Science.gov

Sample records for activated notch signaling

  1. PKCζ regulates Notch receptor routing and activity in a Notch signaling-dependent manner.

    PubMed

    Sjöqvist, Marika; Antfolk, Daniel; Ferraris, Saima; Rraklli, Vilma; Haga, Cecilia; Antila, Christian; Mutvei, Anders; Imanishi, Susumu Y; Holmberg, Johan; Jin, Shaobo; Eriksson, John E; Lendahl, Urban; Sahlgren, Cecilia

    2014-04-01

    Activation of Notch signaling requires intracellular routing of the receptor, but the mechanisms controlling the distinct steps in the routing process is poorly understood. We identify PKCζ as a key regulator of Notch receptor intracellular routing. When PKCζ was inhibited in the developing chick central nervous system and in cultured myoblasts, Notch-stimulated cells were allowed to undergo differentiation. PKCζ phosphorylates membrane-tethered forms of Notch and regulates two distinct routing steps, depending on the Notch activation state. When Notch is activated, PKCζ promotes re-localization of Notch from late endosomes to the nucleus and enhances production of the Notch intracellular domain, which leads to increased Notch activity. In the non-activated state, PKCζ instead facilitates Notch receptor internalization, accompanied with increased ubiquitylation and interaction with the endosomal sorting protein Hrs. Collectively, these data identify PKCζ as a key regulator of Notch trafficking and demonstrate that distinct steps in intracellular routing are differentially modulated depending on Notch signaling status.

  2. Kinase active Misshapen regulates Notch signaling in Drosophila melanogaster.

    PubMed

    Mishra, Abhinava K; Sachan, Nalani; Mutsuddi, Mousumi; Mukherjee, Ashim

    2015-11-15

    Notch signaling pathway represents a principal cellular communication system that plays a pivotal role during development of metazoans. Drosophila misshapen (msn) encodes a protein kinase, which is related to the budding yeast Ste20p (sterile 20 protein) kinase. In a genetic screen, using candidate gene approach to identify novel kinases involved in Notch signaling, we identified msn as a novel regulator of Notch signaling. Data presented here suggest that overexpression of kinase active form of Msn exhibits phenotypes similar to Notch loss-of-function condition and msn genetically interacts with components of Notch signaling pathway. Kinase active form of Msn associates with Notch receptor and regulate its signaling activity. We further show that kinase active Misshapen leads to accumulation of membrane-tethered form of Notch. Moreover, activated Msn also depletes Armadillo and DE-Cadherin from adherens junctions. Thus, this study provides a yet unknown mode of regulation of Notch signaling by Misshapen. PMID:26431585

  3. PKCζ regulates Notch receptor routing and activity in a Notch signaling-dependent manner

    PubMed Central

    Sjöqvist, Marika; Antfolk, Daniel; Ferraris, Saima; Rraklli, Vilma; Haga, Cecilia; Antila, Christian; Mutvei, Anders; Imanishi, Susumu Y; Holmberg, Johan; Jin, Shaobo; Eriksson, John E; Lendahl, Urban; Sahlgren, Cecilia

    2014-01-01

    Activation of Notch signaling requires intracellular routing of the receptor, but the mechanisms controlling the distinct steps in the routing process is poorly understood. We identify PKCζ as a key regulator of Notch receptor intracellular routing. When PKCζ was inhibited in the developing chick central nervous system and in cultured myoblasts, Notch-stimulated cells were allowed to undergo differentiation. PKCζ phosphorylates membrane-tethered forms of Notch and regulates two distinct routing steps, depending on the Notch activation state. When Notch is activated, PKCζ promotes re-localization of Notch from late endosomes to the nucleus and enhances production of the Notch intracellular domain, which leads to increased Notch activity. In the non-activated state, PKCζ instead facilitates Notch receptor internalization, accompanied with increased ubiquitylation and interaction with the endosomal sorting protein Hrs. Collectively, these data identify PKCζ as a key regulator of Notch trafficking and demonstrate that distinct steps in intracellular routing are differentially modulated depending on Notch signaling status. PMID:24662486

  4. Small molecule activation of NOTCH signaling inhibits acute myeloid leukemia.

    PubMed

    Ye, Qi; Jiang, Jue; Zhan, Guanqun; Yan, Wanyao; Huang, Liang; Hu, Yufeng; Su, Hexiu; Tong, Qingyi; Yue, Ming; Li, Hua; Yao, Guangmin; Zhang, Yonghui; Liu, Hudan

    2016-01-01

    Aberrant activation of the NOTCH signaling pathway is crucial for the onset and progression of T cell leukemia. Yet recent studies also suggest a tumor suppressive role of NOTCH signaling in acute myeloid leukemia (AML) and reactivation of this pathway offers an attractive opportunity for anti-AML therapies. N-methylhemeanthidine chloride (NMHC) is a novel Amaryllidaceae alkaloid that we previously isolated from Zephyranthes candida, exhibiting inhibitory activities in a variety of cancer cells, particularly those from AML. Here, we report NMHC not only selectively inhibits AML cell proliferation in vitro but also hampers tumor development in a human AML xenograft model. Genome-wide gene expression profiling reveals that NMHC activates the NOTCH signaling. Combination of NMHC and recombinant human NOTCH ligand DLL4 achieves a remarkable synergistic effect on NOTCH activation. Moreover, pre-inhibition of NOTCH by overexpression of dominant negative MAML alleviates NMHC-mediated cytotoxicity in AML. Further mechanistic analysis using structure-based molecular modeling as well as biochemical assays demonstrates that NMHC docks in the hydrophobic cavity within the NOTCH1 negative regulatory region (NRR), thus promoting NOTCH1 proteolytic cleavage. Our findings thus establish NMHC as a potential NOTCH agonist that holds great promises for future development as a novel agent beneficial to patients with AML. PMID:27211848

  5. Small molecule activation of NOTCH signaling inhibits acute myeloid leukemia

    PubMed Central

    Ye, Qi; Jiang, Jue; Zhan, Guanqun; Yan, Wanyao; Huang, Liang; Hu, Yufeng; Su, Hexiu; Tong, Qingyi; Yue, Ming; Li, Hua; Yao, Guangmin; Zhang, Yonghui; Liu, Hudan

    2016-01-01

    Aberrant activation of the NOTCH signaling pathway is crucial for the onset and progression of T cell leukemia. Yet recent studies also suggest a tumor suppressive role of NOTCH signaling in acute myeloid leukemia (AML) and reactivation of this pathway offers an attractive opportunity for anti-AML therapies. N-methylhemeanthidine chloride (NMHC) is a novel Amaryllidaceae alkaloid that we previously isolated from Zephyranthes candida, exhibiting inhibitory activities in a variety of cancer cells, particularly those from AML. Here, we report NMHC not only selectively inhibits AML cell proliferation in vitro but also hampers tumor development in a human AML xenograft model. Genome-wide gene expression profiling reveals that NMHC activates the NOTCH signaling. Combination of NMHC and recombinant human NOTCH ligand DLL4 achieves a remarkable synergistic effect on NOTCH activation. Moreover, pre-inhibition of NOTCH by overexpression of dominant negative MAML alleviates NMHC-mediated cytotoxicity in AML. Further mechanistic analysis using structure-based molecular modeling as well as biochemical assays demonstrates that NMHC docks in the hydrophobic cavity within the NOTCH1 negative regulatory region (NRR), thus promoting NOTCH1 proteolytic cleavage. Our findings thus establish NMHC as a potential NOTCH agonist that holds great promises for future development as a novel agent beneficial to patients with AML. PMID:27211848

  6. Notch signaling promotes osteoclast maturation and resorptive activity.

    PubMed

    Ashley, Jason W; Ahn, Jaimo; Hankenson, Kurt D

    2015-11-01

    The role of Notch signaling in osteoclast differentiation is controversial with conflicting experimental evidence indicating both stimulatory and inhibitory roles. Differences in experimental protocols and in vivo versus in vitro models may explain the discrepancies between studies. In this study, we investigated cell autonomous roles of Notch signaling in osteoclast differentiation and function by altering Notch signaling during osteoclast differentiation using stimulation with immobilized ligands Jagged1 or Delta-like1 or by suppression with γ-secretase inhibitor DAPT or transcriptional inhibitor SAHM1. Stimulation of Notch signaling in committed osteoclast precursors resulted in larger osteoclasts with a greater number of nuclei and resorptive activity whereas suppression resulted in smaller osteoclasts with fewer nuclei and suppressed resorptive activity. Conversely, stimulation of Notch signaling in osteoclast precursors prior to induction of osteoclastogenesis resulted in fewer osteoclasts. Our data support a mechanism of context-specific Notch signaling effects wherein Notch stimulation inhibits commitment to osteoclast differentiation, but enhances the maturation and function of committed precursors.

  7. Activation of the Notch signaling pathway promotes neurovascular repair after traumatic brain injury

    PubMed Central

    Ran, Qi-shan; Yu, Yun-hu; Fu, Xiao-hong; Wen, Yuan-chao

    2015-01-01

    The Notch signaling pathway plays a key role in angiogenesis and endothelial cell formation, but it remains unclear whether it is involved in vascular repair by endothelial progenitor cells after traumatic brain injury. Therefore, in the present study, we controlled the Notch signaling pathway using overexpression and knockdown constructs. Activation of the Notch signaling pathway by Notch1 or Jagged1 overexpression enhanced the migration, invasiveness and angiogenic ability of endothelial progenitor cells. Suppression of the Notch signaling pathway with Notch1 or Jagged1 siRNAs reduced the migratory capacity, invasiveness and angiogenic ability of endothelial progenitor cells. Activation of the Notch signaling pathway in vivo in a rat model of mild traumatic brain injury promoted neurovascular repair. These findings suggest that the activation of the Notch signaling pathway promotes blood vessel formation and tissue repair after brain trauma. PMID:26487853

  8. Notch signaling activation in pediatric low-grade astrocytoma.

    PubMed

    Brandt, William D; Schreck, Karisa C; Bar, Eli E; Taylor, Isabella; Marchionni, Luigi; Raabe, Eric; Eberhart, Charles G; Rodriguez, Fausto J

    2015-02-01

    Pilocytic astrocytoma (PA) is the most common primary brain tumor in children; various signaling pathways have been implicated in its biology. The Notch signaling pathway has been found to play a role in the development, stem cell biology, and pathogenesis of several cancers, but its role in PA has not been investigated. We studied alterations in Notch signaling components in tumor tissue from 18 patients with PA and 4 with other low-grade astrocytomas to identify much needed therapeutic targets. We found that Notch pathway members were overexpressed at the mRNA (NOTCH1, NOTCH2, HEY1, HEY2) and protein (HES1) levels in PAs at various anatomic sites compared with non-neoplastic brain samples. These changes were not associated with specific BRAF alterations. Inhibiting the Notch pathway in the pediatric low-grade astrocytoma cell lines Res186 and Res259 using either RNA interference or a γ-secretase inhibitor resulted in variable, but significant, reduction in cell growth and migration. This study suggests a potential role for Notch signaling in pediatric low-grade astrocytoma tumorigenesis and that Notch signaling may be a viable pathway therapeutic target. PMID:25575134

  9. Effects of S1 Cleavage on the Structure, Surface Export, and Signaling Activity of Human Notch1 and Notch2

    SciTech Connect

    Gordon, Wendy R.; Vardar-Ulu, Didem; L'Heureux, Sarah; Ashworth, Todd; Malecki, Michael J.; Sanchez-Irizarry, Cheryll; McArthur, Debbie G.; Histen, Gavin; Mitchell, Jennifer L.; Aster, Jon C.; Blacklow, Stephen C.

    2009-09-25

    Notch receptors are normally cleaved during maturation by a furin-like protease at an extracellular site termed S1, creating a heterodimer of non-covalently associated subunits. The S1 site lies within a key negative regulatory region (NRR) of the receptor, which contains three highly conserved Lin12/Notch repeats and a heterodimerization domain (HD) that interact to prevent premature signaling in the absence of ligands. Because the role of S1 cleavage in Notch signaling remains unresolved, we investigated the effect of S1 cleavage on the structure, surface trafficking and ligand-mediated activation of human Notch1 and Notch2, as well as on ligand-independent activation of Notch1 by mutations found in human leukemia. The X-ray structure of the Notch1 NRR after furin cleavage shows little change when compared with that of an engineered Notch1 NRR lacking the S1-cleavage loop. Likewise, NMR studies of the Notch2 HD domain show that the loop containing the S1 site can be removed or cleaved without causing a substantial change in its structure. However, Notch1 and Notch2 receptors engineered to resist S1 cleavage exhibit unexpected differences in surface delivery and signaling competence: S1-resistant Notch1 receptors exhibit decreased, but detectable, surface expression and ligand-mediated receptor activation, whereas S1-resistant Notch2 receptors are fully competent for cell surface delivery and for activation by ligands. Variable dependence on S1 cleavage also extends to T-ALL-associated NRR mutations, as common class 1 mutations display variable decrements in ligand-independent activation when introduced into furin-resistant receptors, whereas a class 2 mutation exhibits increased signaling activity. S1 cleavage has distinct effects on the surface expression of Notch1 and Notch2, but is not generally required for physiologic or pathophysiologic activation of Notch proteins. These findings are consistent with models for receptor activation in which ligand-binding or

  10. Activation of Notch1 signaling is required for β-catenin–mediated human primary melanoma progression

    PubMed Central

    Balint, Klara; Xiao, Min; Pinnix, Chelsea C.; Soma, Akinobu; Veres, Imre; Juhasz, Istvan; Brown, Eric J.; Capobianco, Anthony J.; Herlyn, Meenhard; Liu, Zhao-Jun

    2005-01-01

    Notch is a highly conserved transmembrane receptor that determines cell fate. Notch signaling denotes cleavage of the Notch intracellular domain, its translocation to the nucleus, and subsequent activation of target gene transcription. Involvement of Notch signaling in several cancers is well known, but its role in melanoma remains poorly characterized. Here we show that the Notch1 pathway is activated in human melanoma. Blocking Notch signaling suppressed whereas constitutive activation of the Notch1 pathway enhanced primary melanoma cell growth both in vitro and in vivo yet had little effect on metastatic melanoma cells. Activation of Notch1 signaling enabled primary melanoma cells to gain metastatic capability. Furthermore, the oncogenic effect of Notch1 on primary melanoma cells was mediated by β-catenin, which was upregulated following Notch1 activation. Inhibiting β-catenin expression reversed Notch1-enhanced tumor growth and metastasis. Our data therefore suggest a β-catenin–dependent, stage-specific role for Notch1 signaling in promoting the progression of primary melanoma. PMID:16239965

  11. Nandrolone reduces activation of Notch signaling in denervated muscle associated with increased Numb expression

    SciTech Connect

    Liu, Xin-Hua; Yao, Shen; Qiao, Rui-Fang; Levine, Alice C.; Kirschenbaum, Alexander; Pan, Jiangping; Wu, Yong; Qin, Weiping; Bauman, William A.; Cardozo, Christopher P.

    2011-10-14

    Highlights: {yields} Nerve transection increased Notch signaling in paralyzed muscle. {yields} Nandrolone prevented denervation-induced Notch signaling. {yields} Nandrolone induced the expression of an inhibitor of the Notch signaling, Numb. {yields} Reduction of denervation-induced Notch signaling by nandrolone is likely through upregulation of Numb. -- Abstract: Nandrolone, an anabolic steroid, slows denervation-atrophy in rat muscle. The molecular mechanisms responsible for this effect are not well understood. Androgens and anabolic steroids activate Notch signaling in animal models of aging and thereby mitigate sarcopenia. To explore the molecular mechanisms by which nandrolone prevents denervation-atrophy, we investigated the effects of nandrolone on Notch signaling in denervated rat gastrocnemius muscle. Denervation significantly increased Notch activity reflected by elevated levels of nuclear Notch intracellular domain (NICD) and expression of Hey1 (a Notch target gene). Activation was greatest at 7 and 35 days after denervation but remained present at 56 days after denervation. Activation of Notch in denervated muscle was prevented by nandrolone associated with upregulated expression of Numb mRNA and protein. These data demonstrate that denervation activates Notch signaling, and that nandrolone abrogates this response associated with increased expression of Numb, suggesting a potential mechanism by which nandrolone reduces denervation-atrophy.

  12. Notch1 signaling regulates chondrogenic lineage determination through Sox9 activation.

    PubMed

    Haller, R; Schwanbeck, R; Martini, S; Bernoth, K; Kramer, J; Just, U; Rohwedel, J

    2012-03-01

    Notch signaling is involved in several cell lineage determination processes during embryonic development. Recently, we have shown that Sox9 is most likely a primary target gene of Notch1 signaling in embryonic stem cells (ESCs). By using our in vitro differentiation protocol for chondrogenesis from ESCs through embryoid bodies (EBs) together with our tamoxifen-inducible system to activate Notch1, we analyzed the function of Notch signaling and its induction of Sox9 during EB differentiation towards the chondrogenic lineage. Temporary activation of Notch1 during early stages of EB, when lineage determination occurs, was accompanied by rapid and transient Sox9 upregulation and resulted in induction of chondrogenic differentiation during later stages of EB cultivation. Using siRNA targeting Sox9, we knocked down and adjusted this early Notch1-induced Sox9 expression peak to non-induced levels, which led to reversion of Notch1-induced chondrogenic differentiation. In contrast, continuous Notch1 activation during EB cultivation resulted in complete inhibition of chondrogenic differentiation. Furthermore, a reduction and delay of cardiac differentiation observed in EBs after early Notch1 activation was not reversed by siRNA-mediated Sox9 knockdown. Our data indicate that Notch1 signaling has an important role during early stages of chondrogenic lineage determination by regulation of Sox9 expression. PMID:21869831

  13. Activation of the Notch signaling pathway in response to pulp capping of rat molars.

    PubMed

    Løvschall, H; Tummers, M; Thesleff, I; Füchtbauer, E-M; Poulsen, K

    2005-08-01

    Notch signaling is an evolutionarily conserved pathway that controls the developmental choices made by individual cells. Cells communicate via Notch receptors and their ligands, which direct decisions on the fate of stem cells according to the states of their neighbors. In this study we explored Notch signaling after the pulp capping of adult first upper rat molars. The wound was capped with calcium hydroxide. In situ hybridization revealed an increased expression of Notch signaling genes on day 1, which showed a tendency to decrease on day 3. Notch1 increased in the subodontoblast zone and close to the lesion limited to a few cells. Notch2 increased in pulp stroma surrounded by coronal odontoblasts. Notch1 and, especially, Notch3 expression increased, corresponding to perivascular cell groups. A low increase of ligand expression was observed near the injury with Delta1 expression along the dentin wall and Jagged1 in the stroma. Expression of the downstream target, Hes1, was observed along the lesion and adjacent dentin walls. Hes5 expression was not observed. The results indicate that Notch signaling is activated in response to injury and associated with the differentiation of pulp cells into perivascular cells and odontoblasts. The findings are consistent with the concept that the Notch pathway controls stem cell fate during pulp regeneration. PMID:16048523

  14. Non-Canonical Notch Signaling Drives Activation and Differentiation of Peripheral CD4+ T Cells

    PubMed Central

    Dongre, Anushka; Surampudi, Lalitha; Lawlor, Rebecca G.; Fauq, Abdul H.; Miele, Lucio; Golde, Todd E.; Minter, Lisa M.; Osborne, Barbara A.

    2014-01-01

    Cleavage of the Notch receptor via a γ-secretase, results in the release of the active intra-cellular domain of Notch that migrates to the nucleus and interacts with RBP-Jκ, resulting in the activation of downstream target genes. This canonical Notch signaling pathway has been documented to influence T cell development and function. However, the mechanistic details underlying this process remain obscure. In addition to RBP-Jκ, the intra-cellular domain of Notch also interacts with other proteins in the cytoplasm and nucleus, giving rise to the possibility of an alternate, RBP-Jκ independent Notch pathway. However, the contribution of such RBP-Jκ independent, “non-canonical” Notch signaling in regulating peripheral T cell responses is unknown. In this report, we specifically demonstrate the requirement of Notch1 for regulating signal strength and signaling events distal to the T cell receptor in peripheral CD4+ T cells. By using mice with a conditional deletion in Notch1 or RBP-Jκ, we show that Notch1 regulates activation and proliferation of CD4+ T cells independently of RBP-Jκ. Furthermore, differentiation to TH1 and iTreg lineages although Notch dependent, is RBP-Jκ independent. Our striking observations demonstrate that many of the cell-intrinsic functions of Notch occur independently of RBP-Jκ. Such non-canonical regulation of these processes likely occurs through NF-κ B. This reveals a previously unknown, novel role of non-canonical Notch signaling in regulating peripheral T cell responses. PMID:24611064

  15. Notch Signaling Components

    PubMed Central

    Liu, Zhi-Yan; Wu, Tao; Li, Qing; Wang, Min-Cong; Jing, Li; Ruan, Zhi-Ping; Yao, Yu; Nan, Ke-Jun; Guo, Hui

    2016-01-01

    Abstract Non-small-cell lung cancer (NSCLC) is a lethal and aggressive malignancy. Currently, the identities of prognostic and predictive makers of NSCLC have not been fully established. Dysregulated Notch signaling has been implicated in many human malignancies, including NSCLC. However, the prognostic value of measuring Notch signaling and the utility of developing Notch-targeted therapies in NSCLC remain inconclusive. The present study investigated the association of individual Notch receptor and ligand levels with lung adenocarcinoma (ADC) and squamous cell carcinoma (SCC) prognosis using the Kaplan-Meier plotte database. This online database encompasses 2437 lung cancer samples. Hazard ratios with 95% confidence intervals were calculated. The results showed that higher Notch1, Notch2, JAG1, and DLL1 mRNA expression predicted better overall survival (OS) in lung ADC, but showed no significance in SCC patients. Elevated Notch3, JAG2, and DLL3 mRNA expression was associated with poor OS of ADC patients, but not in SCC patients. There was no association between Notch4 and OS in either lung ADC or SCC patients. In conclusion, the set of Notch1, Notch2, JAG1, DLL1 and that of Notch3, JAG2, DLL3 played opposing prognostic roles in lung ADC patients. Neither set of Notch receptors and ligands was indicative of lung SCC prognosis. Notch signaling could serve as promising marker to predict outcomes in lung ADC patients. The distinct features of lung cancer subtypes and Notch components should be considered when developing future Notch-targeted therapies. PMID:27196489

  16. Regulation of Breast Cancer Stem Cell Activity by Signalling Through the Notch4 Receptor

    PubMed Central

    Harrison, Hannah; Farnie, Gillian; Howell, Sacha J; Rock, Rebecca E; Stylianou, Spyros; Brennan, Keith R; Bundred, Nigel J; Clarke, Robert B

    2012-01-01

    The Notch receptor signalling pathway plays an important role in breast development, regulation of stem cells and differentiation of luminal progenitor cells. The pathway also plays a significant role in breast cancer development and progression. However, which of the Notch receptors that regulate breast cancer stem cells is unknown. We assessed stem cell activity in breast cancer cell lines and nine primary human tumour samples. In vitro and in vivo breast cancer stem cell activity was enriched using selection of anoikis resistant cells or cells expressing the membrane phenotype ESA+/CD44+/CD24low. We compared the activation of Notch receptors in the breast cancer stem cell-enriched population to luminally differentiated cells and studied the effects of pathway inhibition, both in vitro and in vivo. We find that Notch4 signalling activity is 8-fold higher in the breast cancer stem cell-enriched cells compared to the differentiated cells while Notch1 activation is 4-fold lower in breast cancer stem cells. Furthermore, pharmacological or genetic Notch inhibition markedly reduced breast cancer stem cell activity in vitro, and significantly reduced tumour formation in vivo. Importantly, cells with Notch4 knock-down using specific shRNA formed fewer mammosphere colonies than Notch1 knock-down cells. In vivo Notch1 knock-down, like pharmacological inhibition, reduced the number and size of tumours but Notch4 knock-down suppressed tumour initiation completely. Our findings indicate that Notch4-targeted therapies will be more effective than targeting Notch1 in suppressing breast cancer recurrence initiated by breast cancer stem cells. PMID:20068161

  17. Notch signaling in gastrointestinal tract (review).

    PubMed

    Katoh, Masuko; Katoh, Masaru

    2007-01-01

    Notch signaling is one of key pathways constituting the stem cell signaling network. DLL1, DLL3, DLL4, JAG1 and JAG2 with DSL domain are typical Notch ligands, while DNER, F3/Contactin and NB-3 without DSL domain are atypical Notch ligands. Notch-ligand binding to NOTCH1, NOTCH2, NOTCH3 or NOTCH4 receptor induces the receptor proteolysis by metalloprotease and gamma-secretase to release Notch intracellular domain (NICD). Typical Notch ligands transduce signals to the CSL-NICD-Mastermind complex for the maintenance of stem or progenitor (transit-amplifying) cells through transcriptional activation of HES1, HES5, HES7, HEY1, HEY2 and HEYL genes, and also to the NF-kappaB-NICD complex for the augmentation of NF-kappaB signaling. Atypical Notch ligands transduce signals to the CSL-NICD-Deltex complex for the differentiation of progenitor cells through MAG transcriptional activation. Notch signals are transduced to the canonical pathway (CSL-NICD-Mastermind signaling cascade) or the non-canonical pathway (NF-kappaB-NICD and CSL-NICD-Deltex signaling cascades) based on the expression profile of Notch ligands, Notch receptors, and Notch signaling modifiers. Canonical Notch signaling is activated in the stem or progenitor domain of gastrointestinal epithelium, such as basal layer in esophagus and lower part of the crypt in colon. Notch signaling to inhibit secretory cell differentiation is oncogenic in gastric cancer and colorectal cancer, while Notch signaling to promote keratinocyte differentiation is anti-oncogenic in esophageal squamous cell carcinoma (SCC). Single nucleotide polymorphism (SNP), epigenetic change, and genetic alteration of genes encoding Notch signaling-associated molecules will be utilized as biomarkers for gastrointestinal cancer. gamma-Secretase inhibitors, functioning as Notch signaling inhibitors, will be applied as anti-cancer drugs for gastric cancer and colorectal cancer.

  18. Notch signaling genes

    PubMed Central

    Terragni, Jolyon; Zhang, Guoqiang; Sun, Zhiyi; Pradhan, Sriharsa; Song, Lingyun; Crawford, Gregory E; Lacey, Michelle; Ehrlich, Melanie

    2014-01-01

    Notch intercellular signaling is critical for diverse developmental pathways and for homeostasis in various types of stem cells and progenitor cells. Because Notch gene products need to be precisely regulated spatially and temporally, epigenetics is likely to help control expression of Notch signaling genes. Reduced representation bisulfite sequencing (RRBS) indicated significant hypomethylation in myoblasts, myotubes, and skeletal muscle vs. many nonmuscle samples at intragenic or intergenic regions of the following Notch receptor or ligand genes: NOTCH1, NOTCH2, JAG2, and DLL1. An enzymatic assay of sites in or near these genes revealed unusually high enrichment of 5-hydroxymethylcytosine (up to 81%) in skeletal muscle, heart, and cerebellum. Epigenetics studies and gene expression profiles suggest that hypomethylation and/or hydroxymethylation help control expression of these genes in heart, brain, myoblasts, myotubes, and within skeletal muscle myofibers. Such regulation could promote cell renewal, cell maintenance, homeostasis, and a poised state for repair of tissue damage. PMID:24670287

  19. Cisplatin selects for stem-like cells in osteosarcoma by activating Notch signaling

    PubMed Central

    Yang, Jian; Gao, Tian; Simões, Bruno M.; Eyre, Rachel; Guo, Weichun; Clarke, Robert B.

    2016-01-01

    Notch signaling regulates normal stem cells and is also thought to regulate cancer stem cells (CSCs). Recent data indicate that Notch signaling plays a role in the development and progression of osteosarcoma, however the regulation of Notch in chemo-resistant stem-like cells has not yet been fully elucidated. In this study we generated cisplatin-resistant osteosarcoma cells by treating them with sub-lethal dose of cisplatin, sufficient to induce DNA damage responses. Cisplatin-resistant osteosarcoma cells exhibited lower proliferation, enhanced spheroid formation and more mesenchymal characteristics than cisplatin-sensitive cells, were enriched for Stro-1+/CD117+ cells and showed increased expression of stem cell-related genes. A similar effect was observed in vivo, and in addition in vivo tumorigenicity was enhanced during serial transplantation. Using several publicly available datasets, we identified that Notch expression was closely associated with osteosarcoma stem cells and chemotherapy resistance. We confirmed that cisplatin-induced enrichment of osteosarcoma stem cells was mediated through Notch signaling in vitro, and immunohistochemistry showed that cleaved Notch1 (NICD1) positive cells were significantly increased in a relapsed xenograft which had received cisplatin treatment. Furthermore, pretreatment with a γ-secretase inhibitor (GSI) to prevent Notch signalling inhibited cisplatin-enriched osteosarcoma stem cell activity in vitro, including Stro-1+/CD117+ double positive cells and spheroid formation capacity. The Notch inhibitor DAPT also prevented tumor recurrence in resistant xenograft tumors. Overall, our results show that cisplatin induces the enrichment of osteosarcoma stem-like cells through Notch signaling, and targeted inactivation of Notch may be useful for the elimination of CSCs and overcoming drug resistance. PMID:27102300

  20. Notch Activation of Ca2+ Signaling in the Development of Hypoxic Pulmonary Vasoconstriction and Pulmonary Hypertension

    PubMed Central

    Smith, Kimberly A.; Voiriot, Guillaume; Tang, Haiyang; Fraidenburg, Dustin R.; Song, Shanshan; Yamamura, Hisao; Yamamura, Aya; Guo, Qiang; Wan, Jun; Pohl, Nicole M.; Tauseef, Mohammad; Bodmer, Rolf; Ocorr, Karen; Thistlethwaite, Patricia A.; Haddad, Gabriel G.; Powell, Frank L.; Makino, Ayako; Mehta, Dolly

    2015-01-01

    Hypoxic pulmonary vasoconstriction (HPV) is an important physiological response that optimizes the ventilation/perfusion ratio. Chronic hypoxia causes vascular remodeling, which is central to the pathogenesis of hypoxia-induced pulmonary hypertension (HPH). We have previously shown that Notch3 is up-regulated in HPH and that activation of Notch signaling enhances store-operated Ca2+ entry (SOCE), an important mechanism that contributes to pulmonary arterial smooth muscle cell (PASMC) proliferation and contraction. Here, we investigate the role of Notch signaling in HPV and hypoxia-induced enhancement of SOCE. We examined SOCE in human PASMCs exposed to hypoxia and pulmonary arterial pressure in mice using the isolated perfused/ventilated lung method. Wild-type and canonical transient receptor potential (TRPC) 6−/− mice were exposed to chronic hypoxia to induce HPH. Inhibition of Notch signaling with a γ-secretase inhibitor attenuates hypoxia-enhanced SOCE in PASMCs and hypoxia-induced increase in pulmonary arterial pressure. Our results demonstrate that hypoxia activates Notch signaling and up-regulates TRPC6 channels. Additionally, treatment with a Notch ligand can mimic hypoxic responses. Finally, inhibition of TRPC6, either pharmacologically or genetically, attenuates HPV, hypoxia-enhanced SOCE, and the development of HPH. These results demonstrate that hypoxia-induced activation of Notch signaling mediates HPV and the development of HPH via functional activation and up-regulation of TRPC6 channels. Understanding the molecular mechanisms that regulate cytosolic free Ca2+ concentration and PASMC proliferation is critical to elucidation of the pathogenesis of HPH. Targeting Notch regulation of TRPC6 will be beneficial in the development of novel therapies for pulmonary hypertension associated with hypoxia. PMID:25569851

  1. EZH2 expands breast stem cells through activation of NOTCH1 signaling.

    PubMed

    Gonzalez, Maria E; Moore, Heather M; Li, Xin; Toy, Kathy A; Huang, Wei; Sabel, Michael S; Kidwell, Kelley M; Kleer, Celina G

    2014-02-25

    Breast cancer is the second-leading cause of cancer-related deaths in women, but the details of how it begins remain elusive. Increasing evidence supports the association of aggressive triple-negative (TN) breast cancer with heightened expression of the Polycomb group protein Enhancer of Zeste Homolog 2 (EZH2) and increased tumor-initiating cells (TICs). However, mechanistic links between EZH2 and TICs are unclear, and direct demonstration of a tumorigenic function of EZH2 in vivo is lacking. Here, we identify an unrecognized EZH2/NOTCH1 axis that controls breast TICs in TN breast carcinomas. EZH2 overexpression increases NOTCH1 expression and signaling, and inhibition of NOTCH1 activity prevents EZH2-mediated stem cell expansion in nontumorigenic breast cells. We uncover a unique role of EZH2 in activating, rather than repressing, NOTCH1 signaling through binding to the NOTCH1 promoter in TN breast cancer cells. EZH2 binding is independent of its catalytic histone H3 lysine 27 methyltransferase activity and of the Polycomb Repressive Complex 2 but corresponds instead to transcriptional activation marks. In vivo, EZH2 knockdown decreases the onset and volume of xenografts derived from TN breast TICs. Conversely, transgenic EZH2 overexpression accelerates mammary tumor initiation and increases NOTCH1 activation in mouse mammary tumor virus-neu mice. Consonant with these findings, in clinical samples, high levels of EZH2 are significantly associated with activated NOTCH1 protein and increased TICs in TN invasive carcinomas. These data reveal a functional and mechanistic link between EZH2 levels, NOTCH1 signaling activation, and TICs, and provide previously unidentified evidence that EZH2 enhances breast cancer initiation. PMID:24516139

  2. EZH2 expands breast stem cells through activation of NOTCH1 signaling

    PubMed Central

    Gonzalez, Maria E.; Moore, Heather M.; Li, Xin; Toy, Kathy A.; Huang, Wei; Sabel, Michael S.; Kidwell, Kelley M.; Kleer, Celina G.

    2014-01-01

    Breast cancer is the second-leading cause of cancer-related deaths in women, but the details of how it begins remain elusive. Increasing evidence supports the association of aggressive triple-negative (TN) breast cancer with heightened expression of the Polycomb group protein Enhancer of Zeste Homolog 2 (EZH2) and increased tumor-initiating cells (TICs). However, mechanistic links between EZH2 and TICs are unclear, and direct demonstration of a tumorigenic function of EZH2 in vivo is lacking. Here, we identify an unrecognized EZH2/NOTCH1 axis that controls breast TICs in TN breast carcinomas. EZH2 overexpression increases NOTCH1 expression and signaling, and inhibition of NOTCH1 activity prevents EZH2-mediated stem cell expansion in nontumorigenic breast cells. We uncover a unique role of EZH2 in activating, rather than repressing, NOTCH1 signaling through binding to the NOTCH1 promoter in TN breast cancer cells. EZH2 binding is independent of its catalytic histone H3 lysine 27 methyltransferase activity and of the Polycomb Repressive Complex 2 but corresponds instead to transcriptional activation marks. In vivo, EZH2 knockdown decreases the onset and volume of xenografts derived from TN breast TICs. Conversely, transgenic EZH2 overexpression accelerates mammary tumor initiation and increases NOTCH1 activation in mouse mammary tumor virus-neu mice. Consonant with these findings, in clinical samples, high levels of EZH2 are significantly associated with activated NOTCH1 protein and increased TICs in TN invasive carcinomas. These data reveal a functional and mechanistic link between EZH2 levels, NOTCH1 signaling activation, and TICs, and provide previously unidentified evidence that EZH2 enhances breast cancer initiation. PMID:24516139

  3. Constitutively active Notch1 induces growth arrest of HPV-positive cervical cancer cells via separate signaling pathways

    SciTech Connect

    Talora, Claudio; Cialfi, Samantha; Segatto, Oreste; Morrone, Stefania; Kim Choi, John; Frati, Luigi; Paolo Dotto, Gian; Gulino, Alberto; Screpanti, Isabella . E-mail: isabella.screpanti@uniroma1.it

    2005-05-01

    Notch signaling plays a key role in cell-fate determination and differentiation in different organisms and cell types. Several reports suggest that Notch signaling may be involved in neoplastic transformation. However, in primary keratinocytes, Notch1 can function as a tumor suppressor. Similarly, in HPV-positive cervical cancer cells, constitutively active Notch1 signaling was found to cause growth suppression. Activated Notch1 in these cells represses viral E6/E7 expression through AP-1 down-modulation, resulting in increased p53 expression and a block of pRb hyperphosphorylation. Here we show that in cervical cancer cell lines in which Notch1 ability to repress AP-1 activity is impaired, Notch1-enforced expression elicits an alternative pathway leading to growth arrest. Indeed, activated Notch1 signaling suppresses activity of the helix-loop-helix transcription factor E47, via ERK1/2 activation, resulting in inhibition of cell cycle progression. Moreover, we found that RBP-J{kappa}-dependent Notch signaling is specifically repressed in cervical cancer cells and this repression could provide one such mechanism that needs to be activated for cervical carcinogenesis. Finally, we show that inhibition of endogenous Notch1 signaling, although results in a proliferative advantage, sensitizes cervical cancer cell lines to drug-induced apoptosis. Together, our results provide novel molecular insights into Notch1-dependent growth inhibitory effects, counteracting the transforming potential of HPV.

  4. Activation of Notch1 signaling in stromal fibroblasts inhibits melanoma growth by upregulating WISP-1.

    PubMed

    Shao, H; Cai, L; Grichnik, J M; Livingstone, A S; Velazquez, O C; Liu, Z-J

    2011-10-20

    The tumor microenvironment is emerging as an important target for cancer therapy. Fibroblasts (Fbs) within the tumor stroma are critically involved in promoting tumor growth and angiogenesis through secretion of soluble factors, synthesis of extracellular matrix and direct cell-cell interaction. In this work, we aim to alter the biological activity of stromal Fbs by modulating the Notch1 signaling pathway. We show that Fbs engineered to constitutively activate the Notch1 pathway significantly inhibit melanoma growth and tumor angiogenesis. We determine that the inhibitory effect of 'Notch-engineered' Fbs is mediated by increased secretion of Wnt-induced secreted protein-1 (WISP-1) as the effects of Notch1 activation in Fbs are reversed by shRNA-mediated blockade of WISP-1. When 'Notch-engineered' Fbs are co-grafted with melanoma cells in SCID mice, shRNA-mediated blockade of WISP-1 reverses the tumor-suppressive phenotype of the 'Notch-engineered' Fbs, significantly increases melanoma growth and tumor angiogenesis. Consistent with these findings, supplement of recombinant WISP-1 protein inhibits melanoma cell growth in vitro. In addition, WISP-1 is modestly expressed in melanoma-activated Fbs but highly expressed in inactivated Fbs. Evaluation of human melanoma skin biopsies indicates that expression of WISP-1 is significantly lower in melanoma nests and surrounding areas filled with infiltrated immune cells than in the adjacent dermis unaffected by the melanoma. Overall, our study shows that constitutive activation of the Notch1 pathway confers Fbs with a suppressive phenotype to melanoma growth, partially through WISP-1. Thus, targeting tumor stromal Fbs by activating Notch signaling and/or increasing WISP-1 may represent a novel therapeutic approach to combat melanoma.

  5. Opposing actions of endocannabinoids on cholangiocarcinoma growth is via the differential activation of Notch signaling

    SciTech Connect

    Frampton, Gabriel; Coufal, Monique; Li, Huang; Ramirez, Jonathan; DeMorrow, Sharon

    2010-05-15

    The endocannabinoids anandamide (AEA) and 2-arachidonylglycerol (2-AG) have opposing effects on cholangiocarcinoma growth. Implicated in cancer, Notch signaling requires the {gamma}-secretase complex for activation. The aims of this study were to determine if the opposing effects of endocannabinoids depend on the differential activation of the Notch receptors and to demonstrate that the differential activation of these receptors are due to presenilin 1 containing- and presenilin 2 containing-{gamma}-secretase complexes. Mz-ChA-1 cells were treated with AEA or 2-AG. Notch receptor expression, activation, and nuclear translocation were determined. Specific roles for Notch 1 and 2 on cannabinoid-induced effects were determined by transient transfection of Notch 1 or 2 shRNA vectors before stimulation with AEA or 2-AG. Expression of presenilin 1 and 2 was determined after AEA or 2-AG treatment, and the involvement of presenilin 1 and 2 in the cannabinoid-induced effects was demonstrated in cell lines with low presenilin 1 or 2 expression. Antiproliferative effects of AEA required increased Notch 1 mRNA, activation, and nuclear translocation, whereas the growth-promoting effects induced by 2-AG required increased Notch 2 mRNA expression, activation, and nuclear translocation. AEA increased presenilin 1 expression and recruitment into the {gamma}-secretase complex, whereas 2-AG increased expression and recruitment of presenilin 2. The development of novel therapeutic strategies aimed at modulating the endocannabinoid system or mimicking the mode of action of AEA on Notch signaling pathways would prove beneficial for cholangiocarcinoma management.

  6. Notch Signaling in Pancreatic Development

    PubMed Central

    Li, Xu-Yan; Zhai, Wen-Jun; Teng, Chun-Bo

    2015-01-01

    The Notch signaling pathway plays a significant role in embryonic cell fate determination and adult tissue homeostasis. Various studies have demonstrated the deep involvement of Notch signaling in the development of the pancreas and the lateral inhibition of Notch signaling in pancreatic progenitor differentiation and maintenance. The targeted inactivation of the Notch pathway components promotes premature differentiation of the endocrine pancreas. However, there is still the contrary opinion that Notch signaling specifies the endocrine lineage. Here, we review the current knowledge of the Notch signaling pathway in pancreatic development and its crosstalk with the Wingless and INT-1 (Wnt) and fibroblast growth factor (FGF) pathways. PMID:26729103

  7. Ehrlichia chaffeensis TRP120 Activates Canonical Notch Signaling To Downregulate TLR2/4 Expression and Promote Intracellular Survival

    PubMed Central

    Lina, Taslima T.; Dunphy, Paige S.; Luo, Tian

    2016-01-01

    ABSTRACT Ehrlichia chaffeensis preferentially targets mononuclear phagocytes and survives through a strategy of subverting innate immune defenses, but the mechanisms are unknown. We have shown E. chaffeensis type 1 secreted tandem repeat protein (TRP) effectors are involved in diverse molecular pathogen-host interactions, such as the TRP120 interaction with the Notch receptor-cleaving metalloprotease ADAM17. In the present study, we demonstrate E. chaffeensis, via the TRP120 effector, activates the canonical Notch signaling pathway to promote intracellular survival. We found that nuclear translocation of the transcriptionally active Notch intracellular domain (NICD) occurs in response to E. chaffeensis or recombinant TRP120, resulting in upregulation of Notch signaling pathway components and target genes notch1, adam17, hes, and hey. Significant differences in canonical Notch signaling gene expression levels (>40%) were observed during early and late stages of infection, indicating activation of the Notch pathway. We linked Notch pathway activation specifically to the TRP120 effector, which directly interacts with the Notch metalloprotease ADAM17. Using pharmacological inhibitors and small interfering RNAs (siRNAs) against γ-secretase enzyme, Notch transcription factor complex, Notch1, and ADAM17, we demonstrated that Notch signaling is required for ehrlichial survival. We studied the downstream effects and found that E. chaffeensis TRP120-mediated activation of the Notch pathway causes inhibition of the extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK) pathways required for PU.1 and subsequent Toll-like receptor 2/4 (TLR2/4) expression. This investigation reveals a novel mechanism whereby E. chaffeensis exploits the Notch pathway to evade the host innate immune response for intracellular survival. PMID:27381289

  8. Notch Activity Modulates the Responsiveness of Neural Progenitors to Sonic Hedgehog Signaling

    PubMed Central

    Kong, Jennifer H.; Yang, Linlin; Dessaud, Eric; Chuang, Katherine; Moore, Destaye M.; Rohatgi, Rajat; Briscoe, James; Novitch, Bennett G.

    2015-01-01

    Summary Throughout the developing nervous system, neural stem and progenitor cells give rise to diverse classes of neurons and glia in a spatially and temporally coordinated manner. In the ventral spinal cord, much of this diversity emerges through the morphogen actions of Sonic hedgehog (Shh). Interpretation of the Shh gradient depends on both the amount of ligand and duration of exposure, but the mechanisms permitting prolonged responses to Shh are not well understood. We demonstrate that Notch signaling plays an essential role in this process, enabling neural progenitors to attain sufficiently high levels of Shh pathway activity needed to direct the ventral-most cell fates. Notch activity regulates subcellular localization of the Shh receptor Patched1, gating the translocation of the key effector Smoothened to primary cilia and its downstream signaling activities. These data reveal an unexpected role for Notch shaping the interpretation of the Shh morphogen gradient and influencing cell fate determination. PMID:25936505

  9. Crucial role of the Rap G protein signal in Notch activation and leukemogenicity of T-cell acute lymphoblastic leukemia.

    PubMed

    Doi, Keiko; Imai, Takahiko; Kressler, Christopher; Yagita, Hideo; Agata, Yasutoshi; Vooijs, Marc; Hamazaki, Yoko; Inoue, Joe; Minato, Nagahiro

    2015-01-23

    The Rap G protein signal regulates Notch activation in early thymic progenitor cells, and deregulated Rap activation (Rap(high)) results in the development of Notch-dependent T-cell acute lymphoblastic leukemia (T-ALL). We demonstrate that the Rap signal is required for the proliferation and leukemogenesis of established Notch-dependent T-ALL cell lines. Attenuation of the Rap signal by the expression of a dominant-negative Rap1A17 or Rap1GAP, Sipa1, in a T-ALL cell line resulted in the reduced Notch processing at site 2 due to impaired maturation of Adam10. Inhibition of the Rap1 prenylation with a geranylgeranyl transferase inhibitor abrogated its membrane-anchoring to Golgi-network and caused reduced proprotein convertase activity required for Adam10 maturation. Exogenous expression of a mature form of Adam10 overcame the Sipa1-induced inhibition of T-ALL cell proliferation. T-ALL cell lines expressed Notch ligands in a Notch-signal dependent manner, which contributed to the cell-autonomous Notch activation. Although the initial thymic blast cells barely expressed Notch ligands during the T-ALL development from Rap(high) hematopoietic progenitors in vivo, the ligands were clearly expressed in the T-ALL cells invading extrathymic vital organs. These results reveal a crucial role of the Rap signal in the Notch-dependent T-ALL development and the progression.

  10. Notch and Wnt/β-catenin signaling pathway play important roles in activating liver cancer stem cells

    PubMed Central

    Wang, Ronghua; Sun, Qian; Wang, Peng; Liu, Man; Xiong, Si; Luo, Jing; Huang, Hai; Du, Qiang; Geller, David A.; Cheng, Bin

    2016-01-01

    Human hepatocellular carcinoma (HCC) is driven and maintained by liver cancer stem cells (LCSCs) that display stem cell properties. These LCSCs are promoted by the intersecting of Notch and Wnt/β-Catenin signaling pathways. In this study, we demonstrate that LCSCs with markers CD90, CD24, CD13, and CD133 possess stem properties of self-renewal and tumorigenicity in NOD/SCID mice. The increased expression of these markers was correlated with advanced disease stage, larger tumors, and worse overall survival in 61 HCC cases. We also found that both Notch and Wnt/β-catenin signaling pathways played important roles in increasing the stem-ness characteristics of LCSCs. Our data suggested that Notch1 was downstream of Wnt/β-catenin. The active form of Notch1 intracellular domain (NICD) expression depended on Wnt/β-catenin pathway activation. Moreover, Notch1 negatively contributed to Wnt/β-catenin signaling modulation. Knock down of Notch1 with lentivirus N1ShRNA up-regulated the active form of β-catenin. Ectopic expression of NICD with LV-Notch1 in LCSCs attenuated β-catenin/TCF dependent luciferase activity significantly. In addition, there was a non-proteasome mediated feedback loop between Notch1 and Wnt/β-catenin signaling in LCSCs. The central role of Notch and the Wnt/β-catenin signaling pathway in LCSCs may provide an attractive therapeutic strategy against HCC. PMID:26735577

  11. Gamma-glutamylcyclotransferase promotes the growth of human glioma cells by activating Notch-Akt signaling.

    PubMed

    Shen, Shang-Hang; Yu, Ning; Liu, Xi-Yao; Tan, Guo-Wei; Wang, Zhan-Xiang

    2016-03-18

    Glioma as an aggressive type tumor is rapidly growing and has become one of the leading cause of cancer-related death worldwide. γ-Glutamylcyclotransferase (GGCT) has been shown as a diagnostic marker in various cancers. To reveal whether there is a correlation between GGCT and human glioma, GGCT expression in human glioma tissues and cell lines was first determined. We found that GGCT expression was up-regulated in human glioma tissues and cell lines. Further, we demonstrate that GGCT knockdown inhibits glioma cell T98G and U251 proliferation and colony formation, whereas GGCT overexpression leads to oppose effects. GGCT overexpression promotes the expression of Notch receptors and activates Akt signaling in glioma cells, and Notch-Akt signaling is activated in glioma tissues with high expression of GGCT. Finally, we show that inhibition of Notch-Akt signaling with Notch inhibitor MK-0752 blocks the effects of GGCT on glioma proliferation and colony formation. In conclusion, GGCT plays a critical role in glioma cell proliferation and may be a potential cancer therapeutic target. PMID:26828272

  12. Tetrandrine induces autophagy and differentiation by activating ROS and Notch1 signaling in leukemia cells.

    PubMed

    Liu, Ting; Men, Qiuxu; Wu, Guixian; Yu, Chunrong; Huang, Zan; Liu, Xin; Li, Wenhua

    2015-04-10

    All-trans retinoic acid (ATRA) is a differentiating agent for the treatment of acute promyelocytic leukemia (APL). However, the therapeutic efficacy of ATRA has limitations. Tetrandrine is a traditional Chinese medicinal herb extract with antitumor effects. In this study, we investigated the effects of tetrandrine on human PML-RARα-positive acute promyelocytic leukemia cells. Tetrandrine inhibited tumors in vivo. It induced autophagy and differentiation by triggering ROS generation and activating Notch1 signaling. Tetrandrine induced autophagy and differentiation in M5 type patient primary leukemia cells. The in vivo results indicated that low concentrations of tetrandrine inhibited leukemia cells proliferation and induced autophagy and then facilitated their differentiation, by activating ROS and Notch1 signaling. We suggest that tetrandrine is a potential agent for the treatment of APL by inducing differentiation of leukemia cells. PMID:25797266

  13. O-fucose monosaccharide of Drosophila Notch has a temperature-sensitive function and cooperates with O-glucose glycan in Notch transport and Notch signaling activation.

    PubMed

    Ishio, Akira; Sasamura, Takeshi; Ayukawa, Tomonori; Kuroda, Junpei; Ishikawa, Hiroyuki O; Aoyama, Naoki; Matsumoto, Kenjiroo; Gushiken, Takuma; Okajima, Tetsuya; Yamakawa, Tomoko; Matsuno, Kenji

    2015-01-01

    Notch (N) is a transmembrane receptor that mediates the cell-cell interactions necessary for many cell fate decisions. N has many epidermal growth factor-like repeats that are O-fucosylated by the protein O-fucosyltransferase 1 (O-Fut1), and the O-fut1 gene is essential for N signaling. However, the role of the monosaccharide O-fucose on N is unclear, because O-Fut1 also appears to have O-fucosyltransferase activity-independent functions, including as an N-specific chaperon. Such an enzymatic activity-independent function could account for the essential role of O-fut1 in N signaling. To evaluate the role of the monosaccharide O-fucose modification in N signaling, here we generated a knock-in mutant of O-fut1 (O-fut1(R245A knock-in)), which expresses a mutant protein that lacks O-fucosyltransferase activity but maintains the N-specific chaperon activity. Using O-fut1(R245A knock-in) and other gene mutations that abolish the O-fucosylation of N, we found that the monosaccharide O-fucose modification of N has a temperature-sensitive function that is essential for N signaling. The O-fucose monosaccharide and O-glucose glycan modification, catalyzed by Rumi, function redundantly in the activation of N signaling. We also showed that the redundant function of these two modifications is responsible for the presence of N at the cell surface. Our findings elucidate how different forms of glycosylation on a protein can influence the protein's functions.

  14. Notch-1 Signalling Is Activated in Brain Arteriovenous Malformations in Humans

    ERIC Educational Resources Information Center

    ZhuGe, Qichuan; Zhong, Ming; Zheng, WeiMing; Yang, Guo-Yuan; Mao, XiaoOu; Xie, Lin; Chen, Gourong; Chen, Yongmei; Lawton, Michael T.; Young, William L.; Greenberg, David A.; Jin, Kunlin

    2009-01-01

    A role for the Notch signalling pathway in the formation of arteriovenous malformations during development has been suggested. However, whether Notch signalling is involved in brain arteriovenous malformations in humans remains unclear. Here, we performed immunohistochemistry on surgically resected brain arteriovenous malformations and found that,…

  15. Loss of TGF-β Adaptor β2SP Activates Notch Signaling and SOX9 Expression in Esophageal Adenocarcinoma

    PubMed Central

    Song, Shumei; Maru, Dipen M.; Ajani, Jaffer A.; Chan, Chia-Hsin; Honjo, Soichiro; Lin, Hui-Kuan; Correa, Arlene; Hofstetter, Wayne L.; Davila, Marta; Stroehlein, John; Mishra, Lopa

    2013-01-01

    TGF-β and Notch signaling pathways play important roles in regulating self-renewal of stem cells and gastrointestinal carcinogenesis. Loss of TGF-β signaling components activates Notch signaling in esophageal adenocarcinoma, but the basis for this effect has been unclear. Here we report that loss of TGF-β adapter β2SP (SPNB2) activates Notch signaling and its target SOX9 in primary fibroblasts or esophageal adenocarcinoma cells. Expression of the stem cell marker SOX9 was markedly higher in esophageal adenocarcinoma tumor tissues than normal tissues, and its higher nuclear staining in tumors correlated with poorer survival and lymph node invasion in esophageal adenocarcinoma patients. Downregulation of β2SP by lentivirus short hairpin RNA increased SOX9 transcription and expression, enhancing nuclear localization for both active Notch1 (intracellular Notch1, ICN1) and SOX9. In contrast, reintroduction into esophageal adenocarcinoma cells of β2SP and a dominant-negative mutant of the Notch coactivator mastermind-like (dnMAN) decreased SOX9 promoter activity. Tumor sphere formation and invasive capacity in vitro and tumor growth in vivo were increased in β2SP-silenced esophageal adenocarcinoma cells. Conversely, SOX9 silencing rescued the phenotype of esophageal adenocarcinoma cells with loss of β2SP. Interaction between Smad3 and ICN1 via Smad3 MH1 domain was also observed, with loss of β2SP increasing the binding between these proteins, inducing expression of Notch targets SOX9 and C-MYC, and decreasing expression of TGF-β targets p21(CDKN1A), p27 (CDKN1B), and E-cadherin. Taken together, our findings suggest that loss of β2SP switches TGF-β signaling from tumor suppression to tumor promotion by engaging Notch signaling and activating SOX9. PMID:23536563

  16. Activation of nuclear PTEN by inhibition of Notch signaling induces G2/M cell cycle arrest in gastric cancer.

    PubMed

    Kim, S-J; Lee, H-W; Baek, J-H; Cho, Y-H; Kang, H G; Jeong, J S; Song, J; Park, H-S; Chun, K-H

    2016-01-14

    Mutation in PTEN has not yet been detected, but its function as a tumor suppressor is inactivated in many cancers. In this study we determined that, activated Notch signaling disables PTEN by phosphorylation and thereby contributes to gastric tumorigenesis. Notch inhibition by small interfering RNA or γ-secretase inhibitor (GSI) induced mitotic arrest and apoptosis in gastric cancer cells. Notch inhibition induced dephosphorylation in the C-terminal domain of PTEN, which led to PTEN nuclear localization. Overexpression of activated Notch1-induced phosphorylation of PTEN and reversed GSI-induced mitotic arrest. Dephosphorylated nuclear PTEN caused prometaphase arrest by interaction with the cyclin B1-CDK1 complex, resulting in their accumulation in the nucleus and subsequent apoptosis. We found a correlation between high expression levels of Notch1 and low survival rates and, similarly, between reduced nuclear PTEN expression and increasing the TNM classification of malignant tumours stages in malignant tissues from gastric cancer patients. The growth of Notch1-depleted gastric tumors was significantly retarded in xenografted mice, and in addition, PTEN deletion restored growth similar to control tumors. We also demonstrated that combination treatment with GSI and chemotherapeutic agents significantly reduced the orthotopically transplanted gastric tumors in mice without noticeable toxicity. Overall, our findings suggest that inhibition of Notch signaling can be employed as a PTEN activator, making it a potential target for gastric cancer therapy.

  17. Notch Signaling in Neuroendocrine Tumors

    PubMed Central

    Crabtree, Judy S.; Singleton, Ciera S.; Miele, Lucio

    2016-01-01

    Carcinoids and neuroendocrine tumors (NETs) are a heterogeneous group of tumors that arise from the neuroendocrine cells of the GI tract, endocrine pancreas, and the respiratory system. NETs remain significantly understudied with respect to molecular mechanisms of pathogenesis, particularly the role of cell fate signaling systems such as Notch. The abundance of literature on the Notch pathway is a testament to its complexity in different cellular environments. Notch receptors can function as oncogenes in some contexts and tumor suppressors in others. The genetic heterogeneity of NETs suggests that to fully understand the roles and the potential therapeutic implications of Notch signaling in NETs, a comprehensive analysis of Notch expression patterns and potential roles across all NET subtypes is required. PMID:27148486

  18. Notch signaling drives multiple myeloma induced osteoclastogenesis

    PubMed Central

    Colombo, Michela; Thümmler, Katja; Mirandola, Leonardo; Garavelli, Silvia; Todoerti, Katia; Apicella, Luana; Lazzari, Elisa; Lancellotti, Marialuigia; Platonova, Natalia; Akbar, Moeed; Chiriva-Internati, Maurizio; Soutar, Richard; Neri, Antonino; Goodyear, Carl S.; Chiaramonte, Raffaella

    2014-01-01

    Multiple myeloma (MM) is closely associated with bone destruction. Once migrated to the bone marrow, MM cells unbalance bone formation and resorption via the recruitment and maturation of osteoclast precursors. The Notch pathway plays a key role in different types of cancer and drives several biological processes relevant in MM, including cell localization within the bone marrow, proliferation, survival and pharmacological resistance. Here we present evidences that MM can efficiently drive osteoclastogenesis by contemporaneously activating Notch signaling on tumor cells and osteoclasts through the aberrant expression of Notch ligands belonging to the Jagged family. Active Notch signaling in MM cells induces the secretion of the key osteoclastogenic factor, RANKL, which can be boosted in the presence of stromal cells. In turn, MM cells-derived RANKL causes the upregulation of its receptor, RANK, and Notch2 in pre-osteoclasts. Notch2 stimulates osteoclast differentiation by promoting autocrine RANKL signaling. Finally, MM cells through Jagged ligands expression can also activate Notch signaling in pre-osteoclast by direct contact. Such synergism between tumor cells and pre-osteoclasts in MM-induced osteoclastogenesis can be disrupted by silencing tumor-derived Jagged1 and 2. These results make the Jagged ligands new promising therapeutic targets in MM to contrast bone disease and the associated co-morbidities. PMID:25257302

  19. Naringin Stimulates Osteogenic Differentiation of Rat Bone Marrow Stromal Cells via Activation of the Notch Signaling Pathway

    PubMed Central

    Yu, Guo-yong; Zheng, Gui-zhou; Chang, Bo; Hu, Qin-xiao; Lin, Fei-xiang; Liu, De-zhong; Wu, Chu-cheng; Du, Shi-xin

    2016-01-01

    Naringin is a major flavonoid found in grapefruit and is an active compound extracted from the Chinese herbal medicine Rhizoma Drynariae. Naringin is a potent stimulator of osteogenic differentiation and has potential application in preventing bone loss. However, the signaling pathway underlying its osteogenic effect remains unclear. We hypothesized that the osteogenic activity of naringin involves the Notch signaling pathway. Rat bone marrow stromal cells (BMSCs) were cultured in osteogenic medium containing-naringin, with or without DAPT (an inhibitor of Notch signaling), the effects on ALP activity, calcium deposits, osteogenic genes (ALP, BSP, and cbfa1), adipogenic maker gene PPARγ2 levels, and Notch expression were examined. We found that naringin dose-dependently increased ALP activity and Alizarin red S staining, and treatment at the optimal concentration (50 μg/mL) increased mRNA levels of osteogenic genes and Notch1 expression, while decreasing PPARγ2 mRNA levels. Furthermore, treatment with DAPT partly reversed effects of naringin on BMSCs, as judged by decreases in naringin-induced ALP activity, calcium deposits, and osteogenic genes expression, as well as upregulation of PPARγ2 mRNA levels. These results suggest that the osteogenic effect of naringin partly involves the Notch signaling pathway. PMID:27069482

  20. BCAS2 Regulates Delta-Notch Signaling Activity through Delta Pre-mRNA Splicing in Drosophila Wing Development

    PubMed Central

    Huang, Chu-Wei; Chen, Po-Han; Chan, Shih-Peng; Tsao, Yeou-Ping; Lee, Hsiu-Hsiang; Wu, June-Tai; Chen, Show-Li

    2015-01-01

    Previously, we showed that BCAS2 is essential for Drosophila viability and functions in pre-mRNA splicing. In this study, we provide strong evidence that BCAS2 regulates the activity of Delta-Notch signaling via Delta pre-mRNA splicing. Depletion of dBCAS2 reduces Delta mRNA expression and leads to accumulation of Delta pre-mRNA, resulting in diminished transcriptions of Delta-Notch signaling target genes, such as cut and E(spl)m8. Furthermore, ectopic expression of human BCAS2 (hBCAS2) and Drosophila BCAS2 (dBCAS2) in a dBCAS2-deprived fly can rescue dBCAS2 depletion-induced wing damage to the normal phenotypes. These rescued phenotypes are correlated with the restoration of Delta pre-mRNA splicing, which affects Delta-Notch signaling activity. Additionally, overexpression of Delta can rescue the wing deformation by deprivation of dBCAS2; and the depletion of dBCAS2 can restore the aberrant eye associated with Delta-overexpressing retinas; providing supporting evidence for the regulation of Delta-Notch signaling by dBCAS2. Taken together, dBCAS2 participates in Delta pre-mRNA splicing that affects the regulation of Delta-Notch signaling in Drosophila wing development. PMID:26091239

  1. The Notch signaling pathway as a mediator of tumor survival

    PubMed Central

    Pine, Sharon R.

    2013-01-01

    The Notch signaling pathway is evolutionarily conserved and responsible for cell fate determination in the developing embryo and mature tissue. At the molecular level, ligand binding activates Notch signaling by liberating the Notch intracellular domain, which then translocates into the nucleus and activates gene transcription. Despite the elegant simplicity of this pathway, which lacks secondary messengers or a signaling cascade, Notch regulates gene expression in a highly context- and cell-type-dependent manner. Notch signaling is frequently dysregulated, most commonly by overactivation, across many cancers and confers a survival advantage on tumors, leading to poorer outcomes for patients. Recent studies demonstrate how Notch signaling increases tumor cell proliferation and provide evidence that active Notch signaling maintains the cancer stem-cell pool, induces epithelial–mesenchymal transition and promotes chemoresistance. These studies imply that pharmacological inhibition of Notch signaling may refine control of cancer therapy and improve patient survival. Gamma secretase inhibitors (GSIs) are drugs that inhibit Notch signaling and may be successful in controlling cancer cell growth in conjunction with standard chemotherapy, but substantial side effects have hampered their widespread use. Recent efforts have been aimed at the development of antibodies against specific Notch receptors and ligands with the hope of limiting side effects while providing the same therapeutic benefit as GSIs. Together, studies characterizing Notch signaling and modulation have offered hope that refined methods targeting Notch may become powerful tools in anticancer therapeutics. PMID:23585460

  2. The Notch signaling pathway as a mediator of tumor survival.

    PubMed

    Capaccione, Kathleen M; Pine, Sharon R

    2013-07-01

    The Notch signaling pathway is evolutionarily conserved and responsible for cell fate determination in the developing embryo and mature tissue. At the molecular level, ligand binding activates Notch signaling by liberating the Notch intracellular domain, which then translocates into the nucleus and activates gene transcription. Despite the elegant simplicity of this pathway, which lacks secondary messengers or a signaling cascade, Notch regulates gene expression in a highly context- and cell-type-dependent manner. Notch signaling is frequently dysregulated, most commonly by overactivation, across many cancers and confers a survival advantage on tumors, leading to poorer outcomes for patients. Recent studies demonstrate how Notch signaling increases tumor cell proliferation and provide evidence that active Notch signaling maintains the cancer stem-cell pool, induces epithelial-mesenchymal transition and promotes chemoresistance. These studies imply that pharmacological inhibition of Notch signaling may refine control of cancer therapy and improve patient survival. Gamma secretase inhibitors (GSIs) are drugs that inhibit Notch signaling and may be successful in controlling cancer cell growth in conjunction with standard chemotherapy, but substantial side effects have hampered their widespread use. Recent efforts have been aimed at the development of antibodies against specific Notch receptors and ligands with the hope of limiting side effects while providing the same therapeutic benefit as GSIs. Together, studies characterizing Notch signaling and modulation have offered hope that refined methods targeting Notch may become powerful tools in anticancer therapeutics. PMID:23585460

  3. Adropin is a brain membrane-bound protein regulating physical activity via the NB-3/Notch signaling pathway in mice.

    PubMed

    Wong, Chi-Ming; Wang, Yudong; Lee, Jimmy Tsz Hang; Huang, Zhe; Wu, Donghai; Xu, Aimin; Lam, Karen Siu Ling

    2014-09-12

    Adropin is a highly conserved polypeptide that has been suggested to act as an endocrine factor that plays important roles in metabolic regulation, insulin sensitivity, and endothelial functions. However, in this study, we provide evidence demonstrating that adropin is a plasma membrane protein expressed abundantly in the brain. Using a yeast two-hybrid screening approach, we identified NB-3/Contactin 6, a brain-specific, non-canonical, membrane-tethered Notch1 ligand, as an interaction partner of adropin. Furthermore, this interaction promotes NB3-induced activation of Notch signaling and the expression of Notch target genes. We also generated and characterized adropin knockout mice to explore the role of adropin in vivo. Adropin knockout mice exhibited decreased locomotor activity and impaired motor coordination coupled with defective synapse formation, a phenotype similar to NB-3 knockout mice. Taken together, our data suggest that adropin is a membrane-bound protein that interacts with the brain-specific Notch1 ligand NB3. It regulates physical activity and motor coordination via the NB-3/Notch signaling pathway and plays an important role in cerebellum development in mice.

  4. Metastasis-associated lung adenocarcinoma transcript 1 promotes the proliferation of chondrosarcoma cell via activating Notch-1 signaling pathway

    PubMed Central

    Xu, Fengqin; Zhang, Zhi-qiang; Fang, Yong-chao; Li, Xiao-lei; Sun, Yu; Xiong, Chuan-zhi; Yan, Lian-qi; Wang, Qiang

    2016-01-01

    Background Metastasis-associated lung adenocarcinoma transcript 1 (MALAT-1) is identified to be overexpressed in several cancers. However, the role of MALAT-1 in chondrosarcoma is poorly understood. Methods The expression of MALAT-1 and Notch-1 signaling pathway was detected in chondrosarcoma tissues and chondrosarcoma cells by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay was performed to examine the cell viability of chondrosarcoma cells transfected with si-MALAT-1 or pcDNA-MALAT-1. Then the expression of Notch-1 signaling pathway was detected when MALAT-1 was upregulated or downregulated in chondrosarcoma cells. A subcutaneous chondrosarcoma cells xenograft model was used to confirm the effect of MALAT-1 on tumor growth in vivo. Results We found the increased expression of MALAT-1 and Notch-1 signaling pathway in chondrosarcoma tissue and cells. MALAT-1 promoted the proliferation of chondrosarcoma cells. In addition, MALAT-1 activated the Notch-1 signaling pathway at posttranscriptional level in chondrosarcoma cells. Meanwhile, overexpression of Notch-1 reversed the effect of si-MALAT-1 on the proliferation of chondrosarcoma cells. Finally, we found that MALAT-1 promoted the tumor growth in a subcutaneous chondrosarcoma cells xenograft model, which confirmed the promoted effect of MALAT-1 on the tumor growth in vivo. Conclusion Taken together, our study demonstrated that MALAT-1 promoted the proliferation of chondrosarcoma cell via activating Notch-1 signaling pathway. PMID:27110130

  5. Notch2 activation ameliorates nephrosis

    NASA Astrophysics Data System (ADS)

    Tanaka, Eriko; Asanuma, Katsuhiko; Kim, Eunhee; Sasaki, Yu; Trejo, Juan Alejandro Oliva; Seki, Takuto; Nonaka, Kanae; Asao, Rin; Nagai-Hosoe, Yoshiko; Akiba-Takagi, Miyuki; Hidaka, Teruo; Takagi, Masatoshi; Koyanagi, Akemi; Mizutani, Shuki; Yagita, Hideo; Tomino, Yasuhiko

    2014-02-01

    Activation of Notch1 and Notch2 has been recently implicated in human glomerular diseases. Here we show that Notch2 prevents podocyte loss and nephrosis. Administration of a Notch2 agonistic monoclonal antibody ameliorates proteinuria and glomerulosclerosis in a mouse model of nephrosis and focal segmental glomerulosclerosis. In vitro, the specific knockdown of Notch2 increases apoptosis in damaged podocytes, while Notch2 agonistic antibodies enhance activation of Akt and protect damaged podocytes from apoptosis. Treatment with triciribine, an inhibitor of Akt pathway, abolishes the protective effect of the Notch2 agonistic antibody. We find a positive linear correlation between the number of podocytes expressing activated Notch2 and the number of residual podocytes in human nephrotic specimens. Hence, specific activation of Notch2 rescues damaged podocytes and activating Notch2 may represent a novel clinical strategy for the amelioration of nephrosis and glomerulosclerosis.

  6. Notch signaling represses hypoxia-inducible factor-1α-induced activation of Wnt/β-catenin signaling in osteoblasts under cobalt-mimicked hypoxia

    PubMed Central

    LI, CHEN-TIAN; LIU, JIAN-XIU; YU, BO; LIU, RUI; DONG, CHAO; LI, SONG-JIAN

    2016-01-01

    The modification of Wnt and Notch signaling pathways by hypoxia, and its association with osteoblast proliferation and apoptosis remain to be fully elucidated. To investigate Wnt-Notch crosstalk, and its role in hypoxia-induced osteoblast proliferation and apoptosis regulation, the present study investigated the effects of cobalt-mimicked hypoxia on the mouse pre-osteoblast-like cell line, MC3T3-E1, when the Notch signals were repressed using a γ-secretase inhibitor DAPT. The data showed that the cobalt-mimicked hypoxia suppressed cell proliferation under normal conditions, but increased cell proliferation under conditions of Notch repression, in a concentration-dependent manner. The results of western blot and reverse transcription-quantitative polymerase chain reaction analyses showed that the cobalt treatment increased the levels of activated β-catenin protein and the expression levels of the target genes, axis inhibition protein 2 and myelocytomatosis oncogene, under DAPT-induced Notch repression. However, no significant changes were found in the expression levels of the Notch intracellular domain protein or the Notch target gene, hes1. In a β-catenin gene-knockdown experiment, the proliferation of the MC3T3-E1 cells under hypoxia were decreased by DAPT treatment, and knockdown of the expression of hypoxia-inducible factor-1α (HIF-1α) suppressed the cobalt-induced increase in Wnt target gene levels. No significant difference in cell proliferation rate was found following DAPT treatment when the expression of HIF-1α was knocked down. The results of the present study showed the opposing effects of Wnt and Notch signaling under cobalt-mimicked hypoxia, which were partially regulated by HIF-1α, The results also showed that osteoblast proliferation was dependent on Wnt-Notch signal crosstalk. PMID:27220406

  7. Heat shock protein 70 (Hsp70) interacts with the Notch1 intracellular domain and contributes to the activity of Notch signaling in myelin-reactive CD4 T cells.

    PubMed

    Juryńczyk, Maciej; Lewkowicz, Przemysław; Domowicz, Małgorzata; Mycko, Marcin P; Selmaj, Krzysztof W

    2015-10-15

    Notch receptors (Notch1-4) are involved in the differentiation of CD4 T cells and the development of autoimmunity. Mechanisms regulating Notch signaling in CD4 T cells are not fully elucidated. In this study we investigated potential crosstalk between Notch pathway molecules and heat shock protein 70 (Hsp70), the major intracellular chaperone involved in the protein transport during immune responses and other stress conditions. Using Hsp70(-/-) mice we found that Hsp70 is critical for up-regulation of NICD1 and induction of Notch target genes in Jagged1- and Delta-like1-stimulated CD4 T cells. Co-immunoprecipitation analysis of wild-type CD4 T cells stimulated with either Jagged1 or Delta-like1 showed a direct interaction between NICD1 and Hsp70. Both molecules co-localized within the nucleus of CD4 T cells stimulated with Notch ligands. Molecular interaction and nuclear colocalization of NICD1 and Hsp70 were also detected in CD4 T cells reactive against myelin oligodendrocyte glycoprotein (MOG)35-55, which showed Hsp70-dependent up-regulation of both NICD1 and Notch target genes. In conclusion, we demonstrate for the first time that Hsp70 interacts with NICD1 and contributes to the activity of Notch signaling in CD4 T cells. Interaction between Hsp70 and NICD1 may represent a novel mechanism regulating Notch signaling in activated CD4 T cells.

  8. Notch signaling in mammalian hair cell regeneration

    PubMed Central

    Slowik, Amber D.; Bermingham-McDonogh, Olivia

    2014-01-01

    In the inner ear, Notch signaling has been shown to have two key developmental roles. The first occurs early in otic development and defines the prosensory domains that will develop into the six sensory organs of the inner ear. The second role occurs later in development and establishes the mosaic-like pattern of the mechanosensory hair cells and their surrounding support cells through the more well-characterized process of lateral inhibition. These dual developmental roles have inspired several different strategies to regenerate hair cells in the mature inner ear organs. These strategies include (1) modulation of Notch signaling in inner ear stem cells in order to increase hair cell yield, (2) activation of Notch signaling in order to promote the formation of ectopic sensory regions in normally non-sensory regions within the inner ear, and (3) inhibition of Notch signaling to disrupt lateral inhibition and allow support cells to transdifferentiate into hair cells. In this review, we summarize some of the promising studies that have used these various strategies for hair cell regeneration through modulation of Notch signaling and some of the challenges that remain in developing therapies based on hair cell regeneration. PMID:25328289

  9. An activated Notch1 signaling pathway inhibits cell proliferation and induces apoptosis in human esophageal squamous cell carcinoma cell line EC9706.

    PubMed

    Lu, Zhaoming; Liu, Hongtao; Xue, Lexun; Xu, Peirong; Gong, Tianxiao; Hou, Guiqin

    2008-03-01

    Previous studies have demonstrated that Notch1 signaling pathway plays a major role in maintaining the balance of cell proliferation, differentiation and apoptosis, and is closely associated with tumorigenesis. However, roles of Notch1 signaling pathway in esophageal squamous cell carcinoma (ESCC), which is a common cause of mortality in China, remain poorly understood. Therefore, a novel strategy for seeking a rational molecular therapeutic target for ESCC is urgently needed. The purpose of this study is to examine the effect of the active Notch1 signaling pathway on the proliferation and apoptosis of ESCC cells and to investigate the underlying molecular mechanisms in carcinogenesis of the esophagus. The results revealed that a constitutively activated Notch1 signaling pathway was observed in ESCC cell line EC9706, through a pcNICD vector mediated expression system. Clearly, the activated Notch1 signaling pathway gave rise to proliferation suppression of the cells, accompanied with a cell cycle inhibition at the G0/G1 phase and apoptosis. In contrast to the expression of CDK2, cyclin D1 and cyclin E observed in EC9706 cells untreated and transfected with pcDNA3.1, there was a markedly decrease in the cells stably expressing Notch1 NICD. Up- and down-regulations of GSK3 beta and beta-catenin, respectively, indicated that Notch1 inhibited proliferation and induced apoptosis of EC9706 cells through Wnt-mediated signaling pathway. These findings suggest that Notch1 signaling pathway may participate in carcinogenesis of the esophagus.

  10. Notch3/Jagged1 circuitry reinforces notch signaling and sustains T-ALL.

    PubMed

    Pelullo, Maria; Quaranta, Roberta; Talora, Claudio; Checquolo, Saula; Cialfi, Samantha; Felli, Maria Pia; te Kronnie, Geertruy; Borga, Chiara; Besharat, Zein Mersini; Palermo, Rocco; Di Marcotullio, Lucia; Capobianco, Anthony J; Gulino, Alberto; Screpanti, Isabella; Bellavia, Diana

    2014-12-01

    Deregulated Notch signaling has been extensively linked to T-cell acute lymphoblastic leukemia (T-ALL). Here, we show a direct relationship between Notch3 receptor and Jagged1 ligand in human cell lines and in a mouse model of T-ALL. We provide evidence that Notch-specific ligand Jagged1 is a new Notch3 signaling target gene. This essential event justifies an aberrant Notch3/Jagged1 cis-expression inside the same cell. Moreover, we demonstrate in Notch3-IC-overexpressing T lymphoma cells that Jagged1 undergoes a raft-associated constitutive processing. The proteolytic cleavage allows the Jagged1 intracellular domain to empower Notch signaling activity and to increase the transcriptional activation of Jagged1 itself (autocrine effect). On the other hand, the release of the soluble Jagged1 extracellular domain has a positive impact on activating Notch signaling in adjacent cells (paracrine effect), finally giving rise to a Notch3/Jagged1 auto-sustaining loop that supports the survival, proliferation, and invasion of lymphoma cells and contributes to the development and progression of Notch-dependent T-ALL. These observations are also supported by a study conducted on a cohort of patients in which Jagged1 expression is associated to adverse prognosis. PMID:25499214

  11. Notch signaling in cerebrovascular diseases (Review)

    PubMed Central

    Cai, Zhiyou; Zhao, Bin; Deng, Yanqing; Shangguan, Shouqin; Zhou, Faming; Zhou, Wenqing; Li, Xiaoli; Li, Yanfeng; Chen, Guanghui

    2016-01-01

    The Notch signaling pathway is a crucial regulator of numerous fundamental cellular processes. Increasing evidence suggests that Notch signaling is involved in inflammation and oxidative stress, and thus in the progress of cerebrovascular diseases. In addition, Notch signaling in cerebrovascular diseases is associated with apoptosis, angiogenesis and the function of blood-brain barrier. Despite the contradictory results obtained to date as to whether Notch signaling is harmful or beneficial, the regulation of Notch signaling may provide a novel strategy for the treatment of cerebrovascular diseases. PMID:27574001

  12. HES6 promotes prostate cancer aggressiveness independently of Notch signalling

    PubMed Central

    Carvalho, Filipe L F; Marchionni, Luigi; Gupta, Anuj; Kummangal, Basheer A; Schaeffer, Edward M; Ross, Ashley E; Berman, David M

    2015-01-01

    Notch signalling is implicated in the pathogenesis of a variety of cancers, but its role in prostate cancer is poorly understood. However, selected Notch pathway members are overrepresented in high-grade prostate cancers. We comprehensively profiled Notch pathway components in prostate cells and found prostate cancer-specific up-regulation of NOTCH3 and HES6. Their expression was particularly high in androgen responsive lines. Up- and down-regulating Notch in these cells modulated expression of canonical Notch targets, HES1 and HEY1, which could also be induced by androgen. Surprisingly, androgen treatment also suppressed Notch receptor expression, suggesting that androgens can activate Notch target genes in a receptor-independent manner. Using a Notch-sensitive Recombination signal binding protein for immunoglobulin kappa J region (RBPJ) reporter assay, we found that basal levels of Notch signalling were significantly lower in prostate cancer cells compared to benign cells. Accordingly pharmacological Notch pathway blockade did not inhibit cancer cell growth or viability. In contrast to canonical Notch targets, HES6, a HES family member known to antagonize Notch signalling, was not regulated by Notch signalling, but relied instead on androgen levels, both in cultured cells and in human cancer tissues. When engineered into prostate cancer cells, reduced levels of HES6 resulted in reduced cancer cell invasion and clonogenic growth. By molecular profiling, we identified potential roles for HES6 in regulating hedgehog signalling, apoptosis and cell migration. Our results did not reveal any cell-autonomous roles for canonical Notch signalling in prostate cancer. However, the results do implicate HES6 as a promoter of prostate cancer progression. PMID:25864518

  13. Notching on Cancer’s Door: Notch Signaling in Brain Tumors

    PubMed Central

    Teodorczyk, Marcin; Schmidt, Mirko H. H.

