Science.gov

Sample records for activated p38 mitogen-activated

  1. p38γ and p38δ Mitogen Activated Protein Kinases (MAPKs), New Stars in the MAPK Galaxy

    PubMed Central

    Escós, Alejandra; Risco, Ana; Alsina-Beauchamp, Dayanira; Cuenda, Ana

    2016-01-01

    The protein kinases p38γ and p38δ belong to the p38 mitogen-activated protein kinase (MAPK) family. p38MAPK signaling controls many cellular processes and is one of the most conserved mechanisms in eukaryotes for the cellular response to environmental stress and inflammation. Although p38γ and p38δ are widely expressed, it is likely that they perform specific functions in different tissues. Their involvement in human pathologies such as inflammation-related diseases or cancer is starting to be uncovered. In this article we give a general overview and highlight recent advances made in defining the functions of p38γ and p38δ, focusing in innate immunity and inflammation. We consider the potential of the pharmacological targeting of MAPK pathways to treat autoimmune and inflammatory diseases and cancer. PMID:27148533

  2. The case for inhibiting p38 mitogen-activated protein kinase in heart failure

    PubMed Central

    Arabacilar, Pelin; Marber, Michael

    2015-01-01

    This minireview discusses the evidence that the inhibition of p38 mitogen-activated protein kinases (p38 MAPKs) maybe of therapeutic value in heart failure. Most previous experimental studies, as well as past and ongoing clinical trials, have focussed on the role of p38 MAPKs in myocardial infarction and acute coronary syndromes. There is now growing evidence that these kinases are activated within the myocardium of the failing human heart and in the heart and blood vessels of animal models of heart failure. Furthermore, from a philosophical viewpoint the chronic activation of the adaptive stress pathways that lead to the activation of p38 MAPKs in heart failure is analogous to the chronic activation of the sympathetic, renin-aldosterone-angiotensin and neprilysin systems. These have provided some of the most effective therapies for heart failure. This minireview questions whether similar and synergistic advantages would follow the inhibition of p38 MAPKs. PMID:26029107

  3. p38 Mitogen-Activated Protein Kinase Pathway Regulates Genes during Proliferation and Differentiation in Oligodendrocytes

    PubMed Central

    Haines, Jeffery D.; Fulton, Debra L.; Richard, Stephane; Almazan, Guillermina

    2015-01-01

    We have previously shown that p38 mitogen-activated protein kinase (p38 MAPK) is important for oligodendrocyte (OLG) differentiation and myelination. However, the precise cellular mechanisms by which p38 regulates OLG differentiation remain largely unknown. To determine whether p38 functions in part through transcriptional events in regulating OLG identity, we performed microarray analysis on differentiating oligodendrocyte progenitors (OLPs) treated with a p38 inhibitor. Consistent with a role in OLG differentiation, pharmacological inhibition of p38 down-regulated the transcription of genes that are involved in myelin biogenesis, transcriptional control and cell cycle. Proliferation assays showed that OLPs treated with the p38 inhibitor retained a proliferative capacity which could be induced upon application of mitogens demonstrating that after two days of p38-inhibition OLGs remained poised to continue mitosis. Together, our results suggest that the p38 pathway regulates gene transcription which can coordinate OLG differentiation. Our microarray dataset will provide a useful resource for future studies investigating the molecular mechanisms by which p38 regulates oligodendrocyte differentiation and myelination. PMID:26714323

  4. Activation of p38 Mitogen-Activated Protein Kinase Promotes Peritoneal Fibrosis by Regulating Fibrocytes

    PubMed Central

    Kokubo, Satoshi; Sakai, Norihiko; Furuichi, Kengo; Toyama, Tadashi; Kitajima, Shinji; Okumura, Toshiya; Matsushima, Kouji; Kaneko, Shuichi; Wada, Takashi

    2012-01-01

    ♦ Background: Peritoneal fibrosis is a serious complication of long-term peritoneal dialysis, and yet the precise pathogenic mechanisms of peritoneal fibrosis remain unknown. Fibrocytes participate in tissue fibrosis and express chemokine receptors that are necessary for migration. The p38 mitogen-activated protein kinase (MAPK) pathway regulates the production of chemokines and has been demonstrated to contribute to the pathogenesis of various fibrotic conditions. Accordingly, we used an experimental mouse model of peritoneal fibrosis to examine the dependency of fibrocytes on p38MAPK signaling. ♦ Methods: Peritoneal fibrosis was induced in mice by the injection of 0.1% chlorhexidine gluconate (CG) into the abdominal cavity. Mice were treated with FR167653, a specific inhibitor of p38MAPK, and immunohistochemical studies were performed to detect fibrocytes and cells positive for phosphorylated p38MAPK. The involvement of p38MAPK in the activation of fibrocytes also was also investigated in vitro. ♦ Results: Fibrocytes infiltrated peritoneum in response to CG, and that response was accompanied by progressive peritoneal fibrosis. The phosphorylation of p38MAPK, as defined by CD45+ spindle-shaped cells, was detected both in peritoneal mesothelial cells and in fibrocytes. The level of peritoneal expression of CCL2, a chemoattractant for fibrocytes, was upregulated by CG injection, and treatment with FR167653 reduced the number of cells positive for phosphorylated p38MAPK, the peritoneal expression of CCL2, and the extent of peritoneal fibrosis. Pretreatment with FR167653 inhibited the expression of procollagen type I α1 induced by transforming growth factor-β1. ♦ Conclusions: Our results suggest that p38MAPK signaling contributes to peritoneal fibrosis by regulating fibrocyte function. PMID:21719683

  5. Heat Shock Factor 1 Is a Substrate for p38 Mitogen-Activated Protein Kinases.

    PubMed

    Dayalan Naidu, Sharadha; Sutherland, Calum; Zhang, Ying; Risco, Ana; de la Vega, Laureano; Caunt, Christopher J; Hastie, C James; Lamont, Douglas J; Torrente, Laura; Chowdhry, Sudhir; Benjamin, Ivor J; Keyse, Stephen M; Cuenda, Ana; Dinkova-Kostova, Albena T

    2016-09-15

    Heat shock factor 1 (HSF1) monitors the structural integrity of the proteome. Phosphorylation at S326 is a hallmark for HSF1 activation, but the identity of the kinase(s) phosphorylating this site has remained elusive. We show here that the dietary agent phenethyl isothiocyanate (PEITC) inhibits heat shock protein 90 (Hsp90), the main negative regulator of HSF1; activates p38 mitogen-activated protein kinase (MAPK); and increases S326 phosphorylation, trimerization, and nuclear translocation of HSF1, and the transcription of a luciferase reporter, as well as the endogenous prototypic HSF1 target Hsp70. In vitro, all members of the p38 MAPK family rapidly and stoichiometrically catalyze the S326 phosphorylation. The use of stable knockdown cell lines and inhibitors indicated that among the p38 MAPKs, p38γ is the principal isoform responsible for the phosphorylation of HSF1 at S326 in cells. A protease-mass spectrometry approach confirmed S326 phosphorylation and unexpectedly revealed that p38 MAPK also catalyzes the phosphorylation of HSF1 at S303/307, previously known repressive posttranslational modifications. Thus, we have identified p38 MAPKs as highly efficient catalysts for the phosphorylation of HSF1. Furthermore, our findings suggest that the magnitude and persistence of activation of p38 MAPK are important determinants of the extent and duration of the heat shock response. PMID:27354066

  6. Heat Shock Factor 1 Is a Substrate for p38 Mitogen-Activated Protein Kinases

    PubMed Central

    Dayalan Naidu, Sharadha; Sutherland, Calum; Zhang, Ying; Risco, Ana; de la Vega, Laureano; Caunt, Christopher J.; Hastie, C. James; Lamont, Douglas J.; Torrente, Laura; Chowdhry, Sudhir; Benjamin, Ivor J.; Keyse, Stephen M.; Cuenda, Ana

    2016-01-01

    Heat shock factor 1 (HSF1) monitors the structural integrity of the proteome. Phosphorylation at S326 is a hallmark for HSF1 activation, but the identity of the kinase(s) phosphorylating this site has remained elusive. We show here that the dietary agent phenethyl isothiocyanate (PEITC) inhibits heat shock protein 90 (Hsp90), the main negative regulator of HSF1; activates p38 mitogen-activated protein kinase (MAPK); and increases S326 phosphorylation, trimerization, and nuclear translocation of HSF1, and the transcription of a luciferase reporter, as well as the endogenous prototypic HSF1 target Hsp70. In vitro, all members of the p38 MAPK family rapidly and stoichiometrically catalyze the S326 phosphorylation. The use of stable knockdown cell lines and inhibitors indicated that among the p38 MAPKs, p38γ is the principal isoform responsible for the phosphorylation of HSF1 at S326 in cells. A protease-mass spectrometry approach confirmed S326 phosphorylation and unexpectedly revealed that p38 MAPK also catalyzes the phosphorylation of HSF1 at S303/307, previously known repressive posttranslational modifications. Thus, we have identified p38 MAPKs as highly efficient catalysts for the phosphorylation of HSF1. Furthermore, our findings suggest that the magnitude and persistence of activation of p38 MAPK are important determinants of the extent and duration of the heat shock response. PMID:27354066

  7. p38 mitogen-activated protein kinase inhibitor reduces neurocan production in cultured spinal cord astrocytes.

    PubMed

    Yamaoka, Gotaro; Morino, Tadao; Morizane, Kei; Horiuchi, Hideki; Miura, Hiromasa; Ogata, Tadanori

    2012-06-20

    Chondroitin sulfate proteoglycans are formed in scar tissue after a spinal cord injury and inhibit axon regrowth. The production of neurocan, one of these chondroitin sulfate proteoglycans, in cultured spinal cord astrocytes increased after the addition of epidermal growth factor (EGF) in a dose-dependent manner (2-200 ng/ml). In astrocytes stimulated by 20 ng/ml of EGF, neurocan production was inhibited after the addition of the p38 mitogen-activated protein kinase (MAPK) inhibitor (SB203580: 3-10 μM) in a dose-dependent manner. These results suggest that the activation of p38 MAPK is one of the mechanisms of neurocan production in EGF-stimulated astrocytes. The p38 MAPK inhibitor may reduce neurocan production and accelerate axonal regrowth after a spinal cord injury. PMID:22525836

  8. The activation of p38alpha, and not p38beta, mitogen-activated protein kinase is required for ischemic preconditioning

    PubMed Central

    Sicard, Pierre; Clark, James E.; Jacquet, Sebastien; Mohammadi, Shahrooz; Arthur, J. Simon C.; O'Keefe, Stephen J.; Marber, Michael S.

    2010-01-01

    Numerous studies show that pharmacological inhibition of p38 mitogen-activated protein kinases (p38s) before lethal ischemia prevents conditioning. However, these inhibitors have off-target effects and do not discriminate between the alpha and beta isoforms; the activation of which is thought to have diverse and perhaps opposing actions with p38α aggravating, and p38β reducing, myocardial injury. We adopted a chemical genetic approach using mice in which either the p38α (DRα) or p38β (DRβ) alleles were targeted to substitute the “gatekeeper” threonine residue for methionine, thereby preventing the binding of a pharmacological inhibitor, SB203580. Isolated, perfused wild-type (WT), DRα and DRβ mouse hearts underwent ischemic preconditioning with 4 cycles of 4 min ischemia/6 min reperfusion, with or without SB203580 (10 µM), followed by 30 min of global ischemia and 120 min of reperfusion. In WT and DRβ hearts, SB203580 completely abolished the reduction in myocardial infarction seen with preconditioning and also the phosphorylation of downstream substrates of p38. These effects of SB203580 were not seen in DRα hearts. Furthermore ischemic preconditioning occurred unaltered in p38β null hearts. Contrary to expectation the activation of p38α, and not p38β, is necessary for ischemic preconditioning. Since p38α is also the isoform that leads to lethal myocardial injury, it is unlikely that targeted therapeutic strategies to achieve isoform-selective inhibition will only prevent the harmful consequences of activation. PMID:20188737

  9. Fas activation of the p38 mitogen-activated protein kinase signalling pathway requires ICE/CED-3 family proteases.

    PubMed Central

    Juo, P; Kuo, C J; Reynolds, S E; Konz, R F; Raingeaud, J; Davis, R J; Biemann, H P; Blenis, J

    1997-01-01

    The Fas receptor mediates a signalling cascade resulting in programmed cell death (apoptosis) within hours of receptor cross-linking. In this study Fas activated the stress-responsive mitogen-activated protein kinases, p38 and JNK, within 2 h in Jurkat T lymphocytes but not the mitogen-responsive kinase ERK1 or pp70S6k. Fas activation of p38 correlated temporally with the onset of apoptosis, and transfection of constitutively active MKK3 (glu), an upstream regulator of p38, potentiated Fas-induced cell death, suggesting a potential involvement of the MKK3/p38 activation pathway in Fas-mediated apoptosis. Fas has been shown to require ICE (interleukin-1 beta-converting enzyme) family proteases to induce apoptosis from studies utilizing the cowpox ICE inhibitor protein CrmA, the synthetic tetrapeptide ICE inhibitor YVAD-CMK, and the tripeptide pan-ICE inhibitor Z-VAD-FMK. In this study, crmA antagonized, and YVAD-CMK and Z-VAD-FMK completely inhibited, Fas activation of p38 kinase activity, demonstrating that Fas-dependent activation of p38 requires ICE/CED-3 family members and conversely that the MKK3/p38 activation cascade represents a downstream target for the ICE/CED-3 family proteases. Intriguingly, p38 activation by sorbitol and etoposide was resistant to YVAD-CMK and Z-VAD-FMK, suggesting the existence of an additional mechanism(s) of p38 regulation. The ICE/CED-3 family-p38 regulatory relationship described in the current work indicates that in addition to the previously described destructive cleavage of substrates such as poly(ADP ribose) polymerase, lamins, and topoisomerase, the apoptotic cysteine proteases also function to regulate stress kinase signalling cascades. PMID:8972182

  10. Botulinum toxin complex increases paracellular permeability in intestinal epithelial cells via activation of p38 mitogen-activated protein kinase.

    PubMed

    Miyashita, Shin-Ichiro; Sagane, Yoshimasa; Inui, Ken; Hayashi, Shintaro; Miyata, Keita; Suzuki, Tomonori; Ohyama, Tohru; Watanabe, Toshihiro; Niwa, Koichi

    2013-12-30

    Clostridium botulinum produces a large toxin complex (L-TC) that increases paracellular permeability in intestinal epithelial cells by a mechanism that remains unclear. Here, we show that mitogen-activated protein kinases (MAPKs) are involved in this permeability increase. Paracellular permeability was measured by FITC-dextran flux through a monolayer of rat intestinal epithelial IEC-6 cells, and MAPK activation was estimated from western blots. L-TC of C. botulinum serotype D strain 4947 increased paracellular dextran flux and activated extracellular signal-regulated kinase (ERK), p38, but not c-Jun N-terminal kinase (JNK) in IEC-6 cells. The permeability increase induced by L-TC was abrogated by the p38 inhibitor SB203580. These results indicate that L-TC increases paracellular permeability by activating p38, but not JNK and ERK. PMID:23884081

  11. Mitogen-activated protein kinase p38b interaction with delta class glutathione transferases from the fruit fly, Drosophila melanogaster.

    PubMed

    Wongtrakul, Jeerang; Sukittikul, Suchada; Saisawang, Chonticha; Ketterman, Albert J

    2012-01-01

    Glutathione transferases (GSTs) are a family of multifunctional enzymes involved in xenobiotic biotransformation, drug metabolism, and protection against oxidative damage. The p38b mitogen-activated protein kinase is involved in cellular stress response. This study screened interactions between Drosophila melanogaster Meigen (Diptera: Drosophilidae) Delta class glutathione transferases (DmGSTs) and the D. melanogaster p38b MAPK. Therefore, 12 DmGSTs and p38b kinase were obtained as recombinant proteins. The study showed that DmGSTD8 and DmGSTD11b significantly increased p38b activity toward ATF2 and jun, which are transcription factor substrates. DmGSTD3 and DmGSTD5 moderately increased p38b activity for jun. In addition, GST activity in the presence of p38b was also measured. It was found that p38b affected substrate specificity toward CDNB (1-chloro-2,4-dinitrobenzene) and DCNB (1,2-dichloro-4-nitrobenzene) of several GST isoforms, i.e., DmGSTD2, DmGSTD5, DmGSTD8, and DmGSTD11b. The interaction of a GST and p38b can affect the substrate specificity of either enzyme, which suggests induced conformational changes affecting catalysis. Similar interactions do not occur for all the Delta enzymes and p38b, which suggests that these interactions could be specific. PMID:23438069

  12. Induction of p38 mitogen-activated protein kinase reduces early endosome autoantigen 1 (EEA1) recruitment to phagosomal membranes.

    PubMed

    Fratti, Rutilio A; Chua, Jennifer; Deretic, Vojo

    2003-11-21

    Mycobacterium tuberculosis survives in the infected host by parasitizing macrophages in which the bacillus resides in a specialized phagosome sequestered from the phagolysosomal degradative pathway. Here we report a role of the stress-induced p38 mitogen-activated protein kinase (p38 MAPK) in the component of M. tuberculosis phagosome maturation arrest that has been linked previously to the reduced recruitment of the endosomal and phagosomal membrane-tethering molecule called early endosome autoantigen 1 (EEA1; Fratti, R. A., Backer, J. M., Gruenberg, J., Corvera, S., and Deretic, V. (2001) J. Cell Biol. 154, 631-644). A pharmacological inhibition of M. tuberculosis var. bovis Bacillus Calmette-Guérin-induced p38 MAPK activity caused a marked increase in EEA1 colocalization with mycobacterial phagosomes. Consistent with the increase in EEA1 association and its role in phagosomal maturation, the pharmacological block of p38 activity caused phagosomal acidification and enrichment of the late endocytic markers lysobisphosphatidic acid and CD63 (lysosomal integral membrane protein 1) on mycobacterial phagosomes. A negative regulatory role of p38 MAPK activation in phagosome maturation was further demonstrated by converse experiments with latex bead phagosomes. Artificial activation of p38 MAPK caused a decrease in EEA1 colocalization with model latex bead phagosomes, which normally acquire EEA1 and subsequently mature into the phagolysosome. These findings show that p38 MAPK activity contributes to the arrest of M. tuberculosis phagosome maturation and demonstrate a negative regulatory role of p38 in phagolysosome biogenesis. PMID:12963735

  13. The p38α mitogen-activated protein kinase is a key regulator of myelination and remyelination in the CNS.

    PubMed

    Chung, S-H; Biswas, S; Selvaraj, V; Liu, X-B; Sohn, J; Jiang, P; Chen, C; Chmilewsky, F; Marzban, H; Horiuchi, M; Pleasure, D E; Deng, W

    2015-01-01

    The p38α mitogen-activated protein kinase (MAPK) is one of the serine/threonine kinases regulating a variety of biological processes, including cell-type specification, differentiation and migration. Previous in vitro studies using pharmacological inhibitors suggested that p38 MAPK is essential for oligodendrocyte (OL) differentiation and myelination. To investigate the specific roles of p38α MAPK in OL development and myelination in vivo, we generated p38α conditional knockout (CKO) mice under the PLP and nerve/glial antigen 2 (NG2) gene promoters, as these genes are specifically expressed in OL progenitor cells (OPCs). Our data revealed that myelin synthesis was completely inhibited in OLs differentiated from primary OPC cultures derived from the NG2 Cre-p38α CKO mouse brains. Although an in vivo myelination defect was not obvious after gross examination of these mice, electron microscopic analysis showed that the ultrastructure of myelin bundles was severely impaired. Moreover, the onset of myelination in the corpus callosum was delayed in the knockout mice compared with p38α fl/fl control mice. A delay in OL differentiation in the central nervous system was observed with concomitant downregulation in the expression of OPC- and OL-specific genes such as Olig1 and Zfp488 during early postnatal development. OPC proliferation was not affected during this time. These data indicate that p38α is a positive regulator of OL differentiation and myelination. Unexpectedly, we observed an opposite effect of p38α on remyelination in the cuprizone-induced demyelination model. The p38α CKO mice exhibited better remyelination capability compared with p38α fl/fl mice following demyelination. The opposing roles of p38α in myelination and remyelination could be due to a strong anti-inflammatory effect of p38α or a dual reciprocal regulatory action of p38α on myelin formation during development and on remyelination after demyelination. PMID:25950478

  14. p38 Mitogen-Activated Protein Kinase in beryllium-induced dendritic cell activation.

    PubMed

    Li, L; Huang, Z; Gillespie, M; Mroz, P M; Maier, L A

    2014-12-01

    Dendritic cells (DC) play a role in the regulation of immune responses to haptens, which in turn impact DC maturation. Whether beryllium (Be) is able to induce DC maturation and if this occurs via the MAPK pathway is not known. Primary monocyte-derived DCs (moDCs) models were generated from Be non-exposed healthy volunteers as a non-sensitized cell model, while PBMCs from BeS (Be sensitized) and CBD (chronic beryllium disease) were used as disease models. The response of these cells to Be was evaluated. The expression of CD40 was increased significantly (p<0.05) on HLA-DP Glu69+ moDCs after 100 μM BeSO₄-stimulation. BeSO₄ induced p38MAPK phosphorylation, while IκB-α was degraded in Be-stimulated moDCs. The p38 MAPK inhibitor SB203580 blocked Be-induced NF-κB activation in moDCs, suggesting that p38MAPK and NF-κB are dependently activated by BeSO₄. Furthermore, in BeS and CBD subjects, SB203580 downregulated Be-stimulated proliferation in a dose-dependent manner, and decreased Be-stimulated TNF-α and IFNγ cytokine production. Taken together, this study suggests that Be-induces non-sensitized Glu69+ DCs maturation, and that p38MAPK signaling is important in the Be-stimulated DCs activation as well as subsequent T cell proliferation and cytokine production in BeS and CBD. In total, the MAPK pathway may serve as a potential therapeutic target for human granulomatous lung diseases. PMID:25454621

  15. p38 Mitogen-Activated Protein Kinase in beryllium-induced dendritic cell activation

    PubMed Central

    Li, L.; Huang, Z.; Gillespie, M.; Mroz, P.M.; Maier, L.A.

    2014-01-01

    Dendritic cells (DC) play a role in the regulation of immune responses to haptens, which in turn impact DC maturation. Whether beryllium (Be) is able to induce DC maturation and if this occurs via the MAPK pathway is not known. Primary monocyte-derived DCs (moDCs) models were generated from Be non-exposed healthy volunteers as a non-sensitized cell model, while PBMCs from BeS (Be sensitized) and CBD (chronic beryllium disease) were used as disease models. The response of these cells to Be was evaluated. The expression of CD40 was increased significantly (p<0.05) on HLA-DP Glu69+ moDCs after 100 μM BeSO4-stimulation. BeSO4 induced p38MAPK phosphorylation, while IκB-α was degraded in Be-stimulated moDCs. The p38 MAPK inhibitor SB203580 blocked Be-induced NF-κB activation in moDCs, suggesting that p38MAPK and NF-κB are dependently activated by BeSO4. Furthermore, in BeS and CBD subjects, SB203580 downregulated Be-stimulated proliferation in a dose-dependent manner, and decreased Be-stimulated TNF-α and IFNγ cytokine production. Taken together, this study suggests that Be-induces non-sensitized Glu69+ DCs maturation, and that p38MAPK signaling is important in the Be-stimulated DCs activation as well as subsequent T cell proliferation and cytokine production in BeS and CBD. In total, the MAPK pathway may serve as a potential therapeutic target for human granulomatous lung diseases. PMID:25454621

  16. p38 mitogen-activated protein kinase activation during platelet storage: consequences for platelet recovery and hemostatic function in vivo

    PubMed Central

    Canault, Matthias; Duerschmied, Daniel; Brill, Alexander; Stefanini, Lucia; Schatzberg, Daphne; Cifuni, Stephen M.

    2010-01-01

    Platelets undergo several modifications during storage that reduce their posttransfusion survival and functionality. One important feature of these changes, which are known as platelet storage lesion, is the shedding of the surface glycoproteins GPIb-α and GPV. We recently demonstrated that tumor necrosis factor-α converting enzyme (TACE/ADAM17) mediates mitochondrial injury-induced shedding of adhesion receptors and that TACE activity correlates with reduced posttransfusion survival of these cells. We now confirm that TACE mediates receptor shedding and clearance of platelets stored for 16 hours at 37°C or 22°C. We further demonstrate that both storage and mitochondrial injury lead to the phosphorylation of p38 mitogen-activated kinase (MAPK) in platelets and that TACE-mediated receptor shedding from mouse and human platelets requires p38 MAP kinase signaling. Protein kinase C, extracellular regulated-signal kinase MAPK, and caspases were not involved in TACE activation. Both inhibition of p38 MAPK and inactivation of TACE during platelet storage led to a markedly improved posttransfusion recovery and hemostatic function of platelets in mice. p38 MAPK inhibitors had only minor effects on the aggregation of fresh platelets under static or flow conditions in vitro. In summary, our data suggest that inhibition of p38 MAPK or TACE during storage may significantly improve the quality of stored platelets. PMID:19965619

  17. p38 mitogen-activated protein kinase mediates IL-8 induction by the ribotoxin deoxynivalenol in human monocytes

    SciTech Connect

    Islam, Zahidul; Gray, Jennifer S.; Pestka, James J. . E-mail: pestka@msu.edu

    2006-06-15

    The effects of the ribotoxic trichothecene deoxynivalenol (DON) on mitogen-activated protein kinase (MAPK)-mediated IL-8 expression were investigated in cloned human monocytes and peripheral blood mononuclear cells (PBMC). DON (250 to 1000 ng/ml) induced both IL-8 mRNA and IL-8 heteronuclear RNA (hnRNA), an indicator of IL-8 transcription, in the human U937 monocytic cell line in a concentration-dependent manner. Expression of IL-8 hnRNA, mRNA and protein correlated with p38 phosphorylation and was completely abrogated by the p38 MAPK inhibitor SB203580. DON at 500 ng/ml similarly induced p38-dependent IL-8 protein and mRNA expression in PBMC cultures from healthy volunteers. Significantly increased IL-6 and IL-1{beta} intracellular protein and mRNA expression was also observed in PBMC treated with DON (500 ng/ml) which were also partially p38-dependent. Flow cytometry of PBMC revealed that DON-induced p38 phosphorylation varied among individuals relative to both threshold toxin concentrations (25-100 ng/ml) and relative increases in percentages of phospho-p38{sup +} cells. DON-induced p38 activation occurred exclusively in the CD14{sup +} monocyte population. DON was devoid of agonist activity for human Toll-like receptors 2, 3, 4, 5, 7, 8 and 9. However, two other ribotoxins, emetine and anisomycin, induced p38 phosphorylation in PBMC similarly to DON. Taken together, these data suggest that (1) p38 activation was required for induction of IL-8 and proinflammatory gene expression in the monocyte and (2) DON induced p38 activation in human monocytes via the ribotoxic stress response.

  18. Curcumin increases gelatinase activity in human neutrophils by a p38 mitogen-activated protein kinase (MAPK)-independent mechanism.

    PubMed

    Antoine, Francis; Girard, Denis

    2015-01-01

    Curcumin has been found to possess anti-inflammatory activities and neutrophils, key players in inflammation, were previously found to be important targets to curcumin in a few studies. For example, curcumin was found to induce apoptosis in neutrophils by a p38 mitogen-activated protein kinase (MAPK)-dependent mechanism. However, the role of curcumin on the biology of neutrophils is still poorly defined. To study the role of curcumin on neutrophil degranulation and to determine the role of p38 MAPK, human neutrophils were freshly isolated from healthy individuals and incubated in vitro with curcumin. Degranulation was studied at three levels: surface expression of granule markers by flow cytometry; release of matrix metallopeptidase-9 (MMP-9 or gelatinase B) enzyme into supernatants by Western blot; and gelatinase B activity by zymography. Activation of p38 MAPK was studied by monitoring its tyrosine phosphorylation levels by western blot and its role by the utilization of a pharmacological inhibitor. The results indicate that curcumin increased the cell surface expression of CD35 (secretory vesicle), CD63 (azurophilic granules), and CD66b (gelatinase granules) in neutrophils. Also, curcumin increased the release and enzymatic activity of gelatinase B in the extracellular milieu and activated p38 MAP kinase in these cells. However, in contrast to fMLP, curcumin-induced enzymatic activity and secretion of gelatinase B were not reversed by use of a p38 inhibitor. Finally, it was found that curcumin was able to enhance phagocytosis. Taken together, the results here demonstrate that curcumin induced degranulation in human neutrophils and that the increased gelatinase activity is not dependent on p38 MAPK activation. Therefore, degranulation is another human neutrophil function that could be modulated by curcumin, as well as phagocytosis. PMID:24926560

  19. p38 mitogen-activated protein kinase interacts with vinculin at focal adhesions during fatty acid-stimulated cell adhesion

    PubMed Central

    George, Margaret D.; Wine, Robert N.; Lackford, Brad; Kissling, Grace E.; Akiyama, Steven K.; Olden, Kenneth; Roberts, John D.

    2014-01-01

    Arachidonic acid stimulates cell adhesion by activating α2β1 integrins in a process that depends on protein kinases, including p38 mitogen activated protein kinase. Here, we describe the interaction of cytoskeletal components with key signaling molecules that contribute to spreading of, and morphological changes in, arachidonic acid-treated MDA-MB-435 human breast carcinoma cells. Arachidonic acid-treated cells showed increased attachment and spreading on collagen type IV as measured by electric cell-substrate impedance sensing. Fatty acid-treated cells displayed short cortical actin filaments associated with an increased number of β1 integrin-containing pseudopodia whereas untreated cells displayed elongated stress fibers and fewer clusters of β1 integrins. Confocal microscopy of arachidonic acid-treated cells showed that vinculin and phospho-p38 both appeared enriched in pseudopodia and at the tips of actin filaments, and fluorescence ratio imaging indicated the increase was specific for the phospho-(active) form of p38. Immunoprecipitates of phospho-p38 from extracts of arachidonic acid-treated cells contained vinculin, and GST-vinculin fusion proteins carrying the central region of vinculin bound phospho-p38, whereas fusion proteins expressing the terminal portions of vinculin did not. These data suggest that phospho-p38 associates with particular domains on critical focal adhesion proteins that are involved in tumor cell adhesion and spreading and that this association can be regulated by factors in the tumor microenvironment. PMID:24219282

  20. JNK and p38 mitogen-activated protein kinase pathways contribute to porcine epidemic diarrhea virus infection.

    PubMed

    Lee, Changhee; Kim, Youngnam; Jeon, Ji Hyun

    2016-08-15

    The mitogen-activated protein kinase (MAPK) pathways, which are central building blocks in the intracellular signaling network, are often manipulated by viruses of diverse families to favor their replication. Among the MAPK family, the extracellular signal-regulated kinase (ERK) pathway is known to be modulated during the infection with porcine epidemic diarrhea virus (PEDV); however, involvement of stress-activated protein kinases (SAPKs) comprising p38 MAPK and c-Jun NH2-terminal kinase (JNK) remains to be determined. Therefore, in the present study, we investigated whether activation of p38 MAPK and JNK cascades is required for PEDV replication. Our results showed that PEDV activates p38 MAPK and JNK1/2 up to 24h post-infection, whereas, thereafter their phosphorylation levels recede to baseline levels or even fall below them. Notably, UV-irradiated inactivated PEDV, which can enter cells but cannot replicate inside them, failed to induce phosphorylation of p38 MAPK and JNK1/2 suggesting that viral biosynthesis is essential for activation of these kinases. Treatment of cells with selective p38 or JNK inhibitors markedly impaired PEDV replication in a dose-dependent manner and these antiviral effects were found to be maximal during the early times of the infection. Furthermore, direct pharmacological inhibition of p38 MAPK or JNK1/2 activation resulted in a significant reduction of viral RNA synthesis, viral protein expression, and progeny release. However, independent treatments with either SAPK inhibitor did not inhibit PEDV-induced apoptotic cell death mediated by activation of mitochondrial apoptosis-inducing factor (AIF) suggesting that SAPKs are irrelevant to the apoptosis pathway during PEDV infection. In summary, our data demonstrated critical roles of the p38 and JNK1/2 signaling pathways in facilitating successful viral infection during the post-entry steps of the PEDV life cycle. PMID:27215486

  1. KIF5B transports BNIP-2 to regulate p38 mitogen-activated protein kinase activation and myoblast differentiation

    PubMed Central

    Yi, Peng; Chew, Li Li; Zhang, Ziwang; Ren, Hao; Wang, Feiya; Cong, Xiaoxia; Zheng, Liling; Luo, Yan; Ouyang, Hongwei; Low, Boon Chuan; Zhou, Yi Ting

    2015-01-01

    The Cdo-p38MAPK (p38 mitogen-activated protein kinase) signaling pathway plays important roles in regulating skeletal myogenesis. During myogenic differentiation, the cell surface receptor Cdo bridges scaffold proteins BNIP-2 and JLP and activates p38MAPK, but the spatial-temporal regulation of this process is largely unknown. We here report that KIF5B, the heavy chain of kinesin-1 motor, is a novel interacting partner of BNIP-2. Coimmunoprecipitation and far-Western study revealed that BNIP-2 directly interacted with the motor and tail domains of KIF5B via its BCH domain. By using a range of organelle markers and live microscopy, we determined the endosomal localization of BNIP-2 and revealed the microtubule-dependent anterograde transport of BNIP-2 in C2C12 cells. The anterograde transport of BNIP-2 was disrupted by a dominant-negative mutant of KIF5B. In addition, knockdown of KIF5B causes aberrant aggregation of BNIP-2, confirming that KIF5B is critical for the anterograde transport of BNIP-2 in cells. Gain- and loss-of-function experiments further showed that KIF5B modulates p38MAPK activity and in turn promotes myogenic differentiation. Of importance, the KIF5B-dependent anterograde transport of BNIP-2 is critical for its promyogenic effects. Our data reveal a novel role of KIF5B in the spatial regulation of Cdo–BNIP-2–p38MAPK signaling and disclose a previously unappreciated linkage between the intracellular transporting system and myogenesis regulation. PMID:25378581

  2. Quercetin attenuates cardiomyocyte apoptosis via inhibition of JNK and p38 mitogen-activated protein kinase signaling pathways.

    PubMed

    Li, Chengqiu; Wang, Ting; Zhang, Chunyuan; Xuan, Jichang; Su, Changjiang; Wang, Yuqi

    2016-02-15

    Quercetin (Que), a plant-derived flavonoid, possesses various biological functions. Moreover, Que exerts multiple beneficial actions in treatment of cardiovascular diseases and there are an inverse association between Que intakes and occurrence and development of various cardiovascular diseases. Some researchers have inferred that the mechanisms of Que to protect cardiomyocytes from ischemia/reperfusion (I/R) injury may be involved in modulation of intracellular signal pathways and regulation of proteins expression in vivo. The current study investigated whether Que has any protective effects on cardiomyocytes from hypoxia/reoxygenation (H/R) in vitro and its potential cardioprotective mechanisms. The cell viability of Que on H9c2 cardiomyoblast cells was assessed by MTT. Apoptosis was evaluated by both Hoechst33342 staining and Flow cytometric analysis (FACS). Furthermore, the effect of Que, SP600125 (JNK inhibitor) and SB203580 (p38 inhibitor) on mitogen-activated protein kinases (MAPKs) and the expression of apoptosis related proteins (Bcl-2, Bax and caspase-3) was determined by Western blotting. MTT assays showed that pretreatment with Que could increase the viability of H9c2 cardiomyocytes that suffered H/R. Both Hoechst33342 staining and FACS confirmed that Que could remarkably suppress the H/R-induced apoptotic cardiomyocytes. In addition, Que significantly alleviated H/R-induced the phosphorylation of JNK and p38, which further increased Bcl-2 expression and inhibited the activation of Bax and caspase-3 directly or indirectly. In summary, our results imply that Que can induce cardioprotection by inhibition of JNK and p38 mitogen-activated protein kinase signaling pathways and modulate the expression of Bcl-2 and Bax proteins that provides a new experimental foundation for myocardial ischemia disease therapy. PMID:26680104

  3. Repeated preconditioning with hyperbaric oxygen induces neuroprotection against forebrain ischemia via suppression of p38 mitogen activated protein kinase.

    PubMed

    Yamashita, Satoshi; Hirata, Takao; Mizukami, Yoichi; Cui, Ying Jun; Fukuda, Shiro; Ishida, Kazuyoshi; Matsumoto, Mishiya; Sakabe, Takefumi

    2009-12-01

    We previously reported in rats that preconditioning with hyperbaric oxygen (HBO; 100% O(2) 3.5-atomsphere absolute (ATA), 1 h/day for 5 days) provided neuroprotection against transient (8 min) forebrain ischemia possibly through protein synthesis relevant to neurotrophin receptor and inflammatory-immune system. A recent report suggested that HBO-induced neuroprotection is relevant to brain derived neurotrophic factor and its downstream event involving suppression of p38 mitogen activated protein kinase (p38) activation. In the present study, we first performed a dose comparison (1, 2, and 3.5 ATA) of HBO-induced neuroprotection and then investigated pharmacological modification by 10 mg/kg anisomycin (a protein synthesis inhibitor and potent activator for p38) and 200 microg/kg SB203580 (a p38 inhibitor), which were given intraperitoneally 60 and 30 min before every 3.5 ATA-HBO treatment, respectively. Most prominent protective effect on hippocampal CA1 neurons was observed with 3.5 ATA-HBO (survived neurons: 69% [62-73%] vs. untreated: 3.9% [2-8%], 1 ATA: 8.8% [0-26%], 2 ATA-HBO: 46% [22-62%] (median [range]) (7 days after ischemia). Anisomycin abolished a neuroprotective effect (survived neuron: 1.2% [0-7%]). SB203580, when given between administration of anisomycin and HBO treatment, resumed a neuroprotective effect (survived neuron: 52% [37-62%]). The level of phosphorylated p38 at 10-min reperfusion was significantly decreased in 3.5 ATA-HBO group (32% [12-53%] of sham). Single pretreatment with 100 and 200 microg/kg of SB203580 exerted a similar neuroprotective effect (39% [25-51%] and 59% [50-72%]) to 2 and 3.5 ATA-HBO preconditioning, respectively. It is concluded that suppression of p38 phosphorylation plays a key role in HBO-induced neuroprotection and that pretreatment with a p38 inhibitor (SB203580) can provide similar neuroprotection. PMID:19747454

  4. Prp19 facilitates invasion of hepatocellular carcinoma via p38 mitogen-activated protein kinase/Twist1 pathway

    PubMed Central

    Zhu, Ji-Min; Yu, Qian; Xue, Ru-Yi; Fang, Ying; Zhang, Yi-An; Chen, Yan-Jie; Liu, Tao-Tao; Dong, Ling; Shen, Xi-Zhong

    2016-01-01

    Pre-mRNA processing factor 19 (Prp19) is involved in many cellular events including pre-mRNA processing and DNA damage response. However, the pathological role of Prp19 in hepatocellular carcinoma (HCC) is still elusive. Here, we reported that Prp19 was increased in most HCC tissues and HCC cell lines, and its overexpression in HCC tissues was positively correlated with vascular invasion, tumor capsule breakthrough and poor prognosis. Prp19 potentiated migratory and invasive abilities of HCC cells in vitro and in vivo. Furthermore Prp19 facilitated Twist1-induced epithelial-mesenchymal transition. Mechanistic insights revealed that Prp19 directly binded with TGF-β-activated kinase1 (TAK1) and promoted the activation of p38 mitogen-activated protein kinase (MAPK), preventing Twist1 from degradation. Finally Prp19/p38 MAPK/Twist1 axis was attested in nude mice xenografts and HCC patient specimens. This work implies that the gain of Prp19 is a critical event during the progression of HCC, making it a promising target for malignancies with aberrant Prp19 expression. PMID:26959880

  5. Slack sodium-activated potassium channel membrane expression requires p38 mitogen-activated protein kinase phosphorylation.

    PubMed

    Gururaj, Sushmitha; Fleites, John; Bhattacharjee, Arin

    2016-04-01

    p38 MAPK has long been understood as an inducible kinase under conditions of cellular stress, but there is now increasing evidence to support its role in the regulation of neuronal function. Several phosphorylation targets have been identified, an appreciable number of which are ion channels, implicating the possible involvement of p38 MAPK in neuronal excitability. The KNa channel Slack is an important protein to be studied as it is highly and ubiquitously expressed in DRG neurons and is important in the maintenance of their firing accommodation. We sought to examine if the Slack channel could be a substrate of p38 MAPK activity. First, we found that the Slack C-terminus contains two putative p38 MAPK phosphorylation sites that are highly conserved across species. Second, we show via electrophysiology experiments that KNa currents and further, Slack currents, are subject to tonic modulation by p38 MAPK. Third, biochemical approaches revealed that Slack channel regulation by p38 MAPK occurs through direct phosphorylation at the two putative sites of interaction, and mutating both sites prevented surface expression of Slack channels. Based on these results, we conclude that p38 MAPK is an obligate regulator of Slack channel function via the trafficking of channels into the membrane. The present study identifies Slack KNa channels as p38 MAPK substrates. PMID:26721627

  6. Molecular Basis of the Interaction of the Human Protein Tyrosine Phosphatase Non-receptor Type 4 (PTPN4) with the Mitogen-activated Protein Kinase p38γ.

    PubMed

    Maisonneuve, Pierre; Caillet-Saguy, Célia; Vaney, Marie-Christine; Bibi-Zainab, Edoo; Sawyer, Kristi; Raynal, Bertrand; Haouz, Ahmed; Delepierre, Muriel; Lafon, Monique; Cordier, Florence; Wolff, Nicolas

    2016-08-01

    The human protein tyrosine phosphatase non-receptor type 4 (PTPN4) prevents cell death induction in neuroblastoma and glioblastoma cell lines in a PDZ·PDZ binding motifs-dependent manner, but the cellular partners of PTPN4 involved in cell protection are unknown. Here, we described the mitogen-activated protein kinase p38γ as a cellular partner of PTPN4. The main contribution to the p38γ·PTPN4 complex formation is the tight interaction between the C terminus of p38γ and the PDZ domain of PTPN4. We solved the crystal structure of the PDZ domain of PTPN4 bound to the p38γ C terminus. We identified the molecular basis of recognition of the C-terminal sequence of p38γ that displays the highest affinity among all endogenous partners of PTPN4. We showed that the p38γ C terminus is also an efficient inducer of cell death after its intracellular delivery. In addition to recruiting the kinase, the binding of the C-terminal sequence of p38γ to PTPN4 abolishes the catalytic autoinhibition of PTPN4 and thus activates the phosphatase, which can efficiently dephosphorylate the activation loop of p38γ. We presume that the p38γ·PTPN4 interaction promotes cellular signaling, preventing cell death induction. PMID:27246854

  7. Inhibition of p38 Mitogen-Activated Protein Kinase Enhances the Apoptosis Induced by Oxidized Low-Density Lipoprotein in Endothelial Progenitor Cells.

    PubMed

    Tie, Guodong; Yan, Jinglian; Messina, Julia A; Raffai, Robert L; Messina, Louis M

    2015-01-01

    Oxidized low-density lipoprotein (oxLDL) is an important risk factor in the development of atherosclerosis. oxLDL has been shown to decrease endothelial progenitor cell (EPC) number by inducing apoptosis. p38 mitogen-activated protein kinase (MAPK) was shown to be activated by oxLDL and participated in the regulation of EPC number and function. However, the role of p38 remains unknown. Here, we show that oxLDL-induced p38 phosphorylation in EPCs is time and dose dependent. Treatment with antioxidant N-acetyl cysteine restored oxLDL-induced p38 phosphorylation to basal levels. LOX-1-blocking antibody also significantly decreased oxLDL-induced p38 phosphorylation. Interestingly, TUNEL staining showed that pretreatment with the p38 inhibitor SB203580 further increased oxLDL-induced apoptosis in EPCs. In accordance with these findings, pretreatment with SB203580 further attenuated Akt phosphorylation in EPCs challenged with oxLDL, indicating an interaction between Akt and p38 MAPK pathways. In agreement, inhibition of p38 MAPK further attenuated Akt phosphorylation and increased apoptosis in EPCs isolated from hypercholesterolemic ApoE-/- mice. In conclusion, p38 MAPK serves as an anti-apoptotic pathway by supporting Akt activity when EPCs are challenged with oxLDL. PMID:27031525

  8. SB203580, a p38 mitogen-activated protein kinase inhibitor, fails to improve functional outcome following a moderate spinal cord injury in rat.

    PubMed

    Stirling, D P; Liu, J; Plunet, W; Steeves, J D; Tetzlaff, W

    2008-07-31

    We examined the spatial and temporal expression patterns of active p38 mitogen-activated protein kinase (MAPK), an important regulator of immune cell function, following spinal cord injury (SCI). We further assessed whether administration of SB203580, an inhibitor of p38 MAPK activity, would reduce inflammation, improve tissue sparing, and improve functional outcome after SCI. Adult Wistar rats were subjected to a T9/10 SCI contusion of moderate severity and killed at several time points after injury, whereas sham-injured (control) animals only received a laminectomy. In control animals, active p38 MAPK expression was primarily localized to resting microglia within the spinal cord. Over the first 24 h after SCI, a continuing increase in active p38 MAPK expression was evident in neutrophils and activated microglia (OX42+) surrounding the spinal lesion site. At 15 days post-injury, active p38 MAPK was localized to macrophages (ED1+) that now dominated the lesion site. In addition, active p38 MAPK was localized to macrophages within white matter fiber tracts undergoing degeneration, several segments rostral and caudal to the injury site, which persisted for at least 6 weeks. Overall, our results demonstrate that active p38 MAPK is increased within resident and invading immune cells after SCI contusion injury and, therefore, may be an important target to regulate the inflammatory cascade after SCI. However, intrathecal application of SB203580 failed to improve functional outcome after a moderate SCI contusion. PMID:18562123

  9. p38γ Mitogen-Activated Protein Kinase Contributes to Oncogenic Properties Maintenance and Resistance to Poly (ADP-Ribose)-Polymerase-1 Inhibition in Breast Cancer12

    PubMed Central

    Meng, Fanyan; Zhang, Haijun; Liu, Gang; Kreike, Bas; Chen, Wei; Sethi, Seema; Miller, Fred R; Wu, Guojun

    2011-01-01

    p38γ MAPK, one of the four members of p38 mitogen-activated protein kinases (MAPKs), has previously been shown to harbor oncogenic functions. However, the biologic function of p38γ MAPK in breast cancer has not been well defined. In this study, we have shown that p38γ MAPK is overexpressed in highly metastatic human and mouse breast cancer cell lines and p38γ MAPK expression is preferentially associated with basal-like and metastatic phenotypes of breast tumor samples. Ectopic expression of p38γ MAPK did not lead to an increase in oncogenic properties in vitro in most tested mammary epithelial cells. However, knockdown of p38γ MAPK expression resulted in a dramatic decrease in cell proliferation, colony formation, cell migration, invasion in vitro and significant retardation of tumorigenesis, and long-distance metastasis to the lungs in vivo. Moreover, knockdown of p38γ MAPK triggered the activation of AKT signaling. Inhibition of this feedback loop with various PI3K/AKT signaling inhibitors facilitated the effect of targeting p38γ MAPK. We further found that overexpression of p38γ MAPK did not promote cell resistance to chemotherapeutic agents doxorubicin and paclitaxel but significantly increased cell resistance to PJ-34, a DNA damage agent poly (ADP-ribose)-polymerase-1 (PARP) inhibitor in vitro and in vivo. Finally, we identified that p38γ MAPK overexpression led to marked cell cycle arrest in G2/M phase. Our study for the first time clearly demonstrates that p38γ MAPK is a promising target for the design of targeted therapies for basal-like breast cancer with metastatic characteristics and for overcoming potential resistance against the PARP inhibitor. PMID:21532888

  10. Increased p38 mitogen-activated protein kinase signaling is involved in the oxidative stress associated with oxygen and glucose deprivation in neonatal hippocampal slice cultures

    PubMed Central

    Lu, Qing; Rau, Thomas F.; Harris, Valerie; Johnson, Maribeth; Poulsen, David J.; Black, Stephen M.

    2016-01-01

    The pathological basis of neonatal hypoxia–ischemia (HI) brain damage is characterized by neuronal cell loss. Oxidative stress is thought to be one of the main causes of HI-induced neuronal cell death. The p38 mitogen-activated protein kinase (MAPK) is activated under conditions of cell stress. However, its pathogenic role in regulating the oxidative stress associated with HI injury in the brain is not well understood. Thus, this study was conducted to examine the role of p38 MAPK signaling in neonatal HI brain injury using neonatal rat hippocampal slice cultures exposed to oxygen / glucose deprivation (OGD). Our results indicate that OGD led to a transient increase in p38 MAPK activation that preceded increases in superoxide generation and neuronal death. This increase in neuronal cell death correlated with an increase in the activation of caspase-3 and the appearance of apoptotic neuronal cells. Pre-treatment of slice cultures with the p38 MAPK inhibitor, SB203580, or the expression of an antisense p38 MAPK construct only in neuronal cells, through a Synapsin I-1-driven adeno-associated virus vector, inhibited p38 MAPK activity and exerted a neuroprotective effect as demonstrated by decreases in OGD-mediated oxidative stress, caspase activation and neuronal cell death. Thus, we conclude that the activation of p38 MAPK in neuronal cells plays a key role in the oxidative stress and neuronal cell death associated with OGD. PMID:21939459

  11. Astragalus polysaccharide upregulates hepcidin and reduces iron overload in mice via activation of p38 mitogen-activated protein kinase.

    PubMed

    Ren, Feng; Qian, Xin-Hua; Qian, Xin-Lai

    2016-03-25

    Thalassemia is a genetic disease characterized by iron overload which is a major detrimental factor contributing to mortality and organ damage. The hepcidin secreted by liver plays an essential role in orchestrating iron metabolism. Lowering iron load in thalassemia patients by means of increasing hepcidin might be a therapeutic strategy. In this study, we first found that astragalus polysaccharide (APS) significantly increased hepcidin expression in HepG2 and L-02 cell lines originating from hepatocytes and mice liver, respectively. Following treatment with APS, the iron concentrations in serum, liver, spleen, and heart were significantly reduced in comparison to saline treated control mice. In further experiments, upregulation of interleukin-6 (IL-6) and enhanced p38 MAPK phosphorylation were detected in APS treated cells and mice, and as documented in previous studies, IL-6 and P38 MAPK phosphorylation are involved in the regulation of hepcidin expression. We also found that the effects of APS on upregulating hepcidin and IL-6 expressions could be antagonized by pretreatment with SB203580, an inhibitor of p38 MAPK signaling. These findings suggest that activation of p38 MAPK and release of IL-6 might mediate induction of hepcidin by APS. It is concluded that APS might have therapeutic implications in patients with iron overload, especially for thalassemia patients. PMID:26915800

  12. Stearoyl lysophosphatidylcholine enhances the phagocytic ability of macrophages through the AMP-activated protein kinase/p38 mitogen activated protein kinase pathway.

    PubMed

    Quan, Hui; Hur, Young-Hoe; Xin, Chun; Kim, Joung-Min; Choi, Jeong-Il; Kim, Man-Young; Bae, Hong-Beom

    2016-10-01

    A previous study showed that stearoyl lysophosphatidylcholine (sLPC) suppressed extracellular high mobility group box 1 translocation in macrophages stimulated with lipopolysaccharide through AMP-activated protein kinase (AMPK) activation. In the present study, we investigated whether sLPC-induced AMPK activation could enhance macrophages phagocytosis of bacteria. We found that sLPC increased phosphorylation of AMPK and acetyl-CoA carboxylase, a downstream target of AMPK, in a time- and dose-dependent manner in macrophages. Furthermore, sLPC increased the uptake of FITC-conjugated Escherichia coli by macrophages in a dose-dependent manner, and treatment with an AMPK inhibitor (compound C) or siRNA to AMPKα1 reversed this uptake. sLPC increased the phosphorylation of p38 mitogen-activated protein kinase (MAPK), but inhibition of AMPK activity with compound C or siRNA to AMPKα1 prevented the sLPC-induced increase in p38 MAPK phosphorylation. SB203580, a p38 MAPK inhibitor, decreased sLPC-induced phagocytosis. In vivo, systemic administration of sLPC to mice led to increased AMPK and p38 MAPK activity in the lung and to increased phagocytosis of fluorescent E. coli in bronchoalveolar lavage cells. These results suggest that sLPC increases macrophages phagocytosis through activation of the AMPK/p38 MAPK pathway. Therefore, sLPC is a candidate pharmacological agent for the treatment of bacterial infections in clinically relevant conditions. PMID:27517519

  13. Isoflurane attenuates mouse microglial engulfment induced by lipopolysaccharide and interferon-γ possibly by inhibition of p38 mitogen-activated protein kinase.

    PubMed

    Ryu, Jung-Hee; Wang, Zhi; Fan, Dan; Han, Sung-Hee; Do, Sang-Hwan; Zuo, Zhiyi

    2016-09-28

    Microglial engulfment is a basic function to clean up dead and injured cells and invaders, such as bacteria. This study was designed to assess the effects of isoflurane on the microglial engulfment induced by lipopolysaccharide (LPS) plus interferon-γ (IFN-γ) and the involvement of p38 mitogen-activated protein kinase (MAPK) in these effects. C8-B4 microglial cells were exposed to 1, 2, and 3% isoflurane at 2 h after the initiation of LPS (100 ng/ml) and IFN-γ (1 ng/ml) stimulation. Fluorescent immunostaining was performed to assess the percentage of cells with engulfment of fluorescent microspheres after stimulation for 24 h. P38 and phosphorylated p38 were determined by Western blotting. Isoflurane concentration dependently decreased microglial engulfment stimulated by LPS and IFN-γ. LPS and IFN-γ increased the phosphorylated p38 in microglial cells. This upregulation was decreased by isoflurane. SB203580, a p38 MAPK inhibitor, abolished the LPS-induced and IFN-γ-induced increase of engulfment activity, whereas anisomycin, a p38 MAPK activator, partly reversed the isoflurane-decreased microglial engulfment activity. These results suggest that isoflurane reduces LPS-induced and IFN-γ-induced microglial engulfment and that these effects may be mediated by inhibiting p38 MAPK. PMID:27513199

  14. Activated protein C downregulates p38 mitogen-activated protein kinase and improves clinical parameters in an in-vivo model of septic shock.

    PubMed

    Nold, Marcel F; Nold-Petry, Claudia A; Fischer, Doris; Richter, Bernd; Blaheta, Roman; Pfeilschifter, Josef; Muhl, Heiko; Schranz, Dietmar; Veldman, Alex

    2007-11-01

    Despite the success of the anti-coagulant protease protein C (PC) in treating septic shock in humans, the signaling pathways used are still unclear. To explore the effects of treatment with PC zymogen and its activated form aPC in a setting of sepsis, we employed a piglet model of endotoxic shock. In the aPC group, we observed a 65%-90% reduction in plasma TNF-alpha levels and a concomitant clinical improvement. Unexpectedly, administration of aPC also resulted in stabilization of the plasma pH above 7.2. Moreover, phosphorylated p38 mitogen-activated protein kinase (p38MAPK) was virtually absent in the livers of those piglets receiving aPC. In cultured human umbilical vein endothelial cells, we observed that nanomolar concentrations of PC and aPC inhibited the phosphorylation of p38MAPK. Furthermore, we showed that the regulation of the pro-apoptotic cell cycle regulator p53 by PC and aPC is dependent on the reduction of p38MAPK activation. The transduction of these effects involves all three receptors associated with protein C signaling, namely endothelial protein C receptor, protease-activated receptor 1, and sphingosine 1-phosphate receptor 1. Ultimately, this study elucidates novel signaling pathways regulated by protein C and emphasises the pivotal importance of its multiple modes of action beyond anticoagulation. APC's clinical success may, in part, be due to p38MAPK inhibition. PMID:18000619

  15. Interleukin-17A Promotes Aortic Endothelial Cell Activation via Transcriptionally and Post-translationally Activating p38 Mitogen-activated Protein Kinase (MAPK) Pathway.

    PubMed

    Mai, Jietang; Nanayakkara, Gayani; Lopez-Pastrana, Jahaira; Li, Xinyuan; Li, Ya-Feng; Wang, Xin; Song, Ai; Virtue, Anthony; Shao, Ying; Shan, Huimin; Liu, Fang; Autieri, Michael V; Kunapuli, Satya P; Iwakura, Yoichiro; Jiang, Xiaohua; Wang, Hong; Yang, Xiao-Feng

    2016-03-01

    Interleukin-17 (IL-17)-secreting T helper 17 cells were recently identified as a CD4(+) T helper subset and implicated in various inflammatory and autoimmune diseases. The issues of whether and by what mechanism hyperlipidemic stress induces IL-17A to activate aortic endothelial cells (ECs) and enhance monocyte adhesion remained largely unknown. Using biochemical, immunological, microarray, experimental data mining analysis, and pathological approaches focused on primary human and mouse aortic ECs (HAECs and MAECs) and our newly generated apolipoprotein E (ApoE)(-/-)/IL-17A(-/-) mice, we report the following new findings. 1) The hyperlipidemia stimulus oxidized low density lipoprotein up-regulated IL-17 receptor(s) in HAECs and MAECs. 2) IL-17A activated HAECs and increased human monocyte adhesion in vitro. 3) A deficiency of IL-17A reduced leukocyte adhesion to endothelium in vivo. 3) IL-17A activated HAECs and MAECs via up-regulation of proinflammatory cytokines IL-6, granulocyte-macrophage colony-stimulating factor (GM-CSF), chemokine CXC motif ligand 1 (CXCL1), and CXCL2. 4) IL-17A activated ECs specifically via the p38 mitogen-activated protein kinases (MAPK) pathway; the inhibition of p38 MAPK in ECs attenuated IL-17A-mediated activation by ameliorating the expression of the aforementioned proinflammatory cytokines, chemokines, and EC adhesion molecules including intercellular adhesion molecule 1. Taken together, our results demonstrate for the first time that IL-17A activates aortic ECs specifically via p38 MAPK pathway. PMID:26733204

  16. A novel p38 mitogen activated protein kinase (MAPK) specific inhibitor suppresses respiratory syncytial virus and influenza A virus replication by inhibiting virus-induced p38 MAPK activation.

    PubMed

    Choi, Myung-Soo; Heo, Jinyuk; Yi, Chae-Min; Ban, Junsu; Lee, Noh-Jin; Lee, Na-Rae; Kim, Sang Won; Kim, Nam-Jung; Inn, Kyung-Soo

    2016-08-26

    Respiratory syncytial virus (RSV) and influenza A virus are leading causes of acute lower respiratory infectious disease. Respiratory diseases caused by RSV and influenza A virus result in serious economic burden and life-threatening disease for immunocompromised people. With the revelation that p38 mitogen-activated protein kinase (MAPK) activity in host cells is crucial for infection and replication of RSV and influenza A virus, inhibition of p38 MAPK activity has been suggested as a potential antiviral therapeutic strategy. However, the low selectivity and high toxicity of the p38 MAPK inhibitors necessitate the development of better inhibitors. Herein, we report the synthesis of a novel p38 MAPK inhibitor, NJK14047, with high kinase selectivity. In this work, it was demonstrated that NJK14047 inhibits RSV- and influenza A-mediated p38 MAPK activation in epithelial cells. Subsequently, NJK14047 treatment resulted in decreased viral replication and viral mRNA synthesis. In addition, secretion of interleukin-6 from infected cells was greatly diminished by NJK14047, suggesting that it can ameliorate immunopathological responses to RSV and influenza A. Collectively, the results suggest that NJK14047 has therapeutic potential to treat respiratory viral infection through the suppression of p38 MAPK activation, which is suggested to be an essential step for respiratory virus infection. PMID:27346133

  17. Novel Antiplatelet Activity of Minocycline Involves Inhibition of MLK3-p38 Mitogen Activated Protein Kinase Axis

    PubMed Central

    Jackson, Joseph W.; Singh, Meera V.; Singh, Vir B.; Jones, Letitia D.; Davidson, Gregory A.; Ture, Sara; Morrell, Craig N.; Schifitto, Giovanni; Maggirwar, Sanjay B.

    2016-01-01

    Platelets play an essential role in hemostasis and wound healing by facilitating thrombus formation at sites of injury. Platelets also mediate inflammation and contain several pro-inflammatory molecules including cytokines and chemokines that mediate leukocyte recruitment and activation. Not surprisingly, platelet dysfunction is known to contribute to several inflammatory disorders. Antiplatelet therapies, such as aspirin, adenosine diphosphate (ADP) antagonists, glycoprotein IIb/IIIa (GPIIb/IIIa) inhibitors, and anticoagulants such as warfarin, dampen platelet activity at the risk of unwarranted bleeding. Thus, the development of drugs that reduce platelet-mediated inflammation without interfering with thrombus formation is of importance to combat platelet-associated disorders. We have shown here for the first time that the tetracycline antibiotic, minocycline, administered to HIV-infected individuals reduces plasma levels of soluble CD40L and platelet factor 4 levels, host molecules predominately released by platelets. Minocycline reduced the activation of isolated platelets in the presence of the potent platelet activator, thrombin, as measured by ELISA and flow cytometry. Platelet degranulation was reduced upon exposure to minocycline as shown by mepacrine retention and flow cytometry. However, minocycline had no effect on spreading, aggregation, GPIIb/IIIa activation, or in vivo thrombus formation. Lastly, immunoblot analysis suggests that the antiplatelet activity of minocycline is likely mediated by inhibition of mixed lineage kinase 3 (MLK3)-p38 MAPK signaling axis and loss of p38 activity. Our findings provide a better understanding of platelet biology and a novel repurposing of an established antibiotic, minocycline, to specifically reduce platelet granule release without affecting thrombosis, which may yield insights in generating novel, specific antiplatelet therapies. PMID:27270236

  18. Effect of p38 mitogen-activate protein kinase on MUC5AC protein expression of bile duct epithelial cells in hepatolithiasis patients

    PubMed Central

    Wang, Ping; Ma, Xiaodong; He, Yu; Sun, Beiwang; Zhu, Canhua; Zhao, Rujin; Zhang, Shaoling; Huang, Xianxian; Liu, Yanmin

    2015-01-01

    Primary hepatolithiasis is a common bile duct disease with benign nature but complicated mechanisms. Current studies have revealed its correlation with cytokine release by chronic inflammation, which also increased mucin (MUC) synthesis. This study investigated the role of p38 mitogen-activated protein kinase (MAPK) in regulating cytokine release and mucin synthesis, in an attempt to elucidate the role of p38 signaling molecule in the pathogenesis of hepatolithiasis. In human intrahepatic bile duct endothelial cells (HIBECs), lipoprotein (LPS) was used to induce the high expression of MUC. Small interference RNA (siRNA) was then used to silencing p38 gene expression. Cytokines including interleukin (IL)-1β and tumor necrosis factor (TNF)-α were measured, along with MUC5AC protein and mRNA expression assay. The interference of p38 gene expression inhibited the release of IL-1β and TNF-α in cultured cells. It also depressed both mRNA and protein levels of MUC5A. P38 MAPK signal pathway may be involved in the formation and progression of hepatolithiasis. This study provides potential new strategy for treating hepatolithiasis using p38 MAPK signal pathway as the drug target. PMID:26722604

  19. Inhibition of p38 mitogen-activated protein kinase potentiates the apoptotic effect of berberine/tumor necrosis factor-related apoptosis-inducing ligand combination therapy

    PubMed Central

    REFAAT, ALAA; ABDELHAMED, SHERIF; SAIKI, IKUO; SAKURAI, HIROAKI

    2015-01-01

    It was previously reported that berberine (BBR) and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) exhibited a synergistic apoptotic effect on triple negative breast cancer (TNBC) cells. In addition, the BBR/TRAIL combination treatment sensitized TRAIL-resistant TNBC cells to TRAIL. The aim of the present study was to investigate a novel pathway for enhancing the apoptotic effect of BBR/TRAIL through mitogen-activated protein kinases (MAPKs). Selective inhibitors and small interfering RNAs were utilized to understand the role of p38 MAPK in this pathway. The results demonstrated that p38 MAPK was activated in response to the combination therapy in TRAIL-resistant TNBC cells. In addition, it was revealed that the inhibition of p38 enhanced apoptosis in epidermal growth factor receptor (EGFR)-overexpressing MDA-MB-468 TNBC cells and EGFR-mutant PC-9 non-small-cell lung carcinoma cells, which was associated with the downregulation of EGFR serine phosphorylation. Viability assays for these two cell lines also confirmed the significant reduction of cell viability following p38 inhibition in BBR/TRAIL-treated cells. In conclusion, the present study provided novel evidence for the role of p38 in suppressing BBR/TRAIL-mediated apoptosis and its association with EGFR, which may explain the mechanism of treatment resistance in certain types of cancer. PMID:26622773

  20. Sensitization of apoptotically-resistant breast carcinoma cells to TNF and TRAIL by inhibition of p38 mitogen-activated protein kinase signaling.

    PubMed

    Weldon, Christopher B; Parker, Amanda P; Patten, Daniel; Elliott, Steven; Tang, Yan; Frigo, Daniel E; Dugan, Christine M; Coakley, Erin L; Butler, Nancy N; Clayton, John L; Alam, Jawed; Curiel, Tyler J; Beckman, Barbara S; Jaffe, Bernard M; Burow, Matthew E

    2004-06-01

    The mitogen-activated protein kinase (MAPK) cascade is a critical component in the regulation of cell survival and proliferation decisions. In breast carcinoma cells, activation of the p38-MAPK member of this family occurs in response to pro-inflammatory cytokines and cellular stress. The involvement of p38-MAPK in the activation of the transcription factor, NF-kappaB, suggests a potential role and mechanism for regulation of cell survival and drug resistance. Generation of the resistant MCF-7 variant (MCF-7TN-R) was achieved by prolonged exposure of MCF-7N cells to increasing concentrations of TNF. Differences in MAPK activation and function in the MCF-7 cell variants were determined. The role of the p38-MAPK pathway in regulation of resistance was determined using pharmacological (SB 203580) or molecular [Dominant Inhibitory (DI)-p38] inhibition. The effect of p38 inhibition on NF-kappaB transcriptional activation was analyzed. As compared to the sensitive MCF-7N parent cell line, the MCF-7TN-R cell line displayed significant resistance to TNF- and TRAIL-induced cell death. Analysis of the expression and phosphorylation of members of the MAPK family revealed an increased basal activation of p38 in the MCF-7TN-R variant. The p38-mediated phosphorylation and transcriptional activity were suppressed by pharmacologic inhibition with SB 230580. Treatment of MCF-7TN-R cells with SB partially restored sensitivity to TNF-induced cell death. In addition, use of a DI-p38 construct with or without the addition to TNF induced cell death, thus restoring TNF-sensitivity to these cells. The ability of p38 inhibition to restore apoptotic sensitivity was correlated with suppression of the TNF-induced cell survival pathway, NF-kappaB. The increased activation of p38-MAPK in MCF-7TN-R cells demonstrates that this signaling pathway through activation of NF-kappaB is an important route for control of resistance to cell death in breast carcinoma. Molecular and pharmacological

  1. Enediyne lidamycin induces apoptosis in human multiple myeloma cells through activation of p38 mitogen-activated protein kinase and c-Jun NH2-terminal kinase.

    PubMed

    Zhen, Yong-Zhan; Lin, Ya-Jun; Shang, Bo-Yang; Zhen, Yong-Su

    2009-07-01

    In the present study, the effects of lidamycin (LDM), a member of the enediyne antibiotic family, on two human multiple myeloma (MM) cell lines, U266 and SKO-007, were evaluated. In MTS assay, LDM showed much more potent cytotoxicity than conventional anti-MM agents to both cell lines. The IC(50) values of LDM for the U266 and SKO-007 cells were 0.0575 +/- 0.0015 and 0.1585 +/- 0.0166 nM, respectively, much lower than those of adriamycin, dexamethasone, and vincristine. Mechanistically, LDM triggered MM cells apoptosis by increasing the levels of cleaved poly ADP-ribose polymerase (PARP) and caspase-3/7. In addition, activation of p38 mitogen-activated protein kinase (MAPK) and c-Jun NH2-terminal kinase (JNK) was a critical mediator in LDM-induced cell death. Inhibition of the expression of p38 MAPK and JNK by pharmacological inhibitors reversed the LDM-induced apoptosis through decreasing the level of cleaved PARP and caspase-3/7. Interestingly, phosphorylation of extracellular signal-related kinase was increased by LDM; conversely, MEK inhibitor synergistically enhanced LDM-induced cytotoxicity and apoptosis in MM cells. The results demonstrated that LDM suppresses MM cell growth through the activation of p38 MAPK and JNK, with the potential to be developed as a chemotherapeutic agent for MM. PMID:19468799

  2. Effect of training on activation of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase pathways in rat soleus muscle.

    PubMed

    Lee, Jong Sam; Bruce, Clinton R; Spurrell, Brian E; Hawley, John A

    2002-08-01

    1. The effect of a chronic programme of either low- or moderate-to-high-intensity treadmill running on the activation of the extracellular-signal regulated protein kinase (ERK1/2) and the p38 mitogen-activated protein kinase (MAPK) pathways was determined in rat muscle. 2. Sprague-Dawley rats were assigned to one of three groups: (i) sedentary (NT; n = 8); (ii) low-intensity training (8 m/min; LIT; n = 16); and (iii) moderate-to-high-intensity training (28 m/min; HIT; n = 16). The training regimens were planned so that animals covered the same distance and had similar glycogen utilization for both LIT and HIT exercise sessions. 3. A single bout of LIT or HIT following 8 weeks of training led to a twofold increase in the phosphorylation of ERK1/2 (P = 0.048) and a two- to threefold increase in p38 MAPK (P = 0.005). Extracellular signal-regulated kinase 1/2 phosphorylation in muscle sampled 48 h after the last exercise bout was similar to sedentary values, while p38 MAPK phosphorylation was 70-80% lower than sedentary. One bout of LIT or HIT increased total ERK1/2 and p38 MAPK expression, with the magnitude of this increase being independent of prior exercise intensity or duration. Extracellular signal- regulated kinase 1/2 expression was increased three- to fourfold in muscle sampled 48 h after the last exercise bout irrespective of the prior training programme (P = 0.027), but p38 MAPK expression was approximately 90% lower than sedentary values. 4. In conclusion, exercise-training of different intensities/ durations results in selective postexercise activation of intracellular signalling pathways, which may be one mechanism regulating specific adaptations induced by diverse training programmes. PMID:12099995

  3. p75 Neurotrophin Receptor Signaling Activates Sterol Regulatory Element-binding Protein-2 in Hepatocyte Cells via p38 Mitogen-activated Protein Kinase and Caspase-3.

    PubMed

    Pham, Dan Duc; Do, Hai Thi; Bruelle, Céline; Kukkonen, Jyrki P; Eriksson, Ove; Mogollón, Isabel; Korhonen, Laura T; Arumäe, Urmas; Lindholm, Dan

    2016-05-13

    Nerve growth factor (NGF) influences the survival and differentiation of a specific population of neurons during development, but its role in non-neuronal cells has been less studied. We observed here that NGF and its pro-form, pro-NGF, are elevated in fatty livers from leptin-deficient mice compared with controls, concomitant with an increase in low density lipoprotein receptors (LDLRs). Stimulation of mouse primary hepatocytes with NGF or pro-NGF increased LDLR expression through the p75 neurotrophin receptor (p75NTR). Studies using Huh7 human hepatocyte cells showed that the neurotrophins activate the sterol regulatory element-binding protein-2 (SREBP2) that regulates genes involved in lipid metabolism. The mechanisms for this were related to stimulation of p38 mitogen-activated protein kinase (p38 MAPK) and activation of caspase-3 and SREBP2 cleavage following NGF and pro-NGF stimulations. Cell fractionation experiments showed that caspase-3 activity was increased particularly in the membrane fraction that harbors SREBP2 and caspase-2. Experiments showed further that caspase-2 interacts with pro-caspase-3 and that p38 MAPK reduced this interaction and caused caspase-3 activation. Because of the increased caspase-3 activity, the cells did not undergo cell death following p75NTR stimulation, possibly due to concomitant activation of nuclear factor-κB (NF-κB) pathway by the neurotrophins. These results identify a novel signaling pathway triggered by ligand-activated p75NTR that via p38 MAPK and caspase-3 mediate the activation of SREBP2. This pathway may regulate LDLRs and lipid uptake particularly after injury or during tissue inflammation accompanied by an increased production of growth factors, including NGF and pro-NGF. PMID:26984409

  4. Interaction of Omega, Sigma, and Theta Glutathione Transferases with p38b Mitogen-Activated Protein Kinase from the Fruit Fly, Drosophila melanogaster

    PubMed Central

    Wongtrakul, J.; Janphen, K.; Saisawang, C.; Ketterman, A.J.

    2014-01-01

    Glutathione S-transferases (GSTs) are a diverse family of phase II detoxification enzymes found in almost all organisms. Besides playing a major role in the detoxification of xenobiotic and toxic compounds, GSTs are also involved in the regulation of mitogen activated protein (MAP) kinase signal transduction by interaction with proteins in the pathway. An in vitro study was performed for Theta, Omega, Sigma GSTs and their interaction with MAP kinase p38b protein from the fruit fly Drosophila melanogaster Meigen (Diptera: Drosophilidae). The study included the effects of all five Omega class GSTs (DmGSTO1, DmGSTO2a, DmGSTO2b, DmGSTO3, DmGSTO4), all five Theta class GSTs (DmGSTT1, DmGSTT2, DmGSTT3a, DmGSTT3b, DmGSTT4), and one Sigma class glutathione transferase on the activity of Drosophila p38b, including the reciprocal effect of this kinase protein on glutathione transferase activity. It was found that DmGSTT2, DmGSTT3b, DmGSTO1, and DmGSTO3 activated p38b significantly. Substrate specificities of GSTs were also altered after co-incubation with p38b. Although p38b activated DmGSTO1, DmGSTO2a, and DmGSTT2, it inhibited DmGSTT3b and DmGSTO3 activity toward xenobiotic and physiological substrates tested. These results suggest a novel link between Omega and Theta GSTs with the p38b MAP kinase pathway. PMID:25373207

  5. Activation of p38 mitogen-activated protein kinase and nuclear factor-kappaB in tumour necrosis factor-induced eotaxin release of human eosinophils

    PubMed Central

    WONG, C K; ZHANG, J P; IP, W K; LAM, C W K

    2002-01-01

    The CC chemokine eotaxin is a potent eosinophil-specific chemoattractant that is crucial for allergic inflammation. Allergen-induced tumour necrosis factor (TNF) has been shown to induce eotaxin synthesis in eosinophils. Nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinases (MAPK) have been found to play an essential role for the eotaxin-mediated eosinophilia. We investigated the modulation of NF-κB and MAPK activation in TNF-induced eotaxin release of human eosinophils. Human blood eosinophils were purified from fresh buffy coat using magnetic cell sorting. NF-κB pathway-related genes were evaluated by cDNA expression array system. Degradation of IκBα and phosphorylation of MAPK were detected by Western blot. Activation of NF-κB was determined by electrophoretic mobility shift assay. Eotaxin released into the eosinophil culture medium was measured by ELISA. TNF was found to up-regulate the gene expression of NF-κB and IκBα in eosinophils. TNF-induced IκBα degradation was inhibited by the proteasome inhibitor N-cbz-Leu-Leu-leucinal (MG-132) and a non-steroidal anti-inflammatory drug sodium salicylate (NaSal). Using EMSA, both MG-132 and NaSal were found to suppress the TNF-induced NF-κB activation in eosinophils. Furthermore, TNF was shown to induce phosphorylation of p38 MAPK time-dependently but not extracellular signal-regulated kinases (ERK). Inhibition of NF-κB activation and p38 MAPK activity decreased the TNF-induced release of eotaxin from eosinophils. These results indicate that NF-κB and p38 MAPK play an important role in TNF-activated signalling pathway regulating eotaxin release by eosinophils. They have also provided a biochemical basis for the potential of using specific inhibitors of NF-κB and p38 MAPK for treating allergic inflammation. PMID:12067303

  6. Fluorescence polarization-based assays for detecting compounds binding to inactive c-Jun N-terminal kinase 3 and p38α mitogen-activated protein kinase.

    PubMed

    Ansideri, Francesco; Lange, Andreas; El-Gokha, Ahmed; Boeckler, Frank M; Koch, Pierre

    2016-06-15

    Two fluorescein-labeled pyridinylimidazoles were synthesized and evaluated as probes for the binding affinity determination of potential kinase inhibitors to the c-Jun N-terminal kinase 3 (JNK3) and p38α mitogen-activated protein kinase (MAPK). Fluorescence polarization (FP)-based competition binding assays were developed for both enzymes using 1-(3',6'-dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9'-xanthen]-5-yl)-3-(4-((4-(4-(4-fluorophenyl)-2-(methylthio)-1H-imidazol-5-yl)pyridin-2-yl)amino)phenyl)thiourea (5) as an FP probe (JNK3: Kd = 3.0 nM; p38α MAPK: Kd = 5.7 nM). The validation of the assays with known inhibitors of JNK3 and p38α MAPK revealed that both FP assays correlate very well with inhibition data received by the activity assays. This, in addition to the viability of both FP-based binding assays for the high-throughput screening procedure, makes the assays suitable as inexpensive prescreening protocols for JNK3 and p38α MAPK inhibitors. PMID:26954235

  7. Activation of p38 mitogen-activated protein kinase by celecoxib oppositely regulates survivin and gamma-H2AX in human colorectal cancer cells

    SciTech Connect

    Hsiao, P.-W.; Chang, C.-C.; Liu, H.-F.; Tsai, C.-M.; Chiu, Ted H.; Chao, J.-I . E-mail: chaoji@mail.tcu.edu.tw

    2007-07-01

    Cancer cells express survivin that facilitates tumorigenesis. Celecoxib has been shown to reduce human colorectal cancers. However, the role and regulation of survivin by celecoxib in colorectal carcinoma cells remain unclear. Treatment with 40-80 {mu}M celecoxib for 24 h induced cytotoxicity and proliferation inhibition via a concentration-dependent manner in RKO colorectal carcinoma cells. Celecoxib blocked the survivin protein expression and increased the phosphorylation of H2AX at serine-193 ({gamma}-H2AX). The survivin gene knockdown by transfection with a survivin siRNA revealed that the loss of survivin correlated with the expression of {gamma}-H2AX. Meanwhile, celecoxib increased caspase-3 activation and apoptosis. Celecoxib activated the phosphorylation of p38 mitogen-activated protein (MAP) kinase. The phosphorylated proteins of p38 MAP kinase and {gamma}-H2AX were observed in the apoptotic cells. SB203580, a specific p38 MAP kinase inhibitor, protected the survivin protein expression and decreased the levels of {gamma}-H2AX and apoptosis in the celecoxib-exposed cells. The blockade of survivin expression increased the celecoxib-induced cytotoxicity; conversely, overexpression of survivin by transfection with a survivin-expressing vector raised the cancer cell proliferation and resisted the celecoxib-induced cell death. Our results provide for the first time that p38 MAP kinase participates in the down-regulation of survivin and subsequently induces the activation of {gamma}-H2AX for mediating apoptosis following treatment with celecoxib in human colorectal cancer cells.

  8. Targeting p38 mitogen-activated protein kinase signaling restores subventricular zone neural stem cells and corrects neuromotor deficits in Atm knockout mouse.

    PubMed

    Kim, Jeesun; Wong, Paul K Y

    2012-07-01

    Ataxia-telangiectasia (A-T) is a progressive degenerative disorder that results in major neurological disability. In A-T patients, necropsy has revealed atrophy of cerebellar cortical layers along with Purkinje and granular cell loss. We have previously identified an oxidative stress-mediated increase in phospho-p38 mitogen-activated protein kinase (MAPK) and the resultant downregulation of Bmi-1 and upregulation of p21 as key components of the mechanism causing defective proliferation of neural stem cells (NSCs) isolated from the subventricular zone (SVZ) of Atm(-/-) mice. However, the in vivo aspect of alteration in SVZ tissue and the functional significance of p38MAPK activation in NSCs for neuropathogenesis of ATM deficiency remain unknown. Here we show that the NSC population was abnormally decreased in the SVZ of 3-month-old Atm(-/-) mice; this decrease was accompanied by p38MAPK activation. However, after a 2-month treatment with the p38MAPK inhibitor SB203580, starting at 1 month old, Atm(-/-) mice showed restoration of normal levels of Bmi-1 and p21 with the rescue of NSC population in the SVZ. In addition, treated Atm(-/-) mice exhibited more Purkinje cells in the cerebellum. Most importantly, motor coordination of Atm(-/-) mice was significantly improved in the treatment group. Our results show for the first time in vivo evidence of depleted NSCs in the SVZ of Atm(-/-) mice and also demonstrate that pharmacologic inhibition of p38MAPK signaling has the potential to treat neurological defects of A-T. This study provides a promising approach targeting the oxidative stress-dependent p38 signaling pathway not only for A-T but also for other neurodegenerative disorders. PMID:23197859

  9. Herpes Simplex Virus Type 1 ICP27 Induces p38 Mitogen-Activated Protein Kinase Signaling and Apoptosis in HeLa Cells▿

    PubMed Central

    Gillis, Peter A.; Okagaki, Laura H.; Rice, Stephen A.

    2009-01-01

    The herpes simplex virus type 1 (HSV-1) protein ICP27 has been implicated in a variety of functions important for viral replication including host shutoff, viral gene expression, activation of mitogen-activated protein kinases p38 and Jun N-terminal protein kinase (JNK), and apoptosis inhibition. In the present study we sought to examine the functions of ICP27 in the absence of viral infection by creating stable HeLa cell lines that inducibly express ICP27. Here, we characterize two such cell lines and show that ICP27 expression is associated with a cellular growth defect. The observed defect is caused at least in part by the induction of apoptosis as indicated by caspase-3 activation, annexin V staining, and characteristic changes in cellular morphology. In an effort to identify the function of ICP27 responsible for inducing apoptosis, we show that ICP27 expression is sufficient to activate p38 signaling to a level that is similar to that observed during wild-type HSV-1 infection. However, ICP27 expression alone is unable to lead to a strong activation of JNK signaling. Using chemical inhibitors, we show that the ICP27-mediated activation of p38 signaling is responsible for the observed induction of apoptosis in the induced cell lines. Our findings suggest that during viral infection, ICP27 activates p38 and JNK signaling pathways via two distinct mechanisms. ICP27 directly activates p38 signaling, leading to stimulation of the host cell apoptotic pathways. In contrast, robust activation of JNK signaling by ICP27 requires one or more delayed early or late viral gene products and may be associated with the inhibition of apoptosis. PMID:19073744

  10. ALBUMIN CAUSES INCREASED MYOSIN LIGHT CHAIN KINASE EXPRESSION IN ASTROCYTES VIA P38 MITOGEN ACTIVATED PROTEIN KINASE

    PubMed Central

    Rossi, Janet L.; Ralay Ranaivo, Hantamala; Patel, Fatima; Chrzaszcz, MaryAnn; Venkatesan, Charu; Wainwright, Mark S.

    2011-01-01

    Myosin light chain kinase (MLCK) plays an important role in the reorganization of the cytoskeleton leading to disruption of vascular barrier integrity in multiple organs including the blood brain barrier (BBB) after traumatic brain injury (TBI). MLCK has been linked to transforming growth factor (TGF) and rho kinase signaling pathways, but the mechanisms regulating MLCK expression following TBI are not well understood. Albumin leaks into the brain parenchyma following TBI, activates glia and has been linked to TGF-β receptor signaling. We investigated the role of albumin in the increase in MLCK in astrocytes and the signaling pathways involved in this increase. Following midline closed-skull TBI in mice, there was a significant increase in MLCK-immunoreactive (IR) cells and albumin extravasation, which was prevented by treatment with the MLCK inhibitor ML-7. Using immunohistochemical methods, we identified the MCLK-IR cells as astrocytes. In primary astrocytes, exposure to albumin increased both isoforms of MLCK, 130 and 210. Inhibition of the TGF-β receptor partially prevented the albumin-induced increase in both isoforms, which was not prevented by inhibition of smad3. Inhibition of p38 MAPK, but not ERK, JNK or rho kinase also prevented this increase. These results are further evidence of a role of MCLK in the mechanisms of BBB compromise following TBI, and identify astrocytes as a cell type, in addition to endothelium in the BBB which express MLCK. These findings implicate albumin, acting through p38 MAPK, in a novel mechanism by which activation of MLCK following TBI may lead to compromise of the BBB. PMID:21360574

  11. Bone morphogenetic protein 2-induced human dental pulp cell differentiation involves p38 mitogen-activated protein kinase-activated canonical WNT pathway

    PubMed Central

    Yang, Jing; Ye, Ling; Hui, Tian-Qian; Yang, Dong-Mei; Huang, Ding-Ming; Zhou, Xue-Dong; Mao, Jeremy J; Wang, Cheng-Lin

    2015-01-01

    Both bone morphogenetic protein 2 (BMP2) and the wingless-type MMTV integration site (WNT)/β-catenin signalling pathway play important roles in odontoblast differentiation and dentinogenesis. Cross-talk between BMP2 and WNT/β-catenin in osteoblast differentiation and bone formation has been identified. However, the roles and mechanisms of the canonical WNT pathway in the regulation of BMP2 in dental pulp injury and repair remain largely unknown. Here, we demonstrate that BMP2 promotes the differentiation of human dental pulp cells (HDPCs) by activating WNT/β-catenin signalling, which is further mediated by p38 mitogen-activated protein kinase (MAPK) in vitro. BMP2 stimulation upregulated the expression of β-catenin in HDPCs, which was abolished by SB203580 but not by Noggin or LDN193189. Furthermore, BMP2 enhanced cell differentiation, which was not fully inhibited by Noggin or LDN193189. Instead, SB203580 partially blocked BMP2-induced β-catenin expression and cell differentiation. Taken together, these data suggest a possible mechanism by which the elevation of β-catenin resulting from BMP2 stimulation is mediated by the p38 MAPK pathway, which sheds light on the molecular mechanisms of BMP2-mediated pulp reparative dentin formation. PMID:26047580

  12. Lactobacillus acidophilus induces cytokine and chemokine production via NF-κB and p38 mitogen-activated protein kinase signaling pathways in intestinal epithelial cells.

