrogated by pretreatment with anti-CD27 and anti-CD70 monoclonal antibodies, respectively. In contrast, little or no inhibition of IgG production and B-cell proliferation was noted with CD27-transfected cells or either anti-CD27 or CD70 monoclonal antibody in a T-cell-independent Staphylococcus aureus/interleukin 2-driven B-cell activation system. In this same system CD70-transfected cells enhanced B-cell IgG production and B-cell proliferation, and this enhancement could be gradually abrogated by addition of increasing numbers of CD27-transfected cells. These results clearly demonstrate that interactions among subsets of T cells expressing CD27 and CD70 play a key role in regulating B-cell activation and immunoglobulin synthesis. PMID:7479974

  15. Multivalent Antigens for Promoting B and T Cell Activation

    PubMed Central

    Bennett, Nitasha R.; Zwick, Daniel B.; Courtney, Adam H.; Kiessling, Laura L.

    2015-01-01

    Efficacious vaccines require antigens that elicit productive immune system activation. Antigens that afford robust antibody production activate both B and T cells. Elucidating the antigen properties that enhance B–T cell communication is difficult with traditional antigens. We therefore used ring-opening metathesis polymerization to access chemically defined, multivalent antigens containing both B and T cell epitopes to explore how antigen structure impacts B cell and T cell activation and communication. The bifunctional antigens were designed so that the backbone substitution level of each antigenic epitope could be quantified using 19F NMR. The T cell peptide epitope was appended so that it could be liberated in B cells via the action of the endosomal protease cathepsin D, and this design feature was critical for T cell activation. Antigens with high BCR epitope valency induce greater BCR-mediated internalization and T cell activation than did low valency antigens, and these high-valency polymeric antigens were superior to protein antigens. We anticipate that these findings can guide the design of more effective vaccines. PMID:25970017

  16. Bacterial lipopolysaccharide activates CD57-negative human NK cells.

    PubMed

    Kanevskiy, L M; Erokhina, S A; Streltsova, M A; Telford, W G; Sapozhnikov, A M; Kovalenko, E I

    2014-12-01

    NK cells play an important regulatory role in sepsis by induction and augmentation of proinflammatory reactions in early stages of the septic process and by suppression of immune response in later stages of inflammation. The present work was aimed at the effect of bacterial lipopolysaccharide (LPS), the main pathogenic factor of sepsis development, on human NK cells ex vivo. We show that LPS activates immature CD57-negative NK cells, which typically constitute less than half of the normal NK cell population in human peripheral blood. Under conditions of NK cell stimulation with IL-2, addition of LPS provokes an increase in IFN-γ production. However, LPS both increased and inhibited NK cell cytotoxic activity. It is important to note that the activation of NK cells on LPS addition was observed in the absence of TLR4 on the NK cell surface. These results confirm our previous data arguing for a direct interaction of LPS with NK cells and evidence an atypical mechanism of LPS-induced NK cell activation without the involvement of surface TLR4.

  17. M-cadherin-mediated intercellular interactions activate satellite cell division.

    PubMed

    Marti, Merce; Montserrat, Núria; Pardo, Cristina; Mulero, Lola; Miquel-Serra, Laia; Rodrigues, Alexandre Miguel Cavaco; Andrés Vaquero, José; Kuebler, Bernd; Morera, Cristina; Barrero, María José; Izpisua Belmonte, Juan Carlos

    2013-11-15

    Adult muscle stem cells and their committed myogenic precursors, commonly referred to as the satellite cell population, are involved in both muscle growth after birth and regeneration after damage. It has been previously proposed that, under these circumstances, satellite cells first become activated, divide and differentiate, and only later fuse to the existing myofiber through M-cadherin-mediated intercellular interactions. Our data show that satellite cells fuse with the myofiber concomitantly to cell division, and only when the nuclei of the daughter cells are inside the myofiber, do they complete the process of differentiation. Here we demonstrate that M-cadherin plays an important role in cell-to-cell recognition and fusion, and is crucial for cell division activation. Treatment of satellite cells with M-cadherin in vitro stimulates cell division, whereas addition of anti-M-cadherin antibodies reduces the cell division rate. Our results suggest an alternative model for the contribution of satellite cells to muscle development, which might be useful in understanding muscle regeneration, as well as muscle-related dystrophies.

