Science.gov

Sample records for activated protein map

  1. MAP kinase activator from insulin-stimulated skeletal muscle is a protein threonine/tyrosine kinase.

    PubMed Central

    Nakielny, S; Cohen, P; Wu, J; Sturgill, T

    1992-01-01

    A 'MAP kinase activator' was purified several thousand-fold from insulin-stimulated rabbit skeletal muscle, which resembled the 'activator' from nerve growth factor-stimulated PC12 cells in that it could be inactivated by incubation with protein phosphatase 2A, but not by protein tyrosine phosphatases and its apparent molecular mass was 45-50 kDa. In the presence of MgATP, 'MAP kinase activator' converted the normal 'wild-type' 42 kDa MAP kinase from an inactive dephosphorylated form to the fully active diphosphorylated species. Phosphorylation occurred on the same threonine and tyrosine residues which are phosphorylated in vivo in response to growth factors or phorbol esters. A mutant MAP kinase produced by changing a lysine at the active centre to arginine was phosphorylated in an identical manner by the 'MAP kinase activator', but no activity was generated. The results demonstrate that 'MAP kinase activator' is a protein kinase (MAP kinase kinase) and not a protein that stimulates the autophosphorylation of MAP kinase. MAP kinase kinase is the first established example of a protein kinase that can phosphorylate an exogenous protein on threonine as well as tyrosine residues. Images PMID:1318193

  2. The microtubule-associated protein MAP18 affects ROP2 GTPase activity during root hair growth.

    PubMed

    Kang, Erfang; Zheng, Mingzhi; Zhang, Yan; Yuan, Ming; Yalovsky, Shaul; Zhu, Lei; Fu, Ying

    2017-03-17

    Establishment and maintenance of the polar site are important for root hair tip growth. We previously reported that Arabidopsis (Arabidopsis thaliana) MICROTUBULE-ASSOCIATED PROTEIN18 (MAP18) functions in controlling the direction of pollen tube growth and root hair elongation. Additionally, the Rop GTPase ROP2 was reported as a positive regulator of both root hair initiation and tip growth in Arabidopsis. Both loss-of-function of ROP2 or knock-down of MAP18 leads to a decrease in root hair length, whereas overexpression of either MAP18 or ROP2 causes multiple tips or a branching hair phenotype. However, it is unclear whether MAP18 and ROP2 coordinately regulate root hair growth. In the present study, we demonstrate that MAP18 and ROP2 interact genetically and functionally. MAP18 physically interacts with ROP2 in vitro and in vivo and preferentially binds to the inactive form of the ROP2 protein. MAP18 promotes ROP2 activity during root hair tip growth. Further investigation revealed that MAP18 competes with RhoGTPase GDP dissociation inhibitor 1 (AtRhoGDI1)/SUPERCENTIPEDE1 (SCN1) for binding to ROP2, in turn affecting localization of active ROP2 in the plasma membrane of the root hair tip. These results reveal a novel function of MAP18 in the regulation of ROP2 activation during root hair growth.

  3. Gene encoding T-cell-activating protein TAP maps to the Ly-6 locus.

    PubMed Central

    Reiser, H; Yeh, E T; Gramm, C F; Benacerraf, B; Rock, K L

    1986-01-01

    Recently we described two murine T-cell membrane proteins, TAP (T-cell-activating protein) and TAPa (TAP-associated protein). Previous experiments suggested that TAP is involved in physiologic T-cell activation. The subject of this report is a genetic analysis of these molecules. TAP and TAPa map to the Ly-6 locus. The relationship of these molecules to other antigens encoded in this locus is examined. Based on tissue distribution, molecular structure, and functional properties, TAP is distinct from any previously described Ly-6 antigen, whereas TAPa is probably identical to the 34-11-3 antigen. TAP and TAPa are coexpressed on all cell types examined so far. Moreover, comparative studies demonstrate a complex developmentally regulated pattern in the expression of molecules encoded in this locus. Images PMID:3010324

  4. Discovery and Characterization of Non-ATP Site Inhibitors of the Mitogen Activated Protein (MAP) Kinases

    SciTech Connect

    Comess, Kenneth M.; Sun, Chaohong; Abad-Zapatero, Cele; Goedken, Eric R.; Gum, Rebecca J.; Borhani, David W.; Argiriadi, Maria; Groebe, Duncan R.; Jia, Yong; Clampit, Jill E.; Haasch, Deanna L.; Smith, Harriet T.; Wang, Sanyi; Song, Danying; Coen, Michael L.; Cloutier, Timothy E.; Tang, Hua; Cheng, Xueheng; Quinn, Christopher; Liu, Bo; Xin, Zhili; Liu, Gang; Fry, Elizabeth H.; Stoll, Vincent; Ng, Teresa I.; Banach, David; Marcotte, Doug; Burns, David J.; Calderwood, David J.; Hajduk, Philip J.

    2012-03-02

    Inhibition of protein kinases has validated therapeutic utility for cancer, with at least seven kinase inhibitor drugs on the market. Protein kinase inhibition also has significant potential for a variety of other diseases, including diabetes, pain, cognition, and chronic inflammatory and immunologic diseases. However, as the vast majority of current approaches to kinase inhibition target the highly conserved ATP-binding site, the use of kinase inhibitors in treating nononcology diseases may require great selectivity for the target kinase. As protein kinases are signal transducers that are involved in binding to a variety of other proteins, targeting alternative, less conserved sites on the protein may provide an avenue for greater selectivity. Here we report an affinity-based, high-throughput screening technique that allows nonbiased interrogation of small molecule libraries for binding to all exposed sites on a protein surface. This approach was used to screen both the c-Jun N-terminal protein kinase Jnk-1 (involved in insulin signaling) and p38{alpha} (involved in the formation of TNF{alpha} and other cytokines). In addition to canonical ATP-site ligands, compounds were identified that bind to novel allosteric sites. The nature, biological relevance, and mode of binding of these ligands were extensively characterized using two-dimensional {sup 1}H/{sup 13}C NMR spectroscopy, protein X-ray crystallography, surface plasmon resonance, and direct enzymatic activity and activation cascade assays. Jnk-1 and p38{alpha} both belong to the MAP kinase family, and the allosteric ligands for both targets bind similarly on a ledge of the protein surface exposed by the MAP insertion present in the CMGC family of protein kinases and distant from the active site. Medicinal chemistry studies resulted in an improved Jnk-1 ligand able to increase adiponectin secretion in human adipocytes and increase insulin-induced protein kinase PKB phosphorylation in human hepatocytes, in

  5. Protein Kinase Mitogen-activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4) Promotes Obesity-induced Hyperinsulinemia*

    PubMed Central

    Roth Flach, Rachel J.; Danai, Laura V.; DiStefano, Marina T.; Kelly, Mark; Menendez, Lorena Garcia; Jurczyk, Agata; Sharma, Rohit B.; Jung, Dae Young; Kim, Jong Hun; Kim, Jason K.; Bortell, Rita; Alonso, Laura C.; Czech, Michael P.

    2016-01-01

    Previous studies revealed a paradox whereby mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) acted as a negative regulator of insulin sensitivity in chronically obese mice, yet systemic deletion of Map4k4 did not improve glucose tolerance. Here, we report markedly reduced glucose-responsive plasma insulin and C-peptide levels in whole body Map4k4-depleted mice (M4K4 iKO) as well as an impaired first phase of insulin secretion from islets derived from M4K4 iKO mice ex vivo. After long-term high fat diet (HFD), M4K4 iKO mice pancreata also displayed reduced β cell mass, fewer proliferating β cells and reduced islet-specific gene mRNA expression compared with controls, although insulin content was normal. Interestingly, the reduced plasma insulin in M4K4 iKO mice exposed to chronic (16 weeks) HFD was not observed in response to acute HFD challenge or short term treatment with the insulin receptor antagonist S961. Furthermore, the improved insulin sensitivity in obese M4K4 iKO mice was abrogated by high exogenous insulin over the course of a euglycemic clamp study, indicating that hypoinsulinemia promotes insulin sensitivity in chronically obese M4K4 iKO mice. These results demonstrate that protein kinase Map4k4 drives obesity-induced hyperinsulinemia and insulin resistance in part by promoting insulin secretion from β cells in mice. PMID:27226575

  6. Context Specificity of Stress-activated Mitogen-activated Protein (MAP) Kinase Signaling: The Story as Told by Caenorhabditis elegans*

    PubMed Central

    Andrusiak, Matthew G.; Jin, Yishi

    2016-01-01

    Stress-associated p38 and JNK mitogen-activated protein (MAP) kinase signaling cascades trigger specific cellular responses and are involved in multiple disease states. At the root of MAP kinase signaling complexity is the differential use of common components on a context-specific basis. The roundworm Caenorhabditis elegans was developed as a system to study genes required for development and nervous system function. The powerful genetics of C. elegans in combination with molecular and cellular dissections has led to a greater understanding of how p38 and JNK signaling affects many biological processes under normal and stress conditions. This review focuses on the studies revealing context specificity of different stress-activated MAPK components in C. elegans. PMID:26907690

  7. Phosphorylation of the Kinase Interaction Motif in Mitogen-activated Protein (MAP) Kinase Phosphatase-4 Mediates Cross-talk between Protein Kinase A and MAP Kinase Signaling Pathways*

    PubMed Central

    Dickinson, Robin J.; Delavaine, Laurent; Cejudo-Marín, Rocío; Stewart, Graeme; Staples, Christopher J.; Didmon, Mark P.; Trinidad, Antonio Garcia; Alonso, Andrés; Pulido, Rafael; Keyse, Stephen M.

    2011-01-01

    MAP kinase phosphatase 4 (DUSP9/MKP-4) plays an essential role during placental development and is one of a subfamily of three closely related cytoplasmic dual-specificity MAPK phosphatases, which includes the ERK-specific enzymes DUSP6/MKP-3 and DUSP7/MKP-X. However, unlike DUSP6/MKP-3, DUSP9/MKP-4 also inactivates the p38α MAP kinase both in vitro and in vivo. Here we demonstrate that inactivation of both ERK1/2 and p38α by DUSP9/MKP-4 is mediated by a conserved arginine-rich kinase interaction motif located within the amino-terminal non-catalytic domain of the protein. Furthermore, DUSP9/MKP-4 is unique among these cytoplasmic MKPs in containing a conserved PKA consensus phosphorylation site 55RRXSer-58 immediately adjacent to the kinase interaction motif. DUSP9/MKP-4 is phosphorylated on Ser-58 by PKA in vitro, and phosphorylation abrogates the binding of DUSP9/MKP-4 to both ERK2 and p38α MAP kinases. In addition, although mutation of Ser-58 to either alanine or glutamic acid does not affect the intrinsic catalytic activity of DUSP9/MKP-4, phospho-mimetic (Ser-58 to Glu) substitution inhibits both the interaction of DUSP9/MKP-4 with ERK2 and p38α in vivo and its ability to dephosphorylate and inactivate these MAP kinases. Finally, the use of a phospho-specific antibody demonstrates that endogenous DUSP9/MKP-4 is phosphorylated on Ser-58 in response to the PKA agonist forskolin and is also modified in placental tissue. We conclude that DUSP9/MKP-4 is a bona fide target of PKA signaling and that attenuation of DUSP9/MKP-4 function can mediate cross-talk between the PKA pathway and MAPK signaling through both ERK1/2 and p38α in vivo. PMID:21908610

  8. Hepatitis B virus HBx protein activates Ras-GTP complex formation and establishes a Ras, Raf, MAP kinase signaling cascade.

    PubMed Central

    Benn, J; Schneider, R J

    1994-01-01

    Hepatitis B virus produces a small (154-amino acid) transcriptional transactivating protein, HBx, which is required for viral infection and has been implicated in virus-mediated liver oncogenesis. However, the molecular mechanism for HBx activity and its possible influence on cell proliferation have remained obscure. A number of studies suggest that HBx may stimulate transcription by indirectly activating transcription factors, possibly by influencing cell signaling pathways. We now present biochemical evidence that HBx activates Ras and rapidly induces a cytoplasmic signaling cascade linking Ras, Raf, and mitogen-activated protein kinase (MAP kinase), leading to transcriptional transactivation. HBx strongly elevates levels of GTP-bound Ras, activated and phosphorylated Raf, and tyrosine-phosphorylated and activated MAP kinase. Transactivation of transcription factor AP-1 by HBx is blocked by inhibition of Ras or Raf activities but not by inhibition of Ca(2+)- and diacylglycerol-dependent protein kinase C. HBx was also found to stimulate DNA synthesis in serum-starved cells. The hepatitis B virus HBx protein therefore stimulates Ras-GTP complex formation and promotes downstream signaling through Raf and MAP kinases, and may influence cell proliferation. Images PMID:7937954

  9. Active Fire Mapping Program

    MedlinePlus

    Active Fire Mapping Program Current Large Incidents (Home) New Large Incidents Fire Detection Maps MODIS Satellite Imagery VIIRS Satellite Imagery Fire Detection GIS Data Fire Data in Google Earth ...

  10. Functional mapping of protein kinase A reveals its importance in adult Schistosoma mansoni motor activity.

    PubMed

    de Saram, Paulu S R; Ressurreição, Margarida; Davies, Angela J; Rollinson, David; Emery, Aidan M; Walker, Anthony J

    2013-01-01

    Cyclic AMP (cAMP)-dependent protein kinase/protein kinase A (PKA) is the major transducer of cAMP signalling in eukaryotic cells. Here, using laser scanning confocal microscopy and 'smart' anti-phospho PKA antibodies that exclusively detect activated PKA, we provide a detailed in situ analysis of PKA signalling in intact adult Schistosoma mansoni, a causative agent of debilitating human intestinal schistosomiasis. In both adult male and female worms, activated PKA was consistently found associated with the tegument, oral and ventral suckers, oesophagus and somatic musculature. In addition, the seminal vesicle and gynaecophoric canal muscles of the male displayed activated PKA whereas in female worms activated PKA localized to the ootype wall, the ovary, and the uterus particularly around eggs during expulsion. Exposure of live worms to the PKA activator forskolin (50 µM) resulted in striking PKA activation in the central and peripheral nervous system including at nerve endings at/near the tegument surface. Such neuronal PKA activation was also observed without forskolin treatment, but only in a single batch of worms. In addition, PKA activation within the central and peripheral nervous systems visibly increased within 15 min of worm-pair separation when compared to that observed in closely coupled worm pairs. Finally, exposure of adult worms to forskolin induced hyperkinesias in a time and dose dependent manner with 100 µM forskolin significantly increasing the frequency of gross worm movements to 5.3 times that of control worms (P≤0.001). Collectively these data are consistent with PKA playing a central part in motor activity and neuronal communication, and possibly interplay between these two systems in S. mansoni. This study, the first to localize a protein kinase when exclusively in an activated state in adult S. mansoni, provides valuable insight into the intricacies of functional protein kinase signalling in the context of whole schistosome physiology.

  11. The active gene that encodes human High Mobility Group 1 protein (HMG1) contains introns and maps to chromosome 13

    SciTech Connect

    Ferrari, S.; Finelli, P.; Rocchi, M.

    1996-07-15

    The human genome contains a large number of sequences related to the cDNA for High Mobility Group 1 protein (HMG1), which so far has hampered the cloning and mapping of the active HMG1 gene. We show that the human HMG1 gene contains introns, while the HMG1-related sequences do not and most likely are retrotransposed pseudogenes. We identified eight YACs from the ICI and CEPH libraries that contain the human HMG1 gene. The HMG1 gene is similar in structure to the previously characterized murine homologue and maps to human chromosome 13 and q12, as determined by in situ hybridization. The mouse Hmg1 gene maps to the telomeric region of murine Chromosome 5, which is syntenic to the human 13q12 band. 18 refs., 3 figs.

  12. RNA helicase activity of the plum pox potyvirus CI protein expressed in Escherichia coli. Mapping of an RNA binding domain.

    PubMed Central

    Fernández, A; Laín, S; García, J A

    1995-01-01

    The plum pox potyvirus (PPV) cylindrical inclusion (CI) protein fused to the maltose binding protein (MBP) has been synthesized in Escherichia coli and purified by affinity chromatography in amylose resin. In the absence of any other viral factors, the fusion product had NTPase, RNA binding and RNA helicase activities. These in vitro activities were not affected by removal of the last 103 amino acids of the CI protein. However, other deletions in the C-terminal part of the protein, although leaving intact all the region conserved in RNA helicases, drastically impaired the ability to unwind dsRNA and to hydrolyze NTPs. A mutant protein lacking the last 225 residues retained the competence to interact with RNA. Further deletions mapped boundaries of the RNA binding domain within residues 350 and 402 of the PPV CI protein. This region includes the arginine-rich motif VI, the most carboxy terminal conserved domain of RNA helicases of the superfamily SF2. These results indicate that NTP hydrolysis is not an essential component for RNA binding of the PPV CI protein. Images PMID:7538661

  13. Gene-Environment Interactions Target Mitogen-activated Protein 3 Kinase 1 (MAP3K1) Signaling in Eyelid Morphogenesis*

    PubMed Central

    Mongan, Maureen; Meng, Qinghang; Wang, Jingjing; Kao, Winston W.-Y.; Puga, Alvaro; Xia, Ying

    2015-01-01

    Gene-environment interactions determine the biological outcomes through mechanisms that are poorly understood. Mouse embryonic eyelid closure is a well defined model to study the genetic control of developmental programs. Using this model, we investigated how exposure to dioxin-like environmental pollutants modifies the genetic risk of developmental abnormalities. Our studies reveal that mitogen-activated protein 3 kinase 1 (MAP3K1) signaling is a focal point of gene-environment cross-talk. Dioxin exposure, acting through the aryl hydrocarbon receptor (AHR), blocked eyelid closure in genetic mutants in which MAP3K1 signaling was attenuated but did not disturb this developmental program in either wild type or mutant mice with attenuated epidermal growth factor receptor or WNT signaling. Exposure also markedly inhibited c-Jun phosphorylation in Map3k1+/− embryonic eyelid epithelium, suggesting that dioxin-induced AHR pathways can synergize with gene mutations to inhibit MAP3K1 signaling. Our studies uncover a novel mechanism through which the dioxin-AHR axis interacts with the MAP3K1 signaling pathways during fetal development and provide strong empirical evidence that specific gene alterations can increase the risk of developmental abnormalities driven by environmental pollutant exposure. PMID:26109068

  14. Regulation of endothelial protein C receptor shedding by cytokines is mediated through differential activation of MAP kinase signaling pathways

    SciTech Connect

    Menschikowski, Mario; Hagelgans, Albert; Eisenhofer, Graeme; Siegert, Gabriele

    2009-09-10

    The endothelial protein C receptor (EPCR) plays a pivotal role in coagulation, inflammation, cell proliferation, and cancer, but its activity is markedly changed by ectodomain cleavage and release as the soluble protein (sEPCR). In this study we examined the mechanisms involved in the regulation of EPCR shedding in human umbilical endothelial cells (HUVEC). Interleukin-1{beta} (IL-1{beta}) and tumor necrosis factor-{alpha} (TNF-{alpha}), but not interferon-{gamma} and interleukin-6, suppressed EPCR mRNA transcription and cell-associated EPCR expression in HUVEC. The release of sEPCR induced by IL-1{beta} and TNF-{alpha} correlated with activation of p38 MAPK and c-Jun N-terminal kinase (JNK). EPCR shedding was also induced by phorbol 12-myristate 13-acetate, ionomycin, anisomycin, thiol oxidants or alkylators, thrombin, and disruptors of lipid rafts. Both basal and induced shedding of EPCR was blocked by the metalloproteinase inhibitors, TAPI-0 and GM6001, and by the reduced non-protein thiols, glutathione, dihydrolipoic acid, dithiothreitol, and N-acetyl-L-cysteine. Because other antioxidants and scavengers of reactive oxygen species failed to block the cleavage of EPCR, a direct suppression of metalloproteinase activity seems responsible for the observed effects of reduced thiols. In summary, the shedding of EPCR in HUVEC is effectively regulated by IL-1{beta} and TNF-{alpha}, and downstream by MAP kinase signaling pathways and metalloproteinases.

  15. PD98059 and U0126 activate AMP-activated protein kinase by increasing the cellular AMP:ATP ratio and not via inhibition of the MAP kinase pathway.

    PubMed

    Dokladda, Kanchana; Green, Kevin A; Pan, David A; Hardie, D Grahame

    2005-01-03

    The MAP kinase pathway inhibitor U0126 caused phosphorylation and activation of AMP-activated protein kinase (AMPK) and increased phosphorylation of its downstream target acetyl-CoA carboxylase, in HEK293 cells. This effect only occurred in cells expressing the upstream kinase, LKB1. Of two other widely used MAP kinase pathway inhibitors not closely related in structure to U0126, PD98059 also activated AMPK but PD184352 did not. U0126 and PD98059, but not PD184352, also increased the cellular ADP:ATP and AMP:ATP ratios, accounting for their ability to activate AMPK. These results suggest the need for caution in interpreting experiments conducted using U0126 and PD98059.

  16. Mapping the Zap-70 phosphorylation sites on LAT (linker for activation of T cells) required for recruitment and activation of signalling proteins in T cells.

    PubMed Central

    Paz, P E; Wang, S; Clarke, H; Lu, X; Stokoe, D; Abo, A

    2001-01-01

    T-cell-receptor (TCR)-mediated LAT (linker for activation of T cells) phosphorylation is critical for the membrane recruitment of signalling complexes required for T-cell activation. Although tyrosine phosphorylation of LAT is required for recruitment and activation of signalling proteins, the molecular mechanism associated with this event is unclear. In the present study we reconstituted the LAT signalling pathway by demonstrating that a direct tyrosine phosphorylation of LAT with activated protein-tyrosine kinase Zap70 is necessary and sufficient for the association and activation of signalling proteins. Zap-70 efficiently phosphorylates LAT on tyrosine residues at positions 226, 191, 171, 132 and 127. By substituting these tyrosine residues in LAT with phenylalanine and by utilizing phosphorylated peptides derived from these sites, we mapped the tyrosine residues in LAT required for the direct interaction and activation of Vav, p85/p110alpha and phospholipase Cgamma1 (PLCgamma1). Our results indicate that Tyr(226) and Tyr(191) are required for Vav binding, whereas Tyr(171) and Tyr(132) are necessary for association and activation of phosphoinositide 3-kinase activity and PLCgamma1 respectively. Furthermore, by expression of LAT mutants in LAT-deficient T cells, we demonstrate that Tyr(191) and Tyr(171) are required for T-cell activation and Tyr(132) is required for the activation of PLCgamma1 and Ras signalling pathways. PMID:11368773

  17. Intercreativity: Mapping Online Activism

    NASA Astrophysics Data System (ADS)

    Meikle, Graham

    How do activists use the Internet? This article maps a wide range of activist practice and research by applying and developing Tim Berners-Lee's concept of ‘intercreativity' (1999). It identifies four dimensions of Net activism: intercreative texts, tactics, strategies and networks. It develops these through examples of manifestations of Net activism around one cluster of issues: support campaigns for refugees and asylum seekers.

  18. Complexing of the CD-3 subunit by a monoclonal antibody activates a microtubule-associated protein 2 (MAP-2) serine kinase in Jurkat cells.

    PubMed Central

    Hanekom, C; Nel, A; Gittinger, C; Rheeder, A; Landreth, G

    1989-01-01

    Treatment of Jurkat T-cells with anti-CD-3 monoclonal antibodies resulted in the rapid and transient activation of a serine kinase which utilized the microtubule-associated protein, MAP-2, as a substrate in vitro. The kinase was also activated on treatment of Jurkat cells with phytohaemagglutinin, but with a different time course. The activation of the MAP-2 kinase by anti-CD-3 antibodies was dose-dependent, with maximal activity observed at concentrations of greater than 500 ng/ml. Normal human E-rosette-positive T-cells also exhibited induction of MAP-2 kinase activity during anti-CD-3 treatment. The enzyme was optimally active in the presence of 2 mM-Mn2+; lower levels of activity were observed with Mg2+, even at concentrations up to 20 mM. The kinase was partially purified by passage over DE-52 Sephacel with the activity eluting as a single peak at 0.25 M-NaCl. The molecular mass was estimated to be 45 kDa by gel filtration. The activation of the MAP-2 kinase was probably due to phosphorylation of this enzyme as treatment with alkaline phosphatase diminished its activity. These data demonstrate that the stimulation of T-cells through the CD-3 complex results in the activation of a novel serine kinase which may be critically involved in signal transduction in these cells. Images Fig. 1. Fig. 7. Fig. 8. PMID:2552997

  19. Cross-interactions of two p38 mitogen-activated protein (MAP) kinase inhibitors and two cholecystokinin (CCK) receptor antagonists with the CCK1 receptor and p38 MAP kinase.

    PubMed

    Morel, Caroline; Ibarz, Géraldine; Oiry, Catherine; Carnazzi, Eric; Bergé, Gilbert; Gagne, Didier; Galleyrand, Jean-Claude; Martinez, Jean

    2005-06-03

    Although SB202190 and SB203580 are described as specific p38 MAP kinase inhibitors, several reports have indicated that other enzymes are also sensitive to SB203580. Using a pharmacological approach, we report for the first time that compounds SB202190 and SB203580 were able to directly and selectively interact with a G-protein-coupled receptor, namely the cholecystokinin receptor subtype CCK1, but not with the CCK2 receptor. We demonstrated that these compounds were non-competitive antagonists of the CCK1 receptor at concentrations typically used to inhibit protein kinases. By chimeric construction of the CCK2 receptor, we determined the involvement of two CCK1 receptor intracellular loops in the binding of SB202190 and SB203580. We also showed that two CCK antagonists, L364,718 and L365,260, were able to regulate p38 mitogen-activated protein (MAP) kinase activity. Using a reporter gene strategy and immunoblotting experiments, we demonstrated that both CCK antagonists inhibited selectively the enzymatic activity of p38 MAP kinase. Kinase assays suggested that this inhibition resulted from a direct interaction with both CCK antagonists. Molecular modeling simulations suggested that this interaction occurs in the ATP binding pocket of p38 MAP kinase. These results suggest that SB202190 and SB203580 bind to the CCK1 receptor and, as such, these compounds should be used with caution in models that express this receptor. We also found that L364,718 and L365,260, two CCK receptor antagonists, directly interacted with p38 MAP kinase and inhibited its activity. These findings suggest that the CCK1 receptor shares structural analogies with the p38 MAP kinase ATP binding site. They open the way to potential design of either a new family of MAP kinase inhibitors from CCK1 receptor ligand structures or new CCK1 receptor ligands based on p38 MAP kinase inhibitor structures.

  20. Role of Protein Kinase C, PI3-kinase and Tyrosine Kinase in Activation of MAP Kinase by Glucose and Agonists of G-protein Coupled Receptors in INS-1 Cells

    PubMed Central

    Böcker, Dietmar

    2001-01-01

    MAP (mitogen-activated protein) kinase (also called Erk 1/2) plays a crucial role in cell proliferation and differentiation. Its impact on secretory events is less well established. The interplay of protein kinase C (PKC), PI3-kinase nd cellular tyrosine kinase with MAP kinase activity using inhibitors and compounds such as glucose, phorbol 12-myristate 13-acetate (PMA) and agonists of G-protein coupled receptors like gastrin releasing peptide (GRP), oxytocin (OT) and glucose-dependent insulinotropic peptide (GIP) was investigated in INS-1 cells, an insulin secreting cell line. MAP kinase activity was determined by using a peptide derived from the EGF receptor as a MAP kinase substrate and [ P 32 ]ATP. Glucose as well as GRP, OT and GIP exhibited a time-dependent increase in MAP kinase activity with a maximum at time point 2.5 min. All further experiments were performed using 2.5 min incubations. The flavone PD 098059 is known to bind to the inactive forms of MEK1 (MAPK/ERK-Kinase) thus preventing activation by upstream activators. 20 μM PD 098059 ( IC 50 =51 μM) inhibited MAP kinase stimulated by either glucose, GRP, OT, GIP or PMA. Inhibiton (“downregulation”) of PKC by a long term (22h) pretreatment with 1 μM PMA did not influence MAP kinase activity when augmented by either of the above mentioned compound. To investigate whether PI3-kinase and cellular tyrosine kinase are involved in G-protein mediated effects on MAP kinase, inhibitors were used: 100 nM wortmannin (PI3-kinase inhibitor) reduced the effects of GRP, OT and GIP but not that of PMA; 100 μM genistein (tyrosine kinase inhibitor) inhibited the stimulatory effect of either above mentioned compound on MAP kinase activation. Inhibition of MAP kinase by 20 μM PD 098059 did not influence insulin secretion modulated by either compound (glucose, GRP, OT or GIP). [ H 3 ]Thymidine incorporation, however, was severely inhibited by PD 098059. Thus MAP kinase is important for INS-1 cell proliferation but

  1. The c-mos proto-oncogene protein kinase turns on and maintains the activity of MAP kinase, but not MPF, in cell-free extracts of Xenopus oocytes and eggs.

    PubMed Central

    Nebreda, A R; Hunt, T

    1993-01-01

    During studies of the activation and inactivation of the cyclin B-p34cdc2 protein kinase (MPF) in cell-free extracts of Xenopus oocytes and eggs, we found that a bacterially expressed fusion protein between the Escherichia coli maltose-binding protein and the Xenopus c-mos protein kinase (malE-mos) activated a 42 kDa MAP kinase. The activation of MAP kinase on addition of malE-mos was consistent, whereas the activation of MPF was variable and failed to occur in some oocyte extracts in which cyclin A or okadaic acid activated both MPF and MAP kinase. In cases when MPF activation was transient, MAP kinase activity declined after MPF activity was lost, and MAP kinase, but not MPF, could be maintained at a high level by the presence of malE-mos. When intact oocytes were treated with progesterone, however, the activation of MPF and MAP kinase occurred simultaneously, in contrast to the behaviour of extracts. These observations suggest that one role of c-mos may be to maintain high MAP kinase activity in meiosis. They also imply that the activation of MPF and MAP kinase in vivo are synchronous events that normally rely on an agent that has still to be identified. Images PMID:8387916

  2. Induction of Macrophage Function in Human THP-1 Cells Is Associated with Rewiring of MAPK Signaling and Activation of MAP3K7 (TAK1) Protein Kinase

    PubMed Central

    Richter, Erik; Ventz, Katharina; Harms, Manuela; Mostertz, Jörg; Hochgräfe, Falko

    2016-01-01

    Macrophages represent the primary human host response to pathogen infection and link the immediate defense to the adaptive immune system. Mature tissue macrophages convert from circulating monocyte precursor cells by terminal differentiation in a process that is not fully understood. Here, we analyzed the protein kinases of the human monocytic cell line THP-1 before and after induction of macrophage differentiation by using kinomics and phosphoproteomics. When comparing the macrophage-like state with the monocytic precursor, 50% of the kinome was altered in expression and even 71% of covered kinase phosphorylation sites were affected. Kinome rearrangements are for example characterized by a shift of overrepresented cyclin-dependent kinases associated with cell cycle control in monocytes to calmodulin-dependent kinases and kinases involved in proinflammatory signaling. Eventually, we show that monocyte-to-macrophage differentiation is associated with major rewiring of mitogen-activated protein kinase signaling networks and demonstrate that protein kinase MAP3K7 (TAK1) acts as the key signaling hub in bacterial killing, chemokine production and differentiation. Our study proves the fundamental role of protein kinases and cellular signaling as major drivers of macrophage differentiation and function. The finding that MAP3K7 is central to macrophage function suggests MAP3K7 and its networking partners as promising targets in host-directed therapy for macrophage-associated disease. PMID:27066479

  3. cDNA cloning and chromosomal mapping of a novel human GAP (GAP1M), GTPase-activating protein of Ras

    SciTech Connect

    Li, Shaowei; Nakamura, Shun; Hattori, Seisuke

    1996-08-01

    We have previously isolated a novel Ras GTPase-activating protein (Ras GAP), Gapl{sup m}, from rat brain. Gap1{sup m} is considered to be a negative regulator of the Ras signaling pathways, like other Ras GAPs, neurofibromin, which is a gene product of the neurofibromatosis type I gene, and p120GAP. In this study we have isolated a human cDNA of this Gap and mapped the gene. The gene encodes a protein of 853 amino acids that shows 89% sequence identity to rat Gapl{sup m}. The human gene was mapped to chromosome 3 by PCR analysis on a panel of human-mouse hybrid cells. FISH analysis refined the location of the gene further to 3q22-q23. 11 refs., 2 figs.

  4. The cargo protein MAP17 (PDZK1IP1) regulates the cancer stem cell pool activating the Notch pathway by abducting NUMB.

    PubMed

    Garcia-Heredia, Jose M; Lucena-Cacace, Antonio; Verdugo-Sivianes, Eva M; Perez, Marco; Carnero, Amancio

    2017-02-02

    Purpose Cancer stem cells (CSCs) are self-renewing tumor cells, with ability to generate the diverse differentiated tumor cell subpopulations. They differ from normal stem cells in the deregulation of the mechanisms that normally controls stem cell physiology. CSCs are the origin of metastasis and highly resistant to therapy. Therefore the understanding of the CSC origin and deregulated pathways is important for tumor control. Experimental design We have included experiments in vitro, in cell lines and tumors of different origins. We have used PDXs and public transcriptomic databases of human tumors. Results MAP17 (PDZKIP1), a small cargo protein overexpressed in tumors, interacts with NUMB through the PDZ-binding domain activating the Notch pathway, leading to an increase in stem cell factors and cancer-initiating-like cells. Identical behavior was mimicked by inhibiting NUMB. Conversely, MAP17 downregulation in a tumor cell line constitutively expressing this gene led to Notch pathway inactivation and a marked reduction of stemness. In PDX models, MAP17 levels directly correlated with tumorsphere formation capability. Finally, in human colon, breast or lung there is a strong correlation of MAP17 expression with a signature of Notch and stem cell genes. Conclusions MAP17 overexpression activates Notch pathway by sequestering NUMB. High levels of MAP17 correlated with tumorspheres formation and Notch and Stem gene transcription. Its direct modification causes direct alteration of tumorsphere number and Notch and Stem pathway transcription. This defines a new mechanism of Notch pathway activation and Stem cell pool increase that may be active in a large percentage of tumors.

  5. Genetic mapping of quantitative trait loci associated with β-amylase and limit dextrinase activities and β-glucan and protein fraction contents in barley*

    PubMed Central

    Wei, Kang; Xue, Da-wei; Huang, You-zong; Jin, Xiao-li; Wu, Fei-bo; Zhang, Guo-ping

    2009-01-01

    High malting quality of barley (Hordeum vulgare L.) relies on many traits, such as β-amylase and limit dextrinase activities and β-glucan and protein fraction contents. In this study, interval mapping was utilized to detect quantitative trait loci (QTLs) affecting these malting quality parameters using a doubled haploid (DH) population from a cross of CM72 (six-rowed) by Gairdner (two-rowed) barley cultivars. A total of nine QTLs for eight traits were mapped to chromosomes 3H, 4H, 5H, and 7H. Five of the nine QTLs mapped to chromosome 3H, indicating a possible role of loci on chromosome 3H on malting quality. The phenotypic variation accounted by individual QTL ranged from 8.08% to 30.25%. The loci of QTLs for β-glucan and limit dextrinase were identified on chromosomes 4H and 5H, respectively. QTL for hordeins was coincident with the region of silica eluate (SE) protein on 3HS, while QTLs for albumins, globulins, and total protein exhibited overlapping. One locus on chromosome 3H was found to be related to β-amylase, and two loci on chromosomes 5H and 7H were found to be associated with glutelins. The identification of these novel QTLs controlling malting quality may be useful for marker-assisted selection in improving barley malting quality. PMID:19882759

  6. Differential effects of the peptides Stomagen, EPF1 and EPF2 on activation of MAP kinase MPK6 and the SPCH protein level.

    PubMed

    Jewaria, Pawan Kumar; Hara, Toshiaki; Tanaka, Hirokazu; Kondo, Tatsuhiko; Betsuyaku, Shigeyuki; Sawa, Shinichiro; Sakagami, Youji; Aimoto, Saburo; Kakimoto, Tatsuo

    2013-08-01

    The positioning and density of leaf stomata are regulated by three secretory peptides, EPIDERMAL PATTERNING FACTOR 1 (EPF1), EPF2 and stomagen. Several lines of published evidence have suggested a regulatory pathway as follows. EPF1 and EPF2 are perceived by receptor complexes consisting of a receptor-like protein, TOO MANY MOUTHS (TMM), and receptor kinases, ERECTA (ER), ERECTA-LIKE (ERL) 1 and ERL2. These receptors activate a mitogen-activated protein (MAP) kinase module. MAP kinases phosphorylate and destabilize the transcription factor SPEECHLESS (SPCH), resulting in a decrease in the number of stomatal lineage cells. Stomagen acts antagonistically to EPF1 and EPF2. However, there is no direct evidence that EPF1 and EPF2 activate or that stomagen inactivates the MAP kinase cascade, through which they might regulate the SPCH level. Experimental modulation of these peptides in Arabidopsis thaliana would change the number of stomatal lineage cells in developing leaves, which in turn would change the expression of SPCH, making the interpretation difficult. Here we reconstructed this signaling pathway in differentiated leaf cells of Nicotiana benthamiana to examine signaling without the confounding effect of cell type change. We show that EPF1 and EPF2 are able to activate the MAP kinase MPK6, and that both EPF1 and EPF2 are able to decrease the SPCH level, whereas stomagen is able to increase it. Our data also suggest that EPF1 can be recognized by TMM together with any ER family receptor kinase, whereas EPF2 can be recognized by TMM together with ERL1 or ERL2, but not by TMM together with ER.

  7. The cerebral cavernous malformation proteins CCM2L and CCM2 prevent the activation of the MAP kinase MEKK3

    PubMed Central

    Cullere, Xavier; Plovie, Eva; Bennett, Paul M.; MacRae, Calum A.; Mayadas, Tanya N.

    2015-01-01

    Three genes, CCM1, CCM2, and CCM3, interact genetically and biochemically and are mutated in cerebral cavernous malformations (CCM). A recently described member of this CCM family of proteins, CCM2-like (CCM2L), has high homology to CCM2. Here we show that its relative expression in different tissues differs from that of CCM2 and, unlike CCM2, the expression of CCM2L in endothelial cells is regulated by density, flow, and statins. In vitro, both CCM2L and CCM2 bind MEKK3 in a complex with CCM1. Both CCM2L and CCM2 interfere with MEKK3 activation and its ability to phosphorylate MEK5, a downstream target. The in vivo relevance of this regulation was investigated in zebrafish. A knockdown of ccm2l and ccm2 in zebrafish leads to a more severe “big heart” and circulation defects compared with loss of function of ccm2 alone, and also leads to substantial body axis abnormalities. Silencing of mekk3 rescues the big heart and body axis phenotype, suggesting cross-talk between the CCM proteins and MEKK3 in vivo. In endothelial cells, CCM2 deletion leads to activation of ERK5 and a transcriptional program that are downstream of MEKK3. These findings suggest that CCM2L and CCM2 cooperate to regulate the activity of MEKK3. PMID:26540726

  8. Analysis of the Mitogen-activated protein kinase kinase 4 (MAP2K4) tumor suppressor gene in ovarian cancer

    PubMed Central

    2011-01-01

    Background MAP2K4 is a putative tumor and metastasis suppressor gene frequently found to be deleted in various cancer types. We aimed to conduct a comprehensive analysis of this gene to assess its involvement in ovarian cancer. Methods We screened for mutations in MAP2K4 using High Resolution Melt analysis of 149 primary ovarian tumors and methylation at the promoter using Methylation-Specific Single-Stranded Conformation Polymorphism analysis of 39 tumors. We also considered the clinical impact of changes in MAP2K4 using publicly available expression and copy number array data. Finally, we used siRNA to measure the effect of reducing MAP2K4 expression in cell lines. Results In addition to 4 previously detected homozygous deletions, we identified a homozygous 16 bp truncating deletion and a heterozygous 4 bp deletion, each in one ovarian tumor. No promoter methylation was detected. The frequency of MAP2K4 homozygous inactivation was 5.6% overall, and 9.8% in high-grade serous cases. Hemizygous deletion of MAP2K4 was observed in 38% of samples. There were significant correlations of copy number and expression in three microarray data sets. There was a significant correlation between MAP2K4 expression and overall survival in one expression array data set, but this was not confirmed in an independent set. Treatment of JAM and HOSE6.3 cell lines with MAP2K4 siRNA showed some reduction in proliferation. Conclusions MAP2K4 is targeted by genetic inactivation in ovarian cancer and restricted to high grade serous and endometrioid carcinomas in our cohort. PMID:21575258

  9. A Protein Complex Map of Trypanosoma brucei

    PubMed Central

    Mehta, Vaibhav; Najafabadi, Hamed S.; Moshiri, Houtan; Jardim, Armando; Salavati, Reza

    2016-01-01

    The functions of the majority of trypanosomatid-specific proteins are unknown, hindering our understanding of the biology and pathogenesis of Trypanosomatida. While protein-protein interactions are highly informative about protein function, a global map of protein interactions and complexes is still lacking for these important human parasites. Here, benefiting from in-depth biochemical fractionation, we systematically interrogated the co-complex interactions of more than 3354 protein groups in procyclic life stage of Trypanosoma brucei, the protozoan parasite responsible for human African trypanosomiasis. Using a rigorous methodology, our analysis led to identification of 128 high-confidence complexes encompassing 716 protein groups, including 635 protein groups that lacked experimental annotation. These complexes correlate well with known pathways as well as for proteins co-expressed across the T. brucei life cycle, and provide potential functions for a large number of previously uncharacterized proteins. We validated the functions of several novel proteins associated with the RNA-editing machinery, identifying a candidate potentially involved in the mitochondrial post-transcriptional regulation of T. brucei. Our data provide an unprecedented view of the protein complex map of T. brucei, and serve as a reliable resource for further characterization of trypanosomatid proteins. The presented results in this study are available at: www.TrypsNetDB.org. PMID:26991453

  10. Active spectral imaging and mapping

    NASA Astrophysics Data System (ADS)

    Steinvall, Ove

    2014-04-01

    Active imaging and mapping using lasers as illumination sources have been of increasing interest during the last decades. Applications range from defense and security, remote sensing, medicine, robotics, and others. So far, these laser systems have mostly been based on a fix wavelength laser. Recent advances in lasers enable emission of tunable, multiline, or broadband emission, which together with the development of array detectors will extend the capabilities of active imaging and mapping. This paper will review some of the recent work on active imaging mainly for defense and security and remote sensing applications. A short survey of basic lidar relations and present fix wavelength laser systems is followed by a review of the benefits of adding the spectral dimension to active and/or passive electro-optical systems.

  11. Emerging technologies to map the protein methylome

    PubMed Central

    Carlson, Scott M.; Gozani, Or

    2014-01-01

    Protein methylation plays an integral role in cellular signaling, most notably by modulating proteins bound at chromatin, and increasingly through regulation of non-histone proteins. One central challenge in understanding how methylation acts in signaling is identifying and measuring protein methylation. This includes locus-specific modification of histones, on individual non-histone proteins, and globally across the proteome. Protein methylation has traditionally been studied using candidate approaches such as methylation-specific antibodies, mapping of post-translational modifications by mass spectrometry, and radioactive labeling to characterize methylation on target proteins. Recent developments have provided new approaches to identify methylated proteins, measure methylation levels, identify substrates of methyltransferase enzymes, and match methylated proteins to methyl-specific reader domains. Methyl-binding protein domains and improved antibodies with broad specificity for methylated proteins are being used to characterize the “protein methylome”. They also have the potential to be used in high-throughput assays for inhibitor screens and drug development. These tools are often coupled to improvements in mass spectrometry to quickly identify methylated residues, and to protein microarrays, where they can be used to screen for methylated proteins. Finally, new chemical biology strategies are being used to probe the function of methyltransferases, demethylases and methyl-binding “reader” domains. These tools are creating a “system-level” understanding of protein methylation, and integrating protein methylation into broader signaling processes. PMID:24805349

  12. Carbene footprinting accurately maps binding sites in protein-ligand and protein-protein interactions.

    PubMed

    Manzi, Lucio; Barrow, Andrew S; Scott, Daniel; Layfield, Robert; Wright, Timothy G; Moses, John E; Oldham, Neil J

    2016-11-16

    Specific interactions between proteins and their binding partners are fundamental to life processes. The ability to detect protein complexes, and map their sites of binding, is crucial to understanding basic biology at the molecular level. Methods that employ sensitive analytical techniques such as mass spectrometry have the potential to provide valuable insights with very little material and on short time scales. Here we present a differential protein footprinting technique employing an efficient photo-activated probe for use with mass spectrometry. Using this methodology the location of a carbohydrate substrate was accurately mapped to the binding cleft of lysozyme, and in a more complex example, the interactions between a 100 kDa, multi-domain deubiquitinating enzyme, USP5 and a diubiquitin substrate were located to different functional domains. The much improved properties of this probe make carbene footprinting a viable method for rapid and accurate identification of protein binding sites utilizing benign, near-UV photoactivation.

  13. Carbene footprinting accurately maps binding sites in protein-ligand and protein-protein interactions

    NASA Astrophysics Data System (ADS)

    Manzi, Lucio; Barrow, Andrew S.; Scott, Daniel; Layfield, Robert; Wright, Timothy G.; Moses, John E.; Oldham, Neil J.

    2016-11-01

    Specific interactions between proteins and their binding partners are fundamental to life processes. The ability to detect protein complexes, and map their sites of binding, is crucial to understanding basic biology at the molecular level. Methods that employ sensitive analytical techniques such as mass spectrometry have the potential to provide valuable insights with very little material and on short time scales. Here we present a differential protein footprinting technique employing an efficient photo-activated probe for use with mass spectrometry. Using this methodology the location of a carbohydrate substrate was accurately mapped to the binding cleft of lysozyme, and in a more complex example, the interactions between a 100 kDa, multi-domain deubiquitinating enzyme, USP5 and a diubiquitin substrate were located to different functional domains. The much improved properties of this probe make carbene footprinting a viable method for rapid and accurate identification of protein binding sites utilizing benign, near-UV photoactivation.

  14. Quaternion maps of global protein structure.

    PubMed

    Hanson, Andrew J; Thakur, Sidharth

    2012-09-01

    The geometric structures of proteins are vital to the understanding of biochemical interactions. However, there is much yet to be understood about the spatial arrangements of the chains of amino acids making up any given protein. In particular, while conventional analysis tools like the Ramachandran plot supply some insight into the local relative orientation of pairs of amino acid residues, they provide little information about the global relative orientations of large groups of residues. We apply quaternion maps to families of coordinate frames defined naturally by amino acid residue structures as a way to expose global spatial relationships among residues within proteins. The resulting visualizations enable comparisons of absolute orientations as well as relative orientations, and thus generalize the framework of the Ramachandran plot. There are a variety of possible quaternion frames and visual representation strategies that can be chosen, and very complex quaternion maps can result. Just as Ramachandran plots are useful for addressing particular questions and not others, quaternion tools have characteristic domains of relevance. In particular, quaternion maps show great potential for answering specific questions about global residue alignment in crystallographic data and statistical orientation properties in Nuclear Magnetic Resonance (NMR) data that are very difficult to treat by other methods.

  15. Finding protein-protein interaction patterns by contact map matching.

    PubMed

    Melo, R C; Ribeiro, C; Murray, C S; Veloso, C J M; da Silveira, C H; Neshich, G; Meira, W; Carceroni, R L; Santoro, M M

    2007-10-05

    We propose a novel method for defining patterns of contacts present in protein-protein complexes. A new use of the traditional contact maps (more frequently used for representation of the intra-chain contacts) is presented for analysis of inter-chain contacts. Using an algorithm based on image processing techniques, we can compare protein-protein interaction maps and also obtain a dissimilarity score between them. The same algorithm used to compare the maps can align the contacts of all the complexes and be helpful in the determination of a pattern of conserved interactions at the interfaces. We present an example for the application of this method by analyzing the pattern of interaction of bovine pancreatic trypsin inhibitors and trypsins, chymotrypsins, a thrombin, a matriptase, and a kallikrein - all classified as serine proteases. We found 20 contacts conserved in trypsins and chymotrypsins and 3 specific ones are present in all the serine protease complexes studied. The method was able to identify important contacts for the protein family studied and the results are in agreement with the literature.

  16. Mapping auroral activity with Twitter

    NASA Astrophysics Data System (ADS)

    Case, N. A.; MacDonald, E. A.; Heavner, M.; Tapia, A. H.; Lalone, N.

    2015-05-01

    Twitter is a popular, publicly accessible, social media service that has proven useful in mapping large-scale events in real time. In this study, for the first time, the use of Twitter as a measure of auroral activity is investigated. Peaks in the number of aurora-related tweets are found to frequently coincide with geomagnetic disturbances (detection rate of 91%). Additionally, the number of daily aurora-related tweets is found to strongly correlate with several auroral strength proxies (ravg≈0.7). An examination is made of the bias for location and time of day within Twitter data, and a first-order correction of these effects is presented. Overall, the results suggest that Twitter can provide both specific details about an individual aurora and accurate real-time indication of when, and even from where, an aurora is visible.

  17. Monoclonal antibody epitope mapping of Plasmodium falciparum rhoptry proteins.

    PubMed

    Sam-Yellowe, T Y; Ndengele, M M

    1993-02-01

    Plasmodium falciparum rhoptry proteins of the 140/130/110-kDa high molecular weight complex (HMWC) are secreted into the erythrocyte membrane during merozoite invasion. Epitopes of membrane-associated HMWC proteins can be detected using rhoptry-specific antibodies by immunofluorescence assays. Phospholipase treatment of ring-infected intact human erythrocytes, membrane ghosts, and inside-out vesicles results in the release of the HMWC as demonstrated by immunoblotting. We characterized the membrane-associating properties of the 110-kDa protein in more detail. PLA2 from three different sources; bee venom, Naja naja venom, and porcine pancreas, were examined and all were equally effective in releasing the 110-kDa protein. Furthermore, PLA2 activity was inhibited by o-phenanthroline, quinacrine, maleic anhydride, and partially by p-bromophenacyl bromide, indicating that the activity of PLA2 is specific. Using sequential protease and phospholipase digestion experiments to map the immunoreactive and functional epitopes of the 110-kDa protein, a 35-kDa protease-resistant protein associated with mouse and human erythrocyte membranes was identified. Limited proteolysis of the 110-kDa protein and analysis by immunoblotting demonstrated several immunoreactive cleavage products, including a highly protease-resistant peptide fragment of approximately 35-kDa which corresponds to the membrane-associated protein. Epitope mapping of the 130-kDa rhoptry protein resulted in a different pattern of cleavage products. Stage-specific metabolic labeling of P. falciparum with [3H] palmitate and [3H] myristate was performed to determine the lipophilic properties of the HMWC. Results showed the incorporation of label into proteins of approximate molecular weight 200 and 45-kDa, predominantly in the late schizont stage. Interestingly, proteins of 140 and 110/100-kDa, corresponding to [35S] methionine-labeled proteins were labeled with [3H]palmitate in ring-infected erythrocyte membranes

  18. Mapping interactions of Chikungunya virus nonstructural proteins.

    PubMed

    Sreejith, R; Rana, Jyoti; Dudha, Namrata; Kumar, Kapila; Gabrani, Reema; Sharma, Sanjeev K; Gupta, Amita; Vrati, Sudhanshu; Chaudhary, Vijay K; Gupta, Sanjay

    2012-10-01

    The four nonstructural proteins (nsPs1-4) of Chikungunya virus (CHIKV) play important roles involving enzymatic activities and specific interactions with both viral and host components, during different stages of viral pathogenesis. Elucidation of the presence and/or absence of interactions among nsPs in a systematic manner is thus of scientific interest. In the current study, each pair-wise combination among the four nonstructural proteins of CHIKV was systematically analyzed for possible interactions. Six novel protein interactions were identified for CHIKV, using systems such as yeast two-hybrid, GST pull down and ELISA, three of which have not been previously reported for the genus Alphavirus. These interactions form a network of organized associations that suggest the spatial arrangement of nonstructural proteins in the late replicase complex. The study identified novel interactions as well as concurred with previously described associations in related alphaviruses.

  19. Characterization and epitope mapping of monoclonal antibodies raised against rat hepatitis E virus capsid protein: An evaluation of their neutralizing activity in a cell culture system.

    PubMed

    Kobayashi, Tominari; Takahashi, Masaharu; Tanggis; Mulyanto; Jirintai, Suljid; Nagashima, Shigeo; Nishizawa, Tsutomu; Okamoto, Hiroaki

    2016-07-01

    Hepatitis E virus (HEV) is the causative agent of acute hepatitis. Rat HEV is a recently discovered virus related to, but distinct from, human HEV. Since laboratory rats can be reproducibly infected with rat HEV and a cell culture system has been established for rat HEV, this virus may be used as a surrogate virus for human HEV, enabling studies on virus replication and mechanism of infection. However, monoclonal antibodies (MAbs) against rat HEV capsid (ORF2) protein are not available. In this study, 12 murine MAbs were generated against a recombinant ORF2 protein of rat HEV (rRatHEV-ORF2: amino acids 101-644) and were classified into at least six distinct groups by epitope mapping and a cross-reactivity analysis with human HEV ORF2 proteins. Two non-cross-reactive MAbs recognizing the protruding (P) domain detected both non-denatured and denatured rRatHEV-ORF2 protein and efficiently captured cell culture-produced rat HEV particles that had been treated with deoxycholate and trypsin, but not those without prior treatment. In addition, these two MAbs were able to efficiently neutralize replication of cell culture-generated rat HEV particles without lipid membranes (but not those with lipid membranes) in a cell culture system, similar to human HEV.

  20. Overexpression of miR-199a-5p decreases esophageal cancer cell proliferation through repression of mitogen-activated protein kinase kinase kinase-11 (MAP3K11)

    PubMed Central

    Byrnes, Kimberly A.; Phatak, Pornima; Mansour, Daniel; Xiao, Lan; Zou, Tongtong; Rao, Jaladanki N.; Turner, Douglas J.; Wang, Jian-Ying; Donahue, James M.