    PubMed

    Jiang, Yujun; Lü, Xuena; Man, Chaoxin; Han, Linlin; Shan, Yi; Qu, Xingguang; Liu, Ying; Yang, Shiqin; Xue, Yuqing; Zhang, Yinghua

    2012-04-01

    Intestinal epithelial cells can respond to certain bacteria by producing an array of cytokines and chemokines which are associated with host immune responses. Lactobacillus acidophilus NCFM is a characterized probiotic, originally isolated from human feces. This study aimed to test the ability of L. acidophilus NCFM to stimulate cytokine and chemokine production in intestinal epithelial cells and to elucidate the mechanisms involved in their upregulation. In experiments using intestinal epithelial cell lines and mouse models, we observed that L. acidophilus NCFM could rapidly but transiently upregulate a number of effector genes encoding cytokines and chemokines such as interleukin 1α (IL-1α), IL-1β, CCL2, and CCL20 and that cytokines showed lower expression levels with L. acidophilus NCFM treatment than chemokines. Moreover, L. acidophilus NCFM could activate a pathogen-associated molecular pattern receptor, Toll-like receptor 2 (TLR2), in intestinal epithelial cell lines. The phosphorylation of NF-κB p65 and p38 mitogen-activated protein kinase (MAPK) in intestinal epithelial cell lines was also enhanced by L. acidophilus NCFM. Furthermore, inhibitors of NF-κB (pyrrolidine dithiocarbamate [PDTC]) and p38 MAPK (SB203580) significantly reduced cytokine and chemokine production in the intestinal epithelial cell lines stimulated by L. acidophilus NCFM, suggesting that both NF-κB and p38 MAPK signaling pathways were important for the production of cytokines and chemokines induced by L. acidophilus NCFM. PMID:22357649

  13. The functional synergy between IL-12 and IL-2 involves p38 mitogen-activated protein kinase and is associated with the augmentation of STAT serine phosphorylation.

    PubMed

    Gollob, J A; Schnipper, C P; Murphy, E A; Ritz, J; Frank, D A

    1999-04-15

    IL-12 and IL-2 can stimulate mitogen- or CD3-activated T cells to proliferate, produce IFN-gamma, and kill tumor cells. The magnitude of these functional responses is greatly augmented when T cells are activated by the combination of IL-12 and IL-2. Although peripheral blood T cells are largely unresponsive to these cytokines without prior activation, a small subset of CD8+ T cells (CD8+CD18bright) is strongly activated by the combination of IL-12 and IL-2. In this report we show that the functional synergy between IL-12 and IL-2 in CD8+CD18bright T cells correlates with the activation of the stress kinases, p38 mitogen-activated protein (MAP) kinase and stress-activated protein kinase (SAPK)/Jun N-terminal kinase, but not with the activation of the extracellular signal-regulated kinases. The functional synergy between IL-2 and IL-12 is also associated with a prominent increase in STAT1 and STAT3 serine phosphorylation over that observed with IL-12 or IL-2 alone. By contrast, STAT tyrosine phosphorylation is not augmented over that seen with either cytokine alone. A specific inhibitor of p38 MAP kinase completely inhibits the serine phosphorylation of STAT1 and STAT3 induced by IL-12 and IL-2 and abrogates the functional synergy between IL-12 and IL-2 without affecting STAT tyrosine phosphorylation. This suggests that p38 MAP kinase may play an important role in regulating STAT serine phosphorylation in response to the combination of IL-12 and IL-2. Furthermore, these findings indicate that the optimal activation of T cells by IL-12 and IL-2 may depend on an interaction between the p38 MAP kinase and Janus kinase/STAT signaling pathways. PMID:10201984

  14. Cry1Ac toxin induces macrophage activation via ERK1/2, JNK and p38 mitogen-activated protein kinases.

    PubMed

    Torres-Martínez, Marilu; Rubio-Infante, Néstor; García-Hernández, Ana Lilia; Nava-Acosta, Raúl; Ilhuicatzi-Alvarado, Damaris; Moreno-Fierros, Leticia

    2016-09-01

    The Cry1Ac toxin from Bacillus thuringiensis is used commercially as a bio-insecticide and is expressed in transgenic plants that are used for human and animal consumption. Although it was originally considered innocuous for mammals, the Cry1Ac toxin is not inert and has the ability to induce mucosal and systemic immunogenicity. Herein, we examined whether the Cry1Ac toxin promotes macrophage activation and explored the signalling pathways that may mediate this effect. Treatment of primary and RAW264.7 macrophages with the Cry1Ac toxin resulted in upregulation of the costimulatory molecules CD80, CD86 and ICOS-L and enhanced production of nitric oxide, the chemokine MCP-1 and the proinflammatory cytokines TNF-α and IL-6. Remarkably, the Cry1Ac toxin induced phosphorylation of the mitogen-activated protein kinases (MAPKs) ERK1/2, JNK and p38 and promoted nuclear translocation of nuclear factor-kappa B (NF-κB) p50 and p65. p38 and ERK1/2 MAPKs were involved in this effect, as indicated by the Cry1Ac-induced upregulation of CD80 and IL-6 and TNF-α abrogation by the p38 MAPK inhibitor SB203580. Furthermore, treatment the MEK1/2 kinase inhibitor PD98059 blocked increases in MCP-1 secretion and augmented Cry1Ac-induced ICOS-L upregulation. These data demonstrate the capacity of the Cry1Ac toxin to induce macrophage activation via the MAPK and NF-κB pathways. PMID:27394658

  15. Synergistic effects of p38 mitogen-activated protein kinase inhibition with a corticosteroid in alveolar macrophages from patients with chronic obstructive pulmonary disease.

    PubMed

    Armstrong, J; Harbron, C; Lea, S; Booth, G; Cadden, P; Wreggett, K A; Singh, D

    2011-09-01

    Corticosteroids partially suppress cytokine production by chronic obstructive pulmonary disease (COPD) alveolar macrophages. p38 mitogen-activated protein kinase (MAPK) inhibitors are a novel class of anti-inflammatory drug. We have studied the effects of combined treatment with a corticosteroid and a p38 MAPK inhibitor on cytokine production by COPD alveolar macrophages, with the aim of investigating dose-sparing and efficacy-enhancing effects. Alveolar macrophages from 10 patients with COPD, six smokers, and six nonsmokers were stimulated with lipopolysaccharide (LPS) after preincubation with five concentrations of dexamethasone alone, five concentrations of the p38 MAPK inhibitor 1-(5-tert-butyl-2-p-tolyl-2H-pyrazol-3-yl)-3(4-(2-morpholin-4-yl-ethoxy)naphthalen-1-yl)urea (BIRB-796) alone, and all combinations of these concentrations. After 24 h, the supernatants were analyzed for interleukin (IL)-8, IL-6, tumor necrosis factor α (TNFα), granulocyte macrophage-colony-stimulating factor (GM-CSF), IL-1α, IL-1β, IL-1ra, IL-10, monocyte chemoattractant protein 3, macrophage-derived chemokine (MDC), and regulated on activation normal T cell expressed and secreted (RANTES). The effect of dexamethasone on p38 MAPK activation was analyzed by Western blotting. Dexamethasone and BIRB-796 both reduced LPS-induced cytokine production in a dose-dependent manner in all subject groups, with no differences between groups. Increasing the concentration of BIRB-796 in combination with dexamethasone produced progressively greater inhibition of cytokine production than dexamethasone alone. There were significant efficacy-enhancing benefits and synergistic dose-sparing effects (p < 0.05) for the combination treatment for IL-8, IL-6, TNFα, GM-CSF, IL-1ra, IL-10, MDC, and RANTES in one or more subject groups. Dexamethasone had no effect on LPS-induced p38 MAPK activation. We conclude that p38 MAPK activation in alveolar macrophages is corticosteroid-insensitive. Combining a p38

  16. Differential Activation of Mitogen-Activated Protein Kinases, ERK 1/2, p38(MAPK) and JNK p54/p46 During Postnatal Development of Rat Hippocampus.

    PubMed

    Costa, Ana Paula; Lopes, Mark William; Rieger, Débora K; Barbosa, Sabrina Giovana Rocha; Gonçalves, Filipe Marques; Xikota, João Carlos; Walz, Roger; Leal, Rodrigo B

    2016-05-01

    Mitogen-activated protein kinases (MAPKs) are a group of serine-threonine kinases, including p38(MAPK), ERK 1/2 and JNK p54/p46, activated by phosphorylation in response to extracellular stimuli. The early postnatal period is characterized by significant changes in brain structure as well as intracellular signaling. In the hippocampus MAPKs have been involved in the modulation of development and neural plasticity. However, the temporal profile of MAPK activation throughout the early postnatal development is incomplete. An understanding of this profile is important since slight changes in the activity of these enzymes, in response to environmental stress in specific developmental windows, might alter the course of development. The present study was undertaken to investigate the hippocampal differential activation of MAPK during postnatal period. MAPK activation and total content were evaluated by Western blotting of hippocampal tissue obtained from male Wistar rats at postnatal days (P) 1, 4, 7, 10, 14, 21, 30 and 60. The total content and phosphorylation of each MAPK was expressed as mean ± SEM and then calculates as a percentile compared to P1 (set at 100 %). The results showed: (1) phosphorylation peaks of p38(MAPK) at PN4 (p = 0.036) and PN10 to PN60; (2) phosphorylation of ERK1 and ERK2 were increased with age (ERK1 p = 0.0000005 and ERK2 p = 0.003); (3) phosphorylation profile of JNK p54/p46 was not changed during the period analyzed (JNKp56 p = 0.716 and JNKp46 p = 0.192). Therefore, the activity profile of ERK 1/2 and p38(MAPK) during postnatal development of rat hippocampus are differentially regulated. Our results demonstrate that ERK 1/2 and p38(MAPK) are dynamically regulated during postnatal neurodevelopment, suggesting temporal correlation of MAPK activity with critical periods when programmed cell death and synaptogenesis are occurring. This suggests an important role for these MAPKs in postnatal development of rat hippocampus. PMID

  17. 2,2',4,4'-Tetrachlorobiphenyl upregulates cyclooxygenase-2 in HL-60 cells via p38 mitogen-activated protein kinase and NF-{kappa}B

    SciTech Connect

    Bezdecny, Steven A.; Karmaus, Peer; Roth, Robert A.; Ganey, Patricia E. . E-mail: ganey@msu.edu

    2007-06-15

    Polychlorinated biphenyls (PCBs) are ubiquitous, persistent environmental contaminants that affect a number of cellular systems, including neutrophils. Among the effects caused by the noncoplanar PCB 2,2',4,4'-tetrachlorobiphenyl (2244-TCB) in granulocytic HL-60 cells are increases in superoxide anion production, activation of phospholipase A{sub 2} with subsequent release of arachidonic acid (AA) and upregulation of the inflammatory gene cyclooxygenase-2 (COX-2). The objective of this study was to determine the signal transduction pathways involved in the upregulation of COX-2 by 2244-TCB. Treatment of HL-60 cells with 2244-TCB led to increased expression of COX-2 mRNA. This increase was prevented by the transcriptional inhibitor actinomycin D in cells pretreated with 2244-TCB for 10 min. The increase in COX-2 mRNA was associated with release of {sup 3}H-AA, phosphorylation of p38 and extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinases, increased levels of nuclear NF-{kappa}B and increased superoxide anion production. Bromoenol lactone, an inhibitor of the calcium-independent phospholipase A{sub 2}, reduced {sup 3}H-AA release but had no effect on COX-2 mRNA, protein or activity. Pretreatment with SB-202190 or SB-203580, inhibitors of the p38 MAP kinase pathway, prevented the 2244-TCB-mediated induction of COX-2 and phosphorylation of p38 and ERK MAP kinases. These inhibitors did not alter {sup 3}H-AA release. Treatment with PD 98059 or U 0126, inhibitors of the MAP/ERK (MEK) pathway, prevented the 2244-TCB-mediated activation of ERK but had no effect on COX-2 induction or p38 phosphorylation. 2244-TCB treatment did not affect c-Jun N-terminal kinase (JNK) phosphorylation. 2244-TCB exposure increased the amount of nuclear NF-{kappa}B. This increase was prevented by pretreatment with p38 MAP kinase inhibitors, but not by pretreatment with MEK inhibitors. Pretreatment with inhibitors of NF-{kappa}B prevented the 2244-TCB

  18. Octacalcium phosphate crystals directly stimulate expression of inducible nitric oxide synthase through p38 and JNK mitogen-activated protein kinases in articular chondrocytes

    PubMed Central

    Ea, Hang-Korng; Uzan, Benjamin; Rey, Christian; Lioté, Frédéric

    2005-01-01

    Basic calcium phosphate (BCP) crystals, including hydroxyapatite, octacalcium phosphate (OCP) and carbonate-apatite, have been associated with severe osteoarthritis and several degenerative arthropathies. Most studies have considered the chondrocyte to be a bystander in the pathogenesis of calcium crystal deposition disease, assuming that synovial cell cytokines were the only triggers of chondrocyte activation. In the present study we identified direct activation of articular chondrocytes by OCP crystals, which are the BCP crystals with the greatest potential for inducing inflammation. OCP crystals induced nitric oxide (NO) production and inducible nitric oxide synthase (NOS) mRNA expression by isolated articular chondrocytes and cartilage fragments, in a dose-dependent manner and with variations over time. OCP crystals also induced IL-1β mRNA expression. Using pharmacological and cytokine inhibitors, we observed that OCP crystals induced NO production and inducible NOS mRNA activation were regulated at both the transcriptional and the translational levels; were independent from IL-1β gene activation; and involved p38 and c-Jun amino-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) pathways, as further confirmed by OCP crystal-induced p38 and JNK MAPK phosphorylation. Taken together, our data suggest that the transcriptional inducible NOS response to OCP crystals involved both the p38 and the JNK MAPK pathways, probably under the control of activator protein-1. NO, a major mediator of cartilage degradation, can be directly produced by BCP crystals in chondrocytes. Together with synovial activation, this direct mechanism may be important in the pathogenesis of destructive arthropathies triggered by microcrystals. PMID:16207333

  19. Interaction of Snail and p38 mitogen-activated protein kinase results in shorter overall survival of ovarian cancer patients.

    PubMed

    Hipp, Susanne; Berg, Daniela; Ergin, Bilge; Schuster, Tibor; Hapfelmeier, Alexander; Walch, Axel; Avril, Stefanie; Schmalfeldt, Barbara; Höfler, Heinz; Becker, Karl-Friedrich

    2010-12-01

    Epithelial ovarian cancer is a highly metastatic disease and the leading cause of death among cancer of the female genital tract. Abnormal epidermal growth factor receptor (EGFR) signalling has been shown to be involved in epithelial-mesenchymal transition (EMT), an early step during metastasis. Additionally, over-expression of the E-cadherin repressor Snail, a key regulator of EMT, has previously been found to be associated with unfavourable prognostic features. Thus, the aim of our study was to elucidate the role of EGFR-dependent signalling pathways for Snail expression in ovarian cancer. For this purpose, we analysed 25 formalin-fixed and paraffin-embedded (FFPE) primary tumours and their corresponding metastases for the expression of 25 signalling pathway molecules by reverse phase protein arrays. We found a significant correlation of Snail with EGFR((Tyr1086)) and p38 MAPK((Thr180/Tyr182)) in primary ovarian carcinoma and with EGFR((Tyr1086)) in their corresponding metastasis. Additionally, we showed that high expression levels of Snail in primary tumours combined with high expression levels of the phosphorylated p38 MAPK((Thr180/Tyr182)) in metastasis lead to an increased risk for death in ovarian carcinoma patients. Thus, for future combinatorial cancer therapy, drug combinations that best target the deregulated protein network in each individual patient should be selected. PMID:20957493

  20. Interleukin 17A promotes pneumococcal clearance by recruiting neutrophils and inducing apoptosis through a p38 mitogen-activated protein kinase-dependent mechanism in acute otitis media.

    PubMed

    Wang, Wei; Zhou, Aie; Zhang, Xuemei; Xiang, Yun; Huang, Yifei; Wang, Lei; Zhang, Shuai; Liu, Yusi; Yin, Yibing; He, Yujuan

    2014-06-01

    Streptococcus pneumoniae is a Gram-positive and human-restricted pathogen colonizing the nasopharynx with an absence of clinical symptoms as well as a major pathogen causing otitis media (OM), one of the most common childhood infections. Upon bacterial infection, neutrophils are rapidly activated and recruited to the infected site, acting as the frontline defender against emerging microbial pathogens via different ways. Evidence shows that interleukin 17A (IL-17A), a neutrophil-inducing factor, plays important roles in the immune responses in several diseases. However, its function in response to S. pneumoniae OM remains unclear. In this study, the function of IL-17A in response to S. pneumoniae OM was examined using an in vivo model. We developed a model of acute OM (AOM) in C57BL/6 mice and found that neutrophils were the dominant immune cells that infiltrated to the middle ear cavity (MEC) and contributed to bacterial clearance. Using IL-17A knockout (KO) mice, we found that IL-17A boosted neutrophil recruitment to the MEC and afterwards induced apoptosis, which was identified to be conducive to bacterial clearance. In addition, our observation suggested that the p38 mitogen-activated protein kinase (MAPK) signaling pathway was involved in the recruitment and apoptosis of neutrophils mediated by IL-17A. These data support the conclusion that IL-17A contributes to the host immune response against S. pneumoniae by promoting neutrophil recruitment and apoptosis through the p38 MAPK signaling pathway. PMID:24664502

  1. Pathogenesis of Lyme neuroborreliosis: mitogen-activated protein kinases Erk1, Erk2, and p38 in the response of astrocytes to Borrelia burgdorferi lipoproteins.

    PubMed

    Ramesh, Geeta; Philipp, Mario T

    Lyme borreliosis, which is prevalent both in the US and in Europe, is an infectious disease that may cause local inflammation in numerous organs. We have hypothesized that, as with some neurodegenerative diseases, the pathogenesis of the neurocognitive deficiencies associated with Lyme neuroborreliosis of the central nervous system also has an inflammatory component. Dysregulated production of pro-inflammatory cytokines such as IL-6 and TNF-alpha can lead to neuronal damage. Mitogen-activated protein kinases (MAPK) play a key role in the regulation of neuronal development, growth, and survival, as well as that of pro-inflammatory cytokine production. As a model, we explored the possibility that MAPK-mediated lipoprotein-induced apoptosis and gliosis of rhesus monkey astrocytes stimulated in vitro. Lipoproteins are the key inflammatory molecule type of Borrelia burgdorferi, the spirochete that causes Lyme disease, and we had previously shown that lipoprotein-induced TNF-alpha production in astrocytes caused astrocyte apoptosis, and IL-6 enhanced proliferation of these cells. Lipoproteins readily activated p38 and Erk1/2 MAPK, thus enlisting these pathways among the kinase pathways that spirochetes may address as they invade the central nervous system. We also investigated whether specific inhibition of p38 and Erk1/2 MAPK would inhibit TNF-alpha and IL-6 production and thus astrocyte apoptosis, and proliferation, respectively. Lipoprotein-stimulated IL-6 production was unaffected by the MAPK inhibitors. In contrast, inhibition of both p38 and Erk1/2 significantly diminished TNF-alpha production, and totally abrogated production of this cytokine when both MAPK pathways were inhibited simultaneously. MAPK inhibition thus may be considered as a strategy to control inflammation and apoptosis in Lyme neuroborreliosis. PMID:15893422

  2. The mitogen-activated protein kinome from Anopheles gambiae: identification, phylogeny and functional characterization of the ERK, JNK and p38 MAP kinases

    PubMed Central

    2011-01-01

    Background Anopheles gambiae is the primary mosquito vector of human malaria parasites in sub-Saharan Africa. To date, three innate immune signaling pathways, including the nuclear factor (NF)-kappaB-dependent Toll and immune deficient (IMD) pathways and the Janus kinase/signal transducers and activators of transcription (Jak-STAT) pathway, have been extensively characterized in An. gambiae. However, in addition to NF-kappaB-dependent signaling, three mitogen-activated protein kinase (MAPK) pathways regulated by JNK, ERK and p38 MAPK are critical mediators of innate immunity in other invertebrates and in mammals. Our understanding of the roles of the MAPK signaling cascades in anopheline innate immunity is limited, so identification of the encoded complement of these proteins, their upstream activators, and phosphorylation profiles in response to relevant immune signals was warranted. Results In this study, we present the orthologs and phylogeny of 17 An. gambiae MAPKs, two of which were previously unknown and two others that were incompletely annotated. We also provide detailed temporal activation profiles for ERK, JNK, and p38 MAPK in An. gambiae cells in vitro to immune signals that are relevant to malaria parasite infection (human insulin, human transforming growth factor-beta1, hydrogen peroxide) and to bacterial lipopolysaccharide. These activation profiles and possible upstream regulatory pathways are interpreted in light of known MAPK signaling cascades. Conclusions The establishment of a MAPK "road map" based on the most advanced mosquito genome annotation can accelerate our understanding of host-pathogen interactions and broader physiology of An. gambiae and other mosquito species. Further, future efforts to develop predictive models of anopheline cell signaling responses, based on iterative construction and refinement of data-based and literature-based knowledge of the MAP kinase cascades and other networked pathways will facilitate identification of the

  3. Epoxyeicosatrienoic acids prevent cisplatin-induced renal apoptosis through a p38 mitogen-activated protein kinase-regulated mitochondrial pathway.

    PubMed

    Liu, Yingmei; Lu, Xiaodan; Nguyen, Sinh; Olson, Jean L; Webb, Heather K; Kroetz, Deanna L

    2013-12-01

    Soluble epoxide hydrolase (sEH) catalyzes the conversion of epoxyeicosatrienoic acids into less active eicosanoids, and inhibitors of sEH have anti-inflammatory and antiapoptotic properties. Based on previous observations that sEH inhibition attenuates cisplatin-induced nephrotoxicity by modulating nuclear factor-κB signaling, we hypothesized that this strategy would also attenuate cisplatin-induced renal apoptosis. Inhibition of sEH with AR9273 [1-adamantan-1-yl-3-(1-methylsulfonyl-piperidin-4-yl-urea)] reduced cisplatin-induced apoptosis through mechanisms involving mitochondrial apoptotic pathways and by reducing reactive oxygen species. Renal mitochondrial Bax induction following cisplatin treatment was significantly decreased by treatment of mice with AR9273 and these antiapoptotic effects involved p38 mitogen-activated protein kinase signaling. Similar mechanisms contributed to reduced apoptosis in Ephx2(-/-) mice treated with cisplatin. Moreover, in pig kidney proximal tubule cells, cisplatin-induced mitochondrial trafficking of Bax and cytochrome c, caspase-3 activation, and oxidative stress are significantly attenuated in the presence of epoxyeicosatrienoic acids (EETs). Collectively, these in vivo and in vitro studies demonstrate a role for EETs in limiting cisplatin-induced renal apoptosis. Inhibition of sEH represents a novel therapeutic strategy for protection against cisplatin-induced renal damage. PMID:24092818

  4. Epoxyeicosatrienoic Acids Prevent Cisplatin-Induced Renal Apoptosis through a p38 Mitogen-Activated Protein Kinase–Regulated Mitochondrial Pathway

    PubMed Central

    Liu, Yingmei; Lu, Xiaodan; Nguyen, Sinh; Olson, Jean L.; Webb, Heather K.

    2013-01-01

    Soluble epoxide hydrolase (sEH) catalyzes the conversion of epoxyeicosatrienoic acids into less active eicosanoids, and inhibitors of sEH have anti-inflammatory and antiapoptotic properties. Based on previous observations that sEH inhibition attenuates cisplatin-induced nephrotoxicity by modulating nuclear factor-κB signaling, we hypothesized that this strategy would also attenuate cisplatin-induced renal apoptosis. Inhibition of sEH with AR9273 [1-adamantan-1-yl-3-(1-methylsulfonyl-piperidin-4-yl-urea)] reduced cisplatin-induced apoptosis through mechanisms involving mitochondrial apoptotic pathways and by reducing reactive oxygen species. Renal mitochondrial Bax induction following cisplatin treatment was significantly decreased by treatment of mice with AR9273 and these antiapoptotic effects involved p38 mitogen-activated protein kinase signaling. Similar mechanisms contributed to reduced apoptosis in Ephx2−/− mice treated with cisplatin. Moreover, in pig kidney proximal tubule cells, cisplatin-induced mitochondrial trafficking of Bax and cytochrome c, caspase-3 activation, and oxidative stress are significantly attenuated in the presence of epoxyeicosatrienoic acids (EETs). Collectively, these in vivo and in vitro studies demonstrate a role for EETs in limiting cisplatin-induced renal apoptosis. Inhibition of sEH represents a novel therapeutic strategy for protection against cisplatin-induced renal damage. PMID:24092818

  5. p38β Mitogen-Activated Protein Kinase Modulates Its Own Basal Activity by Autophosphorylation of the Activating Residue Thr180 and the Inhibitory Residues Thr241 and Ser261.

    PubMed

    Beenstock, Jonah; Melamed, Dganit; Mooshayef, Navit; Mordechay, Dafna; Garfinkel, Benjamin P; Ahn, Natalie G; Admon, Arie; Engelberg, David

    2016-05-15

    Many enzymes are self-regulated and can either inhibit or enhance their own catalytic activity. Enzymes that do both are extremely rare. Many protein kinases autoactivate by autophosphorylating specific sites at their activation loop and are inactivated by phosphatases. Although mitogen-activated protein kinases (MAPKs) are usually activated by dual phosphorylation catalyzed by MAPK kinases (MAPKKs), the MAPK p38β is exceptional and is capable of self-activation by cis autophosphorylation of its activation loop residue T180. We discovered that p38β also autophosphorylates in trans two previously unknown sites residing within a MAPK-specific structural element known as the MAPK insert: T241 and S261. Whereas phosphorylation of T180 evokes catalytic activity, phosphorylation of S261 reduces the activity of T180-phosphorylated p38β, and phosphorylation of T241 reduces its autophosphorylation in trans Both phosphorylations do not affect the activity of dually phosphorylated p38β. T241 of p38β is found phosphorylated in vivo in bone and muscle tissues. In myogenic cell lines, phosphorylation of p38β residue T241 is correlated with differentiation to myotubes. T241 and S261 are also autophosphorylated in intrinsically active variants of p38α, but in this protein, they probably play a different role. We conclude that p38β is an unusual enzyme that automodulates its basal, MAPKK-independent activity by several autophosphorylation events, which enhance and suppress its catalytic activity. PMID:26976637

  6. P38 mitogen-activated protein kinase activity is required during mitosis for timely satisfaction of the mitotic checkpoint but not for the fidelity of chromosome segregation.

    PubMed

    Lee, Kyunghee; Kenny, Alison E; Rieder, Conly L

    2010-07-01

    Although p38 activity is reported to be required as cells enter mitosis for proper spindle assembly and checkpoint function, its role during the division process remains controversial in lieu of direct data. We therefore conducted live cell studies to determine the effect on mitosis of inhibiting or depleting p38. We found that in the absence of p38 activity the duration of mitosis is prolonged by approximately 40% in nontransformed human RPE-1, approximately 80% in PtK2 (rat kangaroo), and approximately 25% in mouse cells, and this prolongation leads to an elevated mitotic index. However, under this condition chromatid segregation and cytokinesis are normal. Using Mad2/YFP-expressing cells, we show the prolongation of mitosis in the absence of p38 activity is directly due to a delay in satisfying the mitotic checkpoint. Inhibiting p38 did not affect the rate of chromosome motion; however, it did lead to the formation of significantly (10%) longer metaphase spindles. From these data we conclude that normal p38 activity is required for the timely stable attachment of all kinetochores to spindle microtubules, but not for the fidelity of the mitotic process. We speculate that p38 activity promotes timely checkpoint satisfaction by indirectly influencing those motor proteins (e.g., Klp10, Klp67A) involved in regulating the dynamics of kinetochore microtubule ends. PMID:20462950

  7. p38 mitogen-activated protein kinase inhibition modulates nucleus pulposus cell apoptosis in spontaneous resorption of herniated intervertebral discs: An experimental study in rats.

    PubMed

    Zhu, Yu; Liu, Jin-Tao; Yang, Li-Yan; Du, Wen-Pei; Li, Xiao-Chun; Qian, Xiang; Yu, Peng-Fei; Liu, Jian-Wen; Jiang, Hong

    2016-05-01

    The present study was performed to investigate the role of p38 mitogen‑activated protein kinase (MAPK) in the resorption of herniated intervertebral discs in 30 rats. In the non‑contained and p38 MAPK inhibition (p38i) groups, two coccygeal intervertebral discs (IVDs) were removed and wounded prior to relocation into the subcutaneous space of the skin of the back. In the contained group, the cartilage endplates maintained their integrity. Furthermore, SB203580 was injected intraperitoneally into the p38i group, whereas saline was injected into the other two groups. In the non‑contained group, the weight of the relocated IVDs decreased to a greater extent over time when compared with the contained and p38i groups. Phosphorylated p38, tumor necrosis factor‑α, and interleukin‑1β were observed to exhibit higher expression levels in the non‑contained group compared with the contained and p38i groups, at weeks 1 and 4 post‑surgery. The expression level of caspase‑3 and the densities of apoptotic disc cells were significantly higher in the non‑contained group compared with the contained and p38i groups at 4 weeks post‑surgery. In conclusion, p38 MAPK induces apoptosis in IVDs, while also accelerating the resorption of the relocated IVDs. Thus, p38 MAPK may be important in spontaneous resorption of IVDs. PMID:27035219

  8. p38 mitogen-activated protein kinase up-regulates NF-{kappa}B transcriptional activation through RelA phosphorylation during stretch-induced myogenesis

    SciTech Connect

    Ji, Guoping; Liu, Dongxu; Liu, Jing; Gao, Hui; Yuan, Xiao; Shen, Gang

    2010-01-01

    p38 MAPK and nuclear factor-B (NF-B) signaling pathways play an indispensable role in the control of skeletal myogenesis. The specific contribution of these signaling pathways to the response of myoblast to the mechanical stimulation and the molecular mechanisms underlying this response remain unresolved. Using an established in vitro model, we now show that p38 MAP kinase activity regulates the transcriptional activation of NF-{kappa}B in response to mechanical stimulation of myoblasts. Furthermore, SB203580 blocked stretch-induced NF-{kappa}B activation during myogenesis, not through down-regulation of degradation of I{kappa}B-{alpha}, and consequent translocation of the p65 subunit of NF-{kappa}B to the nucleus. It is likely that stretch-induced NF-{kappa}B activation by phosphorylation of p65 NF-{kappa}B. Moreover, depletion of p38{alpha} using siRNA significantly reduces stretch-induced phosphorylation of RelA and NF-{kappa}B activity. These results provides the first evidence of a cross-talk between p38 MAPK and NF-{kappa}B signaling pathways during stretch-induced myogenesis, with phosphorylation of RelA being one of the effectors of this promyogenic mechanism. The {alpha} isoform of p38MAP kinase regulates the transcriptional activation of NF-{kappa}B following stimulation with cyclic stretch.

  9. Inhibition of p38 mitogen-activated protein kinase ameliorates radiation-induced ototoxicity in zebrafish and cochlea-derived cell lines.

    PubMed

    Shin, Yoo Seob; Hwang, Hye Sook; Kang, Sung Un; Chang, Jae Won; Oh, Young-Taek; Kim, Chul-Ho

    2014-01-01

    Radiation is a widely used treatment for head and neck cancers, and one of its most severe side effects is ototoxicity. Radiation-induced ototoxicity has been demonstrated to be linked to the increased production of ROS and MAPK. We intended to investigate the effect of p38 inhibition on radiation-induced ototoxicity in cochlea-derived HEI-OC1 cells and in a zebrafish model. The otoprotective effect of p38 inhibition against radiation was tested in vitro in the organ of Corti-derived cell line, HEI-OC1, and in vivo in a zebrafish model. Radiation-induced apoptosis, mitochondrial dysfunction, and an increase of intracellular NO generation were demonstrated in HEI-OC1 cells. The p38-specific inhibitor, SB203580, ameliorated radiation-induced apoptosis and mitochondrial injury in HEI-OC1 cells. p38 inhibition reduced radiation-induced activation of JNK, p38, cytochrome c, and cleavage of caspase-3 and PARP in HEI-OC1 cells. Scanning electron micrography showed that SB203580 prevented radiation-induced destruction of kinocilium and stereocilia in zebrafish neuromasts. The results of this study suggest that p38 plays an important role in mediating radiation-induced ototoxicity and inhibition of p38 could be a plausible option for preventing radiation ototoxicity. PMID:24374476

  10. Insulin-like growth factor 1 receptor and p38 mitogen-activated protein kinase signals inversely regulate signal transducer and activator of transcription 3 activity to control human dental pulp stem cell quiescence, propagation, and differentiation.

    PubMed

    Vandomme, Jerome; Touil, Yasmine; Ostyn, Pauline; Olejnik, Cecile; Flamenco, Pilar; El Machhour, Raja; Segard, Pascaline; Masselot, Bernadette; Bailliez, Yves; Formstecher, Pierre; Polakowska, Renata

    2014-04-15

    Dental pulp stem cells (DPSCs) remain quiescent until activated in response to severe dental pulp damage. Once activated, they exit quiescence and enter regenerative odontogenesis, producing reparative dentin. The factors and signaling molecules that control the quiescence/activation and commitment to differentiation of human DPSCs are not known. In this study, we determined that the inhibition of insulin-like growth factor 1 receptor (IGF-1R) and p38 mitogen-activated protein kinase (p38 MAPK) signaling commonly activates DPSCs and promotes their exit from the G0 phase of the cell cycle as well as from the pyronin Y(low) stem cell compartment. The inhibition of these two pathways, however, inversely determines DPSC fate. In contrast to p38 MAPK inhibitors, IGF-1R inhibitors enhance dental pulp cell sphere-forming capacity and reduce the cells' colony-forming capacity without inducing cell death. The inverse cellular changes initiated by IGF-1R and p38 MAPK inhibitors were accompanied by inverse changes in the levels of active signal transducer and activator of transcription 3 (STAT3) factor, inactive glycogen synthase kinase 3, and matrix extracellular phosphoglycoprotein, a marker of early odontoblast differentiation. Our data suggest that there is cross talk between the IGF-1R and p38 MAPK signaling pathways in DPSCs and that the signals provided by these pathways converge at STAT3 and inversely regulate its activity to maintain quiescence or to promote self-renewal and differentiation of the cells. We propose a working model that explains the possible interactions between IGF-1R and p38 MAPK at the molecular level and describes the cellular consequences of these interactions. This model may inspire further fundamental study and stimulate research on the clinical applications of DPSC in cellular therapy and tissue regeneration. PMID:24266654

  11. Insulin-Like Growth Factor 1 Receptor and p38 Mitogen-Activated Protein Kinase Signals Inversely Regulate Signal Transducer and Activator of Transcription 3 Activity to Control Human Dental Pulp Stem Cell Quiescence, Propagation, and Differentiation

    PubMed Central

    Vandomme, Jerome; Touil, Yasmine; Ostyn, Pauline; Olejnik, Cecile; Flamenco, Pilar; El Machhour, Raja; Segard, Pascaline; Masselot, Bernadette; Bailliez, Yves; Formstecher, Pierre

    2014-01-01

    Dental pulp stem cells (DPSCs) remain quiescent until activated in response to severe dental pulp damage. Once activated, they exit quiescence and enter regenerative odontogenesis, producing reparative dentin. The factors and signaling molecules that control the quiescence/activation and commitment to differentiation of human DPSCs are not known. In this study, we determined that the inhibition of insulin-like growth factor 1 receptor (IGF-1R) and p38 mitogen-activated protein kinase (p38 MAPK) signaling commonly activates DPSCs and promotes their exit from the G0 phase of the cell cycle as well as from the pyronin Ylow stem cell compartment. The inhibition of these two pathways, however, inversely determines DPSC fate. In contrast to p38 MAPK inhibitors, IGF-1R inhibitors enhance dental pulp cell sphere-forming capacity and reduce the cells' colony-forming capacity without inducing cell death. The inverse cellular changes initiated by IGF-1R and p38 MAPK inhibitors were accompanied by inverse changes in the levels of active signal transducer and activator of transcription 3 (STAT3) factor, inactive glycogen synthase kinase 3, and matrix extracellular phosphoglycoprotein, a marker of early odontoblast differentiation. Our data suggest that there is cross talk between the IGF-1R and p38 MAPK signaling pathways in DPSCs and that the signals provided by these pathways converge at STAT3 and inversely regulate its activity to maintain quiescence or to promote self-renewal and differentiation of the cells. We propose a working model that explains the possible interactions between IGF-1R and p38 MAPK at the molecular level and describes the cellular consequences of these interactions. This model may inspire further fundamental study and stimulate research on the clinical applications of DPSC in cellular therapy and tissue regeneration. PMID:24266654

  12. A Novel p38 Mitogen-activated Protein Kinase/Elk-1 Transcription Factor-dependent Molecular Mechanism Underlying Abnormal Endothelial Cell Proliferation in Plexogenic Pulmonary Arterial Hypertension*

    PubMed Central

    Patel, Monal; Predescu, Dan; Tandon, Rajive; Bardita, Cristina; Pogoriler, Jennifer; Bhorade, Sangeeta; Wang, Minhua; Comhair, Suzy; Ryan-Hemnes, Anna; Chen, Jiwang; Machado, Roberto; Husain, Aliya; Erzurum, Serpil; Predescu, Sanda

    2013-01-01

    Plexiform lesions (PLs), the hallmark of plexogenic pulmonary arterial hypertension (PAH), contain phenotypically altered, proliferative endothelial cells (ECs). The molecular mechanism that contributes to EC proliferation and formation of PLs is poorly understood. We now show that a decrease in intersectin-1s (ITSN-1s) expression due to granzyme B (GrB) cleavage during inflammation associated with PAH and the high p38/Erk1/2MAPK activity ratio caused by the GrB/ITSN cleavage products lead to EC proliferation and selection of a proliferative/plexiform EC phenotype. We used human pulmonary artery ECs of PAH subjects (ECPAH), paraffin-embedded and frozen human lung tissue, and animal models of PAH in conjunction with microscopy imaging, biochemical, and molecular biology approaches to demonstrate that GrB cleaves ITSN-1s, a prosurvival protein of lung ECs, and generates two biologically active fragments, an N-terminal fragment (GrB-EHITSN) with EC proliferative potential and a C-terminal product with dominant negative effects on Ras/Erk1/2. The proliferative potential of GrB-EHITSN is mediated via sustained phosphorylation of p38MAPK and Elk-1 transcription factor and abolished by chemical inhibition of p38MAPK. Moreover, lung tissue of PAH animal models and human specimens and ECPAH express lower levels of ITSN-1s compared with controls and the GrB-EHITSN cleavage product. Moreover, GrB immunoreactivity is associated with PLs in PAH lungs. The concurrent expression of the two cleavage products results in a high p38/Erk1/2MAPK activity ratio, which is critical for EC proliferation. Our findings identify a novel GrB-EHITSN-dependent pathogenic p38MAPK/Elk-1 signaling pathway involved in the poorly understood process of PL formation in severe PAH. PMID:23893408

  13. A novel p38 mitogen-activated protein kinase/Elk-1 transcription factor-dependent molecular mechanism underlying abnormal endothelial cell proliferation in plexogenic pulmonary arterial hypertension.

    PubMed

    Patel, Monal; Predescu, Dan; Tandon, Rajive; Bardita, Cristina; Pogoriler, Jennifer; Bhorade, Sangeeta; Wang, Minhua; Comhair, Suzy; Hemnes, Anna Ryan; Ryan-Hemnes, Anna; Chen, Jiwang; Machado, Roberto; Husain, Aliya; Erzurum, Serpil; Predescu, Sanda

    2013-09-01

    Plexiform lesions (PLs), the hallmark of plexogenic pulmonary arterial hypertension (PAH), contain phenotypically altered, proliferative endothelial cells (ECs). The molecular mechanism that contributes to EC proliferation and formation of PLs is poorly understood. We now show that a decrease in intersectin-1s (ITSN-1s) expression due to granzyme B (GrB) cleavage during inflammation associated with PAH and the high p38/Erk1/2(MAPK) activity ratio caused by the GrB/ITSN cleavage products lead to EC proliferation and selection of a proliferative/plexiform EC phenotype. We used human pulmonary artery ECs of PAH subjects (EC(PAH)), paraffin-embedded and frozen human lung tissue, and animal models of PAH in conjunction with microscopy imaging, biochemical, and molecular biology approaches to demonstrate that GrB cleaves ITSN-1s, a prosurvival protein of lung ECs, and generates two biologically active fragments, an N-terminal fragment (GrB-EH(ITSN)) with EC proliferative potential and a C-terminal product with dominant negative effects on Ras/Erk1/2. The proliferative potential of GrB-EH(ITSN) is mediated via sustained phosphorylation of p38(MAPK) and Elk-1 transcription factor and abolished by chemical inhibition of p38(MAPK). Moreover, lung tissue of PAH animal models and human specimens and EC(PAH) express lower levels of ITSN-1s compared with controls and the GrB-EH(ITSN) cleavage product. Moreover, GrB immunoreactivity is associated with PLs in PAH lungs. The concurrent expression of the two cleavage products results in a high p38/Erk1/2(MAPK) activity ratio, which is critical for EC proliferation. Our findings identify a novel GrB-EH(ITSN)-dependent pathogenic p38(MAPK)/Elk-1 signaling pathway involved in the poorly understood process of PL formation in severe PAH. PMID:23893408

  14. Exercise preconditioning reduces neonatal incision surgery-induced enhanced hyperalgesia via inhibition of P38 mitogen-activated protein kinase and IL-1β, TNF-α release.

    PubMed

    Gong, Xingrui; Jiang, Jing; Zhang, Mazhong

    2016-08-01

    Neonatal surgery leads to enhanced hyperalgesia to noxious stimulation in adulthood via a mechanism caused by enhanced phosphorylated (p)-p38 expression in microglia. We tested the effect of exercise on reducing enhanced hypersensitivity primed by neonatal incision surgery. Adult female Wistar rats, with or without neonatal incision surgery at postnatal day (P) 3, received right hind paw plantar incision surgery under anesthesia at P44. The rats performed wheel-running exercise from P22 to P41. Paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) were measured and ipsilateral spinal cords were collected for protein quantification. For PWT and PWL, exercise reduced the pain index after incision surgery at P44 in rats with neonatal surgery (P<0.01). Western blots showed that exercise suppressed P-p38 expression relative to adult rats without neonatal surgery (P<0.05). Results of ELISA showed that exercise reduced IL-1β and TNF-α (P<0.05) concentration in the ipsilateral spinal cord. Exercise preconditioning is an effective approach to reducing enhanced adult hyperalgesia primed by neonatal surgery. The mechanism may be explained by exercise-induced inhibition of P-p38 activation and IL-1β, TNF-α release. PMID:27235543

  15. Metformin-mediated downregulation of p38 mitogen-activated protein kinase-dependent excision repair cross-complementing 1 decreases DNA repair capacity and sensitizes human lung cancer cells to paclitaxel.

    PubMed

    Tseng, Sheng-Chieh; Huang, Yu-Ching; Chen, Huang-Jen; Chiu, Hsien-Chun; Huang, Yi-Jhen; Wo, Ting-Yu; Weng, Shao-Hsing; Lin, Yun-Wei

    2013-02-15

    Metformin, an extensively used and well-tolerated drug for treating individuals with type 2 diabetes, has recently gained significant attention as an anticancer drug. On the other hand, paclitaxel (Taxol) is a new antineoplastic drug that has shown promise in the treatment of non-small cell lung cancer (NSCLC). High expression levels of excision repair cross-complementary 1 (ERCC1) in cancers have been positively associated with the DNA repair capacity and a poor prognosis in NSCLC patients treated with platinum-containing chemotherapy. In this current study, paclitaxel was found to increase phosphorylation of mitogen-activated protein kinase (MAPK) kinase 3/6 (MKK3/6)-p38 MAPK as well as protein and mRNA levels of ERCC1 in H1650 and H1703 cells. Moreover, paclitaxel-induced ERCC1 protein and mRNA levels significantly decreased via the downregulation of p38 activity by either a p38 MAPK inhibitor SB202190 or p38 knockdown with specific small interfering RNA (siRNA). Specific inhibition of ERCC1 with siRNA was found to enhance the paclitaxel-induced cytotoxic effect and growth inhibition. Furthermore, metformin was able to not only decrease the paclitaxel-induced p38 MAPK-mediated ERCC1 expression, but also augment the cytotoxic effect induced by paclitaxel. Finally, expression of constitutive activate MKK6 or HA-p38 MAPK vectors in lung cancer cells was able to abrogate ERCC1 downregulation by metformin and paclitaxel as well as cell viability and DNA repair capacity. Overall, our results suggest that inhibition of the p38 MAPK signaling by metformin coupled with paclitaxel therapy in human NSCLC cells may be a clinically useful combination, which however will require further validation. PMID:23228696

  16. Delayed Cell Cycle Progression in Selenoprotein W-depleted Cells Is Regulated by a Mitogen-activated Protein Kinase Kinase 4-p38/c-Jun NH2-terminal Kinase-p53 Pathway*

    PubMed Central

    Hawkes, Wayne Chris; Alkan, Zeynep

    2012-01-01

    Selenoprotein W (SEPW1) is a ubiquitous, highly conserved thioredoxin-like protein whose depletion causes a transient p53- and p21Cip1-dependent G1-phase cell cycle arrest in breast and prostate epithelial cells. SEPW1 depletion increases phosphorylation of Ser-33 in p53, which is associated with decreased p53 ubiquitination and stabilization of p53. We report here that delayed cell cycle progression, Ser-33 phosphorylation, and p53 nuclear accumulation from SEPW1 depletion require mitogen-activated protein kinase kinase 4 (MKK4). Silencing MKK4 rescued G1 arrest, Ser-33 phosphorylation, and nuclear accumulation of p53 induced by SEPW1 depletion, but silencing MKK3, MKK6, or MKK7 did not. SEPW1 silencing did not change the phosphorylation state of MKK4 but increased total MKK4 protein. Silencing p38γ, p38δ, or JNK2 partially rescued G1 arrest from SEPW1 silencing, suggesting they signal downstream from MKK4. These results imply that SEPW1 silencing increases MKK4, which activates p38γ, p38δ, and JNK2 to phosphorylate p53 on Ser-33 and cause a transient G1 arrest. PMID:22730327

  17. Role of reactive oxygen species in brucein D-mediated p38-mitogen-activated protein kinase and nuclear factor-κB signalling pathways in human pancreatic adenocarcinoma cells

    PubMed Central

    Lau, S T; Lin, Z X; Leung, P S

    2010-01-01

    Background: In human pancreatic adenocarcinoma, nuclear factor-kappa-B (NF-κB) transcription factor is constitutively activated that contributes to the resistance of the tumour cells to induced apoptosis. In our earlier studies, we have shown that brucein D (BD) mediated apoptosis through activation of the p38-mitogen-activated protein kinase (MAPK) signalling pathway in pancreatic cancer cells. This study investigated the function of reactive oxygen species (ROS) in BD-mediated p38-MAPK and NF-κB signalling pathways in PANC-1 cells. Methods: Glutathione and dihydroethidium assays were used to measure the antioxidant and superoxide levels, respectively. The protein expression of p22phox, p67phox and p38-MAPK were examined by western blot. The NF-κB activity was evaluated by electrophoretic mobility shift assay. Results: Treatment with BD depleted the intracellular glutathione levels in PANC-1 cells. Brucein D triggered the activation of NADPH oxidase isoforms, p22phox and p67phox while enhancing the generation of superoxide. Increases in both intracellular ROS and NADPH oxidase activity were inhibited by an antioxidant, N-acetylcysteine (NAC). Brucein D-mediated activation of p38-MAPK was also inhibited by NAC. However, inhibition of NF-κB activity in BD-treated cells was independent of ROS. In vivo studies showed that BD treatment effectively reduced the rate of xenograft human pancreatic tumour in nude mice with no significant toxicity. Conclusion: These data suggest that BD is an apoptogenic agent for pancreatic cancer cells through activation of the redox-sensitive p38-MAPK pathway and inhibition of NF-κB anti-apoptotic activity in pancreatic cancer cells. PMID:20068565

  18. Bacillus anthracis endospores regulate ornithine decarboxylase and inducible nitric oxide synthase through ERK1/2 and p38 mitogen-activated protein kinases.

    PubMed

    Porasuphatana, Supatra; Cao, Guan-Liang; Tsai, Pei; Tavakkoli, Fatemeh; Huwar, Theresa; Baillie, Les; Cross, Alan S; Shapiro, Paul; Rosen, Gerald M

    2010-12-01

    Interactions between Bacillus anthracis (B. anthracis) and host cells are of particular interest given the implications of anthrax as a biological weapon. Inhaled B. anthracis endospores encounter alveolar macrophages as the first line of defense in the innate immune response. Yet, the consequences of this interaction remain unclear. We have demonstrated that B. anthracis uses arginase, inherent in the endospores, to reduce the ability of macrophages to produce nitric oxide ((•)NO) from inducible nitric oxide synthase (NOS2) by competing for L-arginine, producing L-ornithine at the expense of (•)NO. In the current study, we used genetically engineered B. anthracis endospores to evaluate the contribution of germination and the lethal toxin (LT) in mediating signaling pathways responsible for the induction of NOS2 and ornithine decarboxylase (ODC), which is the rate-limiting enzyme in the conversion of L-ornithine into polyamines. We found that induction of NOS2 and ODC expression in macrophages exposed to B. anthracis occurs through the activation of p38 and ERK1/2 MAP kinases, respectively. Optimal induction of NOS2 was observed following exposure to germination-competent endospores, whereas ODC induction occurred irrespective of the endospores' germination capabilities and was more prominent in macrophages exposed to endospores lacking LT. Our findings suggest that activation of kinase signaling cascades that determine macrophage defense responses against B. anthracis infection occurs through distinct mechanisms. PMID:20440620

  19. Angiotensin II-Induced Migration of Vascular Smooth Muscle Cells Is Mediated by p38 Mitogen-Activated Protein Kinase-Activated c-Src Through Spleen Tyrosine Kinase and Epidermal Growth Factor Receptor Transactivation

    PubMed Central

    Mugabe, Benon E.; Yaghini, Fariborz A.; Song, Chi Young; Buharalioglu, Cuneyt K.; Waters, Christopher M.

    2010-01-01

    Angiotensin II (Ang II) stimulates protein synthesis by activating spleen tyrosine kinase (Syk) and DNA synthesis through epidermal growth factor receptor (EGFR) transactivation in vascular smooth muscle cells (VSMCs). This study was conducted to determine whether Syk mediates Ang II-induced migration of aortic VSMCs using a scratch wound approach. Treatment with Ang II (200 nM) for 24 h increased VSMC migration by 1.56 ± 0.14-fold. Ang II-induced VSMC migration and Syk phosphorylation as determined by Western blot analysis were minimized by the Syk inhibitor piceatannol (10 μM) and by transfecting VSMCs with dominant-negative but not wild-type Syk plasmid. Ang II-induced VSMC migration and Syk phosphorylation were attenuated by inhibitors of c-Src [4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2)], p38 mitogen-activated protein kinase (MAPK) [4-(4-fluorophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)1H-imidazole (SB202190)], and extracellular signal-regulated kinase (ERK) 1/2 [1,4-diamino-2,3-dicyano-1,4-bis(2-aminophenylthio) butadiene (U0126)]. SB202190 attenuated p38 MAPK and c-Src but not ERK1/2 phosphorylation, indicating that p38 MAPK acts upstream of c-Src and Syk. The c-Src inhibitor PP2 attenuated Syk and ERK1/2 phosphorylation, suggesting that c-Src acts upstream of Syk and ERK1/2. Ang II- and epidermal growth factor (EGF)-induced VSMC migration and EGFR phosphorylation were inhibited by the EGFR blocker 4-(3-chloroanilino)-6,7-dimethoxyquinazoline (AG1478) (2 μM). Neither the Syk inhibitor piceatannol nor the dominant-negative Syk mutant altered EGF-induced cell migration or Ang II- and EGF-induced EGFR phosphorylation. The c-Src inhibitor PP2 diminished EGF-induced VSMC migration and EGFR, ERK1/2, and p38 MAPK phosphorylation. The ERK1/2 inhibitor U0126 (10 μM) attenuated EGF-induced cell migration and ERK1/2 but not EGFR phosphorylation. These data suggest that Ang II stimulates VSMC migration via p38 MAPK-activated c-Src through

  20. Angiotensin II-induced migration of vascular smooth muscle cells is mediated by p38 mitogen-activated protein kinase-activated c-Src through spleen tyrosine kinase and epidermal growth factor receptor transactivation.

    PubMed

    Mugabe, Benon E; Yaghini, Fariborz A; Song, Chi Young; Buharalioglu, Cuneyt K; Waters, Christopher M; Malik, Kafait U

    2010-01-01

    Angiotensin II (Ang II) stimulates protein synthesis by activating spleen tyrosine kinase (Syk) and DNA synthesis through epidermal growth factor receptor (EGFR) transactivation in vascular smooth muscle cells (VSMCs). This study was conducted to determine whether Syk mediates Ang II-induced migration of aortic VSMCs using a scratch wound approach. Treatment with Ang II (200 nM) for 24 h increased VSMC migration by 1.56 +/- 0.14-fold. Ang II-induced VSMC migration and Syk phosphorylation as determined by Western blot analysis were minimized by the Syk inhibitor piceatannol (10 microM) and by transfecting VSMCs with dominant-negative but not wild-type Syk plasmid. Ang II-induced VSMC migration and Syk phosphorylation were attenuated by inhibitors of c-Src [4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2)], p38 mitogen-activated protein kinase (MAPK) [4-(4-fluorophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)1H-imidazole (SB202190)], and extracellular signal-regulated kinase (ERK) 1/2 [1,4-diamino-2,3-dicyano-1,4-bis(2-aminophenylthio) butadiene (U0126)]. SB202190 attenuated p38 MAPK and c-Src but not ERK1/2 phosphorylation, indicating that p38 MAPK acts upstream of c-Src and Syk. The c-Src inhibitor PP2 attenuated Syk and ERK1/2 phosphorylation, suggesting that c-Src acts upstream of Syk and ERK1/2. Ang II- and epidermal growth factor (EGF)-induced VSMC migration and EGFR phosphorylation were inhibited by the EGFR blocker 4-(3-chloroanilino)-6,7-dimethoxyquinazoline (AG1478) (2 microM). Neither the Syk inhibitor piceatannol nor the dominant-negative Syk mutant altered EGF-induced cell migration or Ang II- and EGF-induced EGFR phosphorylation. The c-Src inhibitor PP2 diminished EGF-induced VSMC migration and EGFR, ERK1/2, and p38 MAPK phosphorylation. The ERK1/2 inhibitor U0126 (10 microM) attenuated EGF-induced cell migration and ERK1/2 but not EGFR phosphorylation. These data suggest that Ang II stimulates VSMC migration via p38 MAPK-activated c

  1. Design, Synthesis, and Anti-inflammatory Properties of Orally Active 4-(Phenylamino)-pyrrolo[2,1-f][1,2,4]triazine p38[alpha] Mitogen-Activated Protein Kinase Inhibitors

    SciTech Connect

    Hynes, Jr., John; Dyckman, Alaric J.; Lin, Shuqun; Wrobleski, Stephen T.; Wu, Hong; Gillooly, Kathleen M.; Kanner, Steven B.; Lonial, Herinder; Loo, Derek; McIntyre, Kim W.; Pitt, Sidney; Shen, Ding Ren; Shuster, David J.; Yang, XiaoXia; Zhang, Rosemary; Behnia, Kamelia; Zhang, Hongjian; Marathe, Punit H.; Doweyko, Arthur M.; Tokarski, John S.; Sack, John S.; Pokross, Matthew; Kiefer, Susan E.; Newitt, John A.; Barrish, Joel C.; Dodd, John; Schieven, Gary L.; Leftheris, Katerina

    2008-06-30

    A novel structural class of p38 mitogen-activated protein (MAP) kinase inhibitors consisting of substituted 4-(phenylamino)-pyrrolo[2,1- f][1,2,4]triazines has been discovered. An initial subdeck screen revealed that the oxindole-pyrrolo[2,1- f][1,2,4]triazine lead 2a displayed potent enzyme inhibition (IC 50 60 nM) and was active in a cell-based TNFalpha biosynthesis inhibition assay (IC 50 210 nM). Replacement of the C4 oxindole with 2-methyl-5- N-methoxybenzamide aniline 9 gave a compound with superior p38 kinase inhibition (IC 50 10 nM) and moderately improved functional inhibition in THP-1 cells. Further replacement of the C6 ester of the pyrrolo[2,1- f][1,2,4]triazine with amides afforded compounds with increased potency, excellent oral bioavailability, and robust efficacy in a murine model of acute inflammation (murine LPS-TNFalpha). In rodent disease models of chronic inflammation, multiple compounds demonstrated significant inhibition of disease progression leading to the advancement of 2 compounds 11b and 11j into further preclinical and toxicological studies.

  2. Luteolin prevents solar radiation-induced matrix metalloproteinase-1 activation in human fibroblasts: a role for p38 mitogen-activated protein kinase and interleukin-20 released from keratinocytes.

    PubMed

    Wölfle, Ute; Heinemann, Anja; Esser, Philipp R; Haarhaus, Birgit; Martin, Stefan F; Schempp, Christoph M

    2012-10-01

    Human skin is continuously exposed to solar radiation, which can result in photoaging, a process involving both dermal and, to a lesser extent, epidermal structures. Previously, we have shown that the flavonoid luteolin protects the epidermis from ultraviolet (UV)-induced damage by a combination of UV-absorbing, antioxidant, and antiinflammatory properties. The aim of the present study was to determine direct and indirect effects of luteolin on dermal fibroblasts as major targets of photoaging. Stimulation of fibroblasts with UVA light or the proinflammatory cytokine interleukin-20 (IL-20) is associated with wrinkled skin, increased IL-6 secretion, matrix metalloproteinase (MMP-1) expression, and hyaluronidase activity. All of these targets were inhibited by luteolin via interference with the p38 mitogen-activated protein kinase (MAPK) pathway. Next, we assessed the role of conditioned supernatants from keratinocytes irradiated with solar-simulated radiation (SSR) on nonirradiated dermal fibroblasts. In keratinocytes, luteolin inhibited SSR-induced production of IL-20, also via interference with the p38 MAPK pathway. Similarly, keratinocyte supernatant-induced IL-6 and MMP-1 expression in fibroblasts was reduced by pretreatment of keratinocytes with luteolin. Finally, these results were confirmed ex vivo on skin explants treated with luteolin before UV irradiation. Our results suggest that SSR-mediated production of soluble factors in keratinocytes is modulated by luteolin and may attenuate photoaging in dermal fibroblasts. PMID:23004935

  3. Luteolin Prevents Solar Radiation-Induced Matrix Metalloproteinase-1 Activation in Human Fibroblasts: A Role for p38 Mitogen-Activated Protein Kinase and Interleukin-20 Released from Keratinocytes

    PubMed Central

    Heinemann, Anja; Esser, Philipp R.; Haarhaus, Birgit; Martin, Stefan F.; Schempp, Christoph M.

    2012-01-01

    Abstract Human skin is continuously exposed to solar radiation, which can result in photoaging, a process involving both dermal and, to a lesser extent, epidermal structures. Previously, we have shown that the flavonoid luteolin protects the epidermis from ultraviolet (UV)-induced damage by a combination of UV-absorbing, antioxidant, and antiinflammatory properties. The aim of the present study was to determine direct and indirect effects of luteolin on dermal fibroblasts as major targets of photoaging. Stimulation of fibroblasts with UVA light or the proinflammatory cytokine interleukin-20 (IL-20) is associated with wrinkled skin, increased IL-6 secretion, matrix metalloproteinase (MMP-1) expression, and hyaluronidase activity. All of these targets were inhibited by luteolin via interference with the p38 mitogen-activated protein kinase (MAPK) pathway. Next, we assessed the role of conditioned supernatants from keratinocytes irradiated with solar-simulated radiation (SSR) on nonirradiated dermal fibroblasts. In keratinocytes, luteolin inhibited SSR-induced production of IL-20, also via interference with the p38 MAPK pathway. Similarly, keratinocyte supernatant-induced IL-6 and MMP-1 expression in fibroblasts was reduced by pretreatment of keratinocytes with luteolin. Finally, these results were confirmed ex vivo on skin explants treated with luteolin before UV irradiation. Our results suggest that SSR-mediated production of soluble factors in keratinocytes is modulated by luteolin and may attenuate photoaging in dermal fibroblasts. PMID:23004935

  4. Oxidative Stress Induces Premature Senescence by Stimulating Caveolin-1 Gene Transcription through p38 Mitogen-Activated Protein Kinase/Sp1–Mediated Activation of Two GC-Rich Promoter Elements

    PubMed Central

    Dasari, Arvind; Bartholomew, Janine N.; Volonte, Daniela; Galbiati, Ferruccio

    2015-01-01

    Cellular senescence is believed to represent a natural tumor suppressor mechanism. We have previously shown that up-regulation of caveolin-1 was required for oxidative stress–induced premature senescence in fibroblasts. However, the molecular mechanisms underlying caveolin-1 up-regulation in senescent cells remain unknown. Here, we show that subcytotoxic oxidative stress generated by hydrogen peroxide application promotes premature senescence and stimulates the activity of a (−1,296) caveolin-1 promoter reporter gene construct in fibroblasts. Functional deletion analysis mapped the oxidative stress response elements of the mouse caveolin-1 promoter to the sequences −244/−222 and −124/−101. The hydrogen peroxide–mediated activation of both Cav-1 (−244/−222) and Cav-1 (−124/−101) was prevented by the antioxidant quercetin. Combination of electrophoretic mobility shift studies, chromatin immunoprecipitation analysis, Sp1 overexpression experiments, as well as promoter mutagenesis identifies enhanced Sp1 binding to two GC-boxes at −238/−231 and −118/−106 as the core mechanism of oxidative stress–triggered caveolin-1 transactivation. In addition, signaling studies show p38 mitogen-activated protein kinase (MAPK) as the upstream regulator of Sp1-mediated activation of the caveolin-1 promoter following oxidative stress. Inhibition of p38 MAPK prevents the oxidant-induced Sp1-mediated up-regulation of caveolin-1 protein expression and development of premature senescence. Finally, we show that oxidative stress induces p38-mediated up-regulation of caveolin-1 and premature senescence in normal human mammary epithelial cells but not in MCF-7 breast cancer cells, which do not express caveolin-1 and undergo apoptosis. This study delineates for the first time the molecular mechanisms that modulate caveolin-1 gene transcription upon oxidative stress and brings new insights into the redox control of cellular senescence in both normal and cancer

  5. Hepcidin promotes osteogenic differentiation through the bone morphogenetic protein 2/small mothers against decapentaplegic and mitogen-activated protein kinase/P38 signaling pathways in mesenchymal stem cells

    PubMed Central

    LU, HUADING; LIAN, LIYI; SHI, DEHAI; ZHAO, HUIQING; DAI, YUHU

    2015-01-01

    The ability of mesenchymal stem cells (MSCs) to differentiate into osteogenic lineages requires management for their future use in treating bone destruction and osteoporosis. Hepcidin is closely associated with bone metabolism, however, it remains to be elucidated whether hepcidin affects osteogenic differentiation in MSCs. The present study demonstrated that hepcidin enhanced osteoblastic differentiation and mineralization, which was manifested by an upregulation in the differentiation markers alkaline phosphatase and osteogenic genes. Furthermore, the expression levels of bone morphogenetic proteins and small mothers against decapentaplegic homologs were concomitantly increased following hepcidin treatment. In addition, the p38 mitogen-activated protein kinase may be an upstream kinase for osteoblastic differentiation. Thus, hepcidin may be important in the osteogenic differentiation of MSCs and may be considered as a target in the development of therapies for pathological bone loss. PMID:25351366

  6. The p38 mitogen-activated protein kinase signaling pathway is involved in regulating low-density lipoprotein receptor-related protein 1-mediated β-amyloid protein internalization in mouse brain.

    PubMed

    Ma, Kai-Ge; Lv, Jia; Hu, Xiao-Dan; Shi, Li-Li; Chang, Ke-Wei; Chen, Xin-Lin; Qian, Yi-Hua; Yang, Wei-Na; Qu, Qiu-Min

    2016-07-01

    Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. Recently, increasing evidence suggests that intracellular β-amyloid protein (Aβ) alone plays a pivotal role in the progression of AD. Therefore, understanding the signaling pathway and proteins that control Aβ internalization may provide new insight for regulating Aβ levels. In the present study, the regulation of Aβ internalization by p38 mitogen-activated protein kinases (MAPK) through low-density lipoprotein receptor-related protein 1 (LRP1) was analyzed in vivo. The data derived from this investigation revealed that Aβ1-42 were internalized by neurons and astrocytes in mouse brain, and were largely deposited in mitochondria and lysosomes, with some also being found in the endoplasmic reticulum. Aβ1-42-LRP1 complex was formed during Aβ1-42 internalization, and the p38 MAPK signaling pathway was activated by Aβ1-42 via LRP1. Aβ1-42 and LRP1 were co- localized in the cells of parietal cortex and hippocampus. Furthermore, the level of LRP1-mRNA and LRP1 protein involved in Aβ1-42 internalization in mouse brain. The results of this investigation demonstrated that Aβ1-42 induced an LRP1-dependent pathway that related to the activation of p38 MAPK resulting in internalization of Aβ1-42. These results provide evidence supporting a key role for the p38 MAPK signaling pathway which is involved in the regulation of Aβ1-42 internalization in the parietal cortex and hippocampus of mouse through LRP1 in vivo. PMID:27163530

  7. Ghrelin protects against depleted uranium-induced apoptosis of MC3T3-E1 cells through oxidative stress-mediated p38-mitogen-activated protein kinase pathway.

    PubMed

    Hao, Yuhui; Liu, Cong; Huang, Jiawei; Gu, Ying; Li, Hong; Yang, Zhangyou; Liu, Jing; Wang, Weidong; Li, Rong

    2016-01-01

    Depleted uranium (DU) mainly accumulates in the bone over the long term. Osteoblast cells are responsible for the formation of bone, and they are sensitive to DU damage. However, studies investigating methods of reducing DU damage in osteoblasts are rarely reported. Ghrelin is a stomach hormone that stimulates growth hormones released from the hypothalamic-pituitary axis, and it is believed to play an important physiological role in bone metabolism. This study evaluates the impact of ghrelin on DU-induced apoptosis of the osteoblast MC3T3-E1 and investigates its underlying mechanisms. The results show that ghrelin relieved the intracellular oxidative stress induced by DU, eliminated reactive oxygen species (ROS) and reduced lipid peroxidation by increasing intracellular GSH levels; in addition, ghrelin effectively suppressed apoptosis, enhanced mitochondrial membrane potential, and inhibited cytochrome c release and caspase-3 activation after DU exposure. Moreover, ghrelin significantly reduced the expression of DU-induced phosphorylated p38-mitogen-activated protein kinase (MAPK). A specific inhibitor (SB203580) or specific siRNA of p38-MAPK could significantly suppress DU-induced apoptosis and related signals, whereas ROS production was not affected. In addition, ghrelin receptor inhibition could reduce the anti-apoptosis effect of ghrelin on DU and reverse the effect of ghrelin on intracellular ROS and p38-MAPK after DU exposure. These results suggest that ghrelin can suppress DU-induced apoptosis of MC3T3-E1 cells, reduce DU-induced oxidative stress by interacting with its receptor, and inhibit downstream p38-MAPK activation, thereby suppressing the mitochondrial-dependent apoptosis pathway. PMID:26529667

  8. Angiotensin II regulates ACE and ACE2 in neurons through p38 mitogen-activated protein kinase and extracellular signal-regulated kinase 1/2 signaling

    PubMed Central

    Xiao, Liang; Haack, Karla K. V.

    2013-01-01

    Brain ANG II plays an important role in modulating sympathetic function and homeostasis. The generation and degradation of ANG II are carried out, to a large extent, through the angiotensin-converting enzyme (ACE) and ACE2, respectively. In disease states, such as hypertension and chronic heart failure, central expression of ACE is upregulated and ACE2 is decreased in central sympathoregulatory neurons. In this study, we determined the expression of ACE and ACE2 in response to ANG II in a neuronal cell culture and the subsequent signaling mechanism(s) involved. A mouse catecholaminergic neuronal cell line (CATH.a) was treated with ANG II (30, 100, and 300 nM) for 24 h, and protein expression was determined by Western blot analysis. ANG II induced a significant dose-dependent increase in ACE and decrease in ACE2 mRNA and protein expression in CATH.a neurons. This effect was abolished by pretreatment of the cells with the p38 MAPK inhibitor SB-203580 (10 μM) 30 min before administration of ANG II or the ERK1/2 inhibitor U-0126 (10 μM). These data suggest that ANG II increases ACE and attenuates ACE2 expression in neurons via the ANG II type 1 receptor, p38 MAPK, and ERK1/2 signaling pathways. PMID:23535237

  9. Allicin induces apoptosis of the MGC-803 human gastric carcinoma cell line through the p38 mitogen-activated protein kinase/caspase-3 signaling pathway.

    PubMed

    Zhang, Xuecheng; Zhu, Yong; Duan, Wei; Feng, Chen; He, Xuan

    2015-04-01

    Gastric cancer is one of the most common forms of malignant tumor, and the development of anti‑gastric cancer drugs with minimal toxicity is of clinical importance. Allicin is extracted from Allium sativum (garlic). Recent research, including clinical experiments, has shown that garlic has anticancer and tumor suppressive effects. The present study aimed to investigate the effects of allicin on the MGC‑803 human gastric carcinoma cell line, and to further explore the possible mechanisms of its tumor suppressor effects. The effects of allicin on the MGC‑803 cells were initially examined using an 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide assay. Hoechst staining was also used, in order to demonstrate the impact of allicin on MGC‑803 cell apoptosis. In addition, western blot analysis was performed to determine the abnormal expression levels of apoptosis‑associated proteins, following the treatment of MGC‑803 cells with allicin. Western blotting was also used to investigate the specific mechanisms underlying allicin‑induced apoptosis of MGC‑803 cells. The rate of MGC‑803 apoptosis was significantly increased, when the concentration and treatment time of allicin were increased. Hoechst staining detected an enhanced rate of apoptosis, and enhanced expression levels of cleaved caspase 3 were determined by western blotting. Notably, the protein expression levels of p38 were increased when the MGC‑803 cells were treated with allicin. The results of the present study suggest that allicin may inhibit the proliferation and induce the apoptosis of MGC‑803 human gastric carcinoma cells, and this may partially be achieved through the enhanced expression of p38 and cleaved caspase 3. PMID:25523417

  10. Global Analysis of Serine/Threonine and Tyrosine Protein Phosphatase Catalytic Subunit Genes in Neurospora crassa Reveals Interplay Between Phosphatases and the p38 Mitogen-Activated Protein Kinase

    PubMed Central

    Ghosh, Arit; Servin, Jacqueline A.; Park, Gyungsoon; Borkovich, Katherine A.

    2013-01-01

    Protein phosphatases are integral components of the cellular signaling machinery in eukaryotes, regulating diverse aspects of growth and development. The genome of the filamentous fungus and model organism Neurospora crassa encodes catalytic subunits for 30 protein phosphatase genes. In this study, we have characterized 24 viable N. crassa phosphatase catalytic subunit knockout mutants for phenotypes during growth, asexual development, and sexual development. We found that 91% of the mutants had defects in at least one of these traits, whereas 29% possessed phenotypes in all three. Chemical sensitivity screens were conducted to reveal additional phenotypes for the mutants. This resulted in the identification of at least one chemical sensitivity phenotype for 17 phosphatase knockout mutants, including novel chemical sensitivities for two phosphatase mutants lacking a growth or developmental phenotype. Hence, chemical sensitivity or growth/developmental phenotype was observed for all 24 viable mutants. We investigated p38 mitogen-activated protein kinase (MAPK) phosphorylation profiles in the phosphatase mutants and identified nine potential candidates for regulators of the p38 MAPK. We demonstrated that the PP2C class phosphatase pph-8 (NCU04600) is an important regulator of female sexual development in N. crassa. In addition, we showed that the Δcsp-6 (ΔNCU08380) mutant exhibits a phenotype similar to the previously identified conidial separation mutants, Δcsp-1 and Δcsp-2, that lack transcription factors important for regulation of conidiation and the circadian clock. PMID:24347630

  11. Low-frequency stimulation induces a durable long-term depression in young adult hyperthyroid rats: the role of p38 mitogen-activated protein kinase and protein phosphatase 1.

    PubMed

    Tan, Burak; Bitiktaş, Soner; Kavraal, Şehrazat; Dursun, Nurcan; Dönmez Altuntaş, Hamiyet; Suer, Cem

    2016-06-15

    Long-term potentiation and long-term depression (LTD) are cellular mechanisms of learning and memory in the mammalian brain. We have previously shown that adult hyperthyroid rats showed a delay in the acquisition of a place learning task and attenuated long-term potentiation. However, changes in LTD in hyperthyroidism remain unclear. Rats were administered 0.2 mg/kg/day of L-thyroxine for 21 days starting at postnatal day 40 to induce hyperthyroidism. LTD was induced in the dentate gyrus using low-frequency stimulation (LFS) of the perforant pathway. The mRNA expressions of p38 mitogen-activated protein kinase (p38-MAPK) and protein phosphatase 1 (PP1) were evaluated using a quantitative reverse transcriptase PCR. In control rats, a standard LFS protocol induced a slight depression of the population spike (PS) amplitude during the induction phase of LTD (76±13% vs. baseline), but a small potentiation of the PS amplitude was observed in the early (107±18%) and late (111±20%) phases of LTD. Interestingly, in the hyperthyroid rats, the same LFS protocol induced a reliable LTD in the dentate gyrus of the hippocampus as evidenced by a marked depression in the PS amplitude during the induction (54±6% vs. baseline) and the early phases (56±8%) of LTD. Elevated mRNA levels of p38-MAPK and PP1 were observed in the hippocampus of the LFS-treated hyperthyroid rats compared with the hippocampus of the vehicle-treated hyperthyroid rats. No significant change in p38-MAPK or PP1 mRNA expression was observed in the euthyroid rats. The present study shows that a standard LFS protocol can induce a durable depression of synaptic strength and an upregulation of PP1 and p38-MAPK mRNA in hyperthyroid rats. We conclude that hyperthyroidism can induce molecular changes associated with degeneration of the hippocampus. The relationship between the levels of thyroid hormone and dementia requires further investigation. PMID:27128724

  12. Andrographolide stimulates p38 mitogen-activated protein kinase-nuclear factor erythroid-2-related factor 2-heme oxygenase 1 signaling in primary cerebral endothelial cells for definite protection against ischemic stroke in rats.

    PubMed

    Yen, Ting-Lin; Chen, Ray-Jade; Jayakumar, Thanasekaran; Lu, Wan-Jung; Hsieh, Cheng-Ying; Hsu, Ming-Jen; Yang, Chih-Hao; Chang, Chao-Chien; Lin, Yen-Kuang; Lin, Kuan-Hung; Sheu, Joen-Rong

    2016-04-01

    Stroke pathogenesis involves complex oxidative stress-related pathways. The nuclear factor erythroid-2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) pathways have been considered molecular targets in pharmacologic intervention for ischemic diseases. Andrographolide, a labdane diterpene, has received increasing attention in recent years because of its various pharmacologic activities. We determined that andrographolide modulates the mitogen-activated protein kinase (MAPK)-Nrf2-HO-1 signaling cascade in primary cerebral endothelial cells (CECs) to provide positive protection against middle cerebral artery occlusion (MCAO)-induced ischemic stroke in rats. In the present study, andrographolide (10 μM) increased HO-1 protein and messenger RNA expressions, Nrf2 phosphorylation, and nuclear translocation in CECs, and these activities were disrupted by a p38 MAPK inhibitor, SB203580, but not by the extracellular signal-regulated kinase inhibitor PD98059 or c-Jun amino-terminal kinase inhibitor SP600125. Similar results were observed in confocal microscopy analysis. Moreover, andrographolide-induced Nrf2 and HO-1 protein expressions were significantly inhibited by Nrf2 small interfering RNA. Moreover, HO-1 knockdown attenuated the protective effect of andrographolide against oxygen-glucose deprivation-induced CEC death. Andrographolide (0.1 mg/kg) significantly suppressed free radical formation, blood-brain barrier disruption, and brain infarction in MCAO-insulted rats, and these effects were reversed by the HO-1 inhibitor zinc protoporphyrin IX. The mechanism is attributable to HO-1 activation, as directly evidenced by andrographolide-induced pronounced HO-1 expression in brain tissues, which was highly localized in the cerebral capillary. In conclusion, andrographolide increased Nrf2-HO-1 expression through p38 MAPK regulation, confirming that it provides protection against MCAO-induced brain injury. These findings provide strong evidence that andrographolide could

  13. 17,18-epoxyeicosatetraenoic acid targets PPARγ and p38 mitogen-activated protein kinase to mediate its anti-inflammatory effects in the lung: role of soluble epoxide hydrolase.

    PubMed

    Morin, Caroline; Sirois, Marco; Echavé, Vincent; Albadine, Roula; Rousseau, Eric

    2010-11-01

    This study sought to assess putative pathways involved in the anti-inflammatory effects of 17,18-epoxyeicosatetraenoic acid (17,18-EpETE), as measured by a decrease in the contractile reactivity and Ca(2+) sensitivity of TNF-α-pretreated human bronchi. Tension measurements performed in the presence of 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA), a soluble epoxide hydrolase (sEH)-specific inhibitor, demonstrated that 17,18-EpETE reduced the reactivity of TNF-α-pretreated tissues. The overexpression of sEH detected in patients with asthma and TNF-α-treated bronchi contributed to the maintenance of hyperresponsiveness in our models, which involved intracellular proinflammatory cascades. The inhibition of peroxisome proliferator-activated receptor (PPAR)γ by GW9662 abolished 17,18-EpETE + AUDA-mediated anti-inflammatory effects by inducing IκBα degradation and cytokine synthesis, indicating that PPARγ is a molecular target of epoxy-eicosanoids. Western blot analysis revealed that 17,18-EpETE pretreatment reversed the phosphorylation of p38 mitogen-activated protein kinase (p38-MAPK) induced by TNF-α in human bronchi. The Ca(2+) sensitivity of human bronchial explants was also quantified on β-escin permeabilized preparations. The presence of SB203580, a p38-MAPK inhibitor, reversed the effect induced by epoxy-eicosanoid in the presence of AUDA on TNF-α-triggered Ca(2+) hypersensitivity by increasing the phosphorylation level of PKC Potentiated Inhibitor Protein-17 (CPI-17) regulatory protein. Moreover, PPARγ ligands, such as rosiglitazone and 17,18-EpETE, decreased the expression of CPI-17, both at the mRNA and protein levels, whereas this effect was countered by GW9662 treatment in TNF-α-treated bronchi. These results demonstrate that 17,18-EpETE is a potent regulator of human lung inflammation and concomitant hyperresponsiveness, and may represent a valuable asset against critical inflammatory bronchial disorder. PMID:20008283

  14. Anti-hepatitis B virus effect of matrine-type alkaloid and involvement of p38 mitogen-activated protein kinase and tumor necrosis factor receptor-associated factor 6.

    PubMed

    Chen, Jia-Xin; Shen, Hong-Hui; Niu, Ming; Guo, Yu-Ming; Liu, Xiao-Qiong; Han, Yan-Zhong; Zhang, Ya-Ming; Zhao, Yan-Ling; Bai, Bing-Ke; Zhou, Wen-Jun; Xiao, Xiao-He

    2016-04-01

    The matrine-type alkaloid, oxymatrine inhibits hepatitis B virus (HBV) replication but very little is known about these effects in other matrine-type alkaloids, including sophoridine and sophocarpine. Therefore, we compared the in vitro anti-HBV effects of matrine, oxymatrine, sophocarpine, and sophoridine by treating an HBV-transfected cell line (HepG2.2.15) with 0.4-1.6mM of the compounds for 24 or 72h. The levels of the HBV surface antigen (HBsAg) and e antigen (HBeAg) in the culture medium, as well as the intracellular and extracellular HBV DNA levels, were determined. Metabolomic analysis and detection of the mRNA level of p38 mitogen-activated protein kinase (MAPK), tumor necrosis factor receptor-associated factor (TRAF) 6, extracellular signal-regulated kinase (ERK) 1, NOD-like receptor family pyrin domain containing 10 (NLRP10), and caspase-1 were conducted in sophoridine-treated HepG2.2.15 cells. HepG2.2.15 cell exposure to 0.4-1.6mM sophocarpine or sophoridine for 24h reduced the HBsAg level of the medium more effectively than exposure to matrine and oxymatrine did, and reduced the HBeAg levels more effectively than these compounds did at 1.6mM. Sophoridine (0.4-1.6mM) reduced the cell medium HBV DNA levels more than the same concentrations of matrine, oxymatrine, or sophocarpine did. After 72h, 0.4 and 0.8mM sophoridine reduced HBsAg and intracellular HBV DNA levels more potently than matrine, oxymatrine, or sophocarpine did. Furthermore, sophoridine (0.8mM) potently reduced the cell medium HBeAg levels while the metabolomic analyses revealed that HepG2.2.15 cells exposed to 0.8mM sophoridine for 72h exhibited reduced cycloleucine and phytosphingosine levels. In addition, the mRNA expression analyses revealed that HepG2.2.15 cells exposed to 0.8mM sophoridine showed reduced levels of p38 MAPK, TRAF6, ERK1, NLRP10, and caspase-1. Sophoridine produced more potent anti-HBV effects than matrine, oxymatrine, and sophocarpine did. These effects may be related

  15. Blocking the mitogen activated protein kinase-p38 pathway is associated with increase expression of nitric oxide synthase and higher production of nitric oxide by bovine macrophages infected with Mycobacterium avium subsp paratuberculosis.

    PubMed

    Souza, Cleverson D

    2015-03-15

    This study evaluated the role of the mitogen-activated protein kinase (MAPK)-p38 pathway in the nitric oxide synthase (iNOS) expression and nitric oxide (NO) production by bovine monocyte-derived macrophages ingesting Mycobacterium avium subsp. paratuberculosis (MAP) organisms in vitro. Bovine monocyte-derived macrophages were incubated with MAP organisms with or without a specific inhibitor of the MAPKp38 pathway and activation of the MAPKp38, interleukin - (IL) IL-10, IL-12, iNOS mRNA expression and NO production were evaluated. Incubation of macrophages with MAP organisms activates the MAPKp38 pathway at early time points post infection. Chemically inhibition of MAPKp38 before incubation of bovine macrophages with MAP resulted in increased expression of IL-12 mRNA at 2, 6 and 24h, decreased expression of IL-10 mRNA at 2, 6 and 24h and increased expression of iNOS mRNA at 2 and 6h. Nitric oxide was evaluated to indirectly determine the effects of MAPKp38 pathway on the anti-microbial activity of bovine macrophages. Incubation of bovine macrophages with MAP resulted in modest increased production of NO at 4 and 6h post infection. Pretreatment of bovine macrophages with the MAPKp38 inhibitor SB203580 before addition of MAP organisms resulted in increased production of NO at 2, 4, 6 and 24h post infection. This study expanded our knowledge of the importance of the MAPKp38 pathway in limiting an appropriate macrophage response to MAP and suggested how activation of MAPKp38 pathway may be a target of this organism to disrupt earlier antimicrobial mechanisms of macrophages. These findings raises the interesting possibility that the cellular manipulation of MAPKp38 may be useful in designing novel vaccines against MAP. PMID:25700780

  16. Sann-Joong-Kuey-Jian-Tang induces autophagy in HepG2 cells via regulation of the phosphoinositide-3 kinase/Akt/mammalian target of rapamycin and p38 mitogen-activated protein kinase pathways

    PubMed Central

    CHUANG, WAN-LING; SU, CHIN-CHENG; LIN, PING-YI; LIN, CHI-CHEN; CHEN, YAO-LI

    2015-01-01

    Sann-Joong-Kuey-Jian-Tang (SJKJT), a traditional Chinese medicine, was previously reported to induce autophagy and inhibit the proliferation of the human HepG2 hepatocellular carcinoma cell line via an extrinsic pathway. In the present study, the effects of SJKJT-induced autophagy and the cytotoxic mechanisms mediating these effects were investigated in HepG2 cells. The cytotoxicity of SJKJT in the HepG2 cells was evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The results demonstrated that the half-maximal inhibitory concentration of SJKJT was 2.91 mg/ml at 24 h, 1.64 mg/ml at 48 h and 1.26 mg/ml at 72 h. The results of confocal fluorescence microscopy indicated that SJKJT resulted in the accumulation of green fluorescent protein-LC3 and vacuolation of the cytoplasm. Flow cytometric analysis revealed the accumulation of acidic vesicular organelles. Furthermore, western blot analysis, used to determine the expression levels of autophagy-associated proteins, demonstrated that the HepG2 cells treated with SJKJT exhibited LC3B-I/LC3B-II conversion, increased expression levels of Beclin, Atg-3 and Atg-5 and reduced expression levels of p62 and decreased signaling of the phosphoinositide-3 kinase/Akt/mammalian target of rapamycin and the p38 mitogen-activated protein kinase pathways. Taken together, these findings may assist in the development of novel chemotherapeutic agents for the treatment of malignant types of liver cancer. PMID:25847489

  17. [Mitogen-activated protein kinases in atherosclerosis].