    2015-01-01

    Notch receptors play an essential role in the regulation of central cellular processes during embryonic and postnatal development. The mammalian genome encodes for four Notch paralogs (Notch 1–4), which are activated by three Delta-like (Dll1/3/4) and two Serrate-like (Jagged1/2) ligands. Further, non-canonical Notch ligands such as epidermal growth factor like protein 7 (EGFL7) have been identified and serve mostly as antagonists of Notch signaling. The Notch pathway prevents neuronal differentiation in the central nervous system by driving neural stem cell maintenance and commitment of neural progenitor cells into the glial lineage. Notch is therefore often implicated in the development of brain tumors, as tumor cells share various characteristics with neural stem and progenitor cells. Notch receptors are overexpressed in gliomas and their oncogenicity has been confirmed by gain- and loss-of-function studies in vitro and in vivo. To this end, special attention is paid to the impact of Notch signaling on stem-like brain tumor-propagating cells as these cells contribute to growth, survival, invasion, and recurrence of brain tumors. Based on the outcome of ongoing studies in vivo, Notch-directed therapies such as γ-secretase inhibitors and blocking antibodies have entered and completed various clinical trials. This review summarizes the current knowledge on Notch signaling in brain tumor formation and therapy. PMID:25601901

  14. Notch signaling in cardiovascular disease and calcification.

    PubMed

    Rusanescu, Gabriel; Weissleder, Ralph; Aikawa, Elena

    2008-08-01

    Recent increase in human lifespan has shifted the spectrum of aging-related disorders to an unprecedented upsurge in cardiovascular diseases, especially calcific aortic valve stenosis, which has an 80% risk of progression to heart failure and death. A current therapeutic option for calcified valves is surgical replacement, which provides only temporary relief. Recent progress in cardiovascular research has suggested that arterial and valve calcification are the result of an active process of osteogenic differentiation, induced by a pro-atherogenic inflammatory response. At molecular level, the calcification process is regulated by a network of signaling pathways, including Notch, Wnt and TGFbeta/BMP pathways, which control the master regulator of osteogenesis Cbfa1/Runx2. Genetic and in vitro studies have implicated Notch signaling in the regulation of macrophage activation and cardiovascular calcification. Individuals with inactivating Notch1 mutations have a high rate of cardiovascular disorders, including valve stenosis and calcification. This article reviews recent progress in the mechanism of cardiovascular calcification and discusses potential molecular mechanisms involved, focusing on Notch receptors. We propose a calcification model where extreme increases in vascular wall cell density due to inflammation-induced cell proliferation can trigger an osteogenic differentiation program mediated by Notch receptors. PMID:19936191

  15. Notch signaling from the endosome requires a conserved dileucine motif

    PubMed Central

    Zheng, Li; Saunders, Cosmo A.; Sorensen, Erika B.; Waxmonsky, Nicole C.; Conner, Sean D.

    2013-01-01

    Notch signaling is reliant on γ-secretase–mediated processing, although the subcellular location where γ-secretase cleaves Notch to initiate signaling remains unresolved. Accumulating evidence demonstrates that Notch signaling is modulated by endocytosis and endosomal transport. In this study, we investigated the relationship between Notch transport itinerary and signaling capacity. In doing so, we discovered a highly conserved dileucine sorting signal encoded within the cytoplasmic tail that directs Notch to the limiting membrane of the lysosome for signaling. Mutating the dileucine motif led to receptor accumulation in cation-dependent mannose-phosphate receptor–positive tubular early endosomes and a reduction in Notch signaling capacity. Moreover, truncated receptor forms that mimic activated Notch were readily cleaved by γ-secretase within the endosome; however, the cleavage product was proteasome-sensitive and failed to contribute to robust signaling. Collectively these results indicate that Notch signaling from the lysosome limiting membrane is conserved and that receptor targeting to this compartment is an active process. Moreover, the data support a model in which Notch signaling in mammalian systems is initiated from either the plasma membrane or lysosome, but not the early endosome. PMID:23171551

  16. Notch Signaling Activation in Cervical Cancer Cells Induces Cell Growth Arrest with the Involvement of the Nuclear Receptor NR4A2

    PubMed Central

    Sun, Lichun; Liu, Mingqiu; Sun, Guang-Chun; Yang, Xu; Qian, Qingqing; Feng, Shuyu; Mackey, L. Vienna; Coy, David H.

    2016-01-01

    Cervical cancer is a second leading cancer death in women world-wide, with most cases in less developed countries. Notch signaling is highly conserved with its involvement in many cancers. In the present study, we established stable cervical cell lines with Notch activation and inactivation and found that Notch activation played a suppressive role in cervical cancer cells. Meanwhile, the transient overexpression of the active intracellular domain of all four Notch receptors (ICN1, 2, 3, and 4) also induced the suppression of cervical cancer Hela cell growth. ICN1 also induced cell cycle arrest at phase G1. Notch1 signaling activation affected the expression of serial genes, especially the genes associated with cAMP signaling, with an increase of genes like THBS1, VCL, p63, c-Myc and SCG2, a decrease of genes like NR4A2, PCK2 and BCL-2. Particularly, The nuclear receptor NR4A2 was observed to induce cell proliferation via MTT assay and reduce cell apoptosis via FACS assay. Furthermore, NR4A2's activation could reverse ICN1-induced suppression of cell growth while erasing ICN1-induced increase of tumor suppressor p63. These findings support that Notch signaling mediates cervical cancer cell growth suppression with the involvement of nuclear receptor NR4A2. Notably, Notch/NR4A2/p63 signaling cascade possibly is a new signling pathway undisclosed. PMID:27471554

  17. Notch Signaling Activation in Cervical Cancer Cells Induces Cell Growth Arrest with the Involvement of the Nuclear Receptor NR4A2.

    PubMed

    Sun, Lichun; Liu, Mingqiu; Sun, Guang-Chun; Yang, Xu; Qian, Qingqing; Feng, Shuyu; Mackey, L Vienna; Coy, David H

    2016-01-01

    Cervical cancer is a second leading cancer death in women world-wide, with most cases in less developed countries. Notch signaling is highly conserved with its involvement in many cancers. In the present study, we established stable cervical cell lines with Notch activation and inactivation and found that Notch activation played a suppressive role in cervical cancer cells. Meanwhile, the transient overexpression of the active intracellular domain of all four Notch receptors (ICN1, 2, 3, and 4) also induced the suppression of cervical cancer Hela cell growth. ICN1 also induced cell cycle arrest at phase G1. Notch1 signaling activation affected the expression of serial genes, especially the genes associated with cAMP signaling, with an increase of genes like THBS1, VCL, p63, c-Myc and SCG2, a decrease of genes like NR4A2, PCK2 and BCL-2. Particularly, The nuclear receptor NR4A2 was observed to induce cell proliferation via MTT assay and reduce cell apoptosis via FACS assay. Furthermore, NR4A2's activation could reverse ICN1-induced suppression of cell growth while erasing ICN1-induced increase of tumor suppressor p63. These findings support that Notch signaling mediates cervical cancer cell growth suppression with the involvement of nuclear receptor NR4A2. Notably, Notch/NR4A2/p63 signaling cascade possibly is a new signling pathway undisclosed. PMID:27471554

  18. Notch signaling regulates gastric antral LGR5 stem cell function

    PubMed Central

    Demitrack, Elise S; Gifford, Gail B; Keeley, Theresa M; Carulli, Alexis J; VanDussen, Kelli L; Thomas, Dafydd; Giordano, Thomas J; Liu, Zhenyi; Kopan, Raphael; Samuelson, Linda C

    2015-01-01

    The major signaling pathways regulating gastric stem cells are unknown. Here we report that Notch signaling is essential for homeostasis of LGR5+ antral stem cells. Pathway inhibition reduced proliferation of gastric stem and progenitor cells, while activation increased proliferation. Notch dysregulation also altered differentiation, with inhibition inducing mucous and endocrine cell differentiation while activation reduced differentiation. Analysis of gastric organoids demonstrated that Notch signaling was intrinsic to the epithelium and regulated growth. Furthermore, in vivo Notch manipulation affected the efficiency of organoid initiation from glands and single Lgr5-GFP stem cells, suggesting regulation of stem cell function. Strikingly, constitutive Notch activation in LGR5+ stem cells induced tissue expansion via antral gland fission. Lineage tracing using a multi-colored reporter demonstrated that Notch-activated stem cells rapidly generate monoclonal glands, suggesting a competitive advantage over unmanipulated stem cells. Notch activation was associated with increased mTOR signaling, and mTORC1 inhibition normalized NICD-induced increases in proliferation and gland fission. Chronic Notch activation induced undifferentiated, hyper-proliferative polyps, suggesting that aberrant activation of Notch in gastric stem cells may contribute to gastric tumorigenesis. PMID:26271103

  19. Expression patterns of Notch1, Notch2, and Notch3 suggest multiple functional roles for the Notch-DSL signaling system during brain development.

    PubMed

    Irvin, D K; Zurcher, S D; Nguyen, T; Weinmaster, G; Kornblum, H I

    2001-07-23

    The Notch-DSL signaling system consists of multiple receptors and ligands, and plays many roles in development. The function of Notch receptors and ligands in mammalian brain, however, is poorly understood. In the current study, we examined the expression patterns for three receptors of this system, Notch1, 2, and 3, in late embryonic and postnatal rat brain by in situ hybridization. The three receptors have overlapping but different patterns of expression. Messenger RNA for all three proteins is found in postnatal central nervous system (CNS) germinal zones and, in early postnatal life, within numerous cells throughout the CNS. Within zones of cellular proliferation of the postnatal brain, Notch1 mRNA is found in both the subventricular and the ventricular germinal zones, whereas Notch2 and Notch3 mRNAs are more highly localized to the ventricular zones. Both Notch1 and Notch3 mRNAs are expressed along the inner aspect of the dentate gyrus, a site of adult neurogenesis. Notch2 mRNA is expressed in the external granule cell layer of the developing cerebellum. In several brain areas, Notch1 and Notch2 mRNAs are relatively concentrated in white matter, whereas Notch3 mRNA is not. Neurosphere cultures (which contain CNS stem cells), purified astrocyte cultures, and striatal neuron-enriched cultures express Notch1 mRNA. However, in these latter cultures, Notch1 mRNA is produced by nestin-containing cells, rather than by postmitotic neurons. Taken together, these results support multiple roles for Notch1, 2, and 3 receptor activation during CNS development, particularly during gliogenesis.

  20. Canonical Notch activation in osteocytes causes osteopetrosis.

    PubMed

    Canalis, Ernesto; Bridgewater, David; Schilling, Lauren; Zanotti, Stefano

    2016-01-15

    Activation of Notch1 in cells of the osteoblastic lineage inhibits osteoblast differentiation/function and causes osteopenia, whereas its activation in osteocytes causes a distinct osteopetrotic phenotype. To explore mechanisms responsible, we established the contributions of canonical Notch signaling (Rbpjκ dependent) to osteocyte function. Transgenics expressing Cre recombinase under the control of the dentin matrix protein-1 (Dmp1) promoter were crossed with Rbpjκ conditional mice to generate Dmp1-Cre(+/-);Rbpjκ(Δ/Δ) mice. These mice did not have a skeletal phenotype, indicating that Rbpjκ is dispensable for osteocyte function. To study the Rbpjκ contribution to Notch activation, Rosa(Notch) mice, where a loxP-flanked STOP cassette is placed between the Rosa26 promoter and the NICD coding sequence, were crossed with Dmp1-Cre transgenic mice and studied in the context (Dmp1-Cre(+/-);Rosa(Notch);Rbpjκ(Δ/Δ)) or not (Dmp1-Cre(+/-);Rosa(Notch)) of Rbpjκ inactivation. Dmp1-Cre(+/-);Rosa(Notch) mice exhibited increased femoral trabecular bone volume and decreased osteoclasts and bone resorption. The phenotype was reversed in the context of the Rbpjκ inactivation, demonstrating that Notch canonical signaling was accountable for the phenotype. Notch activation downregulated Sost and Dkk1 and upregulated Axin2, Tnfrsf11b, and Tnfsf11 mRNA expression, and these effects were not observed in the context of the Rbpjκ inactivation. In conclusion, Notch activation in osteocytes suppresses bone resorption and increases bone volume by utilization of canonical signals that also result in the inhibition of Sost and Dkk1 and upregulation of Wnt signaling. PMID:26578715

  1. Modulation of Notch signaling by antibodies specific for the extracellular negative regulatory region of NOTCH3.

    PubMed

    Li, Kang; Li, Yucheng; Wu, Wenjuan; Gordon, Wendy R; Chang, David W; Lu, Mason; Scoggin, Shane; Fu, Tihui; Vien, Long; Histen, Gavin; Zheng, Ji; Martin-Hollister, Rachel; Duensing, Thomas; Singh, Sanjaya; Blacklow, Stephen C; Yao, Zhengbin; Aster, Jon C; Zhou, Bin-Bing S

    2008-03-21

    The Notch pathway regulates the development of many tissues and cell types and is involved in a variety of human diseases, making it an attractive potential therapeutic target. This promise has been limited by the absence of potent inhibitors or agonists that are specific for individual human Notch receptors (NOTCH1-4). Using an unbiased functional screening, we identified monoclonal antibodies that specifically inhibit or induce activating proteolytic cleavages in NOTCH3. Remarkably, the most potent inhibitory and activating antibodies bind to overlapping epitopes within a juxtamembrane negative regulatory region that protects NOTCH3 from proteolysis and activation in its resting autoinhibited state. The inhibitory antibodies revert phenotypes conveyed on 293T cells by NOTCH3 signaling, such as increased cellular proliferation, survival, and motility, whereas the activating antibody mimics some of the effects of ligand-induced Notch activation. These findings provide insights into the mechanisms of Notch autoinhibition and activation and pave the way for the further development of specific antibody-based modulators of the Notch receptors, which are likely to be of utility in a wide range of experimental and therapeutic settings. PMID:18182388

  2. Antagonism of notch signaling activity by members of a novel protein family encoded by the bearded and enhancer of split gene complexes.

    PubMed

    Lai, E C; Bodner, R; Kavaler, J; Freschi, G; Posakony, J W

    2000-01-01

    Cell-cell signaling through the Notch receptor is a principal mechanism underlying cell fate specification in a variety of developmental processes in metazoans, such as neurogenesis. In this report we describe our investigation of seven members of a novel gene family in Drosophila with important connections to Notch signaling. These genes all encode small proteins containing predicted basic amphipathic (&agr;)-helical domains in their amino-terminal regions, as described originally for Bearded; accordingly, we refer to them as Bearded family genes. Five members of the Bearded family are located in a newly discovered gene complex, the Bearded Complex; two others reside in the previously identified Enhancer of split Complex. All members of this family contain, in their proximal upstream regions, at least one high-affinity binding site for the Notch-activated transcription factor Suppressor of Hairless, suggesting that all are directly regulated by the Notch pathway. Consistent with this, we show that Bearded family genes are expressed in a variety of territories in imaginal tissue that correspond to sites of active Notch signaling. We demonstrate that overexpression of any family member antagonizes the activity of the Notch pathway in multiple cell fate decisions during adult sensory organ development. These results suggest that Bearded family genes encode a novel class of effectors or modulators of Notch signaling.

  3. Notch signaling: its roles and therapeutic potential in hematological malignancies

    PubMed Central

    Gu, Yisu

    2016-01-01

    Notch is a highly conserved signaling system that allows neighboring cells to communicate, thereby controlling their differentiation, proliferation and apoptosis, with the outcome of its activation being highly dependent on signal strength and cell type. As such, there is growing evidence that disturbances in physiological Notch signaling contribute to cancer development and growth through various mechanisms. Notch was first reported to contribute to tumorigenesis in the early 90s, through identification of the involvement of the Notch1 gene in the chromosomal translocation t(7;9)(q34;q34.3), found in a small subset of T-cell acute lymphoblastic leukemia. Since then, Notch mutations and aberrant Notch signaling have been reported in numerous other precursor and mature hematological malignancies, of both myeloid and lymphoid origin, as well as many epithelial tumor types. Of note, Notch has been reported to have both oncogenic and tumor suppressor roles, dependent on the cancer cell type. In this review, we will first give a general description of the Notch signaling pathway, and its physiologic role in hematopoiesis. Next, we will review the role of aberrant Notch signaling in several hematological malignancies. Finally, we will discuss current and potential future therapeutic approaches targeting this pathway. PMID:26934331

  4. Notch signaling deregulation in multiple myeloma: A rational molecular target

    PubMed Central

    Garavelli, Silvia; Platonova, Natalia; Paoli, Alessandro; Basile, Andrea; Taiana, Elisa; Neri, Antonino; Chiaramonte, Raffaella

    2015-01-01

    Despite recent therapeutic advances, multiple myeloma (MM) is still an incurable neoplasia due to intrinsic or acquired resistance to therapy. Myeloma cell localization in the bone marrow milieu allows direct interactions between tumor cells and non-tumor bone marrow cells which promote neoplastic cell growth, survival, bone disease, acquisition of drug resistance and consequent relapse. Twenty percent of MM patients are at high-risk of treatment failure as defined by tumor markers or presentation as plasma cell leukemia. Cumulative evidences indicate a key role of Notch signaling in multiple myeloma onset and progression. Unlike other Notch-related malignancies, where the majority of patients carry gain-of-function mutations in Notch pathway members, in MM cell Notch signaling is aberrantly activated due to an increased expression of Notch receptors and ligands; notably, this also results in the activation of Notch signaling in surrounding stromal cells which contributes to myeloma cell proliferation, survival and migration, as well as to bone disease and intrinsic and acquired pharmacological resistance. Here we review the last findings on the mechanisms and the effects of Notch signaling dysregulation in MM and provide a rationale for a therapeutic strategy aiming at inhibiting Notch signaling, along with a complete overview on the currently available Notch-directed approaches. PMID:26308486

  5. Nuclear factor of activated T-cells 5 increases intestinal goblet cell differentiation through an mTOR/Notch signaling pathway

    PubMed Central

    Zhou, Yuning; Wang, Qingding; Weiss, Heidi L.; Evers, B. Mark

    2014-01-01

    The intestinal mucosa undergoes a continual process of proliferation, differentiation, and apoptosis that is regulated by multiple signaling pathways. Previously, we have shown that the nuclear factor of activated T-cells 5 (NFAT5) is involved in the regulation of intestinal enterocyte differentiation. Here we show that treatment with sodium chloride (NaCl), which activates NFAT5 signaling, increased mTORC1 repressor regulated in development and DNA damage response 1 (REDD1) protein expression and inhibited mTOR signaling; these alterations were attenuated by knockdown of NFAT5. Knockdown of NFAT5 activated mammalian target of rapamycin (mTOR) signaling and significantly inhibited REDD1 mRNA expression and protein expression. Consistently, overexpression of NFAT5 increased REDD1 expression. In addition, knockdown of REDD1 activated mTOR and Notch signaling, whereas treatment with mTOR inhibitor rapamycin repressed Notch signaling and increased the expression of the goblet cell differentiation marker mucin 2 (MUC2). Moreover, knockdown of NFAT5 activated Notch signaling and decreased MUC2 expression, while overexpression of NFAT5 inhibited Notch signaling and increased MUC2 expression. Our results demonstrate a role for NFAT5 in the regulation of mTOR signaling in intestinal cells. Importantly, these data suggest that NFAT5 participates in the regulation of intestinal homeostasis via the suppression of mTORC1/Notch signaling pathway. PMID:25057011

  6. Notch Signaling in Meibomian Gland Epithelial Cell Differentiation

    PubMed Central

    Gidfar, Sanaz; Afsharkhamseh, Neda; Sanjari, Sara; Djalilian, Ali R.

    2016-01-01

    Purpose Notch1 was previously shown to play a critical role in murine meibomian gland function and maintenance. In this study, we have examined the expression and activation of Notch pathway in human meibomian gland epithelial cells in vitro. Methods An immortalized human meibomian gland epithelial cell (HMGEC) line was cultured under proliferative and differentiative conditions. Expression of Notch receptors and ligands were evaluated by quantitative PCR and Western blot. The effect of Notch inhibition and induction on oil production was also assessed. Results Human meibomian gland epithelial cell expressed Notch1, Notch2, Notch3, Jagged1, Jagged2, Delta-like 1, and Delta-like 3. The level of cleaved (activated) Notch1 strongly increased with differentiation. The expression of Notch3 was inversely correlated with proliferation. Induction and inhibition of Notch1 led to an increase and decrease in the amount of oil production, respectively. Conclusions Notch signaling appears to play an important role in human meibomian gland epithelial differentiation and oil production. This may provide a potential therapeutic pathway for treating meibomian gland dysfunction. PMID:26943148

  7. Medicarpin, a Natural Pterocarpan, Heals Cortical Bone Defect by Activation of Notch and Wnt Canonical Signaling Pathways

    PubMed Central

    Gupta, Chandra Prakash; Kureel, Jyoti; Mansoori, Mohd Nizam; Shukla, Priyanka; John, Aijaz A.; Singh, Kavita; Purohit, Dipak; Awasthi, Pallavi; Singh, Divya; Goel, Atul

    2015-01-01

    We evaluated the bone regeneration and healing effect of Medicarpin (med) in cortical bone defect model that heals by intramembranous ossification. For the study, female Sprague–Dawley rats were ovariectomized and rendered osteopenic. A drill hole injury was generated in mid femoral bones of all the animals. Med treatment was commenced the day after and continued for 15 days. PTH was taken as a reference standard. Fifteen days post-treatment, animals were sacrificed. Bones were collected for histomorphometry studies at the injury site by micro-computed tomography (μCT) and confocal microscopy. RNA and protein was harvested from newly generated bone. For immunohistochemistry, 5μm sections of decalcified femur bone adjoining the drill hole site were cut. By μCT analysis and calcein labeling of newly generated bone it was found that med promotes bone healing and new bone formation at the injury site and was comparable to PTH in many aspects. Med treatment led to increase in the Runx-2 and osteocalcin signals indicating expansion of osteoprogenitors at the injury site as evaluated by qPCR and immunohistochemical localization. It was observed that med promoted bone regeneration by activating canonical Wnt and notch signaling pathway. This was evident by increased transcript and protein levels of Wnt and notch signaling components in the defect region. Finally, we confirmed that med treatment leads to elevated bone healing in pre-osteoblasts by co localization of beta catenin with osteoblast marker alkaline phosphatase. In conclusion, med treatment promotes new bone regeneration and healing at the injury site by activating Wnt/canonical and notch signaling pathways. This study also forms a strong case for evaluation of med in delayed union and non-union fracture cases. PMID:26657206

  8. Blocking Notch signal in myeloid cells alleviates hepatic ischemia reperfusion injury by repressing the activation of NF-κB through CYLD

    PubMed Central

    Yu, Heng-Chao; Bai, Lu; Yang, Zhao-Xu; Qin, Hong-Yan; Tao, Kai-Shan; Han, Hua; Dou, Ke-Feng

    2016-01-01

    Ischemia-reperfusion (I/R) is a major reason of hepatocyte injury during liver surgery and transplantation. Myeloid cells including macrophages and neutrophils play important roles in sustained tissue inflammation and damage, but the mechanisms regulating myeloid cells activity have been elusive. In this study, we investigate the role of Notch signaling in myeloid cells during hepatic I/R injury by using a mouse model of myeloid specific conditional knockout of RBP-J. Myeloid-specific RBP-J deletion alleviated hepatic I/R injury. RBP-J deletion in myeloid cells decreased hepatocytes apoptosis after hepatic I/R injury. Furthermore, myeloid-specific RBP-J deletion led to attenuated inflammation response in liver after I/R injury. Consistently, Notch blockade reduced the production of inflammatory cytokines by macrophages in vitro. We also found that blocking Notch signaling reduced NF-κB activation and increased cylindromatosis (CYLD) expression and knockdown of CYLD rescued reduction of inflammatory cytokines induced by Notch blockade in macrophages during I/R injury in vitro. On the other hand, activation of Notch signaling in macrophages led to increased inflammatory cytokine production and NF-κB activation and decreased CYLD expression in vitro. These data suggest that activation of Notch signaling in myeloid cells aggravates I/R injury, by enhancing the inflammation response by NF-κB through down regulation of CYLD. PMID:27680285

  9. A dual role for NOTCH signaling in joint cartilage maintenance and osteoarthritis.

    PubMed

    Liu, Zhaoyang; Chen, Jianquan; Mirando, Anthony J; Wang, Cuicui; Zuscik, Michael J; O'Keefe, Regis J; Hilton, Matthew J

    2015-07-21

    Loss of NOTCH signaling in postnatal murine joints results in osteoarthritis, indicating a requirement for NOTCH during maintenance of joint cartilage. However, NOTCH signaling components are substantially increased in abundance in posttraumatic osteoarthritis in humans and mice, suggesting either a reparative or a pathological role for NOTCH activation in osteoarthritis. We investigated a potential dual role for NOTCH in joint maintenance and osteoarthritis by generating two mouse models overexpressing the NOTCH1 intracellular domain (NICD) within postnatal joint cartilage. The first mouse model exhibited sustained NOTCH activation to resemble pathological NOTCH signaling, whereas the second model had transient NOTCH activation, which more closely reflected physiological NOTCH signaling. Sustained NOTCH signaling in joint cartilage led to an early and progressive osteoarthritic-like pathology, whereas transient NOTCH activation enhanced the synthesis of cartilage matrix and promoted joint maintenance under normal physiological conditions. Through RNA-sequencing, immunohistochemical, and biochemical approaches, we identified several targets that could be responsible for NOTCH-mediated cartilage degradation, fibrosis, and osteoarthritis progression. These targets included components of the interleukin-6 (IL-6)-signal transducer and activator of transcription 3 (STAT3) and mitogen-activated protein kinase signaling pathways, which may also contribute to the posttraumatic development of osteoarthritis. Together, these data suggest a dual role for the NOTCH pathway in joint cartilage, and they identify downstream effectors of NOTCH signaling as potential targets for disease-modifying osteoarthritis drugs.

  10. Dishevelled limits Notch signalling through inhibition of CSL

    PubMed Central

    Collu, Giovanna M.; Hidalgo-Sastre, Ana; Acar, Ahmet; Bayston, Laura; Gildea, Clara; Leverentz, Michael K.; Mills, Christopher G.; Owens, Thomas W.; Meurette, Olivier; Dorey, Karel; Brennan, Keith

    2012-01-01

    Notch and Wnt are highly conserved signalling pathways that are used repeatedly throughout animal development to generate a diverse array of cell types. However, they often have opposing effects on cell-fate decisions with each pathway promoting an alternate outcome. Commonly, a cell receiving both signals exhibits only Wnt pathway activity. This suggests that Wnt inhibits Notch activity to promote a Wnt-ON/Notch-OFF output; but what might underpin this Notch regulation is not understood. Here, we show that Wnt acts via Dishevelled to inhibit Notch signalling, and that this crosstalk regulates cell-fate specification in vivo during Xenopus development. Mechanistically, Dishevelled binds and directly inhibits CSL transcription factors downstream of Notch receptors, reducing their activity. Furthermore, our data suggest that this crosstalk mechanism is conserved between vertebrate and invertebrate homologues. Thus, we identify a dual function for Dishevelled as an inhibitor of Notch signalling and an activator of the Wnt pathway that sharpens the distinction between opposing Wnt and Notch responses, allowing for robust cell-fate decisions. PMID:23132247

  11. Aberrant activation of canonical Notch1 signaling in the mouse uterus decreases progesterone receptor by hypermethylation and leads to infertility.

    PubMed

    Su, Ren-Wei; Strug, Michael R; Jeong, Jae-Wook; Miele, Lucio; Fazleabas, Asgerally T

    2016-02-23

    In mammalian reproduction, implantation is one of the most critical events. Failure of implantation and the subsequent decidualization contribute to more than 75% of pregnancy losses in women. Our laboratory has previously reported that inhibition of Notch signaling results in impaired decidualization in both women and a transgenic mouse model. In this study, we generated a Notch gain-of-function transgenic mouse by conditionally overexpressing the Notch1 intracellular domain (N1ICD) in the reproductive tract driven by a progesterone receptor (Pgr) -Cre. We show that the overexpression of N1ICD in the uterus results in complete infertility as a consequence of multiple developmental and physiological defects, including the absence of uterine glands and dysregulation of progesterone and estrogen signaling by a Recombination Signal Binding Protein Jκ-dependent signaling mechanism. We further show that the inhibition of progesterone signaling is caused by hypermethylation of its receptor Pgr by Notch1 overexpression through the transcription factor PU.1 and DNA methyltransferase 3b (Dnmt3b). We have generated a mouse model to study the consequence of increased Notch signaling in female reproduction and provide the first evidence, to our knowledge, that Notch signaling can regulate epigenetic modification of the Pgr.

  12. Notch Signaling Activates Stem Cell Properties of Müller Glia through Transcriptional Regulation and Skp2-mediated Degradation of p27Kip1

    PubMed Central

    Parameswaran, Sowmya; Mathews, Saumi; Xia, Xiaohuan; Zheng, Li; Neville, Andrew J.; Ahmad, Iqbal

    2016-01-01

    Müller glia (MG), the sole glial cells generated by retinal progenitors, have emerged as a viable cellular target for therapeutic regeneration in degenerative blinding diseases, as they possess dormant stem cell properties. However, the mammalian MG does not display the neurogenic potential of their lower vertebrate counterparts, precluding their practical clinical use. The answer to this barrier may be found in two interlinked processes underlying the neurogenic potential, i.e., the activation of the dormant stem cell properties of MG and their differentiation along the neuronal lineage. Here, we have focused on the former and examined Notch signaling-mediated activation of MG. We demonstrate that one of the targets of Notch signaling is the cyclin-dependent kinase inhibitor (CKI), p27Kip1, which is highly expressed in quiescent MG. Notch signaling facilitates the activation of MG by inhibiting p27Kip1 expression. This is likely achieved through the Notch- p27Kip1 and Notch-Skp2-p27Kip1 axes, the former inhibiting the expression of p27Kip1 transcripts and the latter levels of p27Kip1 proteins by Skp2-mediated proteasomal degradation. Thus, Notch signaling may facilitate re-entry of MG into the cell cycle by inhibiting p27Kip1 expression both transcriptionally and post-translationally. PMID:27011052

  13. Notch Signaling Activates Stem Cell Properties of Müller Glia through Transcriptional Regulation and Skp2-mediated Degradation of p27Kip1.

    PubMed

    Del Debbio, Carolina Beltrame; Mir, Qulsum; Parameswaran, Sowmya; Mathews, Saumi; Xia, Xiaohuan; Zheng, Li; Neville, Andrew J; Ahmad, Iqbal

    2016-01-01

    Müller glia (MG), the sole glial cells generated by retinal progenitors, have emerged as a viable cellular target for therapeutic regeneration in degenerative blinding diseases, as they possess dormant stem cell properties. However, the mammalian MG does not display the neurogenic potential of their lower vertebrate counterparts, precluding their practical clinical use. The answer to this barrier may be found in two interlinked processes underlying the neurogenic potential, i.e., the activation of the dormant stem cell properties of MG and their differentiation along the neuronal lineage. Here, we have focused on the former and examined Notch signaling-mediated activation of MG. We demonstrate that one of the targets of Notch signaling is the cyclin-dependent kinase inhibitor (CKI), p27Kip1, which is highly expressed in quiescent MG. Notch signaling facilitates the activation of MG by inhibiting p27Kip1 expression. This is likely achieved through the Notch- p27Kip1 and Notch-Skp2-p27Kip1 axes, the former inhibiting the expression of p27Kip1 transcripts and the latter levels of p27Kip1 proteins by Skp2-mediated proteasomal degradation. Thus, Notch signaling may facilitate re-entry of MG into the cell cycle by inhibiting p27Kip1 expression both transcriptionally and post-translationally. PMID:27011052

  14. Endosomal sorting of Notch receptors through COMMD9-dependent pathways modulates Notch signaling

    PubMed Central

    Li, Haiying; Koo, Yeon; Mao, Xicheng; Sifuentes-Dominguez, Luis; Morris, Lindsey L.; Jia, Da; Miyata, Naoteru; Faulkner, Rebecca A.; van Deursen, Jan M.; Vooijs, Marc; Billadeau, Daniel D.; van de Sluis, Bart; Cleaver, Ondine

    2015-01-01

    Notch family members are transmembrane receptors that mediate essential developmental programs. Upon ligand binding, a proteolytic event releases the intracellular domain of Notch, which translocates to the nucleus to regulate gene transcription. In addition, Notch trafficking across the endolysosomal system is critical in its regulation. In this study we report that Notch recycling to the cell surface is dependent on the COMMD–CCDC22–CCDC93 (CCC) complex, a recently identified regulator of endosomal trafficking. Disruption in this system leads to intracellular accumulation of Notch2 and concomitant reduction in Notch signaling. Interestingly, among the 10 copper metabolism MURR1 domain containing (COMMD) family members that can associate with the CCC complex, only COMMD9 and its binding partner, COMMD5, have substantial effects on Notch. Furthermore, Commd9 deletion in mice leads to embryonic lethality and complex cardiovascular alterations that bear hallmarks of Notch deficiency. Altogether, these studies highlight that the CCC complex controls Notch activation by modulating its intracellular trafficking and demonstrate cargo-specific effects for members of the COMMD protein family. PMID:26553930

  15. Tools and methods for studying Notch signaling in Drosophila melanogaster

    PubMed Central

    Zacharioudaki, Evanthia; Bray, Sarah J.

    2014-01-01

    Notch signaling involves a highly conserved pathway that mediates communication between neighboring cells. Activation of Notch by its ligands, results in the release of the Notch intracellular domain (NICD), which enters the nucleus and regulates transcription. This pathway has been implicated in many developmental decisions and diseases (including cancers) over the past decades. The simplicity of the Notch pathway in Drosophila melanogaster, in combination with the availability of powerful genetics, make this an attractive model for studying fundamental principles of Notch regulation and function. In this article we present some of the established and emerging tools that are available to monitor and manipulate the Notch pathway in Drosophila and discuss their strengths and weaknesses. PMID:24704358

  16. Human papillomavirus 16E6 and NFX1-123 potentiate notch signaling and differentiation without activating cellular arrest

    SciTech Connect

    Vliet-Gregg, Portia A.; Hamilton, Jennifer R.; Katzenellenbogen, Rachel A.

    2015-04-15

    High-risk human papillomavirus (HR HPV) oncoproteins bind host cell proteins to dysregulate and uncouple apoptosis, senescence, differentiation, and growth. These pathways are important for both the viral life cycle and cancer development. HR HPV16 E6 (16E6) interacts with the cellular protein NFX1-123, and they collaboratively increase the growth and differentiation master regulator, Notch1. In 16E6 expressing keratinocytes (16E6 HFKs), the Notch canonical pathway genes Hes1 and Hes5 were increased with overexpression of NFX1-123, and their expression was directly linked to the activation or blockade of the Notch1 receptor. Keratinocyte differentiation genes Keratin 1 and Keratin 10 were also increased, but in contrast their upregulation was only indirectly associated with Notch1 receptor stimulation and was fully unlinked to growth arrest, increased p21{sup Waf1/CIP1}, or decreased proliferative factor Ki67. This leads to a model of 16E6, NFX1-123, and Notch1 differently regulating canonical and differentiation pathways and entirely uncoupling cellular arrest from increased differentiation. - Highlights: • 16E6 and NFX1-123 increased the Notch canonical pathway through Notch1. • 16E6 and NFX1-123 increased the differentiation pathway indirectly through Notch1. • 16E6 and NFX1-123 increased differentiation gene expression without growth arrest. • Increased NFX1-123 with 16E6 may create an ideal cellular phenotype for HPV.

  17. SEPT4 is regulated by the Notch signaling pathway.

    PubMed

    Liu, Wenbin

    2012-04-01

    Notch receptor-mediated signaling is an evolutionarily conserved pathway that regulates diverse developmental processes and its dysregulation has been implicated in a variety of developmental disorders and cancers. Notch functions in these processes by activating expression of its target genes. Septin 4 (SEPT4) is a polymerizing GTP-binding protein that serves as scaffold for diverse molecules and is involved in cell proliferation and apoptosis. After activation of the Notch signal, the expression of SEPT4 is up-regulated and cell proliferation is inhibited. When the Notch signal is inhibited by the CSL (CBF1/Su(H)/Lag-1)-binding-domain-negative Mastermind-like protein 1, the expression of SEPT4 is down-regulated, proliferation and colony formation of cells are promoted, but cell adhesion ability is decreased. Nevertheless, the SEPT4 expression is not affected after knock-down of CSL. Meanwhile, if SEPT4 activity is inhibited through RNA interference, the protein level and activity of NOTCH1 remains unchanged, but cell proliferation is dysregulated. This indicates that SEPT4 is a Notch target gene. This relationship between Notch signaling pathway and SEPT4 offers a potential basis for further study of developmental control and carcinogenesis. PMID:21938432

  18. Competition in Notch Signaling with Cis Enriches Cell Fate Decisions

    PubMed Central

    Formosa-Jordan, Pau; Ibañes, Marta

    2014-01-01

    Notch signaling is involved in cell fate choices during the embryonic development of Metazoa. Commonly, Notch signaling arises from the binding of the Notch receptor to its ligands in adjacent cells driving cell-to-cell communication. Yet, cell-autonomous control of Notch signaling through both ligand-dependent and ligand-independent mechanisms is known to occur as well. Examples include Notch signaling arising in the absence of ligand binding, and cis-inhibition of Notch signaling by titration of the Notch receptor upon binding to its ligands within a single cell. Increasing experimental evidences support that the binding of the Notch receptor with its ligands within a cell (cis-interactions) can also trigger a cell-autonomous Notch signal (cis-signaling), whose potential effects on cell fate decisions and patterning remain poorly understood. To address this question, herein we mathematically and computationally investigate the cell states arising from the combination of cis-signaling with additional Notch signaling sources, which are either cell-autonomous or involve cell-to-cell communication. Our study shows that cis-signaling can switch from driving cis-activation to effectively perform cis-inhibition and identifies under which conditions this switch occurs. This switch relies on the competition between Notch signaling sources, which share the same receptor but differ in their signaling efficiency. We propose that the role of cis-interactions and their signaling on fine-grained patterning and cell fate decisions is dependent on whether they drive cis-inhibition or cis-activation, which could be controlled during development. Specifically, cis-inhibition and not cis-activation facilitates patterning and enriches it by modulating the ratio of cells in the high-ligand expression state, by enabling additional periodic patterns like stripes and by allowing localized patterning highly sensitive to the precursor state and cell-autonomous bistability. Our study

  19. Notch signalling mediates reproductive constraint in the adult worker honeybee

    PubMed Central

    Duncan, Elizabeth J.; Hyink, Otto; Dearden, Peter K.

    2016-01-01

    The hallmark of eusociality is the reproductive division of labour, in which one female caste reproduces, while reproduction is constrained in the subordinate caste. In adult worker honeybees (Apis mellifera) reproductive constraint is conditional: in the absence of the queen and brood, adult worker honeybees activate their ovaries and lay haploid male eggs. Here, we demonstrate that chemical inhibition of Notch signalling can overcome the repressive effect of queen pheromone and promote ovary activity in adult worker honeybees. We show that Notch signalling acts on the earliest stages of oogenesis and that the removal of the queen corresponds with a loss of Notch protein in the germarium. We conclude that the ancient and pleiotropic Notch signalling pathway has been co-opted into constraining reproduction in worker honeybees and we provide the first molecular mechanism directly linking ovary activity in adult worker bees with the presence of the queen. PMID:27485026

  20. Notch signalling mediates reproductive constraint in the adult worker honeybee.

    PubMed

    Duncan, Elizabeth J; Hyink, Otto; Dearden, Peter K

    2016-01-01

    The hallmark of eusociality is the reproductive division of labour, in which one female caste reproduces, while reproduction is constrained in the subordinate caste. In adult worker honeybees (Apis mellifera) reproductive constraint is conditional: in the absence of the queen and brood, adult worker honeybees activate their ovaries and lay haploid male eggs. Here, we demonstrate that chemical inhibition of Notch signalling can overcome the repressive effect of queen pheromone and promote ovary activity in adult worker honeybees. We show that Notch signalling acts on the earliest stages of oogenesis and that the removal of the queen corresponds with a loss of Notch protein in the germarium. We conclude that the ancient and pleiotropic Notch signalling pathway has been co-opted into constraining reproduction in worker honeybees and we provide the first molecular mechanism directly linking ovary activity in adult worker bees with the presence of the queen. PMID:27485026

  1. Notch signaling in the developing cardiovascular system.

    PubMed

    Niessen, Kyle; Karsan, Aly

    2007-07-01

    The Notch proteins encompass a family of transmembrane receptors that have been highly conserved through evolution as mediators of cell fate. Recent findings have demonstrated a critical role of Notch in the developing cardiovascular system. Notch signaling has been implicated in the endothelial-to-mesenchymal transition during development of the heart valves, in arterial-venous differentiation, and in remodeling of the primitive vascular plexus. Mutations of Notch pathway components in humans are associated with congenital defects of the cardiovascular system such as Alagille syndrome, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), and bicuspid aortic valves. This article focuses on the role of the Notch pathway in the developing cardiovascular system and congenital human cardiovascular diseases.

  2. Active notch filter network with variable notch depth, width and frequency

    NASA Technical Reports Server (NTRS)

    Black, J. M. (Inventor)

    1980-01-01

    An active notch filter having independently adjustable notch frequency, width, and depth is provided by three equal capacitors connected in series with an operational amplifier (connected in a voltage follower configuration), a potentiometer across the series connected capacitors for notch depth adjustment, and a potentiometer (for notch frequency connected across the center capacitor); with its tap connected to receive a voltage feedback signal from a variable voltage divider comprised of another potentiometer for notch width. Adjusting the voltage dividing potentiometer will independently set the notch width, and adjusting the tap on the potentiometer across the center capacitor will independently adjust the notch frequency of the filter. A second operational amplifier connected in a voltage follower configuration may be used to connect the voltage divider output to the adjustable tap of the potentiometer across the center capacitor.

  3. Cis-interactions between Notch and its ligands block ligand-independent Notch activity

    PubMed Central

    Palmer, William Hunt; Jia, Dongyu; Deng, Wu-Min

    2014-01-01

    The Notch pathway is integrated into numerous developmental processes and therefore is fine-tuned on many levels, including receptor production, endocytosis, and degradation. Notch is further characterized by a twofold relationship with its Delta-Serrate (DSL) ligands, as ligands from opposing cells (trans-ligands) activate Notch, whereas ligands expressed in the same cell (cis-ligands) inhibit signaling. We show that cells without both cis- and trans-ligands can mediate Notch-dependent developmental events during Drosophila oogenesis, indicating ligand-independent Notch activity occurs when the receptor is free of cis- and trans-ligands. Furthermore, cis-ligands can reduce Notch activity in endogenous and genetically induced situations of elevated trans-ligand-independent Notch signaling. We conclude that cis-expressed ligands exert their repressive effect on Notch signaling in cases of trans-ligand-independent activation, and propose a new function of cis-inhibition which buffers cells against accidental Notch activity. DOI: http://dx.doi.org/10.7554/eLife.04415.001 PMID:25486593

  4. Mastermind-like transcriptional co-activator-mediated Notch signaling is indispensable for maintaining conjunctival epithelial identity

    PubMed Central

    Zhang, Yujin; Lam, Oliver; Nguyen, Minh-Thanh T.; Ng, Gracia; Pear, Warren S.; Ai, Walden; Wang, I-Jong; Kao, Winston W.-Y.; Liu, Chia-Yang

    2013-01-01

    Conjunctival goblet cells primarily synthesize mucins to lubricate the ocular surface, which is essential for normal vision. Notch signaling has been known to associate with goblet cell differentiation in intestinal and respiratory tracts, but its function in ocular surface has yet to be fully characterized. Herein, we demonstrate that conditional inhibition of canonical Notch signaling by expressing dominant negative mastermind-like 1 (dnMaml1) in ocular surface epithelia resulted in complete suppression of goblet cell differentiation during and subsequent to development. When compared with the ocular surface of wild-type mice (OSWt), expression of dnMaml1 at the ocular surface (OSdnMaml1) caused conjunctival epithelial hyperplasia, aberrant desquamation, failure of Mucin 5ac (Muc5ac) synthesis, subconjunctival inflammation and epidermal metaplasia in cornea. In addition, conditional deletion of Notch1 from the ocular surface epithelia partially recapitulated OSdnMaml1 phenotypes. We have demonstrated that N1-ICD (Notch1 intracellular domain) transactivated the mouse Krüppel-like factor 4 (Klf) promoter and that Klf4 directly bound to and significantly potentiated the Muc5ac promoter. By contrast, OSdnMaml1 dampened Klf4 and Klf5 expression, and diminished Muc5ac synthesis. Collectively, these findings indicated that Maml-mediated Notch signaling plays a pivotal role in the initiation and maintenance of goblet cell differentiation for normal ocular surface morphogenesis and homeostasis through regulation of Klf4 and Klf5. PMID:23293291

  5. NUMB is a break of WNT-Notch signaling cycle.

    PubMed

    Katoh, Masuko; Katoh, Masaru

    2006-09-01

    Notch, FGF and WNT signaling pathways cross-talk during embryogenesis, tissue regeneration and carcinogenesis. Notch-ligand binding to Notch receptors leads to the cleavage of Notch receptors and the following nuclear translocation of Notch intracellular domain (NICD) to induce transcriptional activation of Notch target genes. Notch signaling inhibitors, NUMB and NUMB-like (NUMBL), are docking proteins with PTB domain. We searched for the TCF/LEF-binding site within the promoter region of NUMB and NUMBL genes. Because two TCF/LEF-binding sites were identified within human NUMB promoter based on bioinformatics and human intelligence (Humint), comparative integromics analyses on NUMB orthologs were further performed. Chimpanzee NUBM gene, consisting of 13 exons, was identified within NW_115880.1 genome sequence. XM_510045.1 was not the correct coding sequence for chimpanzee NUMB. Chimpanzee NUMB gene was found to encode a 651-amino-acid protein showing 99.5, 93.9 and 82.6% total-amino-acid identity with human NUMB, mouse Numb and chicken numb, respectively. Human NUMB mRNA was expressed in placenta, ES cells, neural tissues, trachea, testis, uterus, thymus, coronary artery as well as in a variety of tumors, such as cervical cancer, tong tumor, brain tumor, colorectal and breast cancer. Although distal TCF/LEF-binding site within human NUMB promoter was conserved only among primate NUMB orthologs, proximal TCF/LEF-binding site was conserved among primate and rodent NUMB orthologs. NUMB, JAG1, FGF18, FGF20 and SPRY4 are potent targets of the canonical WNT signaling pathway in progenitor cells. NUMB inhibits Notch signaling in progenitor cells to induce differentiation, while JAG1 activates Notch signaling in stem cells to maintain self-renewal potential. Because Notch signaling inhibitor NUMB was identified as the safe apparatus for the WNT - Notch signaling cycle, epigenetic silencing, deletion and loss-of-function mutation of NUMB gene could lead to carcinogenesis

  6. Involvement of Notch1/Hes signaling pathway in ankylosing spondylitis

    PubMed Central

    Xu, Wei; Liang, Chao-Ge; Li, Yi-Fan; Ji, Yun-Han; Qiu, Wen-Jun; Tang, Xian-Zhong

    2015-01-01

    We aimed to investigate the role of Notch1/Hes signaling pathway in the pathogenesis of abnormal ossification of hip ligament in patients with ankylosing spondylitis (AS). 22 AS patients scheduled for artificial hip arthroplasty were randomly chosen as AS group. As controls, we used 4 patients diagnosed with transcervical fracture who underwent hip replacement surgery. Notch1 and Hes mRNA expressions were detected by real-time fluorescent quantitative polymerase chain reaction (RFQ-PCR). Immunohistochemistry (IHC) was used to detect Notch1 and Hes protein expression. Correlation analyses of Notch-l and Hes with AS-related clinical factors were conducted with spearman’s correlation analysis and partial correlation analysis. RFQ-PCR results showed significant differences in Notch1 and Hes mRNA expressions between AS group and the control group (all P < 0.05). IHC analysis further indicated positive nuclear signals of Notch1 and Hes protein, indicating functional activation of the Notch1 and Hes pathways. Semi-quantitative IHC showed a higher Notch1 and Hes expression levels in AS group compared to the control group (all P < 0.05). Correlation analysis suggested that Hes protein expression was positively associated with the clinical course of the disease in AS patients. In conclusion, Notch1 and Hes overexpression was clearly detected in hip joint ligaments of AS patients, Hes protein expression was associated with the clinical course of AS. Taken together, we suggest that signaling pathways mediated by Notch1-Hes may contribute to ligament ossification of hip joints in AS patients. PMID:26045779

  7. Notch3 signaling promotes the development of pulmonary arterial hypertension.

    PubMed

    Li, Xiaodong; Zhang, Xiaoxue; Leathers, Robin; Makino, Ayako; Huang, Chengqun; Parsa, Pouria; Macias, Jesus; Yuan, Jason X-J; Jamieson, Stuart W; Thistlethwaite, Patricia A

    2009-11-01

    Notch receptor signaling is implicated in controlling smooth muscle cell proliferation and in maintaining smooth muscle cells in an undifferentiated state. Pulmonary arterial hypertension is characterized by excessive vascular resistance, smooth muscle cell proliferation in small pulmonary arteries, leading to elevation of pulmonary vascular resistance, right ventricular failure and death. Here we show that human pulmonary hypertension is characterized by overexpression of NOTCH3 in small pulmonary artery smooth muscle cells and that the severity of disease in humans and rodents correlates with the amount of NOTCH3 protein in the lung. We further show that mice with homozygous deletion of Notch3 do not develop pulmonary hypertension in response to hypoxic stimulation and that pulmonary hypertension can be successfully treated in mice by administration of N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT), a gamma-secretase inhibitor that blocks activation of Notch3 in smooth muscle cells. We show a mechanistic link from NOTCH3 receptor signaling through the Hairy and enhancer of Split-5 (HES-5) protein to smooth muscle cell proliferation and a shift to an undifferentiated smooth muscle cell phenotype. These results suggest that the NOTCH3-HES-5 signaling pathway is crucial for the development of pulmonary arterial hypertension and provide a target pathway for therapeutic intervention. PMID:19855400

  8. Activation of the NOTCH pathway in head and neck cancer.

    PubMed

    Sun, Wenyue; Gaykalova, Daria A; Ochs, Michael F; Mambo, Elizabeth; Arnaoutakis, Demetri; Liu, Yan; Loyo, Myriam; Agrawal, Nishant; Howard, Jason; Li, Ryan; Ahn, Sun; Fertig, Elana; Sidransky, David; Houghton, Jeffery; Buddavarapu, Kalyan; Sanford, Tiffany; Choudhary, Ashish; Darden, Will; Adai, Alex; Latham, Gary; Bishop, Justin; Sharma, Rajni; Westra, William H; Hennessey, Patrick; Chung, Christine H; Califano, Joseph A

    2014-02-15

    NOTCH1 mutations have been reported to occur in 10% to 15% of head and neck squamous cell carcinomas (HNSCC). To determine the significance of these mutations, we embarked upon a comprehensive study of NOTCH signaling in a cohort of 44 HNSCC tumors and 25 normal mucosal samples through a set of expression, copy number, methylation, and mutation analyses. Copy number increases were identified in NOTCH pathway genes, including the NOTCH ligand JAG1. Gene set analysis defined a differential expression of the NOTCH signaling pathway in HNSCC relative to normal tissues. Analysis of individual pathway-related genes revealed overexpression of ligands JAG1 and JAG2 and receptor NOTCH3. In 32% of the HNSCC examined, activation of the downstream NOTCH effectors HES1/HEY1 was documented. Notably, exomic sequencing identified 5 novel inactivating NOTCH1 mutations in 4 of the 37 tumors analyzed, with none of these tumors exhibiting HES1/HEY1 overexpression. Our results revealed a bimodal pattern of NOTCH pathway alterations in HNSCC, with a smaller subset exhibiting inactivating NOTCH1 receptor mutations but a larger subset exhibiting other NOTCH1 pathway alterations, including increases in expression or gene copy number of the receptor or ligands as well as downstream pathway activation. Our results imply that therapies that target the NOTCH pathway may be more widely suitable for HNSCC treatment than appreciated currently.

  9. Activation of the NOTCH pathway in Head and Neck Cancer

    PubMed Central

    Sun, Wenyue; Gaykalova, Daria A.; Ochs, Michael F.; Mambo, Elizabeth; Arnaoutakis, Demetri; Liu, Yan; Loyo, Myriam; Agrawal, Nishant; Howard, Jason; Li, Ryan; Ahn, Sun; Fertig, Elana; Sidransky, David; Houghton, Jeffery; Buddavarapu, Kalyan; Sanford, Tiffany; Choudhary, Ashish; Darden, Will; Adai, Alex; Latham, Gary; Bishop, Justin; Sharma, Rajni; Westra, William H.; Hennessey, Patrick; Chung, Christine H.; Califano, Joseph A.

    2014-01-01

    NOTCH1 mutations have been reported to occur in 10 to 15% of head and neck squamous cell carcinomas (HNSCC). To determine the significance of these mutations, we embarked upon a comprehensive study of NOTCH signaling in a cohort of 44 HNSCC tumors and 25 normal mucosal samples through a set of expression, copy number, methylation and mutation analyses. Copy number increases were identified in NOTCH pathway genes including the NOTCH ligand JAG1. Gene set analysis defined a differential expression of the NOTCH signaling pathway in HNSCC relative to normal tissues. Analysis of individual pathway-related genes revealed overexpression of ligands JAG1 and JAG2 and receptor NOTCH3. In 32% of the HNSCC examined, activation of the downstream NOTCH effectors HES1/HEY1 was documented. Notably, exomic sequencing identified 5 novel inactivating NOTCH1 mutations in 4/37 of the tumors analyzed, with none of these tumors exhibiting HES1/HEY1 overexpression. Our results revealed a bimodal pattern of NOTCH pathway alterations in HNSCC, with a smaller subset exhibiting inactivating NOTCH1 receptors mutations but a larger subset exhibiting other NOTCH1 pathway alterations, including increases in expression or gene copy number of the receptor or ligands as well as downstream pathway activation. Our results imply that therapies that target the NOTCH pathway may be more widely suitable for HNSCC treatment than appreciated currently. PMID:24351288

  10. Acquisition of epithelial-mesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the notch signaling pathway.

    PubMed

    Wang, Zhiwei; Li, Yiwei; Kong, Dejuan; Banerjee, Sanjeev; Ahmad, Aamir; Azmi, Asfar Sohail; Ali, Shadan; Abbruzzese, James L; Gallick, Gary E; Sarkar, Fazlul H

    2009-03-15

    Despite rapid advances in many fronts, pancreatic cancer (PC) remains one of the most difficult human malignancies to treat due, in part, to de novo and acquired chemoresistance and radioresistance. Gemcitabine alone or in combination with other conventional therapeutics is the standard of care for the treatment of advanced PC without any significant improvement in the overall survival of patients diagnosed with this deadly disease. Previous studies have shown that PC cells that are gemcitabine-resistant (GR) acquired epithelial-mesenchymal transition (EMT) phenotype, which is reminiscent of "cancer stem-like cells"; however, the molecular mechanism that led to EMT phenotype has not been fully investigated. The present study shows that Notch-2 and its ligand, Jagged-1, are highly up-regulated in GR cells, which is consistent with the role of the Notch signaling pathway in the acquisition of EMT and cancer stem-like cell phenotype. We also found that the down-regulation of Notch signaling was associated with decreased invasive behavior of GR cells. Moreover, down-regulation of Notch signaling by siRNA approach led to partial reversal of the EMT phenotype, resulting in the mesenchymal-epithelial transition, which was associated with decreased expression of vimentin, ZEB1, Slug, Snail, and nuclear factor-kappaB. These results provide molecular evidence showing that the activation of Notch signaling is mechanistically linked with chemoresistance phenotype (EMT phenotype) of PC cells, suggesting that the inactivation of Notch signaling by novel strategies could be a potential targeted therapeutic approach for overcoming chemoresistance toward the prevention of tumor progression and/or treatment of metastatic PC.

  11. Notch1 signaling stimulates proliferation of immature cardiomyocytes.

    PubMed

    Collesi, Chiara; Zentilin, Lorena; Sinagra, Gianfranco; Giacca, Mauro

    2008-10-01

    The identification of the molecular mechanisms controlling cardiomyocyte proliferation during the embryonic, fetal, and early neonatal life appears of paramount interest in regard to exploiting this information to promote cardiac regeneration. Here, we show that the proliferative potential of neonatal rat cardiomyocytes is powerfully stimulated by the sustained activation of the Notch pathway. We found that Notch1 is expressed in proliferating ventricular immature cardiac myocytes (ICMs) both in vitro and in vivo, and that the number of Notch1-positive cells in the heart declines with age. Notch1 expression in ICMs paralleled the expression of its Jagged1 ligand on non-myocyte supporting cells. The inhibition of Notch signaling in ICMs blocked their proliferation and induced apoptosis; in contrast, its activation by Jagged1 or by the constitutive expression of its activated form using an adeno-associated virus markedly stimulated proliferative signaling and promoted ICM expansion. Maintenance or reactivation of Notch signaling in cardiac myocytes might represent an interesting target for innovative regenerative therapy. PMID:18824567

  12. Notch1 endocytosis is induced by ligand and is required for signal transduction.

    PubMed

    Chapman, G; Major, J A; Iyer, K; James, A C; Pursglove, S E; Moreau, J L M; Dunwoodie, S L

    2016-01-01

    The Notch signalling pathway is widely utilised during embryogenesis in situations where cell-cell interactions are important for cell fate specification and differentiation. DSL ligand endocytosis into the ligand-expressing cell is an important aspect of Notch signalling because it is thought to supply the force needed to separate the Notch heterodimer to initiate signal transduction. A functional role for receptor endocytosis during Notch signal transduction is more controversial. Here we have used live-cell imaging to examine trafficking of the Notch1 receptor in response to ligand binding. Contact with cells expressing ligands induced internalisation and intracellular trafficking of Notch1. Notch1 endocytosis was accompanied by transendocytosis of ligand into the Notch1-expressing signal-receiving cell. Ligand caused Notch1 endocytosis into SARA-positive endosomes in a manner dependent on clathrin and dynamin function. Moreover, inhibition of endocytosis in the receptor-expressing cell impaired ligand-induced Notch1 signalling. Our findings resolve conflicting observations from mammalian and Drosophila studies by demonstrating that ligand-dependent activation of Notch1 signalling requires receptor endocytosis. Endocytosis of Notch1 may provide a force on the ligand:receptor complex that is important for potent signal transduction.

  13. The divergent DSL ligand Dll3 does not activate Notch signaling but cell autonomously attenuates signaling induced by other DSL ligands.

    PubMed

    Ladi, Ena; Nichols, James T; Ge, Weihong; Miyamoto, Alison; Yao, Christine; Yang, Liang-Tung; Boulter, Jim; Sun, Yi E; Kintner, Chris; Weinmaster, Gerry

    2005-09-12

    Mutations in the DSL (Delta, Serrate, Lag2) Notch (N) ligand Delta-like (Dll) 3 cause skeletal abnormalities in spondylocostal dysostosis, which is consistent with a critical role for N signaling during somitogenesis. Understanding how Dll3 functions is complicated by reports that DSL ligands both activate and inhibit N signaling. In contrast to other DSL ligands, we show that Dll3 does not activate N signaling in multiple assays. Consistent with these findings, Dll3 does not bind to cells expressing any of the four N receptors, and N1 does not bind Dll3-expressing cells. However, in a cell-autonomous manner, Dll3 suppressed N signaling, as was found for other DSL ligands. Therefore, Dll3 functions not as an activator as previously reported but rather as a dedicated inhibitor of N signaling. As an N antagonist, Dll3 promoted Xenopus laevis neurogenesis and inhibited glial differentiation of mouse neural progenitors. Finally, together with the modulator lunatic fringe, Dll3 altered N signaling levels that were induced by other DSL ligands.

  14. The Wnt3a/β-catenin target gene Mesogenin1 controls the segmentation clock by activating a Notch signaling program

    PubMed Central

    Chalamalasetty, Ravindra B.; Dunty, William C.; Biris, Kristin K.; Ajima, Rieko; Iacovino, Michelina; Beisaw, Arica; Feigenbaum, Lionel; Chapman, Deborah L.; Yoon, Jeong Kyo; Kyba, Michael; Yamaguchi, Terry P.

    2013-01-01

    Summary Segmentation is an organizing principle of body plans. The segmentation clock, a molecular oscillator best illustrated by the cyclic expression of Notch signaling genes, controls the periodic cleavage of somites from unsegmented presomitic mesoderm (PSM) during vertebrate segmentation. Wnt3a controls the spatiotemporal expression of cyclic Notch genes, however the underlying mechanisms remain obscure. Transcriptional profiling of Wnt3a−/− embryos led to the identification of the bHLH transcription factor, Mesogenin1 (Msgn1), as a direct target gene of Wnt3a. To identify Msgn1 targets, we performed genome-wide studies of Msgn1 activity in embryonic stem cells. Here we show that Msgn1 is a major transcriptional activator of a Notch signaling program, synergizing with Notch to trigger clock gene expression. Msgn1 also indirectly regulates cyclic genes in the Fgf and Wnt pathways. Thus, Msgn1 is a central component of a transcriptional cascade that translates a spatial Wnt3a gradient into a temporal pattern of clock gene expression. PMID:21750544

  15. Temporal Notch activation through Notch1a and Notch3 is required for maintaining zebrafish rhombomere boundaries.

    PubMed

    Qiu, Xuehui; Lim, Chiaw-Hwee; Ho, Steven Hao-Kee; Lee, Kian-Hong; Jiang, Yun-Jin

    2009-07-01

    In vertebrates, hindbrain is subdivided into seven segments termed rhombomeres and the interface between each rhombomere forms the boundary. Similar to the D/V boundary formation in Drosophila, Notch activation has been shown to regulate the segregation of rhombomere boundary cells. Here we further explored the function of Notch signaling in the formation of rhombomere boundaries. By using bodipy ceramide cell-labeling technique, we found that the hindbrain boundary is formed initially in mib mutants but lost after 24 hours post-fertilization (hpf). This phenotype was more severe in mib(ta52b) allele than in mib(tfi91) allele. Similarly, injection of su(h)-MO led to boundary defects in a dosage-dependent manner. Boundary cells were recovered in mib(ta52b) mutants in the hdac1-deficient background, where neurogenesis is inhibited. Furthermore, boundary cells lost sensitivity to reduced Notch activation from 15 somite stage onwards. We also showed that knockdown of notch3 function in notch1a mutants leads to the loss of rhombomere boundary cells and causes neuronal hyperplasia, indicating that Notch1a and Notch3 play a redundant role in the maintenance of rhombomere boundary.

  16. Stage-specific effects of Notch activation during skeletal myogenesis

    PubMed Central

    Bi, Pengpeng; Yue, Feng; Sato, Yusuke; Wirbisky, Sara; Liu, Weiyi; Shan, Tizhong; Wen, Yefei; Zhou, Daoguo; Freeman, Jennifer; Kuang, Shihuan

    2016-01-01

    Skeletal myogenesis involves sequential activation, proliferation, self-renewal/differentiation and fusion of myogenic stem cells (satellite cells). Notch signaling is known to be essential for the maintenance of satellite cells, but its function in late-stage myogenesis, i.e. post-differentiation myocytes and post-fusion myotubes, is unknown. Using stage-specific Cre alleles, we uncovered distinct roles of Notch1 in mononucleated myocytes and multinucleated myotubes. Specifically, constitutive Notch1 activation dedifferentiates myocytes into Pax7 quiescent satellite cells, leading to severe defects in muscle growth and regeneration, and postnatal lethality. By contrast, myotube-specific Notch1 activation improves the regeneration and exercise performance of aged and dystrophic muscles. Mechanistically, Notch1 activation in myotubes upregulates the expression of Notch ligands, which modulate Notch signaling in the adjacent satellite cells to enhance their regenerative capacity. These results highlight context-dependent effects of Notch activation during myogenesis, and demonstrate that Notch1 activity improves myotube’s function as a stem cell niche. DOI: http://dx.doi.org/10.7554/eLife.17355.001 PMID:27644105

  17. Compensatory flux changes within an endocytic trafficking network maintain thermal robustness of Notch signaling.

    PubMed

    Shimizu, Hideyuki; Woodcock, Simon A; Wilkin, Marian B; Trubenová, Barbora; Monk, Nicholas A M; Baron, Martin

    2014-05-22

    Developmental signaling is remarkably robust to environmental variation, including temperature. For example, in ectothermic animals such as Drosophila, Notch signaling is maintained within functional limits across a wide temperature range. We combine experimental and computational approaches to show that temperature compensation of Notch signaling is achieved by an unexpected variety of endocytic-dependent routes to Notch activation which, when superimposed on ligand-induced activation, act as a robustness module. Thermal compensation arises through an altered balance of fluxes within competing trafficking routes, coupled with temperature-dependent ubiquitination of Notch. This flexible ensemble of trafficking routes supports Notch signaling at low temperature but can be switched to restrain Notch signaling at high temperature and thus compensates for the inherent temperature sensitivity of ligand-induced activation. The outcome is to extend the physiological range over which normal development can occur. Similar mechanisms may provide thermal robustness for other developmental signals.

  18. Compensatory Flux Changes within an Endocytic Trafficking Network Maintain Thermal Robustness of Notch Signaling

    PubMed Central

    Shimizu, Hideyuki; Woodcock, Simon A.; Wilkin, Marian B.; Trubenová, Barbora; Monk, Nicholas A.M.; Baron, Martin

    2014-01-01

    Summary Developmental signaling is remarkably robust to environmental variation, including temperature. For example, in ectothermic animals such as Drosophila, Notch signaling is maintained within functional limits across a wide temperature range. We combine experimental and computational approaches to show that temperature compensation of Notch signaling is achieved by an unexpected variety of endocytic-dependent routes to Notch activation which, when superimposed on ligand-induced activation, act as a robustness module. Thermal compensation arises through an altered balance of fluxes within competing trafficking routes, coupled with temperature-dependent ubiquitination of Notch. This flexible ensemble of trafficking routes supports Notch signaling at low temperature but can be switched to restrain Notch signaling at high temperature and thus compensates for the inherent temperature sensitivity of ligand-induced activation. The outcome is to extend the physiological range over which normal development can occur. Similar mechanisms may provide thermal robustness for other developmental signals. PMID:24855951

  19. NACK is an integral component of the Notch transcriptional activation complex and is critical for development and tumorigenesis.

    PubMed

    Weaver, Kelly L; Alves-Guerra, Marie-Clotilde; Jin, Ke; Wang, Zhiqiang; Han, Xiaoqing; Ranganathan, Prathibha; Zhu, Xiaoxia; DaSilva, Thiago; Liu, Wei; Ratti, Francesca; Demarest, Renee M; Tzimas, Cristos; Rice, Meghan; Vasquez-Del Carpio, Rodrigo; Dahmane, Nadia; Robbins, David J; Capobianco, Anthony J

    2014-09-01

    The Notch signaling pathway governs many distinct cellular processes by regulating transcriptional programs. The transcriptional response initiated by Notch is highly cell context dependent, indicating that multiple factors influence Notch target gene selection and activity. However, the mechanism by which Notch drives target gene transcription is not well understood. Herein, we identify and characterize a novel Notch-interacting protein, Notch activation complex kinase (NACK), which acts as a Notch transcriptional coactivator. We show that NACK associates with the Notch transcriptional activation complex on DNA, mediates Notch transcriptional activity, and is required for Notch-mediated tumorigenesis. We demonstrate that Notch1 and NACK are coexpressed during mouse development and that homozygous loss of NACK is embryonic lethal. Finally, we show that NACK is also a Notch target gene, establishing a feed-forward loop. Thus, our data indicate that NACK is a key component of the Notch transcriptional complex and is an essential regulator of Notch-mediated tumorigenesis and development.

  20. Endothelial cells promote neural stem cell proliferation and differentiation associated with VEGF activated Notch and Pten signaling.

    PubMed

    Sun, Jinqiao; Zhou, Wenhao; Ma, Duan; Yang, Yi

    2010-09-01

    To investigate whether and how endothelial cells affect neurogenesis, we established a system to co-culture endothelial cells and brain slices of neonatal rat and observed how subventricular zone cells differentiate in the presence of endothelial cells. In the presence of endothelial cells, neural stem cells increased in number, as did differentiated neurons and glia. The augmentation of neurogenesis was reversed by diminishing vascular endothelial growth factor (VEGF) expression in endothelial cells with RNA interference (RNAi). Microarray analysis indicated that expression levels of 112 genes were significantly altered by co-culture and that expression of 81 of the 112 genes recovered to normal levels following RNAi of VEGF in endothelial cells. Pathway mapping showed an enrichment of genes in the Notch and Pten pathways. These data indicate that endothelial cells promote neural stem cell proliferation and differentiation associated with VEGF, possibly by activating the Notch and Pten pathways.

  1. Stilbenoids remodel the DNA methylation patterns in breast cancer cells and inhibit oncogenic NOTCH signaling through epigenetic regulation of MAML2 transcriptional activity

    PubMed Central

    Lubecka, Katarzyna; Kurzava, Lucinda; Flower, Kirsty; Buvala, Hannah; Zhang, Hao; Teegarden, Dorothy; Camarillo, Ignacio; Suderman, Matthew; Kuang, Shihuan; Andrisani, Ourania; Flanagan, James M.; Stefanska, Barbara

    2016-01-01

    DNA hypomethylation was previously implicated in cancer progression and metastasis. The purpose of this study was to examine whether stilbenoids, resveratrol and pterostilbene thought to exert anticancer effects, target genes with oncogenic function for de novo methylation and silencing, leading to inactivation of related signaling pathways. Following Illumina 450K, genome-wide DNA methylation analysis reveals that stilbenoids alter DNA methylation patterns in breast cancer cells. On average, 75% of differentially methylated genes have increased methylation, and these genes are enriched for oncogenic functions, including NOTCH signaling pathway. MAML2, a coactivator of NOTCH targets, is methylated at the enhancer region and transcriptionally silenced in response to stilbenoids, possibly explaining the downregulation of NOTCH target genes. The increased DNA methylation at MAML2 enhancer coincides with increased occupancy of repressive histone marks and decrease in activating marks. This condensed chromatin structure is associated with binding of DNMT3B and decreased occupancy of OCT1 transcription factor at MAML2 enhancer, suggesting a role of DNMT3B in increasing methylation of MAML2 after stilbenoid treatment. Our results deliver a novel insight into epigenetic regulation of oncogenic signals in cancer and provide support for epigenetic-targeting strategies as an effective anticancer approach. PMID:27207652

  2. Notch Signaling: A Potential Therapeutic Target for Hematologic Malignancies.

    PubMed

    Gao, Lingbao; Yuan, Keyu; Ding, Wei; Lin, Mei

    2016-01-01

    Notch signaling is a well-conserved cell-fate determining factor in embryo development, and the dyregulation of this signaling is frequently observed in many types of cancers, including hematological malignancies. In this review, we briefly describe the Notch signaling pathway, and we primarily focus on the relationship between Notch and hematological malignancies. We also discuss the clinical development of promising agents including γ-secretase inhibitors (GSIs) and monoclonal antibodies (mAbs). Complete response has been observed among patients with T-cell acute lymphoblastic leukemia (T-ALL) when treated with GSIs. Furthermore, a recent study has suggested that targeting Zmiz1, a direct, selective cofactor of Notch1, rather than targeting Notch directly, maybe helpful to reduce the current target-related toxicities. Taken together, we summarize the role of Notch signaling in hematological malignancies and discuss the treatment strategies for these diseases through targeting Notch signaling. PMID:27650987

  3. Notch Signaling Mediates Skeletal Muscle Atrophy in Cancer Cachexia Caused by Osteosarcoma.

    PubMed

    Mu, Xiaodong; Agarwal, Rashmi; March, Daniel; Rothenberg, Adam; Voigt, Clifford; Tebbets, Jessica; Huard, Johnny; Weiss, Kurt

    2016-01-01

    Skeletal muscle atrophy in cancer cachexia is mediated by the interaction between muscle stem cells and various tumor factors. Although Notch signaling has been known as a key regulator of both cancer development and muscle stem cell activity, the potential involvement of Notch signaling in cancer cachexia and concomitant muscle atrophy has yet to be elucidated. The murine K7M2 osteosarcoma cell line was used to generate an orthotopic model of sarcoma-associated cachexia, and the role of Notch signaling was evaluated. Skeletal muscle atrophy was observed in the sarcoma-bearing mice, and Notch signaling was highly active in both tumor tissues and the atrophic skeletal muscles. Systemic inhibition of Notch signaling reduced muscle atrophy. In vitro coculture of osteosarcoma cells with muscle-derived stem cells (MDSCs) isolated from normal mice resulted in decreased myogenic potential of MDSCs, while the application of Notch inhibitor was able to rescue this repressed myogenic potential. We further observed that Notch-activating factors reside in the exosomes of osteosarcoma cells, which activate Notch signaling in MDSCs and subsequently repress myogenesis. Our results revealed that signaling between tumor and muscle via the Notch pathway may play an important role in mediating the skeletal muscle atrophy seen in cancer cachexia. PMID:27378829

  4. Notch Signaling Mediates Skeletal Muscle Atrophy in Cancer Cachexia Caused by Osteosarcoma

    PubMed Central

    Agarwal, Rashmi; March, Daniel; Voigt, Clifford

    2016-01-01

    Skeletal muscle atrophy in cancer cachexia is mediated by the interaction between muscle stem cells and various tumor factors. Although Notch signaling has been known as a key regulator of both cancer development and muscle stem cell activity, the potential involvement of Notch signaling in cancer cachexia and concomitant muscle atrophy has yet to be elucidated. The murine K7M2 osteosarcoma cell line was used to generate an orthotopic model of sarcoma-associated cachexia, and the role of Notch signaling was evaluated. Skeletal muscle atrophy was observed in the sarcoma-bearing mice, and Notch signaling was highly active in both tumor tissues and the atrophic skeletal muscles. Systemic inhibition of Notch signaling reduced muscle atrophy. In vitro coculture of osteosarcoma cells with muscle-derived stem cells (MDSCs) isolated from normal mice resulted in decreased myogenic potential of MDSCs, while the application of Notch inhibitor was able to rescue this repressed myogenic potential. We further observed that Notch-activating factors reside in the exosomes of osteosarcoma cells, which activate Notch signaling in MDSCs and subsequently repress myogenesis. Our results revealed that signaling between tumor and muscle via the Notch pathway may play an important role in mediating the skeletal muscle atrophy seen in cancer cachexia. PMID:27378829

  5. Characterization of Notch Signaling During Osteogenic Differentiation in Human Osteosarcoma Cell Line MG63.

    PubMed

    Ongaro, Alessia; Pellati, Agnese; Bagheri, Leila; Rizzo, Paola; Caliceti, Cristiana; Massari, Leo; De Mattei, Monica

    2016-12-01

    Osteogenic differentiation is a multi-step process controlled by a complex molecular framework. Notch is an evolutionarily conserved intercellular signaling pathway playing a prominent role in cell fate and differentiation, although the mechanisms by which this pathway regulates osteogenesis remain controversial. This study aimed to investigate, in vitro, the involvement of Notch pathway during all the developmental stages of osteogenic differentiation in human osteosarcoma cell line MG63. Cells were cultured in basal condition (control) and in osteoinductive medium (OM). Notch inhibitors were also added in OM to block Notch pathway. During osteogenic differentiation, early (alkaline phosphatase activity and collagen type I) and late osteogenic markers (osteocalcin levels and matrix mineralization), as well as the gene expression of the main osteogenic transcription factors (Runx2, Osterix, and Dlx5) increased. Time dependent changes in the expression of specific Notch receptors were identified in OM versus control with a significant reduction in the expression of Notch1 and Notch3 receptors in the early phase of differentiation, and an increase of Notch2 and Notch4 receptors in the late phase. Among Notch nuclear target genes, Hey1 expression was significantly higher in OM than control, while Hes5 expression decreased. Osteogenic markers were reduced and Hey1 was significantly inhibited by Notch inhibitors, suggesting a role for Notch through the canonical pathway. In conclusion, Notch pathway might be involved with a dual role in osteogenesis of MG63, through the activation of Notch2, Notch4, and Hey1, inducing osteoblast differentiation and the depression of Notch1, Notch3, and Hes5, maintaining an undifferentiated status. J. Cell. Physiol. 231: 2652-2663, 2016. © 2016 Wiley Periodicals, Inc. PMID:26946465

  6. Inhibition of fibroblast growth by Notch1 signaling is mediated by induction of Wnt11-dependent WISP-1.

    PubMed

    Liu, Zhao-Jun; Li, Yan; Tan, Yurong; Xiao, Min; Zhang, Jialin; Radtke, Freddy; Velazquez, Omaida C

    2012-01-01

    Fibroblasts are an integral component of stroma and important source of growth factors and extracellular matrix (ECM). They play a prominent role in maintaining tissue homeostasis and in wound healing and tumor growth. Notch signaling regulates biological function in a variety of cells. To elucidate the physiological function of Notch signaling in fibroblasts, we ablated Notch1 in mouse (Notch1(Flox/Flox)) embryonic fibroblasts (MEFs). Notch1-deficient (Notch1(-/-)) MEFs displayed faster growth and motility rate compared to Notch1(Flox/Flox) MEFs. Such phenotypic changes, however, were reversible by reconstitution of Notch1 activation via overexpression of the intracellular domain of Notch1 (NICD1) in Notch1-deficient MEFs. In contrast, constitutive activation of Notch1 signaling by introducing NICD1 into primary human dermal fibroblasts (FF2441), which caused pan-Notch activation, inhibited cell growth and motility, whereas cellular inhibition was relievable when the Notch activation was countered with dominant-negative mutant of Master-mind like 1 (DN-MAML-1). Functionally, "Notch-activated" stromal fibroblasts could inhibit tumor cell growth/invasion. Moreover, Notch activation induced expression of Wnt-induced secreted proteins-1 (WISP-1/CCN4) in FF2441 cells while deletion of Notch1 in MEFs resulted in an opposite effect. Notably, WISP-1 suppressed fibroblast proliferation, and was responsible for mediating Notch1's inhibitory effect since siRNA-mediated blockade of WISP-1 expression could relieve cell growth inhibition. Notch1-induced WISP-1 expression appeared to be Wnt11-dependent, but Wnt1-independent. Blockade of Wnt11 expression resulted in decreased WISP-1 expression and liberated Notch-induced cell growth inhibition. These findings indicated that inhibition of fibroblast proliferation by Notch pathway activation is mediated, at least in part, through regulating Wnt1-independent, but Wnt11-dependent WISP-1 expression.