    2016-01-01

    Studies examining the oncogenic or tumor suppressive functions of dysregulated microRNAs (miRs) in cancer cells may also identify novel miR targets, which can themselves serve as therapeutic targets. Using array analysis, we have previously determined that miR-199a-5p was the most downregulated miR in two esophageal cancer cell lines compared to esophageal epithelial cells. MiR-199a-5p is predicted to bind mitogen-activated protein kinase kinase kinase 11 (MAP3K11) mRNA with high affinity. In this study, we observed that MAP3K11 is markedly overexpressed in esophageal cancer cell lines. Forced expression of miR-199a-5p in these cells leads to a decrease in the mRNA and protein levels of MAP3K11, due to decreased MAP3K11 mRNA stability. A direct binding interaction between miR-199a-5p and MAP3K11 mRNA is demonstrated using biotin pull-down assays and heterologous luciferase reporter constructs and confirmed by mutational analysis. Finally, forced expression of miR-199a-5p decreases proliferation of esophageal cancer cells by inducing G2/M arrest. This effect is mediated, in part, by decreased transcription of cyclin D1, due to reduced MAP3K11-mediated phosphorylation of c-Jun. These findings suggest that miR-199a-5p acts as a tumor suppressor in esophageal cancer cells and that its downregulation contributes to enhanced cellular proliferation by targeting MAP3K11. PMID:26717044

  1. Non-microtubular localizations of microtubule-associated protein 6 (MAP6).

    PubMed

    Gory-Fauré, Sylvie; Windscheid, Vanessa; Brocard, Jacques; Montessuit, Sylvie; Tsutsumi, Ryouhei; Denarier, Eric; Fukata, Yuko; Bosc, Christophe; Delaroche, Julie; Collomb, Nora; Fukata, Masaki; Martinou, Jean-Claude; Pernet-Gallay, Karin; Andrieux, Annie

    2014-01-01

    MAP6 proteins (MAP6s), which include MAP6-N (also called Stable Tubule Only Polypeptide, or STOP) and MAP6d1 (MAP6 domain-containing protein 1, also called STOP-Like protein 21 kD, or SL21), bind to and stabilize microtubules. MAP6 deletion in mice severely alters integrated brain functions and is associated with synaptic defects, suggesting that MAP6s may also have alternative cellular roles. MAP6s reportedly associate with the Golgi apparatus through palmitoylation of their N-terminal domain, and specific isoforms have been shown to bind actin. Here, we use heterologous systems to investigate several biochemical properties of MAP6 proteins. We demonstrate that the three N-terminal cysteines of MAP6d1 are palmitoylated by a subset of DHHC-type palmitoylating enzymes. Analysis of the subcellular localization of palmitoylated MAP6d1, including electron microscopic analysis, reveals possible localization to the Golgi and the plasma membrane but no association with the endoplasmic reticulum. Moreover, we observed localization of MAP6d1 to mitochondria, which requires the N-terminus of the protein but does not require palmitoylation. We show that endogenous MAP6d1 localized at mitochondria in mature mice neurons as well as at the outer membrane and in the intermembrane space of purified mouse mitochondria. Last, we found that MAP6d1 can multimerize via a microtubule-binding module. Interestingly, most of these properties of MAP6d1 are shared by MAP6-N. Together, these results describe several properties of MAP6 proteins, including their intercellular localization and multimerization activity, which may be relevant to neuronal differentiation and synaptic functions.

  2. Inhibition of NADPH oxidase activation by synthetic peptides mapping within the carboxyl-terminal domain of small GTP-binding proteins. Lack of amino acid sequence specificity and importance of polybasic motif.

    PubMed

    Joseph, G; Gorzalczany, Y; Koshkin, V; Pick, E

    1994-11-18

    The small GTP-binding protein (G protein) Rac1 is an obligatory participant in the assembly of the superoxide (O2-.)-generating NADPH oxidase complex of macrophages. We investigated the effect of synthetic peptides, mapping within the near carboxyl-terminal domains of Rac1 and of related G proteins, on the activity of NADPH oxidase in a cell-free system consisting of solubilized guinea pig macrophage membrane, a cytosolic fraction enriched in p47phox and p67phox (or total cytosol), highly purified Rac1-GDP dissociation inhibitor for Rho (Rho GDI) complex, and the activating amphiphile, lithium dodecyl sulfate. Peptides Rac1-(178-188) and Rac1-(178-191), but not Rac2-(178-188), inhibited NADPH oxidase activity in a Rac1-dependent system when added prior to or simultaneously with the initiation of activation. However, undecapeptides corresponding to the near carboxyl-terminal domains of RhoA and RhoC and, most notably, a peptide containing the same amino acids as Rac1-(178-188), but in reversed orientation, were also inhibitory. Surprisingly, O2-. production in a Rac2-dependent cell-free system was inhibited by Rac1-(178-188) but not by Rac2-(178-188). Finally, basic polyamino acids containing lysine, histidine, or arginine, also inhibited NADPH oxidase activation. We conclude that inhibition of NADPH oxidase activation by synthetic peptides mapping within the carboxyl-terminal domain of certain small G proteins is not amino acid sequence-specific but related to the presence of a polybasic motif. It has been proposed that such a motif serves as a plasma membrane targeting signal for a number of small G proteins (Hancock, J.F., Paterson, H., and Marshall, C.J. (1990) Cell 63, 133-139).

  3. Mapping International Cancer Activities – Global Cancer Project Map Launch

    Cancer.gov

    CGH’s Dr. Sudha Sivaram, Dr. Makeda Williams, and Ms. Kalina Duncan have partnered with Drs. Ami Bhatt and Franklin Huang at Global Oncology, Inc. (GO) to develop the Global Cancer Project Map - a web-based tool designed to facilitate cancer research and control activity planning.

  4. CsMAP34, a teleost MAP with dual role: A promoter of MASP-assisted complement activation and a regulator of immune cell activity

    PubMed Central

    Li, Mo-fei; Li, Jun; Sun, Li

    2016-01-01

    In teleost fish, the immune functions of mannan-binding lectin (MBL) associated protein (MAP) and MBL associated serine protease (MASP) are scarcely investigated. In the present study, we examined the biological properties both MAP (CsMAP34) and MASP (CsMASP1) molecules from tongue sole (Cynoglossus semilaevis). We found that CsMAP34 and CsMASP1 expressions occurred in nine different tissues and were upregulated by bacterial challenge. CsMAP34 protein was detected in blood, especially during bacterial infection. Recombinant CsMAP34 (rCsMAP34) bound C. semilaevis MBL (rCsBML) when the latter was activated by bacteria, while recombinant CsMASP1 (rCsMASP1) bound activated rCsBML only in the presence of rCsMAP34. rCsMAP34 stimulated the hemolytic and bactericidal activities of serum complement, whereas anti-CsMAP34 antibody blocked complement activities. Knockdown of CsMASP1 in C. semilaevis resulted in significant inhibition of complement activities. Furthermore, rCsMAP34 interacted directly with peripheral blood leukocytes (PBL) and enhanced the respiratory burst, acid phosphatase activity, chemotactic activity, and gene expression of PBL. These results indicate for the first time that a teleost MAP acts one hand as a regulator that promotes the lectin pathway of complement activation via its ability to recruit MBL to MASP, and other hand as a modulator of immune cell activity. PMID:28008939

  5. MAPKAP kinase-2; a novel protein kinase activated by mitogen-activated protein kinase.

    PubMed Central

    Stokoe, D; Campbell, D G; Nakielny, S; Hidaka, H; Leevers, S J; Marshall, C; Cohen, P

    1992-01-01

    A novel protein kinase, which was only active when phosphorylated by the mitogen-activated protein kinase (MAP kinase), has been purified 85,000-fold to homogeneity from rabbit skeletal muscle. This MAP kinase activated protein kinase, termed MAPKAP kinase-2, was distinguished from S6 kinase-II (MAPKAP kinase-1) by its response to inhibitors, lack of phosphorylation of S6 peptides and amino acid sequence. MAPKAP kinase-2 phosphorylated glycogen synthase at Ser7 and the equivalent serine (*) in the peptide KKPLNRTLS*VASLPGLamide whose sequence is similar to the N terminus of glycogen synthase. MAPKAP kinase-2 was resolved into two monomeric species of apparent molecular mass 60 and 53 kDa that had similar specific activities and substrate specificities. Peptide sequences of the 60 and 53 kDa species were identical, indicating that they are either closely related isoforms or derived from the same gene. MAP kinase activated the 60 and 53 kDa forms of MAPKAP kinase-2 by phosphorylating the first threonine residue in the sequence VPQTPLHTSR. Furthermore, Mono Q chromatography of extracts from rat phaeochromocytoma and skeletal muscle demonstrated that two MAP kinase isoforms (p42mapk and p44mapk) were the only enzymes in these cells that were capable of reactivating MAPKAP kinase-2. These results indicate that MAP kinase activates at least two distinct protein kinases, suggesting that it represents a point at which the growth factor-stimulated protein kinase cascade bifurcates. Images PMID:1327754

  6. Whole-brain activity mapping onto a zebrafish brain atlas.

    PubMed

    Randlett, Owen; Wee, Caroline L; Naumann, Eva A; Nnaemeka, Onyeka; Schoppik, David; Fitzgerald, James E; Portugues, Ruben; Lacoste, Alix M B; Riegler, Clemens; Engert, Florian; Schier, Alexander F

    2015-11-01

    In order to localize the neural circuits involved in generating behaviors, it is necessary to assign activity onto anatomical maps of the nervous system. Using brain registration across hundreds of larval zebrafish, we have built an expandable open-source atlas containing molecular labels and definitions of anatomical regions, the Z-Brain. Using this platform and immunohistochemical detection of phosphorylated extracellular signal–regulated kinase (ERK) as a readout of neural activity, we have developed a system to create and contextualize whole-brain maps of stimulus- and behavior-dependent neural activity. This mitogen-activated protein kinase (MAP)-mapping assay is technically simple, and data analysis is completely automated. Because MAP-mapping is performed on freely swimming fish, it is applicable to studies of nearly any stimulus or behavior. Here we demonstrate our high-throughput approach using pharmacological, visual and noxious stimuli, as well as hunting and feeding. The resultant maps outline hundreds of areas associated with behaviors.

  7. Mapping recent chikungunya activity in the Americas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To better understand chikungunya activity in the America we mapped recent chikungunya activity in the Americas. This activity is needed to better understand that the relationships between climatic factors and disease outbreak patters are critical to the design and constructing of predictive models....

  8. Efficient mapping of ligand migration channel networks in dynamic proteins.

    PubMed

    Lin, Tu-Liang; Song, Guang

    2011-08-01

    For many proteins such as myoglobin, the binding site lies in the interior, and there is no obvious route from the exterior to the binding site in the average structure. Although computer simulations for a limited number of proteins have found some transiently open channels, it is not clear if there exist more channels elsewhere or how the channels are regulated. A systematic approach that can map out the whole ligand migration channel network is lacking. Ligand migration in a dynamic protein resembles closely a well-studied problem in robotics, namely, the navigation of a mobile robot in a dynamic environment. In this work, we present a novel robotic motion planning inspired approach that can map the ligand migration channel network in a dynamic protein. The method combines an efficient spatial mapping of protein inner space with a temporal exploration of protein structural heterogeneity, which is represented by a structure ensemble. The spatial mapping of each conformation in the ensemble produces a partial map of protein inner cavities and their inter-connectivity. These maps are then merged to form a super map that contains all the channels that open dynamically. Results on the pathways in myoglobin for gaseous ligands demonstrate the efficiency of our approach in mapping the ligand migration channel networks. The results, obtained in a significantly less amount of time than trajectory-based approaches, are in agreement with previous simulation results. Additionally, the method clearly illustrates how and what conformational changes open or close a channel.

  9. Naval weapons center active fault map series

    NASA Astrophysics Data System (ADS)

    Roquemore, G. R.; Zellmer, J. T.

    1987-08-01

    The NWC Active Fault Map Series shows the locations of active faults and features indicative of active faulting within much of Indian Wells Valley and portions of the Randsburg Wash/Mojave B test range areas of the Naval Weapons Center. Map annotations are used extensively to identify criteria employed in identifying the fault offsets, and to present other valuable data. All of the mapped faults show evidence of having moved during about the last 12,500 years or represent geologically young faults that occur within seismic gaps. Only faults that offset the surface or show other evidence of surface deformation were mapped. A portion of the City of Ridgecrest is recommended as being a Seismic Hazard Special Studies Zone in which detailed earthquake hazard studies should be required.

  10. Echo Mapping of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Peterson, B. M.; Horne, K.

    2004-01-01

    Echo mapping makes use of the intrinsic variability of the continuum source in active galactic nuclei to map out the distribution and kinematics of line-emitting gas from its light travel time-delayed response to continuum changes. Echo mapping experiments have yielded sizes for the broad line-emitting region in about three dozen AGNs. The dynamics of the line-emitting gas seem to be dominated by the gravity of the central black hole, enabling measurement of the black-hole masses in AGNs. We discuss requirements for future echo-mapping experiments that will yield the high quality velocity-delay maps of the broad-line region that are needed to determine its physical nature.

  11. Functional characterization of the three mitogen-activated protein kinase kinases (MAP2Ks) present in the Cryphonectria parasitica genome reveals the necessity of Cpkk1 and Cpkk2, but not Cpkk3, for pathogenesis on chestnut (Castanea spp.).

    PubMed

    Moretti, Marino; Rossi, Marika; Ciuffo, Marina; Turina, Massimo

    2014-06-01

    The biological function(s) of the cpkk1, cpkk2 and cpkk3 genes, encoding the three mitogen-activated protein kinase kinases (MAP2Ks) of Cryphonectria parasitica, the causal agent of chestnut blight, were examined through knockout strains. Cpkk1, the Mkk1 orthologue, acts in a phosphorylation cascade essential for cell integrity; Cpkk2 is the Ste7 orthologue involved in the pheromone response pathway; Cpkk3 is the Pbs2 orthologue, the MAP2K activated during the high-osmolarity response. Our analysis confirmed the role of each MAP2K in its respective signalling cascade with some peculiarities: abnormal hyphae with a reduced number of septa and thinner cell walls were observed in Δcpkk1 mutants, and a strong growth defect on solid media was evident in Δcpkk2 mutants, when compared with the controls. Virulence on chestnut was affected in both the Δcpkk1 and Δcpkk2 strains, which were also unable to complete the developmental steps essential for mating. No alterations were reported in Δcpkk3, except under hyperosmotic conditions and in the presence of fludioxonil. Δcpkk2 mutants, however, showed higher sensitivity during growth in medium containing the antibiotic G418 (Geneticin).

  12. Recombinant expression and purification of a MAP30-cell penetrating peptide fusion protein with higher anti-tumor bioactivity.

    PubMed

    Lv, Qiang; Yang, Xu-Zhong; Fu, Long-Yun; Lu, Yv-Ting; Lu, Yan-Hua; Zhao, Jian; Wang, Fu-Jun

    2015-07-01

    MAP30 (Momordica Antiviral Protein 30 Kd), a single-stranded type-I ribosome inactivating protein, possesses versatile biological activities including anti-tumor abilities. However, the low efficiency penetrating into tumor cells hampers the tumoricidal effect of MAP30. This paper describes MAP30 fused with a human-derived cell penetrating peptide HBD which overcome the low uptake efficiency by tumor cells and exhibits higher anti-tumor bioactivity. MAP30 gene was cloned from the genomic DNA of Momordica charantia and the recombinant plasmid pET28b-MAP30-HBD was established and transferred into Escherichia coli BL21 (DE3). The recombinant MAP30-HBD protein (rMAP30-HBD) was expressed in a soluble form after being induced by 0.5mM IPTG for 14h at 15°C. The recombinant protein was purified to greater than 95% purity with Ni-NTA affinity chromatography. The rMAP30-HBD protein not only has topological inactivation and protein translation inhibition activity but also showed significant improvements in cytotoxic activity compared to that of the rMAP30 protein without HBD in the tested tumor cell lines, and induced higher apoptosis rates in HeLa cells analyzed by Annexin V-FITC with FACS. This paper demonstrated a new method for improving MAP30 protein anti-tumor activity and might have potential applications in cancer therapy area.

  13. Active Free Surface Density Maps

    NASA Astrophysics Data System (ADS)

    Çelen, S.

    2016-10-01

    Percolation problems were occupied to many physical problems after their establishment in 1957 by Broadbent and Hammersley. They can be used to solve complex systems such as bone remodeling. Volume fraction method was adopted to set some algorithms in the literature. However, different rate of osteoporosis could be observed for different microstructures which have the same mass density, mechanical stimuli, hormonal stimuli and nutrition. Thus it was emphasized that the bone might have identical porosity with different specific surfaces. Active free surface density of bone refers the used total area for its effective free surface. The purpose of this manuscript is to consolidate a mathematical approach which can be called as “active free surface density maps” for different surface patterns and derive their formulations. Active free surface density ratios were calculated for different Archimedean lattice models according to Helmholtz free energy and they were compared with their site and bond percolation thresholds from the background studies to derive their potential probability for bone remodeling.

  14. A contact map matching approach to protein structure similarity analysis.

    PubMed

    de Melo, Raquel C; Lopes, Carlos Eduardo R; Fernandes, Fernando A; da Silveira, Carlos Henrique; Santoro, Marcelo M; Carceroni, Rodrigo L; Meira, Wagner; Araújo, Arnaldo de A

    2006-06-30

    We modeled the problem of identifying how close two proteins are structurally by measuring the dissimilarity of their contact maps. These contact maps are colored images, in which the chromatic information encodes the chemical nature of the contacts. We studied two conceptually distinct image-processing algorithms to measure the dissimilarity between these contact maps; one was a content-based image retrieval method, and the other was based on image registration. In experiments with contact maps constructed from the protein data bank, our approach was able to identify, with greater than 80% precision, instances of monomers of apolipoproteins, globins, plastocyanins, retinol binding proteins and thioredoxins, among the monomers of Protein Data Bank Select. The image registration approach was only slightly more accurate than the content-based image retrieval approach.

  15. Protein-surface interaction maps for ion-exchange chromatography.

    PubMed

    Freed, Alexander S; Cramer, Steven M

    2011-04-05

    In this paper, protein-surface interaction maps were generated by performing coarse-grained protein-surface calculations. This approach allowed for the rapid determination of the protein-surface interaction energies at a range of orientations and distances. Interaction maps of lysozyme indicated that there was a contiguous series of orientations corresponding to several adjacent preferred binding regions on the protein surface. Examination of these orientations provided insight into the residues involved in surface interactions, which qualitatively agreed with the retention data for single-site mutants. Interaction maps of lysozyme single-site mutants were also generated and provided significant insight into why these variants exhibited significant differences in their chromatographic behavior. This approach was also employed to study the binding behavior of CspB and related mutants. The results indicated that, in addition to describing general trends in the data, these maps provided significant insight into retention data of the single-site mutants. In particular, subtle retention trends observed with the K12 and K13 mutants were well-described using this interaction map approach. Finally, the number of interaction points with energies stronger than -2 kcal/mol was shown to be able to semi-quantitatively predict the behavior of most of the mutants. This rapid approach for calculating protein-surface interaction maps is expected to facilitate future method development for separating closely related protein variants in ion-exchange systems.

  16. Structure and phosphorylation of microtubule-associated protein 2 (MAP 2).

    PubMed Central

    Vallee, R

    1980-01-01

    Chymotryptic fragments of microtubule-associated protein 2 (MAP 2) containing the portion of the molecule responsible for promoting microtubule assembly were identified. These assembly-promoting fragments displaced intact MAP 2, but not MAP 1, from assembled microtubules. This indicates that the association of MAP 2 with the microtubule surface is reversible. Both the assembly-promoting fragments and fragments representing the portion of the MAP 2 molecule observed as a projection on the microtubule surface were found to contain sites for endogenous cyclic AMP-dependent phosphorylation. The projection fragments were capable of endogenous phosphorylation even after their physical separation from microtubules. This suggests an intimate association of a kinase activity with the projections. Detailed analysis of the properties of the chymotryptic fragments of MAP 2 has led to a map of the molecule showing the major sites of proteolytic attack and the sites of phosphorylation. Images PMID:6251448

  17. Protein contact maps: A binary depiction of protein 3D structures

    NASA Astrophysics Data System (ADS)

    Emerson, Isaac Arnold; Amala, Arumugam

    2017-01-01

    In recent years, there has been a considerable interest in examining the structure and dynamics of complex networks. Proteins in 3D space may also be considered as complex systems emerged through the interactions of their constituent amino acids. This representation provides a powerful framework to uncover the general organized principle of protein contact network. Here we reviewed protein contact map in terms of protein structure prediction and analyses. In addition, we had also discussed the various computational techniques for the prediction of protein contact maps and the tools to visualize contact maps.

  18. Echo Mapping of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Horne, K.

    Echo mapping exploits light travel time delays, revealed by multi-wavelength variability studies, to map the geometry, kinematics, and physical conditions of reprocessing sites in photo-ionized gas flows. In active galactic nuclei (AGN), the ultraviolet to near infrared light arises in part from reprocessing of EUV and X-ray light from a compact and erratically variable source in the nucleus. The observed time delays, 0.1-2 days for the continuum and 1-100 days for the broad emission lines, probe regions only micro-arcseconds from the nucleus. Emission-line delays reveal radially stratified ionization zones, identify the nature of the gas motions, and estimate the masses of the central black holes. Continuum time delays map the temperature-radius structure of AGN accretion discs, and provide distances that may be accurate enough to realize the potential of AGNs as cosmological probes.

  19. EST2Prot: Mapping EST sequences to proteins

    PubMed Central

    Shafer, Paul; Lin, David M; Yona, Golan

    2006-01-01

    Background EST libraries are used in various biological studies, from microarray experiments to proteomic and genetic screens. These libraries usually contain many uncharacterized ESTs that are typically ignored since they cannot be mapped to known genes. Consequently, new discoveries are possibly overlooked. Results We describe a system (EST2Prot) that uses multiple elements to map EST sequences to their corresponding protein products. EST2Prot uses UniGene clusters, substring analysis, information about protein coding regions in existing DNA sequences and protein database searches to detect protein products related to a query EST sequence. Gene Ontology terms, Swiss-Prot keywords, and protein similarity data are used to map the ESTs to functional descriptors. Conclusion EST2Prot extends and significantly enriches the popular UniGene mapping by utilizing multiple relations between known biological entities. It produces a mapping between ESTs and proteins in real-time through a simple web-interface. The system is part of the Biozon database and is accessible at . PMID:16515706

  20. Uav Data Processing for Rapid Mapping Activities

    NASA Astrophysics Data System (ADS)

    Tampubolon, W.; Reinhardt, W.

    2015-08-01

    During disaster and emergency situations, geospatial data plays an important role to serve as a framework for decision support system. As one component of basic geospatial data, large scale topographical maps are mandatory in order to enable geospatial analysis within quite a number of societal challenges. The increasing role of geo-information in disaster management nowadays consequently needs to include geospatial aspects on its analysis. Therefore different geospatial datasets can be combined in order to produce reliable geospatial analysis especially in the context of disaster preparedness and emergency response. A very well-known issue in this context is the fast delivery of geospatial relevant data which is expressed by the term "Rapid Mapping". Unmanned Aerial Vehicle (UAV) is the rising geospatial data platform nowadays that can be attractive for modelling and monitoring the disaster area with a low cost and timely acquisition in such critical period of time. Disaster-related object extraction is of special interest for many applications. In this paper, UAV-borne data has been used for supporting rapid mapping activities in combination with high resolution airborne Interferometric Synthetic Aperture Radar (IFSAR) data. A real disaster instance from 2013 in conjunction with Mount Sinabung eruption, Northern Sumatra, Indonesia, is used as the benchmark test for the rapid mapping activities presented in this paper. On this context, the reliable IFSAR dataset from airborne data acquisition in 2011 has been used as a comparable dataset for accuracy investigation and assessment purpose in 3 D reconstructions. After all, this paper presents a proper geo-referencing and feature extraction method of UAV data to support rapid mapping activities.

  1. Global, quantitative and dynamic mapping of protein subcellular localization

    PubMed Central

    Itzhak, Daniel N; Tyanova, Stefka; Cox, Jürgen; Borner, Georg HH

    2016-01-01

    Subcellular localization critically influences protein function, and cells control protein localization to regulate biological processes. We have developed and applied Dynamic Organellar Maps, a proteomic method that allows global mapping of protein translocation events. We initially used maps statically to generate a database with localization and absolute copy number information for over 8700 proteins from HeLa cells, approaching comprehensive coverage. All major organelles were resolved, with exceptional prediction accuracy (estimated at >92%). Combining spatial and abundance information yielded an unprecedented quantitative view of HeLa cell anatomy and organellar composition, at the protein level. We subsequently demonstrated the dynamic capabilities of the approach by capturing translocation events following EGF stimulation, which we integrated into a quantitative model. Dynamic Organellar Maps enable the proteome-wide analysis of physiological protein movements, without requiring any reagents specific to the investigated process, and will thus be widely applicable in cell biology. DOI: http://dx.doi.org/10.7554/eLife.16950.001 PMID:27278775

  2. Validated ligand mapping of ACE active site

    NASA Astrophysics Data System (ADS)

    Kuster, Daniel J.; Marshall, Garland R.

    2005-08-01

    Crystal structures of angiotensin-converting enzyme (ACE) complexed with three inhibitors (lisinopril, captopril, enalapril) provided experimental data for testing the validity of a prior active site model predicting the bound conformation of the inhibitors. The ACE active site model - predicted over 18 years ago using a series of potent ACE inhibitors of diverse chemical structure - was recreated using published data and commercial software. Comparison between the predicted structures of the three inhibitors bound to the active site of ACE and those determined experimentally yielded root mean square deviation (RMSD) values of 0.43-0.81 Å, among the distances defining the active site map. The bound conformations of the chemically relevant atoms were accurately deduced from the geometry of ligands, applying the assumption that the geometry of the active site groups responsible for binding and catalysis of amide hydrolysis was constrained. The mapping of bound inhibitors at the ACE active site was validated for known experimental compounds, so that the constrained conformational search methodology may be applied with confidence when no experimentally determined structure of the enzyme yet exists, but potent, diverse inhibitors are available.

  3. Separating proteins with activated carbon.

    PubMed

    Stone, Matthew T; Kozlov, Mikhail

    2014-07-15

    Activated carbon is applied to separate proteins based on differences in their size and effective charge. Three guidelines are suggested for the efficient separation of proteins with activated carbon. (1) Activated carbon can be used to efficiently remove smaller proteinaceous impurities from larger proteins. (2) Smaller proteinaceous impurities are most efficiently removed at a solution pH close to the impurity's isoelectric point, where they have a minimal effective charge. (3) The most efficient recovery of a small protein from activated carbon occurs at a solution pH further away from the protein's isoelectric point, where it is strongly charged. Studies measuring the binding capacities of individual polymers and proteins were used to develop these three guidelines, and they were then applied to the separation of several different protein mixtures. The ability of activated carbon to separate proteins was demonstrated to be broadly applicable with three different types of activated carbon by both static treatment and by flowing through a packed column of activated carbon.

  4. Expression of a Recombinant Anti-HIV and Anti-Tumor Protein, MAP30, in Nicotiana tobacum Hairy Roots: A pH-Stable and Thermophilic Antimicrobial Protein

    PubMed Central

    Moghadam, Ali; Niazi, Ali; Afsharifar, Alireza; Taghavi, Seyed Mohsen

    2016-01-01

    In contrast to conventional antibiotics, which microorganisms can readily evade, it is nearly impossible for a microbial strain that is sensitive to antimicrobial proteins to convert to a resistant strain. Therefore, antimicrobial proteins and peptides that are promising alternative candidates for the control of bacterial infections are under investigation. The MAP30 protein of Momordica charantia is a valuable type I ribosome-inactivating protein (RIP) with anti-HIV and anti-tumor activities. Whereas the antimicrobial activity of some type I RIPs has been confirmed, less attention has been paid to the antimicrobial activity of MAP30 produced in a stable, easily handled, and extremely cost-effective protein-expression system. rMAP30-KDEL was expressed in Nicotiana tobacum hairy roots, and its effect on different microorganisms was investigated. Analysis of the extracted total proteins of transgenic hairy roots showed that rMAP30-KDEL was expressed effectively and that this protein exhibited significant antibacterial activity in a dose-dependent manner. rMAP30-KDEL also possessed thermal and pH stability. Bioinformatic analysis of MAP30 and other RIPs regarding their conserved motifs, amino-acid contents, charge, aliphatic index, GRAVY value, and secondary structures demonstrated that these factors accounted for their thermophilicity. Therefore, RIPs such as MAP30 and its derived peptides might have promising applications as food preservatives, and their analysis might provide useful insights into designing clinically applicable antibiotic agents. PMID:27459300

  5. Data repository mapping for influenza protein sequence analysis

    NASA Astrophysics Data System (ADS)

    Pellegrino, Donald; Chen, Chaomei

    2011-01-01

    This paper introduces a new method for creating an interactive sequence similarity map of all known influenza virus protein sequences and integrating the map with existing general purpose analytical tools. The NCBI data model was designed to provide a high degree of interconnectedness amongst data objects. Substantial and continuous increase in data volume has led to a large and highly connected information space. Researchers seeking to explore this space are challenged to identify a starting point. They often choose data that is popular in the literature. Reference in the literature follow a power law distribution and popular data points may bias explorers toward paths that lead only to a dead-end of what is already known. To help discover the unexpected we developed an interactive visual analytics system to map the information space of influenza protein sequence data. The design is motivated by the needs of eScience researchers.

  6. Dealing with osmostress through MAP kinase activation

    PubMed Central

    de Nadal, Eulàlia; Alepuz, Paula M.; Posas, Francesc

    2002-01-01

    In response to changes in the extracellular environment, cells coordinate intracellular activities to maximize their probability of survival and proliferation. Eukaryotic cells, from yeast to mammals, transduce diverse extracellular stimuli through the cell by multiple mitogen-activated protein kinase (MAPK) cascades. Exposure of cells to increases in extracellular osmolarity results in rapid activation of a highly conserved family of MAPKs, known as stress-activated MAPKs (SAPKs). Activation of SAPKs is essential for the induction of adaptive responses required for cell survival upon osmostress. Recent studies have begun to shed light on the broad effects of SAPK activation in the modulation of several aspects of cell physiology, ranging from the control of gene expression to the regulation of cell division. PMID:12151331

  7. A developmentally regulated MAP kinase activated by hydration in tobacco pollen.

    PubMed Central

    Wilson, C; Voronin, V; Touraev, A; Vicente, O; Heberle-Bors, E

    1997-01-01

    A novel mitogen-activated protein (MAP) kinase signaling pathway has been identified in tobacco. This pathway is developmentally regulated during pollen maturation and is activated by hydration during pollen germination. Analysis of different stages of pollen development showed that transcriptional and translational induction of MAP kinase synthesis occurs at the mid-bicellular stage of pollen maturation. However, the MAP kinase is stored in an inactive form in the mature, dry pollen grain. Kinase activation is very rapid after hydration of the dry pollen, peaking at approximately 5 min and decreasing thereafter. Immunoprecipitation of the kinase activity by an anti-phosphotyrosine antibody is consistent with the activation of a MAP kinase. The kinetics of activation suggest that the MAP kinase plays a role in the activation of the pollen grain after hydration rather than in pollen tube growth. PMID:9401129

  8. MAP1S Protein Regulates the Phagocytosis of Bacteria and Toll-like Receptor (TLR) Signaling.

    PubMed

    Shi, Ming; Zhang, Yifan; Liu, Leyuan; Zhang, Tingting; Han, Fang; Cleveland, Joseph; Wang, Fen; McKeehan, Wallace L; Li, Yu; Zhang, Dekai

    2016-01-15

    Phagocytosis is a critical cellular process for innate immune defense against microbial infection. The regulation of phagocytosis process is complex and has not been well defined. An intracellular molecule might regulate cell surface-initiated phagocytosis, but the underlying molecular mechanism is poorly understood (1). In this study, we found that microtubule-associated protein 1S (MAP1S), a protein identified recently that is involved in autophagy (2), is expressed primarily in macrophages. MAP1S-deficient macrophages are impaired in the phagocytosis of bacteria. Furthermore, we demonstrate that MAP1S interacts directly with MyD88, a key adaptor of Toll-like receptors (TLRs), upon TLR activation and affects the TLR signaling pathway. Intriguingly, we also observe that, upon TLR activation, MyD88 participates in autophagy processing in a MAP1S-dependent manner by co-localizing with MAP1 light chain 3 (MAP1-LC3 or LC3). Therefore, we reveal that an intracellular autophagy-related molecule of MAP1S controls bacterial phagocytosis through TLR signaling.

  9. MAP17 and SGLT1 Protein Expression Levels as Prognostic Markers for Cervical Tumor Patient Survival

    PubMed Central

    Perez, Marco; Praena-Fernandez, Juan M.; Felipe-Abrio, Blanca; Lopez-Garcia, Maria A.; Lucena-Cacace, Antonio; Garcia, Angel; Lleonart, Matilde; Roncador, Guiovanna; Marin, Juan J.; Carnero, Amancio

    2013-01-01

    MAP17 is a membrane-associated protein that is overexpressed in human tumors. Because the expression of MAP17 increases reactive oxygen species (ROS) generation through SGLT1 in cancer cells, in the present work, we investigated whether MAP17 and/or SGLT1 might be markers for the activity of treatments involving oxidative stress, such as cisplatin or radiotherapy. First, we confirmed transcriptional alterations in genes involved in the oxidative stress induced by MAP17 expression in HeLa cervical tumor cells and found that Hela cells expressing MAP17 were more sensitive to therapies that induce ROS than were parental cells. Furthermore, MAP17 increased glucose uptake through SGLT receptors. We then analyzed MAP17 and SGLT1 expression levels in cervical tumors treated with cisplatin plus radiotherapy and correlated the expression levels with patient survival. MAP17 and SGLT1 were expressed in approximately 70% and 50% of cervical tumors of different types, respectively, but they were not expressed in adenoma tumors. Furthermore, there was a significant correlation between MAP17 and SGLT1 expression levels. High levels of either MAP17 or SGLT1 correlated with improved patient survival after treatment. However, the patients with high levels of both MAP17 and SGLT1 survived through the end of this study. Therefore, the combination of high MAP17 and SGLT1 levels is a marker for good prognosis in patients with cervical tumors after cisplatin plus radiotherapy treatment. These results also suggest that the use of MAP17 and SGLT1 markers may identify patients who are likely to exhibit a better response to treatments that boost oxidative stress in other cancer types. PMID:23418532

  10. Mycosporine-Like Amino Acids Promote Wound Healing through Focal Adhesion Kinase (FAK) and Mitogen-Activated Protein Kinases (MAP Kinases) Signaling Pathway in Keratinocytes

    PubMed Central

    Choi, Yun-Hee; Yang, Dong Joo; Kulkarni, Atul; Moh, Sang Hyun; Kim, Ki Woo

    2015-01-01

    Mycosporine-like amino acids (MAAs) are secondary metabolites found in diverse marine, freshwater, and terrestrial organisms. Evidence suggests that MAAs have several beneficial effects on skin homeostasis such as protection against UV radiation and reactive oxygen species (ROS). In addition, MAAs are also involved in the modulation of skin fibroblasts proliferation. However, the regulatory function of MAAs on wound repair in human skin is not yet clearly elucidated. To investigate the roles of MAAs on the wound healing process in human keratinocytes, three MAAs, Shinorine (SH), Mycosporine-glycine (M-Gly), and Porphyra (P334) were purified from Chlamydomonas hedlyei and Porphyra yezoensis. We found that SH, M-Gly, and P334 have significant effects on the wound healing process in human keratinocytes and these effects were mediated by activation of focal adhesion kinases (FAK), extracellular signal-regulated kinases (ERK), and c-Jun N-terminal kinases (JNK). These results suggest that MAAs accelerate wound repair by activating the FAK-MAPK signaling pathways. This study also indicates that MAAs can act as a new wound healing agent and further suggests that MAAs might be a novel biomaterial for wound healing therapies. PMID:26703626

  11. Actions of Rho family small G proteins and p21-activated protein kinases on mitogen-activated protein kinase family members.

    PubMed Central

    Frost, J A; Xu, S; Hutchison, M R; Marcus, S; Cobb, M H

    1996-01-01

    The mitogen-activated protein (MAP) kinases are a family of serine/threonine kinases that are regulated by distinct extracellular stimuli. The currently known members include extracellular signal-regulated protein kinase 1 (ERK1), ERK2, the c-Jun N-terminal kinase/stress-activated protein kinases (JNK/SAPKs), and p38 MAP kinases. We find that overexpression of the Ste20-related enzymes p21-activated kinase 1 (PAK1) and PAK2 in 293 cells is sufficient to activate JNK/SAPK and to a lesser extent p38 MAP kinase but not ERK2. Rat MAP/ERK kinase kinase 1 can stimulate the activity of each of these MAP kinases. Although neither activated Rac nor the PAKs stimulate ERK2 activity, overexpression of either dominant negative Rac2 or the N-terminal regulatory domain of PAK1 inhibits Ras-mediated activation of ERK2, suggesting a permissive role for Rac in the control of the ERK pathway. Furthermore, constitutively active Rac2, Cdc42hs, and RhoA synergize with an activated form of Raf to increase ERK2 activity. These findings reveal a previously unrecognized connection between Rho family small G proteins and the ERK pathway. PMID:8668187

  12. Carbene footprinting accurately maps binding sites in protein–ligand and protein–protein interactions

    PubMed Central

    Manzi, Lucio; Barrow, Andrew S.; Scott, Daniel; Layfield, Robert; Wright, Timothy G.; Moses, John E.; Oldham, Neil J.

    2016-01-01

    Specific interactions between proteins and their binding partners are fundamental to life processes. The ability to detect protein complexes, and map their sites of binding, is crucial to understanding basic biology at the molecular level. Methods that employ sensitive analytical techniques such as mass spectrometry have the potential to provide valuable insights with very little material and on short time scales. Here we present a differential protein footprinting technique employing an efficient photo-activated probe for use with mass spectrometry. Using this methodology the location of a carbohydrate substrate was accurately mapped to the binding cleft of lysozyme, and in a more complex example, the interactions between a 100 kDa, multi-domain deubiquitinating enzyme, USP5 and a diubiquitin substrate were located to different functional domains. The much improved properties of this probe make carbene footprinting a viable method for rapid and accurate identification of protein binding sites utilizing benign, near-UV photoactivation. PMID:27848959

  13. Nanotools for Neuroscience and Brain Activity Mapping

    PubMed Central

    Alivisatos, A. Paul; Andrews, Anne M.; Boyden, Edward S.; Chun, Miyoung; Church, George M.; Deisseroth, Karl; Donoghue, John P.; Fraser, Scott E.; Lippincott-Schwartz, Jennifer; Looger, Loren L.; Masmanidis, Sotiris; McEuen, Paul L.; Nurmikko, Arto V.; Park, Hongkun; Peterka, Darcy S.; Reid, Clay; Roukes, Michael L.; Scherer, Axel; Schnitzer, Mark; Sejnowski, Terrence J.; Shepard, Kenneth L.; Tsao, Doris; Turrigiano, Gina; Weiss, Paul S.; Xu, Chris; Yuste, Rafael; Zhuang, Xiaowei

    2013-01-01

    Neuroscience is at a crossroads. Great effort is being invested into deciphering specific neural interactions and circuits. At the same time, there exist few general theories or principles that explain brain function. We attribute this disparity, in part, to limitations in current methodologies. Traditional neurophysiological approaches record the activities of one neuron or a few neurons at a time. Neurochemical approaches focus on single neurotransmitters. Yet, there is an increasing realization that neural circuits operate at emergent levels, where the interactions between hundreds or thousands of neurons, utilizing multiple chemical transmitters, generate functional states. Brains function at the nanoscale, so tools to study brains must ultimately operate at this scale, as well. Nanoscience and nanotechnology are poised to provide a rich toolkit of novel methods to explore brain function by enabling simultaneous measurement and manipulation of activity of thousands or even millions of neurons. We and others refer to this goal as the Brain Activity Mapping Project. In this Nano Focus, we discuss how recent developments in nanoscale analysis tools and in the design and synthesis of nanomaterials have generated optical, electrical, and chemical methods that can readily be adapted for use in neuroscience. These approaches represent exciting areas of technical development and research. Moreover, unique opportunities exist for nanoscientists, nanotechnologists, and other physical scientists and engineers to contribute to tackling the challenging problems involved in understanding the fundamentals of brain function. PMID:23514423

  14. Active protease mapping in 2DE gels.

    PubMed

    Zhao, Zhenjun; Russell, Pamela J

    2009-01-01

    Proteases act as the molecular mediators of many vital biological processes. To understand the function of each protease, it needs to be separated from other proteins and characterized in its natural, biologically active form. In the method described in this chapter, proteases in a biological sample are separated under nonreducing conditions in 2DE gels. A specific small protease substrate, tagged with a fluorescent dye, is copolymerized into the SDS gel in the second dimension. After electrophoresis, the proteins are renatured by washing the gel with Triton X-100 solution or Milli Q water to remove SDS. The gel is then incubated in a protease assay buffer. The hydrolysis of the tagged specific substrate by the renatured protease releases the free fluorescent dye, which fluoresces in situ. The fluorescent spots indicate the location of the specific proteases in the gel and the specificity of the proteases.

  15. Identifying Activity Cliff Generators of PPAR Ligands Using SAS Maps.

    PubMed

    Méndez-Lucio, Oscar; Pérez-Villanueva, Jaime; Castillo, Rafael; Medina-Franco, José L

    2012-12-01

    Structure-activity relationships (SAR) of compound databases play a key role in hit identification and lead optimization. In particular, activity cliffs, defined as a pair of structurally similar molecules that present large changes in potency, provide valuable SAR information. Herein, we introduce the concept of activity cliff generator, defined as a molecular structure that has a high probability to form activity cliffs with molecules tested in the same biological assay. To illustrate this concept, we discuss a case study where Structure-Activity Similarity maps were used to systematically identify and analyze activity cliff generators present in a dataset of 168 compounds tested against three peroxisome-proliferator-activated receptor (PPAR) subtypes. Single-target and dual-target activity cliff generators for PPARα and δ were identified. In addition, docking calculations of compounds that were classified as cliff generators helped to suggest a hot spot in the target protein responsible of activity cliffs and to analyze its implication in ligand-enzyme interaction.

  16. MAP17 Is a Necessary Activator of Renal Na+/Glucose Cotransporter SGLT2.

    PubMed

    Coady, Michael J; El Tarazi, Abdulah; Santer, René; Bissonnette, Pierre; Sasseville, Louis J; Calado, Joaquim; Lussier, Yoann; Dumayne, Christopher; Bichet, Daniel G; Lapointe, Jean-Yves

    2017-01-01

    The renal proximal tubule reabsorbs 90% of the filtered glucose load through the Na(+)-coupled glucose transporter SGLT2, and specific inhibitors of SGLT2 are now available to patients with diabetes to increase urinary glucose excretion. Using expression cloning, we identified an accessory protein, 17 kDa membrane-associated protein (MAP17), that increased SGLT2 activity in RNA-injected Xenopus oocytes by two orders of magnitude. Significant stimulation of SGLT2 activity also occurred in opossum kidney cells cotransfected with SGLT2 and MAP17. Notably, transfection with MAP17 did not change the quantity of SGLT2 protein at the cell surface in either cell type. To confirm the physiologic relevance of the MAP17-SGLT2 interaction, we studied a cohort of 60 individuals with familial renal glucosuria. One patient without any identifiable mutation in the SGLT2 coding gene (SLC5A2) displayed homozygosity for a splicing mutation (c.176+1G>A) in the MAP17 coding gene (PDZK1IP1). In the proximal tubule and in other tissues, MAP17 is known to interact with PDZK1, a scaffolding protein linked to other transporters, including Na(+)/H(+) exchanger 3, and to signaling pathways, such as the A-kinase anchor protein 2/protein kinase A pathway. Thus, these results provide the basis for a more thorough characterization of SGLT2 which would include the possible effects of its inhibition on colocalized renal transporters.

  17. In silico Mapping of Protein Unfolding Mutations for Inherited Disease

    PubMed Central

    McCafferty, Caitlyn L.; Sergeev, Yuri V.

    2016-01-01

    The effect of disease-causing missense mutations on protein folding is difficult to evaluate. To understand this relationship, we developed the unfolding mutation screen (UMS) for in silico evaluation of the severity of genetic perturbations at the atomic level of protein structure. The program takes into account the protein-unfolding curve and generates propensities using calculated free energy changes for every possible missense mutation at once. These results are presented in a series of unfolding heat maps and a colored protein 3D structure to show the residues critical to the protein folding and are available for quick reference. UMS was tested with 16 crystal structures to evaluate the unfolding for 1391 mutations from the ProTherm database. Our results showed that the computational accuracy of the unfolding calculations was similar to the accuracy of previously published free energy changes but provided a better scale. Our residue identity control helps to improve protein homology models. The unfolding predictions for proteins involved in age-related macular degeneration, retinitis pigmentosa, and Leber’s congenital amaurosis matched well with data from previous studies. These results suggest that UMS could be a useful tool in the analysis of genotype-to-phenotype associations and next-generation sequencing data for inherited diseases. PMID:27905547

  18. CapsidMaps: protein-protein interaction pattern discovery platform for the structural analysis of virus capsids using Google Maps.

    PubMed

    Carrillo-Tripp, Mauricio; Montiel-García, Daniel Jorge; Brooks, Charles L; Reddy, Vijay S

    2015-04-01

    Structural analysis and visualization of protein-protein interactions is a challenging task since it is difficult to appreciate easily the extent of all contacts made by the residues forming the interfaces. In the case of viruses, structural analysis becomes even more demanding because several interfaces coexist and, in most cases, these are formed by hundreds of contacting residues that belong to multiple interacting coat proteins. CapsidMaps is an interactive analysis and visualization tool that is designed to benefit the structural virology community. Developed as an improved extension of the φ-ψ Explorer, here we describe the details of its design and implementation. We present results of analysis of a spherical virus to showcase the features and utility of the new tool. CapsidMaps also facilitates the comparison of quaternary interactions between two spherical virus particles by computing a similarity (S)-score. The tool can also be used to identify residues that are solvent exposed and in the process of locating antigenic epitope regions as well as residues forming the inside surface of the capsid that interact with the nucleic acid genome. CapsidMaps is part of the VIPERdb Science Gateway, and is freely available as a web-based and cross-browser compliant application at http://viperdb.scripps.edu.

  19. Ribosomal protein gene mapping and human chromosomal disorders

    SciTech Connect

    Kenmochi, N.; Goodman, N.; Page, D.C.

    1994-09-01

    In Drosophila, the Minute phenotype (reduced body size, diminished viability and fertility, and short, thin bristles) results from heterozygous deficiencies (deletions) at any one of 50 loci scattered about the genome. A handful of these Minute loci have been molecularly characterized, and all have been found to encode ribosomal proteins. Thus, the Minute phenotype appears to result from reduced protein synthetic capacity in flies with one rather than two copies of a given ribosomal protein (rp) gene. We are pursuing the possibility that similar reductions in protein synthetic capacity--again resulting from rp gene deficiencies--might underlie phenotypes associated with certain chromosomal disorders in humans. We and our colleagues have reported findings consistent with a role for RPS4 deficiency in the etiology of certain features of Turner syndrome, a complex human disorder classically associated with an XO karyotype. We are intrigued by the possibility that deficiencies of other human rp genes might cause phenotypic abnormalities similar to those seen in Turner syndrome--just as deficiencies of any of a number of Drosophila rp genes cause the Minute phenotype. We must first learn the chromosomal map position of each of the estimated 83 human rp genes. The task of mapping the functional (intron-containing) rp genes is complicated by the existence of processed pseudogenes elsewhere in the genome. To date, we have assigned (or confirmed the previous assignment of) 38 rp genes to individual human chromosomes by PCR analysis of human-rodent somatic cell hybrids containing subsets of human chromosomes, with all but four chromosomes carrying at least one rp gene. We have also identified more than 100 large-insert human YAC (yeast artificial chromosome) clones that contain individual rp genes. Such screening of YAC libraries will result in precise positioning of the rp genes on the emerging physical map of the human genome.

  20. A protein-protein interaction map of yeast RNA polymerase III.

    PubMed

    Flores, A; Briand, J F; Gadal, O; Andrau, J C; Rubbi, L; Van Mullem, V; Boschiero, C; Goussot, M; Marck, C; Carles, C; Thuriaux, P; Sentenac, A; Werner, M

    1999-07-06

    The structure of the yeast RNA polymerase (pol) III was investigated by exhaustive two-hybrid screening using a library of random genomic fragments fused to the Gal4 activation domain. This procedure allowed us to identify contacts between individual polypeptides, localize the contact domains, and deduce a protein-protein interaction map of the multisubunit enzyme. In all but one case, pol III subunits were able to interact in vivo with one or sometimes two partner subunits of the enzyme or with subunits of TFIIIC. Four subunits that are common to pol I, II, and III (ABC27, ABC14.5, ABC10alpha, and ABC10beta), two that are common to pol I and III (AC40 and AC19), and one pol III-specific subunit (C11) can associate with defined regions of the two large subunits. These regions overlapped with highly conserved domains. C53, a pol III-specific subunit, interacted with a 37-kDa polypeptide that copurifies with the enzyme and therefore appears to be a unique pol III subunit (C37). Together with parallel interaction studies based on dosage-dependent suppression of conditional mutants, our data suggest a model of the pol III preinitiation complex.

  1. How round is a protein? Exploring protein structures for globularity using conformal mapping.

    PubMed

    Hass, Joel; Koehl, Patrice

    2014-01-01

    We present a new algorithm that automatically computes a measure of the geometric difference between the surface of a protein and a round sphere. The algorithm takes as input two triangulated genus zero surfaces representing the protein and the round sphere, respectively, and constructs a discrete conformal map f between these surfaces. The conformal map is chosen to minimize a symmetric elastic energy E S (f) that measures the distance of f from an isometry. We illustrate our approach on a set of basic sample problems and then on a dataset of diverse protein structures. We show first that E S (f) is able to quantify the roundness of the Platonic solids and that for these surfaces it replicates well traditional measures of roundness such as the sphericity. We then demonstrate that the symmetric elastic energy E S (f) captures both global and local differences between two surfaces, showing that our method identifies the presence of protruding regions in protein structures and quantifies how these regions make the shape of a protein deviate from globularity. Based on these results, we show that E S (f) serves as a probe of the limits of the application of conformal mapping to parametrize protein shapes. We identify limitations of the method and discuss its extension to achieving automatic registration of protein structures based on their surface geometry.

  2. A comprehensive protein-centric ID mapping service for molecular data integration

    PubMed Central

    Huang, Hongzhan; Suzek, Baris E.; Mazumder, Raja; Zhang, Jian; Chen, Yongxing; Wu, Cathy H.

    2011-01-01

    Motivation: Identifier (ID) mapping establishes links between various biological databases and is an essential first step for molecular data integration and functional annotation. ID mapping allows diverse molecular data on genes and proteins to be combined and mapped to functional pathways and ontologies. We have developed comprehensive protein-centric ID mapping services providing mappings for 90 IDs derived from databases on genes, proteins, pathways, diseases, structures, protein families, protein interaction, literature, ontologies, etc. The services are widely used and have been regularly updated since 2006. Availability: www.uniprot.org/mappingandproteininformation-resource.org/pirwww/search/idmapping.shtml Contact: huang@dbi.udel.edu PMID:21478197

  3. Correlation of scintigraphic phase maps with intraoperative epicardial/endocardial maps in patients with activation disturbances

    SciTech Connect

    Dae, M.W.; Botvinick, E.H.; Scheinmann, M.H.; Morady, F.J.; Davis, J.A.; Schechtmann, N.; Frais, M.; Faulkner, D.; O'Connell, W.

    1984-01-01

    To assess the true accuracy of scintigraphic findings, 8 patients (PTS), 6 with pre-excitation (PEX) syndrome and 2 with intractable ventricular tachycardia (VT), were studied by phase analysis, prior to corrective surgery. Sites of earliest phase angle were determined in multiple projections during the conduction disturbance, compared to sites of early ventricular activation determined by epicardial mapping during PEX and, when performed, by endocardial mapping during VT, and to maps previously generated at conventional electrophysiologic study (EPS). Among PEX PTS, Rt and Lt lateral, Lt anterolateral, Rt and Lt posterolateral and posteroseptal bypass pathways mapped at surgery correlated with phase localization. While localization from EPS also correlated well with surgical maps in 4 PTS, 1 PT could not be mapped by EPS and another presented ambiguities. Scintigraphic localization also correlated well with surgical mapping in a PT with a RV VT focus while EPS was suggestive but uncertain. A second PT with VT mapped scintigraphically to originate in a Lt lateral focus, demonstrated a similar localization on EPS, and during surgical mapping, an incision made through the scintigraphic focus terminated VT. Incision in regions of earliest activity in the first VT PT and in PTS with PEX resolved the arrhythmia or interrupted the bypass tract. Phase mapping correlated closely with surface mapping at surgery while providing an accurate, independent method for noninvasive assessment of conduction disturbances and a complementary tool to standard EPS.

  4. Interaction of Protein Inhibitor of Activated STAT (PIAS) Proteins with the TATA-binding Protein, TBP*

    PubMed Central

    Prigge, Justin R.; Schmidt, Edward E.

    2007-01-01

    Transcription activators often recruit promoter-targeted assembly of a pre-initiation complex; many repressors antagonize recruitment. These activities can involve direct interactions with proteins in the pre-initiation complex. We used an optimized yeast two-hybrid system to screen mouse pregnancy-associated libraries for proteins that interact with TATA-binding protein (TBP). Screens revealed an interaction between TBP and a single member of the zinc finger family of transcription factors, ZFP523. Two members of the protein inhibitor of activated STAT (PIAS) family, PIAS1 and PIAS3, also interacted with TBP in screens. Endogenous PIAS1 and TBP co-immunoprecipitated from nuclear extracts, suggesting the interaction occurred in vivo. In vitro-translated PIAS1 and TBP coimmunopreciptated, which indicated that other nuclear proteins were not required for the interaction. Deletion analysis mapped the PIAS-interacting domain of TBP to the conserved TBPCORE and the TBP-interacting domain on PIAS1 to a 39-amino acid C-terminal region. Mammals issue seven known PIAS proteins from four pias genes, pias1, pias3, piasx, and piasy, each with different cell type-specific expression patterns; the TBP-interacting domain reported here is the only part of the PIAS C-terminal region shared by all seven PIAS proteins. Direct analyses indicated that PIASx and PIASy also interacted with TBP. Our results suggest that all PIAS proteins might mediate situation-specific regulatory signaling at the TBP interface and that previously unknown levels of complexity could exist in the gene regulatory interplay between TBP, PIAS proteins, ZFP523, and other transcription factors. PMID:16522640

  5. Teaching Basic Geographical Skills: Map and Compass Activities.

    ERIC Educational Resources Information Center

    Trussell, Margaret Edith

    1986-01-01

    Presents a unit on map and compass activities which introduces compass direction, magnetic declination and conversion of map measurement to familiar units. Requires four, one-hour class meetings and may be followed by a half-day orienteering activity. (Author/JDH)

  6. Geophysical Mapping and Monitoring of Active Planets (GMAP)

    NASA Astrophysics Data System (ADS)

    McGovern, P. J.; Goossens, S. J.; Lemoine, F. G.

    2017-02-01

    Recent findings require a strongly upward revision of volcano-tectonic activity rate estimates for Venus and Mars. We propose a program of Geophysical Mapping and Monitoring of Active Planets (GMAP) including seismology, gravimetry, InSAR, and GPS.

  7. A novel mechanism of FSH regulation of DNA synthesis in the granulosa cells of hamster preantral follicles. Involvement of a protein kinase C mediated MAP kinase 3/1 self- activation loop

    PubMed Central

    Yang, Peixin; Roy, Shyamal K.