  18. Twin Knudsen Cell Configuration for Activity Measurements by Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Jacobson, N. S.

    1996-01-01

    A twin Knudsen cell apparatus for alloy activity measurements by mass spectrometry is described. Two Knudsen cells - one containing an alloy and one containing a pure component - are mounted on a single flange and translated into the sampling region via a motorized x-y table. Mixing of the molecular beams from the cells is minimized by a novel system of shutters. Activity measurements were taken on two well-characterized alloys to verify the operation of the system. Silver activity measurements are reported for Ag-Cu alloys and aluminum activity measurements are reported for Fe-Al alloys. The temperature dependence of activity for a 0.474 mol fraction Al-Fe alloy gives a partial molar heat of aluminum. Measurements taken with the twin cell show good agreement with literature values for these alloys.

  19. T cell-activating protein on murine lymphocytes.

    PubMed

    Yeh, E T; Reiser, H; Benacerraf, B; Rock, K L

    1986-12-01

    A functional T cell surface molecule, T cell-activating protein (TAP), has been identified on murine lymphocytes. TAP is a protein with an apparent molecular mass of 10-12 kilodaltons (kDa) nonreduced, 16-17 kDa reduced. Cross-linking of TAP can result in profound activation of T lymphocytes to produce lymphokines and to enter the cell cycle. Furthermore, antibody binding to TAP can modulate antigen-driven T cell stimulation. Current data suggest that TAP is physically distinct from the T cell receptor complex. On unstimulated lymphocytes, TAP is expressed on T cells and defines heterogeneity within the major T cell subsets. Its profile of expression is rapidly altered on cell activation. Ontologically, it is first detected in the thymus, where it is found on both the most immature and the most mature cell subsets, and it is functional on both. Together, these TAP+ cells constitute a small fraction of thymocytes. TAP expression, however, defines the immunocompetent compartment of the thymus, and thus could be involved in functional maturation. Finally, the gene controlling TAP expression has been mapped, and is tightly linked to a locus of hematopoietic antigens (Ly-6). TAP is molecularly distinct from these antigens. Furthermore, all of these proteins show a markedly distinct developmental regulation in their cell surface expression.

  20. Active Cellular Mechanics and Information Processing in the Living Cell

    NASA Astrophysics Data System (ADS)

    Rao, M.

    2014-07-01

    I will present our recent work on the organization of signaling molecules on the surface of living cells. Using novel experimental and theoretical approaches we have found that many cell surface receptors are organized as dynamic clusters driven by active currents and stresses generated by the cortical cytoskeleton adjoining the cell surface. We have shown that this organization is optimal for both information processing and computation. In connecting active mechanics in the cell with information processing and computation, we bring together two of the seminal works of Alan Turing.

  1. Cytotoxic activity of allogeneic natural killer cells on U251 glioma cells in vitro.

    PubMed

    Guo, Meng; Wu, Tingting; Wan, Lixin

    2016-07-01

    The present study aimed to observe the cytotoxic activity of allogeneic natural killer (NK) cells on U251 glioma cells and to investigate their mechanism of action to establish an effective treatment strategy for neuroglioma. Cell survival curves, colony formation assays and karyotype analysis were performed to investigate the characteristics of U251 glioma cells. The present study demonstrated that natural killer group 2, member D (NKG2D)‑major histocompatibility complex class I‑related chain A/B (MICA/B) interactions contributed to the cytotoxic effect of NK cells on K562 and U251 cells. In antibody‑blocking assays to inhibit NKG2D ligands, the cytotoxic activity was not completely attenuated, which suggested that other signaling pathways contribute to the cytotoxic activity of NK cells on tumor cells in addition to the NKG2D‑mediated activity. The present study identified that the expression levels of NKG2D ligands on the surface of target cells influenced the strength of the NK cell immune response. Furthermore, allogeneic NK cells were observed to kill glioma cells in vitro, and this anticancer activity is associated with the rate of NKG2D expression on the surface of glioma cells.