    PubMed

    Bryk, Dorota; Olejarz, Wioletta; Zapolska-Downar, Danuta

    2014-01-01

    Intracellular signalling cascades, in which MAPK (mitogen-activated protein kinases) intermediate, are responsible for a biological response of a cell to an external stimulus. MAP kinases, which include ERK1/2 (extracellular signalling-regulated kinase), JNK (c-Jun N-terminal kinase) and p 38 MAPK, regulate the activity of many proteins, enzymes and transcription factors and thus have a wide spectrum of biological effects. Many basic scientific studies have defined numerous details of their pathway organization and activation. There are also more and more studies suggesting that individual MAP kinases probably play an important role in the pathogenesis of atherosclerosis. They may mediate inflammatory processes, endothelial cell activation, monocyte/macrophage recruitment and activation, smooth muscle cell proliferation and T-lymphocyte differentiation, all of which represent crucial mechanisms involved in pathogenesis of atherosclerosis. The specific inhibition of an activity of the respective MAP kinases may prove a new therapeutic approach to attenuate atherosclerotic plaque formation in the future. In this paper, we review the current state of knowledge concerning MAP kinase-dependent cellular and molecular mechanisms underlying atherosclerosis. PMID:24491891

  18. Mitogen Activated Protein kinase signal transduction pathways in the prostate

    PubMed Central

    Maroni, Paul D; Koul, Sweaty; Meacham, Randall B; Koul, Hari K

    2004-01-01

    The biochemistry of the mitogen activated protein kinases ERK, JNK, and p38 have been studied in prostate physiology in an attempt to elucidate novel mechanisms and pathways for the treatment of prostatic disease. We reviewed articles examining mitogen-activated protein kinases using prostate tissue or cell lines. As with other tissue types, these signaling modules are links/transmitters for important pathways in prostate cells that can result in cellular survival or apoptosis. While the activation of the ERK pathway appears to primarily result in survival, the roles of JNK and p38 are less clear. Manipulation of these pathways could have important implications for the treatment of prostate cancer and benign prostatic hypertrophy. PMID:15219238

  19. Diosgenin induces hypoxia-inducible factor-1 activation and angiogenesis through estrogen receptor-related phosphatidylinositol 3-kinase/Akt and p38 mitogen-activated protein kinase pathways in osteoblasts.

    PubMed

    Yen, Men Luh; Su, Jen Liang; Chien, Chung Liang; Tseng, Kuang Wen; Yang, Ching Yao; Chen, Wei Fang; Chang, Chiao Chia; Kuo, Min Liang

    2005-10-01

    Diosgenin, extracted from the root of wild yam (Dioscorea villosa), has been reported to demonstrate an opportunity for medical application. Vascular endothelial growth factor-A (VEGF-A) plays an important role in bone-related angiogenesis, a critical process occurring during bone formation and fracture healing. In this study, we examine whether diosgenin is able to induce VEGF-A expression and to promote angiogenesis in osteoblasts. For murine MC3T3-E1 preosteoblast-like cells, VEGF-A mRNA and protein expression seemed to be significantly elevated in response to diosgenin in a concentration-dependent fashion. Conditioned media prepared from cells treated with diosgenin induced strong angiogenic activity in either in vitro or ex vivo angiogenesis assay. Furthermore, diosgenin treatment increased the stability and activity of HIF-1alpha protein. Inhibition of HIF-1alpha activity by transfection with DN-HIF-1alpha significantly diminished diosgenin-mediated VEGF-A up-regulation. The use of pharmacological inhibitors or genetic inhibition revealed that both the phosphatidylinositol 3-kinase (PI3K)/Akt and p38 signaling pathways were potentially required for diosgenin-induced HIF-1 activation and subsequent VEGF-A up-regulation. It is noteworthy that an estrogen receptor binding assay revealed that diosgenin has the strong ability to replace [(3)H]estradiol bound to estrogen receptor (IC(50), 10 nM). In addition, the specific estrogen receptor antagonists ICI 182,780 (faslodex) and tamoxifen were noted to be able to strongly inhibit diosgenin-induced, src kinase-dependent Akt and p38 MAPK activation. Taken together, such results provide evidence that diosgenin up-regulates VEGF-A and promotes angiogenesis in preosteoblast-like cells by a hypoxia-inducible factor-1alpha-dependent mechanism involving the activation of src kinase, p38 MAPK, and Akt signaling pathways via estrogen receptor. PMID:15998873

  20. Early treatment with UR13870, a novel inhibitor of p38α mitogenous activated protein kinase, prevents hyperreflexia and anxiety behaviors, in the spared nerve injury model of neuropathic pain.

    PubMed

    Galan-Arriero, Iriana; Avila-Martin, Gerardo; Ferrer-Donato, Agueda; Gomez-Soriano, Julio; Piazza, Stefano; Taylor, Julian

    2015-09-14

    Microglia cell activation plays a role in the development of neuropathic pain partly due to the activation of the p38α MAPK signaling pathway after nerve injury. In this study we assessed the effect of UR13870, a p38α MAPK inhibitor, in the "spared nerve injury" (SNI) model, to study its effects on modulation of spinal microglial activation and to test behavioral hyperreflexia responses and cerebral-mediated pain behavior. The effect of daily administration of UR13870 (10mg/kg p.o.) and Pregabalin (50mg/kg p.o.) on reflex hypersensitivity to mechanical and cold test stimuli and on affective related pain responses measured with the place escape avoidance paradigm and the open field-induced anxiety test, were evaluated after SNI in Sprague Dawley rats. Microglial reactivity in the ipsilateral lumbar laminae I/II dorsal horn was evaluated with OX-42 immunohistochemistry. UR13870 treatment significantly decreased hindlimb hyperreflexia to both mechanical and cold stimuli after SNI without loss of general motor function, in addition to a reduction in pain-related anxiety behavior at day 21 after SNI, accompanied by normalization of OX-42 immunoreactivity within the ipsilateral lumbar dorsal horn. Pregabalin treatment only reduced mechanical hyperreflexia and affected general motor function. Oral administration of the p38α MAPK inhibitor, UR13870, mediates antinociception to both mechanical and cold stimuli, and significantly restored inner-zone exploration in the open field test, accompanied by normalization in dorsal horn microglial activation in the SNI model. PMID:26240995

  1. Thromboxane A2 Receptor Inhibition Suppresses Multiple Myeloma Cell Proliferation by Inducing p38/c-Jun N-terminal Kinase (JNK) Mitogen-activated Protein Kinase (MAPK)-mediated G2/M Progression Delay and Cell Apoptosis.

    PubMed

    Liu, Qian; Tao, Bo; Liu, Guizhu; Chen, Guilin; Zhu, Qian; Yu, Ying; Yu, Yu; Xiong, Hong

    2016-02-26

    Multiple myeloma (MM) is a plasma cell malignancy without effective therapeutics. Thromboxane A2 (TxA2)/TxA2 receptor (T prostanoid receptor (TP)) modulates the progression of some carcinomas; however, its effects on MM cell proliferation remain unclear. In this study, we evaluated cyclooxygenase (COX) enzymes and downstream prostaglandin profiles in human myeloma cell lines RPMI-8226 and U-266 and analyzed the effects of COX-1/-2 inhibitors SC-560 and NS-398 on MM cell proliferation. Our observations implicate COX-2 as being involved in modulating cell proliferation. We further incubated MM cells with prostaglandin receptor antagonists or agonists and found that only the TP antagonist, SQ29548, suppressed MM cell proliferation. TP silencing and the TP agonist, U46619, further confirmed this finding. Moreover, SQ29548 and TP silencing promoted MM cell G2/M phase delay accompanied by reducing cyclin B1/cyclin-dependent kinase-1 (CDK1) mRNA and protein expression. Notably, cyclin B1 overexpression rescued MM cells from G2/M arrest. We also found that the TP agonist activated JNK and p38 MAPK phosphorylation, and inhibitors of JNK and p38 MAPK depressed U46619-induced proliferation and cyclin B1/CDK1 protein expression. In addition, SQ29548 and TP silencing led to the MM cell apoptotic rate increasing with improving caspase 3 activity. The knockdown of caspase 3 reversed the apoptotic rate. Taken together, our results suggest that TxA2/TP promotes MM cell proliferation by reducing cell delay at G2/M phase via elevating p38 MAPK/JNK-mediated cyclin B1/CDK1 expression and hindering cell apoptosis. The TP inhibitor has potential as a novel agent to target kinase cascades for MM therapy. PMID:26724804

  2. Characterization of three mitogen-activated protein kinases (MAPK) genes reveals involvement of ERK and JNK, not p38 in defense against bacterial infection in Yesso scallop Patinopecten yessoensis.

    PubMed

    Sun, Yan; Zhang, Lingling; Zhang, Meiwei; Li, Ruojiao; Li, Yangping; Hu, Xiaoli; Wang, Shi; Bao, Zhenmin

    2016-07-01

    Mitogen-activated protein kinases (MAPKs) are protein Ser/Thr kinases that play a vital role in innate immune responses by converting extracellular stimuli into a wide range of cellular responses. Although MAPKs have been extensively studied in various vertebrates and invertebrates, our current understanding of MAPK signaling cascade in scallop is in its infancy. In this study, three MAPK genes (PyERK, PyJNK, and Pyp38) were identified from Yesso scallop Patinopecten yessoensis. The open reading frame of PyERK, PyJNK, and Pyp38 was 1104, 1227, and 1104 bp, encoding 367, 408, and 367 amino acids, respectively. Conservation in some splicing sites was revealed across the three PyMAPKs, suggesting the common descent of MAPKs genes. The expression profiles of PyMAPKs over the course of ten different developmental stages showed that they had different expression patterns. In adult scallops, PyMAPKs were primarily expressed in muscles, hemocytes, gill, and mantle. To gain insights into their role in innate immunity, we investigated their expression profiles after infection with Gram-positive bacteria (Micrococcus luteus) and Gram-negative bacteria (Vibrio anguillarum). Significant difference in gene expression was only found in PyERK and PyJNK, but not Pyp38, suggesting Pyp38 may not participate in immune response to bacterial infection. Besides, PyERK and PyJNK exhibited more drastic change against the invasion of V. anguillarum than M. luteus, suggesting they could be more sensitive to Gram-negative bacteria than Gram-positive bacteria. This study provides valuable resource for elucidating the role of MAPK signal pathway in bivalve innate immune response. PMID:27155450

  3. Mitogenic activity of edible mushroom lectins.

    PubMed

    Ho, J C K; Sze, S C W; Shen, W Z; Liu, W K

    2004-03-17

    A special group of lectins were isolated from three popular Asian edible mushrooms: Volvariella volvacea, Pleurotus flabellatus and Hericium erinacium, and their mitogenic activities towards mouse T cells were compared to the extensively investigated Agaricus bisporus lectin (ABL) and the Jack bean lectin, Concanavalin A (Con A). Among the four mushroom lectins tested, V. volvacea lectin (VVL) exhibited strong mitogenic activity as demonstrated by 3H-thymidine incorporation, which was at least 10-fold more effective than that of Con A, and the other mushroom lectins did not exhibit any proliferative activity. Treatment with VVL and ABL resulted in activation of the protein tyrosine kinase, p56lck, and expression of early activation markers, CD69 and CD25, but only VVL induced intracellular calcium influx while ABL triggered cell death. The calcium influx was sensitive to calcium channel antagonists such as nifedipine and verapamil. The P. flabellatus lectin (PFL) and H. erinacium lectin (HEL) did not stimulate p56lck expression and cell proliferation. Neither of these lectins interfered with Con A-mediated lymphocyte proliferation, which further indicated that both PFL and HEL were non-mitogenic. Taken all results together, VVL induced mitogenesis through T cell receptors and the subsequent calcium signaling pathway. PMID:15026140

  4. Mitogen activated protein kinase at the nuclear pore complex

    PubMed Central

    Faustino, Randolph S; Maddaford, Thane G; Pierce, Grant N

    2011-01-01

    Abstract Mitogen activated protein (MAP) kinases control eukaryotic proliferation, and import of kinases into the nucleus through the nuclear pore complex (NPC) can influence gene expression to affect cellular growth, cell viability and homeostatic function. The NPC is a critical regulatory checkpoint for nucleocytoplasmic traffic that regulates gene expression and cell growth, and MAP kinases may be physically associated with the NPC to modulate transport. In the present study, highly enriched NPC fractions were isolated and investigated for associated kinases and/or activity. Endogenous kinase activity was identified within the NPC fraction, which phosphorylated a 30 kD nuclear pore protein. Phosphomodification of this nucleoporin, here termed Nup30, was inhibited by apigenin and PD-98059, two MAP kinase antagonists as well as with SB-202190, a pharmacological blocker of p38. Furthermore, high throughput profiling of enriched NPCs revealed constitutive presence of all members of the MAP kinase family, extracellular regulated kinases (ERK), p38 and Jun N-terminal kinase. The NPC thus contains a spectrum of associated MAP kinases that suggests an intimate role for ERK and p38 in regulation of nuclear pore function. PMID:20497490

  5. Knockdown of Sec8 enhances the binding affinity of c-Jun N-terminal kinase (JNK)-interacting protein 4 for mitogen-activated protein kinase kinase 4 (MKK4) and suppresses the phosphorylation of MKK4, p38, and JNK, thereby inhibiting apoptosis.

    PubMed

    Tanaka, Toshiaki; Iino, Mitsuyoshi; Goto, Kaoru

    2014-12-01

    The exocyst complex, also called the Sec6/8 complex, is important for targeting exocytic vesicles to specific docking sites on the plasma membrane in yeast and mammalian cells. In addition to these original findings, recent results of studies suggest that Sec8 is also involved in oncogenesis, although the functional implications of Sec8 in cancer cells are not well understood. c-Jun N-terminal kinase-interacting protein 4 (JIP4) is a scaffold protein that plays a crucial role in the regulation of mitogen-activated protein kinase (MAPK) signaling cascades. The present study examined how Sec8 is involved in JIP4-mediated MAPK signaling under apoptotic conditions. It was found that Sec8 binds to and regulates JIP4, and that knockdown of Sec8 enhances the binding of JIP4 to MAPK kinase 4, thereby decreasing the phosphorylation of MAPK kinase 4, JNK, and p38. These results raise the possibility that Sec8 serves as an important regulator of MAPK signaling cascades. PMID:25244576

  6. Acidic pH stimulates the production of the angiogenic CXC chemokine, CXCL8 (interleukin-8), in human adult mesenchymal stem cells via the extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, and NF-kappaB pathways.

    PubMed

    Bischoff, David S; Zhu, Jian-Hua; Makhijani, Nalini S; Yamaguchi, Dean T

    2008-07-01

    Blood vessel injury results in limited oxygen tension and diffusion leading to hypoxia, increased anaerobic metabolism, and elevated production of acidic metabolites that cannot be easily removed due to the reduced blood flow. Therefore, an acidic extracellular pH occurs in the local microenvironment of disrupted bone. The potential role of acidic pH and glu-leu-arg (ELR(+)) CXC chemokines in early events in bone repair was studied in human mesenchymal stem cells (hMSCs) treated with medium of decreasing pH (7.4, 7.0, 6.7, and 6.4). The cells showed a reciprocal increase in CXCL8 (interleukin-8, IL-8) mRNA levels as extracellular pH decreased. At pH 6.4, CXCL8 mRNA was induced >60x in comparison to levels at pH 7.4. hMSCs treated with osteogenic medium (OGM) also showed an increase in CXCL8 mRNA with decreasing pH; although, at a lower level than that seen in cells grown in non-OGM. CXCL8 protein was secreted into the medium at all pHs with maximal induction at pH 6.7. Inhibition of the G-protein-coupled receptor alpha, G(alphai), suppressed CXCL8 levels in response to acidic pH; whereas phospholipase C inhibition had no effect on CXCL8. The use of specific mitogen-activated protein kinase (MAPK) signal transduction inhibitors indicated that the pH-dependent increase in CXCL8 mRNA is due to activation of ERK and p38 pathways. The JNK pathway was not involved. NF-kappaB inhibition resulted in a decrease in CXCL8 levels in hMSCs grown in non-OGM. However, OGM-differentiated hMSCs showed an increase in CXCL8 levels when treated with the NF-kappaB inhibitor PDTC, a pyrrolidine derivative of dithiocarbamate. PMID:18275043

  7. Poxviral Protein A52 Stimulates p38 Mitogen-activated Protein Kinase (MAPK) Activation by Causing Tumor Necrosis Factor Receptor-associated Factor 6 (TRAF6) Self-association Leading to Transforming Growth Factor β-activated Kinase 1 (TAK1) Recruitment*

    PubMed Central

    Stack, Julianne; Hurst, Tara P.; Flannery, Sinead M.; Brennan, Kiva; Rupp, Sebastian; Oda, Shun-ichiro; Khan, Amir R.; Bowie, Andrew G.

    2013-01-01

    Vaccinia virus encodes a number of proteins that inhibit and manipulate innate immune signaling pathways that also have a role in virulence. These include A52, a protein shown to inhibit IL-1- and Toll-like receptor-stimulated NFκB activation, via interaction with interleukin-1 receptor-associated kinase 2 (IRAK2). Interestingly, A52 was also found to activate p38 MAPK and thus enhance Toll-like receptor-dependent IL-10 induction, which was TRAF6-dependent, but the manner in which A52 manipulates TRAF6 to stimulate p38 activation was unclear. Here, we show that A52 has a non-canonical TRAF6-binding motif that is essential for TRAF6 binding and p38 activation but dispensable for NFκB inhibition and IRAK2 interaction. Wild-type A52, but not a mutant defective in p38 activation and TRAF6 binding (F154A), caused TRAF6 oligomerization and subsequent TRAF6-TAK1 association. The crystal structure of A52 shows that it adopts a Bcl2-like fold and exists as a dimer in solution. Residue Met-65 was identified as being located in the A52 dimer interface, and consistent with that, A52-M65E was impaired in its ability to dimerize. A52-M65E although capable of interacting with TRAF6, was unable to cause either TRAF6 self-association, induce the TRAF6-TAK1 association, or activate p38 MAPK. The results suggest that an A52 dimer causes TRAF6 self-association, leading to TAK1 recruitment and p38 activation. This reveals a molecular mechanism whereby poxviruses manipulate TRAF6 to activate MAPKs (which can be proviral) without stimulating antiviral NFκB activation. PMID:24114841

  8. p38MAPK activation and DUSP10 expression in meningiomas.

    PubMed

    Johnson, Mahlon D; Reeder, Jay E; O'Connell, Mary

    2016-08-01

    The mitogen activated protein kinase (MAPK) p38MAPK has been implicated in regulation of cell proliferation and apoptosis. However, expression, activation and regulation has not been studied in meningiomas, to our knowledge. p38MAPK is regulated, in part, by dual specificity phosphatases (DUSP) that inactivate signaling by dephosphorylation. DUSP10 is also a likely participant in regulating meningioma proliferation. Five fetal and an adult human leptomeninges and 37 meningioma cultures (MC) were evaluated for DUSP10 as well as phosphorylation of its substrates p38MAPK and p44/42MAPK by western blot and DUSP10 expression by polymerase chain reaction. Platelet derived growth factor-BB (PDGF-BB), transforming growth factor B1 (TGFB1) and cerebrospinal fluid effects on DUSP10 and signaling were also studied in vitro. DUSP10 and phospho-p38MAPK and phospho-p44/42MAPK were detected in all six leptomeninges. DUSP10 was detected in 13 of 17 World Health Organization grade I, 11 of 14 grade II and four of six grade III meningiomas. Phospho-p38MAPK was detected in nine of 17 grade I, two of six grade II, and four of six grade III meningiomas. In the majority of meningiomas DUSP10 expression correlated inversely with phosphorylation of p38MAPK. PDGF-BB increased DUSP10 in MC2 and MC4 and weakly in MC3. TGFB1 increased phosphorylation of p38MAPK and caspase 3 activation. Thus p38MAPK and DUSP10 likely participate in the pathogenesis of meningiomas. PMID:27050915

  9. Role of Mitogen-Activated Protein Kinases in Myocardial Ischemia-Reperfusion Injury during Heart Transplantation

    PubMed Central

    Vassalli, Giuseppe; Milano, Giuseppina; Moccetti, Tiziano

    2012-01-01

    In solid organ transplantation, ischemia/reperfusion (IR) injury during organ procurement, storage and reperfusion is an unavoidable detrimental event for the graft, as it amplifies graft inflammation and rejection. Intracellular mitogen-activated protein kinase (MAPK) signaling pathways regulate inflammation and cell survival during IR injury. The four best-characterized MAPK subfamilies are the c-Jun NH2-terminal kinase (JNK), extracellular signal- regulated kinase-1/2 (ERK1/2), p38 MAPK, and big MAPK-1 (BMK1/ERK5). Here, we review the role of MAPK activation during myocardial IR injury as it occurs during heart transplantation. Most of our current knowledge regarding MAPK activation and cardioprotection comes from studies of preconditioning and postconditioning in nontransplanted hearts. JNK and p38 MAPK activation contributes to myocardial IR injury after prolonged hypothermic storage. p38 MAPK inhibition improves cardiac function after cold storage, rewarming and reperfusion. Small-molecule p38 MAPK inhibitors have been tested clinically in patients with chronic inflammatory diseases, but not in transplanted patients, so far. Organ transplantation offers the opportunity of starting a preconditioning treatment before organ procurement or during cold storage, thus modulating early events in IR injury. Future studies will need to evaluate combined strategies including p38 MAPK and/or JNK inhibition, ERK1/2 activation, pre- or postconditioning protocols, new storage solutions, and gentle reperfusion. PMID:22530110

  10. Crosstalk and Signaling Switches in Mitogen-Activated Protein Kinase Cascades

    PubMed Central

    Fey, Dirk; Croucher, David R.; Kolch, Walter; Kholodenko, Boris N.

    2012-01-01

    Mitogen-activated protein kinase (MAPK) cascades control cell fate decisions, such as proliferation, differentiation, and apoptosis by integrating and processing intra- and extracellular cues. However, similar MAPK kinetic profiles can be associated with opposing cellular decisions depending on cell type, signal strength, and dynamics. This implies that signaling by each individual MAPK cascade has to be considered in the context of the entire MAPK network. Here, we develop a dynamic model of feedback and crosstalk for the three major MAPK cascades; extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (p38), c-Jun N-terminal kinase (JNK), and also include input from protein kinase B (AKT) signaling. Focusing on the bistable activation characteristics of the JNK pathway, this model explains how pathway crosstalk harmonizes different MAPK responses resulting in pivotal cell fate decisions. We show that JNK can switch from a transient to sustained activity due to multiple positive feedback loops. Once activated, positive feedback locks JNK in a highly active state and promotes cell death. The switch is modulated by the ERK, p38, and AKT pathways. ERK activation enhances the dual specificity phosphatase (DUSP) mediated dephosphorylation of JNK and shifts the threshold of the apoptotic switch to higher inputs. Activation of p38 restores the threshold by inhibiting ERK activity via the PP1 or PP2A phosphatases. Finally, AKT activation inhibits the JNK positive feedback, thus abrogating the apoptotic switch and allowing only proliferative signaling. Our model facilitates understanding of how cancerous deregulations disturb MAPK signal processing and provides explanations for certain drug resistances. We highlight a critical role of DUSP1 and DUSP2 expression patterns in facilitating the switching of JNK activity and show how oncogene induced ERK hyperactivity prevents the normal apoptotic switch explaining the failure of certain drugs to

  11. Selective activation of p38alpha and p38gamma by hypoxia. Role in regulation of cyclin D1 by hypoxia in PC12 cells.

    PubMed

    Conrad, P W; Rust, R T; Han, J; Millhorn, D E; Beitner-Johnson, D

    1999-08-13

    Hypoxic/ischemic trauma is a primary factor in the pathology of a multitude of disease states. The effects of hypoxia on the stress- and mitogen-activated protein kinase signaling pathways were studied in PC12 cells. Exposure to moderate hypoxia (5% O(2)) progressively stimulated phosphorylation and activation of p38gamma in particular, and also p38alpha, two stress-activated protein kinases. In contrast, hypoxia had no effect on enzyme activity of p38beta, p38beta(2), p38delta, or on c-Jun N-terminal kinase, another stress-activated protein kinase. Prolonged hypoxia also induced phosphorylation and activation of p42/p44 mitogen-activated protein kinase, although this activation was modest compared with nerve growth factor- and ultraviolet light-induced activation. Hypoxia also dramatically down-regulated immunoreactivity of cyclin D1, a gene that is known to be regulated negatively by p38 at the level of gene expression (Lavoie, J. N., L'Allemain, G., Brunet, A., Muller, R., and Pouyssegur, J. (1996) J. Biol. Chem. 271, 20608-20616). This effect was partially blocked by SB203580, an inhibitor of p38alpha but not p38gamma. Overexpression of a kinase-inactive form of p38gamma was also able to reverse in part the effect of hypoxia on cyclin D1 levels, suggesting that p38alpha and p38gamma converge to regulate cyclin D1 during hypoxia. These studies demonstrate that an extremely typical physiological stress (hypoxia) causes selective activation of specific p38 signaling elements; and they also identify a downstream target of these pathways. PMID:10438538

  12. Pivotal Role of Mitogen-Activated Protein Kinase-Activated Protein Kinase 2 in Inflammatory Pulmonary Diseases

    PubMed Central

    Qian, Feng; Deng, Jing; Wang, Gang; Ye, Richard D.; Christman, John W.

    2016-01-01

    Mitogen-activated protein kinase (MAPK)-activated protein kinase (MK2) is exclusively regulated by p38 MAPK in vivo. Upon activation of p38 MAPK, MK2 binds with p38 MAPK, leading to phosphorylation of TTP, Hsp27, Akt and Cdc25 that are involved in regulation of various essential cellular functions. In this review, we discuss current knowledge about molecular mechanisms of MK2 in regulation of TNF-α production, NADPH oxidase activation, neutrophil migration, and DNA-damage-induced cell cycle arrest which are involved in the molecular pathogenesis of acute lung injury, pulmonary fibrosis, and non-small-cell lung cancer. Collectively current and emerging new information indicate that developing MK2 inhibitors and blocking MK2-mediated signal pathways is a potential therapeutic strategy for treatment of inflammatory and fibrotic lung diseases and lung cancer. PMID:26119506

  13. Mechanical Impact Induces Cartilage Degradation via Mitogen Activated Protein Kinases

    PubMed Central

    Ding, Lei; Heying, Emily; Nicholson, Nathan; Stroud, Nicolas J.; Homandberg, Gene A.; Guo, Danping; Buckwalter, Joseph A.; Martin, James A.

    2010-01-01

    Objective To determine the activation of MAP kinases in and around cartilage subjected to mechanical damage and to determine the effects of their inhibitors on impaction induced chondrocyte death and cartilage degeneration. Design The phosphorylation of MAP kinases was examined with confocal microscopy and immunoblotting. The effects of MAP kinase inhibitors on impaction-induced chondrocyte death and proteoglycan loss were determined with fluorescent microscopy and DMMB assay. The expression of catabolic genes at mRNA levels was examined with quantitative real time PCR. Results Early p38 activation was detected at 20 min and 1 hr post-impaction. At 24 hr, enhanced phosphorylation of p38 and ERK1/2 was visualized in chondrocytes from in and around impact sites. The phosphorylation of p38 was increased by 3.0-fold in impact sites and 3.3-fold in adjacent cartilage. The phosphorylation of ERK-1 was increased by 5.8-fold in impact zone and 5.4-fold in adjacent cartilage; the phosphorylation of ERK-2 increased by 4.0-fold in impacted zone and 3.6-fold in adjacent cartilage. Furthermore, the blocking of p38 pathway did not inhibit impaction-induced ERK activation. The inhibition of p38 or ERK pathway significantly reduced injury-related chondrocyte death and proteoglycan losses. Quantative Real-time PCR analysis revealed that blunt impaction significantly up-regulated MMP-13, TNF-α, and ADAMTS-5 expression. Conclusion These findings implicate p38 and ERK MAPKs in the post injury spread of cartilage degeneration and suggest that the risk of PTOA following joint trauma could be decreased by blocking their activities, which might be involved in up-regulating expressions of MMP-13, ADAMTS-5, and TNF-α. PMID:20813194

  14. Mitogen-activated protein kinase (MAPK) in cardiac tissues.

    PubMed

    Page, C; Doubell, A F

    Mitogen-activated protein kinase (MAPK) has recently emerged as a prominent role player in intracellular signalling in the ventricular myocyte with attention being focussed on its possible role in the development of ventricular hypertrophy. It is becoming clear that MAPK is also active in other cells of cardiac origin such as cardiac fibroblasts and possible functions of this signalling pathway in the heart have yet to be explored. In this report the mammalian MAPK pathway is briefly outlined, before reviewing current knowledge of the MAPK pathway in cardiac tissue (ventricular myocytes, vascular smooth muscle cells and cardiac fibroblasts). New data is also presented on the presence and activity of MAPK in two additional cardiac celltypes namely atrial myocytes and vascular endothelial cells from the coronary microcirculation. PMID:8739228

  15. Cellular reprogramming through mitogen-activated protein kinases

    PubMed Central

    Lee, Justin; Eschen-Lippold, Lennart; Lassowskat, Ines; Böttcher, Christoph; Scheel, Dierk

    2015-01-01

    Mitogen-activated protein kinase (MAPK) cascades are conserved eukaryote signaling modules where MAPKs, as the final kinases in the cascade, phosphorylate protein substrates to regulate cellular processes. While some progress in the identification of MAPK substrates has been made in plants, the knowledge on the spectrum of substrates and their mechanistic action is still fragmentary. In this focused review, we discuss the biological implications of the data in our original paper (Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana; Frontiers in Plant Science 5: 554) in the context of related research. In our work, we mimicked in vivo activation of two stress-activated MAPKs, MPK3 and MPK6, through transgenic manipulation of Arabidopsis thaliana and used phosphoproteomics analysis to identify potential novel MAPK substrates. Here, we plotted the identified putative MAPK substrates (and downstream phosphoproteins) as a global protein clustering network. Based on a highly stringent selection confidence level, the core networks highlighted a MAPK-induced cellular reprogramming at multiple levels of gene and protein expression—including transcriptional, post-transcriptional, translational, post-translational (such as protein modification, folding, and degradation) steps, and also protein re-compartmentalization. Additionally, the increase in putative substrates/phosphoproteins of energy metabolism and various secondary metabolite biosynthesis pathways coincides with the observed accumulation of defense antimicrobial substances as detected by metabolome analysis. Furthermore, detection of protein networks in phospholipid or redox elements suggests activation of downstream signaling events. Taken in context with other studies, MAPKs are key regulators that reprogram cellular events to orchestrate defense signaling in eukaryotes. PMID:26579181

  16. Mitogen-activated protein kinases in male reproductive function

    PubMed Central

    Li, Michelle W.M.; Mruk, Dolores D.; Cheng, C. Yan

    2009-01-01

    Recent studies have shown that male reproductive function is modulated via the mitogen-activated protein kinase (MAPK) cascade. The MAPK cascade is involved in numerous male reproductive processes, including spermatogenesis, sperm maturation and activation, capacitation and acrosome reaction, before fertilization of the oocyte. In this review, we discuss the latest findings in this rapidly developing field regarding the role of MAPK in male reproduction in animal models and in human spermatozoa in vitro. This research will facilitate the design of future studies in humans, although much work is needed before this information can be used to manage male infertility and environmental toxicant-induced testicular injury in men, such as blood–testis-barrier disruption. PMID:19303360

  17. Manganese modulation of MAPK pathways: effects on upstream mitogen activated protein kinase kinases (MKKs) and mitogen activated kinase phosphatase-1 (MKP-1) in microglial cells

    PubMed Central

    Crittenden, Patrick L.; Filipov, Nikolay M.

    2010-01-01

    Multiple studies demonstrate that manganese (Mn) exposure potentiates inflammatory mediator output from activated glia; this increased output is associated with enhanced mitogen activated protein kinase (MAPK: p38, ERK, and JNK) activity. We hypothesized that Mn activates MAPK by activating the kinases upstream of MAPK, i.e., MKK-3/6, MKK-1/2, and MKK-4 (responsible for activation of p38, ERK, and JNK, respectively), and/or by inhibiting a major phosphatase responsible for MAPK inactivation, MKP-1. Exposure of N9 microglia to Mn (250μM), LPS (100 ng/ml), or Mn+LPS increased MKK-3/6 and MKK-4 activity at 1 h; the effect of Mn+LPS on MKK-4 activation was greater than the rest. At 4 h, Mn, LPS, and Mn+LPS increased MKK-3/6 and MKK-1/2 phosphorylation, whereas MKK-4 was activated only by Mn and Mn+LPS. Besides activating MKK-4 via Ser257/Thr261 phosphorylation, Mn (4 h) prevented MKK-4’s phosphorylation on Ser80, which negatively regulates MKK-4 activity. Exposure to Mn or Mn+LPS (1 h) decreased both mRNA and protein expression of MKP-1, the negative MAPK regulator. In addition, we observed that at 4 h, but not at 1 h, a time point coinciding with increased MAPK activity, Mn+LPS markedly increased TNF-α , IL-6, and Cox-2 mRNA, suggesting a delayed effect. The fact that all three major groups of MKKs, MKK-1/2, MKK-3/6, and MKK-4 are activated by Mn suggests that Mn-induced activation of MAPK occurs via traditional mechanisms, which perhaps involve the MAPKs farthest upstream, MKKKs (MAP3Ks). In addition, for all MKKs, Mn-induced activation was persistent at least for 4 h, indicating a long-term effect. PMID:20589745

  18. Discovery and Characterization of a Biologically Active Non-ATP-Competitive p38 MAP Kinase Inhibitor.

    PubMed

    Wilson, Brice A P; Alam, Muhammad S; Guszczynski, Tad; Jakob, Michal; Shenoy, Shilpa R; Mitchell, Carter A; Goncharova, Ekaterina I; Evans, Jason R; Wipf, Peter; Liu, Gang; Ashwell, Jonathan D; O'Keefe, Barry R

    2016-03-01

    Mitogen-activated protein kinase (MAPK) p38 is part of a broad and ubiquitously expressed family of MAPKs whose activity is responsible for mediating an intracellular response to extracellular stimuli through a phosphorylation cascade. p38 is central to this signaling node and is activated by upstream kinases while being responsible for activating downstream kinases and transcription factors via phosphorylation. Dysregulated p38 activity is associated with numerous autoimmune disorders and has been implicated in the progression of several types of cancer. A number of p38 inhibitors have been tested in clinical trials, with none receiving regulatory approval. One characteristic shared by all of the compounds that failed clinical trials is that they are all adenosine triphosphate (ATP)-competitive p38 inhibitors. Seeing this lack of mechanistic diversity as an opportunity, we screened ~32,000 substances in search of novel p38 inhibitors. Among the inhibitors discovered is a compound that is both non-ATP competitive and biologically active in cell-based models for p38 activity. This is the first reported discovery of a non-ATP-competitive p38 inhibitor that is active in cells and, as such, may enable new pharmacophore designs for both therapeutic and basic research to better understand and exploit non-ATP-competitive inhibitors of p38 activity. PMID:26538432

  19. Thymic Stromal Lymphopoietin Promotes Fibrosis and Activates Mitogen-Activated Protein Kinases in MRC-5 Cells

    PubMed Central

    Li, Li; Tang, Su; Tang, Xiaodong

    2016-01-01

    Background Acute lung injury (ALI) is a life-threatening hypoxemic respiratory disorder with high incidence and mortality. ALI usually manifests as widespread inflammation and lung fibrosis with the accumulation of pro-inflammatory and pro-fibrotic factors and collagen. Thymic stromal lymphopoietin (TSLP) has a significant role in regulation of inflammation but little is known about its roles in lung fibrosis or ALI. This study aimed to define the role and possible regulatory mechanism of TSLP in lung fibrosis. Material/Methods We cultured human lung fibroblast MRC-5 cells and overexpressed or inhibited TSLP by the vector or small interfering RNA transfection. Then, the pro-fibrotic factors skeletal muscle actin alpha (α-SMA) and collagen I, and the 4 mitogen-activated protein kinases (MAPKs) – MAPK7, p38, extracellular signal-regulated kinase 1 (ERK1), and c-Jun N-terminal kinase 1 (JNK1) – were detected by Western blot. Results Results showed that TSLP promoted the production of α-SMA and collagen I (P<0.001), suggesting that it can accelerate MRC-5 cell fibrosis. It also activated the expression of MAPK7, p-p38, p-ERK1, and p-JNK1, but the total MAPK7, p-38, ERK1, and JNK1 protein levels were mostly unchanged, indicating the activated MAPK pathways that might contribute to the promotion of cell fibrosis. Conclusions This study shows the pro-fibrotic role of TSLP in MRC-5 cells, suggesting TSLP is a potential therapeutic target for treating lung fibrosis in ALI. It possibly functions via activating MAPKs. These findings add to our understanding of the mechanism of fibrosis. PMID:27385084

  20. Thymic Stromal Lymphopoietin Promotes Fibrosis and Activates Mitogen-Activated Protein Kinases in MRC-5 Cells.

    PubMed

    Li, Li; Tang, Su; Tang, Xiaodong

    2016-01-01

    BACKGROUND Acute lung injury (ALI) is a life-threatening hypoxemic respiratory disorder with high incidence and mortality. ALI usually manifests as widespread inflammation and lung fibrosis with the accumulation of pro-inflammatory and pro-fibrotic factors and collagen. Thymic stromal lymphopoietin (TSLP) has a significant role in regulation of inflammation but little is known about its roles in lung fibrosis or ALI. This study aimed to define the role and possible regulatory mechanism of TSLP in lung fibrosis. MATERIAL AND METHODS We cultured human lung fibroblast MRC-5 cells and overexpressed or inhibited TSLP by the vector or small interfering RNA transfection. Then, the pro-fibrotic factors skeletal muscle actin alpha (α-SMA) and collagen I, and the 4 mitogen-activated protein kinases (MAPKs) - MAPK7, p38, extracellular signal-regulated kinase 1 (ERK1), and c-Jun N-terminal kinase 1 (JNK1) - were detected by Western blot. RESULTS Results showed that TSLP promoted the production of α-SMA and collagen I (P<0.001), suggesting that it can accelerate MRC-5 cell fibrosis. It also activated the expression of MAPK7, p-p38, p-ERK1, and p-JNK1, but the total MAPK7, p-38, ERK1, and JNK1 protein levels were mostly unchanged, indicating the activated MAPK pathways that might contribute to the promotion of cell fibrosis. CONCLUSIONS This study shows the pro-fibrotic role of TSLP in MRC-5 cells, suggesting TSLP is a potential therapeutic target for treating lung fibrosis in ALI. It possibly functions via activating MAPKs. These findings add to our understanding of the mechanism of fibrosis. PMID:27385084

  1. Treponema denticola Activates Mitogen-Activated Protein Kinase Signal Pathways through Toll-Like Receptor 2▿

    PubMed Central

    Ruby, John; Rehani, Kunal; Martin, Michael

    2007-01-01

    Treponema denticola, a spirochete indigenous to the oral cavity, is associated with host inflammatory responses to anaerobic polymicrobial infections of the root canal, periodontium, and alveolar bone. However, the cellular mechanisms responsible for the recognition of T. denticola by the innate immune system and the underlying cell signaling pathways that regulate the inflammatory response to T. denticola are currently unresolved. In this study, we demonstrate that T. denticola induces innate immune responses via the utilization of Toll-like receptor 2 (TLR2) but not TLR4. Assessment of TLR2/1 and TLR2/6 heterodimers revealed that T. denticola predominantly utilizes TLR2/6 for the induction of cellular responses. Analysis of the mitogen-activated protein kinase (MAPK) signaling pathway in T. denticola-stimulated monocytes identified a prolonged up-regulation of the MAPK extracellular signal-related kinase 1/2 (ERK1/2) and p38, while no discernible increase in phospho-c-Jun N-terminal kinase 1/2 (JNK1/2) levels was observed. With the aid of pharmacological inhibitors selectively targeting ERK1/2 via the mitogen-activated protein kinase/extracellular signal-related kinase 1/2 kinase and p38, we further demonstrate that ERK1/2 and p38 play a major role in T. denticola-mediated pro- and anti-inflammatory cytokine production. PMID:17923521

  2. A hemagglutinin with mitogenic activity from dark red kidney beans.

    PubMed

    Xia, Lixin; Ng, T B

    2006-12-01

    A 67-kDa hemagglutinin composed of two identical subunits was purified from Phaseolus vulgaris cv. 'Dark Red Kidney Bean'. It was unadsorbed on DEAE-cellulose but adsorbed on Affi-gel blue gel. The hemagglutinin was highly purified after the two aforementioned chromatographic steps as revealed by a single peak in gel filtration on Superdex 75 and a single band in SDS-PAGE. The hemagglutinating activity was stable between 25 degrees C and 70 degrees C, and between pH 4 and pH 11, and in the presence of a variety of divalent metal chlorides at 500 mM concentration. The activity was reduced by 50% at 80 degrees C, and also when the pH was lowered to 3 or elevated to 12. The activity was reduced by 75% in the presence of 250 mM KCl or NaCl. A variety of sugars tested failed to inhibit the hemagglutinating activity of the hemagglutinin. Although the hemagglutinin exhibited mitogenic activity toward murine splenocytes, it had no effect on the activity of HIV-1 reverse transcriptase or mycelial growth in the fungi Botrytis cinerea, Fusarium oxysporum and Mycosphaerella arachidicola. It exerted an antiproliferative activity on leukemia L1210 cells. PMID:16945595

  3. Mitogen-Activated Protein Kinase Phosphatase 2 Regulates the Inflammatory Response in Sepsis▿

    PubMed Central

    Cornell, Timothy T.; Rodenhouse, Paul; Cai, Qing; Sun, Lei; Shanley, Thomas P.

    2010-01-01

    Sepsis results from a dysregulation of the regulatory mechanisms of the pro- and anti-inflammatory response to invading pathogens. The mitogen-activated protein (MAP) kinase cascades are key signal transduction pathways involved in the cellular production of cytokines. The dual-specific phosphatase 1 (DUSP 1), mitogen-activated protein kinase phosphatase-1 (MKP-1), has been shown to be an important negative regulator of the inflammatory response by regulating the p38 and Jun N-terminal protein kinase (JNK) MAP kinase pathways to influence pro- and anti-inflammatory cytokine production. MKP-2, also a dual-specific phosphatase (DUSP 4), is a phosphatase highly homologous with MKP-1 and is known to regulate MAP kinase signaling; however, its role in regulating the inflammatory response is not known. We hypothesized a regulatory role for MKP-2 in the setting of sepsis. Mice lacking the MKP-2 gene had a survival advantage over wild-type mice when challenged with intraperitoneal lipopolysaccharide (LPS) or a polymicrobial infection via cecal ligation and puncture. The MKP-2−/− mice also exhibited decreased serum levels of both pro-inflammatory cytokines (tumor necrosis factor alpha [TNF-α], interleukin-1β [IL-1β], IL-6) and anti-inflammatory cytokines (IL-10) following endotoxin challenge. Isolated bone marrow-derived macrophages (BMDMs) from MKP-2−/− mice showed increased phosphorylation of the extracellular signal-regulated kinase (ERK), decreased phosphorylation of JNK and p38, and increased induction of MKP-1 following LPS stimulation. The capacity for cytokine production increased in MKP-2−/− BMDMs following MKP-1 knockdown. These data support a mechanism by which MKP-2 targets ERK deactivation, thereby decreasing MKP-1 and thus removing the negative inhibition of MKP-1 on cytokine production. PMID:20351138

  4. Differential activation of mitogen-activated protein kinases following high and low LET radiation in murine macrophage cell line.

    PubMed

    Narang, Himanshi; Bhat, Nagesh; Gupta, S K; Santra, S; Choudhary, R K; Kailash, S; Krishna, Malini

    2009-04-01

    Mitogen-activated protein kinases have been shown to respond to various stimuli including cytokines, mitogens and gamma irradiation, leading to cell proliferation, differentiation, or death. The duration of their activation determines the specificity of response to each stimulus in various cells. In this study, the crucial intracellular kinases, ERK, JNK, and p38 kinase involved in cell survival, death, or damage and repair were examined for their activity in RAW 264.7 cells at various time points after irradiation with 2 Gy doses of proton ions or X-rays. This is the first report that shows that the MAPK signaling induced after heavy ion or X-ray exposure is not the same. Unlike gamma irradiation, there was prolonged but marginal activation of prosurvival ERK pathway and significant activation of proapoptotic p38 pathway in response to high LET radiation. PMID:19112558

  5. Ubiquitin plays an atypical role in GPCR-induced p38 MAP kinase activation on endosomes

    PubMed Central

    Grimsey, Neil J.; Aguilar, Berenice; Smith, Thomas H.; Le, Phillip; Soohoo, Amanda L.; Puthenveedu, Manojkumar A.; Nizet, Victor

    2015-01-01

    Protease-activated receptor 1 (PAR1) is a G protein–coupled receptor (GPCR) for thrombin and promotes inflammatory responses through multiple pathways including p38 mitogen-activated protein kinase signaling. The mechanisms that govern PAR1-induced p38 activation remain unclear. Here, we define an atypical ubiquitin-dependent pathway for p38 activation used by PAR1 that regulates endothelial barrier permeability. Activated PAR1 K63-linked ubiquitination is mediated by the NEDD4-2 E3 ubiquitin ligase and initiated recruitment of transforming growth factor-β–activated protein kinase-1 binding protein-2 (TAB2). The ubiquitin-binding domain of TAB2 was essential for recruitment to PAR1-containing endosomes. TAB2 associated with TAB1, which induced p38 activation independent of MKK3 and MKK6. The P2Y1 purinergic GPCR also stimulated p38 activation via NEDD4-2–mediated ubiquitination and TAB1–TAB2. TAB1–TAB2-dependent p38 activation was critical for PAR1-promoted endothelial barrier permeability in vitro, and p38 signaling was required for PAR1-induced vascular leakage in vivo. These studies define an atypical ubiquitin-mediated signaling pathway used by a subset of GPCRs that regulates endosomal p38 signaling and endothelial barrier disruption. PMID:26391660

  6. Inactivation of mitogen-activated protein kinase signaling pathway reduces caspase-14 expression in impaired keratinocytes

    PubMed Central

    Dang, Ningning; Pang, Shuguang; Song, Haiyan; An, Liguo; Ma, Xiaoli

    2016-01-01

    Objective(s): Several investigations have revealed that caspase-14 is responsible for the epidermal differentiation and cornification, as well as the regulation of moisturizing effect. However, the precise regulation mechanism is still not clear. This study was aimed to investigate the expression of caspase-14 in filaggrin-deficient normal human epidermal keratinocytes (NHEKs) and to explore the possible mechanism that contributes to the regulation of caspase-14. Materials and Methods: The filaggrin-deficient NHEKs were induced by transfection with lentivirus (LV) vector encoding small hairpin RNAs (shRNA). The inhibitors SB203580, PD98059 and SP600125 were used for suppressing the expression of p38 mitogen-activated protein kinase (MAPK), p44/42 MAPK and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK). The expression of filaggrin, p38 MAPK, p44/42 MAPK and SAPK/JNK, caspase-14, keratin1and keratin2 were detected by western blot. Results: In filaggrin-deficient NHEKs, the expression of p38, p44/42 MAPK and SAPK/JNK and caspase-14 were significantly decreased. The inhibition of p38 and SAPK/JNK reduced the expression of caspase-14, while the p44/42 MAPK showed no consistent effects. Moreover, the filaggrin knockdown decreased the expression of keratin2, but had no effects on the level of keratin1. Conclusion: The decreased expression of caspase-14 in filaggrin-deficient NHEKs may be induced by the inactivation of MAPK signaling pathway. These provide a novel perspective to understand the mechanism for the protective effects of filaggrin and caspase-14 on skin barrier function. PMID:27096061

  7. B cell mitogenic activity of sea squirt antigen.

    PubMed

    Segawa, K; Ono, K; Oka, S; Jyo, T; Kuroiwa, A; Yamashita, U

    1994-07-01

    The activity of sea squirt antigen, one of the allergy-inducing substances for humans, on murine and human lymphocytes was studied in vitro. Sea squirt antigen stimulated normal mouse spleen cells to proliferate, as detected by [3H]-TdR incorporation, in a dose-dependent manner. The responder cells are B cells because the response was reduced by the treatment of spleen cells with anti-immunoglobulin antibody and complement and passing through a nylon wool column, but not with anti-Thy-1 antibody and complement. Spleen cells of C3H/HeJ mice, which are lipopolysaccharide low responders, were also stimulated as well as spleen cells of C3H/HeN mice, suggesting that this response is not due to lipopolysaccharide in the antigen fraction. Sea squirt antigen stimulated not only proliferative response of B cells, but also polyclonal immunoglobulin production. Furthermore, sea squirt antigen also stimulated human lymphocytes to proliferate and to produce immunoglobulin. All these results suggest that sea squirt antigen has mitogenic activity on B cells, and this ability is concerned with the induction of allergic reaction. PMID:8032238

  8. Mitogen-activated protein kinase cascades in Vitis vinifera

    PubMed Central

    Çakır, Birsen; Kılıçkaya, Ozan

    2015-01-01

    Protein phosphorylation is one of the most important mechanisms to control cellular functions in response to external and endogenous signals. Mitogen-activated protein kinases (MAPK) are universal signaling molecules in eukaryotes that mediate the intracellular transmission of extracellular signals resulting in the induction of appropriate cellular responses. MAPK cascades are composed of four protein kinase modules: MAPKKK kinases (MAPKKKKs), MAPKK kinases (MAPKKKs), MAPK kinases (MAPKKs), and MAPKs. In plants, MAPKs are activated in response to abiotic stresses, wounding, and hormones, and during plant pathogen interactions and cell division. In this report, we performed a complete inventory of MAPK cascades genes in Vitis vinifera, the whole genome of which has been sequenced. By comparison with MAPK, MAPK kinases, MAPK kinase kinases and MAPK kinase kinase kinase kinase members of Arabidopsis thaliana, we revealed the existence of 14 MAPKs, 5 MAPKKs, 62 MAPKKKs, and 7 MAPKKKKs in Vitis vinifera. We identified orthologs of V. vinifera putative MAPKs in different species, and ESTs corresponding to members of MAPK cascades in various tissues. This work represents the first complete inventory of MAPK cascades in V. vinifera and could help elucidate the biological and physiological functions of these proteins in V. vinifera. PMID:26257761

  9. Flavonoids inhibit iNOS production via mitogen activated proteins in lipoteichoic acid stimulated cardiomyoblasts.

    PubMed

    Gutiérrez-Venegas, Gloria; Ventura-Arroyo, Jairo Agustín; Arreguín-Cano, Juan Antonio; Ostoa-Pérez, María Fernanda

    2014-08-01

    Infective endocarditis is caused by oral commensal bacteria which are important etiologic agents in this disease and can induce release of nitric oxide (NO), promoting an inflammatory response in the endocardium. In this study, we investigated the properties of kaempherol, epigallocatechin, apigenin, and naringin in embryonic mouse heart cells (H9c2) treated with lipoteichoic acid (LTA) obtained from Streptococcus sanguinis. NO production was measured with the Griess method. Expression of inducible nitric oxide synthase (iNOS) was detected by reverse transcriptase polymerase chain reaction (RT-PCR). In addition, western blot assays and immunofluorescence staining were used to assess translocation of nuclear factor kappa beta (NF-κB), degradation of IκB, and activity of the mitogen activated protein (MAP) kinases extracellular signal-regulated kinase (ERK 1/2), p38, and c-Jun N-terminal kinase (JNK). And the effects of these flavonoids on cell viability were also assessed. Our results showed that flavonoids blocked activation of ERK, JNK, and p38 in cardiomyocytes treated with LTA. Moreover, the flavonoids showed no cytotoxic effects and blocked NF-κB translocation and IκB degradation and inhibited LTA-induced NF-κB promoter activity, iNOS expression and NO production. In conclusion these effects are consistent with some of the observed anti-inflammatory properties of other flavonoids. PMID:24768712

  10. Protein Kinase Cδ Mediates Neurogenic but Not Mitogenic Activation of Mitogen-Activated Protein Kinase in Neuronal Cells

    PubMed Central

    Corbit, Kevin C.; Foster, David A.; Rosner, Marsha Rich

    1999-01-01

    In several neuronal cell systems, fibroblast-derived growth factor (FGF) and nerve growth factor (NGF) act as neurogenic agents, whereas epidermal growth factor (EGF) acts as a mitogen. The mechanisms responsible for these different cellular fates are unclear. We report here that although FGF, NGF, and EGF all activate mitogen-activated protein (MAP) kinase (extracellular signal-related kinase [ERK]) in rat hippocampal (H19-7) and pheochromocytoma (PC12) cells, the activation of ERK by the neurogenic agents FGF and NGF is dependent upon protein kinase Cδ (PKCδ), whereas ERK activation in response to the mitogenic EGF is independent of PKCδ. Antisense PKCδ oligonucleotides or the PKCδ-specific inhibitor rottlerin inhibited FGF- and NGF-induced, but not EGF-induced, ERK activation. In contrast, EGF-induced ERK activation was inhibited by the phosphatidylinositol-3-kinase inhibitor wortmannin, which had no effect upon FGF-induced ERK activation. Rottlerin also inhibited the activation of MAP kinase kinase (MEK) in response to activated Raf, but had no effect upon c-Raf activity or ERK activation by activated MEK. These results indicate that PKCδ functions either downstream from or in parallel with c-Raf, but upstream of MEK. Inhibition of PKCδ also blocked neurite outgrowth induced by FGF and NGF in PC12 cells and by activated Raf in H19-7 cells, indicating a role for PKCδ in the neurogenic effects of FGF, NGF, and Raf. Interestingly, the PKCδ requirement is apparently cell type specific, since FGF-induced ERK activation was independent of PKCδ in NIH 3T3 murine fibroblasts, in which FGF is a mitogen. These data demonstrate that PKCδ contributes to growth factor specificity and response in neuronal cells and may also promote cell-type-specific differences in growth factor signaling. PMID:10330161

  11. Cadmium induces apoptosis in primary rat osteoblasts through caspase and mitogen-activated protein kinase pathways

    PubMed Central

    Zhao, Hongyan; Liu, Wei; Wang, Yi; Dai, Nannan; Gu, Jianhong; Yuan, Yan; Liu, Xuezhong; Bian, Jianchun

    2015-01-01

    Exposure to cadmium (Cd) induces apoptosis in osteoblasts (OBs); however, little information is available regarding the specific mechanisms of Cd-induced primary rat OB apoptosis. In this study, Cd reduced cell viability, damaged cell membranes and induced apoptosis in OBs. We observed decreased mitochondrial transmembrane potentials, ultrastructure collapse, enhanced caspase-3 activity, and increased concentrations of cleaved PARP, cleaved caspase-9 and cleaved caspase-3 following Cd treatment. Cd also increased the phosphorylation of p38-mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinases (ERK)1/2 and c-jun N-terminal kinase (JNK) in OBs. Pretreatment with the caspase inhibitor, N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone, ERK1/2 inhibitor (U0126), p38 inhibitor (SB203580) and JNK inhibitor (SP600125) abrogated Cd-induced cell apoptosis. Furthermore, Cd-treated OBs exhibited signs of oxidative stress protection, including increased antioxidant enzymes superoxide dismutase and glutathione reductase levels and decreased formation of reactive oxygen species. Taken together, the results of our study clarified that Cd has direct cytotoxic effects on OBs, which are mediated by caspase- and MAPK pathways in Cd-induced apoptosis of OBs. PMID:26425111

  12. Dermatophytes Activate Skin Keratinocytes via Mitogen-Activated Protein Kinase Signaling and Induce Immune Responses

    PubMed Central

    Achterman, Rebecca R.; Moyes, David L.; Thavaraj, Selvam; Smith, Adam R.; Blair, Kris M.

    2015-01-01

    Dermatophytes cause superficial and cutaneous fungal infections in immunocompetent hosts and invasive disease in immunocompromised hosts. However, the host mechanisms that regulate innate immune responses against these fungi are largely unknown. Here, we utilized commercially available epidermal tissues and primary keratinocytes to assess (i) damage induction by anthropophilic, geophilic, and zoophilic dermatophyte strains and (ii) the keratinocyte signaling pathways, transcription factors, and proinflammatory responses induced by a representative dermatophyte, Trichophyton equinum. Initially, five dermatophyte species were tested for their ability to invade, cause tissue damage, and induce cytokines, with Microsporum gypseum inducing the greatest level of damage and cytokine release. Using T. equinum as a representative dermatophyte, we found that the mitogen-activated protein kinase (MAPK) pathways were predominantly affected, with increased levels of phospho-p38 and phospho-Jun N-terminal protein kinase (JNK) but decreased levels of phospho-extracellular signal-regulated kinases 1 and 2 (ERK1/2). Notably, the NF-κB and PI3K pathways were largely unaffected. T. equinum also significantly increased expression of the AP-1-associated transcription factor, c-Fos, and the MAPK regulatory phosphatase, MKP1. Importantly, the ability of T. equinum to invade, cause tissue damage, activate signaling and transcription factors, and induce proinflammatory responses correlated with germination, indicating that germination may be important for dermatophyte virulence and host immune activation. PMID:25667269

  13. Gabapentin-induced mitogenic activity in rat pancreatic acinar cells.

    PubMed

    Dethloff, L; Barr, B; Bestervelt, L; Bulera, S; Sigler, R; LaGattuta, M; de La Iglesia, F

    2000-05-01

    Gabapentin induces pancreatic acinar cell tumors in rats through unknown, yet apparently nongenotoxic mechanisms. The primary objective of this study was to determine whether gabapentin acts as a tumor promoter by stimulating acinar cell proliferation in rat pancreas. To this end, indices of pancreatic growth, including increased pancreatic weight, stimulation of acinar cell proliferation, and/or enhanced expression of immediate-early oncogenes were monitored in rats given gabapentin in the diet at 2 g/kg/day for up to 12 months. Rats fed raw soy flour (RSF), a known inducer of pancreatic acinar cell tumors through cholecystokinin-mediated mitogenic stimulation, were used throughout as positive controls. In addition, recent data suggests that gabapentin binds to the alpha(2)delta subunit of a voltage-gated, L-type calcium channel. Because signaling pathways for proliferative processes in pancreatic acinar cells involve intracellular calcium mobilization, the effects of gabapentin on intracellular calcium mobilization ([Ca(2+)](i)) and (3)H-thymidine incorporation were investigated in pancreatic acinar cells isolated from normal rat pancreas and in the AR42J rat pancreatic tumor cell line. As indicated by BrdU labeling indices, acinar cell proliferation increased 3-fold by Day 3 of RSF treatment and remained slightly greater than controls throughout the experiment. Pancreatic weights of RSF-fed rats were 32 to 56% greater than controls throughout the experiment. In contrast, gabapentin had no effect on pancreatic weight or acinar cell labeling index, and therefore had no apparent effect on pancreatic growth. In isolated pancreatic acinar cells, however, gabapentin induced mobilization of intracellular calcium and caused a slight increase in (3)H-thymidine incorporation. The data suggest that gabapentin may possess low level mitogenic activity, which is not easily detectable in in vivo assays. PMID:10788559

  14. Prolonged activation of mitogen-activated protein kinases during NSAID-induced apoptosis in HT-29 colon cancer cells.

    PubMed

    Kim, T I; Jin, S H; Kim, W H; Kang, E H; Choi, K Y; Kim, H J; Shin, S K; Kang, J K

    2001-06-01

    The mechanisms of the antineoplastic effect of nonsteroidal anti-inflammatory drugs (NSAIDs) still are unknown, but the induction of apoptosis is one of the possible mechanisms. We attempted to demonstrate the role of mitogen-activated protein (MAP) kinases, generally considered to be important mediators of proliferative and apoptotic signals, in NSAID-induced colon cancer cell apoptosis. Apoptosis was detected by demonstration of DNA fragmentation in agarose gel electrophoresis. Cell death was assessed by trypan blue dye exclusion method. MAP kinase activation was assessed by Western blot using phosphospecific antibodies to MAP kinases. Kinase assay using activating transcription factor-2 (ATF-2) fusion protein as a substrate was also performed for measuring p38 MAP kinase activity. For the inhibition of p38 MAP kinase, pyridinylimidazole compound (SB203580) was utilized. Caspase-3 activity was measured using the tetrapeptide fluorogenic substrate Ac-DEVD-AMC. Treatment of HT-29 cells with NSAIDs results in time- and dose-dependent induction of apoptosis, accompanied by sustained activation of all three MAP kinase subfamilies. The SB203580, a p38 MAP kinase inhibitor, reduced indomethacin-induced cell death by 43%, while PD098059, a MAPK/ERK kinase (MEK)1 inhibitor, did not affect cell death. p38 MAP kinase and caspase-3 activation were not significantly interlinked in indomethacin-induced apoptosis. From these results, we conclude that NSAIDs can induce prolonged activation of MAP kinases in colon cancer cells and that, of these, p38 MAP kinase may play a partial but significant role in indomethacin-induced apoptosis. PMID:11459290

  15. Azorella compacta methanolic extract induces apoptosis via activation of mitogen-activated protein kinase.

    PubMed

    Sung, Min Hee; Kwon, Ok-Kyoung; Oh, Sei-Ryang; Lee, Joongku; Park, Sang-Hong; Han, Sang Bae; Ahn, Kyung-Seop

    2015-11-01

    Azorella compacta Phil. (AC) is an alpine medicinal plant used traditionally for antibacterial treatment. Recent studies have revealed that this plant also has anti‑diabetic effects, but that it is toxic. The present study investigated the underlying mechanisms of action of AC extract against human leukemia HL60 cells. Apoptosis induction was measured by MTT assay, fluorescence microscopy, DNA fragmentation assay, flow cytometric analysis, reverse transcription quantitative polymerase chain reaction and western blot analyses. It was found that AC extract inhibited the growth of HL60 and other cancer cell lines in a dose‑dependent manner. The cytotoxic effects of AC extract on HL60 cells were associated with apoptosis characterized by DNA fragmentation and dose‑dependent increases in Annexin V‑positive cells, as determined by flow cytometric analysis. AC‑extract‑induced apoptosis was accompanied by activated/cleaved caspase‑3, caspase‑9 and poly(adenosine diphosphate‑ribose) polymerase (PARP). The increases in apoptosis were also associated with decreases of the apoptosis-inhibitor B-cell lymphoma 2 (Bcl‑2), upregulation of pro‑apoptotic Bcl-2-associated X (Bax) protein and downregulation of anti‑apoptotic Bcl extra large protein. Furthermore, western blot analysis of mitogen-activated protein kinase (MAPK)-associated proteins indicated that treatment with AC extract increased the levels of c-Jun N-terminal kinase, extracellular signal-regulated kinase and p38. In addition, the expression of Bax and cleaved PARP was blocked when AC treatment was performed in the presence of MAPK inhibitors. It was therefore concluded that AC induced apoptosis in human leukemia HL60 cells via an intrinsic pathway controlled through MAPK-associated signaling. PMID:26397193

  16. Crosstalk between mitogen-activated protein kinases and mitochondria in cardiac diseases: therapeutic perspectives

    PubMed Central

    Javadov, Sabzali; Jang, Sehwan; Agostini, Bryan

    2014-01-01

    Cardiovascular diseases cause more mortality and morbidity worldwide than any other diseases. Although many intracellular signaling pathways influence cardiac physiology and pathology, the mitogen-activated protein kinase (MAPK) family has garnered significant attention because of its vast implications in signaling and cross-talk with other signaling networks. The extensively studied MAPKs ERK1/2, p38, JNK, and ERK5, demonstrate unique intracellular signaling mechanisms, responding to a myriad of mitogens and stressors and influencing the signaling of cardiac development, metabolism, performance, and pathogenesis. Definitive relationships between MAPK signaling and cardiac dysfunction remain elusive, despite 30 years of extensive clinical studies and basic research of various animal/cell models, severities of stress, and types of stimuli. Still, several studies have proven the importance of MAPK cross-talk with mitochondria, powerhouses of the cell that provide over 80% of ATP for normal cardiomyocyte function and play a crucial role in cell death. Although many questions remain unanswered, there exists enough evidence to consider the possibility of targeting MAPK-mitochondria interactions in the prevention and treatment of heart disease. The goal of this review is to integrate previous studies into a discussion of MAPKs and MAPK-mitochondria signaling in cardiac diseases, such as myocardial infarction (ischemia), hypertrophy and heart failure. A comprehensive understanding of relevant molecular mechanisms, as well as challenges for studies in this area, will facilitate the development of new pharmacological agents and genetic manipulations for therapy of cardiovascular diseases. PMID:24924700

  17. Wounding systemically activates a mitogen-activated protein kinase in forage and turf grasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Forage and turf grasses are continually cut and grazed by livestock, however very little is known concerning the perception or molecular responses to wounding. Mechanical wounding rapidly activated a 46 kDa and a 44 kDa mitogen-activated protein kinase (MAPK) in six different grass species. In the m...

  18. Roles of mitogen activated protein kinases and EGF receptor in arsenite-stimulated matrix metalloproteinase-9 production

    SciTech Connect

    Cooper, Karen L.; Myers, Terrance Alix; Rosenberg, Martina; Chavez, Miquella; Hudson, Laurie G. . E-mail: lghudson@unm.edu

    2004-11-01

    The dermatotoxicity of arsenic is well established and epidemiological studies identify an increased incidence of keratinocytic tumors (basal cell and squamous cell carcinoma) associated with arsenic exposure. Little is known about the underlying mechanisms of arsenic-mediated skin carcinogenesis, but activation of mitogen-activated protein (MAP) kinases and subsequent regulation of downstream target genes may contribute to tumor promotion and progression. In this study, we investigated activation of the extracellular signal regulated kinase (ERK) and the stress-associated kinase p38 by arsenite in HaCat cells, a spontaneously immortalized human keratinocyte cell line. Arsenite concentrations {>=}100 {mu}M stimulate rapid activation of p38 and ERK MAP kinases. However, upon extended exposure (24 h), persistent stimulation of p38 and ERK MAP kinases was detected at low micromolar concentrations of arsenite. Although ERK and p38 were activated with similar time and concentration dependence, the mechanism of activation differed for these two MAP kinases. ERK activation by arsenite was fully dependent on the catalytic activity of the epidermal growth factor (EGF) receptor and partially dependent on Src-family kinase activity. In contrast, p38 activation was independent of EGF receptor or Src-family kinase activity. Arsenite-stimulated MAP kinase signal transduction resulted in increased production of matrix metalloproteinase (MMP)-9, an AP-1 regulated gene product. MMP-9 induction by arsenite was prevented when EGF receptor or MAP kinase signaling was inhibited. These studies indicate that EGF receptor activation is a component of arsenite-mediated signal transduction and gene expression in keratinocytes and that low micromolar concentrations of arsenite stimulate key signaling pathways upon extended exposure. Stimulation of MAP kinase cascades by arsenic and subsequent regulation of genes including c-fos, c-jun, and the matrix degrading proteases may play an important

  19. Inhibition of Fast Axonal Transport by Pathogenic SOD1 Involves Activation of p38 MAP Kinase

    PubMed Central

    Morfini, Gerardo A.; Bosco, Daryl A.; Brown, Hannah; Gatto, Rodolfo; Kaminska, Agnieszka; Song, Yuyu; Molla, Linda; Baker, Lisa; Marangoni, M. Natalia; Berth, Sarah; Tavassoli, Ehsan; Bagnato, Carolina; Tiwari, Ashutosh; Hayward, Lawrence J.; Pigino, Gustavo F.; Watterson, D. Martin; Huang, Chun-Fang; Banker, Gary; Brown, Robert H.; Brady, Scott T.

    2013-01-01

    Dying-back degeneration of motor neuron axons represents an established feature of familial amyotrophic lateral sclerosis (FALS) associated with superoxide dismutase 1 (SOD1) mutations, but axon-autonomous effects of pathogenic SOD1 remained undefined. Characteristics of motor neurons affected in FALS include abnormal kinase activation, aberrant neurofilament phosphorylation, and fast axonal transport (FAT) deficits, but functional relationships among these pathogenic events were unclear. Experiments in isolated squid axoplasm reveal that FALS-related SOD1 mutant polypeptides inhibit FAT through a mechanism involving a p38 mitogen activated protein kinase pathway. Mutant SOD1 activated neuronal p38 in mouse spinal cord, neuroblastoma cells and squid axoplasm. Active p38 MAP kinase phosphorylated kinesin-1, and this phosphorylation event inhibited kinesin-1. Finally, vesicle motility assays revealed previously unrecognized, isoform-specific effects of p38 on FAT. Axon-autonomous activation of the p38 pathway represents a novel gain of toxic function for FALS-linked SOD1 proteins consistent with the dying-back pattern of neurodegeneration characteristic of ALS. PMID:23776455

  20. Mitogen-activated protein kinases in the porcine retinal arteries and neuroretina following retinal ischemia-reperfusion

    PubMed Central

    Gesslein, Bodil; Håkansson, Gisela; Carpio, Ronald; Gustafsson, Lotta; Perez, Maria-Thereza

    2010-01-01

    Purpose The aim of the present study was to examine changes in the expression of intracellular signal-transduction pathways, specifically mitogen-activated protein kinases, following retinal ischemia-reperfusion. Methods Retinal ischemia was induced by elevating the intraocular pressure in porcine eyes, followed by 5, 12, or 20 h of reperfusion. The results were compared to those of the sham- operated fellow eye. The retinal arteries and neuroretina were isolated separately and examined. Tissue morphology and DNA fragmentation were studied using histology. Extracellular signal-regulated kinase 1 and 2 (ERK1/2), p38, c-junNH2-terminal kinases (JNK), and c-jun protein and mRNA expression were examined using immunofluorescence staining, western blot, and real-time PCR techniques. Results Pyknotic cell nuclei, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells, and glial fibrillary acidic protein mRNA expression were increased in ischemia, suggesting injury. Phosphorylated ERK1/2 protein levels were increased in the neuroretina following ischemia, while mRNA levels were unaltered. p38 protein and mRNA levels were not affected by ischemia. Immunofluorescence staining for phosphorylated p38 was especially intense in the retinal blood vessels, while only weak in the neuroretina. Phosphorylated JNK protein and mRNA were slightly decreased in ischemia. Phosphorylated c-jun protein and mRNA levels were higher in the neuroretina after ischemia-reperfusion. Conclusions Retinal ischemia-reperfusion alters expression of mitogen-activated protein kinases, particularly ERK1/2, in the neuroretina and retinal arteries. The development of pharmacological treatment targeting these intracellular transduction pathways may prevent injury to the eye following retinal circulatory failure. PMID:20300568

  1. p38 MAP Kinase Links CAR Activation and Inactivation in the Nucleus via Phosphorylation at Threonine 38.

    PubMed

    Hori, Takeshi; Moore, Rick; Negishi, Masahiko

    2016-06-01

    Nuclear receptor constitutive androstane receptor (CAR, NR1I3), which regulates hepatic drug and energy metabolisms as well as cell growth and death, is sequestered in the cytoplasm as its inactive form phosphorylated at threonine 38. CAR activators elicit dephosphorylation, and nonphosphorylated CAR translocates into the nucleus to activate its target genes. CAR was previously found to require p38 mitogen-activated protein kinase (MAPK) to transactivate the cytochrome P450 2B (CYP2B) genes. Here we have demonstrated that p38 MAPK forms a complex with CAR, enables it to bind to the response sequence, phenobarbital-responsive enhancer module (PBREM), within the CYP2B promoter, and thus recruits RNA polymerase II to activate transcription. Subsequently, p38 MAPK elicited rephosphorylation of threonine 38 to inactivate CAR and exclude it from the nucleus. Thus, nuclear p38 MAPK exerted dual regulation by sequentially activating and inactivating CAR-mediated transcription through phosphorylation of threonine 38. PMID:27074912

  2. p38 MAP Kinase Links CAR Activation and Inactivation in the Nucleus via Phosphorylation at Threonine 38

    PubMed Central

    Hori, Takeshi; Moore, Rick

    2016-01-01

    Nuclear receptor constitutive androstane receptor (CAR, NR1I3), which regulates hepatic drug and energy metabolisms as well as cell growth and death, is sequestered in the cytoplasm as its inactive form phosphorylated at threonine 38. CAR activators elicit dephosphorylation, and nonphosphorylated CAR translocates into the nucleus to activate its target genes. CAR was previously found to require p38 mitogen-activated protein kinase (MAPK) to transactivate the cytochrome P450 2B (CYP2B) genes. Here we have demonstrated that p38 MAPK forms a complex with CAR, enables it to bind to the response sequence, phenobarbital-responsive enhancer module (PBREM), within the CYP2B promoter, and thus recruits RNA polymerase II to activate transcription. Subsequently, p38 MAPK elicited rephosphorylation of threonine 38 to inactivate CAR and exclude it from the nucleus. Thus, nuclear p38 MAPK exerted dual regulation by sequentially activating and inactivating CAR-mediated transcription through phosphorylation of threonine 38. PMID:27074912

  3. LZAP Inhibits p38 MAPK (p38) Phosphorylation and Activity by Facilitating p38 Association with the Wild-Type p53 Induced Phosphatase 1 (WIP1)

    PubMed Central

    An, Hanbing; Lu, Xinyuan; Liu, Dan; Yarbrough, Wendell G.

    2011-01-01

    LZAP (Cdk5rap3, C53) is a putative tumor suppressor that inhibits RelA, Chk1 and Chk2 and activates p53. LZAP is lost in a portion of human head and neck squamous cell carcinoma and experimental loss of LZAP expression is associated with enhanced invasion, xenograft tumor growth and angiogenesis. p38 MAPK can increase or decrease proliferation and cell death depending on cellular context. LZAP has no known enzymatic activity, implying that its biological functions are likely mediated by its protein-protein interactions. To gain further insight into LZAP activities, we searched for LZAP-associated proteins (LAPs). Here we show that the LZAP binds p38, alters p38 cellular localization, and inhibits basal and cytokine-stimulated p38 activity. Expression of LZAP inhibits p38 phosphorylation in a dose-dependent fashion while loss of LZAP enhances phosphorylation and activation with resultant phosphorylation of p38 downstream targets. Mechanistically, the ability of LZAP to alter p38 phosphorylation depended, at least partially, on the p38 phosphatase, Wip1. Expression of LZAP increased both LZAP and Wip1 binding to p38. Taken together, these data suggest that LZAP activity includes inhibition of p38 phosphorylation and activation. PMID:21283629

  4. Differential activation by cytokines of mitogen-activated protein kinases in bovine temporomandibular-joint disc cells.

    PubMed

    Landesberg, R; Takeuchi, E; Puzas, J E

    1999-01-01

    Temporomandibular disorders affect a significant proportion of the population. While their aetiology is not well defined, recent histological studies suggest that the majority are similar to the osteoarthritis seen in other joints. Inflammatory cytokines such as interleukin-1 and tumour necrosis factor-alpha appear to be important in the cascade of events leading to joint destruction in osteoarthritis. Here, cells from the disc of bovine temporomandibular joint were used to examine the response to various cytokines in vitro. Disc cells were stimulated with interleukin-1alpha, tumour necrosis factor-alpha, transforming growth factor-beta, platelet-derived growth factor, and basic fibroblast growth factor. Their effects were monitored by assessing the phosphorylation of selected signal-transduction intermediates using western blot. Mitogen-activated protein kinases (Erk 1, Erk 2) were rapidly phosphorylated by exposure to basic fibroblast growth factor, platelet-derived growth factor, and tumour necrosis factor-alpha, while interleukin-1alpha showed a weak response. Transforming growth factor-beta failed to activate these kinases. Examination of the effect of these cytokines on p38 (an intermediate in the stress-activated protein-kinase pathway) showed an increase in phosphorylated p38 when stimulated with tumour necrosis factor-alpha and interleukin-1alpha. The amounts of phosphorylated signal transducer and activator of transcription-3 did not significantly increase when the cells were exposed to any of the cytokines. PMID:10075149

  5. Studies on mitogen-activated protein kinase signaling pathway in the alveolar macrophages of chronic bronchitis rats.

    PubMed

    Huang, Yan; Meng, Xiao-Ming; Jiang, Guo-Lin; Yang, Ya-Ru; Liu, Juan; Lv, Xiong-Wen; Li, Jun

    2015-02-01

    Lipopolysaccharide (LPS), a potent stimulator of inflammatory responses in alveolar macrophages (AMs), activates several intracellular signaling pathways, including mitogen-activated protein kinases (MAPK). In the present study, we investigated the MAPK pathway in AMs of chronic bronchitis (CB) rats. CB was induced by endotracheal instillation of LPS followed by Bacillus Calmette Guerin injection through the caudal vein 1 week later. Specific inhibitors were used and protein phosphorylations were detected by Western blot. We found that Genistein (PTK inhibitor) could inhibit protein kinase C (PKC), phosphatidylinositol-3 kinase (PI3K)/protein kinase B (Akt or PKB) MAPK signaling pathway with different degrees, LY294002 (PI3K inhibitor) could not only inhibit phospho-PI3K/Akt expression, but also inhibit p38 and c-Jun NH2-terminal kinases (JNK) phosphorylation. Calphostin C (PKC inhibitor) could inhibit phospho-PKC expression and exerted significant effects on extracellular signal-regulated kinases (ERK) phosphorylation, however, it had no impact on p38 and JNK phosphorylation. These results demonstrated that the LPS mediated signaling pathway of MAPK in AMs of CB rats could be described as follows: PTK-PI3K-Akt-JNK/p38 or PTK-PI3K-PKC-ERK, and PI3K may have a negative regulation on the activation of downstream proteins. PMID:25467375

  6. Adult-onset hyperthyroidism impairs spatial learning: possible involvement of mitogen-activated protein kinase signaling pathways.

    PubMed

    Bitiktaş, Soner; Kandemir, Başak; Tan, Burak; Kavraal, Şehrazat; Liman, Narin; Dursun, Nurcan; Dönmez-Altuntaş, Hamiyet; Aksan-Kurnaz, Işil; Suer, Cem

    2016-08-01

    Given evidence that mitogen-activated protein kinase (MAPK) activation is part of the nongenomic actions of thyroid hormones, we investigated the possible consequences of hyperthyroidism for the cognitive functioning of adult rats. Young adult rats were treated with L-thyroxine or saline. Twenty rats in each group were exposed to Morris water maze testing, measuring their performance in a hidden-platform spatial task. In a separate set of rats not exposed to Morris water maze testing (untrained rats), the expression and phosphorylated levels of p38-MAPK and of its two downstream effectors, Elk-1 and cAMP response element-binding protein, were evaluated using quantitative reverse transcriptase-PCR and western blotting. Rats with hyperthyroidism showed delayed acquisition of learning compared with their wild-type counterparts, as shown by increased escape latencies and distance moved on the last two trials of daily training in the water maze. The hyperthyroid rats, however, showed no difference during probe trials. Western blot analyses of the hippocampus showed that hyperthyroidism increased phosphorylated p38-MAPK levels in untrained rats. Although our study is correlative in nature and does not exclude the contribution of other molecular targets, our findings suggest that the observed impairments in acquisition during actual learning in rats with hyperthyroidism may result from the increased phosphorylation of p38-MAPK. PMID:27258653

  7. Social interaction reward decreases p38 activation in the nucleus accumbens shell of rats.

    PubMed

    Salti, Ahmad; Kummer, Kai K; Sadangi, Chinmaya; Dechant, Georg; Saria, Alois; El Rawas, Rana

    2015-12-01

    We have previously shown that animals acquired robust conditioned place preference (CPP) to either social interaction alone or cocaine alone. Recently it has been reported that drugs of abuse abnormally activated p38, a member of mitogen-activated protein kinase family, in the nucleus accumbens. In this study, we aimed to investigate the expression of the activated form of p38 (pp38) in the nucleus accumbens shell and core of rats expressing either cocaine CPP or social interaction CPP 1 h, 2 h and 24 h after the CPP test. We hypothesized that cocaine CPP will increase pp38 in the nucleus accumbens shell/core as compared to social interaction CPP. Surprisingly, we found that 24 h after social interaction CPP, pp38 neuronal levels were decreased in the nucleus accumbens shell to the level of naïve rats. Control saline rats that received saline in both compartments of the CPP apparatus and cocaine CPP rats showed similar enhanced p38 activation as compared to naïve and social interaction CPP rats. We also found that the percentage of neurons expressing dopaminergic receptor D2R and pp38 was also decreased in the shell of the nucleus accumbens of social interaction CPP rats as compared to controls. Given the emerging role of p38 in stress/anxiety behaviors, these results suggest that (1) social interaction reward has anti-stress effects; (2) cocaine conditioning per se does not affect p38 activation and that (3) marginal stress is sufficient to induce p38 activation in the shell of the nucleus accumbens. PMID:26300300

  8. GITRL modulates the activities of p38 MAPK and STAT3 to promote Th17 cell differentiation in autoimmune arthritis

    PubMed Central

    Ma, Jie; Wang, Jiemin; Qi, Chen; Rui, Ke; Wang, Yungang; Xu, Huaxi; Lu, Liwei; Wang, Shengjun

    2016-01-01

    The glucocorticoid-induced TNFR family-related protein (GITR) and its ligand play a critical role in the pathogenesis of autoimmune arthritis by enhancing the Th17 cell response, but their molecular mechanisms remain largely unclear. This study aims to define the role of p38 mitogen-activated protein kinases (MAPK) and signal transducer and activator of transcription 3 (STAT3) signaling in GITRL-induced Th17 cells in autoimmune arthritis. We found that the p38 phosphorylation was enhanced by GITRL in activated CD4+T cells, and the p38 inhibitor restrained the GITRL-induced Th17 cell expansion in a dose-dependent manner. Moreover, there was decreased STAT3 activity on Tyr705 and Ser727 with the p38 inhibitor in vitro. Notably, the p38 inhibitor could prevent GITRL-treated arthritis progression and markedly decrease the Th17 cell percentages. The phosphorylation of the Tyr705 site was significantly lower in the GITRL-treated CIA mice administrated with the p38 inhibitor. A significantly higher phosphorylation of p38 was detected in RA patients and had a positive relationship with the serum level of anti-cyclic citrullinated peptide (anti-CCP) antibody. Our findings have indicated that GITRL could promote Th17 cell differentiation by p38 MAPK and STAT3 signaling in autoimmune arthritis. PMID:26657118

  9. Activated p38 MAPK in Peripheral Blood Monocytes of Steroid Resistant Asthmatics

    PubMed Central

    Li, Ling-bo; Leung, Donald Y. M.; Goleva, Elena

    2015-01-01

    Steroid resistance is a significant problem in management of chronic inflammatory diseases, including asthma. Accessible biomarkers are needed to identify steroid resistant patients to optimize their treatment. This study examined corticosteroid resistance in severe asthma. 24 asthmatics with forced expiratory volume in one second of less then 80% predicted were classified as steroid resistant or steroid sensitive based on changes in their lung function following a week of treatment with oral prednisone. Heparinised blood was collected from patients prior to oral prednisone administration. Phosphorylated mitogen activated kinases (MAPK) (extracellular regulated kinase (ERK), p38 and jun kinase (JNK)) were analyzed in whole blood samples using flow cytometry. Activation of phospho-p38 MAPK and phospho-mitogen- and stress-activated protein kinase 1 (MSK1) in asthmatics’ peripheral blood mononuclear cells (PBMC) were confirmed by Western blot. Dexamethasone suppression of the LPS-induced IL-8 mRNA production by steroid resistant asthmatics PBMC in the presence of p38 and ERK inhibitors was evaluated by real time PCR. Flow cytometry analysis identified significantly stronger p38 phosphorylation in CD14+ monocytes from steroid resistant than steroid sensitive asthmatics (p = 0.014), whereas no difference was found in phosphorylation of ERK or JNK in CD14+ cells from these two groups of asthmatics. No difference in phosphorylated p38, ERK, JNK was detected in CD4+, CD8+ T cells, B cells and NK cells from steroid resistant vs. steroid sensitive asthmatics. P38 MAPK pathway activation was confirmed by Western blot, as significantly higher phospho-p38 and phospho-MSK1 levels were detected in the PBMC lysates from steroid resistant asthmatics. P38 inhibitor significantly enhanced DEX suppression of LPS-induced IL-8 mRNA by PBMC of steroid resistant asthmatics. This is the first report demonstrating selective p38 MAPK pathway activation in blood monocytes of steroid

  10. Mitogen-activated protein kinase pathway mediates DBP-maf-induced apoptosis in RAW 264.7 macrophages.

    PubMed

    Gumireddy, Kiranmai; Reddy, C Damodar; Swamy, Narasimha

    2003-09-01

    Vitamin D-binding protein-macrophage-activating factor (DBP-maf) is derived from serum vitamin D binding protein (DBP) by selective deglycosylation during inflammation. In the present study, we investigated the effect of DBP-maf on RAW 264.7 macrophages and the underlying intracellular signal transduction pathways. DBP-maf increased proapoptotic caspase-3, -8, and -9 activities and induced apoptosis in RAW 264.7 cells. However, DBP, the precursor to DBP-maf did not induce apoptosis in these cells. Cell cycle analysis of DBP-maf-treated RAW 264.7 cells revealed growth arrest with accumulation of cells in sub-G(0)/G(1) phase. We also investigated the role of mitogen-activated protein kinase (MAPK) pathways in the DBP-maf-induced apoptosis of RAW264.7 cells. DBP-maf increased the phosphorylation of p38 and JNK1/2, while it decreased the ERK1/2 phosphorylation. Treatment with the p38 MAPK inhibitor, SB202190, attenuated DBP-maf-induced apoptosis. PD98059, a MEK specific inhibitor, did not show a significant inhibition of apoptosis induced by DBP-maf. Taken together, these results suggest that the p38 MAPK pathway plays a crucial role in DBP-maf-mediated apoptosis of macrophages. Our studies indicate that, during inflammation DBP-maf may function positively by causing death of the macrophages when activated macrophages are no longer needed at the site of inflammation. In summary, we report for the first time that DBP-maf induces apoptosis in macrophages via p38 and JNK1/2 pathway. PMID:12938159

  11. Liquiritigenin Induces Tumor Cell Death through Mitogen-Activated Protein Kinase- (MPAKs-) Mediated Pathway in Hepatocellular Carcinoma Cells

    PubMed Central

    Lu, Jiahui; Liu, Yan; Meng, Qingfan; Xie, Jing; Wang, Zhenzuo

    2014-01-01

    Liquiritigenin (LQ), separated from Glycyrrhiza radix, possesses anti-inflammatory, antihyperlipidemic, and antiallergic effects. Our present study aims to investigate the antihepatocellular carcinoma effects of LQ both in cell and animal models. LQ strikingly reduced cell viability, enhanced apoptotic rate, induced lactate dehydrogenase over-release, and increased intracellular reactive oxygen species (ROS) level and caspase 3 activity in both PLC/PRL/5 and HepG2 cells. The expression of cleaved PARP, the hall-marker of apoptosis, was enhanced by LQ. LQ treatment resulted in a reduction of the expressions of B-cell lymphoma 2 (Bcl-2) and B-cell lymphoma-extra large (Bcl-xL), and an increase of the phosphorylation of c-Jun N-terminal kinases (JNK) and P38. LQ-mediated cell viability reduction, mitochondrial dysfunction, apoptosis related protein abnormal expressions, and JNK and P38 activation were partially abolished by N-Acetyl-L-cysteine (a ROS inhibitor) pretreatment. Moreover, LQ suppressed the activation of extracellular signaling-regulated kinase (ERKs) and reduced the translocation of phosphor-ERKs from cytoplasm to nucleus. This antitumor activity was further confirmed in PLC/PRL/5-xenografted mice model. All these data indicate that the antihepatocellular carcinoma effects of LQ are related to its modulation of the activations of mitogen-activated protein kinase (MAPKs). The study provides experimental evidence supporting LQ as a potential therapeutic agent for hepatocellular carcinoma treatment. PMID:24738081

  12. Impacts of Activation of the Mitogen-Activated Protein Kinase Pathway in Pancreatic Cancer

    PubMed Central

    Furukawa, Toru

    2015-01-01

    Pancreatic cancer is characterized by constitutive activation of the mitogen-activated protein kinase (MAPK) pathway. Mutations of KRAS or BRAF and epigenetic abrogation of DUSP6 contribute synergistically to the constitutive activation of MAPK. Active MAPK induces the expression of a variety of genes that are thought to play roles in malignant phenotypes of pancreatic cancer. By blocking the functions of such induced genes, it is possible to attenuate the malignant phenotypes. The development of drugs targeting genes downstream of MAPK may provide a novel therapeutic option for pancreatic cancer. PMID:25699241

  13. Localised mitogenic activity in horses following infection with Streptococcus equi.

    PubMed

    McLean, R; Rash, N L; Robinson, C; Waller, A S; Paillot, R

    2015-06-01

    Streptococcus equi subspecies equi (S. equi) is the causative agent of strangles, a highly contagious upper respiratory disease of equids. Streptococcus equi produces superantigens (sAgs), which are thought to contribute to strangles pathogenicity through non-specific T-cell activation and pro-inflammatory response. Streptococcus equi infection induces abscesses in the lymph nodes of the head and neck. In some individuals, some abscess material remains into the guttural pouch and inspissates over time to form chondroids which can harbour live S. equi. The aim of this study was to determine the sites of sAg production during infection and therefore improve our understanding of their role. Abscess material, chondroids and serum collected from Equidae with signs of strangles were tested in mitogenic assays. Mitogenic sAg activity was only detected in abscess material and chondroids. Our data support the localised in vivo activity of sAg during both acute and carrier phases of S. equi infection. PMID:25841794

  14. Lipopolysaccharide induces cholangiocyte proliferation via an interleukin-6-mediated activation of p44/p42 mitogen-activated protein kinase.