    2006-01-01

    Summary FSH- or EGF-induced granulosa cell proliferation in intact preantral follicles depends on a novel PKC-mediated MAPK3/1 self-activation loop. The objective was to reveal whether a PKC-mediated self-sustaining MAPK3/1 activation loop was necessary for FSH- or EGF-induced DNA synthesis in the granulosa cells of intact preantral follicles. For this purpose, hamster preantral follicles were cultured with FSH or EGF in the presence of selective kinase inhibitors. FSH or EGF phosphorylated RAF1, MAP2K1 and MAPK3/1. However, relatively higher dose of EGF was necessary to sustain the MAPK3/1 activity, which was essential for CDK4 activation and DNA synthesis. In intact preantral follicles, FSH or EGF stimulated DNA synthesis only in the granulosa cells. Sustained activation of MAPK3/1 beyond 3h was independent of EGFR kinase activity, but dependent on PKC activity, which appeared to form a self-sustaining MAPK3/1 activation loop by activating RAF1, MAP2K1 and PLA2G4. Inhibition of PKC activity as late as 4h after the administration of FSH or EGF arrested DNA synthesis, which corresponded with attenuated phosphorylation of RAF1 and MAPK3/1, thus suggesting an essential role of PKC in MAPK3/1 activation. Collectively, these data present a novel self-sustaining mechanism comprised of MAPK3/1, PLA2G4, PKC and RAF1 for CDK4 activation leading to DNA synthesis in granulosa cells. Either FSH or EGF can activate the loop to activate CDK4 and initiate DNA synthesis; however, consistent with our previous findings, FSH effect seems to be mediated by EGF, which initiates the event by stimulating EGFR kinase. PMID:16525034

  8. A Protein Interaction Map of the Kalimantacin Biosynthesis Assembly Line

    PubMed Central

    Uytterhoeven, Birgit; Lathouwers, Thomas; Voet, Marleen; Michiels, Chris W.; Lavigne, Rob

    2016-01-01

    The antimicrobial secondary metabolite kalimantacin (also called batumin) is produced by a hybrid polyketide/non-ribosomal peptide system in Pseudomonas fluorescens BCCM_ID9359. In this study, the kalimantacin biosynthesis gene cluster is analyzed by yeast two-hybrid analysis, creating a protein–protein interaction map of the entire assembly line. In total, 28 potential interactions were identified, of which 13 could be confirmed further. These interactions include the dimerization of ketosynthase domains, a link between assembly line modules 9 and 10, and a specific interaction between the trans-acting enoyl reductase BatK and the carrier proteins of modules 8 and 10. These interactions reveal fundamental insight into the biosynthesis of secondary metabolites. This study is the first to reveal interactions in a complete biosynthetic pathway. Similar future studies could build a strong basis for engineering strategies in such clusters. PMID:27853452

  9. Lipid and protein maps defining arterial layers in atherosclerotic aorta

    PubMed Central

    Martin-Lorenzo, Marta; Balluff, Benjamin; Maroto, Aroa S.; Carreira, Ricardo J.; van Zeijl, Rene J.M.; Gonzalez-Calero, Laura; de la Cuesta, Fernando; Barderas, Maria G; Lopez-Almodovar, Luis F; Padial, Luis R; McDonnell, Liam A.; Vivanco, Fernando; Alvarez-Llamas, Gloria

    2015-01-01

    Subclinical atherosclerosis cannot be predicted and novel therapeutic targets are needed. The molecular anatomy of healthy and atherosclerotic tissue is pursued to identify ongoing molecular changes in atherosclerosis development. Mass Spectrometry Imaging (MSI) accounts with the unique advantage of analyzing proteins and metabolites (lipids) while preserving their original localization; thus two dimensional maps can be obtained. Main molecular alterations were investigated in a rabbit model in response to early development of atherosclerosis. Aortic arterial layers (intima and media) and calcified regions were investigated in detail by MALDI-MSI and proteins and lipids specifically defining those areas of interest were identified. These data further complement main findings previously published in J Proteomics (M. Martin-Lorenzo et al., J. Proteomics. (In press); M. Martin-Lorenzo et al., J. Proteomics 108 (2014) 465–468.) [1,2]. PMID:26217810

  10. Role of receptor desensitization, phosphatase induction and intracellular cyclic AMP in the termination of mitogen-activated protein kinase activity in UTP-stimulated EAhy 926 endothelial cells.

    PubMed Central

    Graham, A; McLees, A; Malarkey, K; Gould, G W; Plevin, R

    1996-01-01

    We have investigated the mechanisms that bring about the termination of mitogen-activated protein kinase (MAP kinase) activation in response to UTP in EAhy 926 endothelial cells. UTP-stimulated MAP kinase activity was transient, returning to basal values by 60 min. At this time MAP kinase activation was desensitized; re-application of UTP did not further activate MAP kinase, full re-activation of MAP kinase being only apparent after a 1-2 h wash period. However, activation of MAP kinase by UTP could be sustained beyond 60 min by preincubation of the cells with the protein synthesis inhibitor cycloheximide. UTP also stimulated expression of MAP kinase phosphatase-1 and this was abolished after pretreatment with cycloheximide. Pretreatment of cells with forskolin abolished the initial activation of MAP kinase kinase or c-Raf-1 by UTP, but only affected MAP kinase activity during prolonged stimulation. The effect of forskolin on prolonged MAP kinase activation was also prevented by cycloheximide. These results suggest that the termination of MAP kinase activity in response to UTP involves a number of interacting mechanisms including receptor desensitization and the induction of a phosphatase. However, several pieces of evidence do not support a major role for MAP kinase phosphatase-1 in termination of the MAP kinase signal. Raising intracellular cyclic AMP may also be involved but only after an initial protein-synthesis step and by a mechanism that does not involve the inactivation of c-Raf-1 or MAP kinase kinase. PMID:8615830

  11. Functional mapping of cell surface proteins with localized stimulation of single cells

    NASA Astrophysics Data System (ADS)

    Sun, Bingyun; Chiu, Daniel T.

    2003-11-01

    This paper describes the development of using individual micro and nano meter-sized vesicles as delivery vessels to functionally map the distribution of cell surface proteins at the level of single cells. The formation of different sizes of vesicles from tens of nanometers to a few micrometers in diameter that contain the desired molecules is addressed. An optical trap is used to manipulate the loaded vesicle to specific cell morphology of interest, and a pulsed UV laser is used to photo-release the stimuli onto the cell membrane. Carbachol activated cellular calcium flux, upon binding to muscarinic acetylcholine receptors, is studied by this method, and the potential of using this method for the functional mapping of localized proteins on the cell surface membrane is discussed.

  12. Effects of butyltins on mitogen-activated-protein kinase kinase kinase and Ras activity in human natural killer cells.

    PubMed

    Celada, Lindsay J; Whalen, Margaret M

    2014-09-01

    Butyltins (BTs) contaminate the environment and are found in human blood. BTs, tributyltin (TBT) and dibutyltin (DBT) diminish the cytotoxic function and levels of key proteins of human natural killer (NK) cells. NK cells are an initial immune defense against tumors, virally infected cells and antibody-coated cells and thus critical to human health. The signaling pathways that regulate NK cell functions include mitogen-activated protein kinases (MAPKs). Studies have shown that exposure to BTs leads to activation of specific MAPKs and MAPK kinases (MAP2Ks) in human NK cells. MAP2K kinases (MAP3Ks) are upstream activators of MAP2Ks, which then activate MAPKs. The current study examined if BT-induced activation of MAP3Ks was responsible for MAP2K and thus, MAPK activation. This study examines the effects of TBT and DBT on the total levels of two MAP3Ks, c-Raf and ASK1, as well as activating and inhibitory phosphorylation sites on these MAP3Ks. In addition, the immediate upstream activator of c-Raf, Ras, was examined for BT-induced alterations. Our results show significant activation of the MAP3K, c-Raf, in human NK cells within 10 min of TBT exposure and the MAP3K, ASK1, after 1 h exposures to TBT. In addition, our results suggest that both TBT and DBT affect the regulation of c-Raf.

  13. Acquisition of contextual discrimination involves the appearance of a RAS-GRF1/p38 mitogen-activated protein (MAP) kinase-mediated signaling pathway that promotes long term potentiation (LTP).

    PubMed

    Jin, Shan-Xue; Arai, Junko; Tian, Xuejun; Kumar-Singh, Rajendra; Feig, Larry A

    2013-07-26

    RAS-GRF1 is a guanine nucleotide exchange factor with the ability to activate RAS and RAC GTPases in response to elevated calcium levels. We previously showed that beginning at 1 month of age, RAS-GRF1 mediates NMDA-type glutamate receptor (NMDAR)-induction of long term depression in the CA1 region of the hippocampus of mice. Here we show that beginning at 2 months of age, when mice first acquire the ability to discriminate between closely related contexts, RAS-GRF1 begins to contribute to the induction of long term potentiation (LTP) in the CA1 hippocampus by mediating the action of calcium-permeable, AMPA-type glutamate receptors (CP-AMPARs). Surprisingly, LTP induction by CP-AMPARs through RAS-GRF1 occurs via activation of p38 MAP kinase rather than ERK MAP kinase, which has more frequently been linked to LTP. Moreover, contextual discrimination is blocked by knockdown of Ras-Grf1 expression specifically in the CA1 hippocampus, infusion of a p38 MAP kinase inhibitor into the CA1 hippocampus, or the injection of an inhibitor of CP-AMPARs. These findings implicate the CA1 hippocampus in the developmentally dependent capacity to distinguish closely related contexts through the appearance of a novel LTP-supporting signaling pathway.

  14. MAP Tag: A Novel Tagging System for Protein Purification and Detection

    PubMed Central

    Fujii, Yuki; Kaneko, Mika K.

    2016-01-01

    Protein purification is an essential procedure in fields such as biochemistry, molecular biology, and biophysics. Acquiring target proteins with high quality and purity is still difficult, although several tag systems have been established for protein purification. Affinity tag systems are excellent because they possess high affinity and specificity for acquiring the target proteins. Nevertheless, further affinity tag systems are needed to compensate for several disadvantages of the presently available affinity tag systems. Herein, we developed a novel affinity tag system designated as the MAP tag system. This system is composed of a rat anti-mouse podoplanin monoclonal antibody (clone PMab-1) and MAP tag (GDGMVPPGIEDK) derived from the platelet aggregation-stimulating domain of mouse podoplanin. PMab-1 possesses high affinity and specificity for the MAP tag, and the PMab-1/MAP tag complex dissociates in the presence of the epitope peptide, indicating that the MAP tag system is suitable for protein purification. We successfully purified several proteins, including a nuclear protein, soluble proteins, and a membrane protein using the MAP tag system. The MAP tag system is very useful not only for protein purification but also in protein detection systems such as western blot and flow cytometric analyses. Taken together, these findings indicate that the MAP tag system could be a powerful tool for protein purification and detection. PMID:27801621

  15. Collaborative Concept Mapping Activities in a Classroom Scenario

    ERIC Educational Resources Information Center

    Elorriaga, J. A.; Arruarte, A.; Calvo, I.; Larrañaga, M.; Rueda, U.; Herrán, E.

    2013-01-01

    The aim of this study is to test collaborative concept mapping activities using computers in a classroom scenario and to evaluate the possibilities that Elkar-CM offers for collaboratively learning non-technical topics. Elkar-CM is a multi-lingual and multi-media software program designed for drawing concept maps (CMs) collaboratively. Concept…

  16. Degradation of Activated Protein Kinases by Ubiquitination

    PubMed Central

    Lu, Zhimin; Hunter, Tony

    2009-01-01

    Protein kinases are important regulators of intracellular signal transduction pathways and play critical roles in diverse cellular functions. Once a protein kinase is activated, its activity is subsequently downregulated through a variety of mechanisms. Accumulating evidence indicates that the activation of protein kinases commonly initiates their downregulation via the ubiquitin/proteasome pathway. Failure to regulate protein kinase activity or expression levels can cause human diseases. PMID:19489726

  17. Construction and application of a protein interaction map for white spot syndrome virus (WSSV).

    PubMed

    Sangsuriya, Pakkakul; Huang, Jiun-Yan; Chu, Yu-Fei; Phiwsaiya, Kornsunee; Leekitcharoenphon, Pimlapas; Meemetta, Watcharachai; Senapin, Saengchan; Huang, Wei-Pang; Withyachumnarnkul, Boonsirm; Flegel, Timothy W; Lo, Chu-Fang

    2014-01-01

    White spot syndrome virus (WSSV) is currently the most serious global threat for cultured shrimp production. Although its large, double-stranded DNA genome has been completely characterized, most putative protein functions remain obscure. To provide more informative knowledge about this virus, a proteomic-scale network of WSSV-WSSV protein interactions was carried out using a comprehensive yeast two-hybrid analysis. An array of yeast transformants containing each WSSV open reading frame fused with GAL4 DNA binding domain and GAL4 activation domain was constructed yielding 187 bait and 182 prey constructs, respectively. On screening of ∼28,000 pairwise combinations, 710 interactions were obtained from 143 baits. An independent coimmunoprecipitation assay (co-IP) was performed to validate the selected protein interaction pairs identified from the yeast two-hybrid approach. The program Cytoscape was employed to create a WSSV protein-protein interaction (PPI) network. The topology of the WSSV PPI network was based on the Barabási-Albert model and consisted of a scale-free network that resembled other established viral protein interaction networks. Using the RNA interference approach, knocking down either of two candidate hub proteins gave shrimp more protection against WSSV than knocking down a nonhub gene. The WSSV protein interaction map established in this study provides novel guidance for further studies on shrimp viral pathogenesis, host-viral protein interaction and potential targets for therapeutic and preventative antiviral strategies in shrimp aquaculture.

  18. A global tectonic activity map with orbital photographic supplement

    NASA Technical Reports Server (NTRS)

    Lowman, P. D., Jr.

    1981-01-01

    A three part map showing equatorial and polar regions was compiled showing tectonic and volcanic activity of the past one million years, including the present. Features shown include actively spreading ridges, spreading rates, major active faults, subduction zones, well defined plates, and volcanic areas active within the past one million years. Activity within this period was inferred from seismicity (instrumental and historic), physiography, and published literature. The tectonic activity map was used for planning global geodetic programs of satellite laser ranging and very long base line interferometry and for geologic education.

  19. Interactome map uncovers phosphatidylserine transport by oxysterol-binding proteins.

    PubMed

    Maeda, Kenji; Anand, Kanchan; Chiapparino, Antonella; Kumar, Arun; Poletto, Mattia; Kaksonen, Marko; Gavin, Anne-Claude

    2013-09-12

    The internal organization of eukaryotic cells into functionally specialized, membrane-delimited organelles of unique composition implies a need for active, regulated lipid transport. Phosphatidylserine (PS), for example, is synthesized in the endoplasmic reticulum and then preferentially associates--through mechanisms not fully elucidated--with the inner leaflet of the plasma membrane. Lipids can travel via transport vesicles. Alternatively, several protein families known as lipid-transfer proteins (LTPs) can extract a variety of specific lipids from biological membranes and transport them, within a hydrophobic pocket, through aqueous phases. Here we report the development of an integrated approach that combines protein fractionation and lipidomics to characterize the LTP-lipid complexes formed in vivo. We applied the procedure to 13 LTPs in the yeast Saccharomyces cerevisiae: the six Sec14 homology (Sfh) proteins and the seven oxysterol-binding homology (Osh) proteins. We found that Osh6 and Osh7 have an unexpected specificity for PS. In vivo, they participate in PS homeostasis and the transport of this lipid to the plasma membrane. The structure of Osh6 bound to PS reveals unique features that are conserved among other metazoan oxysterol-binding proteins (OSBPs) and are required for PS recognition. Our findings represent the first direct evidence, to our knowledge, for the non-vesicular transfer of PS from its site of biosynthesis (the endoplasmic reticulum) to its site of biological activity (the plasma membrane). We describe a new subfamily of OSBPs, including human ORP5 and ORP10, that transfer PS and propose new mechanisms of action for a protein family that is involved in several human pathologies such as cancer, dyslipidaemia and metabolic syndrome.

  20. Deletion mapping of the Aequorea victoria green fluorescent protein.

    PubMed

    Dopf, J; Horiagon, T M

    1996-01-01

    Aequorea victoria green fluorescent protein (GFP) is a promising fluorescent marker which is active in a diverse array of prokaryotic and eukaryotic organisms. A key feature underlying the versatility of GFP is its capacity to undergo heterocyclic chromophore formation by cyclization of a tripeptide present in its primary sequence and thereby acquiring fluorescent activity in a variety of intracellular environments. In order to define further the primary structure requirements for chromophore formation and fluorescence in GFP, a series of N- and C-terminal GFP deletion variant expression vectors were created using the polymerase chain reaction. Scanning spectrofluorometric analyses of crude soluble protein extracts derived from eleven GFP expression constructs revealed that amino acid (aa) residues 2-232, of a total of 238 aa in the native protein, were required for the characteristic emission and absorption spectra of native GFP. Heterocyclic chromophore formation was assayed by comparing the absorption spectrum of GFP deletion variants over the 300-500-nm range to the absorption spectra of full-length GFP and GFP deletion variants missing the chromophore substrate domain from the primary sequence. GFP deletion variants lacking fluorescent activity showed no evidence of heterocyclic ring structure formation when the soluble extracts of their bacterial expression hosts were studied at pH 7.9. These observations suggest that the primary structure requirements for the fluorescent activity of GFP are relatively extensive and are compatible with the view that much of the primary structure serves an autocatalytic function.

  1. Experimental mapping of soluble protein domains using a hierarchical approach.

    PubMed

    Pedelacq, Jean-Denis; Nguyen, Hau B; Cabantous, Stephanie; Mark, Brian L; Listwan, Pawel; Bell, Carolyn; Friedland, Natasha; Lockard, Meghan; Faille, Alexandre; Mourey, Lionel; Terwilliger, Thomas C; Waldo, Geoffrey S

    2011-10-01

    Exploring the function and 3D space of large multidomain protein targets often requires sophisticated experimentation to obtain the targets in a form suitable for structure determination. Screening methods capable of selecting well-expressed, soluble fragments from DNA libraries exist, but require the use of automation to maximize chances of picking a few good candidates. Here, we describe the use of an insertion dihydrofolate reductase (DHFR) vector to select in-frame fragments and a split-GFP assay technology to filter-out constructs that express insoluble protein fragments. With the incorporation of an IPCR step to create high density, focused sublibraries of fragments, this cost-effective method can be performed manually with no a priori knowledge of domain boundaries while permitting single amino acid resolution boundary mapping. We used it on the well-characterized p85α subunit of the phosphoinositide-3-kinase to demonstrate the robustness and efficiency of our methodology. We then successfully tested it onto the polyketide synthase PpsC from Mycobacterium tuberculosis, a potential drug target involved in the biosynthesis of complex lipids in the cell envelope. X-ray quality crystals from the acyl-transferase (AT), dehydratase (DH) and enoyl-reductase (ER) domains have been obtained.

  2. Experimental mapping of soluble protein domains using a hierarchical approach

    PubMed Central

    Pedelacq, Jean-Denis; Nguyen, Hau B.; Cabantous, Stephanie; Mark, Brian L.; Listwan, Pawel; Bell, Carolyn; Friedland, Natasha; Lockard, Meghan; Faille, Alexandre; Mourey, Lionel; Terwilliger, Thomas C.; Waldo, Geoffrey S.

    2011-01-01

    Exploring the function and 3D space of large multidomain protein targets often requires sophisticated experimentation to obtain the targets in a form suitable for structure determination. Screening methods capable of selecting well-expressed, soluble fragments from DNA libraries exist, but require the use of automation to maximize chances of picking a few good candidates. Here, we describe the use of an insertion dihydrofolate reductase (DHFR) vector to select in-frame fragments and a split-GFP assay technology to filter-out constructs that express insoluble protein fragments. With the incorporation of an IPCR step to create high density, focused sublibraries of fragments, this cost-effective method can be performed manually with no a priori knowledge of domain boundaries while permitting single amino acid resolution boundary mapping. We used it on the well-characterized p85α subunit of the phosphoinositide-3-kinase to demonstrate the robustness and efficiency of our methodology. We then successfully tested it onto the polyketide synthase PpsC from Mycobacterium tuberculosis, a potential drug target involved in the biosynthesis of complex lipids in the cell envelope. X-ray quality crystals from the acyl-transferase (AT), dehydratase (DH) and enoyl-reductase (ER) domains have been obtained. PMID:21771856

  3. Systematic characterization of protein folding pathways using diffusion maps: Application to Trp-cage miniprotein

    SciTech Connect

    Kim, Sang Beom; Dsilva, Carmeline J.; Debenedetti, Pablo G.; Kevrekidis, Ioannis G.

    2015-02-28

    Understanding the mechanisms by which proteins fold from disordered amino-acid chains to spatially ordered structures remains an area of active inquiry. Molecular simulations can provide atomistic details of the folding dynamics which complement experimental findings. Conventional order parameters, such as root-mean-square deviation and radius of gyration, provide structural information but fail to capture the underlying dynamics of the protein folding process. It is therefore advantageous to adopt a method that can systematically analyze simulation data to extract relevant structural as well as dynamical information. The nonlinear dimensionality reduction technique known as diffusion maps automatically embeds the high-dimensional folding trajectories in a lower-dimensional space from which one can more easily visualize folding pathways, assuming the data lie approximately on a lower-dimensional manifold. The eigenvectors that parametrize the low-dimensional space, furthermore, are determined systematically, rather than chosen heuristically, as is done with phenomenological order parameters. We demonstrate that diffusion maps can effectively characterize the folding process of a Trp-cage miniprotein. By embedding molecular dynamics simulation trajectories of Trp-cage folding in diffusion maps space, we identify two folding pathways and intermediate structures that are consistent with the previous studies, demonstrating that this technique can be employed as an effective way of analyzing and constructing protein folding pathways from molecular simulations.

  4. Naval Weapons Center Active Fault Map Series.

    DTIC Science & Technology

    1987-08-31

    SECURITY CLASSIFICATION OF ’MiS PACE NWC TP 6828 CONTENTS Introduction . . . . . . . . . . . . . . . . . ........... 2 Active Fault Definition ...established along the trace of the Little Take fault zone, within the City of Ridgecrest. ACTIVE FAULT DEFINITION Although it is a commonly used term...34active fault" lacks a pre- cise and universally accepted definition . Most workers, however, accept the following: "Active fault - a fault along

  5. Using Brain Electrical Activity Mapping to Diagnose Learning Disabilities.

    ERIC Educational Resources Information Center

    Torello, Michael, W.; Duffy, Frank H.

    1985-01-01

    Cognitive neuroscience assumes that measurement of brain electrical activity should relate to cognition. Brain Electrical Activity Mapping (BEAM), a non-invasive technique, is used to record changes in activity from one brain area to another and is 80 to 90 percent successful in classifying subjects as dyslexic or normal. (MT)

  6. Mapping biochemical networks with protein fragment complementation assays.

    PubMed

    Remy, Ingrid; Michnick, Stephen W

    2015-01-01

    Cellular biochemical machineries, what we call pathways, consist of dynamically assembling and disassembling macromolecular complexes. Although our models for the organization of biochemical machines are derived largely from in vitro experiments, do they reflect their organization in intact, living cells? We have developed a general experimental strategy that addresses this question by allowing the quantitative probing of molecular interactions in intact, living cells. The experimental strategy is based on Protein fragment Complementation Assays (PCA), a method whereby protein interactions are coupled to refolding of enzymes from cognate fragments where reconstitution of enzyme activity acts as the detector of a protein interaction. A biochemical machine or pathway is defined by grouping interacting proteins into those that are perturbed in the same way by common factors (hormones, metabolites, enzyme inhibitors, etc.). In this chapter we review some of the essential principles of PCA and provide details and protocols for applications of PCA, particularly in mammalian cells, based on three PCA reporters, dihydrofolate reductase, green fluorescent protein, and β-lactamase.

  7. Experimental conformational energy maps of proteins and peptides.

    PubMed

    Balaji, Govardhan A; Nagendra, H G; Balaji, Vitukudi N; Rao, Shashidhar N

    2017-02-07

    We have presented an extensive analysis of the peptide backbone dihedral angles in the PDB structures and computed experimental Ramachandran plots for their distributions seen under a various constraints on X-ray resolution, representativeness at different sequence identity percentages, and hydrogen bonding distances. These experimental distributions have been converted into isoenergy contour plots using the approach employed previously by F. M. Pohl. This has led to the identification of energetically favored minima in the Ramachandran (ϕ, ψ) plots in which global minima are predominantly observed either in the right-handed α-helical or the polyproline II regions. Further, we have identified low energy pathways for transitions between various minima in the (ϕ,ψ) plots. We have compared and presented the experimental plots with published theoretical plots obtained from both molecular mechanics and quantum mechanical approaches. In addition, we have developed and employed a root mean square deviation (RMSD) metric for isoenergy contours in various ranges, as a measure (in kcal.mol(-1) ) to compare any two plots and determine the extent of correlation and similarity between their isoenergy contours. In general, we observe a greater degree of compatibility with experimental plots for energy maps obtained from molecular mechanics methods compared to most quantum mechanical methods. The experimental energy plots we have investigated could be helpful in refining protein structures obtained from X-ray, NMR, and electron microscopy and in refining force field parameters to enable simulations of peptide and protein structures that have higher degree of consistency with experiments. Proteins 2017. © 2017 Wiley Periodicals, Inc.

  8. Mapping the Geometric Evolution of Protein Folding Motor

    PubMed Central

    Hazam, Prakash Kishore; Shekhar, Shashi

    2016-01-01

    Polypeptide chain has an invariant main-chain and a variant side-chain sequence. How the side-chain sequence determines fold in terms of its chemical constitution has been scrutinized extensively and verified periodically. However, a focussed investigation on the directive effect of side-chain geometry may provide important insights supplementing existing algorithms in mapping the geometrical evolution of protein chains and its structural preferences. Geometrically, folding of protein structure may be envisaged as the evolution of its geometric variables: ϕ, and ψ dihedral angles of polypeptide main-chain directed by χ1, and χ2 of side chain. In this work, protein molecule is metaphorically modelled as a machine with 4 rotors ϕ, ψ, χ1 and χ2, with its evolution to the functional fold is directed by combinations of its rotor directions. We observe that differential rotor motions lead to different secondary structure formations and the combinatorial pattern is unique and consistent for particular secondary structure type. Further, we found that combination of rotor geometries of each amino acid is unique which partly explains how different amino acid sequence combinations have unique structural evolution and functional adaptation. Quantification of these amino acid rotor preferences, resulted in the generation of 3 substitution matrices, which later on plugged in the BLAST tool, for evaluating their efficiency in aligning sequences. We have employed BLOSUM62 and PAM30 as standard for primary evaluation. Generation of substitution matrices is a logical extension of the conceptual framework we attempted to build during the development of this work. Optimization of matrices following the conventional routines and possible application with biologically relevant data sets are beyond the scope of this manuscript, though it is a part of the larger project design. PMID:27716851

  9. Regulation of the wheat MAP kinase phosphatase 1 by 14-3-3 proteins.

    PubMed

    Ghorbel, Mouna; Cotelle, Valérie; Ebel, Chantal; Zaidi, Ikram; Ormancey, Mélanie; Galaud, Jean-Philippe; Hanin, Moez

    2017-04-01

    Plant MAP kinase phosphatases (MKPs) are major regulators of MAPK signaling pathways and play crucial roles in controlling growth, development and stress responses. The presence of several functional domains in plant MKPs such as a dual specificity phosphatase catalytic domain, gelsolin, calmodulin-binding and serine-rich domains, suggests that MKPs can interact with distinct cellular partners, others than MAPKs. In this report, we identified a canonical mode I 14-3-3-binding motif (574KLPSLP579) located at the carboxy-terminal region of the wheat MKP, TMKP1. We found that this motif is well-conserved among other MKPs from monocots including Hordeum vulgare, Brachypodium distachyon and Aegilops taushii. Using co-immunoprecipitation assays, we provide evidence for interaction between TMKP1 and 14-3-3 proteins in wheat. Moreover, the phosphatase activity of TMKP1 is increased in a phospho-dependent manner by either Arabidopsis or yeast 14-3-3 isoforms. TMKP1 activation by 14-3-3 proteins is enhanced by Mn(2+), whereas in the presence of Ca(2+) ions, TMKP1 activation was limited to Arabidopsis 14-3-3φ (phi), an isoform harboring an EF-hand motif. Such findings strongly suggest that 14-3-3 proteins, in conjunction with specific divalent cations, may stimulate TMKP1 activity and point-out that 14-3-3 proteins bind and regulate the activity of a MKP in eukaryotes.

  10. A Digital Tectonic Activity Map of the Earth

    NASA Technical Reports Server (NTRS)

    Lowman, Paul; Masuoka, Penny; Montgomery, Brian; OLeary, Jay; Salisbury, Demetra; Yates, Jacob

    1999-01-01

    The subject of neotectonics, covering the structures and structural activity of the last 5 million years (i.e., post-Miocene) is a well-recognized field, including "active tectonics," focussed on the last 500,000 years in a 1986 National Research Council report of that title. However, there is a cartographic gap between tectonic maps, generally showing all features regardless of age, and maps of current seismic or volcanic activity. We have compiled a map intended to bridge this gap, using modern data bases and computer-aided cartographic techniques. The maps presented here are conceptually descended from an earlier map showing tectonic and volcanic activity of the last one million years. Drawn by hand with the National Geographic Society's 1975 "The Physical World" map as a base, the 1981 map in various revisions has been widely reproduced in textbooks and various technical publications. However, two decades of progress call for a completely new map that can take advantage of new knowledge and cartographic techniques. The digital tectonic activity map (DTM), presented in shaded relief (Fig. 1) and schematic (Fig. 2) versions, is the result. The DTM is intended to show tectonism and volcanism of the last one million years, a period long enough to be representative of global activity, but short enough that features such as fault scarps and volcanos are still geomorphically recognizable. Data Sources and Cartographic Methods The DTM is based on a wide range of sources, summarized in Table 1. The most important is the digital elevation model, used to construct a shaded relief map. The bathymetry is largely from satellite altimetry, specifically the marine gravity compilations by Smith and Sandwell (1996). The shaded relief map was designed to match the new National Geographic Society world physical map (1992), although drawn independently, from the digital elevation model. The Robinson Projection is used instead of the earlier Van der Grinten one. Although neither

  11. Global mapping of protein-DNA interactions in vivo by digital genomic footprinting.

    PubMed

    Hesselberth, Jay R; Chen, Xiaoyu; Zhang, Zhihong; Sabo, Peter J; Sandstrom, Richard; Reynolds, Alex P; Thurman, Robert E; Neph, Shane; Kuehn, Michael S; Noble, William S; Fields, Stanley; Stamatoyannopoulos, John A

    2009-04-01

    The orchestrated binding of transcriptional activators and repressors to specific DNA sequences in the context of chromatin defines the regulatory program of eukaryotic genomes. We developed a digital approach to assay regulatory protein occupancy on genomic DNA in vivo by dense mapping of individual DNase I cleavages from intact nuclei using massively parallel DNA sequencing. Analysis of >23 million cleavages across the Saccharomyces cerevisiae genome revealed thousands of protected regulatory protein footprints, enabling de novo derivation of factor binding motifs and the identification of hundreds of new binding sites for major regulators. We observed striking correspondence between single-nucleotide resolution DNase I cleavage patterns and protein-DNA interactions determined by crystallography. The data also yielded a detailed view of larger chromatin features including positioned nucleosomes flanking factor binding regions. Digital genomic footprinting should be a powerful approach to delineate the cis-regulatory framework of any organism with an available genome sequence.

  12. Dominant Mutations of Drosophila Map Kinase Kinase and Their Activities in Drosophila and Yeast Map Kinase Cascades

    PubMed Central

    Lim, Y. M.; Tsuda, L.; Inoue, Y. H.; Irie, K.; Adachi-Yamada, T.; Hata, M.; Nishi, Y.; Matsumoto, K.; Nishida, Y.

    1997-01-01

    Eight alleles of Dsor1 encoding a Drosophila homologue of mitogen-activated protein (MAP) kinase kinase were obtained as dominant suppressors of the MAP kinase kinase kinase D-raf. These Dsor1 alleles themselves showed no obvious phenotypic consequences nor any effect on the viability of the flies, although they were highly sensitive to upstream signals and strongly interacted with gain-of-function mutations of upstream factors. They suppressed mutations for receptor tyrosine kinases (RTKs); torso (tor), sevenless (sev) and to a lesser extent Drosophila EGF receptor (DER). Furthermore, the Dsor1 alleles showed no significant interaction with gain-of-function mutations of DER. The observed difference in activity of the Dsor1 alleles among the RTK pathways suggests Dsor1 is one of the components of the pathway that regulates signal specificity. Expression of Dsor1 in budding yeast demonstrated that Dsor1 can activate yeast MAP kinase homologues if a proper activator of Dsor1 is coexpressed. Nucleotide sequencing of the Dsor1 mutant genes revealed that most of the mutations are associated with amino acid changes at highly conserved residues in the kinase domain. The results suggest that they function as suppressors due to increased reactivity to upstream factors. PMID:9136016

  13. Dependence of Mos-induced Cdc2 activation on MAP kinase function in a cell-free system.

    PubMed Central

    Huang, C Y; Ferrell, J E

    1996-01-01

    The progression of G2-arrested Xenopus laevis oocytes into meiotic M-phase is accompanied by the nearly simultaneous activation of p42 MAP kinase and Cdc2/cyclin B. This timing raises the possibility that the activation of one kinase might depend upon the other. Here we have examined whether Cdc2 activation requires p42 MAP kinase function. We have reconstituted Mos-induced Cdc2 activation in cell-free Xenopus oocyte extracts, and have found that Mos-induced Cdc2 activation requires active p42 MAP kinase, is inhibited by a MAP kinase phosphatase and is independent of protein synthesis. These findings indicate that p42 MAP kinase is an essential component of the M phase trigger in this system. Images PMID:8641282

  14. Mapping membrane protein interactions in cell signaling systems.

    SciTech Connect

    Light, Yooli Kim; Hadi, Masood Z.; Lane, Pamela; Jacobsen, Richard B.; Hong, Joohee; Ayson, Marites J.; Wood, Nichole L.; Schoeniger, Joseph S.; Young, Malin M.

    2003-12-01

    We proposed to apply a chemical cross-linking, mass spectrometry and modeling method called MS3D to the structure determination of the rhodopsin-transducin membrane protein complex (RTC). Herein we describe experimental progress made to adapt the MS3D approach for characterizing membrane protein systems, and computational progress in experimental design, data analysis and protein structure modeling. Over the past three years, we have developed tailored experimental methods for all steps in the MS3D method for rhodopsin, including protein purification, a functional assay, cross-linking, proteolysis and mass spectrometry. In support of the experimental effort. we have out a data analysis pipeline in place that automatically selects the monoisotopic peaks in a mass spectrometric spectrum, assigns them and stores the results in a database. Theoretical calculations using 24 experimentally-derived distance constraints have resulted in a backbone-level model of the activated form of rhodopsin, which is a critical first step towards building a model of the RTC. Cross-linked rhodopsin-transducin complexes have been isolated via gel electrophoresis and further mass spectrometric characterization of the cross-links is underway.

  15. WHERE MULTIFUNCTIONAL DNA REPAIR PROTEINS MEET: MAPPING THE INTERACTION DOMAINS BETWEEN XPG AND WRN

    SciTech Connect

    Rangaraj, K.; Cooper, P.K.; Trego, K.S.

    2009-01-01

    The rapid recognition and repair of DNA damage is essential for the maintenance of genomic integrity and cellular survival. Multiple complex and interconnected DNA damage responses exist within cells to preserve the human genome, and these repair pathways are carried out by a specifi c interplay of protein-protein interactions. Thus a failure in the coordination of these processes, perhaps brought about by a breakdown in any one multifunctional repair protein, can lead to genomic instability, developmental and immunological abnormalities, cancer and premature aging. This study demonstrates a novel interaction between two such repair proteins, Xeroderma pigmentosum group G protein (XPG) and Werner syndrome helicase (WRN), that are both highly pleiotropic and associated with inherited genetic disorders when mutated. XPG is a structure-specifi c endonuclease required for the repair of UV-damaged DNA by nucleotide excision repair (NER), and mutations in XPG result in the diseases Xeroderma pigmentosum (XP) and Cockayne syndrome (CS). A loss of XPG incision activity results in XP, whereas a loss of non-enzymatic function(s) of XPG causes CS. WRN is a multifunctional protein involved in double-strand break repair (DSBR), and consists of 3’–5’ DNA-dependent helicase, 3’–5’ exonuclease, and single-strand DNA annealing activities. Nonfunctional WRN protein leads to Werner syndrome, a premature aging disorder with increased cancer incidence. Far Western analysis was used to map the interacting domains between XPG and WRN by denaturing gel electrophoresis, which separated purifi ed full length and recombinant XPG and WRN deletion constructs, based primarily upon the length of each polypeptide. Specifi c interacting domains were visualized when probed with the secondary protein of interest which was then detected by traditional Western analysis using the antibody of the secondary protein. The interaction between XPG and WRN was mapped to the C-terminal region of

  16. Cyclic-GMP-dependent protein kinase inhibits the Ras/Mitogen-activated protein kinase pathway.

    PubMed

    Suhasini, M; Li, H; Lohmann, S M; Boss, G R; Pilz, R B

    1998-12-01

    Agents which increase the intracellular cyclic GMP (cGMP) concentration and cGMP analogs inhibit cell growth in several different cell types, but it is not known which of the intracellular target proteins of cGMP is (are) responsible for the growth-suppressive effects of cGMP. Using baby hamster kidney (BHK) cells, which are deficient in cGMP-dependent protein kinase (G-kinase), we show that 8-(4-chlorophenylthio)guanosine-3', 5'-cyclic monophosphate and 8-bromoguanosine-3',5'-cyclic monophosphate inhibit cell growth in cells stably transfected with a G-kinase Ibeta expression vector but not in untransfected cells or in cells transfected with a catalytically inactive G-kinase. We found that the cGMP analogs inhibited epidermal growth factor (EGF)-induced activation of mitogen-activated protein (MAP) kinase and nuclear translocation of MAP kinase in G-kinase-expressing cells but not in G-kinase-deficient cells. Ras activation by EGF was not impaired in G-kinase-expressing cells treated with cGMP analogs. We show that activation of G-kinase inhibited c-Raf kinase activation and that G-kinase phosphorylated c-Raf kinase on Ser43, both in vitro and in vivo; phosphorylation of c-Raf kinase on Ser43 uncouples the Ras-Raf kinase interaction. A mutant c-Raf kinase with an Ala substitution for Ser43 was insensitive to inhibition by cGMP and G-kinase, and expression of this mutant kinase protected cells from inhibition of EGF-induced MAP kinase activity by cGMP and G-kinase, suggesting that Ser43 in c-Raf is the major target for regulation by G-kinase. Similarly, B-Raf kinase was not inhibited by G-kinase; the Ser43 phosphorylation site of c-Raf is not conserved in B-Raf. Activation of G-kinase induced MAP kinase phosphatase 1 expression, but this occurred later than the inhibition of MAP kinase activation. Thus, in BHK cells, inhibition of cell growth by cGMP analogs is strictly dependent on G-kinase and G-kinase activation inhibits the Ras/MAP kinase pathway (i) by

  17. [Protein nutrition and physical activity].

    PubMed

    Navarro, M P

    1992-09-01

    The relationship between physical exercise and diet in order to optimize performance is getting growing interest. This review examines protein needs and protein intakes as well as the role of protein in the body and the metabolic changes occurring at the synthesis and catabolic levels during exercise. Protein synthesis in muscle or liver, amino acids oxidation, glucose production via gluconeogenesis from amino acids, etc., are modified, and consequently plasma and urinary nitrogen metabolites are affected. A brief comment on the advantages, disadvantages and forms of different protein supplements for sportsmen is given.

  18. Protein-water dynamics in antifreeze protein III activity

    NASA Astrophysics Data System (ADS)

    Xu, Yao; Bäumer, Alexander; Meister, Konrad; Bischak, Connor G.; DeVries, Arthur L.; Leitner, David M.; Havenith, Martina

    2016-03-01

    We combine Terahertz absorption spectroscopy (THz) and molecular dynamics (MD) simulations to investigate the underlying molecular mechanism for the antifreeze activity of one class of antifreeze protein, antifreeze protein type III (AFP-III) with a focus on the collective water hydrogen bond dynamics near the protein. After summarizing our previous work on AFPs, we present a new investigation of the effects of cosolutes on protein antifreeze activity by adding sodium citrate to the protein solution of AFP-III. Our results reveal that for AFP-III, unlike some other AFPs, the addition of the osmolyte sodium citrate does not affect the hydrogen bond dynamics at the protein surface significantly, as indicated by concentration dependent THz measurements. The present data, in combination with our previous THz measurements and molecular simulations, confirm that while long-range solvent perturbation is a necessary condition for the antifreeze activity of AFP-III, the local binding affinity determines the size of the hysteresis.

  19. High-speed AFM images of thermal motion provide stiffness map of interfacial membrane protein moieties.

    PubMed

    Preiner, Johannes; Horner, Andreas; Karner, Andreas; Ollinger, Nicole; Siligan, Christine; Pohl, Peter; Hinterdorfer, Peter

    2015-01-14

    The flexibilities of extracellular loops determine ligand binding and activation of membrane receptors. Arising from fluctuations in inter- and intraproteinaceous interactions, flexibility manifests in thermal motion. Here we demonstrate that quantitative flexibility values can be extracted from directly imaging the thermal motion of membrane protein moieties using high-speed atomic force microscopy (HS-AFM). Stiffness maps of the main periplasmic loops of single reconstituted water channels (AqpZ, GlpF) revealed the spatial and temporal organization of loop-stabilizing intraproteinaceous H-bonds and salt bridges.

  20. High-Speed AFM Images of Thermal Motion Provide Stiffness Map of Interfacial Membrane Protein Moieties

    PubMed Central

    2014-01-01

    The flexibilities of extracellular loops determine ligand binding and activation of membrane receptors. Arising from fluctuations in inter- and intraproteinaceous interactions, flexibility manifests in thermal motion. Here we demonstrate that quantitative flexibility values can be extracted from directly imaging the thermal motion of membrane protein moieties using high-speed atomic force microscopy (HS-AFM). Stiffness maps of the main periplasmic loops of single reconstituted water channels (AqpZ, GlpF) revealed the spatial and temporal organization of loop-stabilizing intraproteinaceous H-bonds and salt bridges. PMID:25516527

  1. An Inquiry Activity for Genetics Using Chromosome Mapping.

    ERIC Educational Resources Information Center

    Leonard, William H.; Snodgrass, George

    1982-01-01

    Concepts to be developed, objectives, and student instructions are provided for an activity useful as an introduction to or review of Mendelian genetics and sex determination. Universal codes (read by optical scanners at supermarket checkout stands) from soup can labels are used as chromosome maps during the activity. (JN)

  2. LGL: creating a map of protein function with an algorithm for visualizing very large biological networks.

    PubMed

    Adai, Alex T; Date, Shailesh V; Wieland, Shannon; Marcotte, Edward M

    2004-06-25

    Networks are proving to be central to the study of gene function, protein-protein interaction, and biochemical pathway data. Visualization of networks is important for their study, but visualization tools are often inadequate for working with very large biological networks. Here, we present an algorithm, called large graph layout (LGL), which can be used to dynamically visualize large networks on the order of hundreds of thousands of vertices and millions of edges. LGL applies a force-directed iterative layout guided by a minimal spanning tree of the network in order to generate coordinates for the vertices in two or three dimensions, which are subsequently visualized and interactively navigated with companion programs. We demonstrate the use of LGL in visualizing an extensive protein map summarizing the results of approximately 21 billion sequence comparisons between 145579 proteins from 50 genomes. Proteins are positioned in the map according to sequence homology and gene fusions, with the map ultimately serving as a theoretical framework that integrates inferences about gene function derived from sequence homology, remote homology, gene fusions, and higher-order fusions. We confirm that protein neighbors in the resulting map are functionally related, and that distinct map regions correspond to distinct cellular systems, enabling a computational strategy for discovering proteins' functions on the basis of the proteins' map positions. Using the map produced by LGL, we infer general functions for 23 uncharacterized protein families.

  3. Orexin-stimulated MAP kinase cascades are activated through multiple G-protein signalling pathways in human H295R adrenocortical cells: diverse roles for orexins A and B.

    PubMed

    Ramanjaneya, Manjunath; Conner, Alex C; Chen, Jing; Kumar, Prashanth; Brown, James E P; Jöhren, Olaf; Lehnert, Hendrik; Stanfield, Peter R; Randeva, Harpal S

    2009-08-01

    Orexins A and B (ORA and ORB) are neuropeptide hormones found throughout the central nervous system and periphery. They are required for a host of physiological processes including mitogen-activated protein kinase (MAPK) regulation, steroidogenesis, appetite control and energy regulation. While some signalling mechanisms have been proposed for individual recombinant orexin receptors in generic mammalian cell types, it is clear that the peripheral effects of orexin are spatially and temporally complex. This study dissects the different G-protein signalling and MAPK pathways activated in a pluripotent human adrenal H295R cell line capable of all the physiological steps involved in steroidogenesis. Both extracellular receptor kinase 1/2 (ERK1/2) and p38 were phosphorylated rapidly with a subsequent decline, in a time- and dose-dependent manner, in response to both ORA and ORB. Conversely, there was little or no direct activation of the ERK5 or JNK pathway. Analysis using signalling and MAPK inhibitors as well as receptor-specific antagonists determined the precise mediators of the orexin response in these cells. Both ERK1/2 and p38 activation were predominantly G(q)- and to a lesser extent G(s)-mediated; p38 activation even had a small G(i)-component. Effects were broadly comparable for both orexin sub-types ORA and ORB and although most of the effects were transmitted through the orexin receptor-1 subtype, we did observe a role for orexin receptor-2-mediated activation of both ERK1/2 and p38. Cortisol secretion also differed in response to ORA and ORB. These data suggest multiple roles for orexin-mediated MAPK activation in an adrenal cell-line, this complexity may help to explain the diverse biological actions of orexins with wide-ranging consequences for our understanding of the mechanisms initiated by these steroidogenic molecules.

  4. Salicylic acid activates a 48-kD MAP kinase in tobacco.

    PubMed Central

    Zhang, S; Klessig, D F

    1997-01-01

    The involvement of phosphorylation/dephosphorylation in the salicylic acid (SA) signal transduction pathway leading to pathogenesis-related gene induction has previously been demonstrated using kinase and phosphatase inhibitors. Here, we show that in tobacco suspension cells, SA induced a rapid and transient activation of a 48-kD kinase that uses myelin basic protein as a substrate. This kinase is called the p48 SIP kinase (for SA-Induced Protein kinase). Biologically active analogs of SA, which induce pathogenesis-related genes and enhanced resistance, also activated this kinase, whereas inactive analogs did not. Phosphorylation of a tyrosine residue(s) in the SIP kinase was associated with its activation. The SIP kinase was purified to homogeneity from SA-treated tobacco suspension culture cells. The purified SIP kinase is strongly phosphorylated on a tyrosine residue(s), and treatment with either protein tyrosine or serine/threonine phosphatases abolished its activity. Using primers corresponding to the sequences of internal tryptic peptides, we cloned the SIP kinase gene. Analysis of the SIP kinase sequence indicates that it belongs to the MAP kinase family and that it is distinct from the other plant MAP kinases previously implicated in stress responses, suggesting that different members of the MAP kinase family are activated by different stresses. PMID:9165755

  5. Conditional QTL mapping of protein content in wheat with respect to grain yield and its components.

    PubMed

    Wang, Lin; Cui, Fa; Wang, Jinping; Jun, Li; Ding, Anming; Zhao, Chunhua; Li, Xingfeng; Feng, Deshun; Gao, Jurong; Wang, Honggang

    2012-01-01

    Grain protein content in wheat (Triticum aestivum L.) is generally considered a highly heritable character that is negatively correlated with grain yield and yield-related traits. Quantitative trait loci (QTL) for protein content was mapped using data on protein content and protein content conditioned on the putatively interrelated traits to evaluate possible genetic interrelationships between protein content and yield, as well as yield-related traits. Phenotypic data were evaluated in a recombinant inbred line population with 302 lines derived from a cross between the Chinese cultivar Weimai 8 and Luohan 2. Inclusive composite interval mapping using IciMapping 3.0 was employed for mapping unconditional and conditional QTL with additives. A strong genetic relationship was found between protein content and grain yield, and yield-related traits. Unconditional QTL mapping analysis detected seven additive QTL for protein content, with additive effects ranging in absolute size from 0.1898% to 0.3407% protein content, jointly accounting for 43.45% of the trait variance. Conditional QTL mapping analysis indicated two QTL independent from yield, which can be used in marker-assisted selection for increasing yield without affecting grain protein content. Three additional QTL with minor effects were identified in the conditional mapping. Of the three QTLs, two were identified when protein content was conditioned on yield, which had pleiotropic effects on those two traits. Conditional QTL mapping can be used to dissect the genetic interrelationship between two traits at the individual QTL level for closely correlated traits. Further, conditional QTL mapping can reveal additional QTL with minor effects that are undetectable in unconditional mapping.

  6. Biologically active proteins from natural product extracts.

    PubMed

    O'Keefe, B R

    2001-10-01

    The term "biologically active proteins" is almost redundant. All proteins produced by living creatures are, by their very nature, biologically active to some extent in their homologous species. In this review, a subset of these proteins will be discussed that are biologically active in heterologous systems. The isolation and characterization of novel proteins from natural product extracts including those derived from microorganisms, plants, insects, terrestrial vertebrates, and marine organisms will be reviewed and grouped into several distinct classes based on their biological activity and their structure.

  7. 2-D protein maps of rat gastrocnemius and soleus muscles: a tool for muscle plasticity assessment.

    PubMed

    Gelfi, Cecilia; Viganò, Agnese; De Palma, Sara; Ripamonti, Marilena; Begum, Shajna; Cerretelli, Paolo; Wait, Robin

    2006-01-01

    Functional characterization of muscle fibers relies on ATPase activity and on differential measurements of metabolic proteins, including mitochondrial and glycolytic enzymes, glucose, lactate and lactic acid transporters, calcium cycling proteins and components of the contractile machinery. The recent introduction of microarray technology has enabled detailed gene expression studies under different physiological and pathological conditions, thus generating novel hypotheses on muscle function. However, microarray approaches are limited by the incomplete genome coverage of currently available chips, and by poor correlation between mRNA concentration and protein expression level. We have used 2-DE and MS to build a reference map of proteins from rat mixed gastrocnemius and soleus muscle, and to assess qualitative and quantitative differences in protein distribution between these two functionally dissimilar muscles. More than 800 spots on each gel were detected by silver staining, of which 167 were excised, digested in-gel with trypsin and analyzed by ESI-MS/MS. One hundred and twenty eight distinct gene products were identified, including metabolic, transport and contractile proteins. Forty one spots displayed differences in relative expression level between mixed gastrocnemius and soleus samples. These data not only enable differentiation of functionally distinct slow-twitch and fast-twitch fiber types, but also provide tools for investigating muscle plasticity in response to physiological and environmental conditions such as aging or hypoxia.

  8. Activity-dependent plasticity of hippocampal place maps

    PubMed Central

    Schoenenberger, Philipp; O'Neill, Joseph; Csicsvari, Jozsef

    2016-01-01

    Hippocampal neurons encode a cognitive map of space. These maps are thought to be updated during learning and in response to changes in the environment through activity-dependent synaptic plasticity. Here we examine how changes in activity influence spatial coding in rats using halorhodopsin-mediated, spatially selective optogenetic silencing. Halorhoposin stimulation leads to light-induced suppression in many place cells and interneurons; some place cells increase their firing through disinhibition, whereas some show no effect. We find that place fields of the unaffected subpopulation remain stable. On the other hand, place fields of suppressed place cells were unstable, showing remapping across sessions before and after optogenetic inhibition. Disinhibited place cells had stable maps but sustained an elevated firing rate. These findings suggest that place representation in the hippocampus is constantly governed by activity-dependent processes, and that disinhibition may provide a mechanism for rate remapping. PMID:27282121

  9. Computational Prediction of Protein Function Based on Weighted Mapping of Domains and GO Terms

    PubMed Central

    Teng, Zhixia; Guo, Maozu; Dai, Qiguo; Wang, Chunyu; Li, Jin; Liu, Xiaoyan

    2014-01-01

    In this paper, we propose a novel method, SeekFun, to predict protein function based on weighted mapping of domains and GO terms. Firstly, a weighted mapping of domains and GO terms is constructed according to GO annotations and domain composition of the proteins. The association strength between domain and GO term is weighted by symmetrical conditional probability. Secondly, the mapping is extended along the true paths of the terms based on GO hierarchy. Finally, the terms associated with resident domains are transferred to host protein and real annotations of the host protein are determined by association strengths. Our careful comparisons demonstrate that SeekFun outperforms the concerned methods on most occasions. SeekFun provides a flexible and effective way for protein function prediction. It benefits from the well-constructed mapping of domains and GO terms, as well as the reasonable strategy for inferring annotations of protein from those of its domains. PMID:24868539

  10. A map of the protein space--an automatic hierarchical classification of all protein sequences.

    PubMed

    Yona, G; Linial, N; Tishby, N; Linial, M

    1998-01-01

    well as many interesting relations between protein families. The hierarchical organization proposed may be considered as the first map of the space of all protein sequences. An interactive web site including the results of our analysis has been constructed, and is now accessible through http:/(/)www.protomap.cs.huji.ac.il

  11. Computational methods for constructing protein structure models from 3D electron microscopy maps.

    PubMed

    Esquivel-Rodríguez, Juan; Kihara, Daisuke

    2013-10-01

    Protein structure determination by cryo-electron microscopy (EM) has made significant progress in the past decades. Resolutions of EM maps have been improving as evidenced by recently reported structures that are solved at high resolutions close to 3Å. Computational methods play a key role in interpreting EM data. Among many computational procedures applied to an EM map to obtain protein structure information, in this article we focus on reviewing computational methods that model protein three-dimensional (3D) structures from a 3D EM density map that is constructed from two-dimensional (2D) maps. The computational methods we discuss range from de novo methods, which identify structural elements in an EM map, to structure fitting methods, where known high resolution structures are fit into a low-resolution EM map. A list of available computational tools is also provided.