  2. L1 cell adhesion molecule induces melanoma cell motility by activation of mitogen-activated protein kinase pathways.

    PubMed

    Yi, Young-Su; Baek, Kwang-Soo; Cho, Jae Youl

    2014-06-01

    L1 cell adhesion molecule (L1CAM) is highly expressed in various types of cancer cells and has been implicated in the control of cell proliferation and motility. Recently, L1CAM was reported to induce the motility of melanoma cells, but the mechanism of this induction remains poorly understood. In this study, we investigated the molecular mechanisms by which L1CAM induces the motility of melanoma cells. Unlike other types of cancer cells, B16F10 melanoma cells highly expressed L1CAM at both the RNA and protein levels, and the expression of L1CAM induced AP-1 activity. In accordance to AP-1 activation, MAPK signaling pathways were activated by L1CAM. Inhibition of L1CAM expression by L1CAM-specific siRNA suppressed the activation of MAPKs such as ERK and p38. However, no significant change was observed in JNK activation. As expected, upstream MAP2K, MKK3/6, MAP3K, and TAK1 were also deactivated by the inhibition of L1CAM expression. L1CAM induced the motility of B16F10 cells. Inhibition of L1CAM expression suppressed migration and invasion of B16F10 cells, but no suppressive effect was observed on their proliferation and anti-apoptotic resistance. Treatment of B16F10 cells with U0126, an ERK inhibitor, or SB203580, a p38 inhibitor, suppressed the migration and invasion abilities of B16F10 cells. Taken together, our results suggest that L1CAM induces the motility of B16F10 melanoma cells via the activation of MAPK pathways. This finding provides a more detailed molecular mechanism of L1CAM-mediated induction of melanoma cell motility. PMID:24974583

  3. Aldehyde dehydrogenase activity promotes survival of human muscle precursor cells

    PubMed Central

    Jean, Elise; Laoudj-Chenivesse, Dalila; Notarnicola, Cécile; Rouger, Karl; Serratrice, Nicolas; Bonnieu, Anne; Gay, Stéphanie; Bacou, Francis; Duret, Cédric; Carnac, Gilles

    2011-01-01

    Abstract Aldehyde dehydrogenases (ALDH) are a family of enzymes that efficiently detoxify aldehydic products generated by reactive oxygen species and might therefore participate in cell survival. Because ALDH activity has been used to identify normal and malignant cells with stem cell properties, we asked whether human myogenic precursor cells (myoblasts) could be identified and isolated based on their levels of ALDH activity. Human muscle explant-derived cells were incubated with ALDEFLUOR, a fluorescent substrate for ALDH, and we determined by flow cytometry the level of enzyme activity. We found that ALDH activity positively correlated with the myoblast-CD56+ fraction in those cells, but, we also observed heterogeneity of ALDH activity levels within CD56-purified myoblasts. Using lentiviral mediated expression of shRNA we demonstrated that ALDH activity was associated with expression of Aldh1a1 protein. Surprisingly, ALDH activity and Aldh1a1 expression levels were very low in mouse, rat, rabbit and non-human primate myoblasts. Using different approaches, from pharmacological inhibition of ALDH activity by diethylaminobenzaldehyde, an inhibitor of class I ALDH, to cell fractionation by flow cytometry using the ALDEFLUOR assay, we characterized human myoblasts expressing low or high levels of ALDH. We correlated high ALDH activity ex vivo to resistance to hydrogen peroxide (H2O2)-induced cytotoxic effect and in vivo to improved cell viability when human myoblasts were transplanted into host muscle of immune deficient scid mice. Therefore detection of ALDH activity, as a purification strategy, could allow non-toxic and efficient isolation of a fraction of human myoblasts resistant to cytotoxic damage. PMID:19840193