    PubMed

    Park, J; Gores, G J; Patel, T

    1999-04-01

    The biliary epithelium is exposed to mediators of inflammation such as bacterial endotoxin or lipopolysaccharide (LPS) in a variety of inflammatory conditions. These conditions are also characterized by cholangiocyte proliferation and a predisposition to malignancy. Furthermore, LPS can enhance the expression of interleukin-6 (IL-6), a known biliary mitogen. However, the effects of LPS on cholangiocyte proliferation or IL-6 secretion are unknown. Thus, our aims were to determine if LPS stimulates cholangiocyte proliferation by IL-6-dependent signaling pathways. H69 cells derived from normal human intrahepatic cholangiocytes proliferated in response to LPS. Cholangiocytes responded to LPS (and other inflammatory cytokines such as tumor necrosis factor alpha [TNF-alpha] and IL-1beta) by increased secretion of IL-6, which had a mitogenic effect on H69 cells. Preincubation with anti-IL-6 neutralizing antibodies inhibited LPS-induced proliferation. Furthermore, cholangiocytes possessed the IL-6 receptor complex subunits and intact signaling mechanisms leading to activation of signal transducers and activators of transcription (STAT) factors. Although both p38 and p44/p42 mitogen-activated protein kinases (MAPKs) were constitutively present and active in cholangiocytes, IL-6 increased p44/p42, but not p38 MAPK activity. PD098059 inhibited activation of p44/p42 MAPK in cholangiocytes and completely blocked DNA synthesis in response to IL-6 or LPS. These studies identify a critical role for the p44/p42 MAPK in cholangiocyte proliferation and demonstrate that the proliferative response of cholangiocytes to inflammatory mediators such as LPS involves IL-6-mediated activation of the p44/p42 MAPK pathway. PMID:10094943

  15. MKK3 was involved in larval settlement of the barnacle Amphibalanus amphitrite through activating the kinase activity of p38MAPK.

    PubMed

    Zhang, Gen; He, Li-Sheng; Wong, Yue Him; Qian, Pei-Yuan

    2013-01-01

    The p38 mitogen-activated protein kinase (p38MAPK) plays a key role in larval settlement of the barnacle Amphibalanus amphitrite. To study the signaling pathway associated with p38MAPK during larval settlement, we sought to identify the upstream kinase of p38MAPK. Three MKKs (MKK3, MKK4 and MKK7) and three MAPKs (p38MAPK, ERK and JNK) in A. amphitrite were cloned and recombinantly expressed in E. coli. Through kinase assays, we found that MKK3, but not MKK4 or MKK7, phosphorylated p38MAPK. Furthermore, MKK3 activity was specific to p38MAPK, as it did not phosphorylate ERK or JNK. To further investigate the functional relationship between MKK3 and p38MAPK in vivo, we studied the localization of phospho-MKK3 (pMKK3) and MKK3 by immunostaining. Consistent with the patterns of p38MAPK and phospho-p38MAPK (pp38MAPK), pMKK3 and MKK3 mainly localized to the antennules of the cyprids. Western blot analysis revealed that pMKK3 levels, like pp38MAPK levels, were elevated at cyprid stage, compared to nauplii and juvenile stages. Moreover, pMKK3 levels increased after treatment with adult barnacle crude extracts, suggesting that MKK3 might mediate the stimulatory effects of adult barnacle extracts on the p38MAPK pathway. PMID:23922727

  16. 2-Methoxyestradiol induced Bax phosphorylation and apoptosis in human retinoblastoma cells via p38 MAPK activation.

    PubMed

    Min, Hongbo; Ghatnekar, Gautam S; Ghatnekar, Angela V; You, Xiaohong; Bu, Min; Guo, Xinyi; Bu, Shizhong; Shen, Bo; Huang, Qin

    2012-07-01

    Retinoblastoma (Rb) is a common childhood intraocular cancer that affects approximately 300 children each year in the United States alone. 2-Methoxyestradiol (2ME), an endogenous metabolite of 17-β-estradiol that dose not bind to nuclear estrogen receptor, exhibits potent apoptotic activity against rapidly growing tumor cells. Here, we report that 2ME induction of apoptosis was demonstrated by early fragmented DNA after 48 h of incubation with 10 µM 2ME in Rb cell lines. Subsequently, a decrease of proliferation was observed in a time- and dose-dependent manner. Further analysis of the mechanism indicates that p38 kinase plays a critical role in 2ME-induced apoptosis in Y79 cells, even though ERK was also activated by 2ME under the same conditions. Activation of p38 kinase also mediates 2ME induced Bax phosphorylated at Thr(167) after a 6 h treatment of 2ME, which in turn prevents formation of the Bcl-2-Bax heterodimer. Both p38 specific inhibitor, SB 203580, or p38 knockdown by specific siRNA, blocked 2ME induction of Bax phosphorylation. Furthermore, only transiently transfected mutant BaxT167A, but not Bax S163A, inhibited 2ME-induced apoptosis. In summary, our data suggest that 2ME induces apoptosis in human Rb cells by causing phosphorylation of p38 Mitogen-activated protein kinase (MAPK), which appears to be correlated with phosphorlation of Bax. This understanding of 2ME's ability may help develop it as a promising therapeutic candidate by inducing apoptosis in a Rb. PMID:21769948

  17. Trypsin stimulates proteinase-activated receptor-2-dependent and -independent activation of mitogen-activated protein kinases.

    PubMed Central

    Belham, C M; Tate, R J; Scott, P H; Pemberton, A D; Miller, H R; Wadsworth, R M; Gould, G W; Plevin, R

    1996-01-01

    We have examined protease-mediated activation of the mitogen-activated protein (MAP) kinase cascade in rat aortic smooth-muscle cells and bovine pulmonary arterial fibroblasts. Exposure of smooth-muscle cells to trypsin evoked rapid and transient activation of c-Raf-1, MAP kinase kinase 1 and 2 and MAP kinase that was sensitive to inhibition by soybean trypsin inhibitor. The actions of trypsin were closely mimicked by the proteinase-activated receptor 2 (PAR-2)-activating peptide sequence SLIGRL but not LSIGRL. Peak MAP kinase activation in response to both trypsin and SLIGRL was also dependent on concentration, with EC50 values of 12.1 +/- 3.4 nM and 62.5 +/- 4.5 microM respectively. Under conditions where MAP kinase activation by SLIGRL was completely desensitized by prior exposure of smooth-muscle cells to the peptide, trypsin-stimulated MAP kinase activity was markedly attenuated (78.9 +/- 15.1% desensitization), whereas the response to thrombin was only marginally affected (16.6 +/- 12.1% desensitization). Trypsin and SLIGRL also weakly stimulated the activation of the MAP kinase homologue p38 in smooth-muscle cells without any detectable activation of c-Jun N-terminal kinase. Strong activation of the MAP kinase cascade and modest activation of p38 by trypsin were also observed in fibroblasts, although in this cell type these effects were not mimicked by SLIGRL nor by the thrombin receptor-activating peptide SFLLRNPNDKYEPF. Reverse transcriptase-PCR analysis confirmed the presence of PAR-2 mRNA in smooth-muscle cells but not fibroblasts. Our results suggest that in vascular smooth-muscle cells, trypsin stimulates the activation of the MAP kinase cascade relatively selectively, in a manner consistent with an interaction with the recently described PAR-2. Activation of MAP kinase by trypsin in vascular fibroblasts, however, seems to be independent of PAR-2 and occurs by an undefined mechanism possibly involving novel receptor species. PMID:9003384

  18. Molecular Changes Involving MEK3-p38 MAPK Activation in Chronic Masticatory Myalgia.

    PubMed

    Meng, H; Gao, Y; Kang, Y F; Zhao, Y P; Yang, G J; Wang, Y; Cao, Y; Gan, Y H; Xie, Q F

    2016-09-01

    The exact mechanism underlying chronic masticatory myalgia (CMM), a conspicuous symptom in temporomandibular disorders, remains unclear. This investigation compared gene expression profiles between CMM patients and healthy subjects. Peripheral blood leukocytes were collected in 8 cases and 8 controls and subjected to whole genome microarray analyses. Data were analyzed with Gene Ontology and interactive pathways analyses. According to Gene Ontology analysis, categories such as ion transport, response to stimuli, and metabolic process were upregulated. The pathway analysis suggested overexpression of the mitogen-activated protein kinase (MAPK) pathway in CMM patients and to a higher degree in a pathway network. Overexpression of representative members of the MAPK pathway-including MAPK kinase 3 (MEK3), calcium voltage-gated channel auxiliary subunit gamma 2 (CACNG2), and growth arrest and DNA damage-inducible gamma (GADD45G)-was validated with real-time polymerase chain reaction. The upregulation of MEK3 was negatively correlated with the age of the CMM group. In the next step, the authors focused on MEK3, the gene that exhibited the greatest degree of differential expression, and its downstream target protein p38 MAPK. The results revealed upregulation of MEK3, as well as phosphorylated MEK3 and phosphorylated p38 MAPK, in CMM patients. These results provide a "fingerprint" for mechanistic studies of CMM in the future and highlight the importance of MEK3-p38 MAPK activation in CMM. PMID:27418173

  19. Metabolic and cytoskeletal modulation of transferrin receptor mobility in mitogen-activated human lymphocytes.

    PubMed Central

    Galbraith, G M; Galbraith, R M

    1980-01-01

    The transferrin receptors which appear on mitogen-activated human peripheral blood lymphocytes were found by the use of immunofluorescence techniques to display temperature-dependent patching and capping reactions upon binding of transferrin. Lateral mobility of ligand-occupied membrane sites was accompanied by both shedding and endocytosis of receptor-transferrin complexes. In the presence of sodium azide or the microfilament inhibitor cytochalasin B, cap formation and shedding were markedly inhibited. In contrast, endocytosis of patched receptor-ligand complexes was inhibited by azide and microtubule inhibitors, including colchicine, vinblastine and vincristine. Co-capping experiments performed to elucidate further the alterations in membrane configuration involved in these reactions failed to reveal any topographical relationship between transferrin receptors and lectin-binding sites in these cells. These studied indicate that temperature-dependent mobility of transferrin receptors upon mitogen-activated peripheral blood lymphocytes is dependent upon the integrity of the cytoskeletal system and metabolic function of the cell. PMID:6258830

  20. Hypoxia differentially regulates the mitogen- and stress-activated protein kinases. Role of Ca2+/CaM in the activation of MAPK and p38 gamma.

    PubMed

    Conrad, P W; Millhorn, D E; Beitner-Johnson, D

    2000-01-01

    Hypoxic/ischemic trauma is a primary factor in the pathology of various vascular, pulmonary, and cerebral disease states. Yet, the signaling mechanisms by which cells respond and adapt to changes in oxygen levels are not clearly established. The effects of hypoxia on the stress- and mitogen-activated protein kinase (SAPK and MAPK) signaling pathways were studied in PC12 cells. Exposure to moderate hypoxia (5% O2) was found to progressively stimulate phosphorylation and activation of p38 gamma in particular, and also p38 alpha, two isoforms of the p38 family of stress-activated protein kinases. In contrast, hypoxia had no effect on enzyme activity of p38 beta, p38 beta 2, p38 delta, or on JNK, another stress-activated protein kinase. Prolonged hypoxia also induced phosphorylation and activation of p42/p44 MAPK, although this activation was modest when compared to NGF and UV-induced activation. We further showed that activation of p38 gamma and MAPK during hypoxia requires calcium, as treatment with Ca(2+)-free media or the calmodulin antagonist, W13, blocked the activation of p38 gamma and MAPK, respectively. These studies demonstrate that an extremely typical physiological stress (hypoxia) causes selective activation of specific elements of the SAPKs and MAPKs, and identifies Ca+2/CaM as a critical upstream activator. PMID:10849670

  1. Analysis of mitogen-activated protein kinase pathways used by interleukin 1 in tissues in vivo: activation of hepatic c-Jun N-terminal kinases 1 and 2, and mitogen-activated protein kinase kinases 4 and 7.

    PubMed Central

    Finch, A; Davis, W; Carter, W G; Saklatvala, J

    2001-01-01

    The effects of interleukin 1 (IL-1) are mediated by the activation of protein kinase signalling pathways, which have been well characterized in cultured cells. We have investigated the activation of these pathways in rabbit liver and other tissues after the systemic administration of IL-1alpha. In liver there was 30-40-fold activation of c-Jun N-terminal kinase (JNK) and 5-fold activation of both JNK kinases, mitogen-activated protein kinase (MAPK) kinase (MKK)4 and MKK7. IL-1alpha also caused 2-3-fold activation of p38 MAPK and degradation of the inhibitor of nuclear factor kappaB ('IkappaB'), although no activation of extracellular signal-regulated protein kinase (ERK) (p42/44 MAPK) was observed. The use of antibodies against specific JNK isoforms showed that, in liver, short (p46) JNK1 and long (p54) JNK2 are the predominant forms activated, with smaller amounts of long JNK1 and short JNK2. No active JNK3 was detected. A similar pattern of JNK activation was seen in lung, spleen, skeletal muscle and kidney. Significant JNK3 activity was detectable only in the brain, although little activation of the JNK pathway in response to IL-1alpha was observed in this tissue. This distribution of active JNK isoforms probably results from a different expression of JNKs within the tissues, rather than from a selective activation of isoforms. We conclude that IL-1alpha might activate a more restricted set of signalling pathways in tissues in vivo than it does in cultured cells, where ERK and JNK3 activation are often observed. Cultured cells might represent a 'repair' phenotype that undergoes a broader set of responses to the cytokine. PMID:11139391

  2. Cadmium induces vascular permeability via activation of the p38 MAPK pathway

    SciTech Connect

    Dong, Fengyun; Guo, Fang; Li, Liqun; Guo, Ling; Hou, Yinglong; Hao, Enkui; Yan, Suhua; Allen, Thaddeus D.; Liu, Ju

    2014-07-18

    Highlights: • Low-dose cadmium (Cd) induces vascular hyper-permeability. • p38 MAPK mediates Cd-induced disruption of endothelial cell barrier function. • SB203850 inhibits Cd-induced membrane dissociation of VE-cadherin and β-catenin. • SB203850 reduces Cd-induced expression and secretion of TNF-α. - Abstract: The vasculature of various organs is a targeted by the environmental toxin, cadmium (Cd). However, mechanisms leading to pathological conditions are poorly understood. In the present study, we examined the effect of cadmium chloride (CdCl{sub 2}) on human umbilical vein endothelial cells (HUVECs). At 4 μM, CdCl{sub 2} induced a hyper-permeability defect in HUVECs, but not the inhibition of cell growth up to 24 h. This effect of CdCl{sub 2} was dependent on the activation of the p38 mitogen-activated protein kinase (MAPK) pathway. The p38 MAPK inhibitor SB203850 suppressed the CdCl{sub 2}-induced alteration in trans-endothelial electrical resistance in HUVEC monolayers, a model measurement of vascular endothelial barrier integrity. SB203850 also inhibited the Cd-induced membrane dissociation of vascular endothelial (VE) cadherin and β-catenin, the important components of the adherens junctional complex. In addition, SB203850 reduces the Cd-induced expression and secretion of tumor necrosis factor α (TNF-α). Taken together, our findings suggest that Cd induces vascular hyper-permeability and disruption of endothelial barrier integrity through stimulation of p38 MAPK signaling.

  3. The Role of Mitogen-Activated Protein Kinase-Activated Protein Kinases (MAPKAPKs) in Inflammation

    PubMed Central

    Moens, Ugo; Kostenko, Sergiy; Sveinbjørnsson, Baldur

    2013-01-01

    Mitogen-activated protein kinase (MAPK) pathways are implicated in several cellular processes including proliferation, differentiation, apoptosis, cell survival, cell motility, metabolism, stress response and inflammation. MAPK pathways transmit and convert a plethora of extracellular signals by three consecutive phosphorylation events involving a MAPK kinase kinase, a MAPK kinase, and a MAPK. In turn MAPKs phosphorylate substrates, including other protein kinases referred to as MAPK-activated protein kinases (MAPKAPKs). Eleven mammalian MAPKAPKs have been identified: ribosomal-S6-kinases (RSK1-4), mitogen- and stress-activated kinases (MSK1-2), MAPK-interacting kinases (MNK1-2), MAPKAPK-2 (MK2), MAPKAPK-3 (MK3), and MAPKAPK-5 (MK5). The role of these MAPKAPKs in inflammation will be reviewed. PMID:24705157

  4. Local anesthetics induce apoptosis in human thyroid cancer cells through the mitogen-activated protein kinase pathway.

    PubMed

    Chang, Yuan-Ching; Hsu, Yi-Chiung; Liu, Chien-Liang; Huang, Shih-Yuan; Hu, Meng-Chun; Cheng, Shih-Ping

    2014-01-01

    Local anesthetics are frequently used in fine-needle aspiration of thyroid lesions and locoregional control of persistent or recurrent thyroid cancer. Recent evidence suggests that local anesthetics have a broad spectrum of effects including inhibition of cell proliferation and induction of apoptosis in neuronal and other types of cells. In this study, we demonstrated that treatment with lidocaine and bupivacaine resulted in decreased cell viability and colony formation of both 8505C and K1 cells in a dose-dependent manner. Lidocaine and bupivacaine induced apoptosis, and necrosis in high concentrations, as determined by flow cytometry. Lidocaine and bupivacaine caused disruption of mitochondrial membrane potential and release of cytochrome c, accompanied by activation of caspase 3 and 7, PARP cleavage, and induction of a higher ratio of Bax/Bcl-2. Based on microarray and pathway analysis, apoptosis is the prominent transcriptional change common to lidocaine and bupivacaine treatment. Furthermore, lidocaine and bupivacaine attenuated extracellular signal-regulated kinase 1/2 (ERK1/2) activity and induced activation of p38 mitogen-activated protein kinase (MAPK) and c-jun N-terminal kinase. Pharmacological inhibitors of MAPK/ERK kinase and p38 MAPK suppressed caspase 3 activation and PARP cleavage. Taken together, our results for the first time demonstrate the cytotoxic effects of local anesthetics on thyroid cancer cells and implicate the MAPK pathways as an important mechanism. Our findings have potential clinical relevance in that the use of local anesthetics may confer previously unrecognized benefits in the management of patients with thyroid cancer. PMID:24586874

  5. Contributions of reactive oxygen species and mitogen-activated protein kinase signaling in arsenite-stimulated hemeoxygenase-1 production

    SciTech Connect

    Cooper, Karen L.; Liu, Ke Jian; Hudson, Laurie G. . E-mail: lhudson@salud.unm.edu

    2007-01-15

    Hemeoxygenase-1 (HO-1) is an oxidative stress responsive gene upregulated by various physiological and exogenous stimuli. HO-1 has cytoprotective activities and arsenite is a potent inducer of HO-1 in many cell types and tissues, including epidermal keratinocytes. We investigated the potential contributions of reactive oxygen species (ROS) generation and mitogen-activated protein kinase (MAPK) activation to arsenite-dependent regulation of HO-1 in HaCaT cells, an immortalized human keratinocyte line. Both epidermal growth factor (EGF) and arsenite stimulated ROS production was detected by dihydroethidium (DHE) staining and fluorescence microscopy. Arsenite induced HO-1 in a time- and concentration-dependent manner, while HO-1 expression in response to EGF was modest and evident at extended time points (48-72 h). Inhibition of EGF receptor, MEK I/II or Src decreased arsenite-stimulated HO-1 expression by 20-30%. In contrast, addition of a superoxide scavenger or inhibition of p38 activity decreased the arsenite-dependent response by 80-90% suggesting that ROS and p38 are required for HO-1 induction. However, ROS generation alone was insufficient for the observed arsenite-dependent response as use of a xanthine/xanthine oxidase system to generate ROS did not produce an equivalent upregulation of HO-1. Cooperation between ERK signaling and ROS generation was demonstrated by synergistic induction of HO-1 in cells co-treated with EGF and xanthine/xanthine oxidase resulting in a response nearly equivalent to that observed with arsenite. These findings suggest that the ERK/MAPK activation is necessary but not sufficient for optimal arsenite-stimulated HO-1 induction. The robust and persistent upregulation of HO-1 may have a role in cellular adaptation to chronic arsenic exposure.

  6. R-Ras inhibits VEGF-induced p38MAPK activation and HSP27 phosphorylation in endothelial cells

    PubMed Central

    Sawada, Junko; Li, Fangfei; Komatsu, Masanobu

    2016-01-01

    R-Ras is a Ras family small GTPase highly expressed in mature functional blood vessels in normal tissues. It inhibits pathological angiogenesis and promotes vessel maturation and stabilization. Previous studies suggest that R-Ras affects cellular signaling in endothelial cells, pericytes, and smooth muscle cells to regulate vessel formation and remodeling in adult tissues. R-Ras suppresses VEGF-induced endothelial permeability and vessel sprouting while promoting normalization of pathologically developing vessels in mice. R-Ras attenuates VEGF receptor-2 (VEGFR2) activation by inhibiting internalization of the receptor upon VEGF ligand binding, leading to significant reduction of VEGFR2 autophosphorylation. Here, we show that R-Ras strongly suppresses VEGF-dependent activation of stress-activated protein kinase-2/p38 mitogen-activated protein kinase (SAPK2/p38MAPK) and phosphorylation of downstream heat shock protein 27 (HSP27), a regulator of actin cytoskeleton organization, in endothelial cells. The suppression of p38MAPK activation and HSP27 phosphorylation by R-Ras concurred with altered actin cytoskeleton architecture, reduced membrane protrusion, and inhibition of endothelial cell migration toward VEGF. Silencing of endogenous R-Ras by RNAi increased membrane protrusion and cell migration stimulated by VEGF, and these effects were offset by p38MAPK inhibitor SB203580. These results suggest that R-Ras regulates angiogenic activities of endothelial cells in part via inhibition of the p38MAPK-HSP27 axis of VEGF signaling. PMID:27029009

  7. R-Ras Inhibits VEGF-Induced p38MAPK Activation and HSP27 Phosphorylation in Endothelial Cells.

    PubMed

    Sawada, Junko; Li, Fangfei; Komatsu, Masanobu

    2015-01-01

    R-Ras is a Ras family small GTPase that is highly expressed in mature functional blood vessels in normal tissues. It inhibits pathological angiogenesis and promotes vessel maturation and stabilization. Previous studies suggest that R-Ras affects cellular signaling in endothelial cells, pericytes and smooth-muscle cells to regulate vessel formation and remodeling in adult tissues. R-Ras suppresses VEGF-induced endothelial permeability and vessel sprouting while promoting normalization of pathologically developing vessels in mice. It attenuates VEGF receptor-2 (VEGFR2) activation by inhibiting internalization of the receptor upon VEGF ligand binding, leading to significant reduction of VEGFR2 autophosphorylation. Here, we show that R-Ras strongly suppresses the VEGF-dependent activation of stress-activated protein kinase-2/p38 mitogen-activated protein kinase (SAPK2/p38MAPK) and the phosphorylation of downstream heat-shock protein 27 (HSP27), a regulator of actin cytoskeleton organization, in endothelial cells. The suppression of p38MAPK activation and HSP27 phosphorylation by R-Ras concurred with altered actin cytoskeleton architecture, reduced membrane protrusion and inhibition of endothelial cell migration toward VEGF. Silencing of endogenous R-Ras by RNA interference increased membrane protrusion and cell migration stimulated by VEGF, and these effects were offset by p38MAPK inhibitor SB203580. These results suggest that R-Ras regulates angiogenic activities of endothelial cells in part via inhibition of the p38MAPK-HSP27 axis of VEGF signaling. PMID:27029009

  8. Activation of transcription factor AP-1 and mitogen-activated protein kinases in aniline-induced splenic toxicity

    SciTech Connect

    Khan, M. Firoze . E-mail: mfkhan@utmb.edu; Kannan, Subburaj; Wang Jianling

    2006-01-15

    Signaling mechanisms in aniline-induced fibrogenic and/or tumorigenic response in the spleen are not known. Previous studies have shown that aniline exposure leads to iron accumulation and oxidative stress in the spleen, which may cause activation of redox-sensitive transcription factors and regulate the transcription of genes involved in fibrosis and/or tumorigenesis. To test this, male SD rats were treated with 0.5 mmol/kg/day aniline via drinking water for 30 days, and activation of transcription factor AP-1 was determined in the splenocyte nuclear extracts (NEs). AP-1 DNA-binding activity in the NEs of freshly isolated splenocytes from aniline-treated rats increased in comparison to the controls, as determined by electrophoretic mobility shift assay (EMSA). AP-1 binding was also determined in the NEs of cultured splenocytes (2 h and 24 h), which showed even a greater increase in binding activity at 2 h. The specificity of AP-1 binding for relevant DNA motifs was confirmed by competition EMSA and by supershift EMSA using antibodies specific to c-Jun and c-Fos. To further explore the signaling mechanisms in the AP-1 activation, phosphorylation patterns of mitogen-activated protein kinases (MAPKs) were pursued. Aniline exposure induced increases in the phosphorylation of the three classes of MAPKs: extracellular-signal-regulated kinase (ERK 1/2), c-Jun N-terminal kinase (JNK 1/2), and p38 MAPKs. Furthermore, TGF-{beta}1 mRNA expression showed a 3-fold increase in the spleens of aniline-treated rats. These observations suggest a strong association among MAPK phosphorylation, AP-1 activation, and enhanced TGF-{beta}1 gene expression. The observed sequence of events subsequent to aniline exposure could regulate genes that lead to fibrogenic and/or tumorigenic response in the spleen.

  9. Brominated Flame Retardants, Tetrabromobisphenol A and Hexabromocyclododecane, Activate Mitogen-Activated Protein Kinases (MAPKs) in Human Natural Killer Cells

    PubMed Central

    Cato, Anita; Celada, Lindsay; Kibakaya, Esther Caroline; Simmons, Nadia; Whalen, Margaret M.

    2014-01-01

    NK cells provide a vital surveillance against virally infected cells, tumor cells, and antibody-coated cells through the release of cytolytic mediators and gamma interferon (IFN-γ). Hexabromocyclododecane (HBCD) is a brominated flame retardant used primarily in expanded (EPS) and extruded (XPS) polystyrene foams for thermal insulation in the building and construction industry. Tetrabromobisphenol A (TBBPA) is used both as a reactive and an additive flame retardant in a variety of materials. HBCD and TBBPA contaminate the environment and are found in human blood samples. In previous studies, we have shown that other environmental contaminants, such as the dibutyltin (DBT) and tributyltin (TBT), decrease NK lytic function by activating mitogen-activated protein kinases (MAPKs) in the NK cells. HBCD and TBBPA also interfere with NK cell(s) lytic function. The current study evaluates whether HBCD and/or TBBPA have the capacity to activate MAPKs and MAPK kinases (MAP2Ks). The effects of concentrations of HBCD and TBBPA that inhibited lytic function on the phosphorylation state and total levels of the MAPKs (p44/42, p38, and JNK) and the phosphorylation and total levels of the MAP2Ks (MEK1/2 and MKK3/6) were examined. Results indicate that exposure of human NK cells to 10-0.5 µM HBCD or TBBPA activate MAPKs and MAP2Ks. This HBCD and TBBPA-induced activation of MAPKs may leave them unavailable for activation by virally infected or tumor target cells and thus contributes to the observed decreases in lytic function seen in NK cells exposed to HBCD and TBBPA. PMID:25341744

  10. Modulation of mitogen-activated protein kinases (MAPK) activity in response to different immune stimuli in haemocytes of the common periwinkle Littorina littorea.

    PubMed

    Iakovleva, Nadya V; Gorbushin, Alexander M; Storey, Kenneth B

    2006-09-01

    The modulation of mitogen-activated protein kinase (MAPK) activity in haemocytes of the common periwinkle (Littorina littorea) in response to immune challenges by lipopolysaccharide from Echerichia coli (LPS), mannan from baker's yeast Saccharomyces cerevisiae and secretory-excretory products (SEP) of trematodes Himasthla elongata (Echinostomatidae) or after the treatment with phorbol ester (PMA) has been studied by Western blotting using affinity purified rabbit polyclonal antibodies. Exposure of the cells in suspension to PMA, LPS and mannan triggered an activation of p38 and ERK2. The JNK-mediated cascade was modulated differently by the elicitors examined. PMA treatment caused a transient activation of the JNK54 isoform, LPS exposure resulted in a decrease in activity of JNK46, and mannan had no effect on JNK phosphorylation status. Incubation of periwinkle haemocytes in culture medium containing trematode SEP did not affect the activity of any MAPK. PMID:16533608

  11. Mitogen-Activated Protein Kinase Phosphatase-2 Deletion Impairs Synaptic Plasticity and Hippocampal-Dependent Memory

    PubMed Central

    Abdul Rahman, Nor Zaihana; Greenwood, Sam M.; Brett, Ros R.; Tossell, Kyoko; Ungless, Mark A.; Plevin, Robin

    2016-01-01

    Mitogen-activated protein kinases (MAPKs) regulate brain function and their dysfunction is implicated in a number of brain disorders, including Alzheimer's disease. Thus, there is great interest in understanding the signaling systems that control MAPK function. One family of proteins that contribute to this process, the mitogen-activated protein kinase phosphatases (MKPs), directly inactivate MAPKs through dephosphorylation. Recent studies have identified novel functions of MKPs in development, the immune system, and cancer. However, a significant gap in our knowledge remains in relation to their role in brain functioning. Here, using transgenic mice where the Dusp4 gene encoding MKP-2 has been knocked out (MKP-2−/− mice), we show that long-term potentiation is impaired in MKP-2−/− mice compared with MKP-2+/+ controls whereas neuronal excitability, evoked synaptic transmission, and paired-pulse facilitation remain unaltered. Furthermore, spontaneous EPSC (sEPSC) frequency was increased in acute slices and primary hippocampal cultures prepared from MKP-2−/− mice with no effect on EPSC amplitude observed. An increase in synapse number was evident in primary hippocampal cultures, which may account for the increase in sEPSC frequency. In addition, no change in ERK activity was detected in both brain tissue and primary hippocampal cultures, suggesting that the effects of MKP-2 deletion were MAPK independent. Consistent with these alterations in hippocampal function, MKP-2−/− mice show deficits in spatial reference and working memory when investigated using the Morris water maze. These data show that MKP-2 plays a role in regulating hippocampal function and that this effect may be independent of MAPK signaling. SIGNIFICANCE STATEMENT Recently, there has been significant focus on proteins that control mitogen-activated protein kinases' (MAPKs) function, namely the mitogen-activated protein kinase phosphatases (MKPs). Recent studies have revealed novel

  12. Parasite Mitogen-Activated Protein Kinases as Drug Discovery Targets to Treat Human Protozoan Pathogens

    PubMed Central

    Brumlik, Michael J.; Pandeswara, Srilakshmi; Ludwig, Sara M.; Murthy, Kruthi; Curiel, Tyler J.

    2011-01-01

    Protozoan pathogens are a highly diverse group of unicellular organisms, several of which are significant human pathogens. One group of protozoan pathogens includes obligate intracellular parasites such as agents of malaria, leishmaniasis, babesiosis, and toxoplasmosis. The other group includes extracellular pathogens such as agents of giardiasis and amebiasis. An unfortunate unifying theme for most human protozoan pathogens is that highly effective treatments for them are generally lacking. We will review targeting protozoan mitogen-activated protein kinases (MAPKs) as a novel drug discovery approach towards developing better therapies, focusing on Plasmodia, Leishmania, and Toxoplasma, about which the most is known. PMID:21637385

  13. Targeting the RAS pathway by mitogen-activated protein kinase inhibitors.

    PubMed

    Kiessling, Michael K; Rogler, Gerhard

    2015-01-01

    Targeting of oncogenic driver mutations with small-molecule inhibitors resulted in powerful treatment options for cancer patients in recent years. The RAS (rat sarcoma) pathway is among the most frequently mutated pathways in human cancer. Whereas targeting mutant Kirsten RAS (KRAS) remains difficult, mutant B rapidly accelerated fibrosarcoma (BRAF) kinase is an established drug target in cancer. Now data show that neuroblastoma RAS (NRAS) and even Harvey RAS (HRAS) mutations could be predictive markers for treatment with mitogen-activated protein kinase (MEK) inhibitors. This review discusses recent preclinical and clinical studies of MEK inhibitors in BRAF and RAS mutant cancer. PMID:26691679

  14. Analysis of Mitogen-Activated Protein Kinases in Bone and Cartilage of Patients with Rheumatoid Arthritis Treated with Abatacept

    PubMed Central

    Kanbe, Katsuaki; Oh, Koei; Chiba, Junji; Inoue, Yasuo; Taguchi, Masashi; Yabuki, Akiko

    2016-01-01

    The aim of this study was to analyze the histological changes related to mitogen-activated protein (MAP) kinases in bone and cartilage treated with abatacept for rheumatoid arthritis (RA). A total of 20 patients of bone and cartilage were assessed: 10 abatacept with methotrexate (MTX)-treated RA patients were compared with 10 MTX-treated RA patients (control). The histology of bone and cartilage was observed by staining with hematoxylin and eosin and analyzed immunohistochemically for the expression of tumor necrosis factor-α, interleukin-6, CD4 (T cell), CD68 (macrophage), receptor activator of nuclear kappa-B ligand, osteoprotegerin, osteopontin, CD29 (β-1 integrin), phospho-p38 MAPK (Tyr180/Tyr182), phospho-p44/42 MAPK (extracellular signal-regulated kinase, ERK1/ERK2), and phosphor-c-Jun N-terminal kinase. The expressions of CD29 known as mechanoreceptor and ERK known as mechanotransduction signal protein in MAP kinases in the bone and cartilage of patients treated with abatacept were significantly different from those of control. These findings suggest that increases in CD29 and ERK in MAP kinases may change the metabolism of bone and cartilage in RA patients treated with abatacept. PMID:27103846

  15. Cadmium-induced apoptosis and necrosis in human osteoblasts: role of caspases and mitogen-activated protein kinases pathways.

    PubMed

    Brama, M; Politi, L; Santini, P; Migliaccio, S; Scandurra, R

    2012-02-01

    Cadmium is a widespread environmental pollutant which induces severe toxic alterations, including osteomalacia and osteoporosis, likely by estrogen receptor-dependent mechanisms. Indeed, cadmium has been described to act as an endocrine disruptor and its toxicity is exerted both in vivo and in vitro through induction of apoptosis and/or necrosis by not fully clarified intracellular mechanism(s) of action. Aim of the present study was to further investigate the molecular mechanism by which cadmium might alter homeostasis of estrogen target cells, such as osteoblast homeostasis, inducing cell apoptosis and/or necrosis. Human osteoblastic cells (hFOB 1.19) in culture were used as an in vitro model to characterize the intracellular mechanisms induced by this heavy metal. Cells were incubated in the presence/ absence of 10-50 μM cadmium chloride at different times and DNA fragmentation and activation of procaspases- 8 and -3 were induced upon CdCl(2) treatment triggering apoptotic and necrotic pathways. Addition of caspase-8 and -3 inhibitors (Z-IETD-FMK and Z-DQMD-FMK) partially blocked these effects. No activation of procaspase-9 was observed. To determine the role of mitogen-activated protein kinases (MAPK) in these events, we investigated c-jun N-terminal kinase (JNK), p38 and extracellular signal-regulated protein kinase (ERK1/2) phosphorylation which were activated by 10 μM CdCl(2). Chemical inhibitors of JNK, p38, and ERK1/2, SP600125, SB202190, and PD98059, significantly reduced the phosphorylation of the kinases and blunted apoptosis. In contrast, caspase inhibitors did not reduce the cadmium-induced MAPK phosphorylation, suggesting an independent activation of these pathways. In conclusion, at least 2 pathways appear activated by cadmium in osteoblasts: a direct induction of caspase-8 followed by activation of caspase-3 and an indirect induction by phosphorylation of ERK1/2, p38, and JNK MAPK triggering activation of caspase-8 and -3. PMID:21697648

  16. Vitexin protects brain against ischemia/reperfusion injury via modulating mitogen-activated protein kinase and apoptosis signaling in mice.

    PubMed

    Wang, Yanan; Zhen, Yilan; Wu, Xian; Jiang, Qin; Li, Xiaoliang; Chen, Zhiwu; Zhang, Gongliang; Dong, Liuyi

    2015-03-15

    Vitexin is a major bioactive flavonoid compound derived from the dried leaf of hawthorn (Crataegus pinnatifida), a widely used conventional folk medicine in China. Recent studies have shown that vitexin presents neuroprotective effects in vitro. Whether this protective effect applies to the cerebral ischemia/reperfusion (I/R) injury remains elusive. In the present study, we examined the potential neuroprotective effect of vitexin against cerebral I/R injury and underlying mechanisms. A focal cerebral I/R model in male Kunming mice was induced by middle cerebral artery occlusion (MCAO) for 2 h followed by reperfusion for 22 h. The neurological function and infarct volume were assessed by using Long's five-point scale system and triphenyl-tetrazolium chloride (TTC) staining technique, respectively. Neuronal damage was evaluated by histological staining. Extracellular signal-regulated kinases 1/2 (ERK1/2), c-Jun N-terminal kinases (JNK) and p38 phosphorylation, and apoptosis were measured via Western blot at 24 h after reperfusion. As a result, systemic vitexin treatment significantly reduced neurological deficit, cerebral infarct volume and neuronal damage when compared with the I/R group. Western blot analyses revealed that vitexin markedly upregulated p-ERK1/2 and downregulated p-JNK and p-p38. Meanwhile, vitexin increased Bcl-2 expression and suppressed the overexpression of Bax in the I/R injury mice. In conclusion, the results indicate that vitexin protects brain against cerebral I/R injury, and this effect may be regulated by mitogen-activated protein kinase (MAPK) and apoptosis signaling pathways. PMID:25837275

  17. Inhibitors of mitogen-activated protein kinases differentially regulate costimulated T cell cytokine production and mouse airway eosinophilia

    PubMed Central

    Chialda, Ligia; Zhang, Meixia; Brune, Kay; Pahl, Andreas

    2005-01-01

    Background T cells play a dominant role in the pathogenesis of asthma. Costimulation of T cells is necessary to fully activate them. An inducible costimulator (ICOS) of T cells is predominantly expressed on Th2 cells. Therefore, interference of signaling pathways precipitated by ICOS may present new therapeutic options for Th2 dominated diseases such as asthma. However, these signaling pathways are poorly characterized in vitro and in vivo. Methods Human primary CD4+ T cells from blood were activated by beads with defined combinations of surface receptor stimulating antibodies and costimulatory receptor ligands. Real-time RT-PCR was used for measuring the production of cytokines from activated T cells. Activation of mitogen activated protein kinase (MAPK) signaling pathways leading to cytokine synthesis were investigated by western blot analysis and by specific inhibitors. The effect of inhibitors in vivo was tested in a murine asthma model of late phase eosinophilia. Lung inflammation was assessed by differential cell count of the bronchoalveolar lavage, determination of serum IgE and lung histology. Results We showed in vitro that ICOS and CD28 are stimulatory members of an expanding family of co-receptors, whereas PD1 ligands failed to co-stimulate T cells. ICOS and CD28 activated different MAPK signaling cascades necessary for cytokine activation. By means of specific inhibitors we showed that p38 and ERK act downstream of CD28 and that ERK and JNK act downstream of ICOS leading to the induction of various T cell derived cytokines. Using a murine asthma model of late phase eosinophilia, we demonstrated that the ERK inhibitor U0126 and the JNK inhibitor SP600125 inhibited lung inflammation in vivo. This inhibition correlated with the inhibition of Th2 cytokines in the BAL fluid. Despite acting on different signaling cascades, we could not detect synergistic action of any combination of MAPK inhibitors. In contrast, we found that the p38 inhibitor SB203580

  18. Mitogen-Activated Protein Kinase Signaling in the Heart: Angels Versus Demons in a Heart-Breaking Tale

    PubMed Central

    ROSE, BETH A.; FORCE, THOMAS; WANG, YIBIN

    2013-01-01

    Among the myriad of intra-cellular signaling networks that govern the cardiac development and pathogenesis, mitogen-activated protein kinases (MAPKs) are prominent players that have been the focus of extensive investigations in the past decades. The four best characterized MAPK subfamilies, ERK1/2, JNK, p38, and ERK5, are the targets of pharmacological and genetic manipulations to uncover their roles in cardiac development, function, and diseases. However, information reported in the literature from these efforts has not yet resulted in a clear view about the roles of specific MAPK pathways in heart. Rather, controversies from contradictive results have led to a perception that MAPKs are ambiguous characters in heart with both protective and detrimental effects. The primary object of this review is to provide a comprehensive overview of the current progress, in an effort to highlight the areas where consensus is established verses the ones where controversy remains. MAPKs in cardiac development, cardiac hypertrophy, ischemia/reperfusion injury, and pathological remodeling are the main focuses of this review as these represent the most critical issues for evaluating MAPKs as viable targets of therapeutic development. The studies presented in this review will help to reveal the major challenges in the field and the limitations of current approaches and point to a critical need in future studies to gain better understanding of the fundamental mechanisms of MAPK function and regulation in the heart. PMID:20959622

  19. Zinc oxide influences mitogen-activated protein kinase and TGF-β1 signaling pathways, and enhances intestinal barrier integrity in weaned pigs.

    PubMed

    Song, Ze He; Xiao, Kan; Ke, Ya Lu; Jiao, Le Fei; Hu, Cai Hong

    2015-05-01

    Weaning is the most significant event in the life of pigs and is always related with intestinal disruption. Although it is well known that zinc oxide (ZnO) exerts beneficial effects on the intestinal barrier, the mechanisms underlying these effects have not yet been fully elucidated. We examined whether ZnO protects the intestinal barrier via mitogen-activated protein kinases and TGF-β1 signaling pathways. Twelve barrows weaned at 21 d of age were randomly assigned to two treatments (0 verus 2200 mg Zn/kg from ZnO) for 1 wk. The results showed that supplementation with ZnO increased daily gain and feed intake, and decreased postweaning scour scores. ZnO improved intestinal morphology, as indicated by increased villus height and villus height:crypt depth ratio, and intestinal barrier function, indicated by increased transepithelial electrical resistance and decreased mucosal-to-serosal permeability to 4-ku FITC dextran. ZnO decreased the ratios of the phosphorylated to total JNK and p38 (p-JNK/JNK and p-p38/p38), while it increased the ratio of ERK (p-ERK/ERK). Supplementation with ZnO increased intestinal TGF-β1 expression. The results indicate that supplementation with ZnO activates ERK ½, and inhibits JNK and p38 signaling pathways, and increases intestinal TGF-β1 expression in weaned pigs. PMID:24917655

  20. Antimelanogenesis Activity of Hydrolyzed Ginseng Extract (GINST) via Inhibition of JNK Mitogen-activated Protein Kinase in B16F10 Cells.

    PubMed

    Han, Joon-Seung; Sung, Jong Hwan; Lee, Seung Kwon

    2016-08-01

    GINST is a hydrolyzed ginseng extract produced by an in vitro process that imitates the metabolic function of bacteria in the human digestive track and has approved by the Ministry of Food and Drug Safety of Korea for the management of postprandial hyperglycemia. Additionally, GINST has been reported to have other physiological functions including anti-aging and antioxidant effects. The objectives of this study are to compare the antimelanogenic effects of fresh ginseng extract (FGE) and GINST extract and to elucidate the functional mechanism. The concentration of total ginsenosides in FGE and GINST was measured using ultraperformance liquid chromatography with a C18 column. B16F10 cells were treated with FGE and GINST for 72 h to assess melanin content, tyrosinase activity, and protein levels of microphthalmia-associated transcription factor (MITF) and tyrosinase-related protein-1 (TRP-1). The activity of kinases involved in mitogen-activated protein kinase (MAPK) signaling, such as extracellular signal-regulated kinases (ERK), c-Jun N-terminal kinases (JNK), and p38 mitogen-activated protein kinases (p38), were measured using western blots. While neither FGE nor GINST inhibited the activity of mushroom tyrosinase directly, GINST decreased melanogenesis and tyrosinase activity markedly. Furthermore, our results indicate that GINST downregulated the levels of MITF and TRP-1 possibly by suppressing JNK signaling. We concluded that, when compared to FGE, GINST has a superior antimelanogenic effect mediated by the downregulation of MITF, TRP-1, and intracellular tyrosinase activity via the JNK signaling pathway. Thus, we suggest that GINST has the potential to be used as a novel skin whitening agent. PMID:27356239

  1. A vaccine carrier derived from Neisseria meningitidis with mitogenic activity for lymphocytes.

    PubMed Central

    Liu, M A; Friedman, A; Oliff, A I; Tai, J; Martinez, D; Deck, R R; Shieh, J T; Jenkins, T D; Donnelly, J J; Hawe, L A

    1992-01-01

    Protein carriers vary in their ability to increase the immunogenicity of poorly immunogenic or T-lymphocyte-independent antigens. We examined one such carrier, the outer membrane protein complex derived from Neisseria meningitidis serogroup B strain B11, in an attempt to determine why this outer membrane protein complex was more immunogenic in young infants and in relevant animal models than two other carriers used in conjugates made with Haemophilus influenzae type b polysaccharide, a T-cell-independent antigen. A single protein of the outer membrane protein complex, the class 2 porin protein, was purified and shown to function as a T-helper lymphocyte carrier protein. Unexpectedly, it was also found to have mitogenic activity for lymphocytes that was not due to lipopolysaccharide. This mitogenic activity appears to date to be unique to this carrier protein of the carrier proteins tested and may contribute to the ability of the H. influenzae type b conjugate vaccine made with the outer membrane protein complex to generate IgG anti-polysaccharide antibody responses in mice and infant monkeys and protective immune responses in infants less than 6 months of age. Images PMID:1533934

  2. Regulation of mitogen-activated protein kinase by protein kinase C and mitogen-activated protein kinase phosphatase-1 in vascular smooth muscle.

    PubMed

    Trappanese, Danielle M; Sivilich, Sarah; Ets, Hillevi K; Kako, Farah; Autieri, Michael V; Moreland, Robert S

    2016-06-01

    Vascular smooth muscle contraction is primarily regulated by phosphorylation of myosin light chain. There are also modulatory pathways that control the final level of force development. We tested the hypothesis that protein kinase C (PKC) and mitogen-activated protein (MAP) kinase modulate vascular smooth muscle activity via effects on MAP kinase phosphatase-1 (MKP-1). Swine carotid arteries were mounted for isometric force recording and subjected to histamine stimulation in the presence and absence of inhibitors of PKC [bisindolylmaleimide-1 (Bis)], MAP kinase kinase (MEK) (U0126), and MKP-1 (sanguinarine) and flash frozen for measurement of MAP kinase, PKC-potentiated myosin phosphatase inhibitor 17 (CPI-17), and caldesmon phosphorylation levels. CPI-17 was phosphorylated in response to histamine and was inhibited in the presence of Bis. Caldesmon phosphorylation levels increased in response to histamine stimulation and were decreased in response to MEK inhibition but were not affected by the addition of Bis. Inhibition of PKC significantly increased p42 MAP kinase, but not p44 MAP kinase. Inhibition of MEK with U0126 inhibited both p42 and p44 MAP kinase activity. Inhibition of MKP-1 with sanguinarine blocked the Bis-dependent increase of MAP kinase activity. Sanguinarine alone increased MAP kinase activity due to its effects on MKP-1. Sanguinarine increased MKP-1 phosphorylation, which was inhibited by inhibition of MAP kinase. This suggests that MAP kinase has a negative feedback role in inhibiting MKP-1 activity. Therefore, PKC catalyzes MKP-1 phosphorylation, which is reversed by MAP kinase. Thus the fine tuning of vascular contraction is due to the concerted effort of PKC, MAP kinase, and MKP-1. PMID:27053523

  3. Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana

    PubMed Central

    Lassowskat, Ines; Böttcher, Christoph; Eschen-Lippold, Lennart; Scheel, Dierk; Lee, Justin

    2014-01-01

    Mitogen-activated protein kinases (MAPKs) target a variety of protein substrates to regulate cellular signaling processes in eukaryotes. In plants, the number of identified MAPK substrates that control plant defense responses is still limited. Here, we generated transgenic Arabidopsis thaliana plants with an inducible system to simulate in vivo activation of two stress-activated MAPKs, MPK3, and MPK6. Metabolome analysis revealed that this artificial MPK3/6 activation (without any exposure to pathogens or other stresses) is sufficient to drive the production of major defense-related metabolites, including various camalexin, indole glucosinolate and agmatine derivatives. An accompanying (phospho)proteome analysis led to detection of hundreds of potential phosphoproteins downstream of MPK3/6 activation. Besides known MAPK substrates, many candidates on this list possess typical MAPK-targeted phosphosites and in many cases, the corresponding phosphopeptides were detected by mass spectrometry. Notably, several of these putative phosphoproteins have been reported to be associated with the biosynthesis of antimicrobial defense substances (e.g., WRKY transcription factors and proteins encoded by the genes from the “PEN” pathway required for penetration resistance to filamentous pathogens). Thus, this work provides an inventory of candidate phosphoproteins, including putative direct MAPK substrates, for future analysis of MAPK-mediated defense control. (Proteomics data are available with the identifier PXD001252 via ProteomeXchange, http://proteomecentral.proteomexchange.org). PMID:25368622

  4. Complexity of the primary genetic response to mitogenic activation of human T cells

    SciTech Connect

    Zipfel, P.F.; Siebenlist, U. ); Irving, S.G.; Kelly, K. )

    1989-03-01

    The authors describe the isolation and characterization of more than 60 novel cDNA clones that constitute part of the immediate genetic response to resting human peripheral blood T cells after mitogen activation. This primary response was highly complex, both in the absolute number of inducible genes and in the diversity of regulation. Although most of the genes expressed in activated T cells were shared with the activation response of normal human fibroblasts, a significant number were more restricted in tissue specificity and thus likely encode or effect the differentiated functions of activated T cells. The activatable genes could be further differentiated on the basis of kinetics of induction, response to cycloheximide, and sensitivity to the immunosuppressive drug cylcosporin A. It is of note that cyclosporin A inhibited the expression of more than 10 inducible genes, which suggests that this drug has a broad genetic mechanism of action.

  5. Complexity of the primary genetic response to mitogenic activation of human T cells.

    PubMed Central

    Zipfel, P F; Irving, S G; Kelly, K; Siebenlist, U

    1989-01-01

    We describe the isolation and characterization of more than 60 novel cDNA clones that constitute part of the immediate genetic response to resting human peripheral blood T cells after mitogen activation. This primary response was highly complex, both in the absolute number of inducible genes and in the diversity of regulation. Although most of the genes expressed in activated T cells were shared with the activation response of normal human fibroblasts, a significant number were more restricted in tissue specificity and thus likely encode or effect the differentiated functions of activated T cells. The activatable genes could be further differentiated on the basis of kinetics of induction, response to cycloheximide, and sensitivity to the immunosuppressive drug cyclosporin A. It is of note that cyclosporin A inhibited the expression of more than 10 inducible genes, which suggests that this drug has a broad genetic mechanism of action. Images PMID:2498643

  6. Mitogen-Activated Protein Kinase Kinase 3 Is Required for Regulation during Dark-Light Transition.

    PubMed

    Lee, Horim

    2015-07-01

    Plant growth and development are coordinately orchestrated by environmental cues and phytohormones. Light acts as a key environmental factor for fundamental plant growth and physiology through photosensory phytochromes and underlying molecular mechanisms. Although phytochromes are known to possess serine/threonine protein kinase activities, whether they trigger a signal transduction pathway via an intracellular protein kinase network remains unknown. In analyses of mitogen-activated protein kinase kinase (MAPKK, also called MKK) mutants, the mkk3 mutant has shown both a hypersensitive response in plant hormone gibberellin (GA) and a less sensitive response in red light signaling. Surprisingly, light-induced MAPK activation in wild-type (WT) seedlings and constitutive MAPK phosphorylation in dark-grown mkk3 mutant seedlings have also been found, respectively. Therefore, this study suggests that MKK3 acts in negative regulation in darkness and in light-induced MAPK activation during dark-light transition. PMID:26082029

  7. Inhibition of adipogenic differentiation of bone marrow mesenchymal stem cells by erythropoietin via activating ERK and P38 MAPK.

    PubMed

    Liu, G X; Zhu, J C; Chen, X Y; Zhu, A Z; Liu, C C; Lai, Q; Chen, S T

    2015-01-01

    We examined whether erythropoietin (EPO) can inhibit adipogenic differentiation of mesenchymal stem cells (MSCs) in the mouse bone marrow and its underlying mechanism. We separated and extracted mouse bone marrow MSCs and induced adipogenic differen-tiation using 3-isobutyl-1-methylxanthine, insulin, and dexamethasone. Different concentrations of EPO were added to the cells and observed by Oil Red O staining on the 20th day to quantitatively analyze the degree of cell differentiation. mRNA expression levels of peroxysome proliferator-activated receptor γ (PPARγ), CCAAT enhancer binding protein α, and adiponectin were analyzed by real-time quantitative polymerase chain reaction, and the activity of PPARγ, extracellular sig-nal-regulated kinase (ERK), and p38 mitogen-activated protein kinase (p38 MAPK) were determined by western blotting. EPO significantly inhibited adipogenic differentiation of MSCs after 20 days and reduced absorbance values by Oil Red O staining without affecting proliferation activity. EPO downregulated the mRNA expression of PPARγ, CCAAT enhancer binding protein α, fatty acid binding protein 4, and adiponec-tin during adipogenesis and increased protein phosphorylation of ERK, p38 MAPK, and PPARγ during differentiation. EPO downregulated the mRNA expression of PPARγ, CCAAT enhancer binding protein α, fatty acid binding protein 4, and adiponectin by increasing protein phosphor-ylation of ERK, p38 MAPK, and PPARγ during differentiation, which inhibited adipogenic differentiation of MSCs. PMID:26125905

  8. Distinct Signaling Properties of Mitogen-activated Protein Kinase Kinases 4 (MKK4) and 7 (MKK7) in Embryonic Stem Cell (ESC) Differentiation*

    PubMed Central

    Wang, Jingcai; Chen, Liang; Ko, Chia-I; Zhang, Lin; Puga, Alvaro; Xia, Ying

    2012-01-01

    Signal transduction pathways are integral components of the developmental regulatory network that guides progressive cell fate determination. MKK4 and MKK7 are upstream kinases of the mitogen-activated protein kinases (MAPKs), responsible for channeling physiological and environmental signals to their cellular responses. Both kinases are essential for survival of mouse embryos, but because of embryonic lethality, their precise developmental roles remain largely unknown. Using gene knock-out mouse ESCs, we studied the roles of MKK4 and MKK7 in differentiation in vitro. While MKK4 and MKK7 were dispensable for ESC self-renewal and pluripotency maintenance, they exhibited unique signaling and functional properties in differentiation. MKK4 and MKK7 complemented each other in activation of the JNK-c-Jun cascades and loss of both led to senescence upon cell differentiation. On the other hand, MKK4 and MKK7 had opposite effects on activation of the p38 cascades during differentiation. Specifically, MKK7 reduced p38 activation, while Mkk7(−/−) ESCs had elevated phosphorylation of MKK4, p38, and ATF2, and increased MEF2C expression. Consequently, Mkk7(−/−) ESCs had higher expression of MHC and MLC and enhanced formation of contractile cardiomyocytes. In contrast, MKK4 was required for p38 activation and Mkk4(−/−) ESCs exhibited diminished p-ATF2 and MEF2C expression, resulting in impaired MHC induction and defective cardiomyocyte differentiation. Exogenous MKK4 expression partially restored the ability of Mkk4(−/−) ESCs to differentiate into cardiomyocytes. Our results uncover complementary and interdependent roles of MKK4 and MKK7 in development, and identify the essential requirement for MKK4 in p38 activation and cardiomyocyte differentiation. PMID:22130668

  9. Genome-wide identification and transcriptional expression analysis of mitogen-activated protein kinase and mitogen-activated protein kinase kinase genes in Capsicum annuum

    PubMed Central

    Liu, Zhiqin; Shi, Lanping; Liu, Yanyan; Tang, Qian; Shen, Lei; Yang, Sheng; Cai, Jinsen; Yu, Huanxin; Wang, Rongzhang; Wen, Jiayu; Lin, Youquan; Hu, Jiong; Liu, Cailing; Zhang, Yangwen; Mou, Shaoliang; He, Shuilin

    2015-01-01

    The tripartite mitogen-activated protein kinase (MAPK) signaling cascades have been implicated in plant growth, development, and environment adaptation, but a comprehensive understanding of MAPK signaling at genome-wide level is limited in Capsicum annuum. Herein, genome-wide identification and transcriptional expression analysis of MAPK and MAPK kinase (MAPKK) were performed in pepper. A total of 19 pepper MAPK (CaMAPKs) genes and five MAPKK (CaMAPKKs) genes were identified. Phylogenetic analysis indicated that CaMAPKs and CaMAPKKs could be classified into four groups and each group contains similar exon-intron structures. However, significant divergences were also found. Notably, five members of the pepper MAPKK family were much less conserved than those found in Arabidopsis, and 9 Arabidopsis MAPKs did not have orthologs in pepper. Additionally, 7 MAPKs in Arabidopsis had either two or three orthologs in the pepper genome, and six pepper MAPKs and one MAPKK differing in sequence were found in three pepper varieties. Quantitative real-time RT-PCR analysis showed that the majority of MAPK and MAPKK genes were ubiquitously expressed and transcriptionally modified in pepper leaves after treatments with heat, salt, and Ralstonia solanacearum inoculation as well as exogenously applied salicylic acid, methyl jasmonate, ethephon, and abscisic acid. The MAPKK-MAPK interactome was tested by yeast two-hybrid assay, the results showed that one MAPKK might interact with multiple MAPKs, one MAPK might also interact with more than one MAPKKs, constituting MAPK signaling networks which may collaborate in transmitting upstream signals into appropriate downstream cellular responses and processes. These results will facilitate future functional characterization of MAPK cascades in pepper. PMID:26442088

  10. Mitogen-Activated Protein Kinases and Mitogen Kinase Phosphatase 1: A Critical Interplay in Macrophage Biology

    PubMed Central

    Lloberas, Jorge; Valverde-Estrella, Lorena; Tur, Juan; Vico, Tania; Celada, Antonio

    2016-01-01

    Macrophages are necessary in multiple processes during the immune response or inflammation. This review emphasizes the critical role of the mitogen-activated protein kinases (MAPKs) and mitogen kinase phosphatase-1 (MKP-1) in the functional activities of macrophages. While the phosphorylation of MAPKs is required for macrophage activation or proliferation, MKP-1 dephosphorylates these kinases, thus playing a balancing role in the control of macrophage behavior. MKP-1 is a nuclear-localized dual-specificity phosphatase whose expression is regulated at multiple levels, including at the transcriptional and post-transcriptional level. The regulatory role of MKP-1 in the interplay between MAPK phosphorylation/dephosphorylation makes this molecule a critical regulator of macrophage biology and inflammation. PMID:27446931

  11. The Mitogen-Activated Protein Kinase (MAPK) Signaling Pathway as a Discovery Target in Stroke.

    PubMed

    Sun, Jing; Nan, Guangxian

    2016-05-01

    Protein kinases are critical modulators of a variety of intracellular and extracellular signal transduction pathways, and abnormal phosphorylation events can contribute to disease progression in a variety of diseases. As a result, protein kinases have emerged as important new drug targets for small molecule therapeutics. The mitogen-activated protein kinase (MAPK) signaling pathway transmits signals from the cell membrane to the nucleus in response to a variety of different stimuli. Because this pathway controls a broad spectrum of cellular processes, including growth, inflammation, and stress responses, it is accepted as a therapeutic target for cancer and peripheral inflammatory disorders. There is also increasing evidence that MAPK is an important regulator of ischemic and hemorrhagic cerebral vascular disease, raising the possibility that it might be a drug discovery target for stroke. In this review, we discuss the MAPK signaling pathway in association with its activation in stroke-induced brain injury. PMID:26842916

  12. Enhanced biocontrol activity of Trichoderma through inactivation of a mitogen-activated protein kinase.

    PubMed

    Mendoza-Mendoza, Artemio; Pozo, María J; Grzegorski, Darlene; Martínez, Pedro; García, Juan M; Olmedo-Monfil, Vianey; Cortés, Carlos; Kenerley, Charles; Herrera-Estrella, Alfredo

    2003-12-23

    The production of lytic enzymes in Trichoderma is considered determinant in its parasitic response against fungal species. A mitogen-activated protein kinase encoding gene, tvk1, from Trichoderma virens was cloned, and its role during the mycoparasitism, conidiation, and biocontrol was examined in tvk1 null mutants. These mutants showed a clear increase in the level of the expression of mycoparasitism-related genes under simulated mycoparasitism and during direct confrontation with the plant pathogen Rhizoctonia solani. The null mutants displayed an increased protein secretion phenotype as measured by the production of lytic enzymes in culture supernatant compared to the wild type. Consistently, biocontrol assays demonstrated that the null mutants were considerably more effective in disease control than the wild-type strain or a chemical fungicide. In addition, tvk1 gene disruptant strains sporulated abundantly in submerged cultures, a condition that is not conducive to sporulation in the wild type. These data suggest that Tvk1 acts as a negative modulator during host sensing and sporulation in T. virens. PMID:14673101

  13. Melatonin alleviates myosin light chain kinase expression and activity via the mitogen-activated protein kinase pathway during atherosclerosis in rabbits.

    PubMed

    Cheng, Xiaowen; Wan, Yufeng; Xu, Yuanhong; Zhou, Qing; Wang, Yuan; Zhu, Huaqing

    2015-01-01

    Melatonin (MLT) is an endogenous indole compound with numerous biological activities that has been associated with atherosclerosis (AS). In the present study, rabbits were used as an AS model in order to investigate whether MLT affects endothelial cell permeability, myosin light chain kinase (MLCK) activity and MLCK expression via the mitogen-activated protein kinase (MAPK) pathway. Expression and activity of MLCK were measured using western blot analysis, quantitative polymerase chain reaction, immunohistochemistry and γ-32P-adenosine triphosphate incorporation. Endothelial permeability was detected using rhodamine phalloidin fluorescence staining. The phosphorylation of extracellular regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 in endothelial cells were also analyzed using western blot analysis. Atheromatous plaques were formed in rabbits with a high cholesterol diet; however, following treatment with MLT, the number and areas of atheromatous plaques were significantly reduced. In addition, MLT treatment reversed the increase of MLCK activity and expression that occurred in rabbits with high cholesterol intake. Furthermore, levels of phosphorylated ERK, JNK and p38 decreased following MLT treatment. In conclusion, the results of the present study indicated that AS may be associated with increased MLCK expression and activity, which was reduced following treatment with MLT. The mechanism of action of MLT was thought to proceed via modulating MAPK pathway signal transduction; however, further studies are required in order to fully elucidate the exact regulatory mechanisms involved. PMID:25339116

  14. Modulation of Leishmania major aquaglyceroporin activity by a mitogen-activated protein kinase

    PubMed Central

    Mandal, Goutam; Sharma, Mansi; Kruse, Martin; Sander-Juelch, Claudia; Munro, Laura Anne; Wang, Yong; Vilg, Jenny Veide; Tamás, Markus J; Bhattacharjee, Hiranmoy; Wiese, Martin; Mukhopadhyay, Rita

    2012-01-01

    Summary Leishmania major aquaglyceroporin (LmjAQP1) adventitiously facilitates the uptake of antimonite [Sb(III)], an active form of Pentostam® or Glucantime®, which are the first line of defense against all forms of leishmaniasis. The present paper shows that LmjAQP1 activity is modulated by the mitogen-activated protein kinase, LmjMPK2. Leishmania parasites co-expressing LmjAQP1 and LmjMPK2 show increased Sb(III) uptake and increased Sb(III) sensitivity. When subjected to a hypo-osmotic stress, these cells show faster volume recovery than cells expressing LmjAQP1 alone. LmjAQP1 is phosphorylated in vivo at Thr197 and this phosphorylation requires LmjMPK2 activity. Lys42 of LmjMPK2 is critical for its kinase activity. Cells expressing altered T197A LmjAQP1 or K42A LmjMPK2 showed decreased Sb(III) influx and a slower volume recovery than cells expressing wild type proteins. Phosphorylation of LmjAQP1 led to a decrease in its turnover rate affecting LmjAQP1 activity. Although LmjAQP1 is localized to the flagellum of promastigotes, upon phosphorylation, it is relocalized to the entire surface of the parasite. L. mexicana promastigotes with an MPK2 deletion showed reduced Sb(III) uptake and slower volume recovery than wild type cells. This is the first report where a parasite aquaglyceroporin activity is post-translationally modulated by a MAP kinase. PMID:22779703

  15. Mitogen-Activated Protein Kinase Phosphatase-2 Deletion Impairs Synaptic Plasticity and Hippocampal-Dependent Memory.

    PubMed

    Abdul Rahman, Nor Zaihana; Greenwood, Sam M; Brett, Ros R; Tossell, Kyoko; Ungless, Mark A; Plevin, Robin; Bushell, Trevor J

    2016-02-24

    Mitogen-activated protein kinases (MAPKs) regulate brain function and their dysfunction is implicated in a number of brain disorders, including Alzheimer's disease. Thus, there is great interest in understanding the signaling systems that control MAPK function. One family of proteins that contribute to this process, the mitogen-activated protein kinase phosphatases (MKPs), directly inactivate MAPKs through dephosphorylation. Recent studies have identified novel functions of MKPs in development, the immune system, and cancer. However, a significant gap in our knowledge remains in relation to their role in brain functioning. Here, using transgenic mice where the Dusp4 gene encoding MKP-2 has been knocked out (MKP-2(-/-) mice), we show that long-term potentiation is impaired in MKP-2(-/-) mice compared with MKP-2(+/+) controls whereas neuronal excitability, evoked synaptic transmission, and paired-pulse facilitation remain unaltered. Furthermore, spontaneous EPSC (sEPSC) frequency was increased in acute slices and primary hippocampal cultures prepared from MKP-2(-/-) mice with no effect on EPSC amplitude observed. An increase in synapse number was evident in primary hippocampal cultures, which may account for the increase in sEPSC frequency. In addition, no change in ERK activity was detected in both brain tissue and primary hippocampal cultures, suggesting that the effects of MKP-2 deletion were MAPK independent. Consistent with these alterations in hippocampal function, MKP-2(-/-) mice show deficits in spatial reference and working memory when investigated using the Morris water maze. These data show that MKP-2 plays a role in regulating hippocampal function and that this effect may be independent of MAPK signaling. PMID:26911683

  16. Protein-protein interactions in plant mitogen-activated protein kinase cascades.

    PubMed

    Zhang, Tong; Chen, Sixue; Harmon, Alice C

    2016-02-01

    Mitogen-activated protein kinases (MAPKs) form tightly controlled signaling cascades that play essential roles in plant growth, development, and defense. However, the molecular mechanisms underlying MAPK cascades are still elusive, due largely to our poor understanding of how they relay the signals. Extensive effort has been devoted to characterization of MAPK-substrate interactions to illustrate phosphorylation-based signaling. The diverse MAPK substrates identified also shed light on how spatiotemporal-specific protein-protein interactions function in distinct MAPK cascade-mediated biological processes. This review surveys various technologies used for characterizing MAPK-substrate interactions and presents case studies of MPK4 and MPK6, highlighting the multiple functions of MAPKs. Mass spectrometry-based approaches in identifying MAPK-interacting proteins are emphasized due to their increasing utility and effectiveness. The potential for using MAPKs and their substrates in enhancing plant stress tolerance is also discussed. PMID:26646897

  17. The Mitogen-Activated Protein Kinase (MAPK) Pathway: Role in Immune Evasion by Trypanosomatids

    PubMed Central

    Soares-Silva, Mercedes; Diniz, Flavia F.; Gomes, Gabriela N.; Bahia, Diana

    2016-01-01

    Leishmania spp. and Trypanosoma cruzi are the causative agents of leishmaniasis and Chagas disease, respectively, two neglected tropical diseases that affect about 25 million people worldwide. These parasites belong to the family Trypanosomatidae, and are both obligate intracellular parasites that manipulate host signaling pathways and the innate immune system to establish infection. Mitogen-activated protein kinases (MAPKs) are serine and threonine protein kinases that are highly conserved in eukaryotes, and are involved in signal transduction pathways that modulate physiological and pathophysiological cell responses. This mini-review highlights existing knowledge concerning the mechanisms that Leishmania spp. and T. cruzi have evolved to target the host’s MAPK signaling pathways and highjack the immune response, and, in this manner, promote parasite maintenance in the host. PMID:26941717

  18. The Mitogen-Activated Protein Kinase (MAPK) Pathway: Role in Immune Evasion by Trypanosomatids.

    PubMed

    Soares-Silva, Mercedes; Diniz, Flavia F; Gomes, Gabriela N; Bahia, Diana

    2016-01-01

    Leishmania spp. and Trypanosoma cruzi are the causative agents of leishmaniasis and Chagas disease, respectively, two neglected tropical diseases that affect about 25 million people worldwide. These parasites belong to the family Trypanosomatidae, and are both obligate intracellular parasites that manipulate host signaling pathways and the innate immune system to establish infection. Mitogen-activated protein kinases (MAPKs) are serine and threonine protein kinases that are highly conserved in eukaryotes, and are involved in signal transduction pathways that modulate physiological and pathophysiological cell responses. This mini-review highlights existing knowledge concerning the mechanisms that Leishmania spp. and T. cruzi have evolved to target the host's MAPK signaling pathways and highjack the immune response, and, in this manner, promote parasite maintenance in the host. PMID:26941717

  19. Tighter αC-helix-αL16-helix interactions seem to make p38α less prone to activation by autophosphorylation than Hog1.

    PubMed

    Tesker, Masha; Selamat, Sadiduddin Edbe; Beenstock, Jonah; Hayouka, Ruchama; Livnah, Oded; Engelberg, David

    2016-04-01

    Many eukaryotic protein kinases (EPKs) are autoactivated through autophosphorylation of their activation loop. Mitogen-activated protein (MAP) kinases do not autophosphorylate spontaneously; relying instead upon mitogen-activated protein kinase (MAPK) kinases (MKKs) for their activation loop phosphorylation. Yet, in previous studies we identified mutations in the yeast MAPK high osmolarity glycerol (Hog1) that render it capable of spontaneous autophosphorylation and consequently intrinsically active (MKK-independent). Four of the mutations occurred in hydrophobic residues, residing in the αC-helix, which is conserved in all EPKs, and in the αL16-helix that is unique to MAPKs. These four residues interact together forming a structural element termed 'hydrophobic core'. A similar element exists in the Hog1's mammalian orthologues p38s. Here we show that the 'hydrophobic core' is a loose suppressor of Hog1's autophosphorylation. We inserted 18 point mutations into this core, 17 of which were able to render Hog1 MKK-independent. In p38s, however, only a very few mutations in the equivalent residues rendered these proteins intrinsically active. Structural analysis revealed that a salt bridge between the αC-helix and the αL16-helix that exists in p38α may not exist in Hog1. This bond further stabilizes the 'hydrophobic core' of p38, making p38 less prone to de-repressing its concealed autophosphorylation. Mutating equivalent hydrophobic residues in Jnk1 and Erk2 has no effect on their autophosphorylation. We propose that specific structural elements developed in the course of evolution to suppress spontaneous autophosphorylation of Hog1/p38. The suppressors were kept wobbly, probably to allow activation by induced autophosphorylation, but became stricter in mammalian p38s than in the yeast Hog1. PMID:26987986

  20. Tighter αC-helix–αL16-helix interactions seem to make p38α less prone to activation by autophosphorylation than Hog1

    PubMed Central

    Tesker, Masha; Selamat, Sadiduddin Edbe; Beenstock, Jonah; Hayouka, Ruchama; Livnah, Oded; Engelberg, David

    2016-01-01

    Many eukaryotic protein kinases (EPKs) are autoactivated through autophosphorylation of their activation loop. Mitogen-activated protein (MAP) kinases do not autophosphorylate spontaneously; relying instead upon mitogen-activated protein kinase (MAPK) kinases (MKKs) for their activation loop phosphorylation. Yet, in previous studies we identified mutations in the yeast MAPK high osmolarity glycerol (Hog1) that render it capable of spontaneous autophosphorylation and consequently intrinsically active (MKK-independent). Four of the mutations occurred in hydrophobic residues, residing in the αC-helix, which is conserved in all EPKs, and in the αL16-helix that is unique to MAPKs. These four residues interact together forming a structural element termed ‘hydrophobic core’. A similar element exists in the Hog1’s mammalian orthologues p38s. Here we show that the ‘hydrophobic core’ is a loose suppressor of Hog1’s autophosphorylation. We inserted 18 point mutations into this core, 17 of which were able to render Hog1 MKK-independent. In p38s, however, only a very few mutations in the equivalent residues rendered these proteins intrinsically active. Structural analysis revealed that a salt bridge between the αC-helix and the αL16-helix that exists in p38α may not exist in Hog1. This bond further stabilizes the ‘hydrophobic core’ of p38, making p38 less prone to de-repressing its concealed autophosphorylation. Mutating equivalent hydrophobic residues in Jnk1 and Erk2 has no effect on their autophosphorylation. We propose that specific structural elements developed in the course of evolution to suppress spontaneous autophosphorylation of Hog1/p38. The suppressors were kept wobbly, probably to allow activation by induced autophosphorylation, but became stricter in mammalian p38s than in the yeast Hog1. PMID:26987986

  1. Tyrosine phosphorylation and activation of a new mitogen-activated protein (MAP)-kinase cascade in human neutrophils stimulated with various agonists.

    PubMed Central

    Nahas, N; Molski, T F; Fernandez, G A; Sha'afi, R I

    1996-01-01

    The presence of a novel 38 kDa protein that is tyrosine phosphorylated in human neutrophils, a terminally differentiated cell, upon stimulation of these cells with low concentrations of lipopolysaccharide (LPS) in combination with serum has been demonstrated. This 38 kDa protein was identified as the mammalian homologue of HOG1 in yeast, the p38 mitogen-activated protein (MAP) kinase. This conclusion is based on the experimental findings that anti-phosphotyrosine (anti-PY) antibody immunoprecipitates a 38 kDa protein that is recognized by anti-p38 MAP kinase antibody, and conversely, anti-p38 MAP kinase antibody immunoprecipitates a 38 kDa protein that can be recognized by anti-PY antibody. Moreover, this tyrosine phosphorylated protein is found associated entirely with the cytosol. It was also found that this p38 MAP kinase is activated following stimulation of these cells with low concentrations of LPS in combination with serum. This conclusion is based on three experimental findings. First, soluble fractions isolated from LPS-stimulated cells phosphorylate heat shock protein 27 (hsp27) in an in vitro assay, and this effect is not inhibited by protein kinase C and protein kinase A inhibitor peptides. This effect is similar to the effect produced by the commercially available phosphorylated and activated MAPKAP kinase-2 (MAP kinase activated protein kinase-2). Secondly, a 27 kDa protein that aligns with a protein recognized by anti-hsp27 antibody is phosphorylated upon LPS stimulation of intact human neutrophils prelabelled with radioactive phosphate. Lastly, immune complex protein kinase assays, using [gamma-32P]ATP and activating transcription factor 2 (ATF2) as substrates, showed increased p38 MAP kinase activity from LPS-stimulated human neutrophils. The phosphorylation and activation of this p38 MAP kinase can be affected by both G-protein-coupled receptors such as platelet-activating factor (PAF) and non-G-protein-coupled receptors such as the cytokine

  2. Noise exposure immediately activates cochlear mitogen-activated protein kinase signaling

    PubMed Central

    Alagramam, Kumar N.; Stepanyan, Ruben; Jamesdaniel, Samson; Chen, Daniel H.-C.; Davis, Rickie R.

    2015-01-01

    Noise-induced hearing loss (NIHL) is a major public health issue worldwide. Uncovering the early molecular events associated with NIHL would reveal mechanisms leading to the hearing loss. Our aim is to investigate the immediate molecular responses after different levels of noise exposure and identify the common and distinct pathways that mediate NIHL. Previous work showed mice exposed to 116 decibels sound pressure level (dB SPL) broadband noise for 1 h had greater threshold shifts than the mice exposed to 110 dB SPL broadband noise, hence we used these two noise levels in this study. Groups of 4–8-week-old CBA/CaJ mice were exposed to no noise (control) or to broadband noise for 1 h, followed by transcriptome analysis of total cochlear RNA isolated immediately after noise exposure. Previously identified and novel genes were found in all data sets. Following exposure to noise at 116 dB SPL, the earliest responses included up-regulation of 243 genes and down-regulation of 61 genes, while a similar exposure at 110 dB SPL up-regulated 155 genes and down-regulated 221 genes. Bioinformatics analysis indicated that mitogen-activated protein kinase (MAPK) signaling was the major pathway in both levels of noise exposure. Nevertheless, both qualitative and quantitative differences were noticed in some MAPK signaling genes, after exposure to different noise levels. Cacna1b, Cacna1g, and Pla2g6, related to calcium signaling were down-regulated after 110 dB SPL exposure, while the fold increase in the expression of Fos was relatively lower than what was observed after 116 dB SPL exposure. These subtle variations provide insight on the factors that may contribute to the differences in NIHL despite the activation of a common pathway. PMID:25387536

  3. TNF-α-induced p38MAPK activation regulates TRPA1 and TRPV4 activity in odontoblast-like cells.

    PubMed

    El Karim, Ikhlas; McCrudden, Maeliosa T C; Linden, Gerard J; Abdullah, Hanniah; Curtis, Timothy M; McGahon, Mary; About, Imad; Irwin, Christopher; Lundy, Fionnuala T

    2015-11-01

    The transient receptor potential (TRP) channels are unique cellular sensors that are widely expressed in many neuronal and nonneuronal cells. Among the TRP family members, TRPA1 and TRPV4 are emerging as candidate mechanosensitive channels that play a pivotal role in inflammatory pain and mechanical hyperalgesia. Odontoblasts are nonneuronal cells that possess many of the features of mechanosensitive cells and mediate important defense and sensory functions. However, the effect of inflammation on the activity of the odontoblast's mechanosensitive channels remains unknown. By using immunohistochemistry and calcium microfluorimetry, we showed that odontoblast-like cells express TRPA1 and TRPV4 and that these channels were activated by hypotonicity-induced membrane stretch. Short treatment of odontoblast-like cells with tumor necrosis factor (TNF)-α enhanced TRPA1 and TRPV4 responses to their chemical agonists and membrane stretch. This enhanced channel activity was accompanied by phospho-p38 mitogen-activated protein kinase (MAPK) expression. Treatment of cells with the p38 inhibitor SB202190 reduced TNF-α effects, suggesting modulation of channel activity via p38 MAPK. In addition, TNF-α treatment also resulted in an up-regulation of TRPA1 expression but down-regulation of TRPV4. Unlike TRPV4, enhanced TRPA1 expression was also evident in dental pulp of carious compared with noncarious teeth. SB202190 treatment significantly reduced TNF-α-induced TRPA1 expression, suggesting a role for p38 MAPK signaling in modulating both the transcriptional and non-transcriptional regulation of TRP channels in odontoblasts. PMID:26358221

  4. β-Adrenergic stimulation does not activate p38 MAP kinase or induce PGC-1α in skeletal muscle.

    PubMed

    Kim, Sang Hyun; Asaka, Meiko; Higashida, Kazuhiko; Takahashi, Yumiko; Holloszy, John O; Han, Dong-Ho

    2013-04-15

    There are reports that the β-adrenergic agonist clenbuterol induces a large increase in peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) in skeletal muscle. This has led to the hypothesis that the increases in PGC-1α and mitochondrial biogenesis induced in muscle by endurance exercise are mediated by catecholamines. In the present study, we evaluated this possibility and found that injecting rats with clenbuterol or norepinephrine induced large increases in PGC-1α and mitochondrial proteins in brown adipose tissue but had no effect on PGC-1α expression or mitochondrial biogenesis in skeletal muscle. In brown adipocytes, the increase in PGC-1α expression induced by β-adrenergic stimulation is mediated by activation of p38 mitogen-activated protein kinase (p38 MAPK), which phosphorylates and activates the cAMP response element binding protein (CREB) family member activating transcription factor 2 (ATF2), which binds to a cyclic AMP response element (CRE) in the PGC-1α promoter and mediates the increase in PGC-1α transcription. Phospho-CREB does not have this effect. Our results show that the reason for the lack of effect of β-adrenergic stimulation on PGC-1α expression in muscle is that catecholamines do not activate p38 or increase ATF2 phosphorylation in muscle. PMID:23443926

  5. Selective inhibition of the p38 alternative activation pathway in infiltrating T cells inhibits pancreatic cancer progression.