  12. Rational Design of Protein C Activators

    PubMed Central

    Barranco-Medina, Sergio; Murphy, Mary; Pelc, Leslie; Chen, Zhiwei; Di Cera, Enrico; Pozzi, Nicola

    2017-01-01

    In addition to its procoagulant and proinflammatory functions mediated by cleavage of fibrinogen and PAR1, the trypsin-like protease thrombin activates the anticoagulant protein C in a reaction that requires the cofactor thrombomodulin and the endothelial protein C receptor. Once in the circulation, activated protein C functions as an anticoagulant, anti-inflammatory and regenerative factor. Hence, availability of a protein C activator would afford a therapeutic for patients suffering from thrombotic disorders and a diagnostic tool for monitoring the level of protein C in plasma. Here, we present a fusion protein where thrombin and the EGF456 domain of thrombomodulin are connected through a peptide linker. The fusion protein recapitulates the functional and structural properties of the thrombin-thrombomodulin complex, prolongs the clotting time by generating pharmacological quantities of activated protein C and effectively diagnoses protein C deficiency in human plasma. Notably, these functions do not require exogenous thrombomodulin, unlike other anticoagulant thrombin derivatives engineered to date. These features make the fusion protein an innovative step toward the development of protein C activators of clinical and diagnostic relevance. PMID:28294177

  13. EpCAM-selective elimination of carcinoma cells by a novel MAP-based cytolytic fusion protein.

    PubMed

    Hristodorov, Dmitrij; Amoury, Manal; Mladenov, Radoslav; Niesen, Judith; Arens, Katharina; Berges, Nina; Hein, Lea; Di Fiore, Stefano; Pham, Anh-Tuan; Huhn, Michael; Helfrich, Wijnand; Fischer, Rainer; Thepen, Theo; Barth, Stefan

    2014-09-01

    In normal epithelia, the epithelial cell adhesion molecule (EpCAM) expression is relatively low and only present at the basolateral cell surface. In contrast, EpCAM is aberrantly overexpressed in various human carcinomas. Therefore, EpCAM is considered to be a highly promising target for antibody-based cancer immunotherapy. Here, we present a new and fully human cytolytic fusion protein (CFP), designated "anti-EpCAM(scFv)-MAP," that is comprised of an EpCAM-specific antibody fragment (scFv) genetically fused to the microtubule-associated protein tau (MAP). Anti-EpCAM(scFv)-MAP shows potent EpCAM-restricted proapoptotic activity toward rapidly proliferating carcinoma cells. In vitro assays confirmed that treatment with anti-EpCAM(scFv)-MAP resulted in the colocalization and stabilization of microtubules, suggesting that this could be the potential mode of action. Dose-finding experiments indicated that anti-EpCAM(scFv)-MAP is well tolerated in mice. Using noninvasive far-red in vivo imaging in a tumor xenograft mouse model, we further demonstrated that anti-EpCAM(scFv)-MAP inhibited tumor growth in vivo. In conclusion, our data suggest that anti-EpCAM(scFv)-MAP may be of therapeutic value for the targeted elimination of EpCAM(+) carcinomas.

  14. Trifunctional cross-linker for mapping protein-protein interaction networks and comparing protein conformational states

    PubMed Central

    Tan, Dan; Li, Qiang; Zhang, Mei-Jun; Liu, Chao; Ma, Chengying; Zhang, Pan; Ding, Yue-He; Fan, Sheng-Bo; Tao, Li; Yang, Bing; Li, Xiangke; Ma, Shoucai; Liu, Junjie; Feng, Boya; Liu, Xiaohui; Wang, Hong-Wei; He, Si-Min; Gao, Ning; Ye, Keqiong; Dong, Meng-Qiu; Lei, Xiaoguang

    2016-01-01

    To improve chemical cross-linking of proteins coupled with mass spectrometry (CXMS), we developed a lysine-targeted enrichable cross-linker containing a biotin tag for affinity purification, a chemical cleavage site to separate cross-linked peptides away from biotin after enrichment, and a spacer arm that can be labeled with stable isotopes for quantitation. By locating the flexible proteins on the surface of 70S ribosome, we show that this trifunctional cross-linker is effective at attaining structural information not easily attainable by crystallography and electron microscopy. From a crude Rrp46 immunoprecipitate, it helped identify two direct binding partners of Rrp46 and 15 protein-protein interactions (PPIs) among the co-immunoprecipitated exosome subunits. Applying it to E. coli and C. elegans lysates, we identified 3130 and 893 inter-linked lysine pairs, representing 677 and 121 PPIs. Using a quantitative CXMS workflow we demonstrate that it can reveal changes in the reactivity of lysine residues due to protein-nucleic acid interaction. DOI: http://dx.doi.org/10.7554/eLife.12509.001 PMID:26952210

  15. Systematic protein-protein interaction mapping for clinically relevant human GPCRs.

    PubMed

    Sokolina, Kate; Kittanakom, Saranya; Snider, Jamie; Kotlyar, Max; Maurice, Pascal; Gandía, Jorge; Benleulmi-Chaachoua, Abla; Tadagaki, Kenjiro; Oishi, Atsuro; Wong, Victoria; Malty, Ramy H; Deineko, Viktor; Aoki, Hiroyuki; Amin, Shahreen; Yao, Zhong; Morató, Xavier; Otasek, David; Kobayashi, Hiroyuki; Menendez, Javier; Auerbach, Daniel; Angers, Stephane; Pržulj, Natasa; Bouvier, Michel; Babu, Mohan; Ciruela, Francisco; Jockers, Ralf; Jurisica, Igor; Stagljar, Igor

    2017-03-15

    G-protein-coupled receptors (GPCRs) are the largest family of integral membrane receptors with key roles in regulating signaling pathways targeted by therapeutics, but are difficult to study using existing proteomics technologies due to their complex biochemical features. To obtain a global view of GPCR-mediated signaling and to identify novel components of their pathways, we used a modified membrane yeast two-hybrid (MYTH) approach and identified interacting partners for 48 selected full-length human ligand-unoccupied GPCRs in their native membrane environment. The resulting GPCR interactome connects 686 proteins by 987 unique interactions, including 299 membrane proteins involved in a diverse range of cellular functions. To demonstrate the biological relevance of the GPCR interactome, we validated novel interactions of the GPR37, serotonin 5-HT4d, and adenosine ADORA2A receptors. Our data represent the first large-scale interactome mapping for human GPCRs and provide a valuable resource for the analysis of signaling pathways involving this druggable family of integral membrane proteins.

  16. MAP5: a novel brain microtubule-associated protein under strong developmental regulation.

    PubMed

    Riederer, B; Cohen, R; Matus, A

    1986-12-01

    A novel microtubule-associated protein, MAP5, is described, whose chemical properties and cytological distribution distinguish it from other known microtubule-associated proteins (MAPs). Its status as a MAP is indicated by the observations that (i) it co-assembles efficiently with microtubules in vitro, (ii) it is localized on microtubules in brain sections by immunogold staining with monoclonal antibody against MAP5 and (iii) immunoaffinity purified MAP5 stimulates tubulin polymerization. Immunoperoxidase staining of brain sections showed that MAP5 is present in neurons throughout the brain and that in them it is evenly distributed throughout axons, dendrites and cell bodies. In this respect it differs from previously described MAPs (1, 2, 3 and tau) which are differentially compartmentalized in brain neurons. MAP5 is not present in axon terminals, dendritic spines or other synaptic elements. It is present at substantially higher levels in neonatal brain than adult and it is more abundant than either MAP1 or MAP2a up to postnatal day 10. The fall in amount of MAP5, from juvenile to adult levels, is completed between postnatal days 10 and 20. This suggests that MAP5 is particularly important in modulating microtubule function during the formation of neuronal processes.

  17. MAP1B Regulates Axonal Development by Modulating Rho-GTPase Rac1 Activity

    PubMed Central

    Montenegro-Venegas, Carolina; Tortosa, Elena; Rosso, Silvana; Peretti, Diego; Bollati, Flavia; Bisbal, Mariano; Jausoro, Ignacio; Avila, Jesus; Cáceres, Alfredo

    2010-01-01

    Cultured neurons obtained from MAP1B-deficient mice have a delay in axon outgrowth and a reduced rate of axonal elongation compared with neurons from wild-type mice. Here we show that MAP1B deficiency results in a significant decrease in Rac1 and cdc42 activity and a significant increase in Rho activity. We found that MAP1B interacted with Tiam1, a guanosine nucleotide exchange factor for Rac1. The decrease in Rac1/cdc42 activity was paralleled by decreases in the phosphorylation of the downstream effectors of these proteins, such as LIMK-1 and cofilin. The expression of a constitutively active form of Rac1, cdc42, or Tiam1 rescued the axon growth defect of MAP1B-deficient neurons. Taken together, these observations define a new and crucial function of MAP1B that we show to be required for efficient cross-talk between microtubules and the actin cytoskeleton during neuronal polarization. PMID:20719958

  18. Comparisons by peptide mapping of proteins specified by Kunjin, West Nile and Murray Valley encephalitis viruses.

    PubMed

    Wright, P J; Warr, H M; Westaway, E G

    1983-12-01

    The relationships among virus-specified proteins of Murray Valley encephalitis (MVE), Kunjin (KUN) and West Nile (WN) viruses were investigated by peptide mapping of exhaustive proteolytic digests of radioactively labelled polypeptides. Maps of the three structural proteins (E, C and M) derived from purified virions and of two non-structural proteins (NV5 and NV4) obtained from infected cells were compared. For each polypeptide considered, the peptide maps of the KUN and WN virus-specified proteins were more similar to each other than either was to the map of the corresponding MVE virus-specified protein. Since the polypeptides considered together account for approximately 60% of the coding capacity of the flavivirus genome, our results suggested that, for the three viruses examined, the genomes of KUN and WN viruses are the most closely related.

  19. Active plasma source formation in the MAP diode

    SciTech Connect

    Lamppa, K.P.; Stinnett, R.W.; Renk, T.J.

    1995-07-01

    The Ion Beam Surface Treatment (IBEST) program is exploring using ion beams to treat the surface of a wide variety of materials. These experiments have shown that improved corrosion resistance, surface hardening, grain size modification, polishing and surface cleaning can all be achieved using a pulsed 0.4-0.8 MeV ion beam delivering 1-10 J/cm{sup 2}. The Magnetically-confined Anode Plasma (MAP) diode, developed at Cornell University, produces an active plasma which can be used to treat the surfaces of materials. The diode consists of a fast puff valve as the source of gas to produce the desired ions and two capacitively driven B-fields. A slow magnetic field is used for electron insulation and a fast field is used to both ionize the puffed gas and to position the plasma in the proper spatial location in the anode prior to the accelerator pulse. The relative timing between subsystems is an important factor in the effective production of the active plasma source for the MAP diode system. The MAP diode has been characterized using a Langmuir probe to measure plasma arrival times at the anode annulus for hydrogen gas. This data was then used to determine the optimum operating point for the MAP diode on RHEPP-1 accelerator shots. Operation of the MAP diode system to produce an ion beam of 500 kV, 12 kA with 40% efficiency (measured at the diode) has been demonstrated.

  20. Cbl proteins in platelet activation.

    PubMed

    Buitrago, Lorena; Tsygankov, Alexander; Sanjay, Archana; Kunapuli, Satya P

    2013-01-01

    Platelets play a fundamental role in hemostasis. Their functional responses have to be tightly controlled as any disturbance may lead to bleeding disorders or thrombosis. It is thus important to clearly identify and understand the signaling mechanisms involved in platelet function. An important role of c-Cbl and Cbl-b ubiquitin ligases in platelet functional responses and in hematological malignancies has been recently described. Cbl proteins perform negative and positive regulation of several signaling pathways in platelets. In this review, we explore the role of Cbl proteins in platelet functional responses.

  1. Identification of intracellular receptor proteins for activated protein kinase C.

    PubMed Central

    Mochly-Rosen, D; Khaner, H; Lopez, J

    1991-01-01

    Protein kinase C (PKC) translocates from the cytosol to the particulate fraction on activation. This activation-induced translocation of PKC is thought to reflect PKC binding to the membrane lipids. However, immunological and biochemical data suggest that PKC may bind to proteins in the cytoskeletal elements in the particulate fraction and in the nuclei. Here we describe evidence for the presence of intracellular receptor proteins that bind activated PKC. Several proteins from the detergent-insoluble material of the particulate fraction bound PKC in the presence of phosphatidylserine and calcium; binding was further increased with the addition of diacylglycerol. Binding of PKC to two of these proteins was concentration-dependent, saturable, and specific, suggesting that these binding proteins are receptors for activated C-kinase, termed here "RACKs." PKC binds to RACKs via a site on PKC distinct from the substrate binding site. We suggest that binding to RACKs may play a role in activation-induced translocation of PKC. Images PMID:1850844

  2. Activity-Based Protein Profiling of Microbes

    SciTech Connect

    Sadler, Natalie C.; Wright, Aaron T.

    2015-02-01

    Activity-Based Protein Profiling (ABPP) in conjunction with multimodal characterization techniques has yielded impactful findings in microbiology, particularly in pathogen, bioenergy, drug discovery, and environmental research. Using small molecule chemical probes that react irreversibly with specific proteins or protein families in complex systems has provided insights in enzyme functions in central metabolic pathways, drug-protein interactions, and regulatory protein redox, for systems ranging from photoautotrophic cyanobacteria to mycobacteria, and combining live cell or cell extract ABPP with proteomics, molecular biology, modeling, and other techniques has greatly expanded our understanding of these systems. New opportunities for application of ABPP to microbial systems include: enhancing protein annotation, characterizing protein activities in myriad environments, and reveal signal transduction and regulatory mechanisms in microbial systems.

  3. Remotely activated protein-producing nanoparticles.

    PubMed

    Schroeder, Avi; Goldberg, Michael S; Kastrup, Christian; Wang, Yingxia; Jiang, Shan; Joseph, Brian J; Levins, Christopher G; Kannan, Sneha T; Langer, Robert; Anderson, Daniel G

    2012-06-13

    The development of responsive nanomaterials, nanoscale systems that actively respond to stimuli, is one general goal of nanotechnology. Here we develop nanoparticles that can be controllably triggered to synthesize proteins. The nanoparticles consist of lipid vesicles filled with the cellular machinery responsible for transcription and translation, including amino acids, ribosomes, and DNA caged with a photolabile protecting group. These particles served as nanofactories capable of producing proteins including green fluorescent protein (GFP) and enzymatically active luciferase. In vitro and in vivo, protein synthesis was spatially and temporally controllable, and could be initiated by irradiating micrometer-scale regions on the time scale of milliseconds. The ability to control protein synthesis inside nanomaterials may enable new strategies to facilitate the study of orthogonal proteins in a confined environment and for remotely activated drug delivery.

  4. RefSOFI for Mapping Nanoscale Organization of Protein-protein Interactions in Living cells

    PubMed Central

    Hertel, Fabian; Mo, Gary C. H.; Duwé, Sam; Dedecker, Peter; Zhang, Jin

    2015-01-01

    Summary It has become increasingly clear that protein-protein interactions (PPIs) are compartmentalized in nanoscale domains that define the biochemical architecture of the cell. Despite tremendous advances in super-resolution imaging, strategies to observe PPIs at sufficient resolution to discern their organization are just emerging. Here we describe a strategy in which PPIs induce reconstitution of fluorescent proteins (FPs) that are capable of exhibiting single-molecule fluctuations suitable for Stochastic Optical Fluctuation Imaging (SOFI). Subsequently, spatial maps of these interactions can be resolved in super-resolution in living cells. Using this strategy, termed reconstituted fluorescence-based SOFI (refSOFI), we investigated the interaction between the endoplasmic reticulum Ca2+ sensor STIM1 and the pore-forming channel subunit ORAI1, a crucial process in store-operated Ca2+ entry (SOCE). Stimulating SOCE does not appear to change the size of existing STIM1/ORAI1 interaction puncta at the ER-plasma membrane junctions, but results in an apparent increase in the number of interaction puncta. PMID:26748717

  5. Protein interactome analysis of 12 mitogen-activated protein kinase kinase kinase in rice using a yeast two-hybrid system.

    PubMed

    Singh, Raksha; Lee, Jae-Eun; Dangol, Sarmina; Choi, Jihyun; Yoo, Ran Hee; Moon, Jae Sun; Shim, Jae-Kyung; Rakwal, Randeep; Agrawal, Ganesh Kumar; Jwa, Nam-Soo

    2014-01-01

    The mitogen-activated protein kinase (MAPK) cascade is composed at least of MAP3K (for MAPK kinase kinase), MAP2K, and MAPK family modules. These components together play a central role in mediating extracellular signals to the cell and vice versa by interacting with their partner proteins. However, the MAP3K-interacting proteins remain poorly investigated in plants. Here, we utilized a yeast two-hybrid system and bimolecular fluorescence complementation in the model crop rice (Oryza sativa) to map MAP3K-interacting proteins. We identified 12 novel nonredundant interacting protein pairs (IPPs) representing 11 nonredundant interactors using 12 rice MAP3Ks (available as full-length cDNA in the rice KOME (http://cdna01.dna.affrc.go.jp/cDNA/) at the time of experimental design and execution) as bait and a rice seedling cDNA library as prey. Of the 12 MAP3Ks, only six had interacting protein partners. The established MAP3K interactome consisted of two kinases, three proteases, two forkhead-associated domain-containing proteins, two expressed proteins, one E3 ligase, one regulatory protein, and one retrotransposon protein. Notably, no MAP3K showed physical interaction with either MAP2K or MAPK. Seven IPPs (58.3%) were confirmed in vivo by bimolecular fluorescence complementation. Subcellular localization of 14 interactors, together involved in nine IPPs (75%) further provide prerequisite for biological significance of the IPPs. Furthermore, GO of identified interactors predicted their involvement in diverse physiological responses, which were supported by a literature survey. These findings increase our knowledge of the MAP3K-interacting proteins, help in proposing a model of MAPK modules, provide a valuable resource for developing a complete map of the rice MAPK interactome, and allow discussion for translating the interactome knowledge to rice crop improvement against environmental factors.

  6. Insurance Applications of Active Fault Maps Showing Epistemic Uncertainty

    NASA Astrophysics Data System (ADS)

    Woo, G.

    2005-12-01

    Insurance loss modeling for earthquakes utilizes available maps of active faulting produced by geoscientists. All such maps are subject to uncertainty, arising from lack of knowledge of fault geometry and rupture history. Field work to undertake geological fault investigations drains human and monetary resources, and this inevitably limits the resolution of fault parameters. Some areas are more accessible than others; some may be of greater social or economic importance than others; some areas may be investigated more rapidly or diligently than others; or funding restrictions may have curtailed the extent of the fault mapping program. In contrast with the aleatory uncertainty associated with the inherent variability in the dynamics of earthquake fault rupture, uncertainty associated with lack of knowledge of fault geometry and rupture history is epistemic. The extent of this epistemic uncertainty may vary substantially from one regional or national fault map to another. However aware the local cartographer may be, this uncertainty is generally not conveyed in detail to the international map user. For example, an area may be left blank for a variety of reasons, ranging from lack of sufficient investigation of a fault to lack of convincing evidence of activity. Epistemic uncertainty in fault parameters is of concern in any probabilistic assessment of seismic hazard, not least in insurance earthquake risk applications. A logic-tree framework is appropriate for incorporating epistemic uncertainty. Some insurance contracts cover specific high-value properties or transport infrastructure, and therefore are extremely sensitive to the geometry of active faulting. Alternative Risk Transfer (ART) to the capital markets may also be considered. In order for such insurance or ART contracts to be properly priced, uncertainty should be taken into account. Accordingly, an estimate is needed for the likelihood of surface rupture capable of causing severe damage. Especially where a

  7. Dietary protein considerations to support active aging.

    PubMed

    Wall, Benjamin T; Cermak, Naomi M; van Loon, Luc J C

    2014-11-01

    Given our rapidly aging world-wide population, the loss of skeletal muscle mass with healthy aging (sarcopenia) represents an important societal and public health concern. Maintaining or adopting an active lifestyle alleviates age-related muscle loss to a certain extent. Over time, even small losses of muscle tissue can hinder the ability to maintain an active lifestyle and, as such, contribute to the development of frailty and metabolic disease. Considerable research focus has addressed the application of dietary protein supplementation to support exercise-induced gains in muscle mass in younger individuals. In contrast, the role of dietary protein in supporting the maintenance (or gain) of skeletal muscle mass in active older persons has received less attention. Older individuals display a blunted muscle protein synthetic response to dietary protein ingestion. However, this reduced anabolic response can largely be overcome when physical activity is performed in close temporal proximity to protein consumption. Moreover, recent evidence has helped elucidate the optimal type and amount of dietary protein that should be ingested by the older adult throughout the day in order to maximize the skeletal muscle adaptive response to physical activity. Evidence demonstrates that when these principles are adhered to, muscle maintenance or hypertrophy over prolonged periods can be further augmented in active older persons. The present review outlines the current understanding of the role that dietary protein occupies in the lifestyle of active older adults as a means to increase skeletal muscle mass, strength and function, and thus support healthier aging.

  8. Mapping of a Mycoplasma-Neutralizing Epitope on the Mycoplasmal p37 Protein

    PubMed Central

    Kim, Min Kyu; Kim, Won-Tae; Lee, Hyun Min; Choi, Hong Seo; Jo, Yu Ra; Lee, Yangsoon; Jeong, Jaemin; Choi, Dongho; Chang, Hee Jin; Kim, Dae Shick; Jang, Young-Joo; Ryu, Chun Jeih

    2016-01-01

    Many studies have shown that the mycoplasmal membrane protein p37 enhances cancer cell migration, invasion, and metastasis. Previously, we generated 6 monoclonal antibodies (MAbs) against the mycoplasmal protein p37 and showed the presence of mycoplasma-infected circulating tumor cells in the blood of hepatocellular carcinoma patients by using CA27, one of the six MAbs. When mycoplasmas were incubated with cancer cells in the presence of CA27, mycoplasma infection was completely inhibited, suggesting that CA27 is a neutralizing antibody inhibiting mycoplasma infection. To examine the neutralizing epitope of CA27, we generated a series of glutathione S-transferase (GST)-fused p37 deletion mutant proteins in which p37 was partly deleted. To express p37-coding sequences in E.coli, mycoplasmal TGA codons were substituted with TGG in the p37 deletion mutant genes. GST-fused p37 deletion mutant proteins were then screened to identify the epitope targeted by CA27. Western blots showed that CA27 bound to the residues 216–246 on the middle part of the p37 protein while it did not bind to the residues 183–219 and 216–240. Fine mapping showed that CA27 was able to bind to the residues 226–246, but its binding activity was relatively weakened as compared to that to the residues 216–246, suggesting that the residues 226–246 is essential for optimal binding activity of CA27. Interestingly, the treatment of the purified GST-tagged epitopes with urea showed that CA27 binding to the epitope was sodium dodecyl sulfate-resistant but urea-sensitive. The same 226–246 residues were also recognized by two other anti-p37 MAbs, suggesting that the epitope is immunodominant. The identification of the novel neutralizing epitope may provide new insight into the interaction between the p37 protein and host receptors. PMID:28036384

  9. Methods for Mapping of Interaction Networks Involving Membrane Proteins

    SciTech Connect

    Hooker, Brian S.; Bigelow, Diana J.; Lin, Chiann Tso

    2007-11-23

    Numerous approaches have been taken to study protein interactions, such as tagged protein complex isolation followed by mass spectrometry, yeast two-hybrid methods, fluorescence resonance energy transfer, surface plasmon resonance, site-directed mutagenesis, and crystallography. Membrane protein interactions pose significant challenges due to the need to solubilize membranes without disrupting protein-protein interactions. Traditionally, analysis of isolated protein complexes by high-resolution 2D gel electrophoresis has been the main method used to obtain an overall picture of proteome constituents and interactions. However, this method is time consuming, labor intensive, detects only abundant proteins and is not suitable for the coverage required to elucidate large interaction networks. In this review, we discuss the application of various methods to elucidate interactions involving membrane proteins. These techniques include methods for the direct isolation of single complexes or interactors as well as methods for characterization of entire subcellular and cellular interactomes.

  10. Mapping protein pockets through their potential small-molecule binding volumes: QSCD applied to biological protein structures

    NASA Astrophysics Data System (ADS)

    Mason, Keith; Patel, Nehal M.; Ledel, Aric; Moallemi, Ciamac C.; Wintner, Edward A.

    2004-01-01

    Previously we demonstrated a method, Quantized Surface Complementarity Diversity (QSCD), of defining molecular diversity by measuring shape and functional complementarity of molecules to a basis set of theoretical target surfaces [Wintner E.A. and Moallemi C.C., J. Med. Chem., 43 (2000) 1993]. In this paper we demonstrate a method of mapping actual protein pockets to the same basis set of theoretical target surfaces, thereby allowing categorization of protein pockets by their properties of shape and functionality. The key step in the mapping is a `dissection' algorithm that breaks any protein pocket into a set of potential small molecule binding volumes. It is these binding volumes that are mapped to the basis set of theoretical target surfaces, thus measuring a protein pocket not as a single surface but as a collection of molecular recognition environments.

  11. Cross-linking of microtubules by microtubule-associated proteins (MAPs) from the brine shrimp, Artemia.

    PubMed

    Campbell, E J; MacKinlay, S A; MacRae, T H

    1989-05-01

    Microtubules induced with taxol to assemble in cell-free extracts of the brine shrimp, Artemia, are cross-linked by microtubule-associated proteins (MAPs). When the MAPs, extracted from taxol-stabilized microtubules with 1 M-NaCl are co-assembled with purified Artemia or mammalian neural tubulin, reconstitution of cross-linking between microtubules occurs. The most prominent non-tubulin protein associated with reconstituted cross-linked microtubules has a molecular weight of 49,000 but we cannot yet exclude the possibility that other proteins may be responsible for the cross-linking. Cross-linkers are separated by varying distances while cross-linked microtubules, prepared under different conditions, are 6.9-7.7 nm apart. Cross-linking of microtubules by MAPs occurs whether MAPs are added to assembling tubulin or to microtubules, and it is not disrupted by ATP. The MAPs are heat-sensitive and do not stabilize microtubules to cold. Immunological characterization of Artemia MAPs on Western blots indicates that Artemia lack MAP 1, MAP 2 and tau. Our results clearly demonstrate that Artemia contain novel MAPs with the ability to cross-link microtubules from phylogenetically disparate organisms in an ATP-independent manner.

  12. Dibutyltin activates MAP kinases in human natural killer cells, in vitro.

    PubMed

    Odman-Ghazi, Sabah O; Abraha, Abraham; Isom, Erica Taylor; Whalen, Margaret M

    2010-10-01

    Previous studies have shown that dibutyltin (DBT) interferes with the function of human natural killer (NK) cells, diminishing their capacity to destroy tumor cells, in vitro. DBT is a widespread environmental contaminant and has been found in human blood. As NK cells are our primary immune defense against tumor cells, it is important to understand the mechanism by which DBT interferes with their function. The current study examines the effects of DBT exposures on key enzymes in the signaling pathway that regulates NK responsiveness to tumor cells. These include several protein tyrosine kinases (PTKs), mitogen-activated protein kinases (MAPKs), and mitogen-activated protein kinase kinases (MAP2Ks). The results showed that in vitro exposures of NK cells to DBT had no effect on PTKs. However, exposures to DBT for as little as 10 min were able to increase the phosphorylation (activation) of the MAPKs. The DBT-induced activations of these MAPKs appear to be due to DBT-induced activations of the immediate upstream activators of the MAPKs, MAP2Ks. The results suggest that DBT-interference with the MAPK signaling pathway is a consequence of DBT exposures, which could account for DBT-induced decreases in NK function.

  13. Motor Cortex Microcircuit Simulation Based on Brain Activity Mapping

    PubMed Central

    Chadderdon, George L.; Mohan, Ashutosh; Suter, Benjamin A.; Neymotin, Samuel A.; Kerr, Cliff C.; Francis, Joseph T.; Shepherd, Gordon M. G.; Lytton, William W.

    2016-01-01

    The deceptively simple laminar structure of neocortex belies the complexity of intra- and interlaminar connectivity. We developed a computational model based primarily on a unified set of brain activity mapping studies of mouse M1. The simulation consisted of 775 spiking neurons of 10 cell types with detailed population-to-population connectivity. Static analysis of connectivity with graph-theoretic tools revealed that the corticostriatal population showed strong centrality, suggesting that would provide a network hub. Subsequent dynamical analysis confirmed this observation, in addition to revealing network dynamics that cannot be readily predicted through analysis of the wiring diagram alone. Activation thresholds depended on the stimulated layer. Low stimulation produced transient activation, while stronger activation produced sustained oscillations where the threshold for sustained responses varied by layer: 13% in layer 2/3, 54% in layer 5A, 25% in layer 5B, and 17% in layer 6. The frequency and phase of the resulting oscillation also depended on stimulation layer. By demonstrating the effectiveness of combined static and dynamic analysis, our results show how static brain maps can be related to the results of brain activity mapping. PMID:24708371

  14. Skin Mucus of Gilthead Sea Bream (Sparus aurata L.). Protein Mapping and Regulation in Chronically Stressed Fish

    PubMed Central

    Pérez-Sánchez, Jaume; Terova, Genciana; Simó-Mirabet, Paula; Rimoldi, Simona; Folkedal, Ole; Calduch-Giner, Josep A.; Olsen, Rolf E.; Sitjà-Bobadilla, Ariadna

    2017-01-01

    The skin mucus of gilthead sea bream was mapped by one-dimensional gel electrophoresis followed by liquid chromatography coupled to high resolution mass spectrometry using a quadrupole time-of-flight mass analyzer. More than 2,000 proteins were identified with a protein score filter of 30. The identified proteins were represented in 418 canonical pathways of the Ingenuity Pathway software. After filtering by canonical pathway overlapping, the retained proteins were clustered in three groups. The mitochondrial cluster contained 59 proteins related to oxidative phosphorylation and mitochondrial dysfunction. The second cluster contained 79 proteins related to antigen presentation and protein ubiquitination pathways. The third cluster contained 257 proteins where proteins related to protein synthesis, cellular assembly, and epithelial integrity were over-represented. The latter group also included acute phase response signaling. In parallel, two-dimensional gel electrophoresis methodology identified six proteins spots of different protein abundance when comparing unstressed fish with chronically stressed fish in an experimental model that mimicked daily farming activities. The major changes were associated with a higher abundance of cytokeratin 8 in the skin mucus proteome of stressed fish, which was confirmed by immunoblotting. Thus, the increased abundance of markers of skin epithelial turnover results in a promising indicator of chronic stress in fish. PMID:28210224

  15. Conditional independence mapping of DIGE data reveals PDIA3 protein species as key nodes associated with muscle aerobic capacity

    PubMed Central

    Burniston, Jatin G.; Kenyani, Jenna; Gray, Donna; Guadagnin, Eleonora; Jarman, Ian H.; Cobley, James N.; Cuthbertson, Daniel J.; Chen, Yi-Wen; Wastling, Jonathan M.; Lisboa, Paulo J.; Koch, Lauren G.; Britton, Steven L.

    2014-01-01

    Profiling of protein species is important because gene polymorphisms, splice variations and post-translational modifications may combine and give rise to multiple protein species that have different effects on cellular function. Two-dimensional gel electrophoresis is one of the most robust methods for differential analysis of protein species, but bioinformatic interrogation is challenging because the consequences of changes in the abundance of individual protein species on cell function are unknown and cannot be predicted. We conducted DIGE of soleus muscle from male and female rats artificially selected as either high- or low-capacity runners (HCR and LCR, respectively). In total 696 protein species were resolved and LC–MS/MS identified proteins in 337 spots. Forty protein species were differentially (P < 0.05, FDR < 10%) expressed between HCR and LCR and conditional independence mapping found distinct networks within these data, which brought insight beyond that achieved by functional annotation. Protein disulphide isomerase A3 emerged as a key node segregating with differences in aerobic capacity and unsupervised bibliometric analysis highlighted further links to signal transducer and activator of transcription 3, which were confirmed by western blotting. Thus, conditional independence mapping is a useful technique for interrogating DIGE data that is capable of highlighting latent features. PMID:24769234

  16. Automatic Classification of Protein Structure Using the Maximum Contact Map Overlap Metric

    SciTech Connect

    Andonov, Rumen; Djidjev, Hristo Nikolov; Klau, Gunnar W.; Le Boudic-Jamin, Mathilde; Wohlers, Inken

    2015-10-09

    In this paper, we propose a new distance measure for comparing two protein structures based on their contact map representations. We show that our novel measure, which we refer to as the maximum contact map overlap (max-CMO) metric, satisfies all properties of a metric on the space of protein representations. Having a metric in that space allows one to avoid pairwise comparisons on the entire database and, thus, to significantly accelerate exploring the protein space compared to no-metric spaces. We show on a gold standard superfamily classification benchmark set of 6759 proteins that our exact k-nearest neighbor (k-NN) scheme classifies up to 224 out of 236 queries correctly and on a larger, extended version of the benchmark with 60; 850 additional structures, up to 1361 out of 1369 queries. Finally, our k-NN classification thus provides a promising approach for the automatic classification of protein structures based on flexible contact map overlap alignments.

  17. Analysis of low-density lipoprotein-associated proteins using the method of digitized native protein mapping.

    PubMed

    Jin, Ya; Chen, Jin; Wang, Ahui; Zhang, Jun; Chen, Shumin; Manabe, Takashi; Tan, Wen

    2016-07-01

    The method of digitized native protein mapping, combining nondenaturing micro 2DE, grid gel-cutting, and quantitative LC-MS/MS (in data-independent acquisition mode, or MS(E) ), was improved by using a new MS/MS mode, ion mobility separation enhanced-MS(E) (HDMS(E) ), and applied to analyze the area of human plasma low-density lipoprotein (LDL). An 18 mm × 4.8 mm rectangular area which included LDL on a nondenaturing micro 2D gel of human plasma was grid-cut into 72 square gel pieces and subjected to quantitative LC-MS/MS. Compared with MS(E) , HDMS(E) showed significantly higher performance, by assigning 50% more proteins and detecting each protein in more squares. A total of 253 proteins were assigned with LC-HDMS(E) and the quantity distribution of each was reconstructed as a native protein map. The maps showed that Apo B-100 was the most abundant protein in the grid-cut area, concentrated at pI ca. 5.4-6.1 and apparent mass ca. 1000 kDa, which corresponded to four gel pieces, squares 39-42. An Excel macro was prepared to search protein maps which showed protein quantity peaks localized within this concentrated region of Apo B-100. Twenty-two proteins out of the 252 matched this criterion, in which 19 proteins have been reported to be associated with LDL. This method only requires several microliters of a plasma sample and the principle of the protein separation is totally different from the commonly used ultracentrifugation. The results obtained by this method would provide new insights on the structure and function of LDL.

  18. The BridgeDb framework: standardized access to gene, protein and metabolite identifier mapping services

    PubMed Central

    2010-01-01

    Background Many complementary solutions are available for the identifier mapping problem. This creates an opportunity for bioinformatics tool developers. Tools can be made to flexibly support multiple mapping services or mapping services could be combined to get broader coverage. This approach requires an interface layer between tools and mapping services. Results Here we present BridgeDb, a software framework for gene, protein and metabolite identifier mapping. This framework provides a standardized interface layer through which bioinformatics tools can be connected to different identifier mapping services. This approach makes it easier for tool developers to support identifier mapping. Mapping services can be combined or merged to support multi-omics experiments or to integrate custom microarray annotations. BridgeDb provides its own ready-to-go mapping services, both in webservice and local database forms. However, the framework is intended for customization and adaptation to any identifier mapping service. BridgeDb has already been integrated into several bioinformatics applications. Conclusion By uncoupling bioinformatics tools from mapping services, BridgeDb improves capability and flexibility of those tools. All described software is open source and available at http://www.bridgedb.org. PMID:20047655

  19. Differential regulation of the mitogen-activated protein and stress-activated protein kinase cascades by adrenergic agonists in quiescent and regenerating adult rat hepatocytes.

    PubMed Central

    Spector, M S; Auer, K L; Jarvis, W D; Ishac, E J; Gao, B; Kunos, G; Dent, P

    1997-01-01

    To study the mechanisms by which catecholamines regulate hepatocyte proliferation after partial hepatectomy (PHX), hepatocytes were isolated from adult male rats 24 h after sham operation or two-thirds PHX and treated with catecholamines and other agonists. In freshly isolated sham cells, p42 mitogen-activated protein (MAP) kinase activity was stimulated by the alpha1-adrenergic agonist phenylephrine (PHE). Activation of p42 MAP kinase by growth factors was blunted by pretreatment of sham hepatocytes with glucagon but not by that with the beta2-adrenergic agonist isoproterenol (ISO). In PHX cells, the ability of PHE to activate p42 MAP kinase was dramatically reduced, whereas ISO became competent to inhibit p42 MAP kinase activation. PHE treatment of sham but not PHX and ISO treatment of PHX but not sham hepatocytes also activated the stress-activated protein (SAP) kinases p46/54 SAP kinase and p38 SAP kinase. These data demonstrate that an alpha1- to beta2-adrenergic receptor switch occurs upon PHX and results in an increase in SAP kinase versus MAP kinase signaling by catecholamines. In primary cultures of hepatocytes, ISO treatment of PHX but not sham cells inhibited [3H]thymidine incorporation. In contrast, PHE treatment of sham but not PHX cells stimulated [3H]thymidine incorporation, which was reduced by approximately 25 and approximately 95% with specific inhibitors of p42 MAP kinase and p38 SAP kinase function, respectively. Inhibition of the p38 SAP kinase also dramatically reduced basal [3H]thymidine incorporation. These data suggest that p38 SAP kinase plays a permissive role in liver regeneration. Alterations in the abilities of catecholamines to modulate the activities of protein kinase A and the MAP and SAP kinase pathways may represent one physiological mechanism by which these agonists can regulate hepatocyte proliferation after PHX. PMID:9199291

  20. Computing wheat nitrogen requirements from grain yield and protein maps

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Optical protein sensors and mass-flow yield monitors provide the opportunity to continuously measure grain quality and quantity during harvesting. This chapter illustrates how yield monitor and grain protein measurements may provide useful post-harvest information for evaluating water or nitrogen (...

  1. Computing wheat nitrogen requirements from grain yield and protein maps

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Optical protein sensors and mass-flow yield monitors provide the opportunity to continuously measure grain quality and quantity during harvesting. This chapter illustrates how yield monitor and grain protein measurements may provide useful postharvest information for evaluating water or nitrogen (N)...

  2. Mapping the Interactions between the NS4B and NS3 Proteins of Dengue Virus

    PubMed Central

    Zou, Jing; Lee, Le Tian; Wang, Qing Yin; Xie, Xuping; Lu, Siyan; Yau, Yin Hoe; Yuan, Zhiming; Geifman Shochat, Susana; Kang, Congbao

    2015-01-01

    ABSTRACT Flavivirus RNA synthesis is mediated by a multiprotein complex associated with the endoplasmic reticulum membrane, named the replication complex (RC). Within the flavivirus RC, NS4B, an integral membrane protein with a role in virulence and regulation of the innate immune response, binds to the NS3 protease-helicase. NS4B modulates the RNA helicase activity of NS3, but the molecular details of their interaction remain elusive. Here, we used dengue virus (DENV) to map the determinants for the NS3-NS4B interaction. Coimmunoprecipitation and an in situ proximity ligation assay confirmed that NS3 colocalizes with NS4B in both DENV-infected cells and cells coexpressing both proteins. Surface plasmon resonance demonstrated that subdomains 2 and 3 of the NS3 helicase region and the cytoplasmic loop of NS4B are required for binding. Using nuclear magnetic resonance (NMR), we found that the isolated cytoplasmic loop of NS4B is flexible, with a tendency to form a three-turn α-helix and two short β-strands. Upon binding to the NS3 helicase, 12 amino acids within the cytoplasmic loop of NS4B exhibited line broadening, suggesting a participation in the interaction. Sequence alignment showed that 4 of these 12 residues are strictly conserved across different flaviviruses. Mutagenesis analysis showed that three (Q134, G140, and N144) of the four evolutionarily conserved NS4B residues are essential for DENV replication. The mapping of the NS3/NS4B-interacting regions described here can assist the design of inhibitors that disrupt their interface for antiviral therapy. IMPORTANCE NS3 and NS4B are essential components of the flavivirus RC. Using DENV as a model, we mapped the interaction between the viral NS3 and NS4B proteins. The subdomains 2 and 3 of NS3 helicase as well as the cytoplasmic loop of NS4B are critical for the interaction. Functional analysis delineated residues within the NS4B cytoplasmic loop that are crucial for DENV replication. Our findings reveal

  3. Theoretical considerations for mapping activation in human cardiac fibrillation

    NASA Astrophysics Data System (ADS)

    Rappel, Wouter-Jan; Narayan, Sanjiv M.

    2013-06-01

    Defining mechanisms for cardiac fibrillation is challenging because, in contrast to other arrhythmias, fibrillation exhibits complex non-repeatability in spatiotemporal activation but paradoxically exhibits conserved spatial gradients in rate, dominant frequency, and electrical propagation. Unlike animal models, in which fibrillation can be mapped at high spatial and temporal resolution using optical dyes or arrays of contact electrodes, mapping of cardiac fibrillation in patients is constrained practically to lower resolutions or smaller fields-of-view. In many animal models, atrial fibrillation is maintained by localized electrical rotors and focal sources. However, until recently, few studies had revealed localized sources in human fibrillation, so that the impact of mapping constraints on the ability to identify rotors or focal sources in humans was not described. Here, we determine the minimum spatial and temporal resolutions theoretically required to detect rigidly rotating spiral waves and focal sources, then extend these requirements for spiral waves in computer simulations. Finally, we apply our results to clinical data acquired during human atrial fibrillation using a novel technique termed focal impulse and rotor mapping (FIRM). Our results provide theoretical justification and clinical demonstration that FIRM meets the spatio-temporal resolution requirements to reliably identify rotors and focal sources for human atrial fibrillation.

  4. Mapping conformational dynamics of proteins using torsional dynamics simulations.

    PubMed

    Gangupomu, Vamshi K; Wagner, Jeffrey R; Park, In-Hee; Jain, Abhinandan; Vaidehi, Nagarajan

    2013-05-07

    All-atom molecular dynamics simulations are widely used to study the flexibility of protein conformations. However, enhanced sampling techniques are required for simulating protein dynamics that occur on the millisecond timescale. In this work, we show that torsional molecular dynamics simulations enhance protein conformational sampling by performing conformational search in the low-frequency torsional degrees of freedom. In this article, we use our recently developed torsional-dynamics method called Generalized Newton-Euler Inverse Mass Operator (GNEIMO) to study the conformational dynamics of four proteins. We investigate the use of the GNEIMO method in simulations of the conformationally flexible proteins fasciculin and calmodulin, as well as the less flexible crambin and bovine pancreatic trypsin inhibitor. For the latter two proteins, the GNEIMO simulations with an implicit-solvent model reproduced the average protein structural fluctuations and sample conformations similar to those from Cartesian simulations with explicit solvent. The application of GNEIMO with replica exchange to the study of fasciculin conformational dynamics produced sampling of two of this protein's experimentally established conformational substates. Conformational transition of calmodulin from the Ca(2+)-bound to the Ca(2+)-free conformation occurred readily with GNEIMO simulations. Moreover, the GNEIMO method generated an ensemble of conformations that satisfy about half of both short- and long-range interresidue distances obtained from NMR structures of holo to apo transitions in calmodulin. Although unconstrained all-atom Cartesian simulations have failed to sample transitions between the substates of fasciculin and calmodulin, GNEIMO simulations show the transitions in both systems. The relatively short simulation times required to capture these long-timescale conformational dynamics indicate that GNEIMO is a promising molecular-dynamics technique for studying domain motion in

  5. Global Conformation of Tau Protein Mapped by Raman Spectroscopy.

    PubMed

    Gorantla, Nalini Vijay; Khandelwal, Puneet; Poddar, Pankaj; Chinnathambi, Subashchandrabose

    2017-01-01

    Alzheimer's disease (AD) is one of the neurodegenerative disease characterized by progressive neuronal loss in the brain. Its two major hallmarks are extracellular senile plaques and intracellular neurofibrillary tangles (NFTs), formed by aggregation of amyloid β-42 (Aβ-42) and Tau protein respectively. Aβ-42 is a transmembrane protein, which is produced after the sequential action of β- and γ-secretases, thus obtained peptide is released extracellularly and gets deposited on the neuron forming senile plaques. NFTs are composed of microtubule-associated protein-Tau (MAPT). Tau protein's major function is to stabilize the microtubule that provides a track on which the cargo proteins are shuttled and the stabilized microtubule also maintains shape and integrity of the neuronal cell. Tau protein is subjected to various modifications such as phosphorylation, ubiquitination, glycation, acetylation, truncation, glycosylation, deamination, and oxidation; these modifications ultimately lead to its aggregation. Phosphorylation is the major modification and is extensively studied with respect to Tau protein. Tau protein, however, undergoes certain level of phosphorylation and dephosphorylation, which regulates its affinity for microtubule and ultimately leading to microtubule assembly and disassembly. Our main aim was to study the native state of longest isoform of Tau (hTau40WT-4R2N) and its shortest isoform, (hTau23WT-3R0N), at various temperatures such as 10, 25, and 37 °C. Raman spectroscopic results suggested that the proportion of random coils or unordered structure depends on the temperature of the protein environment. Upon increase in the temperature from 10 to 37 °C, the proportion of random coils or unordered structures increased in the case of hTau40WT. However, we did not find a significant effect of temperature on the structure of hTau23WT. This current approach enables one to analyze the global conformation of soluble Tau in solution.

  6. MYST protein acetyltransferase activity requires active site lysine autoacetylation.

    PubMed

    Yuan, Hua; Rossetto, Dorine; Mellert, Hestia; Dang, Weiwei; Srinivasan, Madhusudan; Johnson, Jamel; Hodawadekar, Santosh; Ding, Emily C; Speicher, Kaye; Abshiru, Nebiyu; Perry, Rocco; Wu, Jiang; Yang, Chao; Zheng, Y George; Speicher, David W; Thibault, Pierre; Verreault, Alain; Johnson, F Bradley; Berger, Shelley L; Sternglanz, Rolf; McMahon, Steven B; Côté, Jacques; Marmorstein, Ronen

    2012-01-04

    The MYST protein lysine acetyltransferases are evolutionarily conserved throughout eukaryotes and acetylate proteins to regulate diverse biological processes including gene regulation, DNA repair, cell-cycle regulation, stem cell homeostasis and development. Here, we demonstrate that MYST protein acetyltransferase activity requires active site lysine autoacetylation. The X-ray crystal structures of yeast Esa1 (yEsa1/KAT5) bound to a bisubstrate H4K16CoA inhibitor and human MOF (hMOF/KAT8/MYST1) reveal that they are autoacetylated at a strictly conserved lysine residue in MYST proteins (yEsa1-K262 and hMOF-K274) in the enzyme active site. The structure of hMOF also shows partial occupancy of K274 in the unacetylated form, revealing that the side chain reorients to a position that engages the catalytic glutamate residue and would block cognate protein substrate binding. Consistent with the structural findings, we present mass spectrometry data and biochemical experiments to demonstrate that this lysine autoacetylation on yEsa1, hMOF and its yeast orthologue, ySas2 (KAT8) occurs in solution and is required for acetylation and protein substrate binding in vitro. We also show that this autoacetylation occurs in vivo and is required for the cellular functions of these MYST proteins. These findings provide an avenue for the autoposttranslational regulation of MYST proteins that is distinct from other acetyltransferases but draws similarities to the phosphoregulation of protein kinases.

  7. MYST protein acetyltransferase activity requires active site lysine autoacetylation

    PubMed Central

    Yuan, Hua; Rossetto, Dorine; Mellert, Hestia; Dang, Weiwei; Srinivasan, Madhusudan; Johnson, Jamel; Hodawadekar, Santosh; Ding, Emily C; Speicher, Kaye; Abshiru, Nebiyu; Perry, Rocco; Wu, Jiang; Yang, Chao; Zheng, Y George; Speicher, David W; Thibault, Pierre; Verreault, Alain; Johnson, F Bradley; Berger, Shelley L; Sternglanz, Rolf; McMahon, Steven B; Côté, Jacques; Marmorstein, Ronen

    2012-01-01

    The MYST protein lysine acetyltransferases are evolutionarily conserved throughout eukaryotes and acetylate proteins to regulate diverse biological processes including gene regulation, DNA repair, cell-cycle regulation, stem cell homeostasis and development. Here, we demonstrate that MYST protein acetyltransferase activity requires active site lysine autoacetylation. The X-ray crystal structures of yeast Esa1 (yEsa1/KAT5) bound to a bisubstrate H4K16CoA inhibitor and human MOF (hMOF/KAT8/MYST1) reveal that they are autoacetylated at a strictly conserved lysine residue in MYST proteins (yEsa1-K262 and hMOF-K274) in the enzyme active site. The structure of hMOF also shows partial occupancy of K274 in the unacetylated form, revealing that the side chain reorients to a position that engages the catalytic glutamate residue and would block cognate protein substrate binding. Consistent with the structural findings, we present mass spectrometry data and biochemical experiments to demonstrate that this lysine autoacetylation on yEsa1, hMOF and its yeast orthologue, ySas2 (KAT8) occurs in solution and is required for acetylation and protein substrate binding in vitro. We also show that this autoacetylation occurs in vivo and is required for the cellular functions of these MYST proteins. These findings provide an avenue for the autoposttranslational regulation of MYST proteins that is distinct from other acetyltransferases but draws similarities to the phosphoregulation of protein kinases. PMID:22020126

  8. DNA-based control of protein activity

    PubMed Central

    Engelen, W.; Janssen, B. M. G.

    2016-01-01

    DNA has emerged as a highly versatile construction material for nanometer-sized structures and sophisticated molecular machines and circuits. The successful application of nucleic acid based systems greatly relies on their ability to autonomously sense and act on their environment. In this feature article, the development of DNA-based strategies to dynamically control protein activity via oligonucleotide triggers is discussed. Depending on the desired application, protein activity can be controlled by directly conjugating them to an oligonucleotide handle, or expressing them as a fusion protein with DNA binding motifs. To control proteins without modifying them chemically or genetically, multivalent ligands and aptamers that reversibly inhibit their function provide valuable tools to regulate proteins in a noncovalent manner. The goal of this feature article is to give an overview of strategies developed to control protein activity via oligonucleotide-based triggers, as well as hurdles yet to be taken to obtain fully autonomous systems that interrogate, process and act on their environments by means of DNA-based protein control. PMID:26812623

  9. Regulation of EB1/3 proteins by classical MAPs in neurons

    PubMed Central

    Sayas, CL; Avila, Jesús

    2014-01-01

    Microtubules (MTs) are key cytoskeletal elements in developing and mature neurons. MT reorganization underlies the morphological changes that occur during neuronal development. Furthermore, MTs contribute to the maintenance of neuronal architecture, enable intracellular transport and act as scaffolds for signaling molecules. Thus, a fine-tuned regulation of MT dynamics and stability is crucial for the correct differentiation and functioning of neurons. Different types of proteins contribute to the regulation of the MT state, such as plus-end tracking proteins (+TIPs), which interact with the plus-ends of growing microtubules, and classical microtubule-associated proteins (MAPs), which bind along the microtubule lattice. Recent evidence indicates that MAPs interplay with End Binding Proteins (EBs), the core +TIPs, in neuronal cells. This might contribute to the orchestrated regulation of MT dynamics in neurons. In this mini-review article, we address recent research on the neuronal crosstalk between EBs and classical MAPs and speculate on its possible functional relevance. PMID:24452057

  10. Inducible DamID systems for genomic mapping of chromatin proteins in Drosophila

    PubMed Central

    Pindyurin, Alexey V.; Pagie, Ludo; Kozhevnikova, Elena N.; van Arensbergen, Joris; van Steensel, Bas

    2016-01-01

    Dam identification (DamID) is a powerful technique to generate genome-wide maps of chromatin protein binding. Due to its high sensitivity, it is particularly suited to study the genome interactions of chromatin proteins in small tissue samples in model organisms such as Drosophila. Here, we report an intein-based approach to tune the expression level of Dam and Dam-fusion proteins in Drosophila by addition of a ligand to fly food. This helps to suppress possible toxic effects of Dam. In addition, we describe a strategy for genetically controlled expression of Dam in a specific cell type in complex tissues. We demonstrate the utility of the latter by generating a glia-specific map of Polycomb in small samples of brain tissue. These new DamID tools will be valuable for the mapping of binding patterns of chromatin proteins in Drosophila tissues and especially in cell lineages. PMID:27001518

  11. Mapping Conformational Dynamics of Proteins Using Torsional Dynamics Simulations

    PubMed Central

    Gangupomu, Vamshi K.; Wagner, Jeffrey R.; Park, In-Hee; Jain, Abhinandan; Vaidehi, Nagarajan

    2013-01-01

    All-atom molecular dynamics simulations are widely used to study the flexibility of protein conformations. However, enhanced sampling techniques are required for simulating protein dynamics that occur on the millisecond timescale. In this work, we show that torsional molecular dynamics simulations enhance protein conformational sampling by performing conformational search in the low-frequency torsional degrees of freedom. In this article, we use our recently developed torsional-dynamics method called Generalized Newton-Euler Inverse Mass Operator (GNEIMO) to study the conformational dynamics of four proteins. We investigate the use of the GNEIMO method in simulations of the conformationally flexible proteins fasciculin and calmodulin, as well as the less flexible crambin and bovine pancreatic trypsin inhibitor. For the latter two proteins, the GNEIMO simulations with an implicit-solvent model reproduced the average protein structural fluctuations and sample conformations similar to those from Cartesian simulations with explicit solvent. The application of GNEIMO with replica exchange to the study of fasciculin conformational dynamics produced sampling of two of this protein’s experimentally established conformational substates. Conformational transition of calmodulin from the Ca2+-bound to the Ca2+-free conformation occurred readily with GNEIMO simulations. Moreover, the GNEIMO method generated an ensemble of conformations that satisfy about half of both short- and long-range interresidue distances obtained from NMR structures of holo to apo transitions in calmodulin. Although unconstrained all-atom Cartesian simulations have failed to sample transitions between the substates of fasciculin and calmodulin, GNEIMO simulations show the transitions in both systems. The relatively short simulation times required to capture these long-timescale conformational dynamics indicate that GNEIMO is a promising molecular-dynamics technique for studying domain motion in

  12. An integrated map of HIV-human protein complexes that facilitate viral infection.

    PubMed

    Emig-Agius, Dorothea; Olivieri, Kevin; Pache, Lars; Shih, Hsin Ling; Pustovalova, Olga; Bessarabova, Marina; Young, John A T; Chanda, Sumit K; Ideker, Trey

    2014-01-01

    Recent proteomic and genetic studies have aimed to identify a complete network of interactions between HIV and human proteins and genes. This HIV-human interaction network provides invaluable information as to how HIV exploits the host machinery and can be used as a starting point for further functional analyses. We integrated this network with complementary datasets of protein function and interaction to nominate human protein complexes with likely roles in viral infection. Based on our approach we identified a global map of 40 HIV-human protein complexes with putative roles in HIV infection, some of which are involved in DNA replication and repair, transcription, translation, and cytoskeletal regulation. Targeted RNAi screens were used to validate several proteins and complexes for functional impact on viral infection. Thus, our HIV-human protein complex map provides a significant resource of potential HIV-host interactions for further study.

  13. Identifying secondary structures in proteins using NMR chemical shift 3D correlation maps

    NASA Astrophysics Data System (ADS)

    Kumari, Amrita; Dorai, Kavita

    2013-06-01

    NMR chemical shifts are accurate indicators of molecular environment and have been extensively used as aids in protein structure determination. This work focuses on creating empirical 3D correlation maps of backbone chemical shift nuclei for use as identifiers of secondary structure elements in proteins. A correlated database of backbone nuclei chemical shifts was constructed from experimental structural data gathered from entries in the Protein Data Bank (PDB) as well as isotropic chemical shift values from the RefDB database. Rigorous statistical analysis of the maps led to the conclusion that specific correlations between triplets of backbone chemical shifts are best able to differentiate between different secondary structures such as α-helices, β-strands and turns. The method is compared with similar techniques that use NMR chemical shift information as aids in biomolecular structure determination and performs well in tests done on experimental data determined for different types of proteins, including large multi-domain proteins and membrane proteins.