  4. Activated microglia cause reversible apoptosis of pheochromocytoma cells, inducing their cell death by phagocytosis.

    PubMed

    Hornik, Tamara C; Vilalta, Anna; Brown, Guy C

    2016-01-01

    Some apoptotic processes, such as phosphatidylserine exposure, are potentially reversible and do not necessarily lead to cell death. However, phosphatidylserine exposure can induce phagocytosis of a cell, resulting in cell death by phagocytosis: phagoptosis. Phagoptosis of neurons by microglia might contribute to neuropathology, whereas phagoptosis of tumour cells by macrophages might limit cancer. Here, we examined the mechanisms by which BV-2 microglia killed co-cultured pheochromocytoma (PC12) cells that were either undifferentiated or differentiated into neuronal cells. We found that microglia activated by lipopolysaccharide rapidly phagocytosed PC12 cells. Activated microglia caused reversible phosphatidylserine exposure on and reversible caspase activation in PC12 cells, and caspase inhibition prevented phosphatidylserine exposur and decreased subsequent phagocytosis. Nitric oxide was necessary and sufficient to induce the reversible phosphatidylserine exposure and phagocytosis. The PC12 cells were not dead at the time they were phagocytised, and inhibition of their phagocytosis left viable cells. Cell loss was inhibited by blocking phagocytosis mediated by phosphatidylserine, MFG-E8, vitronectin receptors or P2Y6 receptors. Thus, activated microglia can induce reversible apoptosis of target cells, which is insufficient to cause apoptotic cell death, but sufficient to induce their phagocytosis and therefore cell death by phagoptosis.

  5. CD4 T cell activation by B cells in human Leishmania (Viannia) infection

    PubMed Central

    2014-01-01

    Background An effective adaptive immune response requires activation of specific CD4 T cells. The capacity of B cells to activate CD4 T cells in human cutaneous leishmaniasis caused by Leishmania (Viannia) has not been evaluated. Methods CD4 T cell activation by B cells of cutaneous leishmaniasis patients was evaluated by culture of PBMCs or purified B cells and CD4 T cells with Leishmania panamensis antigens. CD4 T cell and B cell activation markers were evaluated by flow cytometry and 13 cytokines were measured in supernatants with a bead-based capture assay. The effect of Leishmania antigens on BCR-mediated endocytosis of ovalbumin was evaluated in the Ramos human B cell line by targeting the antigen with anti-IgM-biotin and anti-biotin-ovalbumin-FITC. Results Culture of PBMCs from cutaneous leishmaniasis patients with Leishmania antigens resulted in upregulation of the activation markers CD25 and CD69 as well as increased frequency of CD25hiCD127- cells among CD4 T cells. Concomitantly, B cells upregulated the costimulatory molecule CD86. These changes were not observed in PBMCs from healthy subjects, indicating participation of Leishmania-specific lymphocytes expanded in vivo. Purified B cells from these patients, when interacting with purified CD4 T cells and Leishmania antigens, were capable of inducing significant increases in CD25 and CD69 expression and CD25hiCD127- frequency in CD4 T cells. These changes were associated with upregulation of CD86 in B cells. Comparison of changes in CD4 T cell activation parameters between PBMC and B cell/CD4 T cell cultures showed no statistically significant differences; further, significant secretion of IFN-γ, TNF-α, IL-6 and IL-13 was induced in both types of cultures. Additionally, culture with Leishmania antigens enhanced BCR-mediated endocytosis of ovalbumin in Ramos human B cells. Conclusions The capacity of B cells specific for Leishmania antigens in peripheral blood of cutaneous leishmaniasis patients to

  6. Monocytic Cells Become Less Compressible but More Deformable upon Activation

    PubMed Central

    Ravetto, Agnese; Wyss, Hans M.; Anderson, Patrick D.; den Toonder, Jaap M. J.; Bouten, Carlijn V. C.