    PubMed

    Alam, Muhammad S; Gaida, Matthias M; Bergmann, Frank; Lasitschka, Felix; Giese, Thomas; Giese, Nathalia A; Hackert, Thilo; Hinz, Ulf; Hussain, S Perwez; Kozlov, Serguei V; Ashwell, Jonathan D

    2015-11-01

    Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive neoplasm characterized by a marked fibro-inflammatory microenvironment, the presence of which can promote both cancer induction and growth. Therefore, selective manipulation of local cytokines is an attractive, although unrealized, therapeutic approach. T cells possess a unique mechanism of p38 mitogen-activated protein kinase (MAPK) activation downstream of T cell receptor (TCR) engagement through the phosphorylation of Tyr323 (pY323). This alternative p38 activation pathway is required for pro-inflammatory cytokine production. Here we show in human PDAC that a high percentage of infiltrating pY323(+) T cells was associated with large numbers of tumor necrosis factor (TNF)-α- and interleukin (IL)-17-producing CD4(+) tumor-infiltrating lymphocytes (TILs) and aggressive disease. The growth of mouse pancreatic tumors was inhibited by genetic ablation of the alternative p38 pathway, and transfer of wild-type CD4(+) T cells, but not those lacking the alternative pathway, enhanced tumor growth in T cell-deficient mice. Notably, a plasma membrane-permeable peptide derived from GADD45-α, the naturally occurring inhibitor of p38 pY323(+) (ref. 7), reduced CD4(+) TIL production of TNF-α, IL-17A, IL-10 and secondary cytokines, halted growth of implanted tumors and inhibited progression of spontaneous KRAS-driven adenocarcinoma in mice. Thus, TCR-mediated activation of CD4(+) TILs results in alternative p38 activation and production of protumorigenic factors and can be targeted for therapeutic benefit. PMID:26479921

  6. The p38alpha/beta MAPK functions as a molecular switch to activate the quiescent satellite cell.

    PubMed

    Jones, Nathan C; Tyner, Kristina J; Nibarger, Lisa; Stanley, Heather M; Cornelison, Dawn D W; Fedorov, Yuri V; Olwin, Bradley B

    2005-04-11

    Somatic stem cells cycle slowly or remain quiescent until required for tissue repair and maintenance. Upon muscle injury, stem cells that lie between the muscle fiber and basal lamina (satellite cells) are activated, proliferate, and eventually differentiate to repair the damaged muscle. Satellite cells in healthy muscle are quiescent, do not express MyoD family transcription factors or cell cycle regulatory genes and are insulated from the surrounding environment. Here, we report that the p38alpha/beta family of mitogen-activated protein kinases (MAPKs) reversibly regulates the quiescent state of the skeletal muscle satellite cell. Inhibition of p38alpha/beta MAPKs (a) promotes exit from the cell cycle, (b) prevents differentiation, and (c) insulates the cell from most external stimuli allowing the satellite cell to maintain a quiescent state. Activation of satellite cells and p38alpha/beta MAPKs occurs concomitantly, providing further support that these MAPKs function as a molecular switch for satellite cell activation. PMID:15824134

  7. Phosphotyrosine-dependent targeting of mitogen-activated protein kinase in differentiated contractile vascular cells.

    PubMed

    Khalil, R A; Menice, C B; Wang, C L; Morgan, K G

    1995-06-01

    Tyrosine phosphorylation has been linked to plasmalemmal targeting of src homology-2-containing proteins, activation of mitogen-activated protein (MAP) kinase, nuclear signaling, and proliferation of cultured cells. Significant tyrosine phosphorylation and MAP kinase activities have also been reported in differentiated cells, but the signaling role of tyrosine-phosphorylated MAP kinase in these cells is unclear. The spatial and temporal relation between phosphotyrosine and MAP kinase immunoreactivity was quantified in differentiated contractile vascular smooth muscle cells by using digital imaging microscopy. An initial association of MAP kinase with the plasmalemma required upstream protein kinase C activity but occurred in a tyrosine phosphorylation-independent manner. Subsequent to membrane association, a delayed redistribution of MAP kinase, colocalizing with the actin-binding protein caldesmon, occurred in a tyrosine phosphorylation-dependent manner. The apparent association of MAP kinase with the contractile proteins coincided with contractile activation. Thus, tyrosine phosphorylation appears to target MAP kinase to cytoskeletal proteins in contractile vascular cells. This targeting mechanism may determine the specific destination and thereby the specialized function of MAP kinase in other phenotypes. PMID:7538916

  8. A Novel Mitogen-Activated Protein Kinase Is Responsive to Raf and Mediates Growth Factor Specificity

    PubMed Central

    Janulis, Mark; Trakul, Nicholas; Greene, Geoffrey; Schaefer, Erik M.; Lee, J. D.; Rosner, Marsha Rich

    2001-01-01

    The proto-oncogene Raf is a major regulator of growth and differentiation. Previous studies from a number of laboratories indicate that Raf activates a signaling pathway that is independent of the classic MEK1,2-ERK1,2 cascade. However, no other signaling cascade downstream of Raf has been identified. We describe a new member of the mitogen-activated protein kinase family, p97, an ERK5-related kinase that is activated and Raf associated when cells are stimulated by Raf. Furthermore, p97 is selectively responsive to different growth factors, providing a mechanism for specificity in cellular signaling. Thus, p97 is activated by the neurogenic factor fibroblast growth factor (FGF) but not the mitogenic factor epidermal growth factor (EGF) in neuronal cells. Conversely, the related kinase ERK5 is activated by EGF but not FGF. p97 phosphorylates transcription factors such as Elk-1 and Ets-2 but not MEF2C at transactivating sites, whereas ERK5 phosphorylates MEF2C but not Elk-1 or Ets-2. Finally, p97 is expressed in a number of cell types including primary neural and NIH 3T3 cells. Taken together, these results identify a new signaling pathway that is distinct from the classic Raf-MEK1,2-ERK1,2 kinase cascade and can be selectively stimulated by growth factors that produce discrete biological outcomes. PMID:11238956

  9. Regulation of WRKY46 Transcription Factor Function by Mitogen-Activated Protein Kinases in Arabidopsis thaliana.

    PubMed

    Sheikh, Arsheed H; Eschen-Lippold, Lennart; Pecher, Pascal; Hoehenwarter, Wolfgang; Sinha, Alok K; Scheel, Dierk; Lee, Justin

    2016-01-01

    Mitogen-activated protein kinase (MAPK) cascades are central signaling pathways activated in plants after sensing internal developmental and external stress cues. Knowledge about the downstream substrate proteins of MAPKs is still limited in plants. We screened Arabidopsis WRKY transcription factors as potential targets downstream of MAPKs, and concentrated on characterizing WRKY46 as a substrate of the MAPK, MPK3. Mass spectrometry revealed in vitro phosphorylation of WRKY46 at amino acid position S168 by MPK3. However, mutagenesis studies showed that a second phosphosite, S250, can also be phosphorylated. Elicitation with pathogen-associated molecular patterns (PAMPs), such as the bacterial flagellin-derived flg22 peptide led to in vivo destabilization of WRKY46 in Arabidopsis protoplasts. Mutation of either phosphorylation site reduced the PAMP-induced degradation of WRKY46. Furthermore, the protein for the double phosphosite mutant is expressed at higher levels compared to wild-type proteins or single phosphosite mutants. In line with its nuclear localization and predicted function as a transcriptional activator, overexpression of WRKY46 in protoplasts raised basal plant defense as reflected by the increase in promoter activity of the PAMP-responsive gene, NHL10, in a MAPK-dependent manner. Thus, MAPK-mediated regulation of WRKY46 is a mechanism to control plant defense. PMID:26870073

  10. Context-dependent transcriptional interpretation of mitogen activated protein kinase signaling in the Drosophila embryo

    NASA Astrophysics Data System (ADS)

    Kim, Yoosik; Iagovitina, Antonina; Ishihara, Keisuke; Fitzgerald, Kate M.; Deplancke, Bart; Papatsenko, Dmitri; Shvartsman, Stanislav Y.

    2013-06-01

    Terminal regions of the Drosophila embryo are patterned by the localized activation of Mitogen Activated Protein Kinase (MAPK), which induces zygotic genes through relief of their repression by transcriptional repressor Capicua. The levels of MAPK activation at the anterior and posterior termini are close to each other, but the expression patterns of MAPK-target genes, such as zerknüllt (zen) and tailless (tll), display strong anterior-posterior (AP) asymmetry. This region-specific response to MAPK activation provides a clear example of context-dependent interpretation of inductive signaling, a common developmental effect that remains poorly understood. In the past, the AP asymmetry of zen expression was attributed to a mechanism that depends on MAPK substrate competition. We present data suggesting that the asymmetric expression of tll is generated by a different mechanism, based on feedforward control and multiple enhancers of the tll gene. A simple mathematical model of this mechanism correctly predicts how the wild-type expression pattern of tll changes in mutants affecting the anterior, dorsoventral, and terminal patterning systems and some of their direct targets.

  11. Regulation of WRKY46 Transcription Factor Function by Mitogen-Activated Protein Kinases in Arabidopsis thaliana

    PubMed Central

    Sheikh, Arsheed H.; Eschen-Lippold, Lennart; Pecher, Pascal; Hoehenwarter, Wolfgang; Sinha, Alok K.; Scheel, Dierk; Lee, Justin

    2016-01-01

    Mitogen-activated protein kinase (MAPK) cascades are central signaling pathways activated in plants after sensing internal developmental and external stress cues. Knowledge about the downstream substrate proteins of MAPKs is still limited in plants. We screened Arabidopsis WRKY transcription factors as potential targets downstream of MAPKs, and concentrated on characterizing WRKY46 as a substrate of the MAPK, MPK3. Mass spectrometry revealed in vitro phosphorylation of WRKY46 at amino acid position S168 by MPK3. However, mutagenesis studies showed that a second phosphosite, S250, can also be phosphorylated. Elicitation with pathogen-associated molecular patterns (PAMPs), such as the bacterial flagellin-derived flg22 peptide led to in vivo destabilization of WRKY46 in Arabidopsis protoplasts. Mutation of either phosphorylation site reduced the PAMP-induced degradation of WRKY46. Furthermore, the protein for the double phosphosite mutant is expressed at higher levels compared to wild-type proteins or single phosphosite mutants. In line with its nuclear localization and predicted function as a transcriptional activator, overexpression of WRKY46 in protoplasts raised basal plant defense as reflected by the increase in promoter activity of the PAMP-responsive gene, NHL10, in a MAPK-dependent manner. Thus, MAPK-mediated regulation of WRKY46 is a mechanism to control plant defense. PMID:26870073

  12. Context-dependent transcriptional interpretation of mitogen activated protein kinase signaling in the Drosophila embryo

    PubMed Central

    Kim, Yoosik; Iagovitina, Antonina; Ishihara, Keisuke; Fitzgerald, Kate M.; Deplancke, Bart; Papatsenko, Dmitri; Shvartsman, Stanislav Y.

    2013-01-01

    Terminal regions of the Drosophila embryo are patterned by the localized activation of Mitogen Activated Protein Kinase (MAPK), which induces zygotic genes through relief of their repression by transcriptional repressor Capicua. The levels of MAPK activation at the anterior and posterior termini are close to each other, but the expression patterns of MAPK-target genes, such as zerknüllt (zen) and tailless (tll), display strong anterior-posterior (AP) asymmetry. This region-specific response to MAPK activation provides a clear example of context-dependent interpretation of inductive signaling, a common developmental effect that remains poorly understood. In the past, the AP asymmetry of zen expression was attributed to a mechanism that depends on MAPK substrate competition. We present data suggesting that the asymmetric expression of tll is generated by a different mechanism, based on feedforward control and multiple enhancers of the tll gene. A simple mathematical model of this mechanism correctly predicts how the wild-type expression pattern of tll changes in mutants affecting the anterior, dorsoventral, and terminal patterning systems and some of their direct targets. PMID:23822503

  13. Mercuric ions inhibit mitogen-activated protein kinase dephosphorylation by inducing reactive oxygen species.

    PubMed

    Haase, Hajo; Engelhardt, Gabriela; Hebel, Silke; Rink, Lothar

    2011-01-01

    Mercury intoxication profoundly affects the immune system, in particular, signal transduction of immune cells. However, the mechanism of the interaction of mercury with cellular signaling pathways, such as mitogen activated protein kinases (MAPK), remains elusive. Therefore, the objective of this study is to investigate three potential ways in which Hg(2+) ions could inhibit MAPK dephosphorylation in the human T-cell line Jurkat: (1) by direct binding to phosphatases; (2) by releasing cellular zinc (Zn(2+)); and (3) by inducing reactive oxygen species (ROS). Hg(2+) causes production of ROS, measured by dihydrorhodamine 123, and triggers ROS-mediated Zn(2+) release, detected with FluoZin-3. Yet, phosphatase-inhibition is not mediated by binding of Zn(2+) or Hg(2+). Rather, phosphatases are inactivated by at least two forms of thiol oxidation; initial inhibition is reversible with reducing agents such as Tris(2-carboxyethyl)phosphine. Prolonged inhibition leads to non-reversible phosphatase oxidation, presumably oxidizing the cysteine thiol to sulfinic- or sulfonic acid. Notably, phosphatases are a particularly sensitive target for Hg(2+)-induced oxidation, because phosphatase activity is inhibited at concentrations of Hg(2+) that have only minor impact on over all thiol oxidation. This phosphatase inhibition results in augmented, ROS-dependent MAPK phosphorylation. MAPK are important regulators of T-cell function, and MAPK-activation by inhibition of phosphatases seems to be one of the molecular mechanisms by which mercury affects the immune system. PMID:20951154

  14. Ras-dependent and -independent pathways target the mitogen-activated protein kinase network in macrophages.

    PubMed Central

    Büscher, D; Hipskind, R A; Krautwald, S; Reimann, T; Baccarini, M

    1995-01-01

    Mitogen-activated protein kinases (MAPKs) are activated upon a variety of extracellular stimuli in different cells. In macrophages, colony-stimulating factor 1 (CSF-1) stimulates proliferation, while bacterial lipopolysaccharide (LPS) inhibits cell growth and causes differentiation and activation. Both CSF-1 and LPS rapidly activate the MAPK network and induce the phosphorylation of two distinct ternary complex factors (TCFs), TCF/Elk and TCF/SAP. CSF-1, but not LPS, stimulated the formation of p21ras. GTP complexes. Expression of a dominant negative ras mutant reduced, but did not abolish, CSF-1-mediated stimulation of MEK and MAPK. In contrast, activation of the MEK kinase Raf-1 was Ras independent. Treatment with the phosphatidylcholine-specific phospholipase C inhibitor D609 suppressed LPS-mediated, but not CSF-1-mediated, activation of Raf-1, MEK, and MAPK. Similarly, down-regulation or inhibition of protein kinase C blocked MEK and MAPK induction by LPS but not that by CSF-1. Phorbol 12-myristate 13-acetate pretreatment led to the sustained activation of the Raf-1 kinase but not that of MEK and MAPK. Thus, activated Raf-1 alone does not support MEK/MAPK activation in macrophages. Phosphorylation of TCF/Elk but not that of TCF/SAP was blocked by all treatments that interfered with MAPK activation, implying that TCF/SAP was targeted by a MAPK-independent pathway. Therefore, CSF-1 and LPS target the MAPK network by two alternative pathways, both of which induce Raf-1 activation. The mitogenic pathway depends on Ras activity, while the differentiation signal relies on protein kinase C and phosphatidylcholine-specific phospholipase C activation. PMID:7799956

  15. Protective effect of paeoniflorin on irradiation-induced cell damage involved in modulation of reactive oxygen species and the mitogen-activated protein kinases.

    PubMed

    Li, Chun Rong; Zhou, Zhe; Zhu, Dan; Sun, Yu Ning; Dai, Jin Ming; Wang, Sheng Qi

    2007-01-01

    Ionizing radiation can induce DNA damage and cell death by generating reactive oxygen species (ROS). The objective of this study was to investigate the radioprotective effect of paeoniflorin (PF, a main bioactive component in the traditional Chinese herb peony) on irradiated thymocytes and discover the possible mechanisms of protection. We found 60Co gamma-ray irradiation increased cell death and DNA fragmentation in a dose-dependent manner while increasing intracellular ROS. Pretreatment of thymocytes with PF (50-200 microg/ml) reversed this tendency and attenuated irradiation-induced ROS generation. Hydroxyl-scavenging action of PF in vitro was detected through electron spin resonance assay. Several anti-apoptotic characteristics of PF, including the ability to diminish cytosolic Ca2+ concentration, inhibit caspase-3 activation, and upregulate Bcl-2 and downregulate Bax in 4Gy-irradiated thymocytes were determined. Extracellular regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK), and p38 kinase were activated by 4Gy irradiation, whereas its activations were partly blocked by pretreatment of cells with PF. The presence of ERK inhibitor PD98059, JNK inhibitor SP600125 and p38 inhibitor SB203580 decreased cell death in 4Gy-irradiated thymocytes. These results suggest PF protects thymocytes against irradiation-induced cell damage by scavenging ROS and attenuating the activation of the mitogen-activated protein kinases. PMID:17097910

  16. Catharanthus roseus mitogen-activated protein kinase 3 confers UV and heat tolerance to Saccharomyces cerevisiae

    PubMed Central

    Raina, Susheel Kumar; Wankhede, Dhammaprakash Pandhari; Sinha, Alok Krishna

    2013-01-01

    Catharanthus roseus is an important source of pharmaceutically important Monoterpenoid Indole Alkaloids (MIAs). Accumulation of many of the MIAs is induced in response to abiotic stresses such as wound, ultra violet (UV) irradiations, etc. Recently, we have demonstrated a possible role of CrMPK3, a C. roseus mitogen-activated protein kinase in stress-induced accumulation of a few MIAs. Here, we extend our findings using Saccharomyces cerevisiae to investigate the role of CrMPK3 in giving tolerance to abiotic stresses. Yeast cells transformed with CrMPK3 was found to show enhanced tolerance to UV and heat stress. Comparison of CrMPK3 and SLT2, a MAPK from yeast shows high-sequence identity particularly at conserved domains. Additionally, heat stress is also shown to activate a 43 kDa MAP kinase, possibly CrMPK3 in C. roseus leaves. These findings indicate the role of CrMPK3 in stress-induced MIA accumulation as well as in stress tolerance. PMID:23221751

  17. Mitogen-activated protein kinase phosphatase-1: function and regulation in bone and related tissues.

    PubMed

    Broome, David T; Datta, Nabanita S

    2016-05-01

    In this review, we have highlighted work that has clearly demonstrated that mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1), a negative regulator of MAPKs, is an important signaling mediator in bone, muscle, and fat tissue homeostasis and differentiation. Further, we examined recent studies with particular focus on MKP-1 overexpression or deletion and its impact on tissues connected to bone. We also summarized regulation of MKP-1 by known skeletal regulators like parathyroid hormone (PTH)/PTH-related peptide (PTHrP) and bone morphogenic proteins. MKP-1's integration into the pathophysiological state of osteoporosis, osteoarthritis, rheumatoid arthritis, obesity, and muscular dystrophy are examined to emphasize possible involvement of MKP-1 both at the molecular level and in disease complications such as sarcopenia- or diabetes-related osteoporosis. We predict that understanding the mechanism of MKP-1-mediated signaling in bone-muscle-fat crosstalk will be a key in coordinating their activities and developing therapeutics to improve clinical outcomes for diseases associated with advanced age. PMID:27031422

  18. A novel role for copper in Ras/mitogen-activated protein kinase signaling.

    PubMed

    Turski, Michelle L; Brady, Donita C; Kim, Hyung J; Kim, Byung-Eun; Nose, Yasuhiro; Counter, Christopher M; Winge, Dennis R; Thiele, Dennis J

    2012-04-01

    Copper (Cu) is essential for development and proliferation, yet the cellular requirements for Cu in these processes are not well defined. We report that Cu plays an unanticipated role in the mitogen-activated protein (MAP) kinase pathway. Ablation of the Ctr1 high-affinity Cu transporter in flies and mouse cells, mutation of Ctr1, and Cu chelators all reduce the ability of the MAP kinase kinase Mek1 to phosphorylate the MAP kinase Erk. Moreover, mice bearing a cardiac-tissue-specific knockout of Ctr1 are deficient in Erk phosphorylation in cardiac tissue. in vitro investigations reveal that recombinant Mek1 binds two Cu atoms with high affinity and that Cu enhances Mek1 phosphorylation of Erk in a dose-dependent fashion. Coimmunoprecipitation experiments suggest that Cu is important for promoting the Mek1-Erk physical interaction that precedes the phosphorylation of Erk by Mek1. These results demonstrate a role for Ctr1 and Cu in activating a pathway well known to play a key role in normal physiology and in cancer. PMID:22290441

  19. Inhibition of the mitogen-activated protein kinase pathway triggers B16 melanoma cell differentiation.

    PubMed

    Englaro, W; Bertolotto, C; Buscà, R; Brunet, A; Pagès, G; Ortonne, J P; Ballotti, R

    1998-04-17

    In B16 melanoma cells, mitogen-activated protein (MAP) kinases are activated during cAMP-induced melanogenesis (Englaro, W., Rezzonico, R., Durand-Clément, M., Lallemand, D., Ortonne, J. P., and Ballotti, R. (1995) J. Biol. Chem. 270, 24315-24320). To establish the role of the MAP kinases in melanogenesis, we studied the effects of a specific MAP kinase kinase (MEK) inhibitor PD 98059 on different melanogenic parameters. We showed that PD 98059 inhibits the activation of MAP kinase extracellular signal-regulated kinase 1 by cAMP, but does not impair the effects of cAMP either on the morphological differentiation, characterized by an increase in dendrite outgrowth, or on the up-regulation of tyrosinase that is the key enzyme in melanogenesis. On the contrary, PD 98059 promotes by itself cell dendricity and increases the tyrosinase amount and activity. Moreover, down-regulation of the MAP kinase pathway by PD 98059, or with dominant negative mutants of p21(ras) and MEK, triggers a stimulation of the tyrosinase promoter activity and enhances the effect of cAMP on this parameter. Conversely, activation of the MAP kinase pathway, using constitutive active mutants of p21(ras) and MEK, leads to an inhibition of basal and cAMP-induced tyrosinase gene transcription. These results demonstrate that the MAP kinase pathway activation is not required for cAMP-induced melanogenesis. Furthermore, the inhibition of this pathway induces B16 melanoma cell differentiation, while a sustained activation impairs the melanogenic effect of cAMP-elevating agents. PMID:9545341

  20. Identification, Nomenclature, and Evolutionary Relationships of Mitogen-Activated Protein Kinase (MAPK) Genes in Soybean

    PubMed Central

    Neupane, Achal; Nepal, Madhav P.; Piya, Sarbottam; Subramanian, Senthil; Rohila, Jai S.; Reese, R. Neil; Benson, Benjamin V.

    2013-01-01

    Mitogen-activated protein kinase (MAPK) genes in eukaryotes regulate various developmental and physiological processes including those associated with biotic and abiotic stresses. Although MAPKs in some plant species including Arabidopsis have been identified, they are yet to be identified in soybean. Major objectives of this study were to identify GmMAPKs, assess their evolutionary relationships, and analyze their functional divergence. We identified a total of 38 MAPKs, eleven MAPKKs, and 150 MAPKKKs in soybean. Within the GmMAPK family, we also identified a new clade of six genes: four genes with TEY and two genes with TQY motifs requiring further investigation into possible legume-specific functions. The results indicated the expansion of the GmMAPK families attributable to the ancestral polyploidy events followed by chromosomal rearrangements. The GmMAPK and GmMAPKKK families were substantially larger than those in other plant species. The duplicated GmMAPK members presented complex evolutionary relationships and functional divergence when compared to their counterparts in Arabidopsis. We also highlighted existing nomenclatural issues, stressing the need for nomenclatural consistency. GmMAPK identification is vital to soybean crop improvement, and novel insights into the evolutionary relationships will enhance our understanding about plant genome evolution. PMID:24137047

  1. Secreted beta-amyloid precursor protein stimulates mitogen-activated protein kinase and enhances tau phosphorylation.

    PubMed Central

    Greenberg, S M; Koo, E H; Selkoe, D J; Qiu, W Q; Kosik, K S

    1994-01-01

    Biological effects related to cell growth, as well as a role in the pathogenesis of Alzheimer disease, have been ascribed to the beta-amyloid precursor protein (beta-APP). Little is known, however, about the intracellular cascades that mediate these effects. We report that the secreted form of beta-APP potently stimulates mitogen-activated protein kinases (MAPKs). Brief exposure of PC-12 pheochromocytoma cells to beta-APP secreted by transfected Chinese hamster ovary cells stimulated the 43-kDa form of MAPK by > 10-fold. Induction of a dominant inhibitory form of ras in a PC12-derived cell line prevented the stimulation of MAPK by secreted beta-APP, demonstrating the dependence of the effect upon p21ras. Because the microtubule-associated protein tau is hyperphosphorylated in Alzheimer disease, we sought and found a 2-fold enhancement in tau phosphorylation associated with the beta-APP-induced MAPK stimulation. In the ras dominant inhibitory cell line, beta-APP failed to enhance phosphorylation of tau. The data presented here provide a link between secreted beta-APP and the phosphorylation state of tau. Images PMID:8041753

  2. Fucoidan/FGF-2 induces angiogenesis through JNK- and p38-mediated activation of AKT/MMP-2 signalling

    SciTech Connect

    Kim, Beom Su; Park, Ji-Yun; Kang, Hyo-Jin; Kim, Hyung-Jin; Lee, Jun

    2014-08-08

    Graphical abstract: Schematic diagram of the angiogenic activity mechanism by FGF-2/fucoidan treatment in HUVECs. Fucoidan enhances the FGF-2-induced phosphorylation of p38, JNK, and ERK MAPKs. However, p38 and JNK were involved in AKT phosphorylation and MMP-2 activation and resulted in enhanced angiogenic activity, such as tube formation and migration, in HUVECs. - Highlights: • The angiogenic activity of fucoidan in HUVECs was explored. • Fucoidan enhanced HUVEC proliferation, migration, and tube formation. • Fucoidan enhanced angiogenesis through p38 and JNK but not ERK in HUVECs. • Fucoidan targeted angiogenesis-mediated AKT/MMP-2 signalling in HUVECs. - Abstract: Angiogenesis is an important biological process in tissue development and repair. Fucoidan has previously been shown to potentiate in vitro tube formation in the presence of basic fibroblast growth factor (FGF-2). However, the underlying molecular mechanism remains largely unknown. This study was designed to investigate the action of fucoidan in angiogenesis in human umbilical vein endothelial cells (HUVECs) and to explore fucoidan-signalling pathways. First, we evaluated the effect of fucoidan on cell proliferation. Matrigel-based tube formation and wound healing assays were performed to investigate angiogenesis. Matrix metalloproteinase-2 (MMP-2) mRNA expression and activity levels were analysed by reverse transcription polymerase chain reaction (RT-PCR) and zymography, respectively. Additionally, phosphorylation of mitogen-activated protein kinases (MAPKs) and protein kinase B (AKT) was detected by Western blot. The results indicate that fucoidan treatment significantly increased cell proliferation in the presence of FGF-2. Moreover, compared to the effect of FGF-2 alone, fucoidan and FGF-2 had a greater effect on tube formation and cell migration, and this effect was found to be synergistic. Furthermore, fucoidan enhanced the phosphorylation of extracellular signal-regulated kinase (ERK

  3. Filarial Lymphatic Pathology Reflects Augmented Toll-Like Receptor-Mediated, Mitogen-Activated Protein Kinase-Mediated Proinflammatory Cytokine Production ▿ †

    PubMed Central

    Babu, Subash; Anuradha, R.; Kumar, N. Pavan; George, P. Jovvian; Kumaraswami, V.; Nutman, Thomas B.

    2011-01-01

    Lymphatic filariasis can be associated with the development of serious pathology in the form of lymphedema, hydrocele, and elephantiasis in a subset of infected patients. Toll-like receptors (TLRs) are thought to play a major role in the development of filarial pathology. To elucidate the role of TLRs in the development of lymphatic pathology, we examined cytokine responses to different Toll ligands in patients with chronic lymphatic pathology (CP), infected patients with subclinical pathology (INF), and uninfected, endemic-normal (EN) individuals. TLR2, -7, and -9 ligands induced significantly elevated production of Th1 and other proinflammatory cytokines in CP patients in comparison to both INF and EN patients. TLR adaptor expression was not significantly different among the groups; however, both TLR2 and TLR9 ligands induced significantly higher levels of phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein (MAP) kinases (MAPK) as well as increased activation of NF-κB in CP individuals. Pharmacologic inhibition of both ERK1/2 and p38 MAP kinase pathways resulted in significantly diminished production of proinflammatory cytokines in CP individuals. Our data, therefore, strongly suggest an important role for TLR2- and TLR9-mediated proinflammatory cytokine induction and activation of both the MAPK and NF-κB pathways in the development of pathology in human lymphatic filariasis. PMID:21875961

  4. Extracellular matrix is a source of mitogenically active platelet-derived growth factor.

    PubMed

    Field, S L; Khachigian, L M; Sleigh, M J; Yang, G; Vandermark, S E; Hogg, P J; Chesterman, C N

    1996-08-01

    Platelet-derived growth factor (PDGF) is a chemotactic and mitogenic agent for fibroblasts and smooth muscle cells and plays a key role in the development of atherosclerotic lesions. PDGF is produced by a number of normal and transformed cell types and occurs as homo- or heterodimers of A and B polypeptide chains. Using Chinese hamster ovary (CHO) cells transfected with various forms of PDGF, we have previously shown that PDGF A(s) (short splice version) is secreted, PDGF A(l) (long splice version) predominantly extracellular matrix-associated, and PDGF B divided between medium, cells, and matrix. In the present study we have demonstrated the mitogenic activity of matrix-localized PDGF in artificial and more physiologically relevant models by culturing Balb/c-3T3 cells (3T3), human foreskin fibroblasts (HFF), and rabbit aortic smooth muscle cells (SMC) on extracellular matrix (ECM) laid down by PDGF-expressing CHO cells and human umbilical vein endothelial cells (HUVEC). These cells responded to the local growth stimulus of PDGF-containing CHO ECM and HUVEC ECM. We showed that 3T3 cells required proteolytic activity to utilize matrix-localized PDGF, as aprotinin and epsilon-ACA inhibited growth and 3T3 cells were shown to possess plasminogen activator activity. HFF and SMC did not appear to require proteolytic activity (including metalloproteinase and serine protease activity) as a prerequisite for mitogenesis but were able to access immobilized PDGF by contact with the matrix. An understanding of the mechanisms whereby the utilization of stored PDGF is controlled in situations of excessive cellular proliferation will aid in the development of therapy for these conditions. PMID:8707868

  5. All-trans retinoic acid modulates mitogen-activated protein kinase pathway activation in human scleral fibroblasts through retinoic acid receptor beta

    PubMed Central

    Huo, Lijun; Cui, Dongmei; Yang, Xiao; Gao, Zhenya; Trier, Klaus

    2013-01-01

    Purpose All-trans retinoic acid (ATRA) is known to inhibit the proliferation of human scleral fibroblasts (HSFs) and to modulate the scleral intercellular matrix composition, and may therefore serve as a mediator for controlling eye growth. Cell proliferation is regulated by the mitogen-activated protein kinase (MAPK) pathway. The aim of the current study was to investigate whether changed activation of the MAPK pathway could be involved in the response of HSFs exposed to ATRA. Methods HSFs were cultured in Dulbecco Modified Eagle's Medium/F12 (DMEM/F12) and exposed to 1 μmol/l ATRA for 10 min, 30 min, 1 h, 8 h, or 24 h. The activation of extracellular signal-regulated kinase (ERK 1/2), p38, and c-Jun N-terminal kinase (JNK) in HSFs was assessed with western blot analysis and immunocytofluorescence. Results After exposure to ATRA for 24 h, the HSFs appeared shrunken and thinner than the control cells. The intercellular spaces were wider, and the HSFs appeared less numerous than in the control culture. Western blot showed decreased activation of ERK 1/2 in the HSFs from 30 min (p=0.01) to 24 h (p<0.01) after the start of exposure to ATRA, and increased activation of the JNK protein from 10 to 30 min (p<0.01) after the start of exposure to ATRA. Indirect immunofluorescence confirmed changes in activation of ERK 1/2 and JNK in HSFs exposed to ATRA. No change in activation of p38 in HSFs was observed after exposure to ATRA. Pretreatment of the HSFs with LE135, an antagonist of retinoic acid receptor beta (RARβ), abolished the ATRA-induced changes inactivation of ERK 1/2 and JNK. Conclusions ATRA inhibits HSF proliferation by a mechanism associated with modulation of ERK 1/2 and JNK activation and depends on stimulation of retinoic acid receptor beta. PMID:23946634

  6. Mutations associated with retinopathies alter mitogen-activated protein kinase-induced phosphorylation of neural retina leucine-zipper

    PubMed Central

    Kumar, Sandeep; Patel, Dharmesh; Richong, Sushmita; Oberoi, Pranav; Ghosh, Madhumita; Swaroop, Anand

    2007-01-01

    Purpose Neural retina leucine-zipper (NRL), a member of the basic motif leucine zipper family of transcription factors, is preferentially expressed in rod photoreceptors of the mammalian retina. Mutations in NRL are associated with retinopathies; many of these are suggested to change phosphorylation status and alter NRL-mediated transactivation of rhodopsin promoter. The purpose of this study was to identify potential kinases responsible for the phosphorylation of NRL and determine if such kinase-dependent phosphorylation is altered in disease-associated NRL mutations. Methods Metabolic labeling with 33P-orthophosphate was used to study phosphorylation of NRL in transfected COS-1 cells. NRL or NRL mutants were expressed as glutathione S-transferase (GST)-fusion proteins and used as substrate to screen various kinases by in vitro phosphorylation assays. CV-1 cells were co-transfected with rhodopsin promoter-reporter construct and expression plasmids, with or without specific mitogen-activated protein kinase (MAPK) inhibitors, to examine their effect on NRL-mediated transactivation. Expression of activated MAPKs in postnatal mice retina was determined by immunoblot analysis. Results Metabolic labeling of NRL produces multiple phosphorylated protein bands in transfected COS-1 cells. Fewer but more intense radiolabeled bands are observed for NRL-S50T, -S50A, and -P51L mutants compared to wild-type NRL. We show that MAPK2 and p38 induce specific phosphorylation of NRL, but this pattern is altered in NRL mutants. Immunoblot analysis of extracts from developing mouse retina reveals enhanced expression of activated MAPK2 at postnatal day 0-3, concordant with the reported phosphorylation pattern of NRL in vivo. Inhibition of MAPK signaling pathways decreases NRL and CRX -mediated synergistic activation of rhodopsin promoter in transfected CV-1 cells. Conclusions Our results suggest that multiple MAPKs can phosphorylate NRL and this phosphorylation pattern is altered by

  7. Mercuric ions inhibit mitogen-activated protein kinase dephosphorylation by inducing reactive oxygen species

    SciTech Connect

    Haase, Hajo; Engelhardt, Gabriela; Hebel, Silke; Rink, Lothar

    2011-01-01

    Mercury intoxication profoundly affects the immune system, in particular, signal transduction of immune cells. However, the mechanism of the interaction of mercury with cellular signaling pathways, such as mitogen activated protein kinases (MAPK), remains elusive. Therefore, the objective of this study is to investigate three potential ways in which Hg{sup 2+} ions could inhibit MAPK dephosphorylation in the human T-cell line Jurkat: (1) by direct binding to phosphatases; (2) by releasing cellular zinc (Zn{sup 2+}); and (3) by inducing reactive oxygen species (ROS). Hg{sup 2+} causes production of ROS, measured by dihydrorhodamine 123, and triggers ROS-mediated Zn{sup 2+} release, detected with FluoZin-3. Yet, phosphatase-inhibition is not mediated by binding of Zn{sup 2+} or Hg{sup 2+}. Rather, phosphatases are inactivated by at least two forms of thiol oxidation; initial inhibition is reversible with reducing agents such as Tris(2-carboxyethyl)phosphine. Prolonged inhibition leads to non-reversible phosphatase oxidation, presumably oxidizing the cysteine thiol to sulfinic- or sulfonic acid. Notably, phosphatases are a particularly sensitive target for Hg{sup 2+}-induced oxidation, because phosphatase activity is inhibited at concentrations of Hg{sup 2+} that have only minor impact on over all thiol oxidation. This phosphatase inhibition results in augmented, ROS-dependent MAPK phosphorylation. MAPK are important regulators of T-cell function, and MAPK-activation by inhibition of phosphatases seems to be one of the molecular mechanisms by which mercury affects the immune system.

  8. Molecular pathways: mitogen-activated protein kinase pathway mutations and drug resistance.

    PubMed

    Pritchard, Antonia L; Hayward, Nicholas K

    2013-05-01

    Receptor tyrosine kinases are a diverse family of transmembrane proteins that can activate multiple pathways upon ligation of the receptor, one of which is the series of mitogen-activated protein kinase (MAPK) signaling cascades. The MAPK pathways play critical roles in a wide variety of cancer types, from hematologic malignancies to solid tumors. Aberrations include altered expression levels and activation states of pathway components, which can sometimes be attributable to mutations in individual members. The V600E mutation of BRAF was initially described in 2002 and has been found at particularly high frequency in melanoma and certain subtypes of colorectal cancer. In the relatively short time since this discovery, a family of drugs has been developed that specifically target this mutated BRAF isoform, which, after results from phase I/II and III clinical trials, was granted U.S. Food and Drug Administration approval in August 2011. Although these drugs produce clinically meaningful increases in progression-free and overall survival, due to acquired resistance they have not improved mortality rates. New drugs targeting other members of the MAPK pathways are in clinical trials or advanced stages of development. It is hoped that combination therapies of these new drugs in conjunction with BRAF inhibitors will counteract the mechanisms of resistance and provide cures. The clinical implementation of next-generation sequencing is leading to a greater understanding of the genetic architecture of tumors, along with acquired mechanisms of drug resistance, which will guide the development of tumor-specific inhibitors and combination therapies in the future. PMID:23406774

  9. A Role for Mitogen-activated Protein Kinase in the Spindle Assembly Checkpoint in XTC Cells

    PubMed Central

    Wang, Xiao Min; Zhai, Ye; Ferrell, James E.

    1997-01-01

    The spindle assembly checkpoint prevents cells whose spindles are defective or chromosomes are misaligned from initiating anaphase and leaving mitosis. Studies of Xenopus egg extracts have implicated the Erk2 mitogen-activated protein kinase (MAP kinase) in this checkpoint. Other studies have suggested that MAP kinases might be important for normal mitotic progression. Here we have investigated whether MAP kinase function is required for mitotic progression or the spindle assembly checkpoint in vivo in Xenopus tadpole cells (XTC). We determined that Erk1 and/or Erk2 are present in the mitotic spindle during prometaphase and metaphase, consistent with the idea that MAP kinase might regulate or monitor the status of the spindle. Next, we microinjected purified recombinant XCL100, a Xenopus MAP kinase phosphatase, into XTC cells in various stages of mitosis to interfere with MAP kinase activation. We found that mitotic progression was unaffected by the phosphatase. However, XCL100 rendered the cells unable to remain arrested in mitosis after treatment with nocodazole. Cells injected with phosphatase at prometaphase or metaphase exited mitosis in the presence of nocodazole—the chromosomes decondensed and the nuclear envelope re-formed—whereas cells injected with buffer or a catalytically inactive XCL100 mutant protein remained arrested in mitosis. Coinjection of constitutively active MAP kinase kinase-1, which opposes XCL100's effects on MAP kinase, antagonized the effects of XCL100. Since the only known targets of MAP kinase kinase-1 are Erk1 and Erk2, these findings argue that MAP kinase function is required for the spindle assembly checkpoint in XTC cells. PMID:9128253

  10. Aluminum Nanoparticles Induce ERK and p38MAPK Activation in Rat Brain

    PubMed Central

    Seo, Gyun-Baek; Jo; Lee, Mimi; Shim, Ilseob; Lee, Byung-Woo; Yoon, Byung-Il; Kim, Pilje; Choi, Kyunghee

    2013-01-01

    Aluminum nanoparticles (Al-NPs) are one of the most widely used nanomaterial in cosmetics and medical materials. For this reason, Al-NP exposure is very likely to occur via inhalation in the environment and the workplace. Nevertheless, little is known about the mechanism of Al-NP neurotoxicity via inhalation exposure. In this study, we investigated the effect AL-NPs on the brain. Rats were exposed to Al-NPs by nasal instillation at 1 mg/kg body weight (low exposure group), 20 mg/kg body weight (moderate exposure group), and 40 mg/kg body weight (high exposure group), for a total of 3 times, with a 24-hr interval after each exposure. Inductively coupled plasma mass spectrometry (ICP-MS) analysis indicated that the presence of aluminum was increased in a dose-dependent manner in the olfactory bulb (OFB) and the brain. In microarray analysis, the regulation of mitogen-activated protein kinases (MAPK) activity (GO: 0043405), including Ptprc, P2rx7, Map2k4, Trib3, Trib1, and Fgd4 was significantly over-expressed in the treated mice than in the controls (p = 0.0027). Moreover, Al-NPs induced the activation of ERK1 and p38 MAPK protein expression in the brain, but did not alter the protein expression of JNK, when compared to the control. These data demonstrate that the nasal exposure of Al-NPs can permeate the brain via the olfactory bulb and modulate the gene and protein expression of MAPK and its activity. PMID:24386518

  11. Aluminum Nanoparticles Induce ERK and p38MAPK Activation in Rat Brain.

    PubMed

    Kwon, Jung-Taek; Seo, Gyun-Baek; Jo; Lee, Mimi; Kim, Hyun-Mi; Shim, Ilseob; Lee, Byung-Woo; Yoon, Byung-Il; Kim, Pilje; Choi, Kyunghee

    2013-09-01

    Aluminum nanoparticles (Al-NPs) are one of the most widely used nanomaterial in cosmetics and medical materials. For this reason, Al-NP exposure is very likely to occur via inhalation in the environment and the workplace. Nevertheless, little is known about the mechanism of Al-NP neurotoxicity via inhalation exposure. In this study, we investigated the effect AL-NPs on the brain. Rats were exposed to Al-NPs by nasal instillation at 1 mg/kg body weight (low exposure group), 20 mg/kg body weight (moderate exposure group), and 40 mg/kg body weight (high exposure group), for a total of 3 times, with a 24-hr interval after each exposure. Inductively coupled plasma mass spectrometry (ICP-MS) analysis indicated that the presence of aluminum was increased in a dose-dependent manner in the olfactory bulb (OFB) and the brain. In microarray analysis, the regulation of mitogen-activated protein kinases (MAPK) activity (GO: 0043405), including Ptprc, P2rx7, Map2k4, Trib3, Trib1, and Fgd4 was significantly over-expressed in the treated mice than in the controls (p = 0.0027). Moreover, Al-NPs induced the activation of ERK1 and p38 MAPK protein expression in the brain, but did not alter the protein expression of JNK, when compared to the control. These data demonstrate that the nasal exposure of Al-NPs can permeate the brain via the olfactory bulb and modulate the gene and protein expression of MAPK and its activity. PMID:24386518

  12. Mitogen-Activated Protein Kinase Kinase 3 Regulates Seed Dormancy in Barley.

    PubMed

    Nakamura, Shingo; Pourkheirandish, Mohammad; Morishige, Hiromi; Kubo, Yuta; Nakamura, Masako; Ichimura, Kazuya; Seo, Shigemi; Kanamori, Hiroyuki; Wu, Jianzhong; Ando, Tsuyu; Hensel, Goetz; Sameri, Mohammad; Stein, Nils; Sato, Kazuhiro; Matsumoto, Takashi; Yano, Masahiro; Komatsuda, Takao

    2016-03-21

    Seed dormancy has fundamental importance in plant survival and crop production; however, the mechanisms regulating dormancy remain unclear [1-3]. Seed dormancy levels generally decrease during domestication to ensure that crops successfully germinate in the field. However, reduction of seed dormancy can cause devastating losses in cereals like wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) due to pre-harvest sprouting, the germination of mature seed (grain) on the mother plant when rain occurs before harvest. Understanding the mechanisms of dormancy can facilitate breeding of crop varieties with the appropriate levels of seed dormancy [4-8]. Barley is a model crop [9, 10] and has two major seed dormancy quantitative trait loci (QTLs), SD1 and SD2, on chromosome 5H [11-19]. We detected a QTL designated Qsd2-AK at SD2 as the single major determinant explaining the difference in seed dormancy between the dormant cultivar "Azumamugi" (Az) and the non-dormant cultivar "Kanto Nakate Gold" (KNG). Using map-based cloning, we identified the causal gene for Qsd2-AK as Mitogen-activated Protein Kinase Kinase 3 (MKK3). The dormant Az allele of MKK3 is recessive; the N260T substitution in this allele decreases MKK3 kinase activity and appears to be causal for Qsd2-AK. The N260T substitution occurred in the immediate ancestor allele of the dormant allele, and the established dormant allele became prevalent in barley cultivars grown in East Asia, where the rainy season and harvest season often overlap. Our findings show fine-tuning of seed dormancy during domestication and provide key information for improving pre-harvest sprouting tolerance in barley and wheat. PMID:26948880

  13. Mitogen-activated Protein Kinase Phosphatase-1 Modulates Regional Effects of Injurious Mechanical Ventilation in Rodent Lungs

    PubMed Central

    Park, Moo Suk; Edwards, Michael G.; Sergew, Amen; Riches, David W. H.; Albert, Richard K.

    2012-01-01

    Rationale: Mechanical ventilation induces heterogeneous lung injury by mitogen-activated protein kinase (MAPK) and nuclear factor-κB. Mechanisms regulating regional injury and protective effects of prone positioning are unclear. Objectives: To determine the key regulators of the lung regional protective effects of prone positioning in rodent lungs exposed to injurious ventilation. Methods: Adult rats were ventilated with high (18 ml/kg, positive end-expiratory pressure [PEEP] 0) or low Vt (6 ml/kg; PEEP 3 cm H2O; 3 h) in supine or prone position. Dorsal–caudal lung mRNA was analyzed by microarray and MAPK phosphatases (MKP)-1 quantitative polymerase chain reaction. MKP-1−/− or wild-type mice were ventilated with very high (24 ml/kg; PEEP 0) or low Vt (6–7 ml/kg; PEEP 3 cm H2O). The MKP-1 regulator PG490-88 (MRx-108; 0.75 mg/kg) or phosphate-buffered saline was administered preventilation. Injury was assessed by lung mechanics, bronchioalveolar lavage cell counts, protein content, and lung injury scoring. Immunoblotting for MKP-1, and IκBα and cytokine ELISAs were performed on lung lysates. Measurements and Main Results: Prone positioning was protective against injurious ventilation in rats. Expression profiling demonstrated MKP-1 20-fold higher in rats ventilated prone rather than supine and regional reduction in p38 and c-jun N-terminal kinase activation. MKP-1−/− mice experienced amplified injury. PG490-88 improved static lung compliance and injury scores, reduced bronchioalveolar lavage cell counts and cytokine levels, and induced MKP-1 and IκBα. Conclusions: Injurious ventilation induces MAPK in an MKP-1–dependent fashion. Prone positioning is protective and induces MKP-1. PG490-88 induced MKP-1 and was protective against high Vt in a nuclear factor-κB–dependent manner. MKP-1 is a potential target for modulating regional effects of injurious ventilation. PMID:22582160

  14. Metabolic Respiration Induces AMPK- and Ire1p-Dependent Activation of the p38-Type HOG MAPK Pathway

    PubMed Central

    Adhikari, Hema; Cullen, Paul J.

    2014-01-01

    Evolutionarily conserved mitogen activated protein kinase (MAPK) pathways regulate the response to stress as well as cell differentiation. In Saccharomyces cerevisiae, growth in non-preferred carbon sources (like galactose) induces differentiation to the filamentous cell type through an extracellular-signal regulated kinase (ERK)-type MAPK pathway. The filamentous growth MAPK pathway shares components with a p38-type High Osmolarity Glycerol response (HOG) pathway, which regulates the response to changes in osmolarity. To determine the extent of functional overlap between the MAPK pathways, comparative RNA sequencing was performed, which uncovered an unexpected role for the HOG pathway in regulating the response to growth in galactose. The HOG pathway was induced during growth in galactose, which required the nutrient regulatory AMP-dependent protein kinase (AMPK) Snf1p, an intact respiratory chain, and a functional tricarboxylic acid (TCA) cycle. The unfolded protein response (UPR) kinase Ire1p was also required for HOG pathway activation in this context. Thus, the filamentous growth and HOG pathways are both active during growth in galactose. The two pathways redundantly promoted growth in galactose, but paradoxically, they also inhibited each other's activities. Such cross-modulation was critical to optimize the differentiation response. The human fungal pathogen Candida albicans showed a similar regulatory circuit. Thus, an evolutionarily conserved regulatory axis links metabolic respiration and AMPK to Ire1p, which regulates a differentiation response involving the modulated activity of ERK and p38 MAPK pathways. PMID:25356552

  15. The food contaminant deoxynivalenol activates the mitogen activated protein kinases in the intestine: interest of ex vivo models as an alternative to in vivo experiments.

    PubMed

    Lucioli, Joelma; Pinton, Philippe; Callu, Patrick; Laffitte, Joëlle; Grosjean, François; Kolf-Clauw, Martine; Oswald, Isabelle P; Bracarense, Ana Paula F R L

    2013-05-01

    Trichothecenes induce changes in the intestinal barrier function through decreased expression of cell junction proteins and apoptosis of enterocytes. The mitogen activated protein kinases (MAPK) play an important role in the signaling pathways of cell turnover and differentiation. Using ex vivo and in vivo approaches, the purpose of this study was to investigate the ability of low doses of DON to induce histological changes in the intestine and to activate the MAPK ERK 1/2, p38 and JNK. Twelve weaning piglets received during four weeks a control diet or a DON-contaminated diet (2.3 mg DON/kg feed). Six weaning piglets were used to prepare jejunal explants (ex vivo model). Explants were exposed during 4 h to vehicle, 5 or 10 μM DON. Intestinal changes were graded using a histological score. Pigs fed a DON-diet and explants exposed to DON showed a significant decrease in the jejunal score. In both models, the toxin significantly enhanced phosphorylation of ERK 1/2 and p38, whereas the increased phosphorylation of JNK was non significant. Taken together these results indicate that in vivo or ex vivo exposure of intestinal tissue to DON lead to similar intestinal lesions and activation of MAPK. These effects could impair the homeostasis of intestinal tissue in the aspects of barrier function and immune protection. The similarity of the in vivo and ex vivo results provides also strong evidence that the jejunal explant model is a good alternative for toxicological studies in intestinal tissue. PMID:23403092

  16. Hyperpigmentation mechanism of methyl 3,5-di-caffeoylquinate through activation of p38 and MITF induction of tyrosinase.

    PubMed

    Kim, Hyo Jung; Kim, Jin Sook; Woo, Je-Tae; Lee, Ik-Soo; Cha, Byung-Yoon

    2015-07-01

    Methyl 3,5-di-caffeoylquinate (3,5-diCQM) has been used for the treatment of various diseases in oriental medicine, but its effect on melanogenesis has not been reported yet. In this study, the molecular mechanism of 3,5-diCQM-induced melanogenesis was investigated. It was found that 3,5-diCQM induced synthesis of melanin pigments in murine B16F10 melanoma cells in a concentration-dependent manner. Treatment of cells with 3,5-diCQM for 48 h increased extracellular and intracellular melanin production and tyrosinase activity. The expressions of tyrosinase, tyrosinase-related protein 1 (TRP1), and TRP2 were up-regulated in a dose-dependent manner 48 h after 3,5-diCQM treatment. Western blot analysis showed that 3,5-diCQM increased the phosphorylation of p38 mitogen-activated protein kinase and cAMP responsive element binding as well as the expression of microphthalmia-associated transcription factor. In addition, 3,5-diCQM-stimulated cAMP production, and 3,5-diCQM-induced tyrosinase activity and melanin synthesis were attenuated by H89, a protein kinase A inhibitor. These results suggested that 3,5-diCQM-mediated activation of the p38 pathway may represent a novel approach for an effective therapy for vitiligo and hair graying. PMID:26018825

  17. The Role of JNK and p38 MAPK Activities in UVA-Induced Signaling Pathways Leading to AP-1 Activation and c-Fos Expression1

    PubMed Central

    Silvers, Amy L; Bachelor, Michael A; Bowden, G Timothy

    2003-01-01

    Abstract To further delineate ultraviolet A (UVA) signaling pathways in the human keratinocyte cell line HaCaT, we examined the potential role of mitogen-activated protein kinases (MAPKs) in UVA-induced activator protein-1 (AP-1) transactivation and c-Fos expression. UVA-induced phosphorylation of p38 and c-Jun N-terminal kinase (JNK) proteins was detected immediately after irradiation and disappeared after approximately 2 hours. Conversely, phosphorylation of extracellular signal-regulated kinase was significantly inhibited for up to 1 hour post-UVA irradiation. To examine the role of p38 and JNK MAPKs in UVA-induced AP-1 and c-fos transactivations, the selective pharmacologic MAPK inhibitors, SB202190 (p38 inhibitor) and SP600125 (JNK inhibitor), were used to independently treat stably transfected HaCaT cells in luciferase reporter assays. Both SB202190 and SP600125 dose-dependently inhibited UVA-induced AP-1 and c-fos transactivations. SB202190 (0.25–0.5 µM) and SP600125 (62–125 nM) treatments also primarily inhibited UVA-induced c-Fos expression. These results demonstrated that activation of both JNK and p38 play critical role in UVA-mediated AP-1 transactivation and c-Fos expression in these human keratinocyte cells. Targeted inhibition of these MAPKs with their selective pharmacologic inhibitors may be effective chemopreventive strategies for UVA-induced nonmelanoma skin cancer. PMID:14511403

  18. Titanium dioxide nanoparticles stimulate sea urchin immune cell phagocytic activity involving TLR/p38 MAPK-mediated signalling pathway

    PubMed Central

    Pinsino, Annalisa; Russo, Roberta; Bonaventura, Rosa; Brunelli, Andrea; Marcomini, Antonio; Matranga, Valeria

    2015-01-01

    Titanium dioxide nanoparticles (TiO2NPs) are one of the most widespread-engineered particles in use for drug delivery, cosmetics, and electronics. However, TiO2NP safety is still an open issue, even for ethical reasons. In this work, we investigated the sea urchin Paracentrotus lividus immune cell model as a proxy to humans, to elucidate a potential pathway that can be involved in the persistent TiO2NP-immune cell interaction in vivo. Morphology, phagocytic ability, changes in activation/inactivation of a few mitogen-activated protein kinases (p38 MAPK, ERK), variations of other key proteins triggering immune response (Toll-like receptor 4-like, Heat shock protein 70, Interleukin-6) and modifications in the expression of related immune response genes were investigated. Our findings indicate that TiO2NPs influence the signal transduction downstream targets of p38 MAPK without eliciting an inflammatory response or other harmful effects on biological functions. We strongly recommend sea urchin immune cells as a new powerful model for nano-safety/nano-toxicity investigations without the ethical normative issue. PMID:26412401

  19. Mitogen-activated protein kinases and nuclear factor-kappaB regulate Helicobacter pylori-mediated interleukin-8 release from macrophages.

    PubMed Central

    Bhattacharyya, Asima; Pathak, Shresh; Datta, Simanti; Chattopadhyay, Santanu; Basu, Joyoti; Kundu, Manikuntala

    2002-01-01

    Gastric infection, as well as inflammation, caused by Helicobacter pylori, activates the production of cytokines and chemokines by mononuclear cells; interleukin-8 (IL-8) is one of the major inflammatory chemokines. Since H. pylori does not invade mucosal tissue, we observed the effect of the water extract of H. pylori (HPE), containing shed factors, on the production of IL-8 by human peripheral blood monocytes and the human monocyte cell line THP-1. HPE-treatment induced activation of the mitogen-activated protein kinases (MAPKs) ERK (extracellular signal-regulated kinase), p38 and JNK (c-Jun N-terminal kinase), an effect which was not dependent on the presence of the cag pathogenicity island. p38 MAPK activation was sustained. The specific inhibitors, U0126 (for ERK1/2 signalling) and SB203580 (for p38 MAPK signalling), both abrogated IL-8 secretion from HPE-treated THP-1. Dominant-negative mutants of the upstream kinases MEK1 (MAPK/ERK kinase 1), MKK (MAPK kinase) 6 and MKK7 also inhibited IL-8 secretion, pointing to a role of all three MAPKs in HPE-mediated IL-8 release. The inhibitory effects of polymyxin B and anti-CD14 antibody suggested that the effect of HPE on MAPKs was mediated by H. pylori lipopolysaccharide (LPS). By analysis of IL-8-promoter-driven luciferase gene expression, we observed that the effects of HPE-induced nuclear factor-kappaB (NF-kappaB) activation and MAPK signalling were mediated at the level of the IL-8 promoter. While ERK1/2 activation could be linked to enhanced DNA binding of activator protein-1 (AP-1), p38 MAPK signalling did not affect AP-1 DNA binding. Taken together, these results provide the first evidence that LPS from H. pylori stimulates IL-8 release from cells of the monocytic lineage through activation of NF-kappaB and signalling along MAPK cascades. The stimulation of MAPK signalling in macrophages by LPS of H. pylori amplifies the inflammatory response associated with gastric H. pylori infection and needs to be taken

  20. Diphenylarsinic Acid Induced Activation of Cultured Rat Cerebellar Astrocytes: Phosphorylation of Mitogen-Activated Protein Kinases, Upregulation of Transcription Factors, and Release of Brain-Active Cytokines.

    PubMed

    Negishi, Takayuki; Matsumoto, Mami; Kojima, Mikiya; Asai, Ryota; Kanehira, Tomoko; Sakaguchi, Fumika; Takahata, Kazuaki; Arakaki, Rina; Aoyama, Yohei; Yoshida, Hikari; Yoshida, Kenji; Yukawa, Kazunori; Tashiro, Tomoko; Hirano, Seishiro

    2016-03-01

    Diphenylarsinic acid (DPAA) was detected as the primary compound responsible for the arsenic poisoning that occurred in Kamisu, Ibaraki, Japan, where people using water from a well that was contaminated with a high level of arsenic developed neurological (mostly cerebellar) symptoms and dysregulation of regional cerebral blood flow. To understand the underlying molecular mechanism of DPAA-induced cerebellar symptoms, we focused on astrocytes, which have a brain-protective function. Incubation with 10 µM DPAA for 96 h promoted cell proliferation, increased the expression of antioxidative stress proteins (heme oxygenase-1 and heat shock protein 70), and induced the release of cytokines (MCP-1, adrenomedullin, FGF2, CXCL1, and IL-6). Furthermore, DPAA overpoweringly increased the phosphorylation of three major mitogen-activated protein kinases (MAPKs) (ERK1/2, p38MAPK, and SAPK/JNK), which indicated MAPK activation, and subsequently induced expression and/or phosphorylation of transcription factors (Nrf2, CREB, c-Jun, and c-Fos) in cultured rat cerebellar astrocytes. Structure-activity relationship analyses of DPAA and other related pentavalent organic arsenicals revealed that DPAA at 10 µM activated astrocytes most effective among organic arsenicals tested at the same dose. These results suggest that in a cerebellum exposed to DPAA, abnormal activation of the MAPK-transcription factor pathway and irregular secretion of these neuroactive, glioactive, and/or vasoactive cytokines in astrocytes can be the direct/indirect cause of functional abnormalities in surrounding neurons, glial cells, and vascular cells: This in turn might lead to the onset of cerebellar symptoms and disruption of cerebral blood flow. PMID:26645585

  1. JNK (c-Jun N-terminal kinase) and p38 activation in receptor-mediated and chemically-induced apoptosis of T-cells: differential requirements for caspase activation.

    PubMed Central

    MacFarlane, M; Cohen, G M; Dickens, M

    2000-01-01

    Activation of the stress-activated mitogen-activated protein kinases (MAP kinases), c-Jun N-terminal kinase (JNK) and p38, is necessary for the induction of apoptosis in neuronal cells; however, in other cell types their involvement may be stimulus-dependent. In the present study we investigate the activation of JNK and p38 in a single non-neuronal cell type, undergoing receptor-mediated (tumour necrosis factor-related apoptosis-inducing ligand and CD95) or chemically-induced (lactacystin) apoptosis. In Jurkat T-cells, receptor-mediated and chemically-induced apoptosis resulted in a time-dependent activation of the initiator caspases-8 and -9, respectively. Both types of stimuli resulted in a significant activation of JNK and p38, which closely paralleled the time-dependent induction of apoptosis. The caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp-(OMe) fluoromethyl ketone (z-VAD.FMK) inhibited receptor-mediated apoptosis and suppressed JNK and p38 activation. In contrast, inhibition of lactacystin-induced apoptosis with z-VAD.FMK, as assessed by phosphatidylserine exposure and poly(ADP-ribose) polymerase cleavage, did not inhibit activation of JNK or p38, demonstrating that during chemically-induced apoptosis, activation of JNK and p38 is independent of effector caspases. The role of p38 in apoptosis was assessed using the specific p38 inhibitor, SB203580. No effect on the induction of apoptosis or caspase activation was observed, although activation of mitogen-activated protein kinase-activated protein kinase-2 (MAPKAPK-2), an immediate downstream target of p38, was inhibited. Therefore neither p38 activation nor activation of MAPKAPK-2 is critical for induction of either receptor- or chemically-induced apoptosis. Thus, within a single cell type, (1) the mechanism of p38 and JNK activation during apoptosis is stimulus-dependent and (2) activation of the p38 pathway is not required for caspase activation or apoptosis, assessed by phosphatidylserine exposure, but

  2. Neuroprotective effect of osthole against oxygen and glucose deprivation in rat cortical neurons: involvement of mitogen-activated protein kinase pathway.

    PubMed

    Chen, T; Liu, W; Chao, X; Qu, Y; Zhang, L; Luo, P; Xie, K; Huo, J; Fei, Z

    2011-06-01

    Osthole, a bioactive simple coumarin derivative extracted from many medicinal plants such as Cnidium monnieri (L.) Cusson, exerts a broad spectrum of pharmacological activities and is considered to have potential therapeutic applications. The aim of this study was to investigate the potential neuroprotective role of osthole against ischemic injury in vitro, as well as the potential mechanism. Cultured cortical neurons were exposed to oxygen and glucose deprivation (OGD) for 4 h followed by a 24 h reperfusion. Osthole exhibited remarkable neuroprotection in a dose-dependent manner and the effect required presence of osthole during both OGD and reperfusion phases. Western blot was used to examine the activation of three members of mitogen-activated protein kinases (MAPKs): extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), and p38 kinase (p38). We found that osthole prolonged activation of ERK1/2 and prevented activation of JNK. Furthermore, we investigated the effects of MAPKs inhibitors on osthole-induced protection. The results demonstrated that the protection of osthole was partly reversed by PD98059, a selective inhibitor of ERK1/2, but further enhanced by the JNK inhibitor SP600125. In addition, osthole-induced reduction of neuronal apoptosis was abrogated by the ERK1/2 inhibitor PD98059, whereas the total neuronal death was further decreased by the JNK inhibitor SP600125. In summary, these data suggested that osthole had neuroprotective effect against ischemic injury in vitro, and the protection possibly was associated with prolonged activation of ERK1/2 and suppression of JNK activity. PMID:21453755

  3. Natural feed contaminant zearalenone decreases the expressions of important pro- and anti-inflammatory mediators and mitogen-activated protein kinase/NF-κB signalling molecules in pigs.

    PubMed

    Pistol, Gina Cecilia; Gras, Mihail Alexandru; Marin, Daniela Eliza; Israel-Roming, Florentina; Stancu, Mariana; Taranu, Ionelia

    2014-02-01

    Zearalenone (ZEA) is an oestrogenic mycotoxin produced by Fusarium species, considered to be a risk factor from both public health and agricultural perspectives. In the present in vivo study, a feeding trial was conducted to evaluate the in vivo effect of a ZEA-contaminated diet on immune response in young pigs. The effect of ZEA on pro-inflammatory (TNF-α, IL-8, IL-6, IL-1β and interferon-γ) and anti-inflammatory (IL-10 and IL-4) cytokines and other molecules involved in inflammatory processes (matrix metalloproteinases (MMP)/tissue inhibitors of matrix metalloproteinases (TIMP), nuclear receptors: PPARγ and NF-κB1, mitogen-activated protein kinases (MAPK): mitogen-activated protein kinase kinase kinase 7 (TAK1)/mitogen-activated protein kinase 14 (p38α)/mitogen-activated protein kinase 8 (JNK1)/ mitogen-activated protein kinase 9 (JNK2)) in the liver of piglets was investigated. The present results showed that a concentration of 316 parts per billion ZEA leads to a significant decrease in the levels of pro- and anti-inflammatory cytokines at both gene expression and protein levels, correlated with a decrease in the levels of other inflammatory mediators, MMP and TIMP. The results also showed that dietary ZEA induces a dramatic reduction in the expressions of NF-κB1 and TAK1/p38α MAPK genes in the liver of the experimentally intoxicated piglets, and has no effect on the expression of PPARγ mRNA. The present results suggest that the toxic action of ZEA begins in the upstream of the MAPK signalling pathway by the inhibition of TAK1, a MAPK/NF-κB activator. In conclusion, the present study shows that ZEA alters several important parameters of the hepatic cellular immune response. From an economic point of view, these data suggest that, in pigs, ZEA is not only a powerful oestrogenic mycotoxin but also a potential hepatotoxin when administered through the oral route. Therefore, the present results represent additional data from cellular and molecular levels

  4. Discovery and Characterization of Non-ATP Site Inhibitors of the Mitogen Activated Protein (MAP) Kinases

    SciTech Connect

    Comess, Kenneth M.; Sun, Chaohong; Abad-Zapatero, Cele; Goedken, Eric R.; Gum, Rebecca J.; Borhani, David W.; Argiriadi, Maria; Groebe, Duncan R.; Jia, Yong; Clampit, Jill E.; Haasch, Deanna L.; Smith, Harriet T.; Wang, Sanyi; Song, Danying; Coen, Michael L.; Cloutier, Timothy E.; Tang, Hua; Cheng, Xueheng; Quinn, Christopher; Liu, Bo; Xin, Zhili; Liu, Gang; Fry, Elizabeth H.; Stoll, Vincent; Ng, Teresa I.; Banach, David; Marcotte, Doug; Burns, David J.; Calderwood, David J.; Hajduk, Philip J.

    2012-03-02

    Inhibition of protein kinases has validated therapeutic utility for cancer, with at least seven kinase inhibitor drugs on the market. Protein kinase inhibition also has significant potential for a variety of other diseases, including diabetes, pain, cognition, and chronic inflammatory and immunologic diseases. However, as the vast majority of current approaches to kinase inhibition target the highly conserved ATP-binding site, the use of kinase inhibitors in treating nononcology diseases may require great selectivity for the target kinase. As protein kinases are signal transducers that are involved in binding to a variety of other proteins, targeting alternative, less conserved sites on the protein may provide an avenue for greater selectivity. Here we report an affinity-based, high-throughput screening technique that allows nonbiased interrogation of small molecule libraries for binding to all exposed sites on a protein surface. This approach was used to screen both the c-Jun N-terminal protein kinase Jnk-1 (involved in insulin signaling) and p38{alpha} (involved in the formation of TNF{alpha} and other cytokines). In addition to canonical ATP-site ligands, compounds were identified that bind to novel allosteric sites. The nature, biological relevance, and mode of binding of these ligands were extensively characterized using two-dimensional {sup 1}H/{sup 13}C NMR spectroscopy, protein X-ray crystallography, surface plasmon resonance, and direct enzymatic activity and activation cascade assays. Jnk-1 and p38{alpha} both belong to the MAP kinase family, and the allosteric ligands for both targets bind similarly on a ledge of the protein surface exposed by the MAP insertion present in the CMGC family of protein kinases and distant from the active site. Medicinal chemistry studies resulted in an improved Jnk-1 ligand able to increase adiponectin secretion in human adipocytes and increase insulin-induced protein kinase PKB phosphorylation in human hepatocytes, in

  5. Low concentration of arsenic could induce caspase-3 mediated head kidney macrophage apoptosis with JNK-p38 activation in Clarias batrachus

    SciTech Connect

    Datta, Soma; Mazumder, Shibnath; Ghosh, Debabrata; Dey, Saibal; Bhattacharya, Shelley

    2009-12-15

    We had earlier demonstrated that chronic exposure (30 days) to micro-molar concentration (0.50 muM) of arsenic induced head kidney macrophage (HKM) death in Clarias batrachus. The purpose of the present study is to characterize the nature of HKM death induced by arsenic and elucidate the signal transduction pathways involved in the process. Arsenic-induced HKM death was apoptotic in nature as evident from DNA gel, Annexin V-propidium iodide, Hoechst 33342 staining and TdT-mediated dUTP nick end labeling (TUNEL) assays. Inhibitor studies and immunoblot analyses further demonstrated that arsenic-induced HKM apoptosis involved activation of caspase-3 and cleavage of poly(ADP-ribose) polymerase, a well-characterized caspase-3 substrate. Preincubation with antioxidants N-acetyl-cysteine or dimethyl sulfoxide significantly lowered reactive oxygen species (ROS) levels in arsenic-treated HKM and prevented caspase activation, malondialdehyde formation and HKM apoptosis. Arsenic induced membrane translocation of the NADPH oxidase subunit p47{sup phox}. Preincubation with apocynin and diphenyleneiodonium chloride, both selective inhibitors of NADPH oxidases, prevented p47{sup phox} translocation, ROS production and HKM death. Exposure of HKM to arsenic induced the activation of mitogen-activated protein kinase family (MAPK) proteins including c-Jun NH{sub 2}-terminal protein kinase (JNK) and p38 mitogen-activated protein kinase (p38). Preincubation of HKM with p38 inhibitor SB203580 and JNK inhibitor SP600125 protected the HKM against arsenic-induced apoptosis. We conclude that exposure to micro-molar concentration of arsenic induces ROS generation through the activation of NADPH oxidases, which in turn causes caspase-3 mediated HKM apoptosis. In addition, the study also indicates a role of p38-JNK pathway in arsenic-induced HKM apoptosis in C. batrachus.

  6. CpG oligodeoxynucleotides induce IL-8 expression in CD34+ cells via mitogen-activated protein kinase-dependent and NF-kappaB-independent pathways.

    PubMed

    Kim, Jung Mogg; Kim, Nam In; Oh, Yu-Kyoung; Kim, Young-Jeon; Youn, Jeehee; Ahn, Myung-Ju

    2005-12-01

    To elucidate the role of Toll-like receptor 9 (TLR9) activation along with the intracellular signaling pathways triggered by CpG DNA in CD34+ cells, we investigated whether synthetic oligodeoxynucleotides (ODNs), containing unmethylated CpG motifs, could induce IL-8 expression in CD34+ cells through mitogen-activated protein kinase (MAPK) or nuclear factor-kappaB (NF-kappaB) pathway. We demonstrated evidence for the first time that CD34+ cells constitutively expressed TLR9. Exposure of the cells to CpG ODN resulted in a time- and dose-dependent increase of IL-8 expression, and activation of phosphorylated ERK1/2 and phosphorylated p38. In addition, CpG ODN stimulated AP-1, but not NF-kappaB, signals. Moreover, inhibitors of MAPK (U0126 and SB203580) significantly reduced the IL-8 production, while the inhibition of NF-kappaB (pyrrolidinedithiocarbamate and retrovirus containing dominant-negative IkappaB alpha plasmid) did not affect the IL-8 expression increased by CpG ODN. Moreover, co-stimulation with LPS and CpG synergistically up-regulates IL-8 in CD34+ cells. These results suggest that CpG DNA, acting on TLR9, activates CD34+ cells to express IL-8 through MAPK-dependent and NF-kappaB-independent pathways. PMID:16263754

  7. Role of mitogen activated protein kinases in skin tumorigenicity of Patulin

    SciTech Connect

    Saxena, Neha; Ansari, Kausar M.; Kumar, Rahul; Chaudhari, Bhushan P.; Dwivedi, Premendra D.; Das, Mukul

    2011-12-15

    WHO has highlighted the need to evaluate dermal toxicity of mycotoxins including Patulin (PAT), detected in several fruits. In this study the skin carcinogenic potential of topically applied PAT was investigated. Single topical application of PAT (400 nmol) showed enhanced cell proliferation ({approx} 2 fold), along with increased generation of ROS and activation of ERK, p38 and JNK MAPKs, in mouse skin. PAT exposure also showed activation of downstream target proteins, c-fos, c-Jun and NF-{kappa}B transcription factors. Further, single topical application of PAT (400 nmol) followed by twice weekly application of TPA resulted in tumor formation after 14 weeks, indicating the tumor initiating activity of PAT. However no tumors were observed when PAT was used either as a complete carcinogen (80 nmol) or as a tumor promoter (20 nmol and 40 nmol) for 25 weeks. Histopathological findings of tumors found in PAT/TPA treated mice showed that these tumors were of squamous cell carcinoma type and similar to those found in the positive control group (DMBA/TPA) along with significant increase of lipid peroxidation and decrease in free sulfydryls, catalase, superoxide dismutase and glutathione reductase activities. The results suggest the possible role of free radicals in PAT mediated dermal tumorigenicity involving MAPKs. -- Highlights: Black-Right-Pointing-Pointer Single topical application of Patulin showed enhanced cell proliferation. Black-Right-Pointing-Pointer Patulin activate MAPKs, c-fos, c-Jun and NF-{kappa}B transcription factors. Black-Right-Pointing-Pointer Patulin showed skin tumor initiating potential. Black-Right-Pointing-Pointer We could not detect skin tumor promoting potential of Patulin at the tested dose. Black-Right-Pointing-Pointer However prolonged exposure of Patulin at a higher dose may promote tumor.

  8. Proliferative effects of gamma-amino butyric acid on oral squamous cell carcinoma cells are associated with mitogen-activated protein kinase signaling pathways.

    PubMed

    Ma, Jing; Zhang, Yan; Wang, Jun; Zhao, Tianyu; Ji, Ping; Song, Jinlin; Zhang, Hongmei; Luo, Wenping

    2016-07-01

    Gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the adult mammalian central nervous system, has been reported to play an important physiological role in peripheral non-neuronal tissues, such as tumors. However, whether deregulated GABA is associated with oral squamous cell carcinoma (OSCC) is currently unknown. In this study, we investigated the effects of GABA on the proliferation of the OSCC cell line, Tca8113. Immunohistochemical analyses were performed to examine the expression of GABA A type receptor pi subunit (GABRP) in human OSCC tissues, and reverse transcription polymerase chain reaction, immunofluorescence staining and western blot analysis were performed to examine the expression of GABRP in Tca8113 cells. The proliferative effects of GABA on Tca8113 cells were analyzed by CCK-8 assay and flow cytometry. The activation status of mitogen-activated protein kinases (MAPKs) was examined by western blot analysis. GABRP expression was observed in the cytoplasm with a higher level in poorly differentiated OSCC tissues. The mRNA and protein expression levels of GABRP were detected in the Tca8113 cells. The addition of GABA and the GABA A type receptor agonist, Muscimol, promoted cell proliferation and inhibited cell apoptosis through the activation of the p38 MAPK and the inhibition of the JNK MAPK signaling pathways. These results imply a novel role of GABA in OSCC. PMID:27222045

  9. Paroxetine-induced apoptosis in human osteosarcoma cells: Activation of p38 MAP kinase and caspase-3 pathways without involvement of [Ca{sup 2+}]{sub i} elevation

    SciTech Connect

    Chou, C.-T.; He Shiping; Jan, C.-R. . E-mail: crjan@isca.vghks.gov.tw

    2007-02-01

    Selective serotonin reuptake inhibitors (SSRIs), a group of antidepressants, are generally used for treatment of various mood and anxiety disorders. There has been much research showing the anti-tumor and cytotoxic activities of some antidepressants; but the detailed mechanisms were unclear. In cultured human osteosarcoma cells (MG63), paroxetine reduced cell viability in a concentration- and time-dependent manner. Paroxetine caused apoptosis as assessed by propidium iodide-stained cells and increased caspase-3 activation. Although immunoblotting data revealed that paroxetine could activate the phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun NH{sub 2}-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK), only SB203580 (a p38 MAPK inhibitor) partially prevented cells from apoptosis. Paroxetine also induced [Ca{sup 2+}]{sub i} increases which involved the mobilization of intracellular Ca{sup 2+} stored in the endoplasmic reticulum and Ca{sup 2+} influx from extracellular medium. However, pretreatment with BAPTA/AM, a Ca{sup 2+} chelator, to prevent paroxetine-induced [Ca{sup 2+}]{sub i} increases did not protect cells from death. The results suggest that in MG63 cells, paroxetine caused Ca{sup 2+}-independent apoptosis via inducing p38 MAPK-associated caspase-3 activation.

  10. A mitogen-activated protein kinase kinase inhibitor induced compound skin toxicity with oedema in metastatic malignant melanoma.

    PubMed

    Thomas, C L; Mortimer, P S; Larkin, J M; Basu, T N; Gore, M E; Fearfield, L

    2016-04-01

    We report three cases of skin toxicity associated with oral mitogen-activated protein kinase kinase (MEK) inhibitor treatment for metastatic malignant melanoma (MM). All three patients developed oedema, and a single patient experienced eyelash trichomegaly. This is the first known report of eyelash trichomegaly secondary to MEK inhibitor use. We also discuss possible mechanisms for MEK inhibitor-associated oedema development. This series supports the role of the dermatologist in the screening and management of patients in the rapidly developing oncology setting, as new targeted agents can give rise to marked skin toxicity. PMID:26411345

  11. Activation of group IV cytosolic phospholipase A2 in human eosinophils by phosphoinositide 3-kinase through a mitogen-activated protein kinase-independent pathway.

    PubMed

    Myou, Shigeharu; Leff, Alan R; Myo, Saori; Boetticher, Evan; Meliton, Angelo Y; Lambertino, Anissa T; Liu, Jie; Xu, Chang; Munoz, Nilda M; Zhu, Xiangdong

    2003-10-15

    Activation of group IV cytosolic phospholipase A(2) (gIV-PLA(2)) is the essential first step in the synthesis of inflammatory eicosanoids and in integrin-mediated adhesion of leukocytes. Prior investigations have demonstrated that phosphorylation of gIV-PLA(2) results from activation of at least two isoforms of mitogen-activated protein kinase (MAPK). We investigated the potential role of phosphoinositide 3-kinase (PI3K) in the activation of gIV-PLA(2) and the hydrolysis of membrane phosphatidylcholine in fMLP-stimulated human blood eosinophils. Transduction into eosinophils of Deltap85, a dominant negative form of class IA PI3K adaptor subunit, fused to an HIV-TAT protein transduction domain (TAT-Deltap85) concentration dependently inhibited fMLP-stimulated phosphorylation of protein kinase B, a downstream target of PI3K. FMLP caused increased arachidonic acid (AA) release and secretion of leukotriene C(4) (LTC(4)). TAT-Deltap85 and LY294002, a PI3K inhibitor, blocked the phosphorylation of gIV-PLA(2) at Ser(505) caused by fMLP, thus inhibiting gIV-PLA(2) hydrolysis and production of AA and LTC(4) in eosinophils. FMLP also caused extracellular signal-related kinases 1 and 2 and p38 MAPK phosphorylation in eosinophils; however, neither phosphorylation of extracellular signal-related kinases 1 and 2 nor p38 was inhibited by TAT-Deltap85 or LY294002. Inhibition of 1) p70 S6 kinase by rapamycin, 2) protein kinase B by Akt inhibitor, or 3) protein kinase C by Ro-31-8220, the potential downstream targets of PI3K for activation of gIV-PLA(2), had no effect on AA release or LTC(4) secretion caused by fMLP. We find that PI3K is required for gIV-PLA(2) activation and hydrolytic production of AA in activated eosinophils. Our data suggest that this essential PI3K independently activates gIV-PLA(2) through a pathway that does not involve MAPK. PMID:14530366

  12. Synthesis and p38 Inhibitory Activity of Some Novel Substituted N,N'-Diarylurea Derivatives.

    PubMed

    Zhu, Dianxi; Xing, Qifeng; Cao, Ruiyuan; Zhao, Dongmei; Zhong, Wu

    2016-01-01

    We have identified a novel series of substituted N,N'-diarylurea p38α inhibitors. The inhibitory activity of the target compounds against the enzyme p38α, MAPKAPK2 in BHK cells, TNF-α release in LPS-stimulated THP-1 cells and p38α binding experiments were tested. Among these compounds, 25a inhibited the p38α enzyme with an IC50 value of 0.47 nM and a KD value of 1.54 × 10(-8) and appears to be the most promising one in the series. PMID:27223276

  13. Pioglitazone inhibition of lipopolysaccharide-induced nitric oxide synthase is associated with altered activity of p38 MAP kinase and PI3K/Akt

    PubMed Central

    Xing, Bin; Xin, Tao; Hunter, Randy Lee; Bing, Guoying

    2008-01-01

    Background Previous studies have suggested that peroxisome proliferator activated receptor-gamma (PPAR-γ)-mediated neuroprotection involves inhibition of microglial activation and decreased expression and activity of inducible nitric oxide synthase (iNOS); however, the underlying molecular mechanisms have not yet been well established. In the present study we explored: (1) the effect of the PPAR-γ agonist pioglitazone on lipopolysaccharide (LPS)-induced iNOS activity and nitric oxide (NO) generation by microglia; (2) the differential role of p38 mitogen-activated protein kinase (p38 MAPK), c-Jun NH(2)-terminal kinase (JNK), and phosphoinositide 3-kinase (PI3K) on LPS-induced NO generation; and (3) the regulation of p38 MAPK, JNK, and PI3K by pioglitazone. Methods Mesencephalic neuron-microglia mixed cultures, and microglia-enriched cultures were treated with pioglitazone and/or LPS. The protein levels of iNOS, p38 MAPK, JNK, PPAR-γ, PI3K, and protein kinase B (Akt) were measured by western blot. Different specific inhibitors of iNOS, p38MAPK, JNK, PI3K, and Akt were used in our experiment, and NO generation was measured using a nitrite oxide assay kit. Tyrosine hydroxylase (TH)-positive neurons were counted in mesencephalic neuron-microglia mixed cultures. Results Our results showed that pioglitazone inhibits LPS-induced iNOS expression and NO generation, and inhibition of iNOS is sufficient to protect dopaminergic neurons against LPS insult. In addition, inhibition of p38 MAPK, but not JNK, prevented LPS-induced NO generation. Further, and of interest, pioglitazone inhibited LPS-induced phosphorylation of p38 MAPK. Wortmannin, a specific PI3K inhibitor, enhanced p38 MAPK phosphorylation upon LPS stimulation of microglia. Elevations of phosphorylated PPAR-γ, PI3K, and Akt levels were observed with pioglitazone treatment, and inhibition of PI3K activity enhanced LPS-induced NO production. Furthermore, wortmannin prevented the inhibitory effect of pioglitazone on

  14. Nicotine stimulates urokinase-type plasminogen activator receptor expression and cell invasiveness through mitogen-activated protein kinase and reactive oxygen species signaling in ECV304 endothelial cells

    SciTech Connect

    Khoi, Pham Ngoc; Park, Jung Sun; Kim, Nam Ho; Jung, Young Do

    2012-03-01

    Urokinase-type plasminogen activator receptor (uPAR) expression is elevated during inflammation, tissue remodeling and in many human cancers. This study investigated the effect of nicotine, a major alkaloid in tobacco, on uPAR expression and cell invasiveness in ECV304 endothelial cells. Nicotine stimulated uPAR expression in a dose-dependent manner and activated extracellular signal-regulated kinases-1/2 (Erk-1/2), c-Jun amino-terminal kinase (JNK) and p38 mitogen activated protein kinase (MAPK). Specific inhibitors of MEK-1 (PD98059) and JNK (SP600125) inhibited the nicotine-induced uPAR expression, while the p38 MAPK inhibitor SB203580 did not. Expression vectors encoding dominant negative MEK-1 (pMCL-K97M) and JNK (TAM67) also prevented nicotine-induced uPAR promoter activity. The intracellular hydrogen peroxide (H{sub 2}O{sub 2}) content was increased by nicotine treatment. The antioxidant N-acetylcysteine prevented nicotine-activated production of reactive oxygen species (ROS) and uPAR expression. Furthermore, exogenous H{sub 2}O{sub 2} increased uPAR mRNA expression. Deleted and site-directed mutagenesis demonstrated the involvement of the binding sites of transcription factor nuclear factor-kappaB (NF-κB) and activator protein (AP)-1 in the nicotine-induced uPAR expression. Studies with expression vectors encoding mutated NF-κB signaling molecules and AP-1 decoy confirmed that NF-κB and AP-1 were essential for the nicotine-stimulated uPAR expression. MAPK (Erk-1/2 and JNK) and ROS functioned as upstream signaling molecules in the activation of AP-1 and NF-κB, respectively. In addition, ECV304 endothelial cells treated with nicotine displayed markedly enhanced invasiveness, which was partially abrogated by uPAR neutralizing antibodies. The data indicate that nicotine induces uPAR expression via the MAPK/AP-1 and ROS/NF-κB signaling pathways and, in turn, stimulates invasiveness in human ECV304 endothelial cells. -- Highlights: ► Endothelial cells

  15. Selective response of ternary complex factor Sap1a to different mitogen-activated protein kinase subgroups.

    PubMed Central

    Strahl, T; Gille, H; Shaw, P E

    1996-01-01

    Mitogenic and stres signals results in the activation of extracellular signal-regulated kinases (ERKs) and stress-activated protein kinase/c-Jun N-terminal kinases (SAPK/JNKs), respectively, which are two subgroups of the mitogen-activated protein kinases. A nuclear target of mitogen-activated protein (MAP) kinases is the ternary complex factor Elk-1, which underlies its involvement in the regulation of c-fos gene expression by mitogenic and stress signals. A second ternary complex factor, Sap1a, is coexpressed with Elk-1 in several cell types and shares attributes of Elk-1, the significance of which is not clear. Here we show that Sap1a is phosphorylated efficiently by ERKs but not by SAPK/JNKs. Serum response factor-dependent ternary complex formation by Sap1a is stimulated by ERK phosphorylation but not by SAPK/JNKs. Moreover, Sap1a-mediated transcription is activated by mitogenic signals but not by cell stress. These results suggest that Sap1a and Elk-1 have distinct physiological functions. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:8876175

  16. Protein-tyrosine-phosphatase 2C is phosphorylated and inhibited by 44-kDa mitogen-activated protein kinase.

    PubMed Central

    Peraldi, P; Zhao, Z; Filloux, C; Fischer, E H; Van Obberghen, E

    1994-01-01

    Protein-tyrosine-phosphatase 2C (PTP2C, also named SHPTP2, SHPTP3, or PTP1D) is a cytosolic enzyme with two Src homology 2 domains. We have investigated its regulation by phosphorylation in PC12 rat pheochromocytoma cells. In untreated cells, PTP2C was phosphorylated predominantly on serine residues. A 5-min treatment with epidermal growth factor (EGF) induced an increase in phosphorylation on threonine and, to a lesser degree, on serine. After 45 min of exposure to EGF, PTP2C phosphorylation returned to basal levels. Using an in vitro kinase assay, we found that the 44-kDa mitogen-activated protein kinase, p44mapk, phosphorylated PTP2C on serine and threonine residues. This phosphorylation resulted in a pronounced inhibition of PTP2C enzyme activity measured with phosphorylated EGF receptors as substrate. Moreover, in intact PC12 cells, PTP2C was also inhibited following a short EGF treatment, but its activity returned to normal when the exposure to EGF was maintained for 45 min. The profile of this response to EGF can be inversely correlated to that of the stimulatory action of EGF on p44mapk. These data suggest that the EGF-induced regulation of PTP2C activity is mediated by p44mapk. These findings provide evidence for an additional role of the mitogen-activated protein kinase cascade--namely, the regulation of a PTP. Images PMID:8197172

  17. Docetaxel enhances apoptosis and G2/M cell cycle arrest by suppressing mitogen-activated protein kinase signaling in human renal clear cell carcinoma.