  14. Surface Photometry of Reverberation-Mapped Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Bower, Gary A.

    2015-01-01

    I present a statistical analysis of the surface photometry obtained for a sample of Hubble Space Telescope (HST) archival images of the host galaxies containing active galactic nuclei (AGN), whose time-delay between continuum and broad emission line variations have been analyzed (i.e., reverberation mapping). For quiescent galaxies, strong correlations exist between central black hole mass and host galaxy structure. If there are similar correlations for AGN between central black hole masses derived from reverberation mapping and the host galaxy structure that I have derived from archival HST images, this would imply some validation of the assumptions underlying reverberation mapping concerning the structure, kinematics, and orientation of the broad line regions in AGN.The correlations for quiescent galaxies bewteen central black hole mass and host galaxy structure imply that there might be a strong causal connection between the formation and evolution of the black hole and the galaxy bulge. A current hypothesis is that bulges, black holes, and quasars formed, grew, or turned on as parts of the same process, in part because the collapse or merger of bulges might provide a rich fuel supply to a central black hole. One way of testing this hypothesis would be to plot AGN as a function of redshift on these correlations. However, two severe obstacles limit the ability to measure black hole masses in AGN using HST to analyze the central stellar and/or gas dynamics: (1) since spatial resolution becomes more limited at larger distances, only two reverberation-mapped AGN are close enough to Earth to render the analysis feasible, and (2) it isdifficult to obtain useful spectra of the stars and/or gas in the presence of the bright nonstellar nucleus. The most useful alternative is to exploit reverberation mapping, which uses the time delay in a given AGN between variations in the continuum emission and broad emission lines.

  15. Mapping protein electron transfer pathways with QM/MM methods

    PubMed Central

    Guallar, Victor; Wallrapp, Frank

    2008-01-01

    Mixed quantum mechanics/molecular mechanics (QM/MM) methods offer a valuable computational tool for understanding the electron transfer pathway in protein–substrate interactions and protein–protein complexes. These hybrid methods are capable of solving the Schrödinger equation on a small subset of the protein, the quantum region, describing its electronic structure under the polarization effects of the remainder of the protein. By selectively turning on and off different residues in the quantum region, we are able to obtain the electron pathway for short- and large-range interactions. Here, we summarize recent studies involving the protein–substrate interaction in cytochrome P450 camphor, ascorbate peroxidase and cytochrome c peroxidase, and propose a novel approach for the long-range protein–protein electron transfer. The results on ascorbate peroxidase and cytochrome c peroxidase reveal the importance of the propionate groups in the electron transfer pathway. The long-range protein–protein electron transfer has been studied on the cytochrome c peroxidase–cytochrome c complex. The results indicate the importance of Phe82 and Cys81 on cytochrome c, and of Asn196, Ala194, Ala176 and His175 on cytochrome c peroxidase. PMID:18445553

  16. Mapping cytoskeletal protein function in cells by means of nanobodies.

    PubMed

    Van Audenhove, Isabel; Van Impe, Katrien; Ruano-Gallego, David; De Clercq, Sarah; De Muynck, Kevin; Vanloo, Berlinda; Verstraete, Hanne; Fernández, Luis Á; Gettemans, Jan

    2013-10-01

    Nanobodies or VHHs are single domain antigen binding fragments derived from heavy-chain antibodies naturally occurring in species of the Camelidae. Due to their ease of cloning, high solubility and intrinsic stability, they can be produced at low cost. Their small size, combined with high affinity and antigen specificity, enables recognition of a broad range of structural (undruggable) proteins and enzymes alike. Focusing on two actin binding proteins, gelsolin and CapG, we summarize a general protocol for the generation, cloning and production of nanobodies. Furthermore, we describe multiple ways to characterize antigen-nanobody binding in more detail and we shed light on some applications with recombinant nanobodies. The use of nanobodies as intrabodies is clarified through several case studies revealing new cytoskeletal protein properties and testifying to the utility of nanobodies as intracellular bona fide protein inhibitors. Moreover, as nanobodies can traverse the plasma membrane of eukaryotic cells by means of the enteropathogenic E. coli type III protein secretion system, we show that in this promising way of nanobody delivery, actin pedestal formation can be affected following nanobody injection.

  17. Analysis and Ranking of Protein-Protein Docking Models Using Inter-Residue Contacts and Inter-Molecular Contact Maps.

    PubMed

    Oliva, Romina; Chermak, Edrisse; Cavallo, Luigi

    2015-07-01

    In view of the increasing interest both in inhibitors of protein-protein interactions and in protein drugs themselves, analysis of the three-dimensional structure of protein-protein complexes is assuming greater relevance in drug design. In the many cases where an experimental structure is not available, protein-protein docking becomes the method of choice for predicting the arrangement of the complex. However, reliably scoring protein-protein docking poses is still an unsolved problem. As a consequence, the screening of many docking models is usually required in the analysis step, to possibly single out the correct ones. Here, making use of exemplary cases, we review our recently introduced methods for the analysis of protein complex structures and for the scoring of protein docking poses, based on the use of inter-residue contacts and their visualization in inter-molecular contact maps. We also show that the ensemble of tools we developed can be used in the context of rational drug design targeting protein-protein interactions.

  18. Interleukin-1 activates a novel protein kinase cascade that results in the phosphorylation of Hsp27.

    PubMed

    Freshney, N W; Rawlinson, L; Guesdon, F; Jones, E; Cowley, S; Hsuan, J; Saklatvala, J

    1994-09-23

    An IL-1-stimulated protein kinase cascade resulting in phosphorylation of the small heat shock protein hsp27 has been identified in KB cells. It is distinct from the p42 MAP kinase cascade. An upstream activator kinase phosphorylated a 40 kDa kinase (p40) upon threonine and tyrosine residues, which in turn phosphorylated a 50 kDa kinase (p50) upon threonine (and some serine) residues. p50 phosphorylated hsp27 upon serine. p40 and p50 were purified to near homogeneity. All three components were inactivated by protein phosphatase 2A, and p40 was inactivated by protein tyrosine phosphatase 1B. The substrate specificity of p40 differed from that of p42 and p54 MAP kinases. The upstream activator was not a MAP kinase kinase. p50 resembled MAPKAPK-2 and may be identical.

  19. Grafting MAP peptide to dental polymer inhibits MMP-8 activity.

    PubMed

    Dixit, Namrata; Settle, Jenifer K; Ye, Qiang; Berrie, Cindy L; Spencer, Paulette; Laurence, Jennifer S

    2015-02-01

    Matrix metalloproteinases (MMPs) are a class of zinc and calcium-dependent endopeptidases responsible for degrading extracellular matrix (ECM) components. Their activity is critical for both normal biological function and pathological processes (Dejonckheere et al., Cytokine Growth Factor Rev 2011;22:73-81). In dental restorations, the release and subsequent acid activation of MMPs contributes to premature failure. In particular, MMP-8 accelerates degradation by cleaving the collagen matrix within the dentin substrate in incompletely infiltrated aged bonded dentin (Buzalaf et al., Adv Dent Res 2012;24:72-76), hastening the need for replacement of restorations. Therefore, development of a dental adhesive that better resists MMP-8 activity is of significant interest. We hypothesize that modification of the polymer surface with an inhibitor would disable MMP-8 activity. Here, we identify the metal abstraction peptide (MAP) as an inhibitor of MMP-8 and demonstrate that tethering MAP to methacrylate polymers effectively inhibits catalysis. Our findings indicate complete inhibition of MMP-8 is achievable using a grafting approach. This strategy has potential to improve longevity of dental adhesives and other polymers and enable rational design of a new generation of biocompatible materials.

  20. Map and Compass Skills for the Elementary School. Instructional Activities Series IA/E-9.

    ERIC Educational Resources Information Center

    Larkin, Robert P.; Grogger, Paul K.

    Twenty activities are described that can be used to develop map and compass skills in elementary grades. The activities range from simple, beginners' projects to more complex tasks as students acquire more skills. Most can be carried out in the classroom, schoolyard, or local neighborhood. Map activities include drawing maps of the classroom,…

  1. Acute hypertension activates mitogen-activated protein kinases in arterial wall.

    PubMed Central

    Xu, Q; Liu, Y; Gorospe, M; Udelsman, R; Holbrook, N J

    1996-01-01

    Mitogen-activated protein (MAP) kinases are rapidly activated in cells stimulated with various extracellular signals by dual phosphorylation of tyrosine and threonine residues. They are thought to play a pivotal role in transmitting transmembrane signals required for cell growth and differentiation. Herein we provide evidence that two distinct classes of MAP kinases, the extracellular signal-regulated kinases (ERK) and the c-Jun NH2-terminal kinases (JNK), are transiently activated in rat arteries (aorta, carotid and femoral arteries) in response to an acute elevation in blood pressure induced by either restraint or administration of hypertensive agents (i.e., phenylephrine and angiotensin II). Kinase activation is followed by an increase in c-fos and c-jun gene expression and enhanced activating protein 1 (AP-1) DNA-binding activity. Activation of ERK and JNK could contribute to smooth muscle cell hypertrophy/hyperplasia during arterial remodeling due to frequent and/or persistent elevations in blood pressure. PMID:8567974

  2. Human cervical cancer cells use Ca2+ signalling, protein tyrosine phosphorylation and MAP kinase in regulatory volume decrease

    PubMed Central

    Shen, Meng-Ru; Chou, Cheng-Yang; Browning, Joseph A; Wilkins, Robert J; Ellory, J Clive

    2001-01-01

    This study was aimed at identifying the signalling pathways involved in the activation of volume-regulatory mechanisms of human cervical cancer cells. Osmotic swelling of human cervical cancer cells induced a substantial increase in intracellular Ca2+ ([Ca2+]i) by the activation of Ca2+ entry across the cell membrane, as well as Ca2+ release from intracellular stores. This Ca2+ signalling was critical for the normal regulatory volume decrease (RVD) response. The activation of swelling-activated ion and taurine transport was significantly inhibited by tyrosine kinase inhibitors (genistein and tyrphostin AG 1478) and potentiated by the tyrosine phosphatase inhibitor Na3VO4. However, the Src family of tyrosine kinases was not involved in regulation of the swelling-activated Cl− channel. Cell swelling triggered mitogen-activated protein (MAP) kinase cascades leading to the activation of extracellular signal-regulated kinase 1 and 2 (ERK1/ERK2) and p38 kinase. The volume-responsive ERK1/ERK2 signalling pathway linked with the activation of K+ and Cl− channels, and taurine transport. However, the volume-regulatory mechanism was independent of the activation of p38 MAP kinase. The phosphorylated ERK1/ERK2 expression following a hypotonic shock was up-regulated by protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) and down-regulated by PKC inhibitor staurosporine. The response of ERK activation to hypotonicity also required Ca2+ entry and depended on tyrosine kinase and mitogen-activated/ERK-activating kinase (MEK) activity. Considering the results overall, osmotic swelling promotes the activation of tyrosine kinase and ERK1/ERK2 and raises intracellular Ca2+, all of which play a crucial role in the volume-regulatory mechanism of human cervical cancer cells. PMID:11731569

  3. SKK4, a novel activator of stress-activated protein kinase-1 (SAPK1/JNK).

    PubMed

    Lawler, S; Cuenda, A; Goedert, M; Cohen, P

    1997-09-01

    A cDNA was cloned and expressed that encodes human stress-activated protein kinase kinase-4 (SKK4), a novel MAP kinase kinase family member whose mRNA is widely expressed in human tissues. SKK4 activated SAPK1/JNK in vitro, but not SAPK2a/p38, SAPK2b/p38beta, SAPK3/ERK6 or SAPK4. It appears to be the mammalian homologue of HEP, an activator of SAPK1/JNK in Drosophila. In human epithelial KB cells SKK4 and SKK1/MKK4 (another activator of SAPK1/JNK) were both activated by stressful stimuli, but only SKK4 was activated by proinflammatory cytokines. The identification of SKK4 explains why the major SAPK1/JNK activator detected in many mammalian cell extracts is chromatographically separable from SKK1/MKK4.

  4. Α-MMC and MAP30, two ribosome-inactivating proteins extracted from Momordica charantia, induce cell cycle arrest and apoptosis in A549 human lung carcinoma cells.

    PubMed

    Fan, Xiang; He, Lingli; Meng, Yao; Li, Gangrui; Li, Linli; Meng, Yanfa

    2015-05-01

    α‑Momorcharin (α‑MMC) and momordica anti‑human immunodeficiency virus protein (MAP30), produced by Momordica charantia, are ribosome‑inactivating proteins, which have been reported to exert inhibitory effects on cultured tumor cells. In order to further elucidate the functions of these agents, the present study aimed to investigate the effects of α‑MMC and MAP30 on cell viability, the induction of apoptosis, cell cycle arrest, DNA integrity and superoxide dismutase (SOD) activity. α‑MMC and MAP30 were purified from bitter melon seeds using ammonium sulfate precipitation in combination with sulfopropyl (SP)‑sepharose fast flow, sephacryl S‑100 and macro‑Cap‑SP chromatography. MTT, flow cytometric and DNA fragmentation analyses were then used to determine the effects of α‑MMC and MAP30 on human lung adenocarcinoma epithelial A549 cells. The results revealed that A549 cells were sensitive to α‑MMC and MAP30 cytotoxicity assays in vitro. Cell proliferation was significantly suppressed following α‑MMC and MAP30 treatment in a dose‑ and time‑dependent manner; in addition, the results indicated that MAP30 had a more potent anti‑tumor activity compared with that of α‑MMC. Cell cycle arrest in S phase and a significantly increased apoptotic rate were observed following treatment with α‑MMC and MAP30. Furthermore, DNA integrity analysis revealed that the DNA of A549 cells was degraded following treatment with α‑MMC and MAP30 for 48 h. The pyrogallol autoxidation method and nitrotetrazolium blue chloride staining were used to determine SOD activity, the results of which indicated that α‑MMC and MAP30 did not possess SOD activity. In conclusion, the results of the present study indicated that α‑MMC and MAP30 may have potential as novel therapeutic agents for the prophylaxis and treatment of cancer.

  5. Epitope mapping and functional analysis of sigma A and sigma NS proteins of avian reovirus

    SciTech Connect

    Huang, Pi H.; Li, Ying J.; Su, Yu P.; Lee, Long H.; Liu, Hung J. . E-mail: hjliu@mail.npust.edu.tw

    2005-02-20

    We have previously shown that avian reovirus (ARV) {sigma}A and {sigma}NS proteins possess dsRNA and ssRNA binding activity and suggested that there are two epitopes on {sigma}A (I and II) and three epitopes (A, B, and C) on {sigma}NS. To further define the location of epitopes on {sigma}A and {sigma}NS proteins and to further elucidate the biological functions of these epitopes by using monoclonal antibodies (MAbs) 62, 1F9, H1E1, and 4A123 against the ARV S1133 strain, the full-length and deletion fragments of S2 and S4 genes of ARV generated by polymerase chain reaction (PCR) were cloned into pET32 expression vectors and the fusion proteins were overexpressed in Escherichia coli BL21 strain. Epitope mapping using MAbs and E. coli-expressed deletion fragments of {sigma}A and {sigma}NS of the ARV S1133 strain, synthetic peptides, and the cross reactivity of MAbs to heterologous ARV strains demonstrated that epitope II on {sigma}A was located at amino acid residues {sup 340}QWVMAGLVSAA{sup 350} and epitope B on {sigma}NS at amino acid residues {sup 180}MLDMVDGRP{sup 188}. The MAbs (62, 1F9, and H1E1) directed against epitopes II and B did not require the native conformation of {sigma}A and {sigma}NS, suggesting that their binding activities were conformation-independent. On the other hand, MAb 4A123 only reacted with complete {sigma}NS but not with truncated {sigma}NS fusion proteins in Western blot, suggesting that the binding activity of MAb to epitope A on {sigma}NS was conformation-dependent. Amino acid sequence analysis and the binding assays of MAb 62 to heterologous ARV strains suggested that epitope II on {sigma}A was highly conserved among ARV strains and that this epitope is suitable as a serological marker for the detection of ARV antibodies following natural infection in chickens. On the contrary, an amino acid substitution at position 183 (M to V) in epitope B of ARV could hinder the reactivity of the {sigma}NS with MAb 1F9. The {sigma}NS of ARV with ss

  6. Determination of contact maps in proteins: A combination of structural and chemical approaches

    SciTech Connect

    Wołek, Karol; Cieplak, Marek

    2015-12-28

    Contact map selection is a crucial step in structure-based molecular dynamics modelling of proteins. The map can be determined in many different ways. We focus on the methods in which residues are represented as clusters of effective spheres. One contact map, denoted as overlap (OV), is based on the overlap of such spheres. Another contact map, named Contacts of Structural Units (CSU), involves the geometry in a different way and, in addition, brings chemical considerations into account. We develop a variant of the CSU approach in which we also incorporate Coulombic effects such as formation of the ionic bridges and destabilization of possible links through repulsion. In this way, the most essential and well defined contacts are identified. The resulting residue-residue contact map, dubbed repulsive CSU (rCSU), is more sound in its physico-chemical justification than CSU. It also provides a clear prescription for validity of an inter-residual contact: the number of attractive atomic contacts should be larger than the number of repulsive ones — a feature that is not present in CSU. However, both of these maps do not correlate well with the experimental data on protein stretching. Thus, we propose to use rCSU together with the OV map. We find that the combined map, denoted as OV+rCSU, performs better than OV. In most situations, OV and OV+rCSU yield comparable folding properties but for some proteins rCSU provides contacts which improve folding in a substantial way. We discuss the likely residue-specificity of the rCSU contacts. Finally, we make comparisons to the recently proposed shadow contact map, which is derived from different principles.

  7. Paired natural cysteine mutation mapping: aid to constraining models of protein tertiary structure.

    PubMed Central

    Kreisberg, R.; Buchner, V.; Arad, D.

    1995-01-01

    This paper discusses the benefit of mapping paired cysteine mutation patterns as a guide to identifying the positions of protein disulfide bonds. This information can facilitate the computer modeling of protein tertiary structure. First, a simple, paired natural-cysteine-mutation map is presented that identifies the positions of putative disulfide bonds in protein families. The method is based on the observation that if, during the process of evolution, a disulfide-bonded cysteine residue is not conserved, then it is likely that its counterpart will also be mutated. For each target protein, protein databases were searched for the primary amino acid sequences of all known members of distinct protein families. Primary sequence alignment was carried out using PileUp algorithms in the GCG package. To search for correlated mutations, we listed only the positions where cysteine residues were highly conserved and emphasized the mutated residues. In proteins of known three-dimensional structure, a striking pattern of paired cysteine mutations correlated with the positions of known disulfide bridges. For proteins of unknown architecture, the mutation maps showed several positions where disulfide bridging might occur. PMID:8563638

  8. Mapping of protein structural ensembles by chemical shifts.

    PubMed

    Baskaran, Kumaran; Brunner, Konrad; Munte, Claudia E; Kalbitzer, Hans Robert

    2010-10-01

    Applying the chemical shift prediction programs SHIFTX and SHIFTS to a data base of protein structures with known chemical shifts we show that the averaged chemical shifts predicted from the structural ensembles explain better the experimental data than the lowest energy structures. This is in agreement with the fact that proteins in solution occur in multiple conformational states in fast exchange on the chemical shift time scale. However, in contrast to the real conditions in solution at ambient temperatures, the standard NMR structural calculation methods as well chemical shift prediction methods are optimized to predict the lowest energy ground state structure that is only weakly populated at physiological temperatures. An analysis of the data shows that a chemical shift prediction can be used as measure to define the minimum size of the structural bundle required for a faithful description of the structural ensemble.

  9. Synthetic Physical Interactions Map Kinetochore-Checkpoint Activation Regions

    PubMed Central

    Ólafsson, Guðjón; Thorpe, Peter H.

    2016-01-01

    The spindle assembly checkpoint (SAC) is a key mechanism to regulate the timing of mitosis and ensure that chromosomes are correctly segregated to daughter cells. The recruitment of the Mad1 and Mad2 proteins to the kinetochore is normally necessary for SAC activation. This recruitment is coordinated by the SAC kinase Mps1, which phosphorylates residues at the kinetochore to facilitate binding of Bub1, Bub3, Mad1, and Mad2. There is evidence that the essential function of Mps1 is to direct recruitment of Mad1/2. To test this model, we have systematically recruited Mad1, Mad2, and Mps1 to most proteins in the yeast kinetochore, and find that, while Mps1 is sufficient for checkpoint activation, recruitment of either Mad1 or Mad2 is not. These data indicate an important role for Mps1 phosphorylation in SAC activation, beyond the direct recruitment of Mad1 and Mad2. PMID:27280788

  10. Mapping Protein Abundance Patterns in the Brain Using Voxelation Combined with Liquid Chromatography and Mass Spectrometry

    PubMed Central

    Petyuk, Vladislav A.; Qian, Wei-Jun; Smith, Richard D.; Smith, Desmond J.

    2009-01-01

    Voxelation creates expression atlases by high-throughput analysis of spatially registered cubes or voxels harvested from the brain. The modality independence of voxelation allows a variety of bioanalytical techniques to be used to map abundance. Protein expression patterns in the brain can be obtained using liquid chromatography (LC) combined with mass spectrometry (MS). Here we describe the methodology of voxelation as it pertains particularly to LC-MS proteomic analysis: sample preparation, instrumental set up and analysis, peptide identification and protein relative abundance quantitation. We also briefly describe some of the advantages, limitations and insights into the brain that can be obtained using combined proteomic and transcriptomic maps. PMID:19654045

  11. Mapping protein abundance patterns in the brain using voxelation combined with liquid chromatography and mass spectrometry

    SciTech Connect

    Petyuk, Vladislav A.; Qian, Weijun; Smith, Richard D.; Smith, Desmond J.

    2010-02-01

    Voxelation creates expression atlases by high-throughput analysis of spatially registered cubes or voxels harvested from the brain. The modality independence of voxelation allows a variety of bioanalytical techniques to be used to map abundance. Protein expression patterns in the brain can be obtained using liquid chromatography (LC) combined with mass spectrometry (MS). Here we describe the methodology of voxelation as it pertains particularly to LC-MS proteomic analysis: sample preparation, instrumental set up and analysis, peptide identification and protein relative abundance quantitation. We also briefly describe some of the advantages, limitations and insights into the brain that can be obtained using combined proteomic and transcriptomic maps

  12. A novel approach to segregate and identify functional loop regions in protein structures using their Ramachandran maps.

    PubMed

    Kumar, Mattaparthi Venkata Satish; Swaminathan, Rajaram

    2010-03-01

    The loops which connect or flank helices/sheets in protein structures are known to be functionally important. However, ironically they also belong to the part of protein whose structure is least accurately predicted. Here, a new method to isolate and analyze loop regions in protein structure is proposed using the spatial coordinates of the solved three-dimensional structure. The extent of dispersion among points of successive amino acid residues in the Ramachandran map of protein region is utilized to calculate the Mean Separation between these points in the Ramachandran Plot (MSRP). Based on analysis of 2935 protein secondary structure regions obtained using DSSP software, spanning a range from 2 to 64 residues, taken from a set of 170 proteins, it is shown that helices (MSRP < 17) and strands (MSRP < 64) stand effectively demarcated from the loop regions (MSRP > 130). Analysis of 43 DNA binding and 98 ligand binding proteins revealed several loop regions with clear change in MSRP subsequent to binding. The population of such loops correlated with the magnitude of backbone displacement in the protein subsequent to binding. Can changes in MSRP quantify the temporal oscillations in dihedral angles among structured/unstructured regions in proteins? Molecular dynamics simulations (10 ns) revealed that deviations in MSRP among different snapshots in the trajectory were at least twofold higher for unstructured proteins in comparison with ordered proteins. The above results validate the use of MSRP parameter as a tool to identify and investigate functionally active loops and unstructured regions in protein structures. Proteins 2010. (c) 2009 Wiley-Liss, Inc.

  13. Comparative mapping of host–pathogen protein–protein interactions

    PubMed Central

    Shah, Priya S.; Wojcechowskyj, Jason A.; Eckhardt, Manon; Krogan, Nevan J.

    2015-01-01

    Pathogens usurp a variety of host pathways via protein–protein interactions to ensure efficient pathogen replication. Despite the existence of an impressive toolkit of systematic and unbiased approaches, we still lack a comprehensive list of these PPIs and an understanding of their functional implications. Here, we highlight the importance of harnessing genetic diversity of hosts and pathogens for uncovering the biochemical basis of pathogen restriction, virulence, fitness, and pathogenesis. We further suggest that integrating physical interaction data with orthogonal types of data will allow researchers to draw meaningful conclusions both for basic and translational science. PMID:26275922

  14. Discovering a "True" Map of the World--Learning Activities.

    ERIC Educational Resources Information Center

    Hantula, James

    "True" maps of the world, as seen from the perspective of the time in which they were produced, remain an ethnocentric visual language in modern times. Students can gain insight into such "true" maps by studying maps produced in the great traditions of the West and East. Teachers can determine a map's appropriateness by identifying its title,…

  15. Optical Mapping of Electrical Activation in the Developing Heart

    NASA Astrophysics Data System (ADS)

    Sedmera, David; Reckova, Maria; Rosengarten, Carlin; Torres, Maria I.; Gourdie, Robert G.; Thompson, Robert P.

    2005-06-01

    Specialized conduction tissues mediate coordinated propagation of electrical activity through the adult vertebrate heart. Following activation of the atria, the activation wave is slowed down in the atrioventricular canal or node, after which it spreads rapidly into the left and right ventricles via the His-Purkinje system (HPS). This results in the ventricles being activated from the apex toward the base, which is a hallmark of HPS function. The development of mature HPS function follows significant phases of cardiac morphogenesis. Initially, the cardiac impulse propagates in a slow, linear, and isotropic fashion from the sinus venosus at the most caudal portion of the tubular heart. Although the speed of impulse propagation gradually increases as it travels toward the anterior regions of the heart tube, the actual sequence of ventricular activation in the looped heart proceeds in the same direction as blood flow. Eventually, the immature base-to-apex sequence of ventricular activation undergoes an apparent reversal, changing to the mature apex-to-base pattern. Using an optical mapping approach, we demonstrate that the timing of this last transition shows striking dependence on hemodynamic loading of the ventricle, being accelerated by pressure overload and delayed in left ventricular hypoplasia. Comparison of chick and mammalian hearts revealed some striking similarities as well as key differences in the timing of such events during cardiac organogenesis.

  16. Microtubule-associated protein-4 controls nanovesicle dynamics and T cell activation.

    PubMed

    Bustos-Morán, Eugenio; Blas-Rus, Noelia; Martin-Cófreces, Noa Beatriz; Sánchez-Madrid, Francisco

    2017-04-01

    The immune synapse (IS) is a specialized structure formed at the contact area between T lymphocytes and antigen-presenting cells (APCs) that is essential for the adaptive immune response. Proper T cell activation requires its polarization towards the APC, which is highly dependent on the tubulin cytoskeleton. Microtubule-associated protein-4 (MAP4) is a microtubule (MT)-stabilizing protein that controls MTs in physiological processes, such as cell division, migration, vesicular transport or primary cilia formation. In this study, we assessed the role of MAP4 in T cell activation. MAP4 decorates the pericentrosomal area and MTs of the T cell, and it is involved in MT detyrosination and stable assembly in response to T cell activation. In addition, MAP4 prompts the timely translocation of the MT-organizing center (MTOC) towards the IS and the dynamics of signaling nanovesicles that sustains T cell activation. However, MAP4 acts as a negative regulator of other T cell activation-related signals, including diacylglycerol (DAG) production and IL2 secretion. Our data indicate that MAP4 acts as a checkpoint molecule that balances positive and negative hallmarks of T cell activation.

  17. Robust Diffeomorphic Mapping via Geodesically Controlled Active Shapes

    PubMed Central

    Tward, Daniel J.; Ma, Jun; Miller, Michael I.; Younes, Laurent

    2013-01-01

    This paper presents recent advances in the use of diffeomorphic active shapes which incorporate the conservation laws of large deformation diffeomorphic metric mapping. The equations of evolution satisfying the conservation law are geodesics under the diffeomorphism metric and therefore termed geodesically controlled diffeomorphic active shapes (GDAS). Our principal application in this paper is on robust diffeomorphic mapping methods based on parameterized surface representations of subcortical template structures. Our parametrization of the GDAS evolution is via the initial momentum representation in the tangent space of the template surface. The dimension of this representation is constrained using principal component analysis generated from training samples. In this work, we seek to use template surfaces to generate segmentations of the hippocampus with three data attachment terms: surface matching, landmark matching, and inside-outside modeling from grayscale T1 MR imaging data. This is formulated as an energy minimization problem, where energy describes shape variability and data attachment accuracy, and we derive a variational solution. A gradient descent strategy is employed in the numerical optimization. For the landmark matching case, we demonstrate the robustness of this algorithm as applied to the workflow of a large neuroanatomical study by comparing to an existing diffeomorphic landmark matching algorithm. PMID:23690757

  18. Mapping out Min protein patterns in fully confined fluidic chambers

    PubMed Central

    Caspi, Yaron; Dekker, Cees

    2016-01-01

    The bacterial Min protein system provides a major model system for studying reaction-diffusion processes in biology. Here we present the first in vitro study of the Min system in fully confined three-dimensional chambers that are lithography-defined, lipid-bilayer coated and isolated through pressure valves. We identify three typical dynamical behaviors that occur dependent on the geometrical chamber parameters: pole-to-pole oscillations, spiral rotations, and traveling waves. We establish the geometrical selection rules and show that, surprisingly, Min-protein spiral rotations govern the larger part of the geometrical phase diagram. Confinement as well as an elevated temperature reduce the characteristic wavelength of the Min patterns, although even for confined chambers with a bacterial-level viscosity, the patterns retain a ~5 times larger wavelength than in vivo. Our results provide an essential experimental base for modeling of intracellular Min gradients in bacterial cell division as well as, more generally, for understanding pattern formation in reaction-diffusion systems. DOI: http://dx.doi.org/10.7554/eLife.19271.001 PMID:27885986

  19. Global mapping of herpesvirus-host protein complexes reveals a transcription strategy for late genes.

    PubMed

    Davis, Zoe H; Verschueren, Erik; Jang, Gwendolyn M; Kleffman, Kevin; Johnson, Jeffrey R; Park, Jimin; Von Dollen, John; Maher, M Cyrus; Johnson, Tasha; Newton, William; Jäger, Stefanie; Shales, Michael; Horner, Julie; Hernandez, Ryan D; Krogan, Nevan J; Glaunsinger, Britt A

    2015-01-22

    Mapping host-pathogen interactions has proven instrumental for understanding how viruses manipulate host machinery and how numerous cellular processes are regulated. DNA viruses such as herpesviruses have relatively large coding capacity and thus can target an extensive network of cellular proteins. To identify the host proteins hijacked by this pathogen, we systematically affinity tagged and purified all 89 proteins of Kaposi's sarcoma-associated herpesvirus (KSHV) from human cells. Mass spectrometry of this material identified over 500 virus-host interactions. KSHV causes AIDS-associated cancers, and its interaction network is enriched for proteins linked to cancer and overlaps with proteins that are also targeted by HIV-1. We found that the conserved KSHV protein ORF24 binds to RNA polymerase II and brings it to viral late promoters by mimicking and replacing cellular TATA-box-binding protein (TBP). This is required for herpesviral late gene expression, a complex and poorly understood phase of the viral lifecycle.

  20. PDB2Graph: A toolbox for identifying critical amino acids map in proteins based on graph theory.

    PubMed

    Niknam, Niloofar; Khakzad, Hamed; Arab, Seyed Shahriar; Naderi-Manesh, Hossein

    2016-05-01

    The integrative and cooperative nature of protein structure involves the assessment of topological and global features of constituent parts. Network concept takes complete advantage of both of these properties in the analysis concomitantly. High compatibility to structural concepts or physicochemical properties in addition to exploiting a remarkable simplification in the system has made network an ideal tool to explore biological systems. There are numerous examples in which different protein structural and functional characteristics have been clarified by the network approach. Here, we present an interactive and user-friendly Matlab-based toolbox, PDB2Graph, devoted to protein structure network construction, visualization, and analysis. Moreover, PDB2Graph is an appropriate tool for identifying critical nodes involved in protein structural robustness and function based on centrality indices. It maps critical amino acids in protein networks and can greatly aid structural biologists in selecting proper amino acid candidates for manipulating protein structures in a more reasonable and rational manner. To introduce the capability and efficiency of PDB2Graph in detail, the structural modification of Calmodulin through allosteric binding of Ca(2+) is considered. In addition, a mutational analysis for three well-identified model proteins including Phage T4 lysozyme, Barnase and Ribonuclease HI, was performed to inspect the influence of mutating important central residues on protein activity.

  1. Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map.

    PubMed

    Collins, Sean R; Miller, Kyle M; Maas, Nancy L; Roguev, Assen; Fillingham, Jeffrey; Chu, Clement S; Schuldiner, Maya; Gebbia, Marinella; Recht, Judith; Shales, Michael; Ding, Huiming; Xu, Hong; Han, Junhong; Ingvarsdottir, Kristin; Cheng, Benjamin; Andrews, Brenda; Boone, Charles; Berger, Shelley L; Hieter, Phil; Zhang, Zhiguo; Brown, Grant W; Ingles, C James; Emili, Andrew; Allis, C David; Toczyski, David P; Weissman, Jonathan S; Greenblatt, Jack F; Krogan, Nevan J

    2007-04-12

    Defining the functional relationships between proteins is critical for understanding virtually all aspects of cell biology. Large-scale identification of protein complexes has provided one important step towards this goal; however, even knowledge of the stoichiometry, affinity and lifetime of every protein-protein interaction would not reveal the functional relationships between and within such complexes. Genetic interactions can provide functional information that is largely invisible to protein-protein interaction data sets. Here we present an epistatic miniarray profile (E-MAP) consisting of quantitative pairwise measurements of the genetic interactions between 743 Saccharomyces cerevisiae genes involved in various aspects of chromosome biology (including DNA replication/repair, chromatid segregation and transcriptional regulation). This E-MAP reveals that physical interactions fall into two well-represented classes distinguished by whether or not the individual proteins act coherently to carry out a common function. Thus, genetic interaction data make it possible to dissect functionally multi-protein complexes, including Mediator, and to organize distinct protein complexes into pathways. In one pathway defined here, we show that Rtt109 is the founding member of a novel class of histone acetyltransferases responsible for Asf1-dependent acetylation of histone H3 on lysine 56. This modification, in turn, enables a ubiquitin ligase complex containing the cullin Rtt101 to ensure genomic integrity during DNA replication.

  2. Mapping fast protein folding with multiple-site fluorescent probes.

    PubMed

    Prigozhin, Maxim B; Chao, Shu-Han; Sukenik, Shahar; Pogorelov, Taras V; Gruebele, Martin

    2015-06-30

    Fast protein folding involves complex dynamics in many degrees of freedom, yet microsecond folding experiments provide only low-resolution structural information. We enhance the structural resolution of the five-helix bundle protein λ6-85 by engineering into it three fluorescent tryptophan-tyrosine contact probes. The probes report on distances between three different helix pairs: 1-2, 1-3, and 3-2. Temperature jump relaxation experiments on these three mutants reveal two different kinetic timescales: a slower timescale for 1-3 and a faster one for the two contacts involving helix 2. We hypothesize that these differences arise from a single folding mechanism that forms contacts on different timescales, and not from changes of mechanism due to adding the probes. To test this hypothesis, we analyzed the corresponding three distances in one published single-trajectory all-atom molecular-dynamics simulation of a similar mutant. Autocorrelation analysis of the trajectory reveals the same "slow" and "fast" distance change as does experiment, but on a faster timescale; smoothing the trajectory in time shows that this ordering is robust and persists into the microsecond folding timescale. Structural investigation of the all-atom computational data suggests that helix 2 misfolds to produce a short-lived off-pathway trap, in agreement with the experimental finding that the 1-2 and 3-2 distances involving helix 2 contacts form a kinetic grouping distinct from 1 to 3. Our work demonstrates that comparison between experiment and simulation can be extended to several order parameters, providing a stronger mechanistic test.

  3. Comparing Two Forms of Concept Map Critique Activities to Facilitate Knowledge Integration Processes in Evolution Education

    ERIC Educational Resources Information Center

    Schwendimann, Beat A.; Linn, Marcia C.

    2016-01-01

    Concept map activities often lack a subsequent revision step that facilitates knowledge integration. This study compares two collaborative critique activities using a Knowledge Integration Map (KIM), a form of concept map. Four classes of high school biology students (n?=?81) using an online inquiry-based learning unit on evolution were assigned…

  4. The application of an emerging technique for protein-protein interaction interface mapping: the combination of photo-initiated cross-linking protein nanoprobes with mass spectrometry.

    PubMed

    Ptáčková, Renata; Ječmen, Tomáš; Novák, Petr; Hudeček, Jiří; Stiborová, Marie; Šulc, Miroslav

    2014-05-26

    Protein-protein interaction was investigated using a protein nanoprobe capable of photo-initiated cross-linking in combination with high-resolution and tandem mass spectrometry. This emerging experimental approach introduces photo-analogs of amino acids within a protein sequence during its recombinant expression, preserves native protein structure and is suitable for mapping the contact between two proteins. The contact surface regions involved in the well-characterized interaction between two molecules of human 14-3-3ζ regulatory protein were used as a model. The employed photo-initiated cross-linking techniques extend the number of residues shown to be within interaction distance in the contact surface of the 14-3-3ζ dimer (Gln8-Met78). The results of this study are in agreement with our previously published data from molecular dynamic calculations based on high-resolution chemical cross-linking data and Hydrogen/Deuterium exchange mass spectrometry. The observed contact is also in accord with the 14-3-3ζ X-ray crystal structure (PDB 3dhr). The results of the present work are relevant to the structural biology of transient interaction in the 14-3-3ζ protein, and demonstrate the ability of the chosen methodology (the combination of photo-initiated cross-linking protein nanoprobes and mass spectrometry analysis) to map the protein-protein interface or regions with a flexible structure.

  5. A Highly Efficient Approach to Protein Interactome Mapping Based on Collaborative Filtering Framework

    NASA Astrophysics Data System (ADS)

    Luo, Xin; You, Zhuhong; Zhou, Mengchu; Li, Shuai; Leung, Hareton; Xia, Yunni; Zhu, Qingsheng

    2015-01-01

    The comprehensive mapping of protein-protein interactions (PPIs) is highly desired for one to gain deep insights into both fundamental cell biology processes and the pathology of diseases. Finely-set small-scale experiments are not only very expensive but also inefficient to identify numerous interactomes despite their high accuracy. High-throughput screening techniques enable efficient identification of PPIs; yet the desire to further extract useful knowledge from these data leads to the problem of binary interactome mapping. Network topology-based approaches prove to be highly efficient in addressing this problem; however, their performance deteriorates significantly on sparse putative PPI networks. Motivated by the success of collaborative filtering (CF)-based approaches to the problem of personalized-recommendation on large, sparse rating matrices, this work aims at implementing a highly efficient CF-based approach to binary interactome mapping. To achieve this, we first propose a CF framework for it. Under this framework, we model the given data into an interactome weight matrix, where the feature-vectors of involved proteins are extracted. With them, we design the rescaled cosine coefficient to model the inter-neighborhood similarity among involved proteins, for taking the mapping process. Experimental results on three large, sparse datasets demonstrate that the proposed approach outperforms several sophisticated topology-based approaches significantly.

  6. LOCALIZATION, FERTILITY INHIBITION, AND EPITOPE MAPS USING ANTIBODIES TO THE SPERM PROTEIN SP22

    EPA Science Inventory

    LOCALIZATION, FERTILITY INHIBITION, AND EPITOPE MAPS USING ANTIBODIES TO THE SPERM PROTEIN SP22. GR Klinefelter1, JE Welch*1, HDM Moore*2, K Bobseine*1, J Suarez*1 ,N Roberts*1 ,R Zucker *1 1U.S. EPA, NHEERL, Reproductive Toxicology Division, RTP, NC and 2University of Sheffield...

  7. Immunogenicity and reactivity of novel Mycobacterium avium subsp. paratuberculosis PPE MAP1152 and conserved MAP1156 proteins with sera from experimentally and naturally infected animals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mycobacterium avium subsp. paratuberculosis (MAP) causes Johne’s Disease (JD) in ruminants. Development of genetic tools and completion of the MAP genome sequencing project expanded opportunities for antigen discovery. In this study, we determined the seroreactivity of two proteins encoded for at th...

  8. Construction of a Comprehensive Protein-Protein Interaction Map for Vitiligo Disease to Identify Key Regulatory Elements: A Systemic Approach.

    PubMed

    Malhotra, Anvita Gupta; Jha, Mohit; Singh, Sudha; Pandey, Khushhali M

    2017-03-13

    Vitiligo is an idiopathic disorder characterized by depigmented patches on the skin due to progressive loss of melanocytes. Several genetic, immunological, and pathophysiological investigations have established vitiligo as a polygenetic disorder with multifactorial etiology. However, no definite model explaining the interplay between these causative factors has been established hitherto. Therefore, we studied the disorder at the system level to identify the key proteins involved by exploring their molecular connectivity in terms of topological parameters. The existing research data helped us in collating 215 proteins involved in vitiligo onset or progression. Interaction study of these proteins leads to a comprehensive vitiligo map with 4845 protein nodes linked with 107,416 edges. Based on centrality measures, a backbone network with 500 nodes has been derived. This has presented a clear overview of the proteins and processes involved and the crosstalk between them. Clustering backbone proteins revealed densely connected regions inferring major molecular interaction modules essential for vitiligo. Finally, a list of top order proteins that play a key role in the disease pathomechanism has been formulated. This includes SUMO2, ESR1, COPS5, MYC, SMAD3, and Cullin proteins. While this list is in fair agreement with the available literature, it also introduces new candidate proteins that can be further explored. A subnetwork of 64 vitiligo core proteins was built by analyzing the backbone and seed protein networks. Our finding suggests that the topology, along with functional clustering, provides a deep insight into the behavior of proteins. This in turn aids in the illustration of disease condition and discovery of significant proteins involved in vitiligo.

  9. MAP-kinase activity in etiolated Cucumis sativus cotyledons: the effect of red and far-red light irradiation.

    PubMed

    Alvarez-Flórez, Fagua; Vidal, Dolors; Simón, Esther

    2013-02-01

    Phytochrome (phy) signalling in plants may be transduced through protein phosphorylation. Mitogen-activated protein kinase (MAP-kinase, MAPK) activity and the effect of R (red) and FR (far-red) light irradiation on MAPK activity were studied in etiolated Cucumis sativus L. cotyledons. By in vitro protein phosphorylation and in-gel assays with myelin basic protein (MBP), a protein band (between 48 and 45 kDa) with MAPK-like activity was detected. The addition to the phosphorylation buffer of specific protein phosphatase (PTP) inhibitors (Na(3)VO(4) and NaF) and genistein, apigenin or PD98059 as MAPK inhibitors allowed us to confirm the MAPK activity of the protein band. Irradiation of etiolated cotyledons with FR light for 5, 10 or 60 min rapidly and transiently stimulated the MAPK activity of the protein band. This suggests that there was a very low fluence response (VLFR) of phys. In addition, 15 min of R light irradiation or a sequential treatment of 15 min of R plus 5 min of FR also increased MAPK activity. The stimulatory effect of R light was also attributed to the same photoreceptor, which suggests that MAPKs are involved in phytochrome signal transduction. Protein immunoprecipitation and immunoblotting analysis with the polyclonal antibody anti-pERK1/2 (Tyr 204) and the monoclonal antibody anti-phosphotyrosine PY20 allowed us to recognize the above mentioned protein band as two proteins with molecular masses (M(r)) of approximately 47 and 45 kDa, and MAPK activity. The biochemical and immunological properties showed by the proteins detected indicated that they were members of the MAPK family phosphorylated in tyrosine residues.

  10. Activated protein C: biased for translation

    PubMed Central

    Zlokovic, Berislav V.; Mosnier, Laurent O.

    2015-01-01

    The homeostatic blood protease, activated protein C (APC), can function as (1) an antithrombotic on the basis of inactivation of clotting factors Va and VIIIa; (2) a cytoprotective on the basis of endothelial barrier stabilization and anti-inflammatory and antiapoptotic actions; and (3) a regenerative on the basis of stimulation of neurogenesis, angiogenesis, and wound healing. Pharmacologic therapies using recombinant human and murine APCs indicate that APC provides effective acute or chronic therapies for a strikingly diverse range of preclinical injury models. APC reduces the damage caused by the following: ischemia/reperfusion in brain, heart, and kidney; pulmonary, kidney, and gastrointestinal inflammation; sepsis; Ebola virus; diabetes; and total lethal body radiation. For these beneficial effects, APC alters cell signaling networks and gene expression profiles by activating protease-activated receptors 1 and 3. APC’s activation of these G protein–coupled receptors differs completely from thrombin’s activation mechanism due to biased signaling via either G proteins or β-arrestin-2. To reduce APC-associated bleeding risk, APC variants were engineered to lack >90% anticoagulant activity but retain normal cell signaling. Such a neuroprotective variant, 3K3A-APC (Lys191-193Ala), has advanced to clinical trials for ischemic stroke. A rich data set of preclinical knowledge provides a solid foundation for potential translation of APC variants to future novel therapies. PMID:25824691

  11. Production of antiviral and antitumor proteins MAP30 and GAP31 in cucurbits using the plant virus vector ZYMV-AGII.

    PubMed

    Arazi, Tzahi; Lee Huang, Paul; Huang, Philip Lin; Zhang, Li; Moshe Shiboleth, Yoel; Gal-On, Amit; Lee-Huang, Sylvia

    2002-03-29

    ZYMV-AGII (zucchini yellow mosaic virus-AGII) is a recombinant nonpathogenic potyvirus-based vector system for the expression of foreign genes in cucurbit plants and their edible fruits, including squash, cucumber, melon, watermelon, and pumpkin. MAP30 (Momordica anti-HIV protein, 30 kDa) and GAP31 (Gelonium anti-HIV protein 31 kDa) are multifunctional plant proteins with activity against HIV-1 virus. These proteins are also effective against other viruses, tumor cells, and microbes. We report here the production and characterization of biologically active MAP30 and GAP31 in squash plant by expression of their genes using the ZYMV-AGII vector. Recombinant expressed MAP30 and GAP31 exhibit comparable antiviral, antitumor, and antimicrobial activities as their counterparts from their original plant sources, with EC(50)s in the ranges of 0.2-0.3 nM for HIV-1. These results demonstrate for the first time the amplification and production of therapeutic proteins, MAP30 and GAP31, in common vegetables. This provides valuable alternative food sources of these antiviral, antitumor, and antimicrobial agents for therapeutic applications.

  12. MAP kinases Erk1/2 phosphorylate sterol regulatory element-binding protein (SREBP)-1a at serine 117 in vitro.

    PubMed

    Roth, G; Kotzka, J; Kremer, L; Lehr, S; Lohaus, C; Meyer, H E; Krone, W; Müller-Wieland, D

    2000-10-27

    Sterol regulatory element-binding protein (SREBP)-1a is a transcription factor sensing cellular cholesterol levels and integrating gene regulatory signals mediated by MAP kinase cascades. Here we report the identification of serine 117 in SREBP-1a as the major phosphorylation site of the MAP kinases Erk1/2. This site was identified by nanoelectrospray mass spectrometry and peptide sequencing of recombinant fusion proteins phosphorylated by Erk1/2 in vitro. Serine 117 was verified as the major phosphorylation site by in vitro mutagenesis. Mutation of serine 117 to alanine abolished Erk2-mediated phosphorylation in vitro and the MAP kinase-related transcriptional activation of SREBP-1a by insulin and platelet-derived growth factor in vivo. Our data indicate that the MAP kinase-mediated effects on SREBP-1a-regulated target genes are linked to this phosphorylation site.

  13. Synaptic Vesicle Proteins and Active Zone Plasticity

    PubMed Central

    Kittel, Robert J.; Heckmann, Manfred

    2016-01-01

    Neurotransmitter is released from synaptic vesicles at the highly specialized presynaptic active zone (AZ). The complex molecular architecture of AZs mediates the speed, precision and plasticity of synaptic transmission. Importantly, structural and functional properties of AZs vary significantly, even for a given connection. Thus, there appear to be distinct AZ states, which fundamentally influence neuronal communication by controlling the positioning and release of synaptic vesicles. Vice versa, recent evidence has revealed that synaptic vesicle components also modulate organizational states of the AZ. The protein-rich cytomatrix at the active zone (CAZ) provides a structural platform for molecular interactions guiding vesicle exocytosis. Studies in Drosophila have now demonstrated that the vesicle proteins Synaptotagmin-1 (Syt1) and Rab3 also regulate glutamate release by shaping differentiation of the CAZ ultrastructure. We review these unexpected findings and discuss mechanistic interpretations of the reciprocal relationship between synaptic vesicles and AZ states, which has heretofore received little attention. PMID:27148040

  14. Experimental Approach to Controllably Vary Protein Oxidation While Minimizing Electrode Adsorption for Boron-Doped Diamond Electrochemical Surface Mapping Applications

    SciTech Connect

    McClintock, Carlee; Hettich, Robert {Bob} L

    2013-01-01

    Oxidative protein surface mapping has become a powerful approach for measuring the solvent accessibility of folded protein structures. A variety of techniques exist for generating the key reagent hydroxyl radicals for these measurements; however, many of these approaches require use of radioactive sources or caustic oxidizing chemicals. The purpose of this research was to evaluate and optimize the use of boron-doped diamond (BDD) electrochemistry as a highly accessible tool for producing hydroxyl radicals as a means to induce a controllable level of oxidation on a range of intact proteins. These experiments utilize a relatively high flow rates to reduce protein residence time inside the electrochemical flow chamber, along with a unique cell activation approach to improve control over the intact protein oxidation yield. Studies were conducted to evaluate the level of protein adsorption onto the electrode surface. This report demonstrates a robust protocol for the use of BDD electrochemistry and high performance LC-MS/MS as a high-throughput experimental pipeline for probing higher order protein structure, and illustrates how it is complementary to predictive computational modeling efforts.

  15. Epitope Mapping of Avian Influenza M2e Protein: Different Species Recognise Various Epitopes

    PubMed Central

    Hasan, Noor Haliza; Ignjatovic, Jagoda; Tarigan, Simson; Peaston, Anne; Hemmatzadeh, Farhid

    2016-01-01

    A common approach for developing diagnostic tests for influenza virus detection is the use of mouse or rabbit monoclonal and/or polyclonal antibodies against a target antigen of the virus. However, comparative mapping of the target antigen using antibodies from different animal sources has not been evaluated before. This is important because identification of antigenic determinants of the target antigen in different species plays a central role to ensure the efficiency of a diagnostic test, such as competitive ELISA or immunohistochemistry-based tests. Interest in the matrix 2 ectodomain (M2e) protein of avian influenza virus (AIV) as a candidate for a universal vaccine and also as a marker for detection of virus infection in vaccinated animals (DIVA) is the rationale for the selection of this protein for comparative mapping evaluation. This study aimed to map the epitopes of the M2e protein of avian influenza virus H5N1 using chicken, mouse and rabbit monoclonal or monospecific antibodies. Our findings revealed that rabbit antibodies (rAbs) recognized epitope 6EVETPTRN13 of the M2e, located at the N-terminal of the protein, while mouse (mAb) and chicken antibodies (cAbs) recognized epitope 10PTRNEWECK18, located at the centre region of the protein. The findings highlighted the difference between the M2e antigenic determinants recognized by different species that emphasized the importance of comparative mapping of antibody reactivity from different animals to the same antigen, especially in the case of multi-host infectious agents such as influenza. The findings are of importance for antigenic mapping, as well as diagnostic test and vaccine development. PMID:27362795

  16. The smallest active fragment of microtubule-associated protein 4 and its interaction with microtubules in phosphate buffer.

    PubMed

    Hashi, Yurika; Nagase, Lisa; Matsushima, Kazuyuki; Kotani, Susumu

    2012-01-01

    To analyze the interaction between microtubule-associated protein (MAP) 4 and microtubules physicochemically, a MAP4 active site fragment was designed for nuclear magnetic resonance (NMR) use. The fragment was bacterially expressed and purified to homogeneity. The buffer conditions for NMR were optimized to support microtubule assembly. The fragment was found to bind to microtubules under the optimized buffer conditions.

  17. Lipid Dependent Mechanisms of Protein Pump Activity

    DTIC Science & Technology

    1989-05-23

    properties which result form the colligative interactions of many lipid molecules. Important materials properties include . . . i I I II II I i I 1 the...d identify by olock number) *This project is aime at investigating if a lipid elastic property , known as the spontaneous radius of curvature Ro’, is...a regulated membrane property and if its value modulates membrane protein activity. Specific aims reported on here include: 1) Correlation of ion pump

  18. Proteomic analysis of cellular soluble proteins from human bronchial smooth muscle cells by combining nondenaturing micro 2DE and quantitative LC‐MS/MS. 2. Similarity search between protein maps for the analysis of protein complexes

    PubMed Central

    Jin, Ya; Yuan, Qi; Zhang, Jun; Manabe, Takashi

    2015-01-01

    Human bronchial smooth muscle cell soluble proteins were analyzed by a combined method of nondenaturing micro 2DE, grid gel‐cutting, and quantitative LC‐MS/MS and a native protein map was prepared for each of the identified 4323 proteins [1]. A method to evaluate the degree of similarity between the protein maps was developed since we expected the proteins comprising a protein complex would be separated together under nondenaturing conditions. The following procedure was employed using Excel macros; (i) maps that have three or more squares with protein quantity data were selected (2328 maps), (ii) within each map, the quantity values of the squares were normalized setting the highest value to be 1.0, (iii) in comparing a map with another map, the smaller normalized quantity in two corresponding squares was taken and summed throughout the map to give an “overlap score,” (iv) each map was compared against all the 2328 maps and the largest overlap score, obtained when a map was compared with itself, was set to be 1.0 thus providing 2328 “overlap factors,” (v) step (iv) was repeated for all maps providing 2328 × 2328 matrix of overlap factors. From the matrix, protein pairs that showed overlap factors above 0.65 from both protein sides were selected (431 protein pairs). Each protein pair was searched in a database (UniProtKB) on complex formation and 301 protein pairs, which comprise 35 protein complexes, were found to be documented. These results demonstrated that native protein maps and their similarity search would enable simultaneous analysis of multiple protein complexes in cells. PMID:26031785

  19. Proteomic analysis of cellular soluble proteins from human bronchial smooth muscle cells by combining nondenaturing micro 2DE and quantitative LC-MS/MS. 2. Similarity search between protein maps for the analysis of protein complexes.