  7. Notch1-mediated signaling regulates proliferation of porcine satellite cells (PSCs).

    PubMed

    Qin, Lili; Xu, Jian; Wu, Zhenfang; Zhang, Zhe; Li, Jiaqi; Wang, Chong; Long, Qiaoming

    2013-02-01

    Notch signaling is an evolutionarily conserved cell-cell communication mechanism involved in the regulation of cell proliferation, differentiation and fate decisions of mammalian cells. In the present study, we investigated the possible requirement for Notch signaling in the proliferation and differentiation of porcine satellite cells. We show that Notch1, 2 and 3 are expressed in cultured porcine satellite cells. Knock-down of NOTCH1, but not NOTCH2 and NOTCH3, decreases the proliferation of porcine satellite cells. In contrast, enhancement of NOTCH1 expression via treatment of porcine satellite cells with recombinant NF-κB increases the proliferation of porcine satellite cells. The alteration of porcine satellite cell proliferation is associated with significant changes in the expression of cell cycle related genes (cyclin B1, D1, D2, E1 and p21), myogenic regulatory factors (MyoD and myogenin) and the Notch effector Hes5. In addition, alteration of Notch1 expression in porcine satellite cells causes changes in the expression of GSK3β-3. Taken together, these findings suggest that of the four notch-related genes, Notch1is likely to be required for regulating the proliferation and therefore the maintenance of porcine satellite cells in vivo, and do so through activation of the Notch effector gene Hes5. PMID:23160004

  8. Notch1-mediated signaling regulates proliferation of porcine satellite cells (PSCs).

    PubMed

    Qin, Lili; Xu, Jian; Wu, Zhenfang; Zhang, Zhe; Li, Jiaqi; Wang, Chong; Long, Qiaoming

    2013-02-01

    Notch signaling is an evolutionarily conserved cell-cell communication mechanism involved in the regulation of cell proliferation, differentiation and fate decisions of mammalian cells. In the present study, we investigated the possible requirement for Notch signaling in the proliferation and differentiation of porcine satellite cells. We show that Notch1, 2 and 3 are expressed in cultured porcine satellite cells. Knock-down of NOTCH1, but not NOTCH2 and NOTCH3, decreases the proliferation of porcine satellite cells. In contrast, enhancement of NOTCH1 expression via treatment of porcine satellite cells with recombinant NF-κB increases the proliferation of porcine satellite cells. The alteration of porcine satellite cell proliferation is associated with significant changes in the expression of cell cycle related genes (cyclin B1, D1, D2, E1 and p21), myogenic regulatory factors (MyoD and myogenin) and the Notch effector Hes5. In addition, alteration of Notch1 expression in porcine satellite cells causes changes in the expression of GSK3β-3. Taken together, these findings suggest that of the four notch-related genes, Notch1is likely to be required for regulating the proliferation and therefore the maintenance of porcine satellite cells in vivo, and do so through activation of the Notch effector gene Hes5.

  9. Notch signaling is essential for ventricular chamber development.

    PubMed

    Grego-Bessa, Joaquín; Luna-Zurita, Luis; del Monte, Gonzalo; Bolós, Victoria; Melgar, Pedro; Arandilla, Alejandro; Garratt, Alistair N; Zang, Heesuk; Mukouyama, Yoh-Suke; Chen, Hanying; Shou, Weinian; Ballestar, Esteban; Esteller, Manel; Rojas, Ana; Pérez-Pomares, José María; de la Pompa, José Luis

    2007-03-01

    Ventricular chamber morphogenesis, first manifested by trabeculae formation, is crucial for cardiac function and embryonic viability and depends on cellular interactions between the endocardium and myocardium. We show that ventricular Notch1 activity is highest at presumptive trabecular endocardium. RBPJk and Notch1 mutants show impaired trabeculation and marker expression, attenuated EphrinB2, NRG1, and BMP10 expression and signaling, and decreased myocardial proliferation. Functional and molecular analyses show that Notch inhibition prevents EphrinB2 expression, and that EphrinB2 is a direct Notch target acting upstream of NRG1 in the ventricles. However, BMP10 levels are found to be independent of both EphrinB2 and NRG1 during trabeculation. Accordingly, exogenous BMP10 rescues the myocardial proliferative defect of in vitro-cultured RBPJk mutants, while exogenous NRG1 rescues differentiation in parallel. We suggest that during trabeculation Notch independently regulates cardiomyocyte proliferation and differentiation, two exquisitely balanced processes whose perturbation may result in congenital heart disease.

  10. Notch Signaling is Essential for Ventricular Chamber Development

    PubMed Central

    Grego-Bessa, Joaquín; Luna-Zurita, Luis; Monte, Gonzalo del; Bolós, Victoria; Melgar, Pedro; Arandilla, Alejandro; Garratt, Alistair N.; Zang, Heesuk; Mukouyama, Yoh-suke; Chen, Hanying; Shou, Weinian; Ballestar, Esteban; Esteller, Manel; Rojas, Ana; Pérez-Pomares, José María; de la Pompa, José Luis

    2009-01-01

    Summary Ventricular chamber morphogenesis, first manifested by trabeculae formation, is crucial for cardiac function and embryonic viability and depends on cellular interactions between endocardium and myocardium. We show that ventricular Notch1 activity is highest at presumptive trabecular endocardium. RBPJk and Notch1 mutants show impaired trabeculation and marker expression, attenuated EphrinB2, NRG1 and BMP10 expression and signaling and decreased myocardial proliferation. Functional and molecular analyses show that Notch inhibition prevents EphrinB2 expression and that EphrinB2 is a direct Notch target acting upstream of NRG1 in the ventricles. However, BMP10 levels are found to be independent of both EphrinB2 and NRG1 during trabeculation. Accordingly, exogenous BMP10 rescues the myocardial proliferative defect of in vitro cultured RBPJk mutants, while exogenous NRG1 rescues differentiation in parallel. We suggest that during trabeculation Notch independently regulates cardiomyocyte proliferation and differentiation, two exquisitely balanced processes whose perturbation may result in congenital heart disease. PMID:17336907

  11. Gliolectin positively regulates Notch signalling during wing-vein specification in Drosophila.

    PubMed

    Prasad, Naveen; Shashidhara, Lingadahalli S

    2015-01-01

    Notch signalling is essential for animal development. It integrates multiple pathways controlling cell fate and specification. Here we report the genetic characterization of Gliolectin, presumably a lectin, a cytoplasmic protein, significantly enriched in Golgi bodies. Its expression overlaps with regions where Notch is activated. Loss of gliolectin function results in ectopic veins, while gain of its function causes loss of wing veins. It positively regulates Enhancer of split mβ, a target of Notch signalling. These observations suggest that it is a positive regulator of Notch signalling during wing development in Drosophila. PMID:26505251

  12. Notch signaling represses GATA4-induced expression of genes involved in steroid biosynthesis

    PubMed Central

    George, Rajani M.; Hahn, Katherine L.; Rawls, Alan; Viger, Robert S.; Wilson-Rawls, Jeanne

    2015-01-01

    Notch2 and Notch3 and genes of the Notch signaling network are dynamically expressed in developing follicles, where they are essential for granulosa cell proliferation and meiotic maturation. Notch receptors, ligands, and downstream effector genes are also expressed in testicular Leydig cells, predicting a potential role in regulating steroidogenesis. In this study, we sought to determine if Notch signaling in small follicles regulates the proliferation response of granulosa cells to follicle stimulating hormone and represses the up-regulation steroidogenic gene expression that occurs in response to FSH as the follicle grows. Inhibition of Notch signaling in small preantral follicles led to the up-regulation of the expression of genes in the steroid biosynthetic pathway. Similarly, progesterone secretion by MA-10 Leydig cells was significantly inhibited by constitutively active Notch. Together, these data indicated that Notch signaling inhibits steroidogenesis. GATA4 has been shown to be a positive regulator of steroidogenic genes, including steroidogenic acute regulatory protein, P450 aromatase, and 3B-hydroxysteroid dehydrogenase. We observed that Notch downstream effectors HEY1, HEY2, and HEYL are able to differentially regulate these GATA4-dependent promoters. These data are supported by the presence of HEY/HES binding sites in these promoters. These studies indicate that Notch signaling has a role in the complex regulation of the steroidogenic pathway. PMID:26183893

  13. Cellular Notch responsiveness is defined by phosphoinositide 3-kinase-dependent signals

    PubMed Central

    Mckenzie, Grahame; Ward, George; Stallwood, Yvette; Briend, Emmanuel; Papadia, Sofia; Lennard, Andrew; Turner, Martin; Champion, Brian; Hardingham, Giles E

    2006-01-01

    Background Notch plays a wide-ranging role in controlling cell fate, differentiation and development. The PI3K-Akt pathway is a similarly conserved signalling pathway which regulates processes such as differentiation, proliferation and survival. Mice with disrupted Notch and PI3K signalling show phenotypic similarities during haematopoietic cell development, suggesting functional interaction between these pathways. Results We show that cellular responsiveness to Notch signals depends on the activity of the PI3K-Akt pathway in cells as diverse as CHO cells, primary T-cells and hippocampal neurons. Induction of the endogenous PI3K-Akt pathway in CHO cells (by the insulin pathway), in T-cells (via TCR activation) or in neurons (via TrKB activation) potentiates Notch-dependent responses. We propose that the PI3K-Akt pathway exerts its influence on Notch primarily via inhibition of GSK3-beta, a kinase known to phosphorylate and regulate Notch signals. Conclusion The PI3K-Akt pathway acts as a "gain control" for Notch signal responses. Since physiological levels of intracellular Notch are often low, coincidence with PI3K-activation may be crucial for induction of Notch-dependent responses. PMID:16507111

  14. Jagged1-selective notch signaling induces smooth muscle differentiation via a RBP-Jkappa-dependent pathway.

    PubMed

    Doi, Hiroshi; Iso, Tatsuya; Sato, Hiroko; Yamazaki, Miki; Matsui, Hiroki; Tanaka, Toru; Manabe, Ichiro; Arai, Masashi; Nagai, Ryozo; Kurabayashi, Masahiko

    2006-09-29

    The Notch signaling pathway plays a crucial role in specifying cellular fates by interaction between cellular neighbors; however, the molecular mechanism underlying smooth muscle cell (SMC) differentiation by Notch signaling has not been well characterized. Here we demonstrate that Jagged1-Notch signaling promotes SMC differentiation from mesenchymal cells. Overexpression of the Notch intracellular domain, an activated form of Notch, up-regulates the expression of multiple SMC marker genes including SMC-myosin heavy chain (Sm-mhc) in mesenchymal 10T1/2 cells, but not in non-mesenchymal cells. Physiological Notch stimulation by its ligand Jagged1, but not Dll4, directly induces Sm-mhc expression in 10T1/2 cells without de novo protein synthesis, indicative of a ligand-selective effect. Jagged1-induced expression of SM-MHC was blocked bygamma-secretase inhibitor, N-(N-(3,5-difluorophenyl)-l-alanyl)-S-phenylglycine t-butyl ester, which impedes Notch signaling. Using Rbp-jkappa-deficient cells and site-specific mutagenesis of the SM-MHC gene, we show that such an induction is independent of the myocardin-serum response factor-CArG complex, but absolutely dependent on RBP-Jkappa, a major mediator of Notch signaling, and its cognate binding sequence. Of importance, Notch signaling and myocardin synergistically activate SM-MHC gene expression. Taken together, these data suggest that the Jagged1-Notch pathway constitutes an instructive signal for SMC differentiation through an RBP-Jkappa-dependent mechanism and augments gene expression mediated by the myocardin-SRF-CArG complex. Given that Notch pathway components are expressed in vascular SMC during normal development and disease, Notch signaling is likely to play a pivotal role in such situations to modulate the vascular smooth muscle cell phenotype. PMID:16867989

  15. Cardioprotective actions of Notch1 against myocardial infarction via LKB1-dependent AMPK signaling pathway.

    PubMed

    Yang, Hui; Sun, Wanqing; Quan, Nanhu; Wang, Lin; Chu, Dongyang; Cates, Courtney; Liu, Quan; Zheng, Yang; Li, Ji

    2016-05-15

    AMP-activated protein kinase (AMPK) signaling pathway plays a pivotal role in intracellular adaptation to energy stress during myocardial ischemia. Notch1 signaling in the adult myocardium is also activated in response to ischemic stress. However, the relationship between Notch1 and AMPK signaling pathways during ischemia remains unclear. We hypothesize that Notch1 as an adaptive signaling pathway protects the heart from ischemic injury via modulating the cardioprotective AMPK signaling pathway. C57BL/6J mice were subjected to an in vivo ligation of left anterior descending coronary artery and the hearts from C57BL/6J mice were subjected to an ex vivo globe ischemia and reperfusion in the Langendorff perfusion system. The Notch1 signaling was activated during myocardial ischemia. A Notch1 γ-secretase inhibitor, dibenzazepine (DBZ), was intraperitoneally injected into mice to inhibit Notch1 signaling pathway by ischemia. The inhibition of Notch1 signaling by DBZ significantly augmented cardiac dysfunctions caused by myocardial infarction. Intriguingly, DBZ treatment also significantly blunted the activation of AMPK signaling pathway. The immunoprecipitation experiments demonstrated that an interaction between Notch1 and liver kinase beta1 (LKB1) modulated AMPK activation during myocardial ischemia. Furthermore, a ligand of Notch1 Jagged1 can significantly reduce cardiac damage caused by ischemia via activation of AMPK signaling pathway and modulation of glucose oxidation and fatty acid oxidation during ischemia and reperfusion. But Jagged1 did not have any cardioprotections on AMPK kinase dead transgenic hearts. Taken together, the results indicate that the cardioprotective effect of Notch1 against ischemic damage is mediated by AMPK signaling via an interaction with upstream LKB1.

  16. Notch signaling in prostate cancer: refining a therapeutic opportunity

    PubMed Central

    Su, Qingtai; Xin, Li

    2016-01-01

    Summary Notch is an evolutionarily conserved signaling pathway that plays a critical role in specifying cell fate and regulating tissue homeostasis and carcinogenesis. Studies using organ cultures and genetically engineered mouse models have demonstrated that Notch signaling regulates prostate development and homeostasis. However, the role of the Notch signaling pathway in prostate cancer remains inconclusive. Many published studies have documented consistent deregulation of major Notch signaling components in human prostate cancer cell lines, mouse models for prostate cancers, and human prostate cancer specimens at both the mRNA and the protein levels. However, functional studies in human cancer cells by modulation of Notch pathway elements suggest both tumor suppressive and oncogenic roles of Notch. These controversies may originate from our inadequate understanding of the regulation of Notch signaling under versatile genetic contexts, and reflect the multifaceted and pleiotropic roles of Notch in regulating different aspects of prostate cancer cell biology, such as proliferation, metastasis, and chemo-resistance. Future comprehensive studies using various mouse models for prostate cancer may help clarify the role of Notch signaling in prostate cancer and provide a solid basis for determining whether and how Notch should be employed as a therapeutic target for prostate cancer. PMID:26521657

  17. Galectin-3 Inhibits Osteoblast Differentiation through Notch Signaling12

    PubMed Central

    Nakajima, Kosei; Kho, Dhong Hyo; Yanagawa, Takashi; Harazono, Yosuke; Gao, Xiaoge; Hogan, Victor; Raz, Avraham

    2014-01-01

    Patients with bone cancer metastasis suffer from unbearable pain and bone fractures due to bone remodeling. This is caused by tumor cells that disturb the bone microenvironment. Here, we have investigated the role of tumor-secreted sugar-binding protein, i.e., galectin-3, on osteoblast differentiation and report that it downregulates the expression of osteoblast differentiation markers, e.g., RUNX2, SP7, ALPL, COL1A1, IBSP, and BGLAP, of treated human fetal osteoblast (hFOB) cells. Co-culturing of hFOB cells with human breast cancer BT-549 and prostate cancer LNCaP cells harboring galectin-3 has resulted in inhibition of osteoblast differentiation by the secreted galectin-3 into culture medium. The inhibitory effect of galectin-3 was found to be through its binding to Notch1 in a sugar-dependent manner that has led to accelerated Notch1 cleavage and activation of Notch signaling. Taken together, our findings show that soluble galectin-3 in the bone microenvironment niche regulates bone remodeling through Notch signaling, suggesting a novel bone metastasis therapeutic target. PMID:25425968

  18. Notch signaling in the brain: in good and bad times.

    PubMed

    Alberi, Lavinia; Hoey, Sarah E; Brai, Emanuele; Scotti, Alessandra L; Marathe, Swananda

    2013-06-01

    Notch signaling is an evolutionarily conserved pathway, which is fundamental for neuronal development and specification. In the last decade, increasing evidence has pointed out an important role of this pathway beyond embryonic development, indicating that Notch also displays a critical function in the mature brain of vertebrates and invertebrates. This pathway appears to be involved in neural progenitor regulation, neuronal connectivity, synaptic plasticity and learning/memory. In addition, Notch appears to be aberrantly regulated in neurodegenerative diseases, including Alzheimer's disease and ischemic injury. The molecular mechanisms by which Notch displays these functions in the mature brain are not fully understood, but are currently the subject of intense research. In this review, we will discuss old and novel Notch targets and molecular mediators that contribute to Notch function in the mature brain and will summarize recent findings that explore the two facets of Notch signaling in brain physiology and pathology.

  19. A role for the primary cilium in Notch signaling and epidermal differentiation during skin development.

    PubMed

    Ezratty, Ellen J; Stokes, Nicole; Chai, Sophia; Shah, Alok S; Williams, Scott E; Fuchs, Elaine

    2011-06-24

    Ciliogenesis precedes lineage-determining signaling in skin development. To understand why, we performed shRNA-mediated knockdown of seven intraflagellar transport proteins (IFTs) and conditional ablation of Ift-88 and Kif3a during embryogenesis. In both cultured keratinocytes and embryonic epidermis, all of these eliminated cilia, and many (not Kif3a) caused hyperproliferation. Surprisingly and independent of proliferation, ciliary mutants displayed defects in Notch signaling and commitment of progenitors to differentiate. Notch receptors and Notch-processing enzymes colocalized with cilia in wild-type epidermal cells. Moreover, differentiation defects in ciliary mutants were cell autonomous and rescued by activated Notch (NICD). By contrast, Shh signaling was neither operative nor required for epidermal ciliogenesis, Notch signaling, or differentiation. Rather, Shh signaling defects in ciliary mutants occurred later, arresting hair follicle morphogenesis in the skin. These findings unveil temporally and spatially distinct functions for primary cilia at the nexus of signaling, proliferation, and differentiation.

  20. Epithelial Notch signaling regulates lung alveolar morphogenesis and airway epithelial integrity

    PubMed Central

    Tsao, Po-Nien; Matsuoka, Chisa; Wei, Shu-Chen; Sato, Atsuyasu; Sato, Susumu; Hasegawa, Koichi; Chen, Hung-kuan; Ling, Thai-Yen; Mori, Munemasa; Cardoso, Wellington V.; Morimoto, Mitsuru

    2016-01-01

    Abnormal enlargement of the alveolar spaces is a hallmark of conditions such as chronic obstructive pulmonary disease and bronchopulmonary dysplasia. Notch signaling is crucial for differentiation and regeneration and repair of the airway epithelium. However, how Notch influences the alveolar compartment and integrates this process with airway development remains little understood. Here we report a prominent role of Notch signaling in the epithelial–mesenchymal interactions that lead to alveolar formation in the developing lung. We found that alveolar type II cells are major sites of Notch2 activation and show by Notch2-specific epithelial deletion (Notch2cNull) a unique contribution of this receptor to alveologenesis. Epithelial Notch2 was required for type II cell induction of the PDGF-A ligand and subsequent paracrine activation of PDGF receptor-α signaling in alveolar myofibroblast progenitors. Moreover, Notch2 was crucial in maintaining the integrity of the epithelial and smooth muscle layers of the distal conducting airways. Our data suggest that epithelial Notch signaling regulates multiple aspects of postnatal development in the distal lung and may represent a potential target for intervention in pulmonary diseases. PMID:27364009

  1. Notch1 Regulates Hippocampal Plasticity Through Interaction with the Reelin Pathway, Glutamatergic Transmission and CREB Signaling

    PubMed Central

    Brai, Emanuele; Marathe, Swananda; Astori, Simone; Fredj, Naila Ben; Perry, Elisabeth; Lamy, Christophe; Scotti, Alessandra; Alberi, Lavinia

    2015-01-01

    Notch signaling plays a crucial role in adult brain function such as synaptic plasticity, memory and olfaction. Several reports suggest an involvement of this pathway in neurodegenerative dementia. Yet, to date, the mechanism underlying Notch activity in mature neurons remains unresolved. In this work, we investigate how Notch regulates synaptic potentiation and contributes to the establishment of memory in mice. We observe that Notch1 is a postsynaptic receptor with functional interactions with the Reelin receptor, apolipoprotein E receptor 2 (ApoER2) and the ionotropic receptor, N-methyl-D-aspartate receptor (NMDAR). Targeted loss of Notch1 in the hippocampal CA fields affects Reelin signaling by influencing Dab1 expression and impairs the synaptic potentiation achieved through Reelin stimulation. Further analysis indicates that loss of Notch1 affects the expression and composition of the NMDAR but not AMPAR. Glutamatergic signaling is further compromised through downregulation of CamKII and its secondary and tertiary messengers resulting in reduced cAMP response element-binding (CREB) signaling. Our results identify Notch1 as an important regulator of mechanisms involved in synaptic plasticity and memory formation. These findings emphasize the possible involvement of this signaling receptor in dementia. Highlights In this paper, we propose a mechanism for Notch1-dependent plasticity that likely underlies the function of Notch1 in memory formation: Notch1 interacts with another important developmental pathway, the Reelin cascade. Notch1 regulates both NMDAR expression and composition. Notch1 influences a cascade of cellular events culminating in CREB activation. PMID:26635527

  2. Deuterium reveals the dynamics of notch activation.

    PubMed

    Raphael, Kopan

    2011-04-13

    Notch activation requires unfolding of a juxtamembrane negative regulatory domain (NRR). Tiyanont et al. (2011) analyzed the dynamics of NRR unfolding in the presence of EGTA. As predicted from the crystal structure and deletion analyses, the lin-Notch repeats unfold first, facilitating access by ADAM proteases. Surprisingly, the heterodimerization domain remains stable.

  3. Inhibition of CK2α down-regulates Notch1 signalling in lung cancer cells

    PubMed Central

    Zhang, Shulin; Long, Hao; Yang, Yi-Lin; Wang, Yucheng; Hsieh, David; Li, Weiming; Au, Alfred; Stoppler, Hubert J; Xu, Zhidong; Jablons, David M; You, Liang

    2013-01-01

    Protein kinase CK2 is frequently elevated in a variety of human cancers. The Notch1 signalling pathway has been implicated in stem cell maintenance and its aberrant activation has been shown in several types of cancer including lung cancer. Here, we show, for the first time, that CK2α is a positive regulator of Notch1 signalling in lung cancer cell lines A549 and H1299. We found that Notch1 protein level was reduced after CK2α silencing. Down-regulation of Notch1 transcriptional activity was demonstrated after the silencing of CK2α in lung cancer cells. Furthermore, small-molecule CK2α inhibitor CX-4945 led to a dose-dependent inhibition of Notch1 transcriptional activity. Conversely, forced overexpression of CK2α resulted in an increase in Notch1 transcriptional activity. Finally, the inhibition of CK2α led to a reduced proportion of stem-like CD44 + /CD24− cell population. Thus, we report that the inhibition of CK2α down-regulates Notch1 signalling and subsequently reduces a cancer stem-like cell population in human lung cancer cells. Our data suggest that CK2α inhibitors may be beneficial to the lung cancer patients with activated Notch1 signalling. PMID:23651443

  4. NOTCH activation interferes with cell fate specification in the gastrulating mouse embryo.

    PubMed

    Souilhol, Céline; Perea-Gomez, Aitana; Camus, Anne; Beck-Cormier, Sarah; Vandormael-Pournin, Sandrine; Escande, Marie; Collignon, Jérôme; Cohen-Tannoudji, Michel

    2015-11-01

    NOTCH signalling is an evolutionarily conserved pathway involved in intercellular communication essential for cell fate choices during development. Although dispensable for early aspects of mouse development, canonical RBPJ-dependent NOTCH signalling has been shown to influence lineage commitment during embryonic stem cell (ESC) differentiation. NOTCH activation in ESCs promotes the acquisition of a neural fate, whereas its suppression favours their differentiation into cardiomyocytes. This suggests that NOTCH signalling is implicated in the acquisition of distinct embryonic fates at early stages of mammalian development. In order to investigate in vivo such a role for NOTCH signalling in shaping cell fate specification, we use genetic approaches to constitutively activate the NOTCH pathway in the mouse embryo. Early embryonic development, including the establishment of anterior-posterior polarity, is not perturbed by forced NOTCH activation. By contrast, widespread NOTCH activity in the epiblast triggers dramatic gastrulation defects. These are fully rescued in a RBPJ-deficient background. Epiblast-specific NOTCH activation induces acquisition of neurectoderm identity and disrupts the formation of specific mesodermal precursors including the derivatives of the anterior primitive streak, the mouse organiser. In addition, we show that forced NOTCH activation results in misregulation of NODAL signalling, a major determinant of early embryonic patterning. Our study reveals a previously unidentified role for canonical NOTCH signalling during mammalian gastrulation. It also exemplifies how in vivo studies can shed light on the mechanisms underlying cell fate specification during in vitro directed differentiation.

  5. hCLP46 regulates U937 cell proliferation via Notch signaling pathway

    SciTech Connect

    Ma, Wenzhan; Du, Jie; Chu, Qiaoyun; Wang, Youxin; Liu, Lixin; Song, Manshu; Wang, Wei

    2011-04-29

    Highlights: {yields} Knock down of hCLP46 by RNAi impairs mammalian Notch signaling. {yields} hCLP46 affects neither cell surface Notch1 expression nor ligand-receptor binding. {yields} Knock down of hCLP46 inhibits U937 cell-growth by up-regulation of CDKN1B. -- Abstract: Human CAP10-like protein 46 kDa (hCLP46) is the homolog of Rumi, which is the first identified protein O-glucosyltransferase that modifies Notch receptor in Drosophila. Dysregulation of hCLP46 occurs in many hematologic diseases, but the role of hCLP46 remains unclear. Knockdown of hCLP46 by RNA interference resulted in decreased protein levels of endogenous Notch1, Notch intracellular domain (NICD) and Notch target gene Hes-1, suggesting the impairment of the Notch signaling. However, neither cell surface Notch expression nor ligand binding activities were affected. In addition, down-regulated expression of hCLP46 inhibited the proliferation of U937 cells, which was correlated with increased cyclin-dependent kinase inhibitor (CDKI) CDKN1B (p27) and decreased phosphorylation of retinoblastoma (RB) protein. We showed that lack of hCLP46 results in impaired ligand induced Notch activation in mammalian cell, and hCLP46 regulates the proliferation of U937 cell through CDKI-RB signaling pathway, which may be important for the pathogenesis of leukemia.

  6. Small molecules intercept Notch signaling and the early secretory pathway.

    PubMed

    Krämer, Andreas; Mentrup, Torben; Kleizen, Bertrand; Rivera-Milla, Eric; Reichenbach, Daniela; Enzensperger, Christoph; Nohl, Richard; Täuscher, Eric; Görls, Helmar; Ploubidou, Aspasia; Englert, Christoph; Werz, Oliver; Arndt, Hans-Dieter; Kaether, Christoph

    2013-11-01

    Notch signaling has a pivotal role in numerous cell-fate decisions, and its aberrant activity leads to developmental disorders and cancer. To identify molecules that influence Notch signaling, we screened nearly 17,000 compounds using automated microscopy to monitor the trafficking and processing of a ligand-independent Notch-enhanced GFP (eGFP) reporter. Characterization of hits in vitro by biochemical and cellular assays and in vivo using zebrafish led to five validated compounds, four of which induced accumulation of the reporter at the plasma membrane by inhibiting γ-secretase. One compound, the dihydropyridine FLI-06, disrupted the Golgi apparatus in a manner distinct from that of brefeldin A and golgicide A. FLI-06 inhibited general secretion at a step before exit from the endoplasmic reticulum (ER), which was accompanied by a tubule-to-sheet morphological transition of the ER, rendering FLI-06 the first small molecule acting at such an early stage in secretory traffic. These data highlight the power of phenotypic screening to enable investigations of central cellular signaling pathways. PMID:24077179

  7. Notch Signaling Induces Rapid Degradation of Achaete-Scute Homolog 1

    PubMed Central

    Sriuranpong, Virote; Borges, Michael W.; Strock, Christopher L.; Nakakura, Eric K.; Watkins, D. Neil; Blaumueller, Christine M.; Nelkin, Barry D.; Ball, Douglas W.

    2002-01-01

    In neural development, Notch signaling plays a key role in restricting neuronal differentiation, promoting the maintenance of progenitor cells. Classically, Notch signaling causes transactivation of Hairy-enhancer of Split (HES) genes which leads to transcriptional repression of neural determination and differentiation genes. We now report that in addition to its known transcriptional mechanism, Notch signaling also leads to rapid degradation of the basic helix-loop-helix (bHLH) transcription factor human achaete-scute homolog 1 (hASH1). Using recombinant adenoviruses expressing active Notch1 in small-cell lung cancer cells, we showed that the initial appearance of Notch1 coincided with the loss of hASH1 protein, preceding the full decay of hASH1 mRNA. Overexpression of HES1 alone was capable of down-regulating hASH1 mRNA but could not replicate the acute reduction of hASH1 protein induced by Notch1. When adenoviral hASH1 was coinfected with Notch1, we still observed a dramatic and abrupt loss of the exogenous hASH1 protein, despite high levels of ongoing hASH1 RNA expression. Notch1 treatment decreased the apparent half-life of the adenoviral hASH1 protein and increased the fraction of hASH1 which was polyubiquitinylated. The proteasome inhibitor MG132 reversed the Notch1-induced degradation. The Notch RAM domain was dispensable but a lack of the OPA and PEST domains inactivated this Notch1 action. Overexpression of the hASH1-dimerizing partner E12 could protect hASH1 from degradation. This novel function of activated Notch to rapidly degrade a class II bHLH protein may prove to be important in many contexts in development and in cancer. PMID:11940670

  8. Notch signaling induces rapid degradation of achaete-scute homolog 1.

    PubMed

    Sriuranpong, Virote; Borges, Michael W; Strock, Christopher L; Nakakura, Eric K; Watkins, D Neil; Blaumueller, Christine M; Nelkin, Barry D; Ball, Douglas W

    2002-05-01

    In neural development, Notch signaling plays a key role in restricting neuronal differentiation, promoting the maintenance of progenitor cells. Classically, Notch signaling causes transactivation of Hairy-enhancer of Split (HES) genes which leads to transcriptional repression of neural determination and differentiation genes. We now report that in addition to its known transcriptional mechanism, Notch signaling also leads to rapid degradation of the basic helix-loop-helix (bHLH) transcription factor human achaete-scute homolog 1 (hASH1). Using recombinant adenoviruses expressing active Notch1 in small-cell lung cancer cells, we showed that the initial appearance of Notch1 coincided with the loss of hASH1 protein, preceding the full decay of hASH1 mRNA. Overexpression of HES1 alone was capable of down-regulating hASH1 mRNA but could not replicate the acute reduction of hASH1 protein induced by Notch1. When adenoviral hASH1 was coinfected with Notch1, we still observed a dramatic and abrupt loss of the exogenous hASH1 protein, despite high levels of ongoing hASH1 RNA expression. Notch1 treatment decreased the apparent half-life of the adenoviral hASH1 protein and increased the fraction of hASH1 which was polyubiquitinylated. The proteasome inhibitor MG132 reversed the Notch1-induced degradation. The Notch RAM domain was dispensable but a lack of the OPA and PEST domains inactivated this Notch1 action. Overexpression of the hASH1-dimerizing partner E12 could protect hASH1 from degradation. This novel function of activated Notch to rapidly degrade a class II bHLH protein may prove to be important in many contexts in development and in cancer.

  9. Sequential Notch activation regulates ventricular chamber development

    PubMed Central

    D'Amato, Gaetano; Luxán, Guillermo; del Monte-Nieto, Gonzalo; Martínez-Poveda, Beatriz; Torroja, Carlos; Walter, Wencke; Bochter, Matthew S.; Benedito, Rui; Cole, Susan; Martinez, Fernando; Hadjantonakis, Anna-Katerina; Uemura, Akiyoshi; Jiménez-Borreguero, Luis J.; de la Pompa, José Luis

    2016-01-01

    Ventricular chambers are essential for the rhythmic contraction and relaxation occurring in every heartbeat throughout life. Congenital abnormalities in ventricular chamber formation cause severe human heart defects. How the early trabecular meshwork of myocardial fibres forms and subsequently develops into mature chambers is poorly understood. We show that Notch signalling first connects chamber endocardium and myocardium to sustain trabeculation, and later coordinates ventricular patterning and compaction with coronary vessel development to generate the mature chamber, through a temporal sequence of ligand signalling determined by the glycosyltransferase manic fringe (MFng). Early endocardial expression of MFng promotes Dll4–Notch1 signalling, which induces trabeculation in the developing ventricle. Ventricular maturation and compaction require MFng and Dll4 downregulation in the endocardium, which allows myocardial Jag1 and Jag2 signalling to Notch1 in this tissue. Perturbation of this signalling equilibrium severely disrupts heart chamber formation. Our results open a new research avenue into the pathogenesis of cardiomyopathies. PMID:26641715

  10. Cross-platform expression profiling demonstrates that SV40 small tumor antigen activates Notch, Hedgehog, and Wnt signaling in human cells

    PubMed Central

    Ali-Seyed, Mohamed; Laycock, Noelani; Karanam, Suresh; Xiao, Wenming; Blair, Eric T; Moreno, Carlos S

    2006-01-01

    Background We previously analyzed human embryonic kidney (HEK) cell lines for the effects that simian virus 40 (SV40) small tumor antigen (ST) has on gene expression using Affymetrix U133 GeneChips. To cross-validate and extend our initial findings, we sought to compare the expression profiles of these cell lines using an alternative microarray platform. METHODS: We have analyzed matched cell lines with and without expression of SV40 ST using an Applied Biosystems (AB) microarray platform that uses single 60-mer oligonucleotides and single-color quantitative chemiluminescence for detection. RESULTS: While we were able to previously identify only 456 genes affected by ST with the Affymetrix platform, we identified 1927 individual genes with the AB platform. Additional technical replicates increased the number of identified genes to 3478 genes and confirmed the changes in 278 (61%) of our original set of 456 genes. Among the 3200 genes newly identified as affected by SV40 ST, we confirmed 20 by QRTPCR including several components of the Wnt, Notch, and Hedgehog signaling pathways, consistent with SV40 ST activation of these developmental pathways. While inhibitors of Notch activation had no effect on cell survival, cyclopamine had a potent killing effect on cells expressing SV40 ST. CONCLUSIONS: These data show that SV40 ST expression alters cell survival pathways to sensitize cells to the killing effect of Hedgehog pathway inhibitors. PMID:16522205

  11. Inhibition of gamma-secretase affects proliferation of leukemia and hepatoma cell lines through Notch signaling.

    PubMed

    Suwanjunee, Saipin; Wongchana, Wipawee; Palaga, Tanapat

    2008-06-01

    Notch signaling is a well-conserved pathway playing crucial roles in regulating cell fate decision, proliferation, and apoptosis during the development of multiple cell lineages. Aberration in Notch signaling is associated with tumorigenesis of tissues from various origins. To investigate the role Notch signaling plays in the proliferation of cancer cell lines, the expression profiles of Notch1 in six human cancer cell lines (Jurkat, HepG2, SW620, KATOIII, A375, BT474) were examined. All cell lines differentially expressed Notch1, and only Jurkat and SW620 expressed cleaved Notch1 (Val1744). Among the six cell lines tested, only Jurkat and HepG2 showed a decrease in cell proliferation during 4 days of treatment with a gamma-secretase inhibitor (GSI). This is the first report on the anti-proliferative effects of GSI on a human hepatoma cell line. These two cell lines expressed Notch1-3, Jagged1, Jagged2, Dlk1 and Hes1. GSI treatment led to a decrease in Hes1 expression in both cell lines. Surprisingly, GSI treatment resulted in the accumulation of Notch1 protein upon treatment. During this period, GSI treatment did not induce apoptosis, but caused cell cycle arrest in both cell lines. This was also correlated with decreased c-myc expression. Forced expression of activated intracellular Notch1 completely abrogated GSI sensitivity in both cell lines. These results clearly demonstrate that Notch signaling positively regulates cell proliferation in Jurkat and HepG2 cell lines and that GSI treatment inhibits tumor cell proliferation through the suppression of Notch signaling. PMID:18418214

  12. Notch pathway activation targets AML-initiating cell homeostasis and differentiation

    PubMed Central

    Ntziachristos, Panagiotis; Ndiaye-Lobry, Delphine; Oh, Philmo; Cimmino, Luisa; Zhu, Nan; Araldi, Elisa; Hu, Wenhuo; Freund, Jacquelyn; Abdel-Wahab, Omar; Ibrahim, Sherif; Skokos, Dimitris; Armstrong, Scott A.; Levine, Ross L.; Park, Christopher Y.

    2013-01-01

    Notch signaling pathway activation is known to contribute to the pathogenesis of a spectrum of human malignancies, including T cell leukemia. However, recent studies have implicated the Notch pathway as a tumor suppressor in myeloproliferative neoplasms and several solid tumors. Here we report a novel tumor suppressor role for Notch signaling in acute myeloid leukemia (AML) and demonstrate that Notch pathway activation could represent a therapeutic strategy in this disease. We show that Notch signaling is silenced in human AML samples, as well as in AML-initiating cells in an animal model of the disease. In vivo activation of Notch signaling using genetic Notch gain of function models or in vitro using synthetic Notch ligand induces rapid cell cycle arrest, differentiation, and apoptosis of AML-initiating cells. Moreover, we demonstrate that Notch inactivation cooperates in vivo with loss of the myeloid tumor suppressor Tet2 to induce AML-like disease. These data demonstrate a novel tumor suppressor role for Notch signaling in AML and elucidate the potential therapeutic use of Notch receptor agonists in the treatment of this devastating leukemia. PMID:23359070

  13. Role of Wnt and Notch signaling in regulating hair cell regeneration in the cochlea.

    PubMed

    Waqas, Muhammad; Zhang, Shasha; He, Zuhong; Tang, Mingliang; Chai, Renjie

    2016-09-01

    Sensory hair cells in the inner ear are responsible for sound recognition. Damage to hair cells in adult mammals causes permanent hearing impairment because these cells cannot regenerate. By contrast, newborn mammals possess limited regenerative capacity because of the active participation of various signaling pathways, including Wnt and Notch signaling. The Wnt and Notch pathways are highly sophisticated and conserved signaling pathways that control multiple cellular events necessary for the formation of sensory hair cells. Both signaling pathways allow resident supporting cells to regenerate hair cells in the neonatal cochlea. In this regard, Wnt and Notch signaling has gained increased research attention in hair cell regeneration. This review presents the current understanding of the Wnt and Notch signaling pathways in the auditory portion of the inner ear and discusses the possibilities of controlling these pathways with the hair cell fate determiner Atoh1 to regulate hair cell regeneration in the mammalian cochlea.

  14. Role of Wnt and Notch signaling in regulating hair cell regeneration in the cochlea.

    PubMed

    Waqas, Muhammad; Zhang, Shasha; He, Zuhong; Tang, Mingliang; Chai, Renjie

    2016-09-01

    Sensory hair cells in the inner ear are responsible for sound recognition. Damage to hair cells in adult mammals causes permanent hearing impairment because these cells cannot regenerate. By contrast, newborn mammals possess limited regenerative capacity because of the active participation of various signaling pathways, including Wnt and Notch signaling. The Wnt and Notch pathways are highly sophisticated and conserved signaling pathways that control multiple cellular events necessary for the formation of sensory hair cells. Both signaling pathways allow resident supporting cells to regenerate hair cells in the neonatal cochlea. In this regard, Wnt and Notch signaling has gained increased research attention in hair cell regeneration. This review presents the current understanding of the Wnt and Notch signaling pathways in the auditory portion of the inner ear and discusses the possibilities of controlling these pathways with the hair cell fate determiner Atoh1 to regulate hair cell regeneration in the mammalian cochlea. PMID:27527363

  15. Targeting the Notch signaling pathway in cancer therapeutics

    PubMed Central

    Guo, Huajiao; Lu, Yi; Wang, Jianhua; Liu, Xia; Keller, Evan T; Liu, Qian; Zhou, Qinghua; Zhang, Jian

    2014-01-01

    Despite advances in surgery, imaging, chemotherapy, and radiotherapy, the poor overall cancer-related death rate remains unacceptable. Novel therapeutic strategies are desperately needed. Nowadays, targeted therapy has become the most promising therapy and a welcome asset to the cancer therapeutic arena. There is a large body of evidence demonstrating that the Notch signaling pathway is critically involved in the pathobiology of a variety of malignancies. In this review, we provide an overview of emerging data, highlight the mechanism of the Notch signaling pathway in the development of a wide range of cancers, and summarize recent progress in therapeutic targeting of the Notch signaling pathway. PMID:26767041

  16. Direct regulation of interleukin-6 expression by Notch signaling in macrophages.

    PubMed

    Wongchana, Wipawee; Palaga, Tanapat

    2012-03-01

    Interleukin-6 (IL-6) is a pleiotropic, pro-inflammatory cytokine produced by various types of cells, including macrophages. Within the IL-6 gene promoter region, the signature binding motif of CBF1/Su(H)/Lag-1 (CSL), a key DNA-binding protein in the Notch signaling pathway, was identified and found to overlap with a consensus nuclear factor (NF)-κB-binding site. Notch signaling is highly conserved and is involved in the regulation of biological functions in immune cells. In this study, we investigated the role of Notch signaling in the regulation of the IL-6 transcript in murine macrophages. The upregulation of Notch1 protein levels and the appearance of cleaved Notch1 (Val1744) correlated well with the increased IL-6 mRNA expression levels in murine primary bone marrow-derived macrophages (BMMφ) after activation by lipopolysaccharide (LPS) together with interferon-gamma (IFN-γ). Treatment of BMMφ with the γ-secretase inhibitor IL-CHO to suppress the transduction of Notch signaling resulted in a partial decrease in the level of IL-6 mRNA and the amount of IL-6 protein produced. In contrast, the overexpression of a constitutively activated intracellular Notch1 protein (N(IC)) in the RAW264.7 macrophage-like cell line resulted in significantly higher IL-6 transcript expression levels than in cells transfected with the empty vector control. The NF-κB inhibitor completely abrogated IL-6 mRNA expression induced by the overexpression of N(IC). Chromatin immunoprecipitation (ChIP) using an anti-Notch1 antibody demonstrated that Notch1 is associated with the IL-6 promoter in RAW264.7 cells activated by LPS/IFN-γ but not in unstimulated cells. Taken together, these results strongly suggest that Notch1 positively regulates IL-6 expression via NF-κB in activated macrophages.

  17. Direct regulation of interleukin-6 expression by Notch signaling in macrophages

    PubMed Central

    Wongchana, Wipawee; Palaga, Tanapat

    2012-01-01

    Interleukin-6 (IL-6) is a pleiotropic, pro-inflammatory cytokine produced by various types of cells, including macrophages. Within the IL-6 gene promoter region, the signature binding motif of CBF1/Su(H)/Lag-1 (CSL), a key DNA-binding protein in the Notch signaling pathway, was identified and found to overlap with a consensus nuclear factor (NF)-κB-binding site. Notch signaling is highly conserved and is involved in the regulation of biological functions in immune cells. In this study, we investigated the role of Notch signaling in the regulation of the IL-6 transcript in murine macrophages. The upregulation of Notch1 protein levels and the appearance of cleaved Notch1 (Val1744) correlated well with the increased IL-6 mRNA expression levels in murine primary bone marrow-derived macrophages (BMMφ) after activation by lipopolysaccharide (LPS) together with interferon-gamma (IFN-γ). Treatment of BMMφ with the γ-secretase inhibitor IL-CHO to suppress the transduction of Notch signaling resulted in a partial decrease in the level of IL-6 mRNA and the amount of IL-6 protein produced. In contrast, the overexpression of a constitutively activated intracellular Notch1 protein (NIC) in the RAW264.7 macrophage-like cell line resulted in significantly higher IL-6 transcript expression levels than in cells transfected with the empty vector control. The NF-κB inhibitor completely abrogated IL-6 mRNA expression induced by the overexpression of NIC. Chromatin immunoprecipitation (ChIP) using an anti-Notch1 antibody demonstrated that Notch1 is associated with the IL-6 promoter in RAW264.7 cells activated by LPS/IFN-γ but not in unstimulated cells. Taken together, these results strongly suggest that Notch1 positively regulates IL-6 expression via NF-κB in activated macrophages. PMID:21983868

  18. Noncyclic Notch activity in the presomitic mesoderm demonstrates uncoupling of somite compartmentalization and boundary formation

    PubMed Central

    Feller, Juliane; Schneider, Andre; Schuster-Gossler, Karin; Gossler, Achim

    2008-01-01

    To test the significance of cyclic Notch activity for somite formation in mice, we analyzed embryos expressing activated Notch (NICD) throughout the presomitic mesoderm (PSM). Embryos expressing NICD formed up to 18 somites. Expression in the PSM of Hes7, Lfng, and Spry2 was no longer cyclic, whereas Axin2 was expressed dynamically. NICD expression led to caudalization of somites, and loss of Notch activity to their rostralization. Thus, segmentation and anterior–posterior somite patterning can be uncoupled, differential Notch signaling is not required to form segment borders, and Notch is unlikely to be the pacemaker of the segmentation clock. PMID:18708576

  19. Luteolin is a novel p90 ribosomal S6 kinase (RSK) inhibitor that suppresses Notch4 signaling by blocking the activation of Y-box binding protein-1 (YB-1).

    PubMed

    Reipas, Kristen M; Law, Jennifer H; Couto, Nicole; Islam, Sumaiya; Li, Yvonne; Li, Huifang; Cherkasov, Artem; Jung, Karen; Cheema, Amarpal S; Jones, Steven J M; Hassell, John A; Dunn, Sandra E

    2013-02-01

    Triple-negative breast cancers (TNBC) are notoriously difficult to treat because they lack hormone receptors and have limited targeted therapies. Recently, we demonstrated that p90 ribosomal S6 kinase (RSK) is essential for TNBC growth and survival indicating it as a target for therapeutic development. RSK phosphorylates Y-box binding protein-1 (YB-1), an oncogenic transcription/translation factor, highly expressed in TNBC (~70% of cases) and associated with poor prognosis, drug resistance and tumor initiation. YB-1 regulates the tumor-initiating cell markers, CD44 and CD49f however its role in Notch signaling has not been explored. We sought to identify novel chemical entities with RSK inhibitory activity. The Prestwick Chemical Library of 1120 off-patent drugs was screened for RSK inhibitors using both in vitro kinase assays and molecular docking. The lead candidate, luteolin, inhibited RSK1 and RSK2 kinase activity and suppressed growth in TNBC, including TIC-enriched populations. Combining luteolin with paclitaxel increased cell death and unlike chemotherapy alone, did not enrich for CD44(+) cells. Luteolin's efficacy against drug-resistant cells was further indicated in the primary x43 cell line, where it suppressed monolayer growth and mammosphere formation. We next endeavored to understand how the inhibition of RSK/YB-1 signaling by luteolin elicited an effect on TIC-enriched populations. ChIP-on-ChIP experiments in SUM149 cells revealed a 12-fold enrichment of YB-1 binding to the Notch4 promoter. We chose to pursue this because there are several reports indicating that Notch4 maintains cells in an undifferentiated, TIC state. Herein we report that silencing YB-1 with siRNA decreased Notch4 mRNA. Conversely, transient expression of Flag:YB-1(WT) or the constitutively active mutant Flag:YB-1(D102) increased Notch4 mRNA. The levels of Notch4 transcript and the abundance of the Notch4 intracellular domain (N4ICD) correlated with activation of P-RSK(S221/7) and

  20. Canonical Notch signaling plays an instructive role in auditory supporting cell development

    PubMed Central

    Campbell, Dean P.; Chrysostomou, Elena; Doetzlhofer, Angelika

    2016-01-01

    The auditory sensory epithelium, composed of mechano-sensory hair cells (HCs) and highly specialized glial-like supporting cells (SCs), is critical for our ability to detect sound. SCs provide structural and functional support to HCs and play an essential role in cochlear development, homeostasis and repair. Despite their importance, however, surprisingly little is known about the molecular mechanisms guiding SC differentiation. Here, we provide evidence that in addition to its well-characterized inhibitory function, canonical Notch signaling plays a positive, instructive role in the differentiation of SCs. Using γ-secretase inhibitor DAPT to acutely block canonical Notch signaling, we identified a cohort of Notch-regulated SC-specific genes, with diverse functions in cell signaling, cell differentiation, neuronal innervation and synaptogenesis. We validated the newly identified Notch-regulated genes in vivo using genetic gain (Emx2Cre/+; Rosa26N1ICD/+) and loss-of-function approaches (Emx2Cre/+; Rosa26DnMAML1/+). Furthermore, we demonstrate that Notch over-activation in the differentiating murine cochlea (Emx2Cre/+; Rosa26N1ICD/+) actively promotes a SC-specific gene expression program. Finally, we show that outer SCs –so called Deiters’ cells are selectively lost by prolonged reduction (Emx2Cre/+; Rosa26DnMAML1/+/+) or abolishment of canonical Notch signaling (Fgfr3-iCreER; Rbpj−/Δ), indicating a critical role for Notch signaling in Deiters’ cell development. PMID:26786414

  1. Ilyanassa Notch signaling implicated in dynamic signaling between all three germ layers.

    PubMed

    Gharbiah, Maey; Nakamoto, Ayaki; Johnson, Adam B; Lambert, J David; Nagy, Lisa M

    2014-01-01

    Two cells (3D and 4d) in the mud snail Ilyanassa obsoleta function to induce proper cell fate. In this study, we provide support for the hypothesis that Notch signaling in Ilyanassa obsoleta functions in inductive signaling at multiple developmental stages. The expression patterns of Notch, Delta and Suppressor of Hairless (SuH) are consistent with a function for Notch signaling in endoderm formation, the function of 3D/4d and the sublineages of 4d. Veligers treated with DAPT show a range of defects that include a loss of endodermal structures, and varying degrees of loss of targets of 4d inductive signaling. Veligers that result from injection of Ilyanassa Delta siRNAi in general mimic the defects observed in the DAPT treated larvae. The most severe DAPT phenotypes mimic early ablations of 4d. However, the early specification of 4d itself appears normal and MAPK activation in both 3D/4d and the micromeres, which are known to activate MAPK as a result of 3D/4d induction, are normal in DAPT treated larvae. Treating larvae at successively later timepoints with DAPT suggests that Notch/Delta signaling is not only required during early 4d inductive signaling, but during subsequent stages of cell fate determination as well. Based on our results, combined with previous reports implicating the endoderm in maintaining induced fate specification in Ilyanassa, we propose a speculative model that Notch signaling is required to specify endoderm fates and 4d sublineages, as well as to maintain cell fates induced by 4d.

  2. Hippo signaling is required for Notch-dependent smooth muscle differentiation of neural crest

    PubMed Central

    Manderfield, Lauren J.; Aghajanian, Haig; Engleka, Kurt A.; Lim, Lillian Y.; Liu, Feiyan; Jain, Rajan; Li, Li; Olson, Eric N.; Epstein, Jonathan A.

    2015-01-01

    Notch signaling has well-defined roles in the assembly of arterial walls and in the development of the endothelium and smooth muscle of the vasculature. Hippo signaling regulates cellular growth in many tissues, and contributes to regulation of organ size, in addition to other functions. Here, we show that the Notch and Hippo pathways converge to regulate smooth muscle differentiation of the neural crest, which is crucial for normal development of the aortic arch arteries and cranial vasculature during embryonic development. Neural crest-specific deletion of the Hippo effectors Yap and Taz produces neural crest precursors that migrate normally, but fail to produce vascular smooth muscle, and Notch target genes such as Jagged1 fail to activate normally. We show that Yap is normally recruited to a tissue-specific Jagged1 enhancer by directly interacting with the Notch intracellular domain (NICD). The Yap-NICD complex is recruited to chromatin by the DNA-binding protein Rbp-J in a Tead-independent fashion. Thus, Hippo signaling can modulate Notch signaling outputs, and components of the Hippo and Notch pathways physically interact. Convergence of Hippo and Notch pathways by the mechanisms described here might be relevant for the function of these signaling cascades in many tissues and in diseases such as cancer. PMID:26253400

  3. Inhibition of Notch signaling promotes browning of white adipose tissue and ameliorates obesity.

    PubMed

    Bi, Pengpeng; Shan, Tizhong; Liu, Weiyi; Yue, Feng; Yang, Xin; Liang, Xin-Rong; Wang, Jinghua; Li, Jie; Carlesso, Nadia; Liu, Xiaoqi; Kuang, Shihuan

    2014-08-01

    Beige adipocytes in white adipose tissue (WAT) are similar to classical brown adipocytes in that they can burn lipids to produce heat. Thus, an increase in beige adipocyte content in WAT browning would raise energy expenditure and reduce adiposity. Here we report that adipose-specific inactivation of Notch1 or its signaling mediator Rbpj in mice results in browning of WAT and elevated expression of uncoupling protein 1 (Ucp1), a key regulator of thermogenesis. Consequently, as compared to wild-type mice, Notch mutants exhibit elevated energy expenditure, better glucose tolerance and improved insulin sensitivity and are more resistant to high fat diet-induced obesity. By contrast, adipose-specific activation of Notch1 leads to the opposite phenotypes. At the molecular level, constitutive activation of Notch signaling inhibits, whereas Notch inhibition induces, Ppargc1a and Prdm16 transcription in white adipocytes. Notably, pharmacological inhibition of Notch signaling in obese mice ameliorates obesity, reduces blood glucose and increases Ucp1 expression in white fat. Therefore, Notch signaling may be therapeutically targeted to treat obesity and type 2 diabetes.

  4. Notch1 activity in the olfactory bulb is odour-dependent and contributes to olfactory behaviour.

    PubMed

    Brai, Emanuele; Marathe, Swananda; Zentilin, Lorena; Giacca, Mauro; Nimpf, Johannes; Kretz, Robert; Scotti, Alessandra; Alberi, Lavinia

    2014-11-01

    Notch signalling plays an important role in synaptic plasticity, learning and memory functions in both Drosophila and rodents. In this paper, we report that this feature is not restricted to hippocampal networks but also involves the olfactory bulb (OB). Odour discrimination and olfactory learning in rodents are essential for survival. Notch1 expression is enriched in mitral cells of the mouse OB. These principal neurons are responsive to specific input odorants and relay the signal to the olfactory cortex. Olfactory stimulation activates a subset of mitral cells, which show an increase in Notch activity. In Notch1cKOKln mice, the loss of Notch1 in mitral cells affects the magnitude of the neuronal response to olfactory stimuli. In addition, Notch1cKOKln mice display reduced olfactory aversion to propionic acid as compared to wildtype controls. This indicates, for the first time, that Notch1 is involved in olfactory processing and may contribute to olfactory behaviour.

  5. Reduced Notch signalling leads to postnatal skeletal muscle hypertrophy in Pofut1cax/cax mice.

    PubMed

    Al Jaam, Bilal; Heu, Katy; Pennarubia, Florian; Segelle, Alexandre; Magnol, Laetitia; Germot, Agnès; Legardinier, Sébastien; Blanquet, Véronique; Maftah, Abderrahman

    2016-09-01

    Postnatal skeletal muscle growth results from the activation of satellite cells and/or an increase in protein synthesis. The Notch signalling pathway maintains satellite cells in a quiescent state, and once activated, sustains their proliferation and commitment towards differentiation. In mammals, POFUT1-mediated O-fucosylation regulates the interactions between NOTCH receptors and ligands of the DELTA/JAGGED family, thus initiating the activation of canonical Notch signalling. Here, we analysed the consequences of downregulated expression of the Pofut1 gene on postnatal muscle growth in mutant Pofut1(cax/cax) (cax, compact axial skeleton) mice and differentiation of their satellite cell-derived myoblasts (SCDMs). Pofut1(cax/cax) mice exhibited muscle hypertrophy, no hyperplasia and a decrease in satellite cell numbers compared with wild-type C3H mice. In agreement with these observations, Pofut1(cax/cax) SCDMs differentiated earlier concomitant with reduced Pax7 expression and decrease in PAX7(+)/MYOD(-) progenitor cells. In vitro binding assays showed a reduced interaction of DELTA-LIKE 1 ligand (DLL1) with NOTCH receptors expressed at the cell surface of SCDMs, leading to a decreased Notch signalling as seen by the quantification of cleaved NICD and Notch target genes. These results demonstrated that POFUT1-mediated O-fucosylation of NOTCH receptors regulates myogenic cell differentiation and affects postnatal muscle growth in mice. PMID:27628322

  6. Reduced Notch signalling leads to postnatal skeletal muscle hypertrophy in Pofut1cax/cax mice

    PubMed Central

    Al Jaam, Bilal; Heu, Katy; Pennarubia, Florian; Segelle, Alexandre; Magnol, Laetitia; Germot, Agnès; Blanquet, Véronique; Maftah, Abderrahman

    2016-01-01

    Postnatal skeletal muscle growth results from the activation of satellite cells and/or an increase in protein synthesis. The Notch signalling pathway maintains satellite cells in a quiescent state, and once activated, sustains their proliferation and commitment towards differentiation. In mammals, POFUT1-mediated O-fucosylation regulates the interactions between NOTCH receptors and ligands of the DELTA/JAGGED family, thus initiating the activation of canonical Notch signalling. Here, we analysed the consequences of downregulated expression of the Pofut1 gene on postnatal muscle growth in mutant Pofut1cax/cax (cax, compact axial skeleton) mice and differentiation of their satellite cell-derived myoblasts (SCDMs). Pofut1cax/cax mice exhibited muscle hypertrophy, no hyperplasia and a decrease in satellite cell numbers compared with wild-type C3H mice. In agreement with these observations, Pofut1cax/cax SCDMs differentiated earlier concomitant with reduced Pax7 expression and decrease in PAX7+/MYOD− progenitor cells. In vitro binding assays showed a reduced interaction of DELTA-LIKE 1 ligand (DLL1) with NOTCH receptors expressed at the cell surface of SCDMs, leading to a decreased Notch signalling as seen by the quantification of cleaved NICD and Notch target genes. These results demonstrated that POFUT1-mediated O-fucosylation of NOTCH receptors regulates myogenic cell differentiation and affects postnatal muscle growth in mice. PMID:27628322

  7. Iterative Role of Notch Signaling in Spinal Motor Neuron Diversification.

    PubMed

    Tan, G Christopher; Mazzoni, Esteban O; Wichterle, Hynek

    2016-07-26

    The motor neuron progenitor domain in the ventral spinal cord gives rise to multiple subtypes of motor neurons and glial cells. Here, we examine whether progenitors found in this domain are multipotent and which signals contribute to their cell-type-specific differentiation. Using an in vitro neural differentiation model, we demonstrate that motor neuron progenitor differentiation is iteratively controlled by Notch signaling. First, Notch controls the timing of motor neuron genesis by repressing Neurogenin 2 (Ngn2) and maintaining Olig2-positive progenitors in a proliferative state. Second, in an Ngn2-independent manner, Notch contributes to the specification of median versus hypaxial motor column identity and lateral versus medial divisional identity of limb-innervating motor neurons. Thus, motor neuron progenitors are multipotent, and their diversification is controlled by Notch signaling that iteratively increases cellular diversity arising from a single neural progenitor domain. PMID:27425621

  8. Prolactin signaling enhances colon cancer stemness by modulating Notch signaling in a Jak2-STAT3/ERK manner.

    PubMed

    Neradugomma, Naveen K; Subramaniam, Dharmalingam; Tawfik, Ossama W; Goffin, Vincent; Kumar, T Rajendra; Jensen, Roy A; Anant, Shrikant

    2014-04-01

    Prolactin (PRL) is a secretory cytokine produced by various tissues. Binding to the cognate PRL receptor (PRLR), it activates intracellular signaling via janus kinase (JAK), extracellular signal-regulated kinase (ERK) and signal transducer and activator of transcription (STAT) proteins. PRL regulates diverse activities under normal and abnormal conditions, including malignancies. Previous clinical data suggest serum PRL levels are elevated in colorectal cancer (CRC) patients. In this study, we first determined the expression of PRL and PRLR in colon cancer tissue and cell lines. Higher levels of PRLR expression were observed in the cancer cells and cell lines compared with normal colonic epithelial cells. Incubation of colon cancer cells with PRL-induced JAK2, STAT3 and ERK1/2 phosphorylation and increased expression of Jagged 1, which is a Notch-1 receptor ligand. Notch signaling regulates CRC stem cell population. We observed increased accumulation of the cleaved/active form of Notch-1 receptor (Notch intracellular domain) and increased expression of Notch responsive genes HEY1, HES1 and stem cell marker genes DCLK1, LGR5, ALDH1 and CD44. Finally, inhibiting PRL induced JAK2-STAT3 and JAK2-ERK1/2 using AG490 and PD98059, respectively, leads to complete abrogation of Notch signaling, suggesting a role for this pathway in regulating CRC stem cells. Together, our results demonstrate that cytokine signaling induced by PRL is active in colorectal cancers and may provide a novel target for therapeutic intervention.

  9. Notch signalling drives bone marrow stromal cell-mediated chemoresistance in acute myeloid leukemia

    PubMed Central

    Kamga, Paul Takam; Bassi, Giulio; Cassaro, Adriana; Midolo, Martina; Di Trapani, Mariano; Gatti, Alessandro; Carusone, Roberta; Resci, Federica; Perbellini, Omar; Gottardi, Michele; Bonifacio, Massimiliano; Kamdje, Armel Hervé Nwabo; Ambrosetti, Achille; Krampera, Mauro

    2016-01-01

    Both preclinical and clinical investigations suggest that Notch signalling is critical for the development of many cancers and for their response to chemotherapy. We previously showed that Notch inhibition abrogates stromal-induced chemoresistance in lymphoid neoplasms. However, the role of Notch in acute myeloid leukemia (AML) and its contribution to the crosstalk between leukemia cells and bone marrow stromal cells remain controversial. Thus, we evaluated the role of the Notch pathway in the proliferation, survival and chemoresistance of AML cells in co-culture with bone marrow mesenchymal stromal cells expanded from both healthy donors (hBM-MSCs) and AML patients (hBM-MSCs*). As compared to hBM-MSCs, hBM-MSCs* showed higher level of Notch1, Jagged1 as well as the main Notch target gene HES1. Notably, hBM-MSCs* induced expression and activation of Notch signalling in AML cells, supporting AML proliferation and being more efficientin inducing AML chemoresistance than hBM-MSCs*. Pharmacological inhibition of Notch using combinations of Notch receptor-blocking antibodies or gamma-secretase inhibitors (GSIs), in presence of chemotherapeutic agents, significant lowered the supportive effect of hBM-MSCs and hBM-MSCs* towards AML cells, by activating apoptotic cascade and reducing protein level of STAT3, AKT and NF-κB. These results suggest that Notch signalling inhibition, by overcoming the stromal-mediated promotion of chemoresistance,may represent a potential therapeutic targetnot only for lymphoid neoplasms, but also for AML. PMID:26967055

  10. Novel genes upregulated when NOTCH signalling is disrupted during hypothalamic development

    PubMed Central

    2013-01-01

    Background The generation of diverse neuronal types and subtypes from multipotent progenitors during development is crucial for assembling functional neural circuits in the adult central nervous system. It is well known that the Notch signalling pathway through the inhibition of proneural genes is a key regulator of neurogenesis in the vertebrate central nervous system. However, the role of Notch during hypothalamus formation along with its downstream effectors remains poorly defined. Results Here, we have transiently blocked Notch activity in chick embryos and used global gene expression analysis to provide evidence that Notch signalling modulates the generation of neurons in the early developing hypothalamus by lateral inhibition. Most importantly, we have taken advantage of this model to identify novel targets of Notch signalling, such as Tagln3 and Chga, which were expressed in hypothalamic neuronal nuclei. Conclusions These data give essential advances into the early generation of neurons in the hypothalamus. We demonstrate that inhibition of Notch signalling during early development of the hypothalamus enhances expression of several new markers. These genes must be considered as important new targets of the Notch/proneural network. PMID:24360028

  11. Quinomycin A targets Notch signaling pathway in pancreatic cancer stem cells

    PubMed Central

    Ponnurangam, Sivapriya; Dandawate, Prasad R.; Dhar, Animesh; Tawfik, Ossama W.; Parab, Rajashri R.; Mishra, Prabhu Dutt; Ranadive, Prafull; Sharma, Rajiv; Mahajan, Girish; Umar, Shahid; Weir, Scott J.; Sugumar, Aravind; Jensen, Roy A.; Padhye, Subhash B.; Balakrishnan, Arun; Anant, Shrikant; Subramaniam, Dharmalingam

    2016-01-01

    Cancer stem cells (CSCs) appear to explain many aspects of the neoplastic evolution of tumors and likely account for enhanced therapeutic resistance following treatment. Dysregulated Notch signaling, which affects CSCs plays an important role in pancreatic cancer progression. We have determined the ability of Quinomycin to inhibit CSCs and the Notch signaling pathway. Quinomycin treatment resulted in significant inhibition of proliferation and colony formation in pancreatic cancer cell lines, but not in normal pancreatic epithelial cells. Moreover, Quinomycin affected pancreatosphere formation. The compound also decreased the expression of CSC marker proteins DCLK1, CD44, CD24 and EPCAM. In addition, flow cytometry studies demonstrated that Quinomycin reduced the number of DCLK1+ cells. Furthermore, levels of Notch 1–4 receptors, their ligands Jagged1, Jagged2, DLL1, DLL3, DLL4 and the downstream target protein Hes-1 were reduced. The γ-secretase complex proteins, Presenilin 1, Nicastrin, Pen2, and APH-1, required for Notch activation also exhibited decreased expression. Ectopic expression of the Notch Intracellular Domain (NICD) partially rescued the cells from Quinomycin mediated growth suppression. To determine the effect of Quinomycin on tumor growth in vivo, nude mice carrying tumor xenografts were administered Quinomycin intraperitoneally every day for 21 days. Treatment with the compound significantly inhibited tumor xenograft growth, coupled with significant reduction in the expression of CSC markers and Notch signaling proteins. Together, these data suggest that Quinomycin is a potent inhibitor of pancreatic cancer that targets the stem cells by inhibiting Notch signaling proteins. PMID:26673007

  12. Notch Signaling and Hes Labeling in the Normal and Drug-Damaged Organ of Corti

    PubMed Central

    Batts, Shelley A.; Shoemaker, Christopher R.; Raphael, Yehoash

    2009-01-01

    During the development of the inner ear, the Notch cell signaling pathway is responsible for the specification of the pro-sensory domain and influences cell fate decisions. It is assumed that Notch signaling ends during maturity and cannot be reinitiated to alter the fate of new or existing cells in the organ of Corti. This is in contrast to non-mammalian species which reinitiate Delta1-Notch1 signaling in response to trauma in the auditory epithelium, resulting in hair cell regeneration through transdifferentiation and/or mitosis. We report immunohistochemical data and Western protein analysis showing that in the aminoglycoside-damaged guinea pig organ of Corti, there is an increase in proteins involved in Notch activation occurring within 24 hours of a chemical hair cell lesion. The signaling response is characterized by the increased presence of Jagged1 ligand in pillar and Deiters cells, Notch1 signal in surviving supporting cell nuclei, and the absence of Jagged2 and Delta-like1. The pro-sensory bHLH protein Atoh1 was absent at all time points following an ototoxic lesion, while the repressor bHLH transcription factors Hes1 and Hes5 were detected in surviving supporting cell nuclei in the former inner and outer hair cell areas, respectively. Notch pathway proteins peaked at 2 weeks, decreased at 1 month, and nearly disappeared by 2 months. These results indicate that the mammalian auditory epithelium retains the ability to regulate Notch signaling and Notch-dependent Hes activity in response to cellular trauma and that the signaling is transient. Additionally, since Hes activity antagonizes the transcription of prosensory Atoh1, the presence of Hes after a lesion may prohibit the occurrence of transdifferentiation in the surviving supporting cells. PMID:19185606

  13. Oncogenic programmes and Notch activity: an 'organized crime'?

    PubMed

    Dominguez, Maria

    2014-04-01

    The inappropriate Notch signalling can influence virtually all aspect of cancer, including tumour-cell growth, survival, apoptosis, angiogenesis, invasion and metastasis, although it does not do this alone. Hence, elucidating the partners of Notch that are active in cancer is now the focus of much intense research activity. The genetic toolkits available, coupled to the small size and short life of the fruit fly Drosophila melanogaster, makes this an inexpensive and effective animal model, suited to large-scale cancer gene discovery studies. The fly eye is not only a non-vital organ but its stereotyped size and disposition also means it is easy to screen for mutations that cause tumours and metastases and provides ample opportunities to test cancer theories and to unravel unanticipated nexus between Notch and other cancer genes, or to discover unforeseen Notch's partners in cancer. These studies suggest that Notch's oncogenic capacity is brought about not simply by increasing signal strength but through partnerships, whereby oncogenes gain more by cooperating than acting individually, as in a ring 'organized crime'. PMID:24780858

  14. Oncogenic programmes and Notch activity: an 'organized crime'?

    PubMed

    Dominguez, Maria

    2014-04-01

    The inappropriate Notch signalling can influence virtually all aspect of cancer, including tumour-cell growth, survival, apoptosis, angiogenesis, invasion and metastasis, although it does not do this alone. Hence, elucidating the partners of Notch that are active in cancer is now the focus of much intense research activity. The genetic toolkits available, coupled to the small size and short life of the fruit fly Drosophila melanogaster, makes this an inexpensive and effective animal model, suited to large-scale cancer gene discovery studies. The fly eye is not only a non-vital organ but its stereotyped size and disposition also means it is easy to screen for mutations that cause tumours and metastases and provides ample opportunities to test cancer theories and to unravel unanticipated nexus between Notch and other cancer genes, or to discover unforeseen Notch's partners in cancer. These studies suggest that Notch's oncogenic capacity is brought about not simply by increasing signal strength but through partnerships, whereby oncogenes gain more by cooperating than acting individually, as in a ring 'organized crime'.

  15. Notch signaling: switching an oncogene to a tumor suppressor

    PubMed Central

    Lobry, Camille; Oh, Philmo; Mansour, Marc R.; Look, A. Thomas

    2014-01-01

    The Notch signaling pathway is a regulator of self-renewal and differentiation in several tissues and cell types. Notch is a binary cell-fate determinant, and its hyperactivation has been implicated as oncogenic in several cancers including breast cancer and T-cell acute lymphoblastic leukemia (T-ALL). Recently, several studies also unraveled tumor-suppressor roles for Notch signaling in different tissues, including tissues where it was before recognized as an oncogene in specific lineages. Whereas involvement of Notch as an oncogene in several lymphoid malignancies (T-ALL, B-chronic lymphocytic leukemia, splenic marginal zone lymphoma) is well characterized, there is growing evidence involving Notch signaling as a tumor suppressor in myeloid malignancies. It therefore appears that Notch signaling pathway’s oncogenic or tumor-suppressor abilities are highly context dependent. In this review, we summarize and discuss latest advances in the understanding of this dual role in hematopoiesis and the possible consequences for the treatment of hematologic malignancies. PMID:24608975

  16. Notch Signaling Mediates the Age-Associated Decrease in Adhesion of Germline Stem Cells to the Niche

    PubMed Central

    Tseng, Chen-Yuan; Kao, Shih-Han; Wan, Chih-Ling; Cho, Yueh; Tung, Shu-Yun; Hsu, Hwei-Jan

    2014-01-01

    Stem cells have an innate ability to occupy their stem cell niche, which in turn, is optimized to house stem cells. Organ aging is associated with reduced stem cell occupancy in the niche, but the mechanisms involved are poorly understood. Here, we report that Notch signaling is increased with age in Drosophila female germline stem cells (GSCs), and this results in their removal from the niche. Clonal analysis revealed that GSCs with low levels of Notch signaling exhibit increased adhesiveness to the niche, thereby out-competing their neighbors with higher levels of Notch; adhesiveness is altered through regulation of E-cadherin expression. Experimental enhancement of Notch signaling in GSCs hastens their age-dependent loss from the niche, and such loss is at least partially mediated by Sex lethal. However, disruption of Notch signaling in GSCs does not delay GSC loss during aging, and nor does it affect BMP signaling, which promotes self-renewal of GSCs. Finally, we show that in contrast to GSCs, Notch activation in the niche (which maintains niche integrity, and thus mediates GSC retention) is reduced with age, indicating that Notch signaling regulates GSC niche occupancy both intrinsically and extrinsically. Our findings expose a novel role of Notch signaling in controlling GSC-niche adhesion in response to aging, and are also of relevance to metastatic cancer cells, in which Notch signaling suppresses cell adhesion. PMID:25521289

  17. TNFα and Endothelial Cells Modulate Notch Signaling in the Bone Marrow Microenvironment during Inflammation

    PubMed Central

    Fernandez, Luis; Rodriguez, Sonia; Huang, Hui; Chora, Angelo; Mumaw, Christin; Cruz, Eugenia; Pollok, Karen; Cristina, Filipa; Price, Joanne E.; Ferkowicz, Michael J.; Scadden, David T.; Clauss, Matthias; Cardoso, Angelo A.; Carlesso, Nadia

    2009-01-01

    Objective Homeostasis of the hematopoietic compartment is challenged and maintained during conditions of stress by mechanisms that are poorly defined. To understand how the bone marrow (BM) microenvironment influences hematopoiesis, we explored the role of Notch signaling and bone marrow endothelial cells in providing microenvironmental cues to hematopoietic cells in the presence of inflammatory stimuli. Methods The human BM endothelial cell line BMEC and primary human BM endothelial cells were analyzed for expression of Notch ligands and the ability to expand hematopoietic progenitors in an in vitro co-culture system. In vivo experiments were carried out to identify modulation of Notch signaling in BM endothelial and hematopoietic cells in mice challenged with TNFα or LPS, or in Tie2-tmTNFα transgenic mice characterized by constitutive TNFα activation. Results BM endothelial cells were found to express Jagged ligands and to greatly support progenitor’s colony-forming ability. This effect was markedly decreased by Notch antagonists and augmented by increasing levels of Jagged2. Physiologic upregulation of Jagged2 expression on BMEC was observed upon TNFα activation. Injection of TNFα or LPS upregulated 3 to 4 fold Jagged2 expression on murine BM endothelial cells in vivo and resulted in increased Notch activation on murine hematopoietic stem/progenitor cells. Similarly, constitutive activation of endothelial cells in Tie2-tmTNFα mice was characterized by increased expression of Jagged2 and by augmented Notch activation on hematopoietic stem/progenitor cells. Conclusions Our results provide the first evidence that BM endothelial cells promote expansion of hematopoietic progenitor cells by a Notch-dependent mechanism and that TNFα and LPS can modulate the levels of Notch ligand expression and Notch activation in the bone marrow microenvironment in vivo. PMID:18439488

  18. Notch1 regulated autophagy controls survival and suppressor activity of activated murine T-regulatory cells

    PubMed Central

    Marcel, Nimi; Sarin, Apurva

    2016-01-01

    Cell survival is one of several processes regulated by the Notch pathway in mammalian cells. Here we report functional outcomes of non-nuclear Notch signaling to activate autophagy, a conserved cellular response to nutrient stress, regulating survival in murine natural T-regulatory cells (Tregs), an immune subset controlling tolerance and inflammation. Induction of autophagy required ligand-dependent, Notch intracellular domain (NIC) activity, which controlled mitochondrial organization and survival of activated Tregs. Consistently, NIC immune-precipitated Beclin and Atg14, constituents of the autophagy initiation complex. Further, ectopic expression of an effector of autophagy (Atg3) or recombinant NIC tagged to a nuclear export signal (NIC-NES), restored autophagy and suppressor function in Notch1-/- Tregs. Furthermore, Notch1 deficiency in the Treg lineage resulted in immune hyperactivity, implicating Notch activity in Treg homeostasis. Notch1 integration with autophagy, revealed in these experiments, holds implications for Notch regulated cell-fate decisions governing differentiation. DOI: http://dx.doi.org/10.7554/eLife.14023.001 PMID:27267497

  19. Immunohistochemical expression of aberrant Notch-1 signaling in vitiligo: an implication for pathogenesis.

    PubMed

    Seleit, Iman; Bakry, Ola Ahmed; Abdou, Asmaa Gaber; Dawoud, Noha Mohammed

    2014-06-01

    The etiopathogenetic mechanisms leading to pigment loss in vitiligo are not fully understood. Notch signaling is required for development and maintenance of melanocyte lineage and acts as a key component among keratinocyte-melanocyte interactions. The current study aimed to investigate the possible role of Notch signaling and its effect on the whole melanocyte lineage in vitiligo and correlating it with the different clinicopathologic parameters. Using immunohistochemical technique, Notch-1 expression was evaluated in 50 lesional and 20 perilesional biopsies of patients with vitiligo in comparison with 20 normal skin biopsies as a control group. Lesional biopsies were stained with human melanoma black-45 and tyrosinase-related protein-2 to demonstrate the melanocyte lineage. Membranous and/or nuclear expression of Notch-1 was in favor of control and perilesional skin, whereas cytoplasmic expression appeared only in vitiliginous lesions (P < .05). Membranous and/or nuclear expression of Notch-1 was significantly associated with epidermal human melanoma black-45 positivity (P = .01) and percentage of expression in both epidermis (P = .02) and hair follicles (P = .03) of lesional skin. Cytoplasmic pattern of Notch-1 expression in epidermis was significantly found in lesions with white hair (P = .04) and in cases with marked keratinocyte vacuolization (P = .03). Segmental and acrofacial vitiligo were associated with mild to moderate Notch-1 intensity, whereas generalized vitiligo was associated with strong intensity of expression (P = .02). In conclusion, Notch-1 signaling is inactivated in vitiligo with consequent loss of epidermal and/or follicular active melanocytes. Aberrant Notch signaling in vitiliginous white hair and acral and segmental vitiligo may be the cause of their treatment resistance.