    PubMed

    Han, T D; Shang, D H; Tian, Y

    2016-01-01

    Tremendous efforts have been made in renal cell carcinoma (RCC) patients' research; however, clinical findings in patients have been disappointing. The aims of our study were to identify better or alternative therapeutic methods that can reverse chemotherapy resistance and to enhance sensitivity to docetaxel (DOX)-based chemotherapy drugs. We evaluated the anti-proliferative effect of DOX against RCC cells. DOX was found to suppress proliferation of RCC cells under in vitro and in vivo settings. Flow cytometric analysis revealed that DOX suppressed cell growth by induction of both apoptosis and G2/M cell cycle arrest in a dose-dependent manner. Various patterns of gene expression were observed by cluster analysis. In addition, based on network analysis using the ingenuity pathway analysis software, DOX was found to suppress phosphorylation of extracellular signal-regulated kinase 1/2 and p38, suggesting that the mitogen-activated protein kinase signaling pathway plays a vital role in the anti-proliferative effect of DOX against RCC. PMID:26909952

  18. Apoptosis induced by para-phenylenediamine involves formation of ROS and activation of p38 and JNK in chang liver cells.

    PubMed

    Chye, Soi Moi; Tiong, Yee Lian; Yip, Wai Kien; Koh, Rhun Yian; Len, Yi Won; Seow, Heng Fong; Ng, Khuen Yen; Ranjit, De Alwis; Chen, Ssu Ching

    2014-09-01

    para-Phenylenediamine (p-PD) is a suspected carcinogen, but it has been widely used as a component in permanent hair dyes. In this study, the mechanism of p-PD-induced cell death in normal Chang liver cells was investigated. The results demonstrated that p-PD decreased cell viability in a dose-dependent manner. Cell death via apoptosis was confirmed by enhanced DNA damage and increased cell number in the sub-G1 phase of the cell cycle, using Hoechst 33258 dye staining and flow cytometry analysis. Apoptosis via reactive oxygen species generation was detected by the dichlorofluorescin diacetate staining method. Mitogen-activated protein kinase (MAPK) activation was assessed by western blot analysis and revealed that p-PD activated not only stress-activated protein kinase (SAPK)/c-Jun N-terminal kinases (JNK) and p38 MAPK but also extracellular signal-regulated kinase (ERK). Cytotoxicity and apoptosis induced by p-PD were markedly enhanced by ERK activation and selectively inhibited by ERK inhibitor PD98059, thus indicating a negative role of ERK. In contrast, inhibition of p38 MAPK activity with the p38-specific inhibitor SB203580 moderately inhibited cytotoxicity and apoptosis induction by p-PD. Similarly, SP600125, an inhibitor of SAPK/JNK, moderately inhibited cytotoxicity and apoptosis induced by p-PD, thus implying that p38 MAPK and SAPK/JNK had a partial role in p-PD-induced apoptosis. Western blot analysis revealed that p-PD significantly increased phosphorylation of p38 and SAPK/JNK and decreased phosphorylation of ERK. In conclusion, the results demonstrated that SAPK/JNK and p38 cooperatively participate in apoptosis induced by p-PD and that a decreased ERK signal contributes to growth inhibition or apoptosis. PMID:23172806

  19. Role of P38 MAPK on MMP Activity in Photothrombotic Stroke Mice as Measured using an Ultrafast MMP Activatable Probe

    PubMed Central

    Chang, Di; Wang, Yuan-Cheng; Bai, Ying-Ying; Lu, Chun-Qiang; Xu, Ting-Ting; Zhu, Lei; Ju, Shenghong

    2015-01-01

    Matrix metalloproteinases (MMPs) exert a dual effect in ischemic stroke and thus represent an ideal target for detection and therapy. However, to date, all clinical trials of MMP inhibitors have failed, and alternative drug candidates and therapeutic targets are urgently required. Nonetheless, further investigations are limited by the lack of non-invasive imaging techniques. Here, we report a novel, fast and ultrasensitive MMP activatable optical imaging probe for the dynamic visualization of MMP activity in photothrombotic stroke mice. This probe provides a significant signal enhancement in as little as 15 min, with the highest signal intensity occurring at 1 h post-injection, and shows high sensitivity in measuring MMP activity alterations, which makes it specifically suitable for the real-time visualization of MMP activity and drug discovery in preclinical research. Moreover, using this probe, we successfully demonstrate that the regulation of the p38 mitogen-activated protein kinase (MAPK) signal pathway is capable of modulating MMP activity after stroke, revealing a novel regulatory mechanism of postischemic brain damage and overcoming the limitations of traditional therapeutic strategies associated with MMP inhibitors by using a non-invasive molecular imaging method. PMID:26581247

  20. Isolation of a Glucosamine Binding Leguminous Lectin with Mitogenic Activity towards Splenocytes and Anti-Proliferative Activity towards Tumor Cells

    PubMed Central

    Chan, Yau Sang; Wong, Jack Ho; Fang, Evandro Fei; Pan, Wenliang; Ng, Tzi Bun

    2012-01-01

    A dimeric 64-kDa glucosamine-specific lectin was purified from seeds of Phaseolus vulgaris cv. “brown kidney bean.” The simple 2-step purification protocol involved affinity chromatography on Affi-gel blue gel and gel filtration by FPLC on Superdex 75. The lectin was absorbed on Affi-gel blue gel and desorbed using 1M NaCl in the starting buffer. Gel filtration on Superdex 75 yielded a major absorbance peak that gave a single 32-kDa band in SDS-PAGE. Hemagglutinating activity was completely preserved when the ambient temperature was in the range of 20°C–60°C. However, drastic reduction of the activity occurred at temperatures above 65°C. Full hemagglutinating activity of the lectin was observed at an ambient pH of 3 to 12. About 50% activity remained at pH 0–2, and only residual activity was observed at pH 13–14. Hemagglutinating activity of the lectin was inhibited by glucosamine. The brown kidney bean lectin elicited maximum mitogenic activity toward murine splenocytes at 2.5 µM. The mitogenic activity was nearly completely eliminated in the presence of 250 mM glucosamine. The lectin also increased mRNA expression of the cytokines IL-2, TNF-α and IFN-γ. The lectin exhibited antiproliferative activity toward human breast cancer (MCF7) cells, hepatoma (HepG2) cells and nasopharyngeal carcinoma (CNE1 and CNE2) cells with IC50 of 5.12 µM, 32.85 µM, 3.12 µM and 40.12 µM respectively after treatment for 24 hours. Flow cytometry with Annexin V and propidum iodide staining indicated apoptosis of MCF7 cells. Hoechst 33342 staining also indicated formation of apoptotic bodies in MCF7 cells after exposure to brown kidney bean lectin. Western blotting revealed that the lectin-induced apoptosis involved ER stress and unfolded protein response. PMID:22720002

  1. Contractions Activate Hormone-Sensitive Lipase in Rat Muscle by Protein Kinase C and Mitogen-Activated Protein Kinase

    PubMed Central

    Donsmark, Morten; Langfort, Jozef; Holm, Cecilia; Ploug, Thorkil; Galbo, Henrik

    2003-01-01

    Intramuscular triacylglycerol is an important energy store and is also related to insulin resistance. The mobilization of fatty acids from this pool is probably regulated by hormone-sensitive lipase (HSL), which has recently been shown to exist in muscle and to be activated by both adrenaline and contractions. Adrenaline acts via cAMP-dependent protein kinase (PKA). The signalling mediating the effect of contractions is unknown and was explored in this study. Incubated soleus muscles from 70 g male rats were electrically stimulated to perform repeated tetanic contractions for 5 min. The contraction-induced activation of HSL was abolished by the protein kinase C (PKC) inhibitors bisindolylmaleimide I and calphostin C and reduced 50 % by the mitogen-activated protein kinase kinase (MEK) inhibitor U0126, which also completely blocked extracellular signal-regulated kinase (ERK) 1 and 2 phosphorylation. None of the inhibitors reduced adrenaline-induced HSL activation in soleus muscle. Both phorbol-12-myristate-13-acetate (PMA), which activates PKC and, in turn, ERK, and caffeine, which increases intracellular Ca2+ without eliciting contraction, increased HSL activity. Activated ERK increased HSL activity in supernatant from basal but not from electrically stimulated muscle. In conclusion, in muscle, PKC can stimulate HSL through ERK. Contractions and adrenaline enhance muscle HSL activity by different signalling mechanisms. The effect of contractions is mediated by PKC, at least partly via the ERK pathway. PMID:12794177

  2. Role of G proteins and modulation of p38 MAPK activation in the protection by nitric oxide against ischemia-reoxygenation injury.

    PubMed

    Rakhit, R D; Kabir, A N; Mockridge, J W; Saurin, A; Marber, M S

    2001-09-01

    Protein kinase C (PKC)-mediated regulation of the mitogen-activated protein kinases (MAPK) may play a role in the protection afforded by ischemic preconditioning (PC). Nitric oxide (NO) can influence MAPK activation via interaction with PKC or farnesylation of low-molecular-weight (LMWT) G proteins. However, we have recently reported the mechanism of NO-induced cardioprotection to be a PKC-independent process. Therefore, we investigated the role of LMWT G proteins and MAPK signaling in NO-induced cardioprotection against simulated ischemia-reoxygenation (SI-R) injury. Neonatal rat cardiomyocytes treated for 90 min with the NO donor S-nitroso-N-acetyl-l,l-penicillamine (SNAP) 1 mM were protected against 6 h of SI (hypoxic conditions at 37 degrees C with 20 mM lactate, 16 mM KCl at pH 6.2) and 24 h reoxygenation under normal culture conditions. NO-induced protection was blocked by the G protein inhibitor alpha-hydroxyfarnesylphosphonic acid (alphaHFP) 10 microM. We studied the time course of p42/44 and p38 MAPK dual-phosphorylation hourly during SI using phospho-specific antibodies. p38 was phosphorylated during SI and the peak phosphorylation was significantly delayed by SNAP pretreatment. The p38 inhibitor SB203580 1 microM, given during SI, protected against injury. Thus the delay in peak p38 activation may contribute to, rather than be the effect of, NO-induced cardioprotection. We have shown that p38beta does not contribute to the total p38 signal in our extracts. Thus there is no detectable beta isoform. We conclude that the main isoform present in these cells and thought to be responsible for the observed phenomenon, is the alpha isoform. PMID:11527399

  3. Activation of protein kinase C induces mitogen-activated protein kinase dephosphorylation and pronucleus formation in rat oocytes.

    PubMed

    Lu, Qing; Smith, Gary D; Chen, Da-Yuan; Han, Zhi-Ming; Sun, Qing-Yuan

    2002-07-01

    Mammalian oocytes are arrested at metaphase of the second meiotic division (MII) before fertilization. When oocytes are stimulated by spermatozoa, they exit MII stage and complete meiosis. It has been suggested that an immediate increase in intracellular free calcium concentration and inactivation of maturation promoting factor (MPF) are required for oocyte activation. However, the underlying mechanism is still unclear. In the present study, we investigated the role of protein kinase C (PKC) and mitogen-activated protein (MAP) kinase, and their interplay in rat oocyte activation. We found that MAP kinase became dephosphorylated in correlation with pronucleus formation after fertilization. Protein kinase C activators, phorbol 12-myriatate 13-acetate (PMA) and 1,2-dioctanoyl-rac-glycerol (diC8), triggered dephosphorylation of MAP kinase and pronucleus formation in a dose-dependent and time-dependent manner. Dephosphorylation of MAP kinase was also correlated with pronucleus formation when oocytes were treated with PKC activators. Effects of PKC activators were abolished by the PKC inhibitors, calphostin C and staurosporine, as well as a protein phosphatase blocker, okadaic acid (OA). These results suggest that PKC activation may cause rat oocyte pronucleus formation via MAP kinase dephosphorylation, which is probably mediated by OA-sensitive protein phosphatases. We also provide evidence supporting the involvement of such a process in fertilization. PMID:12080000

  4. OXIDATIVE STRESS PARTICIPATES IN ACUTE LUNG INJURY AND ACTIVATION OF MITOGEN ACTIVATED PROTEIN KINASES (MAPK) FOLLOWING AIR POLLUTION PARTICLE EXPOSURE (PM)

    EPA Science Inventory

    OXIDATIVE STRESS PARTICIPATES IN ACUTE LUNG INJURY AND ACTIVATION OF MITOGEN ACTIVATED PROTEIN KINASES (MAPK) FOLLOWING AIR POLLUTION PARTICLE EXPOSURE (PM). E S Roberts1, R Jaskot2, J Richards2, and K L Dreher2. 1College of Veterinary Medicine, NC State University, Raleigh, NC a...

  5. Jasmonate-based wound signal transduction requires activation of WIPK, a tobacco mitogen-activated protein kinase.

    PubMed Central

    Seo, S; Sano, H; Ohashi, Y

    1999-01-01

    A gene encoding a tobacco mitogen-activated protein kinase (WIPK) is transcriptionally activated in response to wounding. Transgenic tobacco plants, in which expression of endogenous wipk was suppressed, did not accumulate jasmonic acid or its methyl ester when wounded, suggesting that WIPK is involved in jasmonate-mediated wound signal transduction. Here, we demonstrate that activation of WIPK is required for triggering the jasmonate-mediated signal transduction cascade that occurs when wild-type tobacco plants are wounded. We also show that when plants are wounded, WIPK is rapidly and transiently activated, whereas the quantity of WIPK protein is maintained at a constant level. A transgenic tobacco plant in which the wipk gene was constitutively expressed at a high level showed constitutive enzymatic activation of WIPK and exhibited three- to fourfold higher levels of jasmonate than did its wild-type counterpart. This plant also showed constitutive accumulation of jasmonate-inducible proteinase inhibitor II transcripts. These results show that WIPK is activated in response to wounding, which subsequently causes an increase in jasmonate synthesis. PMID:9927645

  6. Hypertonic saline activation of p38 MAPK primes the PMN respiratory burst.

    PubMed

    Ciesla, D J; Moore, E E; Biffl, W L; Gonzalez, R J; Moore, H B; Silliman, C C

    2001-10-01

    Investigation of hypertonic saline (HTS) modulation of neutrophils (PMN) cytotoxic responses has generated seemingly contradictory results. Clinically relevant levels of HTS attenuate receptor-mediated p38 MAPK signaling, whereas higher levels activate p38 MAPK. Concurrently, HTS exerts a dose-dependent attenuation of the PMN respiratory burst, most notably at concentrations where p38 MAPK is activated. We hypothesized that HTS-mediated p38 MAPK activation augments the PMN respiratory burst on return to normotonicity. We found that although clinically relevant levels of HTS (Na+ > or = 200 mM) did not activate p38 MAPK, higher concentrations (Na+ > or = 300 mM) resulted in activation comparable with that after PAF stimulation. Transient stimulation with high levels of HTS primed the PMN respiratory burst in response to fMLP and PMA. This effect was attenuated by pretreatment with SB 203580, a p38 MAPK specific inhibitor. We conclude that severe osmotic shock primes the respiratory burst via p38 MAPK signaling, further supporting the role of this signaling cascade in PMN priming. PMID:11580111

  7. Synergistic activation of stress-activated protein kinase 1/c-Jun N-terminal kinase (SAPK1/JNK) isoforms by mitogen-activated protein kinase kinase 4 (MKK4) and MKK7.

    PubMed Central

    Fleming, Y; Armstrong, C G; Morrice, N; Paterson, A; Goedert, M; Cohen, P

    2000-01-01

    Stress-activated protein kinase 1 (SAPK1), also called c-Jun N-terminal kinase (JNK), becomes activated in vivo in response to pro-inflammatory cytokines or cellular stresses. Its full activation requires the phosphorylation of a threonine and a tyrosine residue in a Thr-Pro-Tyr motif, which can be catalysed by the protein kinases mitogen-activated protein kinase kinase (MKK)4 and MKK7. Here we report that MKK4 shows a striking preference for the tyrosine residue (Tyr-185), and MKK7 a striking preference for the threonine residue (Thr-183) in three SAPK1/JNK1 isoforms tested (JNK1 alpha 1, JNK2 alpha 2 and JNK3 alpha 1). For this reason, MKK4 and MKK7 together produce a synergistic increase in the activity of each SAPK1/JNK isoform in vitro. The MKK7 beta variant, which is several hundred-fold more efficient in activating all three SAPK1/JNK isoforms than is MKK7 alpha', is equally specific for Thr-183. MKK7 also phosphorylates JNK2 alpha 2 at Thr-404 and Ser-407 in vitro, Ser-407 being phosphorylated much more rapidly than Thr-183 in vitro. Thr-404/Ser-407 are phosphorylated in unstimulated human KB cells and HEK-293 cells, and phosphorylation is increased in response to an osmotic stress (0.5 M sorbitol). However, in contrast with Thr-183 and Tyr-185, the phosphorylation of Thr-404 and Ser-407 is not increased in response to other agonists that activate MKK7 and SAPK1/JNK, suggesting that phosphorylation of these residues is catalysed by another protein kinase, such as CK2, which also phosphorylates Thr-404 and Ser-407 in vitro. MKK3, MKK4 and MKK6 all show a strong preference for phosphorylation of the tyrosine residue of the Thr-Gly-Tyr motifs in their known substrates SAPK2a/p38, SAPK3/p38 gamma and SAPK4/p38 delta. MKK7 also phosphorylates SAPK2a/p38 at a low rate (but not SAPK3/p38 gamma or SAPK4/p38 delta), and phosphorylation occurs exclusively at the tyrosine residue, demonstrating that MKK7 is intrinsically a 'dual-specific' protein kinase. PMID:11062067

  8. Evidence for the Involvement of p38 MAPK Activation in Barnacle Larval Settlement

    PubMed Central

    He, Li-Sheng; Xu, Ying; Matsumura, Kiyotaka; Zhang, Yu; Zhang, Gen; Qi, Shu-Hua; Qian, Pei-Yuan

    2012-01-01

    The barnacle Balanus ( = Amphibalanus) amphitrite is a major marine fouling animal. Understanding the molecular mechanism of larval settlement in this species is critical for anti-fouling research. In this study, we cloned one isoform of p38 MAPK (Bar-p38 MAPK) from this species, which shares the significant characteristic of containing a TGY motif with other species such as yeast, Drosophila and humans. The activation of p38 MAPK was detected by an antibody that recognizes the conserved dual phosphorylation sites of TGY. The results showed that phospho-p38 MAPK (pp38 MAPK) was more highly expressed at the cyprid stage, particularly in aged cyprids, in comparison to other stages, including the nauplius and juvenile stages. Immunostaining showed that Bar-p38 MAPK and pp38 MAPK were mainly located at the cyprid antennules, and especially the third and fourth segments, which are responsible for substratum exploration during settlement. The expression and localization patterns of Bar-p38 MAPK suggest its involvement in larval settlement. This postulation was also supported by the larval settlement bioassay with the p38 MAPK inhibitor SB203580. Behavioral analysis by live imaging revealed that the larvae were still capable of exploring the surface of the substratum after SB203580 treatment. This shows that the effect of p38 MAPK on larval settlement might be by regulating the secretion of permanent proteinaceous substances. Furthermore, the level of pp38 MAPK dramatically decreased after full settlement, suggesting that Bar-p38 MAPK maybe plays a role in larval settlement rather than metamorphosis. Finally, we found that Bar-p38 MAPK was highly activated when larvae confronted extracts of adult barnacle containing settlement cues, whereas larvae pre-treated with SB203580 failed to respond to the crude adult extracts. PMID:23115639

  9. Whey protein concentrate enhances intestinal integrity and influences transforming growth factor-β1 and mitogen-activated protein kinase signalling pathways in piglets after lipopolysaccharide challenge.

    PubMed

    Xiao, Kan; Jiao, Lefei; Cao, Shuting; Song, Zehe; Hu, Caihong; Han, Xinyan

    2016-03-28

    Whey protein concentrate (WPC) has been reported to have protective effects on the intestinal barrier. However, the molecular mechanisms involved are not fully elucidated. Transforming growth factor-β1 (TGF-β1) is an important component in the WPC, but whether TGF-β1 plays a role in these processes is not clear. The aim of this study was to investigate the protective effects of WPC on the intestinal epithelial barrier as well as whether TGF-β1 is involved in these protection processes in a piglet model after lipopolysaccharide (LPS) challenge. In total, eighteen weanling pigs were randomly allocated to one of the following three treatment groups: (1) non-challenged control and control diet; (2) LPS-challenged control and control diet; (3) LPS+5 %WPC diet. After 19 d of feeding with control or 5 %WPC diets, pigs were injected with LPS or saline. At 4 h after injection, pigs were killed to harvest jejunal samples. The results showed that WPC improved (P<0·05) intestinal morphology, as indicated by greater villus height and villus height:crypt depth ratio, and intestinal barrier function, which was reflected by increased transepithelial electrical resistance and decreased mucosal-to-serosal paracellular flux of dextran (4 kDa), compared with the LPS group. Moreover, WPC prevented the LPS-induced decrease (P<0·05) in claudin-1, occludin and zonula occludens-1 expressions in the jejunal mucosae. WPC also attenuated intestinal inflammation, indicated by decreased (P<0·05) mRNA expressions of TNF-α, IL-6, IL-8 and IL-1β. Supplementation with WPC also increased (P<0·05) TGF-β1 protein, phosphorylated-Smad2 expression and Smad4 and Smad7 mRNA expressions and decreased (P<0·05) the ratios of the phosphorylated to total c-jun N-terminal kinase (JNK) and p38 (phospho-JNK:JNK and p-p38:p38), whereas it increased (P<0·05) the ratio of extracellular signal-regulated kinase (ERK) (phospho-ERK:ERK). Collectively, these results suggest that dietary inclusion of WPC

  10. Activation of ERK1/2 and p38 kinases by polycyclic aromatic hydrocarbons in rat liver epithelial cells is associated with induction of apoptosis

    SciTech Connect

    Andrysik, Zdenek; Machala, Miroslav; Chramostova, Katerina; Hofmanova, Jirina; Kozubik, Alois; Vondracek, Jan . E-mail: vondracek@ibp.cz

    2006-03-15

    Deregulation of various signaling pathways, linked either to induction of cell proliferation or to modulation of cellular differentiation and apoptosis, has been proposed to contribute to carcinogenicity of polycyclic aromatic hydrocarbons (PAHs). In the present study, we investigated effects of the PAHs previously shown to induce cell proliferation and/or apoptosis in contact-inhibited rat liver epithelial WB-F344 cells, with an aim to define the role of mitogen-activated protein kinases in both events. We found that only strong genotoxin dibenzo[a,l]pyrene (DBalP) activated extracellular signal-regulated kinases 1 and 2 (ERK1/2) and p38 kinase, but not c-Jun N-terminal kinases (JNKs), at concentrations inducing both apoptosis and phosphorylation of p53 tumor suppressor at serine 15 residue. In contrast, the PAHs stimulating cell proliferation in WB-F344 cell line had no effect on activation of ERK1/2, p38 or JNKs. Synthetic inhibitors of ERK1/2 activation (U0126) or p38 kinase activity (SB203580) prevented both apoptosis and induction of p53 phosphorylation by DBalP. Pifithrin-{alpha}, inhibitor of p53 transcriptional activity, prevented induction of apoptosis and activation of ERK1/2 and p38. Taken together, our data suggest that both ERK1/2 and p38 are activated in response to DBalP and that they might be involved in regulation of cellular response to DNA damage induced by DBalP, while neither kinase is involved in the release from contact inhibition induced by PAHs.

  11. Activation of mitogen-activated protein kinases and AP-1 transcription factor in ovotoxicity induced by 4-vinylcyclohexene diepoxide in rats.

    PubMed

    Hu, Xiaoming; Flaws, Jodi A; Sipes, I Glenn; Hoyer, Patricia B

    2002-09-01

    Previous studies have demonstrated that ovotoxicity induced in small preantral (primordial and primary) ovarian follicles by 4-vinylcyclohexene diepoxide (VCD) in rats is likely via acceleration of the normal process of atresia (apoptosis). This acceleration is associated with increased activities of caspase cascades, changes in subcellular distribution of Bcl-2 family members, and alteration of estrogen receptor-mediated signaling pathways. The present study was designed to investigate possible effects of VCD dosing on the mitogen-activated protein kinases (MAPK)/AP-1 signaling pathways in rat ovarian small follicles. Female F344 rats were given a single dose of VCD (80 mg/kg i.p., 1 day--a time when ovotoxicity has not been initiated) or dosed daily for 10 or 15 days (80 mg/kg i.p.; 10 days--a time when the earliest signs of impending follicular destruction is seen, 15 days--a time when significant ovotoxicity is underway). Four hours following the final dose, ovaries and livers were collected. Ovarian small (25-100 microm) and large (100-250 microm) preantral follicles were isolated, and cytosolic or nuclear extracts were prepared from follicles and livers for analyses. Activities of MAPKs, including extracellular signal-regulated kinase, c-Jun N-terminal protein kinase (JNK), and p38 kinase, were determined in follicular and liver cytosolic extracts, and AP-1 DNA binding activity was determined in follicular and liver nuclear extracts. Compared with control, a single dose of VCD caused a decrease in JNK activity and an increase of AP-1 binding activity in isolated small ovarian follicles. After repeated daily dosing with VCD for 10 or 15 days, JNK and p38 kinase activities in small ovarian follicles were increased (p38 kinase: 1.64 +/- 0.14 for 10 days, 1.48 +/- 0.11 for 15 days, VCD/control, P < 0.01; JNK: 1.44 +/- 0.11 for 10 days, 1.37 +/- 0.06 for 15 days, VCD/control, P < 0.01) and AP-1 binding activity in small ovarian follicles was decreased (10 days, 0

  12. Subanesthetic Isoflurane Reduces Zymosan-Induced Inflammation in Murine Kupffer Cells by Inhibiting ROS-Activated p38 MAPK/NF-κB Signaling

    PubMed Central

    Wang, Hui; Wang, Lei; Li, Nan-lin; Li, Jun-tang; Yu, Feng; Zhao, Ya-li; Wang, Ling; Yi, Jun; Wang, Ling; Bian, Jie-fang; Chen, Jiang-hao; Yuan, Shi-fang; Wang, Ting; Lv, Yong-gang; Liu, Ning-ning; Zhu, Xiao-shan; Ling, Rui; Yun, Jun

    2014-01-01

    Volatile anesthetic isoflurane (ISO) has immunomodulatory effects. The fungal component zymosan (ZY) induces inflammation through toll-like receptor 2 or dectin-1 signaling. We investigated the molecular actions of subanesthetic (0.7%) ISO against ZY-induced inflammatory activation in murine Kupffer cells (KCs), which are known as the resident macrophages within the liver. We observed that ISO reduced ZY-induced cyclooxygenase 2 upregulation and prostaglandin E2 release, as determined by western blot and radioimmunoassay, respectively. ISO also reduced the production of tumor necrosis factor-α, interleukin-1β, IL-6, high-mobility group box-1, macrophage inflammatory protein-1α, macrophage inflammatory protein-2, and monocyte chemoattractant protein-1 as assessed by enzyme-linked immunosorbent assays. ISO blocked the ZY-induced nuclear translocation and DNA-binding activity of nuclear factor- (NF)-κB p65. Moreover, ISO attenuated ZY-induced p38 mitogen-activated protein kinase (MAPK) activation partly by scavenging reactive oxygen species (ROS); the interregulation that ROS activated p38 MAPK followed by NF-κB activation was crucial for the ZY-induced inflammatory responses in KCs. An in vivo study by peritoneal injection of ZY into BALB/C mice confirmed the anti-inflammatory properties of 0.7% ISO against ZY in KCs. These results suggest that ISO ameliorates ZY-induced inflammatory responses in murine KCs by inhibiting the interconnected ROS/p38 MAPK/NF-κB signaling pathways. PMID:25147596

  13. Comparative chemical array screening for p38γ/δ MAPK inhibitors using a single gatekeeper residue difference between p38α/β and p38γ/δ

    PubMed Central

    Kondoh, Yasumitsu; Honda, Kaori; Hiranuma, Sayoko; Hayashi, Teruo; Shimizu, Takeshi; Watanabe, Nobumoto; Osada, Hiroyuki

    2016-01-01

    Mammalian p38 mitogen activated protein kinases (MAPKs) are responsive to a variety of cellular stresses. The development of specific pyridinyl imidazole inhibitors has permitted the characterization of the p38 MAPK isoform p38α, which is expressed in most cell types, whereas the physiological roles of p38γ and p38δ are poorly understood. In this study, we report an approach for identifying selective inhibitors against p38γ and p38δ by focusing on the difference in gatekeeper residues between p38α/β and p38γ/δ. Using GST-fused p38α wild type and T106M mutant constructs, wherein the p38α gatekeeper residue (Thr-106) was substituted by the p38γ/δ-type (Met), we performed comparative chemical array screening to identify specific binders of the mutant and identified SU-002 bound to p38αT106M specifically. SU-002 was found to inhibit p38αT106M but not p38α kinase activity in in vitro kinase assays. SU-005, the analog of SU-002, had inhibitory effects against the kinase activity of p38γ and p38δ in vitro but not p38α. In addition, SU-005 inhibited both p38γ and p38δ auto-phosphorylation in HeLa and HEK293T cells. These results demonstrate that the comparative chemical array screening approach is a powerful technique to explore specific inhibitors for mutant proteins with even single amino-acid substitutions in a high-throughput manner. PMID:27431267

  14. Comparative chemical array screening for p38γ/δ MAPK inhibitors using a single gatekeeper residue difference between p38α/β and p38γ/δ.

    PubMed

    Kondoh, Yasumitsu; Honda, Kaori; Hiranuma, Sayoko; Hayashi, Teruo; Shimizu, Takeshi; Watanabe, Nobumoto; Osada, Hiroyuki

    2016-01-01

    Mammalian p38 mitogen activated protein kinases (MAPKs) are responsive to a variety of cellular stresses. The development of specific pyridinyl imidazole inhibitors has permitted the characterization of the p38 MAPK isoform p38α, which is expressed in most cell types, whereas the physiological roles of p38γ and p38δ are poorly understood. In this study, we report an approach for identifying selective inhibitors against p38γ and p38δ by focusing on the difference in gatekeeper residues between p38α/β and p38γ/δ. Using GST-fused p38α wild type and T106M mutant constructs, wherein the p38α gatekeeper residue (Thr-106) was substituted by the p38γ/δ-type (Met), we performed comparative chemical array screening to identify specific binders of the mutant and identified SU-002 bound to p38αT106M specifically. SU-002 was found to inhibit p38αT106M but not p38α kinase activity in in vitro kinase assays. SU-005, the analog of SU-002, had inhibitory effects against the kinase activity of p38γ and p38δ in vitro but not p38α. In addition, SU-005 inhibited both p38γ and p38δ auto-phosphorylation in HeLa and HEK293T cells. These results demonstrate that the comparative chemical array screening approach is a powerful technique to explore specific inhibitors for mutant proteins with even single amino-acid substitutions in a high-throughput manner. PMID:27431267

  15. Ras-GTP dimers activate the Mitogen-Activated Protein Kinase (MAPK) pathway

    PubMed Central

    Nan, Xiaolin; Tamgüney, Tanja M.; Collisson, Eric A.; Lin, Li-Jung; Pitt, Cameron; Galeas, Jacqueline; Lewis, Sophia; Gray, Joe W.; McCormick, Frank; Chu, Steven

    2015-01-01

    Rat sarcoma (Ras) GTPases regulate cell proliferation and survival through effector pathways including Raf-MAPK, and are the most frequently mutated genes in human cancer. Although it is well established that Ras activity requires binding to both GTP and the membrane, details of how Ras operates on the cell membrane to activate its effectors remain elusive. Efforts to target mutant Ras in human cancers to therapeutic benefit have also been largely unsuccessful. Here we show that Ras-GTP forms dimers to activate MAPK. We used quantitative photoactivated localization microscopy (PALM) to analyze the nanoscale spatial organization of PAmCherry1-tagged KRas 4B (hereafter referred to KRas) on the cell membrane under various signaling conditions. We found that at endogenous expression levels KRas forms dimers, and KRasG12D, a mutant that constitutively binds GTP, activates MAPK. Overexpression of KRas leads to formation of higher order Ras nanoclusters. Conversely, at lower expression levels, KRasG12D is monomeric and activates MAPK only when artificially dimerized. Moreover, dimerization and signaling of KRas are both dependent on an intact CAAX (C, cysteine; A, aliphatic; X, any amino acid) motif that is also known to mediate membrane localization. These results reveal a new, dimerization-dependent signaling mechanism of Ras, and suggest Ras dimers as a potential therapeutic target in mutant Ras-driven tumors. PMID:26080442

  16. Ras-GTP dimers activate the mitogen-activated protein kinase (MAPK) pathway

    DOE PAGESBeta

    Nan, Xiaolin; Tamgüney, Tanja M.; Collisson, Eric A.; Lin, Li -Jung; Pitt, Cameron; Galeas, Jacqueline; Lewis, Sophia; Gray, Joe W.; McCormick, Frank; Chu, Steven

    2015-06-16

    Rat sarcoma (Ras) GTPases regulate cell proliferation and survival through effector pathways including Raf-MAPK, and are the most frequently mutated genes in human cancer. Although it is well established that Ras activity requires binding to both GTP and the membrane, details of how Ras operates on the cell membrane to activate its effectors remain elusive. Efforts to target mutant Ras in human cancers to therapeutic benefit have also been largely unsuccessful. Here we show that Ras-GTP forms dimers to activate MAPK. We used quantitative photoactivated localization microscopy (PALM) to analyze the nanoscale spatial organization of PAmCherry1-tagged KRas 4B (hereafter referredmore » to KRas) on the cell membrane under various signaling conditions. We found that at endogenous expression levels KRas forms dimers, and KRasG12D, a mutant that constitutively binds GTP, activates MAPK. Overexpression of KRas leads to formation of higher order Ras nanoclusters. Conversely, at lower expression levels, KRasG12D is monomeric and activates MAPK only when artificially dimerized. Moreover, dimerization and signaling of KRas are both dependent on an intact CAAX (C, cysteine; A, aliphatic; X, any amino acid) motif that is also known to mediate membrane localization. These results reveal a new, dimerization-dependent signaling mechanism of Ras, and suggest Ras dimers as a potential therapeutic target in mutant Ras-driven tumors.« less

  17. Ras-GTP dimers activate the mitogen-activated protein kinase (MAPK) pathway

    SciTech Connect

    Nan, Xiaolin; Tamgüney, Tanja M.; Collisson, Eric A.; Lin, Li -Jung; Pitt, Cameron; Galeas, Jacqueline; Lewis, Sophia; Gray, Joe W.; McCormick, Frank; Chu, Steven

    2015-06-16

    Rat sarcoma (Ras) GTPases regulate cell proliferation and survival through effector pathways including Raf-MAPK, and are the most frequently mutated genes in human cancer. Although it is well established that Ras activity requires binding to both GTP and the membrane, details of how Ras operates on the cell membrane to activate its effectors remain elusive. Efforts to target mutant Ras in human cancers to therapeutic benefit have also been largely unsuccessful. Here we show that Ras-GTP forms dimers to activate MAPK. We used quantitative photoactivated localization microscopy (PALM) to analyze the nanoscale spatial organization of PAmCherry1-tagged KRas 4B (hereafter referred to KRas) on the cell membrane under various signaling conditions. We found that at endogenous expression levels KRas forms dimers, and KRasG12D, a mutant that constitutively binds GTP, activates MAPK. Overexpression of KRas leads to formation of higher order Ras nanoclusters. Conversely, at lower expression levels, KRasG12D is monomeric and activates MAPK only when artificially dimerized. Moreover, dimerization and signaling of KRas are both dependent on an intact CAAX (C, cysteine; A, aliphatic; X, any amino acid) motif that is also known to mediate membrane localization. These results reveal a new, dimerization-dependent signaling mechanism of Ras, and suggest Ras dimers as a potential therapeutic target in mutant Ras-driven tumors.

  18. Enhanced IL-1{beta}-induced IL-8 production in cystic fibrosis lung epithelial cells is dependent of both mitogen-activated protein kinases and NF-{kappa}B signaling

    SciTech Connect

    Muselet-Charlier, Celine; Roque, Telma; Boncoeur, Emilie; Chadelat, Katarina; Clement, Annick; Jacquot, Jacky; Tabary, Olivier . E-mail: olivier.tabary@st-antoine.inserm.fr

    2007-06-01

    Transcription nuclear factor-{kappa}B (NF-{kappa}B) is hyperactivated in cystic fibrosis (CF) lung epithelial cells, and participates in exaggerated IL-8 production in the CF lung. We recently found that rapid activation of NF-{kappa}B occurred in a CF lung epithelial IB3-1 cell line (CF cells) upon IL-1{beta} stimulation, which was not observed in its CFTR-corrected lung epithelial S9 cell line (corrected cells). To test whether other signaling pathways such as that of mitogen-activated protein kinases (MAPKs) could be involved in IL-1{beta}-induced IL-8 production of CF cells, we investigated ERK1/2, JNK, and p38MAP signaling compared to NF-{kappa}B. Within 30 min, exposure to IL-1{beta} caused high activation of NF-{kappa}B, ERK1/2, p38MAP but not JNK in CF cells compared to corrected cells. Treatment of IL-1{beta}-stimulated CF cells with a series of chemical inhibitors of NF-{kappa}B, ERK1/2, and p38MAP, when used separately, reduced slightly IL-8 production. However, when used together, these inhibitors caused a blockade in IL-1{beta}-induced IL-8 production in CF cells. Understanding of the cross-talk between NF-{kappa}B and MAPKs signaling in CF lung epithelial cells may help in developing new therapeutics to reduce lung inflammation in patients with CF.

  19. Inhibitory effect of caffeic acid on ADP-induced thrombus formation and platelet activation involves mitogen-activated protein kinases

    PubMed Central

    Lu, Yu; Li, Quan; Liu, Yu-Ying; Sun, Kai; Fan, Jing-Yu; Wang, Chuan-She; Han, Jing-Yan

    2015-01-01

    Caffeic acid (CA), one of the active constituents of Radix Salvia miltiorrhizae, exhibits antioxidant and anti-inflammatory activities. However, few studies have assessed the ability of CA to inhibit platelet mediated thrombus generation in vivo. In this study, we investigated the antithrombotic effect of CA in mouse cerebral arterioles and venules using intravital microscopy. The antiplatelet activity of CA in ADP stimulated mouse platelets in vitro was also examined in attempt to explore the underlying mechanism. Our results demonstrated that CA (1.25–5 mg/kg) significantly inhibited thrombus formation in vivo. In vitro, CA (25–100 μM) inhibited ADP-induced platelet aggregation, P-selectin expression, ATP release, Ca2+ mobilization, and integrin αIIbβ3 activation. Additionally, CA attenuated p38, ERK, and JNK activation, and enhanced cAMP levels. Taken together, these data provide evidence for the inhibition of CA on platelet-mediated thrombosis in vivo, which is, at least partly, mediated by interference in phosphorylation of ERK, p38, and JNK leading to elevation of cAMP and down-regulation of P-selectin expression and αIIbβ3 activation. These results suggest that CA may have potential for the treatment of aberrant platelet activation-related diseases. PMID:26345207

  20. Activation of ERK mitogen-activated protein kinase in human cells by the mycotoxin patulin

    SciTech Connect

    Wu, T.-S.; Yu, F.-Y.; Su, C.-C.; Kan, J.-C.; Chung, C.-P.; Liu, B.-H. . E-mail: bingliu@csmu.edu.tw

    2005-09-01

    Patulin (PAT), a mycotoxin produced by certain species of Penicillium and Aspergillus, is often detectable in moldy fruits and their derivative products. PAT led to a concentration-dependent and time-dependent increase in phosphorylation of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) in human embryonic kidney (HEK293) cells, human peripheral blood mononuclear cells (PBMCs), and Madin-Darby canine kidney (MDCK) cells. Exposure of HEK293 cells to concentrations above 5 {mu}M PAT for 30 min induced ERK1/2 phosphorylation; activation of ERK1/2 was also observed after 24 h incubation with 0.05 {mu}M of PAT. Treatment of human PBMCs for 30 min with 30 {mu}M PAT dramatically increased the phosphorylated ERK1/2 levels. Both MEK1/2 inhibitors, U0126 and PD98059, suppressed ERK1/2 activation in either HEK293 or MDCK cells. In HEK293 cells, U0126-mediated inhibition of PAT-induced ERK1/2 phosphorylation resulted in a significant decrease in levels of DNA damage, expressed as tail moment values, in the single cell gel electrophoresis assay. Conversely, U0126 did not affect cell viability, lactate dehydrogenase release, and the DNA synthesis rate in PAT-treated cultures. Exposure of HEK293 cells for 90 min to 15 {mu}M PAT elevated the levels of early growth response gene-1 (egr-1) mRNA, but not of c-fos, fosB, and junB mRNAs. These results indicate that in human cells, PAT causes a rapid and persistent activation of ERK1/2 and this signaling pathway plays an important role in mediating PAT-induced DNA damage and egr-1 gene expression.

  1. Targeting the mitogen-activated protein kinase pathway in low-grade serous carcinoma of the ovary.

    PubMed

    McLachlan, Jennifer; Gore, Martin; Banerjee, Susana

    2016-08-01

    Until recently, there has been little change in the management of epithelial ovarian cancer with the majority of women receiving identical systemic therapy, regardless of histological subtype. The heterogeneity of epithelial ovarian cancer is now well established, with distinct subtypes characterized by specific molecular alterations and patterns of clinical behavior. Low-grade serous carcinoma is a rare subtype associated with an indolent biological behavior and inherent resistance to chemotherapy. The mitogen-activated protein kinase pathway plays a prominent role in the pathogenesis of low-grade serous carcinoma, and provides an attractive target for novel therapeutic agents. Selumetinib, a MEK1/2 inhibitor, demonstrates promising efficacy in women with relapsed low-grade serous carcinoma, and further trials of MEK-inhibition are underway. Translational research will be essential to identify predictive biomarkers for this treatment approach. PMID:27469379

  2. Epiderstatin, a new inhibitor of the mitogenic activity induced by epidermal growth factor. I. Taxonomy, fermentation, isolation and characterization.

    PubMed

    Osada, H; Sonoda, T; Kusakabe, H; Isono, K

    1989-11-01

    Inhibitors of mitogenic activity induced by epidermal growth factor (EGF) were screened from culture broths of soil microorganisms. A strain of actinomycetes has been found to produce a new glutarimide antibiotic named epiderstatin which inhibits the incorporation of [3H]thymidine into quiescent animal cells stimulated by EGF. Taxonomic studies have revealed that the producing strain belongs to a subspecies of Streptomyces pulveraceus, thus the name, Streptomyces pulveraceus subsp. epiderstagenes was given to this strain. The molecular formula (C15H20N2O4) and UV profile (lambda max 295 nm) of the antibiotic are distinct from other known antibiotics. It inhibited the incorporation of [3H]thymidine into quiescent cells stronger than into growing cells. PMID:2584144

  3. The role of mitogen-activated protein kinase in oxytocin-induced contraction of uterine smooth muscle in pregnant rat.

    PubMed

    Nohara, A; Ohmichi, M; Koike, K; Masumoto, N; Kobayashi, M; Akahane, M; Ikegami, H; Hirota, K; Miyake, A; Murata, Y

    1996-12-24

    Oxytocin causes the rapid tyrosine phosphorylation of mitogen-activated protein (MAP) kinase in both human and rat puerperal uterine myometrial cultured cells. The potential role of the MAP kinase pathway in oxytocin action was investigated with the specific MAP kinase kinase (MEK) inhibitor, PD98059. Oxytocin stimulation of the tyrosine phosphorylation of MAP kinase in both human and rat cultured puerperal uterine cells was abolished by pretreatment of the cells with MEK inhibitor in a dose-dependent manner. Although MEK inhibitor had no effect on oxytocin-induced intracellular Ca2+ mobilization in either pregnant human or pregnant rat uterine cells, it partly inhibited oxytocin-induced pregnant rat uterine contraction in a dose-dependent manner. These results suggest that MAP kinase pathway may have some important roles in oxytocin-induced uterine contraction. PMID:8954997

  4. Mitogen Activated Protein Kinase Family Proteins and c-jun Signaling in Injury-induced Schwann Cell Plasticity.

    PubMed

    Lee, Hye Jeong; Shin, Yoon Kyung; Park, Hwan Tae

    2014-06-01

    Schwann cells (SCs) in the peripheral nerves myelinate axons during postnatal development to allow saltatory conduction of nerve impulses. Well-organized structures of myelin sheathes are maintained throughout life unless nerves are insulted. After peripheral nerve injury, unidentified signals from injured nerves drive SC dedifferentiation into an immature state. Dedifferentiated SCs participate in axonal regeneration by producing neurotrophic factors and removing degenerating nerve debris. In this review, we focus on the role of mitogen activated protein kinase family proteins (MAP kinases) in SC dedifferentiation. In addition, we will highlight neuregulin 1 and the transcription factor c-jun as upstream and downstream signals for MAP kinases in SC responses to nerve injury. PMID:24963277

  5. BMP4 Increases Canonical Transient Receptor Potential Protein Expression by Activating p38 MAPK and ERK1/2 Signaling Pathways in Pulmonary Arterial Smooth Muscle Cells

    PubMed Central

    Li, Xiaoyan; Lu, Wenju; Fu, Xin; Zhang, Yi; Yang, Kai; Zhong, Nanshan; Ran, Pixin

    2013-01-01

    Abnormal bone morphogenetic protein (BMP) signaling has been implicated in the pathogenesis of pulmonary hypertension. We previously found that BMP4 elevated basal intracellular Ca2+ ([Ca2+]i) concentrations in distal pulmonary arterial smooth muscle cells (PASMCs), attributable in large part to enhanced store-operated Ca2+ entry through store-operated Ca2+ channels (SOCCs). Moreover, BMP4 up-regulated the expression of canonical transient receptor potential (TRPC) proteins thought to compose SOCCs. The present study investigated the signaling pathways through which BMP4 regulates TRPC expression and basal [Ca2+]i in distal PASMCs. Real-time quantitative PCR was used for the measurement of mRNA, Western blotting was used for the measurement of protein, and fluorescent microscopic for [Ca2+]i was used to determine the involvement of p38 and extracellular regulated kinase (ERK)–1/2 mitogen-activated protein kinase (MAPK) signaling in BMP4–induced TRPC expression and the elevation of [Ca2+]i in PASMCs. We found that the treatment of BMP4 led to the activation of both p38 MAPK and ERK1/2 in rat distal PASMCs. The induction of TRPC1, TRPC4, and TRPC6 expression, and the increases of [Ca2+]i caused by BMP4 in distal PASMCs, were inhibited by treatment with either SB203580 (10 μM), the selective inhibitor for p38 activation, or the specific p38 small interfering RNA (siRNA). Similarly, those responses induced by BMP4 were also abolished by treatment with PD98059 (5 μM), the selective inhibitor of ERK1/2, or by the knockdown of ERK1/2 using its specific siRNA. These results indicate that BMP4 participates in the regulation of Ca2+ signaling in PASMCs by modulating TRPC channel expression via activating p38 and ERK1/2 MAPK pathways. PMID:23526217

  6. Expression of peptide fragments from proADM and involvement of mitogen-activated protein kinase signaling pathways in pulmonary remodeling induced by high pulmonary blood flow.

    PubMed

    Li, Wei; Guo, Aili; Wang, Lijuan; Kong, Qingyu; Wang, Rong; Han, Li; Zhao, Cuifen

    2016-01-01

    Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by progressive pulmonary arterial remodeling and right ventricular failure. Despite recent advances in pathophysiological mechanism exploration and new therapeutic approaches, PAH remains a challenging condition. In this study, we investigated the roles of the peptide fragments from proadrenomedullin (proADM) such as adrenomedullin (ADM), adrenotensin (ADT), and proadrenomedullin N-terminal 20 peptide (PAMP) during pulmonary remodeling caused by high pulmonary blood flow, and probed the possible involvement of mitogen-activated protein kinase (MAPK) signal transduction pathways. Sixteen rat models of PAH were artificially established by surgically connecting the left common carotid artery to the external jugular vein. We subcutaneously injected an extracellular signal-regulated protein kinase (ERK1/2) inhibitor, PD98059, in eight rats, treated another eight rats with an equal volume of saline. Eight rats without connections served as the control group. We observed that mRNA expression levels of ADM, stress-activated protein kinase (SAPK), and ERK1/2 were significantly elevated in the shunted rats; furthermore, ERK1/2 levels were significantly inhibited by PD98059. Protein levels of ADM, PAMP, p-SAPK, and p-ERK1/2 were significantly higher ADT was lower, and p-p38 remained unchanged in the rat models compared with the controls. However, the protein expression of both ADM and p-ERK1/2 was significantly inhibited by PD98059. Our results suggest that levels of ADM, ADT, and PAMP respond to pulmonary remodeling, and that activation of the SAPK and ERK1/2 signaling pathways is involved in pulmonary hypertension and artery remodeling caused by high pulmonary blood flow. PMID:25990643

  7. Luteolin is a bioflavonoid that attenuates adipocyte-derived inflammatory responses via suppression of nuclear factor-κB/mitogen-activated protein kinases pathway

    PubMed Central

    Nepali, Sarmila; Son, Ji-Seon; Poudel, Barun; Lee, Ji-Hyun; Lee, Young-Mi; Kim, Dae-Ki

    2015-01-01

    Background: Inflammation of adipocytes has been a therapeutic target for treatment of obesity and metabolic disorders which cause insulin resistance and hence lead to type II diabetes. Luteolin is a bioflavonoid with many beneficial properties such as antioxidant, antiproliferative, and anti-cancer. Objectives: To elucidate the potential anti-inflammatory response and the underlying mechanism of luteolin in 3T3-L1 adipocytes. Materials and Methods: We stimulated 3T3-L1 adipocytes with the mixture of tumor necrosis factor-α, lipopolysaccharide, and interferon-γ (TLI) in the presence or absence of luteolin. We performed Griess’ method for nitric oxide (NO) production and measure mRNA and protein expressions by real-time polymerase chain reaction and western blotting, respectively. Results: Luteolin opposed the stimulation of inducible nitric oxide synthase and NO production by simultaneous treatment of adipocytes with TLI. Furthermore, it reduced the pro-inflammatory genes such as cyclooxygenase-2, interleukin-6, resistin, and monocyte chemoattractant protein-1. Furthermore, luteolin improved the insulin sensitivity by enhancing the expression of insulin receptor substrates (IRS1/2) and glucose transporter-4 via phosphatidylinositol-3K signaling pathway. This inhibition was associated with suppression of Iκ-B-α degradation and subsequent inhibition of nuclear factor-κB (NF-κB) p65 translocation to the nucleus. In addition, luteolin blocked the phosphorylation of ERK1/2, c-Jun N-terminal Kinases and also p38 mitogen-activated protein kinases (MAPKs). Conclusions: These results illustrate that luteolin attenuates inflammatory responses in the adipocytes through suppression of NF-κB and MAPKs activation, and also improves insulin sensitivity in 3T3-L1 cells, suggesting that luteolin may represent a therapeutic agent to prevent obesity-associated inflammation and insulin resistance. PMID:26246742

  8. Nanosized titanium dioxide resulted in the activation of TGF-β/Smads/p38MAPK pathway in renal inflammation and fibration of mice.

    PubMed

    Hong, F; Wu, N; Ge, Y; Zhou, Y; Shen, T; Qiang, Q; Zhang, Q; Chen, M; Wang, Y; Wang, L; Hong, J

    2016-06-01

    Titanium dioxide nanoparticles (TiO2 NPs) have been demonstrated to damage the kidneys. However, whether chronic nephritis leads to renal fibration or the fibrosis is associated with the activation of TGF-β/Smads/p38MAPK pathway caused by TiO2 NPs exposure is not well understood. Forty male mice were separately exposed to 0, 2.5, 5, or 10 mg/kg body weight TiO2 NPs for 6 months. Renal biochemical functions and levels of TGF-β/Smads/p38MAPK pathway-related markers and extracellular matrix (ECM) expression in the kidneys were investigated. The findings showed that subchronic TiO2 NPs exposure increased levels of urinary creatisix (Cr), N-acetyl-glucosaminidase, and vanin-1, resulted in severe renal inflammation and fibration. Furthermore, TiO2 NP exposure upregulated expression of transforming growth factor-β1 (TGF-β1, 0.07- to 2.72-fold), Smad2 (0.42- to 1.63-fold), Smad3 (0.02- to 1.94-fold), ECM (0.15- to 2.75-fold), α-smooth muscle actin (0.14- to 3.06-fold), p38 mitogen-activated protein kinase (p38MAPK, 0.11- to 3.78-fold), and nuclear factor-κB (0.4- to 2.27-fold), and downregulated Smad7 (0.05- to 0.61-fold) expression in mouse kidney. Subchronic TiO2 NPs exposure induced changes of renal characteristics towards inflammation and fibration may be mediated via TGF-β/Smads/p38MAPK pathway, and the uses of TiO2 NPs should be carried out cautiously, especially in humans. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1452-1461, 2016. PMID:26850371

  9. Hyaluronan Oligosaccharides Induce MMP-1 and -3 via Transcriptional Activation of NF-κB and p38 MAPK in Rheumatoid Synovial Fibroblasts

    PubMed Central

    Hanabayashi, Masahiro; Takahashi, Nobunori; Sobue, Yasumori; Hirabara, Shinya; Ishiguro, Naoki; Kojima, Toshihisa

    2016-01-01

    Objective To explore the effect of hyaluronan oligosaccharides (HAoligos) on interactions between HA and its principal receptor, CD44, in rheumatoid synovial fibroblasts (RSFs) and matrix metalloproteinase (MMP) production. Methods RSFs were isolated from rheumatoid synovial tissue. HA distribution was visualized by immunocytochemistry. MMP-1 and MMP-3 induction was analyzed by real-time RT-PCR and immunoblotting. The interaction between HAoligos and their MMP-producing receptors was tested by blocking with anti-CD44 and anti-Toll-like receptor 4 (TLR-4). Phosphorylation of nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) was analyzed by immunoblotting. Results Endogenous HA decreased after treatment with HAoligos, while MMP-1 and MMP-3 expression increased in a dose-dependent manner. Pretreatment with anti-CD44 or anti-TLR-4 antibody significantly reduced the effect of HAoligos on MMP-1 and MMP-3 mRNA expression. NF-κB and p38 MAPK phosphorylation was enhanced by HAoligos pretreated with anti-TLR-4, and HAoligo-induced MMP production was blocked with an inhibitor of NF-κB and p38 MAPK pathways. Conclusions Disruptive changes in CD44-HA interactions by HAoligos enhanced MMP-1 and MMP-3 production via activation of NF-κB and p38 MAPK signaling pathways in RSFs. PMID:27564851

  10. Cell-Associated Hemolysis Induced by Helicobacter pylori Is Mediated by Phospholipases with Mitogen-Activated Protein Kinase-Activating Properties

    PubMed Central

    Sitaraman, Ramakrishnan; Israel, Dawn A.; Romero-Gallo, Judith

    2012-01-01

    Pathogenic Helicobacter pylori strains can selectively activate epithelial mitogen-activated protein kinase (MAPK) signaling pathways linked with disease. We now demonstrate that H. pylori-induced hemolysis is strain specific and is mediated by phospholipases PldA1 and PldD. Inactivation of PldD inhibited activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2), indicating that H. pylori hemolytic phospholipases also harbor MAPK-activating properties. PMID:22205825

  11. Cell-associated hemolysis induced by Helicobacter pylori is mediated by phospholipases with mitogen-activated protein kinase-activating properties.

    PubMed

    Sitaraman, Ramakrishnan; Israel, Dawn A; Romero-Gallo, Judith; Peek, Richard M

    2012-03-01

    Pathogenic Helicobacter pylori strains can selectively activate epithelial mitogen-activated protein kinase (MAPK) signaling pathways linked with disease. We now demonstrate that H. pylori-induced hemolysis is strain specific and is mediated by phospholipases PldA1 and PldD. Inactivation of PldD inhibited activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2), indicating that H. pylori hemolytic phospholipases also harbor MAPK-activating properties. PMID:22205825

  12. Human immunodeficiency virus type 1 Nef binds directly to Lck and mitogen-activated protein kinase, inhibiting kinase activity.

    PubMed Central

    Greenway, A; Azad, A; Mills, J; McPhee, D

    1996-01-01

    It is now well established that human immunodeficiency virus type I (HIV-1) Nef contributes substantially to disease pathogenesis by augmenting virus replication and markedly perturbing T-cell function. The effect of Nef on host cell activation could be explained in part by its interaction with specific cellular proteins involved in signal transduction, including at least a member of the src family kinase, Lck, and the serine/threonine kinase, mitogen-activated protein kinase (MAPK). Recombinant Nef directly interacted with purified Lck and MAPK in coprecipitation experiments and binding assays. A proline-rich repeat sequence [(Pxx)4] in Nef occurring between amino acid residues 69 to 78 is highly conserved and bears strong resemblance to a defined consensus sequence identified as an SH3 binding domain present in several proteins which can interact with the SH3 domain of various signalling and cytoskeletal proteins. Binding and coprecipitation assays with short synthetic peptides corresponding to the proline-rich repeat sequence [(Pxx)4] of Nef and the SH2, SH3, or SH2 and SH3 domains of Lck revealed that the interaction between these two proteins is at least in part mediated by the proline repeat sequence of Nef and the SH3 domain of Lck. In addition to direct binding to full-length Nef, MAPK was also shown to bind the same proline repeat motif. Nef protein significantly decreased the in vitro kinase activity of Lck and MAPK. Inhibition of key members of signalling cascades, including those emanating from the T-cell receptor, by the HIV-1 Nef protein undoubtedly alters the ability of the infected T cell to respond to antigens or cytokines, facilitating HIV-1 replication and contributing to HIV-1-induced disease pathogenesis. PMID:8794306

  13. N-Farnesyloxy-norcantharimide inhibits progression of human leukemic Jurkat T cells through regulation of mitogen-activated protein kinase and interleukin-2 production

    PubMed Central

    Chang, Ming-Che; Wu, Jin-Yi; Liao, Hui-Fen; Chen, Yu-Jen

    2015-01-01

    This study investigated the anticancer effects of N-farnesyloxy-norcantharimide (NOC15), a newly synthesized norcantharidin (NCTD) analogue, on human leukemic Jurkat T cells and the signaling pathway underlying its effects. We found that the half maximal inhibitory concentration (IC50) of NOC15 on Jurkat T cells is 1.4 μmol/l, which is 11.14-fold (=15.6÷1.4) smaller than the 15.6 μmol/l of NCTD on Jurkat T cells, whereas the IC50 of NOC15 on human normal lymphoblast (HNL) is 207.9 μmol/l, which is 8.17-fold (=1698.0÷207.8) smaller than the 1698.0 μmol/l of NCTD on HNL cells. These results indicated that NOC15 exerts a higher anticancer effect on Jurkat T cells and has higher toxicity toward HNL cells than NCTD. Thus, NOC15 is 1.36-fold (=11.14÷8.17) beneficial as an anticancer agent toward Jurkat T cells compared with NCTD. Moreover, NOC15 can increase the percentage of cells in the sub-G1 phase and reduce the cell viability of Jurkat T cells, stimulate p38 and extracellular signal-regulated protein kinase 1/2 (ERK1/2) of mitogen-activated protein kinases (MAPKs) signaling pathway, and inhibit calcineurin expression and interleukin-2 (IL-2) production. However, NOC15 exerted no effects on the Jun-N-terminal kinase 1/2 (JNK1/2) signaling pathway, the production of IL-8, and tumor necrosis factor-α. We conclude that the anticancer activity of the newly synthesized NOC15 is 1.36-fold beneficial than NCTD as an anticancer agent and that NOC15 can increase the percentage of cells in the sub-G1 phase through the stimulation of p38 and ERK1/2 of the MAPK signaling pathway and the inhibition of calcineurin expression and IL-2 production. The NOC15 may have the potential of being developed into an anticancer agent in the future. PMID:26288134

  14. Postextinction Infusion of a Mitogen-Activated Protein Kinase Inhibitor into the Medial Prefrontal Cortex Impairs Memory of the Extinction of Conditioned Fear

    ERIC Educational Resources Information Center

    Hugues, Sandrine; Deschaux, Olivier; Garcia, Rene

    2004-01-01

    We investigated whether postextinction training infusion of PD098059, a selective inhibitor of mitogen-activated protein kinase (MAPK) activation, into the medial prefrontal cortex, would impair retention of extinction learning in rats. We found that immediate, but not late (2 or 4 h), postextinction infusion of PD098059 provoked a full return of…

  15. Ethanol alters angiotensin II stimulated mitogen activated protein kinase in hepatocytes: agonist selectivity and ethanol metabolic independence.

    PubMed

    Weng, Y; Shukla, S D

    2000-06-23

    Angiotensin II activated mitogen-activated protein kinase (MAPK) (p42 and p44) in rat hepatocytes exposed to ethanol and the relevance of ethanol metabolism on this activation was investigated. Hepatocytes, isolated from rat liver, were treated with or without ethanol for 24 h. Angiotensin II, vasopressin, insulin, serum and epinephrine significantly increased hepatocyte MAPK activity. Platelet activating factor (PAF), tumor necrosis factor-alpha (TNF-alpha), and insulin-like growth factor-1 (IGF-1) had little effect on MAPK activation. Interestingly, among the above agonists, which activated hepatocyte MAPK, ethanol exposure potentiated only angiotensin II and epinephrine-stimulated MAPK. Thus, potentiation of MAPK by ethanol exhibited agonist selectivity. In contrast to several other cells, there was prevalence of p42 over p44 MAPK band in hepatocytes. Angiotensin II treatment caused a rapid activation (peak 5 min) of MAPK followed by a decrease to basal levels in 30 min. Exposure with 100 mM ethanol potentiated the angiotensin II stimulated MAPK activity. This potentiation was partially blocked by pertussis toxin suggesting it to be a G-protein-dependent event. Treatment of the hepatocytes with pyrazole (an inhibitor of ethanol metabolism) or acetaldehyde (an ethanol metabolite) had no effect on potentiation. Thus, ethanol potentiation of hepatocyte MAPK is agonist-selective and independent of ethanol metabolism. PMID:10862821

  16. Hepatocyte cytoskeleton during ischemia and reperfusion - influence of ANP-mediated p38 MAPK activation

    PubMed Central

    Keller, Melanie; Gerbes, Alexander L; Kulhanek-Heinze, Stefanie; Gerwig, Tobias; Grützner, Uwe; van Rooijen, Nico; Vollmar, Angelika M; Kiemer, Alexandra K

    2005-01-01

    AIM: To determine functional consequences of this activation, whereby we focused on a potential regulation of the hepatocyte cytoskeleton during ischemia and reperfusion. METHODS: For in vivo experiments, animals received ANP (5 μg/kg) intravenously. In a different experimental setting, isolated rat livers were perfused with KH-buffer±ANP (200 nmol/L)±SB203580 (2 μmol/L). Livers were then kept under ischemic conditions for 24 h, and either transplanted or reperfused. Actin, Hsp27, and phosphorylated Hsp27 were determined by Western blotting, p38 MAPK activity by in vitro phosphorylation assay. F-actin distribution was determined by confocal microscopy. RESULTS: We first confirmed that ANP preconditioning leads to an activation of p38 MAPK and observed alterations of the cytoskeleton in hepatocytes of ANP-preconditioned organs. ANP induced an increase of hepatic F-actin after ischemia, which could be prevented by the p38 MAPK inhibitor SB203580 but had no effect on bile flow. After ischemia untreated livers showed a translocation of Hsp27 towards the cytoskeleton and an increase in total Hsp27, whereas ANP preconditioning prohibited translocation but caused an augmentation of Hsp27 phosphorylation. This effect is also mediated via p38 MAPK, since it was abrogated by the p38 MAPK inhibitor SB203580. CONCLUSION: This study reveals that ANP-mediated p38 MAPK activation leads to changes in hepatocyte cytoskeleton involving an elevation of phosphorylated Hsp27 and thereby for the first time shows functional consequences of ANP-induced hepatic p38 MAPK activation. PMID:16437711

  17. Phosphatidylinositol 3-kinase is required for integrin-stimulated AKT and Raf-1/mitogen-activated protein kinase pathway activation.

    PubMed Central

    King, W G; Mattaliano, M D; Chan, T O; Tsichlis, P N; Brugge, J S

    1997-01-01

    Cell attachment to fibronectin stimulates the integrin-dependent interaction of p85-associated phosphatidylinositol (PI) 3-kinase with integrin-dependent focal adhesion kinase (FAK) as well as activation of the Ras/mitogen-activated protein (MAP) kinase pathway. However, it is not known if this PI 3-kinase-FAK interaction increases the synthesis of the 3-phosphorylated phosphoinositides (3-PPIs) or what role, if any, is played by activated PI 3-kinase in integrin signaling. We demonstrate here the integrin-dependent accumulation of the PI 3-kinase products, PI 3,4-bisphosphate [PI(3,4)P2] and PI(3,4,5)P3, as well as activation of AKT kinase, a serine/threonine kinase that can be stimulated by binding of PI(3,4)P2. The PI 3-kinase inhibitors wortmannin and LY294002 significantly decreased the integrin-induced accumulation of the 3-PPIs and activation of AKT kinase, without having significant effects on the levels of PI(4,5)P2 or tyrosine phosphorylation of paxillin. These inhibitors also reduced cell adhesion/spreading onto fibronectin but had no effect on attachment to polylysine. Interestingly, integrin-mediated Erk-2, Mek-1, and Raf-1 activation, but not Ras-GTP loading, was inhibited at least 80% by wortmannin and LY294002. In support of the pharmacologic results, fibronectin activation of Erk-2 and AKT kinases was completely inhibited by overexpression of a dominant interfering p85 subunit of PI 3-kinase. We conclude that integrin-mediated adhesion to fibronectin results in the accumulation of the PI 3-kinase products PI(3,4)P2 and PI(3,4,5)P3 as well as the PI 3-kinase-dependent activation of the kinases Raf-1, Mek-1, Erk-2, and AKT and that PI 3-kinase may function upstream of Raf-1 but downstream of Ras in integrin activation of Erk-2 MAP and AKT kinases. PMID:9234699

  18. N-Formyl peptides drive mitochondrial damage associated molecular pattern induced neutrophil activation through ERK1/2 and P38 MAP kinase signalling pathways.

    PubMed

    Hazeldine, Jon; Hampson, Peter; Opoku, Francis Adusei; Foster, Mark; Lord, Janet M

    2015-01-01

    Traumatic injury results in a systemic inflammatory response syndrome (SIRS), a phenomenon characterised by the release of pro-inflammatory cytokines into the circulation and immune cell activation. Released from necrotic cells as a result of tissue damage, damage associated molecular patterns (DAMPs) are thought to initiate the SIRS response by activating circulating immune cells through surface expressed pathogen recognition receptors. Neutrophils, the most abundant leucocyte in human circulation, are heavily implicated in the initial immune response to traumatic injury and have been shown to elicit a robust functional response to DAMP stimulation. Here, we confirm that mitochondrial DAMPs (mtDAMPs) are potent activators of human neutrophils and show for the first time that signalling through the mitogen-activated-protein-kinases p38 and extracellular-signal-related-kinase 1/2 (ERK1/2) is essential for this response. At 40 and/or 100 μg/ml, mtDAMPs activated human neutrophils, indicated by a significant reduction in the surface expression of L-selectin, and triggered a number of functional responses from both resting and tumour necrosis factor-α primed neutrophils, which included reactive oxygen species (ROS) generation, degranulation, secretion of interleukin-8 and activation of p38 and ERK1/2 MAPKs. Pre-treatment of neutrophils with Cyclosporin H, a selective inhibitor of formyl peptide receptor-1 (FPR-1), significantly inhibited mtDAMP-induced L-selectin shedding as well as p38 and ERK1/2 activation, suggesting that N-formyl peptides are the main constituents driving mtDAMP-induced neutrophil activation. Indeed, no evidence of L-selectin shedding or p38 and ERK1/2 activation was observed in neutrophils challenged with mitochondrial DNA alone. Interestingly, pharmacological inhibition of p38 or ERK1/2 either alone or in combination significantly inhibited L-selectin shedding and IL-8 secretion by mtDAMP-challenged neutrophils, revealing for the first time

  19. Competition between members of the tribbles pseudokinase protein family shapes their interactions with mitogen activated protein kinase pathways.

    PubMed

    Guan, Hongtao; Shuaib, Aban; Leon, David Davila De; Angyal, Adrienn; Salazar, Maria; Velasco, Guillermo; Holcombe, Mike; Dower, Steven K; Kiss-Toth, Endre

    2016-01-01

    Spatio-temporal regulation of intracellular signalling networks is key to normal cellular physiology; dysregulation of which leads to disease. The family of three mammalian tribbles proteins has emerged as an important controller of signalling via regulating the activity of mitogen activated protein kinases (MAPK), the PI3-kinase induced signalling network and E3 ubiquitin ligases. However, the importance of potential redundancy in the action of tribbles and how the differences in affinities for the various binding partners may influence signalling control is currently unclear. We report that tribbles proteins can bind to an overlapping set of MAPK-kinases (MAPKK) in live cells and dictate the localisation of the complexes. Binding studies in transfected cells reveal common regulatory mechanisms and suggest that tribbles and MAPKs may interact with MAPKKs in a competitive manner. Computational modelling of the impact of tribbles on MAPK activation suggests a high sensitivity of this system to changes in tribbles levels, highlighting that these proteins are ideally placed to control the dynamics and balance of activation of concurrent signalling pathways. PMID:27600771

  20. Competition between members of the tribbles pseudokinase protein family shapes their interactions with mitogen activated protein kinase pathways

    PubMed Central

    Guan, Hongtao; Shuaib, Aban; Leon, David Davila De; Angyal, Adrienn; Salazar, Maria; Velasco, Guillermo; Holcombe, Mike; Dower, Steven K.; Kiss-Toth, Endre

    2016-01-01

    Spatio-temporal regulation of intracellular signalling networks is key to normal cellular physiology; dysregulation of which leads to disease. The family of three mammalian tribbles proteins has emerged as an important controller of signalling via regulating the activity of mitogen activated protein kinases (MAPK), the PI3-kinase induced signalling network and E3 ubiquitin ligases. However, the importance of potential redundancy in the action of tribbles and how the differences in affinities for the various binding partners may influence signalling control is currently unclear. We report that tribbles proteins can bind to an overlapping set of MAPK-kinases (MAPKK) in live cells and dictate the localisation of the complexes. Binding studies in transfected cells reveal common regulatory mechanisms and suggest that tribbles and MAPKs may interact with MAPKKs in a competitive manner. Computational modelling of the impact of tribbles on MAPK activation suggests a high sensitivity of this system to changes in tribbles levels, highlighting that these proteins are ideally placed to control the dynamics and balance of activation of concurrent signalling pathways. PMID:27600771

  1. Signaling via the Trichoderma atroviride mitogen-activated protein kinase Tmk1 differentially affects mycoparasitism and plant protection

    PubMed Central

    Reithner, Barbara; Schuhmacher, Rainer; Stoppacher, Norbert; Pucher, Marion; Brunner, Kurt; Zeilinger, Susanne

    2015-01-01

    Trichoderma atroviride is a mycoparasite of a number of plant pathogenic fungi thereby employing morphological changes and secretion of cell wall degrading enzymes and antibiotics. The function of the tmk1 gene encoding a mitogen-activated protein kinase (MAPK) during fungal growth, mycoparasitic interaction, and biocontrol was examined in T. atroviride. Δtmk1 mutants exhibited altered radial growth and conidiation, and displayed de-regulated infection structure formation in the absence of a host-derived signal. In confrontation assays, tmk1 deletion caused reduced mycoparasitic activity although attachment to Rhizoctonia solani and Botrytis cinerea hyphae was comparable to the parental strain. Under chitinase-inducing conditions, nag1 and ech42 transcript levels and extracellular chitinase activities were elevated in a Δtmk1 mutant, whereas upon direct confrontation with R. solani or B. cinerea a host-specific regulation of ech42 transcription was found and nag1 gene transcription was no more inducible over an elevated basal level. Δtmk1 mutants exhibited higher antifungal activity caused by low molecular weight substances, which was reflected by an over-production of 6-pentyl-α-pyrone and peptaibol antibiotics. In biocontrol assays, a Δtmk1 mutant displayed a higher ability to protect bean plants against R. solani. PMID:17509915

  2. Signaling via the Trichoderma atroviride mitogen-activated protein kinase Tmk 1 differentially affects mycoparasitism and plant protection.

    PubMed

    Reithner, Barbara; Schuhmacher, Rainer; Stoppacher, Norbert; Pucher, Marion; Brunner, Kurt; Zeilinger, Susanne

    2007-11-01

    Trichoderma atroviride is a mycoparasite of a number of plant pathogenic fungi thereby employing morphological changes and secretion of cell wall degrading enzymes and antibiotics. The function of the tmk 1 gene encoding a mitogen-activated protein kinase (MAPK) during fungal growth, mycoparasitic interaction, and biocontrol was examined in T. atroviride. Deltatmk 1 mutants exhibited altered radial growth and conidiation, and displayed de-regulated infection structure formation in the absence of a host-derived signal. In confrontation assays, tmk 1 deletion caused reduced mycoparasitic activity although attachment to Rhizoctonia solani and Botrytis cinerea hyphae was comparable to the parental strain. Under chitinase-inducing conditions, nag 1 and ech 42 transcript levels and extracellular chitinase activities were elevated in a Deltatmk 1 mutant, whereas upon direct confrontation with R. solani or B. cinerea a host-specific regulation of ech 42 transcription was found and nag 1 gene transcription was no more inducible over an elevated basal level. Deltatmk 1 mutants exhibited higher antifungal activity caused by low molecular weight substances, which was reflected by an over-production of 6-pentyl-alpha-pyrone and peptaibol antibiotics. In biocontrol assays, a Deltatmk 1 mutant displayed a higher ability to protect bean plants against R. solani. PMID:17509915

  3. Mitogen-activated protein kinase kinases promote mitochondrial biogenesis in part through inducing peroxisome proliferator-activated receptor γ coactivator-1β expression.

    PubMed

    Gao, Minghui; Wang, Junjian; Lu, Na; Fang, Fang; Liu, Jinsong; Wong, Chi-Wai

    2011-06-01

    Growth factor activates mitogen-activated protein kinase kinases to promote cell growth. Mitochondrial biogenesis is an integral part of cell growth. How growth factor regulates mitochondrial biogenesis is not fully understood. In this study, we found that mitochondrial mass was specifically reduced upon serum starvation and induced upon re-feeding with serum. Using mitogen-activated protein kinase kinases inhibitor U0126, we found that the mRNA expression levels of ATP synthase, cytochrome-C, mitochondrial transcription factor A, and mitofusin 2 were reduced. Since the transcriptional levels of these genes are under the control of peroxisome proliferator-activated receptor γ coactivator-1α and -1β (PGC-1α and PGC-1β), we examined and found that only the mRNA and protein levels of PGC-1β were suppressed. Importantly, over-expression of PGC-1β partially reversed the reduction of mitochondrial mass upon U0126 treatment. Thus, we conclude that mitogen-activated protein kinase kinases direct mitochondrial biogenesis through selectively inducing PGC-1β expression. PMID:21458501

  4. The mitogen-activated protein kinase (MAPK) cascade controls phosphatase and tensin homolog (PTEN) expression through multiple mechanisms.

    PubMed

    Ciuffreda, Ludovica; Di Sanza, Cristina; Cesta Incani, Ursula; Eramo, Adriana; Desideri, Marianna; Biagioni, Francesca; Passeri, Daniela; Falcone, Italia; Sette, Giovanni; Bergamo, Paola; Anichini, Andrea; Sabapathy, Kanaga; McCubrey, James A; Ricciardi, Maria Rosaria; Tafuri, Agostino; Blandino, Giovanni; Orlandi, Augusto; De Maria, Ruggero; Cognetti, Francesco; Del Bufalo, Donatella; Milella, Michele

    2012-06-01

    The mitogen-activated protein kinase (MAPK) and PI3K pathways are regulated by extensive crosstalk, occurring at different levels. In tumors, transactivation of the alternate pathway is a frequent "escape" mechanism, suggesting that combined inhibition of both pathways may achieve synergistic antitumor activity. Here we show that, in the M14 melanoma model, simultaneous inhibition of both MEK and mammalian target of rapamycin (mTOR) achieves synergistic effects at suboptimal concentrations, but becomes frankly antagonistic in the presence of relatively high concentrations of MEK inhibitors. This observation led to the identification of a novel crosstalk mechanism, by which either pharmacologic or genetic inhibition of constitutive MEK signaling restores phosphatase and tensin homolog (PTEN) expression, both in vitro and in vivo, and inhibits downstream signaling through AKT and mTOR, thus bypassing the need for double pathway blockade. This appears to be a general regulatory mechanism and is mediated by multiple mechanisms, such as MAPK-dependent c-Jun and miR-25 regulation. Finally, PTEN upregulation appears to be a major effector of MEK inhibitors' antitumor activity, as cancer cells in which PTEN is inactivated are consistently more resistant to the growth inhibitory and anti-angiogenic effects of MEK blockade. PMID:22215152

  5. Isolation of a new heterodimeric lectin with mitogenic activity from fruiting bodies of the mushroom Agrocybe cylindracea.

    PubMed

    Wang, Hexiang; Ng, T B; Liu, Qinghong

    2002-01-11

    From the dried fruiting bodies of the mushroom Agrocybe cylindracea a heterodimeric lectin with a molecular weight of 31.5 kDa and displaying high hemagglutinating activity was isolated. The molecular weights of its subunits were 16.1 kDa and 15.3 kDa respectively. The larger and the smaller subunits resembled Agaricus bisporus lectin and fungal immunomodulatory protein from Volvariella volvacea respectively in N-terminal sequence. The lectin was adsorbed on DEAE-cellulose in 10 mM Tris-HCl buffer (pH 7.4) and was eluted by the same buffer containing 150 mM NaCl. It was adsorbed on SP-Sepharose in 10 mM NH4OAc (pH 4.5) and eluted by approximately 0.19 M NaCl in the same buffer. The lectin was obtained in a purified form after the mushroom extract had been subjected to (NH4)2SO4 precipitation and the two aforementioned ion exchange chromatographic steps. The lectin exhibited potent mitogenic activity toward mouse splenocytes. The hemagglutinating activity of the lectin was inhibited by lactose, sialic acid and inulin. PMID:11853225

  6. Interplay between mitogen-activated protein kinase and nitric oxide in brassinosteroid-induced pesticide metabolism in Solanum lycopersicum.

    PubMed

    Yin, Yan-Ling; Zhou, Yue; Zhou, Yan-Hong; Shi, Kai; Zhou, Jie; Yu, Yunlong; Yu, Jing-Quan; Xia, Xiao-Jian

    2016-10-01

    Nitric oxide (NO) and mitogen-activated protein kinase (MPK) play important roles in brassinosteroid (BR)-induced stress tolerance, however, their functions in BR-induced pesticides metabolism remain unclear. Here, we showed that MPK activity and transcripts of SlMPK1 and SlMPK2 were induced by chlorothalonil (CHT), a widely used fungicide, in tomato leaves. However, cosilencing of SlMPK1/2 compromised the 24-epibrassinolide (EBR)-induced upregulation of detoxification genes and CHT metabolism in tomato leaves. In addition, cosilencing of SlMPK1/2 inhibited the accumulation of S-nitrosothiol (SNO), the reservoir of nitric oxide (NO) in plants, whereas tungstate, the inhibitor of nitrate reductase (NR), blocked EBR-induced SNO accumulation and MPK activity. Inhibiting the accumulation of NO by cPTIO, the specific scavenger and tungstate abolished the EBR-induced upregulation of detoxification genes, glutathione accumulation and CHT metabolism. The results showed that MPK and NR-dependent NO were involved in BR-induced CHT metabolism. Notably, there was a positive crosstalk between the MPK and NO production. PMID:27236431

  7. Riboflavin-Induced Disease Resistance Requires the Mitogen-Activated Protein Kinases 3 and 6 in Arabidopsis thaliana.

    PubMed

    Nie, Shengjun; Xu, Huilian

    2016-01-01

    As a resistance elicitor, riboflavin (vitamin B2) protects plants against a wide range of pathogens. At molecular biological levels, it is important to elucidate the signaling pathways underlying the disease resistance induced by riboflavin. Here, riboflavin was tested to induce resistance against virulent Pseudomonas syringae pv. Tomato DC3000 (Pst DC3000) in Arabidopsis. Results showed that riboflavin induced disease resistance based on MAPK-dependent priming for the expression of PR1 gene. Riboflavin induced transient expression of PR1 gene. However, following Pst DC3000 inoculation, riboflavin potentiated stronger PR1 gene transcription. Further was suggested that the transcript levels of mitogen-activated protein kinases, MPK3 and MPK6, were primed under riboflavin. Upon infection by Pst DC3000, these two enzymes were more strongly activated. The elevated activation of both MPK3 and MPK6 was responsible for enhanced defense gene expression and resistance after riboflavin treatment. Moreover, riboflavin significantly reduced the transcript levels of MPK3 and MPK6 by application of AsA and BAPTA, an H2O2 scavenger and a calcium (Ca2+) scavenger, respectively. In conclusion, MPK3 and MPK6 were responsible for riboflavin-induced resistance, and played an important role in H2O2- and Ca2+-related signaling pathways, and this study could provide a new insight into the mechanistic study of riboflavin-induced defense responses. PMID:27054585

  8. Riboflavin-Induced Disease Resistance Requires the Mitogen-Activated Protein Kinases 3 and 6 in Arabidopsis thaliana

    PubMed Central

    Nie, Shengjun; Xu, Huilian

    2016-01-01

    As a resistance elicitor, riboflavin (vitamin B2) protects plants against a wide range of pathogens. At molecular biological levels, it is important to elucidate the signaling pathways underlying the disease resistance induced by riboflavin. Here, riboflavin was tested to induce resistance against virulent Pseudomonas syringae pv. Tomato DC3000 (Pst DC3000) in Arabidopsis. Results showed that riboflavin induced disease resistance based on MAPK-dependent priming for the expression of PR1 gene. Riboflavin induced transient expression of PR1 gene. However, following Pst DC3000 inoculation, riboflavin potentiated stronger PR1 gene transcription. Further was suggested that the transcript levels of mitogen-activated protein kinases, MPK3 and MPK6, were primed under riboflavin. Upon infection by Pst DC3000, these two enzymes were more strongly activated. The elevated activation of both MPK3 and MPK6 was responsible for enhanced defense gene expression and resistance after riboflavin treatment. Moreover, riboflavin significantly reduced the transcript levels of MPK3 and MPK6 by application of AsA and BAPTA, an H2O2 scavenger and a calcium (Ca2+) scavenger, respectively. In conclusion, MPK3 and MPK6 were responsible for riboflavin-induced resistance, and played an important role in H2O2- and Ca2+-related signaling pathways, and this study could provide a new insight into the mechanistic study of riboflavin-induced defense responses. PMID:27054585

  9. 3pK, a new mitogen-activated protein kinase-activated protein kinase located in the small cell lung cancer tumor suppressor gene region.

    PubMed Central

    Sithanandam, G; Latif, F; Duh, F M; Bernal, R; Smola, U; Li, H; Kuzmin, I; Wixler, V; Geil, L; Shrestha, S

    1996-01-01

    NotI linking clones, localized to the human chromosome 3p21.3 region and homozygously deleted in small cell lung cancer cell lines NCI-H740 and NCI-H1450, were used to search for a putative tumor suppressor gene(s). One of these clones, NL1G210, detected a 2.5-kb mRNA in all examined human tissues, expression being especially high in the heart and skeletal muscle. Two overlapping cDNA clones containing the entire open reading frame were isolated from a human heart cDNA library and fully characterized. Computer analysis and a search of the GenBank database to reveal high sequence identity of the product of this gene to serine-threonine kinases, especially to mitogen-activated protein kinase-activated protein kinase 2, a recently described substrate of mitogen-activated kinases. Sequence identitiy was 72% at the nucleotide level and 75% at the amino acid level, strongly suggesting that this protein is a serine-threonine kinase. Here we demonstrate that the new gene, referred to as 3pK (for chromosome 3p kinase), in fact encodes a mitogen-activated protein kinase-regulated protein serine-threonine kinase with a novel substrate specificity. PMID:8622688

  10. Mitogen-activated protein kinases regulate expression of neuronal nitric oxide synthase and neurite outgrowth via non-classical retinoic acid receptor signaling in human neuroblastoma SH-SY5Y cells.