    PubMed

    Jin, Ya; Yuan, Qi; Zhang, Jun; Manabe, Takashi; Tan, Wen

    2015-09-01

    Human bronchial smooth muscle cell soluble proteins were analyzed by a combined method of nondenaturing micro 2DE, grid gel-cutting, and quantitative LC-MS/MS and a native protein map was prepared for each of the identified 4323 proteins [1]. A method to evaluate the degree of similarity between the protein maps was developed since we expected the proteins comprising a protein complex would be separated together under nondenaturing conditions. The following procedure was employed using Excel macros; (i) maps that have three or more squares with protein quantity data were selected (2328 maps), (ii) within each map, the quantity values of the squares were normalized setting the highest value to be 1.0, (iii) in comparing a map with another map, the smaller normalized quantity in two corresponding squares was taken and summed throughout the map to give an "overlap score," (iv) each map was compared against all the 2328 maps and the largest overlap score, obtained when a map was compared with itself, was set to be 1.0 thus providing 2328 "overlap factors," (v) step (iv) was repeated for all maps providing 2328 × 2328 matrix of overlap factors. From the matrix, protein pairs that showed overlap factors above 0.65 from both protein sides were selected (431 protein pairs). Each protein pair was searched in a database (UniProtKB) on complex formation and 301 protein pairs, which comprise 35 protein complexes, were found to be documented. These results demonstrated that native protein maps and their similarity search would enable simultaneous analysis of multiple protein complexes in cells.

  20. Automatic Classification of Protein Structure Using the Maximum Contact Map Overlap Metric

    DOE PAGES

    Andonov, Rumen; Djidjev, Hristo Nikolov; Klau, Gunnar W.; ...

    2015-10-09

    In this paper, we propose a new distance measure for comparing two protein structures based on their contact map representations. We show that our novel measure, which we refer to as the maximum contact map overlap (max-CMO) metric, satisfies all properties of a metric on the space of protein representations. Having a metric in that space allows one to avoid pairwise comparisons on the entire database and, thus, to significantly accelerate exploring the protein space compared to no-metric spaces. We show on a gold standard superfamily classification benchmark set of 6759 proteins that our exact k-nearest neighbor (k-NN) scheme classifiesmore » up to 224 out of 236 queries correctly and on a larger, extended version of the benchmark with 60; 850 additional structures, up to 1361 out of 1369 queries. Finally, our k-NN classification thus provides a promising approach for the automatic classification of protein structures based on flexible contact map overlap alignments.« less

  1. Leucine-Rich Repeat Transmembrane Proteins Instruct Discrete Dendrite Targeting in an Olfactory Map

    PubMed Central

    Hong, Weizhe; Zhu, Haitao; Potter, Christopher J.; Barsh, Gabrielle; Kurusu, Mitsuhiko; Zinn, Kai; Luo, Liqun

    2010-01-01

    Olfactory systems utilize discrete neural pathways to process and integrate odorant information. In Drosophila, axons of first-order olfactory receptor neurons (ORNs) and dendrites of second-order projection neurons (PNs) form class-specific synaptic connections at ∼50 glomeruli. The mechanisms underlying PN dendrite targeting to distinct glomeruli in a 3-dimensional discrete neural map are unclear. Here we show that the leucine-rich repeat (LRR) transmembrane protein Capricious (Caps) is differentially expressed in different classes of PNs. Loss- and gain-of-function studies indicate that Caps instructs the segregation of Caps-positive and negative PN dendrites to discrete glomerular targets. Moreover, Caps does not mediate homophilic interactions and regulates PN dendrite targeting independent of pre-synaptic ORNs. The closely related protein Tartan plays a partially redundant function with Capricious. These LRR proteins are likely part of a combinatorial cell-surface code that instructs discrete olfactory map formation. PMID:19915565

  2. Leucine-rich repeat transmembrane proteins instruct discrete dendrite targeting in an olfactory map.

    PubMed

    Hong, Weizhe; Zhu, Haitao; Potter, Christopher J; Barsh, Gabrielle; Kurusu, Mitsuhiko; Zinn, Kai; Luo, Liqun

    2009-12-01

    Olfactory systems utilize discrete neural pathways to process and integrate odorant information. In Drosophila, axons of first-order olfactory receptor neurons (ORNs) and dendrites of second-order projection neurons (PNs) form class-specific synaptic connections at approximately 50 glomeruli. The mechanisms underlying PN dendrite targeting to distinct glomeruli in a three-dimensional discrete neural map are unclear. We found that the leucine-rich repeat (LRR) transmembrane protein Capricious (Caps) was differentially expressed in different classes of PNs. Loss-of-function and gain-of-function studies indicated that Caps instructs the segregation of Caps-positive and Caps-negative PN dendrites to discrete glomerular targets. Moreover, Caps-mediated PN dendrite targeting was independent of presynaptic ORNs and did not involve homophilic interactions. The closely related protein Tartan was partially redundant with Caps. These LRR proteins are probably part of a combinatorial cell-surface code that instructs discrete olfactory map formation.

  3. A Data-Driven Evolutionary Algorithm for Mapping Multibasin Protein Energy Landscapes.

    PubMed

    Clausen, Rudy; Shehu, Amarda

    2015-09-01

    Evidence is emerging that many proteins involved in proteinopathies are dynamic molecules switching between stable and semistable structures to modulate their function. A detailed understanding of the relationship between structure and function in such molecules demands a comprehensive characterization of their conformation space. Currently, only stochastic optimization methods are capable of exploring conformation spaces to obtain sample-based representations of associated energy surfaces. These methods have to address the fundamental but challenging issue of balancing computational resources between exploration (obtaining a broad view of the space) and exploitation (going deep in the energy surface). We propose a novel algorithm that strikes an effective balance by employing concepts from evolutionary computation. The algorithm leverages deposited crystal structures of wildtype and variant sequences of a protein to define a reduced, low-dimensional search space from where to rapidly draw samples. A multiscale technique maps samples to local minima of the all-atom energy surface of a protein under investigation. Several novel algorithmic strategies are employed to avoid premature convergence to particular minima and obtain a broad view of a possibly multibasin energy surface. Analysis of applications on different proteins demonstrates the broad utility of the algorithm to map multibasin energy landscapes and advance modeling of multibasin proteins. In particular, applications on wildtype and variant sequences of proteins involved in proteinopathies demonstrate that the algorithm makes an important first step toward understanding the impact of sequence mutations on misfunction by providing the energy landscape as the intermediate explanatory link between protein sequence and function.

  4. Fast Photochemical Oxidation of Proteins (FPOP) Maps the Epitope of EGFR Binding to Adnectin

    NASA Astrophysics Data System (ADS)

    Yan, Yuetian; Chen, Guodong; Wei, Hui; Huang, Richard Y.-C.; Mo, Jingjie; Rempel, Don L.; Tymiak, Adrienne A.; Gross, Michael L.

    2014-12-01

    Epitope mapping is an important tool for the development of monoclonal antibodies, mAbs, as therapeutic drugs. Recently, a class of therapeutic mAb alternatives, adnectins, has been developed as targeted biologics. They are derived from the 10th type III domain of human fibronectin (10Fn3). A common approach to map the epitope binding of these therapeutic proteins to their binding partners is X-ray crystallography. Although the crystal structure is known for Adnectin 1 binding to human epidermal growth factor receptor (EGFR), we seek to determine complementary binding in solution and to test the efficacy of footprinting for this purpose. As a relatively new tool in structural biology and complementary to X-ray crystallography, protein footprinting coupled with mass spectrometry is promising for protein-protein interaction studies. We report here the use of fast photochemical oxidation of proteins (FPOP) coupled with MS to map the epitope of EGFR-Adnectin 1 at both the peptide and amino-acid residue levels. The data correlate well with the previously determined epitopes from the crystal structure and are consistent with HDX MS data, which are presented in an accompanying paper. The FPOP-determined binding interface involves various amino-acid and peptide regions near the N terminus of EGFR. The outcome adds credibility to oxidative labeling by FPOP for epitope mapping and motivates more applications in the therapeutic protein area as a stand-alone method or in conjunction with X-ray crystallography, NMR, site-directed mutagenesis, and other orthogonal methods.

  5. Structure-activity maps for visualizing the graph variables arising in drug design.

    PubMed

    Johnson, M

    1993-09-01

    Structure-activity problems are characterized by the topological and topographical character of the structural information determining the activity. Traditional statistical methodology requires that this predictive information be mapped to a vector space. To circumvent this vexing conversion of structural information to vector form, the edge-deletion metric is defined on the space of chemical graphs that defines the topology of the molecules. This paper proposes structure-activity maps and transformation-effect maps for directly visualizing the structure-activity relationships. The maps are illustrated using the hypotensive activities of clonidine analogs and the sweet taste of Perillartine analogs.

  6. Differential distribution of microtubule-associated proteins MAP-1 and MAP-2 in neurons of rat brain and association of MAP-1 with microtubules of neuroblastoma cells (clone N2A).

    PubMed Central

    Wiche, G; Briones, E; Hirt, H; Krepler, R; Artlieb, U; Denk, H

    1983-01-01

    To study the individual location of the microtubule proteins MAP-1 and MAP-2 in neuronal tissues and cells, antisera to electrophoretically purified MAP-1 and MAP-2 components were raised in rabbits. When frozen sections through rat brain were examined by immunofluorescence microscopy the antibodies to MAP-1 strongly stained a variety of nerve cells including dendrites and myelinated axons in the cerebrum and cerebellum. Antibodies to MAP-2 showed similar staining patterns, except that myelinated axons were unstained. These results were confirmed by immunoelectron microscopy of frozen sections through cerebellum using the peroxidase technique. Thereby, the association of MAP-1 with microtubules was also clearly demonstrated. When cultured mouse neuroblastoma N2A cells were examined by immunofluorescence microscopy the antiserum to MAP-1 brightly stained filamentous structures resembling microtubules, whereas relatively weak and diffuse staining of the cytoplasm was observed with the antiserum to MAP-2. In agreement with the immunolocalization, MAP-1, but not MAP-2, was found as a prominent component of microtubules proteins polymerized in vitro by taxol from soluble N2A cell extracts. Together these results indicate that neuronal microtubules are preferentially associated with distinct high mol. wt. polypeptides. Therefore, they support the concept that different complements of associated proteins determine distinct functions of microtubules. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:6641705

  7. Characterizing affinity epitopes between prion protein and β-amyloid using an epitope mapping immunoassay

    PubMed Central

    Kang, Mino; Kim, Su Yeon; An, Seong Soo A; Ju, Young Ran

    2013-01-01

    Cellular prion protein, a membrane protein, is expressed in all mammals. Prion protein is also found in human blood as an anchorless protein, and this protein form is one of the many potential sources of misfolded prion protein replication during transmission. Many studies have suggested that β-amyloid1–42 oligomer causes neurotoxicity associated with Alzheimer's disease, which is mediated by the prion protein that acts as a receptor and regulates the hippocampal potentiation. The prevention of the binding of these proteins has been proposed as a possible preventative treatment for Alzheimer's disease; therefore, a greater understanding of the binding hot-spots between the two molecules is necessary. In this study, the epitope mapping immunoassay was employed to characterize binding epitopes within the prion protein and complementary epitopes in β-amyloid. Residues 23–39 and 93–119 in the prion protein were involved in binding to β-amyloid1–40 and 1–42, and monomers of this protein interacted with prion protein residues 93–113 and 123–166. Furthermore, β-amyloid antibodies against the C-terminus detected bound β-amyloid1–42 at residues 23–40, 104–122 and 159–175. β-Amyloid epitopes necessary for the interaction with prion protein were not determined. In conclusion, charged clusters and hydrophobic regions of the prion protein were involved in binding to β-amyloid1–40 and 1–42. The 3D structure appears to be necessary for β-amyloid to interact with prion protein. In the future, these binding sites may be utilized for 3D structure modeling, as well as for the pharmaceutical intervention of Alzheimer's disease. PMID:23907583

  8. Comparison of Metalloproteinase Protein and Activity Profiling

    PubMed Central

    Giricz, Orsi; Lauer, Janelle L.; Fields, Gregg B.

    2010-01-01

    Proteolytic enzymes play fundamental roles in many biological processes. Members of the matrix metalloproteinase (MMP) family have been shown to take part in processes crucial in disease progression. The present study used the ExcelArray Human MMP/TIMP Array to quantify MMP and tissue inhibitor of metalloproteinase (TIMP) production in the lysates and media of 14 cancer and one normal cell line. The overall patterns were very similar in terms of which MMPs and TIMPs were secreted in the media versus associated with the cells in the individual samples. However, more MMP was found in the media, both in amount and in variety. TIMP-1 was produced in all cell lines. MMP activity assays with three different FRET substrates were then utilized to determine if protein production correlated with function for the WM-266-4 and BJ cell lines. Metalloproteinase activity was observed for both cell lines with a general MMP substrate (Knight SSP), consistent with protein production data. However, although both cell lines promoted the hydrolysis of a more selective MMP substrate (NFF-3), metalloproteinase activity was only confirmed in the BJ cell line. The use of inhibitors to confirm metalloproteinase activities pointed to the strengths and weaknesses of in situ FRET substrate assays. PMID:20920458

  9. Topological and functional analysis of nonalcoholic steatohepatitis through protein interaction mapping

    PubMed Central

    Asadzadeh-Aghdaee, Hamid; Mansouri, Vahid; Peyvandi, Ali Asghar; Moztarzadeh, Fathollah; Okhovatian, Farshad; Lahmi, Farhad; Vafaee, Reza; Zali, Mohammad Reza

    2016-01-01

    Aim: The corresponding proteins are important for network mapping since the interaction analysis can provide a new interpretation about disease underlying mechanisms as the aim of this study. Backgroud: Nonalcoholic steatohepatitis (NASH) is one of the main causes of liver disease in the world. It has been known with many susceptible proteins that play essential role in its pathogenesis. Methods: In this paper, protein-protein interaction (PPI) network analysis of fatty liver disease retrieved from STRING db by the application of Cytoscape Software. ClueGO analyzed the associated pathways for the selected top proteins. Results: INS, PPARA, LEP, SREBF1, and ALB are the introduced biomarker panel for fatty liver disease. Conclusion: It seems that pathways related to insulin have a prominent role in fatty liver disease. Therefore, investigation in this case is required to confirm the possible linkage of introduced panel and involvement of insulin pathway in the disease. PMID:28224024

  10. Fine mapping of sequential neutralization epitopes on the subunit protein VP8 of human rotavirus.

    PubMed Central

    Kovacs-Nolan, Jennifer; Yoo, Dongwan; Mine, Yoshinori

    2003-01-01

    The epitopes of the HRV (human rotavirus), especially those involved in virus neutralization, have not been determined in their entirety, and would have significant implications for HRV vaccine development. In the present study, we report on the epitope mapping and identification of sequential neutralization epitopes, on the Wa strain HRV subunit protein VP8, using synthetic overlapping peptides. Polyclonal antibodies against recombinant Wa VP8 were produced previously in chicken, and purified from egg yolk, which showed neutralizing activity against HRV in vitro. Overlapping VP8 peptide fragments were synthesized and probed with the anti-VP8 antibodies, revealing five sequential epitopes on VP8. Further analysis suggested that three of the five epitopes detected, M1-L10, I55-D66 and L223-P234, were involved in virus neutralization, indicating that sequential epitopes may also be important for the HRV neutralization. The interactions of the antibodies with the five epitopes were characterized by an examination of the critical amino acids involved in antibody binding. Epitopes comprised primarily of hydrophobic amino acid residues, followed by polar and charged residues. The more critical amino acids appeared to be located near the centre of the epitopes, with proline, isoleucine, serine, glutamine and arginine playing an important role in the binding of antibody to the VP8 epitopes. PMID:12901721

  11. Protein-protein interaction and gene co-expression maps of ARFs and Aux/IAAs in Arabidopsis

    PubMed Central

    Piya, Sarbottam; Shrestha, Sandesh K.; Binder, Brad; Stewart, C. Neal; Hewezi, Tarek

    2014-01-01

    The phytohormone auxin regulates nearly all aspects of plant growth and development. Based on the current model in Arabidopsis thaliana, Auxin/indole-3-acetic acid (Aux/IAA) proteins repress auxin-inducible genes by inhibiting auxin response transcription factors (ARFs). Experimental evidence suggests that heterodimerization between Aux/IAA and ARF proteins are related to their unique biological functions. The objective of this study was to generate the Aux/IAA-ARF protein-protein interaction map using full length sequences and locate the interacting protein pairs to specific gene co-expression networks in order to define tissue-specific responses of the Aux/IAA-ARF interactome. Pairwise interactions between 19 ARFs and 29 Aux/IAAs resulted in the identification of 213 specific interactions of which 79 interactions were previously unknown. The incorporation of co-expression profiles with protein-protein interaction data revealed a strong correlation of gene co-expression for 70% of the ARF-Aux/IAA interacting pairs in at least one tissue/organ, indicative of the biological significance of these interactions. Importantly, ARF4-8 and 19, which were found to interact with almost all Aux-Aux/IAA showed broad co-expression relationships with Aux/IAA genes, thus, formed the central hubs of the co-expression network. Our analyses provide new insights into the biological significance of ARF-Aux/IAA associations in the morphogenesis and development of various plant tissues and organs. PMID:25566309

  12. Towards a map of the Populus biomass protein-protein interaction network

    SciTech Connect

    Beers, Eric; Brunner, Amy; Helm, Richard; Dickerman, Allan

    2015-07-31

    Biofuels can be produced from a variety of plant feedstocks. The value of a particular feedstock for biofuels production depends in part on the degree of difficulty associated with the extraction of fermentable sugars from the plant biomass. The wood of trees is potentially a rich source fermentable sugars. However, the sugars in wood exist in a tightly cross-linked matrix of cellulose, hemicellulose, and lignin, making them largely recalcitrant to release and fermentation for biofuels production. Before breeders and genetic engineers can effectively develop plants with reduced recalcitrance to fermentation, it is necessary to gain a better understanding of the fundamental biology of the mechanisms responsible for wood formation. Regulatory, structural, and enzymatic proteins are required for the complicated process of wood formation. To function properly, proteins must interact with other proteins. Yet, very few of the protein-protein interactions necessary for wood formation are known. The main objectives of this project were to 1) identify new protein-protein interactions relevant to wood formation, and 2) perform in-depth characterizations of selected protein-protein interactions. To identify relevant protein-protein interactions, we cloned a set of approximately 400 genes that were highly expressed in the wood-forming tissue (known as secondary xylem) of poplar (Populus trichocarpa). We tested whether the proteins encoded by these biomass genes interacted with each other in a binary matrix design using the yeast two-hybrid (Y2H) method for protein-protein interaction discovery. We also tested a subset of the 400 biomass proteins for interactions with all proteins present in wood-forming tissue of poplar in a biomass library screen design using Y2H. Together, these two Y2H screens yielded over 270 interactions involving over 75 biomass proteins. For the second main objective we selected several interacting pairs or groups of interacting proteins for in

  13. Inhibition of Fast Axonal Transport by Pathogenic SOD1 Involves Activation of p38 MAP Kinase

    PubMed Central

    Morfini, Gerardo A.; Bosco, Daryl A.; Brown, Hannah; Gatto, Rodolfo; Kaminska, Agnieszka; Song, Yuyu; Molla, Linda; Baker, Lisa; Marangoni, M. Natalia; Berth, Sarah; Tavassoli, Ehsan; Bagnato, Carolina; Tiwari, Ashutosh; Hayward, Lawrence J.; Pigino, Gustavo F.; Watterson, D. Martin; Huang, Chun-Fang; Banker, Gary; Brown, Robert H.; Brady, Scott T.

    2013-01-01

    Dying-back degeneration of motor neuron axons represents an established feature of familial amyotrophic lateral sclerosis (FALS) associated with superoxide dismutase 1 (SOD1) mutations, but axon-autonomous effects of pathogenic SOD1 remained undefined. Characteristics of motor neurons affected in FALS include abnormal kinase activation, aberrant neurofilament phosphorylation, and fast axonal transport (FAT) deficits, but functional relationships among these pathogenic events were unclear. Experiments in isolated squid axoplasm reveal that FALS-related SOD1 mutant polypeptides inhibit FAT through a mechanism involving a p38 mitogen activated protein kinase pathway. Mutant SOD1 activated neuronal p38 in mouse spinal cord, neuroblastoma cells and squid axoplasm. Active p38 MAP kinase phosphorylated kinesin-1, and this phosphorylation event inhibited kinesin-1. Finally, vesicle motility assays revealed previously unrecognized, isoform-specific effects of p38 on FAT. Axon-autonomous activation of the p38 pathway represents a novel gain of toxic function for FALS-linked SOD1 proteins consistent with the dying-back pattern of neurodegeneration characteristic of ALS. PMID:23776455

  14. Mapping brain activity at scale with cluster computing.

    PubMed

    Freeman, Jeremy; Vladimirov, Nikita; Kawashima, Takashi; Mu, Yu; Sofroniew, Nicholas J; Bennett, Davis V; Rosen, Joshua; Yang, Chao-Tsung; Looger, Loren L; Ahrens, Misha B

    2014-09-01

    Understanding brain function requires monitoring and interpreting the activity of large networks of neurons during behavior. Advances in recording technology are greatly increasing the size and complexity of neural data. Analyzing such data will pose a fundamental bottleneck for neuroscience. We present a library of analytical tools called Thunder built on the open-source Apache Spark platform for large-scale distributed computing. The library implements a variety of univariate and multivariate analyses with a modular, extendable structure well-suited to interactive exploration and analysis development. We demonstrate how these analyses find structure in large-scale neural data, including whole-brain light-sheet imaging data from fictively behaving larval zebrafish, and two-photon imaging data from behaving mouse. The analyses relate neuronal responses to sensory input and behavior, run in minutes or less and can be used on a private cluster or in the cloud. Our open-source framework thus holds promise for turning brain activity mapping efforts into biological insights.

  15. Active Interaction Mapping Reveals the Hierarchical Organization of Autophagy.

    PubMed

    Kramer, Michael H; Farré, Jean-Claude; Mitra, Koyel; Yu, Michael Ku; Ono, Keiichiro; Demchak, Barry; Licon, Katherine; Flagg, Mitchell; Balakrishnan, Rama; Cherry, J Michael; Subramani, Suresh; Ideker, Trey

    2017-02-16

    We have developed a general progressive procedure, Active Interaction Mapping, to guide assembly of the hierarchy of functions encoding any biological system. Using this process, we assemble an ontology of functions comprising autophagy, a central recycling process implicated in numerous diseases. A first-generation model, built from existing gene networks in Saccharomyces, captures most known autophagy components in broad relation to vesicle transport, cell cycle, and stress response. Systematic analysis identifies synthetic-lethal interactions as most informative for further experiments; consequently, we saturate the model with 156,364 such measurements across autophagy-activating conditions. These targeted interactions provide more information about autophagy than all previous datasets, producing a second-generation ontology of 220 functions. Approximately half are previously unknown; we confirm roles for Gyp1 at the phagophore-assembly site, Atg24 in cargo engulfment, Atg26 in cytoplasm-to-vacuole targeting, and Ssd1, Did4, and others in selective and non-selective autophagy. The procedure and autophagy hierarchy are at http://atgo.ucsd.edu/.

  16. The MAP kinase pathway coordinates crossover designation with disassembly of synaptonemal complex proteins during meiosis

    PubMed Central

    Nadarajan, Saravanapriah; Mohideen, Firaz; Tzur, Yonatan B; Ferrandiz, Nuria; Crawley, Oliver; Montoya, Alex; Faull, Peter; Snijders, Ambrosius P; Cutillas, Pedro R; Jambhekar, Ashwini; Blower, Michael D; Martinez-Perez, Enrique; Harper, J Wade; Colaiacovo, Monica P

    2016-01-01

    Asymmetric disassembly of the synaptonemal complex (SC) is crucial for proper meiotic chromosome segregation. However, the signaling mechanisms that directly regulate this process are poorly understood. Here we show that the mammalian Rho GEF homolog, ECT-2, functions through the conserved RAS/ERK MAP kinase signaling pathway in the C. elegans germline to regulate the disassembly of SC proteins. We find that SYP-2, a SC central region component, is a potential target for MPK-1-mediated phosphorylation and that constitutively phosphorylated SYP-2 impairs the disassembly of SC proteins from chromosomal domains referred to as the long arms of the bivalents. Inactivation of MAP kinase at late pachytene is critical for timely disassembly of the SC proteins from the long arms, and is dependent on the crossover (CO) promoting factors ZHP-3/RNF212/Zip3 and COSA-1/CNTD1. We propose that the conserved MAP kinase pathway coordinates CO designation with the disassembly of SC proteins to ensure accurate chromosome segregation. DOI: http://dx.doi.org/10.7554/eLife.12039.001 PMID:26920220

  17. Activation and activities of the p53 tumour suppressor protein

    PubMed Central

    Bálint, É; Vousden, K H

    2001-01-01

    The p53 tumour suppressor protein inhibits malignant progression by mediating cell cycle arrest, apoptosis or repair following cellular stress. One of the major regulators of p53 function is the MDM2 protein, and multiple forms of cellular stress activate p53 by inhibiting the MDM2-mediated degradation of p53. Mutations in p53, or disruption of the pathways that allow activation of p53, seem to be a general feature of all cancers. Here we review recent advances in our understanding of the pathways that regulate p53 and the pathways that are induced by p53, as well as their implications for cancer therapy. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11747320

  18. MsERK1: a mitogen-activated protein kinase from a flowering plant.

    PubMed Central

    Duerr, B; Gawienowski, M; Ropp, T; Jacobs, T

    1993-01-01

    The induction of proliferation and differentiation in cultured mammalian cells is mediated by a cascade of protein phosphorylations. A key enzyme in this signaling pathway is mitogen-activated protein (MAP) kinase (or ERK, extracellular signal-regulated kinase). We report the recovery of a full-length cDNA clone encoding a MAP kinase from alfalfa. We have named the 44-kD protein encoded by this clone MsERK1. Recombinant MsERK1 (rMsERK1), when overexpressed in Escherichia coli, is recognized by antibodies raised against MAP kinases from rat, Xenopus, and sea star and by anti-phosphotyrosine antibodies. Site-directed mutagenesis of MsERK1 demonstrated that Tyr-215 is either directly or indirectly responsible for recognition of the protein by anti-phosphotyrosine antibodies. Semipurified rMsERK1 phosphorylated itself and a model substrate, myelin basic protein, in vitro, but the Tyr-215 mutant did neither. Genomic DNA gel blot analysis suggested that the gene that encodes MsERK1 is either a member of a small multigene family or a member of a polymorphic allelic series in alfalfa. Because MAP kinase activation has been associated with mitotic stimulation in animal systems, such an enzyme may play a role in the mitogenic induction of symbiotic root nodules on alfalfa by Rhizobium signal molecules. PMID:8439746

  19. Cadmium activates a mitogen-activated protein kinase gene and MBP kinases in rice.

    PubMed

    Yeh, Chuan-Ming; Hsiao, Lin-June; Huang, Hao-Jen

    2004-09-01

    Mitogen-activated protein kinase (MAPK) pathways are modules involved in the transduction of extracellular signals to intracellular targets in all eukaryotes. In plants, it has been evidenced that MAPKs play a role in the signaling of biotic and abiotic stresses, plant hormones, and cell cycle cues. However, the effect of heavy metals on plant MAPKs has not been well examined. The Northern blot analysis of OsMAPK mRNA levels has shown that only OsMAPK2, but not OsMAPK3 and OsMAPK4, expressed in suspension-cultured cells in response to 100-400 microM Cd treatments. The OsMAPK2 transcripts increased within 12 h upon 400 microM Cd treatment. In addition, we found that 42- and 50-kDa MBP kinases were significantly activated by Cd treatment in rice suspension-cultured cells. And 40-, 42-, 50- and 64-kDa MBP kinases were activated in rice roots. Furthermore, GSH inhibits Cd-induced 40-kDa MBP kinase activation. By immunoblot analysis and immunoprecipitation followed by in-gel kinase assay, we confirmed that Cd-activated 42-kDa MBP kinase is a MAP kinase. Our results suggest that a MAP kinase cascade may function in the Cd-signalling pathway in rice.

  20. Single-molecule analysis of the microtubule cross-linking protein MAP65-1 reveals a molecular mechanism for contact-angle-dependent microtubule bundling.

    PubMed

    Tulin, Amanda; McClerklin, Sheri; Huang, Yue; Dixit, Ram

    2012-02-22

    Bundling of microtubules (MTs) is critical for the formation of complex MT arrays. In land plants, the interphase cortical MTs form bundles specifically following shallow-angle encounters between them. To investigate how cells select particular MT contact angles for bundling, we used an in vitro reconstitution approach consisting of dynamic MTs and the MT-cross-linking protein MAP65-1. We found that MAP65-1 binds to MTs as monomers and inherently targets antiparallel MTs for bundling. Dwell-time analysis showed that the affinity of MAP65-1 for antiparallel overlapping MTs is about three times higher than its affinity for single MTs and parallel overlapping MTs. We also found that purified MAP65-1 exclusively selects shallow-angle MT encounters for bundling, indicating that this activity is an intrinsic property of MAP65-1. Reconstitution experiments with mutant MAP65-1 proteins with different numbers of spectrin repeats within the N-terminal rod domain showed that the length of the rod domain is a major determinant of the range of MT bundling angles. The length of the rod domain also determined the distance between MTs within a bundle. Together, our data show that the rod domain of MAP65-1 acts both as a spacer and as a structural element that specifies the MT encounter angles that are conducive for bundling.

  1. Agonist-Biased Signaling via Proteinase Activated Receptor-2: Differential Activation of Calcium and Mitogen-Activated Protein Kinase Pathways

    PubMed Central

    Ramachandran, Rithwik; Mihara, Koichiro; Mathur, Maneesh; Rochdi, Moulay Driss; Bouvier, Michel; DeFea, Kathryn

    2009-01-01

    We evaluated the ability of different trypsin-revealed tethered ligand (TL) sequences of rat proteinase-activated receptor 2 (rPAR2) and the corresponding soluble TL-derived agonist peptides to trigger agonist-biased signaling. To do so, we mutated the proteolytically revealed TL sequence of rPAR2 and examined the impact on stimulating intracellular calcium transients and mitogen-activated protein (MAP) kinase. The TL receptor mutants, rPAR2-Leu37Ser38, rPAR2-Ala37–38, and rPAR2-Ala39–42 were compared with the trypsin-revealed wild-type rPAR2 TL sequence, S37LIGRL42—. Upon trypsin activation, all constructs stimulated MAP kinase signaling, but only the wt-rPAR2 and rPAR2-Ala39–42 triggered calcium signaling. Furthermore, the TL-derived synthetic peptide SLAAAA-NH2 failed to cause PAR2-mediated calcium signaling but did activate MAP kinase, whereas SLIGRL-NH2 triggered both calcium and MAP kinase signaling by all receptors. The peptides AAIGRL-NH2 and LSIGRL-NH2 triggered neither calcium nor MAP kinase signals. Neither rPAR2-Ala37–38 nor rPAR2-Leu37Ser38 constructs recruited β-arrestins-1 or -2 in response to trypsin stimulation, whereas both β-arrestins were recruited to these mutants by SLIGRL-NH2. The lack of trypsin-triggered β-arrestin interactions correlated with impaired trypsin-activated TL-mutant receptor internalization. Trypsin-stimulated MAP kinase activation by the TL-mutated receptors was not blocked by inhibitors of Gαi (pertussis toxin), Gαq [N-cyclohexyl-1-(2,4-dichlorophenyl)-1,4-dihydro-6-methylindeno[1,2-c]pyrazole-3-carboxamide (GP2A)], Src kinase [4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]-pyrimidine (PP1)], or the epidermal growth factor (EGF) receptor [4-(3′-chloroanilino)-6,7-dimethoxy-quinazoline (AG1478)], but was inhibited by the Rho-kinase inhibitor (R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide, 2HCl (Y27362). The data indicate that the proteolytically revealed TL sequence(s) and the mode

  2. MKP-7, a novel mitogen-activated protein kinase phosphatase, functions as a shuttle protein.

    PubMed

    Masuda, K; Shima, H; Watanabe, M; Kikuchi, K

    2001-10-19

    Mitogen-activated protein kinase (MAPK) phosphatases (MKPs) negatively regulate MAPK activity. In the present study, we have identified a novel MKP, designated MKP-7, and mapped it to human chromosome 12p12. MKP-7 possesses a long C-terminal stretch containing both a nuclear export signal and a nuclear localization signal, in addition to the rhodanese-like domain and the dual specificity phosphatase catalytic domain, both of which are conserved among MKP family members. When expressed in mammalian cells MKP-7 protein was localized exclusively in the cytoplasm, but this localization became exclusively nuclear following leptomycin B treatment or introduction of a mutation in the nuclear export signal. These findings indicate that MKP-7 is the first identified leptomycin B-sensitive shuttle MKP. Forced expression of MKP-7 suppressed activation of MAPKs in COS-7 cells in the order of selectivity, JNK p38 > ERK. Furthermore, a mutant form MKP-7 functioned as a dominant negative particularly against the dephosphorylation of JNK, suggesting that MKP-7 works as a JNK-specific phosphatase in vivo. Co-immunoprecipitation experiments and histological analysis suggested that MKP-7 determines the localization of MAPKs in the cytoplasm.

  3. Areas activated during naturalistic reading comprehension overlap topological visual, auditory, and somatotomotor maps

    PubMed Central

    2016-01-01

    Abstract Cortical mapping techniques using fMRI have been instrumental in identifying the boundaries of topological (neighbor‐preserving) maps in early sensory areas. The presence of topological maps beyond early sensory areas raises the possibility that they might play a significant role in other cognitive systems, and that topological mapping might help to delineate areas involved in higher cognitive processes. In this study, we combine surface‐based visual, auditory, and somatomotor mapping methods with a naturalistic reading comprehension task in the same group of subjects to provide a qualitative and quantitative assessment of the cortical overlap between sensory‐motor maps in all major sensory modalities, and reading processing regions. Our results suggest that cortical activation during naturalistic reading comprehension overlaps more extensively with topological sensory‐motor maps than has been heretofore appreciated. Reading activation in regions adjacent to occipital lobe and inferior parietal lobe almost completely overlaps visual maps, whereas a significant portion of frontal activation for reading in dorsolateral and ventral prefrontal cortex overlaps both visual and auditory maps. Even classical language regions in superior temporal cortex are partially overlapped by topological visual and auditory maps. By contrast, the main overlap with somatomotor maps is restricted to a small region on the anterior bank of the central sulcus near the border between the face and hand representations of M‐I. Hum Brain Mapp 37:2784–2810, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:27061771

  4. Areas activated during naturalistic reading comprehension overlap topological visual, auditory, and somatotomotor maps.

    PubMed

    Sood, Mariam R; Sereno, Martin I

    2016-08-01

    Cortical mapping techniques using fMRI have been instrumental in identifying the boundaries of topological (neighbor-preserving) maps in early sensory areas. The presence of topological maps beyond early sensory areas raises the possibility that they might play a significant role in other cognitive systems, and that topological mapping might help to delineate areas involved in higher cognitive processes. In this study, we combine surface-based visual, auditory, and somatomotor mapping methods with a naturalistic reading comprehension task in the same group of subjects to provide a qualitative and quantitative assessment of the cortical overlap between sensory-motor maps in all major sensory modalities, and reading processing regions. Our results suggest that cortical activation during naturalistic reading comprehension overlaps more extensively with topological sensory-motor maps than has been heretofore appreciated. Reading activation in regions adjacent to occipital lobe and inferior parietal lobe almost completely overlaps visual maps, whereas a significant portion of frontal activation for reading in dorsolateral and ventral prefrontal cortex overlaps both visual and auditory maps. Even classical language regions in superior temporal cortex are partially overlapped by topological visual and auditory maps. By contrast, the main overlap with somatomotor maps is restricted to a small region on the anterior bank of the central sulcus near the border between the face and hand representations of M-I. Hum Brain Mapp 37:2784-2810, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  5. The TMS Map Scales with Increased Stimulation Intensity and Muscle Activation.

    PubMed

    van de Ruit, Mark; Grey, Michael J

    2016-01-01

    One way to study cortical organisation, or its reorganisation, is to use transcranial magnetic stimulation (TMS) to construct a map of corticospinal excitability. TMS maps are reported to be acquired with a wide variety of stimulation intensities and levels of muscle activation. Whilst MEPs are known to increase both with stimulation intensity and muscle activation, it remains to be established what the effect of these factors is on the map's centre of gravity (COG), area, volume and shape. Therefore, the objective of this study was to systematically examine the effect of stimulation intensity and muscle activation on these four key map outcome measures. In a first experiment, maps were acquired with a stimulation intensity of 110, 120 and 130% of resting threshold. In a second experiment, maps were acquired at rest and at 5, 10, 20 and 40% of maximum voluntary contraction. Map area and map volume increased with both stimulation intensity (P < 0.01) and muscle activation (P < 0.01). Neither the COG nor the map shape changed with either stimulation intensity or muscle activation (P > 0.09 in all cases). This result indicates the map simply scales with stimulation intensity and muscle activation.

  6. Experimental and computational active site mapping as a starting point to fragment-based lead discovery.

    PubMed

    Behnen, Jürgen; Köster, Helene; Neudert, Gerd; Craan, Tobias; Heine, Andreas; Klebe, Gerhard

    2012-02-06

    Small highly soluble probe molecules such as aniline, urea, N-methylurea, 2-bromoacetate, 1,2-propanediol, nitrous oxide, benzamidine, and phenol were soaked into crystals of various proteins to map their binding pockets and to detect hot spots of binding with respect to hydrophobic and hydrophilic properties. The selected probe molecules were first tested at the zinc protease thermolysin. They were then applied to a wider range of proteins such as protein kinase A, D-xylose isomerase, 4-diphosphocytidyl-2C-methyl-D-erythritol synthase, endothiapepsin, and secreted aspartic protease 2. The crystal structures obtained clearly show that the probe molecules populate the protein binding pockets in an ordered fashion. The thus characterized, experimentally observed hot spots of binding were subjected to computational active site mapping using HotspotsX. This approach uses knowledge-based pair potentials to detect favorable binding positions for various atom types. Good agreement between the in silico hot spot predictions and the experimentally observed positions of the polar hydrogen bond forming functional groups and hydrophobic portions was obtained. Finally, we compared the observed poses of the small-molecule probes with those of much larger structurally related ligands. They coincide remarkably well with the larger ligands, considering their spatial orientation and the experienced interaction patterns. This observation confirms the fundamental hypothesis of fragment-based lead discovery: that binding poses, even of very small molecular probes, do not significantly deviate or move once a ligand is grown further into the binding site. This underscores the fact that these probes populate given hot spots and can be regarded as relevant seeds for further design.

  7. High Quality Binary Protein Interaction Map of the Yeast Interactome Network

    PubMed Central

    Yu, Haiyuan; Braun, Pascal; Yildirim, Muhammed A.; Lemmens, Irma; Venkatesan, Kavitha; Sahalie, Julie; Hirozane-Kishikawa, Tomoko; Gebreab, Fana; Li, Na; Simonis, Nicolas; Hao, Tong; Rual, Jean-Franćois; Dricot, Amélie; Vazquez, Alexei; Murray, Ryan R.; Simon, Christophe; Tardivo, Leah; Tam, Stanley; Svrzikapa, Nenad; Fan, Changyu; de Smet, Anne-Sophie; Motyl, Adriana; Hudson, Michael E.; Park, Juyong; Xin, Xiaofeng; Cusick, Michael E.; Moore, Troy; Boone, Charlie; Snyder, Michael; Roth, Frederick P.; Barabási, Albert-László; Tavernier, Jan; Hill, David E.; Vidal, Marc

    2009-01-01

    Current yeast interactome network maps contain several hundred molecular complexes with limited and somewhat controversial representation of direct binary interactions. We carried out a comparative quality assessment of current yeast interactome datasets, demonstrating that high-throughput yeast two-hybrid (Y2H) provides high-quality binary interaction information. As a large fraction of the yeast binary interactome remains to be mapped, we developed an empirically-controlled mapping framework to produce a “second-generation” high-quality high-throughput Y2H dataset covering ~20% of all yeast binary interactions. Both Y2H and affinity-purification followed by mass spectrometry (AP/MS) data are of equally high quality but of a fundamentally different and complementary nature resulting in networks with different topological and biological properties. Compared to co-complex interactome models, this binary map is enriched for transient signaling interactions and inter-complex connections with a highly significant clustering between essential proteins. Rather than correlating with essentiality, protein connectivity correlates with genetic pleiotropy. PMID:18719252

  8. Computational prediction of atomic structures of helical membrane proteins aided by EM maps.

    PubMed

    Kovacs, Julio A; Yeager, Mark; Abagyan, Ruben

    2007-09-15

    Integral membrane proteins pose a major challenge for protein-structure prediction because only approximately 100 high-resolution structures are available currently, thereby impeding the development of rules or empirical potentials to predict the packing of transmembrane alpha-helices. However, when an intermediate-resolution electron microscopy (EM) map is available, it can be used to provide restraints which, in combination with a suitable computational protocol, make structure prediction feasible. In this work we present such a protocol, which proceeds in three stages: 1), generation of an ensemble of alpha-helices by flexible fitting into each of the density rods in the low-resolution EM map, spanning a range of rotational angles around the main helical axes and translational shifts along the density rods; 2), fast optimization of side chains and scoring of the resulting conformations; and 3), refinement of the lowest-scoring conformations with internal coordinate mechanics, by optimizing the van der Waals, electrostatics, hydrogen bonding, torsional, and solvation energy contributions. In addition, our method implements a penalty term through a so-called tethering map, derived from the EM map, which restrains the positions of the alpha-helices. The protocol was validated on three test cases: GpA, KcsA, and MscL.

  9. The Role of Mitogen-Activated Protein Kinase-Activated Protein Kinases (MAPKAPKs) in Inflammation

    PubMed Central

    Moens, Ugo; Kostenko, Sergiy; Sveinbjørnsson, Baldur

    2013-01-01

    Mitogen-activated protein kinase (MAPK) pathways are implicated in several cellular processes including proliferation, differentiation, apoptosis, cell survival, cell motility, metabolism, stress response and inflammation. MAPK pathways transmit and convert a plethora of extracellular signals by three consecutive phosphorylation events involving a MAPK kinase kinase, a MAPK kinase, and a MAPK. In turn MAPKs phosphorylate substrates, including other protein kinases referred to as MAPK-activated protein kinases (MAPKAPKs). Eleven mammalian MAPKAPKs have been identified: ribosomal-S6-kinases (RSK1-4), mitogen- and stress-activated kinases (MSK1-2), MAPK-interacting kinases (MNK1-2), MAPKAPK-2 (MK2), MAPKAPK-3 (MK3), and MAPKAPK-5 (MK5). The role of these MAPKAPKs in inflammation will be reviewed. PMID:24705157

  10. Mapping the bound conformation and protein interactions of microtubule destabilizing peptides by STD-NMR spectroscopy.

    PubMed

    Milton, Mark J; Thomas Williamson, R; Koehn, Frank E

    2006-08-15

    Using the hemiasterlin analogs taltobulin (I, HTI-286), II, and III as model compounds, we demonstrate that relaxation-compensated STD-NMR can be used as an effective tool to efficiently provide a qualitative epitope map for microtubule destabilizing peptides. Due to the disparate relaxation behavior of the protons in these model compounds, it was essential to collect STD with very short saturation times to render an accurate picture of the binding interaction. The conformation of HTI-286 (I) in complex with the protein was determined from TRNOESY/ROESY experiments and is similar to the X-ray crystal structure conformation observed for hemiasterlin methyl ester in the absence of protein.

  11. A Framework of Active Learning by Concept Mapping

    ERIC Educational Resources Information Center

    Chen, Wang-Kun; Wang, Ping

    2012-01-01

    This study presents a student-centered teaching model based on concept mapping and problem-solving. The concept map is used as a tool to develop curriculum and evaluate teaching performance. Case-based teaching was implemented on the course of building energy conservation. The results of this study, which include teaching plans, evaluation tools,…

  12. A Rice Kinase-Protein Interaction Map1[W][OA

    PubMed Central

    Ding, Xiaodong; Richter, Todd; Chen, Mei; Fujii, Hiroaki; Seo, Young Su; Xie, Mingtang; Zheng, Xianwu; Kanrar, Siddhartha; Stevenson, Rebecca A.; Dardick, Christopher; Li, Ying; Jiang, Hao; Zhang, Yan; Yu, Fahong; Bartley, Laura E.; Chern, Mawsheng; Bart, Rebecca; Chen, Xiuhua; Zhu, Lihuang; Farmerie, William G.; Gribskov, Michael; Zhu, Jian-Kang; Fromm, Michael E.; Ronald, Pamela C.; Song, Wen-Yuan

    2009-01-01

    Plants uniquely contain large numbers of protein kinases, and for the vast majority of the 1,429 kinases predicted in the rice (Oryza sativa) genome, little is known of their functions. Genetic approaches often fail to produce observable phenotypes; thus, new strategies are needed to delineate kinase function. We previously developed a cost-effective high-throughput yeast two-hybrid system. Using this system, we have generated a protein interaction map of 116 representative rice kinases and 254 of their interacting proteins. Overall, the resulting interaction map supports a large number of known or predicted kinase-protein interactions from both plants and animals and reveals many new functional insights. Notably, we found a potential widespread role for E3 ubiquitin ligases in pathogen defense signaling mediated by receptor-like kinases, particularly by the kinases that may have evolved from recently expanded kinase subfamilies in rice. We anticipate that the data provided here will serve as a foundation for targeted functional studies in rice and other plants. The application of yeast two-hybrid and TAPtag analyses for large-scale plant protein interaction studies is also discussed. PMID:19109415

  13. The human HNRPD locus maps to 4q21 and encodes a highly conserved protein.

    PubMed

    Dempsey, L A; Li, M J; DePace, A; Bray-Ward, P; Maizels, N

    1998-05-01

    The hnRNP D protein interacts with nucleic acids both in vivo and in vitro. Like many other proteins that interact with RNA, it contains RBD (or "RRM") domains and arg-gly-gly (RGG) motifs. We have examined the organization and localization of the human and murine genes that encode the hnRNP D protein. Comparison of the predicted sequences of the hnRNP D proteins in human and mouse shows that they are 96.9% identical (98.9% similar). This very high level of conservation suggests a critical function for hnRNP D. Sequence analysis of the human HNRPD gene shows that the protein is encoded by eight exons and that two additional exons specify sequences in the 3' UTR. Use of two of the coding exons is determined by alternative splicing of the HNRPD mRNA. The human HNRPD gene maps to 4q21. The mouse Hnrpd gene maps to the F region of chromosome 3, which is syntenic with the human 4q21 region.

  14. Mapping of Protein–Protein Interaction Sites by the ‘Absence of Interference’ Approach

    PubMed Central

    Dhayalan, Arunkumar; Jurkowski, Tomasz P.; Laser, Heike; Reinhardt, Richard; Jia, Da; Cheng, Xiaodong; Jeltsch, Albert

    2008-01-01

    Protein–protein interactions are critical to most biological processes, and locating protein–protein interfaces on protein structures is an important task in molecular biology. We developed a new experimental strategy called the ‘absence of interference’ approach to determine surface residues involved in protein–protein interaction of established yeast two-hybrid pairs of interacting proteins. One of the proteins is subjected to high-level randomization by error-prone PCR. The resulting library is selected by yeast two-hybrid system for interacting clones that are isolated and sequenced. The interaction region can be identified by an absence or depletion of mutations. For data analysis and presentation, we developed a Web interface that analyzes the mutational spectrum and displays the mutational frequency on the surface of the structure (or a structural model) of the randomized protein†. Additionally, this interface might be of use for the display of mutational distributions determined by other types of random mutagenesis experiments. We applied the approach to map the interface of the catalytic domain of the DNA methyltransferase Dnmt3a with its regulatory factor Dnmt3L. Dnmt3a was randomized with high mutational load. A total of 76 interacting clones were isolated and sequenced, and 648 mutations were identified. The mutational pattern allowed to identify a unique interaction region on the surface of Dnmt3a, which comprises about 500−600 Å2. The results were confirmed by site-directed mutagenesis and structural analysis. The absence-of-interference approach will allow high-throughput mapping of protein interaction sites suitable for functional studies and protein docking. PMID:18191145

  15. Heat dissipation guides activation in signaling proteins

    PubMed Central

    Weber, Jeffrey K.; Shukla, Diwakar; Pande, Vijay S.

    2015-01-01

    Life is fundamentally a nonequilibrium phenomenon. At the expense of dissipated energy, living things perform irreversible processes that allow them to propagate and reproduce. Within cells, evolution has designed nanoscale machines to do meaningful work with energy harnessed from a continuous flux of heat and particles. As dictated by the Second Law of Thermodynamics and its fluctuation theorem corollaries, irreversibility in nonequilibrium processes can be quantified in terms of how much entropy such dynamics produce. In this work, we seek to address a fundamental question linking biology and nonequilibrium physics: can the evolved dissipative pathways that facilitate biomolecular function be identified by their extent of entropy production in general relaxation processes? We here synthesize massive molecular dynamics simulations, Markov state models (MSMs), and nonequilibrium statistical mechanical theory to probe dissipation in two key classes of signaling proteins: kinases and G-protein–coupled receptors (GPCRs). Applying machinery from large deviation theory, we use MSMs constructed from protein simulations to generate dynamics conforming to positive levels of entropy production. We note the emergence of an array of peaks in the dynamical response (transient analogs of phase transitions) that draw the proteins between distinct levels of dissipation, and we see that the binding of ATP and agonist molecules modifies the observed dissipative landscapes. Overall, we find that dissipation is tightly coupled to activation in these signaling systems: dominant entropy-producing trajectories become localized near important barriers along known biological activation pathways. We go on to classify an array of equilibrium and nonequilibrium molecular switches that harmonize to promote functional dynamics. PMID:26240354

  16. Activated Protein C action in inflammation

    PubMed Central

    Sarangi, Pranita P.; Lee, Hyun-wook; Kim, Minsoo

    2010-01-01

    Summary Activated protein C (APC) is a natural anticoagulant that plays an important role in coagulation homeostasis by inactivating the procoagulation factor Va and VIIIa. In addition to its anticoagulation functions, APC also has cytoprotective effects such as anti-inflammatory, anti-apoptotic, and endothelial barrier protection. Recently, a recombinant form of human APC (rhAPC or drotrecogin alfa activated; known commercially as “Xigris”) was approved by the US Federal Drug Administration for treatment of severe sepsis associated with a high risk of mortality. Sepsis, also known as systemic inflammatory response syndrome (SIRS) resulting from infection, is a serious medical condition in critical care patients. In sepsis, hyperactive and dysregulated inflammatory responses lead to secretion of pro- and anti-inflammatory cytokines, activation and migration of leucocytes, activation of coagulation, inhibition of fibrinolysis, and increased apoptosis. Although initial hypotheses focused on antithrombotic and profibrinolytic functions of APC in sepsis, other agents with more potent anticoagulation functions were not effective in treating severe sepsis. Furthermore, APC therapy is also associated with the risk of severe bleeding in treated patients. Therefore, the cytoprotective effects, rather than the anticoagulant effect of APC are postulated to be responsible for the therapeutic benefit of APC in the treatment of severe sepsis. PMID:19995397

  17. Peroxide Sensors for the Fission Yeast Stress-activated Mitogen-activated Protein Kinase Pathway

    PubMed Central

    Buck, Vicky; Quinn, Janet; Pino, Teresa Soto; Martin, Humberto; Saldanha, Jose; Makino, Kozo; Morgan, Brian A.; Millar, Jonathan B.A.

    2001-01-01

    The Schizosaccharomyces pombe stress-activated Sty1p/Spc1p mitogen-activated protein (MAP) kinase regulates gene expression through the Atf1p and Pap1p transcription factors, homologs of human ATF2 and c-Jun, respectively. Mcs4p, a response regulator protein, acts upstream of Sty1p by binding the Wak1p/Wis4p MAP kinase kinase kinase. We show that phosphorylation of Mcs4p on a conserved aspartic acid residue is required for activation of Sty1p only in response to peroxide stress. Mcs4p acts in a conserved phospho-relay system initiated by two PAS/PAC domain-containing histidine kinases, Mak2p and Mak3p. In the absence of Mak2p or Mak3p, Sty1p fails to phosphorylate the Atf1p transcription factor or induce Atf1p-dependent gene expression. As a consequence, cells lacking Mak2p and Mak3p are sensitive to peroxide attack in the absence of Prr1p, a distinct response regulator protein that functions in association with Pap1p. The Mak1p histidine kinase, which also contains PAS/PAC repeats, does not regulate Sty1p or Atf1p but is partially required for Pap1p- and Prr1p-dependent transcription. We conclude that the transcriptional response to free radical attack is initiated by at least two distinct phospho-relay pathways in fission yeast. PMID:11179424

  18. Protein kinase A activation of the surfactant protein B gene is mediated by phosphorylation of thyroid transcription factor 1.

    PubMed

    Yan, C; Whitsett, J A

    1997-07-11

    Thyroid transcription factor 1 (TTF-1) is a homeodomain-containing nuclear transcription factor expressed in epithelial cells of the lung and thyroid. TTF-1 binds to and activates the transcription of genes expressed selectively in the respiratory epithelium including pulmonary surfactant A, B, C and Clara cell secretory protein. Transfection with a plasmid encoding the cyclic AMP-dependent protein kinase (protein kinase A; PKA) catalytic subunit, Cat-beta, stimulated the phosphorylation of a TTF-1-flag fusion protein 6-7-fold in H441 pulmonary adenocarcinoma cells. Recombinant TTF-1 was phosphorylated by purified PKA catalytic subunit in the presence of [gamma-32P]ATP. PKA catalytic subunit family members, Cat-alpha and Cat-beta, markedly enhanced the transcriptional activation of surfactant B gene promoters by TTF-1 in vitro. Peptide mapping was used to identify a PKA phosphorylation site at the NH2 terminus of TTF-1. A 17-amino acid synthetic peptide comprising this site completely inhibited the PKA-dependent phosphorylation of TTF-1 in vitro. A substitution mutation of TTF-1 (Thr9 two head right arrow Ala) abolished phosphorylation by PKA and reduced transactivation of the surfactant B gene promoter. Transfection with a plasmid encoding the cAMP regulatory element binding factor inhibited transcriptional activity of the surfactant protein B gene promoter. Phosphorylation of TTF-1 mediates PKA-dependent activation of surfactant protein B gene transcription.

  19. Pyrrolopyridine inhibitors of mitogen-activated protein kinase-activated protein kinase 2 (MK-2).

    PubMed

    Anderson, David R; Meyers, Marvin J; Vernier, William F; Mahoney, Matthew W; Kurumbail, Ravi G; Caspers, Nicole; Poda, Gennadiy I; Schindler, John F; Reitz, David B; Mourey, Robert J

    2007-05-31

    A new class of potent kinase inhibitors selective for mitogen-activated protein kinase-activated protein kinase 2 (MAPKAP-K2 or MK-2) for the treatment of rheumatoid arthritis has been prepared and evaluated. These inhibitors have IC50 values as low as 10 nM against the target and have good selectivity profiles against a number of kinases including CDK2, ERK, JNK, and p38. These MK-2 inhibitors have been shown to suppress TNFalpha production in U397 cells and to be efficacious in an acute inflammation model. The structure-activity relationships of this series, the selectivity for MK-2 and their activity in both in vitro and in vivo models are discussed. The observed selectivity is discussed with the aid of an MK-2/inhibitor crystal structure.