  20. Notch1, Notch2, and Epstein-Barr virus-encoded nuclear antigen 2 signaling differentially affects proliferation and survival of Epstein-Barr virus-infected B cells.

    PubMed

    Kohlhof, Hella; Hampel, Franziska; Hoffmann, Reinhard; Burtscher, Helmut; Weidle, Ulrich H; Hölzel, Michael; Eick, Dirk; Zimber-Strobl, Ursula; Strobl, Lothar J

    2009-05-28

    The canonical mode of transcriptional activation by both the Epstein-Barr viral protein, Epstein-Barr virus-encoded nuclear antigen 2 (EBNA2), and an activated Notch receptor (Notch-IC) requires their recruitment to RBPJ, suggesting that EBNA2 uses the Notch pathway to achieve B-cell immortalization. To gain further insight into the biologic equivalence between Notch-IC and EBNA2, we performed a genome-wide expression analysis, revealing that Notch-IC and EBNA2 exhibit profound differences in the regulation of target genes. Whereas Notch-IC is more potent in regulating genes associated with differentiation and development, EBNA2 is more potent in inducing viral and cellular genes involved in proliferation, survival, and chemotaxis. Because both EBNA2 and Notch-IC induced the expression of cell cycle-associated genes, we analyzed whether Notch1-IC or Notch2-IC can replace EBNA2 in B-cell immortalization. Although Notch-IC could drive quiescent B cells into the cell cycle, B-cell immortalization was not maintained, partially due to an increased apoptosis rate in Notch-IC-expressing cells. Expression analysis revealed that both EBNA2 and Notch-IC induced the expression of proapoptotic genes, but only in EBNA2-expressing cells were antiapoptotic genes strongly up-regulated. These findings suggest that Notch signaling in B cells and B-cell lymphomas is only compatible with proliferation if pathways leading to antiapototic signals are active. PMID:19339697

  1. [Notch signaling in bone formation and related skeletal diseases].

    PubMed

    Ma, Hongwei; Wu, Yaqiong; Zhang, Haifeng

    2015-04-01

    Notch signaling is highly conserved in evolution and regarded as a key factor in cell fate determination. It mediates cell-to-cell interactions that are critical for embryonic development and tissue renewal, and is involved in the occurrence and metastasis of neoplasm. Recent researches have found that such signaling plays an important role in modulating the differentiation of chondrocytes, osteoblasts and osteoclasts. Dysfunction of Notch signaling can result in many skeletal diseases such as bone tumor, disorders of bone development or bone metabolism.

  2. Immunohistochemical localization of notch signaling molecules in ameloblastomas

    PubMed Central

    2011-01-01

    We examined Notch signaling molecules, Notch1 and Jagged1, in serial large cases of typical solid/multicystic ameloblastoma. In general, Notch positive staining products were frequently detected in the cytoplasms of the cells. In the same cells, Jagged positive staining were also frequently observed, while only occasionally positive in peripheral cells, especially in cuboidal cells. The results showed that these morphogenesis regulation factors are closely related to cytological differentiation in neoplastic cells of ameloblastoma. The Notch and Jagged positive-cell ratios were frequently positive, and the ratios were nearly the same between the varied histopathological, cytological patterns. However, the less-differentiated cells were fewer in number than that of well-differentiated cells. PMID:21810559

  3. The interplay between DSL proteins and ubiquitin ligases in Notch signaling.

    PubMed

    Pitsouli, Chrysoula; Delidakis, Christos

    2005-09-01

    Lateral inhibition is a pattern refining process that generates single neural precursors from a field of equipotent cells and is mediated via Notch signaling. Of the two Notch ligands Delta and Serrate, only the former was thought to participate in this process. We now show that macrochaete lateral inhibition involves both Delta and Serrate. In this context, Serrate interacts with Neuralized, a ubiquitin ligase that was heretofore thought to act only on Delta. Neuralized physically associates with Serrate and stimulates its endocytosis and signaling activity. We also characterize a mutation in mib1, a Drosophila homolog of mind bomb, another Delta-targeting ubiquitin ligase from zebrafish. Mib1 affects the signaling activity of Delta and Serrate in both lateral inhibition and wing dorsoventral boundary formation. Simultaneous absence of neuralized and mib1 completely abolishes Notch signaling in both aforementioned contexts, making it likely that ubiquitination is a prerequisite for Delta/Serrate signaling.

  4. NOTCH signaling in skeletal progenitors is critical for fracture repair

    PubMed Central

    Wang, Cuicui; Inzana, Jason A.; Mirando, Anthony J.; Liu, Zhaoyang; Shen, Jie; O’Keefe, Regis J.; Awad, Hani A.; Hilton, Matthew J.

    2016-01-01

    Fracture nonunions develop in 10%–20% of patients with fractures, resulting in prolonged disability. Current data suggest that bone union during fracture repair is achieved via proliferation and differentiation of skeletal progenitors within periosteal and soft tissues surrounding bone, while bone marrow stromal/stem cells (BMSCs) and other skeletal progenitors may also contribute. The NOTCH signaling pathway is a critical maintenance factor for BMSCs during skeletal development, although the precise role for NOTCH and the requisite nature of BMSCs following fracture is unknown. Here, we evaluated whether NOTCH and/or BMSCs are required for fracture repair by performing nonstabilized and stabilized fractures on NOTCH-deficient mice with targeted deletion of RBPjk in skeletal progenitors, maturing osteoblasts, and committed chondrocytes. We determined that removal of NOTCH signaling in BMSCs and subsequent depletion of this population result in fracture nonunion, as the fracture repair process was normal in animals harboring either osteoblast- or chondrocyte-specific deletion of RBPjk. Together, this work provides a genetic model of a fracture nonunion and demonstrates the requirement for NOTCH and BMSCs in fracture repair, irrespective of fracture stability and vascularity. PMID:26950423

  5. Analysis of Dominant Enhancers and Suppressors of Activated Notch in Drosophila

    PubMed Central

    Verheyen, E. M.; Purcell, K. J.; Fortini, M. E.; Artavanis-Tsakonas, S.

    1996-01-01

    The Notch receptor controls cell fate decisions throughout Drosophila development. Truncated, ligand-independent forms of this protein delay or block differentiation. We have previously shown that expression of the intracellular domain of the receptor under the control of the sevenless enhancer/promoter induces a rough eye phenotype in the adult fly. Analysis of the resultant cellular transformations suggested that this form of Notch acts as a constitutively activated receptor. To identify gene products that interact with Notch, a second-site mutagenesis screen was performed to isolate enhancers and suppressors of the eye phenotype caused by expression of these activated Notch molecules. We screened 137,000 mutagenized flies and recovered 290 dominant modifiers. Many new alleles of previously identified genes were isolated, as were mutations defining novel loci that may function in the Notch signaling pathway. We discuss the data with respect to known features of Notch receptor signaling and Drosophila eye development. PMID:8913755

  6. Aspartate mutations in presenilin and gamma-secretase inhibitors both impair notch1 proteolysis and nuclear translocation with relative preservation of notch1 signaling.

    PubMed

    Berezovska, O; Jack, C; McLean, P; Aster, J C; Hicks, C; Xia, W; Wolfe, M S; Kimberly, W T; Weinmaster, G; Selkoe, D J; Hyman, B T

    2000-08-01

    It has been hypothesized that a presenilin 1 (PS1)-related enzymatic activity is responsible for proteolytic cleavage of the C-terminal intracellular protein of Notch1, in addition to its role in beta-amyloid protein (Abeta) formation from the amyloid precursor protein (APP). We developed an assay to monitor ligand-induced Notch1 proteolysis and nuclear translocation in individual cells : Treatment of full-length Notch1-enhanced green fluorescent protein-transfected Chinese hamster ovary (CHO) cells with a soluble preclustered form of the physiologic ligand Delta leads to rapid accumulation of the C terminus of Notch1 in the nucleus and to transcriptional activation of a C-promoter binding factor 1 (CBF1) reporter construct. Nuclear translocation was blocked by cotransfection with Notch's physiologic inhibitor Numb. Using this assay, we now confirm and extend the observation that PS1 is involved in Notch1 nuclear translocation and signaling in mammalian cells. We demonstrate that the D257A and the D385A PS1 mutations, which had been shown previously to block APP gamma-secretase activity, also prevent Notch1 cleavage and translocation to the nucleus but do not alter Notch1 trafficking to the cell surface. We also show that two APP gamma-secretase inhibitors block Notch1 nuclear translocation with an IC(50) similar to that reported for APP gamma-secretase. Notch1 signaling, assessed by measuring the activity of CBF1, a downstream transcription factor, was impaired but not abolished by the PS1 aspartate mutations or gamma-secretase inhibitors. Our results support the hypotheses that (a) PS1-dependent APP gamma-secretase-like enzymatic activity is critical for both APP and Notch processing and (b) the Notch1 signaling pathway remains partially activated even when Notch1 proteolytic processing and nuclear translocation are markedly inhibited. The latter is an important finding from the perspective of therapeutic treatment of Alzheimer's disease by targeting gamma

  7. DSL ligand endocytosis physically dissociates Notch1 heterodimers before activating proteolysis can occur.

    PubMed

    Nichols, James T; Miyamoto, Alison; Olsen, Samantha L; D'Souza, Brendan; Yao, Christine; Weinmaster, Gerry

    2007-02-12

    Cleavage of Notch by furin is required to generate a mature, cell surface heterodimeric receptor that can be proteolytically activated to release its intracellular domain, which functions in signal transduction. Current models propose that ligand binding to heterodimeric Notch (hNotch) induces a disintegrin and metalloprotease (ADAM) proteolytic release of the Notch extracellular domain (NECD), which is subsequently shed and/or endocytosed by DSL ligand cells. We provide evidence for NECD release and internalization by DSL ligand cells, which, surprisingly, did not require ADAM activity. However, losses in either hNotch formation or ligand endocytosis significantly decreased NECD transfer to DSL ligand cells, as well as signaling in Notch cells. Because endocytosis-defective ligands bind hNotch, but do not dissociate it, additional forces beyond those produced through ligand binding must function to disrupt the intramolecular interactions that keep hNotch intact and inactive. Based on our findings, we propose that mechanical forces generated during DSL ligand endocytosis function to physically dissociate hNotch, and that dissociation is a necessary step in Notch activation.

  8. A Disintegrin and Metalloproteinase10 (ADAM10) Regulates NOTCH Signaling during Early Retinal Development

    PubMed Central

    Toonen, Joseph A.; Ronchetti, Adam; Sidjanin, D. J.

    2016-01-01

    ADAM10 and ADAM17 are two closely related members of the ADAM (a disintegrin and metalloprotease) family of membrane-bound sheddases, which proteolytically cleave surface membrane proteins. Both ADAM10 and ADAM17 have been implicated in the proteolytic cleavage of NOTCH receptors and as such regulators of NOTCH signaling. During retinal development, NOTCH signaling facilitates retinal neurogenesis by maintaining progenitor cells in a proliferative state and by mediating retinal cell fates. However, the roles of ADAM10 and ADAM17 in the retina are not well defined. In this study, we set out to clarify the roles of ADAM10 and ADAM17 during early retinal development. The retinal phenotype of conditionally abated Adam17 retinae (Adam17 CKO) did not differ from the controls whereas conditionally ablated Adam10 retinae (Adam10 CKO) exhibited abnormal morphogenesis characterized by the formation of rosettes and a loss of retinal laminae phenotypically similar to morphological abnormalities identified in mice with retinal NOTCH signaling deficiency. Additionally, Adam10 CKO retinae exhibited abnormal neurogenesis characterized by fewer proliferating progenitor cells and greater differentiation of early photoreceptors and retinal ganglion cells. Moreover, constitutive activation of the NOTCH1-intracellular domain (N1-ICD) rescued Adam10 CKO abnormal neurogenesis, as well as abnormal retinal morphology by maintaining retinal cells in the progenitor state. Collectively these findings provide in vivo genetic evidence that ADAM10, and not ADAM17, is indispensable for proper retinal development as a regulator of NOTCH signaling. PMID:27224017

  9. Physiological Notch signaling promotes gliogenesis in the developing peripheral and central nervous systems

    PubMed Central

    Taylor, Merritt K.; Kelly, Yeager; Morrison, Sean J.

    2009-01-01

    Constitutive activation of the Notch pathway can promote gliogenesis by peripheral (PNS) and central (CNS) nervous system progenitors. This raises the question of whether physiological Notch signaling regulates gliogenesis in vivo. To test this, we conditionally deleted Rbpsuh (Rbpj) from mouse PNS or CNS progenitors using Wnt1-Cre or Nestin-Cre. Rbpsuh encodes a DNA-binding protein (RBP/J) that is required for canonical signaling by all Notch receptors. In most regions of the developing PNS and spinal cord, Rbpsuh deletion caused only mild defects in neurogenesis, but severe defects in gliogenesis. These resulted from defects in glial specification or differentiation, not premature depletion of neural progenitors, because we were able to culture undifferentiated progenitors from the PNS and spinal cord despite their failure to form glia in vivo. In spinal cord progenitors, Rbpsuh was required to maintain Sox9 expression during gliogenesis, demonstrating that Notch signaling promotes the expression of a glial-specification gene. These results demonstrate that physiological Notch signaling is required for gliogenesis in vivo, independent of the role of Notch in the maintenance of undifferentiated neural progenitors. PMID:17537790

  10. WNT antagonist, DKK2, is a Notch signaling target in intestinal stem cells: augmentation of a negative regulation system for canonical WNT signaling pathway by the Notch-DKK2 signaling loop in primates.

    PubMed

    Katoh, Masuko; Katoh, Masaru

    2007-01-01

    Notch and WNT signaling pathways are key components of the stem cell signaling network. Canonical WNT signaling to intestinal progenitor cells leads to transcriptional activation of the JAG1 gene, encoding Serrate-type Notch ligand. JAG1 then binds to the Notch receptor on adjacent stem cells to induce Notch receptor proteolyses for the release of Notch intracellular domain (NICD). NICD is associated with CSL/RBPSUH and Mastermind (MAML1, MAML2, or MAML3) to activate Notch target genes, such as HES1 and HES5. Although WNT-dependent Notch signaling activation in intestinal stem cells is clarified, the effects of Notch signaling activation on WNT signaling in progenitor cells remain unclear. We searched for Notch-response element (NRE) in the promoter region of genes encoding secreted WNT signaling inhibitors, including DKK1, DKK2, DKK3, DKK4, SFRP1, SFRP2, SFRP3, SFRP4, SFRP5 and WIF1. Double NREs were identified within human DKK2 promoter by bioinformatics and human intelligence (Humint). The human DKK2 gene was characterized as Notch signaling target in intestinal stem cells. Because DKK2 is a key player in the stem cell signaling network, the DKK2 gene at human chromosome 4q25 is a candidate tumor suppressor gene inactivated due to epigenetic silencing and/or deletion. The chimpanzee DKK2 gene was identified within the NW_105990.1 genome sequence, while the cow Dkk2 gene was identified within the AC156664.2 and AC158038.2 genome sequences. Chimpanzee DKK2 and cow Dkk2 showed 98.5% and 95.8% total-amino-acid identity with human DKK2, respectively. Double NREs in human DKK2 promoter were conserved in chimpanzee DKK2 promoter, partially in rat Dkk2 promoter, but not in cow and mouse Dkk2 promoters. The Notch-DKK2 signaling loop, created or potentiated in primates, was complementary to WNT-DKK1 and BMP-IHH-SFRP1 signaling loops for negative regulation of canonical WNT signaling pathway. Together, these facts indicate that DKK2 promoter evolution resulted in the

  11. Effects of Linker Length and Transient Secondary Structure Elements in the Intrinsically Disordered Notch RAM Region on Notch Signaling.

    PubMed

    Sherry, Kathryn P; Johnson, Scott E; Hatem, Christine L; Majumdar, Ananya; Barrick, Doug

    2015-11-01

    Formation of the bivalent interaction between the Notch intracellular domain (NICD) and the transcription factor CBF-1/RBP-j, Su(H), Lag-1 (CSL) is a key event in Notch signaling because it switches Notch-responsive genes from a repressed state to an activated state. Interaction of the intrinsically disordered RBP-j-associated molecule (RAM) region of NICD with CSL is thought to both disrupt binding of corepressor proteins to CSL and anchor NICD to CSL, promoting interaction of the ankyrin domain of NICD with CSL through an effective concentration mechanism. To quantify the role of disorder in the RAM linker region on the effective concentration enhancement of Notch transcriptional activation, we measured the effects of linker length variation on activation. The resulting activation profile has general features of a worm-like chain model for effective concentration. However, deviations from the model for short sequence deletions suggest that RAM contains sequence-specific structural elements that may be important for activation. Structural characterization of the RAM linker with sedimentation velocity analytical ultracentrifugation and NMR spectroscopy reveals that the linker is compact and contains three transient helices and two extended and dynamic regions. To test if these secondary structure elements are important for activation, we made sequence substitutions to change the secondary structure propensities of these elements and measured transcriptional activation of the resulting variants. Substitutions to two of these nonrandom elements (helix 2, extended region 1) have effects on activation, but these effects do not depend on the nature of the substituting residues. Thus, the primary sequences of these elements, but not their secondary structures, are influencing signaling.

  12. Activated Notch1 Target Genes during Embryonic Cell Differentiation Depend on the Cellular Context and Include Lineage Determinants and Inhibitors

    PubMed Central

    Meier-Stiegen, Franziska; Schwanbeck, Ralf; Bernoth, Kristina; Martini, Simone; Hieronymus, Thomas; Ruau, David; Zenke, Martin; Just, Ursula

    2010-01-01

    Background Notch receptor signaling controls developmental cell fates in a cell-context dependent manner. Although Notch signaling directly regulates transcription via the RBP-J/CSL DNA binding protein, little is known about the target genes that are directly activated by Notch in the respective tissues. Methodology/Principal Findings To analyze how Notch signaling mediates its context dependent function(s), we utilized a Tamoxifen-inducible system to activate Notch1 in murine embryonic stem cells at different stages of mesodermal differentiation and performed global transcriptional analyses. We find that the majority of genes regulated by Notch1 are unique for the cell type and vary widely dependent on other signals. We further show that Notch1 signaling regulates expression of genes playing key roles in cell differentiation, cell cycle control and apoptosis in a context dependent manner. In addition to the known Notch1 targets of the Hes and Hey families of transcriptional repressors, Notch1 activates the expression of regulatory transcription factors such as Sox9, Pax6, Runx1, Myf5 and Id proteins that are critically involved in lineage decisions in the absence of protein synthesis. Conclusion/Significance We suggest that Notch signaling determines lineage decisions and expansion of stem cells by directly activating both key lineage specific transcription factors and their repressors (Id and Hes/Hey proteins) and propose a model by which Notch signaling regulates cell fate commitment and self renewal in dependence of the intrinsic and extrinsic cellular context. PMID:20628604

  13. Nas transgenic mouse line allows visualization of Notch pathway activity in vivo

    PubMed Central

    Souilhol, Céline; Cormier, Sarah; Monet, Marie; Vandormael-Pournin, Sandrine; Joutel, Anne; Babinet, Charles; Cohen-Tannoudji, Michel

    2006-01-01

    The Notch signalling pathway plays multiple and important roles in mammals. However, several aspects of its action, in particular the precise mapping of its sites of activity, remain unclear. To address this issue, we have generated a transgenic line carrying a construct consisting of a nls-lacZ reporter gene under the control of a minimal promoter and multiple RBP-Jκ binding sites. Here we show that this transgenic line, we named NAS for Notch Activity Sensor, displays an expression profile that is consistent with current knowledge on Notch activity sites in mice, even though it may not report on all these sites. Moreover, we observe that NAS transgene expression is abolished in a RBP-Jκ deficient background indicating that it indeed requires Notch/RBP-Jκ signalling pathway activity. Thus, the NAS transgenic line constitutes a valuable and versatile tool to gain further insights into the complex and various functions of the Notch signalling pathway. PMID:16708386

  14. Estrogen improves the proliferation and differentiation of hBMSCs derived from postmenopausal osteoporosis through notch signaling pathway.

    PubMed

    Fan, Jin-Zhu; Yang, Liu; Meng, Guo-Lin; Lin, Yan-shui; Wei, Bo-Yuan; Fan, Jing; Hu, Hui-Min; Liu, Yan-Wu; Chen, Shi; Zhang, Jin-Kang; He, Qi-Zhen; Luo, Zhuo-Jing; Liu, Jian

    2014-07-01

    Estrogen deficiency is the main reason of bone loss, leading to postmenopausal osteoporosis, and estrogen replacement therapy (ERT) has been demonstrated to protect bone loss efficiently. Notch signaling controls proliferation and differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). Moreover, imperfect estrogen-responsive elements (EREs) were found in the 5'-untranslated region of Notch1 and Jagged1. Thus, we examined the molecular and biological links between estrogen and the Notch signaling in postmenopausal osteoporosis in vitro. hBMSCs were obtained from healthy women and patients with postmenopausal osteoporosis. Notch signaling molecules were quantified using real-time polymerase chain reaction (real-time PCR) and Western Blot. Luciferase reporter constructs with putative EREs were transfected into hBMSCs and analyzed. hBMSCs were transduced with lentiviral vectors containing human Notch1 intracellular domain (NICD1). We also used N-[N-(3, 5-diflurophenylacetate)-l-alanyl]-(S)-phenylglycine t-butyl ester, a γ-secretase inhibitor, to suppress the Notch signaling. We found that estrogen enhanced the Notch signaling in hBMSCs by promoting the expression of Jagged1. hBMSCs cultured with estrogen resulted in the up-regulation of Notch signaling and increased proliferation and differentiation. Enhanced Notch signaling could enhance the proliferation and differentiation of hBMSCs from patients with postmenopausal osteoporosis (OP-hBMSCs). Our results demonstrated that estrogen preserved bone mass partly by activating the Notch signaling. Because long-term ERT has been associated with several side effects, the Notch signaling could be a potential target for treating postmenopausal osteoporosis.

  15. Jagged-Notch signaling ensures dorsal skeletal identity in the vertebrate face

    PubMed Central

    Zuniga, Elizabeth; Stellabotte, Frank; Crump, J. Gage

    2010-01-01

    The development of the vertebrate face relies on the regionalization of neural crest-derived skeletal precursors along the dorsoventral (DV) axis. Here we show that Jagged-Notch signaling ensures dorsal identity within the hyoid and mandibular components of the facial skeleton by repressing ventral fates. In a genetic screen in zebrafish, we identified a loss-of-function mutation in jagged 1b (jag1b) that results in dorsal expansion of ventral gene expression and partial transformation of the dorsal hyoid skeleton to a ventral morphology. Conversely, misexpression of human jagged 1 (JAG1) represses ventral gene expression and dorsalizes the ventral hyoid and mandibular skeletons. We further show that jag1b is expressed specifically in dorsal skeletal precursors, where it acts through the Notch2 receptor to activate hey1 expression. Whereas Jagged-Notch positive feedback propagates jag1b expression throughout the dorsal domain, Endothelin 1 (Edn1) inhibits jag1b and hey1 expression in the ventral domain. Strikingly, reduction of Jag1b or Notch2 function partially rescues the ventral defects of edn1 mutants, indicating that Edn1 promotes facial skeleton development in part by inhibiting Jagged-Notch signaling in ventral skeletal precursors. Together, these results indicate a novel function of Jagged-Notch signaling in ensuring dorsal identity within broad fields of facial skeletal precursors. PMID:20431122

  16. Radiation-Induced Notch Signaling in Breast Cancer Stem Cells

    SciTech Connect

    Lagadec, Chann; Vlashi, Erina; Alhiyari, Yazeed; Phillips, Tiffany M.; Bochkur Dratver, Milana; Pajonk, Frank

    2013-11-01

    Purpose: To explore patterns of Notch receptor and ligand expression in response to radiation that could be crucial in defining optimal dosing schemes for γ-secretase inhibitors if combined with radiation. Methods and Materials: Using MCF-7 and T47D breast cancer cell lines, we used real-time reverse transcription–polymerase chain reaction to study the Notch pathway in response to radiation. Results: We show that Notch receptor and ligand expression during the first 48 hours after irradiation followed a complex radiation dose–dependent pattern and was most pronounced in mammospheres, enriched for breast cancer stem cells. Additionally, radiation activated the Notch pathway. Treatment with a γ-secretase inhibitor prevented radiation-induced Notch family gene expression and led to a significant reduction in the size of the breast cancer stem cell pool. Conclusions: Our results indicate that, if combined with radiation, γ-secretase inhibitors may prevent up-regulation of Notch receptor and ligand family members and thus reduce the number of surviving breast cancer stem cells.

  17. Alterations in Notch signalling in skeletal muscles from mdx and dko dystrophic mice and patients with Duchenne muscular dystrophy.

    PubMed

    Church, Jarrod E; Trieu, Jennifer; Chee, Annabel; Naim, Timur; Gehrig, Stefan M; Lamon, Séverine; Angelini, Corrado; Russell, Aaron P; Lynch, Gordon S

    2014-04-01

    New Findings What is the central question of this study? The Notch signalling pathway plays an important role in muscle regeneration, and activation of the pathway has been shown to enhance muscle regeneration in aged mice. It is unknown whether Notch activation will have a similarly beneficial effect on muscle regeneration in the context of Duchenne muscular dystrophy (DMD). What is the main finding and its importance? Although expression of Notch signalling components is altered in both mouse models of DMD and in human DMD patients, activation of the Notch signalling pathway does not confer any functional benefit on muscles from dystrophic mice, suggesting that other signalling pathways may be more fruitful targets for manipulation in treating DMD. Abstract In Duchenne muscular dystrophy (DMD), muscle damage and impaired regeneration lead to progressive muscle wasting, weakness and premature death. The Notch signalling pathway represents a central regulator of gene expression and is critical for cellular proliferation, differentiation and apoptotic signalling during all stages of embryonic muscle development. Notch activation improves muscle regeneration in aged mice, but its potential to restore regeneration and function in muscular dystrophy is unknown. We performed a comprehensive examination of several genes involved in Notch signalling in muscles from dystrophin-deficient mdx and dko (utrophin- and dystrophin-null) mice and DMD patients. A reduction of Notch1 and Hes1 mRNA in tibialis anterior muscles of dko mice and quadriceps muscles of DMD patients and a reduction of Hes1 mRNA in the diaphragm of the mdx mice were observed, with other targets being inconsistent across species. Activation and inhibition of Notch signalling, followed by measures of muscle regeneration and function, were performed in the mouse models of DMD. Notch activation had no effect on functional regeneration in C57BL/10, mdx or dko mice. Notch inhibition significantly depressed the

  18. Activation of an endothelial Notch1-Jagged1 circuit induces VCAM1 expression, an effect amplified by interleukin-1β.

    PubMed

    Verginelli, Federica; Adesso, Laura; Limon, Isabelle; Alisi, Anna; Gueguen, Marie; Panera, Nadia; Giorda, Ezio; Raimondi, Lavinia; Ciarapica, Roberta; Campese, Antonio F; Screpanti, Isabella; Stifani, Stefano; Kitajewski, Jan; Miele, Lucio; Rota, Rossella; Locatelli, Franco

    2015-12-22

    The Notch1 and Notch4 signaling pathways regulate endothelial cell homeostasis. Inflammatory cytokines induce the expression of endothelial adhesion molecules, including VCAM1, partly by downregulating Notch4 signaling. We investigated the role of endothelial Notch1 in this IL-1β-mediated process. Brief treatment with IL-1β upregulated endothelial VCAM1 and Notch ligand Jagged1. IL-1β decreased Notch1 mRNA levels, but levels of the active Notch1ICD protein remained constant. IL-1β-mediated VCAM1 induction was downregulated in endothelial cells subjected to pretreatment with a pharmacological inhibitor of the γ-secretase, which activates Notch receptors, producing NotchICD. It was also downregulated in cells in which Notch1 and/or Jagged1 were silenced.Conversely, the forced expression of Notch1ICD in naïve endothelial cells upregulated VCAM1 per se and amplified IL-1β-mediated VCAM1 induction. Jagged1 levels increased and Notch4 signaling was downregulated in parallel. Finally, Notch1ICD and Jagged1 expression was upregulated in the endothelium of the liver in a model of chronic liver inflammation.In conclusion, we describe here a cell-autonomous, pro-inflammatory endothelial Notch1-Jagged1 circuit (i) triggering the expression of VCAM1 even in the absence of inflammatory cytokines and (ii) enhancing the effects of IL-1β. Thus, IL-1β regulates Notch1 and Notch4 activity in opposite directions, consistent with a selective targeting of Notch1 in inflamed endothelium.

  19. Activation of an endothelial Notch1-Jagged1 circuit induces VCAM1 expression, an effect amplified by interleukin-1β.

    PubMed

    Verginelli, Federica; Adesso, Laura; Limon, Isabelle; Alisi, Anna; Gueguen, Marie; Panera, Nadia; Giorda, Ezio; Raimondi, Lavinia; Ciarapica, Roberta; Campese, Antonio F; Screpanti, Isabella; Stifani, Stefano; Kitajewski, Jan; Miele, Lucio; Rota, Rossella; Locatelli, Franco

    2015-12-22

    The Notch1 and Notch4 signaling pathways regulate endothelial cell homeostasis. Inflammatory cytokines induce the expression of endothelial adhesion molecules, including VCAM1, partly by downregulating Notch4 signaling. We investigated the role of endothelial Notch1 in this IL-1β-mediated process. Brief treatment with IL-1β upregulated endothelial VCAM1 and Notch ligand Jagged1. IL-1β decreased Notch1 mRNA levels, but levels of the active Notch1ICD protein remained constant. IL-1β-mediated VCAM1 induction was downregulated in endothelial cells subjected to pretreatment with a pharmacological inhibitor of the γ-secretase, which activates Notch receptors, producing NotchICD. It was also downregulated in cells in which Notch1 and/or Jagged1 were silenced.Conversely, the forced expression of Notch1ICD in naïve endothelial cells upregulated VCAM1 per se and amplified IL-1β-mediated VCAM1 induction. Jagged1 levels increased and Notch4 signaling was downregulated in parallel. Finally, Notch1ICD and Jagged1 expression was upregulated in the endothelium of the liver in a model of chronic liver inflammation.In conclusion, we describe here a cell-autonomous, pro-inflammatory endothelial Notch1-Jagged1 circuit (i) triggering the expression of VCAM1 even in the absence of inflammatory cytokines and (ii) enhancing the effects of IL-1β. Thus, IL-1β regulates Notch1 and Notch4 activity in opposite directions, consistent with a selective targeting of Notch1 in inflamed endothelium. PMID:26646450

  20. Notch signaling deficiency underlies age-dependent depletion of satellite cells in muscular dystrophy.

    PubMed

    Jiang, Chunhui; Wen, Yefei; Kuroda, Kazuki; Hannon, Kevin; Rudnicki, Michael A; Kuang, Shihuan

    2014-08-01

    Duchenne muscular dystrophy (DMD) is a devastating disease characterized by muscle wasting, loss of mobility and death in early adulthood. Satellite cells are muscle-resident stem cells responsible for the repair and regeneration of damaged muscles. One pathological feature of DMD is the progressive depletion of satellite cells, leading to the failure of muscle repair. Here, we attempted to explore the molecular mechanisms underlying satellite cell ablation in the dystrophin mutant mdx mouse, a well-established model for DMD. Initial muscle degeneration activates satellite cells, resulting in increased satellite cell number in young mdx mice. This is followed by rapid loss of satellite cells with age due to the reduced self-renewal ability of mdx satellite cells. In addition, satellite cell composition is altered even in young mdx mice, with significant reductions in the abundance of non-committed (Pax7+ and Myf5-) satellite cells. Using a Notch-reporter mouse, we found that the mdx satellite cells have reduced activation of Notch signaling, which has been shown to be necessary to maintain satellite cell quiescence and self-renewal. Concomitantly, the expression of Notch1, Notch3, Jag1, Hey1 and HeyL are reduced in the mdx primary myoblast. Finally, we established a mouse model to constitutively activate Notch signaling in satellite cells, and show that Notch activation is sufficient to rescue the self-renewal deficiencies of mdx satellite cells. These results demonstrate that Notch signaling is essential for maintaining the satellite cell pool and that its deficiency leads to depletion of satellite cells in DMD.

  1. Mind bomb1 is a ubiquitin ligase essential for mouse embryonic development and Notch signaling.

    PubMed

    Barsi, Julius C; Rajendra, Rashmi; Wu, Jiang I; Artzt, Karen

    2005-10-01

    The Notch-Delta signaling pathway controls many conserved cell determination events. While the Notch end is fairly well characterized, the Delta end remains poorly understood. Mind bomb1 (MIB1) is one of two E3 ligases known to ubiquitinate Delta. We report here that a targeted mutation of Mib1 in mice results in embryonic lethality by E10.5. Mutants exhibit multiple defects due to their inability to modulate Notch signaling. As histopathology revealed a strong neurogenic phenotype, this study concentrates on characterizing the Mib1 mutant by analyzing Notch pathway components in embryonic neuroepithelium prior to developmental arrest. Premature neurons were observed to undergo apoptosis soon after differentiation. Aberrant neurogenesis is a direct consequence of lowered Hes1 and Hes5 expression resulting from the inability to generate Notch1 intracellular domain (NICD1). We conclude that MIB1 activity is required for S3 cleavage of the Notch1 receptor. These results have direct implications for manipulating the differentiation of neuronal stem cells and provide a putative target for the modulation of specific tumors.

  2. Corilagin suppresses cholangiocarcinoma progression through Notch signaling pathway in vitro and in vivo.

    PubMed

    Gu, Yue; Xiao, Linfeng; Ming, Yanlin; Zheng, Zhizhong; Li, Wengang

    2016-05-01

    Corilagin is a natural plant polyphenol tannic acid with antitumor, anti-inflammatory, and anti-oxidative properties. However, the mechanisms of its actions are largely unknown. Our group reported that corilagin could induce cell inhibition in human breast cancer cell line MCF-7 and human liver hepatocellular carcinoma cell lines HepG2. We report here that corilagin inhibits cholangiocarcinoma (CCA) development through regulating Notch signaling pathway. We found that, in vitro, corilagin inhibited CCA cell proliferation, migration and invasion, promoted CCA cell apoptosis, and inhibited Notch1 and Notch signaling pathway protein expression. Co-immunoprecipitation was used to establish Notch intracellular domain (NICD) interaction with MAML1 and P300 in CCA. Importantly, corilagin reduced Hes1 mRNA level through inhibiting Hes1 promoter activity. In nude mice, corilagin inhibited CCA growth and repressed the expression of Notch1 and mTOR. These results indicate that corilagin may control CCA cell growth by downregulating the expression of Notch1. Therefore, our findings suggest that corilagin may have the potential to become a new therapeutic drug for human CCA. PMID:26935808

  3. Systemic Inhibition of Canonical Notch Signaling Results in Sustained Callus Inflammation and Alters Multiple Phases of Fracture Healing

    PubMed Central

    Dishowitz, Michael I.; Mutyaba, Patricia L.; Takacs, Joel D.; Barr, Andrew M.; Engiles, Julie B.; Ahn, Jaimo; Hankenson, Kurt D.

    2013-01-01

    The Notch signaling pathway is an important regulator of embryological bone development, and many aspects of development are recapitulated during bone repair. We have previously reported that Notch signaling components are upregulated during bone fracture healing. However, the significance of the Notch pathway in bone regeneration has not been described. Therefore, the objective of this study was to determine the importance of Notch signaling in regulating bone fracture healing by using a temporally controlled inducible transgenic mouse model (Mx1-Cre;dnMAMLf/-) to impair RBPjκ-mediated canonical Notch signaling. The Mx1 promoter was synthetically activated resulting in temporally regulated systemic dnMAML expression just prior to creation of bilateral tibial fractures. This allowed for mice to undergo unaltered embryological and post-natal skeletal development. Results showed that systemic Notch inhibition prolonged expression of inflammatory cytokines and neutrophil cell inflammation, and reduced the proportion of cartilage formation within the callus at 10 days-post-fracture (dpf) Notch inhibition did not affect early bone formation at 10dpf, but significantly altered bone maturation and remodeling at 20dpf. Increased bone volume fraction in dnMAML fractures, which was due to a moderate decrease in callus size with no change in bone mass, coincided with increased trabecular thickness but decreased connectivity density, indicating that patterning of bone was altered. Notch inhibition decreased total osteogenic cell density, which was comprised of more osteocytes rather than osteoblasts. dnMAML also decreased osteoclast density, suggesting that osteoclast activity may also be important for altered fracture healing. It is likely that systemic Notch inhibition had both direct effects within cell types as well as indirect effects initiated by temporally upstream events in the fracture healing cascade. Surprisingly, Notch inhibition did not alter cell proliferation

  4. miR-216a regulates snx5, a novel notch signaling pathway component, during zebrafish retinal development.

    PubMed

    Olena, Abigail F; Rao, Mahesh B; Thatcher, Elizabeth J; Wu, Shu-Yu; Patton, James G

    2015-04-01

    Precise regulation of Notch signaling is essential for normal vertebrate development. Mind bomb (Mib) is a ubiquitin ligase that is required for activation of Notch by Notch׳s ligand, Delta. Sorting Nexin 5 (SNX5) co-localizes with Mib and Delta complexes and has been shown to directly bind to Mib. We show that microRNA-216a (miR-216a) is expressed in the retina during early development and regulates snx5 to precisely regulate Notch signaling. miR-216a and snx5 have complementary expression patterns. Knocking down miR-216a and/or overexpression of snx5 resulted in increased Notch activation. Conversely, knocking down snx5 and/or miR-216a overexpression caused a decrease in Notch activation. We propose a model in which SNX5, precisely controlled by miR-216a, is a vital partner of Mib in promoting endocytosis of Delta and subsequent activation of Notch signaling.

  5. The matricellular protein CCN3 regulates NOTCH1 signalling in chronic myeloid leukaemia.

    PubMed

    Suresh, Sukanya; McCallum, Lynn; Crawford, Lisa J; Lu, Wan Hua; Sharpe, Daniel J; Irvine, Alexandra E

    2013-11-01

    Deregulated NOTCH1 has been reported in lymphoid leukaemia, although its role in chronic myeloid leukaemia (CML) is not well established. We previously reported BCR-ABL down-regulation of a novel haematopoietic regulator, CCN3, in CML; CCN3 is a non-canonical NOTCH1 ligand. This study characterizes the NOTCH1–CCN3 signalling axis in CML. In K562 cells, BCR-ABL silencing reduced full-length NOTCH1 (NOTCH1-FL) and inhibited the cleavage of NOTCH1 intracellular domain (NOTCH1-ICD), resulting in decreased expression of the NOTCH1 targets c-MYC and HES1. K562 cells stably overexpressing CCN3 (K562/CCN3) or treated with recombinant CCN3(rCCN3) showed a significant reduction in NOTCH1 signalling (> 50% reduction in NOTCH1-ICD, p < 0.05).Gamma secretase inhibitor (GSI), which blocks NOTCH1 signalling, reduced K562/CCN3 colony formation but increased that of K562/control cells. GSI combined with either rCCN3 or imatinib reduced K562 colony formation with enhanced reduction of NOTCH1 signalling observed with combination treatments. We demonstrate an oncogenic role for NOTCH1 in CML and suggest that BCR-ABL disruption of NOTCH1–CCN3 signalling contributes to the pathogenesis of CML.

  6. Faster embryonic segmentation through elevated Delta-Notch signalling

    PubMed Central

    Liao, Bo-Kai; Jörg, David J.; Oates, Andrew C.

    2016-01-01

    An important step in understanding biological rhythms is the control of period. A multicellular, rhythmic patterning system termed the segmentation clock is thought to govern the sequential production of the vertebrate embryo's body segments, the somites. Several genetic loss-of-function conditions, including the Delta-Notch intercellular signalling mutants, result in slower segmentation. Here, we generate DeltaD transgenic zebrafish lines with a range of copy numbers and correspondingly increased signalling levels, and observe faster segmentation. The highest-expressing line shows an altered oscillating gene expression wave pattern and shortened segmentation period, producing embryos with more, shorter body segments. Our results reveal surprising differences in how Notch signalling strength is quantitatively interpreted in different organ systems, and suggest a role for intercellular communication in regulating the output period of the segmentation clock by altering its spatial pattern. PMID:27302627

  7. Notch-signalling is required for head regeneration and tentacle patterning in Hydra.

    PubMed

    Münder, Sandra; Tischer, Susanne; Grundhuber, Maresa; Büchels, Nathalie; Bruckmeier, Nadine; Eckert, Stefanie; Seefeldt, Carolin A; Prexl, Andrea; Käsbauer, Tina; Böttger, Angelika

    2013-11-01

    Local self-activation and long ranging inhibition provide a mechanism for setting up organising regions as signalling centres for the development of structures in the surrounding tissue. The adult hydra hypostome functions as head organiser. After hydra head removal it is newly formed and complete heads can be regenerated. The molecular components of this organising region involve Wnt-signalling and β-catenin. However, it is not known how correct patterning of hypostome and tentacles are achieved in the hydra head and whether other signals in addition to HyWnt3 are needed for re-establishing the new organiser after head removal. Here we show that Notch-signalling is required for re-establishing the organiser during regeneration and that this is due to its role in restricting tentacle activation. Blocking Notch-signalling leads to the formation of irregular head structures characterised by excess tentacle tissue and aberrant expression of genes that mark the tentacle boundaries. This indicates a role for Notch-signalling in defining the tentacle pattern in the hydra head. Moreover, lateral inhibition by HvNotch and its target HyHes are required for head regeneration and without this the formation of the β-catenin/Wnt dependent head organiser is impaired. Work on prebilaterian model organisms has shown that the Wnt-pathway is important for setting up signalling centres for axial patterning in early multicellular animals. Our data suggest that the integration of Wnt-signalling with Notch-Delta activity was also involved in the evolution of defined body plans in animals.

  8. Notch signalling pathway as an oncogenic factor involved in cancer development

    PubMed Central

    Piecuch, Adam; Dittfeld, Anna; Mielańczyk, Łukasz; Michalski, Marek; Wyrobiec, Grzegorz; Harabin-Słowińska, Marzena; Kurek, Józef; Wojnicz, Romuald

    2016-01-01

    Notch signalling is an evolutionarily conserved signalling pathway, which plays a significant role in a wide array of cellular processes including proliferation, differentiation, and apoptosis. Nevertheless, it must be noted that Notch is a binary cell fate determinant, and its overexpression has been described as oncogenic in a broad range of human malignancies. This finding led to interest in therapeutically targeting this pathway especially by the use of GSIs, which block the cleavage of Notch at the cell membrane and inhibit release of the transcriptionally active NotchIC subunit. Preclinical cancer models have clearly demonstrated that GSIs suppress the growth of such malignancies as pancreatic, breast, and lung cancer; however, GSI treatment in vivo is associated with side effects, especially those within the gastrointestinal tract. Although intensive studies are associated with the role of γ-secretase in pathological states, it should be pointed out that this complex impacts on proteolytic cleavages of around 55 membrane proteins. Therefore, it is clear that GSIs are highly non-specific and additional drugs must be designed, which will more specifically target components of the Notch signalling.

  9. Notch signalling pathway as an oncogenic factor involved in cancer development.

    PubMed

    Brzozowa-Zasada, Marlena; Piecuch, Adam; Dittfeld, Anna; Mielańczyk, Łukasz; Michalski, Marek; Wyrobiec, Grzegorz; Harabin-Słowińska, Marzena; Kurek, Józef; Wojnicz, Romuald

    2016-01-01

    Notch signalling is an evolutionarily conserved signalling pathway, which plays a significant role in a wide array of cellular processes including proliferation, differentiation, and apoptosis. Nevertheless, it must be noted that Notch is a binary cell fate determinant, and its overexpression has been described as oncogenic in a broad range of human malignancies. This finding led to interest in therapeutically targeting this pathway especially by the use of GSIs, which block the cleavage of Notch at the cell membrane and inhibit release of the transcriptionally active NotchIC subunit. Preclinical cancer models have clearly demonstrated that GSIs suppress the growth of such malignancies as pancreatic, breast, and lung cancer; however, GSI treatment in vivo is associated with side effects, especially those within the gastrointestinal tract. Although intensive studies are associated with the role of γ-secretase in pathological states, it should be pointed out that this complex impacts on proteolytic cleavages of around 55 membrane proteins. Therefore, it is clear that GSIs are highly non-specific and additional drugs must be designed, which will more specifically target components of the Notch signalling. PMID:27688721

  10. Notch signalling pathway as an oncogenic factor involved in cancer development

    PubMed Central

    Piecuch, Adam; Dittfeld, Anna; Mielańczyk, Łukasz; Michalski, Marek; Wyrobiec, Grzegorz; Harabin-Słowińska, Marzena; Kurek, Józef; Wojnicz, Romuald

    2016-01-01

    Notch signalling is an evolutionarily conserved signalling pathway, which plays a significant role in a wide array of cellular processes including proliferation, differentiation, and apoptosis. Nevertheless, it must be noted that Notch is a binary cell fate determinant, and its overexpression has been described as oncogenic in a broad range of human malignancies. This finding led to interest in therapeutically targeting this pathway especially by the use of GSIs, which block the cleavage of Notch at the cell membrane and inhibit release of the transcriptionally active NotchIC subunit. Preclinical cancer models have clearly demonstrated that GSIs suppress the growth of such malignancies as pancreatic, breast, and lung cancer; however, GSI treatment in vivo is associated with side effects, especially those within the gastrointestinal tract. Although intensive studies are associated with the role of γ-secretase in pathological states, it should be pointed out that this complex impacts on proteolytic cleavages of around 55 membrane proteins. Therefore, it is clear that GSIs are highly non-specific and additional drugs must be designed, which will more specifically target components of the Notch signalling. PMID:27688721

  11. Lhx2 Is an Essential Factor for Retinal Gliogenesis and Notch Signaling

    PubMed Central

    de Melo, Jimmy; Zibetti, Cristina; Clark, Brian S.; Hwang, Woochang; Miranda-Angulo, Ana L.; Qian, Jiang

    2016-01-01

    Müller glia (MG) are the only glial cell type produced by the neuroepithelial progenitor cells that generate the vertebrate retina. MG are required to maintain retinal homeostasis and support the survival of retinal neurons. Furthermore, in certain vertebrate classes, MG function as adult stem cells, mediating retinal regeneration in response to injury. However, the mechanisms that regulate MG development are poorly understood because there is considerable overlap in gene expression between retinal progenitor cells and differentiated MG. We show that the LIM homeodomain transcription factor Lhx2 is required for the development of MG in the mouse retina. Temporally controlled knock-out studies reveal a requirement for Lhx2 during all stages of MG development, ranging from the proliferation of gliocompetent retinal progenitors, activation of Müller-specific gene expression, and terminal differentiation of MG morphological features. We show that Lhx2 regulates gliogenesis in part by regulating directly the expression of Notch pathway genes including Notch1, Dll1, and Dll3 and gliogenic transcription factors such as Hes1, Hes5, Sox8, and Rax. Conditional knock-out of Lhx2 resulted in a rapid downregulation of Notch pathway genes and loss of Notch signaling. We further demonstrate that Müller gliogenesis induced by misexpression of the potently gliogenic Notch pathway transcriptional effector Hes5 requires Lhx2 expression. These results indicate that Lhx2 not only directly regulates expression of Notch signaling pathway components, but also acts together with the gliogenic Notch pathway to drive MG specification and differentiation. SIGNIFICANCE STATEMENT Müller glia (MG) are radial glial cells located in the vertebrate retina that are essential for the function and survival of retinal neurons. We found the LIM homeodomain transcription factor Lhx2 to be expressed in both retinal progenitor cells and MG. Using conditional knock-outs, we show that Lhx2 is required

  12. Cellular senescence checkpoint function determines differential Notch1-dependent oncogenic and tumor suppressor activities

    PubMed Central

    Kagawa, Shingo; Natsuizaka, Mitsuteru; Whelan, Kelly A.; Facompre, Nicole; Naganuma, Seiji; Ohashi, Shinya; Kinugasa, Hideaki; Egloff, Ann Marie; Basu, Devraj; Gimotty, Phyllis A.; Klein-Szanto, Andres J; Bass, Adam; Wong, Kwok-Kin; Diehl, J. Alan; Rustgi, Anil K.; Nakagawa, Hiroshi

    2014-01-01

    Notch activity regulates tumor biology in a context-dependent and complex manner. Notch may act as an oncogene or a tumor suppressor gene even within the same tumor type. Recently, Notch signaling has been implicated in cellular senescence. Yet, it remains unclear as to how cellular senescence checkpoint functions may interact with Notch-mediated oncogenic and tumor suppressor activities. Herein, we used genetically engineered human esophageal keratinocytes and esophageal squamous cell carcinoma cells to delineate the functional consequences of Notch activation and inhibition along with pharmacological intervention and RNA interference (RNAi) experiments. When expressed in a tetracycline-inducible manner, the ectopically expressed activated form of Notch1 (ICN1) displayed oncogene-like characteristics inducing cellular senescence corroborated by the induction of G0/G1 cell-cycle arrest, Rb dephosphorylation, flat and enlarged cell morphology and senescence-associated β-galactosidase activity. Notch-induced senescence involves canonical CSL/RBPJ-dependent transcriptional activity and the p16INK4A-Rb pathway. Loss of p16INK4A or the presence of human papilloma virus (HPV) E6/E7 oncogene products not only prevented ICN1 from inducing senescence, but permitted ICN1 to facilitate anchorage-independent colony formation and xenograft tumor growth with increased cell proliferation and reduced squamous-cell differentiation. Moreover, Notch1 appears to mediate replicative senescence as well as TGF-β-induced cellular senescence in non-transformed cells and that HPV E6/E7 targets Notch1 for inactivation to prevent senescence, revealing a tumor suppressor attribute of endogenous Notch1. In aggregate, cellular senescence checkpoint functions may influence dichotomous Notch activities in the neoplastic context. PMID:24931169

  13. Cellular senescence checkpoint function determines differential Notch1-dependent oncogenic and tumor-suppressor activities.

    PubMed

    Kagawa, S; Natsuizaka, M; Whelan, K A; Facompre, N; Naganuma, S; Ohashi, S; Kinugasa, H; Egloff, A M; Basu, D; Gimotty, P A; Klein-Szanto, A J; Bass, A J; Wong, K-K; Diehl, J A; Rustgi, A K; Nakagawa, H

    2015-04-30

    Notch activity regulates tumor biology in a context-dependent and complex manner. Notch may act as an oncogene or a tumor-suppressor gene even within the same tumor type. Recently, Notch signaling has been implicated in cellular senescence. Yet, it remains unclear as to how cellular senescence checkpoint functions may interact with Notch-mediated oncogenic and tumor-suppressor activities. Herein, we used genetically engineered human esophageal keratinocytes and esophageal squamous cell carcinoma cells to delineate the functional consequences of Notch activation and inhibition along with pharmacological intervention and RNA interference experiments. When expressed in a tetracycline-inducible manner, the ectopically expressed activated form of Notch1 (ICN1) displayed oncogene-like characteristics inducing cellular senescence corroborated by the induction of G0/G1 cell-cycle arrest, Rb dephosphorylation, flat and enlarged cell morphology and senescence-associated β-galactosidase activity. Notch-induced senescence involves canonical CSL/RBPJ-dependent transcriptional activity and the p16(INK4A)-Rb pathway. Loss of p16(INK4A) or the presence of human papilloma virus (HPV) E6/E7 oncogene products not only prevented ICN1 from inducing senescence but permitted ICN1 to facilitate anchorage-independent colony formation and xenograft tumor growth with increased cell proliferation and reduced squamous-cell differentiation. Moreover, Notch1 appears to mediate replicative senescence as well as transforming growth factor-β-induced cellular senescence in non-transformed cells and that HPV E6/E7 targets Notch1 for inactivation to prevent senescence, revealing a tumor-suppressor attribute of endogenous Notch1. In aggregate, cellular senescence checkpoint functions may influence dichotomous Notch activities in the neoplastic context.

  14. Monomeric C-reactive protein and Notch-3 co-operatively increase angiogenesis through PI3K signalling pathway.

    PubMed

    Boras, Emhamed; Slevin, Mark; Alexander, M Yvonne; Aljohi, Ali; Gilmore, William; Ashworth, Jason; Krupinski, Jerzy; Potempa, Lawrence A; Al Abdulkareem, Ibrahim; Elobeid, Adila; Matou-Nasri, Sabine

    2014-10-01

    C-reactive protein (CRP) is the most acute-phase reactant serum protein of inflammation and a strong predictor of cardiovascular disease. Its expression is associated with atherosclerotic plaque instability and the formation of immature micro-vessels. We have previously shown that CRP upregulates endothelial-derived Notch-3, a key receptor involved in vascular development, remodelling and maturation. In this study, we investigated the links between the bioactive monomeric CRP (mCRP) and Notch-3 signalling in angiogenesis. We used in vitro (cell counting, wound-healing and tubulogenesis assays) and in vivo (chorioallantoic membrane) angiogenic assays and Western blotting to study the angiogenic signalling pathways induced by mCRP and Notch-3 activator chimera protein (Notch-3/Fc). Our results showed an additive effect on angiogenesis of mCRP stimulatory effect combined with Notch-3/Fc promoting bovine aortic endothelial cell (BAEC) proliferation, migration, tube formation in Matrigel(TM) with up-regulation of phospho-Akt expression. The pharmacological blockade of PI3K/Akt survival pathway by LY294002 fully inhibited in vitro and in vivo angiogenesis induced by mCRP/Notch-3/Fc combination while blocking Notch signalling by gamma-secretase inhibitor (DAPT) partially inhibited mCRP/Notch-3/Fc-induced angiogenesis. Using a BAEC vascular smooth muscle cell co-culture sprouting angiogenesis assay and transmission electron microscopy, we showed that activation of both mCRP and Notch-3 signalling induced the formation of thicker sprouts which were shown later by Western blotting to be associated with an up-regulation of N-cadherin expression and a down-regulation of VE-cadherin expression. Thus, mCRP combined with Notch-3 activator promote angiogenesis through the PI3K/Akt pathway and their therapeutic combination has potential to promote and stabilize vessel formation whilst reducing the risk of haemorrhage from unstable plaques. PMID:24972386

  15. Notch signaling regulates venous arterialization during zebrafish fin regeneration

    PubMed Central

    Kametani, Yoshiko; Chi, Neil C.; Stainier, Didier Y.R.; Takada, Shinji

    2015-01-01

    In order to protect against blood pressure, a mature artery is supported by mural cells which include vascular smooth muscle cells and pericytes. To regenerate a functional vascular system, arteries should be properly reconstructed with mural cells although the mechanisms underlying artery reconstruction remain unclear. In this study, we examined the process of artery reconstruction during regeneration of the zebrafish caudal fin as a model to study arterial formation in an adult setting. During fin regeneration, the arteries and veins form a net-like vasculature called the vascular plexus, and this plexus undergoes remodeling to form a new artery and 2 flanking veins. We found that the new vascular plexus originates mainly from venous cells in the stump but very rarely from the arterial cells. Interestingly, these vein-derived cells contributed to the reconstructed arteries. This arterialization was dependent on Notch signaling, and further analysis revealed that Notch signaling was required for the initiation of arterial gene expression. In contrast, venous remodeling did not require Notch signaling. These results provide new insights towards understanding mechanisms of vascular regeneration and illustrate the utility of the adult zebrafish fin to study this process. PMID:25810153

  16. Increasing Notch signaling antagonizes PRC2-mediated silencing to promote reprograming of germ cells into neurons

    PubMed Central

    Seelk, Stefanie; Adrian-Kalchhauser, Irene; Hargitai, Balázs; Hajduskova, Martina; Gutnik, Silvia; Tursun, Baris; Ciosk, Rafal

    2016-01-01

    Cell-fate reprograming is at the heart of development, yet very little is known about the molecular mechanisms promoting or inhibiting reprograming in intact organisms. In the C. elegans germline, reprograming germ cells into somatic cells requires chromatin perturbation. Here, we describe that such reprograming is facilitated by GLP-1/Notch signaling pathway. This is surprising, since this pathway is best known for maintaining undifferentiated germline stem cells/progenitors. Through a combination of genetics, tissue-specific transcriptome analysis, and functional studies of candidate genes, we uncovered a possible explanation for this unexpected role of GLP-1/Notch. We propose that GLP-1/Notch promotes reprograming by activating specific genes, silenced by the Polycomb repressive complex 2 (PRC2), and identify the conserved histone demethylase UTX-1 as a crucial GLP-1/Notch target facilitating reprograming. These findings have wide implications, ranging from development to diseases associated with abnormal Notch signaling. DOI: http://dx.doi.org/10.7554/eLife.15477.001 PMID:27602485

  17. Notch Signaling Regulates Antigen Sensitivity of Naive CD4+ T Cells by Tuning Co-stimulation

    PubMed Central

    Laky, Karen; Evans, Sharron; Perez-Diez, Ainhoa

    2015-01-01

    SUMMARY Adaptive immune responses begin when naive CD4+ T cells engage peptide+major histocompatibility complex class II and co-stimulatory molecules on antigen-presenting cells (APCs). Notch signaling can influence effector functions in differentiated CD4+ T helper and T regulatory cells. Whether and how ligand-induced Notch signaling influences the initial priming of CD4+ T cells has not been addressed. We have found that Delta Like Ligand 4 (DLL4)-induced Notch signaling potentiates phosphatidylinositol 3-OH kinase (PI3K)-dependent signaling downstream of the T cell receptor+CD28, allowing naive CD4+ T cells to respond to lower doses of antigen. In vitro, DLL4-deficient APCs were less efficient stimulators of CD4+ T cell activation, metabolism, proliferation, and cytokine secretion. With deletion of DLL4 from CD11c+ APCs in vivo, these deficits translated to an impaired ability to mount an effective CD4+-dependent anti-tumor response. These data implicate Notch signaling as an important regulator of adaptive immune responses. PMID:25607460

  18. Requirement of HDAC6 for activation of Notch1 by TGF-β1

    PubMed Central

    Deskin, Brian; Lasky, Joseph; Zhuang, Yan; Shan, Bin

    2016-01-01

    TGF-β1 is enriched in the tumor microenvironment and acts as a key inducer of epithelial to mesenchymal transition (EMT) in lung cancer. The NOTCH signaling pathway is conserved across species and is an essential pathway for development, cell differentiation, and cancer biology. Dysregulation of Notch signaling is a common feature of non-small cell lung cancer (NSCLC) and is correlated with poor prognosis. Crosstalk exists between the NOTCH and TGF-β signaling pathways in EMT. Herein we report that histone deacetylase 6 (HDAC6) modulates TGF-β1-mediated activation of the Notch pathway. HDAC6, a primarily cytoplasmic deacetylase, mediates TGF-β1-induced EMT in human lung cancer cells. Inhibition of HDAC6 with a small molecule inhibitor, namely tubacin or with siRNA attenuated TGF-β1-induced Notch-1 signaling. We show that TGFβ-1-induced EMT is accompanied by rapid HDAC6-dependent deacetylation of heat shock protein 90 (HSP90). Consistently, inhibition of HSP90 with its small molecule inhibitor 17AAG attenuated expression of TGF-β1-induced Notch-1 target genes, HEY-1 and HES-1. These findings reveal a novel function of HDAC6 in EMT via mediating the TGF-β-Notch signaling cascade, and support HDAC6 as a key regulator of TGFβ-induced EMT in NSCLC. This work suggests that HDAC6 may be an attractive therapeutic target against tumor progression and metastasis. PMID:27499032

  19. Protein O-fucosyltransferase 1 expression impacts myogenic C2C12 cell commitment via the Notch signaling pathway.

    PubMed

    Der Vartanian, Audrey; Audfray, Aymeric; Al Jaam, Bilal; Janot, Mathilde; Legardinier, Sébastien; Maftah, Abderrahman; Germot, Agnès

    2015-01-01

    The Notch signaling pathway plays a crucial role in skeletal muscle regeneration in mammals by controlling the transition of satellite cells from quiescence to an activated state, their proliferation, and their commitment toward myotubes or self-renewal. O-fucosylation on Notch receptor epidermal growth factor (EGF)-like repeats is catalyzed by the protein O-fucosyltransferase 1 (Pofut1) and primarily controls Notch interaction with its ligands. To approach the role of O-fucosylation in myogenesis, we analyzed a murine myoblastic C2C12 cell line downregulated for Pofut1 expression by short hairpin RNA (shRNA) inhibition during the time course of differentiation. Knockdown of Pofut1 affected the signaling pathway activation by a reduction of the amount of cleaved Notch intracellular domain and a decrease in downstream Notch target gene expression. Depletion in Pax7(+)/MyoD(-) cells and earlier myogenic program entrance were observed, leading to an increase in myotube quantity with a small number of nuclei, reflecting fusion defects. The rescue of Pofut1 expression in knockdown cells restored Notch signaling activation and a normal course in C2C12 differentiation. Our results establish the critical role of Pofut1 on Notch pathway activation during myogenic differentiation.

  20. Protein O-Fucosyltransferase 1 Expression Impacts Myogenic C2C12 Cell Commitment via the Notch Signaling Pathway

    PubMed Central

    Der Vartanian, Audrey; Audfray, Aymeric; Al Jaam, Bilal; Janot, Mathilde; Legardinier, Sébastien; Maftah, Abderrahman

    2014-01-01

    The Notch signaling pathway plays a crucial role in skeletal muscle regeneration in mammals by controlling the transition of satellite cells from quiescence to an activated state, their proliferation, and their commitment toward myotubes or self-renewal. O-fucosylation on Notch receptor epidermal growth factor (EGF)-like repeats is catalyzed by the protein O-fucosyltransferase 1 (Pofut1) and primarily controls Notch interaction with its ligands. To approach the role of O-fucosylation in myogenesis, we analyzed a murine myoblastic C2C12 cell line downregulated for Pofut1 expression by short hairpin RNA (shRNA) inhibition during the time course of differentiation. Knockdown of Pofut1 affected the signaling pathway activation by a reduction of the amount of cleaved Notch intracellular domain and a decrease in downstream Notch target gene expression. Depletion in Pax7+/MyoD− cells and earlier myogenic program entrance were observed, leading to an increase in myotube quantity with a small number of nuclei, reflecting fusion defects. The rescue of Pofut1 expression in knockdown cells restored Notch signaling activation and a normal course in C2C12 differentiation. Our results establish the critical role of Pofut1 on Notch pathway activation during myogenic differentiation. PMID:25384974

  1. Notch/Rbpjκ signaling regulates progenitor maintenance and differentiation of hypothalamic arcuate neurons

    PubMed Central

    Aujla, Paven K.; Naratadam, George T.; Xu, Liwen; Raetzman, Lori T.

    2013-01-01

    The hypothalamic arcuate nucleus (Arc), containing pro-opoiomelanocortin (POMC), neuropeptide Y (NPY) and growth hormone releasing hormone (GHRH) neurons, regulates feeding, energy balance and body size. Dysregulation of this homeostatic mediator underlies diseases ranging from growth failure to obesity. Despite considerable investigation regarding the function of Arc neurons, mechanisms governing their development remain unclear. Notch signaling factors such as Hes1 and Mash1 are present in hypothalamic progenitors that give rise to Arc neurons. However, how Notch signaling controls these progenitor populations is unknown. To elucidate the role of Notch signaling in Arc development, we analyzed conditional loss-of-function mice lacking a necessary Notch co-factor, Rbpjκ, in Nkx2.1-cre-expressing cells (Rbpjκ cKO), as well as mice with expression of the constitutively active Notch1 intracellular domain (NICD) in Nkx2.1-cre-expressing cells (NICD Tg). We found that loss of Rbpjκ results in absence of Hes1 but not of Hes5 within the primordial Arc at E13.5. Additionally, Mash1 expression is increased, coincident with increased proliferation and accumulation of Arc neurons at E13.5. At E18.5, Rbpjκ cKO mice have few progenitors and show increased numbers of differentiated Pomc, NPY and Ghrh neurons. By contrast, NICD Tg mice have increased hypothalamic progenitors, show an absence of differentiated Arc neurons and aberrant glial differentiation at E18.5. Subsequently, both Rbpjκ cKO and NICD Tg mice have changes in growth and body size during postnatal development. Taken together, our results demonstrate that Notch/Rbpjκ signaling regulates the generation and differentiation of Arc neurons, which contribute to homeostatic regulation of body size. PMID:23884446

  2. Active form Notch4 promotes the proliferation and differentiation of 3T3-L1 preadipocytes

    SciTech Connect

    Lai, Peng-Yeh; Tsai, Chong-Bin; Tseng, Min-Jen

    2013-01-18

    Highlights: ► Notch4IC modulates the ERK pathway and cell cycle to promote 3T3-L1 proliferation. ► Notch4IC facilitates 3T3-L1 differentiation by up-regulating proadipogenic genes. ► Notch4IC promotes proliferation during the early stage of 3T3-L1 adipogenesis. ► Notch4IC enhances differentiation during subsequent stages of 3T3-L1 adipogenesis. -- Abstract: Adipose tissue is composed of adipocytes, which differentiate from precursor cells in a process called adipogenesis. Many signal molecules are involved in the transcriptional control of adipogenesis, including the Notch pathway. Previous adipogenic studies of Notch have focused on Notch1 and HES1; however, the role of other Notch receptors in adipogenesis remains unclear. Q-RT-PCR analyses showed that the augmentation of Notch4 expression during the differentiation of 3T3-L1 preadipocytes was comparable to that of Notch1. To elucidate the role of Notch4 in adipogenesis, the human active form Notch4 (N4IC) was transiently transfected into 3T3-L1 cells. The expression of HES1, Hey1, C/EBPδ and PPARγ was up-regulated, and the expression of Pref-1, an adipogenic inhibitor, was down-regulated. To further characterize the effect of N4IC in adipogenesis, stable cells expressing human N4IC were established. The expression of N4IC promoted proliferation and enhanced differentiation of 3T3-L1 cells compared with those of control cells. These data suggest that N4IC promoted proliferation through modulating the ERK pathway and the cell cycle during the early stage of 3T3-L1 adipogenesis and facilitated differentiation through up-regulating adipogenic genes such as C/EBPα, PPARγ, aP2, LPL and HSL during the middle and late stages of 3T3-L1 adipogenesis.

  3. The Histone Deacetylase Inhibitor Vaproic Acid Induces Cell Growth Arrest in Hepatocellular Carcinoma Cells via Suppressing Notch Signaling

    PubMed Central

    Sun, Guangchun; Mackey, Lily V.; Coy, David H.; Yu, Cui-Yun; Sun, Lichun

    2015-01-01

    Hepatocellular carcinoma (HCC) is a type of malignant cancer. Notch signaling is aberrantly expressed in HCC tissues with more evidence showing that this signaling plays a critical role in HCCs. In the present study, we investigate the effects of the anti-convulsant drug valproic acid (VPA) in HCC cells and its involvement in modulating Notch signaling. We found that VPA, acting as a histone deacetylase (HDAC) inhibitor, induced a decrease in HDAC4 and an increase in acetylated histone 4 (AcH4) and suppressed HCC cell growth. VPA also induced down-regulation of Notch signaling via suppressing the expression of Notch1 and its target gene HES1, with an increase of tumor suppressor p21 and p63. Furthermore, Notch1 activation via overexpressing Notch1 active form ICN1 induced HCC cell proliferation and anti-apoptosis, indicating Notch signaling played an oncogenic role in HCC cells. Meanwhile, VPA could reverse Notch1-induced increase of cell proliferation. Interestingly, VPA was also observed to stimulate the expression of G protein-coupled somatostatin receptor type 2 (SSTR2) that has been used in receptor-targeting therapies. This discovery supports a combination therapy of VPA with the SSTR2-targeting agents. Our in vitro assay did show that the combination of VPA and the peptide-drug conjugate camptothecin-somatostatin (CPT-SST) displayed more potent anti-proliferative effects on HCC cells than did each alone. VPA may be a potential drug candidate in the development of anti-HCC drugs via targeting Notch signaling, especially in combination with receptor-targeting cytotoxic agents. PMID:26366213

  4. Myeloid-Specific Blockade of Notch Signaling by RBP-J Knockout Attenuates Spinal Cord Injury Accompanied by Compromised Inflammation Response in Mice.

    PubMed

    Chen, Bei-Yu; Zheng, Min-Hua; Chen, Yan; Du, Yan-Ling; Sun, Xiao-Long; Zhang, Xing; Duan, Li; Gao, Fang; Liang, Liang; Qin, Hong-Yan; Luo, Zhuo-Jing; Han, Hua

    2015-12-01

    The outcome of spinal cord injury (SCI) is determined by both neural cell-intrinsic survival pathways and tissue microenvironment-derived signals. Macrophages dominating the inflammatory responses in SCI possess both destructive and reparative potentials, according to their activation status. Notch signaling is involved in both cell survival and macrophage-mediated inflammation, but a comprehensive role of Notch signaling in SCI has been elusive. In this study, we compared the effects of general Notch blockade by a pharmaceutical γ-secretase inhibitor (GSI) and myeloid-specific Notch signal disruption by recombination signal binding protein Jκ (RBP-J) knockout on SCI. The administration of Notch signal inhibitor GSI resulted in worsened hind limb locomotion and exacerbated inflammation. However, mice lacking RBP-J, the critical transcription factor mediating signals from all four mammalian Notch receptors, in myeloid lineage displayed promoted functional recovery, attenuated glial scar formation, improved neuronal survival and axon regrowth, and mitigated inflammatory response after SCI. These benefits were accompanied by enhanced AKT activation in the lesion area after SCI. These findings demonstrate that abrogating Notch signal in myeloid cells ameliorates inflammation response post-SCI and promotes functional recovery, but general pharmaceutical Notch interception has opposite effects. Therefore, clinical intervention of Notch signaling in SCI needs to pinpoint myeloid lineage to avoid the counteractive effects of global inhibition.

  5. Roles of Pofut1 and O-fucose in mammalian Notch signaling.

    PubMed

    Stahl, Mark; Uemura, Kazuhide; Ge, Changhui; Shi, Shaolin; Tashima, Yuko; Stanley, Pamela

    2008-05-16

    Mammalian Notch receptors contain 29-36 epidermal growth factor (EGF)-like repeats that may be modified by protein O-fucosyltransferase 1 (Pofut1), an essential component of the canonical Notch signaling pathway. The Drosophila orthologue Ofut1 is proposed to function as both a chaperone required for stable cell surface expression of Notch and a protein O-fucosyltransferase. Here we investigate these dual roles of Pofut1 in relation to endogenous Notch receptors of Chinese hamster ovary and murine embryonic stem (ES) cells. We show that fucosylation-deficient Lec13 Chinese hamster ovary cells have wild type levels of Pofut1 and cell surface Notch receptors. Nevertheless, they have reduced binding of Notch ligands and low levels of Delta1- and Jagged1-induced Notch signaling. Exogenous fucose but not galactose rescues both ligand binding and Notch signaling. Murine ES cells lacking Pofut1 also have wild type levels of cell surface Notch receptors. However, Pofut1-/- ES cells do not bind Notch ligands or exhibit Notch signaling. Although overexpression of fucosyltransferase-defective Pofut1 R245A in Pofut1-/- cells partially rescues ligand binding and Notch signaling, this effect is not specific. The same rescue is achieved by an unrelated, inactive, endoplasmic reticulum glucosidase. Therefore, mammalian Notch receptors require Pofut1 for the generation of optimally functional Notch receptors, but, in contrast to Drosophila, Pofut1 is not required for stable cell surface expression of Notch. Importantly, we also show that, under certain circumstances, mammalian Notch receptors are capable of signaling in the absence of Pofut1 and O-fucose.

  6. Notch1 Pathway Activation Results from the Epigenetic Abrogation of Notch-Related MicroRNAs in Mycosis Fungoides.

    PubMed

    Gallardo, Fernando; Sandoval, Juan; Díaz-Lagares, Angel; Garcia, Ricard; D'Altri, Teresa; González, Jessica; Alegre, Victor; Servitje, Octavio; Crujeiras, Ana-Belén; Stefánsson, Ólafur-Andri; Espinet, Blanca; Hernández, Maria-Inmaculada; Bellosillo, Beatriz; Esteller, Manel; Pujol, Ramon-Maria; Bigas, Anna; Espinosa, Lluis

    2015-12-01

    Notch is a family of transmembrane receptors that participate in the regulation of cell differentiation, proliferation, and stemness. Notch pathway activation has also been found associated with different human cancers including primary cutaneous T-cell lymphomas (CTCL). The elucidation of the mechanisms driving Notch activation in these particular diseases has remained elusive. Here we studied the possibility that DNA methylation at Notch pathway gene promoters and/or deregulation of Notch-associated microRNAs contribute to activate Notch in mycosis fungoides (MF). By genome-wide DNA methylation analysis, we failed to detect any consistent methylation at the Notch1, the Notch-ligand Jagged1, or the Notch-target Hes1 gene promoters, but found a significant methylation of the Notch-related microRNAs, in particular miR-200c and miR-124. Downregulation of miR-200c is associated with overexpression of Jagged1, concomitant to Notch1 activation. CTCL cell lines were infected with lentiviral vector encoding for miR-200c and ectopic expression of miR-200c in CTCL lines resulted in Jagged1 protein downregulation associated with a reduction in the levels of active Notch1. Our study deciphers an epigenetic mechanism regulating the Notch pathway in (MF) that might contribute to the future design of more specific therapeutic strategies. PMID:26302069

  7. Second-generation Notch1 activity-trap mouse line (N1IP::CreHI) provides a more comprehensive map of cells experiencing Notch1 activity.

    PubMed

    Liu, Zhenyi; Brunskill, Eric; Boyle, Scott; Chen, Shuang; Turkoz, Mustafa; Guo, Yuxuan; Grant, Rachel; Kopan, Raphael

    2015-03-15

    We have previously described the creation and analysis of a Notch1 activity-trap mouse line, Notch1 intramembrane proteolysis-Cre6MT or N1IP::Cre(LO), that marked cells experiencing relatively high levels of Notch1 activation. Here, we report and characterize a second line with improved sensitivity (N1IP::Cre(HI)) to mark cells experiencing lower levels of Notch1 activation. This improvement was achieved by increasing transcript stability and by restoring the native carboxy terminus of Cre, resulting in a five- to tenfold increase in Cre activity. The magnitude of this effect probably impacts Cre activity in strains with carboxy-terminal Ert2 fusion. These two trap lines and the related line N1IP::Cre(ERT2) form a complementary mapping tool kit to identify changes in Notch1 activation patterns in vivo as the consequence of genetic or pharmaceutical intervention, and illustrate the variation in Notch1 signal strength from one tissue to the next and across developmental time. PMID:25725069

  8. Second-generation Notch1 activity-trap mouse line (N1IP::CreHI) provides a more comprehensive map of cells experiencing Notch1 activity

    PubMed Central

    Liu, Zhenyi; Brunskill, Eric; Boyle, Scott; Chen, Shuang; Turkoz, Mustafa; Guo, Yuxuan; Grant, Rachel; Kopan, Raphael

    2015-01-01

    We have previously described the creation and analysis of a Notch1 activity-trap mouse line, Notch1 intramembrane proteolysis-Cre6MT or N1IP::CreLO, that marked cells experiencing relatively high levels of Notch1 activation. Here, we report and characterize a second line with improved sensitivity (N1IP::CreHI) to mark cells experiencing lower levels of Notch1 activation. This improvement was achieved by increasing transcript stability and by restoring the native carboxy terminus of Cre, resulting in a five- to tenfold increase in Cre activity. The magnitude of this effect probably impacts Cre activity in strains with carboxy-terminal Ert2 fusion. These two trap lines and the related line N1IP::CreERT2 form a complementary mapping tool kit to identify changes in Notch1 activation patterns in vivo as the consequence of genetic or pharmaceutical intervention, and illustrate the variation in Notch1 signal strength from one tissue to the next and across developmental time. PMID:25725069

  9. Insulin signals control the competence of the Drosophila female germline stem cell niche to respond to Notch ligands.

    PubMed

    Hsu, Hwei-Jan; Drummond-Barbosa, Daniela

    2011-02-15

    Adult stem cells reside in specialized microenvironments, or niches, that are essential for their function in vivo. Stem cells are physically attached to the niche, which provides secreted factors that promote their self-renewal and proliferation. Despite intense research on the role of the niche in regulating stem cell function, much less is known about how the niche itself is controlled. We previously showed that insulin signals directly stimulate germline stem cell (GSC) division and indirectly promote GSC maintenance via the niche in Drosophila. Insulin-like peptides are required for maintenance of cap cells (a major component of the niche) via modulation of Notch signaling, and they also control attachment of GSCs to cap cells and E-cadherin levels at the cap cell-GSC junction. Here, we further dissect the molecular and cellular mechanisms underlying these processes. We show that insulin and Notch ligands directly stimulate cap cells to maintain their numbers and indirectly promote GSC maintenance. We also report that insulin signaling, via phosphoinositide 3-kinase and FOXO, intrinsically controls the competence of cap cells to respond to Notch ligands and thereby be maintained. Contrary to a previous report, we also find that Notch ligands originated in GSCs are not required either for Notch activation in the GSC niche, or for cap cell or GSC maintenance. Instead, the niche itself produces ligands that activate Notch signaling within cap cells, promoting stability of the GSC niche. Finally, insulin signals control cap cell-GSC attachment independently of their role in Notch signaling. These results are potentially relevant to many systems in which Notch signaling modulates stem cells and demonstrate that complex interactions between local and systemic signals are required for proper stem cell niche function.

  10. The Notch and TGF-β Signaling Pathways Contribute to the Aggressiveness of Clear Cell Renal Cell Carcinoma

    PubMed Central

    Sjölund, Jonas; Manna, Sugata; Moustakas, Aristidis; Ljungberg, Börje; Johansson, Martin; Fredlund, Erik; Axelson, Håkan

    2011-01-01

    Background Despite recent progress, therapy for metastatic clear cell renal cell carcinoma (CCRCC) is still inadequate. Dysregulated Notch signaling in CCRCC contributes to tumor growth, but the full spectrum of downstream processes regulated by Notch in this tumor form is unknown. Methodology/Principal Findings We show that inhibition of endogenous Notch signaling modulates TGF-β dependent gene regulation in CCRCC cells. Analysis of gene expression data representing 176 CCRCCs showed that elevated TGF-β pathway activity correlated significantly with shortened disease specific survival (log-rank test, p = 0.006) and patients with metastatic disease showed a significantly elevated TGF-β signaling activity (two-sided Student's t-test, p = 0.044). Inhibition of Notch signaling led to attenuation of both basal and TGF-β1 induced TGF-β signaling in CCRCC cells, including an extensive set of genes known to be involved in migration and invasion. Functional analyses revealed that Notch inhibition decreased the migratory and invasive capacity of CCRCC cells. Conclusion An extensive cross-talk between the Notch and TGF-β signaling cascades is present in CCRCC and the functional properties of these two pathways are associated with the aggressiveness of this disease. PMID:21826227

  11. Inhibition of notch signaling pathway prevents cholestatic liver fibrosis by decreasing the differentiation of hepatic progenitor cells into cholangiocytes.