    2014-01-01

    Aims Monocytes play a significant role in the development of atherosclerosis. During the process of inflammation, circulating monocytes become activated in the blood stream. The consequent interactions of the activated monocytes with the blood flow and endothelial cells result in reorganization of cytoskeletal proteins, in particular of the microfilament structure, and concomitant changes in cell shape and mechanical behavior. Here we investigate the full elastic behavior of activated monocytes in relation to their cytoskeletal structure to obtain a better understanding of cell behavior during the progression of inflammatory diseases such as atherosclerosis. Methods and Results The recently developed Capillary Micromechanics technique, based on exposing a cell to a pressure difference in a tapered glass microcapillary, was used to measure the deformation of activated and non-activated monocytic cells. Monitoring the elastic response of individual cells up to large deformations allowed us to obtain both the compressive and the shear modulus of a cell from a single experiment. Activation by inflammatory chemokines affected the cytoskeletal organization and increased the elastic compressive modulus of monocytes with 73–340%, while their resistance to shape deformation decreased, as indicated by a 25–88% drop in the cell’s shear modulus. This decrease in deformability is particularly pronounced at high strains, such as those that occur during diapedesis through the vascular wall. Conclusion Overall, monocytic cells become less compressible but more deformable upon activation. This change in mechanical response under different modes of deformation could be important in understanding the interplay between the mechanics and function of these cells. In addition, our data are of direct relevance for computational modeling and analysis of the distinct monocytic behavior in the circulation and the extravascular space. Lastly, an understanding of the changes of monocyte

  7. Cytolytic activity of Naegleria fowleri cell-free extract.

    PubMed

    Fulford, D E; Marciano-Cabral, F

    1986-11-01

    The cytotoxic activity of a cell-free extract of Naegleria fowleri amebae on B103 rat nerve cells in culture was investigated. The cell-free extract was prepared by subjecting lysed amebae to centrifugation at 100,000 g for 1 h, precipitation of the supernatant fluid with 30-60% saturated ammonium sulfate, and desalting by group exclusion chromatography utilizing Sephadex G-25. The supernatant fluid recovered from this procedure was termed the soluble fraction. The Naegleria cytotoxic activity present in the soluble fraction was assayed by 51Cr released from labeled B103 cells. The Naegleria soluble fraction, when added to nerve cells, elicited blebs on the B103 target cell surface within 5 min after exposure to the fraction. Later, holes were observed in the B103 cell plasma membrane. These alterations were never observed on untreated B103 cells. Phospholipase A, phospholipase C, and protease activities were associated with the desalted ammonium sulfate-precipitable cytotoxic activity of N. fowleri cell-free lysate. The cytotoxic activity was impaired by ethylenediamine-tetraacetate (EDTA), phospholipase A inhibitor (Rosenthal's reagent), heating at 50 degrees C for 15 min, or incubation at pH 10 for 60 min. Repeated freeze-thawing and inhibitors of proteolytic enzymes had no effect on the cytotoxic activity. Small amounts of ethanol (5% v/v) enhanced cytotoxic activity of the fraction. Phospholipases A and C, as well as other as yet unidentified cytolytic factors may be responsible for producing 51Cr release from target cells by the soluble fraction of N. fowleri extracts.