    PubMed

    Fujibayashi, Tatsuya; Kurauchi, Yuki; Hisatsune, Akinori; Seki, Takahiro; Shudo, Koichi; Katsuki, Hiroshi

    2015-10-01

    We have previously shown that retinoic acid receptor (RAR) stimulation by an agonist Am80 recruits nitric oxide-dependent signaling via increased expression of neuronal nitric oxide synthase (nNOS) in rat midbrain slice cultures. Using neuroblastoma SH-SY5Y cells, here we investigated the mechanisms of RAR-induced nNOS expression, together with relationship between nNOS expression and neurite outgrowth. Am80 promoted neurite outgrowth, which was attenuated by inhibitors of phosphoinositide 3-kinase (PI3K; LY294002), c-Jun N-terminal kinase (JNK; SP600125) and p38 mitogen-activated protein kinase (p38 MAPK; SB203580). A selective nNOS inhibitor 3-bromo-nitroindazole also suppressed Am80-induced neurite outgrowth. Am80-induced increase in nNOS protein expression was attenuated by LY294002, SP600125 and SB203580, whereas increase in nNOS mRNA expression was attenuated only by LY294002. Am80-induced activation of JNK and p38 MAPK was blocked by LY294002, suggesting that these kinases acted downstream of PI3K. We also confirmed that DAX1, a nuclear receptor reported to regulate nNOS expression, was up-regulated in response to Am80. siRNA-mediated knockdown of DAX1 abrogated Am80-induced nNOS expression and neurite outgrowth. These results reveal for the first time that nNOS expression is crucial for RAR-mediated neurite outgrowth, and that non-genomic signaling such as JNK and p38 MAPK is involved in RAR-mediated nNOS expression. PMID:26422672

  11. Stimulation of IFN-γ production by garlic lectin in mouse spleen cells: involvement of IL-12 via activation of p38 MAPK and ERK in macrophages.

    PubMed

    Dong, Qing; Sugiura, Tsutomu; Toyohira, Yumiko; Yoshida, Yasuhiro; Yanagihara, Nobuyuki; Karasaki, Yuji

    2011-02-15

    Several lectins, present in beans and edible plant products, have immuno-potentiating and anti-tumor activities. We here report the effects of garlic lectin purified from garlic bulbs on the production of cytokines such as interleukin-12 (IL-12) and interferon-γ (IFN-γ) in the mouse. Garlic lectin induced IFN-γ production in spleen cells in a bell-shaped time (24-60 h)- and concentration (0.25-2.0 mg/ml)-dependent manner. The maximal enhancement was observed at 36 h with 0.5 mg/ml of garlic lectin. The stimulatory effect of garlic lectin on IFN-γ production was completely inhibited by both actinomycin D and cycloheximide, an inhibitor of ribosomal protein synthesis and DNA-dependent RNA polymerase, respectively, and was associated with an increase in IFN-γ mRNA level. Garlic lectin also induced IL-12 production in mouse peritoneal macrophages in a concentration (0.25-1.0 mg/ml)- and bell-shaped time (3-24 h)-dependent manner. The lectin increased the phosphorylation of extracellular signal-regulated kinases (ERK) and p38 mitogen-activated protein kinase (p38 MAPK) in macrophages. Furthermore, specific pharmacological inhibitors of ERK kinase (U0126) and p38 MAPK (SB203580) also suppressed the production of IL-12 induced by garlic lectin. The present findings suggest that garlic lectin induces IL-12 production via activation of p38 MAPK and ERK in mouse macrophages, which, in turn, stimulates IFN-γ production through an increase in IFN-γ mRNA in the spleen cells. PMID:20724126

  12. Kappa Opioid Receptor-Induced Aversion Requires p38 MAPK Activation in VTA Dopamine Neurons

    PubMed Central

    Ehrich, Jonathan M.; Messinger, Daniel I.; Knakal, Cerise R.; Kuhar, Jamie R.; Schattauer, Selena S.; Bruchas, Michael R.; Zweifel, Larry S.; Kieffer, Brigitte L.; Phillips, Paul E.M.

    2015-01-01

    The endogenous dynorphin-κ opioid receptor (KOR) system encodes the dysphoric component of the stress response and controls the risk of depression-like and addiction behaviors; however, the molecular and neural circuit mechanisms are not understood. In this study, we report that KOR activation of p38α MAPK in ventral tegmental (VTA) dopaminergic neurons was required for conditioned place aversion (CPA) in mice. Conditional genetic deletion of floxed KOR or floxed p38α MAPK by Cre recombinase expression in dopaminergic neurons blocked place aversion to the KOR agonist U50,488. Selective viral rescue by wild-type KOR expression in dopaminergic neurons of KOR−/− mice restored U50,488-CPA, whereas expression of a mutated form of KOR that could not initiate p38α MAPK activation did not. Surprisingly, while p38α MAPK inactivation blocked U50,488-CPA, p38α MAPK was not required for KOR inhibition of evoked dopamine release measured by fast scan cyclic voltammetry in the nucleus accumbens. In contrast, KOR activation acutely inhibited VTA dopaminergic neuron firing, and repeated exposure attenuated the opioid response. This adaptation to repeated exposure was blocked by conditional deletion of p38α MAPK, which also blocked KOR-induced tyrosine phosphorylation of the inwardly rectifying potassium channel (GIRK) subunit Kir3.1 in VTA dopaminergic neurons. Consistent with the reduced response, GIRK phosphorylation at this amino terminal tyrosine residue (Y12) enhances channel deactivation. Thus, contrary to prevailing expectations, these results suggest that κ opioid-induced aversion requires regulation of VTA dopaminergic neuron somatic excitability through a p38α MAPK effect on GIRK deactivation kinetics rather than by presynaptically inhibiting dopamine release. SIGNIFICANCE STATEMENT Kappa opioid receptor (KOR) agonists have the potential to be effective, nonaddictive analgesics, but their therapeutic utility is greatly limited by adverse effects on mood

  13. Allopurinol induces innate immune responses through mitogen-activated protein kinase signaling pathways in HL-60 cells.

    PubMed

    Nakajima, Akira; Oda, Shingo; Yokoi, Tsuyoshi

    2016-09-01

    Allopurinol, an inhibitor of xanthine oxidase, is a frequent cause of severe cutaneous adverse reactions (SCARs) in humans, including drug rash with eosinophilia and systemic symptoms, Stevens-Johnson syndrome and toxic epidermal necrolysis. Although SCARs have been suspected to be immune-mediated, the mechanisms of allopurinol-induced SCARs remain unclear. In this study, we examined whether allopurinol has the ability to induce innate immune responses in vitro using human dendritic cell (DC)-like cell lines, including HL-60, THP-1 and K562, and a human keratinocyte cell line, HaCaT. In this study, we demonstrate that treatment of HL-60 cells with allopurinol significantly increased the mRNA expression levels of interleukin-8, monocyte chemotactic protein-1 and tumor necrosis factor α in a time- and concentration-dependent manner. Furthermore, allopurinol induced the phosphorylation of mitogen-activated protein kinases (MAPK), such as c-Jun N-terminal kinase and extracellular signal-regulated kinase, which regulate cytokine production in DC. In addition, allopurinol-induced increases in cytokine expression were inhibited by co-treatment with the MAPK inhibitors. Collectively, these results suggest that allopurinol has the ability to induce innate immune responses in a DC-like cell line through activation of the MAPK signaling pathways. These results indicate that innate immune responses induced by allopurinol might be involved in the development of allopurinol-induced SCARs. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26641773

  14. Evidence for a role of mitogen-activated protein kinases in the treatment of experimental acute pancreatitis

    PubMed Central

    Irrera, Natasha; Bitto, Alessandra; Interdonato, Monica; Squadrito, Francesco; Altavilla, Domenica

    2014-01-01

    Acute pancreatitis (AP) is an inflammatory disease characterized by acute inflammation and necrosis of the pancreatic parenchyma. AP is often associated with organ failure, sepsis, and high mortality. The pathogenesis of AP is still not well understood. In recent years several papers have highlighted the cellular and molecular events of acute pancreatitis. Pancreatitis is initiated by activation of digestive enzymes within the acinar cells that are involved in autodigestion of the gland, followed by a massive infiltration of neutrophils and macrophages and release of inflammatory mediators, responsible for the local and systemic inflammatory response. The hallmark of AP is parenchymal cell necrosis that represents the cause of the high morbidity and mortality, so that new potential therapeutic approaches are indispensable for the treatment of patients at high risk of complications. However, not all factors that determine the onset and course of the disease have been explained. Aim of this article is to review the role of mitogen-activated protein kinases in pathogenesis of acute pancreatitis. PMID:25469021

  15. Silica nanoparticles induce cytokine responses in lung epithelial cells through activation of a p38/TACE/TGF-α/EGFR-pathway and NF-κΒ signalling

    SciTech Connect

    Skuland, Tonje Øvrevik, Johan; Låg, Marit; Schwarze, Per; Refsnes, Magne

    2014-08-15

    Amorphous silica nanoparticles (SiNPs) have previously been shown to induce marked cytokine (interleukin-6; IL-6 and interleukin-8; CXCL8/IL-8) responses independently of particle uptake in human bronchial epithelial BEAS-2B cells. In this study the involvement of the mitogen-activated protein kinases (MAP-kinases), nuclear factor-kappa Β (NF-κΒ) and in particular tumour necrosis factor-α converting enzyme (TACE) and—epidermal growth factor receptor (EGFR) signalling pathways were examined in triggering of IL-6 and CXCL8 release after exposure to a 50 nm silica nanoparticle (Si50). Exposure to Si50 increased phosphorylation of NF-κΒ p65 and MAP-kinases p38 and JUN-N-terminal protein kinase pathways (JNK), but not extracellular signal regulated kinases (ERK). Inhibition of NF-κΒ and p38 reduced the cytokine responses to Si50, whereas neither JNK- nor ERK-inhibition exerted any significant effect on the responses to Si50. Increases in membrane-bound transforming growth factor-α (TGF-α) release and EGFR phosphorylation were also observed after Si50 exposure, and pre-treatment with inhibitors of these pathways reduced the release of IL-6 and CXCL8, but did not affect the Si50-induced phosphorylation of p38 and p65. In contrast, p38-inhibition partially reduced Si50-induced TGF-α release, while the p65-inhibition was without effect. Overall, our results indicate that Si50-induced IL-6 and CXCL8 responses in BEAS-2B cells were regulated through combined activation of several pathways, including NF-κΒ and p38/TACE/TGF-α/EGFR signalling. The study identifies critical, initial events in the triggering of pro-inflammatory responses by nanoparticles. - Highlights: • Silica nanoparticles induce IL-6 and CXCL8 via NFκB and MAPKinase p38 in BEAS-2B • Silica nanoparticles induce release of the EGF-receptor ligand TGF-α • TGF-α release contributes to the IL-6 and CXCL8 release • Phosphorylation of p38 is involved in release of TGF-α.

  16. Stimulation by endothelin-1 of mitogen-activated protein kinases and DNA synthesis in bovine tracheal smooth muscle cells.

    PubMed Central

    Malarkey, K.; Chilvers, E. R.; Lawson, M. F.; Plevin, R.

    1995-01-01

    1. In cultures of bovine tracheal smooth muscle cells, platelet-derived growth factor-BB (PDGF), bradykinin (BK) and endothelin-1 (ET-1) stimulated the tyrosine phosphorylation and activation of both pp42 and pp44 kDa forms of mitogen-activated protein (MAP) kinase. 2. Both ET-1 and PDGF stimulated a sustained activation of MAP kinase whilst the response to BK was transient. 3. Activation of MAP kinase occurred in a concentration-dependent manner (EC50 values: ET-1, 2.3 +/- 1.3 nM; BK, 8.7 +/- 4.1 nM, PDGF, 9.7 +/- 3.2 ng ml-1). 4. Pretreatment with the protein kinase C (PKC) inhibitor Ro-318220, significantly reduced ET-1 activation of MAP kinase at 2 and 5 min but enhanced MAP kinase activation at 60 min. 5. Following chronic phorbol ester pretreatment, BK-stimulated activation of MAP kinase was abolished whilst the responses to PDGF and ET-1 were only partly reduced (80 and 45% inhibition respectively). 6. Pretreatment with pertussis toxin reduced ET-1 stimulated activation of MAP kinase particularly at later times (60 min), but left the responses to both PDGF and BK unaffected. 7. ET-1 also stimulated a 3 fold increase in [3H]-thymidine incorporation which was abolished by pertussis toxin pretreatment. In contrast, PDGF stimulated a 131 fold increase in [3H]-thymidine incorporation which was not affected by pertussis toxin. 8. These results suggest that a pertussis toxin-sensitive activation of MAP kinase may play an important role in ET-1-stimulated DNA synthesis but that activation of MAP kinase alone is not sufficient to induce the magnitude of DNA synthesis observed in response to PDGF. Images Figure 1 Figure 2 Figure 5 Figure 6 Figure 7 PMID:8564258

  17. Surfactant protein D induces immune quiescence and apoptosis of mitogen-activated peripheral blood mononuclear cells.

    PubMed

    Pandit, Hrishikesh; Thakur, Gargi; Koippallil Gopalakrishnan, Aghila Rani; Dodagatta-Marri, Eswari; Patil, Anushree; Kishore, Uday; Madan, Taruna

    2016-02-01

    Surfactant protein D (SP-D) is an integral molecule of the innate immunity secreted by epithelial cells lining the mucosal surfaces. The C-type lectin domain of SP-D performs pattern recognition functions while it binds to putative receptors on immune cells to modify cellular functions. Activation of immune cells and increased serum SP-D is observed in a range of patho-physiological conditions including infections. We speculated if SP-D can modulate systemic immune response via direct interaction with activated PBMCs. In this study, we examined interaction of a recombinant fragment of human SP-D (rhSP-D) on PHA-activated PBMCs. We report a significant downregulation of activation receptors such as TLR2, TLR4, CD11c and CD69 upon rhSP-D treatment. rhSP-D inhibited production of Th1 (TNF-α and IFN-γ) and Th17 (IL-17A) cytokines along with IL-6. Interestingly, levels of IL-2, Th2 (IL-4) and regulatory (IL-10 and TGF-β) cytokines remained unaltered. Analysis of co-stimulatory CD28 and co-inhibitory CTLA4 receptors along with their ligands CD80 and CD86 revealed a selective up-regulation of CTLA4 in the lymphocyte subset. rhSP-D induced apoptosis in the activated but not in non-activated lymphocytes. Blockade of CTLA4 inhibited rhSP-D mediated apoptosis of activated lymphocytes, confirming involvement of CTLA4. We conclude that SP-D restores immune homeostasis. It regulates expression of immunomodulatory receptors and cytokines, which is followed by induction of apoptosis in activated lymphocytes. These findings suggest a critical role of SP-D in immune surveillance against activated immune cells. PMID:26563748

  18. Anti-Food Allergic Activity of Sulfated Polysaccharide from Gracilaria lemaneiformis is Dependent on Immunosuppression and Inhibition of p38 MAPK.

    PubMed

    Liu, Qing-Mei; Yang, Yang; Maleki, Soheila J; Alcocer, Marcos; Xu, Sha-Sha; Shi, Chao-Lan; Cao, Min-Jie; Liu, Guang-Ming

    2016-06-01

    Polysaccharides from Gracilaria lemaneiformis in particular possess various bioactive functions, but their antiallergic activity remains incompletely defined. Sulfated polysaccharide from Gracilaria lemaneiformis (GLSP) was obtained by water extraction and ethanol precipitation followed by column chromatography. BALB/c mice, RBL-2H3, and KU812 cells were used for verifying the anti food allergic activity of GLSP. According to the results of mice experiment, GLSP was able to alleviate allergy symptoms, to reduce TM-specific IgE and IgG1, to suppress Th2 cell polarization, and to promote the function of regulatory T (Treg) cells. In addition, GLSP had the ability to inhibit the function of RBL-2H3 cells. Furthermore, GLSP inhibited the activation of KU812 via suppression of p38 mitogen-activated protein kinase (MAPK). In conclusion, immunosuppression as well as the reduction in the level of p38 MAPK may contribute to GLSP's putative activity against food allergy. GLSP may be used as a functional food component for allergic patients. PMID:27186807

  19. Apoptosis and melanogenesis in human melanoma cells induced by anthrax lethal factor inactivation of mitogen-activated protein kinase kinase

    NASA Astrophysics Data System (ADS)

    Koo, Han-Mo; Vanbrocklin, Matt; McWilliams, Mary Jane; Leppla, Stephan H.; Duesbery, Nicholas S.; Vande Woude, George F.

    2002-03-01

    Lethal factor, the principal virulence factor of Bacillus anthracis, inhibits mitogen-activated protein kinase (MAPK) signaling by proteolytically cleaving MAPK kinases. Edema factor, another component of anthrax toxin, is an adenylate cyclase, which increases intracellular cAMP. Inhibition of MAPK signaling with either anthrax lethal toxin (LeTx) or small molecule MAPK kinase inhibitors triggers apoptosis in human melanoma cells. Normal melanocytes do not undergo apoptosis in response to MAPK inhibition but arrest in the G1 phase of the cell cycle. Importantly, in vivo treatment of human melanoma xenograft tumors in athymic nude mice with LeTx results in significant or complete tumor regression without apparent side effects, suggesting that inhibiting the MAPK signaling pathway may be a useful strategy for treating melanoma. Additionally, interrupting MAPK signaling with LeTx and elevating cAMP with anthrax edema toxin in both melanoma cells and melanocytes lead to dramatic melanin production, perhaps explaining the formation of blackened eschars in cutaneous anthrax.

  20. Genome-Wide Identification and Expression Analysis of the Mitogen-Activated Protein Kinase Gene Family in Cassava

    PubMed Central

    Yan, Yan; Wang, Lianzhe; Ding, Zehong; Tie, Weiwei; Ding, Xupo; Zeng, Changying; Wei, Yunxie; Zhao, Hongliang; Peng, Ming; Hu, Wei

    2016-01-01

    Mitogen-activated protein kinases (MAPKs) play central roles in plant developmental processes, hormone signaling transduction, and responses to abiotic stress. However, no data are currently available about the MAPK family in cassava, an important tropical crop. Herein, 21 MeMAPK genes were identified from cassava. Phylogenetic analysis indicated that MeMAPKs could be classified into four subfamilies. Gene structure analysis demonstrated that the number of introns in MeMAPK genes ranged from 1 to 10, suggesting large variation among cassava MAPK genes. Conserved motif analysis indicated that all MeMAPKs had typical protein kinase domains. Transcriptomic analysis suggested that MeMAPK genes showed differential expression patterns in distinct tissues and in response to drought stress between wild subspecies and cultivated varieties. Interaction networks and co-expression analyses revealed that crucial pathways controlled by MeMAPK networks may be involved in the differential response to drought stress in different accessions of cassava. Expression of nine selected MAPK genes showed that these genes could comprehensively respond to osmotic, salt, cold, oxidative stressors, and abscisic acid (ABA) signaling. These findings yield new insights into the transcriptional control of MAPK gene expression, provide an improved understanding of abiotic stress responses and signaling transduction in cassava, and lead to potential applications in the genetic improvement of cassava cultivars. PMID:27625666

  1. Mitogen-activated protein kinase cascade required for regulation of development and secondary metabolism in Neurospora crassa.

    PubMed

    Park, Gyungsoon; Pan, Songqin; Borkovich, Katherine A

    2008-12-01

    Mitogen-activated protein kinase (MAPK) signaling cascades are composed of MAPK kinase kinases (MAPKKKs), MAPK kinases (MAPKKs), and MAPKs. In this study, we characterize components of a MAPK cascade in Neurospora crassa (mik-1, MAPKKK; mek-1, MAPKK; and mak-1, MAPK) homologous to that controlling cell wall integrity in Saccharomyces cerevisiae. Growth of basal hyphae is significantly reduced in mik-1, mek-1, and mak-1 deletion mutants on solid medium. All three mutants formed short aerial hyphae and the formation of asexual macroconidia was reduced in Deltamik-1 mutants and almost abolished in Deltamek-1 and Deltamak-1 strains. In contrast, the normally rare asexual spores, arthroconidia, were abundant in cultures of the three mutants. Deltamik-1, Deltamek-1, and Deltamak-1 mutants were unable to form protoperithecia or perithecia when used as females in a sexual cross. The MAK-1 MAPK was not phosphorylated in Deltamik-1 and Deltamek-1 mutants, consistent with the involvement of MIK-1, MEK-1, and MAK-1 in the same signaling cascade. Interestingly, we observed increased levels of mRNA and protein for tyrosinase in the mutants under nitrogen starvation, a condition favoring sexual differentiation. Tyrosinase is an enzyme that catalyzes production of the secondary metabolite l-DOPA melanin. These results implicate the MAK-1 pathway in regulation of development and secondary metabolism in filamentous fungi. PMID:18849472

  2. Gene-Environment Interactions Target Mitogen-activated Protein 3 Kinase 1 (MAP3K1) Signaling in Eyelid Morphogenesis*

    PubMed Central

    Mongan, Maureen; Meng, Qinghang; Wang, Jingjing; Kao, Winston W.-Y.; Puga, Alvaro; Xia, Ying

    2015-01-01

    Gene-environment interactions determine the biological outcomes through mechanisms that are poorly understood. Mouse embryonic eyelid closure is a well defined model to study the genetic control of developmental programs. Using this model, we investigated how exposure to dioxin-like environmental pollutants modifies the genetic risk of developmental abnormalities. Our studies reveal that mitogen-activated protein 3 kinase 1 (MAP3K1) signaling is a focal point of gene-environment cross-talk. Dioxin exposure, acting through the aryl hydrocarbon receptor (AHR), blocked eyelid closure in genetic mutants in which MAP3K1 signaling was attenuated but did not disturb this developmental program in either wild type or mutant mice with attenuated epidermal growth factor receptor or WNT signaling. Exposure also markedly inhibited c-Jun phosphorylation in Map3k1+/− embryonic eyelid epithelium, suggesting that dioxin-induced AHR pathways can synergize with gene mutations to inhibit MAP3K1 signaling. Our studies uncover a novel mechanism through which the dioxin-AHR axis interacts with the MAP3K1 signaling pathways during fetal development and provide strong empirical evidence that specific gene alterations can increase the risk of developmental abnormalities driven by environmental pollutant exposure. PMID:26109068

  3. Cloning of the mitogen-activated S6 kinase from rat liver reveals an enzyme of the second messenger subfamily

    SciTech Connect

    Kozma, S.C.; Ferrari, S. Bassand, P.; Siegmann, M.; Thomas, G. ); Totty, N. )

    1990-10-01

    Recently the authors reported the purification of a mitogen-activated S6 kinase from Swiss mouse 3T3 fibroblasts and rat liver. The rat liver protein was cleaved with cyanogen bromide or trypsin and 17 of the resulting peptides were sequenced. DNA primers were generated from 3 peptides that had homology to sequences of the conserved catalytic domain of protein kinases. These primers were used in the polymerase chain reaction to obtain a 0.4-kilobase DNA fragment. This fragment was either radioactively labeled and hybridized to Northern blots of poly(A){sup {sup plus}} mRNA or used to screen a rat liver cDNA library. Northern blot analysis revealed four transcripts of 2.5, 3.2, 4.0, and 6.0 kilobases, and five S6 kinase clones were obtained by screening the library. Only two of the clones, which were identical, encoded a full-length protein. This protein had a molecular weight of 56,160, which correlated closely to that of the dephosphorylated kinase determined by SDS/PAGE. The catalytic domain of the kinase resembles that of other serine/threonine kinases belonging to the second messenger subfamily of protein kinases.

  4. Gene-Environment Interactions Target Mitogen-activated Protein 3 Kinase 1 (MAP3K1) Signaling in Eyelid Morphogenesis.

    PubMed

    Mongan, Maureen; Meng, Qinghang; Wang, Jingjing; Kao, Winston W-Y; Puga, Alvaro; Xia, Ying

    2015-08-01

    Gene-environment interactions determine the biological outcomes through mechanisms that are poorly understood. Mouse embryonic eyelid closure is a well defined model to study the genetic control of developmental programs. Using this model, we investigated how exposure to dioxin-like environmental pollutants modifies the genetic risk of developmental abnormalities. Our studies reveal that mitogen-activated protein 3 kinase 1 (MAP3K1) signaling is a focal point of gene-environment cross-talk. Dioxin exposure, acting through the aryl hydrocarbon receptor (AHR), blocked eyelid closure in genetic mutants in which MAP3K1 signaling was attenuated but did not disturb this developmental program in either wild type or mutant mice with attenuated epidermal growth factor receptor or WNT signaling. Exposure also markedly inhibited c-Jun phosphorylation in Map3k1(+/-) embryonic eyelid epithelium, suggesting that dioxin-induced AHR pathways can synergize with gene mutations to inhibit MAP3K1 signaling. Our studies uncover a novel mechanism through which the dioxin-AHR axis interacts with the MAP3K1 signaling pathways during fetal development and provide strong empirical evidence that specific gene alterations can increase the risk of developmental abnormalities driven by environmental pollutant exposure. PMID:26109068

  5. The Cotton Mitogen-Activated Protein Kinase Kinase 3 Functions in Drought Tolerance by Regulating Stomatal Responses and Root Growth.

    PubMed

    Wang, Chen; Lu, Wenjing; He, Xiaowen; Wang, Fang; Zhou, Yuli; Guo, Xulei; Guo, Xingqi

    2016-08-01

    Mitogen-activated protein kinase (MAPK) cascades play critical roles in signal transduction processes in eukaryotes. The MAPK kinases (MAPKKs) that link MAPKK kinases (MAPKKKs) and MAPKs are key components of MAPK cascades. However, the intricate regulatory mechanisms that control MAPKKs under drought stress conditions are not fully understood, especially in cotton (Gossypium hirsutum) Here, we isolated and characterized the cotton group B MAPKK gene GhMKK3 Overexpressing GhMKK3 in Nicotiana benthamiana enhanced tolerance to drought, and the results of RNA sequencing (RNA-seq) and quantitative real-time PCR (qRT-PCR) assays suggest that GhMKK3 plays an important role in responses to abiotic stresses by regulating stomatal responses and root hair growth. Further evidence demonstrated that overexpressing GhMKK3 promoted root growth and ABA-induced stomatal closure. In contrast, silencing GhMKK3 in cotton using virus-induced gene silencing (VIGS) resulted in the opposite phenotypes. More importantly, we identified an ABA- and drought-induced MAPK cascade that is composed of GhMKK3, GhMPK7 and GhPIP1 that compensates for deficiency in the MAPK cascade pathway in cotton under drought stress conditions. Together, these findings significantly improve our understanding of the mechanism by which GhMKK3 positively regulates drought stress responses. PMID:27335349

  6. The Roles of Mitogen-Activated Protein Kinase Pathways in TGF-β-Induced Epithelial-Mesenchymal Transition

    PubMed Central

    Gui, Ting; Sun, Yujing; Shimokado, Aiko; Muragaki, Yasuteru

    2012-01-01

    The mitogen-activated protein kinase (MAPK) pathway allows cells to interpret external signals and respond appropriately, especially during the epithelial-mesenchymal transition (EMT). EMT is an important process during embryonic development, fibrosis, and tumor progression in which epithelial cells acquire mesenchymal, fibroblast-like properties and show reduced intercellular adhesion and increased motility. TGF-β signaling is the first pathway to be described as an inducer of EMT, and its relationship with the Smad family is already well characterized. Studies of four members of the MAPK family in different biological systems have shown that the MAPK and TGF-β signaling pathways interact with each other and have a synergistic effect on the secretion of additional growth factors and cytokines that in turn promote EMT. In this paper, we present background on the regulation and function of MAPKs and their cascades, highlight the mechanisms of MAPK crosstalk with TGF-β signaling, and discuss the roles of MAPKs in EMT. PMID:22363839

  7. Genome-Wide Identification and Expression Analysis of the Mitogen-Activated Protein Kinase Gene Family in Cassava.

    PubMed

    Yan, Yan; Wang, Lianzhe; Ding, Zehong; Tie, Weiwei; Ding, Xupo; Zeng, Changying; Wei, Yunxie; Zhao, Hongliang; Peng, Ming; Hu, Wei

    2016-01-01

    Mitogen-activated protein kinases (MAPKs) play central roles in plant developmental processes, hormone signaling transduction, and responses to abiotic stress. However, no data are currently available about the MAPK family in cassava, an important tropical crop. Herein, 21 MeMAPK genes were identified from cassava. Phylogenetic analysis indicated that MeMAPKs could be classified into four subfamilies. Gene structure analysis demonstrated that the number of introns in MeMAPK genes ranged from 1 to 10, suggesting large variation among cassava MAPK genes. Conserved motif analysis indicated that all MeMAPKs had typical protein kinase domains. Transcriptomic analysis suggested that MeMAPK genes showed differential expression patterns in distinct tissues and in response to drought stress between wild subspecies and cultivated varieties. Interaction networks and co-expression analyses revealed that crucial pathways controlled by MeMAPK networks may be involved in the differential response to drought stress in different accessions of cassava. Expression of nine selected MAPK genes showed that these genes could comprehensively respond to osmotic, salt, cold, oxidative stressors, and abscisic acid (ABA) signaling. These findings yield new insights into the transcriptional control of MAPK gene expression, provide an improved understanding of abiotic stress responses and signaling transduction in cassava, and lead to potential applications in the genetic improvement of cassava cultivars. PMID:27625666

  8. Mitogen-activated Tasmanian devil blood mononuclear cells kill devil facial tumour disease cells.

    PubMed

    Brown, Gabriella K; Tovar, Cesar; Cooray, Anne A; Kreiss, Alexandre; Darby, Jocelyn; Murphy, James M; Corcoran, Lynn M; Bettiol, Silvana S; Lyons, A Bruce; Woods, Gregory M

    2016-08-01

    Devil facial tumour disease (DFTD) is a transmissible cancer that has brought the host species, the Tasmanian devil, to the brink of extinction. The cancer cells avoid allogeneic immune recognition by downregulating cell surface major histocompatibility complex (MHC) I expression. This should prevent CD8(+) T cell, but not natural killer (NK) cell, cytotoxicity. The reason why NK cells, normally reactive to MHC-negative cells, are not activated to kill DFTD cells has not been determined. The immune response of wild devils to DFTD, if it occurs, is uncharacterised. To investigate this, we tested 12 wild devils with DFTD, and found suggestive evidence of low levels of antibodies against DFTD cells in one devil. Eight of these devils were also analysed for cytotoxicity, however, none showed evidence for cytotoxicity against cultured DFTD cells. To establish whether mimicking activation of antitumour responses could induce cytotoxic activity against DFTD, Tasmanian devil peripheral blood mononuclear cells (PBMCs) were treated with either the mitogen Concanavalin A, the Toll-like receptor agonist polyinosinic:polycytidylic acid or recombinant Tasmanian devil IL-2. All induced the PBMC cells to kill cultured DFTD cells, suggesting that activation does not occur after encounter with DFTD cells in vivo, but can be induced. The identification of agents that activate cytotoxicity against DFTD target cells is critical for developing strategies to protect against DFTD. Such agents could function as adjuvants to induce functional immune responses capable of targeting DFTD cells and tumours in vivo. PMID:27089941

  9. Cucurbitacins: potential candidates targeting mitogen-activated protein kinase pathway for treatment of melanoma.

    PubMed

    Ahmed, Mahmoud S; Halaweish, Fathi T

    2014-04-01

    Cucurbitacins (Cucs) have been classified as signal transducer and activator of transcription 3 inhibitors. Kinase inhibition has been a validated drug target in multiple types of malignancies. B-RAF mutations are highly expressed in the melanoma. Our hypothesis is the Cucs can be a potential candidate to inhibit the signaling kinase pathway. The research presented is the evaluation of Cucs, as B-RAF and MEK1 kinase inhibitors. Virtual screening methods were employed to identify lead compounds. The hypothesis was tested on mutant B-RAF cell lines, A-375 and Sk-Mel-28 cell lines to determine the activity toward melanoma. A series of natural Cucs show an improved activity toward Sk-Mel-28 and A-375 cell lines. Cucs show potential inhibition for the total and phosphorylated ERK using ELISA kits. Cucs could be potential candidate for inhibiting cell growth. PMID:23368732

  10. Mitogen-activated protein kinase ERK1/2 regulates the class II transactivator.

    PubMed

    Voong, Lilien N; Slater, Allison R; Kratovac, Sebila; Cressman, Drew E

    2008-04-01

    The expression of major histocompatibility class II genes is necessary for proper antigen presentation and induction of an immune response. This expression is initiated by the class II transactivator, CIITA. The establishment of the active form of CIITA is controlled by a series of post-translational events, including GTP binding, ubiquitination, and dimerization. However, the role of phosphorylation is less clearly defined as are the consequences of phosphorylation on CIITA activity and the identity of the kinases involved. In this study we show that the extracellular signal-regulated kinases 1 and 2 (ERK1/2) interact directly with CIITA, targeting serine residues in the amino terminus of the protein, including serine 288. Inhibition of this phosphorylation by dominant-negative forms of ERK or by treatment of cells with the ERK inhibitor PD98059 resulted in the increase in CIITA-mediated gene expression from a class II promoter, enhanced the nuclear concentration of CIITA, and impaired its ability to bind to the nuclear export factor, CRM1. In contrast, inhibition of ERK1/2 activity had little effect on serine-to-alanine mutant forms of CIITA. These data suggest a model whereby ERK1/2-mediated phosphorylation of CIITA down-regulates CIITA activity by priming it for nuclear export, thus providing a means for cells to tightly regulate the extent of antigen presentation. PMID:18245089

  11. PKC theta and p38 MAPK activate the EBV lytic cycle through autophagy induction.

    PubMed

    Gonnella, Roberta; Granato, Marisa; Farina, Antonella; Santarelli, Roberta; Faggioni, Alberto; Cirone, Mara

    2015-07-01

    PKC activation by combining TPA with sodium butyrate (T/B) represents the most effective and widely used strategy to induce the Epstein-Barr virus (EBV) lytic cycle. The results obtained in this study show that novel PKCθ is involved in such process and that it acts through the activation of p38 MAPK and autophagy induction. Autophagy, a mechanism of cellular defense in stressful conditions, is manipulated by EBV to enhance viral replication. Besides promoting the EBV lytic cycle, the activation of p38 and autophagy resulted in a pro-survival effect, as indicated by p38 or ATG5 knocking down experiments. However, this pro-survival role was counteracted by a pro-death activity of PKCθ, due to the dephosphorylation of AKT. In conclusion, this study reports, for the first time, that T/B activates a PKCθ-p38 MAPK axis in EBV infected B cells, that promotes the viral lytic cycle and cell survival and dephosphorylates AKT, balancing cell life and cell death. PMID:25827954

  12. Epstein-Barr virus latent membrane protein 2 associates with and is a substrate for mitogen-activated protein kinase.

    PubMed

    Panousis, C G; Rowe, D T

    1997-06-01

    The latent membrane protein 2 (LMP2) of Epstein-Barr virus interferes with B-lymphocyte signal transduction through the immunoglobulin (Ig) receptor. Two isoforms of LMP2 exist and differ only in that one isoform (LMP2a) contains an N-terminal cytoplasmic domain that the other isoform does not. LMP2a is a phosphoprotein that is phosphorylated on tyrosines and serines in the cytoplasmic domain. GST1-119, a glutathione S-transferase (GST) fusion protein containing the 119 amino acids of the cytoplasmic domain, affinity precipitated serine kinase activity from BJAB cell extracts. The affinity-precipitated kinase phosphorylated LMP2a sequences, and kinase activity was increased following induction. Probing of Western immunoblots of affinity-precipitated proteins showed that the Erk1 form of mitogen-activated protein kinase (MAPK) was present. Purified MAPK phosphorylated GST fusion proteins containing the cytoplasmic domain of LMP2a and mutational analyses were used to identify S15 and S102 as the sites of in vitro phosphorylation. A polyclonal rabbit antiserum was prepared against a maltose binding protein-LMP2a cytoplasmic domain fusion protein (MBP1-119) and used to immunoprecipitate LMP2a from the in vitro-immortalized lymphoblastoid B-cell line B95-8CR. LMP2a immunoprecipitates from B95-8CR contained MAPK as a coprecipitated protein. Cross-linking surface Ig on B95-8CR cells failed to induce MAPK activity within the cells. Treatment of B95-8CR with phorbol myristate acetate (PMA) was able to bypass the Ig receptor block and activate MAPK activity. Phosphorylation of LMP2a on serine residues increased after PMA induction. The possible role for LMP2a serine phosphorylation by MAPK in the control of latency is discussed. PMID:9151869

  13. The three-dimensional structure of MAP kinase p38[beta]: different features of the ATP-binding site in p38[beta] compared with p38[alpha

    SciTech Connect

    Patel, Sangita B.; Cameron, Patricia M.; O'Keefe, Stephen J.; Frantz-Wattley, Betsy; Thompson, Jed; O'Neill, Edward A.; Tennis, Trevor; Liu, Luping; Becker, Joseph W.; Scapin, Giovanna; Merck

    2010-10-18

    The p38 mitogen-activated protein kinases are activated in response to environmental stress and cytokines and play a significant role in transcriptional regulation and inflammatory responses. Of the four p38 isoforms known to date, two (p38{alpha} and p38{beta}) have been identified as targets for cytokine-suppressive anti-inflammatory drugs. Recently, it was reported that specific inhibition of the p38{alpha} isoform is necessary and sufficient for anti-inflammatory efficacy in vivo, while further inhibition of p38{beta} may not provide any additional benefit. In order to aid the development of p38{alpha}-selective compounds, the three-dimensional structure of p38{beta} was determined. To do so, the C162S and C119S,C162S mutants of human MAP kinase p38{beta} were cloned, expressed in Escherichia coli and purified. Initial screening hits in crystallization trials in the presence of an inhibitor led upon optimization to crystals that diffracted to 2.05 {angstrom} resolution and allowed structure determination (PDB codes 3gc8 and 3gc9 for the single and double mutant, respectively). The structure of the p38{alpha} C162S mutant in complex with the same inhibitor is also reported (PDB code 3gc7). A comparison between the structures of the two kinases showed that they are highly similar overall but that there are differences in the relative orientation of the N- and C-terminal domains that causes a reduction in the size of the ATP-binding pocket in p38{beta}. This difference in size between the two pockets could be exploited in order to achieve selectivity.

  14. Cathepsin S Activity Controls Injury-Related Vascular Repair in Mice via the TLR2-Mediated p38MAPK and PI3K−Akt/p-HDAC6 Signaling Pathway

    PubMed Central

    Wu, Hongxian; Hu, Lina; Takeshita, Kyosuke; Hu, Chen; Du, Qiuna; Li, Xiang; Zhu, Enbo; Huang, Zhe; Yisireyili, Maimaiti; Zhao, Guangxian; Piao, Limei; Inoue, Aiko; Jiang, Haiying; Lei, Yanna; Zhang, Xiaohong; Liu, Shaowen; Dai, Qiuyan; Kuzuya, Masafumi; Shi, Guo-Ping; Murohara, Toyoaki

    2016-01-01

    Objective— Cathepsin S (CatS) participates in atherogenesis through several putative mechanisms. The ability of cathepsins to modify histone tail is likely to contribute to stem cell development. Histone deacetylase 6 (HDAC6) is required in modulating the proliferation and migration of various types of cancer cells. Here, we investigated the cross talk between CatS and HADC6 in injury-related vascular repair in mice. Approach and Results— Ligation injury to the carotid artery in mice increased the CatS expression, and CatS-deficient mice showed reduced neointimal formation in injured arteries. CatS deficiency decreased the phosphorylation levels of p38 mitogen-activated protein kinase, Akt, and HDAC6 and toll-like receptor 2 expression in ligated arteries. The genetic or pharmacological inhibition of CatS also alleviated the increased phosphorylation of p38 mitogen-activated protein kinase, Akt, and HDAC6 induced by platelet-derived growth factor BB in cultured vascular smooth muscle cells (VSMCs), and p38 mitogen-activated protein kinase inhibition and Akt inhibition decreased the phospho-HDAC6 levels. Moreover, CatS inhibition caused decrease in the levels of the HDAC6 activity in VSMCs in response to platelet-derived growth factor BB. The HDAC6 inhibitor tubastatin A downregulated platelet-derived growth factor–induced VSMC proliferation and migration, whereas HDAC6 overexpression exerted the opposite effect. Tubastatin A also decreased the intimal VSMC proliferation and neointimal hyperplasia in response to injury. Toll-like receptor 2 silencing decreased the phosphorylation levels of p38 mitogen-activated protein kinase, Akt, and HDAC6 and VSMC migration and proliferation. Conclusions— This is the first report detailing cross-interaction between toll-like receptor 2–mediated CatS and HDAC6 during injury-related vascular repair. These data suggest that CatS/HDAC6 could be a potential therapeutic target for the control of vascular diseases that are

  15. Expression of mitogen-activated protein kinase phosphatase-1 in the early phases of human epithelial carcinogenesis.

    PubMed Central

    Loda, M.; Capodieci, P.; Mishra, R.; Yao, H.; Corless, C.; Grigioni, W.; Wang, Y.; Magi-Galluzzi, C.; Stork, P. J.

    1996-01-01

    Many mitogens and human oncogenes activate extracellular regulated kinases (ERKs), which in turn convey proliferation signals. ERKs or mitogen-activated protein (MAP) kinases are inactivated in vitro by MAP kinase phosphatases (MKPs). The gene encoding one of these MKPs, MKP-1, is a serum-inducible gene and is transcriptionally activated by mitogenic signals in cultured cells. As MKP-1 has been shown to block DNA synthesis by inhibiting ERKs when expressed at elevated levels in cultured cells, it has been suggested that it may act as a tumor suppressor. MKP-1 mRNA and MAP kinase (ERK-1 and -2) protein expression was assessed in 164 human epithelial tumors of diverse tissue origin by in situ hybridization and immunohistochemistry. MKP-1 was overexpressed in the early phases of prostate, colon, and bladder carcinogenesis, with progressive loss of expression with higher histological grade and in metastases. In contrast, breast carcinomas showed significant MKP-1 expression even when poorly differentiated or in late stages of the disease. MKP-1, ERK-1, and ERK-2 were co-expressed in most tumors examined. In a subset of 15 tumors, ERK-1 enzymatic activity as well as structural alterations that might be responsible for loss of function of MKP-1 during tumor progression, were examined. ERK-1 enzymatic activity was found to be elevated despite MKP-1 overexpression. No loss of 5q35-ter (containing the MKP-1 locus) was detected by polymerase chain reaction in metastases compared with primary tumors. Finally, no mutations were found in the catalytic domain of MKP-1. These data indicate that MKP-1 is an early marker for a wide range of human epithelial tumors and suggest that MKP-1 does not behave as a tumor suppressor in epithelial tumors. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8909245

  16. Leishmania mexicana promastigotes down regulate JNK and p-38 MAPK activation: Role in the inhibition of camptothecin-induced apoptosis of monocyte-derived dendritic cells.

    PubMed

    Rodríguez-González, Jorge; Wilkins-Rodríguez, Arturo; Argueta-Donohué, Jesús; Aguirre-García, Magdalena; Gutiérrez-Kobeh, Laila

    2016-04-01

    Dendritic cells (DC) are one of the principal host cells of the obligate intracellular parasite Leishmania. Inhibition of host cell apoptosis is a strategy employed by multiple pathogens to ensure their survival in the infected cell. We have previously shown that the infection of monocyte-derived dendritic cells (moDC) with Leishmania mexicana inhibits campthotecin-induced apoptosis. Nevertheless, the mechanisms involved in the inhibition of apoptosis of dendritic cells by Leishmania have not been established. Mitogen-activated protein kinases (MAPK) are key participants in the process of apoptosis and different species of Leishmania have been shown to regulate these kinases. In the present study, we analyzed the effect of L. mexicana promastigotes in the activation of JNK and p38 MAP kinase and their participation in the inhibition of apoptosis. The infection of moDC with L. mexicana promastigotes diminished significantly the phosphorylation of the MAP kinases JNK and p38. The inhibition of both kinases diminished DNA fragmentation, but in a major extent was the reduction of DNA fragmentation when JNK was inhibited. The capacity of L. mexicana promastigotes to diminish MAP kinases activation is probably one of the strategies employed to delay apoptosis induction in the infected moDC and may have implications for Leishmania pathogenesis by favoring the invasion of its host and the persistence of the parasite in the infected cells. PMID:26777406

  17. Role of a mitogen-activated protein kinase cascade in ion flux-mediated turgor regulation in fungi.

    PubMed

    Lew, Roger R; Levina, Natalia N; Shabala, Lana; Anderca, Marinela I; Shabala, Sergey N

    2006-03-01

    Fungi normally maintain a high internal hydrostatic pressure (turgor) of about 500 kPa. In response to hyperosmotic shock, there are immediate electrical changes: a transient depolarization (1 to 2 min) followed by a sustained hyperpolarization (5 to 10 min) prior to turgor recovery (10 to 60 min). Using ion-selective vibrating probes, we established that the transient depolarization is due to Ca(2+) influx and the sustained hyperpolarization is due to H(+) efflux by activation of the plasma membrane H(+)-ATPase. Protein synthesis is not required for H(+)-ATPase activation. Net K(+) and Cl(-) uptake occurs at the same time as turgor recovery. The magnitude of the ion uptake is more than sufficient to account for the osmotic gradients required for turgor to return to its original level. Two osmotic mutants, os-1 and os-2, homologs of a two-component histidine kinase sensor and the yeast high osmotic glycerol mitogen-activated protein (MAP) kinase, respectively, have lower turgor than the wild type and do not exhibit the sustained hyperpolarization after hyperosmotic treatment. The os-1 mutant does not exhibit all of the wild-type turgor-adaptive ion fluxes (Cl(-) uptake increases, but net K(+) flux barely changes and net H(+) efflux declines) (os-2 was not examined). Both os mutants are able to regulate turgor but at a lower level than the wild type. Our results demonstrate that a MAP kinase cascade regulates ion transport, activation of the H(+)-ATPase, and net K(+) and Cl(-) uptake during turgor regulation. Other pathways regulating turgor must also exist. PMID:16524903

  18. Role of a Mitogen-Activated Protein Kinase Cascade in Ion Flux-Mediated Turgor Regulation in Fungi

    PubMed Central

    Lew, Roger R.; Levina, Natalia N.; Shabala, Lana; Anderca, Marinela I.; Shabala, Sergey N.

    2006-01-01

    Fungi normally maintain a high internal hydrostatic pressure (turgor) of about 500 kPa. In response to hyperosmotic shock, there are immediate electrical changes: a transient depolarization (1 to 2 min) followed by a sustained hyperpolarization (5 to 10 min) prior to turgor recovery (10 to 60 min). Using ion-selective vibrating probes, we established that the transient depolarization is due to Ca2+ influx and the sustained hyperpolarization is due to H+ efflux by activation of the plasma membrane H+-ATPase. Protein synthesis is not required for H+-ATPase activation. Net K+ and Cl− uptake occurs at the same time as turgor recovery. The magnitude of the ion uptake is more than sufficient to account for the osmotic gradients required for turgor to return to its original level. Two osmotic mutants, os-1 and os-2, homologs of a two-component histidine kinase sensor and the yeast high osmotic glycerol mitogen-activated protein (MAP) kinase, respectively, have lower turgor than the wild type and do not exhibit the sustained hyperpolarization after hyperosmotic treatment. The os-1 mutant does not exhibit all of the wild-type turgor-adaptive ion fluxes (Cl− uptake increases, but net K+ flux barely changes and net H+ efflux declines) (os-2 was not examined). Both os mutants are able to regulate turgor but at a lower level than the wild type. Our results demonstrate that a MAP kinase cascade regulates ion transport, activation of the H+-ATPase, and net K+ and Cl− uptake during turgor regulation. Other pathways regulating turgor must also exist. PMID:16524903

  19. Mitogen-activated protein kinase kinase kinase 1 (MAP3K1) integrates developmental signals for eyelid closure

    PubMed Central

    Geh, Esmond; Meng, Qinghang; Mongan, Maureen; Wang, Jingcai; Takatori, Atsushi; Zheng, Yi; Puga, Alvaro; Lang, Richard A.; Xia, Ying

    2011-01-01

    Developmental eyelid closure is an evolutionarily conserved morphogenetic event requiring proliferation, differentiation, cytoskeleton reorganization, and migration of epithelial cells at the tip of the developing eyelid. Many signaling events take place during eyelid closure, but how the signals converge to regulate the morphogenetic process remains an open and intriguing question. Here we show that mitogen-activated protein kinase kinase kinase 1 (MAP3K1) highly expressed in the developing eyelid epithelium, forms with c-Jun, a regulatory axis that orchestrates morphogenesis by integrating two different networks of eyelid closure signals. A TGF-α/EGFR-RhoA module initiates one of these networks by inducing c-Jun expression which, in a phosphorylation-independent manner, binds to the Map3k1 promoter and causes an increase in MAP3K1 expression. RhoA knockout in the ocular surface epithelium disturbs this network by decreasing MAP3K1 expression, and causes delayed eyelid closure in Map3k1 hemizygotes. The second network is initiated by the enzymatic activity of MAP3K1, which phosphorylates and activates a JNK-c-Jun module, leading to AP-1 transactivation and induction of its downstream genes, such as Pai-1. MAP3K1 inactivation reduces AP-1 activity and PAI-1 expression both in cells and developing eyelids. MAP3K1 is therefore the nexus of an intracrine regulatory loop connecting the TGF-α/EGFR/RhoA-c-Jun and JNK-c-Jun-AP-1 pathways in developmental eyelid closure. PMID:21969564

  20. Elicitor- and A23187-induced expression of WCK-1, a gene encoding mitogen-activated protein kinase in wheat.

    PubMed

    Takezawa, D

    1999-08-01

    Wheat cultured cells were used to study the role of Ca2+ in regulating protein kinases during the induction of defense-related genes by fungal elicitor treatments. Manipulation of intracellular Ca2+ concentrations by treatment with calcium ionophore A23187 in the presence of high extracellular Ca2+ resulted in the induction of mRNA expression of WCK-1, a gene encoding mitogen-activated protein (MAP) kinase. The induction of WCK-1 mRNA by A23187 did not occur when extracellular Ca2+ was chelated by 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). The WCK-1 mRNA was also induced by Typhula ishikariensis-derived elicitors, suggesting a possible involvement of WCK-1 in the plant defense response against pathogens. BAPTA and a calcium channel blocker, La3+, inhibited the elicitor-induced expression of the WCK-1 mRNA. A recombinant fusion protein of WCK-1 (GST-WCK-1) autophosphorylated at the Tyr residue and exhibited an autophosphorylation-dependent protein kinase activity towards myelin basic protein. Alteration of Tyr-196 in the conserved 'TEY' motif in GST-WCK-1 to Phe by site-directed mutagenesis abolished the autophosphorylation. The GST-WCK-1 protein was activated by elicitor-treated wheat cell extracts but not by the control extract. These results suggest that fungal elicitors activate WCK-1, a specific MAP kinase in wheat. Furthermore, the results suggest a possible involvement of Ca2+ in enhancing the MAP kinase signaling cascade in plants by controlling the levels of the MAP kinase transcripts. PMID:10527417

  1. Upregulation of early growth response factor-1 by bile acids requires mitogen-activated protein kinase signaling

    SciTech Connect

    Allen, Katryn; Kim, Nam Deuk; Moon, Jeon-OK; Copple, Bryan L.

    2010-02-15

    Cholestasis results when excretion of bile acids from the liver is interrupted. Liver injury occurs during cholestasis, and recent studies showed that inflammation is required for injury. Our previous studies demonstrated that early growth response factor-1 (Egr-1) is required for development of inflammation in liver during cholestasis, and that bile acids upregulate Egr-1 in hepatocytes. What remains unclear is the mechanism by which bile acids upregulate Egr-1. Bile acids modulate gene expression in hepatocytes by activating the farnesoid X receptor (FXR) and through activation of mitogen-activated protein kinase (MAPK) signaling. Accordingly, the hypothesis was tested that bile acids upregulate Egr-1 in hepatocytes by FXR and/or MAPK-dependent mechanisms. Deoxycholic acid (DCA) and chenodeoxycholic acid (CDCA) stimulated upregulation of Egr-1 to the same extent in hepatocytes isolated from wild-type mice and FXR knockout mice. Similarly, upregulation of Egr-1 in the livers of bile duct-ligated (BDL) wild-type and FXR knockout mice was not different. Upregulation of Egr-1 in hepatocytes by DCA and CDCA was prevented by the MEK inhibitors U0126 and SL-327. Furthermore, pretreatment of mice with U0126 prevented upregulation of Egr-1 in the liver after BDL. Results from these studies demonstrate that activation of MAPK signaling is required for upregulation of Egr-1 by bile acids in hepatocytes and for upregulation of Egr-1 in the liver during cholestasis. These studies suggest that inhibition of MAPK signaling may be a novel therapy to prevent upregulation of Egr-1 in liver during cholestasis.

  2. Epicatechin gallate induces cell death via p53 activation and stimulation of p38 and JNK in human colon cancer SW480 cells.

    PubMed

    Cordero-Herrera, Isabel; Martín, María Angeles; Bravo, Laura; Goya, Luis; Ramos, Sonia

    2013-01-01

    The tea flavonoid epicatechin gallate (ECG) exhibits a wide range of biological activities. In this study, the in vitro anticancer effects of ECG on SW480 colon cancer cell line was investigated by analyzing the cell cycle, apoptosis, key proteins involved in cellular survival/proliferation, namely AKT/phosphatidylinositol-3-kinase (PI3K) and mitogen-activated protein kinases (MAPKs), and the role of p53 in these processes. ECG induced cell cycle arrest at the G0/G1-S phase border associated with the stimulation of p21, p-p53, and p53 and the suppression of cyclins D1 and B1. Exposure of SW480 cells to ECG also led to apoptosis as determined by time-dependent changes in caspase-3 activity, MAPKs [extracellular regulated kinase (ERK), p38, and c-jun amino-terminal kinase (JNK)], p21 and p53 activation, and AKT inhibition. The presence of pifithrin, an inhibitor of p53 function, blocked ECG-induced apoptosis as was manifested by restored cell viability and caspase-3 activity to control values and reestablished the balance among Bcl-2 anti- and proapoptotic protein levels. Interestingly, ECG also inhibited p53 protein and RNA degradation, contributing to the stabilization of p53. In addition, JNK and p38 have been identified as necessary for ECG-induced apoptosis, upon activation by p53. The results suggest that the activation of the p53-p38/JNK cascade is required for ECG-induced cell death in SW480 cells. PMID:23859040

  3. Electromagnetic pulse activated brain microglia via the p38 MAPK pathway.

    PubMed

    Yang, Long-Long; Zhou, Yan; Tian, Wei-Dong; Li, Hai-Juan; Kang-Chu-Li; Miao, Xia; An, Guang-Zhou; Wang, Xiao-Wu; Guo, Guo-Zhen; Ding, Gui-Rong

    2016-01-01

    Previously, we found that electromagnetic pulses (EMP) induced an increase in blood brain barrier permeability and the leakage of albumin from blood into brain tissue. Albumin is known to activate microglia cells. Thus, we hypothesised that microglia activation could occur in the brain after EMP exposure. To test this hypothesis, the morphology and secretory function of microglia cells, including the expression of OX-42 (a marker of microglia activation), and levels of TNF-α, IL-10, IL-1β, and NO were determined in the rat cerebral cortex after EMP exposure. In addition, to examine the signalling pathway of EMP-induced microglia activation, protein and phosphorylated protein levels of p38, JNK and ERK were determined. It was found that the expression of OX-42increased significantly at 1, 6 and 12h (p<0.05) and recovered to the sham group level at 24h after EMP exposure. Levels of NO, TNF-α and IL-10 also changed significantly in vivo and in vitro after EMP exposure. The protein level of p38 and phosphorylated p38 increased significantly after EMP exposure (p<0.05) and recovered to sham levels at 12 and 24h, respectively. Protein and phosphorylated protein levels of ERK and JNK did not change. SB203580 (p38 inhibitor) partly prevented the change in NO, IL-10, IL-1β, TNF-α levels induced by EMP exposure. Taken together, these results suggested that EMP exposure (200kV/m, 200 pulses) could activate microglia in rat brain and affect its secretory function both in vivo and in vitro, and the p38 pathway is involved in this process. PMID:26688329

  4. The transcription factor FOXF1 promotes prostate cancer by stimulating the mitogen-activated protein kinase ERK5.

    PubMed

    Fulford, Logan; Milewski, David; Ustiyan, Vladimir; Ravishankar, Navin; Cai, Yuqi; Le, Tien; Masineni, Sreeharsha; Kasper, Susan; Aronow, Bruce; Kalinichenko, Vladimir V; Kalin, Tanya V

    2016-01-01

    Forkhead box F1 (FOXF1) is a stromal transcription factor that is not expressed in epithelial cells of normal prostate tissue. The role of FOXF1 in cancer is conflicting; its loss in some cancers suggests a tumor suppressive function, but its abundance in others is associated with protumorigenic and metastatic traits. Extracellular signal-regulated kinase 5 (ERK5) is associated with advanced-stage prostate adenocarcinoma (PCa) in patients. We detected a population of FOXF1-positive tumor cells in aggressive mouse and human PCa. Using two murine orthotopic models of PCa, we found that overexpression of FOXF1 in Myc-CaP and TRAMP prostate tumor cells induced tumor growth in the prostate and progression to peritoneal metastasis. Increased growth of FOXF1-positive prostate tumors was associated with increased phosphorylation of ERK5, a member of the mitogen-activated protein kinase (MAPK) family. FOXF1 transcriptionally induced and directly bound to promoter regions of genes encoding the kinases MAP3K2 and WNK1, which promoted the phosphorylation and activation of ERK5. Knockdown of ERK5 or both MAP3K2 and WNK1 in FOXF1-overexpressing PCa cells reduced cell proliferation in culture and suppressed tumor growth and tumor metastasis when implanted into mice. In human tumors, FOXF1 expression correlated positively with that of MAP3K2 and WNK1 Thus, in contrast to some tumors where FOXF1 may function as a tumor suppressor, FOXF1 promotes prostate tumor growth and progression by activating ERK5 signaling. Our results also indicate that ERK5 may be a new therapeutic target in patients with FOXF1-positive PCa. PMID:27165781

  5. p38 MAPK Signaling in Osteoblast Differentiation

    PubMed Central

    Rodríguez-Carballo, Eddie; Gámez, Beatriz; Ventura, Francesc

    2016-01-01

    The skeleton is a highly dynamic tissue whose structure relies on the balance between bone deposition and resorption. This equilibrium, which depends on osteoblast and osteoclast functions, is controlled by multiple factors that can be modulated post-translationally. Some of the modulators are Mitogen-activated kinases (MAPKs), whose role has been studied in vivo and in vitro. p38-MAPK modifies the transactivation ability of some key transcription factors in chondrocytes, osteoblasts and osteoclasts, which affects their differentiation and function. Several commercially available inhibitors have helped to determine p38 action on these processes. Although it is frequently mentioned in the literature, this chemical approach is not always as accurate as it should be. Conditional knockouts are a useful genetic tool that could unravel the role of p38 in shaping the skeleton. In this review, we will summarize the state of the art on p38 activity during osteoblast differentiation and function, and emphasize the triggers of this MAPK. PMID:27200351

  6. Lipoxin A4-Induced Heme Oxygenase-1 Protects Cardiomyocytes against Hypoxia/Reoxygenation Injury via p38 MAPK Activation and Nrf2/ARE Complex

    PubMed Central

    Chen, Xiao-Qing; Wu, Sheng-Hua; Zhou, Yu; Tang, Yan-Rong

    2013-01-01

    Objective To investigate whether lipoxin A4 (LXA4) increases expression of heme oxygenase-1(HO-1) in cardiomyocytes, whether LXA4-induced HO-1 protects cardiomyocytes against hypoxia/reoxygenation (H/R) injury, and what are the mechanisms involved in the LXA4-induced HO-1 induction. Methods Rat cardiomyocytes were exposed to H/R injury with or without preincubation with LXA4 or HO-1 inhibitor ZnPP-IX or various signal molecule inhibitors. Expressions of HO-1 protein and mRNA were analyzed by using Western blot and RT-PCR respectively. Activity of nuclear factor E2-related factor 2 (Nrf2) binding to the HO-1 E1 enhancer was assessed by chromatin immunoprecipitation. Nrf2 binding to the HO-1 antioxidant responsive element (ARE) were measured by using electrophoretic mobility shift assay. Results Pretreatment of the cells undergoing H/R lesion with LXA4 significantly reduced the lactate dehydrogenase and creatine kinase productions, increased the cell viability, and increased the expressions of HO-1 protein and mRNA and HO-1 promoter activity. HO-1 inhibition abolished the protective role of LXA4 on the cells undergoing H/R lesion. LXA4 increased p38 mitogen-activated protein kinase (p38 MAPK) activation, nuclear translocation of Nrf2, Nrf2 binding to the HO-1 ARE and E1 enhancer in cardiomyocytes with or without H/R exposure. Conclusion The protection role of LXA4 against H/R injury of cardiomyocytes is related to upregulation of HO-1, via activation of p38 MAPK pathway and nuclear translocation of Nrf2 and Nrf2 binding to the HO-1 ARE and E1 enhancer, but not via activation of phosphatidyinositol-3-kinase or extracellular signal-regulated kinase pathway. PMID:23826208

  7. Mitogen activated protein kinases SakA(HOG1) and MpkC collaborate for Aspergillus fumigatus virulence.

    PubMed

    Bruder Nascimento, Ariane Cristina Mendes de Oliveira; Dos Reis, Thaila Fernanda; de Castro, Patrícia Alves; Hori, Juliana I; Bom, Vinícius Leite Pedro; de Assis, Leandro José; Ramalho, Leandra Naira Zambelli; Rocha, Marina Campos; Malavazi, Iran; Brown, Neil Andrew; Valiante, Vito; Brakhage, Axel A; Hagiwara, Daisuke; Goldman, Gustavo H

    2016-06-01

    Here, we investigated which stress responses were influenced by the MpkC and SakA mitogen-activated protein kinases of the high-osmolarity glycerol (HOG) pathway in the fungal pathogen Aspergillus fumigatus. The ΔsakA and the double ΔmpkC ΔsakA mutants were more sensitive to osmotic and oxidative stresses, and to cell wall damaging agents. Both MpkC::GFP and SakA::GFP translocated to the nucleus upon osmotic stress and cell wall damage, with SakA::GFP showing a quicker response. The phosphorylation state of MpkA was determined post exposure to high concentrations of congo red and Sorbitol. In the wild-type strain, MpkA phosphorylation levels progressively increased in both treatments. In contrast, the ΔsakA mutant had reduced MpkA phosphorylation, and surprisingly, the double ΔmpkC ΔsakA had no detectable MpkA phosphorylation. A. fumigatus ΔsakA and ΔmpkC were virulent in mouse survival experiments, but they had a 40% reduction in fungal burden. In contrast, the ΔmpkC ΔsakA double mutant showed highly attenuated virulence, with approximately 50% mice surviving and a 75% reduction in fungal burden. We propose that both cell wall integrity (CWI) and HOG pathways collaborate, and that MpkC could act by modulating SakA activity upon exposure to several types of stresses and during CW biosynthesis. PMID:26878695

  8. The SrkA Kinase Is Part of the SakA Mitogen-Activated Protein Kinase Interactome and Regulates Stress Responses and Development in Aspergillus nidulans

    PubMed Central

    Jaimes-Arroyo, Rafael; Lara-Rojas, Fernando; Bayram, Özgür; Valerius, Oliver; Braus, Gerhard H.

    2015-01-01

    Fungi and many other eukaryotes use specialized mitogen-activated protein kinases (MAPK) of the Hog1/p38 family to transduce environmental stress signals. In Aspergillus nidulans, the MAPK SakA and the transcription factor AtfA are components of a central multiple stress-signaling pathway that also regulates development. Here we characterize SrkA, a putative MAPK-activated protein kinase, as a novel component of this pathway. ΔsrkA and ΔsakA mutants share a derepressed sexual development phenotype. However, ΔsrkA mutants are not sensitive to oxidative stress, and in fact, srkA inactivation partially suppresses the sensitivity of ΔsakA mutant conidia to H2O2, tert-butyl-hydroperoxide (t-BOOH), and menadione. In the absence of stress, SrkA shows physical interaction with nonphosphorylated SakA in the cytosol. We show that H2O2 induces a drastic change in mitochondrial morphology consistent with a fission process and the relocalization of SrkA to nuclei and mitochondria, depending on the presence of SakA. SakA-SrkA nuclear interaction is also observed during normal asexual development in dormant spores. Using SakA and SrkA S-tag pulldown and purification studies coupled to mass spectrometry, we found that SakA interacts with SrkA, the stress MAPK MpkC, the PPT1-type phosphatase AN6892, and other proteins involved in cell cycle regulation, DNA damage response, mRNA stability and protein synthesis, mitochondrial function, and other stress-related responses. We propose that oxidative stress induces DNA damage and mitochondrial fission and that SakA and SrkA mediate cell cycle arrest and regulate mitochondrial function during stress. Our results provide new insights into the mechanisms by which SakA and SrkA regulate the remodelling of cell physiology during oxidative stress and development. PMID:25820520

  9. Identification of glycogen synthase as a new substrate for stress-activated protein kinase 2b/p38beta.

    PubMed

    Kuma, Yvonne; Campbell, David G; Cuenda, Ana

    2004-04-01

    The endogenous glycogen synthase in extracts from mouse skeletal muscle, liver and brain bound specifically to SAPK2b (stress-activated protein kinase 2b)/p38b, but not to other members of the group of SAPK/p38 kinases. Glycogen synthase was phosphorylated in vitro more efficiently by SAPK2b/p38b than by SAPK2a/p38a, SAPK3/p38g or SAPK4/p38d. SAPK2b/p38b phosphorylated glycogen synthase in vitro at residues Ser644, Ser652, Thr718 and Ser724, two of which (Ser644 and Ser652) are also phosphorylated by glycogen synthase kinase 3. Thr718 and Ser724 are novel sites not known to be phosphorylated by other protein kinases. Glycogen synthase becomes phosphorylated at Ser644 in response to osmotic shock; this phosphorylation is prevented by pretreatment of the cells with SB 203580, which inhibits SAPK2a/p38a and SAPK2b/p38b activity. In vitro, phosphorylation of glycogen synthase by SAPK2b/p38b alone had no significant effect on its activity, indicating that phosphorylation at residue Ser644 itself is insufficient to decrease glycogen synthase activity. However, after phosphorylation by SAPK2b/p38b, subsequent phosphorylation at Ser640 by glycogen synthase kinase 3 decreased the activity of glycogen synthase. This decrease was not observed when SAPK2b/p38b activity was blocked with SB 203580. These results suggest that SAPK2b/p38b may be a priming kinase that allows glycogen synthase kinase 3 to phosphorylate Ser640 and thereby inhibit glycogen synthase activity. PMID:14680475

  10. AMPK activation inhibits expression of proinflammatory mediators through downregulation of PI3K/p38 MAPK and NF-κB signaling in murine macrophages.

    PubMed

    Huang, Bee-Piao; Lin, Chun-Hsiang; Chen, Han-Min; Lin, Jiun-Tsai; Cheng, Yi-Fang; Kao, Shao-Hsuan

    2015-02-01

    Adenosine monophosphate (AMP)-activated protein kinase (AMPK) plays a central role in energy homeostasis and regulation of inflammatory responses. The present study is aimed to investigate the anti-inflammatory effects of ENERGI-F704, a nucleobase analogue isolated from bamboo leaves, on expression of proinflammatory mediators in murine macrophage RAW264.7 in response to lipopolysaccharide (LPS). ENERGI-F704 enhanced phosphorylation of AMPK(T172) but insignificantly affected the viability of RAW264.7 cells. Further investigation showed that ENERGI-F704 decreased mRNA expression of interleukin (IL)-6, IL-8, tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX2), and inducible nitric oxide synthase (iNOS) induced by LPS, as well as suppressed the production of prostaglandin E2 (PGE₂) and nitric oxide (NO). Additionally, the inhibitory effects of ENERGI-F704 on the LPS-induced proinflammatory mediators were diminished by pretreatment of AMPK inhibitor Compound C. ENERGI-F704 also inhibited LPS-triggered activation of nuclear factor kappa B (NF-κB), phosphatidylinositol 3-kinase (PI3K), and p38 mitogen-activated protein kinase (p38), whereas extracellular signal-regulated kinase (Erk)1/2 and c-Jun N-terminal kinase (JNK) were insignificantly influenced. Our findings indicate that ENERGI-F704 may exert anti-inflammatory activity on RAW264.7 cells in response to LPS through the activation of AMPK and suppression of PI3K/P38/NF-κB signaling and the consequent decreased expression of proinflammatory mediators, suggesting that ENERGI-F704 is beneficial to the amelioration of inflammatory disorders. PMID:25536376

  11. TACE release of TNF-α mediates mechanotransduction-induced activation of p38 MAPK and myogenesis

    PubMed Central

    Zhan, Mei; Jin, Bingwen; Chen, Shuen-Ei; Reecy, James M.; Li, Yi-Ping

    2011-01-01

    Summary Skeletal muscle responds to mechanical stimulation by activating p38 MAPK, a key signal for myogenesis. However, the mechanotransduction mechanism that activates p38 is unknown. Here we show that mechanical stimulation of myoblasts activates p38 and myogenesis through stimulating TNF-α release by TNF-α converting enzyme (TACE). In C2C12 or mouse primary myoblasts cultured in growth medium, static stretch activated p38 along with ERK1/2, JNK and AKT. Disrupting TNF-α signaling by TNF-α-neutralizing antibody or knocking out TNF-α receptors blocked stretch activation of p38, but not ERK1/2, JNK or AKT. Stretch also activated differentiation markers MEF2C, myogenin, p21 and myosin heavy chain in a TNF-α- and p38-dependent manner. Stretch stimulated the cleavage activity of TACE. Conversely, TACE inhibitor TAPI or TACE siRNA abolished stretch activation of p38. In addition, conditioned medium from stretched myoblast cultures activated p38 in unstretched myoblasts, which required TACE activity in the donor myoblasts, and TNF-α receptors in the recipient myoblasts. These results indicate that posttranscriptional activation of TACE mediates the mechanotransduction that activates p38-dependent myogenesis via the release of TNF-α. PMID:17264149

  12. Protein Kinase Mitogen-activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4) Promotes Obesity-induced Hyperinsulinemia.

    PubMed

    Roth Flach, Rachel J; Danai, Laura V; DiStefano, Marina T; Kelly, Mark; Menendez, Lorena Garcia; Jurczyk, Agata; Sharma, Rohit B; Jung, Dae Young; Kim, Jong Hun; Kim, Jason K; Bortell, Rita; Alonso, Laura C; Czech, Michael P

    2016-07-29

    Previous studies revealed a paradox whereby mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) acted as a negative regulator of insulin sensitivity in chronically obese mice, yet systemic deletion of Map4k4 did not improve glucose tolerance. Here, we report markedly reduced glucose-responsive plasma insulin and C-peptide levels in whole body Map4k4-depleted mice (M4K4 iKO) as well as an impaired first phase of insulin secretion from islets derived from M4K4 iKO mice ex vivo After long-term high fat diet (HFD), M4K4 iKO mice pancreata also displayed reduced β cell mass, fewer proliferating β cells and reduced islet-specific gene mRNA expression compared with controls, although insulin content was normal. Interestingly, the reduced plasma insulin in M4K4 iKO mice exposed to chronic (16 weeks) HFD was not observed in response to acute HFD challenge or short term treatment with the insulin receptor antagonist S961. Furthermore, the improved insulin sensitivity in obese M4K4 iKO mice was abrogated by high exogenous insulin over the course of a euglycemic clamp study, indicating that hypoinsulinemia promotes insulin sensitivity in chronically obese M4K4 iKO mice. These results demonstrate that protein kinase Map4k4 drives obesity-induced hyperinsulinemia and insulin resistance in part by promoting insulin secretion from β cells in mice. PMID:27226575

  13. Identification and functional analysis of mitogen-activated protein kinase kinase kinase (MAPKKK) genes in canola (Brassica napus L.)

    PubMed Central

    Sun, Yun; Wang, Chen; Yang, Bo; Jiang, Yuan-Qing

    2014-01-01

    Mitogen-activated protein kinase (MAPK) signalling cascades, consisting of three types of reversibly phosphorylated kinases (MAPKKK, MAPKK, and MAPK), are involved in important processes including plant immunity and hormone responses. The MAPKKKs comprise the largest family in the MAPK cascades, yet only a few of these genes have been associated with physiological functions, even in the model plant Arabidopsis thaliana. Canola (Brassica napus L.) is one of the most important oilseed crops in China and worldwide. To explore MAPKKK functions in biotic and abiotic stress responses in canola, 66 MAPKKK genes were identified and 28 of them were cloned. Phylogenetic analysis of these canola MAPKKKs with homologous genes from representative species classified them into three groups (A–C), comprising four MAPKKKs, seven ZIKs, and 17 Raf genes. A further 15 interaction pairs between these MAPKKKs and the downstream BnaMKKs were identified through a yeast two-hybrid assay. The interactions were further validated through bimolecular fluorescence complementation (BiFC) analysis. In addition, by quantitative real-time reverse transcription–PCR, it was further observed that some of these BnaMAPKKK genes were regulated by different hormone stimuli, abiotic stresses, or fungal pathogen treatments. Interestingly, two novel BnaMAPKKK genes, BnaMAPKKK18 and BnaMAPKKK19, which could elicit hypersensitive response (HR)-like cell death when transiently expressed in Nicotiana benthamiana leaves, were successfully identified. Moreover, it was found that BnaMAPKKK19 probably mediated cell death through BnaMKK9. Overall, the present work has laid the foundation for further characterization of this important MAPKKK gene family in canola. PMID:24604738

  14. The AngFus3 Mitogen-Activated Protein Kinase Controls Hyphal Differentiation and Secondary Metabolism in Aspergillus niger

    PubMed Central

    Priegnitz, Bert-Ewald; Brandt, Ulrike; Pahirulzaman, Khomaizon A. K.; Dickschat, Jeroen S.

    2015-01-01

    Adaptation to a changing environment is essential for the survival and propagation of sessile organisms, such as plants or fungi. Filamentous fungi commonly respond to a worsening of their growth conditions by differentiation of asexually or sexually produced spores. The formation of these specialized cell types is, however, also triggered as part of the general life cycle by hyphal age or density. Spores typically serve for dispersal and, therefore, translocation but can also act as resting states to endure times of scarcity. Eukaryotic differentiation in response to environmental and self-derived signals is commonly mediated by three-tiered mitogen-activated protein (MAP) kinase signaling cascades. Here, we report that the MAP kinase Fus3 of the black mold Aspergillus niger (AngFus3) and its upstream kinase AngSte7 control vegetative spore formation and secondary metabolism. Mutants lacking these kinases are defective in conidium induction in response to hyphal density but are fully competent in starvation-induced sporulation, indicating that conidiation in A. niger is triggered by various independent signals. In addition, the mutants exhibit an altered profile of volatile metabolites and secrete dark pigments into the growth medium, suggesting a dysregulation of the secondary metabolism. By assigning the AngFus3 MAP kinase pathway to the transduction of a potentially self-derived trigger, this work contributes to the unraveling of the intricate signaling networks controlling fungal differentiation. Moreover, our data further support earlier observations that differentiation and secondary metabolism are tightly linked in filamentous fungi. PMID:25888553

  15. The AngFus3 Mitogen-Activated Protein Kinase Controls Hyphal Differentiation and Secondary Metabolism in Aspergillus niger.

    PubMed

    Priegnitz, Bert-Ewald; Brandt, Ulrike; Pahirulzaman, Khomaizon A K; Dickschat, Jeroen S; Fleißner, André

    2015-06-01

    Adaptation to a changing environment is essential for the survival and propagation of sessile organisms, such as plants or fungi. Filamentous fungi commonly respond to a worsening of their growth conditions by differentiation of asexually or sexually produced spores. The formation of these specialized cell types is, however, also triggered as part of the general life cycle by hyphal age or density. Spores typically serve for dispersal and, therefore, translocation but can also act as resting states to endure times of scarcity. Eukaryotic differentiation in response to environmental and self-derived signals is commonly mediated by three-tiered mitogen-activated protein (MAP) kinase signaling cascades. Here, we report that the MAP kinase Fus3 of the black mold Aspergillus niger (AngFus3) and its upstream kinase AngSte7 control vegetative spore formation and secondary metabolism. Mutants lacking these kinases are defective in conidium induction in response to hyphal density but are fully competent in starvation-induced sporulation, indicating that conidiation in A. niger is triggered by various independent signals. In addition, the mutants exhibit an altered profile of volatile metabolites and secrete dark pigments into the growth medium, suggesting a dysregulation of the secondary metabolism. By assigning the AngFus3 MAP kinase pathway to the transduction of a potentially self-derived trigger, this work contributes to the unraveling of the intricate signaling networks controlling fungal differentiation. Moreover, our data further support earlier observations that differentiation and secondary metabolism are tightly linked in filamentous fungi. PMID:25888553

  16. Neuropeptide Y1 receptor inhibits cell growth through inactivating mitogen-activated protein kinase signal pathway in human hepatocellular carcinoma.

    PubMed

    Lv, Xiufang; Zhao, Fengbo; Huo, Xisong; Tang, Weidong; Hu, Baoying; Gong, Xiu; Yang, Juan; Shen, Qiujin; Qin, Wenxin

    2016-07-01

    Hepatocellular carcinoma (HCC) is one of the most common cancers, and its incidence is increasing worldwide. Neuropeptide Y (NPY) broadly expressed in the central and peripheral nervous system. It participates in multiple physiological and pathological processes through specific receptors. Evidences are accumulating that NPY is involved in development and progression in neuro- or endocrine-related cancers. However, little is known about the potential roles and underlying mechanisms of NPY receptors in HCC. In this study, we analyzed the expression of NPY receptors by real-time polymerase chain reaction, Western blot, and immunohistochemical staining. Correlation between NPY1R levels and clinicopathological characteristics, and survival of HCC patients were explored, respectively. Cell proliferation was researched by CCK-8 in vitro, and tumor growth was studied by nude mice xenografts in vivo. We found that mRNA and protein level of NPY receptor Y1 subtype (NPY1R) significantly decreased in HCC tissues. Low expression of NPY1R closely correlated with poor prognosis in HCC patients. Proliferation of HCC cells was significantly inhibited by recombinant NPY protein in vitro. This inhibitory effect could be blocked by selected NPY1R antagonist BIBP3226. Furthermore, overexpression of NPY1R could significantly inhibit HCC cell proliferation. Knockdown of NPY1R promoted cell multiplication in vitro and increased tumorigenicity and tumor growth in vivo. NPY1R was found to participate in the inhibition of cell proliferation via inactivating mitogen-activated protein kinase signal pathway in HCC cells. Collectively, NPY1R plays an inhibitory role in tumor growth and may be a promising therapeutic target for HCC. PMID:27262566

  17. OsMAPK6, a mitogen-activated protein kinase, influences rice grain size and biomass production.

    PubMed

    Liu, Shuying; Hua, Lei; Dong, Sujun; Chen, Hongqi; Zhu, Xudong; Jiang, Jun'e; Zhang, Fang; Li, Yunhai; Fang, Xiaohua; Chen, Fan

    2015-11-01

    Grain size is an important agronomic trait in determining grain yield. However, the molecular mechanisms that determine the final grain size are not well understood. Here, we report the functional analysis of a rice (Oryza sativa L.) mutant, dwarf and small grain1 (dsg1), which displays pleiotropic phenotypes, including small grains, dwarfism and erect leaves. Cytological observations revealed that the small grain and dwarfism of dsg1 were mainly caused by the inhibition of cell proliferation. Map-based cloning revealed that DSG1 encoded a mitogen-activated protein kinase (MAPK), OsMAPK6. OsMAPK6 was mainly located in the nucleus and cytoplasm, and was ubiquitously distributed in various organs, predominately in spikelets and spikelet hulls, consistent with its role in grain size and biomass production. As a functional kinase, OsMAPK6 interacts strongly with OsMKK4, indicating that OsMKK4 is likely to be the upstream MAPK kinase of OsMAPK6 in rice. In addition, hormone sensitivity tests indicated that the dsg1 mutant was less sensitive to brassinosteroids (BRs). The endogenous BR levels were reduced in dsg1, and the expression of several BR signaling pathway genes and feedback-inhibited genes was altered in the dsg1 mutant, with or without exogenous BRs, indicating that OsMAPK6 may contribute to influence BR homeostasis and signaling. Thus, OsMAPK6, a MAPK, plays a pivotal role in grain size in rice, via cell proliferation, and BR signaling and homeostasis. PMID:26366992

  18. Identification and functional analysis of mitogen-activated protein kinase kinase kinase (MAPKKK) genes in canola (Brassica napus L.).

    PubMed

    Sun, Yun; Wang, Chen; Yang, Bo; Wu, Feifei; Hao, Xueyu; Liang, Wanwan; Niu, Fangfang; Yan, Jingli; Zhang, Hanfeng; Wang, Boya; Deyholos, Michael K; Jiang, Yuan-Qing

    2014-05-01

    Mitogen-activated protein kinase (MAPK) signalling cascades, consisting of three types of reversibly phosphorylated kinases (MAPKKK, MAPKK, and MAPK), are involved in important processes including plant immunity and hormone responses. The MAPKKKs comprise the largest family in the MAPK cascades, yet only a few of these genes have been associated with physiological functions, even in the model plant Arabidopsis thaliana. Canola (Brassica napus L.) is one of the most important oilseed crops in China and worldwide. To explore MAPKKK functions in biotic and abiotic stress responses in canola, 66 MAPKKK genes were identified and 28 of them were cloned. Phylogenetic analysis of these canola MAPKKKs with homologous genes from representative species classified them into three groups (A-C), comprising four MAPKKKs, seven ZIKs, and 17 Raf genes. A further 15 interaction pairs between these MAPKKKs and the downstream BnaMKKs were identified through a yeast two-hybrid assay. The interactions were further validated through bimolecular fluorescence complementation (BiFC) analysis. In addition, by quantitative real-time reverse transcription-PCR, it was further observed that some of these BnaMAPKKK genes were regulated by different hormone stimuli, abiotic stresses, or fungal pathogen treatments. Interestingly, two novel BnaMAPKKK genes, BnaMAPKKK18 and BnaMAPKKK19, which could elicit hypersensitive response (HR)-like cell death when transiently expressed in Nicotiana benthamiana leaves, were successfully identified. Moreover, it was found that BnaMAPKKK19 probably mediated cell death through BnaMKK9. Overall, the present work has laid the foundation for further characterization of this important MAPKKK gene family in canola. PMID:24604738

  19. Upstream mitogen-activated protein kinase (MAPK) pathway inhibition: MEK inhibitor followed by a BRAF inhibitor in advanced melanoma patients.

    PubMed

    Goldinger, Simone M; Zimmer, Lisa; Schulz, Carsten; Ugurel, Selma; Hoeller, Christoph; Kaehler, Katharina C; Schadendorf, Dirk; Hassel, Jessica C; Becker, Juergen; Hauschild, Axel; Dummer, Reinhard

    2014-01-01

    BRAF-mutant melanoma can be successfully treated by BRAF kinase inhibitors (BRAFi) and MEK kinase inhibitors (MEKi). However, the administration of BRAFi followed by MEKi did not generate promising response rate (RR). The purpose of this investigation was to evaluate the time to progression (TTP) with a mitogen-activated protein kinase (MAPK) pathway upstream inhibition strategy in BRAF mutated melanoma patients. BRAF mutation positive metastatic melanoma patients were identified within the Dermatology Cooperative Oncology Group (DeCOG) network and were treated first with a MEKi and upon progression with a selective BRAFi. A total of 23 melanoma patients (six females, 17 males, aged 47-80 years) were retrospectively analysed for TTP. The total median TTP was 8.9 months. The median TTP for MEKi was 4.8 (1.2-23.2) and subsequent for BRAFi 4.5 (1.2-15.7) months, respectively. A higher RR for MEKi (39%, nine partial responses and 0 complete responses) than previously reported was observed. Our analysis suggests that the reversed inhibition of the MAPK pathway is feasible in BRAF mutated melanoma. The median TTP (8.9 months) is close to the promising BRAF- and MEKi combination therapy (median progression-free survival (PFS) 9.4 months). The total treatment duration of the MAPK inhibition when a MEKi is administered first is similar compared to the reversed sequence, but TTP shifts in favour to the MEKi. This approach is feasible with reasonable tolerability. This clinical investigation encourages further studies in prospective clinical trials to define the optimal treatment schedule for the MAPK pathway inhibition and should be accompanied by molecular monitoring using repeated biopsies. PMID:24183461

  20. Baicalein Reduces the Invasion of Glioma Cells via Reducing the Activity of p38 Signaling Pathway

    PubMed Central

    Lei, Xiaoming; Li, Siyuan; Zhang, Yong; Meng, Lihua; Xue, Rongliang; Li, Zongfang

    2014-01-01

    Baicalein, one of the major flavonids in Scutellaria baicalensis, has historically been used in anti-inflammatory and anti-cancer therapies. However, the anti-metastatic effect and related mechanism(s) in glioma are still unclear. In this study, we thus utilized glioma cell lines U87MG and U251MG to explore the effect of baicalein. We found that administration of baicalein significantly inhibited migration and invasion of glioma cells. In addition, after treating with baicalein for 24 h, there was a decrease in the levels of matrix metalloproteinase-2 (MMP-2) and MMP-9 expression as well as proteinase activity in glioma cells. Conversely, the expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) and TIMP-2 was increased in a dose-dependent manner. Moreover, baicalein treatment significantly decreased the phosphorylated level of p38, but not ERK1/2, JNK1/2 and PI3K/Akt. Combined treatment with a p38 inhibitor (SB203580) and baicalein resulted in the synergistic reduction of MMP-2 and MMP-9 expression and then increase of TIMP-1 and TIMP-2 expression; and the invasive capabilities of U87MG cells were also inhibited. However, p38 chemical activator (anisomycin) could block these effects produced by baicalein, suggesting baicalein directly downregulate the p38 signaling pathway. In conclusion, baicalein inhibits glioma cells invasion and metastasis by reducing cell motility and migration via suppression of p38 signaling pathway, suggesting that baicalein is a potential therapeutic agent for glioma. PMID:24587321

  1. Histamine activates p38 MAP kinase and alters local lamellipodia dynamics, reducing endothelial barrier integrity and eliciting central movement of actin fibers.