    PubMed

    Zhang, Xiao; Du, Guangli; Xu, Ying; Li, Xuewei; Fan, Weiwei; Chen, Jiamei; Liu, Cheng; Chen, Gaofeng; Liu, Chenghai; Zern, Mark A; Mu, Yongping; Liu, Ping

    2016-03-01

    Although hepatic progenitor cells (HPCs) are known to contribute to cholestatic liver fibrosis (CLF), how Notch signaling modulates the differentiation of HPCs to cholangiocytes in CLF is unknown. Thus, using a rat model of CLF that is induced by bile duct ligation, we inhibited Notch signaling with DAPT. In vivo, CK19, OV6, Sox9, and EpCAM expression was increased significantly. Notch signaling increased after bile duct ligation, and DAPT treatment reduced the expression of CK19, OV6, Sox9, and EpCAM and blocked cholangiocyte proliferation and CLF. In vitro, treatment of a WB-F344 cell line with sodium butyrate resulted in increased mRNA and protein expression of CK19, Sox9, and EpCAM, but Notch signaling was activated. Both of these processes were inhibited by DAPT. This study reveals that Notch signaling activation is required for HPC differentiation into cholangiocytes in CLF, and inhibition of the Notch signaling pathway may offer a therapeutic approach for treating CLF.

  12. Regulation of Notch signaling during T- and B-cell development by O-fucose glycans.

    PubMed

    Stanley, Pamela; Guidos, Cynthia J

    2009-07-01

    Notch signaling is required for the development of all T cells and marginal zone (MZ) B cells. Specific roles in T- and B-cell differentiation have been identified for different Notch receptors, the canonical Delta-like (Dll) and Jagged (Jag) Notch ligands, and downstream effectors of Notch signaling. Notch receptors and ligands are post-translationally modified by the addition of glycans to extracellular domain epidermal growth factor-like (EGF) repeats. The O-fucose glycans of Notch cell-autonomously modulate Notch-ligand interactions and the strength of Notch signaling. These glycans are initiated by protein O-fucosyltransferase 1 (Pofut1), and elongated by the transfer of N-acetylglucosamine (GlcNAc) to the fucose by beta1,3GlcNAc-transferases termed lunatic, manic, or radical fringe. This review discusses T- and B-cell development from progenitors deficient in O-fucose glycans. The combined data show that Lfng and Mfng regulate T-cell development by enhancing the interactions of Notch1 in T-cell progenitors with Dll4 on thymic epithelial cells. In the spleen, Lfng and Mfng cooperate to modify Notch2 in MZ B progenitors, enhancing their interaction with Dll1 on endothelial cells and regulating MZ B-cell production. Removal of O-fucose affects Notch signaling in myelopoiesis and lymphopoiesis, and the O-fucose glycan in the Notch1 ligand-binding domain is required for optimal T-cell development.

  13. The interplay of the Notch signaling in hepatic stellate cells and macrophages determines the fate of liver fibrogenesis.

    PubMed

    Bansal, Ruchi; van Baarlen, Joop; Storm, Gert; Prakash, Jai

    2015-01-01

    Hepatic stellate cells (HSCs) known as "master producers" and macrophages as "master regulators", are the key cell types that strongly contribute to the progression of liver fibrosis. Since Notch signaling regulates multiple cellular processes, we aimed to study the role of Notch signaling in HSCs differentiation and macrophages polarization and to evaluate its implication in liver fibrogenesis. Notch pathway components were found to be significantly upregulated in TGFβ-activated HSCs, inflammatory M1 macrophages, and in mouse and human fibrotic livers. Interestingly, inhibition of Notch using a selective γ-secretase inhibitor, Avagacestat, significantly inhibited TGFβ-induced HSC activation and contractility, and suppressed M1 macrophages. Additionally, Avagacestat inhibited M1 driven-fibroblasts activation and fibroblasts-driven M1 polarization (nitric oxide release) in fibroblasts and macrophages co-culture, and conditioned medium studies. In vivo, post-disease treatment with Avagacestat significantly attenuated fibrogenesis in CCl4-induced liver fibrosis mouse model. These effects were attributed to the reduction in HSCs activation, and inhibition of inflammatory M1 macrophages and upregulation of suppressive M2 macrophages. These findings suggest that Notch signaling plays a crucial role in HSC activation and M1/M2 polarization of macrophages in liver fibrosis. These results provide new insights for the development of novel therapies against liver fibrosis through modulation of Notch signaling.

  14. The interplay of the Notch signaling in hepatic stellate cells and macrophages determines the fate of liver fibrogenesis

    PubMed Central

    Bansal, Ruchi; van Baarlen, Joop; Storm, Gert; Prakash, Jai

    2015-01-01

    Hepatic stellate cells (HSCs) known as “master producers” and macrophages as “master regulators”, are the key cell types that strongly contribute to the progression of liver fibrosis. Since Notch signaling regulates multiple cellular processes, we aimed to study the role of Notch signaling in HSCs differentiation and macrophages polarization and to evaluate its implication in liver fibrogenesis. Notch pathway components were found to be significantly upregulated in TGFβ-activated HSCs, inflammatory M1 macrophages, and in mouse and human fibrotic livers. Interestingly, inhibition of Notch using a selective γ-secretase inhibitor, Avagacestat, significantly inhibited TGFβ-induced HSC activation and contractility, and suppressed M1 macrophages. Additionally, Avagacestat inhibited M1 driven-fibroblasts activation and fibroblasts-driven M1 polarization (nitric oxide release) in fibroblasts and macrophages co-culture, and conditioned medium studies. In vivo, post-disease treatment with Avagacestat significantly attenuated fibrogenesis in CCl4-induced liver fibrosis mouse model. These effects were attributed to the reduction in HSCs activation, and inhibition of inflammatory M1 macrophages and upregulation of suppressive M2 macrophages. These findings suggest that Notch signaling plays a crucial role in HSC activation and M1/M2 polarization of macrophages in liver fibrosis. These results provide new insights for the development of novel therapies against liver fibrosis through modulation of Notch signaling. PMID:26658360

  15. Canonical and non-canonical Notch ligands

    PubMed Central

    D’SOUZA, BRENDAN; MELOTY-KAPELLA, LAURENCE; WEINMASTER, GERRY

    2015-01-01

    Notch signaling induced by canonical Notch ligands is critical for normal embryonic development and tissue homeostasis through the regulation of a variety of cell fate decisions and cellular processes. Activation of Notch signaling is normally tightly controlled by direct interactions with ligand-expressing cells and dysregulated Notch signaling is associated with developmental abnormalities and cancer. While canonical Notch ligands are responsible for the majority of Notch signaling, a diverse group of structurally unrelated non-canonical ligands has also been identified that activate Notch and likely contribute to the pleiotropic effects of Notch signaling. Soluble forms of both canonical and non-canonical ligands have been isolated, some of which block Notch signaling and could serve as natural inhibitors of this pathway. Ligand activity can also be indirectly regulated by other signaling pathways at the level of ligand expression, serving to spatio-temporally compartmentalize Notch signaling activity and integrate Notch signaling into a molecular network that orchestrates developmental events. Here, we review the molecular mechanisms underlying the dual role of Notch ligands as activators and inhibitors of Notch signaling. Additionally, evidence that Notch ligands function independent of Notch are presented. We also discuss how ligand post-translational modification, endocytosis, proteolysis and spatio-temporal expression regulate their signaling activity. PMID:20816393

  16. Notch-1 expression levels in 3T3-L1 cells influence ras signaling and transformation by oncogenic ras.

    PubMed

    Ruiz-Hidalgo, M J; Garcés, C; Laborda, J

    1999-04-01

    Notch proteins participate in interactions between several cell types involved on the specification of numerous cell fates during development. We previously showed that enforced downregulation of Notch-1 expression prevented adipogenesis of 3T3-L1 cells. Since adipogenesis of 3T3-L1 cells can be induced by oncogenic ras, we studied whether this was also the case in 3T3-L1 cells with decreased levels of Notch-1 expression. We found that oncogenic ras induces transformation and not differentiation of 3T3-L1 cells with diminished levels of Notch-1. This result suggests that Notch-1 is implicated in the interpretation of signals leading to activation of p21 Ras.

  17. Epidermal stem cells (ESCs) accelerate diabetic wound healing via the Notch signalling pathway

    PubMed Central

    Yang, Rong-Hua; Qi, Shao-Hai; Shu, Bin; Ruan, Shu-Bin; Lin, Ze-Peng; Lin, Yan; Shen, Rui; Zhang, Feng-Gang; Chen, Xiao-Dong; Xie, Ju-Lin

    2016-01-01

    Chronic, non-healing wounds are a major complication of diabetes. Recently, various cell therapies have been reported for promotion of diabetic wound healing. Epidermal stem cells (ESCs) are considered a powerful tool for tissue therapy. However, the effect and the mechanism of the therapeutic properties of ESCs in the diabetic wound healing are unclear. Herein, to determine the ability of ESCs to diabetic wound healing, a dorsal skin defect in a streptozotocin (STZ)-induced diabetes mellitus (DM) mouse model was used. ESCs were isolated from mouse skin. We found that both the mRNA and protein levels of a Notch ligand Jagged1 (Jag1), Notch1 and Notch target gene Hairy Enhancer of Split-1 (Hes1) were significantly increased at the wound margins. In addition, we observed that Jag1 was high expressed in ESCs. Overexpression of Jag1 promotes ESCs migration, whereas knockdown Jag1 resulted in a significant reduction in ESCs migration in vitro. Importantly, Jag1 overexpression improves diabetic wound healing in vivo. These results provide evidence that ESCs accelerate diabetic wound healing via the Notch signalling pathway, and provide a promising potential for activation of the Notch pathway for the treatment of diabetic wound. PMID:27129289

  18. Epidermal stem cells (ESCs) accelerate diabetic wound healing via the Notch signalling pathway.

    PubMed

    Yang, Rong-Hua; Qi, Shao-Hai; Shu, Bin; Ruan, Shu-Bin; Lin, Ze-Peng; Lin, Yan; Shen, Rui; Zhang, Feng-Gang; Chen, Xiao-Dong; Xie, Ju-Lin

    2016-08-01

    Chronic, non-healing wounds are a major complication of diabetes. Recently, various cell therapies have been reported for promotion of diabetic wound healing. Epidermal stem cells (ESCs) are considered a powerful tool for tissue therapy. However, the effect and the mechanism of the therapeutic properties of ESCs in the diabetic wound healing are unclear. Herein, to determine the ability of ESCs to diabetic wound healing, a dorsal skin defect in a streptozotocin (STZ)-induced diabetes mellitus (DM) mouse model was used. ESCs were isolated from mouse skin. We found that both the mRNA and protein levels of a Notch ligand Jagged1 (Jag1), Notch1 and Notch target gene Hairy Enhancer of Split-1 (Hes1) were significantly increased at the wound margins. In addition, we observed that Jag1 was high expressed in ESCs. Overexpression of Jag1 promotes ESCs migration, whereas knockdown Jag1 resulted in a significant reduction in ESCs migration in vitro Importantly, Jag1 overexpression improves diabetic wound healing in vivo These results provide evidence that ESCs accelerate diabetic wound healing via the Notch signalling pathway, and provide a promising potential for activation of the Notch pathway for the treatment of diabetic wound. PMID:27129289

  19. Myoblast cytonemes mediate Wg signaling from the wing imaginal disc and Delta-Notch signaling to the air sac primordium

    PubMed Central

    Huang, Hai; Kornberg, Thomas B

    2015-01-01

    The flight muscles, dorsal air sacs, wing blades, and thoracic cuticle of the Drosophila adult function in concert, and their progenitor cells develop together in the wing imaginal disc. The wing disc orchestrates dorsal air sac development by producing decapentaplegic and fibroblast growth factor that travel via specific cytonemes in order to signal to the air sac primordium (ASP). Here, we report that cytonemes also link flight muscle progenitors (myoblasts) to disc cells and to the ASP, enabling myoblasts to relay signaling between the disc and the ASP. Frizzled (Fz)-containing myoblast cytonemes take up Wingless (Wg) from the disc, and Delta (Dl)-containing myoblast cytonemes contribute to Notch activation in the ASP. Wg signaling negatively regulates Dl expression in the myoblasts. These results reveal an essential role for cytonemes in Wg and Notch signaling and for a signal relay system in the myoblasts. DOI: http://dx.doi.org/10.7554/eLife.06114.001 PMID:25951303

  20. Notch1 Pathway Activity Determines the Regulatory Role of Cancer-Associated Fibroblasts in Melanoma Growth and Invasion

    PubMed Central

    Shao, Hongwei; Kong, Ranran; Ferrari, Massimiliano L.; Radtke, Freddy; Capobianco, Anthony J.; Liu, Zhao-Jun

    2015-01-01

    Cancer-associated fibroblasts (CAF) play a crucial role in regulating cancer progression, yet the molecular determinant that governs the tumor regulatory role of CAF remains unknown. Using a mouse melanoma model in which exogenous melanoma cells were grafted on the skin of two lines of mice where the genetic activation or inactivation of Notch1 signaling specifically occurs in natural host stromal fibroblasts, we demonstrated that Notch1 pathway activity could determine the tumor-promoting or tumor-suppressing phenotype in CAF. CAF carrying elevated Notch1 activity significantly inhibited melanoma growth and invasion, while those with a null Notch1 promoted melanoma invasion. These findings identify the Notch1 pathway as a molecular determinant that controls the regulatory role of CAF in melanoma skin growth and invasion, unveiling Notch1 signaling as a potential therapeutic target for melanoma and potentially other solid tumors. PMID:26562315

  1. The many facets of Notch ligands

    PubMed Central

    D'souza, Brendan; Miyamoto, Alison; Weinmaster, Gerry

    2009-01-01

    The Notch signaling pathway regulates a diverse array of cell types and cellular processes and is tightly regulated by ligand binding. Both canonical and noncanonical Notch ligands have been identified that may account for some of the pleiotropic nature associated with Notch signaling. This review focuses on the molecular mechanisms by which Notch ligands function as signaling agonists and antagonists, and discusses different modes of activating ligands as well as findings that support intrinsic ligand signaling activity independent of Notch. Post-translational modification, proteolytic processing, endocytosis and membrane trafficking, as well as interactions with the actin cytoskeleton may contribute to the recently appreciated multi-functionality of Notch ligands. The regulation of Notch ligand expression by other signaling pathways provides a mechanism to coordinate Notch signaling with multiple cellular and developmental cues. The association of Notch ligands with inherited human disorders and cancer highlights the importance of understanding the molecular nature and activities intrinsic to Notch ligands. PMID:18758484

  2. From Fly Wings to Targeted Cancer Therapies: A Centennial for Notch Signaling

    PubMed Central

    Ntziachristos, Panagiotis; Lim, Jing Shan; Sage, Julien; Aifantis, Iannis

    2014-01-01

    Since Notch phenotypes in Drosophila melanogaster were identified 100 years, Notch signaling has been extensively characterized as a regulator of cell fate decisions in a variety of organisms and tissues. However, in the past 20 years, accumulating evidence has linked alterations in the Notch pathway to tumorigenesis. In this Perspective, we discuss the pro-tumorigenic and tumor suppressive functions of Notch signaling and dissect the molecular mechanisms that underlie these functions in hematopoietic cancers and solid tumors. Finally, we link these mechanisms and observations to possible therapeutic strategies targeting the Notch pathway in human cancers. PMID:24651013

  3. Endothelial sirtuin 1 inactivation enhances capillary rarefaction and fibrosis following kidney injury through Notch activation.

    PubMed

    Kida, Yujiro; Zullo, Joseph A; Goligorsky, Michael S

    2016-09-23

    Peritubular capillary (PTC) rarefaction along with tissue fibrosis is a hallmark of chronic kidney disease (CKD). However, molecular mechanisms of PTC loss have been poorly understood. Previous studies have demonstrated that functional loss of endothelial sirtuin 1 (SIRT1) impairs angiogenesis during development and tissue damage. Here, we found that endothelial SIRT1 dysfunction causes activation of endothelial Notch1 signaling, which leads to PTC rarefaction and fibrosis following kidney injury. In mice lacking functional SIRT1 in the endothelium (Sirt1 mutant), kidney injury enhanced apoptosis and senescence of PTC endothelial cells with impaired endothelial proliferation and expanded myofibroblast population and collagen deposition. Compared to wild-type kidneys, Sirt1 mutant kidneys up-regulated expression of Delta-like 4 (DLL4, a potent Notch1 ligand), Hey1 and Hes1 (Notch target genes), and Notch intracellular domain-1 (NICD1, active form of Notch1) in microvascular endothelial cells (MVECs) post-injury. Sirt1 mutant primary kidney MVECs reduced motility and vascular assembly and enhanced senescence compared to wild-type kidney MVECs. This difference in the phenotype was negated with Notch inhibition. Concurrent stimulation of DLL4 and transforming growth factor (TGF)-β1 increased trans-differentiation of primary kidney pericytes into myofibroblast more than TGF-β1 treatment alone. Collectively, these results indicate that endothelial SIRT1 counteracts PTC rarefaction by repression of Notch1 signaling and antagonizes fibrosis via suppression of endothelial DLL4 expression.

  4. A Bovine Herpesvirus 1 Protein Expressed in Latently Infected Neurons (ORF2) Promotes Neurite Sprouting in the Presence of Activated Notch1 or Notch3

    PubMed Central

    Sinani, Devis; Frizzo da Silva, Leticia

    2013-01-01

    Bovine herpesvirus 1 (BHV-1) infection induces clinical symptoms in the upper respiratory tract, inhibits immune responses, and can lead to life-threatening secondary bacterial infections. Following acute infection, BHV-1 establishes latency in sensory neurons within trigeminal ganglia, but stress can induce reactivation from latency. The latency-related (LR) RNA is the only viral transcript abundantly expressed in latently infected sensory neurons. An LR mutant virus with stop codons at the amino terminus of the first open reading frame (ORF) in the LR gene (ORF2) is not reactivated from latency, in part because it induces higher levels of apoptosis in infected neurons. ORF2 inhibits apoptosis in transiently transfected cells, suggesting that it plays a crucial role in the latency-reactivation cycle. ORF2 also interacts with Notch1 or Notch3 and inhibits its ability to trans activate certain viral promoters. Notch3 RNA and protein levels are increased during reactivation from latency, suggesting that Notch may promote reactivation. Activated Notch signaling interferes with neuronal differentiation, in part because neurite and axon generation is blocked. In this study, we demonstrated that ORF2 promotes neurite formation in mouse neuroblastoma cells overexpressing Notch1 or Notch3. ORF2 also interfered with Notch-mediated trans activation of the promoter that regulates the expression of Hairy Enhancer of Split 5, an inhibitor of neurite formation. Additional studies provided evidence that ORF2 promotes the degradation of Notch3, but not that of Notch1, in a proteasome-dependent manner. In summary, these studies suggest that ORF2 promotes a mature neuronal phenotype that enhances the survival of infected neurons and consequently increases the pool of latently infected neurons. PMID:23152506

  5. RIPping notch apart: a new role for endocytosis in signal transduction?

    PubMed

    Krämer, H

    2000-04-25

    Notch proteins are receptors that are important in mediating several developmental processes. Notch receptors are activated upon binding transmembrane ligands, the DSL proteins. Notch is cleaved at several sites and activation of Notch leads to the cleavage of the intracellular domain, which then is translocated to the nucleus and regulates the transcription of target genes. Krämer discusses how binding of Notch to the DSL ligand, Delta, leads to cleavage and trans-endocytosis of the Notch extracellular domain into the Delta-expressing cell. This trans-endocytosis event contributes to the cleavage and release of the active Notch intracellular domain. The Perspective is accompanied by a movie illustrating the trans-endocytosis of Notch.

  6. Epigenetic regulation of Delta-Like1 controls Notch1 activation in gastric cancer.

    PubMed

    Piazzi, Giulia; Fini, Lucia; Selgrad, Michael; Garcia, Melissa; Daoud, Yahya; Wex, Thomas; Malfertheiner, Peter; Gasbarrini, Antonio; Romano, Marco; Meyer, Richard L; Genta, Robert M; Fox, James G; Boland, C Richard; Bazzoli, Franco; Ricciardiello, Luigi

    2011-12-01

    The Notch signaling pathway drives proliferation, differentiation, apoptosis, cell fate, and maintenance of stem cells in several tissues. Aberrant activation of Notch signaling has been described in several tumours and in gastric cancer (GC), activated Notch1 has been associated with de-differentiation of lineage-committed stomach cells into stem progenitors and GC progression. However, the specific role of the Notch1 ligand DLL1 in GC has not yet been elucidated. To assess the role of DLL1 in GC cancer, the expression of Notch1 and its ligands DLL1 and Jagged1, was analyzed in 8 gastric cancer cell lines (KATOIII, SNU601, SNU719, AGS, SNU16, MKN1, MKN45, TMK1). DLL1 expression was absent in KATOIII, SNU601, SNU719 and AGS. The lack of DLL1 expression in these cells was associated with promoter hypermethylation and 5-aza-2'dC caused up-regulation of DLL1. The increase in DLL1 expression was associated with activation of Notch1 signalling, with an increase in cleaved Notch1 intracellular domain (NICD) and Hes1, and down-regulation in Hath1. Concordantly, Notch1 signalling was activated with the overexpression of DLL1. Moreover, Notch1 signalling together with DLL1 methylation were evaluated in samples from 52 GC patients and 21 healthy control as well as in INS-GAS mice infected with H. pylori and randomly treated with eradication therapy. In GC patients, we found a correlation between DLL1 and Hes1 expression, while DLL1 methylation and Hath1 expression were associated with the diffuse and mixed type of gastric cancer. Finally, none of the samples from INS-GAS mice infected with H. pylori, a model of intestinal-type gastric tumorigenesis, showed promoter methylation of DLL1. This study shows that Notch1 activity in gastric cancer is controlled by the epigenetic silencing of the ligand DLL1, and that Notch1 inhibition is associated with the diffuse type of gastric cancer. PMID:22249198

  7. Notch4 Signaling Induces a Mesenchymal-Epithelial-like Transition in Melanoma Cells to Suppress Malignant Behaviors.

    PubMed

    Bonyadi Rad, Ehsan; Hammerlindl, Heinz; Wels, Christian; Popper, Ulrich; Ravindran Menon, Dinoop; Breiteneder, Heimo; Kitzwoegerer, Melitta; Hafner, Christine; Herlyn, Meenhard; Bergler, Helmut; Schaider, Helmut

    2016-04-01

    The effects of Notch signaling are context-dependent and both oncogenic and tumor-suppressive functions have been described. Notch signaling in melanoma is considered oncogenic, but clinical trials testing Notch inhibition in this malignancy have not proved successful. Here, we report that expression of the constitutively active intracellular domain of Notch4 (N4ICD) in melanoma cells triggered a switch from a mesenchymal-like parental phenotype to an epithelial-like phenotype. The epithelial-like morphology was accompanied by strongly reduced invasive, migratory, and proliferative properties concomitant with the downregulation of epithelial-mesenchymal transition markers Snail2 (SNAI2), Twist1, vimentin (VIM), and MMP2 and the reexpression of E-cadherin (CDH1). The N4ICD-induced phenotypic switch also resulted in significantly reduced tumor growth in vivo Immunohistochemical analysis of primary human melanomas and cutaneous metastases revealed a significant correlation between Notch4 and E-cadherin expression. Mechanistically, we demonstrate that N4ICD induced the expression of the transcription factors Hey1 and Hey2, which bound directly to the promoter regions of Snail2 and Twist1 and repressed gene transcription, as determined by EMSA and luciferase assays. Taken together, our findings indicate a role for Notch4 as a tumor suppressor in melanoma, uncovering a potential explanation for the poor clinical efficacy of Notch inhibitors observed in this setting. Cancer Res; 76(7); 1690-7. ©2016 AACR. PMID:26801977

  8. PlexinD1 Is a Novel Transcriptional Target and Effector of Notch Signaling in Cancer Cells

    PubMed Central

    Rehman, Michael; Capparuccia, Lorena

    2016-01-01

    The secreted semaphorin Sema3E controls cell migration and invasiveness in cancer cells. Sema3E-receptor, PlexinD1, is frequently upregulated in melanoma, breast, colon, ovarian and prostate cancers; however, the mechanisms underlying PlexinD1 upregulation and the downstream events elicited in tumor cells are still unclear. Here we show that the canonical RBPjk-dependent Notch signaling cascade controls PlexinD1 expression in primary endothelial and cancer cells. Transcriptional activation was studied by quantitative PCR and promoter activity reporter assays. We found that Notch ligands and constitutively activated intracellular forms of Notch receptors upregulated PlexinD1 expression; conversely RNAi-based knock-down, or pharmacological inhibition of Notch signaling by gamma-secretase inhibitors, downregulated PlexinD1 levels. Notably, both Notch1 and Notch3 expression positively correlates with PlexinD1 levels in prostate cancer, as well as in other tumor types. In prostate cancer cells, Sema3E-PlexinD1 axis was previously reported to regulate migration; however, implicated mechanisms were not elucidated. Here we show that in these cells PlexinD1 activity induces the expression of the transcription factor Slug, downregulates E-cadherin levels and enhances cell migration. Moreover, our mechanistic data identify PlexinD1 as a pivotal mediator of this signaling axis downstream of Notch in prostate cancer cells. In fact, on one hand, PlexinD1 is required to mediate cell migration and E-cadherin regulation elicited by Notch. On the other hand, PlexinD1 upregulation is sufficient to induce prostate cancer cell migration and metastatic potential in mice, leading to functional rescue in the absence of Notch. In sum, our work identifies PlexinD1 as a novel transcriptional target induced by Notch signaling, and reveals its role promoting prostate cancer cell migration and downregulating E-cadherin levels in Slug-dependent manner. Collectively, these findings suggest that

  9. Elevated TRIB2 with NOTCH1 activation in paediatric/adult T-ALL.

    PubMed

    Hannon, Maura M; Lohan, Fiona; Erbilgin, Yucel; Sayitoglu, Muge; O'Hagan, Kathleen; Mills, Ken; Ozbek, Ugur; Keeshan, Karen

    2012-09-01

    TRIB2 is a potent oncogene, elevated in a subset of human acute myeloid leukaemias (AML) with a mixed myeloid/lymphoid phenotype and NOTCH1 mutations. Although rare in AML, activating NOTCH1 mutations occur in 50% of all T cell acute lymphoblastic leukaemias (T-ALL). TRIB2 is a NOTCH1 target gene that functions in the degradation of key proteins and modulation of MAPK signalling pathways, implicated in haematopoietic cell survival and proliferation. This study showed that TRIB2 expression level is highest in the lymphoid compartment of normal haematopoietic cells, specifically in T cells. Analysis of TRIB2 expression across 16 different subtypes of human leukaemia demonstrated that TRIB2 expression was higher in ALL phenotypes versus all other phenotypes including AML, chronic lymphocytic leukaemia (CLL), myelodysplastic syndrome (MDS) and chronic myeloid leukaemia (CML). A T cell profile was distinguished by high TRIB2 expression in normal and malignant haematopoiesis. High TRIB2 expression was seen in T-ALL with normal karyotype and correlated with NOTCH signalling pathways. High TRIB2 expression correlated with NOTCH1/FBXW7 mutations in a paediatric T-ALL cohort, strongly linking NOTCH1 activation and high TRIB2 expression in paediatric T-ALL. The relationship between TRIB2 and T cell signalling pathways uniquely identifies leukaemia subtypes and will be useful in the advancement of our understanding of T cell and ALL biology. PMID:22775572

  10. Elevated TRIB2 with NOTCH1 activation in paediatric/adult T-ALL.

    PubMed

    Hannon, Maura M; Lohan, Fiona; Erbilgin, Yucel; Sayitoglu, Muge; O'Hagan, Kathleen; Mills, Ken; Ozbek, Ugur; Keeshan, Karen

    2012-09-01

    TRIB2 is a potent oncogene, elevated in a subset of human acute myeloid leukaemias (AML) with a mixed myeloid/lymphoid phenotype and NOTCH1 mutations. Although rare in AML, activating NOTCH1 mutations occur in 50% of all T cell acute lymphoblastic leukaemias (T-ALL). TRIB2 is a NOTCH1 target gene that functions in the degradation of key proteins and modulation of MAPK signalling pathways, implicated in haematopoietic cell survival and proliferation. This study showed that TRIB2 expression level is highest in the lymphoid compartment of normal haematopoietic cells, specifically in T cells. Analysis of TRIB2 expression across 16 different subtypes of human leukaemia demonstrated that TRIB2 expression was higher in ALL phenotypes versus all other phenotypes including AML, chronic lymphocytic leukaemia (CLL), myelodysplastic syndrome (MDS) and chronic myeloid leukaemia (CML). A T cell profile was distinguished by high TRIB2 expression in normal and malignant haematopoiesis. High TRIB2 expression was seen in T-ALL with normal karyotype and correlated with NOTCH signalling pathways. High TRIB2 expression correlated with NOTCH1/FBXW7 mutations in a paediatric T-ALL cohort, strongly linking NOTCH1 activation and high TRIB2 expression in paediatric T-ALL. The relationship between TRIB2 and T cell signalling pathways uniquely identifies leukaemia subtypes and will be useful in the advancement of our understanding of T cell and ALL biology.

  11. NOTCH reprograms mitochondrial metabolism for proinflammatory macrophage activation

    PubMed Central

    Xu, Jun; Chi, Feng; Guo, Tongsheng; Punj, Vasu; Lee, W.N. Paul; French, Samuel W.; Tsukamoto, Hidekazu

    2015-01-01

    Metabolic reprogramming is implicated in macrophage activation, but the underlying mechanisms are poorly understood. Here, we demonstrate that the NOTCH1 pathway dictates activation of M1 phenotypes in isolated mouse hepatic macrophages (HMacs) and in a murine macrophage cell line by coupling transcriptional upregulation of M1 genes with metabolic upregulation of mitochondrial oxidative phosphorylation and ROS (mtROS) to augment induction of M1 genes. Enhanced mitochondrial glucose oxidation was achieved by increased recruitment of the NOTCH1 intracellular domain (NICD1) to nuclear and mitochondrial genes that encode respiratory chain components and by NOTCH-dependent induction of pyruvate dehydrogenase phosphatase 1 (Pdp1) expression, pyruvate dehydrogenase activity, and glucose flux to the TCA cycle. As such, inhibition of the NOTCH pathway or Pdp1 knockdown abrogated glucose oxidation, mtROS, and M1 gene expression. Conditional NOTCH1 deficiency in the myeloid lineage attenuated HMac M1 activation and inflammation in a murine model of alcoholic steatohepatitis and markedly reduced lethality following endotoxin-mediated fulminant hepatitis in mice. In vivo monocyte tracking further demonstrated the requirement of NOTCH1 for the migration of blood monocytes into the liver and subsequent M1 differentiation. Together, these results reveal that NOTCH1 promotes reprogramming of mitochondrial metabolism for M1 macrophage activation. PMID:25798621

  12. Notch signaling indirectly promotes chondrocyte hypertrophy via regulation of BMP signaling and cell cycle arrest

    PubMed Central

    Shang, Xifu; Wang, Jinwu; Luo, Zhengliang; Wang, Yongjun; Morandi, Massimo M.; Marymont, John V.; Hilton, Matthew J.; Dong, Yufeng

    2016-01-01

    Cell cycle regulation is critical for chondrocyte differentiation and hypertrophy. Recently we identified the Notch signaling pathway as an important regulator of chondrocyte proliferation and differentiation during mouse cartilage development. To investigate the underlying mechanisms, we assessed the role for Notch signaling regulation of the cell cycle during chondrocyte differentiation. Real-time RT-PCR data showed that over-expression of the Notch Intracellular Domain (NICD) significantly induced the expression of p57, a cell cycle inhibitor, in chondrocytes. Flow cytometric analyses further confirmed that over-expression of NICD in chondrocytes enhances the G0/G1 cell cycle transition and cell cycle arrest. In contrast, treatment of chondrocytes with the Notch inhibitor, DAPT, decreased both endogenous and BMP2-induced SMAD 1/5/8 phosphorylation and knockdown of SMAD 1/5/8 impaired NICD-induced chondrocyte differentiation and p57 expression. Co-immunoprecipitation using p-SMAD 1/5/8 and NICD antibodies further showed a strong interaction of these proteins during chondrocyte maturation. Finally, RT-PCR and Western blot results revealed a significant reduction in the expression of the SMAD-related phosphatase, PPM1A, following NICD over-expression. Taken together, our results demonstrate that Notch signaling induces cell cycle arrest and thereby initiates chondrocyte hypertrophy via BMP/SMAD-mediated up-regulation of p57. PMID:27146698

  13. Myeloid-Specific Blockade of Notch Signaling Attenuates Choroidal Neovascularization through Compromised Macrophage Infiltration and Polarization in Mice

    PubMed Central

    Dou, Guo-Rui; Li, Na; Chang, Tian-Fang; Zhang, Ping; Gao, Xiang; Yan, Xian-Chun; Liang, Liang; Han, Hua; Wang, Yu-Sheng

    2016-01-01

    Macrophages have been recognized as an important inflammatory component in choroidal neovascularization (CNV). However, it is unclear how these cells are activated and polarized, how they affect angiogenesis and what the underlining mechanisms are during CNV. Notch signaling has been implicated in macrophage activation. Previously we have shown that inducible disruption of RBP-J, the critical transcription factor of Notch signaling, in adult mice results in enhanced CNV, but it is unclear what is the role of macrophage-specific Notch signaling in the development of CNV. In the current study, by using the myeloid specific RBP-J knockout mouse model combined with the laser-induced CNV model, we show that disruption of Notch signaling in macrophages displayed attenuated CNV growth, reduced macrophage infiltration and activation, and alleviated angiogenic response after laser induction. The inhibition of CNV occurred with reduced expression of VEGF and TNF-α in infiltrating inflammatory macrophages in myeloid specific RBP-J knockout mice. These changes might result in direct inhibition of EC lumen formation, as shown in an in vitro study. Therefore, clinical intervention of Notch signaling in CNV needs to pinpoint myeloid lineage to avoid the counteractive effects of global inhibition. PMID:27339903

  14. Notch1–STAT3–ETBR signaling axis controls reactive astrocyte proliferation after brain injury

    PubMed Central

    LeComte, Matthew D.; Shimada, Issei S.; Sherwin, Casey; Spees, Jeffrey L.

    2015-01-01

    Defining the signaling network that controls reactive astrogliosis may provide novel treatment targets for patients with diverse CNS injuries and pathologies. We report that the radial glial cell antigen RC2 identifies the majority of proliferating glial fibrillary acidic protein-positive (GFAP+) reactive astrocytes after stroke. These cells highly expressed endothelin receptor type B (ETBR) and Jagged1, a Notch1 receptor ligand. To study signaling in adult reactive astrocytes, we developed a model based on reactive astrocyte-derived neural stem cells isolated from GFAP-CreER-Notch1 conditional knockout (cKO) mice. By loss- and gain-of-function studies and promoter activity assays, we found that Jagged1/Notch1 signaling increased ETBR expression indirectly by raising the level of phosphorylated signal transducer and activator of transcription 3 (STAT3), a previously unidentified EDNRB transcriptional activator. Similar to inducible transgenic GFAP-CreER-Notch1-cKO mice, GFAP-CreER-ETBR-cKO mice exhibited a defect in reactive astrocyte proliferation after cerebral ischemia. Our results indicate that the Notch1–STAT3–ETBR axis connects a signaling network that promotes reactive astrocyte proliferation after brain injury. PMID:26124113

  15. Stromal cell-mediated glycolytic switch in CLL cells involves Notch-c-Myc signaling.

    PubMed

    Jitschin, Regina; Braun, Martina; Qorraj, Mirjeta; Saul, Domenica; Le Blanc, Katarina; Zenz, Thorsten; Mougiakakos, Dimitrios

    2015-05-28

    It is well established that the stromal niche exerts a protective effect on chronic lymphocytic leukemia (CLL) cells, thereby also affecting their drug sensitivity. One hallmark of malignant cells is metabolic reprogramming, which is mostly represented by a glycolytic shift known as the Warburg effect. Because treatment resistance can be linked to metabolic alterations, we investigated whether bone marrow stromal cells impact the bioenergetics of primary CLL cells. In fact, stromal contact led to an increase of aerobic glycolysis and the cells' overall glycolytic capacity accompanied by an increased glucose uptake, expression of glucose transporter, and glycolytic enzymes. Activation of Notch signaling and of its direct transcriptional target c-Myc contributed to this metabolic switch. Based on these observations, CLL cells' acquired increased glucose dependency as well as Notch-c-Myc signaling could be therapeutically exploited in an effort to overcome stroma-mediated drug resistance.

  16. A conserved role for Notch signaling in priming the cellular response to Shh through ciliary localisation of the key Shh transducer Smo.

    PubMed

    Stasiulewicz, Magdalena; Gray, Shona D; Mastromina, Ioanna; Silva, Joana C; Björklund, Mia; Seymour, Philip A; Booth, David; Thompson, Calum; Green, Richard J; Hall, Emma A; Serup, Palle; Dale, J Kim

    2015-07-01

    Notochord-derived Sonic Hedgehog (Shh) is essential for dorsoventral patterning of the overlying neural tube. Increasing concentration and duration of Shh signal induces progenitors to acquire progressively more ventral fates. We show that Notch signalling augments the response of neuroepithelial cells to Shh, leading to the induction of higher expression levels of the Shh target gene Ptch1 and subsequently induction of more ventral cell fates. Furthermore, we demonstrate that activated Notch1 leads to pronounced accumulation of Smoothened (Smo) within primary cilia and elevated levels of full-length Gli3. Finally, we show that Notch activity promotes longer primary cilia both in vitro and in vivo. Strikingly, these Notch-regulated effects are Shh independent. These data identify Notch signalling as a novel modulator of Shh signalling that acts mechanistically via regulation of ciliary localisation of key components of its transduction machinery. PMID:25995356

  17. A conserved role for Notch signaling in priming the cellular response to Shh through ciliary localisation of the key Shh transducer Smo

    PubMed Central

    Stasiulewicz, Magdalena; Gray, Shona D.; Mastromina, Ioanna; Silva, Joana C.; Björklund, Mia; Seymour, Philip A.; Booth, David; Thompson, Calum; Green, Richard J.; Hall, Emma A.; Serup, Palle; Dale, J. Kim

    2015-01-01

    Notochord-derived Sonic Hedgehog (Shh) is essential for dorsoventral patterning of the overlying neural tube. Increasing concentration and duration of Shh signal induces progenitors to acquire progressively more ventral fates. We show that Notch signalling augments the response of neuroepithelial cells to Shh, leading to the induction of higher expression levels of the Shh target gene Ptch1 and subsequently induction of more ventral cell fates. Furthermore, we demonstrate that activated Notch1 leads to pronounced accumulation of Smoothened (Smo) within primary cilia and elevated levels of full-length Gli3. Finally, we show that Notch activity promotes longer primary cilia both in vitro and in vivo. Strikingly, these Notch-regulated effects are Shh independent. These data identify Notch signalling as a novel modulator of Shh signalling that acts mechanistically via regulation of ciliary localisation of key components of its transduction machinery. PMID:25995356

  18. Notch 2 signaling contributes to cell growth, anti-apoptosis and metastasis in laryngeal squamous cell carcinoma

    PubMed Central

    Zou, You; Fang, Fang; Ding, Yong-Jun; Dai, Meng-Yuan; Yi, Xing; Chen, Chen; Tao, Ze-Zhang; Chen, Shi-Ming

    2016-01-01

    Notch signaling is important during the development of a variety of human tumors. Depending on the context, Notch signaling can be either oncogenic or anti-proliferative, and therefore, its effects in cancer are unpredictable. The aim of the present study was to identify the importance of Notch 2 in the cell growth and metastasis of laryngeal squamous cell carcinoma (LSCC). The current study performed quantum dots-based immunofluorescence histochemistry to determine expression of Notch 2 in 72 LSCC samples without lymph node metastasis, 23 LSCC samples with lymph node metastasis and 31 samples from vocal cord polyps. It was observed that Notch 2 was upregulated in LSCC tissue compared with normal vocal cord polyps. This upregulation was further enhanced in LSCC tissues with lymph node metastasis compared with LSCC tissues without lymph node metastasis. Following knockdown of NOTCH2 expression in LSCC cells, the in vitro tumorigenicity of Hep-2 cells was inhibited, with growth, migration, invasion and proliferation reduced, and apoptosis induced. Additionally, following downregulation of Notch 2 protein expression, the protein expression levels of phosphor-mitogen-activated protein kinase 1 (p-ERK), v-myc avian myelocytomatosis viral oncogene homolog and B-cell CLL/lymphoma 2 (Bcl2) were also downregulated, whereas, Bcl2-associated X protein expression was upregulated. There were no changes detected in the protein expression levels of total-ERK, phospho-v-akt murine thymoma viral oncogene homolog 1 (p-Akt) and total-Akt. The results of the present study suggest that Notch 2 is important for the cell growth, anti-apoptosis and metastasis of LSCC. Therefore, Notch 2 inhibitors may have therapeutic potential for the treatment of patients with LSCC via the inhibition of cancer cell growth and metastasis. PMID:27572051

  19. Preclinical profile of a potent gamma-secretase inhibitor targeting notch signaling with in vivo efficacy and pharmacodynamic properties.

    PubMed

    Luistro, Leopoldo; He, Wei; Smith, Melissa; Packman, Kathryn; Vilenchik, Maria; Carvajal, Daisy; Roberts, John; Cai, James; Berkofsky-Fessler, Windy; Hilton, Holly; Linn, Michael; Flohr, Alexander; Jakob-Røtne, Roland; Jacobsen, Helmut; Glenn, Kelli; Heimbrook, David; Boylan, John F

    2009-10-01

    Notch signaling is an area of great interest in oncology. RO4929097 is a potent and selective inhibitor of gamma-secretase, producing inhibitory activity of Notch signaling in tumor cells. The RO4929097 IC50 in cell-free and cellular assays is in the low nanomolar range with >100-fold selectivity with respect to 75 other proteins of various types (receptors, ion channels, and enzymes). RO4929097 inhibits Notch processing in tumor cells as measured by the reduction of intracellular Notch expression by Western blot. This leads to reduced expression of the Notch transcriptional target gene Hes1. RO4929097 does not block tumor cell proliferation or induce apoptosis but instead produces a less transformed, flattened, slower-growing phenotype. RO4929097 is active following oral dosing. Antitumor activity was shown in 7 of 8 xenografts tested on an intermittent or daily schedule in the absence of body weight loss or Notch-related toxicities. Importantly, efficacy is maintained after dosing is terminated. Angiogenesis reverse transcription-PCR array data show reduced expression of several key angiogenic genes. In addition, comparative microarray analysis suggests tumor cell differentiation as an additional mode of action. These preclinical results support evaluation of RO4929097 in clinical studies using an intermittent dosing schedule. A multicenter phase I dose escalation study in oncology is under way. PMID:19773430

  20. Preclinical profile of a potent gamma-secretase inhibitor targeting notch signaling with in vivo efficacy and pharmacodynamic properties.

    PubMed

    Luistro, Leopoldo; He, Wei; Smith, Melissa; Packman, Kathryn; Vilenchik, Maria; Carvajal, Daisy; Roberts, John; Cai, James; Berkofsky-Fessler, Windy; Hilton, Holly; Linn, Michael; Flohr, Alexander; Jakob-Røtne, Roland; Jacobsen, Helmut; Glenn, Kelli; Heimbrook, David; Boylan, John F

    2009-10-01

    Notch signaling is an area of great interest in oncology. RO4929097 is a potent and selective inhibitor of gamma-secretase, producing inhibitory activity of Notch signaling in tumor cells. The RO4929097 IC50 in cell-free and cellular assays is in the low nanomolar range with >100-fold selectivity with respect to 75 other proteins of various types (receptors, ion channels, and enzymes). RO4929097 inhibits Notch processing in tumor cells as measured by the reduction of intracellular Notch expression by Western blot. This leads to reduced expression of the Notch transcriptional target gene Hes1. RO4929097 does not block tumor cell proliferation or induce apoptosis but instead produces a less transformed, flattened, slower-growing phenotype. RO4929097 is active following oral dosing. Antitumor activity was shown in 7 of 8 xenografts tested on an intermittent or daily schedule in the absence of body weight loss or Notch-related toxicities. Importantly, efficacy is maintained after dosing is terminated. Angiogenesis reverse transcription-PCR array data show reduced expression of several key angiogenic genes. In addition, comparative microarray analysis suggests tumor cell differentiation as an additional mode of action. These preclinical results support evaluation of RO4929097 in clinical studies using an intermittent dosing schedule. A multicenter phase I dose escalation study in oncology is under way.

  1. UBR-5, a Conserved HECT-Type E3 Ubiquitin Ligase, Negatively Regulates Notch-Type Signaling in Caenorhabditis elegans

    PubMed Central

    Safdar, Komal; Gu, Anniya; Xu, Xia; Au, Vinci; Taylor, Jon; Flibotte, Stephane; Moerman, Donald G.; Maine, Eleanor M.

    2016-01-01

    Notch-type signaling mediates cell−cell interactions important for animal development. In humans, reduced or inappropriate Notch signaling activity is associated with various developmental defects and disease states, including cancers. Caenorhabditis elegans expresses two Notch-type receptors, GLP-1 and LIN-12. GLP-1 mediates several cell-signaling events in the embryo and promotes germline proliferation in the developing and adult gonad. LIN-12 acts redundantly with GLP-1 in certain inductive events in the embryo and mediates several cell−cell interactions during larval development. Recovery of genetic suppressors and enhancers of glp-1 or lin-12 loss- or gain-of-function mutations has identified numerous regulators of GLP-1 and LIN-12 signaling activity. Here, we report the molecular identification of sog-1, a gene identified in screens for recessive suppressors of conditional glp-1 loss-of-function mutations. The sog-1 gene encodes UBR-5, the sole C. elegans member of the UBR5/Hyd family of HECT-type E3 ubiquitin ligases. Molecular and genetic analyses indicate that the loss of ubr-5 function suppresses defects caused by reduced signaling via GLP-1 or LIN-12. In contrast, ubr-5 mutations do not suppress embryonic or larval lethality associated with mutations in a downstream transcription factor, LAG-1. In the gonad, ubr-5 acts in the receiving cells (germ cells) to limit GLP-1 signaling activity. SEL-10 is the F-box component of SCFSEL-10 E3 ubiquitin–ligase complex that promotes turnover of Notch intracellular domain. UBR-5 acts redundantly with SEL-10 to limit Notch signaling in certain tissues. We hypothesize that UBR-5 activity limits Notch-type signaling by promoting turnover of receptor or limiting its interaction with pathway components. PMID:27185398

  2. Competition between Jagged-Notch and Endothelin1 Signaling Selectively Restricts Cartilage Formation in the Zebrafish Upper Face

    PubMed Central

    Barske, Lindsey; Askary, Amjad; Zuniga, Elizabeth; Balczerski, Bartosz; Bump, Paul; Nichols, James T.; Crump, J. Gage

    2016-01-01

    The intricate shaping of the facial skeleton is essential for function of the vertebrate jaw and middle ear. While much has been learned about the signaling pathways and transcription factors that control facial patterning, the downstream cellular mechanisms dictating skeletal shapes have remained unclear. Here we present genetic evidence in zebrafish that three major signaling pathways − Jagged-Notch, Endothelin1 (Edn1), and Bmp − regulate the pattern of facial cartilage and bone formation by controlling the timing of cartilage differentiation along the dorsoventral axis of the pharyngeal arches. A genomic analysis of purified facial skeletal precursors in mutant and overexpression embryos revealed a core set of differentiation genes that were commonly repressed by Jagged-Notch and induced by Edn1. Further analysis of the pre-cartilage condensation gene barx1, as well as in vivo imaging of cartilage differentiation, revealed that cartilage forms first in regions of high Edn1 and low Jagged-Notch activity. Consistent with a role of Jagged-Notch signaling in restricting cartilage differentiation, loss of Notch pathway components resulted in expanded barx1 expression in the dorsal arches, with mutation of barx1 rescuing some aspects of dorsal skeletal patterning in jag1b mutants. We also identified prrx1a and prrx1b as negative Edn1 and positive Bmp targets that function in parallel to Jagged-Notch signaling to restrict the formation of dorsal barx1+ pre-cartilage condensations. Simultaneous loss of jag1b and prrx1a/b better rescued lower facial defects of edn1 mutants than loss of either pathway alone, showing that combined overactivation of Jagged-Notch and Bmp/Prrx1 pathways contribute to the absence of cartilage differentiation in the edn1 mutant lower face. These findings support a model in which Notch-mediated restriction of cartilage differentiation, particularly in the second pharyngeal arch, helps to establish a distinct skeletal pattern in the upper

  3. Notch signaling differentially regulates the cell fate of early endocrine precursor cells and their maturing descendants in the mouse pancreas and intestine.

    PubMed

    Li, Hui Joyce; Kapoor, Archana; Giel-Moloney, Maryann; Rindi, Guido; Leiter, Andrew B

    2012-11-15

    Notch signaling inhibits differentiation of endocrine cells in the pancreas and intestine. In a number of cases, the observed inhibition occurred with Notch activation in multipotential cells, prior to the initiation of endocrine differentiation. It has not been established how direct activation of Notch in endocrine precursor cells affects their subsequent cell fate. Using conditional activation of Notch in cells expressing Neurogenin3 or NeuroD1, we examined the effects of Notch in both organs, on cell fate of early endocrine precursors and maturing endocrine-restricted cells, respectively. Notch did not preclude the differentiation of a limited number of endocrine cells in either organ when activated in Ngn3(+) precursor cells. In addition, in the pancreas most Ngn3(+) cells adopted a duct but not acinar cell fate; whereas in intestinal Ngn3(+) cells, Notch favored enterocyte and goblet cell fates, while selecting against endocrine and Paneth cell differentiation. A small fraction of NeuroD1(+) cells in the pancreas retain plasticity to respond to Notch, giving rise to intraislet ductules as well as cells with no detectable pancreatic lineage markers that appear to have limited ultrastructural features of both endocrine and duct cells. These results suggest that Notch directly regulates cell fate decisions in multipotential early endocrine precursor cells. Some maturing endocrine-restricted NeuroD1(+) cells in the pancreas switch to the duct lineage in response to Notch, indicating previously unappreciated plasticity at such a late stage of endocrine differentiation.

  4. Notch signaling controls chondrocyte hypertrophy via indirect regulation of Sox9

    PubMed Central

    Kohn, Anat; Rutkowski, Timothy P; Liu, Zhaoyang; Mirando, Anthony J; Zuscik, Michael J; O’Keefe, Regis J; Hilton, Matthew J

    2015-01-01

    RBPjk-dependent Notch signaling regulates both the onset of chondrocyte hypertrophy and the progression to terminal chondrocyte maturation during endochondral ossification. It has been suggested that Notch signaling can regulate Sox9 transcription, although how this occurs at the molecular level in chondrocytes and whether this transcriptional regulation mediates Notch control of chondrocyte hypertrophy and cartilage development is unknown or controversial. Here we have provided conclusive genetic evidence linking RBPjk-dependent Notch signaling to the regulation of Sox9 expression and chondrocyte hypertrophy by examining tissue-specific Rbpjk mutant (Prx1Cre;Rbpjkf/f), Rbpjk mutant/Sox9 haploinsufficient (Prx1Cre;Rbpjkf/f;Sox9f/+), and control embryos for alterations in SOX9 expression and chondrocyte hypertrophy during cartilage development. These studies demonstrate that Notch signaling regulates the onset of chondrocyte maturation in a SOX9-dependent manner, while Notch-mediated regulation of terminal chondrocyte maturation likely functions independently of SOX9. Furthermore, our in vitro molecular analyses of the Sox9 promoter and Notch-mediated regulation of Sox9 gene expression in chondrogenic cells identified the ability of Notch to induce Sox9 expression directly in the acute setting, but suppresses Sox9 transcription with prolonged Notch signaling that requires protein synthesis of secondary effectors. PMID:26558140

  5. mTORC1 Prevents Preosteoblast Differentiation through the Notch Signaling Pathway

    PubMed Central

    Huang, Bin; Wang, Yongkui; Wang, Wenhao; Chen, Juan; Lai, Pinglin; Liu, Zhongyu; Yan, Bo; Xu, Song; Zhang, Zhongmin; Zeng, Chun; Rong, Limin; Liu, Bin; Cai, Daozhang; Jin, Dadi; Bai, Xiaochun

    2015-01-01

    The mechanistic target of rapamycin (mTOR) integrates both intracellular and extracellular signals to regulate cell growth and metabolism. However, the role of mTOR signaling in osteoblast differentiation and bone formation is undefined, and the underlying mechanisms have not been elucidated. Here, we report that activation of mTOR complex 1 (mTORC1) is required for preosteoblast proliferation; however, inactivation of mTORC1 is essential for their differentiation and maturation. Inhibition of mTORC1 prevented preosteoblast proliferation, but enhanced their differentiation in vitro and in mice. Activation of mTORC1 by deletion of tuberous sclerosis 1 (Tsc1) in preosteoblasts produced immature woven bone in mice due to excess proliferation but impaired differentiation and maturation of the cells. The mTORC1-specific inhibitor, rapamycin, restored these in vitro and in vivo phenotypic changes. Mechanistically, mTORC1 prevented osteoblast maturation through activation of the STAT3/p63/Jagged/Notch pathway and downregulation of Runx2. Preosteoblasts with hyperactive mTORC1 reacquired the capacity to fully differentiate and maturate when subjected to inhibition of the Notch pathway. Together, these findings identified the role of mTORC1 in osteoblast formation and established that mTORC1 prevents preosteoblast differentiation and maturation through activation of the Notch pathway. PMID:26241748

  6. Constitutive Notch Signaling Causes Abnormal Development of the Oviducts, Abnormal Angiogenesis, and Cyst Formation in Mouse Female Reproductive Tract.

    PubMed

    Ferguson, Lydia; Kaftanovskaya, Elena M; Manresa, Carmen; Barbara, Agustin M; Poppiti, Robert J; Tan, Yingchun; Agoulnik, Alexander I

    2016-03-01

    The Notch signaling pathway is critical for the differentiation of many tissues and organs in the embryo. To study the consequences of Notch1 gain-of-function signaling on female reproductive tract development, we used a cre-loxP strategy and Amhr2-cre transgene to generate mice with conditionally activated Notch1 (Rosa(Notch1)). The Amhr2-cre transgene is expressed in the mesenchyme of developing female reproductive tract and in granulosa cells in the ovary. Double transgenic Amhr2-cre, Rosa(Notch1) females were infertile, whereas control Rosa(Notch1) mice had normal fertility. All female reproductive organs in mutants showed hemorrhaging of blood vessels progressing with age. The mutant oviducts did not develop coiling, and were instead looped around the ovary. There were multiple blockages in the lumen along the oviduct length, creating a barrier for sperm or oocyte passage. Mutant females demonstrated inflamed uteri with increased vascularization and an influx of inflammatory cells. Additionally, older females developed ovarian, oviductal, and uterine cysts. The significant change in gene expression was detected in the mutant oviduct expression of Wnt4, essential for female reproductive tract development. Similar oviductal phenotypes have been detected previously in mice with activated Smo and in beta-catenin, Wnt4, Wnt7a, and Dicer conditional knockouts, indicating a common regulatory pathway disrupted by these genetic abnormalities. PMID:26843448

  7. A novel non-canonical Notch signaling regulates expression of synaptic vesicle proteins in excitatory neurons

    PubMed Central

    Hayashi, Yukari; Nishimune, Hiroshi; Hozumi, Katsuto; Saga, Yumiko; Harada, Akihiro; Yuzaki, Michisuke; Iwatsubo, Takeshi; Kopan, Raphael; Tomita, Taisuke

    2016-01-01

    Notch signaling plays crucial roles for cellular differentiation during development through γ-secretase-dependent intramembrane proteolysis followed by transcription of target genes. Although recent studies implicate that Notch regulates synaptic plasticity or cognitive performance, the molecular mechanism how Notch works in mature neurons remains uncertain. Here we demonstrate that a novel Notch signaling is involved in expression of synaptic proteins in postmitotic neurons. Levels of several synaptic vesicle proteins including synaptophysin 1 and VGLUT1 were increased when neurons were cocultured with Notch ligands-expressing NIH3T3 cells. Neuron-specific deletion of Notch genes decreased these proteins, suggesting that Notch signaling maintains the expression of synaptic vesicle proteins in a cell-autonomous manner. Unexpectedly, cGMP-dependent protein kinase (PKG) inhibitor, but not γ-secretase inhibitor, abolished the elevation of synaptic vesicle proteins, suggesting that generation of Notch intracellular domain is dispensable for this function. These data uncover a ligand-dependent, but γ-secretase-independent, non-canonical Notch signaling involved in presynaptic protein expression in postmitotic neurons. PMID:27040987

  8. Targeting stem cell signaling pathways for drug discovery: advances in the Notch and Wnt pathways.

    PubMed

    An, Songzhu Michael; Ding, Qiang; Zhang, Jie; Xie, JingYi; Li, LingSong

    2014-06-01

    Signaling pathways transduce extracellular stimuli into cells through molecular cascades to regulate cellular functions. In stem cells, a small number of pathways, notably those of TGF-β/BMP, Hedgehog, Notch, and Wnt, are responsible for the regulation of pluripotency and differentiation. During embryonic development, these pathways govern cell fate specifications as well as the formation of tissues and organs. In adulthood, their normal functions are important for tissue homeostasis and regeneration, whereas aberrations result in diseases, such as cancer and degenerative disorders. In complex biological systems, stem cell signaling pathways work in concert as a network and exhibit crosstalk, such as the negative crosstalk between Wnt and Notch. Over the past decade, genetic and genomic studies have identified a number of potential drug targets that are involved in stem cell signaling pathways. Indeed, discovery of new targets and drugs for these pathways has become one of the most active areas in both the research community and pharmaceutical industry. Remarkable progress has been made and several promising drug candidates have entered into clinical trials. This review focuses on recent advances in the discovery of novel drugs which target the Notch and Wnt pathways.

  9. Integration of TGF-β/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition

    PubMed Central

    Zavadil, Jiri; Cermak, Lukas; Soto-Nieves, Noemi; Böttinger, Erwin P

    2004-01-01

    Epithelial-to-mesenchymal transitions (EMTs) underlie cell plasticity required in embryonic development and frequently observed in advanced carcinogenesis. Transforming growth factor-β (TGF-β) induces EMT phenotypes in epithelial cells in vitro and has been associated with EMT in vivo. Here we report that expression of the hairy/enhancer-of-split-related transcriptional repressor Hey1, and the Notch-ligand Jagged1 (Jag1), was induced by TGF-β at the onset of EMT in epithelial cells from mammary gland, kidney tubules, and epidermis. The HEY1 expression profile was biphasic, consisting of immediate-early Smad3-dependent, Jagged1/Notch-independent activation, followed by delayed, indirect Jagged1/Notch-dependent activation. TGF-β-induced EMT was blocked by RNA silencing of HEY1 or JAG1, and by chemical inactivation of Notch. The EMT phenotype, biphasic activation of Hey1, and delayed expression of Jag1 were induced by TGF-β in wild-type, but not in Smad3-deficient, primary mouse kidney tubular epithelial cells. Our findings identify a new mechanism for functional integration of Jagged1/Notch signalling and coordinated activation of the Hey1 transcriptional repressor controlled by TGF-β/Smad3, and demonstrate functional roles for Smad3, Hey1, and Jagged1/Notch in mediating TGF-β-induced EMT. PMID:14976548

  10. Integrated β-catenin, BMP, PTEN, and Notch signalling patterns the nephron

    PubMed Central

    Lindström, Nils O; Lawrence, Melanie L; Burn, Sally F; Johansson, Jeanette A; Bakker, Elvira RM; Ridgway, Rachel A; Chang, C-Hong; Karolak, Michele J; Oxburgh, Leif; Headon, Denis J; Sansom, Owen J; Smits, Ron; Davies, Jamie A; Hohenstein, Peter

    2015-01-01

    The different segments of the nephron and glomerulus in the kidney balance the processes of water homeostasis, solute recovery, blood filtration, and metabolite excretion. When segment function is disrupted, a range of pathological features are presented. Little is known about nephron patterning during embryogenesis. In this study, we demonstrate that the early nephron is patterned by a gradient in β-catenin activity along the axis of the nephron tubule. By modifying β-catenin activity, we force cells within nephrons to differentiate according to the imposed β-catenin activity level, thereby causing spatial shifts in nephron segments. The β-catenin signalling gradient interacts with the BMP pathway which, through PTEN/PI3K/AKT signalling, antagonises β-catenin activity and promotes segment identities associated with low β-catenin activity. β-catenin activity and PI3K signalling also integrate with Notch signalling to control segmentation: modulating β-catenin activity or PI3K rescues segment identities normally lost by inhibition of Notch. Our data therefore identifies a molecular network for nephron patterning. DOI: http://dx.doi.org/10.7554/eLife.04000.001 PMID:25647637

  11. Integrated β-catenin, BMP, PTEN, and Notch signalling patterns the nephron.

    PubMed

    Lindström, Nils O; Lawrence, Melanie L; Burn, Sally F; Johansson, Jeanette A; Bakker, Elvira R M; Ridgway, Rachel A; Chang, C-Hong; Karolak, Michele J; Oxburgh, Leif; Headon, Denis J; Sansom, Owen J; Smits, Ron; Davies, Jamie A; Hohenstein, Peter

    2015-02-03

    The different segments of the nephron and glomerulus in the kidney balance the processes of water homeostasis, solute recovery, blood filtration, and metabolite excretion. When segment function is disrupted, a range of pathological features are presented. Little is known about nephron patterning during embryogenesis. In this study, we demonstrate that the early nephron is patterned by a gradient in β-catenin activity along the axis of the nephron tubule. By modifying β-catenin activity, we force cells within nephrons to differentiate according to the imposed β-catenin activity level, thereby causing spatial shifts in nephron segments. The β-catenin signalling gradient interacts with the BMP pathway which, through PTEN/PI3K/AKT signalling, antagonises β-catenin activity and promotes segment identities associated with low β-catenin activity. β-catenin activity and PI3K signalling also integrate with Notch signalling to control segmentation: modulating β-catenin activity or PI3K rescues segment identities normally lost by inhibition of Notch. Our data therefore identifies a molecular network for nephron patterning.

  12. Role of Notch Signaling in the Maintenance of Human Mesenchymal Stem Cells Under Hypoxic Conditions

    PubMed Central

    Moriyama, Mariko; Isshi, Haruki; Ishihara, Shin; Okura, Hanayuki; Ichinose, Akihiro; Ozawa, Toshiyuki; Matsuyama, Akifumi; Hayakawa, Takao

    2014-01-01

    Human adipose tissue-derived multilineage progenitor cells (hADMPCs) are attractive for cell therapy and tissue engineering because of their multipotency and ease of isolation without serial ethical issues. However, their limited in vitro lifespan in culture systems hinders their therapeutic application. Some somatic stem cells, including hADMPCs, are known to be localized in hypoxic regions; thus, hypoxia may be beneficial for ex vivo culture of these stem cells. These cells exhibit a high level of glycolytic metabolism in the presence of high oxygen levels and further increase their glycolysis rate under hypoxia. However, the physiological role of glycolytic activation and its regulatory mechanisms are still incompletely understood. Here, we show that Notch signaling is required for glycolysis regulation under hypoxic conditions. Our results demonstrate that 5% O2 dramatically increased the glycolysis rate, improved the proliferation efficiency, prevented senescence, and maintained the multipotency of hADMPCs. Intriguingly, these effects were not mediated by hypoxia-inducible factor (HIF), but rather by the Notch signaling pathway. Five percent O2 significantly increased the level of activated Notch1 and expression of its downstream gene, HES1. Furthermore, 5% O2 markedly increased glucose consumption and lactate production of hADMPCs, which decreased back to normoxic levels on treatment with a γ-secretase inhibitor. We also found that HES1 was involved in induction of GLUT3, TPI, and PGK1 in addition to reduction of TIGAR and SCO2 expression. These results clearly suggest that Notch signaling regulates glycolysis under hypoxic conditions and, thus, likely affects the cell lifespan via glycolysis. PMID:24878247

  13. Notch1 Pathway Protects against Burn-Induced Myocardial Injury by Repressing Reactive Oxygen Species Production through JAK2/STAT3 Signaling

    PubMed Central

    Cai, Weixia; Yang, Xuekang; Han, Shichao; Guo, Haitao; Zheng, Zhao; Wang, Hongtao; Guan, Hao; Jia, Yanhui; Gao, Jianxin; Yang, Tao; Zhu, Xiongxiang; Hu, Dahai

    2016-01-01

    Oxidative stress plays an important role in burn-induced myocardial injury, but the cellular mechanisms that control reactive oxygen species (ROS) production and scavenging are not fully understood. This study demonstrated that blockade of Notch signaling via knockout of the transcription factor RBP-J or a pharmacological inhibitor aggravated postburn myocardial injury, which manifested as deteriorated serum CK, CK-MB, and LDH levels and increased apoptosis in vitro and in vivo. Interruption of Notch signaling increased intracellular ROS production, and a ROS scavenger reversed the exacerbated myocardial injury after Notch signaling blockade. These results suggest that Notch signaling deficiency aggravated postburn myocardial injury through increased ROS levels. Notch signaling blockade also decreased MnSOD expression in vitro and in vivo. Notably, Notch signaling blockade downregulated p-JAK2 and p-STAT3 expression. Inhibition of JAK2/STAT3 signaling with AG490 markedly decreased MnSOD expression, increased ROS production, and aggravated myocardial injury. AG490 plus GSI exerted no additional effects. These results demonstrate that Notch signaling protects against burn-induced myocardial injury through JAK2/STAT3 signaling, which activates the expression of MnSOD and leads to decreased ROS levels. PMID:27057278

  14. Endothelial Notch activity promotes angiogenesis and osteogenesis in bone

    NASA Astrophysics Data System (ADS)

    Ramasamy, Saravana K.; Kusumbe, Anjali P.; Wang, Lin; Adams, Ralf H.

    2014-03-01

    Blood vessel growth in the skeletal system and osteogenesis seem to be coupled, suggesting the existence of molecular crosstalk between endothelial and osteoblastic cells. Understanding the nature of the mechanisms linking angiogenesis and bone formation should be of great relevance for improved fracture healing or prevention of bone mass loss. Here we show that vascular growth in bone involves a specialized, tissue-specific form of angiogenesis. Notch signalling promotes endothelial cell proliferation and vessel growth in postnatal long bone, which is the opposite of the well-established function of Notch and its ligand Dll4 in the endothelium of other organs and tumours. Endothelial-cell-specific and inducible genetic disruption of Notch signalling in mice not only impaired bone vessel morphology and growth, but also led to reduced osteogenesis, shortening of long bones, chondrocyte defects, loss of trabeculae and decreased bone mass. On the basis of a series of genetic experiments, we conclude that skeletal defects in these mutants involved defective angiocrine release of Noggin from endothelial cells, which is positively regulated by Notch. Administration of recombinant Noggin, a secreted antagonist of bone morphogenetic proteins, restored bone growth and mineralization, chondrocyte maturation, the formation of trabeculae and osteoprogenitor numbers in endothelial-cell-specific Notch pathway mutants. These findings establish a molecular framework coupling angiogenesis, angiocrine signals and osteogenesis, which may prove significant for the development of future therapeutic applications.

  15. Endothelial Notch activity promotes angiogenesis and osteogenesis in bone.

    PubMed

    Ramasamy, Saravana K; Kusumbe, Anjali P; Wang, Lin; Adams, Ralf H

    2014-03-20

    Blood vessel growth in the skeletal system and osteogenesis seem to be coupled, suggesting the existence of molecular crosstalk between endothelial and osteoblastic cells. Understanding the nature of the mechanisms linking angiogenesis and bone formation should be of great relevance for improved fracture healing or prevention of bone mass loss. Here we show that vascular growth in bone involves a specialized, tissue-specific form of angiogenesis. Notch signalling promotes endothelial cell proliferation and vessel growth in postnatal long bone, which is the opposite of the well-established function of Notch and its ligand Dll4 in the endothelium of other organs and tumours. Endothelial-cell-specific and inducible genetic disruption of Notch signalling in mice not only impaired bone vessel morphology and growth, but also led to reduced osteogenesis, shortening of long bones, chondrocyte defects, loss of trabeculae and decreased bone mass. On the basis of a series of genetic experiments, we conclude that skeletal defects in these mutants involved defective angiocrine release of Noggin from endothelial cells, which is positively regulated by Notch. Administration of recombinant Noggin, a secreted antagonist of bone morphogenetic proteins, restored bone growth and mineralization, chondrocyte maturation, the formation of trabeculae and osteoprogenitor numbers in endothelial-cell-specific Notch pathway mutants. These findings establish a molecular framework coupling angiogenesis, angiocrine signals and osteogenesis, which may prove significant for the development of future therapeutic applications.

  16. The Ser/Thr Phosphatase PP2A Regulatory Subunit Widerborst Inhibits Notch Signaling

    PubMed Central

    Bose, Anasua; Majot, Adam T.; Bidwai, Ashok P.

    2014-01-01

    Drosophila Enhancer of split M8, an effector of Notch signaling, is regulated by protein kinase CK2. The phosphatase PP2A is thought to play an opposing (inhibitory) role, but the identity of the regulatory subunit was unknown. The studies described here reveal a role for the PP2A regulatory subunit widerborst (wdb) in three developmental contexts; the bristle, wing and the R8 photoreceptors of the eye. wdb overexpression elicits bristle and wing defects akin to reduced Notch signaling, whereas hypomorphic mutations in this PP2A subunit elicit opposite effects. We have also evaluated wdb functions using mutations in Notch and E(spl) that affect the eye. We find that the eye and R8 defects of the well-known Nspl mutation are enhanced by a hypomorphic allele of wdb, whereas they are strongly rescued by wdb overexpression. Similarly, ectopic wdb rescues the eye and R8 defects of the E(spl)D mutation, which affects the m8 gene. In addition, wdb overexpression also rescues the bristle defects of ectopically expressed M8, or the eye and R8 defects of its CK2 phosphomimetic variant M8-S159D. The latter finding suggests that PP2A may target M8 at highly conserved residues in the vicinity of the CK2 site, whose phosphorylation controls repression of Atonal and the R8 fate. Together, the studies identify PP2A-Wdb as a participant in Notch signaling, and suggest that M8 activity is controlled by phosphorylation and dephosphorylation. The conservation of the phosphorylation sites between Drosophila E(spl) and the HES/HER proteins from mammals, reptiles, amphibians, birds and fish raises the prospect that this mode of regulation is widespread. PMID:25006677

  17. Notch and the Skeleton▿

    PubMed Central

    Zanotti, Stefano; Canalis, Ernesto

    2010-01-01

    Notch receptors are transmembrane receptors that regulate cell fate decisions. There are four Notch receptors in mammals. Upon binding to members of the Delta and Jagged family of transmembrane proteins, Notch is cleaved and the Notch intracellular domain (NICD) is released. NICD then translocates to the nucleus, where it associates with the CBF-1, Suppressor of Hairless, and Lag-2 (CSL) and Mastermind-Like (MAML) proteins. This complex activates the transcription of Notch target genes, such as Hairy Enhancer of Split (Hes) and Hes-related with YRPF motif (Hey). Notch signaling is critical for the regulation of mesenchymal stem cell differentiation. Misexpression of Notch in skeletal tissue indicates a role as an inhibitor of skeletal development and postnatal bone formation. Overexpression of Notch inhibits endochondral bone formation and osteoblastic differentiation, causing severe osteopenia. Conditional inactivation of Notch in the skeleton causes an increase in cancellous bone volume and enhanced osteoblastic differentiation. Notch ligands are expressed in the hematopoietic stem cell niche and are critical for the regulation of hematopoietic stem cell self-renewal. Dysregulation of Notch signaling is the underlying cause of diseases affecting the skeletal tissue, including Alagille syndrome, spondylocostal dysostosis, and possibly, osteosarcoma. PMID:19995916

  18. Glycogen synthase kinase 3 beta positively regulates Notch signaling in vascular smooth muscle cells: role in cell proliferation and survival.

    PubMed

    Guha, Shaunta; Cullen, John P; Morrow, David; Colombo, Alberto; Lally, Caitríona; Walls, Dermot; Redmond, Eileen M; Cahill, Paul A

    2011-09-01

    The role of glycogen synthase kinase 3 beta (GSK-3β) in modulating Notch control of vascular smooth muscle cell (vSMC) growth (proliferation and apoptosis) was examined in vitro under varying conditions of cyclic strain and validated in vivo following changes in medial tension and stress. Modulation of GSK-3β in vSMC following ectopic expression of constitutively active GSK-3β, siRNA knockdown and pharmacological inhibition with SB-216763 demonstrated that GSK-3β positively regulates Notch intracellular domain expression, CBF-1/RBP-Jκ transactivation and downstream target gene mRNA levels, while concomitantly promoting vSMC proliferation and inhibiting apoptosis. In contrast, inhibition of GSK-3β attenuated Notch signaling and decreased vSMC proliferation and survival. Exposure of vSMC to cyclic strain environments in vitro using both a Flexercell™ Tension system and a novel Sylgard™ phantom vessel following bare metal stent implantation revealed that cyclic strain inhibits GSK-3β activity independent of p42/p44 MAPK and p38 activation concomitant with reduced Notch signaling and decreased vSMC proliferation and survival. Exposure of vSMC to changes in medial strain microenvironments in vivo following carotid artery ligation revealed that enhanced GSK-3β activity was predominantly localized to medial and neointimal vSMC concomitant with increased Notch signaling, proliferating nuclear antigen and decreased Bax expression, respectively, as vascular remodeling progressed. GSK-3β is an important modulator of Notch signaling leading to altered vSMC cell growth where low strain/tension microenvironments prevail.

  19. miRNA-34c regulates Notch signaling during bone development

    PubMed Central

    Bae, Yangjin; Yang, Tao; Zeng, Huan-Chang; Campeau, Philippe M.; Chen, Yuqing; Bertin, Terry; Dawson, Brian C.; Munivez, Elda; Tao, Jianning; Lee, Brendan H.

    2012-01-01

    During bone homeostasis, osteoblast and osteoclast differentiation is coupled and regulated by multiple signaling pathways and their downstream transcription factors. Here, we show that microRNA 34 (miR-34) is significantly induced by BMP2 during osteoblast differentiation. In vivo, osteoblast-specific gain of miR-34c in mice leads to an age-dependent osteoporosis due to the defective mineralization and proliferation of osteoblasts and increased osteoclastogenesis. In osteoblasts, miR-34c targets multiple components of the Notch signaling pathway, including Notch1, Notch2 and Jag1 in a direct manner, and influences osteoclast differentiation in a non-cell-autonomous fashion. Taken together, our results demonstrate that miR-34c is critical during osteoblastogenesis in part by regulating Notch signaling in bone homeostasis. Furthermore, miR-34c-mediated post-transcriptional regulation of Notch signaling in osteoblasts is one possible mechanism to modulate the proliferative effect of Notch in the committed osteoblast progenitors which may be important in the pathogenesis of osteosarcomas. Therefore, understanding the functional interaction of miR-34 and Notch signaling in normal bone development and in bone cancer could potentially lead to therapies modulating miR-34 signaling. PMID:22498974

  20. Notch is active in Langerhans cell histiocytosis and confers pathognomonic features on dendritic cells.

    PubMed

    Hutter, Caroline; Kauer, Max; Simonitsch-Klupp, Ingrid; Jug, Gunhild; Schwentner, Raphaela; Leitner, Judith; Bock, Peter; Steinberger, Peter; Bauer, Wolfgang; Carlesso, Nadia; Minkov, Milen; Gadner, Helmut; Stingl, Georg; Kovar, Heinrich; Kriehuber, Ernst

    2012-12-20

    Langerhans cell histiocytosis (LCH) is an enigmatic disease defined by the accumulation of Langerhans cell-like dendritic cells (DCs). In the present study, we demonstrate that LCH cells exhibit a unique transcription profile that separates them not only from plasmacytoid and myeloid DCs, but also from epidermal Langerhans cells, indicating a distinct DC entity. Molecular analysis revealed that isolated and tissue-bound LCH cells selectively express the Notch ligand Jagged 2 (JAG2) and are the only DCs that express both Notch ligand and its receptor. We further show that JAG2 signaling induces key LCH-cell markers in monocyte-derived DCs, suggesting a functional role of Notch signaling in LCH ontogenesis. JAG2 also induced matrix-metalloproteinases 1 and 12, which are highly expressed in LCH and may account for tissue destruction in LCH lesions. This induction was selective for DCs and was not recapitulated in monocytes. The results of the present study suggest that JAG2-mediated Notch activation confers phenotypic and functional aspects of LCH to DCs; therefore, interference with Notch signaling may be an attractive strategy to combat this disease.

  1. Pleiotropic roles of Notch signaling in normal, malignant, and developmental hematopoiesis in the human

    PubMed Central

    Kushwah, Rahul; Guezguez, Borhane; Lee, Jung Bok; Hopkins, Claudia I; Bhatia, Mickie

    2014-01-01

    The Notch signaling pathway is evolutionarily conserved across species and plays an important role in regulating cell differentiation, proliferation, and survival. It has been implicated in several different hematopoietic processes including early hematopoietic development as well as adult hematological malignancies in humans. This review focuses on recent developments in understanding the role of Notch signaling in the human hematopoietic system with an emphasis on hematopoietic initiation from human pluripotent stem cells and regulation within the bone marrow. Based on recent insights, we summarize potential strategies for treatment of human hematological malignancies toward the concept of targeting Notch signaling for fate regulation. PMID:25252682

  2. Regulation of Notch Signaling by an Evolutionary Conserved DEAD Box RNA Helicase, Maheshvara in Drosophila melanogaster.

    PubMed

    Surabhi, Satya; Tripathi, Bipin K; Maurya, Bhawana; Bhaskar, Pradeep K; Mukherjee, Ashim; Mutsuddi, Mousumi

    2015-11-01

    Notch signaling is an evolutionary conserved process that influences cell fate determination, cell proliferation, and cell death in a context-dependent manner. Notch signaling is fine-tuned at multiple levels and misregulation of Notch has been implicated in a variety of human diseases. We have characterized maheshvara (mahe), a novel gene in Drosophila melanogaster that encodes a putative DEAD box protein that is highly conserved across taxa and belongs to the largest group of RNA helicase. A dynamic pattern of mahe expression along with the maternal accumulation of its transcripts is seen during early stages of embryogenesis. In addition, a strong expression is also seen in the developing nervous system. Ectopic expression of mahe in a wide range of tissues during development results in a variety of defects, many of which resemble a typical Notch loss-of-function phenotype. We illustrate that ectopic expression of mahe in the wing imaginal discs leads to loss of Notch targets, Cut and Wingless. Interestingly, Notch protein levels are also lowered, whereas no obvious change is seen in the levels of Notch transcripts. In addition, mahe overexpression can significantly rescue ectopic Notch-mediated proliferation of eye tissue. Further, we illustrate that mahe genetically interacts with Notch and its cytoplasmic regulator deltex in trans-heterozygous combination. Coexpression of Deltex and Mahe at the dorso-ventral boundary results in a wing-nicking phenotype and a more pronounced loss of Notch target Cut. Taken together we report identification of a novel evolutionary conserved RNA helicase mahe, which plays a vital role in regulation of Notch signaling.