  8. Surface free energy activated high-throughput cell sorting.

    PubMed

    Zhang, Xinru; Zhang, Qian; Yan, Tao; Jiang, Zeyi; Zhang, Xinxin; Zuo, Yi Y

    2014-09-16

    Cell sorting is an important screening process in microbiology, biotechnology, and clinical research. Existing methods are mainly based on single-cell analysis as in flow cytometric and microfluidic cell sorters. Here we report a label-free bulk method for sorting cells by differentiating their characteristic surface free energies (SFEs). We demonstrated the feasibility of this method by sorting model binary cell mixtures of various bacterial species, including Pseudomonas putida KT2440, Enterococcus faecalis ATCC 29212, Salmonella Typhimurium ATCC 14028, and Escherichia coli DH5α. This method can effectively separate 10(10) bacterial cells within 30 min. Individual bacterial species can be sorted with up to 96% efficiency, and the cell viability ratio can be as high as 99%. In addition to its capacity of sorting evenly mixed bacterial cells, we demonstrated the feasibility of this method in selecting and enriching cells of minor populations in the mixture (presenting at only 1% in quantity) to a purity as high as 99%. This SFE-activated method may be used as a stand-alone method for quickly sorting a large quantity of bacterial cells or as a prescreening tool for microbial discrimination. Given its advantages of label-free, high-throughput, low cost, and simplicity, this SFE-activated cell sorting method has potential in various applications of sorting cells and abiotic particles. PMID:25184988

  9. Patterns of plasminogen activator production in cultured normal embryonic cells

    PubMed Central

    1977-01-01

    Cultured normal low-passage embryo fibroblasts, from a number of species, and two untransformed clones of a Balb/3T3 line elaborate increasing amounts of plasminogen activator (PA) as they approach confluence; the low-passage cells then lose this PA activity after reaching confluence, while the 3T3 cells retain it indefinitely. Even at their peaks, however, the PA activities of the low-passage cells remain well below those of the corresponding virally or spontaneously transformed cells. The PA increases in normal cells are probably a result of PA production rather than of adsorption of secreted PA to the cell surface, or of changes in cell-associated protease inhibitors. The elaboration of PA by normal cells is dependent upon their metabolic activity, such that the level of serum supplementation and the growth phase of the culture directly influence the level of cell-associated PA observed. In addition, there may be a component of serum which exerts a negative control on PA production and which is not an acid-labile protease inhibitor. PMID:21193

  10. Utilizing Chimeric Antigen Receptors to Direct Natural Killer Cell Activity

    PubMed Central

    Hermanson, David L.; Kaufman, Dan S.

    2015-01-01

    Natural killer (NK) cells represent an attractive lymphocyte population for cancer immunotherapy due to their ability to lyse tumor targets without prior sensitization and without need for human leukocyte antigens-matching. Chimeric antigen receptors (CARs) are able to enhance lymphocyte targeting and activation toward diverse malignancies. CARs consist of an external recognition domain (typically a small chain variable fragment) directed at a specific tumor antigen that is linked with one or more intracellular signaling domains that mediate lymphocyte activation. Most CAR studies have focused on their expression in T cells. However, use of CARs in NK cells is starting to gain traction because they provide a method to redirect these cells more specifically to target refractory cancers. CAR-mediated anti-tumor activity has been demonstrated using NK cell lines, as well as NK cells isolated from peripheral blood, and NK cells produced from human pluripotent stem cells. This review will outline the CAR constructs that have been reported in NK cells with a focus on comparing the use of different signaling domains in combination with other co-activating domains. PMID:25972867

  11. Real-time transposable element activity in individual live cells.

    PubMed

    Kim, Neil H; Lee, Gloria; Sherer, Nicholas A; Martini, K Michael; Goldenfeld, Nigel; Kuhlman, Thomas E

    2016-06-28

    The excision and reintegration of transposable elements (TEs) restructure their host genomes, generating cellular diversity involved in evolution, development, and the etiology of human diseases. Our current knowledge of TE behavior primarily results from bulk techniques that generate time and cell ensemble averages, but cannot capture cell-to-cell variation or local environmental and temporal variability. We have developed an experimental system based on the bacterial TE IS608 that uses fluorescent reporters to directly observe single TE excision events in individual cells in real time. We find that TE activity depends upon the TE's orientation in the genome and the amount of transposase protein in the cell. We also find that TE activity is highly variable throughout the lifetime of the cell. Upon entering stationary phase, TE activity increases in cells hereditarily predisposed to TE activity. These direct observations demonstrate that real-time live-cell imaging of evolution at the molecular and individual event level is a powerful tool for the exploration of genome plasticity in stressed cells. PMID:27298350