    PubMed

    Adderley, Shaquria P; Lawrence, Curtis; Madonia, Eyong; Olubadewo, Joseph O; Breslin, Jerome W

    2015-07-01

    The role of the actin cytoskeleton in endothelial barrier function has been debated for nearly four decades. Our previous investigation revealed spontaneous local lamellipodia in confluent endothelial monolayers that appear to increase overlap at intercellular junctions. We tested the hypothesis that the barrier-disrupting agent histamine would reduce local lamellipodia protrusions and investigated the potential involvement of p38 mitogen-activated protein (MAP) kinase activation and actin stress fiber formation. Confluent monolayers of human umbilical vein endothelial cells (HUVEC) expressing green fluorescent protein-actin were studied using time-lapse fluorescence microscopy. The protrusion and withdrawal characteristics of local lamellipodia were assessed before and after addition of histamine. Changes in barrier function were determined using electrical cell-substrate impedance sensing. Histamine initially decreased barrier function, lamellipodia protrusion frequency, and lamellipodia protrusion distance. A longer time for lamellipodia withdrawal and reduced withdrawal distance and velocity accompanied barrier recovery. After barrier recovery, a significant number of cortical fibers migrated centrally, eventually resembling actin stress fibers. The p38 MAP kinase inhibitor SB203580 attenuated the histamine-induced decreases in barrier function and lamellipodia protrusion frequency. SB203580 also inhibited the histamine-induced decreases in withdrawal distance and velocity, and the subsequent actin fiber migration. These data suggest that histamine can reduce local lamellipodia protrusion activity through activation of p38 MAP kinase. The findings also suggest that local lamellipodia have a role in maintaining endothelial barrier integrity. Furthermore, we provide evidence that actin stress fiber formation may be a reaction to, rather than a cause of, reduced endothelial barrier integrity. PMID:25948734

  2. Histamine activates p38 MAP kinase and alters local lamellipodia dynamics, reducing endothelial barrier integrity and eliciting central movement of actin fibers

    PubMed Central

    Adderley, Shaquria P.; Lawrence, Curtis; Madonia, Eyong; Olubadewo, Joseph O.

    2015-01-01

    The role of the actin cytoskeleton in endothelial barrier function has been debated for nearly four decades. Our previous investigation revealed spontaneous local lamellipodia in confluent endothelial monolayers that appear to increase overlap at intercellular junctions. We tested the hypothesis that the barrier-disrupting agent histamine would reduce local lamellipodia protrusions and investigated the potential involvement of p38 mitogen-activated protein (MAP) kinase activation and actin stress fiber formation. Confluent monolayers of human umbilical vein endothelial cells (HUVEC) expressing green fluorescent protein-actin were studied using time-lapse fluorescence microscopy. The protrusion and withdrawal characteristics of local lamellipodia were assessed before and after addition of histamine. Changes in barrier function were determined using electrical cell-substrate impedance sensing. Histamine initially decreased barrier function, lamellipodia protrusion frequency, and lamellipodia protrusion distance. A longer time for lamellipodia withdrawal and reduced withdrawal distance and velocity accompanied barrier recovery. After barrier recovery, a significant number of cortical fibers migrated centrally, eventually resembling actin stress fibers. The p38 MAP kinase inhibitor SB203580 attenuated the histamine-induced decreases in barrier function and lamellipodia protrusion frequency. SB203580 also inhibited the histamine-induced decreases in withdrawal distance and velocity, and the subsequent actin fiber migration. These data suggest that histamine can reduce local lamellipodia protrusion activity through activation of p38 MAP kinase. The findings also suggest that local lamellipodia have a role in maintaining endothelial barrier integrity. Furthermore, we provide evidence that actin stress fiber formation may be a reaction to, rather than a cause of, reduced endothelial barrier integrity. PMID:25948734

  3. Mitogenic activity of CEL-I, an N-acetylgalactosamine (GalNAc)-specific C-type lectin, isolated from the marine invertebrate Cucumaria echinata (Holothuroidea).

    PubMed

    Jiang, Zedong; Kim, Daekyung; Yamasaki, Yasuhiro; Yamanishi, Tomohiro; Hatakeyama, Tomomitsu; Yamaguchi, Kenichi; Oda, Tatsuya

    2010-01-01

    An N-acetylgalactosamine (GalNAc)-specific Ca(2+)-dependent lectin (C-type lectin), isolated from the marine invertebrate Holothuroidea (Cucumaria echinata), CEL-I, showed potent mitogenic activity toward normal mouse spleen cells. The mitogenic activity of CEL-I, which reached a maximum at 100 microg/ml, was inhibited by GalNAc in a concentration-dependent manner. The mitogenic effect of CEL-I at 10 microg/ml on T cell- enriched splenocytes was at a similar level due to a well-known T cell mitogen, concanavalin A (Con A), at 10 microg/ml. Furthermore, CEL-I evoked a mitogenic response from nude mouse spleen cells, while no significant effects of Con A on this cell population were observed over a wide range of concentrations. These results suggest that CEL-I is a potent mitogenic lectin with the ability to stimulate both T and B cells. PMID:20699569

  4. Stimulation by the nucleotides, ATP and UTP of mitogen-activated protein kinase in EAhy 926 endothelial cells.

    PubMed

    Graham, A; McLees, A; Kennedy, C; Gould, G W; Plevin, R

    1996-03-01

    1. We have investigated the characteristics of activation of the 42kDa isoform of mitogen-activated protein (MAP) kinase in response to various nucleotides in the endothelial cell line EAhy 926. 2. Adenosine 5'-triphosphate (ATP) in the concentration range 0.1-100 microM stimulated the rapid and transient tyrosine phosphorylation and activation of the 42 kDa isoform of MAP kinase in EAhy 926 endothelial cells which peaked at 2 min and returned to basal values by 60 min. ATP also stimulated a similar response in primary cultured bovine aortic endothelial cells. 3. Uridine 5' triphosphate (UTP) also stimulated the 42 kDa isoform of MAP kinase with similar potency to ATP (EC50 values 5.1 +/- 0.2 microM for UTP; 2.9 +/- 0.8 microM for ATP), whilst the selective P2Y-purinoceptor agonist, 2-methylthioATP (2-meSATP) was without effect up to concentrations of 100 microM. In bovine aortic endothelial cells however, UTP and 2-meSATP both stimulated MAP kinase. 4. Pretreatment of cells for 24 h with 12-O tetradecanoyl phorbol 13-acetate resulted in the loss of the alpha and epsilon isoforms of protein kinase C (PKC) and virtual abolition of nucleotide-stimulated MAP kinase activity (> 90% inhibition). 5. Preincubation for 30 min with the PKC inhibitor, Ro-31 8220 (10 microM) reduced MAP-kinase activation at 2 min but potentiated the response at 60 min. 6. Removal of extracellular calcium in the presence of EGTA reduced the MAP kinase activation in response to UTP by approximately 30-50%. 7. Pretreatment with pertussis toxin (18 h, 50 ng ml-1) did not significantly affect the UTP-mediated activation of pp42 MAP kinase. 8. These results show that in the EAhy 926 endothelial cell line, nucleotides stimulate activation of MAP kinase in a protein kinase C-dependent manner through interaction with a P2U-purinoceptor. PMID:8882634

  5. Stimulation by the nucleotides, ATP and UTP of mitogen-activated protein kinase in EAhy 926 endothelial cells.

    PubMed Central

    Graham, A.; McLees, A.; Kennedy, C.; Gould, G. W.; Plevin, R.

    1996-01-01

    1. We have investigated the characteristics of activation of the 42kDa isoform of mitogen-activated protein (MAP) kinase in response to various nucleotides in the endothelial cell line EAhy 926. 2. Adenosine 5'-triphosphate (ATP) in the concentration range 0.1-100 microM stimulated the rapid and transient tyrosine phosphorylation and activation of the 42 kDa isoform of MAP kinase in EAhy 926 endothelial cells which peaked at 2 min and returned to basal values by 60 min. ATP also stimulated a similar response in primary cultured bovine aortic endothelial cells. 3. Uridine 5' triphosphate (UTP) also stimulated the 42 kDa isoform of MAP kinase with similar potency to ATP (EC50 values 5.1 +/- 0.2 microM for UTP; 2.9 +/- 0.8 microM for ATP), whilst the selective P2Y-purinoceptor agonist, 2-methylthioATP (2-meSATP) was without effect up to concentrations of 100 microM. In bovine aortic endothelial cells however, UTP and 2-meSATP both stimulated MAP kinase. 4. Pretreatment of cells for 24 h with 12-O tetradecanoyl phorbol 13-acetate resulted in the loss of the alpha and epsilon isoforms of protein kinase C (PKC) and virtual abolition of nucleotide-stimulated MAP kinase activity (> 90% inhibition). 5. Preincubation for 30 min with the PKC inhibitor, Ro-31 8220 (10 microM) reduced MAP-kinase activation at 2 min but potentiated the response at 60 min. 6. Removal of extracellular calcium in the presence of EGTA reduced the MAP kinase activation in response to UTP by approximately 30-50%. 7. Pretreatment with pertussis toxin (18 h, 50 ng ml-1) did not significantly affect the UTP-mediated activation of pp42 MAP kinase. 8. These results show that in the EAhy 926 endothelial cell line, nucleotides stimulate activation of MAP kinase in a protein kinase C-dependent manner through interaction with a P2U-purinoceptor. Images Figure 1 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:8882634

  6. Tiliroside, the major component of Agrimonia pilosa Ledeb ethanol extract, inhibits MAPK/JNK/p38-mediated inflammation in lipopolysaccharide-activated RAW 264.7 macrophages

    PubMed Central

    JIN, XIN; SONG, SHIQING; WANG, JING; ZHANG, QINGZHEN; QIU, FENG; ZHAO, FENG

    2016-01-01

    In the present study, the in vivo anti-inflammatory activity of Agrimonia pilosa Ledeb (AP) ethanol extract was confirmed in experimental animal models, including xylene-induced ear edema in mice and carrageenan-induced paw edema in rats. Tiliroside, the major component of AP extract, was isolated and purified by high-performance liquid chromatography. The anti-inflammatory mechanism of tiliroside was then examined using lipopolysaccharide (LPS)-activated RAW 264.7 macrophage cells. An MTT assay was used to determine cytotoxicity and a Griess assay was used to determine nitric oxide (NO) production. Concentration levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were determined by enzyme-linked immunosorbent assay. Protein expression levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), phosphorylated (p)-extracellular signal-regulated kinase (ERK) 1/2, p-c-Jun N-terminal kinases (JNK), p-p38 and inhibitor of κB-α were detected by western blot analysis. AP ethanol extract was revealed to inhibit xylene-induced ear edema in mice and carrageenan-induced paw edema in rats. Tiliroside significantly suppressed the overproduction of NO (P<0.01), but revealed no notable inhibition of the release of TNF-α and IL-6. In addition, tiliroside significantly downregulated the elevated expression levels of iNOS and COX-2 induced by LPS (P<0.01). The phosphorylation of JNK and p38 proteins were also significantly inhibited (P<0.01), however, tiliroside exhibited no obvious inhibition on the phosphorylation of ERK 1/2 and the degradation of IκB-α protein. In conclusion, the anti-inflammatory molecular mechanism of tiliroside may involve the downregulation of iNOS and COX-2 protein expression levels, and the inactivation of mitogen-activated protein kinase (MAPK)/JNK, in addition to the MAPK/p38 signaling pathway. PMID:27347085

  7. Lack of in vitro effect of aglepristone on IFN-γ and IL-4 production by resting and mitogen-activated T cells of luteal bitches

    PubMed Central

    2013-01-01

    Background Aglepristone (RU534) is an antiprogestin used for pregnancy termination, parturition induction and conservative pyometra treatment in bitches. Its molecular structure is similar to mifepristone, an antiprogestin used in human medicine. Mifepristone has been shown to suppress proliferation and cytokine production by T cells, whereas the effect of aglepristone on T cell function remains elusive. The purpose of this project was to investigate the in vitro influence of RU534 on IFN-γ and IL-4 synthesis by peripheral blood T cells isolated from healthy bitches (N = 16) in luteal phase. The peripheral blood mononuclear cells (PBMCs) were incubated with three different dosages of aglepristone, or dimethyl sulfoxide (DMSO), with or without mitogen. The production of cytokines by resting or mitogen-activated T cells was determined by intercellular staining and flow cytometry analysis or ELISA assay, respectively. Results Our results showed no statistically significant differences in the percentage of IFN-γ and IL-4-synthesizing CD4+ or CD8+ resting T cells between untreated and aglepristone-treated cells at 24 and 48 hours post treatment. Moreover, mitogen-activated PBMCs treated with RU534 displayed similar concentration of IFN-γ and IL-4 in culture supernatants to those observed in mitogen-activated DMSO-treated PBMCs. Presented results indicate that administration of aglepristone for 48 hours has no influence on IFN-γ and IL-4 synthesis by resting and mitogen-activated T cells isolated from diestral bitches. Conclusions We conclude that antiprogestins may differentially affect T cell function depending on the animal species in which they are applied. PMID:24284004

  8. Activation of transient receptor potential vanilloid 4 induces apoptosis in hippocampus through downregulating PI3K/Akt and upregulating p38 MAPK signaling pathways

    PubMed Central

    Jie, P; Hong, Z; Tian, Y; Li, Y; Lin, L; Zhou, L; Du, Y; Chen, L; Chen, L

    2015-01-01

    Transient receptor potential vanilloid 4 (TRPV4) is a calcium-permeable cation channel that is sensitive to cell swelling, arachidonic acid and its metabolites, epoxyeicosatrienoic acids, which are associated with cerebral ischemia. The activation of TRPV4 induces cytotoxicity in many types of cells, accompanied by an increase in the intracellular free calcium concentration. TRPV4 activation modulates the mitogen-activated protein kinase (MAPK) and phosphatidyl inositol 3 kinase (PI3K)/ protein kinase B (Akt) signaling pathways that regulate cell death and survival. Herein, we examined TRPV4-induced neuronal apoptosis by intracerebroventricular (ICV) injection of a TRPV4 agonist (GSK1016790A) and assessed its involvement in cerebral ischemic injury. ICV injection of GSK1016790A dose-dependently induced apoptosis in the mouse hippocampi (GSK-injected mice). The protein level of phosphorylated p38 MAPK (p-p38 MAPK) was markedly increased and that of phosphorylated c-Jun N-terminal protein kinase (p-JNK) was virtually unchanged. TRPV4 activation also decreased Bcl-2/Bax protein ratio and increased the cleaved caspase-3 protein level, and these effects were blocked by a PI3K agonist and a p38 MAPK antagonist, but were unaffected by a JNK antagonist. ICV injection of the TRPV4 antagonist HC-067047 reduced brain infarction after reperfusion for 48 h in mice with middle cerebral artery occlusion (MCAO). In addition, HC-067047 treatment attenuated the decrease in the phosphorylated Akt protein level and the increase in p-p38 MAPK protein level at 48 h after MCAO, while the increase in p-JNK protein level remained unchanged. Finally, the decreased Bcl-2/Bax protein ratio and the increased cleaved caspase-3 protein level at 48 h after MCAO were markedly attenuated by HC-067047. We conclude that activation of TRPV4 induces apoptosis by downregulating PI3K/Akt and upregulating p38 MAPK signaling pathways, which is involved in cerebral ischemic injury. PMID:26043075

  9. N-hydroxycinnamide derivatives of osthole ameliorate hyperglycemia through activation of AMPK and p38 MAPK.

    PubMed

    Lee, Wei-Hwa; Wu, Hsueh-Hsia; Huang, Wei-Jan; Li, Yi-Ning; Lin, Ren-Jye; Lin, Shyr-Yi; Liang, Yu-Chih

    2015-01-01

    Our previous studies found that osthole markedly reduced blood glucose levels in both db/db and ob/ob mice. To improve the antidiabetic activity of osthole, a series of N-hydroxycinnamide derivatives of osthole were synthesized, and their hypoglycemia activities were examined in vitro and in vivo. Both N-hydroxycinnamide derivatives of osthole, OHC-4p and OHC-2m, had the greatest potential for activating AMPK and increasing glucose uptake by L6 skeletal muscle cells. In addition, OHC-4p and OHC-2m time- and dose-dependently increased phosphorylation levels of AMPK and p38 MAPK. The AMPK inhibitor, compound C, and the p38 MAPK inhibitor, SB203580, significantly reversed activation of AMPK and p38 MAPK, respectively, in OHC-4p- and OHC-2m-treated cells. Compound C and SB203580 also inhibited glucose uptake induced by OHC-4p and OHC-2m. Next, we found that OHC-4p and OHC-2m significantly increased glucose transporter 4 (GLUT4) translocation to plasma membranes and counteracted hyperglycemia in mice with streptozotocin-induced diabetes. These results suggest that activation of AMPK and p38 MAPK by OHC-4p and OHC-2m is associated with increased glucose uptake and GLUT4 translocation and subsequently led to amelioration of hyperglycemia. Therefore, OHC-4p and OHC-2m might have potential as antidiabetic agents for treating type 2 diabetes. Our previous studies found that osthole markedly reduced blood glucose levels in both db/db and ob/ob mice. To improve the antidiabetic activity of osthole, a series of N-hydroxycinnamide derivatives of osthole were synthesized, and their hypoglycemia activities were examined in vitro and in vivo. Both N-hydroxycinnamide derivatives of osthole, OHC-4p and OHC-2m, had the greatest potential for activating AMPK and increasing glucose uptake by L6 skeletal muscle cells. In addition, OHC-4p and OHC-2m time- and dose-dependently increased phosphorylation levels of AMPK and p38 MAPK. The AMPK inhibitor, compound C, and the p38 MAPK inhibitor

  10. Role of the Cyclic AMP Response Element Binding Complex and Activation of Mitogen-Activated Protein Kinases in Synergistic Activation of the Glycoprotein Hormone α Subunit Gene by Epidermal Growth Factor and Forskolin

    PubMed Central

    Roberson, Mark S.; Ban, Makiko; Zhang, Tong; Mulvaney, Jennifer M.

    2000-01-01

    The aim of these studies was to elucidate a role for epidermal growth factor (EGF) signaling in the transcriptional regulation of the glycoprotein hormone α subunit gene, a subunit of chorionic gonadotropin. Studies examined the effects of EGF and the adenylate cyclase activator forskolin on the expression of a transfected α subunit reporter gene in a human choriocarcinoma cell line (JEG3). At maximal doses, administration of EGF resulted in a 50% increase in a subunit reporter activity; forskolin administration induced a fivefold activation; the combined actions of EGF and forskolin resulted in synergistic activation (greater than eightfold) of the α subunit reporter. Mutagenesis studies revealed that the cyclic AMP response elements (CRE) were required and sufficient to mediate EGF-forskolin-induced synergistic activation. The combined actions of EGF and forskolin resulted in potentiated activation of extracellular signal-regulated kinase (ERK) enzyme activity compared with EGF alone. Specific blockade of ERK activation was sufficient to block EGF-forskolin-induced synergistic activation of the α subunit reporter. Pretreatment of JEG3 cells with a p38 mitogen-activated protein kinase inhibitor did not influence activation of the α reporter. However, overexpression of c-Jun N-terminal kinase (JNK)-interacting protein 1 as a dominant interfering molecule abolished the synergistic effects of EGF and forskolin on the α subunit reporter. CRE binding studies suggested that the CRE complex consisted of CRE binding protein and EGF-ERK-dependent recruitment of c-Jun–c-Fos (AP-1) to the CRE. A dominant negative form of c-Fos (A-Fos) that specifically disrupts c-Jun–c-Fos DNA binding inhibited synergistic activation of the α subunit. Thus, synergistic activation of the α subunit gene induced by EGF-forskolin requires the ERK and JNK cascades and the recruitment of AP-1 to the CRE binding complex. PMID:10779323

  11. Involvement of the mitogen activated protein kinase Hog1p in the response of Candida albicans to iron availability

    PubMed Central

    2013-01-01

    Background Iron is an essential nutrient for almost all organisms, and generating iron limiting conditions for pathogens is one of the host defense strategies against microbial infections. Excess of iron can be toxic; therefore, iron uptake is tightly controlled. The high affinity iron uptake system of the opportunistic pathogenic yeast Candida albicans has been shown to be essential for virulence. Several transcription factors and regulators of iron uptake genes were identified, but the knowledge of signaling pathways is still limited. Gene expression profiling of the Δhog1 deletion mutant indicated an involvement of the mitogen activated protein (MAP) kinase Hog1p. However, the function of Hog1p in the response of C. albicans to iron availability was not studied in detail. Thus, we analyzed phenotypic and molecular responses of C. albicans to different iron concentrations particularly with respect to the activity of the Hog1p MAP kinase module. Results We observed flocculation of yeast cells, when the iron ion concentration was equal to or higher than 5 μM. This phenotype was dependent on the MAP kinase Hog1p and the corresponding MAP kinase kinase Pbs2p. Moreover, high extracellular iron ion concentrations led to hyper-phosphorylation of Hog1p. We determined lower amounts of multicopper ferroxidase (MCFO) proteins and lower ferric reductase activity, when the iron ion concentration in the medium was increased. This effect was also observed for the Δhog1 mutant. However, the amounts of MCFO proteins and the cell surface ferric reductase activity were increased in the Δhog1 in comparison to wild type cells. This effect was independent of iron availability in growth media. Conclusions In C. albicans, the MAP kinase Hog1p is part of the network regulating the response of the organism to iron availability. Hog1p was transiently phosphorylated under high iron concentrations and was essential for a flocculent phenotype. Furthermore, deletion of HOG1 led to

  12. Regulation of Hippo signalling by p38 signalling.

    PubMed

    Huang, Dashun; Li, Xiaojiao; Sun, Li; Huang, Ping; Ying, Hao; Wang, Hui; Wu, Jiarui; Song, Haiyun

    2016-08-01

    The Hippo signalling pathway has a crucial role in growth control during development, and its dysregulation contributes to tumorigenesis. Recent studies uncover multiple upstream regulatory inputs into Hippo signalling, which affects phosphorylation of the transcriptional coactivator Yki/YAP/TAZ by Wts/Lats. Here we identify the p38 mitogen-activated protein kinase (MAPK) pathway as a new upstream branch of the Hippo pathway. In Drosophila, overexpression of MAPKK gene licorne (lic), or MAPKKK gene Mekk1, promotes Yki activity and induces Hippo target gene expression. Loss-of-function studies show that lic regulates Hippo signalling in ovary follicle cells and in the wing disc. Epistasis analysis indicates that Mekk1 and lic affect Hippo signalling via p38b and wts We further demonstrate that the Mekk1-Lic-p38b cascade inhibits Hippo signalling by promoting F-actin accumulation and Jub phosphorylation. In addition, p38 signalling modulates actin filaments and Hippo signalling in parallel to small GTPases Ras, Rac1, and Rho1. Lastly, we show that p38 signalling regulates Hippo signalling in mammalian cell lines. The Lic homologue MKK3 promotes nuclear localization of YAP via the actin cytoskeleton. Upregulation or downregulation of the p38 pathway regulates YAP-mediated transcription. Our work thus reveals a conserved crosstalk between the p38 MAPK pathway and the Hippo pathway in growth regulation. PMID:27402810

  13. Changes in mitogen-activated protein kinase in cerebellar granule neurons by polybrominated diphenyl ethers and polychlorinated biphenyls

    SciTech Connect

    Fan Chunyang; Besas, Jonathan

    2010-05-15

    Polybrominated diphenyl ethers (PBDEs) are used as additive flame retardants and have been detected in human blood, adipose tissue, and breast milk. Both in vitro and in vivo studies have shown that the effects of PBDEs are similar to the known human developmental neurotoxicants such as polychlorinated biphenyls (PCBs) on a molar basis. Previously, we reported that PBDE mixtures and congeners, perturbed calcium homeostasis which is critical for the development and function of the nervous system. In the present study, we tested whether environmentally relevant PBDE/PCB mixtures and congeners affected mitogen-activated protein kinase (MAPK) pathways, which are down-stream events of calcium signaling in cerebellar granule neuronal cultures. In this study, phosphorylated extracellular signal-regulated kinase (pERK)1/2, a widely studied MAPK cascade and known to be involved in learning and memory, levels were quantitated using western blot technique with phospho-specific antibodies. Glutamate (a positive control) increased pERK1/2 in a time- and concentration-dependent manner reaching maximum activation at 5-30 min of exposure and at doses >= 10 muM. Both Aroclor 1254 (a commercial penta PCB mixture) and DE-71 (a commercial penta PBDE mixture) elevated phospho-ERK1/2, producing maximum stimulation at 30 min and at concentrations >= 3 mug/ml; Aroclor 1254 was more efficacious than DE-71. DE-79 (an octabrominated diphenyl ether mixture) also elevated phospho-ERK1/2, but to a lesser extent than that of DE-71. PBDE congeners 47, 77, 99, and 153 also increased phospo-ERK1/2 in a concentration-dependent manner. The data indicated that PBDE congeners are more potent than the commercial mixtures. PCB 47 also increased phospho-ERK1/2 like its structural analog PBDE 47, but to a lesser extent, suggesting that these chemicals affect similar pathways. Cytotoxicity, measured as %LDH release, data showed that higher concentrations (> 30 muM) and longer exposures (> 30 min) are

  14. Detection of phosphorylated mitogen-activated protein kinase in the developing spinal cord of the mouse embryo

    SciTech Connect

    Teraishi, Toshiya; Miura, Kenji

    2011-09-16

    Highlights: {yields} We detected physiologically phosphorylated MAPKs in developing spinal cord. {yields} We detected physiologically phosphorylated MAPKs by an improved method. {yields} p-ERK1/2 and p-JNK1/2 were detected in the marginal layer and the dorsal horn. {yields} p-ERK1/2 and p-JNK1/2 might play critical roles in the developing spinal cord. {yields} Constructing phosphoprotein atlases will be possible if expanding this work. -- Abstract: Global understanding of the proteome is a major research topic. The comprehensive visualization of the distribution of proteins in vivo or the construction of in situ protein atlases may be a valuable strategy for proteomic researchers. Information about the distribution of various proteins under physiological and pathological conditions should be extremely valuable for the basic and clinical sciences. The mitogen-activated protein kinase (MAPK) cascade plays an essential role in intracellular signaling in organisms. This cascade also regulates biological processes involving development, differentiation, and proliferation. Phosphorylation and dephosphorylation are integral reactions in regulating the activity of MAPKs. Changes in the phosphorylation state of MAPKs are rapid and reversible; therefore, the localizations of physiologically phosphorylated MAPKs in vivo are difficult to accurately detect. Furthermore, phosphorylated MAPKs are likely to change phosphorylated states through commonly used experimental manipulations. In the present study, as a step toward the construction of in situ phosphoprotein atlases, we attempted to detect physiologically phosphorylated MAPKs in vivo in developing spinal cords of mice. We previously reported an improved immunohistochemical method for detecting unstable phosphorylated MAPKs. The distribution patterns of phosphorylated MAPKs in the spinal cords of embryonic mice from embryonic day 13 (E13) to E17 were observed with an improved immunohistochemical method. Phosphorylated

  15. Perfluorooctanoic acid disrupts the blood-testis barrier and activates the TNFα/p38 MAPK signaling pathway in vivo and in vitro.

    PubMed

    Lu, Yin; Luo, Bin; Li, Jing; Dai, Jiayin

    2016-04-01

    Perfluorooctanoic acid (PFOA) is correlated with male reproductive dysfunction in animals and humans, but the underlying mechanisms for this remain unknown. To explore the potential reproductive toxicity of PFOA, we studied blood-testis barrier (BTB) damage using in vivo and in vitro models. Male mice were gavage-administered PFOA (0-20 mg/kg/d) for 28 consecutive days, and breeding capacity and permeability of the Sertoli cell-based BTB were estimated. Primary Sertoli cells (SCs) were exposed to PFOA (0-500 μM) for 48 h, and transepithelial electrical resistance (TER) was assessed. Furthermore, BTB-associated protein expression, TNFα content, and phosphorylation and protein levels of the mitogen-activated protein kinase (MAPK) pathway were detected. An apparent decrease in mated and pregnant females per male mouse as well as litter weight was observed. Marked BTB damage was evidenced by increased red biotin fluorescence in the lumen tubular of the testes and the decrease in TER in SCs in vitro. The protein levels of claudin-11, connexin-43, N-cadherin, β-catenin, and occludin were significantly decreased in the testes and also in the SCs in vitro except for N-cadherin and β-catenin. TNFα content showed a dose-dependent increase in the testes and a dose- and time-dependent increase in the SCs, with the p-p38/p38 MAPK ratio also increasing in testes and SCs after PFOA exposure. Moreover, PFOA altered expressions of claudin-11, connexin-43, TNFα, and p-p38 MAPK were recovered 48 h after PFOA removal in the SCs. The SCs appeared to be target to PFOA, and the disruption of the BTB may be crucial to PFOA-induced reproductive dysfunction in mice. PMID:25743374

  16. Bacterial AvrRpt2-Like Cysteine Proteases Block Activation of the Arabidopsis Mitogen-Activated Protein Kinases, MPK4 and MPK111[OPEN

    PubMed Central

    Eschen-Lippold, Lennart; Jiang, Xiyuan; Elmore, James Mitch; Mackey, David; Shan, Libo

    2016-01-01

    To establish infection, pathogens deliver effectors into host cells to target immune signaling components, including elements of mitogen-activated protein kinase (MPK) cascades. The virulence function of AvrRpt2, one of the first identified Pseudomonas syringae effectors, involves cleavage of the plant defense regulator, RPM1-INTERACTING PROTEIN4 (RIN4), and interference with plant auxin signaling. We show now that AvrRpt2 specifically suppresses the flagellin-induced phosphorylation of Arabidopsis (Arabidopsis thaliana) MPK4 and MPK11 but not MPK3 or MPK6. This inhibition requires the proteolytic activity of AvrRpt2, is associated with reduced expression of some plant defense genes, and correlates with enhanced pathogen infection in AvrRpt2-expressing transgenic plants. Diverse AvrRpt2-like homologs can be found in some phytopathogens, plant-associated and soil bacteria. Employing these putative bacterial AvrRpt2 homologs and inactive AvrRpt2 variants, we can uncouple the inhibition of MPK4/MPK11 activation from the cleavage of RIN4 and related members from the so-called nitrate-induced family as well as from auxin signaling. Thus, this selective suppression of specific mitogen-activated protein kinases is independent of the previously known AvrRpt2 targets and potentially represents a novel virulence function of AvrRpt2. PMID:27208280

  17. Bacterial AvrRpt2-Like Cysteine Proteases Block Activation of the Arabidopsis Mitogen-Activated Protein Kinases, MPK4 and MPK11.

    PubMed

    Eschen-Lippold, Lennart; Jiang, Xiyuan; Elmore, James Mitch; Mackey, David; Shan, Libo; Coaker, Gitta; Scheel, Dierk; Lee, Justin

    2016-07-01

    To establish infection, pathogens deliver effectors into host cells to target immune signaling components, including elements of mitogen-activated protein kinase (MPK) cascades. The virulence function of AvrRpt2, one of the first identified Pseudomonas syringae effectors, involves cleavage of the plant defense regulator, RPM1-INTERACTING PROTEIN4 (RIN4), and interference with plant auxin signaling. We show now that AvrRpt2 specifically suppresses the flagellin-induced phosphorylation of Arabidopsis (Arabidopsis thaliana) MPK4 and MPK11 but not MPK3 or MPK6. This inhibition requires the proteolytic activity of AvrRpt2, is associated with reduced expression of some plant defense genes, and correlates with enhanced pathogen infection in AvrRpt2-expressing transgenic plants. Diverse AvrRpt2-like homologs can be found in some phytopathogens, plant-associated and soil bacteria. Employing these putative bacterial AvrRpt2 homologs and inactive AvrRpt2 variants, we can uncouple the inhibition of MPK4/MPK11 activation from the cleavage of RIN4 and related members from the so-called nitrate-induced family as well as from auxin signaling. Thus, this selective suppression of specific mitogen-activated protein kinases is independent of the previously known AvrRpt2 targets and potentially represents a novel virulence function of AvrRpt2. PMID:27208280

  18. Involvement of p38 MAPK in the Anticancer Activity of Cultivated Cordyceps militaris.

    PubMed

    Chou, Shang-Min; Lai, Wan-Jung; Hong, Tzuwen; Tsai, Sheng-Hong; Chen, Yen-Hsun; Kao, Cheng-Hsiang; Chu, Richard; Shen, Tang-Long; Li, Tsai-Kun

    2015-01-01

    Cordyceps militaris is a traditional Chinese medicine frequently used for tonic and therapeutic purposes. Reports from our laboratory and others have demonstrated that extracts of the cultivated fruiting bodies of C. militaris (CM) exhibit a potent cytotoxic effect against many cancer cell lines, especially human leukemia cells. Here, we further investigated the underlying mechanism through which CM is cytotoxic to cancer cells. The CM-mediated induction of PARP cleavage and its related DNA damage signal (γH2AX) was diminished by caspase inhibitor I. In contrast, a ROS scavenger failed to prevent CM-mediated leukemia cell death. Moreover, two signaling molecules, AKT and p38 MAPK, were activated during the course of apoptosis induction. Employing MTT analysis, we found that a p38 MAPK inhibitor but not an AKT inhibitor could rescue cells from CM-mediated cell death, as well as inhibit the cleavage of PARP, formation of apoptotic bodies and up-regulation of the γH2AX signal. These results suggest that CM-mediated leukemia cell death occurs through the activation of the p38 MAPK pathway, indicating its potential therapeutic effects against human leukemia. PMID:26205966

  19. BMP9-Induced Survival Effect in Liver Tumor Cells Requires p38MAPK Activation

    PubMed Central

    García-Álvaro, María; Addante, Annalisa; Roncero, Cesáreo; Fernández, Margarita; Fabregat, Isabel; Sánchez, Aránzazu; Herrera, Blanca

    2015-01-01

    The study of bone morphogenetic proteins (BMPs) role in tumorigenic processes, and specifically in the liver, has gathered importance in the last few years. Previous studies have shown that BMP9 is overexpressed in about 40% of hepatocellular carcinoma (HCC) patients. In vitro data have also shown evidence that BMP9 has a pro-tumorigenic action, not only by inducing epithelial to mesenchymal transition (EMT) and migration, but also by promoting proliferation and survival in liver cancer cells. However, the precise mechanisms driving these effects have not yet been established. In the present work, we deepened our studies into the intracellular mechanisms implicated in the BMP9 proliferative and pro-survival effect on liver tumor cells. In HepG2 cells, BMP9 induces both Smad and non-Smad signaling cascades, specifically PI3K/AKT and p38MAPK. However, only the p38MAPK pathway contributes to the BMP9 growth-promoting effect on these cells. Using genetic and pharmacological approaches, we demonstrate that p38MAPK activation, although dispensable for the BMP9 proliferative activity, is required for the BMP9 protective effect on serum withdrawal-induced apoptosis. These findings contribute to a better understanding of the signaling pathways involved in the BMP9 pro-tumorigenic role in liver tumor cells. PMID:26343646

  20. Structural characterization and immunomodulatory activity of Grifola frondosa polysaccharide via toll-like receptor 4-mitogen-activated protein kinases-nuclear factor κB pathways.

    PubMed

    Ma, Xiaolei; Meng, Meng; Han, Lirong; Cheng, Dai; Cao, Xiaohong; Wang, Chunling

    2016-06-15

    We isolated a neutral polysaccharide from the fruiting body of a mushroom Grifola frondosa (GFP-A). The aim of this study was to characterize a neutral α-d-polysaccharide derived from G. frondosa and evaluate its immunomodulatory effect on toll-like receptor 4, mitogen-activated protein kinases and nuclear factor κB pathways of protein expression in macrophages. The structural features of GFP-A were characterized by physicochemical and instrumental analyses. Its molecular weight was found to be 8.48 × 10(2) kDa. The main chain of GFP-A consisted of (1 → 4)-linked and (1 → 6)-linked α-d-glucopyranosyl, and (1 → 3,6)-linked α-d-mannopyranosyl residues, which branched at C-3. The branches consisted of (1 → 6)-linked α-d-galactopyranosyl and t-l-rhamnopyranosyl residues. An in vitro immunomodulatory assay for pro-inflammatory cytokines (interleukin-1β, interleukin-2, tumor necrosis factor alpha, etc.) using the macrophage cell line, RAW 264.7, revealed that GFP-A exhibited significant immunomodulatory activity by stimulating the toll-like receptor 4, mitogen-activated protein kinases to nuclear factor κB/pathway. PMID:27220562

  1. Testosterone activates mitogen-activated protein kinase and the cAMP response element binding protein transcription factor in Sertoli cells

    PubMed Central

    Fix, Charity; Jordan, Cynthia; Cano, Patricia; Walker, William H.

    2004-01-01

    The androgen testosterone is essential for the Sertoli cell to support the maturation of male germ cells and the production of spermatozoa (spermatogenesis). In the classical view of androgen action, binding of androgen to the intracellular androgen receptor (AR) produces a conformational change in AR such that the receptor–steroid complex has high affinity for specific DNA regulatory elements and is able to stimulate gene transcription. Here, we demonstrate that testosterone can act by means of an alternative, rapid, and sustainable mechanism in Sertoli cells that is independent of AR–DNA interactions. Specifically, the addition of physiological levels of testosterone to Sertoli cells stimulates the mitogen-activated protein kinase signaling pathway and causes phosphorylation of the cAMP response element binding protein transcription factor on serine 133, a modification known to be required for Sertoli cells to support spermatogenesis. Androgen-mediated activation of mitogen-activated protein kinase and cAMP response element binding protein occurs within 1 min, extends for at least 12 h and requires AR. Furthermore, androgen induces endogenous cAMP response element binding protein-mediated transcription in Sertoli cells. These newly identified mechanisms of androgen action in Sertoli cells suggest new targets for developing male contraceptive agents. PMID:15263086

  2. The activation of p38MAPK and JNK pathways in bovine herpesvirus 1 infected MDBK cells.

    PubMed

    Zhu, Liqian; Yuan, Chen; Huang, Liyuan; Ding, Xiuyan; Wang, Jianye; Zhang, Dong; Zhu, Guoqiang

    2016-01-01

    We have shown previously that BHV-1 infection activates Erk1/2 signaling. Here, we show that BHV-1 provoked an early-stage transient and late-stage sustained activation of JNK, p38MAPK and c-Jun signaling in MDBK cells. C-Jun phosphorylation was dependent on JNK. These early events were partially due to the viral entry process. Unexpectedly, reactive oxygen species were not involved in the later activation phase. Interestingly, only activated JNK facilitated the viral multiplication identified through both chemical inhibitor and siRNA. Collectively, this study provides insight into our understanding of early stages of BHV-1 infection. PMID:27590675

  3. Helicobacter pylori-elicited induction in gastric mucosal matrix metalloproteinase-9 (MMP-9) release involves ERK-dependent cPLA2 activation and its recruitment to the membrane-localized Rac1/p38 complex.

    PubMed

    Slomiany, B L; Slomiany, A

    2016-06-01

    Matrix metalloproteinases (MMPs) are a family of endopeptidases implicated in a wide rage of degenerative and inflammatory diseases, including Helicobacter pylori-associated gastritis, and gastric and duodenal ulcer. As gastric mucosal inflammatory responses to H. pylori are characterized by the rise in MMP-9 production, as well as the induction in mitogen-activated protein kinase (MAPK) and Rac1 activation, we investigated the role of Rac1/MAPK in the processes associated with the release of MMP-9. We show that H. pylori LPS-elicited induction in gastric mucosal MMP-9 release is associated with MAPK, ERK and p38 activation, and occurs with the involvement of Rac1 and cytosolic phospholipase A2 (cPLA2). Further, we demonstrate that the LPS-induced MMP-9 release requires ERK-mediated phosphorylation of cPLA2 on Ser(505) that is essential for its membrane localization with Rac1, and that this process necessitates p38 participation. Moreover, we reveal that the activation and membrane translocation of p38 to the Rac1-GTP complex plays a pivotal role in cPLA2-dependent enhancement in MMP-9 release. Hence, our findings provide a strong evidence for the role of ERK/cPLA2 and Rac1/p38/cPLA2 cascade in H. pylori LPS-induced up-regulation in gastric mucosal MMP-9 release. PMID:26886372

  4. Anti-Inflammatory Action of Pterostilbene is Mediated Through the p38 Mitogen-Activated Protein Kinase Pathway in Colon Cancer Cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxidation and nitration/nitrosation stress and generation of pro-inflammatory cytokines are hallmarks of inflammation. Since chronic inflammation is implicated in several pathological conditions in humans, including cancers of the colon, we have been interested in identifying new anti-inflammatory c...

  5. TUMOR NECROSIS FACTOR ALPHA AND GLUCOCORTICOID SYNERGISTICALLY INCREASE LEPTIN PRODUCTION IN HUMAN ADIPOSE TISSUE: ROLE FOR P38 MITOGEN-ACTIVATED PROTEIN KINASE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    TNF increases plasma leptin in humans in vivo, but previous studies showed it decreases leptin in vitro. The objective of this study was to determine the effect of TNF on leptin release from human adipose tissue (AT) from healthy subjects undergoing elective surgery or needle aspirations of AT at a ...

  6. BMP7 retards peripheral myelination by activating p38 MAPK in Schwann cells

    PubMed Central

    Liu, Xiaoyu; Zhao, Yahong; Peng, Su; Zhang, Shuqiang; Wang, Meihong; Chen, Yeyue; Zhang, Shan; Yang, Yumin; Sun, Cheng

    2016-01-01

    Schwann cell (SC) myelination is pivotal for the proper physiological functioning of the nervous system, but the underlying molecular mechanism remains less well understood. Here, we showed that the expression of bone morphogenetic protein 7 (BMP7) inversely correlates with myelin gene expression during peripheral myelination, which suggests that BMP7 is likely a negative regulator for myelin gene expression. Our experiments further showed that the application of BMP7 attenuates the cAMP induced myelin gene expression in SCs. Downstream pathway analysis suggested that both p38 MAPK and SMAD are activated by exogenous BMP7 in SCs. The pharmacological intervention and gene silence studies revealed that p38 MAPK, not SMAD, is responsible for BMP7-mediated suppression of myelin gene expression. In addition, c-Jun, a potential negative regulator for peripheral myelination, was up-regulated by BMP7. In vivo experiments showed that BMP7 treatment greatly impaired peripheral myelination in newborn rats. Together, our results established that BMP7 is a negative regulator for peripheral myelin gene expression and that p38 MAPK/c-Jun axis might be the main downstream target of BMP7 in this process. PMID:27491681

  7. BMP7 retards peripheral myelination by activating p38 MAPK in Schwann cells.

    PubMed

    Liu, Xiaoyu; Zhao, Yahong; Peng, Su; Zhang, Shuqiang; Wang, Meihong; Chen, Yeyue; Zhang, Shan; Yang, Yumin; Sun, Cheng

    2016-01-01

    Schwann cell (SC) myelination is pivotal for the proper physiological functioning of the nervous system, but the underlying molecular mechanism remains less well understood. Here, we showed that the expression of bone morphogenetic protein 7 (BMP7) inversely correlates with myelin gene expression during peripheral myelination, which suggests that BMP7 is likely a negative regulator for myelin gene expression. Our experiments further showed that the application of BMP7 attenuates the cAMP induced myelin gene expression in SCs. Downstream pathway analysis suggested that both p38 MAPK and SMAD are activated by exogenous BMP7 in SCs. The pharmacological intervention and gene silence studies revealed that p38 MAPK, not SMAD, is responsible for BMP7-mediated suppression of myelin gene expression. In addition, c-Jun, a potential negative regulator for peripheral myelination, was up-regulated by BMP7. In vivo experiments showed that BMP7 treatment greatly impaired peripheral myelination in newborn rats. Together, our results established that BMP7 is a negative regulator for peripheral myelin gene expression and that p38 MAPK/c-Jun axis might be the main downstream target of BMP7 in this process. PMID:27491681

  8. Stress- and mitogen-induced phosphorylation of the synapse-associated protein SAP90/PSD-95 by activation of SAPK3/p38gamma and ERK1/ERK2.

    PubMed Central

    Sabio, Guadalupe; Reuver, Suzana; Feijoo, Carmen; Hasegawa, Masato; Thomas, Gareth M; Centeno, Francisco; Kuhlendahl, Sven; Leal-Ortiz, Sergio; Goedert, Michel; Garner, Craig; Cuenda, Ana

    2004-01-01

    SAPK3 (stress-activated protein kinase-3, also known as p38gamma) is a member of the mitogen-activated protein kinase family; it phosphorylates substrates in response to cellular stress, and has been shown to bind through its C-terminal sequence to the PDZ domain of alpha1-syntrophin. In the present study, we show that SAP90 [(synapse-associated protein 90; also known as PSD-95 (postsynaptic density-95)] is a novel physiological substrate for both SAPK3/p38gamma and the ERK (extracellular-signal-regulated protein kinase). SAPK3/p38gamma binds preferentially to the third PDZ domain of SAP90 and phosphorylates residues Thr287 and Ser290 in vitro, and Ser290 in cells in response to cellular stresses. Phosphorylation of SAP90 is dependent on the binding of SAPK3/p38gamma to the PDZ domain of SAP90. It is not blocked by SB 203580, which inhibits SAPK2a/p38alpha and SAPK2b/p38beta but not SAPK3/p38gamma, or by the ERK pathway inhibitor PD 184352. However, phosphorylation is abolished when cells are treated with a cell-permeant Tat fusion peptide that disrupts the interaction of SAPK3/p38gamma with SAP90. ERK2 also phosphorylates SAP90 at Thr287 and Ser290 in vitro, but this does not require PDZ-dependent binding. SAP90 also becomes phosphorylated in response to mitogens, and this phosphorylation is prevented by pretreatment of the cells with PD 184352, but not with SB 203580. In neurons, SAP90 and SAPK3/p38gamma co-localize and they are co-immunoprecipitated from brain synaptic junctional preparations. These results demonstrate that SAP90 is a novel binding partner for SAPK3/p38gamma, a first physiological substrate described for SAPK3/p38gamma and a novel substrate for ERK1/ERK2, and that phosphorylation of SAP90 may play a role in regulating protein-protein interactions at the synapse in response to adverse stress- or mitogen-related stimuli. PMID:14741046

  9. Activation of the Classical Mitogen-Activated Protein Kinases Is Part of the Shiga Toxin-Induced Ribotoxic Stress Response and May Contribute to Shiga Toxin-Induced Inflammation

    PubMed Central

    Ahluwalia, Amrita; Schimmel, Jennifer J.; Rogers, Arlin B.; Leong, John M.; Thorpe, Cheleste M.

    2015-01-01

    Infection with enterohemorrhagic Escherichia coli (EHEC) can result in severe disease, including hemorrhagic colitis and the hemolytic uremic syndrome. Shiga toxins (Stx) are the key EHEC virulence determinant contributing to severe disease. Despite inhibiting protein synthesis, Shiga toxins paradoxically induce the expression of proinflammatory cytokines from various cell types in vitro, including intestinal epithelial cells (IECs). This effect is mediated in large part by the ribotoxic stress response (RSR). The Shiga toxin-induced RSR is known to involve the activation of the stress-activated protein kinases (SAPKs) p38 and JNK. In some cell types, Stx also can induce the classical mitogen-activated protein kinases (MAPKs) or ERK1/2, but the mechanism(s) by which this activation occurs is unknown. In this study, we investigated the mechanism by which Stx activates ERK1/2s in IECs and the contribution of ERK1/2 activation to interleukin-8 (IL-8) expression. We demonstrate that Stx1 activates ERK1/2 in a biphasic manner: the first phase occurs in response to StxB1 subunit, while the second phase requires StxA1 subunit activity. We show that the A subunit-dependent ERK1/2 activation is mediated through ZAK-dependent signaling, and inhibition of ERK1/2 activation via the MEK1/2 inhibitors U0126 and PD98059 results in decreased Stx1-mediated IL-8 mRNA. Finally, we demonstrate that ERK1/2 are activated in vivo in the colon of Stx2-intoxicated infant rabbits, a model in which Stx2 induces a primarily neutrophilic inflammatory response. Together, our data support a role for ERK1/2 activation in the development of Stx-mediated intestinal inflammation. PMID:26483408

  10. Livin enhances tumorigenesis by regulating the mitogen-activated protein kinase signaling pathway in human hypopharyngeal squamous cell carcinoma.

    PubMed

    Kim, Sun-Ae; Yoon, Tae Mi; Lee, Dong Hoon; Lee, Joon Kyoo; Park, Young-Lan; Chung, Ik-Joo; Joo, Young-Eun; Lim, Sang Chul

    2016-07-01

    Livin, a member of the human inhibitor of apoptosis protein (IAP) family, is expressed at high levels in various human cancer tissues and may have prognostic significance. The aim of the present study was to evaluate the effect of Livin on tumor cell behavior and oncogenic signaling pathways in human hypopharyngeal squamous cell carcinoma (HSCC). Reverse transcription‑quantitative polymerase chain reaction and western blot analyses were used to determine the mRNA and protein expression levels, respectively. A cell proliferation assay and cell cycle analysis were used to assess the functional effects of small interfering RNA‑mediated Livin knockdown. Livin was overexpressed in fresh HSCC tissues, compared with the adjacent normal mucosa. Livin knockdown led to significantly reduced cell proliferation and cell cycle arrest in the G1 phase of the human HSCC cells. The expression levels of c‑myc, cyclin D1, cyclin D3, cyclin‑dependent kinase (CDK)4 and CDK6 were decreased. The phosphorylation levels of extracellular signal‑regulated kinase 1/2, p38, c‑Jun N-terminal kinase and Akt were also decreased by Livin knockdown in the HSCC cells. Taken together, the results of the present study suggested that Livin may enhance tumorigenesis by modulating the mitogen‑activated/Akt signaling pathways in human HSCC. PMID:27175933

  11. p38 MAPK α and β isoforms differentially regulate plasma membrane localization of MRP2.

    PubMed

    Schonhoff, Christopher M; Park, Se Won; Webster, Cynthia R L; Anwer, M Sawkat

    2016-06-01

    In hepatocytes, cAMP both activates p38 mitogen-activated protein kinase (MAPK) and increases the amount of multidrug resistance-associated protein-2 (MRP2) in the plasma membrane (PM-MRP2). Paradoxically, taurolithocholate (TLC) activates p38 MAPK but decreases PM-MRP2 in hepatocytes. These opposing effects of cAMP and TLC could be mediated via different p38 MAPK isoforms (α and β) that are activated differentially by upstream kinases (MKK3, MKK4, and MKK6). Thus we tested the hypothesis that p38α MAPK and p38β MAPK mediate increases and decreases in PM-MRP2 by cAMP and TLC, respectively. Studies were conducted in hepatocytes isolated from C57BL/6 wild-type (WT) and MKK3-knockout (MKK3(-/-)) mice and in a hepatoma cell line (HuH7) that overexpresses sodium-taurocholate cotransporting polypeptide (NTCP) (HuH-NTCP). Cyclic AMP activated MKK3, p38 MAPK, and p38α MAPK and increased PM-MRP2 in WT hepatocytes, but failed to activate p38α MAPK or increase PM-MRP2 in MKK3(-/-) hepatocytes. In contrast to cAMP, TLC activated total p38 MAPK but decreased PM-MRP2, and did not activate MKK3 or p38α MAPK in WT hepatocytes. In MKK3(-/-) hepatocytes, TLC still decreased PM-MRP2 and activated p38 MAPK, indicating that these effects are not MKK3-dependent. Additionally, TLC activated MKK6 in MKK3(-/-) hepatocytes, and small interfering RNA knockdown of p38β MAPK abrogated TLC-mediated decreases in PM-MRP2 in HuH-NTCP cells. Taken together, these results suggest that p38α MAPK facilitates plasma membrane insertion of MRP2 by cAMP, whereas p38β MAPK mediates retrieval of PM-MRP2 by TLC. PMID:27012769

  12. Inflammation and Mechanical Stretch Promote Aortic Stiffening in Hypertension Through Activation of p38 MAP Kinase

    PubMed Central

    Wu, Jing; Thabet, Salim R.; Kirabo, Annet; Trott, Daniel W.; Saleh, Mohamed A.; Xiao, Liang; Madhur, Meena S.; Chen, Wei; Harrison, David G.

    2014-01-01

    Rationale Aortic stiffening commonly occurs in hypertension and further elevates systolic pressure. Hypertension is also associated with vascular inflammation and increased mechanical stretch. The interplay between inflammation, mechanical stretch and aortic stiffening in hypertension remains undefined. Objective To determine the role of inflammation and mechanical stretch in aortic stiffening. Methods and Results Chronic angiotensin II infusion caused marked aortic adventitial collagen deposition, as quantified by Masson’s Trichrome Blue staining and biochemically by hydroxyproline content, in wild-type (WT) but not in Recombination Activation Gene-1 deficient (RAG-1−/−) mice. Aortic compliance, defined by ex-vivo measurements of stress-strain curves, was reduced by chronic angiotensin II infusion in WT mice (p<0.01) but not in RAG-1−/− mice (p<0.05). Adoptive transfer of T cells to RAG-1−/− mice restored aortic collagen deposition and stiffness to values observed in WT mice. Mice lacking the T cell derived cytokine IL-17a were also protected against aortic stiffening. In additional studies, we found that blood pressure normalization by treatment with hydralazine and hydrochlorothiazide prevented angiotensin II-induced vascular T cell infiltration, aortic stiffening and collagen deposition. Finally, we found that mechanical stretch induces expression of collagen 1α1, 3α1 and 5a1 in cultured aortic fibroblasts in a p38 MAP kinase-dependent fashion, and that inhibition of p38 prevented angiotensin II-induced aortic stiffening in vivo. IL-17a also induced collagen 3a1 expression via activation of p38 MAP kinase. Conclusions Our data define a pathway in which inflammation and mechanical stretch lead to vascular inflammation that promotes collagen deposition. The resultant increase in aortic stiffness likely further worsens systolic hypertension and its attendant end-organ damage. PMID:24347665

  13. Anti-citrullinated protein antibodies activated ERK1/2 and JNK mitogen-activated protein kinases via binding to surface-expressed citrullinated GRP78 on mononuclear cells.

    PubMed

    Lu, Ming-Chi; Lai, Ning-Sheng; Yin, Wen-Yao; Yu, Hui-Chun; Huang, Hsien-Bin; Tung, Chien-Hsueh; Huang, Kuang-Yung; Yu, Chia-Li

    2013-04-01

    In a previous study, we found that anti-citrullinated protein antibodies (ACPAs) enhance nuclear factor (NF)-κB activity and tumor necrosis factor (TNF)-α production by normal human peripheral blood mononuclear cells (PBMCs) and U937 cells via binding to surface-expressed citrullinated glucose-regulated protein 78 (cit-GRP78). However, the downstream signaling pathways remain unclear after binding. In the present study, we firstly measured the effects of different kinase inhibitors on ACPA-mediated TNF-α production from normal PBMCs and monocytes. Then, the native and phosphorylated mitogen-activated protein kinases (MAPKs) were detected in ACPA-activated U937 cells by Western blotting. We also explored the role of the phosphoinositide 3-kinase (PI3K)-Akt pathway in activating IκB kinase alpha (IKK-α) in ACPA-stimulated U937 cells. Finally, we measured the amount of cit-GRP78 from PBMC membrane extracts in RA patients and controls. We found that MAPK and Akt inhibitors, but not PI3K inhibitor, remarkably suppressed ACPA-mediated TNF-α production. Interestingly, ACPAs selectively activated extracellular signal-regulated kinase 1/2 (ERK1/2) and c-jun N-terminal kinase (JNK), but not p38 MAPK, in U937 cells. This activation was suppressed by cit-GRP78, but not GRP78. The JNK activation further enhanced the phosphorylation of Akt and IKK-α. The expression of cit-GRP78 on cell membrane was higher in RA than normal PBMCs. Taken together; these results suggest that through binding to surface, over-expressed cit-GRP78 on RA PBMCs, ACPAs selectively activate ERK1/2 and JNK signaling pathways to enhance IKK-α phosphorylation, which leads to the activation of NF-κB and the production of TNF-α . PMID:23188524

  14. Unconjugated Bilirubin exerts Pro-Apoptotic Effect on Platelets via p38-MAPK activation

    PubMed Central

    NaveenKumar, Somanathapura K.; Thushara, Ram M.; Sundaram, Mahalingam S.; Hemshekhar, Mahadevappa; Paul, Manoj; Thirunavukkarasu, Chinnasamy; Basappa; Nagaraju, Ganesh; Raghavan, Sathees C.; Girish, Kesturu S.; Kemparaju, Kempaiah; Rangappa, Kanchugarakoppal S.

    2015-01-01

    Thrombocytopenia is one of the most frequently observed secondary complications in many pathological conditions including liver diseases, where hyperbilirubinemia is very common. The present study sought to find the cause of thrombocytopenia in unconjugated hyperbilirubinemic conditions. Unconjugated bilirubin (UCB), an end-product of heme catabolism, is known to have pro-oxidative and cytotoxic effects at high serum concentration. We investigated the molecular mechanism underlying the pro-apoptotic effect of UCB on human platelets in vitro, and followed it up with studies in phenylhydrazine-induced hyperbilirubinemic rat model and hyperbilirubinemic human subjects. UCB is indeed found to significantly induce platelet apoptotic events including elevated endogenous reactive oxygen species generation, mitochondrial membrane depolarization, increased intracellular calcium levels, cardiolipin peroxidation and phosphatidylserine externalization (p < 0.001) as evident by FACS analysis. The immunoblots show the elevated levels of cytosolic cytochrome c and caspase activation in UCB-treated platelets. Further, UCB is found to induce mitochondrial ROS generation leading to p38 activation, followed by downstream activation of p53, ultimately resulting in altered expression of Bcl-2 and Bax proteins as evident from immunoblotting. All these parameters conclude that elevated unconjugated bilirubin causes thrombocytopenia by stimulating platelet apoptosis via mitochondrial ROS-induced p38 and p53 activation. PMID:26459859

  15. Endothelium-Derived 5-Methoxytryptophan Protects Endothelial Barrier Function by Blocking p38 MAPK Activation

    PubMed Central

    Chu, Ling-Yun; Wang, Yi-Fu; Cheng, Huei-Hsuan; Kuo, Cheng-Chin; Wu, Kenneth K.

    2016-01-01

    The endothelial junction is tightly controlled to restrict the passage of blood cells and solutes. Disruption of endothelial barrier function by bacterial endotoxins, cytokines or growth factors results in inflammation and vascular damage leading to vascular diseases. We have identified 5-methoxytryptophan (5-MTP) as an anti-inflammatory factor by metabolomic analysis of conditioned medium of human fibroblasts. Here we postulated that endothelial cells release 5-MTP to protect the barrier function. Conditioned medium of human umbilical vein endothelial cells (HUVECs) prevented endothelial hyperpermeability and VE-cadherin downregulation induced by VEGF, LPS and cytokines. We analyzed the metabolomic profile of HUVEC conditioned medium and detected 5-MTP but not melatonin, serotonin or their catabolites, which was confirmed by enzyme-linked immunosorbent assay. Addition of synthetic pure 5-MTP preserved VE-cadherin and maintained barrier function despite challenge with pro-inflammatory mediators. Tryptophan hydroxylase-1, an enzyme required for 5-MTP biosynthesis, was downregulated in HUVECs by pro-inflammatory mediators and it was accompanied by reduction of 5-MTP. 5-MTP protected VE-cadherin and prevented endothelial hyperpermeability by blocking p38 MAPK activation. A chemical inhibitor of p38 MAPK, SB202190, exhibited a similar protective effect as 5-MTP. To determine whether 5-MTP prevents vascular hyperpermeability in vivo, we evaluated the effect of 5-MTP administration on LPS-induced murine microvascular permeability with Evans blue. 5-MTP significantly prevented Evans blue dye leakage. Our findings indicate that 5-MTP is a new class of endothelium-derived molecules which protects endothelial barrier function by blocking p38 MAPK. PMID:27002329

  16. Characterization of warm-reactive IgG anti-lymphocyte antibodies in systemic lupus erythematosus. Relative specificity for mitogen-activated T cells and their soluble products.

    PubMed

    Litvin, D A; Cohen, P L; Winfield, J B

    1983-01-01

    In addition to previously described cold-reactive IgM anti-lymphocyte antibodies maximally cytotoxic for resting cells at 15 degrees C, sera from patients with systemic lupus erythematosus (SLE) were found to contain a new type of antibody preferentially reactive at physiologic temperatures with mitogen-activated lymphocytes. This antibody lacked specificity for unstimulated lymphocytes, and was shown to be of the IgG class both by indirect immunofluorescence and in immunochemical experiments. Certain SLE sera also contained IgG antibodies with the capacity to develop plaques with mitogen-activated T lymphocyte preparations used in a reverse hemolytic plaque assay, indicating reactivity with products released by activated cells. The elimination of the ability of SLE sera to develop plaques after absorption with viable mitogen-stimulated lymphocytes, but not with resting cells, suggested that these antibodies were directed toward activation "neoantigen(s)" shed from the cell surface membrane. Surface membrane phenotype analyses performed by using a variety of monoclonal antibody reagents indicated that the plaque-forming cells (PFC) detected with SLE sera were activated T lymphocytes not restricted to single OKT4+, OKT8+, or Ia antigen+ subpopulations. Essentially all PFC expressed transferrin receptors. The present data raise the possibility that certain of the interesting effects of anti-lymphocyte antibodies on immunologic function in SLE may be mediated by interactions of these new type(s) of antibodies with activated lymphocytes or their products, rather than through blocking or depletion effects on resting precursor cells. PMID:6600174

  17. Modulation of Cyclins, p53 and Mitogen-Activated Protein Kinases Signaling in Breast Cancer Cell Lines by 4-(3,4,5-Trimethoxyphenoxy)benzoic Acid

    PubMed Central

    Lee, Kuan-Han; Ho, Wen-Yueh; Wu, Shu-Jing; Omar, Hany A.; Huang, Po-Jui; Wang, Clay C. C.; Hung, Jui-Hsiang

    2014-01-01

    Despite the advances in cancer therapy and early detection, breast cancer remains a leading cause of cancer-related deaths among females worldwide. The aim of the current study was to investigate the antitumor activity of a novel compound, 4-(3,4,5-trimethoxyphenoxy)benzoic acid (TMPBA) and its mechanism of action, in breast cancer. Results indicated the relatively high sensitivity of human breast cancer cell-7 and MDA-468 cells towards TMPBA with IC50 values of 5.9 and 7.9 μM, respectively compared to hepatocarcinoma cell line Huh-7, hepatocarcinoma cell line HepG2, and cervical cancer cell line Hela cells. Mechanistically, TMPBA induced apoptotic cell death in MCF-7 cells as indicated by 4′,6-diamidino-2-phenylindole (DAPI) nuclear staining, cell cycle analysis and the activation of caspase-3. Western blot analysis revealed the ability of TMPBA to target pathways mediated by mitogen-activated protein (MAP) kinases, 5′ adenosine monophosphate-activated protein kinase (AMPK), and p53, of which the concerted action underlined its antitumor efficacy. In addition, TMPBA induced alteration of cyclin proteins’ expression and consequently modulated the cell cycle. Taken together, the current study underscores evidence that TMPBA induces apoptosis in breast cancer cells via the modulation of cyclins and p53 expression as well as the modulation of AMPK and mitogen-activated protein kinases (MAPK) signaling. These findings support TMPBA’s clinical promise as a potential candidate for breast cancer therapy. PMID:24406729

  18. Role of mitogen-activated protein kinases and nuclear factor-kappa B in 1,3-dichloro-2-propanol-induced hepatic injury

    PubMed Central

    Lee, In-Chul; Lee, Sang-Min; Ko, Je-Won; Park, Sung-Hyeuk; Shin, In-Sik; Moon, Changjong; Kim, Sung-Ho

    2016-01-01

    In this study, the potential hepatotoxicity of 1,3-dichloro-2-propanol and its hepatotoxic mechanisms in rats was investigated. The test chemical was administered orally to male rats at 0, 27.5, 55, and 110 mg/kg body weight. 1,3-Dichloro-2-propanol administration caused acute hepatotoxicity, as evidenced by an increase in serum aminotransferases, total cholesterol, and total bilirubin levels and a decrease in serum glucose concentration in a dose-dependent manner with corresponding histopathological changes in the hepatic tissues. The significant increase in malondialdehyde content and the significant decrease in glutathione content and antioxidant enzyme activities indicated that 1,3-dichloro-2-propanol-induced hepatic damage was mediated through oxidative stress, which caused a dose-dependent increase of hepatocellular apoptotic changes in the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay and immunohistochemical analysis for caspase-3. The phosphorylation of mitogen-activated protein kinases caused by 1,3-dichloro-2-propanol possibly involved in hepatocellular apoptotic changes in rat liver. Furthermore, 1,3-dichloro-2-propanol induced an inflammatory response through activation of nuclear factor-kappa B signaling that coincided with the induction of pro-inflammatory mediators or cytokines in a dose-dependent manner. Taken together, these results demonstrate that hepatotoxicity may be related to oxidative stress-mediated activation of mitogen-activated protein kinases and nuclear factor-kappa B-mediated inflammatory response. PMID:27051440

  19. Kappa Opioid Receptor Activation of p38 MAPK Is GRK3- and Arrestin-dependent in Neurons and Astrocytes*

    PubMed Central

    Bruchas, Michael R.; Macey, Tara A.; Lowe, Janet D.; Chavkin, Charles

    2007-01-01

    AtT-20 cells expressing the wild-type kappa opioid receptor (KOR) increased phospho-p38 MAPK following treatment with the kappa agonist U50,488. The increase was blocked by the kappa antagonist norbinaltorphimine and not evident in untransfected cells. In contrast, U50,488 treatment of AtT-20 cells expressing KOR having alanine substituted for serine-369 (KSA) did not increase phospho-p38. Phosphorylation of serine 369 in the KOR carboxyl terminus by G-protein receptor kinase 3 (GRK3) was previously shown to be required for receptor desensitization, and the results suggest that p38 MAPK activation by KOR may require arrestin recruitment. This hypothesis was tested by transfecting arrestin3-(R170E), a dominant positive form of arrestin that does not require receptor phosphorylation for activation. AtT-20 cells expressing both KSA and arrestin3-(R170E) responded to U50,488 treatment with an increase in phospho-p38 consistent with the hypothesis. Primary cultured astrocytes (glial fibrillary acidic protein-positive) and neurons (γ-aminobutyric acid-positive) isolated from mouse striata also responded to U50,488 by increasing phospho-p38 immunolabeling. p38 activation was not evident in either striatal astrocytes or neurons isolated from KOR knock-out mice or GRK3 knock-out mice. Astrocytes pretreated with small interfering RNA for arrestin3 were also unable to activate p38 in response to U50,488 treatment. Furthermore, in striatal neurons, the kappa-mediated phospho-p38 labeling was colocalized with arrestin3. These findings suggest that KOR may activate p38 MAPK in brain by a GRK3 and arrestin-dependent mechanism. PMID:16648139

  20. Palmitate induces COX-2 expression via the sphingolipid pathway-mediated activation of NF-κB, p38, and ERK in human dermal fibroblasts.

    PubMed

    Oh, Eunhye; Yun, Mihee; Kim, Seong Keun; Seo, Gimoon; Bae, Joon Sung; Joo, Kwon; Chae, Gue Tae; Lee, Seong-Beom

    2014-05-01

    It has been suggested that free fatty acids (FFA) such as palmitate, which are secreted from enlarged adipocytes in the subcutaneous fat of obese subjects, serve as a link between obesity and altered skin functions. Cyclooxygenease-2 (COX-2) and prostanoids participate in the induction of impaired dermal function. In the current study, we investigated the issue of whether palmitate induces COX-2 expression via the sphingolipid pathway-mediated activation of NF-κB or mitogen-activated protein kinase (MAPK) pathways in human dermal fibroblasts. Palmitate treatment significantly induced COX-2 expression and prostaglandin E2 (PGE2) release in human dermal fibroblasts. In addition, pre-treatment with triacsin C, an inhibitor of acyl-CoA synthetase in de novo ceramide synthesis, was found to reduce palmitate-induced COX-2 expression and PGE2 release in human dermal fibroblast. The findings also show that palmitate-induced COX-2 expression and PGE2 release are mediated by the NF-κB, p38, and extracellular signal-regulated kinase (ERK) MAPK pathways. These findings point to a new mechanism for explaining the link between increased FFAs in obesity and impaired dermal function. PMID:24337700

  1. Hemoglobin Receptor Protein from Porphyromonas gingivalis Induces Interleukin-8 Production in Human Gingival Epithelial Cells through Stimulation of the Mitogen-Activated Protein Kinase and NF-κB Signal Transduction Pathways

    PubMed Central

    Fujita, Yuki; Nakayama, Masaaki; Naito, Mariko; Yamachika, Eiki; Inoue, Tetsuyoshi; Nakayama, Koji; Iida, Seiji

    2014-01-01

    Periodontitis is an inflammatory disease of polymicrobial origin affecting the tissues supporting the tooth. The oral anaerobic bacterium Porphyromonas gingivalis, which is implicated as an important pathogen for chronic periodontitis, triggers a series of host inflammatory responses that promote the destruction of periodontal tissues. Among the virulence factors of P. gingivalis, hemoglobin receptor protein (HbR) is a major protein found in culture supernatants. In this study, we investigated the roles of HbR in the production of inflammatory mediators. We found that HbR induced interleukin-8 (IL-8) production in the human gingival epithelial cell line Ca9-22. p38 mitogen-activated protein kinase (MAPK) and extracellular signal-related kinase 1/2 (Erk1/2) were activated in HbR-stimulated Ca9-22 cells. Inhibitors of p38 MAPK (SB203580) and Erk1/2 (PD98059) blocked HbR-induced IL-8 production. Additionally, HbR stimulated the translocation of NF-κB-p65 to the nucleus, consistent with enhancement of IL-8 expression by activation of the NF-κB pathway. In addition, small interfering RNA (siRNA) targeting activating transcription factor 2 (ATF-2) or cyclic AMP-response element-binding protein (CREB) inhibited HbR-induced IL-8 production. Moreover, pretreatment with SB203580 and PD98059 reduced HbR-induced phosphorylation of CREB and ATF-2, respectively. Combined pretreatment with an inhibitor of NF-κB (BAY11-7082) and SB203580 was more efficient in inhibiting the ability of HbR to induce IL-8 production than pretreatment with either BAY11-7082 or SB203580 alone. Thus, in Ca9-22 cells, the direct activation of p38 MAPK and Erk1/2 by HbR caused the activation of the transcription factors ATF-2, CREB, and NF-κB, thus resulting in the induction of IL-8 production. PMID:24126532

  2. Toll-Like Receptor- and Filarial Antigen-Mediated, Mitogen-Activated Protein Kinase- and NF-κB-Dependent Regulation of Angiogenic Growth Factors in Filarial Lymphatic Pathology

    PubMed Central

    Anuradha, R.; Kumar, N. Pavan; George, P. Jovvian; Kumaraswami, V.; Nutman, Thomas B.

    2012-01-01

    Filarial lymphatic pathology is of multifactorial origin, with inflammation, lymphangiogenesis, and innate immune responses all playing important roles. The role of Toll-like receptors (TLRs) in the development of filarial pathology is well characterized. Similarly, the association of pathology with elevated levels of plasma angiogenic factors has also been documented. To examine the association between TLR function and the development of lymphangiogenesis in filarial infections, we examined TLR- and filarial antigen-induced expression and production of various angiogenic growth factors. We demonstrate that TLR ligands (specifically TLR2, -3, and -5 ligands) induce significantly increased expression/production of vascular endothelial growth factor A (VEGF-A) and angiopoietin-1 (Ang-1) in the peripheral blood mononuclear cells of individuals with lymphatic pathology (CP individuals) compared to that in cells of asymptomatic infected (INF) individuals. Similarly, filarial antigens induce significantly enhanced production of VEGF-C in CP compared with INF individuals. TLR2-mediated enhancement of angiogenic growth factor production in CP individuals was shown to be dependent on mitogen-activated protein kinase (MAPK) and NF-κB signaling, as pharmacologic inhibition of either extracellular signal-regulated kinase 1/2 (ERK1/2), p38 MAPK, or NF-κB signaling resulted in significantly diminished production of VEGF-A and Ang-1. Our data therefore strongly suggest an important association between TLR signaling and lymphangiogenesis in the development of pathology in human lymphatic filariasis. PMID:22508858

  3. Antinociceptive effects of analgesic-antitumor peptide (AGAP), a neurotoxin from the scorpion Buthus martensii Karsch, on formalin-induced inflammatory pain through a mitogen-activated protein kinases-dependent mechanism in mice.

    PubMed

    Mao, Qinghong; Ruan, Jiaping; Cai, Xueting; Lu, Wuguang; Ye, Juan; Yang, Jie; Yang, Yang; Sun, Xiaoyan; Cao, Junli; Cao, Peng

    2013-01-01

    In the present study, we investigated the anti-nociceptive effect and the underlying mechanism of the analgesic-antitumor peptide (AGAP), a neurotoxin from the scorpion Buthus martensii Karsch. AGAP in doses of 0.2, 1 and 5 µg was injected intraplantarly (i.pl.) before formalin injection 10 min at the same site. The suppression by intraplantar injection of AGAP on formalin-induced spontaneous nociceptive behaviors was investigated. The results show that AGAP could dose-dependently inhibit formalin-induced two-phase spontaneous flinching response. To investigate the mechanism of action of treatment with AGAP in inflammatory pain, the expressions of peripheral and spinal phosphorylated mitogen-activated protein kinases (phospho-MAPKs) including p-p38, p-ERK and p-JNK were examined. We found that formalin increased the expressions of peripheral and spinal MAPKs, which were prevented by pre-intraplantar injection of AGAP in inflammation pain model in mice. AGAP could also decrease the expression of spinal Fos induced by formalin. Furthermore, combinations the lower doses of the inhibitors of MAPKs (U0126, SP600125, or SB203580 0.1 µg) with the lower dose of AGAP (0.2 µg), the results suggested that AGAP could potentiate the effects of the inhibitors of MAPKs on the inflammatory pain. The present results indicate that pre-intraplantar injection of AGAP prevents the inflammatory pain induced by formalin through a MAPKs-mediated mechanism in mice. PMID:24244296

  4. Activation of Type 4 Metabotropic Glutamate Receptor Attenuates Oxidative Stress-Induced Death of Neural Stem Cells with Inhibition of JNK and p38 MAPK Signaling.

    PubMed

    Zhang, Zhichao; Ma, Wen; Wang, Li; Gong, Hanshi; Tian, Yumei; Zhang, Jianshui; Liu, Jianxin; Lu, Haixia; Chen, Xinlin; Liu, Yong

    2015-11-15

    Promoting both endogenous and exogenous neural stem cells' (NSCs) survival in the hostile host environments is essential to cell replacement therapy for central nervous system (CNS) disorders. Type 4 metabotropic glutamate receptor (mGluR4), one of the members of mGluRs, has been shown to protect neurons from acute and chronic excitotoxic insults in various brain damages. The present study investigated the preventive effects of mGluR4 on NSC injury induced by oxidative stress. Under challenge with H2O2, loss of cell viability was observed in cultured rat NSCs, and treatment with selective mGluR4 agonist VU0155041 conferred protective effects against the loss of cellular viability in a concentration-dependent manner, as shown by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Pretreatment of VU0155041 (30 μM) also inhibited the excessive NSC death induced by H2O2, and group III mGluRs antagonist (RS)-a-methylserine-O-phosphate (MSOP) or gene-targeted knockdown abolished the protective action of mGluR4, indicated by propidium iodide-Hoechst and terminal deoxynucleotidyl transferase-mediated UTP nick end labeling (TUNEL) staining. Western blot assay demonstrated that mGluR4 activation reversed the decreased procaspase-8/9/3and the destructed Bcl-2/Bax expressing balance, and likewise, MSOP and mGluR4 knockdown abrogated the action of mGluR4 activity. Furthermore, inhibition of JNK and p38 mitogen-activated protein kinases (MAPKs) were observed after mGluR4 activation, and as paralleling control, JNK-specific inhibitor SP600125 and p38-specific inhibitor SB203580 significantly rescued the H2O2-mediated NSC apoptosis and cleavage of procaspase-3. We suggest that activation of mGluR4 prevents oxidative stress-induced NSC death and apoptotic-associated protein activities with involvement of inhibiting the JNK and p38 pathways in cell culture. Our findings may help to develop strategies for enhancing the resided and transplanted NSC survival

  5. GhMPK17, a Cotton Mitogen-Activated Protein Kinase, Is Involved in Plant Response to High Salinity and Osmotic Stresses and ABA Signaling

    PubMed Central

    Li, Yang; Sun, Xiang; Wang, Na-Na; Gong, Si-Ying; Zheng, Yong; Li, Xue-Bao

    2014-01-01

    Mitogen-activated protein kinase (MAPK) cascades play pivotal roles in mediating biotic and abiotic stress responses. Cotton (Gossypium hirsutum) is the most important textile crop in the world, and often encounters abiotic stress during its growth seasons. In this study, a gene encoding a mitogen-activated protein kinase (MAPK) was isolated from cotton, and designated as GhMPK17. The open reading frame (ORF) of GhMPK17 gene is 1494 bp in length and encodes a protein with 497 amino acids. Quantitative RT-PCR analysis indicated that GhMPK17 expression was up-regulated in cotton under NaCl, mannitol and ABA treatments. The transgenic Arabidopsis plants expressing GhMPK17 gene showed higher seed germination, root elongation and cotyledon greening/expansion rates than those of the wild type on MS medium containing NaCl, mannitol and exogenous ABA, suggesting that overexpression of GhMPK17 in Arabidopsis increased plant ABA-insensitivity, and enhanced plant tolerance to salt and osmotic stresses. Furthermore, overexpression of GhMPK17 in Arabidopsis reduced H2O2 level and altered expression of ABA- and abiotic stress-related genes in the transgenic plants. Collectively, these data suggested that GhMPK17 gene may be involved in plant response to high salinity and osmotic stresses and ABA signaling. PMID:24743296

  6. MKK3, an upstream activator of p38, contributes to formalin phase 2 and late allodynia in mice

    PubMed Central

    Sorkin, Linda S; Boyle, David; Hammaker, Deepa; Herman, David; Vail, Emily; Firestein, Gary S

    2009-01-01

    Spinal p38 MAP kinase plays a key role in chronic pain behavior. However, clinical development of p38 inhibitors has been hindered by significant toxicity. To evaluate alternative strategies of p38 regulation, we determined if known upstream activators of p38 (MKK3 and MKK6), are involved in development and maintenance of pain and spinal p38 phosphorylation. Acute pain behaviors were not altered in MKK3 or MKK6 deficient mice. The phase 2 formalin response was delayed in MKK3−/− mice, but unchanged in magnitude, while the response remained normal in MKK6−/− mice. More striking, late formalin allodynia (3 to 18 days post-injection) was prominent in wild type and MKK6−/− mice, but was delayed for several days in MKK3−/− mice. In wild type, but not MKK3−/− mice, intraplantar formalin elicited increases in ipsilateral spinal MKK3/6 phosphorylation acutely and again at 9 days post injection. Phosphorylation of MKK3/6 correlated with phase 2 formalin behavior. Wild type and MKK3−/− mice both expressed increases in spinal phosphorylated p38, however in WT mice this response began several days earlier, and was of higher magnitude and duration than in MKK3−/− mice. This phosphorylation correlated with the late allodynia. Phosphorylated MKK3/6 was detected only in astrocytes, given that P-p38 is usually not seen in astrocytes this argues for astrocytic release of soluble mediators that affect p38 phosphorylation in microglia. Taking these data together, MKK3, but not MKK6, is necessary for normal development of chronic pain behavior and phosphorylation of spinal p38. PMID:19427893

  7. Focus on the p38 MAPK signaling pathway in bone development and maintenance

    PubMed Central

    Thouverey, Cyril; Caverzasio, Joseph

    2015-01-01

    The p38 mitogen-activated protein kinase (MAPK) signaling pathway can be activated in response to a wide range of extracellular signals. As a consequence, it can generate many different biological effects that depend on the stimulus and on the activated cell type. Therefore, this pathway has been found to regulate many aspects of tissue development and homeostasis. Recent work with the aid of genetically modified mice has highlighted the physiological functions of this pathway in skeletogenesis and postnatal bone maintenance. In this review, emphasis is given to the roles of the p38 MAPK pathway in chondrocyte, osteoblast and osteoclast biology. In particular, we describe the molecular mechanisms of p38 MAPK activation and downstream targets. The requirement of this pathway in physiological bone development and homeostasis is demonstrated by the ability of p38 MAPK to regulate master transcription factors controlling geneses and functions of chondrocytes, osteoblasts and osteoclasts. PMID:26131361

  8. Interaction of nuclear protein p140 with human immunodeficiency virus type 1 TAR RNA in mitogen-activated primary human T lymphocytes.

    PubMed Central

    Rothblum, C J; Jackman, J; Mikovits, J; Shukla, R R; Kumar, A

    1995-01-01

    Several lines of evidence suggest that cellular proteins play a role during human immunodeficiency virus type 1 (HIV-1) Tat-mediated trans activation. A recent report from this laboratory has shown that a 140-kDa HeLa nuclear protein (p140) binds specifically to the lower stem region of the Tat response element, TAR RNA. Since HIV-1 trans activation is most efficient in proliferating T cells, we investigated the binding of p140 to TAR RNA in unstimulated and mitogen-activated, G1-phase primary T lymphocytes. TAR RNA/protein-binding activity was low in resting cells but increased significantly within 2 h of activation and remained elevated for at least 48 h. Corresponding increases in p140 protein levels were observed with most but not all donors, suggesting that an additional nuclear factor(s) may be required for efficient binding of this protein to TAR RNA in activated T cells. PMID:7609087

  9. Role of receptor desensitization, phosphatase induction and intracellular cyclic AMP in the termination of mitogen-activated protein kinase activity in UTP-stimulated EAhy 926 endothelial cells.

    PubMed Central

    Graham, A; McLees, A; Malarkey, K; Gould, G W; Plevin, R

    1996-01-01

    We have investigated the mechanisms that bring about the termination of mitogen-activated protein kinase (MAP kinase) activation in response to UTP in EAhy 926 endothelial cells. UTP-stimulated MAP kinase activity was transient, returning to basal values by 60 min. At this time MAP kinase activation was desensitized; re-application of UTP did not further activate MAP kinase, full re-activation of MAP kinase being only apparent after a 1-2 h wash period. However, activation of MAP kinase by UTP could be sustained beyond 60 min by preincubation of the cells with the protein synthesis inhibitor cycloheximide. UTP also stimulated expression of MAP kinase phosphatase-1 and this was abolished after pretreatment with cycloheximide. Pretreatment of cells with forskolin abolished the initial activation of MAP kinase kinase or c-Raf-1 by UTP, but only affected MAP kinase activity during prolonged stimulation. The effect of forskolin on prolonged MAP kinase activation was also prevented by cycloheximide. These results suggest that the termination of MAP kinase activity in response to UTP involves a number of interacting mechanisms including receptor desensitization and the induction of a phosphatase. However, several pieces of evidence do not support a major role for MAP kinase phosphatase-1 in termination of the MAP kinase signal. Raising intracellular cyclic AMP may also be involved but only after an initial protein-synthesis step and by a mechanism that does not involve the inactivation of c-Raf-1 or MAP kinase kinase. PMID:8615830

  10. Role of receptor desensitization, phosphatase induction and intracellular cyclic AMP in the termination of mitogen-activated protein kinase activity in UTP-stimulated EAhy 926 endothelial cells.

    PubMed

    Graham, A; McLees, A; Malarkey, K; Gould, G W; Plevin, R

    1996-04-15

    We have investigated the mechanisms that bring about the termination of mitogen-activated protein kinase (MAP kinase) activation in response to UTP in EAhy 926 endothelial cells. UTP-stimulated MAP kinase activity was transient, returning to basal values by 60 min. At this time MAP kinase activation was desensitized; re-application of UTP did not further activate MAP kinase, full re-activation of MAP kinase being only apparent after a 1-2 h wash period. However, activation of MAP kinase by UTP could be sustained beyond 60 min by preincubation of the cells with the protein synthesis inhibitor cycloheximide. UTP also stimulated expression of MAP kinase phosphatase-1 and this was abolished after pretreatment with cycloheximide. Pretreatment of cells with forskolin abolished the initial activation of MAP kinase kinase or c-Raf-1 by UTP, but only affected MAP kinase activity during prolonged stimulation. The effect of forskolin on prolonged MAP kinase activation was also prevented by cycloheximide. These results suggest that the termination of MAP kinase activity in response to UTP involves a number of interacting mechanisms including receptor desensitization and the induction of a phosphatase. However, several pieces of evidence do not support a m