  3. The PDZ Protein Canoe/AF-6 Links Ras-MAPK, Notch and Wingless/Wnt Signaling Pathways by Directly Interacting with Ras, Notch and Dishevelled

    PubMed Central

    Carmena, Ana; Speicher, Stephan; Baylies, Mary

    2006-01-01

    Over the past few years, it has become increasingly apparent that signal transduction pathways are not merely linear cascades; they are organized into complex signaling networks that require high levels of regulation to generate precise and unique cell responses. However, the underlying regulatory mechanisms by which signaling pathways cross-communicate remain poorly understood. Here we show that the Ras-binding protein Canoe (Cno)/AF-6, a PDZ protein normally associated with cellular junctions, is a key modulator of Wingless (Wg)/Wnt, Ras-Mitogen Activated Protein Kinase (MAPK) and Notch (N) signaling pathways cross-communication. Our data show a repressive effect of Cno/AF-6 on these three signaling pathways through physical interactions with Ras, N and the cytoplasmic protein Dishevelled (Dsh), a key Wg effector. We propose a model in which Cno, through those interactions, actively coordinates, at the membrane level, Ras-MAPK, N and Wg signaling pathways during progenitor specification. PMID:17183697

  4. Regulation of Notch signaling and endocytosis by the Lgl neoplastic tumor suppressor

    PubMed Central

    Portela, Marta; Parsons, Linda M; Grzeschik, Nicola A; Richardson, Helena E

    2015-01-01

    The evolutionarily conserved neoplastic tumor suppressor protein, Lethal (2) giant larvae (Lgl), plays roles in cell polarity and tissue growth via regulation of the Hippo pathway. In our recent study, we showed that in the developing Drosophila eye epithelium, depletion of Lgl leads to increased ligand-dependent Notch signaling. lgl mutant tissue also exhibits an accumulation of early endosomes, recycling endosomes, early-multivesicular body markers and acidic vesicles. We showed that elevated Notch signaling in lgl− tissue can be rescued by feeding larvae the vesicle de-acidifying drug chloroquine, revealing that Lgl attenuates Notch signaling by limiting vesicle acidification. Strikingly, chloroquine also rescued the lgl− overgrowth phenotype, suggesting that the Hippo pathway defects were also rescued. In this extraview, we provide additional data on the regulation of Notch signaling and endocytosis by Lgl, and discuss possible mechanisms by which Lgl depletion contributes to signaling pathway defects and tumorigenesis. PMID:25789785

  5. Dominant Enhancers of Egfr in Drosophila Melanogaster: Genetic Links between the Notch and Egfr Signaling Pathways

    PubMed Central

    Price, J. V.; Savenye, E. D.; Lum, D.; Breitkreutz, A.

    1997-01-01

    The Drosophila epidermal growth factor receptor (EGFR) is a key component of a complex signaling pathway that participates in multiple developmental processes. We have performed an F(1) screen for mutations that cause dominant enhancement of wing vein phenotypes associated with mutations in Egfr. With this screen, we have recovered mutations in Hairless (H), vein, groucho (gro), and three apparently novel loci. All of the E(Egfr)s we have identified show dominant interactions in transheterozygous combinations with each other and with alleles of N or Su(H), suggesting that they are involved in cross-talk between the N and EGFR signaling pathways. Further examination of the phenotypic interactions between Egfr, H, and gro revealed that reductions in Egfr activity enhanced both the bristle loss associated with H mutations, and the bristle hyperplasia and ocellar hypertrophy associated with gro mutations. Double mutant combinations of Egfr and gro hypomorphic alleles led to the formation of ectopic compound eyes in a dosage sensitive manner. Our findings suggest that these E(Egfr)s represent links between the Egfr and Notch signaling pathways, and that Egfr activity can either promote or suppress Notch signaling, depending on its developmental context. PMID:9383058

  6. NRF2-mediated Notch pathway activation enhances hematopoietic reconstitution following myelosuppressive radiation

    PubMed Central

    Kim, Jung-Hyun; Thimmulappa, Rajesh K.; Kumar, Vineet; Cui, Wanchang; Kumar, Sarvesh; Kombairaju, Ponvijay; Zhang, Hao; Margolick, Joseph; Matsui, William; Macvittie, Thomas; Malhotra, Sanjay V.; Biswal, Shyam

    2014-01-01

    A nuclear disaster may result in exposure to potentially lethal doses of ionizing radiation (IR). Hematopoietic acute radiation syndrome (H-ARS) is characterized by severe myelosuppression, which increases the risk of infection, bleeding, and mortality. Here, we determined that activation of nuclear factor erythroid-2–related factor 2 (NRF2) signaling enhances hematopoietic stem progenitor cell (HSPC) function and mitigates IR-induced myelosuppression and mortality. Augmenting NRF2 signaling in mice, either by genetic deletion of the NRF2 inhibitor Keap1 or by pharmacological NRF2 activation with 2-trifluoromethyl-2′-methoxychalone (TMC), enhanced hematopoietic reconstitution following bone marrow transplantation (BMT). Strikingly, even 24 hours after lethal IR exposure, oral administration of TMC mitigated myelosuppression and mortality in mice. Furthermore, TMC administration to irradiated transgenic Notch reporter mice revealed activation of Notch signaling in HSPCs and enhanced HSPC expansion by increasing Jagged1 expression in BM stromal cells. Administration of a Notch inhibitor ablated the effects of TMC on hematopoietic reconstitution. Taken together, we identified a mechanism by which NRF2-mediated Notch signaling improves HSPC function and myelosuppression following IR exposure. Our data indicate that targeting this pathway may provide a countermeasure against the damaging effects of IR exposure. PMID:24463449

  7. TQ inhibits hepatocellular carcinoma growth in vitro and in vivo via repression of Notch signaling

    PubMed Central

    Ke, Xiquan; Zhao, Yan; Lu, Xinlan; Wang, Zhe; Liu, Yuanyuan; Ren, Mudan; Lu, Guifang; Zhang, Dan; Sun, Zhenguo; Xu, Zhipeng; Song, Jee Hoon; Cheng, Yulan; Meltzer, Stephen J.; He, Shuixiang

    2015-01-01

    Thymoquinone (TQ) has been reported to possess anti-tumor activity in various types of cancer. However, its effects and molecular mechanism of action in hepatocellular carcinoma (HCC) are still not completely understood. We observed that TQ inhibited tumor cell growth in vitro, where treatment with TQ arrested the cell cycle in G1 by upregulating p21 and downregulating cyclinD1 and CDK2 expression; moreover, TQ induced apoptosis by decreasing expression of Bcl-2 and increasing expression of Bax. Simultaneously, TQ demonstrated a suppressive impact on the Notch pathway, where overexpression of NICD1 reversed the inhibitory effect of TQ on cell proliferation, thereby attenuating the repressive effects of TQ on the Notch pathway, cyclinD1, CDK2 and Bcl-2, and also diminishing upregulation of p21 and Bax. In a xenograft model, TQ inhibited HCC growth in nude mice; this inhibitory effect in vivo, as well as of HCC cell growth in vitro, was associated with a discernible decline in NICD1 and Bcl-2 levels and a dramatic rise in p21 expression. In conclusion, TQ inhibits HCC cell growth by inducing cell cycle arrest and apoptosis, achieving these effects by repression of the Notch signaling pathway, suggesting that TQ represents a potential preventive or therapeutic agent in HCC patients. PMID:26416455

  8. Integration of Orthogonal Signaling by the Notch and Dpp Pathways in Drosophila

    PubMed Central

    Stroebele, Elizabeth; Erives, Albert

    2016-01-01

    The transcription factor Suppressor of Hairless and its coactivator, the Notch intracellular domain, are polyglutamine (pQ)-rich factors that target enhancer elements and interact with other locally bound pQ-rich factors. To understand the functional repertoire of such enhancers, we identify conserved regulatory belts with binding sites for the pQ-rich effectors of both Notch and BMP/Dpp signaling, and the pQ-deficient tissue selectors Apterous (Ap), Scalloped (Sd), and Vestigial (Vg). We find that the densest such binding site cluster in the genome is located in the BMP-inducible nab locus, a homolog of the vertebrate transcriptional cofactors NAB1/NAB2. We report three major findings. First, we find that this nab regulatory belt is a novel enhancer driving dorsal wing margin expression in regions of peak phosphorylated Mad in wing imaginal discs. Second, we show that Ap is developmentally required to license the nab dorsal wing margin enhancer (DWME) to read out Notch and Dpp signaling in the dorsal compartment. Third, we find that the nab DWME is embedded in a complex of intronic enhancers, including a wing quadrant enhancer, a proximal wing disc enhancer, and a larval brain enhancer. This enhancer complex coordinates global nab expression via both tissue-specific activation and interenhancer silencing. We suggest that DWME integration of BMP signaling maintains nab expression in proliferating margin descendants that have divided away from Notch–Delta boundary signaling. As such, uniform expression of genes like nab and vestigial in proliferating compartments would typically require both boundary and nonboundary lineage-specific enhancers. PMID:26975664

  9. RAM-induced Allostery Facilitates Assembly of a Notch Pathway Active Transcription Complex

    SciTech Connect

    Friedmann, David R.; Wilson, Jeffrey J.; Kovall, Rhett A.

    2008-07-09

    The Notch pathway is a conserved cell-to-cell signaling mechanism, in which extracellular signals are transduced into transcriptional outputs through the nuclear effector CSL. CSL is converted from a repressor to an activator through the formation of the CSL-NotchIC-Mastermind ternary complex. The RAM (RBP-J associated molecule) domain of NotchIC avidly interacts with CSL; however, its role in assembly of the CSL-NotchIC-Mastermind ternary complex is not understood. Here we provide a comprehensive thermodynamic, structural, and biochemical analysis of the RAM-CSL interaction for components from both mouse and worm. Our binding data show that RAM and CSL form a high affinity complex in the presence or absence of DNA. Our structural studies reveal a striking distal conformational change in CSL upon RAM binding, which creates a docking site for Mastermind to bind to the complex. Finally, we show that the addition of a RAM peptide in trans facilitates formation of the CSL-NotchIC-Mastermind ternary complex in vitro.

  10. Co-regulation of the Notch and Wnt signaling pathways promotes supporting cell proliferation and hair cell regeneration in mouse utricles

    PubMed Central

    Wu, Jingfang; Li, Wenyan; Lin, Chen; Chen, Yan; Cheng, Cheng; Sun, Shan; Tang, Mingliang; Chai, Renjie; Li, Huawei

    2016-01-01

    This work sought to determine the crosstalk between the Notch and Wnt signaling pathways in regulating supporting cell (SC) proliferation and hair cell (HC) regeneration in mouse utricles. We cultured postnatal day (P)3 and P60 mouse utricles, damaged the HCs with gentamicin, and treated the utricles with the γ-secretase inhibitor DAPT to inhibit the Notch pathway and with the Wnt agonist QS11 to active the Wnt pathway. We also used Sox2-CreER, Notch1-flox (exon 1), and Catnb-flox (exon 3) transgenic mice to knock out the Notch pathway and activate the Wnt pathway in Sox2+ SCs. Notch inhibition alone increased SC proliferation and HC number in both undamaged and damaged utricles. Wnt activation alone promoted SC proliferation, but the HC number was not significantly increased. Here we demonstrated the cumulative effects of Notch inhibition and Wnt activation in regulating SC proliferation and HC regeneration. Simultaneously inhibiting Notch and overexpressing Wnt led to significantly greater SC proliferation and greater numbers of HCs than manipulating either pathway alone. Similar results were observed in the transgenic mice. This study suggests that the combination of Notch inhibition and Wnt activation can significantly promote SC proliferation and increase the number of regenerated HCs in mouse utricle. PMID:27435629

  11. Aberrant Notch signaling in glioblastoma stem cells contributes to tumor recurrence and invasion.

    PubMed

    Yu, Jian-Bo; Jiang, Hao; Zhan, Ren-Ya

    2016-08-01

    Upregulation of the Notch signaling pathway in cancer stem cells and side population (SP) cells has a major role in maintenance, self-renewal and chemoresistance. The present study isolated a cancer stem cell-like SP accounting for 4.1% of a glioblastoma cell population using a Hoechst 33342 dye exclusion assay. In this glioblastoma SP, the expression of of Notch1 signaling proteins Notch1 intracellular domain and Hes‑1 was markedly upregulated. Furthermore, knockdown of Notch1 by RNA interference significantly diminished the neurosphere formation ability, self‑renewal and chemoresistance of the SP cells. In addition, the expression of the stem‑cell surface genes Oct‑4, Sox2 and Nanog in SP cells was significantly reduced and the sensitivity to the SP cells to chemotherapeutics was enhanced following Notch1 knockdown. In conclusion, the results of the present study suggested that upregulation of Notch1 is involved in the chemotherapy resistance and tumor recurrence of glioblastoma. Hence, the development of novel anti‑cancer drugs targeting the Notch1 signaling pathway may be a promising strategy for curing glioblastoma. PMID:27315154

  12. Mechanism of Notch Pathway Activation and Its Role in the Regulation of Olfactory Plasticity in Drosophila melanogaster

    PubMed Central

    2016-01-01

    The neural plasticity of sensory systems is being increasingly recognized as playing a role in learning and memory. We have previously shown that Notch, part of an evolutionarily conserved intercellular signaling pathway, is required in adult Drosophila melanogaster olfactory receptor neurons (ORNs) for the structural and functional plasticity of olfactory glomeruli that is induced by chronic odor exposure. In this paper we address how long-term exposure to odor activates Notch and how Notch in conjunction with chronic odor mediates olfactory plasticity. We show that upon chronic odor exposure a non-canonical Notch pathway mediates an increase in the volume of glomeruli by a mechanism that is autonomous to ORNs. In addition to activating a pathway that is autonomous to ORNs, chronic odor exposure also activates the Notch ligand Delta in second order projection neurons (PNs), but this does not appear to require acetylcholine receptor activation in PNs. Delta on PNs then feeds back to activate canonical Notch signaling in ORNs, which restricts the extent of the odor induced increase in glomerular volume. Surprisingly, even though the pathway that mediates the increase in glomerular volume is autonomous to ORNs, nonproductive transsynaptic Delta/Notch interactions that do not activate the canonical pathway can block the increase in volume. In conjunction with chronic odor, the canonical Notch pathway also enhances cholinergic activation of PNs. We present evidence suggesting that this is due to increased acetylcholine release from ORNs. In regulating physiological plasticity, Notch functions solely by the canonical pathway, suggesting that there is no direct connection between morphological and physiological plasticity. PMID:26986723

  13. Mechanism of Notch Pathway Activation and Its Role in the Regulation of Olfactory Plasticity in Drosophila melanogaster.

    PubMed

    Kidd, Simon; Lieber, Toby

    2016-01-01

    The neural plasticity of sensory systems is being increasingly recognized as playing a role in learning and memory. We have previously shown that Notch, part of an evolutionarily conserved intercellular signaling pathway, is required in adult Drosophila melanogaster olfactory receptor neurons (ORNs) for the structural and functional plasticity of olfactory glomeruli that is induced by chronic odor exposure. In this paper we address how long-term exposure to odor activates Notch and how Notch in conjunction with chronic odor mediates olfactory plasticity. We show that upon chronic odor exposure a non-canonical Notch pathway mediates an increase in the volume of glomeruli by a mechanism that is autonomous to ORNs. In addition to activating a pathway that is autonomous to ORNs, chronic odor exposure also activates the Notch ligand Delta in second order projection neurons (PNs), but this does not appear to require acetylcholine receptor activation in PNs. Delta on PNs then feeds back to activate canonical Notch signaling in ORNs, which restricts the extent of the odor induced increase in glomerular volume. Surprisingly, even though the pathway that mediates the increase in glomerular volume is autonomous to ORNs, nonproductive transsynaptic Delta/Notch interactions that do not activate the canonical pathway can block the increase in volume. In conjunction with chronic odor, the canonical Notch pathway also enhances cholinergic activation of PNs. We present evidence suggesting that this is due to increased acetylcholine release from ORNs. In regulating physiological plasticity, Notch functions solely by the canonical pathway, suggesting that there is no direct connection between morphological and physiological plasticity. PMID:26986723

  14. Metabolic Syndrome Impairs Notch Signaling and Promotes Apoptosis in Chronically Ischemic Myocardium

    PubMed Central

    Elmadhun, Nassrene Y.; Sabe, Ashraf A.; Lassaletta, Antonio D.; Chu, Louis M.; Kondra, Katelyn; Sturek, Michael; Sellke, Frank W.

    2014-01-01

    Objective Impaired angiogenesis is a known consequence of metabolic syndrome (MetS), however, the mechanism is not fully understood. Recent studies have shown that the Notch signaling pathway is an integral component of cardiac angiogenesis. We tested in a clinically relevant swine model the effects of MetS on Notch and apoptosis signaling in chronically ischemic myocardium. Methods Ossabaw swine were fed either a regular diet (CTL, n=8) or a high-cholesterol diet (MetS, n=8) to induce MetS. An ameroid constrictor was placed to induce chronic myocardial ischemia. Eleven weeks later, animals underwent cardiac harvest of the ischemic myocardium. Results There was down-regulation of pro-angiogenesis proteins Notch2, Notch4, Jagged2, Ang1 and ENOS in the MetS group compared to CTL. There was also up-regulation of pro-apoptosis protein Caspase8, and down-regulation of anti-angiogenesis protein pFOX03, and pro-survival proteins pP38 and HSP90 in the MetS group. Cell death was increased in the MetS group compared to CTL. Both CTL and MetS groups had similar arteriolar count and capillary density, and Notch3 and Jagged1 were both similarly concentrated in the smooth muscle wall in both groups. Conclusions MetS in chronic myocardial ischemia significantly impairs Notch signaling by down regulating Notch receptors, ligands and pro-angiogenesis proteins. MetS also increases apoptosis signaling, decreases survival signaling and increases cell death in chronically ischemic myocardium. Although short-term angiogenesis appears unaffected in this model of early MetS, the molecular signals for angiogenesis are impaired, thus suggesting that inhibition of Notch signaling may underlie decreased angiogenesis in later stages of MetS. PMID:25037620

  15. Structure and Function of the CSL-KyoT2 Corepressor Complex – a Negative Regulator of Notch Signaling

    PubMed Central

    Collins, Kelly J.; Yuan, Zhenyu; Kovall, Rhett A.

    2013-01-01

    Summary Notch refers to a highly conserved cell-to-cell signaling pathway with essential roles in embryonic development and tissue maintenance. Dysfunctional signaling causes human disease, highlighting the importance of pathway regulation. Notch signaling ultimately results in the activation of target genes, which is regulated by the nuclear effector CSL. CSL dually functions as an activator and repressor of transcription through differential interactions with coactivator or corepressor proteins, respectively. While the structures of CSL-coactivator complexes have been determined, the structures of CSL-corepressor complexes are unknown. Here, using a combination of structural, biophysical, and cellular approaches, we characterize the structure and function of CSL in complex with the corepressor KyoT2. Collectively, our studies provide molecular insights into how KyoT2 binds CSL with high affinity and competes with coactivators, such as Notch, for binding CSL. These studies are important for understanding how CSL functions as both an activator and repressor of transcription of Notch target genes. PMID:24290140

  16. Conjunctive and compromised data fusion schemes for identification of multiple notches in an aluminium plate using Lamb wave signals.

    PubMed

    Lu, Ye; Ye, Lin; Wang, Dong; Wang, Xiaoming; Su, Zhongqing

    2010-09-01

    Conjunctive and compromised data fusion schemes were applied to aggregate perceptions from individual actuator-sensor paths, for the purpose of evaluating positions of multiple notches in an aluminum plate, with the signatures extracted from the scattered Lamb wave signals captured by sensors. An active sensor network consisting of piezoelectric (lead zirconium tantalate, PZT) wafers was employed to activate and capture Lamb wave signals, where two-level configurations hierarchically provided global and local evaluations of the location of damage. A signal processing algorithm featuring signal correlation was proposed to facilitate accurate extraction of the arrival time of damage-scattered waves in the time domain. The diagnostic results demonstrate that the proposed approach is capable of identifying the locations of multiple notches with good accuracy.

  17. Activation of Notch1 synergizes with multiple pathways in promoting castration-resistant prostate cancer

    PubMed Central

    Stoyanova, Tanya; Riedinger, Mireille; Lin, Shu; Faltermeier, Claire M.; Smith, Bryan A.; Zhang, Kelvin X.; Going, Catherine C.; Goldstein, Andrew S.; Lee, John K.; Drake, Justin M.; Rice, Meghan A.; Hsu, En-Chi; Nowroozizadeh, Behdokht; Castor, Brandon; Orellana, Sandra Y.; Blum, Steven M.; Cheng, Donghui; Pienta, Kenneth J.; Reiter, Robert E.; Pitteri, Sharon J.; Huang, Jiaoti; Witte, Owen N.

    2016-01-01

    Metastatic castration-resistant prostate cancer (CRPC) is the primary cause of prostate cancer-specific mortality. Defining new mechanisms that can predict recurrence and drive lethal CRPC is critical. Here, we demonstrate that localized high-risk prostate cancer and metastatic CRPC, but not benign prostate tissues or low/intermediate-risk prostate cancer, express high levels of nuclear Notch homolog 1, translocation-associated (Notch1) receptor intracellular domain. Chronic activation of Notch1 synergizes with multiple oncogenic pathways altered in early disease to promote the development of prostate adenocarcinoma. These tumors display features of epithelial-to-mesenchymal transition, a cellular state associated with increased tumor aggressiveness. Consistent with its activation in clinical CRPC, tumors driven by Notch1 intracellular domain in combination with multiple pathways altered in prostate cancer are metastatic and resistant to androgen deprivation. Our study provides functional evidence that the Notch1 signaling axis synergizes with alternative pathways in promoting metastatic CRPC and may represent a new therapeutic target for advanced prostate cancer. PMID:27694579

  18. mTORC1 is involved in hypoxia-induced pulmonary hypertension through the activation of Notch3.

    PubMed

    Wang, Wang; Liu, Jie; Ma, Aiping; Miao, Ran; Jin, Yuling; Zhang, Hongbing; Xu, Kaifeng; Wang, Chen; Wang, Jun

    2014-12-01

    Hypoxia-induced pulmonary hypertension (HPH) is a clinical syndrome associated with high morbidity and mortality. However, the underlying mechanisms remain unclear. Both the mammalian target of rapamycin (mTOR) and the Notch3 signaling pathways have been reported to be involved in HPH; however, it is unknown whether there is a connection between these two signaling pathways in HPH. This study was designed to investigate the relationship between mTOR and Notch3 in HPH. After treatment with 10% O2 for 4 weeks, male C57BL/6 mice developed HPH with gradually increased right ventricular systolic pressure (RVSP), right ventricular hypertrophy index (RVHI), and pulmonary arteriolar remodeling accompanied by the activation of mTOR complex 1 (mTORC1) and Notch3 in the lung tissue and pulmonary arterioles. Pretreatment with the mTORC1 inhibitor rapamycin not only alleviated pulmonary arterial pressure and pulmonary arteriolar remodeling but also suppressed hypoxia-induced mTORC1 and Notch3 activation. Prophylactic N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) administration, a Notch signaling inhibitor, protected against the effects of hypoxia. These in vivo data were confirmed by in vitro experiments on human pulmonary arterial smooth muscle cell (PASMC) exposed to 3% O2 . Furthermore, overexpression of Notch3 intracellular domain partially abrogated the inhibitory effects of rapamycin on human PASMC proliferation. These data indicate that both mTORC1 and Notch3 signaling are involved in HPH and the downstream effects of mTORC1 activation in HPH are partially dependent on the activation of Notch3 signaling. PMID:24825564

  19. γ-Secretase inhibitor DAPT attenuates intimal hyperplasia of vein grafts by inhibition of Notch1 signaling.

    PubMed

    Xiao, Yong Guang; Wang, Wei; Gong, Dan; Mao, Zhi Fu

    2014-06-01

    The proliferation and high plasticity of vascular smooth muscle cells (vSMCs) are the major reasons for restenosis of vein grafts. N-[N-(3, 5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT), specific inhibitor of γ-secretase, has been shown to regulate vSMC proliferation and differentiation through the Notch signaling pathway, but the pathophysiological importance of these findings in venous grafts has not yet been determined. A rat vein graft model was employed wherein the left jugular vein was surgically interposed into the left common carotid artery. Daily subcutaneous injections of DAPT or placebo (DMSO) were administered postoperatively (control animals received no treatment). We showed that DAPT can inhibit restenosis of vein grafts by inhibiting vSMC proliferation and increasing apoptosis in vivo. Notch1 signaling was highly active during the development of intima thickening. By blocking the Notch signaling pathway, the γ-secretase inhibitor DAPT can significantly attenuated intima thickening. These changes in vein grafts coincided with enhanced binding of myocardin to the smooth muscle-specific protein SM22 and smooth muscle myosin heavy chain at the promoters of vSMC differentiation-specific genes. These studies showed that DAPT can restore the vSMC phenotype and inhibit vSMC proliferation through suppression of the Notch1 signaling pathway, and thus opens a new avenue for the treatment of restenosis in vein grafts. PMID:24751889

  20. Role of Notch-1 signaling pathway in PC12 cell apoptosis induced by amyloid beta-peptide (25–35)

    PubMed Central

    Liang, Huimin; Zhang, Yaozhou; Shi, Xiaoyan; Wei, Tianxiang; Lou, Jiyu

    2014-01-01

    Recent studies have demonstrated that Notch-1 expression is increased in the hippocampus of Alzheimer's disease patients. We speculate that Notch-1 signaling may be involved in PC12 cell apoptosis induced by amyloid beta-peptide (25–35) (Aβ25–35). In the present study, PC12 cells were cultured with different doses (0, 0.1, 1.0, 10 and 100 nmol/L) of N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester, a Notch-1 signaling pathway inhibitor, for 30 minutes. Then cultured cells were induced with Aβ25–35 for 48 hours. Pretreatment of PC12 cells with high doses of N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (> 10 nmol/L) prolonged the survival of PC12 cells after Aβ25–35 induction, decreased the expression of apoptosis-related proteins caspase-3, -8, -9, increased the activity of oxidative stress-related superoxide dismutase and catalase, inhibited the production of active oxygen, and reduced nuclear factor kappa B expression. This study indicates that the Notch-1 signaling pathway plays a pivotal role in Aβ25–35-induced PC12 apoptosis. PMID:25221582

  1. Embryonic Ethanol Exposure Dysregulates BMP and Notch Signaling, Leading to Persistent Atrio-Ventricular Valve Defects in Zebrafish

    PubMed Central

    Sarmah, Swapnalee; Muralidharan, Pooja

    2016-01-01

    Fetal alcohol spectrum disorder (FASD), birth defects associated with ethanol exposure in utero, includes a wide spectrum of congenital heart defects (CHDs), the most prevalent of which are septal and conotruncal defects. Zebrafish FASD model was used to dissect the mechanisms underlying FASD-associated CHDs. Embryonic ethanol exposure (3–24 hours post fertilization) led to defects in atrio-ventricular (AV) valvulogenesis beginning around 37 hpf, a morphogenetic event that arises long after ethanol withdrawal. Valve leaflets of the control embryos comprised two layers of cells confined at the compact atrio-ventricular canal (AVC). Ethanol treated embryos had extended AVC and valve forming cells were found either as rows of cells spanning the AVC or as unorganized clusters near the AV boundary. Ethanol exposure reduced valve precursors at the AVC, but some ventricular cells in ethanol treated embryos exhibited few characteristics of valve precursors. Late staged larvae and juvenile fish exposed to ethanol during embryonic development had faulty AV valves. Examination of AVC morphogenesis regulatory networks revealed that early ethanol exposure disrupted the Bmp signaling gradient in the heart during valve formation. Bmp signaling was prominent at the AVC in controls, but ethanol-exposed embryos displayed active Bmp signaling throughout the ventricle. Ethanol exposure also led to mislocalization of Notch signaling cells in endocardium during AV valve formation. Normally, highly active Notch signaling cells were organized at the AVC. In ethanol-exposed embryos, highly active Notch signaling cells were dispersed throughout the ventricle. At later stages, ethanol-exposed embryos exhibited reduced Wnt/β-catenin activity at the AVC. We conclude that early embryonic ethanol exposure alters Bmp, Notch and other signaling activities during AVC differentiation leading to faulty valve morphogenesis and valve defects persist in juvenile fish. PMID:27556898

  2. Embryonic Ethanol Exposure Dysregulates BMP and Notch Signaling, Leading to Persistent Atrio-Ventricular Valve Defects in Zebrafish.

    PubMed

    Sarmah, Swapnalee; Muralidharan, Pooja; Marrs, James A

    2016-01-01

    Fetal alcohol spectrum disorder (FASD), birth defects associated with ethanol exposure in utero, includes a wide spectrum of congenital heart defects (CHDs), the most prevalent of which are septal and conotruncal defects. Zebrafish FASD model was used to dissect the mechanisms underlying FASD-associated CHDs. Embryonic ethanol exposure (3-24 hours post fertilization) led to defects in atrio-ventricular (AV) valvulogenesis beginning around 37 hpf, a morphogenetic event that arises long after ethanol withdrawal. Valve leaflets of the control embryos comprised two layers of cells confined at the compact atrio-ventricular canal (AVC). Ethanol treated embryos had extended AVC and valve forming cells were found either as rows of cells spanning the AVC or as unorganized clusters near the AV boundary. Ethanol exposure reduced valve precursors at the AVC, but some ventricular cells in ethanol treated embryos exhibited few characteristics of valve precursors. Late staged larvae and juvenile fish exposed to ethanol during embryonic development had faulty AV valves. Examination of AVC morphogenesis regulatory networks revealed that early ethanol exposure disrupted the Bmp signaling gradient in the heart during valve formation. Bmp signaling was prominent at the AVC in controls, but ethanol-exposed embryos displayed active Bmp signaling throughout the ventricle. Ethanol exposure also led to mislocalization of Notch signaling cells in endocardium during AV valve formation. Normally, highly active Notch signaling cells were organized at the AVC. In ethanol-exposed embryos, highly active Notch signaling cells were dispersed throughout the ventricle. At later stages, ethanol-exposed embryos exhibited reduced Wnt/β-catenin activity at the AVC. We conclude that early embryonic ethanol exposure alters Bmp, Notch and other signaling activities during AVC differentiation leading to faulty valve morphogenesis and valve defects persist in juvenile fish. PMID:27556898

  3. Role of stromal cell-mediated Notch signaling in CLL resistance to chemotherapy

    PubMed Central

    Kamdje, A H Nwabo; Bassi, G; Pacelli, L; Malpeli, G; Amati, E; Nichele, I; Pizzolo, G; Krampera, M

    2012-01-01

    Stromal cells are essential components of the bone marrow (BM) microenvironment that regulate and support the survival of different tumors, including chronic lymphocytic leukemia (CLL). In this study, we investigated the role of Notch signaling in the promotion of survival and chemoresistance of human CLL cells in coculture with human BM-mesenchymal stromal cells (hBM-MSCs) of both autologous and allogeneic origin. The presence of BM-MSCs rescued CLL cells from apoptosis both spontaneously and following induction with various drugs, including Fludarabine, Cyclophosphamide, Bendamustine, Prednisone and Hydrocortisone. The treatment with a combination of anti-Notch-1, Notch-2 and Notch-4 antibodies or γ-secretase inhibitor XII (GSI XII) reverted this protective effect by day 3, even in presence of the above-mentioned drugs. Overall, our findings show that stromal cell-mediated Notch-1, Notch-2 and Notch-4 signaling has a role in CLL survival and resistance to chemotherapy. Therefore, its blocking could be an additional tool to overcome drug resistance and improve the therapeutic strategies for CLL. PMID:22829975

  4. ESCRT-0 is not required for ectopic Notch activation and tumor suppression in Drosophila.

    PubMed

    Tognon, Emiliana; Wollscheid, Nadine; Cortese, Katia; Tacchetti, Carlo; Vaccari, Thomas

    2014-01-01

    Multivesicular endosome (MVE) sorting depends on proteins of the Endosomal Sorting Complex Required for Transport (ESCRT) family. These are organized in four complexes (ESCRT-0, -I, -II, -III) that act in a sequential fashion to deliver ubiquitylated cargoes into the internal luminal vesicles (ILVs) of the MVE. Drosophila genes encoding ESCRT-I, -II, -III components function in sorting signaling receptors, including Notch and the JAK/STAT signaling receptor Domeless. Loss of ESCRT-I, -II, -III in Drosophila epithelia causes altered signaling and cell polarity, suggesting that ESCRTs genes are tumor suppressors. However, the nature of the tumor suppressive function of ESCRTs, and whether tumor suppression is linked to receptor sorting is unclear. Unexpectedly, a null mutant in Hrs, encoding one of the components of the ESCRT-0 complex, which acts upstream of ESCRT-I, -II, -III in MVE sorting is dispensable for tumor suppression. Here, we report that two Drosophila epithelia lacking activity of Stam, the other known components of the ESCRT-0 complex, or of both Hrs and Stam, accumulate the signaling receptors Notch and Dome in endosomes. However, mutant tissue surprisingly maintains normal apico-basal polarity and proliferation control and does not display ectopic Notch signaling activation, unlike cells that lack ESCRT-I, -II, -III activity. Overall, our in vivo data confirm previous evidence indicating that the ESCRT-0 complex plays no crucial role in regulation of tumor suppression, and suggest re-evaluation of the relationship of signaling modulation in endosomes and tumorigenesis. PMID:24718108

  5. Decreased Satellite Cell Number and Function in Humans and Mice With Type 1 Diabetes Is the Result of Altered Notch Signaling.

    PubMed

    D'Souza, Donna M; Zhou, Sarah; Rebalka, Irena A; MacDonald, Blair; Moradi, Jasmin; Krause, Matthew P; Al-Sajee, Dhuha; Punthakee, Zubin; Tarnopolsky, Mark A; Hawke, Thomas J

    2016-10-01

    Type 1 diabetes (T1D) negatively influences skeletal muscle health; however, its effect on muscle satellite cells (SCs) remains largely unknown. SCs from samples from rodents (Akita) and human subjects with T1D were examined to discern differences in SC density and functionality compared with samples from their respective control subjects. Examination of the Notch pathway was undertaken to investigate its role in changes to SC functionality. Compared with controls, Akita mice demonstrated increased muscle damage after eccentric exercise along with a decline in SC density and myogenic capacity. Quantification of components of the Notch signaling pathway revealed a persistent activation of Notch signaling in Akita SCs, which could be reversed with the Notch inhibitor DAPT. Similar to Akita samples, skeletal muscle from human subjects with T1D displayed a significant reduction in SC content, and the Notch ligand, DLL1, was significantly increased compared with control subjects, supporting the dysregulated Notch pathway observed in Akita muscles. These data indicate that persistent activation in Notch signaling impairs SC functionality in the T1D muscle, resulting in a decline in SC content. Given the vital role played by the SC in muscle growth and maintenance, these findings suggest that impairments in SC capacities play a primary role in the skeletal muscle myopathy that characterizes T1D. PMID:27335233

  6. Decreased Satellite Cell Number and Function in Humans and Mice With Type 1 Diabetes Is the Result of Altered Notch Signaling.

    PubMed

    D'Souza, Donna M; Zhou, Sarah; Rebalka, Irena A; MacDonald, Blair; Moradi, Jasmin; Krause, Matthew P; Al-Sajee, Dhuha; Punthakee, Zubin; Tarnopolsky, Mark A; Hawke, Thomas J

    2016-10-01

    Type 1 diabetes (T1D) negatively influences skeletal muscle health; however, its effect on muscle satellite cells (SCs) remains largely unknown. SCs from samples from rodents (Akita) and human subjects with T1D were examined to discern differences in SC density and functionality compared with samples from their respective control subjects. Examination of the Notch pathway was undertaken to investigate its role in changes to SC functionality. Compared with controls, Akita mice demonstrated increased muscle damage after eccentric exercise along with a decline in SC density and myogenic capacity. Quantification of components of the Notch signaling pathway revealed a persistent activation of Notch signaling in Akita SCs, which could be reversed with the Notch inhibitor DAPT. Similar to Akita samples, skeletal muscle from human subjects with T1D displayed a significant reduction in SC content, and the Notch ligand, DLL1, was significantly increased compared with control subjects, supporting the dysregulated Notch pathway observed in Akita muscles. These data indicate that persistent activation in Notch signaling impairs SC functionality in the T1D muscle, resulting in a decline in SC content. Given the vital role played by the SC in muscle growth and maintenance, these findings suggest that impairments in SC capacities play a primary role in the skeletal muscle myopathy that characterizes T1D.

  7. Assembly of a Notch transcriptional activation complex requires multimerization.

    PubMed

    Vasquez-Del Carpio, Rodrigo; Kaplan, Fred M; Weaver, Kelly L; VanWye, Jeffrey D; Alves-Guerra, Marie-Clotilde; Robbins, David J; Capobianco, Anthony J

    2011-04-01

    Notch transmembrane receptors direct essential cellular processes, such as proliferation and differentiation, through direct cell-to-cell interactions. Inappropriate release of the intracellular domain of Notch (N(ICD)) from the plasma membrane results in the accumulation of deregulated nuclear N(ICD) that has been linked to human cancers, notably T-cell acute lymphoblastic leukemia (T-ALL). Nuclear N(ICD) forms a transcriptional activation complex by interacting with the coactivator protein Mastermind-like 1 and the DNA binding protein CSL (for CBF-1/Suppressor of Hairless/Lag-1) to regulate target gene expression. Although it is well understood that N(ICD) forms a transcriptional activation complex, little is known about how the complex is assembled. In this study, we demonstrate that N(ICD) multimerizes and that these multimers function as precursors for the stepwise assembly of the Notch activation complex. Importantly, we demonstrate that the assembly is mediated by N(ICD) multimers interacting with Skip and Mastermind. These interactions form a preactivation complex that is then resolved by CSL to form the Notch transcriptional activation complex on DNA.

  8. Notch2 receptor signaling controls functional differentiation of dendritic cells in the spleen and intestine.

    PubMed

    Lewis, Kanako L; Caton, Michele L; Bogunovic, Milena; Greter, Melanie; Grajkowska, Lucja T; Ng, Dennis; Klinakis, Apostolos; Charo, Israel F; Jung, Steffen; Gommerman, Jennifer L; Ivanov, Ivaylo I; Liu, Kang; Merad, Miriam; Reizis, Boris

    2011-11-23

    Dendritic cells (DCs) in tissues and lymphoid organs comprise distinct functional subsets that differentiate in situ from circulating progenitors. Tissue-specific signals that regulate DC subset differentiation are poorly understood. We report that DC-specific deletion of the Notch2 receptor caused a reduction of DC populations in the spleen. Within the splenic CD11b(+) DC subset, Notch signaling blockade ablated a distinct population marked by high expression of the adhesion molecule Esam. The Notch-dependent Esam(hi) DC subset required lymphotoxin beta receptor signaling, proliferated in situ, and facilitated CD4(+) T cell priming. The Notch-independent Esam(lo) DCs expressed monocyte-related genes and showed superior cytokine responses. In addition, Notch2 deletion led to the loss of CD11b(+)CD103(+) DCs in the intestinal lamina propria and to a corresponding decrease of IL-17-producing CD4(+) T cells in the intestine. Thus, Notch2 is a common differentiation signal for T cell-priming CD11b(+) DC subsets in the spleen and intestine.

  9. Notch Signalling Is Required for the Formation of Structurally Stable Muscle Fibres in Zebrafish

    PubMed Central

    Pascoal, Susana; Esteves de Lima, Joana; Leslie, Jonathan D.; Hughes, Simon M.; Saúde, Leonor

    2013-01-01

    Background Accurate regulation of Notch signalling is central for developmental processes in a variety of tissues, but its function in pectoral fin development in zebrafish is still unknown. Methodology/Principal Findings Here we show that core elements necessary for a functional Notch pathway are expressed in developing pectoral fins in or near prospective muscle territories. Blocking Notch signalling at different levels of the pathway consistently leads to the formation of thin, wavy, fragmented and mechanically weak muscles fibres and loss of stress fibres in endoskeletal disc cells in pectoral fins. Although the structural muscle genes encoding Desmin and Vinculin are normally transcribed in Notch-disrupted pectoral fins, their proteins levels are severely reduced, suggesting that weak mechanical forces produced by the muscle fibres are unable to stabilize/localize these proteins. Moreover, in Notch signalling disrupted pectoral fins there is a decrease in the number of Pax7-positive cells indicative of a defect in myogenesis. Conclusions/Significance We propose that by controlling the differentiation of myogenic progenitor cells, Notch signalling might secure the formation of structurally stable muscle fibres in the zebrafish pectoral fin. PMID:23840804

  10. Notch activation mediates angiotensin II-induced vascular remodeling by promoting the proliferation and migration of vascular smooth muscle cells.

    PubMed

    Ozasa, Yukako; Akazawa, Hiroshi; Qin, Yingjie; Tateno, Kaoru; Ito, Kaoru; Kudo-Sakamoto, Yoko; Yano, Masamichi; Yabumoto, Chizuru; Naito, Atsuhiko T; Oka, Toru; Lee, Jong-Kook; Minamino, Tohru; Nagai, Toshio; Kobayashi, Yoshio; Komuro, Issei

    2013-10-01

    Notch signaling is involved in an intercellular communication mechanism that is essential for coordinated cell fate determination and tissue morphogenesis. The biological effects of Notch signaling are context-dependent. We investigated the functional and hierarchical relationship between angiotensin (Ang) II receptor signaling and Notch signaling in vascular smooth muscle cells (VSMCs). A fluorogenic substrate assay revealed directly that the enzymatic activity of γ-secretase was enhanced after 10 min of Ang II stimulation in HEK293 cells expressing Ang II type 1 receptor. Notch cleavage by γ-secretase was consistently induced and peaked at 10 min after Ang II stimulation, and the Ang II-stimulated increase in Notch intracellular domain production was significantly suppressed by treatment with the γ-secretase inhibitor DAPT. Treatment with DAPT also significantly reduced the Ang II-stimulated proliferation and migration of human aortic VSMCs, as revealed by BrdU incorporation and the Boyden chamber assay, respectively. Systemic administration of the γ-secretase inhibitor dibenzazepine reduced Ang II-induced medial thickening and perivascular fibrosis in the aortas of wild-type mice. These findings suggest that the hierarchical Ang II receptor-Notch signaling pathway promotes the proliferation and migration of VSMCs, and thereby contributes to the progression of vascular remodeling. PMID:23719127

  11. LFA-1/ICAM-1 Ligation in Human T Cells Promotes Th1 Polarization through a GSK3β Signaling-Dependent Notch Pathway.

    PubMed

    Verma, Navin K; Fazil, M H U Turabe; Ong, Seow Theng; Chalasani, Madhavi Latha S; Low, Jian Hui; Kottaiswamy, Amuthavalli; P, Praseetha; Kizhakeyil, Atish; Kumar, Sunil; Panda, Aditya K; Freeley, Michael; Smith, Sinead M; Boehm, Bernhard O; Kelleher, Dermot

    2016-07-01

    In this study, we report that the integrin LFA-1 cross-linking with its ligand ICAM-1 in human PBMCs or CD4(+) T cells promotes Th1 polarization by upregulating IFN-γ secretion and T-bet expression. LFA-1 stimulation in PBMCs, CD4(+) T cells, or the T cell line HuT78 activates the Notch pathway by nuclear translocation of cleaved Notch1 intracellular domain (NICD) and upregulation of target molecules Hey1 and Hes1. Blocking LFA-1 by a neutralizing Ab or specific inhibition of Notch1 by a γ-secretase inhibitor substantially inhibits LFA-1/ICAM-1-mediated activation of Notch signaling. We further demonstrate that the Notch pathway activation is dependent on LFA-1/ICAM-1-induced inactivation of glycogen synthase kinase 3β (GSK3β), which is mediated via Akt and ERK. Furthermore, in silico analysis in combination with coimmunoprecipitation assays show an interaction between NICD and GSK3β. Thus, there exists a molecular cross-talk between LFA-1 and Notch1 through the Akt/ERK-GSK3β signaling axis that ultimately enhances T cell differentiation toward Th1. Although clinical use of LFA-1 antagonists is limited by toxicity related to immunosuppression, these findings support the concept that Notch inhibitors could be attractive for prevention or treatment of Th1-related immunologic disorders and have implications at the level of local inflammatory responses. PMID:27206767

  12. DSL-Notch signaling in the Drosophila brain in response to olfactory stimulation.

    PubMed

    Lieber, Toby; Kidd, Simon; Struhl, Gary

    2011-02-10

    Delta/Serrate/Lag2 (DSL) ligands and their Notch family receptors have profound and pervasive roles in development. They are also expressed in adult tissues, notably in mature neurons and glia in the brain, where their roles are unknown. Here, focusing on the sense of smell in adult Drosophila, we show that Notch is activated in select olfactory receptor neurons (ORNs) in an odorant-specific fashion. This response requires olfactory receptor activity and the Notch ligand Delta. We present evidence that Notch activation depends on synaptic transmission by the ORNs in which the receptors are active and is modulated by the activity of local interneurons in the antennal lobe. It is also subject to regulatory inputs from olfactory receptor activity in other ORNs. These findings identify a correlate of stimulus-dependent brain activity and potentially new forms of neural integration and plasticity.

  13. Delta-like 4-mediated Notch signaling is required for early T-cell development in a three-dimensional thymic structure.

    PubMed

    Hirano, Ken-ichi; Negishi, Naoko; Yazawa, Masaki; Yagita, Hideo; Habu, Sonoko; Hozumi, Katsuto

    2015-08-01

    Delta-like 4 (Dll4)-mediated Notch signaling is critical for specifying T-cell fate, but how Dll4-mediated Notch signaling actually contributes to T-cell development in the thymus remains unclear. To explore this mechanism in the thymic three-dimensional structure, we performed fetal thymus organ culture using Dll4-deficient mice. DN1a/b+DN2mt cells, which had not yet committed to either the αβ T or γδ T/NK cell lineage, did not differentiate into the αβ T-cell lineage in Dll4-deficient thymus despite the lack of cell fate conversion into other lineages. However, DN3 cells efficiently differentiated into a later developmental stage of αβ T cells, the double-positive (DP) stage, although the proliferation was significantly impaired during the differentiation process. These findings suggest that the requirement for Notch signaling differs between the earliest and pre-TCR-bearing precursors and that continued Notch signaling is required for proper differentiation with active proliferation of αβ T lineage cells. Furthermore, we showed that Notch signaling increased the c-Myc expression in DN3 cells in the thymus and that its overexpression rescued the proliferation and differentiation of DN3 cells in the Dll4-null thymus. Therefore, c-Myc plays a central role in the transition from stage DN3 to DP as a downstream target of Notch signaling.

  14. Delta/Notch-Like EGF-Related Receptor (DNER) Is Not a Notch Ligand.

    PubMed

    Greene, Maxwell; Lai, Yongjie; Pajcini, Kostandin; Bailis, Will; Pear, Warren S; Lancaster, Eric

    2016-01-01

    Delta/Notch-like EGF-related receptor (DNER) has been reported to act as a Notch ligand, despite lacking a Delta/Serrate/Lag (DSL) binding domain common to all other known ligands. The established Notch ligand Delta-like 1 (DLL1), but not DNER, activated Notch1 in a luciferase assay, prevented the differentiation of myoblasts through Notch signaling, and bound Notch-fc in a cell-based assay. DNER is not a Notch ligand and its true function remains unknown. PMID:27622512

  15. Delta/Notch-Like EGF-Related Receptor (DNER) Is Not a Notch Ligand.

    PubMed

    Greene, Maxwell; Lai, Yongjie; Pajcini, Kostandin; Bailis, Will; Pear, Warren S; Lancaster, Eric

    2016-01-01

    Delta/Notch-like EGF-related receptor (DNER) has been reported to act as a Notch ligand, despite lacking a Delta/Serrate/Lag (DSL) binding domain common to all other known ligands. The established Notch ligand Delta-like 1 (DLL1), but not DNER, activated Notch1 in a luciferase assay, prevented the differentiation of myoblasts through Notch signaling, and bound Notch-fc in a cell-based assay. DNER is not a Notch ligand and its true function remains unknown.

  16. Delta/Notch-Like EGF-Related Receptor (DNER) Is Not a Notch Ligand

    PubMed Central

    Lai, Yongjie; Pajcini, Kostandin; Bailis, Will; Pear, Warren S.; Lancaster, Eric

    2016-01-01

    Delta/Notch-like EGF-related receptor (DNER) has been reported to act as a Notch ligand, despite lacking a Delta/Serrate/Lag (DSL) binding domain common to all other known ligands. The established Notch ligand Delta-like 1 (DLL1), but not DNER, activated Notch1 in a luciferase assay, prevented the differentiation of myoblasts through Notch signaling, and bound Notch-fc in a cell-based assay. DNER is not a Notch ligand and its true function remains unknown. PMID:27622512

  17. Notch signaling is required for the formation of mesangial cells from a stromal mesenchyme precursor during kidney development

    PubMed Central

    Boyle, Scott C.; Liu, Zhenyi; Kopan, Raphael

    2014-01-01

    Mesangial cells are specialized pericyte/smooth muscle cells that surround and constrain the vascular network within the glomerulus of the kidney. They are derived from the stromal mesenchyme, a progenitor population distinct from nephron stem cells. Whether mesangial cells have a distinct origin from vascular smooth muscle cells (VSMCs) and the pathways that govern their specification are unknown. Here we show that Notch signaling in stromal progenitors is essential for mesangial cell formation but is dispensable for the smooth muscle and interstitial cell lineages. Deletion of RBPjk, the common DNA-binding partner of all active Notch receptors, with Foxd1tgCre results in glomerular aneurysm and perinatal death from kidney failure. This defect occurs early in glomerular development as stromal-derived, desmin-positive cells fail to coalesce near forming nephrons and thus do not invade the vascular cleft of the S-shaped body. This is in contrast to other mutants in which the loss of the mesangium was due to migration defects, and suggests that loss of Notch signaling results in a failure to specify this population from the stroma. Interestingly, Pdgfrb-positive VSMCs do not enter the vascular cleft and cannot rescue the mesangial deficiency. Notch1 and Notch2 act redundantly through γ-secretase and RBPjk in this process, as individual mutants have mesangial cells at birth. Together, these data demonstrate a unique origin of mesangial cells and demonstrate a novel, redundant function for Notch receptors in mesangial cell specification, proliferation or survival during kidney development. PMID:24353058

  18. Dystroglycan is involved in skin morphogenesis downstream of the Notch signaling pathway.

    PubMed

    Sirour, Cathy; Hidalgo, Magdalena; Bello, Valérie; Buisson, Nicolas; Darribère, Thierry; Moreau, Nicole

    2011-08-15

    Dystroglycan (Dg) is a transmembrane protein involved both in the assembly and maintenance of basement membrane structures essential for tissue morphogenesis, and the transmission of signals across the plasma membrane. We used a morpholino knockdown approach to investigate the function of Dg during Xenopus laevis skin morphogenesis. The loss of Dg disrupts epidermal differentiation by affecting the intercalation of multiciliated cells, deposition of laminin, and organization of fibronectin in the extracellular matrix (ECM). Depletion of Dg also affects cell-cell adhesion, as shown by the reduction of E-cadherin expression at the intercellular contacts, without affecting the distribution of β(1) integrins. This was associated with a decrease of cell proliferation, a disruption of multiciliated-cell intercalation, and the down-regulation of the transcription factor P63, a marker of differentiated epidermis. In addition, we demonstrated that inhibition or activation of the Notch pathway prevents and promotes transcription of X-dg. Our study showed for the first time in vivo that Dg, in addition to organizing laminin in the ECM, also acts as a key signaling component in the Notch pathway. PMID:21680717

  19. Angiopoietin-like proteins stimulate HSPC development through interaction with notch receptor signaling

    PubMed Central

    Lin, Michelle I; Price, Emily N; Boatman, Sonja; Hagedorn, Elliott J; Trompouki, Eirini; Satishchandran, Sruthi; Carspecken, Charles W; Uong, Audrey; DiBiase, Anthony; Yang, Song; Canver, Matthew C; Dahlberg, Ann; Lu, Zhigang; Zhang, Cheng Cheng; Orkin, Stuart H; Bernstein, Irwin D; Aster, Jon C; White, Richard M; Zon, Leonard I

    2015-01-01

    Angiopoietin-like proteins (angptls) are capable of ex vivo expansion of mouse and human hematopoietic stem and progenitor cells (HSPCs). Despite this intriguing ability, their mechanism is unknown. In this study, we show that angptl2 overexpression is sufficient to expand definitive HSPCs in zebrafish embryos. Angptl1/2 are required for definitive hematopoiesis and vascular specification of the hemogenic endothelium. The loss-of-function phenotype is reminiscent of the notch mutant mindbomb (mib), and a strong genetic interaction occurs between angptls and notch. Overexpressing angptl2 rescues mib while overexpressing notch rescues angptl1/2 morphants. Gene expression studies in ANGPTL2-stimulated CD34+ cells showed a strong MYC activation signature and myc overexpression in angptl1/2 morphants or mib restored HSPCs formation. ANGPTL2 can increase NOTCH activation in cultured cells and ANGPTL receptor interacted with NOTCH to regulate NOTCH cleavage. Together our data provide insight to the angptl-mediated notch activation through receptor interaction and subsequent activation of myc targets. DOI: http://dx.doi.org/10.7554/eLife.05544.001 PMID:25714926

  20. Chromatin signatures at Notch-regulated enhancers reveal large-scale changes in H3K56ac upon activation

    PubMed Central

    Skalska, Lenka; Stojnic, Robert; Li, Jinghua; Fischer, Bettina; Cerda-Moya, Gustavo; Sakai, Hiroshi; Tajbakhsh, Shahragim; Russell, Steven; Adryan, Boris; Bray, Sarah J

    2015-01-01

    The conserved Notch pathway functions in diverse developmental and disease-related processes, requiring mechanisms to ensure appropriate target selection and gene activation in each context. To investigate the influence of chromatin organisation and dynamics on the response to Notch signalling, we partitioned Drosophila chromatin using histone modifications and established the preferred chromatin conditions for binding of Su(H), the Notch pathway transcription factor. By manipulating activity of a co-operating factor, Lozenge/Runx, we showed that it can help facilitate these conditions. While many histone modifications were unchanged by Su(H) binding or Notch activation, we detected rapid changes in acetylation of H3K56 at Notch-regulated enhancers. This modification extended over large regions, required the histone acetyl-transferase CBP and was independent of transcription. Such rapid changes in H3K56 acetylation appear to be a conserved indicator of enhancer activation as they also occurred at the mammalian Notch-regulated Hey1 gene and at Drosophila ecdysone-regulated genes. This intriguing example of a core histone modification increasing over short timescales may therefore underpin changes in chromatin accessibility needed to promote transcription following signalling activation. PMID:26069324

  1. Chromatin signatures at Notch-regulated enhancers reveal large-scale changes in H3K56ac upon activation.

    PubMed

    Skalska, Lenka; Stojnic, Robert; Li, Jinghua; Fischer, Bettina; Cerda-Moya, Gustavo; Sakai, Hiroshi; Tajbakhsh, Shahragim; Russell, Steven; Adryan, Boris; Bray, Sarah J

    2015-07-14

    The conserved Notch pathway functions in diverse developmental and disease-related processes, requiring mechanisms to ensure appropriate target selection and gene activation in each context. To investigate the influence of chromatin organisation and dynamics on the response to Notch signalling, we partitioned Drosophila chromatin using histone modifications and established the preferred chromatin conditions for binding of Su(H), the Notch pathway transcription factor. By manipulating activity of a co-operating factor, Lozenge/Runx, we showed that it can help facilitate these conditions. While many histone modifications were unchanged by Su(H) binding or Notch activation, we detected rapid changes in acetylation of H3K56 at Notch-regulated enhancers. This modification extended over large regions, required the histone acetyl-transferase CBP and was independent of transcription. Such rapid changes in H3K56 acetylation appear to be a conserved indicator of enhancer activation as they also occurred at the mammalian Notch-regulated Hey1 gene and at Drosophila ecdysone-regulated genes. This intriguing example of a core histone modification increasing over short timescales may therefore underpin changes in chromatin accessibility needed to promote transcription following signalling activation. PMID:26069324

  2. Intracellular-activated Notch1 can reactivate Kaposi's sarcoma-associated herpesvirus from latency

    SciTech Connect

    Lan, Ke; Murakami, Masanao; Choudhuri, Tathagata; Kuppers, Daniel A.; Robertson, Erle S. . E-mail: erle@mail.med.upenn.edu

    2006-08-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) establishes a predominantly latent infection in the infected host. Importantly, during latency, only a small number of viral encoded genes are expressed. This viral gene expression pattern contributes to the establishment of long-term infection as well as the ability of the virus to evade the immune system. Previous studies have been shown that the replication and transcription activator (RTA) encoded by ORF50 activates it downstream genes and initiates viral lytic reactivation through functional interaction with RBP-J{kappa}, the major downstream effector of the Notch signaling pathway. This indicates that RTA can usurp the conserved Notch signaling pathway and mimic the activities of intracellular Notch1 to modulate gene expression. In this report, we show that the activated intracellular domain of Notch1 (ICN) is aberrantly accumulated in KSHV latently infected pleural effusion lymphoma (PEL) cells. ICN activated the RTA promoter in a dose-dependent manner, and forced expression of ICN in latently infected KSHV-positive cells initiated full blown lytic replication with the production of infectious viral progeny. However, latency-associated nuclear antigen (LANA) which is predominantly expressed during latency can specifically down-modulate ICN-mediated transactivation of RTA and so control KSHV for lytic reactivation. These results demonstrate that LANA can inhibit viral lytic replication by antagonizing ICN function and suggest that LANA is a critical component of the regulatory control mechanism for switching between viral latent and lytic replication by directly interacting with effectors of the conserved cellular Notch1 pathway.

  3. The Conserved MAPK Site in E(spl)-M8, an Effector of Drosophila Notch Signaling, Controls Repressor Activity during Eye Development

    PubMed Central

    Bandyopadhyay, Mohna; Bishop, Clifton P.

    2016-01-01

    The specification of patterned R8 photoreceptors at the onset of eye development depends on timely inhibition of Atonal (Ato) by the Enhancer of split (E(spl) repressors. Repression of Ato by E(spl)-M8 requires the kinase CK2 and is inhibited by the phosphatase PP2A. The region targeted by CK2 harbors additional conserved Ser residues, raising the prospect of regulation via multi-site phosphorylation. Here we investigate one such motif that meets the consensus for modification by MAPK, a well-known effector of Epidermal Growth Factor Receptor (EGFR) signaling. Our studies reveal an important role for the predicted MAPK site of M8 during R8 birth. Ala/Asp mutations reveal that the CK2 and MAPK sites ensure that M8 repression of Ato and the R8 fate occurs in a timely manner and at a specific stage (stage-2/3) of the morphogenetic furrow (MF). M8 repression of Ato is mitigated by halved EGFR dosage, and this effect requires an intact MAPK site. Accordingly, variants with a phosphomimetic Asp at the MAPK site exhibit earlier (inappropriate) activity against Ato even at stage-1 of the MF, where a positive feedback-loop is necessary to raise Ato levels to a threshold sufficient for the R8 fate. Analysis of deletion variants reveals that both kinase sites (CK2 and MAPK) contribute to ‘cis’-inhibition of M8. This key regulation by CK2 and MAPK is bypassed by the E(spl)D mutation encoding the truncated protein M8*, which potently inhibits Ato at stage-1 of R8 birth. We also provide evidence that PP2A likely targets the MAPK site. Thus multi-site phosphorylation controls timely onset of M8 repressor activity in the eye, a regulation that appears to be dispensable in the bristle. The high conservation of the CK2 and MAPK sites in the insect E(spl) proteins M7, M5 and Mγ, and their mammalian homologue HES6, suggest that this mode of regulation may enable E(spl)/HES proteins to orchestrate repression by distinct tissue-specific mechanisms, and is likely to have broader

  4. C. elegans GLP-1/Notch activates transcription in a probability gradient across the germline stem cell pool

    PubMed Central

    Lee, ChangHwan; Sorensen, Erika B; Lynch, Tina R; Kimble, Judith

    2016-01-01

    C. elegans Notch signaling maintains a pool of germline stem cells within their single-celled mesenchymal niche. Here we investigate the Notch transcriptional response in germline stem cells using single-molecule fluorescence in situ hybridization coupled with automated, high-throughput quantitation. This approach allows us to distinguish Notch-dependent nascent transcripts in the nucleus from mature mRNAs in the cytoplasm. We find that Notch-dependent active transcription sites occur in a probabilistic fashion and, unexpectedly, do so in a steep gradient across the stem cell pool. Yet these graded nuclear sites create a nearly uniform field of mRNAs that extends beyond the region of transcriptional activation. Therefore, active transcription sites provide a precise view of where the Notch-dependent transcriptional complex is productively engaged. Our findings offer a new window into the Notch transcriptional response and demonstrate the importance of assaying nascent transcripts at active transcription sites as a readout for canonical signaling. DOI: http://dx.doi.org/10.7554/eLife.18370.001 PMID:27705743

  5. Disruption of Notch signaling aggravates irradiation-induced bone marrow injury, which is ameliorated by a soluble Dll1 ligand through Csf2rb2 upregulation

    PubMed Central

    Chen, Juan-Juan; Gao, Xiao-Tong; Yang, Lan; Fu, Wei; Liang, Liang; Li, Jun-Chang; Hu, Bin; Sun, Zhi-Jian; Huang, Si-Yong; Zhang, Yi-Zhe; Liang, Ying-Min; Qin, Hong-Yan; Han, Hua

    2016-01-01

    Physical and chemical insult-induced bone marrow (BM) damage often leads to lethality resulting from the depletion of hematopoietic stem and progenitor cells (HSPCs) and/or a deteriorated BM stroma. Notch signaling plays an important role in hematopoiesis, but whether it is involved in BM damage remains unclear. In this study, we found that conditional disruption of RBP-J, the transcription factor of canonical Notch signaling, increased irradiation sensitivity in mice. Activation of Notch signaling with the endothelial cell (EC)-targeted soluble Dll1 Notch ligand mD1R promoted BM recovery after irradiation. mD1R treatment resulted in a significant increase in myeloid progenitors and monocytes in the BM, spleen and peripheral blood after irradiation. mD1R also enhanced hematopoiesis in mice treated with cyclophosphamide, a chemotherapeutic drug that induces BM suppression. Mechanistically, mD1R increased the proliferation and reduced the apoptosis of myeloid cells in the BM after irradiation. The β chain cytokine receptor Csf2rb2 was identified as a downstream molecule of Notch signaling in hematopoietic cells. mD1R improved hematopoietic recovery through up-regulation of the hematopoietic expression of Csf2rb2. Our findings reveal the role of Notch signaling in irradiation- and drug-induced BM suppression and establish a new potential therapy of BM- and myelo-suppression induced by radiotherapy and chemotherapy. PMID:27188577

  6. 14-3-3{sigma} controls corneal epithelial cell proliferation and differentiation through the Notch signaling pathway

    SciTech Connect

    Xin, Ying; Lu, Qingxian; Li, Qiutang

    2010-02-19

    14-3-3{sigma} (also called stratifin) is specifically expressed in the stratified squamous epithelium and its function was recently shown to be linked to epidermal stratification and differentiation in the skin. In this study, we investigated its role in corneal epithelium cell proliferation and differentiation. We showed that the 14-3-3{sigma} mutation in repeated epilation (Er) mutant mice results in a dominant negative truncated protein. Primary corneal epithelial cells expressing the dominant negative protein failed to undergo high calcium-induced cell cycle arrest and differentiation. We further demonstrated that blocking endogenous 14-3-3{sigma} activity in corneal epithelial cells by overexpressing dominative negative 14-3-3{sigma} led to reduced Notch activity and Notch1/2 transcription. Significantly, expression of the active Notch intracellular domain overcame the block in epithelial cell differentiation in 14-3-3{sigma} mutant-expressing corneal epithelial cells. We conclude that 14-3-3{sigma} is critical for regulating corneal epithelial proliferation and differentiation by regulating Notch signaling activity.

  7. Notch signaling pathway and Cdx2 expression in the development of Barrett's esophagus.

    PubMed

    Tamagawa, Yuji; Ishimura, Norihisa; Uno, Goichi; Yuki, Takafumi; Kazumori, Hideaki; Ishihara, Shunji; Amano, Yuji; Kinoshita, Yoshikazu

    2012-06-01

    Cdx2 expression in esophageal stem cells induced by reflux bile acids may be an important factor for development of Barrett's esophagus, whereas Notch signaling is a molecular signaling pathway that plays an important role in the determination of cell differentiation. ATOH1 (a factor associated with Notch signaling) plays an important role in differentiation of stem cells into goblet cells. However, the relationship between the Notch signaling pathway and Cdx2 expression in the development of Barrett's esophagus has not been explored. The aim of this study was to investigate the interrelationship between Notch signaling and Cdx2 in esophageal epithelial cells. The expressions of Cdx2, MUC2, and intracellular signaling molecules related to Notch signaling (Notch1, Hes1, and ATOH1) were examined using real-time polymerase chain reaction (PCR) and immunohistochemical staining with biopsy specimens obtained from esophageal intestinal metaplasia (IM) with goblet cells (IM⁺) and columnar epithelium not accompanied by goblet cells (IM⁻). For in vitro experiments, we employed human esophageal epithelial cell lines (OE33, OE19, and Het-1A). After forced Cdx2 expression by applying a Cdx2 expression vector to the cells, changes in the expressions of Notch1, Hes1, ATOH1, Cdx2, and MUC2 were analyzed by real-time PCR and western blot analysis. Changes in expressions of Notch1, Hes1, ATOH1, Cdx2, and MUC2 in cells were analyzed following stimulation with bile acids in the presence or absence of Cdx2 blocking with Cdx2-siRNA. Suppressed Hes1 and enhanced ATOH1 and MUC2 expressions were identified in IM⁺ specimens. Forced expression of Cdx2 in cells suppressed Hes1, and enhanced ATOH1 and MUC2 expressions, whereas bile acids suppressed Hes1, and enhanced ATOH1, Cdx2, and MUC2 expressions. On the other hand, these effects were blocked by siRNA-based Cdx2 downregulation. Enhanced expression of Cdx2 by stimulation with bile acids may induce intestinal differentiation of

  8. Family Based Whole Exome Sequencing Reveals the Multifaceted Role of Notch Signaling in Congenital Heart Disease

    PubMed Central

    Chetaille, Philippe; Prince, Andrea; Godard, Beatrice; Leclerc, Severine; Sobreira, Nara; Ling, Hua; Awadalla, Philip; Thibeault, Maryse; Khairy, Paul; Samuels, Mark E.; Andelfinger, Gregor

    2016-01-01

    Left-ventricular outflow tract obstructions (LVOTO) encompass a wide spectrum of phenotypically heterogeneous heart malformations which frequently cluster in families. We performed family based whole-exome and targeted re-sequencing on 182 individuals from 51 families with multiple affected members. Central to our approach is the family unit which serves as a reference to identify causal genotype-phenotype correlations. Screening a multitude of 10 overlapping phenotypes revealed disease associated and co-segregating variants in 12 families. These rare or novel protein altering mutations cluster predominantly in genes (NOTCH1, ARHGAP31, MAML1, SMARCA4, JARID2, JAG1) along the Notch signaling cascade. This is in line with a significant enrichment (Wilcoxon, p< 0.05) of variants with a higher pathogenicity in the Notch signaling pathway in patients compared to controls. The significant enrichment of novel protein truncating and missense mutations in NOTCH1 highlights the allelic and phenotypic heterogeneity in our pediatric cohort. We identified novel co-segregating pathogenic mutations in NOTCH1 associated with left and right-sided cardiac malformations in three independent families with a total of 15 affected individuals. In summary, our results suggest that a small but highly pathogenic fraction of family specific mutations along the Notch cascade are a common cause of LVOTO. PMID:27760138

  9. Nox2 contributes to the arterial endothelial specification of mouse induced pluripotent stem cells by upregulating Notch signaling

    PubMed Central

    Kang, Xueling; Wei, Xiangxiang; Wang, Xinhong; Jiang, Li; Niu, Cong; Zhang, Jianyi; Chen, Sifeng; Meng, Dan

    2016-01-01

    Reactive oxygen species (ROS) have a crucial role in stem-cell differentiation; however, the mechanisms by which ROS regulate the differentiation of stem cells into endothelial cells (ECs) are unknown. Here, we determine the role of ROS produced by NADPH oxidase 2 (Nox2) in the endothelial-lineage specification of mouse induced-pluripotent stem cells (miPSCs). When wild-type (WT) and Nox2-knockout (Nox2−/−) miPSCs were differentiated into ECs (miPSC-ECs), the expression of endothelial markers, arterial endothelial markers, pro-angiogenic cytokines, and Notch pathway components was suppressed in the Nox2−/− cells but increased in both WT and Nox2−/− miPSCs when Nox2 expression was upregulated. Higher levels of Nox2 expression increased Notch signaling and arterial EC differentiation, and this increase was abolished by the inhibition of ROS generation or by the silencing of Notch1 expression. Nox2 deficiency was associated with declines in the survival and angiogenic potency of miPSC-ECs, and capillary and arterial density were lower in the ischemic limbs of mice after treatment with Nox2−/− miPSC-ECs than WT miPSC-EC treatment. Taken together, these observations indicate that Nox2-mediated ROS production promotes arterial EC specification in differentiating miPSCs by activating the Notch signaling pathway and contributes to the angiogenic potency of transplanted miPSC-derived ECs. PMID:27642005

  10. Nox2 contributes to the arterial endothelial specification of mouse induced pluripotent stem cells by upregulating Notch signaling.

    PubMed

    Kang, Xueling; Wei, Xiangxiang; Wang, Xinhong; Jiang, Li; Niu, Cong; Zhang, Jianyi; Chen, Sifeng; Meng, Dan

    2016-01-01

    Reactive oxygen species (ROS) have a crucial role in stem-cell differentiation; however, the mechanisms by which ROS regulate the differentiation of stem cells into endothelial cells (ECs) are unknown. Here, we determine the role of ROS produced by NADPH oxidase 2 (Nox2) in the endothelial-lineage specification of mouse induced-pluripotent stem cells (miPSCs). When wild-type (WT) and Nox2-knockout (Nox2(-/-)) miPSCs were differentiated into ECs (miPSC-ECs), the expression of endothelial markers, arterial endothelial markers, pro-angiogenic cytokines, and Notch pathway components was suppressed in the Nox2(-/-) cells but increased in both WT and Nox2(-/-) miPSCs when Nox2 expression was upregulated. Higher levels of Nox2 expression increased Notch signaling and arterial EC differentiation, and this increase was abolished by the inhibition of ROS generation or by the silencing of Notch1 expression. Nox2 deficiency was associated with declines in the survival and angiogenic potency of miPSC-ECs, and capillary and arterial density were lower in the ischemic limbs of mice after treatment with Nox2(-/-) miPSC-ECs than WT miPSC-EC treatment. Taken together, these observations indicate that Nox2-mediated ROS production promotes arterial EC specification in differentiating miPSCs by activating the Notch signaling pathway and contributes to the angiogenic potency of transplanted miPSC-derived ECs. PMID:27642005

  11. Receptor tyrosine phosphatase psi is required for Delta/Notch signalling and cyclic gene expression in the presomitic mesoderm.

    PubMed

    Aerne, Birgit; Ish-Horowicz, David

    2004-07-01

    Segmentation in vertebrate embryos is controlled by a biochemical oscillator ('segmentation clock') intrinsic to the cells in the unsegmented presomitic mesoderm, and is manifested in cyclic transcription of genes involved in establishing somite polarity and boundaries. We show that the receptor protein tyrosine phosphatase psi (RPTPpsi) gene is essential for normal functioning of the somitogenesis clock in zebrafish. We show that reduction of RPTPpsi activity using morpholino antisense oligonucleotides results in severe disruption of the segmental pattern of the embryo, and loss of cyclic gene expression in the presomitic mesoderm. Analysis of cyclic genes in RPTPpsi morphant embryos indicates an important requirement for RPTPpsi in the control of the somitogenesis clock upstream of or in parallel with Delta/Notch signalling. Impairing RPTPpsi activity also interferes with convergent extension during gastrulation. We discuss this dual requirement for RPTPpsi in terms of potential functions in Notch and Wnt signalling. PMID:15226256

  12. Asperosaponin VI promotes progesterone receptor expression in decidual cells via the notch signaling pathway.

    PubMed

    Gao, Jie; Zhou, Chun; Li, Yadi; Gao, Feixia; Wu, Haiwang; Yang, Lilin; Qiu, Weiyu; Zhu, Lin; Du, Xin; Lin, Weixian; Huang, Dandan; Liu, Haibin; Liang, Chun; Luo, Songping

    2016-09-01

    Recurrent spontaneous abortion (RSA) is a common clinical condition, but its reasons remain unknown in 37-79% of the affected women. The steroid hormone progesterone (P4) is an integral mediator of early pregnancy events, exerting its effects via the progesterone receptor (PR). Dipsaci Radix (DR) has long been used for treating gynecological diseases in Chinese medicine, while its molecular mechanisms and active ingredients are still unclear. We report here the progesterone-like effects of the alcohol extraction and Asperosaponin VI from DR in primary decidual cells and HeLa cell line. We first determined the safe concentration of Asperosaponin VI in the cells with MTT assay and then found by using dual luciferase reporter and Western blotting that Asperosaponin VI significantly increased PR expression. Moreover, we explored the mechanisms of action of the DR extracts and Asperosaponin VI, and the results showed that they could activate Notch signaling, suggesting that they may function by promoting decidualization. PMID:27370099

  13. Notch signaling regulates M2 type macrophage polarization during the development of proliferative vitreoretinopathy.

    PubMed

    Zhang, Jingjing; Zhou, Qingjun; Yuan, Gongqiang; Dong, Muchen; Shi, Weiyun

    2015-01-01

    Macrophages play an important role in the pathogenesis of proliferative vitreoretinopathy (PVR). M2 macrophages can promote tissue remodeling and repair. In this study, CD206 positive M2 type macrophages were found in preretinal fibrous membranes of the mouse model of PVR induced by the intravitreal injection of retinal pigment epithelial (RPE) cells. Notch signaling determines M2 macrophage polarization. The specific inhibition of Notch signaling pathway by the intravitreal injection of γ-secretase inhibitor DAPT attenuated RPE cells-induced PVR formation as demonstrated by the decreased expression of α-SMA, and inhibited M2 type macrophage infiltation as demonstrated by the decreased expression of Arg-1. Notch signaling may modulate PVR formation by regulating M2 type macrophage polarization. PMID:26410397

  14. Protective effect of curcumin on acute airway inflammation of allergic asthma in mice through Notch1-GATA3 signaling pathway.

    PubMed

    Chong, Lei; Zhang, Weixi; Nie, Ying; Yu, Gang; Liu, Liu; Lin, Li; Wen, Shunhang; Zhu, Lili; Li, Changchong

    2014-10-01

    Curcumin, a natural product derived from the plant Curcuma longa, has been found to have anti-inflammatory, antineoplastic and antifibrosis effects. It has been reported that curcumin attenuates allergic airway inflammation in mice through inhibiting NF-κB and its downstream transcription factor GATA3. It also has been proved the antineoplastic effect of curcumin through down-regulating Notch1 receptor and its downstream nuclear transcription factor NF-κB levels. In this study, we aimed to investigate the anti-inflammatory effect of curcumin on acute allergic asthma and its underlying mechanisms. 36 male BALB/c mice were randomly divided into four groups (normal, asthma, asthma+budesonide and asthma+curcumin groups). BALF (bronchoalveolar lavage fluid) and lung tissues were analyzed for airway inflammation and the expression of Notch1, Notch2, Notch3, Notch4 and the downstream transcription factor GATA3. Our findings showed that the levels of Notch1 and Notch2 receptors were up-regulated in asthma group, accompanied by the increased expression of GATA3. But the expression of Notch2 receptor was lower than Notch1 receptor. Curcumin pretreatment improved the airway inflammatory cells infiltration and reversed the increasing levels of Notch1/2 receptors and GATA3. Notch3 receptor was not expressed in all of the four groups. Notch4 receptor protein and mRNA expression level in the four groups had no significant differences. The results of the present study suggested that Notch1 and Notch2 receptor, major Notch1 receptor, played an important role in the development of allergic airway inflammation and the inhibition of Notch1-GATA3 signaling pathway by curcumin can prevent the development and deterioration of the allergic airway inflammation. This may be a possible therapeutic option of allergic asthma.

  15. Drosophila Epsin mediates a select endocytic pathway that DSL ligands must enter to activate Notch.

    PubMed

    Wang, Weidong; Struhl, Gary

    2004-11-01

    Recent findings suggest that Delta/Serrate/Lag2 (DSL) signals activate Notch by an unprecedented mechanism that requires the ligands to be endocytosed in signal-sending cells to activate the receptor in signal-receiving cells. Here, we show that cells devoid of Epsin, a conserved adaptor protein for Clathrin-mediated endocytosis, behave normally except that they cannot send DSL signals. Surprisingly, we find that Epsin is not required for bulk endocytosis of DSL proteins. Instead, Epsin appears to be essential for targeting DSL proteins to a special endocytic pathway that they must enter to acquire signaling activity. We present evidence that DSL proteins must be mono-ubiquitinated to be targeted by Epsin to this pathway. Furthermore, we show that the requirements for both Epsin and mono-ubiquitination can be bypassed by introducing the internalization signal that mediates endocytosis and recycling of the Low Density Lipoprotein (LDL) receptor. We propose that Epsin is essential for DSL signaling because it targets mono-ubiquitinated DSL proteins to an endocytic recycling compartment that they must enter to be converted into active ligands. Alternatively Epsin may be required to target mono-ubiquitinated DSL proteins to a particular subclass of coated pits that have special properties essential for Notch activation.

  16. The lateral signal for LIN-12/Notch in C. elegans vulval development comprises redundant secreted and transmembrane DSL proteins.

    PubMed

    Chen, Ning; Greenwald, Iva

    2004-02-01

    The vulval precursor cells (VPCs) are spatially patterned by a LET-23/EGF receptor-mediated inductive signal and a LIN-12/Notch-mediated lateral signal. The lateral signal has eluded identification, so the mechanism by which lateral signaling is activated has not been known. Here, we computationally identify ten genes that encode potential ligands for LIN-12, and show that three of these genes, apx-1, dsl-1, and lag-2, are functionally redundant components of the lateral signal. We also show that transcription of all three genes is initiated or upregulated in VPCs in response to inductive signaling, suggesting that direct transcriptional control of the lateral signal by the inductive signal is part of the mechanism by which these cell signaling events are coordinated. In addition, we show that DSL-1, which lacks a predicted transmembrane domain, is a natural secreted ligand and can substitute for the transmembrane ligand LAG-2 in different functional assays.