  12. Real-time transposable element activity in individual live cells

    PubMed Central

    Lee, Gloria; Martini, K. Michael

    2016-01-01

    The excision and reintegration of transposable elements (TEs) restructure their host genomes, generating cellular diversity involved in evolution, development, and the etiology of human diseases. Our current knowledge of TE behavior primarily results from bulk techniques that generate time and cell ensemble averages, but cannot capture cell-to-cell variation or local environmental and temporal variability. We have developed an experimental system based on the bacterial TE IS608 that uses fluorescent reporters to directly observe single TE excision events in individual cells in real time. We find that TE activity depends upon the TE’s orientation in the genome and the amount of transposase protein in the cell. We also find that TE activity is highly variable throughout the lifetime of the cell. Upon entering stationary phase, TE activity increases in cells hereditarily predisposed to TE activity. These direct observations demonstrate that real-time live-cell imaging of evolution at the molecular and individual event level is a powerful tool for the exploration of genome plasticity in stressed cells. PMID:27298350

  13. Autoimmunity, polyclonal B-cell activation and infection.

    PubMed

    Granholm, N A; Cavallo, T

    1992-02-01

    It is widely believed that autoimmunity is an integral part of the immune system, and that genetic, immunologic, hormonal, environmental and other factors contribute to the pathogenesis of autoimmune disease. Thus, autoimmune disease may represent an abnormal expression of immune functions instead of loss of tolerance to self, and it can be organ specific or systemic in its manifestations. We review the various factors that contribute to the development of autoimmune disease; we also review the mechanisms of polyclonal B-cell activation, with emphasis on the role of infectious agents. We consider systemic lupus erythematosus in humans and in experimental animals as prototypic autoimmune disease, and we summarize data to indicate that polyclonal B-cell activation is central to the pathogenesis of systemic autoimmune disease. The effect of polyclonal B-cell activation, brought about by injections of a B-cell activator-lipopolysaccharide from Gram-negative bacteria-is sufficient to cause autoimmune disease in an immunologically normal host. In fact, autoimmune disease can be arrested if excessive polyclonal B-cell activation is suppressed; alternatively, autoimmune disease can be exacerbated if polyclonal B-cell activation is enhanced. We explore the mechanism of tissue injury when autoimmune disease is induced or exacerbated, and we consider the pathogenic roles of autoantibodies, immune complexes, complement, the blood cell carrier system, and the mononuclear phagocyte system. Although polyclonal B-cell activation may be the mechanism whereby various factors can cause or exacerbate systemic autoimmune disease, polyclonal B-cell activation may cause autoimmune disease on its own.

  14. Laser activated nanothermolysis of leukemia cells monitored by photothermal microscopy

    NASA Astrophysics Data System (ADS)

    Lapotko, Dmitri; Lukianova, Ekaterina; Shnip, Alexander; Zheltov, George; Potapnev, Michail; Savitsky, Valeriy; Klimovich, Olga; Oraevsky, Alexander

    2005-04-01

    We are developing new diagnostic and therapeutic technologies for leukemia based on selective targeting of leukemia cells with gold nanoparticles and thermomechanical destruction of the tumor cells with laser-induced microbubbles. Clusters of spherical gold nanoparticles that have strong optical absorption of laser pulses at 532 nm served as nucleation sites of vapor microbubbles. The nanoparticles were targeted selectively to leukemia cells using leukemia-specific surface receptors and a set of two monoclonal antibodies. Application of a primary myeloid-specific antibody to tumor cells followed by targeting the cells with 30-nm nanoparticles conjugated with a secondary antibody (IgG) resulted in formation of nanoparticulate clusters due to aggregation of IgGs. Formation of clusters resulted in substantial decrease of the damage threshold for target cells. The results encourage development of Laser Activated Nanothermolysis as a Cell Elimination Therapy (LANCET) for leukemia. The proposed technology can be applied separately or in combination with chemotherapy for killing leukemia cells without damage to other blood cells. Potential appli