  20. Mapping Surface Features Produced by an Active Landslide

    NASA Astrophysics Data System (ADS)

    Parise, Mario; Gueguen, Erwan; Vennari, Carmela

    2016-10-01

    A large landslide reactivated on December 2013, at Montescaglioso, southern Italy, after 56 hours of rainfall. The landslide disrupted over 500 m of a freeway, involved a few warehouses, a supermarket, and private homes. After the event, it has been performed field surveys, aided by visual analysis of terrestrial and helicopter photographs, to compile a map of the surface deformations. The geomorphological features mapped included single fractures, sets of fractures, tension cracks, trenches, and pressure ridges. In this paper we present the methodology used, the map obtained through the intensive field work, and discuss the main surface features produced by the landslide.

  1. Activation of Ras in vitro and in intact fibroblasts by the Vav guanine nucleotide exchange protein.

    PubMed Central

    Gulbins, E; Coggeshall, K M; Langlet, C; Baier, G; Bonnefoy-Berard, N; Burn, P; Wittinghofer, A; Katzav, S; Altman, A

    1994-01-01

    We recently identified Vav, the product of the vav proto-oncogene, as a guanine nucleotide exchange factor (GEF) for Ras. Vav is enzymatically activated by lymphocyte antigen receptor-coupled protein tyrosine kinases or independently by diglycerides. To further evaluate the physiological role of Vav, we assessed its GDP-GTP exchange activity against several Ras-related proteins in vitro and determined whether Vav activation in transfected NIH 3T3 fibroblasts correlates with the activity status of Ras and mitogen-activated protein (MAP) kinases. In vitro translated purified Vav activated by phorbol myristate acetate (PMA) or phosphorylation with recombinant p56lck displayed GEF activity against Ras but not against recombinant RacI, RacII, Ral, or RhoA proteins. Expression of vav or proto-vav in stably transfected NIH 3T3 cells led to a approximately 10-fold increase in basal or PMA-stimulated Ras exchange activity, respectively, in total-cell lysates and Vav immunoprecipitates. Elevated GEF activity was paralleled in each case by a significant increase in the proportion of active, GTP-bound Ras. PMA had a minimal effect on the low Ras. GTP level in untransfected control fibroblasts but increased it from 20 to 37% in proto-vav-transfected cells. vav-transfected cells displayed a constitutively elevated Ras. GTP level (35%), which was not increased further by PMA treatment. MAP kinases, known downstream intermediates in Ras-dependent signaling pathways, similarly exhibited increased basal or PMA-stimulated activity in Vav-expressing cells by comparison with normal NIH 3T3 cells. These results demonstrate a physiologic interaction between Vav and its target, Ras, leading to MAP kinase activation. Images PMID:8289830

  2. Mapping the Interactome of a Major Mammalian Endoplasmic Reticulum Heat Shock Protein 90

    PubMed Central

    Hong, Feng; Mohammad Rachidi, Saleh; Lundgren, Debbie; Han, David; Huang, Xiu; Zhao, Hongyu; Kimura, Yayoi; Hirano, Hisashi; Ohara, Osamu; Udono, Heichiiro; Meng, Songdong; Liu, Bei; Li, Zihai

    2017-01-01

    Up to 10% of cytosolic proteins are dependent on the mammalian heat shock protein 90 (HSP90) for folding. However, the interactors of its endoplasmic reticulum (ER) paralogue (gp96, Grp94 and HSP90b1) has not been systematically identified. By combining genetic and biochemical approaches, we have comprehensively mapped the interactome of gp96 in macrophages and B cells. A total of 511 proteins were reduced in gp96 knockdown cells, compared to levels observed in wild type cells. By immunoprecipitation, we found that 201 proteins associated with gp96. Gene Ontology analysis indicated that these proteins are involved in metabolism, transport, translation, protein folding, development, localization, response to stress and cellular component biogenesis. While known gp96 clients such as integrins, Toll-like receptors (TLRs) and Wnt co-receptor LRP6, were confirmed, cell surface HSP receptor CD91, TLR4 pathway protein CD180, WDR1, GANAB and CAPZB were identified as potentially novel substrates of gp96. Taken together, our study establishes gp96 as a critical chaperone to integrate innate immunity, Wnt signaling and organ development. PMID:28056051

  3. Identification of a dual-specificity protein phosphatase that inactivates a MAP kinase from Arabidopsis

    NASA Technical Reports Server (NTRS)

    Gupta, R.; Huang, Y.; Kieber, J.; Luan, S.; Evans, M. L. (Principal Investigator)

    1998-01-01

    Mitogen-activated protein kinases (MAPKs) play a key role in plant responses to stress and pathogens. Activation and inactivation of MAPKs involve phosphorylation and dephosphorylation on both threonine and tyrosine residues in the kinase domain. Here we report the identification of an Arabidopsis gene encoding a dual-specificity protein phosphatase capable of hydrolysing both phosphoserine/threonine and phosphotyrosine in protein substrates. This enzyme, designated AtDsPTP1 (Arabidopsis thaliana dual-specificity protein tyrosine phosphatase), dephosphorylated and inactivated AtMPK4, a MAPK member from the same plant. Replacement of a highly conserved cysteine by serine abolished phosphatase activity of AtDsPTP1, indicating a conserved catalytic mechanism of dual-specificity protein phosphatases from all eukaryotes.

  4. Dephosphorylation of distinct sites on microtubule-associated protein MAP1B by protein phosphatases 1, 2A and 2B.

    PubMed

    Ulloa, L; Dombrádi, V; Díaz-Nido, J; Szücs, K; Gergely, P; Friedrich, P; Avila, J

    1993-09-06

    Rat brain microtubule-associated protein MAP1B has been tested as a substrate for Ser/Thr protein phosphatases (PP). The dephosphorylation reactions were followed by specific antibodies recognizing phosphorylated and phosphorylatable epitopes. One set of phosphorylation sites on MAP1B are referred to as mode I sites, and their phosphorylation is presumably catalyzed by proline-directed protein kinases. These mode I sites are efficiently dephosphorylated by PP2B and 2A but not by PP1. Another set of phosphorylation sites on MAP1B are named mode II sites, and their phosphorylation is possibly due to casein kinase II. These mode II sites are dephosphorylated by PP2A and PP1, the PP2B being ineffective. The selectivity of phosphatases for different sites within the same protein indicates the complexity of the dephosphorylation reactions regulating the functionality of MAP1B in neurons.

  5. Protein kinase C activity in boar sperm.

    PubMed

    Teijeiro, J M; Marini, P E; Bragado, M J; Garcia-Marin, L J

    2017-03-01

    Male germ cells undergo different processes within the female reproductive tract to successfully fertilize the oocyte. These processes are triggered by different extracellular stimuli leading to activation of protein phosphorylation. Protein kinase C (PKC) is a key regulatory enzyme in signal transduction mechanisms involved in many cellular processes. Studies in boar sperm demonstrated a role for PKC in the intracellular signaling involved in motility and cellular volume regulation. Experiments using phorbol 12-myristate 13-acetate (PMA) showed increases in the Serine/Threonine phosphorylation of substrates downstream of PKC in boar sperm. In order to gain knowledge about those cellular processes regulated by PKC, we evaluate the effects of PMA on boar sperm motility, lipid organization of plasma membrane, integrity of acrosome membrane and sperm agglutination. Also, we investigate the crosstalk between PKA and PKC intracellular pathways in spermatozoa from this species. The results presented here reveal a participation of PKC in sperm motility regulation and membrane fluidity changes, which is probably associated to acrosome reaction and to agglutination. Also, we show the existence of a hierarchy in the kinases pathway. Previous works on boar sperm suggest a pathway in which PKA is positioned upstream to PKC and this new results support such model.

  6. Implications of mitogen-activated protein kinase signaling in glioma.

    PubMed

    Pandey, Vimal; Bhaskara, Vasantha Kumar; Babu, Phanithi Prakash

    2016-02-01

    Gliomas are the most common primary central nervous system tumors. Gliomas originate from astrocytes, oligodendrocytes, and neural stem cells or their precursors. According to WHO classification, gliomas are classified into four different malignant grades ranging from grade I to grade IV based on histopathological features and related molecular aberrations. The induction and maintenance of these tumors can be attributed largely to aberrant signaling networks. In this regard, the mitogen-activated protein kinase (MAPK) network has been widely studied and is reported to be severely altered in glial tumors. Mutations in MAPK pathways most frequently affect RAS and B-RAF in the ERK, c-Jun N-terminal kinase (JNK), and p38 pathways leading to malignant transformation. Also, it is linked to both inherited and sequential accumulations of mutations that control receptor tyrosine kinase (RTK)-activated signal transduction pathways, cell cycle growth arrest pathways, and nonresponsive cell death pathways. Genetic alterations that modulate RTK signaling can also alter several downstream pathways, including RAS-mediated MAP kinases along with JNK pathways, which ultimately regulate cell proliferation and cell death. The present review focuses on recent literature regarding important deregulations in the RTK-activated MAPK pathway during gliomagenesis and progression.

  7. Mapping specificity landscapes of RNA-protein interactions by high throughput sequencing.

    PubMed

    Jankowsky, Eckhard; Harris, Michael E

    2017-03-02

    To function in a biological setting, RNA binding proteins (RBPs) have to discriminate between alternative binding sites in RNAs. This discrimination can occur in the ground state of an RNA-protein binding reaction, in its transition state, or in both. The extent by which RBPs discriminate at these reaction states defines RBP specificity landscapes. Here, we describe the HiTS-Kin and HiTS-EQ techniques, which combine kinetic and equilibrium binding experiments with high throughput sequencing to quantitatively assess substrate discrimination for large numbers of substrate variants at ground and transition states of RNA-protein binding reactions. We discuss experimental design, practical considerations and data analysis and outline how a combination of HiTS-Kin and HiTS-EQ allows the mapping of RBP specificity landscapes.

  8. Discovery and fine mapping of serum protein loci through transethnic meta-analysis.

    PubMed

    Franceschini, Nora; van Rooij, Frank J A; Prins, Bram P; Feitosa, Mary F; Karakas, Mahir; Eckfeldt, John H; Folsom, Aaron R; Kopp, Jeffrey; Vaez, Ahmad; Andrews, Jeanette S; Baumert, Jens; Boraska, Vesna; Broer, Linda; Hayward, Caroline; Ngwa, Julius S; Okada, Yukinori; Polasek, Ozren; Westra, Harm-Jan; Wang, Ying A; Del Greco M, Fabiola; Glazer, Nicole L; Kapur, Karen; Kema, Ido P; Lopez, Lorna M; Schillert, Arne; Smith, Albert V; Winkler, Cheryl A; Zgaga, Lina; Bandinelli, Stefania; Bergmann, Sven; Boban, Mladen; Bochud, Murielle; Chen, Y D; Davies, Gail; Dehghan, Abbas; Ding, Jingzhong; Doering, Angela; Durda, J Peter; Ferrucci, Luigi; Franco, Oscar H; Franke, Lude; Gunjaca, Grog; Hofman, Albert; Hsu, Fang-Chi; Kolcic, Ivana; Kraja, Aldi; Kubo, Michiaki; Lackner, Karl J; Launer, Lenore; Loehr, Laura R; Li, Guo; Meisinger, Christa; Nakamura, Yusuke; Schwienbacher, Christine; Starr, John M; Takahashi, Atsushi; Torlak, Vesela; Uitterlinden, André G; Vitart, Veronique; Waldenberger, Melanie; Wild, Philipp S; Kirin, Mirna; Zeller, Tanja; Zemunik, Tatijana; Zhang, Qunyuan; Ziegler, Andreas; Blankenberg, Stefan; Boerwinkle, Eric; Borecki, Ingrid B; Campbell, Harry; Deary, Ian J; Frayling, Timothy M; Gieger, Christian; Harris, Tamara B; Hicks, Andrew A; Koenig, Wolfgang; O' Donnell, Christopher J; Fox, Caroline S; Pramstaller, Peter P; Psaty, Bruce M; Reiner, Alex P; Rotter, Jerome I; Rudan, Igor; Snieder, Harold; Tanaka, Toshihiro; van Duijn, Cornelia M; Vollenweider, Peter; Waeber, Gerard; Wilson, James F; Witteman, Jacqueline C M; Wolffenbuttel, Bruce H R; Wright, Alan F; Wu, Qingyu; Liu, Yongmei; Jenny, Nancy S; North, Kari E; Felix, Janine F; Alizadeh, Behrooz Z; Cupples, L Adrienne; Perry, John R B; Morris, Andrew P

    2012-10-05

    Many disorders are associated with altered serum protein concentrations, including malnutrition, cancer, and cardiovascular, kidney, and inflammatory diseases. Although these protein concentrations are highly heritable, relatively little is known about their underlying genetic determinants. Through transethnic meta-analysis of European-ancestry and Japanese genome-wide association studies, we identified six loci at genome-wide significance (p < 5 × 10(-8)) for serum albumin (HPN-SCN1B, GCKR-FNDC4, SERPINF2-WDR81, TNFRSF11A-ZCCHC2, FRMD5-WDR76, and RPS11-FCGRT, in up to 53,190 European-ancestry and 9,380 Japanese individuals) and three loci for total protein (TNFRS13B, 6q21.3, and ELL2, in up to 25,539 European-ancestry and 10,168 Japanese individuals). We observed little evidence of heterogeneity in allelic effects at these loci between groups of European and Japanese ancestry but obtained substantial improvements in the resolution of fine mapping of potential causal variants by leveraging transethnic differences in the distribution of linkage disequilibrium. We demonstrated a functional role for the most strongly associated serum albumin locus, HPN, for which Hpn knockout mice manifest low plasma albumin concentrations. Other loci associated with serum albumin harbor genes related to ribosome function, protein translation, and proteasomal degradation, whereas those associated with serum total protein include genes related to immune function. Our results highlight the advantages of transethnic meta-analysis for the discovery and fine mapping of complex trait loci and have provided initial insights into the underlying genetic architecture of serum protein concentrations and their association with human disease.

  9. Mapping of Chikungunya Virus Interactions with Host Proteins Identified nsP2 as a Highly Connected Viral Component

    PubMed Central

    Bouraï, Mehdi; Lucas-Hourani, Marianne; Gad, Hans Henrik; Drosten, Christian; Jacob, Yves; Tafforeau, Lionel; Cassonnet, Patricia; Jones, Louis M.; Judith, Delphine; Couderc, Thérèse; Lecuit, Marc; André, Patrice; Kümmerer, Beate Mareike; Lotteau, Vincent; Desprès, Philippe; Vidalain, Pierre-Olivier

    2012-01-01

    Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that has been responsible for an epidemic outbreak of unprecedented magnitude in recent years. Since then, significant efforts have been made to better understand the biology of this virus, but we still have poor knowledge of CHIKV interactions with host cell components at the molecular level. Here we describe the extensive use of high-throughput yeast two-hybrid (HT-Y2H) assays to characterize interactions between CHIKV and human proteins. A total of 22 high-confidence interactions, which essentially involved the viral nonstructural protein nsP2, were identified and further validated in protein complementation assay (PCA). These results were integrated to a larger network obtained by extensive mining of the literature for reports on alphavirus-host interactions. To investigate the role of cellular proteins interacting with nsP2, gene silencing experiments were performed in cells infected by a recombinant CHIKV expressing Renilla luciferase as a reporter. Collected data showed that heterogeneous nuclear ribonucleoprotein K (hnRNP-K) and ubiquilin 4 (UBQLN4) participate in CHIKV replication in vitro. In addition, we showed that CHIKV nsP2 induces a cellular shutoff, as previously reported for other Old World alphaviruses, and determined that among binding partners identified by yeast two-hybrid methods, the tetratricopeptide repeat protein 7B (TTC7B) plays a significant role in this activity. Altogether, this report provides the first interaction map between CHIKV and human proteins and describes new host cell proteins involved in the replication cycle of this virus. PMID:22258240

  10. Mapping of Chikungunya virus interactions with host proteins identified nsP2 as a highly connected viral component.

    PubMed

    Bouraï, Mehdi; Lucas-Hourani, Marianne; Gad, Hans Henrik; Drosten, Christian; Jacob, Yves; Tafforeau, Lionel; Cassonnet, Patricia; Jones, Louis M; Judith, Delphine; Couderc, Thérèse; Lecuit, Marc; André, Patrice; Kümmerer, Beate Mareike; Lotteau, Vincent; Desprès, Philippe; Tangy, Frédéric; Vidalain, Pierre-Olivier

    2012-03-01

    Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that has been responsible for an epidemic outbreak of unprecedented magnitude in recent years. Since then, significant efforts have been made to better understand the biology of this virus, but we still have poor knowledge of CHIKV interactions with host cell components at the molecular level. Here we describe the extensive use of high-throughput yeast two-hybrid (HT-Y2H) assays to characterize interactions between CHIKV and human proteins. A total of 22 high-confidence interactions, which essentially involved the viral nonstructural protein nsP2, were identified and further validated in protein complementation assay (PCA). These results were integrated to a larger network obtained by extensive mining of the literature for reports on alphavirus-host interactions. To investigate the role of cellular proteins interacting with nsP2, gene silencing experiments were performed in cells infected by a recombinant CHIKV expressing Renilla luciferase as a reporter. Collected data showed that heterogeneous nuclear ribonucleoprotein K (hnRNP-K) and ubiquilin 4 (UBQLN4) participate in CHIKV replication in vitro. In addition, we showed that CHIKV nsP2 induces a cellular shutoff, as previously reported for other Old World alphaviruses, and determined that among binding partners identified by yeast two-hybrid methods, the tetratricopeptide repeat protein 7B (TTC7B) plays a significant role in this activity. Altogether, this report provides the first interaction map between CHIKV and human proteins and describes new host cell proteins involved in the replication cycle of this virus.

  11. The U.S. Geological Survey mapping and cartographic database activities, 2006-2010

    USGS Publications Warehouse

    Craun, Kari J.; Donnelly, John P.; Allord, Gregory J.

    2011-01-01

    The U.S. Geological Survey (USGS) began systematic topographic mapping of the United States in the 1880s, beginning with scales of 1:250,000 and 1:125,000 in support of geological mapping. Responding to the need for higher resolution and more detail, the 1:62,500-scale, 15-minute, topographic map series was begun in the beginning of the 20th century. Finally, in the 1950s the USGS adopted the 1:24,000-scale, 7.5-minute topographic map series to portray even more detail, completing the coverage of the conterminous 48 states of the United States with this series in 1992. In 2001, the USGS developed the vision and concept of The National Map, a topographic database for the 21st century and the source for a new generation of topographic maps (http://nationalmap.gov/). In 2008, the initial production of those maps began with a 1:24,000-scale digital product. In a separate, but related project, the USGS began scanning the existing inventory of historical topographic maps at all scales to accompany the new topographic maps. The USGS also had developed a digital database of The National Atlas of the United States. The digital version of Atlas is now Web-available and supports a mapping engine for small scale maps of the United States and North America. These three efforts define topographic mapping activities of the USGS during the last few years and are discussed below.

  12. Methylglyoxal activates the target of rapamycin complex 2-protein kinase C signaling pathway in Saccharomyces cerevisiae.

    PubMed

    Nomura, Wataru; Inoue, Yoshiharu

    2015-04-01

    Methylglyoxal is a typical 2-oxoaldehyde derived from glycolysis. We show here that methylglyoxal activates the Pkc1-Mpk1 mitogen-activated protein (MAP) kinase cascade in a target of rapamycin complex 2 (TORC2)-dependent manner in the budding yeast Saccharomyces cerevisiae. We demonstrate that TORC2 phosphorylates Pkc1 at Thr(1125) and Ser(1143). Methylglyoxal enhanced the phosphorylation of Pkc1 at Ser(1143), which transmitted the signal to the downstream Mpk1 MAP kinase cascade. We found that the phosphorylation status of Pkc1(T1125) affected the phosphorylation of Pkc1 at Ser(1143), in addition to its protein levels. Methylglyoxal activated mammalian TORC2 signaling, which, in turn, phosphorylated Akt at Ser(473). Our results suggest that methylglyoxal is a conserved initiator of TORC2 signaling among eukaryotes.

  13. Methylglyoxal Activates the Target of Rapamycin Complex 2-Protein Kinase C Signaling Pathway in Saccharomyces cerevisiae

    PubMed Central

    Nomura, Wataru

    2015-01-01

    Methylglyoxal is a typical 2-oxoaldehyde derived from glycolysis. We show here that methylglyoxal activates the Pkc1-Mpk1 mitogen-activated protein (MAP) kinase cascade in a target of rapamycin complex 2 (TORC2)-dependent manner in the budding yeast Saccharomyces cerevisiae. We demonstrate that TORC2 phosphorylates Pkc1 at Thr1125 and Ser1143. Methylglyoxal enhanced the phosphorylation of Pkc1 at Ser1143, which transmitted the signal to the downstream Mpk1 MAP kinase cascade. We found that the phosphorylation status of Pkc1T1125 affected the phosphorylation of Pkc1 at Ser1143, in addition to its protein levels. Methylglyoxal activated mammalian TORC2 signaling, which, in turn, phosphorylated Akt at Ser473. Our results suggest that methylglyoxal is a conserved initiator of TORC2 signaling among eukaryotes. PMID:25624345

  14. Jun Dimerization Protein 2 Activates Mc2r Transcriptional Activity: Role of Phosphorylation and SUMOylation

    PubMed Central

    Wang, Chiung-Min; Wang, Raymond X.; Liu, Runhua; Yang, Wei-Hsiung

    2017-01-01

    Jun dimerization protein 2 (JDP2), a basic leucine zipper transcription factor, is involved in numerous biological and cellular processes such as cancer development and regulation, cell-cycle regulation, skeletal muscle and osteoclast differentiation, progesterone receptor signaling, and antibacterial immunity. Though JDP2 is widely expressed in mammalian tissues, its function in gonads and adrenals (such as regulation of steroidogenesis and adrenal development) is largely unknown. Herein, we find that JDP2 mRNA and proteins are expressed in mouse adrenal gland tissues. Moreover, overexpression of JDP2 in Y1 mouse adrenocortical cancer cells increases the level of melanocortin 2 receptor (MC2R) protein. Notably, Mc2r promoter activity is activated by JDP2 in a dose-dependent manner. Next, by mapping the Mc2r promoter, we show that cAMP response elements (between −1320 and −720-bp) are mainly required for Mc2r activation by JDP2 and demonstrate that −830-bp is the major JDP2 binding site by real-time chromatin immunoprecipitation (ChIP) analysis. Mutations of cAMP response elements on Mc2r promoter disrupts JDP2 effect. Furthermore, we demonstrate that removal of phosphorylation of JDP2 results in attenuated transcriptional activity of Mc2r. Finally, we show that JDP2 is a candidate for SUMOylation and SUMOylation affects JDP2-mediated Mc2r transcriptional activity. Taken together, JDP2 acts as a novel transcriptional activator of the mouse Mc2r gene, suggesting that JDP2 may have physiological functions as a novel player in MC2R-mediated steroidogenesis as well as cell signaling in adrenal glands. PMID:28146118

  15. A protein molecular weight map of ES2 clear cell ovarian carcinoma cells using a two-dimensional liquid separations/mass mapping technique.

    PubMed

    Wang, Haixing; Kachman, Maureen T; Schwartz, Donald R; Cho, Kathleen R; Lubman, David M

    2002-09-01

    A molecular weight map of the protein content of ES2 human clear cell ovarian carcinoma cells has been produced using a two-dimensional (2-D) liquid separations/mass mapping technique. This method uses a 2-D liquid separation of proteins from whole cell lysates coupled on-line to an electrospray ionization-time of flight (ESI-TOF) mass spectrometer to map the accurate intact molecular weight (M(r)) of the protein content of the cells. The two separation dimensions involve the use of liquid isoelectric focusing as the first phase and nonporous silica reversed-phase high-performance liquid chromatography (HPLC) as the second phase of separation. The detection by ESI-TOF-MS provides an image of pI versus M(r) analogous to 2-D gel electrophoresis. Each protein is then identified based upon matrix-assisted laser desorption/ionization (MALDI)-TOF-MS peptide mapping and intact M(r) so that a standard map is produced against which other ovarian carcinoma cell lines can be compared. The accurate intact M(r) together with the pI fraction, and peptide map serve to tag the protein for future interlysate comparisons. An internal standard is also used to provide a means for quantitation for future interlysate studies. In the ES2 cell line under study it is shown that nearly 900 M(r) bands are detected over 17 pI fractions from pH 4 to 12 and a M(r) range up to 85 kDa and that around 290 of these bands can be identified using mass spectrometric based techniques. The protein M(r) is detected within an accuracy of 150 ppm and it is shown that many of the proteins in this human cancer sample are modified compared to the database. The protein M(r) map may serve as a highly reproducible standard Web-based method for comparing proteins from related human cell lines.

  16. Automated clustering of probe molecules from solvent mapping of protein surfaces: new algorithms applied to hot-spot mapping and structure-based drug design

    NASA Astrophysics Data System (ADS)

    Lerner, Michael G.; Meagher, Kristin L.; Carlson, Heather A.

    2008-10-01

    Use of solvent mapping, based on multiple-copy minimization (MCM) techniques, is common in structure-based drug discovery. The minima of small-molecule probes define locations for complementary interactions within a binding pocket. Here, we present improved methods for MCM. In particular, a Jarvis-Patrick (JP) method is outlined for grouping the final locations of minimized probes into physical clusters. This algorithm has been tested through a study of protein-protein interfaces, showing the process to be robust, deterministic, and fast in the mapping of protein "hot spots." Improvements in the initial placement of probe molecules are also described. A final application to HIV-1 protease shows how our automated technique can be used to partition data too complicated to analyze by hand. These new automated methods may be easily and quickly extended to other protein systems, and our clustering methodology may be readily incorporated into other clustering packages.

  17. MapA, an iron-regulated, cytoplasmic membrane protein in the cyanobacterium Synechococcus sp. strain PCC7942.

    PubMed Central

    Webb, R; Troyan, T; Sherman, D; Sherman, L A

    1994-01-01

    Growth of Synechococcus sp. strain PCC 7942 in iron-deficient media leads to the accumulation of an approximately 34-kDa protein. The gene encoding this protein, mapA (membrane-associated protein A), has been cloned and sequenced (GenBank accession number, L01621). The mapA transcript is not detectable in normally grown cultures but is stably accumulated by cells grown in iron-deficient media. However, the promoter sequence for this gene does not resemble other bacterial iron-regulated promoters described to date. The carboxyl-terminal region of the derived amino acid sequence of MapA resembles bacterial proteins involved in iron acquisition, whereas the amino-terminal end of MapA has a high degree of amino acid identity with the abundant, chloroplast envelope protein E37. An approach employing improved cellular fractionation techniques as well as electron microscopy and immunocytochemistry was essential in localizing MapA protein to the cytoplasmic membrane of Synechococcus sp. strain PCC 7942. When these cells were grown under iron-deficient conditions, a significant fraction of MapA could also be localized to the thylakoid membranes. Images PMID:8051004

  18. MapA, an iron-regulated, cytoplasmic membrane protein in the cyanobacterium Synechococcus sp. strain PCC7942.

    PubMed

    Webb, R; Troyan, T; Sherman, D; Sherman, L A

    1994-08-01

    Growth of Synechococcus sp. strain PCC 7942 in iron-deficient media leads to the accumulation of an approximately 34-kDa protein. The gene encoding this protein, mapA (membrane-associated protein A), has been cloned and sequenced (GenBank accession number, L01621). The mapA transcript is not detectable in normally grown cultures but is stably accumulated by cells grown in iron-deficient media. However, the promoter sequence for this gene does not resemble other bacterial iron-regulated promoters described to date. The carboxyl-terminal region of the derived amino acid sequence of MapA resembles bacterial proteins involved in iron acquisition, whereas the amino-terminal end of MapA has a high degree of amino acid identity with the abundant, chloroplast envelope protein E37. An approach employing improved cellular fractionation techniques as well as electron microscopy and immunocytochemistry was essential in localizing MapA protein to the cytoplasmic membrane of Synechococcus sp. strain PCC 7942. When these cells were grown under iron-deficient conditions, a significant fraction of MapA could also be localized to the thylakoid membranes.

  19. Torilin Inhibits Inflammation by Limiting TAK1-Mediated MAP Kinase and NF-κB Activation

    PubMed Central

    Kim, Tae-Hwan; Kwak, Yi-Seong; Kim, Na-Mi; Kim, Seung-Hyung

    2017-01-01

    Torilin, a sesquiterpene isolated from the fruits of Torilis japonica, has shown antimicrobial, anticancer, and anti-inflammatory properties. However, data on the mechanism of torilin action against inflammation is limited. This study aimed at determining the anti-inflammatory property of torilin in LPS-induced inflammation using in vitro model of inflammation. We examined torilin's effect on expression levels of inflammatory mediators and cytokines in LPS-stimulated RAW 264.7 macrophages. The involvement of NF-kB and AP-1, MAP kinases, and adaptor proteins were assessed. Torilin strongly inhibited LPS-induced NO release, iNOS, PGE2, COX-2, NF-α, IL-1β, IL-6, and GM-CSF gene and protein expressions. In addition, MAPKs were also suppressed by torilin pretreatment. Involvement of ERK1/2, P38MAPK, and JNK1/2 was further confirmed by PD98059, SB203580, and SP600125 mediated suppression of iNOS and COX-2 proteins. Furthermore, torilin attenuated NF-kB and AP-1 translocation, DNA binding, and reporter gene transcription. Interestingly, torilin inhibited TAK1 kinase activation with the subsequent suppression of MAPK-mediated JNK, p38, ERK1/2, and AP-1 (ATF-2 and c-jun) activation and IKK-mediated I-κBα degradation, p65/p50 activation, and translocation. Together, the results revealed the suppression of NF-κB and AP-1 regulated inflammatory mediator and cytokine expressions, suggesting the test compound's potential as a candidate anti-inflammatory agent. PMID:28316375

  20. Protein-Protein Interactions Suggest Novel Activities of Human Cytomegalovirus Tegument Protein pUL103

    PubMed Central

    Ortiz, Daniel A.; Glassbrook, James E.

    2016-01-01

    ABSTRACT Human cytomegalovirus (HCMV) is an enveloped double-stranded DNA virus that causes severe disease in newborns and immunocompromised patients. During infection, the host cell endosecretory system is remodeled to form the cytoplasmic virion assembly complex (cVAC). We and others previously identified the conserved, multifunctional HCMV virion tegument protein pUL103 as important for cVAC biogenesis and efficient secondary envelopment. To help define its mechanisms of action and predict additional functions, we used two complementary methods, coimmunoprecipitation (co-IP) and proximity biotinylation (BioID), to identify viral and cellular proteins that interact with pUL103. By using the two methods in parallel and applying stringent selection criteria, we identified potentially high-value interactions of pUL103 with 13 HCMV and 18 cellular proteins. Detection of the previously identified pUL103-pUL71 interaction, as well as verification of several interactions by reverse co-IP, supports the specificity of our screening process. As might be expected for a tegument protein, interactions were identified that suggest distinct roles for pUL103 across the arc of lytic infection, including interactions with proteins involved in cellular antiviral responses, nuclear activities, and biogenesis and transport of cytoplasmic vesicles. Further analysis of some of these interactions expands our understanding of the multifunctional repertoire of pUL103: we detected HCMV pUL103 in nuclei of infected cells and identified an ALIX-binding domain within the pUL103 sequence. IMPORTANCE Human cytomegalovirus (HCMV) is able to reconfigure the host cell machinery to establish a virion production factory, the cytoplasmic virion assembly complex (cVAC). cVAC biogenesis and operation represent targets for development of novel HCMV antivirals. We previously showed that the HCMV tegument protein pUL103 is required for cVAC biogenesis. Using pUL103 as bait, we investigated viral and

  1. Deep ultraviolet mapping of intracellular protein and nucleic acid in femtograms per pixel.

    PubMed

    Cheung, Man C; Evans, James G; McKenna, Brian; Ehrlich, Daniel J

    2011-11-01

    By using imaging spectrophotometry with paired images in the 200- to 280-nm wavelength range, we have directly mapped intracellular nucleic acid and protein distributions across a population of Chinese hamster ovary (CHO-K1) cells. A broadband 100× objective with a numerical aperture of 1.2 NA (glycerin immersion) and a novel laser-induced-plasma point source generated high-contrast images with short (∼100 ms) exposures and a lateral resolution nearing 200 nm that easily resolves internal organelles. In a population of 420 CHO-K1 cells and 477 nuclei, we found a G1 whole-cell nucleic acid peak at 26.6 pg, a nuclear-isolated total nucleic acid peak at 11.4 pg, and, as inferred by RNase treatment, a G1 total DNA mass of 7.4 pg. At the G1 peak, we found a whole-cell protein mass of 95.6 pg, and a nuclear-isolated protein mass of 39.3 pg. An algorithm for protein quantification that senses peptide-bond (220-nm) absorbance was found to have a higher signal-to-noise ratio and to provide more reliable nucleic acid and protein determinations when compared to more classical 280/260-nm algorithms when used for intracellular mass mapping. Using simultaneous imaging with common nuclear stains (Hoechst 33342, Syto-14, and Sytox Orange), we have compared staining patterns to deep-UV images of condensed chromatin and have confirmed bias of these common nuclear stains related to nuclear packaging. The approach allows absolute mass measurements with no special sample preparation or staining. It can be used in conjunction with normal fluorescence microscopy and with relatively modest modification of the microscope.

  2. Evaluation and mapping of the DNA binding and oligomerization domains of the IE2 regulatory protein of human cytomegalovirus using yeast one and two hybrid interaction assays.

    PubMed

    Ahn, J H; Chiou, C J; Hayward, G S

    1998-03-27

    The 86-kDa IE2 nuclear phosphoprotein encoded by the human cytomegalovirus (HCMV) major immediate-early (MIE) gene behaves as both a non-specific transactivator of viral and cellular gene expression and as a specific DNA-binding protein targeted to the cis-repression sequence (CRS) at the cap site of its own promoter/enhancer region. Although the IE2 protein produced in bacteria has been shown to bind to the 14-bp palindromic CRS motif and IE2 synthesized in vitro forms stable dimers in solution through the conserved C-terminus of the protein, there is no direct evidence as yet that the intracellular mammalian forms of IE2 do so. Here, we show that the intact HCMV IE2 protein both binds to CRS DNA and dimerizes in yeast cells. In a one-hybrid assay system, a GAL4/IE2 fusion protein expressed in yeast cells activated target HIS3 expression only when CRS sites were located upstream of the GAL1 minimal promoter, but failed to do so on mutant CRS sites, demonstrating a requirement for sequence-specific DNA-binding by IE2. Examination of a series of deletion and triple amino acid point mutations in the C-terminal half of IE2 mapped the domains required for DNA-binding in yeast to the entire region between codons 313 and 579, whereas in the previous in-vitro study with truncated bacterial GST fusion proteins, it was mapped to between codons 346 and 579. Transient co-transfection assays with deleted IE2 effector genes in Vero cells showed that the extra segment of IE2 between codons 313 and 346 is also required for both autoregulation and transactivation activity in mammalian cells. In a two-hybrid assay to study IE2 self-interations, we generated both GAL4 DNA-binding (DB) and activation domain (A)/IE2 fusion proteins and showed that IE2 could also dimerize or oligomerize through the C-terminus of the protein in yeast cells. Domains required for this interaction were all mapped to within the region between codons 388 and 542, which is coincident with the domain mapped

  3. Stochastic interaction between neural activity and molecular cues in the formation of topographic maps

    PubMed Central

    Owens, Melinda T.; Feldheim, David A.; Stryker, Michael P.; Triplett, Jason W.

    2015-01-01

    SUMMARY Topographic maps in visual processing areas maintain the spatial order of the visual world. Molecular cues and neuronal activity both play critical roles in map formation, but their interaction remains unclear. Here, we demonstrate that when molecular- and activity-dependent cues are rendered nearly equal in force, they drive topographic mapping stochastically. The functional and anatomical representation of azimuth in the superior colliculus of heterozygous Islet2-EphA3 knock-in (Isl2EphA3/+) mice is variable: maps may be single, duplicated, or a combination of the two. This heterogeneity is not due to genetic differences, since map organizations in individual mutant animals often differ between colliculi. Disruption of spontaneous waves of retinal activity resulted in uniform map organization in Isl2EphA3/+ mice, demonstrating that correlated spontaneous activity is required for map heterogeneity. Computational modeling replicates this heterogeneity, revealing that molecular- and activity-dependent forces interact simultaneously and stochastically during topographic map formation. PMID:26402608

  4. Mapping domain structures in silks from insects and spiders related to protein assembly.

    PubMed

    Bini, Elisabetta; Knight, David P; Kaplan, David L

    2004-01-02

    The exceptional solubility in vivo (20-30%, w/v) of the silk proteins of insects and spiders is dictated by both the need to produce solid fibres with a high packing fraction and the high mesogen concentration required for lyotropic liquid crystalline spinning. A further design requirement for silk proteins is a strong predominance of hydrophobic amino acid residues to provide for the hydrophobic interactions, water exclusion, and beta-crystallite formation required to produce strong insoluble threads. Thus, the domain structure of silk proteins needs to enable nanoscale phase separation to achieve high solubility of hydrophobic proteins in aqueous solutions. Additionally, silk proteins need to avoid premature precipitation as beta-sheets during storage and processing. Here we use mapping of domain types, sizes and distributions in silks to identify consistent design features that have evolved to meet these requirements. We show that silk proteins consist of conspicuously hydrophilic terminal domains flanking a very long central portion constructed from hydrophobic blocks separated by hydrophilic ones, discussing the domain structure in detail. The general rules of construction for silk proteins based on our observations should give a useful guide to the way in which Nature has solved the problem of processing hydrophobic proteins in water and how this can be copied industrially. Following these rules may also help in obtaining adequate expression, soluble products and controllable conformational switches in the production of genetically engineered or chemically synthesized silk analogues. Thus these insights have implications for structural biology and relevance to fundamental and applied questions in material science and engineering.

  5. Mapping the yeast host cell response to recombinant membrane protein production: relieving the biological bottlenecks.

    PubMed

    Ashe, Mark P; Bill, Roslyn M

    2011-06-01

    Understanding the structures and functions of membrane proteins is an active area of research within bioscience. Membrane proteins are key players in essential cellular processes such as the uptake of nutrients, the export of waste products, and the way in which cells communicate with their environment. It is therefore not surprising that membrane proteins are targeted by over half of all prescription drugs. Since most membrane proteins are not abundant in their native membranes, it is necessary to produce them in recombinant host cells to enable further structural and functional studies. Unfortunately, achieving the required yields of functional recombinant membrane proteins is still a bottleneck in contemporary bioscience. This has highlighted the need for defined and rational optimization strategies based upon experimental observation rather than relying on trial and error. We have published a transcriptome and subsequent genetic analysis that has identified genes implicated in high-yielding yeast cells. These results have highlighted a role for alterations to a cell's protein synthetic capacity in the production of high yields of recombinant membrane protein: paradoxically, reduced protein synthesis favors higher yields. These results highlight a potential bottleneck at the protein folding or translocation stage of protein production.

  6. Activating AMP-activated protein kinase (AMPK) slows renal cystogenesis.

    PubMed

    Takiar, Vinita; Nishio, Saori; Seo-Mayer, Patricia; King, J Darwin; Li, Hui; Zhang, Li; Karihaloo, Anil; Hallows, Kenneth R; Somlo, Stefan; Caplan, Michael J

    2011-02-08

    Renal cyst development and expansion in autosomal dominant polycystic kidney disease (ADPKD) involves both fluid secretion and abnormal proliferation of cyst-lining epithelial cells. The chloride channel of the cystic fibrosis transmembrane conductance regulator (CFTR) participates in secretion of cyst fluid, and the mammalian target of rapamycin (mTOR) pathway may drive proliferation of cyst epithelial cells. CFTR and mTOR are both negatively regulated by AMP-activated protein kinase (AMPK). Metformin, a drug in wide clinical use, is a pharmacological activator of AMPK. We find that metformin stimulates AMPK, resulting in inhibition of both CFTR and the mTOR pathways. Metformin induces significant arrest of cystic growth in both in vitro and ex vivo models of renal cystogenesis. In addition, metformin administration produces a significant decrease in the cystic index in two mouse models of ADPKD. Our results suggest a possible role for AMPK activation in slowing renal cystogenesis as well as the potential for therapeutic application of metformin in the context of ADPKD.

  7. Endothelial Mitogen-Activated Protein Kinase Kinase Kinase Kinase 4 Is Critical for Lymphatic Vascular Development and Function

    PubMed Central

    Guo, Chang-An; Danai, Laura V.; Yawe, Joseph C.; Gujja, Sharvari; Edwards, Yvonne J. K.

    2016-01-01

    The molecular mechanisms underlying lymphatic vascular development and function are not well understood. Recent studies have suggested a role for endothelial cell (EC) mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) in developmental angiogenesis and atherosclerosis. Here, we show that constitutive loss of EC Map4k4 in mice causes postnatal lethality due to chylothorax, suggesting that Map4k4 is required for normal lymphatic vascular function. Mice constitutively lacking EC Map4k4 displayed dilated lymphatic capillaries, insufficient lymphatic valves, and impaired lymphatic flow; furthermore, primary ECs derived from these animals displayed enhanced proliferation compared with controls. Yeast 2-hybrid analyses identified the Ras GTPase-activating protein Rasa1, a known regulator of lymphatic development and lymphatic endothelial cell fate, as a direct interacting partner for Map4k4. Map4k4 silencing in ECs enhanced basal Ras and extracellular signal-regulated kinase (Erk) activities, and primary ECs lacking Map4k4 displayed enhanced lymphatic EC marker expression. Taken together, these results reveal that EC Map4k4 is critical for lymphatic vascular development by regulating EC quiescence and lymphatic EC fate. PMID:27044870

  8. Human carotid atherosclerotic plaque protein(s) change HDL protein(s) composition and impair HDL anti-oxidant activity.

    PubMed

    Cohen, Elad; Aviram, Michael; Khatib, Soliman; Volkova, Nina; Vaya, Jacob

    2016-01-01

    High density lipoprotein (HDL) anti-atherogenic functions are closely associated with cardiovascular disease risk factor, and are dictated by its composition, which is often affected by environmental factors. The present study investigates the effects of the human carotid plaque constituents on HDL composition and biological functions. To this end, human carotid plaques were homogenized and incubated with HDL. Results showed that after incubation, most of the apolipoprotein A1 (Apo A1) protein was released from the HDL, and HDL diameter increased by an average of approximately 2 nm. In parallel, HDL antioxidant activity was impaired. In response to homogenate treatment HDL could not prevent the accelerated oxidation of LDL caused by the homogenate. Boiling of the homogenate prior to its incubation with HDL abolished its effects on HDL composition changes. Moreover, tryptophan fluorescence quenching assay revealed an interaction between plaque component(s) and HDL, an interaction that was reduced by 50% upon using pre-boiled homogenate. These results led to hypothesize that plaque protein(s) interacted with HDL-associated Apo A1 and altered the HDL composition. Immuno-precipitation of Apo A1 that was released from the HDL after its incubation with the homogenate revealed a co-precipitation of three isomers of actin. However, beta-actin alone did not significantly affect the HDL composition, and yet the active protein within the plaque was elusive. In conclusion then, protein(s) in the homogenate interact with HDL protein(s), leading to release of Apo A1 from the HDL particle, a process that was associated with an increase in HDL diameter and with impaired HDL anti-oxidant activity.

  9. AlgPred: prediction of allergenic proteins and mapping of IgE epitopes

    PubMed Central

    Saha, Sudipto; Raghava, G. P. S.

    2006-01-01

    In this study a systematic attempt has been made to integrate various approaches in order to predict allergenic proteins with high accuracy. The dataset used for testing and training consists of 578 allergens and 700 non-allergens obtained from A. K. Bjorklund, D. Soeria-Atmadja, A. Zorzet, U. Hammerling and M. G. Gustafsson (2005) Bioinformatics, 21, 39–50. First, we developed methods based on support vector machine using amino acid and dipeptide composition and achieved an accuracy of 85.02 and 84.00%, respectively. Second, a motif-based method has been developed using MEME/MAST software that achieved sensitivity of 93.94 with 33.34% specificity. Third, a database of known IgE epitopes was searched and this predicted allergenic proteins with 17.47% sensitivity at specificity of 98.14%. Fourth, we predicted allergenic proteins by performing BLAST search against allergen representative peptides. Finally hybrid approaches have been developed, which combine two or more than two approaches. The performance of all these algorithms has been evaluated on an independent dataset of 323 allergens and on 101 725 non-allergens obtained from Swiss-Prot. A web server AlgPred has been developed for the predicting allergenic proteins and for mapping IgE epitopes on allergenic proteins (). AlgPred is available at . PMID:16844994

  10. Inhibition of a signaling pathway in cardiac muscle cells by active mitogen-activated protein kinase kinase.

    PubMed Central

    Thorburn, J; Carlson, M; Mansour, S J; Chien, K R; Ahn, N G; Thorburn, A

    1995-01-01

    Signaling via the Ras pathway involves sequential activation of Ras, Raf-1, mitogen-activated protein kinase kinase (MKK), and the extracellular signal-regulated (ERK) group of mitogen-activated protein (MAP) kinases. Expression from the c-Fos, atrial natriuretic factor (ANF), and myosin light chain-2 (MLC-2) promoters during phenylephrine-induced cardiac muscle cell hypertrophy requires activation of this pathway. Furthermore, constitutively active Ras or Raf-1 can mimic the action of phenylephrine in inducing expression from these promoters. In this study, we tested whether constitutively active MKK, the molecule immediately downstream of Raf, was sufficient to induce expression. Expression of constitutively active MKK induce ERK2 kinase activity and caused expression from the c-Fos promoter, but did not significantly activate expression of reporter genes under the control of either the ANF or MLC-2 promoters. Expression of CL100, a phosphatase that inactivates ERKs, prevented expression from all of the promoters. Taken together, these data suggest that ERK activation is required for expression from the Fos, ANF, and MLC-2 promoters but MKK and ERK activation is sufficient for expression only from the Fos promoter. Constitutively active MKK synergized with phenylephrine to increase expression from a c-Fos- or an AP1-driven reporter. However, active MKK inhibited phenylephrine- and Raf-1-induced expression from the ANF and MLC-2 promoters. A DNA sequence in the MLC-2 promoter that is a target for inhibition by active MKK, but not CL100, was mapped to a previously characterized DNA element (HF1) that is responsible for cardiac specificity. Thus, activation of cardiac gene expression during phenylephrine-induced hypertrophy requires ERK activation but constitutive activation by MKK can inhibit expression by targeting a DNA element that controls the cardiac specificity of gene expression. PMID:8589450

  11. The Arabidopsis microtubule-associated protein MAP65-3 supports infection by filamentous biotrophic pathogens by down-regulating salicylic acid-dependent defenses.

    PubMed

    Quentin, Michaël; Baurès, Isabelle; Hoefle, Caroline; Caillaud, Marie-Cécile; Allasia, Valérie; Panabières, Franck; Abad, Pierre; Hückelhoven, Ralph; Keller, Harald; Favery, Bruno

    2016-03-01

    The oomycete Hyaloperonospora arabidopsidis and the ascomycete Erysiphe cruciferarum are obligate biotrophic pathogens causing downy mildew and powdery mildew, respectively, on Arabidopsis. Upon infection, the filamentous pathogens induce the formation of intracellular bulbous structures called haustoria, which are required for the biotrophic lifestyle. We previously showed that the microtubule-associated protein AtMAP65-3 plays a critical role in organizing cytoskeleton microtubule arrays during mitosis and cytokinesis. This renders the protein essential for the development of giant cells, which are the feeding sites induced by root knot nematodes. Here, we show that AtMAP65-3 expression is also induced in leaves upon infection by the downy mildew oomycete and the powdery mildew fungus. Loss of AtMAP65-3 function in the map65-3 mutant dramatically reduced infection by both pathogens, predominantly at the stages of leaf penetration. Whole-transcriptome analysis showed an over-represented, constitutive activation of genes involved in salicylic acid (SA) biosynthesis, signaling, and defense execution in map65-3, whereas jasmonic acid (JA)-mediated signaling was down-regulated. Preventing SA synthesis and accumulation in map65-3 rescued plant susceptibility to pathogens, but not the developmental phenotype caused by cytoskeleton defaults. AtMAP65-3 thus has a dual role. It positively regulates cytokinesis, thus plant growth and development, and negatively interferes with plant defense against filamentous biotrophs. Our data suggest that downy mildew and powdery mildew stimulate AtMAP65-3 expression to down-regulate SA signaling for infection.

  12. Modulation of Leishmania major aquaglyceroporin activity by a mitogen-activated protein kinase

    PubMed Central

    Mandal, Goutam; Sharma, Mansi; Kruse, Martin; Sander-Juelch, Claudia; Munro, Laura Anne; Wang, Yong; Vilg, Jenny Veide; Tamás, Markus J; Bhattacharjee, Hiranmoy; Wiese, Martin; Mukhopadhyay, Rita

    2012-01-01

    Summary Leishmania major aquaglyceroporin (LmjAQP1) adventitiously facilitates the uptake of antimonite [Sb(III)], an active form of Pentostam® or Glucantime®, which are the first line of defense against all forms of leishmaniasis. The present paper shows that LmjAQP1 activity is modulated by the mitogen-activated protein kinase, LmjMPK2. Leishmania parasites co-expressing LmjAQP1 and LmjMPK2 show increased Sb(III) uptake and increased Sb(III) sensitivity. When subjected to a hypo-osmotic stress, these cells show faster volume recovery than cells expressing LmjAQP1 alone. LmjAQP1 is phosphorylated in vivo at Thr197 and this phosphorylation requires LmjMPK2 activity. Lys42 of LmjMPK2 is critical for its kinase activity. Cells expressing altered T197A LmjAQP1 or K42A LmjMPK2 showed decreased Sb(III) influx and a slower volume recovery than cells expressing wild type proteins. Phosphorylation of LmjAQP1 led to a decrease in its turnover rate affecting LmjAQP1 activity. Although LmjAQP1 is localized to the flagellum of promastigotes, upon phosphorylation, it is relocalized to the entire surface of the parasite. L. mexicana promastigotes with an MPK2 deletion showed reduced Sb(III) uptake and slower volume recovery than wild type cells. This is the first report where a parasite aquaglyceroporin activity is post-translationally modulated by a MAP kinase. PMID:22779703

  13. Mapping of chorismate mutase and prephenate dehydrogenase domains in the Escherichia coli T-protein.

    PubMed

    Chen, Shuqing; Vincent, Sarah; Wilson, David B; Ganem, Bruce

    2003-02-01

    The Escherichia coli bifunctional T-protein transforms chorismic acid to p-hydroxyphenylpyruvic acid in the l-tyrosine biosynthetic pathway. The 373 amino acid T-protein is a homodimer that exhibits chorismate mutase (CM) and prephenate dehydrogenase (PDH) activities, both of which are feedback-inhibited by tyrosine. Fifteen genes coding for the T-protein and various fragments thereof were constructed and successfully expressed in order to characterize the CM, PDH and regulatory domains. Residues 1-88 constituted a functional CM domain, which was also dimeric. Both the PDH and the feedback-inhibition activities were localized in residues 94-373, but could not be separated into discrete domains. The activities of cloned CM and PDH domains were comparatively low, suggesting some cooperative interactions in the native state. Activity data further indicate that the PDH domain, in which NAD, prephenate and tyrosine binding sites were present, was more unstable than the CM domain.

  14. Transcription activation by the adenovirus E1a protein

    NASA Astrophysics Data System (ADS)

    Lillie, James W.; Green, Michael R.

    1989-03-01

    The adenovirus Ela protein stimulates transcription of a wide variety of viral and cellular genes. It is shown here that Ela has the two functions characteristic of a typical cellular activator: one direct Ela to the promoter, perhaps by interacting with a DMA-bound protein, and the other, an activating region, enables the bound activator to stimulate transcription.

  15. DNA helicase activity in purified human RECQL4 protein.

    PubMed

    Suzuki, Takahiro; Kohno, Toshiyuki; Ishimi, Yukio

    2009-09-01

    Human RECQL4 protein was expressed in insect cells using a baculovirus protein expression system and it was purified to near homogeneity. The protein sedimented at a position between catalase (230 kDa) and ferritin (440 kDa) in glycerol gradient centrifugation, suggesting that it forms homo-multimers. Activity to displace annealed 17-mer oligonucleotide in the presence of ATP was co-sedimented with hRECQL4 protein. In ion-exchange chromatography, both DNA helicase activity and single-stranded DNA-dependent ATPase activity were co-eluted with hRECQL4 protein. The requirements of ATP and Mg for the helicase activity were different from those for the ATPase activity. The data suggest that the helicase migrates on single-stranded DNA in a 3'-5' direction. These results suggest that the hRECQL4 protein exhibits DNA helicase activity.

  16. Effects of spatial variation of skull and cerebrospinal fluid layers on optical mapping of brain activities

    NASA Astrophysics Data System (ADS)

    Wang, Shuping; Shibahara, Nanae; Kuramashi, Daishi; Okawa, Shinpei; Kakuta, Naoto; Okada, Eiji; Maki, Atsushi; Yamada, Yukio

    2010-07-01

    In order to investigate the effects of anatomical variation in human heads on the optical mapping of brain activity, we perform simulations of optical mapping by solving the photon diffusion equation for layered-models simulating human heads using the finite element method (FEM). Particularly, the effects of the spatial variations in the thicknesses of the skull and cerebrospinal fluid (CSF) layers on mapping images are investigated. Mapping images of single active regions in the gray matter layer are affected by the spatial variations in the skull and CSF layer thicknesses, although the effects are smaller than those of the positions of the active region relative to the data points. The increase in the skull thickness decreases the sensitivity of the images to active regions, while the increase in the CSF layer thickness increases the sensitivity in general. The images of multiple active regions are also influenced by their positions relative to the data points and by their depths from the skin surface.

  17. Mapping of the regions involved in self-interaction of rice stripe virus P3 protein.

    PubMed

    Zhao, S L; Hao, J H; Xue, Y N; Liang, C Y

    2016-03-01

    Rice stripe virus (RSV) protein P3 is a suppressor of RNA silencing in plants. P3 has been shown by biomolecular fluorescence complementation assay to self-interact in planta but the regions responsible for homotypic interaction have not been determined. Here we analyzed the domains for the self-interaction of P3 by using yeast two-hybrid, co-immunoprecipitation and fluorescence experiments. The results showed that P3 was also able to interact with itself in yeast and insect cells. The domain responsible for P3-P3 interaction was mapped to amino acids 15-30 at the N-terminal region of P3. Furthermore, subcellular localization suggested that the homo-oligomerization was the prerequisite for P3 to form larger protein aggregates in the nucleus of insect cell.