  17. Notch signaling change in pulmonary vascular remodeling in rats with pulmonary hypertension and its implication for therapeutic intervention.

    PubMed

    Qiao, Lina; Xie, Liang; Shi, Kun; Zhou, Tongfu; Hua, Yimin; Liu, Hanmin

    2012-01-01

    Pulmonary hypertension (PH) is a fatal disease that lacks an effective therapy. Notch signaling pathway plays a crucial role in the angiogenesis and vascular remodeling. However, its roles in vascular remodeling in PH have not been well studied. In the current study, using hypoxia-induced PH model in rat, we examined the expression of Notch and its downstream factors. Then, we used vessel strip culture system and γ-secretase inhibitor DAPT, a Notch signaling inhibitor to determine the effect of Notch signaling in vascular remodeling and its potential therapeutic value. Our results indicated that Notch 1-4 were detected in the lung tissue with variable levels in different cell types such as smooth muscle cells and endothelial cells of pulmonary artery, bronchia, and alveoli. In addition, following the PH induction, all of Notch1, Notch3, Notch4 receptor, and downstream factor, HERP1 in pulmonary arteries, mRNA expressions were increased with a peak at 1-2 weeks. Furthermore, the vessel wall thickness from rats with hypoxia treatment increased after cultured for 8 days, which could be decreased approximately 30% by DAPT, accompanied with significant increase of expression level of apoptotic factors (caspase-3 and Bax) and transformation of vascular smooth muscle cell (VSMC) phenotype from synthetic towards contractile. In conclusion, the current study suggested Notch pathway plays an important role in pulmonary vascular remodeling in PH and targeting Notch signaling pathway could be a valuable approach to design new therapy for PH. PMID:23251561

  18. Notch pathway is activated in cell culture and mouse models of mutant SOD1-related familial amyotrophic lateral sclerosis, with suppression of its activation as an additional mechanism of neuroprotection for lithium and valproate.

    PubMed

    Wang, S-Y; Ren, M; Jiang, H-Z; Wang, J; Jiang, H-Q; Yin, X; Qi, Y; Wang, X-D; Dong, G-T; Wang, T-H; Yang, Y-Q; Feng, H-L

    2015-08-20

    Amyotrophic lateral sclerosis (ALS) is an idiopathic and lethal neurodegenerative disease that currently has no effective treatment. A recent study found that the Notch signaling pathway was up-regulated in a TAR DNA-binding protein-43 (TDP-43) Drosophila model of ALS. Notch signaling acts as a master regulator in the central nervous system. However, the mechanisms by which Notch participates in the pathogenesis of ALS have not been completely elucidated. Recent studies have shown that the mood stabilizers lithium and valproic acid (VPA) are able to regulate Notch signaling. Our study sought to confirm the relationship between the Notch pathway and ALS and whether the Notch pathway contributes to the neuroprotective effects of lithium and VPA in ALS. We found that the Notch pathway was activated in in vitro and in vivo models of ALS, and suppression of Notch activation with a Notch signaling inhibitor, N-[N-(3,5-difluorophenacetyl-L-alanyl)]-S-phenylglycine t-butyl ester (DAPT) and Notch1 siRNA significantly reduced neuronal apoptotic signaling, as evidenced by the up-regulation of Bcl-2 as well as the down-regulation of Bax and cytochrome c. We also found that lithium and VPA suppressed the Notch activation associated with the superoxide dismutase-1 (SOD1) mutation, and the combination of lithium and VPA produced a more robust effect than either agent alone. Our findings indicate that the Notch pathway plays a critical role in ALS, and the neuroprotective effects of lithium and VPA against mutant SOD1-mediated neuronal damage are at least partially dependent on their suppression of Notch activation.

  19. An Obligatory Role of Mind Bomb-1 in Notch Signaling of Mammalian Development

    PubMed Central

    Im, Sun-Kyoung; Kim, Yoon-Young; Kim, Cheol-Hee; Suh, Pann-Ghill; Jan, Yuh Nung; Kong, Young-Yun

    2007-01-01

    Background The Notch signaling pathway is an evolutionarily conserved intercellular signaling module essential for cell fate specification that requires endocytosis of Notch ligands. Structurally distinct E3 ubiquitin ligases, Neuralized (Neur) and Mind bomb (Mib), cooperatively regulate the endocytosis of Notch ligands in Drosophila. However, the respective roles of the mammalian E3 ubiquitin ligases, Neur1, Neur2, Mib1, and Mib2, in mammalian development are poorly understood. Methodology/Principal Findings Through extensive use of mammalian genetics, here we show that Neur1 and Neur2 double mutants and Mib2−/− mice were viable and grossly normal. In contrast, conditional inactivation of Mib1 in various tissues revealed the representative Notch phenotypes: defects of arterial specification as deltalike4 mutants, abnormal cerebellum and skin development as jagged1 conditional mutants, and syndactylism as jagged2 mutants. Conclusions/Significance Our data provide the first evidence that Mib1 is essential for Jagged as well as Deltalike ligand-mediated Notch signaling in mammalian development, while Neur1, Neur2, and Mib2 are dispensable. PMID:18043734

  20. BLOS2 negatively regulates Notch signaling during neural and hematopoietic stem and progenitor cell development

    PubMed Central

    Zhou, Wenwen; He, Qiuping; Zhang, Chunxia; He, Xin; Cui, Zongbin; Liu, Feng; Li, Wei

    2016-01-01

    Notch signaling plays a crucial role in controling the proliferation and differentiation of stem and progenitor cells during embryogenesis or organogenesis, but its regulation is incompletely understood. BLOS2, encoded by the Bloc1s2 gene, is a shared subunit of two lysosomal trafficking complexes, biogenesis of lysosome-related organelles complex-1 (BLOC-1) and BLOC-1-related complex (BORC). Bloc1s2−/− mice were embryonic lethal and exhibited defects in cortical development and hematopoiesis. Loss of BLOS2 resulted in elevated Notch signaling, which consequently increased the proliferation of neural progenitor cells and inhibited neuronal differentiation in cortices. Likewise, ablation of bloc1s2 in zebrafish or mice led to increased hematopoietic stem and progenitor cell production in the aorta-gonad-mesonephros region. BLOS2 physically interacted with Notch1 in endo-lysosomal trafficking of Notch1. Our findings suggest that BLOS2 is a novel negative player in regulating Notch signaling through lysosomal trafficking to control multiple stem and progenitor cell homeostasis in vertebrates. DOI: http://dx.doi.org/10.7554/eLife.18108.001 PMID:27719760

  1. Mutations in TSPEAR, Encoding a Regulator of Notch Signaling, Affect Tooth and Hair Follicle Morphogenesis

    PubMed Central

    Samuelov, Liat; Bertolini, Marta; Weissglas-Volkov, Daphna; Eskin-Schwartz, Marina; Malchin, Natalia; Bochner, Ron; Fainberg, Gilad; Goldberg, Ilan; Sugawara, Koji; Tsuruta, Daisuke; Morasso, Maria; Shalev, Stavit; Gallo, Richard L.; Shomron, Noam; Paus, Ralf; Sprecher, Eli

    2016-01-01

    Despite recent advances in our understanding of the pathogenesis of ectodermal dysplasias (EDs), the molecular basis of many of these disorders remains unknown. In the present study, we aimed at elucidating the genetic basis of a new form of ED featuring facial dysmorphism, scalp hypotrichosis and hypodontia. Using whole exome sequencing, we identified 2 frameshift and 2 missense mutations in TSPEAR segregating with the disease phenotype in 3 families. TSPEAR encodes the thrombospondin-type laminin G domain and EAR repeats (TSPEAR) protein, whose function is poorly understood. TSPEAR knock-down resulted in altered expression of genes known to be regulated by NOTCH and to be involved in murine hair and tooth development. Pathway analysis confirmed that down-regulation of TSPEAR in keratinocytes is likely to affect Notch signaling. Accordingly, using a luciferase-based reporter assay, we showed that TSPEAR knock-down is associated with decreased Notch signaling. In addition, NOTCH1 protein expression was reduced in patient scalp skin. Moreover, TSPEAR silencing in mouse hair follicle organ cultures was found to induce apoptosis in follicular epithelial cells, resulting in decreased hair bulb diameter. Collectively, these observations indicate that TSPEAR plays a critical, previously unrecognized role in human tooth and hair follicle morphogenesis through regulation of the Notch signaling pathway. PMID:27736875

  2. Folic Acid Supplementation Stimulates Notch Signaling and Cell Proliferation in Embryonic Neural Stem Cells

    PubMed Central

    Liu, Huan; Huang, Guo-wei; Zhang, Xu-mei; Ren, Da-lin; X. Wilson, John

    2010-01-01

    The present study investigated the effect of folic acid supplementation on the Notch signaling pathway and cell proliferation in rat embryonic neural stem cells (NSCs). The NSCs were isolated from E14–16 rat brain and grown as neurospheres in serum-free suspension culture. Individual cultures were assigned to one of 3 treatment groups that differed according to the concentration of folic acid in the medium: Control (baseline folic acid concentration of 4 mg/l), low folic acid supplementation (4 mg/l above baseline, Folate-L) and high folic acid supplementation (40 mg/l above baseline, Folate-H). NSCs were identified by their expression of immunoreactive nestin and proliferating cells by incorporation of 5'bromo-2'deoxyuridine. Cell proliferation was also assessed by methyl thiazolyl tetrazolium assay. Notch signaling was analyzed by real-time PCR and western blot analyses of the expression of Notch1 and hairy and enhancer of split 5 (Hes5). Supplementation of NSCs with folic acid increased the mRNA and protein expression levels of Notch1 and Hes5. Folic acid supplementation also stimulated NSC proliferation dose-dependently. Embryonic NSCs respond to folic acid supplementation with increased Notch signaling and cell proliferation. This mechanism may mediate the effects of folic acid supplementation on neurogenesis in the embryonic nervous system. PMID:20838574

  3. Ginsenoside Rb1 inhibits matrix metalloproteinase 13 through down-regulating Notch signaling pathway in osteoarthritis

    PubMed Central

    Wang, Wei; Zeng, Li; Wang, Ze-ming; Zhang, Sihan; Rong, Xiao-Feng

    2015-01-01

    Mounting evidence suggests that an excess of matrix metalloproteinase-13 (MMP-13) plays an important role in the breakdown of extracellular matrix in osteoarthritis (OA). Here, the effects of ginsenoside Rb1 (GRb1) on the expression of MMP-13 in IL-1β-induced SW 1353 chondrosarcoma cells and an experimental rat model of OA induced by anterior cruciate ligament transection (ACLT) were investigated. SW1353 chondrosarcoma cells were pretreated with or without GRb1 and Notch signaling pathway inhibitor, DAPT, then were stimulated with IL-1β. In rats, experimental OA was induced by ACLT. These rats then received intra-articular injections of vehicle, an inhibitor of γ-secretase, DAPT, and/or GRb1. Expression of MMP-13, collagen type II (CII), Notch1, and jagged 1 (JAG1) were verified by western blotting and immunohistochemistry. In addition, levels of MMP-13 mRNA were detected using quantitative real-time PCR. In histological analyses, treatment with DAPT reduced the number of cartilage lesions present and the expressions of MMP-13, CII, Notch1, and JAG1. In addition, treatment with GRb1 was associated with lower levels of Notch1 and JAG1 in both IL-1β-induced SW1353 chondrosarcoma cells and in the rat OA model. Furthermore, the suppressive effect of GRb1 on MMP-13 was greater than that exhibited by the signaling pathway inhibitor. In conclusion, GRb1 inhibits MMP-13 through down-regulating Notch signaling pathway in OA. PMID:26062798

  4. Demonstration of optical steganography transmission using temporal phase coded optical signals with spectral notch filtering.

    PubMed

    Hong, Xuezhi; Wang, Dawei; Xu, Lei; He, Sailing

    2010-06-01

    A novel approach is proposed and experimentally demonstrated for optical steganography transmission in WDM networks using temporal phase coded optical signals with spectral notch filtering. A temporal phase coded stealth channel is temporally and spectrally overlaid onto a public WDM channel. Direct detection of the public channel is achieved in the presence of the stealth channel. The interference from the public channel is suppressed by spectral notching before the detection of the optical stealth signal. The approach is shown to have good compatibility and robustness to the existing WDM network for optical steganography transmission.

  5. GDE2 regulates subtype-specific motor neuron generation through inhibition of Notch signaling.

    PubMed

    Sabharwal, Priyanka; Lee, Changhee; Park, Sungjin; Rao, Meenakshi; Sockanathan, Shanthini

    2011-09-22

    The specification of spinal interneuron and motor neuron identities initiates within progenitor cells, while motor neuron subtype diversification is regulated by hierarchical transcriptional programs implemented postmitotically. Here we find that mice lacking GDE2, a six-transmembrane protein that triggers motor neuron generation, exhibit selective losses of distinct motor neuron subtypes, specifically in defined subsets of limb-innervating motor pools that correlate with the loss of force-generating alpha motor neurons. Mechanistically, GDE2 is expressed by postmitotic motor neurons but utilizes extracellular glycerophosphodiester phosphodiesterase activity to induce motor neuron generation by inhibiting Notch signaling in neighboring motor neuron progenitors. Thus, neuronal GDE2 controls motor neuron subtype diversity through a non-cell-autonomous feedback mechanism that directly regulates progenitor cell differentiation, implying that subtype specification initiates within motor neuron progenitor populations prior to their differentiation into postmitotic motor neurons.

  6. Loss of Notch3 Signaling in Vascular Smooth Muscle Cells Promotes Severe Heart Failure Upon Hypertension.

    PubMed

    Ragot, Hélène; Monfort, Astrid; Baudet, Mathilde; Azibani, Fériel; Fazal, Loubina; Merval, Régine; Polidano, Evelyne; Cohen-Solal, Alain; Delcayre, Claude; Vodovar, Nicolas; Chatziantoniou, Christos; Samuel, Jane-Lise

    2016-08-01

    Hypertension, which is a risk factor of heart failure, provokes adaptive changes at the vasculature and cardiac levels. Notch3 signaling plays an important role in resistance arteries by controlling the maturation of vascular smooth muscle cells. Notch3 deletion is protective in pulmonary hypertension while deleterious in arterial hypertension. Although this latter phenotype was attributed to renal and cardiac alterations, the underlying mechanisms remained unknown. To investigate the role of Notch3 signaling in the cardiac adaptation to hypertension, we used mice with either constitutive Notch3 or smooth muscle cell-specific conditional RBPJκ knockout. At baseline, both genotypes exhibited a cardiac arteriolar rarefaction associated with oxidative stress. In response to angiotensin II-induced hypertension, the heart of Notch3 knockout and SM-RBPJκ knockout mice did not adapt to pressure overload and developed heart failure, which could lead to an early and fatal acute decompensation of heart failure. This cardiac maladaptation was characterized by an absence of media hypertrophy of the media arteries, the transition of smooth muscle cells toward a synthetic phenotype, and an alteration of angiogenic pathways. A subset of mice exhibited an early fatal acute decompensated heart failure, in which the same alterations were observed, although in a more rapid timeframe. Altogether, these observations indicate that Notch3 plays a major role in coronary adaptation to pressure overload. These data also show that the hypertrophy of coronary arterial media on pressure overload is mandatory to initially maintain a normal cardiac function and is regulated by the Notch3/RBPJκ pathway. PMID:27296994

  7. Inflammation increases NOTCH1 activity via MMP9 and is counteracted by Eicosapentaenoic Acid-free fatty acid in colon cancer cells

    PubMed Central

    Fazio, Chiara; Piazzi, Giulia; Vitaglione, Paola; Fogliano, Vincenzo; Munarini, Alessandra; Prossomariti, Anna; Milazzo, Maddalena; D’Angelo, Leonarda; Napolitano, Manuela; Chieco, Pasquale; Belluzzi, Andrea; Bazzoli, Franco; Ricciardiello, Luigi

    2016-01-01

    Aberrant NOTCH1 signalling is critically involved in multiple models of colorectal cancer (CRC) and a prominent role of NOTCH1 activity during inflammation has emerged. Epithelial to Mesenchymal Transition (EMT), a crucial event promoting malignant transformation, is regulated by inflammation and Metalloproteinase-9 (MMP9) plays an important role in this process. Eicosapentaenoic Acid (EPA), an omega-3 polyunsaturated fatty acid, was shown to prevent colonic tumors in different settings. We recently found that an extra-pure formulation of EPA as Free Fatty Acid (EPA-FFA) protects from colon cancer development in a mouse model of Colitis-Associated Cancer (CAC) through modulation of NOTCH1 signalling. In this study, we exposed colon cancer cells to an inflammatory stimulus represented by a cytokine-enriched Conditioned Medium (CM), obtained from THP1-differentiated macrophages. We found, for the first time, that CM strongly up-regulated NOTCH1 signalling and EMT markers, leading to increased invasiveness. Importantly, NOTCH1 signalling was dependent on MMP9 activity, upon CM exposure. We show that a non-cytotoxic pre-treatment with EPA-FFA antagonizes the effect of inflammation on NOTCH1 signalling, with reduction of MMP9 activity and invasiveness. In conclusion, our data suggest that, in CRC cells, inflammation induces NOTCH1 activity through MMP9 up-regulation and that this mechanism can be counteracted by EPA-FFA. PMID:26864323

  8. The thyroid hormone nuclear receptor TRα1 controls the Notch signaling pathway and cell fate in murine intestine.

    PubMed

    Sirakov, Maria; Boussouar, Amina; Kress, Elsa; Frau, Carla; Lone, Imtiaz Nisar; Nadjar, Julien; Angelov, Dimitar; Plateroti, Michelina

    2015-08-15

    Thyroid hormones control various aspects of gut development and homeostasis. The best-known example is in gastrointestinal tract remodeling during amphibian metamorphosis. It is well documented that these hormones act via the TR nuclear receptors, which are hormone-modulated transcription factors. Several studies have shown that thyroid hormones regulate the expression of several genes in the Notch signaling pathway, indicating a possible means by which they participate in the control of gut physiology. However, the mechanisms and biological significance of this control have remained unexplored. Using multiple in vivo and in vitro approaches, we show that thyroid hormones positively regulate Notch activity through the TRα1 receptor. From a molecular point of view, TRα1 indirectly controls Notch1, Dll1, Dll4 and Hes1 expression but acts as a direct transcriptional regulator of the Jag1 gene by binding to a responsive element in the Jag1 promoter. Our findings show that the TRα1 nuclear receptor plays a key role in intestinal crypt progenitor/stem cell biology by controlling the Notch pathway and hence the balance between cell proliferation and cell differentiation.

  9. Integrative genetic, epigenetic and pathological analysis of paraganglioma reveals complex dysregulation of NOTCH signaling.

    PubMed

    Cama, Alessandro; Verginelli, Fabio; Lotti, Lavinia Vittoria; Napolitano, Francesco; Morgano, Annalisa; D'Orazio, Andria; Vacca, Michele; Perconti, Silvia; Pepe, Felice; Romani, Federico; Vitullo, Francesca; di Lella, Filippo; Visone, Rosa; Mannelli, Massimo; Neumann, Hartmut P H; Raiconi, Giancarlo; Paties, Carlo; Moschetta, Antonio; Tagliaferri, Roberto; Veronese, Angelo; Sanna, Mario; Mariani-Costantini, Renato

    2013-10-01

    Head and neck paragangliomas, rare neoplasms of the paraganglia composed of nests of neurosecretory and glial cells embedded in vascular stroma, provide a remarkable example of organoid tumor architecture. To identify genes and pathways commonly deregulated in head and neck paraganglioma, we integrated high-density genome-wide copy number variation (CNV) analysis with microRNA and immunomorphological studies. Gene-centric CNV analysis of 24 cases identified a list of 104 genes most significantly targeted by tumor-associated alterations. The "NOTCH signaling pathway" was the most significantly enriched term in the list (P = 0.002 after Bonferroni or Benjamini correction). Expression of the relevant NOTCH pathway proteins in sustentacular (glial), chief (neuroendocrine) and endothelial cells was confirmed by immunohistochemistry in 47 head and neck paraganglioma cases. There were no relationships between level and pattern of NOTCH1/JAG2 protein expression and germline mutation status in the SDH genes, implicated in paraganglioma predisposition, or the presence/absence of immunostaining for SDHB, a surrogate marker of SDH mutations. Interestingly, NOTCH upregulation was observed also in cases with no evidence of CNVs at NOTCH signaling genes, suggesting altered epigenetic modulation of this pathway. To address this issue we performed microarray-based microRNA expression analyses. Notably 5 microRNAs (miR-200a,b,c and miR-34b,c), including those most downregulated in the tumors, correlated to NOTCH signaling and directly targeted NOTCH1 in in vitro experiments using SH-SY5Y neuroblastoma cells. Furthermore, lentiviral transduction of miR-200s and miR-34s in patient-derived primary tympano-jugular paraganglioma cell cultures was associated with NOTCH1 downregulation and increased levels of markers of cell toxicity and cell death. Taken together, our results provide an integrated view of common molecular alterations associated with head and neck paraganglioma and

  10. Blood flow suppresses vascular Notch signalling via dll4 and is required for angiogenesis in response to hypoxic signalling

    PubMed Central

    Watson, Oliver; Novodvorsky, Peter; Gray, Caroline; Rothman, Alexander M.K.; Lawrie, Allan; Crossman, David C.; Haase, Andrea; McMahon, Kathryn; Gering, Martin; Van Eeden, Fredericus J.M.; Chico, Timothy J.A.

    2013-01-01

    Aims The contribution of blood flow to angiogenesis is incompletely understood. We examined the effect of blood flow on Notch signalling in the vasculature of zebrafish embryos, and whether blood flow regulates angiogenesis in zebrafish with constitutively up-regulated hypoxic signalling. Methods and results Developing zebrafish (Danio rerio) embryos survive via diffusion in the absence of circulation induced by knockdown of cardiac troponin T2 or chemical cardiac cessation. The absence of blood flow increased vascular Notch signalling in 48 h post-fertilization old embryos via up-regulation of the Notch ligand dll4. Despite this, patterning of the intersegmental vessels is not affected by absent blood flow. We therefore examined homozygous vhl mutant zebrafish that have constitutively up-regulated hypoxic signalling. These display excessive and aberrant angiogenesis from 72 h post-fertilization, with significantly increased endothelial number, vessel diameter, and length. The absence of blood flow abolished these effects, though normal vessel patterning was preserved. Conclusion We show that blood flow suppresses vascular Notch signalling via down-regulation of dll4. We have also shown that blood flow is required for angiogenesis in response to hypoxic signalling but is not required for normal vessel patterning. These data indicate important differences in hypoxia-driven vs. developmental angiogenesis. PMID:23812297

  11. Relaxin Prevents Cardiac Fibroblast-Myofibroblast Transition via Notch-1-Mediated Inhibition of TGF-β/Smad3 Signaling

    PubMed Central

    Sassoli, Chiara; Chellini, Flaminia; Pini, Alessandro; Tani, Alessia; Nistri, Silvia; Nosi, Daniele; Zecchi-Orlandini, Sandra; Bani, Daniele; Formigli, Lucia

    2013-01-01

    The hormone relaxin (RLX) is produced by the heart and has beneficial actions on the cardiovascular system. We previously demonstrated that RLX stimulates mouse neonatal cardiomyocyte growth, suggesting its involvement in endogenous mechanisms of myocardial histogenesis and regeneration. In the present study, we extended the experimentation by evaluating the effects of RLX on primary cultures of neonatal cardiac stromal cells. RLX inhibited TGF-β1-induced fibroblast-myofibroblast transition, as judged by its ability to down-regulate α-smooth muscle actin and type I collagen expression. We also found that the hormone up-regulated metalloprotease (MMP)-2 and MMP-9 expression and downregulated the tissue inhibitor of metalloproteinases (TIMP)-2 in TGF-β1-stimulated cells. Interestingly, the effects of RLX on cardiac fibroblasts involved the activation of Notch-1 pathway. Indeed, Notch-1 expression was significantly decreased in TGF-β1-stimulatedfibroblasts as compared to the unstimulated controls; this reduction was prevented by the addition of RLX to TGF-β1-stimulated cells. Moreover, pharmacological inhibition of endogenous Notch-1 signaling by N-3,5-difluorophenyl acetyl-L-alanyl-2-phenylglycine-1,1-dimethylethyl ester (DAPT), a γ-secretase specific inhibitor, as well as the silencing of Notch-1 ligand, Jagged-1, potentiated TGF-β1-induced myofibroblast differentiation and abrogated the inhibitory effects of RLX. Interestingly, RLX and Notch-1 exerted their inhibitory effects by interfering with TGF-β1 signaling, since the addition of RLX to TGF-β1-stimulated cells caused a significant decrease in Smad3 phosphorylation, a typical downstream event of TGF-β1 receptor activation, while the treatment with a prevented this effect. These data suggest that Notch signaling can down-regulate TGF-β1/Smad3-induced fibroblast-myofibroblast transition and that RLX could exert its well known anti-fibrotic action through the up-regulation of this pathway. In conclusion

  12. Inhibiting Notch Activity in Breast Cancer Stem Cells by Glucose Functionalized Nanoparticles Carrying γ-secretase Inhibitors

    PubMed Central

    Mamaeva, Veronika; Niemi, Rasmus; Beck, Michaela; Özliseli, Ezgi; Desai, Diti; Landor, Sebastian; Gronroos, Tove; Kronqvist, Pauliina; Pettersen, Ina K N; McCormack, Emmet; Rosenholm, Jessica M; Linden, Mika; Sahlgren, Cecilia

    2016-01-01

    Cancer stem cells (CSCs) are a challenge in cancer treatment due to their therapy resistance. We demonstrated that enhanced Notch signaling in breast cancer promotes self-renewal of CSCs that display high glycolytic activity and aggressive hormone-independent tumor growth in vivo. We took advantage of the glycolytic phenotype and the dependence on Notch activity of the CSCs and designed nanoparticles to target the CSCs. Mesoporous silica nanoparticles were functionalized with glucose moieties and loaded with a γ-secretase inhibitor, a potent interceptor of Notch signaling. Cancer cells and CSCs in vitro and in vivo efficiently internalized these particles, and particle uptake correlated with the glycolytic profile of the cells. Nanoparticle treatment of breast cancer transplants on chick embryo chorioallantoic membranes efficiently reduced the cancer stem cell population of the tumor. Our data reveal that specific CSC characteristics can be utilized in nanoparticle design to improve CSC-targeted drug delivery and therapy. PMID:26916284

  13. Regulation of monocyte cell fate by blood vessels mediated by Notch signalling.

    PubMed

    Gamrekelashvili, Jaba; Giagnorio, Roberto; Jussofie, Jasmin; Soehnlein, Oliver; Duchene, Johan; Briseño, Carlos G; Ramasamy, Saravana K; Krishnasamy, Kashyap; Limbourg, Anne; Kapanadze, Tamar; Ishifune, Chieko; Hinkel, Rabea; Radtke, Freddy; Strobl, Lothar J; Zimber-Strobl, Ursula; Napp, L Christian; Bauersachs, Johann; Haller, Hermann; Yasutomo, Koji; Kupatt, Christian; Murphy, Kenneth M; Adams, Ralf H; Weber, Christian; Limbourg, Florian P

    2016-08-31

    A population of monocytes, known as Ly6C(lo) monocytes, patrol blood vessels by crawling along the vascular endothelium. Here we show that endothelial cells control their origin through Notch signalling. Using combinations of conditional genetic deletion strategies and cell-fate tracking experiments we show that Notch2 regulates conversion of Ly6C(hi) monocytes into Ly6C(lo) monocytes in vivo and in vitro, thereby regulating monocyte cell fate under steady-state conditions. This process is controlled by Notch ligand delta-like 1 (Dll1) expressed by a population of endothelial cells that constitute distinct vascular niches in the bone marrow and spleen in vivo, while culture on recombinant DLL1 induces monocyte conversion in vitro. Thus, blood vessels regulate monocyte conversion, a form of committed myeloid cell fate regulation.

  14. Regulation of monocyte cell fate by blood vessels mediated by Notch signalling

    PubMed Central

    Gamrekelashvili, Jaba; Giagnorio, Roberto; Jussofie, Jasmin; Soehnlein, Oliver; Duchene, Johan; Briseño, Carlos G.; Ramasamy, Saravana K.; Krishnasamy, Kashyap; Limbourg, Anne; Kapanadze, Tamar; Ishifune, Chieko; Hinkel, Rabea; Radtke, Freddy; Strobl, Lothar J.; Zimber-Strobl, Ursula; Napp, L. Christian; Bauersachs, Johann; Haller, Hermann; Yasutomo, Koji; Kupatt, Christian; Murphy, Kenneth M.; Adams, Ralf H.; Weber, Christian; Limbourg, Florian P.

    2016-01-01

    A population of monocytes, known as Ly6Clo monocytes, patrol blood vessels by crawling along the vascular endothelium. Here we show that endothelial cells control their origin through Notch signalling. Using combinations of conditional genetic deletion strategies and cell-fate tracking experiments we show that Notch2 regulates conversion of Ly6Chi monocytes into Ly6Clo monocytes in vivo and in vitro, thereby regulating monocyte cell fate under steady-state conditions. This process is controlled by Notch ligand delta-like 1 (Dll1) expressed by a population of endothelial cells that constitute distinct vascular niches in the bone marrow and spleen in vivo, while culture on recombinant DLL1 induces monocyte conversion in vitro. Thus, blood vessels regulate monocyte conversion, a form of committed myeloid cell fate regulation. PMID:27576369

  15. Regulation of monocyte cell fate by blood vessels mediated by Notch signalling.

    PubMed

    Gamrekelashvili, Jaba; Giagnorio, Roberto; Jussofie, Jasmin; Soehnlein, Oliver; Duchene, Johan; Briseño, Carlos G; Ramasamy, Saravana K; Krishnasamy, Kashyap; Limbourg, Anne; Kapanadze, Tamar; Ishifune, Chieko; Hinkel, Rabea; Radtke, Freddy; Strobl, Lothar J; Zimber-Strobl, Ursula; Napp, L Christian; Bauersachs, Johann; Haller, Hermann; Yasutomo, Koji; Kupatt, Christian; Murphy, Kenneth M; Adams, Ralf H; Weber, Christian; Limbourg, Florian P

    2016-01-01

    A population of monocytes, known as Ly6C(lo) monocytes, patrol blood vessels by crawling along the vascular endothelium. Here we show that endothelial cells control their origin through Notch signalling. Using combinations of conditional genetic deletion strategies and cell-fate tracking experiments we show that Notch2 regulates conversion of Ly6C(hi) monocytes into Ly6C(lo) monocytes in vivo and in vitro, thereby regulating monocyte cell fate under steady-state conditions. This process is controlled by Notch ligand delta-like 1 (Dll1) expressed by a population of endothelial cells that constitute distinct vascular niches in the bone marrow and spleen in vivo, while culture on recombinant DLL1 induces monocyte conversion in vitro. Thus, blood vessels regulate monocyte conversion, a form of committed myeloid cell fate regulation. PMID:27576369

  16. The Small Molecule IMR-1 Inhibits the Notch Transcriptional Activation Complex to Suppress Tumorigenesis.

    PubMed

    Astudillo, Luisana; Da Silva, Thiago G; Wang, Zhiqiang; Han, Xiaoqing; Jin, Ke; VanWye, Jeffrey; Zhu, Xiaoxia; Weaver, Kelly; Oashi, Taiji; Lopes, Pedro E M; Orton, Darren; Neitzel, Leif R; Lee, Ethan; Landgraf, Ralf; Robbins, David J; MacKerell, Alexander D; Capobianco, Anthony J

    2016-06-15

    In many cancers, aberrant Notch activity has been demonstrated to play a role in the initiation and maintenance of the neoplastic phenotype and in cancer stem cells, which may allude to its additional involvement in metastasis and resistance to therapy. Therefore, Notch is an exceedingly attractive therapeutic target in cancer, but the full range of potential targets within the pathway has been underexplored. To date, there are no small-molecule inhibitors that directly target the intracellular Notch pathway or the assembly of the transcriptional activation complex. Here, we describe an in vitro assay that quantitatively measures the assembly of the Notch transcriptional complex on DNA. Integrating this approach with computer-aided drug design, we explored potential ligand-binding sites and screened for compounds that could disrupt the assembly of the Notch transcriptional activation complex. We identified a small-molecule inhibitor, termed Inhibitor of Mastermind Recruitment-1 (IMR-1), that disrupted the recruitment of Mastermind-like 1 to the Notch transcriptional activation complex on chromatin, thereby attenuating Notch target gene transcription. Furthermore, IMR-1 inhibited the growth of Notch-dependent cell lines and significantly abrogated the growth of patient-derived tumor xenografts. Taken together, our findings suggest that a novel class of Notch inhibitors targeting the transcriptional activation complex may represent a new paradigm for Notch-based anticancer therapeutics, warranting further preclinical characterization. Cancer Res; 76(12); 3593-603. ©2016 AACR. PMID:27197169

  17. Decidual vascular endothelial cells promote maternal-fetal immune tolerance by inducing regulatory T cells through canonical Notch1 signaling.

    PubMed

    Yao, Yanyi; Song, Jieping; Wang, Weipeng; Liu, Nian

    2016-05-01

    Adaptation of the maternal immune response to accommodate the semiallogeneic fetus is necessary for pregnancy success. However, the mechanisms by which the fetus avoids rejection despite expression of paternal alloantigens remain incompletely understood. Regulatory T cells (Treg cells) are pivotal for maintaining immune homeostasis, preventing autoimmune disease and fetus rejection. In this study, we found that maternal decidual vascular endothelial cells (DVECs) sustained Foxp3 expression in resting Treg cells in vitro. Moreover, under in vitro Treg cell induction condition with agonistic antibodies and transforming growth factor (TGF)-β, DVECs promoted Treg cell differentiation from non-Treg conventional T cells. Consistent with the promotion of Treg cell maintenance and differentiation, Treg cell-associated gene expression such as TGF-β, Epstein-Barr-induced gene-3, CD39 and glucocorticoid-induced tumor necrosis factor receptor was also increased in the presence of DVECs. Further study revealed that DVECs expressed Notch ligands such as Jagged-1, Delta-like protein 1 (DLL-1) and DLL-4, while Treg cells expressed Notch1 on their surface. The effects of DVECs on Treg cells was inhibited by siRNA-induced knockdown of expression of Jagged-1 and DLL-1 in DVECs. Downregulation of Notch1 in Treg cells using lentiviral shRNA transduction decreased Foxp3 expression in Treg cells. Adoptive transfer of Notch1-deficient Treg cells increased abortion rate in a murine semiallogeneic pregnancy model. Taken together, our study suggests that maternal DVECs are able to maintain decidual Treg cell identity and promote Treg cell differentiation through activation of Notch1 signal pathway in Treg cells and subsequently inhibit the immune response against semiallogeneic fetuses and preventing spontaneous abortion. PMID:26714886

  18. The clerodane diterpene casearin J induces apoptosis of T-ALL cells through SERCA inhibition, oxidative stress, and interference with Notch1 signaling.

    PubMed

    De Ford, C; Heidersdorf, B; Haun, F; Murillo, R; Friedrich, T; Borner, C; Merfort, I

    2016-01-28

    T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy that preferentially affects children and adolescents. Over 50% of human T-ALLs possess activating mutations of Notch1. The clerodane diterpene casearin J (CJ) is a natural product that inhibits the sarcoendoplasmatic reticulum calcium ATPase (SERCA) pump and induces cell death in leukemia cells, but the molecular mechanism of cytotoxicity remains poorly understood. Here we show that owing to SERCA pump inhibition, CJ induces depletion of the endoplasmic reticulum calcium pools, oxidative stress, and apoptosis via the intrinsic signaling pathway. Moreover, Notch1 signaling is reduced in T-ALL cells with auto-activating mutations in the HD-domain of Notch1, but not in cells that do not depend on Notch1 signaling. CJ also provoked a slight activation of NF-κB, and consistent with this notion a combined treatment of CJ and the NF-κB inhibitor parthenolide (Pt) led to a remarkable synergistic cell death in T-ALL cells. Altogether, our data support the concept that inhibition of the SERCA pump may be a novel strategy for the treatment of T-ALL with HD-domain-mutant Notch1 receptors and that additional treatment with the NF-κB inhibitor parthenolide may have further therapeutic benefits.

  19. The clerodane diterpene casearin J induces apoptosis of T-ALL cells through SERCA inhibition, oxidative stress, and interference with Notch1 signaling

    PubMed Central

    De Ford, C; Heidersdorf, B; Haun, F; Murillo, R; Friedrich, T; Borner, C; Merfort, I

    2016-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy that preferentially affects children and adolescents. Over 50% of human T-ALLs possess activating mutations of Notch1. The clerodane diterpene casearin J (CJ) is a natural product that inhibits the sarcoendoplasmatic reticulum calcium ATPase (SERCA) pump and induces cell death in leukemia cells, but the molecular mechanism of cytotoxicity remains poorly understood. Here we show that owing to SERCA pump inhibition, CJ induces depletion of the endoplasmic reticulum calcium pools, oxidative stress, and apoptosis via the intrinsic signaling pathway. Moreover, Notch1 signaling is reduced in T-ALL cells with auto-activating mutations in the HD-domain of Notch1, but not in cells that do not depend on Notch1 signaling. CJ also provoked a slight activation of NF-κB, and consistent with this notion a combined treatment of CJ and the NF-κB inhibitor parthenolide (Pt) led to a remarkable synergistic cell death in T-ALL cells. Altogether, our data support the concept that inhibition of the SERCA pump may be a novel strategy for the treatment of T-ALL with HD-domain-mutant Notch1 receptors and that additional treatment with the NF-κB inhibitor parthenolide may have further therapeutic benefits. PMID:26821066

  20. Crucial role of Notch signaling in osteogenic differentiation of periodontal ligament stem cells in osteoporotic rats.

    PubMed

    Li, Ying; Li, S Q; Gao, Y M; Li, Jin; Zhang, Bin

    2014-06-01

    Estrogen deficiency-induced osteoporosis typically occurs in postmenopausal women and has been strongly associated with periodontal diseases. Periodontal ligament stem cells (PDLSCs) isolated from the periodontal ligament can differentiate into many types of specialized cells, including osteoblast-like cells that contribute to periodontal tissue repair. The Notch signaling pathway is highly conserved and associated with self-renewal potential and cell-fate determination. Recently, several studies have focused on the relationship between Notch signaling and osteogenic differentiation. However, the precise mechanisms underlying this relationship are largely unknown. We have successfully isolated PDLSCs from both ovariectomized (OVX) and sham-operated rats. Both the mRNA and protein levels of Notch1 and Jagged1 were upregulated when PDLSCs were cultured in osteogenic induction media. Mineralization assays showed decreased calcium deposits in OVX-PDLSCs treated with a γ-secretase inhibitor compared with control cells. Thus Notch signaling is important in maintaining the osteogenic differentiation of PDLSCs in osteoporotic rats, which help in the development of a potential therapeutic strategy for periodontal disease in postmenopausal women.

  1. PLCε knockdown inhibits prostate cancer cell proliferation via suppression of Notch signalling and nuclear translocation of the androgen receptor.

    PubMed

    Wang, Yin; Wu, Xiaohou; Ou, Liping; Yang, Xue; Wang, Xiaorong; Tang, Min; Chen, E; Luo, Chunli

    2015-06-28

    Phospholipase Cε (PLCε), a key regulator of diverse cellular functions, has been implicated in various malignancies. Indeed, PLCε functions include cell proliferation, apoptosis and malignant transformation. Here, we show that PLCε expression is elevated in prostate cancer (PCa) tissues compared to benign prostate tissues. Furthermore, PLCε depletion using an adenovirally delivered shRNA significantly decreased cell growth and colony formation, arresting the PC3 and LNCaP cell lines in the S phase of the cell cycle. We also observed that PLCε was significantly correlated with Notch1 and androgen receptor (AR). Additionally, we demonstrate that the activation of both the Notch and AR signalling pathways is involved in PLCε-mediated oncogenic effects in PCa. Our findings suggest that PLCε is a putative oncogene and prognostic marker, potentially representing a novel therapeutic target for PCa.

  2. Anabolic actions of Notch on mature bone

    PubMed Central

    Liu, Peng; Ping, Yilin; Ma, Meng; Zhang, Demao; Liu, Connie; Zaidi, Samir; Gao, Song; Ji, Yaoting; Lou, Feng; Yu, Fanyuan; Lu, Ping; Stachnik, Agnes; Bai, Mingru; Wei, Chengguo; Zhang, Liaoran; Wang, Ke; Chen, Rong; New, Maria I.; Rowe, David W.; Yuen, Tony; Sun, Li; Zaidi, Mone

    2016-01-01

    Notch controls skeletogenesis, but its role in the remodeling of adult bone remains conflicting. In mature mice, the skeleton can become osteopenic or osteosclerotic depending on the time point at which Notch is activated or inactivated. Using adult EGFP reporter mice, we find that Notch expression is localized to osteocytes embedded within bone matrix. Conditional activation of Notch signaling in osteocytes triggers profound bone formation, mainly due to increased mineralization, which rescues both age-associated and ovariectomy-induced bone loss and promotes bone healing following osteotomy. In parallel, mice rendered haploinsufficient in γ-secretase presenilin-1 (Psen1), which inhibits downstream Notch activation, display almost-absent terminal osteoblast differentiation. Consistent with this finding, pharmacologic or genetic disruption of Notch or its ligand Jagged1 inhibits mineralization. We suggest that stimulation of Notch signaling in osteocytes initiates a profound, therapeutically relevant, anabolic response. PMID:27036007

  3. Increased expression of Hes5 protein in Notch signaling pathway in the hippocampus of mice offspring of dams fed a high-fat diet during pregnancy and suckling.

    PubMed

    Mendes-da-Silva, Cristiano; Lemes, Simone Ferreira; Baliani, Tanyara da Silva; Versutti, Milena Diorio; Torsoni, Marcio Alberto

    2015-02-01

    Maternal high-fat diet (HFD) impairs hippocampal development of offspring promoting decreased proliferation of neural progenitors, in neuronal differentiation, in dendritic spine density and synaptic plasticity reducing neurogenic capacity. Notch signaling pathway participates in molecular mechanisms of the neurogenesis. The activation of Notch signaling leads to the upregulation of Hes5, which inhibits the proliferation and differentiation of neural progenitors. This study aimed to investigate the Notch/Hes pathway activation in the hippocampus of the offspring of dams fed an HFD. Female Swiss mice were fed a control diet (CD) and an HFD from pre-mating until suckling. The bodyweight and mass of adipose tissue in the mothers and pups were also measured. The mRNA and protein expression of Notch1, Hes5, Mash1, and Delta1 in the hippocampus was assessed by RT-PCR and western blotting, respectively. Dams fed the HFD and their pups had an increased bodyweight and amount of adipose tissue. Furthermore, the offspring of mothers fed the HFD exhibited an increased Hes5 expression in the hippocampus compared with CD offspring. In addition, HFD offspring also expressed increased amounts of Notch1 and Hes5 mRNA, whereas Mash1 expression was decreased. However, the expression of Delta1 did not change significantly. We propose that the overexpression of Hes5, a Notch effector, downregulates the expression of the proneural gene Mash1 in the offspring of obese mothers, delaying cellular differentiation. These results provide further evidence that an offspring's hippocampus is molecularly susceptible to maternal HFD and suggest that Notch1 signaling in this brain region is important for neuronal differentiation.

  4. Inhibition of Notch signaling ameliorates insulin resistance in a FoxO1–dependent manner

    PubMed Central

    Pajvani, Utpal B.; Shawber, Carrie J.; Samuel, Varman T.; Birkenfeld, Andreas L.; Shulman, Gerald I.; Kitajewski, Jan; Accili, Domenico

    2012-01-01

    Summary Transcription factor FoxO1 promotes hepatic glucose production. Genetic inhibition of FoxO1 function prevents diabetes in experimental animal models, providing impetus to identify pharmacological approaches to modulate its function. Altered Notch signaling is seen in tumorigenesis, and Notch antagonists are in clinical testing for cancer application. Here, we report that FoxO1 and Notch coordinately regulate hepatic glucose metabolism. Combined haploinsufficiency of FoxO1 and Notch1 markedly improves insulin sensitivity in diet-induced insulin resistance, as does liver-specific knockout of the Notch transcriptional effector, Rbp-Jk. Conversely, Notch1 gain-of-function promotes insulin resistance in a FoxO1-dependent manner and induces Glucose-6-phosphatase expression. Pharmacological blockade of Notch signaling with γ-secretase inhibitors improves insulin sensitivity following in vivo administration in lean and in obese, insulin-resistant mice. The data identify a heretofore unknown metabolic function of Notch, and suggest that Notch inhibition is beneficial to diabetes treatment, in part by helping to offset excessive FoxO1–driven hepatic glucose production. PMID:21804540

  5. Structure and Function of the Su(H)-Hairless Repressor Complex, the Major Antagonist of Notch Signaling in Drosophila melanogaster

    PubMed Central

    Torella, Rubben; Preiss, Anette; Maier, Dieter; Kovall, Rhett A.

    2016-01-01

    Notch is a conserved signaling pathway that specifies cell fates in metazoans. Receptor-ligand interactions induce changes in gene expression, which is regulated by the transcription factor CBF1/Su(H)/Lag-1 (CSL). CSL interacts with coregulators to repress and activate transcription from Notch target genes. While the molecular details of the activator complex are relatively well understood, the structure-function of CSL-mediated repressor complexes is poorly defined. In Drosophila, the antagonist Hairless directly binds Su(H) (the fly CSL ortholog) to repress transcription from Notch targets. Here, we determine the X-ray structure of the Su(H)-Hairless complex bound to DNA. Hairless binding produces a large conformational change in Su(H) by interacting with residues in the hydrophobic core of Su(H), illustrating the structural plasticity of CSL molecules to interact with different binding partners. Based on the structure, we designed mutants in Hairless and Su(H) that affect binding, but do not affect formation of the activator complex. These mutants were validated in vitro by isothermal titration calorimetry and yeast two- and three-hybrid assays. Moreover, these mutants allowed us to solely characterize the repressor function of Su(H) in vivo. PMID:27404588

  6. KCTD10 is involved in the cardiovascular system and Notch signaling during early embryonic development.

    PubMed

    Ren, Kaiqun; Yuan, Jing; Yang, Manjun; Gao, Xiang; Ding, Xiaofeng; Zhou, Jianlin; Hu, Xingwang; Cao, Jianguo; Deng, Xiyun; Xiang, Shuanglin; Zhang, Jian

    2014-01-01

    As a member of the polymerase delta-interacting protein 1 (PDIP1) gene family, potassium channel tetramerisation domain-containing 10 (KCTD10) interacts with proliferating cell nuclear antigen (PCNA) and polymerase δ, participates in DNA repair, DNA replication and cell-cycle control. In order to further investigate the physiological functions of KCTD10, we generated the KCTD10 knockout mice. The heterozygous KCTD10(+/-) mice were viable and fertile, while the homozygous KCTD10(-/-) mice showed delayed growth from E9.0, and died at approximately E10.5, which displayed severe defects in angiogenesis and heart development. Further study showed that VEGF induced the expression of KCTD10 in a time- and dose-dependent manner. Quantitative real-time PCR and western blotting results revealed that several key members in Notch signaling were up-regulated either in KCTD10-deficient embryos or in KCTD10-silenced HUVECs. Meanwhile, the endogenous immunoprecipitation (IP) analysis showed that KCTD10 interacted with Cullin3 and Notch1 simultaneously, by which mediating Notch1 proteolytic degradation. Our studies suggest that KCTD10 plays crucial roles in embryonic angiogenesis and heart development in mammalians by negatively regulating the Notch signaling pathway.

  7. Epidermal growth factor promotes proliferation of dermal papilla cells via Notch signaling pathway.

    PubMed

    Zhang, Haihua; Nan, Weixiao; Wang, Shiyong; Zhang, Tietao; Si, Huazhe; Wang, Datao; Yang, Fuhe; Li, Guangyu

    2016-08-01

    The effect of epidermal growth factor (EGF) on the development and growth of hair follicle is controversial. In the present study, 2-20 ng/ml EGF promoted the growth of mink hair follicles in vitro, whereas 200 ng/ml EGF inhibited follicle growth. Further, dermal papilla (DP) cells, a group of mesenchymal cells that govern hair follicle development and growth, were isolated and cultured in vitro. Treatment with or forced expression of EGF accelerated proliferation and induced G1/S transition in DP cells. Moreover, EGF upregulated the expression of DP mesenchymal genes, such as alkaline phosphatase (ALP) and insulin-like growth factor (IGF-1), as well as the Notch pathway molecules including Notch1, Jagged1, Hes1 and Hes5. In addition, inhibition of Notch signaling pathway by DAPT significantly reduced the basal and EGF-enhanced proliferation rate, and also suppressed cell cycle progression. We also show that the expression of several follicle-regulatory genes, such as Survivin and Msx2, were upregulated by EGF, and was inhibited by DAPT. In summary, our study demonstrates that the concentration of EGF is critical for the switch between hair follicle growth and inhibition, and EGF promotes DP cell proliferation via Notch signaling pathway.

  8. The matricellular protein CCN1 controls retinal angiogenesis by targeting VEGF, Src homology 2 domain phosphatase-1 and Notch signaling.

    PubMed

    Chintala, Hemabindu; Krupska, Izabela; Yan, Lulu; Lau, Lester; Grant, Maria; Chaqour, Brahim

    2015-07-01

    Physiological angiogenesis depends on the highly coordinated actions of multiple angiogenic regulators. CCN1 is a secreted cysteine-rich and integrin-binding matricellular protein required for proper cardiovascular development. However, our understanding of the cellular origins and activities of this molecule is incomplete. Here, we show that CCN1 is predominantly expressed in angiogenic endothelial cells (ECs) at the leading front of actively growing vessels in the mouse retina. Endothelial deletion of CCN1 in mice using a Cre-Lox system is associated with EC hyperplasia, loss of pericyte coverage and formation of dense retinal vascular networks lacking the normal hierarchical arrangement of arterioles, capillaries and venules. CCN1 is a product of an immediate-early gene that is transcriptionally induced in ECs in response to stimulation by vascular endothelial growth factor (VEGF). We found that CCN1 activity is integrated with VEGF receptor 2 (VEGF-R2) activation and downstream signaling pathways required for tubular network formation. CCN1-integrin binding increased the expression of and association between Src homology 2 domain-containing protein tyrosine phosphatase-1 (SHP-1) and VEGF-R2, which leads to rapid dephosphorylation of VEGF-R2 tyrosine, thus preventing EC hyperproliferation. Predictably, CCN1 further brings receptors/signaling molecules into proximity that are otherwise spatially separated. Furthermore, CCN1 induces integrin-dependent Notch activation in cultured ECs, and its targeted gene inactivation in vivo alters Notch-dependent vascular specification and remodeling, suggesting that functional levels of Notch signaling requires CCN1 activity. These data highlight novel functions of CCN1 as a naturally optimized molecule, fine-controlling key processes in physiological angiogenesis and safeguarding against aberrant angiogenic responses.

  9. Endogenous Gradients of Resting Potential Instructively Pattern Embryonic Neural Tissue via Notch Signaling and Regulation of Proliferation

    PubMed Central

    Pai, Vaibhav P.; Lemire, Joan M.; Paré, Jean-François; Lin, Gufa; Chen, Ying

    2015-01-01

    Biophysical forces play important roles throughout embryogenesis, but the roles of spatial differences in cellular resting potentials during large-scale brain morphogenesis remain unknown. Here, we implicate endogenous bioelectricity as an instructive factor during brain patterning in Xenopus laevis. Early frog embryos exhibit a characteristic hyperpolarization of cells lining the neural tube; disruption of this spatial gradient of the transmembrane potential (Vmem) diminishes or eliminates the expression of early brain markers, and causes anatomical mispatterning of the brain, including absent or malformed regions. This effect is mediated by voltage-gated calcium signaling and gap-junctional communication. In addition to cell-autonomous effects, we show that hyperpolarization of transmembrane potential (Vmem) in ventral cells outside the brain induces upregulation of neural cell proliferation at long range. Misexpression of the constitutively active form of Notch, a suppressor of neural induction, impairs the normal hyperpolarization pattern and neural patterning; forced hyperpolarization by misexpression of specific ion channels rescues brain defects induced by activated Notch signaling. Strikingly, hyperpolarizing posterior or ventral cells induces the production of ectopic neural tissue considerably outside the neural field. The hyperpolarization signal also synergizes with canonical reprogramming factors (POU and HB4), directing undifferentiated cells toward neural fate in vivo. These data identify a new functional role for bioelectric signaling in brain patterning, reveal interactions between Vmem and key biochemical pathways (Notch and Ca2+ signaling) as the molecular mechanism by which spatial differences of Vmem regulate organogenesis of the vertebrate brain, and suggest voltage modulation as a tractable strategy for intervention in certain classes of birth defects. PMID:25762681

  10. Inhibition of Notch signaling enhances transdifferentiation of the esophageal squamous epithelium towards a Barrett's-like metaplasia via KLF4.

    PubMed

    Vega, Maria E; Giroux, Véronique; Natsuizaka, Mitsuteru; Liu, Mingen; Klein-Szanto, Andres J; Stairs, Douglas B; Nakagawa, Hiroshi; Wang, Kenneth K; Wang, Timothy C; Lynch, John P; Rustgi, Anil K

    2014-01-01

    Barrett's esophagus (BE) is defined as an incomplete intestinal metaplasia characterized generally by the presence of columnar and goblet cells in the formerly stratified squamous epithelium of the esophagus. BE is known as a precursor for esophageal adenocarcinoma. Currently, the cell of origin for human BE has yet to be clearly identified. Therefore, we investigated the role of Notch signaling in the initiation of BE metaplasia. Affymetrix gene expression microarray revealed that BE samples express decreased levels of Notch receptors (NOTCH2 and NOTCH3) and one of the the ligands (JAG1). Furthermore, BE tissue microarray showed decreased expression of NOTCH1 and its downstream target HES1. Therefore, Notch signaling was inhibited in human esophageal epithelial cells by expression of dominant-negative-Mastermind-like (dnMAML), in concert with MYC and CDX1 overexpression. Cell transdifferentiation was then assessed by 3D organotypic culture and evaluation of BE-lineage specific gene expression. Notch inhibition promoted transdifferentiation of esophageal epithelial cells toward columnar-like cells as demonstrated by increased expression of columnar keratins (K8, K18, K19, K20) and glandular mucins (MUC2, MUC3B, MUC5B, MUC17) and decreased expression of squamous keratins (K5, K13, K14). In 3D culture, elongated cells were observed in the basal layer of the epithelium with Notch inhibition. Furthermore, we observed increased expression of KLF4, a potential driver of the changes observed by Notch inhibition. Interestingly, knockdown of KLF4 reversed the effects of Notch inhibition on BE-like metaplasia. Overall, Notch signaling inhibition promotes transdifferentiation of esophageal cells toward BE-like metaplasia in part via upregulation of KLF4. These results support a novel mechanism through which esophageal epithelial transdifferentiation promotes the evolution of BE.

  11. Pre-clinical studies of Notch signaling inhibitor RO4929097 in inflammatory breast cancer cells.

    PubMed

    Debeb, Bisrat G; Cohen, Evan N; Boley, Kimberly; Freiter, Erik M; Li, Li; Robertson, Fredika M; Reuben, James M; Cristofanilli, Massimo; Buchholz, Thomas A; Woodward, Wendy A

    2012-07-01

    Basal breast cancer, common among patients presenting with inflammatory breast cancer (IBC), has been shown to be resistant to radiation and enriched in cancer stem cells. The Notch pathway plays an important role in self-renewal of breast cancer stem cells and contributes to inflammatory signaling which promotes the breast cancer stem cell phenotype. Herein, we inhibited Notch signaling using a gamma secretase inhibitor, RO4929097, in an in vitro model that enriches for cancer initiating cells (3D clonogenic assay) and conventional 2D clonogenic assay to compare the effect on radiosensitization of the SUM149 and SUM190 IBC cell lines. RO4929097 downregulated the Notch target genes Hes1, Hey1, and HeyL, and showed a significant reduction in anchorage independent growth in SUM190 and SUM149. However, the putative self-renewal assay mammosphere formation efficiency was increased with the drug. To assess radiosensitization of putative cancer stem cells, cells were exposed to increasing doses of radiation with or without 1 μM RO4929097 in their standard (2D) and self-renewal enriching (3D) culture conditions. In the conventional 2D clonogenic assay, RO4929097 significantly sensitized SUM190 cells to ionizing radiation and has a modest radiosensitization effect in SUM149 cells. In the 3D clonogenic assays, however, a radioprotective effect was seen in both SUM149 and SUM190 cells at higher doses. Both cell lines express IL-6 and IL-8 cytokines known to mediate the efficacy of Notch inhibition and to promote self-renewal of stem cells. We further showed that RO429097 inhibits normal T-cell synthesis of some inflammatory cytokines, including TNF-α, a potential mediator of IL-6 and IL-8 production in the microenvironment. These data suggest that additional targeting agents may be required to selectively target IBC stem cells through Notch inhibition, and that evaluation of microenvironmental influences may shed further light on the potential effects of this inhibitor.

  12. Notch Signaling and Atoh1 Expression During Hair Cell Regeneration in the Mouse Utricle

    PubMed Central

    Wang, Guo-Peng; Chatterjee, Ishani; Batts, Shelley A.; Wong, Hiu Tung; Gong, Tzy-Wen; Gong, Shu-Sheng; Raphael, Yehoash

    2010-01-01

    The mammalian vestibular epithelium has a limited capacity for spontaneous hair cell regeneration. The mechanism underlying the regeneration is not well understood. Because the Notch signaling pathway mediates the formation of the sensory epithelial mosaic patterning during ear development, it may also play a role in hair cell regeneration in the mature mammalian vestibular epithelium after a lesion. To investigate the process of spontaneous regeneration in the vestibular epithelium vis-à-vis changes in Notch signaling, we induced a unilateral lesion by infusing streptomycin into the mouse posterior semicircular canal, and examined Notch signaling molecules and their mRNA expression levels by immunohistochemistry and quantitative real-time polymerase chain reaction (qRTPCR), respectively. We detected Jagged1 in supporting cells in both normal and lesioned utricles. Atoh1, a marker for early developing hair cells, was absent in the intact mature tissue, but re-appeared after the lesion. Many cells were either positive for both Atoh1 and myosin VIIa, or for one of them. qRTPCR data showed a post trauma decrease of Hes5 and an increase in Atoh1. Atoh1 up-regulation may either be a result of Hes5 down-regulation or mediated by another signaling pathway. PMID:20433915

  13. Notch receptors in human choroid plexus tumors.

    PubMed

    Beschorner, R; Waidelich, J; Trautmann, K; Psaras, T; Schittenhelm, J

    2013-08-01

    Notch signaling plays a role in development and formation of the normal choroid plexus (nCP), and in formation of various tumors in humans. Activation of Notch3 has been reported to promote tumor growth in invasive gliomas and to initiate formation of choroid plexus tumors (CPT) in mice. We investigated the expression of all currently known Notch receptors (Notch 1-4) in 55 samples of nCP and 88 CPT, including 61 choroid plexus papillomas (CPP), 22 atypical CPP and 5 choroid plexus carcinomas by immunohistochemistry. Notch expression was semiquantitatively evaluated separately for membranous/cytoplasmic and for nuclear staining. In addition, we examined Her2 expression (EGFR2, Her2/neu, ErbB2, CD340) because of its functional link to Notch signaling. All samples were negative for Notch3. Membranous/cytoplasmic expression of Notch1 (p<0.0001) and Notch4 (p=0.046) was significantly higher, whereas Notch2 expression was significantly lower (p<0.0001) in nCP compared to CPT. Nuclear expression of Notch1, -2 and -4 was significantly higher in CPT compared to nCP (p<0.0001 each). Expression of Notch2 and Notch4 showed a shift from a prevailing membranous/cytoplasmic expression in nCP to a predominant nuclear expression in CPT. Her2 was weakly expressed in 42/84 CPT but only in 2/53 nCP (p=0.0001) and positively correlated with nuclear expression of Notch1, -2 and 4 in CPT. In summary, a shift between membranous/cytoplasmic (non-canonical signaling pathway) and nuclear expression (canonical signaling pathway) of Notch1, -2 and -4 and upregulation of Her2 indicate neoplastic transformation in human CP and may reveal new therapeutic approaches.

  14. Notch Signaling Contributes to Liver Inflammation by Regulation of Interleukin-22-Producing Cells in Hepatitis B Virus Infection

    PubMed Central

    Wei, Xin; Wang, Jiu-Ping; Hao, Chun-Qiu; Yang, Xiao-Fei; Wang, Lin-Xu; Huang, Chang-Xing; Bai, Xue-Fan; Lian, Jian-Qi; Zhang, Ye

    2016-01-01

    The mechanism of hepatitis B virus (HBV) induced liver inflammation is not fully elucidated. Notch signaling augmented interleukin (IL)-22 secretion in CD4+ T cells, and Notch-IL-22 axis fine-tuned inflammatory response. We previously demonstrated a proinflammatory role of IL-22 in HBV infection. Thus, in this study, we analyzed the role of Notch in development of IL-22-producing cells in HBV infection by inhibition of Notch signaling using γ-secretase inhibitor DAPT in both hydrodynamic induced HBV-infected mouse model and in peripheral blood cells isolated from patients with HBV infection. mRNA expressions of Notch1 and Notch2 were significantly increased in livers and CD4+ T cells upon HBV infection. Inhibition of Notch signaling in vivo leaded to the reduction in NKp46+ innate lymphoid cells 22 (ILC22) and lymphoid tissue inducer 4 (LTi4) cells in the liver. This process was accompanied by downregulating the expressions of IL-22 and related proinflammatory cytokines and chemokines in the liver, as well as blocking the recruitment of antigen-non-specific inflammatory cells into the liver and subsequent liver injury, but did not affect HBV antigens production and IL-22 secretion in the serum. Furthermore, IL-22 production in HBV non-specific cultured CD4+ T cells, but not HBV-specific CD4+ T cells, was reduced in response to in vitro inhibition of Notch signaling. In conclusion, Notch siganling appears to be an important mediator of the liver inflammation by modulating hepatic ILC22. The potential proinflammatory effect of Notch-mediated ILC22 may be significant for the development of new therapeutic approaches for treatment of hepatitis B. PMID:27800305

  15. In vivo consequences of deleting EGF repeats 8–12 including the ligand binding domain of mouse Notch1

    PubMed Central

    Ge, Changhui; Liu, Tongyi; Hou, Xinghua; Stanley, Pamela

    2008-01-01

    Background Notch signaling is highly conserved in the metazoa and is critical for many cell fate decisions. Notch activation occurs following ligand binding to Notch extracellular domain. In vitro binding assays have identified epidermal growth factor (EGF) repeats 11 and 12 as the ligand binding domain of Drosophila Notch. Here we show that an internal deletion in mouse Notch1 of EGF repeats 8–12, including the putative ligand binding domain (lbd), is an inactivating mutation in vivo. We also show that maternal and zygotic Notch1lbd/lbd mutant embryos develop through gastrulation to mid-gestation. Results Notch1lbd/lbd embryos died at mid-gestation with a phenotype indistinguishable from Notch1 null mutants. In embryonic stem (ES) cells, Notch1lbd was expressed on the cell surface at levels equivalent to wild type Notch1, but Delta1 binding was reduced to the same level as in Notch1 null cells. In an ES cell co-culture assay, Notch signaling induced by Jagged1 or Delta1 was reduced to a similar level in Notch1lbdand Notch1 null cells. However, the Notch1lbd/lbd allele was expressed similarly to wild type Notch1 in Notch1lbd/lbd ES cells and embryos at E8.75, indicating that Notch1 signaling is not essential for the Notch1 gene to be expressed. In addition, maternal and zygotic Notch1 mutant blastocysts developed through gastrulation. Conclusion Mouse Notch1 lacking the ligand binding domain is expressed at the cell surface but does not signal in response to the canonical Notch ligands Delta1 and Jagged1. Homozygous Notch1lbd/lbd mutant embryos die at ~E10 similar to Notch1 null embryos. While Notch1 is expressed in oocytes and blastocysts, Notch1 signaling via canonical ligands is dispensable during oogenesis, blastogenesis, implantation and gastrulation. PMID:18445292

  16. LIN-12/Notch signaling instructs postsynaptic muscle arm development by regulating UNC-40/DCC and MADD-2 in Caenorhabditis elegans.

    PubMed

    Li, Pengpeng; Collins, Kevin M; Koelle, Michael R; Shen, Kang

    2013-03-19

    The diverse cell types and the precise synaptic connectivity between them are the cardinal features of the nervous system. Little is known about how cell fate diversification is linked to synaptic target choices. Here we investigate how presynaptic neurons select one type of muscles, vm2, as a synaptic target and form synapses on its dendritic spine-like muscle arms. We found that the Notch-Delta pathway was required to distinguish target from non-target muscles. APX-1/Delta acts in surrounding cells including the non-target vm1 to activate LIN-12/Notch in the target vm2. LIN-12 functions cell-autonomously to up-regulate the expression of UNC-40/DCC and MADD-2 in vm2, which in turn function together to promote muscle arm formation and guidance. Ectopic expression of UNC-40/DCC in non-target vm1 muscle is sufficient to induce muscle arm extension from these cells. Therefore, the LIN-12/Notch signaling specifies target selection by selectively up-regulating guidance molecules and forming muscle arms in target cells. DOI:http://dx.doi.org/10.7554/eLife.00378.001.

  17. Homemade notch filter to suppress strong FM or DAB - T/DVB - T signals

    NASA Astrophysics Data System (ADS)

    Monstein, Christian

    2016-04-01

    Many of the current 116 solar radio spectrometer instruments in the e-Callisto network are suffering from strong interference from FM-radio, DAB-T or DVB-T broadcast stations. With simple surface mount device (SMD) components a cheap notch (trap)filter can be produced to suppress these strong signals that otherwise may saturate the low noise amplifier and/or the receiver.

  18. BEND6 is a nuclear antagonist of Notch signaling during self-renewal of neural stem cells

    PubMed Central

    Dai, Qi; Andreu-Agullo, Celia; Insolera, Ryan; Wong, Li Chin; Shi, Song-Hai; Lai, Eric C.

    2013-01-01

    The activity of the Notch pathway revolves around a CSL-class transcription factor, which recruits distinct complexes that activate or repress target gene expression. The co-activator complex is deeply conserved and includes the cleaved Notch intracellular domain (NICD) and Mastermind. By contrast, numerous CSL co-repressor proteins have been identified, and these are mostly different between invertebrate and vertebrate systems. In this study, we demonstrate that mammalian BEND6 is a neural BEN-solo factor that shares many functional attributes with Drosophila Insensitive, a co-repressor for the Drosophila CSL factor. BEND6 binds the mammalian CSL protein CBF1 and antagonizes Notch-dependent target activation. In addition, its association with Notch- and CBF1-regulated enhancers is promoted by CBF1 and antagonized by activated Notch. In utero electroporation experiments showed that ectopic BEND6 inhibited Notch-mediated self-renewal of neocortical neural stem cells and promoted neurogenesis. Conversely, knockdown of BEND6 increased NSC self-renewal in wild-type neocortex, and exhibited genetic interactions with gain and loss of Notch pathway activity. We recapitulated all of these findings in cultured neurospheres, in which overexpression and depletion of BEND6 caused reciprocal effects on neural stem cell renewal and neurogenesis. These data reveal a novel mammalian CSL co-repressor in the nervous system, and show that the Notch-inhibitory activity of certain BEN-solo proteins is conserved between flies and mammals. PMID:23571214

  19. Notch signal reception is required in vascular smooth muscle cells for ductus arteriosus closure.

    PubMed

    Krebs, Luke T; Norton, Christine R; Gridley, Thomas

    2016-02-01

    The ductus arteriosus is an arterial vessel that shunts blood flow away from the lungs during fetal life, but normally occludes after birth to establish the adult circulation pattern. Failure of the ductus arteriosus to close after birth is termed patent ductus arteriosus, and is one of the most common congenital heart defects. Our previous work demonstrated that vascular smooth muscle cell expression of the Jag1 gene, which encodes a ligand for Notch family receptors, is essential for postnatal closure of the ductus arteriosus in mice. However, it was not known what cell population was responsible for receiving the Jag1-mediated signal. Here we show, using smooth muscle cell-specific deletion of the Rbpj gene, which encodes a transcription factor that mediates all canonical Notch signaling, that Notch signal reception in the vascular smooth muscle cell compartment is required for ductus arteriosus closure. These data indicate that homotypic vascular smooth muscle cell interactions are required for proper contractile smooth muscle cell differentiation and postnatal closure of the ductus arteriosus in mice.

  20. Gene expression analysis reveals that Delta/Notch signalling is not involved in onychophoran segmentation.

    PubMed

    Janssen, Ralf; Budd, Graham E

    2016-03-01

    Delta/Notch (Dl/N) signalling is involved in the gene regulatory network underlying the segmentation process in vertebrates and possibly also in annelids and arthropods, leading to the hypothesis that segmentation may have evolved in the last common ancestor of bilaterian animals. Because of seemingly contradicting results within the well-studied arthropods, however, the role and origin of Dl/N signalling in segmentation generally is still unclear. In this study, we investigate core components of Dl/N signalling by means of gene expression analysis in the onychophoran Euperipatoides kanangrensis, a close relative to the arthropods. We find that neither Delta or Notch nor any other investigated components of its signalling pathway are likely to be involved in segment addition in onychophorans. We instead suggest that Dl/N signalling may be involved in posterior elongation, another conserved function of these genes. We suggest further that the posterior elongation network, rather than classic Dl/N signalling, may be in the control of the highly conserved segment polarity gene network and the lower-level pair-rule gene network in onychophorans. Consequently, we believe that the pair-rule gene network and its interaction with Dl/N signalling may have evolved within the arthropod lineage and that Dl/N signalling has thus likely been recruited independently for segment addition in different phyla. PMID:26935716

  1. Gene expression analysis reveals that Delta/Notch signalling is not involved in onychophoran segmentation.

    PubMed

    Janssen, Ralf; Budd, Graham E

    2016-03-01

    Delta/Notch (Dl/N) signalling is involved in the gene regulatory network underlying the segmentation process in vertebrates and possibly also in annelids and arthropods, leading to the hypothesis that segmentation may have evolved in the last common ancestor of bilaterian animals. Because of seemingly contradicting results within the well-studied arthropods, however, the role and origin of Dl/N signalling in segmentation generally is still unclear. In this study, we investigate core components of Dl/N signalling by means of gene expression analysis in the onychophoran Euperipatoides kanangrensis, a close relative to the arthropods. We find that neither Delta or Notch nor any other investigated components of its signalling pathway are likely to be involved in segment addition in onychophorans. We instead suggest that Dl/N signalling may be involved in posterior elongation, another conserved function of these genes. We suggest further that the posterior elongation network, rather than classic Dl/N signalling, may be in the control of the highly conserved segment polarity gene network and the lower-level pair-rule gene network in onychophorans. Consequently, we believe that the pair-rule gene network and its interaction with Dl/N signalling may have evolved within the arthropod lineage and that Dl/N signalling has thus likely been recruited independently for segment addition in different phyla.

  2. The Role of Notch Receptors in Transcriptional Regulation

    PubMed Central

    WANG, HONGFANG; ZANG, CHONGZHI; LIU, X. SHIRLEY; ASTER, JON C.

    2015-01-01

    Notch signaling has pleiotropic context-specific functions that have essential roles in many processes, including embryonic development and maintenance and homeostasis of adult tissues. Aberrant Notch signaling (both hyper- and hypoactive) is implicated in a number of human developmental disorders and many cancers. Notch receptor signaling is mediated by tightly regulated proteolytic cleavages that lead to the assembly of a nuclear Notch transcription complex, which drives the expression of downstream target genes and thereby executes Notch’s functions. Thus, understanding regulation of gene expression by Notch is central to deciphering how Notch carries out its many activities. Here, we summarize the recent findings pertaining to the complex interplay between the Notch transcriptional complex and interacting factors involved in transcriptional regulation, including co-activators, cooperating transcription factors, and chromatin regulators, and discuss emerging data pertaining to the role of Notch-regulated noncoding RNAs in transcription. PMID:25418913

  3. Proteolytic Cleavage of Notch: “HIT and RUN”

    PubMed Central

    van Tetering, G.; Vooijs, M.

    2014-01-01

    The Notch pathway is a highly conserved signaling pathway in multicellular eukaryotes essential in controlling spatial patterning, morphogenesis and homeostasis in embryonic and adult tissues. Notch proteins coordinate cell-cell communication through receptor-ligand interactions between adjacent cells. Notch signaling is frequently deregulated by oncogenic mutation or overexpression in many cancer types. Notch activity is controlled by three sequential cleavage steps leading to ectodomain shedding and transcriptional activation. Here we review the key regulatory steps in the activation of Notch, from receptor maturation to receptor activation (HIT) via a rate-limiting proteolytic cascade (RUN) in the context of species-specific differences. PMID:21506924

  4. Stochastic Regulation of her1/7 Gene Expression Is the Source of Noise in the Zebrafish Somite Clock Counteracted by Notch Signalling

    PubMed Central

    Jenkins, Robert P.; Hanisch, Anja; Soza-Ried, Cristian; Sahai, Erik

    2015-01-01

    The somite segmentation clock is a robust oscillator used to generate regularly-sized segments during early vertebrate embryogenesis. It has been proposed that the clocks of neighbouring cells are synchronised via inter-cellular Notch signalling, in order to overcome the effects of noisy gene expression. When Notch-dependent communication between cells fails, the clocks of individual cells operate erratically and lose synchrony over a period of about 5 to 8 segmentation clock cycles (2–3 hours in the zebrafish). Here, we quantitatively investigate the effects of stochasticity on cell synchrony, using mathematical modelling, to investigate the likely source of such noise. We find that variations in the transcription, translation and degradation rate of key Notch signalling regulators do not explain the in vivo kinetics of desynchronisation. Rather, the analysis predicts that clock desynchronisation, in the absence of Notch signalling, is due to the stochastic dissociation of Her1/7 repressor proteins from the oscillating her1/7 autorepressed target genes. Using in situ hybridisation to visualise sites of active her1 transcription, we measure an average delay of approximately three minutes between the times of activation of the two her1 alleles in a cell. Our model shows that such a delay is sufficient to explain the in vivo rate of clock desynchronisation in Notch pathway mutant embryos and also that Notch-mediated synchronisation is sufficient to overcome this stochastic variation. This suggests that the stochastic nature of repressor/DNA dissociation is the major source of noise in the segmentation clock. PMID:26588097

  5. Control of Neural Daughter Cell Proliferation by Multi-level Notch/Su(H)/E(spl)-HLH Signaling

    PubMed Central

    Bivik, Caroline; MacDonald, Ryan B.; Gunnar, Erika; Mazouni, Khalil; Schweisguth, Francois; Thor, Stefan

    2016-01-01

    The Notch pathway controls proliferation during development and in adulthood, and is frequently affected in many disorders. However, the genetic sensitivity and multi-layered transcriptional properties of the Notch pathway has made its molecular decoding challenging. Here, we address the complexity of Notch signaling with respect to proliferation, using the developing Drosophila CNS as model. We find that a Notch/Su(H)/E(spl)-HLH cascade specifically controls daughter, but not progenitor proliferation. Additionally, we find that different E(spl)-HLH genes are required in different neuroblast lineages. The Notch/Su(H)/E(spl)-HLH cascade alters daughter proliferation by regulating four key cell cycle factors: Cyclin E, String/Cdc25, E2f and Dacapo (mammalian p21CIP1/p27KIP1/p57Kip2). ChIP and DamID analysis of Su(H) and E(spl)-HLH indicates direct transcriptional regulation of the cell cycle genes, and of the Notch pathway itself. These results point to a multi-level signaling model and may help shed light on the dichotomous proliferative role of Notch signaling in many other systems. PMID:27070787

  6. Control of Neural Daughter Cell Proliferation by Multi-level Notch/Su(H)/E(spl)-HLH Signaling.

    PubMed

    Bivik, Caroline; MacDonald, Ryan B; Gunnar, Erika; Mazouni, Khalil; Schweisguth, Francois; Thor, Stefan

    2016-04-01

    The Notch pathway controls proliferation during development and in adulthood, and is frequently affected in many disorders. However, the genetic sensitivity and multi-layered transcriptional properties of the Notch pathway has made its molecular decoding challenging. Here, we address the complexity of Notch signaling with respect to proliferation, using the developing Drosophila CNS as model. We find that a Notch/Su(H)/E(spl)-HLH cascade specifically controls daughter, but not progenitor proliferation. Additionally, we find that different E(spl)-HLH genes are required in different neuroblast lineages. The Notch/Su(H)/E(spl)-HLH cascade alters daughter proliferation by regulating four key cell cycle factors: Cyclin E, String/Cdc25, E2f and Dacapo (mammalian p21CIP1/p27KIP1/p57Kip2). ChIP and DamID analysis of Su(H) and E(spl)-HLH indicates direct transcriptional regulation of the cell cycle genes, and of the Notch pathway itself. These results point to a multi-level signaling model and may help shed light on the dichotomous proliferative role of Notch signaling in many other systems. PMID:27070787

  7. Total alkaloids of Rubus alceifolius Poir inhibit tumor angiogenesis through suppression of the Notch signaling pathway in a mouse model of hepatocellular carcinoma.

    PubMed

    Zhao, Jinyan; Lin, Wei; Cao, Zhiyun; Zhuang, Qunchuan; Zheng, Liangpu; Peng, Jun; Hong, Zhenfeng

    2015-01-01

    Angiogenesis, which has a critical role in human tumor growth and development, is tightly regulated by the Notch signaling pathway. Total alkaloids are active components of the plant Rubus alceifolius Poir, which is used for the treatment of various types of cancer. A previous study by our group showed that the total alkaloids of Rubus alceifolius Poir (TARAP) induced hepatocellular carcinoma (HCC) cell apoptosis through the activation of the mitochondria-dependent pathway in vitro and in vivo, as well as inhibited angiogenesis in a chick embryo chorioallantoic membrane model. In the present study, to further analyze the specific mechanisms underlying the antitumor activity of TARAP, a HCC xenograft mouse model was used to assess the effect of TARAP on angiogenesis in vivo. TARAP was found to suppress the expression of vascular endothelial growth factor (VEGF) A and VEGF receptor-2 in tumor tissues, which resulted in the inhibition of tumor angiogenesis. In addition, TARAP treatment was observed to inhibit the expression of Notch1, delta-like ligand 4 and jagged 1, which are key mediators of the Notch signaling pathway. The present study identified that the inhibition of tumor angiogenesis through the suppression of the Notch signaling pathway may be one of the mechanisms through which TARAP may be effective in the treatment of cancer.

  8. Salinomycin Suppresses PDGFRβ, MYC, and Notch Signaling in Human Medulloblastoma

    PubMed Central

    Zhou, Shuang; Wang, Fengfei; Zhang, Ying; Johnson, Max R; Qian, Steven; Wu, Min; Wu, Erxi

    2014-01-01

    Medulloblastoma (MB) is the most common childhood brain tumor. Despite improved therapy and management, approximately 30% of patients die of the disease. To search for a more effective therapeutic strategy, the effects of salinomycin were tested on cell proliferation, cell death, and cell cycle progression in human MB cell lines. The results demonstrated that salinomycin inhibits cell proliferation, induces cell death , and disrupts cell cycle progression in MB cells. Salinomycin was also tested on the expression levels of key genes involved in proliferation and survival signaling and revealed that salinomycin down-regulates the expression of PDGFRβ, MYC, p21 and Bcl-2 as well as up-regulates the expression of cyclin A. In addition, the results reveal that salinomycin suppresses the expression of Hes1 and Hes5 in MB cells. Our data shed light on the potential of using salinomycin as a novel therapeutic agent for patients with MB. PMID:25478603

  9. Border of Notch activity establishes a boundary between the two dorsal appendage tube cell types.

    PubMed

    Ward, Ellen J; Zhou, Xiaofeng; Riddiford, Lynn M; Berg, Celeste A; Ruohola-Baker, Hannele

    2006-09-15

    Boundaries establish and maintain separate populations of cells critical for organ formation. We show that Notch signaling establishes the boundary between two types of post-mitotic epithelial cells, the Rhomboid- and the Broad-positive cells. These cells will undergo morphogenetic movements to generate the two sides of a simple organ, the dorsal appendage tube of the Drosophila egg chamber. The boundary forms due to a difference in Notch levels in adjacent cells. The Notch expression pattern mimics the boundary; Notch levels are high in Rhomboid cells and low in Broad cells. Notch(-) mutant clones generate an ectopic boundary: ectopic Rhomboid cells arise in Notch(+) cells adjacent to the Notch(-) mutant cells but not further away from the clonal border. Pangolin, a component of the Wingless pathway, is required for Broad expression and for rhomboid repression. We further show that Broad represses rhomboid cell autonomously. Our data provide a foundation for understanding how a single row of Rhomboid cells arises adjacent to the Broad cells in the dorsal appendage primordia. Generating a boundary by the Notch pathway might constitute an evolutionarily conserved first step during organ formation in many tissues. PMID:16828735

  10. Notch1-Dll4 signalling and mechanical force regulate leader cell formation during collective cell migration.

    PubMed

    Riahi, Reza; Sun, Jian; Wang, Shue; Long, Min; Zhang, Donna D; Wong, Pak Kin

    2015-03-13

    At the onset of collective cell migration, a subset of cells within an initially homogenous population acquires a distinct 'leader' phenotype with characteristic morphology and motility. However, the factors driving the leader cell formation as well as the mechanisms regulating leader cell density during the migration process remain to be determined. Here we use single-cell gene expression analysis and computational modelling to show that the leader cell identity is dynamically regulated by Dll4 signalling through both Notch1 and cellular stress in a migrating epithelium. Time-lapse microscopy reveals that Dll4 is induced in leader cells after the creation of the cell-free region and leader cells are regulated via Notch1-Dll4 lateral inhibition. Furthermore, mechanical stress inhibits Dll4 expression and leader cell formation in the monolayer. Collectively, our findings suggest that a reduction of mechanical force near the boundary promotes Notch1-Dll4 signalling to dynamically regulate the density of leader cells during collective cell migration.

  11. The effects of notch filters on the correlation properties of a PN signal

    NASA Technical Reports Server (NTRS)

    Sussman, S. M.; Ferrari, E. J.

    1974-01-01

    With wideband pseudo-noise (PN) communications systems, it is sometimes desirable to supplement the inherent interference rejection capabilities by adding notch filters to attenuate relatively narrowband interference. This correspondence presents an investigation of the effects of notch filters on the performance of PN correlation receivers. A theoretical analysis of the correlation drop due to filter distortion has been conducted and confirmed by experimentation. Additional measurements and analysis have established the trade-off between correlation drop and interference suppression as a function of interference bandwidth. A typical result is that by incurring a penalty of a 1-dB drop in correlation peak, interfering signals having bandwidths of 2 to 3% of the PN chip rate can be attenuated by 25 dB.

  12. Epithelial expression and chromosomal location of human TLE genes: Implications for notch signaling and neoplasia

    SciTech Connect

    Liu, Yanling; Dehni, Ghassan; Stifani, S.

    1996-01-01

    The TLE genes are the human homologues of Drosophila groucho, a member of the Notch signaling pathway. This pathway controls a number of different cell-fate choices in invertebrates and vertebrates. We are interested in investigating the functions of the TLE gene family during epithelial determination and carcinogenesis. We show that expression of individual TLE genes correlates with immature epithelial cells that are progressing toward their terminally differentiated state, suggesting a role during epithelial differentiation. In both normal tissues and conditions resulting from incorrect or incomplete maturation events, such as metaplastic and neoplastic transformations, TLE expression is elevated and coincides with Notch expression, implicating these molecules in the maintenance of the undifferentiated state in epithelial cells. We also show that TLE1 and TLE2 are organized in a tandem array at chromosomal location 19p13.3, while TLE3 maps to 15q22. 26 refs., 4 figs.

  13. A Novel Transcriptional Factor Nkapl Is a Germ Cell-Specific Suppressor of Notch Signaling and Is Indispensable for Spermatogenesis

    PubMed Central

    Okuda, Hidenobu; Kiuchi, Hiroshi; Takao, Tetsuya; Miyagawa, Yasushi; Tsujimura, Akira; Nonomura, Norio; Miyata, Haruhiko; Okabe, Masaru; Ikawa, Masahito; Kawakami, Yoshitaka; Goshima, Naoki; Wada, Morimasa; Tanaka, Hiromitsu

    2015-01-01

    Spermatogenesis is an elaborately regulated system dedicated to the continuous production of spermatozoa via the genesis of spermatogonia. In this process, a variety of genes are expressed that are relevant to the differentiation of germ cells at each stage. Although Notch signaling plays a critical role in germ cell development in Drosophila and Caenorhabditis elegans, its function and importance for spermatogenesis in mammals is controversial. We report that Nkapl is a novel germ cell-specific transcriptional suppressor in Notch signaling. It is also associated with several molecules of the Notch corepressor complex such as CIR, HDAC3, and CSL. It was expressed robustly in spermatogonia and early spermatocytes after the age of 3 weeks. Nkapl-deleted mice showed complete arrest at the level of pachytene spermatocytes. In addition, apoptosis was observed in this cell type. Overexpression of NKAPL in germline stem cells demonstrated that Nkapl induced changes in spermatogonial stem cell (SSC) markers and the reduction of differentiation factors through the Notch signaling pathway, whereas testes with Nkapl deleted showed inverse changes in those markers and factors. Therefore, Nkapl is indispensable because aberrantly elevated Notch signaling has negative effects on spermatogenesis, affecting SSC maintenance and differentiation factors. Notch signaling should be properly regulated through the transcriptional factor Nkapl. PMID:25875095

  14. Targeting Notch1 inhibits invasion and angiogenesis of human breast cancer cells via inhibition Nuclear Factor-κB signaling.

    PubMed

    Liu, Yuan; Su, Chuanfu; Shan, Yuqing; Yang, Shouxiang; Ma, Guifeng

    2016-01-01

    Notch-1, a type-1 transmembrane protein, plays critical roles in the pathogenesis and progression of human malignancies, including breast cancer; however, the precise mechanism by which Notch-1 causes tumor cell invasion and angiogenesis remain unclear. Nuclear factor-κB (NF-κB), interleukin-8 (IL-8), vascular endothelial growth factor (VEGF), and matrix metalloproteinases (MMP) are critically involved in the processes of tumor cell invasion and metastasis, we investigated whether targeting Notch-1 could be mechanistically associated with the down-regulation of NF-κB, IL-8, VEGF, and MMP-9, resulting in the inhibition of invasion and angiogenesis of breast cancer cells. Our data showed that down-regulation of Notch-1 leads to the inactivation of NF-κB activity and inhibits the expression of its target genes, such as IL-8, VEGF and MMP-9. We also found that down-regulation of Notch-1 decreased cell invasion, and vice versa Consistent with these results, we also found that the down-regulation of Notch-1 not only decreased MMP-9 mRNA and its protein expression but also inhibited MMP-9 active form. Moreover, conditioned medium from Notch-1 siRNA-transfected breast cancer cells showed reduced levels of IL-8 and VEGF and, in turn, inhibited the tube formation of HUVECs, suggesting that down-regulation of Notch-1 leads to the inhibition of angiogenesis. Furthermore, conditioned medium from Notch-1 cDNA-transfected breast cancer cells showed increased levels of IL-8 and VEGF and, in turn, promoted the tube formation of HUVECs, suggesting that Notch-1 overexpression leads to the promotion of angiogenesis.We therefore concluded that down-regulation of Notch-1 leads to the inactivation NF-κB and its target genes (IL-8, MMP-9 and VEGF), resulting in the inhibition of invasion and angiogenesis.

  15. Targeting Notch1 inhibits invasion and angiogenesis of human breast cancer cells via inhibition Nuclear Factor-κB signaling

    PubMed Central

    Liu, Yuan; Su, Chuanfu; Shan, Yuqing; Yang, Shouxiang; Ma, Guifeng

    2016-01-01

    Notch-1, a type-1 transmembrane protein, plays critical roles in the pathogenesis and progression of human malignancies, including breast cancer; however, the precise mechanism by which Notch-1 causes tumor cell invasion and angiogenesis remain unclear. Nuclear factor-κB (NF-κB), interleukin-8 (IL-8), vascular endothelial growth factor (VEGF), and matrix metalloproteinases (MMP) are critically involved in the processes of tumor cell invasion and metastasis, we investigated whether targeting Notch-1 could be mechanistically associated with the down-regulation of NF-κB, IL-8, VEGF, and MMP-9, resulting in the inhibition of invasion and angiogenesis of breast cancer cells. Our data showed that down-regulation of Notch-1 leads to the inactivation of NF-κB activity and inhibits the expression of its target genes, such as IL-8, VEGF and MMP-9. We also found that down-regulation of Notch-1 decreased cell invasion, and vice versa Consistent with these results, we also found that the down-regulation of Notch-1 not only decreased MMP-9 mRNA and its protein expression but also inhibited MMP-9 active form. Moreover, conditioned medium from Notch-1 siRNA-transfected breast cancer cells showed reduced levels of IL-8 and VEGF and, in turn, inhibited the tube formation of HUVECs, suggesting that down-regulation of Notch-1 leads to the inhibition of angiogenesis. Furthermore, conditioned medium from Notch-1 cDNA-transfected breast cancer cells showed increased levels of IL-8 and VEGF and, in turn, promoted the tube formation of HUVECs, suggesting that Notch-1 overexpression leads to the promotion of angiogenesis.We therefore concluded that down-regulation of Notch-1 leads to the inactivation NF-κB and its target genes (IL-8, MMP-9 and VEGF), resulting in the inhibition of invasion and angiogenesis. PMID:27398151

  16. Simultaneous targeted activation of Notch1 and Vhl-disruption in the kidney proximal epithelial tubular cells in mice

    PubMed Central

    Johansson, Elinn; Rönö, Birgitte; Johansson, Martin; Lindgren, David; Möller, Christina; Axelson, Håkan; Smith, Emma M. K.

    2016-01-01

    Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer, representing approximately 75% of all renal neoplasms. ccRCC is known to be strongly associated with silencing of the von Hippel Lindau (VHL) tumor suppressor gene, yet VHL deficiency alone does not seem to be sufficient to drive the oncogenic transformation of normal renal epithelium and induce renal tumorigenesis. We, and others, have previously suggested that constitutive activation of the Notch signaling pathway, alongside with VHL loss, contribute to the oncogenic features of ccRCC. Here we report a prevailing hyperactivation of the Notch1 receptor in human ccRCC relative to the healthy counterpart. To explore the consequences of the elevated Notch1 signaling observed in ccRCC patient material, we made use of a conditional mouse model based on concurrent ectopic expression of constitutively active Notch1 (NICD1) and deletion of the Vhl gene. Histological examination of the kidneys of the conditional mice demonstrate the existence of nests of dysplastic cells with a clear cytoplasm as a consequence of lipid accumulation, thus displaying a one important hallmark of human ccRCC. PMID:27491826

  17. Simultaneous targeted activation of Notch1 and Vhl-disruption in the kidney proximal epithelial tubular cells in mice.

    PubMed

    Johansson, Elinn; Rönö, Birgitte; Johansson, Martin; Lindgren, David; Möller, Christina; Axelson, Håkan; Smith, Emma M K

    2016-01-01

    Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer, representing approximately 75% of all renal neoplasms. ccRCC is known to be strongly associated with silencing of the von Hippel Lindau (VHL) tumor suppressor gene, yet VHL deficiency alone does not seem to be sufficient to drive the oncogenic transformation of normal renal epithelium and induce renal tumorigenesis. We, and others, have previously suggested that constitutive activation of the Notch signaling pathway, alongside with VHL loss, contribute to the oncogenic features of ccRCC. Here we report a prevailing hyperactivation of the Notch1 receptor in human ccRCC relative to the healthy counterpart. To explore the consequences of the elevated Notch1 signaling observed in ccRCC patient material, we made use of a conditional mouse model based on concurrent ectopic expression of constitutively active Notch1 (NICD1) and deletion of the Vhl gene. Histological examination of the kidneys of the conditional mice demonstrate the existence of nests of dysplastic cells with a clear cytoplasm as a consequence of lipid accumulation, thus displaying a one important hallmark of human ccRCC. PMID:27491826

  18. Proinflammatory cytokine tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) suppresses satellite cell self-renewal through inversely modulating Notch and NF-κB signaling pathways.

    PubMed

    Ogura, Yuji; Mishra, Vivek; Hindi, Sajedah M; Kuang, Shihuan; Kumar, Ashok

    2013-12-01

    Satellite cell self-renewal is an essential process to maintaining the robustness of skeletal muscle regenerative capacity. However, extrinsic factors that regulate self-renewal of satellite cells are not well understood. Here, we demonstrate that TWEAK cytokine reduces the proportion of Pax7(+)/MyoD(-) cells (an index of self-renewal) on myofiber explants and represses multiple components of Notch signaling in satellite cell cultures. The number of Pax7(+) cells is significantly increased in skeletal muscle of TWEAK knock-out (KO) mice compared with wild-type in response to injury. Furthermore, Notch signaling is significantly elevated in cultured satellite cells and in regenerating myofibers of TWEAK-KO mice. Forced activation of Notch signaling through overexpression of the Notch1 intracellular domain (N1ICD) rescued the TWEAK-mediated inhibition of satellite cell self-renewal. TWEAK also activates the NF-κB transcription factor in satellite cells and inhibition of NF-κB significantly improved the number of Pax7(+) cells in TWEAK-treated cultures. Furthermore, our results demonstrate that a reciprocal interaction between NF-κB and Notch signaling governs the inhibitory effect of TWEAK on satellite cell self-renewal. Collectively, our study demonstrates that TWEAK suppresses satellite cell self-renewal through activating NF-κB and repressing Notch signaling.

  19. NOTCHing the bone: Insights into multi-functionality

    PubMed Central

    Engin, Feyza; Lee, Brendan

    2010-01-01

    Evolutionarily conserved Notch signaling plays a critical role during embryonic and postnatal life. The importance of Notch signaling in the determination of cell fate, and the spatio-temporal regulation of proliferation, differentiation and apoptosis has been demonstrated in various different organ systems. However, how Notch signaling affects the bone development was unknown until now. The in vivo effects of Notch signaling in lineage commitment, bone formation and bone resorption were demonstrated in recent studies. In addition to regulation of osteoblastogenesis, osteoblast directed osteoclastogenesis by Notch signaling revealed a dimorphic effect for this signaling pathway providing another example of such in bone development. Moreover, identification of the cross-talk between the hematopoietic stem cell niche and osteoblasts through Notch signaling also suggested another important role for Notch signaling, i.e., the coupling of cellular components of the bone microenvironment. The association between the gain and loss of function of Notch activity in bone pathology highlights Notch as a potentially novel therapeutic target for the treatment of metabolic bone disease and bone cancer. In this review, we will focus primarily on the regulation of bone cells, i.e., osteoblasts and osteoclasts by Notch signaling. We will also review the importance of Notch in specifying bone-hematopoietic stem cell niche interactions within the bone microenvironment. Finally, we will discuss potential clinical implications and future directions for this field. PMID:19520195

  20. Differential effects of targeting Notch receptors in a mouse model of liver cancer

    PubMed Central

    Huntzicker, Erik G.; Hötzel, Kathy; Choy, Lisa; Che, Li; Ross, Jed; Pau, Gregoire; Sharma, Neeraj; Siebel, Christian W.; Chen, Xin; French, Dorothy M.

    2015-01-01

    Primary liver cancer encompasses both hepatocellular carcinoma (HCC) and cholangiocarcinoma (CC). The Notch signaling pathway, known to be important for the proper development of liver architecture, is also a potential driver of primary liver cancer. However, with four known Notch receptors and several Notch ligands, it is not clear which Notch pathway members play the predominant role in liver cancer. To address this question we utilized antibodies to specifically target Notch1, Notch2, Notch3 or Jag1 in a mouse model of primary liver cancer driven by AKT and NRas. We show that inhibition of Notch2 reduces tumor burden by eliminating highly malignant hepatocellular carcinoma- and cholangiocarcinoma-like tumors. Inhibition of the Notch ligand Jag 1 had a similar effect, consistent with Jag1 acting in cooperation with Notch2. This effect was specific to Notch2, as Notch3 inhibition did not decrease tumor burden. Unexpectedly, Notch1 inhibition altered the relative proportion of tumor types, reducing HCC-like tumors but dramatically increasing CC-like tumors. Finally, we show that Notch2 and Jag1 are expressed in, and Notch2 signaling is activated in, a subset of human HCC samples. Conclusions: These findings underscore the distinct roles of different Notch receptors in the liver and suggest that inhibition of Notch2 signaling represents a novel therapeutic option in the treatment of liver cancer. PMID:25311838

  1. Notch Signaling Rescues Loss of Satellite Cells Lacking Pax7 and Promotes Brown Adipogenic Differentiation.

    PubMed

    Pasut, Alessandra; Chang, Natasha C; Rodriguez, Uxia Gurriaran; Faulkes, Sharlene; Yin, Hang; Lacaria, Melanie; Ming, Hong; Rudnicki, Michael A

    2016-07-12

    Pax7 is a nodal transcription factor that is essential for regulating the maintenance, expansion, and myogenic identity of satellite cells during both neonatal and adult myogenesis. Deletion of Pax7 results in loss of satellite cells and impaired muscle regeneration. Here, we show that ectopic expression of the constitutively active intracellular domain of Notch1 (NICD1) rescues the loss of Pax7-deficient satellite cells and restores their proliferative potential. Strikingly NICD1-expressing satellite cells do not undergo myogenic differentiation and instead acquire a brown adipogenic fate both in vivo and in vitro. NICD-expressing Pax7(-/-) satellite cells fail to upregulate MyoD and instead express the brown adipogenic marker PRDM16. Overall, these results show that Notch1 activation compensates for the loss of Pax7 in the quiescent state and acts as a molecular switch to promote brown adipogenesis in adult skeletal muscle.

  2. Notch Signaling Rescues Loss of Satellite Cells Lacking Pax7 and Promotes Brown Adipogenic Differentiation

    PubMed Central

    Pasut, Alessandra; Chang, Natasha C.; Rodriguez, Uxia Gurriaran; Faulkes, Sharlene; Yin, Hang; Lacaria, Melanie; Ming, Hong; Rudnicki, Michael A.

    2016-01-01

    Summary Pax7 is a nodal transcription factor that is essential for regulating the maintenance, expansion, and myogenic identity of satellite cells during both neonatal and adult myogenesis. Deletion of Pax7 results in loss of satellite cells and impaired muscle regeneration. Here we show that ectopic expression of the constitutively active intracellular domain of Notch1 (NICD1) rescues the loss of Pax7-deficient satellite cells and restores their proliferative potential. Strikingly NICD1-expressing satellite cells do not undergo myogenic differentiation and instead acquire a brown adipogenic fate both in vivo and in vitro. NICD-expressing Pax7-/- satellite cells fail to upregulate MyoD and instead express the brown adipogenic marker PRDM16. Overall these results show that Notch1 activation compensates for the loss of Pax7 in the quiescent state and acts as a molecular switch to promote brown adipogenesis in adult skeletal muscle. PMID:27346341

  3. Endothelial cells downregulate apolipoprotein D expression in mural cells through paracrine secretion and Notch signaling

    PubMed Central

    Pajaniappan, Mohanasundari; Glober, Nancy K.; Kennard, Simone; Liu, Hua; Zhao, Ning

    2011-01-01

    Endothelial and mural cell interactions are vitally important for proper formation and function of blood vessels. These two cell types communicate to regulate multiple aspects of vessel function. In studying genes regulated by this interaction, we identified apolipoprotein D (APOD) as one gene that is downregulated in mural cells by coculture with endothelial cells. APOD is a secreted glycoprotein that has been implicated in governing stress response, lipid metabolism, and aging. Moreover, APOD is known to regulate smooth muscle cells and is found in abundance within atherosclerotic lesions. Our data show that the regulation of APOD in mural cells is bimodal. Paracrine secretion by endothelial cells causes partial downregulation of APOD expression. Additionally, cell contact-dependent Notch signaling plays a role. NOTCH3 on mural cells promotes the downregulation of APOD, possibly through interaction with the JAGGED-1 ligand on endothelial cells. Our results show that NOTCH3 contributes to the downregulation of APOD and by itself is sufficient to attenuate APOD transcript expression. In examining the consequence of decreased APOD expression in mural cells, we show that APOD negatively regulates cell adhesion. APOD attenuates adhesion by reducing focal contacts; however, it has no effect on stress fiber formation. These data reveal a novel mechanism in which endothelial cells control neighboring mural cells through the downregulation of APOD, which, in turn, influences mural cell function by modulating adhesion. PMID:21705670

  4. Endothelial cells downregulate apolipoprotein D expression in mural cells through paracrine secretion and Notch signaling.

    PubMed

    Pajaniappan, Mohanasundari; Glober, Nancy K; Kennard, Simone; Liu, Hua; Zhao, Ning; Lilly, Brenda

    2011-09-01

    Endothelial and mural cell interactions are vitally important for proper formation and function of blood vessels. These two cell types communicate to regulate multiple aspects of vessel function. In studying genes regulated by this interaction, we identified apolipoprotein D (APOD) as one gene that is downregulated in mural cells by coculture with endothelial cells. APOD is a secreted glycoprotein that has been implicated in governing stress response, lipid metabolism, and aging. Moreover, APOD is known to regulate smooth muscle cells and is found in abundance within atherosclerotic lesions. Our data show that the regulation of APOD in mural cells is bimodal. Paracrine secretion by endothelial cells causes partial downregulation of APOD expression. Additionally, cell contact-dependent Notch signaling plays a role. NOTCH3 on mural cells promotes the downregulation of APOD, possibly through interaction with the JAGGED-1 ligand on endothelial cells. Our results show that NOTCH3 contributes to the downregulation of APOD and by itself is sufficient to attenuate APOD transcript expression. In examining the consequence of decreased APOD expression in mural cells, we show that APOD negatively regulates cell adhesion. APOD attenuates adhesion by reducing focal contacts; however, it has no effect on stress fiber formation. These data reveal a novel mechanism in which endothelial cells control neighboring mural cells through the downregulation of APOD, which, in turn, influences mural cell function by modulating adhesion.

  5. Growth hormone treatment of premature ovarian failure in a mouse model via stimulation of the Notch-1 signaling pathway

    PubMed Central

    LIU, TE; WANG, SUWEI; ZHANG, LINA; GUO, LIHE; YU, ZHIHUA; CHEN, CHUAN; ZHENG, JIN

    2016-01-01

    Premature ovarian failure (POF) is a condition affecting 1% of women in the general population, causing amenorrhea, hypergonadotropism and hypoestrogenism before the age of 40. Currently, POF cannot be reversed and, although treatments are available, there is an urgent need for improved treatment strategies. Growth hormone (GH) is a pleiotropic hormone that affects a broad spectrum of physiological functions, from carbohydrate and lipid metabolism to the immune response. GH has previously been used to treat POF in non-transgenic preclinical trials, but the biochemical mechanism underlying these effects are unclear. In the present study, a mouse model of POF was generated using cyclophosphamide. Treatment of POF mice with recombinant mouse growth hormone (rmGH) was revealed to markedly reduce POF histopathology in ovarian tissue, relieve ovarian granulosa cell injury, reduce the number of atretic follicles and significantly increase the number of mature oocytes. Furthermore, an enzyme-linked immunosorbent assay revealed that plasma estradiol levels increased and plasma follicle stimulating hormone levels decreased with time in a group of mice treated with a medium dose of rmGH (0.8 mg/kg) when compared with the POF model group (P<0.05). In addition, reverse transcription-quantitative polymerase chain reaction and immunohistochemical analysis demonstrated elevated levels of Notch-1 signaling pathway factors (Notch1, CBF1, and HES1) in wild-type mice and those treated with medium and high doses of rmGH, but not in those treated with low doses of rmGH. In conclusion, GH may promote ovarian tissue repair, estrogen release and oocyte maturation via activation of the Notch-1 signaling pathway in ovarian tissue. PMID:27347041

  6. Notch pathway activation contributes to inhibition of C2C12 myoblast differentiation by ethanol.

    PubMed

    Arya, Michelle A; Tai, Albert K; Wooten, Eric C; Parkin, Christopher D; Kudryavtseva, Elena; Huggins, Gordon S

    2013-01-01

    The loss of muscle mass in alcoholic myopathy may reflect alcohol inhibition of myogenic cell differentiation into myotubes. Here, using a high content imaging system we show that ethanol inhibits C2C12 myoblast differentiation by reducing myogenic fusion, creating smaller and less complex myotubes compared with controls. Ethanol administration during C2C12 differentiation reduced MyoD and myogenin expression, and microarray analysis identified ethanol activation of the Notch signaling pathway target genes Hes1 and Hey1. A reporter plasmid regulated by the Hes1 proximal promoter was activated by alcohol treatment in C2C12 cells. Treatment of differentiating C2C12 cells with a gamma secretase inhibitor (GSI) abrogated induction of Hes1. On a morphological level GSI treatment completely rescued myogenic fusion defects and partially restored other myotube parameters in response to alcohol. We conclude that alcohol inhibits C2C12 myoblast differentiation and the inhibition of myogenic fusion is mediated by Notch pathway activation.

  7. Embryonic arrest at midgestation and disruption of Notch signaling produced by the absence of both epsin 1 and epsin 2 in mice

    PubMed Central

    Chen, Hong; Ko, Genevieve; Zatti, Alessandra; Di Giacomo, Giuseppina; Liu, Lijuan; Raiteri, Elisabetta; Perucco, Ezio; Collesi, Chiara; Min, Wang; Zeiss, Caroline; De Camilli, Pietro; Cremona, Ottavio

    2009-01-01

    Epsins are endocytic adaptors with putative functions in general aspects of clathrin-mediated endocytosis as well as in the internalization of specific membrane proteins. We have now tested the role of the ubiquitously expressed epsin genes, Epn1 and Epn2, by a genetic approach in mice. While either gene is dispensable for life, their combined inactivation results in embryonic lethality at E9.5–E10, i.e., at the beginning of organogenesis. Consistent with studies in Drosophila, where epsin endocytic function was linked to Notch activation, developmental defects observed in epsin 1/2 double knockout (DKO) embryos recapitulated those produced by a global impairment of Notch signaling. Accordingly, expression of Notch primary target genes was severely reduced in DKO embryos. However, housekeeping forms of clathrin-mediated endocytosis were not impaired in cells derived from these embryos. These findings support a role of epsin as a specialized endocytic adaptor, with a critical role in the activation of Notch signaling in mammals. PMID:19666558

  8. Evidence for the Induction of Key Components of the NOTCH Signaling Pathway via Deltamethrin and Azamethiphos Treatment in the Sea Louse Caligus rogercresseyi

    PubMed Central

    Boltaña, Sebastian; Chávez-Mardones, Jaqueline; Valenzuela-Muñoz, Valentina; Gallardo-Escárate, Cristian

    2016-01-01

    The extensive use of organophosphates and pyrethroids in the aquaculture industry has negatively impacted parasite sensitivity to the delousing effects of these antiparasitics, especially among sea lice species. The NOTCH signaling pathway is a positive regulator of ABC transporter subfamily C expression and plays a key role in the generation and modulation of pesticide resistance. However, little is known about the molecular mechanisms behind pesticide resistance, partly due to the lack of genomic and molecular information on the processes involved in the resistance mechanism of sea lice. Next-generation sequencing technologies provide an opportunity for rapid and cost-effective generation of genome-scale data. The present study, through RNA-seq analysis, determined that the sea louse Caligus rogercresseyi (C. rogercresseyi) specifically responds to the delousing drugs azamethiphos and deltamethrin at the transcriptomic level by differentially activating mRNA of the NOTCH signaling pathway and of ABC genes. These results suggest that frequent antiparasitic application may increase the activity of inhibitory mRNA components, thereby promoting inhibitory NOTCH output and conditions for increased resistance to delousing drugs. Moreover, data analysis underscored that key functions of NOTCH/ABC components were regulated during distinct phases of the drug response, thus indicating resistance modifications in C. rogercresseyi resulting from the frequent use of organophosphates and pyrethroids. PMID:27187362

  9. Evolution of the chordate regeneration blastema: Differential gene expression and conserved role of notch signaling during siphon regeneration in the ascidian Ciona.

    PubMed

    Hamada, Mayuko; Goricki, Spela; Byerly, Mardi S; Satoh, Noriyuki; Jeffery, William R

    2015-09-15

    The regeneration of the oral siphon (OS) and other distal structures in the ascidian Ciona intestinalis occurs by epimorphosis involving the formation of a blastema of proliferating cells. Despite the longstanding use of Ciona as a model in molecular developmental biology, regeneration in this system has not been previously explored by molecular analysis. Here we have employed microarray analysis and quantitative real time RT-PCR to identify genes with differential expression profiles during OS regeneration. The majority of differentially expressed genes were downregulated during OS regeneration, suggesting roles in normal growth and homeostasis. However, a subset of differentially expressed genes was upregulated in the regenerating OS, suggesting functional roles during regeneration. Among the upregulated genes were key members of the Notch signaling pathway, including those encoding the delta and jagged ligands, two fringe modulators, and to a lesser extent the notch receptor. In situ hybridization showed a complementary pattern of delta1 and notch gene expression in the blastema of the regenerating OS. Chemical inhibition of the Notch signaling pathway reduced the levels of cell proliferation in the branchial sac, a stem cell niche that contributes progenitor cells to the regenerating OS, and in the OS regeneration blastema, where siphon muscle fibers eventually re-differentiate. Chemical inhibition also prevented the replacement of oral siphon pigment organs, sensory receptors rimming the entrance of the OS, and siphon muscle fibers, but had no effects on the formation of the wound epidermis. Since Notch signaling is involved in the maintenance of proliferative activity in both the Ciona and vertebrate regeneration blastema, the results suggest a conserved evolutionary role of this signaling pathway in chordate regeneration. The genes identified in this investigation provide the foundation for future molecular analysis of OS regeneration.

  10. Evolution of the chordate regeneration blastema: Differential gene expression and conserved role of notch signaling during siphon regeneration in the ascidian Ciona.

    PubMed

    Hamada, Mayuko; Goricki, Spela; Byerly, Mardi S; Satoh, Noriyuki; Jeffery, William R

    2015-09-15

    The regeneration of the oral siphon (OS) and other distal structures in the ascidian Ciona intestinalis occurs by epimorphosis involving the formation of a blastema of proliferating cells. Despite the longstanding use of Ciona as a model in molecular developmental biology, regeneration in this system has not been previously explored by molecular analysis. Here we have employed microarray analysis and quantitative real time RT-PCR to identify genes with differential expression profiles during OS regeneration. The majority of differentially expressed genes were downregulated during OS regeneration, suggesting roles in normal growth and homeostasis. However, a subset of differentially expressed genes was upregulated in the regenerating OS, suggesting functional roles during regeneration. Among the upregulated genes were key members of the Notch signaling pathway, including those encoding the delta and jagged ligands, two fringe modulators, and to a lesser extent the notch receptor. In situ hybridization showed a complementary pattern of delta1 and notch gene expression in the blastema of the regenerating OS. Chemical inhibition of the Notch signaling pathway reduced the levels of cell proliferation in the branchial sac, a stem cell niche that contributes progenitor cells to the regenerating OS, and in the OS regeneration blastema, where siphon muscle fibers eventually re-differentiate. Chemical inhibition also prevented the replacement of oral siphon pigment organs, sensory receptors rimming the entrance of the OS, and siphon muscle fibers, but had no effects on the formation of the wound epidermis. Since Notch signaling is involved in the maintenance of proliferative activity in both the Ciona and vertebrate regeneration blastema, the results suggest a conserved evolutionary role of this signaling pathway in chordate regeneration. The genes identified in this investigation provide the foundation for future molecular analysis of OS regeneration. PMID:26206613

  11. NOTCH1 Inhibits Activation of ATM by Impairing the Formation of an ATM-FOXO3a-KAT5/Tip60 Complex.

    PubMed

    Adamowicz, Marek; Vermezovic, Jelena; d'Adda di Fagagna, Fabrizio

    2016-08-23

    The DNA damage response (DDR) signal transduction pathway is responsible for sensing DNA damage and further relaying this signal into the cell. ATM is an apical DDR kinase that orchestrates the activation and the recruitment of downstream DDR factors to induce cell-cycle arrest and repair. We have previously shown that NOTCH1 inhibits ATM activation upon DNA damage, but the underlying mechanism remains unclear. Here, we show that NOTCH1 does not impair ATM recruitment to DNA double-strand breaks (DSBs). Rather, NOTCH1 prevents binding of FOXO3a and KAT5/Tip60 to ATM through a mechanism in which NOTCH1 competes with FOXO3a for ATM binding. Lack of FOXO3a binding to ATM leads to the loss of KAT5/Tip60 association with ATM. Moreover, expression of NOTCH1 or depletion of ATM impairs the formation of the FOXO3a-KAT5/Tip60 protein complex. Finally, we show that pharmacological induction of FOXO3a nuclear localization sensitizes NOTCH1-driven cancers to DNA-damage-induced cell death. PMID:27524627

  12. Regulation of differentiation flux by Notch signalling influences the number of dopaminergic neurons in the adult brain

    PubMed Central

    Trujillo-Paredes, Niurka; Valencia, Concepción; Guerrero-Flores, Gilda; Arzate, Dulce-María; Baizabal, José-Manuel; Guerra-Crespo, Magdalena; Fuentes-Hernández, Ayari; Zea-Armenta, Iván; Covarrubias, Luis

    2016-01-01

    ABSTRACT Notch signalling is a well-established pathway that regulates neurogenesis. However, little is known about the role of Notch signalling in specific neuronal differentiation. Using Dll1 null mice, we found that Notch signalling has no function in the specification of mesencephalic dopaminergic neural precursor cells (NPCs), but plays an important role in regulating their expansion and differentiation into neurons. Premature neuronal differentiation was observed in mesencephalons of Dll1-deficient mice or after treatment with a Notch signalling inhibitor. Coupling between neurogenesis and dopaminergic differentiation was indicated from the coincident emergence of neuronal and dopaminergic markers. Early in differentiation, decreasing Notch signalling caused a reduction in NPCs and an increase in dopaminergic neurons in association with dynamic changes in the proportion of sequentially-linked dopaminergic NPCs (Msx1/2+, Ngn2+, Nurr1+). These effects in differentiation caused a significant reduction in the number of dopaminergic neurons produced. Accordingly, Dll1 haploinsufficient adult mice, in comparison with their wild-type littermates, have a consistent reduction in neuronal density that was particularly evident in the substantia nigra pars compacta. Our results are in agreement with a mathematical model based on a Dll1-mediated regulatory feedback loop between early progenitors and their dividing precursors that controls the emergence and number of dopaminergic neurons. PMID:26912775

  13. Inhibitory Role of Notch1 in Calcific Aortic Valve Disease

    PubMed Central

    Koenig, Sara N.; Nichols, Haley A.; Galindo, Cristi L.; Garner, Harold R.; Merrill, Walter H.; Hinton, Robert B.; Garg, Vidu

    2011-01-01

    Aortic valve calcification is the most common form of valvular heart disease, but the mechanisms of calcific aortic valve disease (CAVD) are unknown. NOTCH1 mutations are associated with aortic valve malformations and adult-onset calcification in families with inherited disease. The Notch signaling pathway is critical for multiple cell differentiation processes, but its role in the development of CAVD is not well understood. The aim of this study was to investigate the molecular changes that occur with inhibition of Notch signaling in the aortic valve. Notch signaling pathway members are expressed in adult aortic valve cusps, and examination of diseased human aortic valves revealed decreased expression of NOTCH1 in areas of calcium deposition. To identify downstream mediators of Notch1, we examined gene expression changes that occur with chemical inhibition of Notch signaling in rat aortic valve interstitial cells (AVICs). We found significant downregulation of Sox9 along with several cartilage-specific genes that were direct targets of the transcription factor, Sox9. Loss of Sox9 expression has been published to be associated with aortic valve calcification. Utilizing an in vitro porcine aortic valve calcification model system, inhibition of Notch activity resulted in accelerated calcification while stimulation of Notch signaling attenuated the calcific process. Finally, the addition of Sox9 was able to prevent the calcification of porcine AVICs that occurs with Notch inhibition. In conclusion, loss of Notch signaling contributes to aortic valve calcification via a Sox9-dependent mechanism. PMID:22110751

  14. A Screen for Modifiers of Notch Signaling Uncovers Amun, a Protein With a Critical Role in Sensory Organ Development

    PubMed Central

    Shalaby, Nevine A.; Parks, Annette L.; Morreale, Eric J.; Osswalt, Marisa C.; Pfau, Kristen M.; Pierce, Eric L.; Muskavitch, Marc A. T.

    2009-01-01

    Notch signaling is an evolutionarily conserved pathway essential for many cell fate specification events during metazoan development. We conducted a large-scale transposon-based screen in the developing Drosophila eye to identify genes involved in Notch signaling. We screened 10,447 transposon lines from the Exelixis collection for modifiers of cell fate alterations caused by overexpression of the Notch ligand Delta and identified 170 distinct modifier lines that may affect up to 274 genes. These include genes known to function in Notch signaling, as well as a large group of characterized and uncharacterized genes that have not been implicated in Notch pathway function. We further analyze a gene that we have named Amun and show that it encodes a protein that localizes to the nucleus and contains a putative DNA glycosylase domain. Genetic and molecular analyses of Amun show that altered levels of Amun function interfere with cell fate specification during eye and sensory organ development. Overexpression of Amun decreases expression of the proneural transcription factor Achaete, and sensory organ loss caused by Amun overexpression can be rescued by coexpression of Achaete. Taken together, our data suggest that Amun acts as a transcriptional regulator that can affect cell fate specification by controlling Achaete levels. PMID:19448274

  15. A self-organizing miR-132/Ctbp2 circuit regulates bimodal notch signals and glial progenitor fate choice during spinal cord maturation.

    PubMed

    Salta, Evgenia; Lau, Pierre; Sala Frigerio, Carlo; Coolen, Marion; Bally-Cuif, Laure; De Strooper, Bart

    2014-08-25

    Radial glial progenitors play pivotal roles in the development and patterning of the spinal cord, and their fate is controlled by Notch signaling. How Notch is shaped to regulate their crucial transition from expansion toward differentiation remains, however, unknown. miR-132 in the developing zebrafish dampens Notch signaling via a cascade involving the transcriptional corepressor Ctbp2 and the Notch suppressor Sirt1. At early embryonic stages, high Ctbp2 levels sustain Notch signaling and radial glial expansion and concomitantly induce miR-132 expression via a double-negative feedback loop involving Rest inhibition. The changing balance in miR-132 and Ctbp2 interaction gradually drives the switch in Notch output and radial glial progenitor fate as part of the larger developmental program involved in the transition from embryonic to larval spinal cord.

  16. Notch Signaling Coordinates Progenitor Cell-Mediated Biliary Regeneration Following Partial Hepatectomy

    PubMed Central

    Lu, Jie; Zhou, Yingqun; Hu, Tianyuan; Zhang, Hui; Shen, Miao; Cheng, Ping; Dai, Weiqi; Wang, Fan; Chen, Kan; Zhang, Yan; Wang, Chengfeng; Li, Jingjing; Zheng, Yuanyuan; Yang, Jing; Zhu, Rong; Wang, Jianrong; Lu, Wenxia; Zhang, Huawei; Wang, Junshan; Xia, Yujing; De Assuncao, Thiago M.; Jalan-Sakrikar, Nidhi; Huebert, Robert C.; Bin Zhou; Guo, Chuanyong

    2016-01-01

    Aberrant transcriptional regulation contributes to the pathogenesis of both congenital and adult forms of liver disease. Although the transcription factor RBPJ is essential for liver morphogenesis and biliary development, its specific function in the differentiation of hepatic progenitor cells (HPC) has not been investigated, and little is known about its role in adult liver regeneration. HPCs are bipotent liver stem cells that can self-replicate and differentiate into hepatocytes or cholangiocytes in vitro. HPCs are thought to play an important role in liver regeneration and repair responses. While the coordinated repopulation of both hepatocyte and cholangiocyte compartment is pivotal to the structure and function of the liver after regeneration, the mechanisms coordinating biliary regeneration remain vastly understudied. Here, we utilized complex genetic manipulations to drive liver-specific deletion of the Rbpj gene in conjunction with lineage tracing techniques to delineate the precise functions of RBPJ during biliary development and HPC-associated biliary regeneration after hepatectomy. Furthermore, we demonstrate that RBPJ promotes HPC differentiation toward cholangiocytes in vitro and blocks hepatocyte differentiation through mechanisms involving Hippo-Notch crosstalk. Overall, this study demonstrates that the Notch-RBPJ signaling axis critically regulates biliary regeneration by coordinating the fate decision of HPC and clarifies the molecular mechanisms involved. PMID:26951801

  17. Notch signaling: from stem cell expansion to improving cord blood transplantation.

    PubMed

    Mayani, Hector

    2010-08-01

    Ex vivo expansion of hematopoietic stem and progenitor cells has been a major goal for experimental hematologists and stem cell biologists during the last two decades. The clinical implications of such a procedure are obvious, considering the increasing interest in cell therapy protocols. This is particularly true in the setting of cord blood transplants, in which increased numbers of such primitive cells are needed. The study analyzed in this article indicates that by stimulating the Notch signal transduction pathway in primitive cord blood cells it is possible to significantly increase the numbers of both hematopoietic stem and progenitor cells. Furthermore, infusion of such expanded cells in patients receiving a cord blood transplant results in a significant reduction in the time to myeloid engraftment. The relevance of this study is twofold--on the one hand, it shows that the Notch pathway is involved in the expansion capacity of primitive hematopoietic cells in culture, and on the other hand, it indicates that ex vivo-expanded stem/progenitor cells can have a role in hematopoietic transplantation settings. PMID:21083031

  18. Loss of Llgl1 in retinal neuroepithelia reveals links between apical domain size, Notch activity and neurogenesis

    PubMed Central

    Clark, Brian S.; Cui, Shuang; Miesfeld, Joel B.; Klezovitch, Olga; Vasioukhin, Valeri; Link, Brian A.

    2012-01-01

    To gain insights into the cellular mechanisms of neurogenesis, we analyzed retinal neuroepithelia deficient for Llgl1, a protein implicated in apicobasal cell polarity, asymmetric cell division, cell shape and cell cycle exit. We found that vertebrate retinal neuroepithelia deficient for Llgl1 retained overt apicobasal polarity, but had expanded apical domains. Llgl1 retinal progenitors also had increased Notch activity and reduced rates of neurogenesis. Blocking Notch function by depleting Rbpj restored normal neurogenesis. Experimental expansion of the apical domain, through inhibition of Shroom3, also increased Notch activity and reduced neurogenesis. Significantly, in wild-type retina, neurogenic retinal progenitors had smaller apical domains compared with proliferative neuroepithelia. As nuclear position during interkinetic nuclear migration (IKNM) has been previously linked with cell cycle exit, we analyzed this phenomenon in cells depleted of Llgl1. We found that although IKNM was normal, the relationship between nuclear position and neurogenesis was shifted away from the apical surface, consistent with increased pro-proliferative and/or anti-neurogenic signals associated with the apical domain. These data, in conjunction with other findings, suggest that, in retinal neuroepithelia, the size of the apical domain modulates the strength of polarized signals that influence neurogenesis. PMID:22492354

  19. LIN-12/Notch trafficking and regulation of DSL ligand activity during vulval induction in Caenorhabditis elegans.

    PubMed

    Shaye, Daniel D; Greenwald, Iva

    2005-11-01

    A novel mode of crosstalk between the EGFR-Ras-MAPK and LIN-12/Notch pathways occurs during the patterning of a row of vulval precursor cells (VPCs) in Caenorhabditis elegans: activation of the EGFR-Ras-MAPK pathway in the central VPC promotes endocytosis and degradation of LIN-12 protein. LIN-12 downregulation in the central VPC is a prerequisite for the activity of the lateral signal, which activates LIN-12 in neighboring VPCs. Here we characterize cis-acting targeting sequences in the LIN-12 intracellular domain and find that in addition to a di-leucine motif, serine/threonine residues are important for internalization and lysine residues are important for post-internalization trafficking and degradation. We also identify two trans-acting factors that are required for post-internalization trafficking and degradation: ALX-1, a homolog of yeast Bro1p and mammalian Alix and the WWP-1/Su(dx)/Itch ubiquitin ligase. By examining the effects of mutated forms of LIN-12 and reduced wwp-1 or alx-1 activity on subcellular localization and activity of LIN-12, we provide evidence that the lateral signal-inhibiting activity of LIN-12 resides in the extracellular domain and occurs at the apical surface of the VPCs.

  20. Notch Ligand Endocytosis Generates Mechanical Pulling Force Dependent on Dynamin, Epsins and Actin

    PubMed Central

    Meloty-Kapella, Laurence; Shergill, Bhupinder; Kuon, Jane; Botvinick, Elliot; Weinmaster, Gerry

    2012-01-01

    SUMMARY Notch signaling induced by cell surface ligands is critical to development and maintenance of many eukaryotic organisms. Notch and its ligands are integral membrane proteins that facilitate direct cell-cell interactions to activate Notch proteolysis and release the intracellular domain that directs Notch-specific cellular responses. Genetic studies suggest Notch ligands require endocytosis, ubiquitylation and epsin endocytic adaptors to activate signaling, yet the exact role ligand endocytosis serves remains unresolved. Here we characterize a molecularly distinct mode of clathrin-mediated endocytosis requiring ligand ubiquitylation, epsins and actin for ligand cells to activate signaling in Notch cells. Using a cell-bead optical tweezers system, we obtained evidence for cell-mediated mechanical force dependent on this distinct mode of ligand endocytosis. We propose mechanical pulling force produced by endocytosis of Notch-bound ligand drives conformational changes in Notch that permit activating proteolysis. PMID:22658936

  1. Notch-Jagged signalling can give rise to clusters of cells exhibiting a hybrid epithelial/mesenchymal phenotype

    PubMed Central

    Jolly, Mohit Kumar; Goldman, Aaron; Pietilä, Mika; Mani, Sendurai A.; Sengupta, Shiladitya; Ben-Jacob, Eshel; Levine, Herbert; Onuchic, Jose’ N.

    2016-01-01

    Metastasis can involve repeated cycles of epithelial-to-mesenchymal transition (EMT) and its reverse mesenchymal-to-epithelial transition. Cells can also undergo partial transitions to attain a hybrid epithelial/mesenchymal (E/M) phenotype that allows the migration of adhering cells to form a cluster of circulating tumour cells. These clusters can be apoptosis-resistant and possess an increased metastatic propensity as compared to the cells that undergo a complete EMT (mesenchymal cells). Hence, identifying the key players that can regulate the formation and maintenance of such clusters may inform anti-metastasis strategies. Here, we devise a mechanism-based theoretical model that links cell–cell communication via Notch-Delta-Jagged signalling with the regulation of EMT. We demonstrate that while both Notch-Delta and Notch-Jagged signalling can induce EMT in a population of cells, only Jagged-dominated Notch signalling, but not Delta-dominated signalling, can lead to the formation of clusters containing hybrid E/M cells. Our results offer possible mechanistic insights into the role of Jagged in tumour progression, and offer a framework to investigate the effects of other microenvironmental signals during metastasis. PMID:27170649

  2. Identification of novel Notch target genes in T cell leukaemia

    PubMed Central

    Chadwick, Nicholas; Zeef, Leo; Portillo, Virginia; Fennessy, Carl; Warrander, Fiona; Hoyle, Sarah; Buckle, Anne-Marie

    2009-01-01

    Background Dysregulated Notch signalling is believed to play an important role in the development and maintenance of T cell leukaemia. At a cellular level, Notch signalling promotes proliferation and inhibits apoptosis of T cell acute lymphoblastic leukaemia (T-ALL) cells. In this study we aimed to identify novel transcriptional targets of Notch signalling in the T-ALL cell line, Jurkat. Results RNA was prepared from Jurkat cells retrovirally transduced with an empty vector (GFP-alone) or vectors containing constitutively active forms of Notch (N1ΔE or N3ΔE), and used for Affymetrix microarray analysis. A subset of genes found to be regulated by Notch was chosen for real-time PCR validation and in some cases, validation at the protein level, using several Notch-transduced T-ALL and non-T-ALL leukaemic cell lines. As expected, several known transcriptional target of Notch, such as HES1 and Deltex, were found to be overexpressed in Notch-transduced cells, however, many novel transcriptional targets of Notch signalling were identified using this approach. These included the T cell costimulatory molecule CD28, the anti-apoptotic protein GIMAP5, and inhibitor of DNA binding 1 (1D1). Conclusion The identification of such downstream Notch target genes provides insights into the mechanisms of Notch function in T cell leukaemia, and may help identify novel therapeutic targets in this disease. PMID:19508709

  3. Vaccarin attenuates the human EA.hy926 endothelial cell oxidative stress injury through inhibition of Notch signaling.

    PubMed

    Xie, Fengshan; Cai, Weiwei; Liu, Yanling; Li, Yue; Du, Bin; Feng, Lei; Qiu, Liying

    2015-01-01

    Endothelial cell injury is an essential component of atherosclerosis and hypertension. Atherosclerosis and other macrovascular diseases are the most common complications of diabetes. Vaccarin is a major flavonoid glycoside in Vaccariae semen, and is expected to be useful in the treatment of vascular diseases. The aim of the present study was to evaluate the possible effects of vaccarin in human umbilical vein endothelial cells (EA.hy926) induced by hydrogen peroxide (H2O2) and its underlying mechanism in the prevention and treatment of H2O2 injury. In this study, the EA.hy926 cells were exposed to 250, 500 and 1000 µM H2O2 for 2 and 4 h in the absence or presence of vaccarin, and the cell injury induced by H2O2 was examined via SRB. Cell migratory ability, lactate dehydrogenase (LDH) leakage, malondialdehyde (MDA) levels and decreasing superoxide dismutase (SOD) activity were evaluated by the wound healing assay and corresponding assay kits. Cell apoptosis was detected by flow cytometry with Annexin V-fluorescein isothiocyanate/propidium iodide Apoptosis Detection kit and Hoechst staining. Furthermore, western blot detected the protein expressions of Notch1, Hes1 and caspase-3. Following treatment with H2O2, it was found that H2O2 stimulated cell injury in a dose-dependent manner, including reducing cell viability and cell migratory ability, increasing LDH leakage and MDA levels, and decreasing SOD activity. H2O2 further accelerated cell apoptosis via activation of Notch1 and the downstream molecule Hes1. Preincubation with vaccarin was found to protect EA.hy926 cells from H2O2-induced cell oxidative stress injury, which promoted cell viability and cell migratory ability, inhibited the level of LDH and MDA, but enhanced the activity of SOD. In particular, in addition to downregulation Notch signaling, vaccarin treatments also downregulated caspase-3, a cell apoptotic pathway-related protein. These findings indicated that vaccarin may be able to selectively protect

  4. Effect of IL-17 monoclonal antibody Secukinumab combined with IL-35 blockade of Notch signaling pathway on the invasive capability of hepatoma cells.

    PubMed

    Li, H Ch; Zhang, Y X; Liu, Y; Wang, Q Sh

    2016-07-14

    We investigated the effect of the IL-17 monoclonal antibody Secukinumab combined with IL-35 in the blockade of the Notch signaling pathway on the invasive capability of hepatoma cells. We examined the effects of IL-17 antibody or IL-35 treatment alone or in combination on cell invasion and migration capabilities with Transwell chambers. The mRNA levels of Hes1, Hes5, and Hey1 were tested using quantitative polymerase chain reaction. The protein expression of N1ICD, Snail, and E-cadherin protein expressions were measured with western blot. The expression of Hes1, Hes5, Hey1 and N1ICD were all very high in hepatoma cell lines, and were positively correlated with the invasive migration capabilities of the cells. The combination of IL-17 monoclonal antibody Secukinumab with IL-35 could effectively inhibit the Notch signaling pathway, as well as the invasive migration of the cells. Snail and E-cadherin are involved in the migration of hepatoma cells, and it has been established that Snail can regulate the expression of E-cadherin. IL-17 monoclonal antibody Secukinumab combined with IL-35 can increase E-cadherin and decrease Snail expression, which are positively correlated with cell invasive migration capabilities. Overall, treatment with both IL-17 antibody and IL-35 is more effective than each treatment alone. Notch signaling is activated in hepatoma cell lines and increases with the enhancement of cell invasive migration capabilities. IL-17 monoclonal antibody Secukinumab combined with IL-35 can block the Notch signaling pathway, simultaneously reducing the invasive migration capability of hepatoma cells.

  5. Generation of late-born neurons in the ventral spinal cord requires the coordination of retinoic acid and Notch signaling.

    PubMed

    Ryu, Jae-Ho; Kong, Hee Jeong; Park, Jung Youn; Lim, Kyung-Eun; An, Cheul Min; Lee, Jehee; Yeo, Sang-Yeob

    2015-08-18

    Neural progenitor cells generate various types of neurons and glia in a tightly regulated manner. During primary neurogenesis, retinoic acid (RA) acts earlier than Notch signaling and regulates differentiation and proliferation by upregulating proneural and neurogenic genes in the neural plate. However, the relationship between Notch signaling and the retinoid pathway during late neurogenesis remains unclear. We investigated the role of Mindbomb (Mib)-mediated Notch signaling in the differentiation of neural progenitors during late neurogenesis by overexpressing Mib and administering RA to Tg[hsp70-Mib:EGFP]. The majority of cells in the p3 domain differentiated into GABAergic Kolmer-Agduhr (KA) cells in Tg[hsp70-mib:EGFP] embryos heat-shocked during late neurogenesis, whereas these phenotypes were suppressed by exogenous RA. Our observations suggest that Mib-mediated Notch signaling plays a critical role in the temporal differentiation of neural progenitors, and that the generation of late-born KA″ cells is regulated by the interplay between Mib and RA. PMID:26151587

  6. Coordinated control of Notch/Delta signalling and cell cycle progression drives lateral inhibition-mediated tissue patterning

    PubMed Central

    Hadjivasiliou, Zena; Bonin, Hope; He, Li; Perrimon, Norbert; Charras, Guillaume; Baum, Buzz

    2016-01-01

    Coordinating cell differentiation with cell growth and division is crucial for the successful development, homeostasis and regeneration of multicellular tissues. Here, we use bristle patterning in the fly notum as a model system to explore the regulatory and functional coupling of cell cycle progression and cell fate decision-making. The pattern of bristles and intervening epithelial cells (ECs) becomes established through Notch-mediated lateral inhibition during G2 phase of the cell cycle, as neighbouring cells physically interact with each other via lateral contacts and/or basal protrusions. Since Notch signalling controls cell division timing downstream of Cdc25, ECs in lateral contact with a Delta-expressing cell experience higher levels of Notch signalling and divide first, followed by more distant neighbours, and lastly Delta-expressing cells. Conversely, mitotic entry and cell division makes ECs refractory to lateral inhibition signalling, fixing their fate. Using a combination of experiments and computational modelling, we show that this reciprocal relationship between Notch signalling and cell cycle progression acts like a developmental clock, providing a delimited window of time during which cells decide their fate, ensuring efficient and orderly bristle patterning. PMID:27226324

  7. Targeting Notch degradation system provides promise for breast cancer therapeutics.

    PubMed

    Liu, Jing; Shen, Jia-Xin; Wen, Xiao-Fen; Guo, Yu-Xian; Zhang, Guo-Jun

    2016-08-01

    Notch receptor signaling pathways play an important role, not only in normal breast development but also in breast cancer development and progression. As a group of ligand-induced proteins, different subtypes of mammalian Notch (Notch1-4) are sensitive to subtle changes in protein levels. Thus, a clear understanding of mechanisms of Notch protein turnover is essential for understanding normal and pathological mechanisms of Notch functions. It has been suggested that there is a close relationship between the carcinogenesis and the dysregulation of Notch degradation. However, this relationship remains mostly undefined in the context of breast cancer, as protein degradation is mediated by numerous signaling pathways as well as certain molecule modulators (activators/inhibitors). In this review, we summarize the published data regarding the regulation of Notch family member degradation in breast cancer, while emphasizing areas that are likely to provide new therapeutic modalities for mechanism-based anti-cancer drugs.

  8. Cell cycle-linked MeCP2 phosphorylation modulates adult neurogenesis involving the Notch signaling pathway

    PubMed Central

    Li, Hongda; Zhong, Xiaofen; Chau, Kevin Fongching; Santistevan, Nicholas J.; Guo, Weixiang; Kong, Guangyao; Li, Xuekun; Kadakia, Mitul; Masliah, Jamie; Chi, Jingyi; Jin, Peng; Zhang, Jing; Zhao, Xinyu; Chang, Qiang

    2014-01-01

    Neuronal activity regulates the phosphorylation states at multiple sites on MeCP2 in postmitotic neurons. The precise control of the phosphorylation status of MeCP2 in neurons is critical for the normal development and function of the mammalian brain. However, it is unknown whether phosphorylation at any of the previously identified sites on MeCP2 can be induced by signals other than neuronal activity in other cell types, and what functions MeCP2 phosphorylation may have in those contexts. Here we show that, in neural progenitor cells isolated from the adult mouse hippocampus, cell cycle-linked phosphorylation at serine 421 on MeCP2 is directly regulated by aurora kinase B, and modulates the balance between proliferation and neural differentiation through the Notch signaling pathway. Our findings suggest MeCP2 S421 phosphorylation may function as a general epigenetic switch accessible by different extracellular stimuli through different signaling pathways for regulating diverse biological functions in different cell types. PMID:25420914

  9. Oridonin Inhibits Tumor Growth and Metastasis through Anti-Angiogenesis by Blocking the Notch Signaling

    PubMed Central

    Li, Jingjie; Deng, Huayun; Song, Yajuan; Zhai, Dong; Peng, Yi; Lu, Xiaoling; Liu, Mingyao; Zhao, Yongxiang; Yi, Zhengfang

    2014-01-01

    While significant progress has been made in understanding the anti-inflammatory and anti-proliferative effects of the natural diterpenoid component Oridonin on tumor cells, little is known about its effect on tumor angiogenesis or metastasis and on the underlying molecular mechanisms. In this study, Oridonin significantly suppressed human umbilical vascular endothelial cells (HUVECs) proliferation, migration, and apillary-like structure formation in vitro. Using aortic ring assay and mouse corneal angiogenesis model, we found that Oridonin inhibited angiogenesis ex vivo and in vivo. In our animal experiments, Oridonin impeded tumor growth and metastasis. Immunohistochemistry analysis further revealed that the expression of CD31 and vWF protein in xenografts was remarkably decreased by the Oridonin. Furthermore, Oridonin reinforced endothelial cell-cell junction and impaired breast cancer cell transendothelial migration. Mechanistically, Oridonin not only down-regulated Jagged2 expression and Notch1 activity but also decreased the expression of their target genes. In conclusion, our results demonstrated an original role of Oridonin in inhibiting tumor angiogenesis and propose a mechanism. This study also provides new evidence supporting the central role of Notch in tumor angiogenesis and suggests that Oridonin could be a potential drug candidate for angiogenesis related diseases. PMID:25485753

  10. Transmission of survival signals through Delta-like 1 on activated CD4+ T cells

    PubMed Central

    Furukawa, Takahiro; Ishifune, Chieko; Tsukumo, Shin-ichi; Hozumi, Katsuto; Maekawa, Yoichi; Matsui, Naoko; Kaji, Ryuji; Yasutomo, Koji

    2016-01-01

    Notch expressed on CD4+ T cells transduces signals that mediate their effector functions and survival. Although Notch signaling is known to be cis-inhibited by Notch ligands expressed on the same cells, the role of Notch ligands on T cells remains unclear. In this report we demonstrate that the CD4+ T cell Notch ligand Dll1 transduces signals required for their survival. Co-transfer of CD4+ T cells from Dll1−/− and control mice into recipient mice followed by immunization revealed a rapid decline of CD4+ T cells from Dll1−/− mice compared with control cells. Dll1−/− mice exhibited lower clinical scores of experimental autoimmune encephalitis than control mice. The expression of Notch target genes in CD4+ T cells from Dll1−/− mice was not affected, suggesting that Dll1 deficiency in T cells does not affect cis Notch signaling. Overexpression of the intracellular domain of Dll1 in Dll1-deficient CD4+ T cells partially rescued impaired survival. Our data demonstrate that Dll1 is an independent regulator of Notch-signaling important for the survival of activated CD4+ T cells, and provide new insight into the physiological roles of Notch ligands as well as a regulatory mechanism important for maintaining adaptive immune responses. PMID:27659682

  11. Pharmacological Inhibitor of Notch Signaling Stabilizes the Progression of Small Abdominal Aortic Aneurysm in a Mouse Model

    PubMed Central

    Cheng, Jeeyun; Koenig, Sara N.; Kuivaniemi, Helena S.; Garg, Vidu; Hans, Chetan P.

    2014-01-01

    Background The progression of abdominal aortic aneurysm (AAA) involves a sustained influx of proinflammatory macrophages, which exacerbate tissue injury by releasing cytokines, chemokines, and matrix metalloproteinases. Previously, we showed that Notch deficiency reduces the development of AAA in the angiotensin II–induced mouse model by preventing infiltration of macrophages. Here, we examined whether Notch inhibition in this mouse model prevents progression of small AAA and whether these effects are associated with altered macrophage differentiation. Methods and Results Treatment with pharmacological Notch inhibitor (DAPT [N‐(N‐[3,5‐difluorophenacetyl]‐L‐alanyl)‐S‐phenylglycine t‐butyl ester]) at day 3 or 8 of angiotensin II infusion arrested the progression of AAA in Apoe−/− mice, as demonstrated by a decreased luminal diameter and aortic width. The abdominal aortas of Apoe−/− mice treated with DAPT showed decreased expression of matrix metalloproteinases and presence of elastin precursors including tropoelastin and hyaluronic acid. Marginal adventitial thickening observed in the aorta of DAPT‐treated Apoe−/− mice was not associated with increased macrophage content, as observed in the mice treated with angiotensin II alone. Instead, DAPT‐treated abdominal aortas showed increased expression of Cd206‐positive M2 macrophages and decreased expression of Il12‐positive M1 macrophages. Notch1 deficiency promoted M2 differentiation of macrophages by upregulating transforming growth factor β2 in bone marrow–derived macrophages at basal levels and in response to IL4. Protein expression of transforming growth factor β2 and its downstream effector pSmad2 also increased in DAPT‐treated Apoe−/− mice, indicating a potential link between Notch and transforming growth factor β2 signaling in the M2 differentiation of macrophages. Conclusions Pharmacological inhibitor of Notch signaling prevents the progression of AAA by macrophage

  12. Lineage-specific effects of Notch/Numb signaling in post-embryonic development of the Drosophila brain.

    PubMed

    Lin, Suewei; Lai, Sen-Lin; Yu, Huang-Hsiang; Chihara, Takahiro; Luo, Liqun; Lee, Tzumin

    2010-01-01

    Numb can antagonize Notch signaling to diversify the fates of sister cells. We report here that paired sister cells acquire different fates in all three Drosophila neuronal lineages that make diverse types of antennal lobe projection neurons (PNs). Only one in each pair of postmitotic neurons survives into the adult stage in both anterodorsal (ad) and ventral (v) PN lineages. Notably, Notch signaling specifies the PN fate in the vPN lineage but promotes programmed cell death in the missing siblings in the adPN lineage. In addition, Notch/Numb-mediated binary sibling fates underlie the production of PNs and local interneurons from common precursors in the lAL lineage. Furthermore, Numb is needed in the lateral but not adPN or vPN lineages to prevent the appearance of ectopic neuroblasts and to ensure proper self-renewal of neural progenitors. These lineage-specific outputs of Notch/Numb signaling show that a universal mechanism of binary fate decision can be utilized to govern diverse neural sibling differentiations.

  13. Inhibition of Notch signaling reduces the number of surviving Dclk1+ reserve crypt epithelial stem cells following radiation injury.

    PubMed

    Qu, Dongfeng; May, Randal; Sureban, Sripathi M; Weygant, Nathaniel; Chandrakesan, Parthasarathy; Ali, Naushad; Li, Linheng; Barrett, Terrence; Houchen, Courtney W

    2014-03-01

    We have previously reported that doublecortin-like kinase 1 (Dclk1) is a putative intestinal stem cell (ISC) marker. In this report, we evaluated the use of Dclk1 as a marker of surviving ISCs in response to treatment with high-dose total body irradiation (TBI). Both apoptotic and mitotic Dclk1(+) cells were observed 24 h post-TBI associated with a corresponding loss of intestinal crypts observed at 84 h post-TBI. Although the Notch signaling pathway plays an important role in regulating proliferation and lineage commitment within the intestine, its role in ISC function in response to severe genotoxic injury is not yet fully understood. We employed the microcolony assay to functionally assess the effects of Notch inhibition with difluorophenacetyl-l-alanyl-S-phenylglycine t-butyl ester (DAPT) on intestinal crypt stem cell survival following severe (>8 Gy) radiation injury. Following treatment with DAPT, we observed a nearly 50% reduction in the number of surviving Dclk1(+) crypt epithelial cells at 24 h after TBI and similar reduction in the number of surviving small intestinal crypts at 84 h. These data indicate that inhibition of Notch signaling decreases ISC survival following radiation injury, suggesting that the Notch signaling pathway plays an important role in ISC-mediated crypt regeneration. These results also suggest that crypt epithelial cell Dclk1 expression can be used as one potential marker to evaluate the early survival of ISCs following severe radiation injury.

  14. The Parkinson’s Disease-Associated Protein Kinase LRRK2 Modulates Notch Signaling through the Endosomal Pathway

    PubMed Central

    Imai, Yuzuru; Kobayashi, Yoshito; Inoshita, Tsuyoshi; Meng, Hongrui; Arano, Taku; Uemura, Kengo; Asano, Takeshi; Yoshimi, Kenji; Zhang, Chang-Liang; Matsumoto, Gen; Ohtsuka, Toshiyuki; Kageyama, Ryoichiro; Kiyonari, Hiroshi; Shioi, Go; Nukina, Nobuyuki; Hattori, Nobutaka; Takahashi, Ryosuke

    2015-01-01

    Leucine-rich repeat kinase 2 (LRRK2) is a key molecule in the pathogenesis of familial and idiopathic Parkinson’s disease (PD). We have identified two novel LRRK2-associated proteins, a HECT-type ubiquitin ligase, HERC2, and an adaptor-like protein with six repeated Neuralized domains, NEURL4. LRRK2 binds to NEURL4 and HERC2 via the LRRK2 Ras of complex proteins (ROC) domain and NEURL4, respectively. HERC2 and NEURL4 link LRRK2 to the cellular vesicle transport pathway and Notch signaling, through which the LRRK2 complex promotes the recycling of the Notch ligand Delta-like 1 (Dll1)/Delta (Dl) through the modulation of endosomal trafficking. This process negatively regulates Notch signaling through cis-inhibition by stabilizing Dll1/Dl, which accelerates neural stem cell differentiation and modulates the function and survival of differentiated dopaminergic neurons. These effects are strengthened by the R1441G ROC domain-mutant of LRRK2. These findings suggest that the alteration of Notch signaling in mature neurons is a component of PD etiology linked to LRRK2. PMID:26355680

  15. Notch1 Activation or Loss Promotes HPV-Induced Oral Tumorigenesis.

    PubMed

    Zhong, Rong; Bao, Riyue; Faber, Pieter W; Bindokas, Vytautas P; Bechill, John; Lingen, Mark W; Spiotto, Michael T

    2015-09-15

    Viral oncogene expression is insufficient for neoplastic transformation of human cells, so human papillomavirus (HPV)-associated cancers will also rely upon mutations in cellular oncogenes and tumor suppressors. However, it has been difficult so far to distinguish incidental mutations without phenotypic impact from causal mutations that drive the development of HPV-associated cancers. In this study, we addressed this issue by conducting a functional screen for genes that facilitate the formation of HPV E6/E7-induced squamous cell cancers in mice using a transposon-mediated insertional mutagenesis protocol. Overall, we identified 39 candidate driver genes, including Notch1, which unexpectedly was scored by gain- or loss-of-function mutations that were capable of promoting squamous cell carcinogenesis. Autochthonous HPV-positive oral tumors possessing an activated Notch1 allele exhibited high rates of cell proliferation and tumor growth. Conversely, Notch1 loss could accelerate the growth of invasive tumors in a manner associated with increased expression of matrix metalloproteinases and other proinvasive genes. HPV oncogenes clearly cooperated with loss of Notch1, insofar as its haploinsufficiency accelerated tumor growth only in HPV-positive tumors. In clinical specimens of various human cancers, there was a consistent pattern of NOTCH1 expression that correlated with invasive character, in support of our observations in mice. Although Notch1 acts as a tumor suppressor in mouse skin, we found that oncogenes enabling any perturbation in Notch1 expression promoted tumor growth, albeit via distinct pathways. Our findings suggest caution in interpreting the meaning of putative driver gene mutations in cancer, and therefore therapeutic efforts to target them, given the significant contextual differences in which such mutations may arise, including in virus-associated tumors.

  16. Notch1 activation or loss promotes HPV-induced oral tumorigenesis

    PubMed Central

    Faber, Pieter W.; Bindokas, Vytautas P.; Bechill, John; Lingen, Mark W.; Spiotto, Michael T.

    2015-01-01

    Viral oncogene expression is insufficient for neoplastic transformation of human cells, so HPV-associated cancers will also rely upon mutations in cellular oncogenes and tumor suppressors. However, it has been difficult so far to distinguish incidental mutations without phenotypic impact from causal mutations that drive the development of HPV-associated cancers. In this study, we addressed this issue by conducting a functional screen for genes that facilitate the formation of HPV E6/E7-induced squamous cell cancers in mice using a transposon-mediated insertional mutagenesis protocol. Overall, we identified 39 candidate driver genes including Notch1, which unexpectedly was scored by gain or loss of function mutations that were capable of promoting squamous cell carcinogenesis. Autochthonous HPV-positive oral tumors possessing an activated Notch1 allele exhibited high rates of cell proliferation and tumor growth. Conversely, Notch1 loss could accelerate the growth of invasive tumors in manner associated with increased expression of matrix metalloproteinases and other pro-invasive genes. HPV oncogenes clearly cooperated with loss of Notch1, insofar as its haploinsufficiency accelerated tumor growth only in HPV-positive tumors. In clinical specimens of various human cancers, there was a consistent pattern of NOTCH1 expression that correlated with invasive character, in support of our observations in mice. While Notch1 acts as a tumor suppressor in mouse skin, we found that oncogenes enabling any perturbation in Notch1 expression promoted tumor growth, albeit via distinct pathways. Our findings suggest caution in interpreting the meaning of putative driver gene mutations in cancer, and therefore therapeutic efforts to target them, given the significant contextual differences in which such mutations may arise, including in virus-associated tumors. PMID:26294213

  17. A Disintegrin and Metalloproteinase Domain 17 Regulates Colorectal Cancer Stem Cells and Chemosensitivity Via Notch1 Signaling.

    PubMed

    Wang, Rui; Ye, Xiangcang; Bhattacharya, Rajat; Boulbes, Delphine R; Fan, Fan; Xia, Ling; Ellis, Lee M

    2016-03-01

    Evidence is accumulating for the role of cancer stem cells (CSCs) in mediating chemoresistance in patients with metastatic colorectal cancer (mCRC). A disintegrin and metalloproteinase domain 17 (ADAM17; also known as tumor necrosis factor-α-converting enzyme [TACE]) was shown to be overexpressed and to mediate cell proliferation and chemoresistance in CRC cells. However, its role in mediating the CSC phenotype in CRC has not been well-characterized. The objective of the present study was to determine whether ADAM17 regulates the CSC phenotype in CRC and to elucidate the downstream signaling mechanism that mediates cancer stemness. We treated established CRC cell lines and a newly established human CRC cell line HCP-1 with ADAM17-specific small interfering RNA (siRNA) or the synthetic peptide inhibitor TAPI-2. The effects of ADAM17 inhibition on the CSC phenotype and chemosensitivity to 5-fluorouracil (5-FU) in CRC cells were examined. siRNA knockdown and TAPI-2 decreased the protein levels of cleaved Notch1 (Notch1 intracellular domain) and HES-1 in CRC cells. A decrease in the CSC phenotype was determined by sphere formation and ALDEFLUOR assays. Moreover, TAPI-2 sensitized CRC cells to 5-FU by decreasing cell viability and the median lethal dose of 5-FU and increasing apoptosis. We also showed the cleavage and release of soluble Jagged-1 and -2 by ADAM17 in CRC cells. Our studies have elucidated a role of ADAM17 in regulating the CSC phenotype and chemoresistance in CRC cells. The use of drugs that inhibit ADAM17 activity might increase the therapeutic benefit to patients with mCRC and, potentially, those with other solid malignancies.

  18. Androgens Up-regulate Transcription of the Notch Inhibitor Numb in C2C12 Myoblasts via Wnt/β-Catenin Signaling to T Cell Factor Elements in the Numb Promoter*

    PubMed Central

    Liu, Xin-Hua; Wu, Yong; Yao, Shen; Levine, Alice C.; Kirschenbaum, Alexander; Collier, Lauren; Bauman, William A.; Cardozo, Christopher P.

    2013-01-01

    Androgen signaling via the androgen receptor is a key pathway that contributes to development, cell fate decisions, and differentiation, including that of myogenic progenitors. Androgens and synthetic steroids have well established anabolic actions on skeletal muscle. Wnt and Notch signaling pathways are also essential to myogenic cell fate decisions during development and tissue repair. However, the interactions among these pathways are largely unknown. Androgenic regulation of Wnt signaling has been reported. Nandrolone, an anabolic steroid, has been shown to inhibit Notch signaling and up-regulate Numb, a Notch inhibitor. To elucidate the mechanisms of interaction between nandrolone and Wnt/Notch signaling, we investigated the effects of nandrolone on Numb expression and Wnt signaling and determined the roles of Wnt signaling in nandrolone-induced Numb expression in C2C12 myoblasts. Nandrolone increased Numb mRNA and protein levels and T cell factor (Tcf) transcriptional activity via inhibition of glycogen synthase kinase 3β. Up-regulation of Numb expression by nandrolone was blocked by the Wnt inhibitors, sFRP1 and DKK1, whereas Wnt3a increased Numb mRNA and protein expression. In addition, we observed that the proximal promoter of the Numb gene had functional Tcf binding elements to which β-catenin was recruited in a manner enhanced by both nandrolone and Wnt3a. Moreover, site-directed mutagenesis indicated that the Tcf binding sites in the Numb promoter are required for the nandrolone-induced Numb transcriptional activation in this cell line. These results reveal a novel molecular mechanism underlying up-regulation of Numb transcription with a critical role for increased canonical Wnt signaling. In addition, the data identify Numb as a novel target gene of the Wnt signaling pathway by which Wnts would be able to inhibit Notch signaling. PMID:23649620

  19. Analysis of Germline Stem Cell Differentiation Following Loss of GLP-1 Notch Activity in Caenorhabditis elegans

    PubMed Central

    Fox, Paul M.; Schedl, Tim

    2015-01-01

    Stem cells generate the differentiated progeny cells of adult tissues. Stem cells in the Caenorhabditis elegans hermaphrodite germline are maintained within a proliferative zone of ∼230 cells, ∼20 cell diameters in length, through GLP-1 Notch signaling. The distal tip cell caps the germline and supplies GLP-1-activating ligand, and the distal-most germ cells that occupy this niche are likely self-renewing stem cells with active GLP-1 signaling. As germ cells are displaced from the niche, GLP-1 activity likely decreases, yet mitotically cycling germ cells are found throughout the proliferative zone prior to overt meiotic differentiation. Following loss of GLP-1 activity, it remains unclear whether stem cells undergo transit-amplifying (TA) divisions or more directly enter meiosis. To distinguish between these possibilities we employed a temperature-sensitive (ts) glp-1 mutant to manipulate GLP-1 activity. We characterized proliferative zone dynamics in glp-1(ts) mutants at permissive temperature and then analyzed the kinetics of meiotic entry of proliferative zone cells after loss of GLP-1. We found that entry of proliferative zone cells into meiosis following loss of GLP-1 activity is largely synchronous and independent of their distal-proximal position. Furthermore, the majority of cells complete only a single mitotic division before entering meiosis, independent of their distal-proximal position. We conclude that germ cells do not undergo TA divisions following loss of GLP-1 activity. We present a model for the dynamics of the proliferative zone that utilizes cell cycle rate and proliferative zone size and output and incorporates the more direct meiotic differentiation of germ cells following loss of GLP-1 activity. PMID:26158953

  20. Analysis of Germline Stem Cell Differentiation Following Loss of GLP-1 Notch Activity in Caenorhabditis elegans.

    PubMed

    Fox, Paul M; Schedl, Tim

    2015-09-01

    Stem cells generate the differentiated progeny cells of adult tissues. Stem cells in the Caenorhabditis elegans hermaphrodite germline are maintained within a proliferative zone of ∼230 cells, ∼20 cell diameters in length, through GLP-1 Notch signaling. The distal tip cell caps the germline and supplies GLP-1-activating ligand, and the distal-most germ cells that occupy this niche are likely self-renewing stem cells with active GLP-1 signaling. As germ cells are displaced from the niche, GLP-1 activity likely decreases, yet mitotically cycling germ cells are found throughout the proliferative zone prior to overt meiotic differentiation. Following loss of GLP-1 activity, it remains unclear whether stem cells undergo transit-amplifying (TA) divisions or more directly enter meiosis. To distinguish between these possibilities we employed a temperature-sensitive (ts) glp-1 mutant to manipulate GLP-1 activity. We characterized proliferative zone dynamics in glp-1(ts) mutants at permissive temperature and then analyzed the kinetics of meiotic entry of proliferative zone cells after loss of GLP-1. We found that entry of proliferative zone cells into meiosis following loss of GLP-1 activity is largely synchronous and independent of their distal-proximal position. Furthermore, the majority of cells complete only a single mitotic division before entering meiosis, independent of their distal-proximal position. We conclude that germ ce