  18. Mapping of domains on HIV envelope protein mediating association with calnexin and protein-disulfide isomerase.

    PubMed

    Papandréou, Marie-Jeanne; Barbouche, Rym; Guieu, Régis; Rivera, Santiago; Fantini, Jacques; Khrestchatisky, Michel; Jones, Ian M; Fenouillet, Emmanuel

    2010-04-30

    The cell catalysts calnexin (CNX) and protein-disulfide isomerase (PDI) cooperate in establishing the disulfide bonding of the HIV envelope (Env) glycoprotein. Following HIV binding to lymphocytes, cell-surface PDI also reduces Env to induce the fusogenic conformation. We sought to define the contact points between Env and these catalysts to illustrate their potential as therapeutic targets. In lysates of Env-expressing cells, 15% of the gp160 precursor, but not gp120, coprecipitated with CNX, whereas only 0.25% of gp160 and gp120 coprecipitated with PDI. Under in vitro conditions, which mimic the Env/PDI interaction during virus/cell contact, PDI readily associated with Env. The domains of Env interacting in cellulo with CNX or in vitro with PDI were then determined using anti-Env antibodies whose binding site was occluded by CNX or PDI. Antibodies against domains V1/V2, C2, and the C terminus of V3 did not bind CNX-associated Env, whereas those against C1, V1/V2, and the CD4-binding domain did not react with PDI-associated Env. In addition, a mixture of the latter antibodies interfered with PDI-mediated Env reduction. Thus, Env interacts with intracellular CNX and extracellular PDI via discrete, largely nonoverlapping, regions. The sites of interaction explain the mode of action of compounds that target these two catalysts and may enable the design of further new competitive agents.

  19. Mapping of Domains on HIV Envelope Protein Mediating Association with Calnexin and Protein-disulfide Isomerase*

    PubMed Central

    Papandréou, Marie-Jeanne; Barbouche, Rym; Guieu, Régis; Rivera, Santiago; Fantini, Jacques; Khrestchatisky, Michel; Jones, Ian M.; Fenouillet, Emmanuel

    2010-01-01

    The cell catalysts calnexin (CNX) and protein-disulfide isomerase (PDI) cooperate in establishing the disulfide bonding of the HIV envelope (Env) glycoprotein. Following HIV binding to lymphocytes, cell-surface PDI also reduces Env to induce the fusogenic conformation. We sought to define the contact points between Env and these catalysts to illustrate their potential as therapeutic targets. In lysates of Env-expressing cells, 15% of the gp160 precursor, but not gp120, coprecipitated with CNX, whereas only 0.25% of gp160 and gp120 coprecipitated with PDI. Under in vitro conditions, which mimic the Env/PDI interaction during virus/cell contact, PDI readily associated with Env. The domains of Env interacting in cellulo with CNX or in vitro with PDI were then determined using anti-Env antibodies whose binding site was occluded by CNX or PDI. Antibodies against domains V1/V2, C2, and the C terminus of V3 did not bind CNX-associated Env, whereas those against C1, V1/V2, and the CD4-binding domain did not react with PDI-associated Env. In addition, a mixture of the latter antibodies interfered with PDI-mediated Env reduction. Thus, Env interacts with intracellular CNX and extracellular PDI via discrete, largely nonoverlapping, regions. The sites of interaction explain the mode of action of compounds that target these two catalysts and may enable the design of further new competitive agents. PMID:20202930

  20. Nautical Charts: Another Dimension in Developing Map Skills. Instructional Activities Series IA/S-11.

    ERIC Educational Resources Information Center

    McCallum, W. F.; Botly, D. H.

    These activities are part of a series of 17 teacher-developed instructional activities for geography at the secondary-grade level described in SO 009 140. In the activities students develop map skills by learning about and using nautical charts. The first activity involves students in using parallel rulers and a compass rose to find their…

  1. Association mapping of seed oil and protein content in Sesamum indicum L. using SSR markers.

    PubMed

    Li, Chun; Miao, Hongmei; Wei, Libin; Zhang, Tide; Han, Xiuhua; Zhang, Haiyang

    2014-01-01

    Sesame is an important oil crop for the high oil content and quality. The seed oil and protein contents are two important traits in sesame. To identify the molecular markers associated with the seed oil and protein contents in sesame, we systematically performed the association mapping among 369 worldwide germplasm accessions under 5 environments using 112 polymorphic SSR markers. The general linear model (GLM) was applied with the criteria of logP ≥ 3.0 and high stability under all 5 environments. Among the 369 sesame accessions, the oil content ranged from 27.89%-58.73% and the protein content ranged from 16.72%-27.79%. A significant negative correlation of the oil content with the protein content was found in the population. A total of 19 markers for oil content were detected with a R2 value range from 4% to 29%; 24 markers for protein content were detected with a R2 value range from 3% to 29%, of which 19 markers were associated with both traits. Moreover, partial markers were confirmed using mixed linear model (MLM) method, which suggested that the oil and protein contents are controlled mostly by major genes. Allele effect analysis showed that the allele associated with high oil content was always associated with low protein content, and vice versa. Of the 19 markers associated with oil content, 17 presented near the locations of the plant lipid pathway genes and 2 were located just next to a fatty acid elongation gene and a gene encoding Stearoyl-ACP Desaturase, respectively. The findings provided a valuable foundation for oil synthesis gene identification and molecular marker assistant selection (MAS) breeding in sesame.

  2. Mutationmapper: a tool to aid the mapping of protein mutation data.

    PubMed

    Vohra, Shabana; Biggin, Philip C

    2013-01-01

    There has been a rapid increase in the amount of mutational data due to, amongst other things, an increase in single nucleotide polymorphism (SNP) data and the use of site-directed mutagenesis as a tool to help dissect out functional properties of proteins. Many manually curated databases have been developed to index point mutations but they are not sustainable with the ever-increasing volume of scientific literature. There have been considerable efforts in the automatic extraction of mutation specific information from raw text involving use of various text-mining approaches. However, one of the key problems is to link these mutations with its associated protein and to present this data in such a way that researchers can immediately contextualize it within a structurally related family of proteins. To aid this process, we have developed an application called MutationMapper. Point mutations are extracted from abstracts and are validated against protein sequences in Uniprot as far as possible. Our methodology differs in a fundamental way from the usual text-mining approach. Rather than start with abstracts, we start with protein sequences, which facilitates greatly the process of validating a potential point mutation identified in an abstract. The results are displayed as mutations mapped on to the protein sequence or a multiple sequence alignment. The latter enables one to readily pick up mutations performed at equivalent positions in related proteins. We demonstrate the use of MutationMapper against several examples including a single sequence and multiple sequence alignments. The application is available as a web-service at http://mutationmapper.bioch.ox.ac.uk.

  3. Trithorax group proteins: switching genes on and keeping them active.

    PubMed

    Schuettengruber, Bernd; Martinez, Anne-Marie; Iovino, Nicola; Cavalli, Giacomo

    2011-11-23

    Cellular memory is provided by two counteracting groups of chromatin proteins termed Trithorax group (TrxG) and Polycomb group (PcG) proteins. TrxG proteins activate transcription and are perhaps best known because of the involvement of the TrxG protein MLL in leukaemia. However, in terms of molecular analysis, they have lived in the shadow of their more famous counterparts, the PcG proteins. Recent advances have improved our understanding of TrxG protein function and demonstrated that the heterogeneous group of TrxG proteins is of critical importance in the epigenetic regulation of the cell cycle, senescence, DNA damage and stem cell biology.

  4. Building disease-specific drug-protein connectivity maps from molecular interaction networks and PubMed abstracts.

    PubMed

    Li, Jiao; Zhu, Xiaoyan; Chen, Jake Yue

    2009-07-01

    The recently proposed concept of molecular connectivity maps enables researchers to integrate experimental measurements of genes, proteins, metabolites, and drug compounds under similar biological conditions. The study of these maps provides opportunities for future toxicogenomics and drug discovery applications. We developed a computational framework to build disease-specific drug-protein connectivity maps. We integrated gene/protein and drug connectivity information based on protein interaction networks and literature mining, without requiring gene expression profile information derived from drug perturbation experiments on disease samples. We described the development and application of this computational framework using Alzheimer's Disease (AD) as a primary example in three steps. First, molecular interaction networks were incorporated to reduce bias and improve relevance of AD seed proteins. Second, PubMed abstracts were used to retrieve enriched drug terms that are indirectly associated with AD through molecular mechanistic studies. Third and lastly, a comprehensive AD connectivity map was created by relating enriched drugs and related proteins in literature. We showed that this molecular connectivity map development approach outperformed both curated drug target databases and conventional information retrieval systems. Our initial explorations of the AD connectivity map yielded a new hypothesis that diltiazem and quinidine may be investigated as candidate drugs for AD treatment. Molecular connectivity maps derived computationally can help study molecular signature differences between different classes of drugs in specific disease contexts. To achieve overall good data coverage and quality, a series of statistical methods have been developed to overcome high levels of data noise in biological networks and literature mining results. Further development of computational molecular connectivity maps to cover major disease areas will likely set up a new model for

  5. Mapping of Brain Activity by Automated Volume Analysis of Immediate Early Genes.

    PubMed

    Renier, Nicolas; Adams, Eliza L; Kirst, Christoph; Wu, Zhuhao; Azevedo, Ricardo; Kohl, Johannes; Autry, Anita E; Kadiri, Lolahon; Umadevi Venkataraju, Kannan; Zhou, Yu; Wang, Victoria X; Tang, Cheuk Y; Olsen, Olav; Dulac, Catherine; Osten, Pavel; Tessier-Lavigne, Marc

    2016-06-16

    Understanding how neural information is processed in physiological and pathological states would benefit from precise detection, localization, and quantification of the activity of all neurons across the entire brain, which has not, to date, been achieved in the mammalian brain. We introduce a pipeline for high-speed acquisition of brain activity at cellular resolution through profiling immediate early gene expression using immunostaining and light-sheet fluorescence imaging, followed by automated mapping and analysis of activity by an open-source software program we term ClearMap. We validate the pipeline first by analysis of brain regions activated in response to haloperidol. Next, we report new cortical regions downstream of whisker-evoked sensory processing during active exploration. Last, we combine activity mapping with axon tracing to uncover new brain regions differentially activated during parenting behavior. This pipeline is widely applicable to different experimental paradigms, including animal species for which transgenic activity reporters are not readily available.

  6. Analyzing Large-Scale Structural Change in Proteins: Comparison of Principal Component Projection and Sammon Mapping

    SciTech Connect

    Mesentean, Sidonia; Fischer, S.; Smith, Jeremy C

    2006-04-01

    Effective analysis of large-scale conformational transitions in macromolecules requires transforming them into a lower dimensional representation that captures the dominant motions. Herein, we apply and compare two different dimensionality reduction techniques, namely, principal component analysis (PCA), a linear method, and Sammon mapping, which is nonlinear. The two methods are used to analyze four different protein transition pathways of varying complexity, obtained by using either the conjugate peak refinement method or constrained molecular dynamics. For the return-stroke in myosin, both Sammon mapping and PCA show that the conformational change is dominated by a simple rotation of a rigid body. Also, in the case of the T{yields}R transition in hemoglobin, both methods are able to identify the two main quaternary transition events. In contrast, in the cases of the unfolding transition of staphylococcal nuclease or the signaling switch of Ras p21, which are both more complex conformational transitions, only Sammon mapping is able to identify the distinct phases of motion.

  7. Flexibility in MuA transposase family protein structures: functional mapping with scanning mutagenesis and sequence alignment of protein homologues.

    PubMed

    Rasila, Tiina S; Vihinen, Mauno; Paulin, Lars; Haapa-Paananen, Saija; Savilahti, Harri

    2012-01-01

    MuA transposase protein is a member of the retroviral integrase superfamily (RISF). It catalyzes DNA cleavage and joining reactions via an initial assembly and subsequent structural transitions of a protein-DNA complex, known as the Mu transpososome, ultimately attaching transposon DNA to non-specific target DNA. The transpososome functions as a molecular DNA-modifying machine and has been used in a wide variety of molecular biology and genetics/genomics applications. To analyze structure-function relationships in MuA action, a comprehensive pentapeptide insertion mutagenesis was carried out for the protein. A total of 233 unique insertion variants were generated, and their activity was analyzed using a quantitative in vivo DNA transposition assay. The results were then correlated with the known MuA structures, and the data were evaluated with regard to the protein domain function and transpososome development. To complement the analysis with an evolutionary component, a protein sequence alignment was produced for 44 members of MuA family transposases. Altogether, the results pinpointed those regions, in which insertions can be tolerated, and those where insertions are harmful. Most insertions within the subdomains Iγ, IIα, IIβ, and IIIα completely destroyed the transposase function, yet insertions into certain loop/linker regions of these subdomains increased the protein activity. Subdomains Iα and IIIβ were largely insertion-tolerant. The comprehensive structure-function data set will be useful for designing MuA transposase variants with improved properties for biotechnology/genomics applications, and is informative with regard to the function of RISF proteins in general.

  8. Genome-wide mapping of in vivo protein-DNA interactions.

    PubMed

    Johnson, David S; Mortazavi, Ali; Myers, Richard M; Wold, Barbara

    2007-06-08

    In vivo protein-DNA interactions connect each transcription factor with its direct targets to form a gene network scaffold. To map these protein-DNA interactions comprehensively across entire mammalian genomes, we developed a large-scale chromatin immunoprecipitation assay (ChIPSeq) based on direct ultrahigh-throughput DNA sequencing. This sequence census method was then used to map in vivo binding of the neuron-restrictive silencer factor (NRSF; also known as REST, for repressor element-1 silencing transcription factor) to 1946 locations in the human genome. The data display sharp resolution of binding position [+/-50 base pairs (bp)], which facilitated our finding motifs and allowed us to identify noncanonical NRSF-binding motifs. These ChIPSeq data also have high sensitivity and specificity [ROC (receiver operator characteristic) area >/= 0.96] and statistical confidence (P <10(-4)), properties that were important for inferring new candidate interactions. These include key transcription factors in the gene network that regulates pancreatic islet cell development.

  9. Imaging metals in proteins by combining electrophoresis with rapid x-ray fluorescence mapping.

    SciTech Connect

    Finney, L.; Chishti, Y.; Khare, T.; Giometti, C.; Levina, A.; Lay, P. A.; Vogt, S.; Univ. of Sydney; Northwestern Univ.

    2010-01-01

    Growing evidence points toward a very dynamic role for metals in biology. This suggests that physiological circumstance may mandate metal ion redistribution among ligands. This work addresses a critical need for technology that detects, identifies, and measures the metal-containing components of complex biological matrixes. We describe a direct, user-friendly approach for identifying and quantifying metal?protein adducts in complex samples using native- or SDS-PAGE, blotting, and rapid synchrotron X-ray fluorescence mapping with micro-XANES (X-ray absorption near-edge structure) of entire blots. The identification and quantification of each metal bound to a protein spot has been demonstrated, and the technique has been applied in two exemplary cases. In the first, the speciation of the in vitro binding of exogenous chromium to blood serum proteins was influenced markedly by both the oxidation state of chromium exposed to the serum proteins and the treatment conditions, which is of relevance to the biochemistry of Cr dietary supplements. In the second case, in vivo changes in endogenous metal speciation were examined to probe the influence of oxygen depletion on iron speciation in Shewanella oneidensis.

  10. Inferring functional constraints and divergence in protein families using 3D mapping of phylogenetic information

    PubMed Central

    Blouin, Christian; Boucher, Yan; Roger, Andrew J.

    2003-01-01

    Comparative sequence analysis has been used to study specific questions about the structure and function of proteins for many years. Here we propose a knowledge-based framework in which the maximum likelihood rate of evolution is used to quantify the level of constraint on the identity of a site. We demonstrate that site-rate mapping on 3D structures using datasets of rhodopsin-like G-protein receptors and α- and β-tubulins provides an excellent tool for pinpointing the functional features shared between orthologous and paralogous proteins. In addition, functional divergence within protein families can be inferred by examining the differences in the site rates, the differences in the chemical properties of the side chains or amino acid usage between aligned sites. Two novel analytical methods are introduced to characterize rate- independent functional divergence. These are tested using a dataset of two classes of HMG-CoA reductases for which only one class can perform both the forward and reverse reaction. We show that functionally divergent sites occur in a cluster of sites interacting with the catalytic residues and that this information should facilitate the design of experimental strategies to directly test functional properties of residues. PMID:12527789

  11. Inferring functional constraints and divergence in protein families using 3D mapping of phylogenetic information.

    PubMed

    Blouin, Christian; Boucher, Yan; Roger, Andrew J

    2003-01-15

    Comparative sequence analysis has been used to study specific questions about the structure and function of proteins for many years. Here we propose a knowledge-based framework in which the maximum likelihood rate of evolution is used to quantify the level of constraint on the identity of a site. We demonstrate that site-rate mapping on 3D structures using datasets of rhodopsin-like G-protein receptors and alpha- and beta-tubulins provides an excellent tool for pinpointing the functional features shared between orthologous and paralogous proteins. In addition, functional divergence within protein families can be inferred by examining the differences in the site rates, the differences in the chemical properties of the side chains or amino acid usage between aligned sites. Two novel analytical methods are introduced to characterize rate- independent functional divergence. These are tested using a dataset of two classes of HMG-CoA reductases for which only one class can perform both the forward and reverse reaction. We show that functionally divergent sites occur in a cluster of sites interacting with the catalytic residues and that this information should facilitate the design of experimental strategies to directly test functional properties of residues.

  12. MSV3d: database of human MisSense Variants mapped to 3D protein structure.

    PubMed

    Luu, Tien-Dao; Rusu, Alin-Mihai; Walter, Vincent; Ripp, Raymond; Moulinier, Luc; Muller, Jean; Toursel, Thierry; Thompson, Julie D; Poch, Olivier; Nguyen, Hoan

    2012-01-01

    The elucidation of the complex relationships linking genotypic and phenotypic variations to protein structure is a major challenge in the post-genomic era. We present MSV3d (Database of human MisSense Variants mapped to 3D protein structure), a new database that contains detailed annotation of missense variants of all human proteins (20 199 proteins). The multi-level characterization includes details of the physico-chemical changes induced by amino acid modification, as well as information related to the conservation of the mutated residue and its position relative to functional features in the available or predicted 3D model. Major releases of the database are automatically generated and updated regularly in line with the dbSNP (database of Single Nucleotide Polymorphism) and SwissVar releases, by exploiting the extensive Décrypthon computational grid resources. The database (http://decrypthon.igbmc.fr/msv3d) is easily accessible through a simple web interface coupled to a powerful query engine and a standard web service. The content is completely or partially downloadable in XML or flat file formats. Database URL: http://decrypthon.igbmc.fr/msv3d.

  13. EM-fold: de novo atomic-detail protein structure determination from medium-resolution density maps.

    PubMed

    Lindert, Steffen; Alexander, Nathan; Wötzel, Nils; Karakaş, Mert; Stewart, Phoebe L; Meiler, Jens

    2012-03-07

    Electron density maps of membrane proteins or large macromolecular complexes are frequently only determined at medium resolution between 4 Å and 10 Å, either by cryo-electron microscopy or X-ray crystallography. In these density maps, the general arrangement of secondary structure elements (SSEs) is revealed, whereas their directionality and connectivity remain elusive. We demonstrate that the topology of proteins with up to 250 amino acids can be determined from such density maps when combined with a computational protein folding protocol. Furthermore, we accurately reconstruct atomic detail in loop regions and amino acid side chains not visible in the experimental data. The EM-Fold algorithm assembles the SSEs de novo before atomic detail is added using Rosetta. In a benchmark of 27 proteins, the protocol consistently and reproducibly achieves models with root mean square deviation values <3 Å.

  14. [Increased fibrinolytic activity during cardiopulmonary bypass is caused by activated protein C system].

    PubMed

    Gando, S; Tedo, I; Masio, H; Goda, Y; Kawahigashi, H

    1994-06-01

    To examine the hypothesis that activated protein C system during cardiopulmonary bypass surgery may increase fibrinolytic activity during cardiopulmonary bypass, protein C activity, protein C antigen and thrombomodulin of sixteen patients undergoing elective cardiopulmonary bypass surgery were investigated after induction of anesthesia, before and after cardiopulmonary bypass, and at the end of operation. Protein C activity decreased and thrombomodulin increased significantly after the cardiopulmonary bypass. There were no significant correlations of thrombomodulin with protein C activity and protein C antigen. In conclusion, we have demonstrated that protein C system is activated and circulating thrombomodulin appears in the systemic circulation during cardiopulmonary bypass surgery and this enhanced activation of protein C system is possibly related to the reported increase of fibrinolytic activity during cardiopulmonary bypass.

  15. Unc-51 controls active zone density and protein composition by downregulating ERK signaling.

    PubMed

    Wairkar, Yogesh P; Toda, Hirofumi; Mochizuki, Hiroaki; Furukubo-Tokunaga, Katsuo; Tomoda, Toshifumi; Diantonio, Aaron

    2009-01-14

    Efficient synaptic transmission requires the apposition of neurotransmitter release sites opposite clusters of postsynaptic neurotransmitter receptors. Transmitter is released at active zones, which are composed of a large complex of proteins necessary for synaptic development and function. Many active zone proteins have been identified, but little is known of the mechanisms that ensure that each active zone receives the proper complement of proteins. Here we use a genetic analysis in Drosophila to demonstrate that the serine threonine kinase Unc-51 acts in the presynaptic motoneuron to regulate the localization of the active zone protein Bruchpilot opposite to glutamate receptors at each synapse. In the absence of Unc-51, many glutamate receptor clusters are unapposed to Bruchpilot, and ultrastructural analysis demonstrates that fewer active zones contain dense body T-bars. In addition to the presence of these aberrant synapses, there is also a decrease in the density of all synapses. This decrease in synaptic density and abnormal active zone composition is associated with impaired evoked transmitter release. Mechanistically, Unc-51 inhibits the activity of the MAP kinase ERK to promote synaptic development. In the unc-51 mutant, increased ERK activity leads to the decrease in synaptic density and the absence of Bruchpilot from many synapses. Hence, activated ERK negatively regulates synapse formation, resulting in either the absence of active zones or the formation of active zones without their proper complement of proteins. The Unc-51-dependent inhibition of ERK activity provides a potential mechanism for synapse-specific control of active zone protein composition and release probability.

  16. Identification of highly active flocculant proteins in bovine blood.

    PubMed

    Piazza, George J; Nuñez, Alberto; Garcia, Rafael A

    2012-03-01

    Synthetic polymeric flocculants are used extensively for wastewater remediation, soil stabilization, and reduction in water leakage from unlined canals. Sources of highly active, inexpensive, renewable flocculants are needed to replace synthetic flocculants. High kaolin flocculant activity was documented for bovine blood (BB) and blood plasma with several anticoagulant treatments. BB serum also had high flocculant activity. To address the hypothesis that some blood proteins have strong flocculating activity, the BB proteins were separated by SEC. Then, the major proteins of the flocculant-active fractions were separated by SDS-PAGE. Identity of the major protein components was determined by tryptic digestion and peptide analysis by MALDI TOF MS. The sequence of selected peptides was confirmed using TOF/TOF-MS/MS fragmentation. Hemoglobin dimer (subunits α and β) was identified as the major protein component of the active fraction in BB; its high flocculation activity was confirmed by testing a commercial sample of hemoglobin. In the same manner, three proteins from blood plasma (fibrinogen, γ-globulin, α-2-macroglobulin) were found to be highly active flocculants, but bovine serum albumin, α-globulin, and β-globulin were not flocculants. On a mass basis, hemoglobin, γ-globulin, α-2-macroglobulin were as effective as anionic polyacrylamide (PAM), a widely used synthetic flocculant. The blood proteins acted faster than PAM, and unlike PAM, the blood proteins flocculants did not require calcium salts for their activity.

  17. Rassf Proteins as Modulators of Mst1 Kinase Activity

    PubMed Central

    Bitra, Aruna; Sistla, Srinivas; Mariam, Jessy; Malvi, Harshada; Anand, Ruchi

    2017-01-01

    Rassf1A/5 tumor suppressors serve as adaptor proteins possessing a modular architecture with the C-terminal consisting of a coiled-coil SARAH (Salvador-Rassf-Hippo) domain and the central portion being composed of Ras associated (RA) domain. Here, we investigate the effect of Rassf effectors on Mst1 function by mapping the interaction of various domains of Rassf1A/5 and Mst1 kinase using surface plasmon resonance (SPR). The results revealed that apart from the C-terminal SARAH domain of Mst1 which interacts to form heterodimers with Rassf1A/5, the N-terminal kinase domain of Mst1 plays a crucial role in the stabilization of this complex. In addition, SPR experiments show that the RA domains play an important role in fine-tuning the Mst1-Rassf interaction, with Rassf5 being a preferred partner over a similar Rassf1A construct. It was also demonstrated that the activity profile of Mst1 in presence of Rassf adaptors completely switches. A Rassf-Mst1 complexed version of the kinase becomes apoptotic by positively regulating Mst1-H2B mediated serine 14 histone H2B phosphorylation, a hallmark of chromatin condensation. In contrast, the heterodimerization of Mst1 with Rassf1A/5 suppresses the phosphorylation of FoxO, thereby inhibiting the downstream Mst1-FoxO signalling pathway. PMID:28327630

  18. Reactive oxygen species and p38 mitogen-activated protein kinase activate Bax to induce mitochondrial cytochrome c release and apoptosis in response to malonate.

    PubMed

    Gomez-Lazaro, M; Galindo, M F; Melero-Fernandez de Mera, R M; Fernandez-Gómez, F J; Concannon, C G; Segura, M F; Comella, J X; Prehn, J H M; Jordan, J

    2007-03-01

    Malonate, an inhibitor of mitochondrial complex II, is a widely used toxin to study neurodegeneration in Huntington's disease and ischemic stroke. We have shown previously that malonate increased reactive oxygen species (ROS) production in human SH-SY5Y neuroblastoma cells, leading to oxidative stress, cytochrome c release, and apoptotic cell death. Expression of a green fluorescent protein-Bax fusion protein in SH-SY5Y neuroblastoma cells demonstrated a Bax redistribution from the cytosol to mitochondria after 12 to 24 h of malonate treatment that coincided with mitochondrial potential collapse and chromatin condensation. Inhibition of Bax translocation using furosemide, as well as Bax gene deletion, afforded significant protection against malonate-induced apoptosis. Further experiments revealed that malonate induced a prominent increase in the level of activated p38 mitogen-activated protein (MAP) kinase and that treatment with the p38 MAP kinase inhibitor SKF86002 potently blocked malonate-induced Bax translocation and apoptosis. Treatment with vitamin E diminished ROS production, reduced the activation status of p38 MAP kinase, inhibited Bax translocation, and protected against malonate-induced apoptosis. Our data suggest that malonate-induced ROS production and subsequent p38 MAP kinase activation mediates the activation of the pro-apoptotic Bax protein to induce mitochondrial membrane permeabilization and neuronal apoptosis.

  19. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model

    PubMed Central

    Li, Zhen; Zhang, Renyu

    2017-01-01

    -assisted models also have much better quality than template-based models especially for membrane proteins. The 3D models built from our contact prediction have TMscore>0.5 for 208 of the 398 membrane proteins, while those from homology modeling have TMscore>0.5 for only 10 of them. Further, even if trained mostly by soluble proteins, our deep learning method works very well on membrane proteins. In the recent blind CAMEO benchmark, our fully-automated web server implementing this method successfully folded 6 targets with a new fold and only 0.3L-2.3L effective sequence homologs, including one β protein of 182 residues, one α+β protein of 125 residues, one α protein of 140 residues, one α protein of 217 residues, one α/β of 260 residues and one α protein of 462 residues. Our method also achieved the highest F1 score on free-modeling targets in the latest CASP (Critical Assessment of Structure Prediction), although it was not fully implemented back then. Availability http://raptorx.uchicago.edu/ContactMap/ PMID:28056090

  20. Using MapMyFitness to Place Physical Activity into Neighborhood Context

    PubMed Central

    Hirsch, Jana A.; James, Peter; Robinson, Jamaica R. M.; Eastman, Kyler M.; Conley, Kevin D.; Evenson, Kelly R.; Laden, Francine

    2014-01-01

    It is difficult to obtain detailed information on the context of physical activity at large geographic scales, such as the entire United States, as well as over long periods of time, such as over years. MapMyFitness is a suite of interactive tools for individuals to track their workouts online or using global positioning system in their phones or other wireless trackers. This method article discusses the use of physical activity data tracked using MapMyFitness to examine patterns over space and time. An overview of MapMyFitness, including data tracked, user information, and geographic scope, is explored. We illustrate the utility of MapMyFitness data using tracked physical activity by users in Winston-Salem, NC, USA between 2006 and 2013. Types of physical activities tracked are described, as well as the percent of activities occurring in parks. Strengths of MapMyFitness data include objective data collection, low participant burden, extensive geographic scale, and longitudinal series. Limitations include generalizability, behavioral change as the result of technology use, and potential ethical considerations. MapMyFitness is a powerful tool to investigate patterns of physical activity across large geographic and temporal scales. PMID:24653982

  1. MAP1272c encodes an NlpC/P60 protein, an antigen detected in cattle with Johne's disease.

    PubMed

    Bannantine, John P; Lingle, Cari K; Stabel, Judith R; Ramyar, Kasra X; Garcia, Brandon L; Raeber, Alex J; Schacher, Pascal; Kapur, Vivek; Geisbrecht, Brian V

    2012-07-01

    The protein encoded by MAP1272c has been shown to be an antigen of Mycobacterium avium subsp. paratuberculosis that contains an NlpC/P60 superfamily domain found in lipoproteins or integral membrane proteins. Proteins containing this domain have diverse enzymatic functions that include peptidases, amidases, and acetyltransferases. The NlpC protein was examined in comparison to over 100 recombinant proteins and showed the strongest antigenicity when analyzed with sera from cattle with Johne's disease. To further localize the immunogenicity of NlpC, recombinant proteins representing defined regions were expressed and evaluated with sera from cattle with Johne's disease. The region from amino acids 74 to 279 was shown to be the most immunogenic. This fragment was also evaluated against a commercially available enzyme-linked immunosorbent assay (ELISA). Two monoclonal antibodies were produced in mice immunized with the full-length protein, and each recognized a distinct epitope. These antibodies cross-reacted with proteins from other mycobacterial species and demonstrated variable sizes of the proteins expressed from these subspecies. Both antibodies were further analyzed, and their interaction with MAP1272c and MAP1204 was characterized by a solution-based, luminescent binding assay. These tools provide additional means to study a strong antigen of M. avium subsp. paratuberculosis.

  2. Autophagy Defects Suggested by Low Levels of Autophagy Activator MAP1S and High Levels of Autophagy Inhibitor LRPPRC Predict Poor Prognosis of Prostate Cancer Patients

    PubMed Central

    Jiang, Xianhan; Zhong, Weide; Huang, Hai; He, Huichan; Jiang, Funeng; Chen, Yanru; Yue, Fei; Zou, Jing; Li, Xun; He, Yongzhong; You, Pan; Yang, Weiqiang; Lai, Yiming; Wang, Fen; Liu, Leyuan

    2016-01-01

    MAP1S (originally named C19ORF5) is a widely distributed homolog of neuronal-specific MAP1A and MAP1B, and bridges autophagic components with microtubules and mitochondria to affect autophagosomal biogenesis and degradation. Mitochondrion-associated protein LRPPRC functions as an inhibitor for autophagy initiation to protect mitochondria from autophagy degradation. MAP1S and LRPPRC interact with each other and may collaboratively regulate autophagy although the underlying mechanism is yet unknown. Previously, we have reported that LRPPRC levels serve as a prognosis marker of patients with prostate adenocarcinomas (PCA), and that patients with high LRPPRC levels survive a shorter period after surgery than those with low levels of LRPPRC. MAP1S levels are elevated in diethylnitrosamine-induced hepatocelular carcinomas in wildtype mice and the exposed MAP1S-deficient mice develop more malignant hepatocellular carcinomas. We performed immunochemical analysis to evaluate the co-relationship among the levels of MAP1S, LRPPRC, P62, and γ-H2AX. Samples were collected from wildtype and prostate-specific PTEN-deficient mice, 111 patients with PCA who had been followed up for 10 years and 38 patients with benign prostate hyperplasia enrolled in hospitals in Guangzhou, China. The levels of MAP1S were generally elevated so the MAP1S-mediated autophagy was activated in PCA developed in either PTEN-deficient mice or patients than their respective benign tumors. The MAP1S levels among patients with PCA vary dramatically, and patients with low MAP1S levels survive a shorter period than those with high MAP1S levels. Levels of MAP1S in collaboration with levels of LRPPRC can serve as markers for prognosis of prostate cancer patients. PMID:25043940

  3. Analysis of origin and protein-protein interaction maps suggests distinct oncogenic role of nuclear EGFR during cancer evolution

    PubMed Central

    Sharip, Ainur; Abdukhakimova, Diyora; Wang, Xiao; Kim, Alexey; Kim, Yevgeniy; Sharip, Aigul; Orakov, Askarbek; Miao, Lixia; Sun, Qinglei; Chen, Yue; Chen, Zhenbang; Xie, Yingqiu

    2017-01-01

    Receptor tyrosine kinase EGFR usually is localized on plasma membrane to induce progression of many cancers including cancers in children (Bodey et al. In Vivo. 2005, 19:931-41), but it contains a nuclear localization signal (NLS) that mediates EGFR nuclear translocation (Lin et al. Nat Cell Biol. 2001, 3:802-8). Here we report that NLS of EGFR has its old evolutionary origin. Protein-protein interaction maps suggests that nEGFR pathways are different from membrane EGFR and EGF is not found in nEGFR network while androgen receptor (AR) is found, which suggests the evolution of prostate cancer, a well-known AR driven cancer, through changes in androgen- or EGF-dependence. Database analysis suggests that nEGFR correlates with the tumor grades especially in prostate cancer patients. Structural predication analysis suggests that NLS can compromise the differential protein binding to EGFR through stretch linkers with evolutionary mutation from N to V. In experiment, elevation of nEGFR but not membrane EGFR was found in castration resistant prostate cancer cells. Finally, systems analysis of NLS and transmembrane domain (TM) suggests that NLS has old origin while NLS neighboring domain of TM has been undergone accelerated evolution. Thus nEGFR has an old origin resembling the cancer evolution but TM may interfere with NLS driven signaling for natural selection of survival to evade NLS induced aggressive cancers. Our data suggest NLS is a dynamic inducer of EGFR oncogenesis during evolution for advanced cancers. Our model provides novel insights into the evolutionary role of NLS of oncogenic kinases in cancers. PMID:28382154

  4. Global Analysis of Protein Activities Using Proteome Chips

    NASA Astrophysics Data System (ADS)

    Zhu, Heng; Bilgin, Metin; Bangham, Rhonda; Hall, David; Casamayor, Antonio; Bertone, Paul; Lan, Ning; Jansen, Ronald; Bidlingmaier, Scott; Houfek, Thomas; Mitchell, Tom; Miller, Perry; Dean, Ralph A.; Gerstein, Mark; Snyder, Michael

    2001-09-01

    To facilitate studies of the yeast proteome, we cloned 5800 open reading frames and overexpressed and purified their corresponding proteins. The proteins were printed onto slides at high spatial density to form a yeast proteome microarray and screened for their ability to interact with proteins and phospholipids. We identified many new calmodulin- and phospholipid-interacting proteins; a common potential binding motif was identified for many of the calmodulin-binding proteins. Thus, microarrays of an entire eukaryotic proteome can be prepared and screened for diverse biochemical activities. The microarrays can also be used to screen protein-drug interactions and to detect posttranslational modifications.

  5. Reverberation Mapping of Accretion Disk Winds in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Mangham, S.

    2015-09-01

    Reverberation mapping is commonly used for determining black holes masses in AGN from the delayed response of the Broad Line Region (BLR) to fluctuations in the intensity of the AGN continuum source. However, it can also be an effective tool for investigating the structure and kinematics of the BLR itself. Much prior work has been performed to simulate the transfer functions associated with a range of basic geometries (e.g. Keplerian disks, Hubble-like outflows, etc). One promising model for the BLR is that the emission lines are formed in an equatorial accretion disk wind. Here, we predict the reverberation signatures expected from such a model, by modifying the radiative transfer and ionisation code Python that has previously been used to model broad absorption line quasars. This allows to account self-consistently for ionization and radiative transfer effects in the predicted BLR response, which are normally ignored in such calculations. We discuss the agreement between our results and prior work and consider the possibility of detecting the signature of rotating equatorial disk winds in observations obtained by velocity-resolved reverberation mapping campaigns.

  6. The Application of Ligand-Mapping Molecular Dynamics Simulations to the Rational Design of Peptidic Modulators of Protein-Protein Interactions.

    PubMed

    Tan, Yaw Sing; Spring, David R; Abell, Chris; Verma, Chandra S

    2015-07-14

    A computational ligand-mapping approach to detect protein surface pockets that interact with hydrophobic moieties is presented. In this method, we incorporated benzene molecules into explicit solvent molecular dynamics simulations of various protein targets. The benzene molecules successfully identified the binding locations of hydrophobic hot-spot residues and all-hydrocarbon cross-links from known peptidic ligands. They also unveiled cryptic binding sites that are occluded by side chains and the protein backbone. Our results demonstrate that ligand-mapping molecular dynamics simulations hold immense promise to guide the rational design of peptidic modulators of protein-protein interactions, including that of stapled peptides, which show promise as an exciting new class of cell-penetrating therapeutic molecules.

  7. Opaque7 Encodes an Acyl-Activating Enzyme-Like Protein That Affects Storage Protein Synthesis in Maize Endosperm

    PubMed Central

    Wang, Gang; Sun, Xiaoliang; Wang, Guifeng; Wang, Fei; Gao, Qiang; Sun, Xin; Tang, Yuanping; Chang, Chong; Lai, Jinsheng; Zhu, Lihuang; Xu, Zhengkai; Song, Rentao

    2011-01-01

    In maize, a series of seed mutants with starchy endosperm could increase the lysine content by decreased amount of zeins, the main storage proteins in endosperm. Cloning and characterization of these mutants could reveal regulatory mechanisms for zeins accumulation in maize endosperm. Opaque7 (o7) is a classic maize starchy endosperm mutant with large effects on zeins accumulation and high lysine content. In this study, the O7 gene was cloned by map-based cloning and confirmed by transgenic functional complementation and RNAi. The o7-ref allele has a 12-bp in-frame deletion. The four-amino-acid deletion caused low accumulation of o7 protein in vivo. The O7 gene encodes an acyl-activating enzyme with high similarity to AAE3. The opaque phenotype of the o7 mutant was produced by the reduction of protein body size and number caused by a decrease in the α-zeins concentrations. Analysis of amino acids and metabolites suggested that the O7 gene might affect amino acid biosynthesis by affecting α-ketoglutaric acid and oxaloacetic acid. Transgenic rice seeds containing RNAi constructs targeting the rice ortholog of maize O7 also produced lower amounts of seed proteins and displayed an opaque endosperm phenotype, indicating a conserved biological function of O7 in cereal crops. The cloning of O7 revealed a novel regulatory mechanism for storage protein synthesis and highlighted an effective target for the genetic manipulation of storage protein contents in cereal seeds. PMID:21954158

  8. Activity dependent mechanisms of visual map formation--from retinal waves to molecular regulators.

    PubMed

    Assali, Ahlem; Gaspar, Patricia; Rebsam, Alexandra

    2014-11-01

    The refinement of neural connections requires activity-dependent mechanisms in addition to the genetic program initially establishing wiring diagrams. The well-understood organization of the visual system makes it an accessible model for analyzing the contribution of activity in the formation of connectivity. Prior to visual experience, patterned spontaneous activity in the form of retinal waves has an important role for the establishment of eye-specific and retinotopic maps by acting on the refinement of axon arborization. In the present review, which focuses on experimental data obtained in mice and ferrets, we highlight the features of retinal activity that are important for visual map formation and question whether synaptic release and Hebbian based competition rules apply to this system. Recent evidence using genetic tools that allowed the manipulation of different features of neural activity have clarified the controversy on whether activity is instructive or permissive for visual map formation. Furthermore, current evidence strongly suggests that different mechanisms are at play for different types of axons (ipsilateral vs. contralateral), maps (eye-specific vs. retinotopic) or targets. Many molecules that either modulate activity or are modulated by activity are important in the formation of the visual map, such as adenylate cyclase 1, serotonin, or molecules from the immune system. Finally, new players in the game include retrograde messengers signaling from the target cell to the retinal axons as well as microglia that could help to eliminate inappropriate synapses.

  9. Mapping of Functional Subdomains in the Terminal Protein Domain of Hepatitis B Virus Polymerase.

    PubMed

    Clark, Daniel N; Flanagan, John M; Hu, Jianming

    2017-02-01

    Hepatitis B virus (HBV) encodes a multifunction reverse transcriptase or polymerase (P), which is composed of several domains. The terminal protein (TP) domain is unique to HBV and related hepadnaviruses and is required for specifically binding to the viral pregenomic RNA (pgRNA). Subsequently, the TP domain is necessary for pgRNA packaging into viral nucleocapsids and the initiation of viral reverse transcription for conversion of the pgRNA to viral DNA. Uniquely, the HBV P protein initiates reverse transcription via a protein priming mechanism using the TP domain as a primer. No structural homologs or high-resolution structure exists for the TP domain. Secondary structure prediction identified three disordered loops in TP with highly conserved sequences. A meta-analysis of mutagenesis studies indicated these predicted loops are almost exclusively where functionally important residues are located. Newly constructed TP mutations revealed a priming loop in TP which plays a specific role in protein-primed DNA synthesis beyond simply harboring the site of priming. Substitutions of potential sites of phosphorylation surrounding the priming site demonstrated that these residues are involved in interactions critical for priming but are unlikely to be phosphorylated during viral replication. Furthermore, the first 13 and 66 TP residues were shown to be dispensable for protein priming and pgRNA binding, respectively. Combining current and previous mutagenesis work with sequence analysis has increased our understanding of TP structure and functions by mapping specific functions to distinct predicted secondary structures and will facilitate antiviral targeting of this unique domain.

  10. A Fluorescence-Based Thermal Shift Assay Identifies Inhibitors of Mitogen Activated Protein Kinase Kinase 4

    PubMed Central

    Krishna, Sankar N.; Luan, Chi-Hao; Mishra, Rama K.; Xu, Li; Scheidt, Karl A.; Anderson, Wayne F.; Bergan, Raymond C.

    2013-01-01

    Prostate cancer (PCa) is the second highest cause of cancer death in United States males. If the metastatic movement of PCa cells could be inhibited, then mortality from PCa could be greatly reduced. Mitogen-activated protein kinase kinase 4 (MAP2K4) has previously been shown to activate pro-invasion signaling pathways in human PCa. Recognizing that MAP2K4 represents a novel and validated therapeutic target, we sought to develop and characterize an efficient process for the identification of small molecules that target MAP2K4. Using a fluorescence-based thermal shift assay (FTS) assay, we first evaluated an 80 compound library of known kinase inhibitors, thereby identifying 8 hits that thermally stabilized MAP2K4 in a concentration dependent manner. We then developed an in vitro MAP2K4 kinase assay employing the biologically relevant downstream substrates, JNK1 and p38 MAPK, to evaluate kinase inhibitory function. In this manner, we validated the performance of our initial FTS screen. We next applied this approach to a 2000 compound chemically diverse library, identified 7 hits, and confirmed them in the in vitro kinase assay. Finally, by coupling our structure-activity relationship data to MAP2K4's crystal structure, we constructed a model for ligand binding. It predicts binding of our identified inhibitory compounds to the ATP binding pocket. Herein we report the creation of a robust inhibitor-screening platform with the ability to inform the discovery and design of new and potent MAP2K4 inhibitors. PMID:24339940

  11. Development of precise maps in visual cortex requires patterned spontaneous activity in the retina.

    PubMed

    Cang, Jianhua; Rentería, René C; Kaneko, Megumi; Liu, Xiaorong; Copenhagen, David R; Stryker, Michael P

    2005-12-08

    The visual cortex is organized into retinotopic maps that preserve an orderly representation of the visual world, achieved by topographically precise inputs from the lateral geniculate nucleus. We show here that geniculocortical mapping is imprecise when the waves of spontaneous activity in the retina during the first postnatal week are disrupted genetically. This anatomical mapping defect is present by postnatal day 8 and has functional consequences, as revealed by optical imaging and microelectrode recording in adults. Pharmacological disruption of these retinal waves during the first week phenocopies the mapping defect, confirming both the site and the timing of the disruption in neural activity responsible for the defect. Analysis shows that the geniculocortical miswiring is not a trivial or necessary consequence of the retinogeniculate defect. Our findings demonstrate that disrupting early spontaneous activity in the eye alters thalamic connections to the cortex.

  12. Performance Benchmarking Tsunami Models for NTHMP's Inundation Mapping Activities

    NASA Astrophysics Data System (ADS)

    Horrillo, Juan; Grilli, Stéphan T.; Nicolsky, Dmitry; Roeber, Volker; Zhang, Joseph

    2015-03-01

    The coastal states and territories of the United States (US) are vulnerable to devastating tsunamis from near-field or far-field coseismic and underwater/subaerial landslide sources. Following the catastrophic 2004 Indian Ocean tsunami, the National Tsunami Hazard Mitigation Program (NTHMP) accelerated the development of public safety products for the mitigation of these hazards. In response to this initiative, US coastal states and territories speeded up the process of developing/enhancing/adopting tsunami models that can be used for developing inundation maps and evacuation plans. One of NTHMP's requirements is that all operational and inundation-based numerical (O&I) models used for such purposes be properly validated against established standards to ensure the reliability of tsunami inundation maps as well as to achieve a basic level of consistency between parallel efforts. The validation of several O&I models was considered during a workshop held in 2011 at Texas A&M University (Galveston). This validation was performed based on the existing standard (OAR-PMEL-135), which provides a list of benchmark problems (BPs) covering various tsunami processes that models must meet to be deemed acceptable. Here, we summarize key approaches followed, results, and conclusions of the workshop. Eight distinct tsunami models were validated and cross-compared by using a subset of the BPs listed in the OAR-PMEL-135 standard. Of the several BPs available, only two based on laboratory experiments are detailed here for sake of brevity; since they are considered as sufficiently comprehensive. Average relative errors associated with expected parameters values such as maximum surface amplitude/runup are estimated. The level of agreement with the reference data, reasons for discrepancies between model results, and some of the limitations are discussed. In general, dispersive models were found to perform better than nondispersive models, but differences were relatively small, in part

  13. Tyrosine kinase/p21ras/MAP-kinase pathway activation by estradiol-receptor complex in MCF-7 cells.

    PubMed Central

    Migliaccio, A; Di Domenico, M; Castoria, G; de Falco, A; Bontempo, P; Nola, E; Auricchio, F

    1996-01-01

    The mechanism by which estradiol acts on cell multiplication is still unclear. Under conditions of estradiol-dependent growth, estradiol treatment of human mammary cancer MCF-7 cells triggers rapid and transient activation of the mitogen-activated (MAP) kinases, erk-1 and erk-2, increases the active form of p21ras, tyrosine phosphorylation of Shc and p190 protein and induces association of p190 to p21ras-GAP. Both Shc and p190 are substrates of activated src and once phosphorylated, they interact with other proteins and upregulate p21ras. Estradiol activates the tyrosine kinase/p21ras/MAP-kinase pathway in MCF-7 cells with kinetics which are similar to those of peptide mitogens. It is only after introduction of the human wild-type 67 kDa estradiol receptor cDNA that Cos cells become estradiol-responsive in terms of erk-2 activity. This finding, together with the inhibition by the pure anti-estrogen ICI 182 780 of the stimulatory effect of estradiol on each step of the pathway in MCF-7 cells proves that the classic estradiol receptor is responsible for the transduction pathway activation. Transfection experiments of Cos cells with the estradiol receptor cDNA and in vitro experiments with c-src show that the estradiol receptor activates c-src and this activation requires occupancy of the receptor by hormone. Our experiments suggest that c-src is an initial and integral part of the signaling events mediated by the estradiol receptor. Images PMID:8635462

  14. Cloning and expression of a cDNA for the T-cell-activating protein TAP.

    PubMed Central

    Reiser, H; Coligan, J; Palmer, E; Benacerraf, B; Rock, K L

    1988-01-01

    The T-cell-activating protein TAP is a murine phosphatidylinositol-anchored glycoprotein whose expression is controlled by the Ly-6 locus. Previous studies have suggested an important role for this protein in physiological T-cell activation. Using oligonucleotide probes, we have now isolated a cDNA clone whose predicted sequence would encode a protein with an NH2-terminal sequence identical to that of the TAP molecule. Further analysis of the predicted protein sequence revealed a cysteine-rich protein with a hydrophobic domain at the COOH terminus and without N-linked glycosylation sites--all features consistent with our previous analysis of the TAP protein. In Southern blot analysis, the Ly-6.2 cDNA clone detects a multigene family and a restriction fragment length polymorphism that maps precisely to the Ly-6 locus. Expression of the cDNA clone in COS cells demonstrates that it codes for TAP and clarifies the relationship between the epitopes recognized by various alpha Ly-6 monoclonal antibodies. Finally, we have studied the expression of Ly-6 mRNA in a variety of cell lineages. Ly-6 transcripts were detected in all organs examined, including spleen, kidney, lung, brain, and heart. This demonstrates that the Ly-6 locus is transcriptionally active in a wide range of organs and suggests that the role of TAP or TAP-like proteins might extend to other tissues. Images PMID:2895473

  15. Spatial Mapping of Protein Abundances in the Mouse Brain by Voxelation Integrated with High-Throughput Liquid Chromatography - Mass Spectrometry

    SciTech Connect

    Petyuk, Vladislav A; Qian, Weijun; Chin, Mark H; Wang, Haixing H; Livesay, Eric A; Monroe, Matthew E; Adkins, Joshua N; Jaitly, Navdeep; Anderson, David J; Camp, David G; Smith, Desmond J; Smith, Richard D

    2007-01-25

    Temporally and spatially resolved mapping of protein abundance patterns within the mammalian brain is of significant interest for understanding brain function and molecular etiologies of neurodegenerative diseases; however, such imaging efforts have been greatly challenged by complexity of the proteome, throughput and sensitivity of applied analytical methodologies, and accurate quantitation of protein abundances across the brain. Here, we describe a methodology for comprehensive spatial proteome mapping that addresses these challenges by employing voxelation integrated with automated microscale sample processing, high-throughput LC system coupled with high resolution Fourier transform ion cyclotron mass spectrometer and a “universal” stable isotope labeled reference sample approach for robust quantitation. We applied this methodology as a proof-of-concept trial for the analysis of protein distribution within a single coronal slice of a C57BL/6J mouse brain. For relative quantitation of the protein abundances across the slice, an 18O-isotopically labeled reference sample, derived from a whole control coronal slice from another mouse, was spiked into each voxel sample and stable isotopic intensity ratios were used to obtain measures of relative protein abundances. In total, we generated maps of protein abundance patterns for 1,028 proteins. The significant agreement of the protein distributions with previously reported data supports the validity of this methodology, which opens new opportunities for studying the spatial brain proteome and its dynamics during the course of disease progression and other important biological and associated health aspects in a discovery-driven fashion.

  16. Rac-1 and Raf-1 kinases, components of distinct signaling pathways, activate myotonic dystrophy protein kinase

    NASA Technical Reports Server (NTRS)

    Shimizu, M.; Wang, W.; Walch, E. T.; Dunne, P. W.; Epstein, H. F.

    2000-01-01

    Myotonic dystrophy protein kinase (DMPK) is a serine-threonine protein kinase encoded by the myotonic dystrophy (DM) locus on human chromosome 19q13.3. It is a close relative of other kinases that interact with members of the Rho family of small GTPases. We show here that the actin cytoskeleton-linked GTPase Rac-1 binds to DMPK, and coexpression of Rac-1 and DMPK activates its transphosphorylation activity in a GTP-sensitive manner. DMPK can also bind Raf-1 kinase, the Ras-activated molecule of the MAP kinase pathway. Purified Raf-1 kinase phosphorylates and activates DMPK. The interaction of DMPK with these distinct signals suggests that it may play a role as a nexus for cross-talk between their respective pathways and may partially explain the remarkable pleiotropy of DM.

  17. Gc protein (vitamin D-binding protein): Gc genotyping and GcMAF precursor activity.

    PubMed

    Nagasawa, Hideko; Uto, Yoshihiro; Sasaki, Hideyuki; Okamura, Natsuko; Murakami, Aya; Kubo, Shinichi; Kirk, Kenneth L; Hori, Hitoshi

    2005-01-01

    The Gc protein (human group-specific component (Gc), a vitamin D-binding protein or Gc globulin), has important physiological functions that include involvement in vitamin D transport and storage, scavenging of extracellular G-actin, enhancement of the chemotactic activity of C5a for neutrophils in inflammation and macrophage activation (mediated by a GalNAc-modified Gc protein (GcMAF)). In this review, the structure and function of the Gc protein is focused on especially with regard to Gc genotyping and GcMAF precursor activity. A discussion of the research strategy "GcMAF as a target for drug discovery" is included, based on our own research.

  18. A novel method for simultaneous production of two ribosome-inactivating proteins, α-MMC and MAP30, from Momordica charantia L.

    PubMed

    Meng, Yao; Lin, Sen; Liu, Shuangfeng; Fan, Xiang; Li, Gangrui; Meng, Yanfa

    2014-01-01

    Alpha-momorcharin (α-MMC) and momordica anti-HIV protein (MAP30) from Momordica charantia L. have been confirmed to possess anti-tumor and anti-virus activities. Traditional purification methods of these two ribosome-inactivating proteins (RIPs) were separate which was time consuming and cost effective as well as low efficient. In order to obtain sufficient samples for researches, a strategy combining ion-exchange and gel filtration chromatography was developed and optimized in this study. Using this novel purification method, averagely 1162 mg of α-MMC and 535 mg of MAP30 were obtained from 400 g of Momordica charantia L seeds. The homogeneities of them were assessed by electrophoresis analysis. Determination of molecular weights of α-MMC and MAP30 were 28.585 kDa and 29.094 kDa by MALDI-TOF/TOF and pI were 9.02 and 9.12, respectively. The single glycoproteins were identified by Periodate-Schiff's base (PAS) and the saccharide content was tested to be 1.25% and 1.1% by anthrone-sulfuric acid method. Biological activities were evidenced by their ability to inhibit proliferation of lung adenocarcinoma A549 cell and to convert supercoiled plasmid pUC18 into relaxed forms. Finally, we also found that both two RIPs exhibited no superoxide dismutase (SOD) activity.

  19. AKAP-Lbc nucleates a protein kinase D activation scaffold.

    PubMed

    Carnegie, Graeme K; Smith, F Donelson; McConnachie, George; Langeberg, Lorene K; Scott, John D

    2004-09-24

    The transmission of cellular signals often proceeds through multiprotein complexes where enzymes are positioned in proximity to their upstream activators and downstream substrates. In this report we demonstrate that the A-kinase anchoring protein AKAP-Lbc assembles an activation complex for the lipid-dependent enzyme protein kinase D (PKD). Using a combination of biochemical, enzymatic, and immunofluorescence techniques, we show that the anchoring protein contributes to PKD activation in two ways: it recruits an upstream kinase PKCeta and coordinates PKA phosphorylation events that release activated protein kinase D. Thus, AKAP-Lbc synchronizes PKA and PKC activities in a manner that leads to the activation of a third kinase. This configuration illustrates the utility of kinase anchoring as a mechanism to constrain the action of broad-spectrum enzymes.

  20. Regulation of the activity of protein kinases by endogenous heat stable protein inhibitors.

    PubMed

    Szmigielski, A

    1985-01-01

    Protein kinase activities are regulated by endogenous thermostable protein inhibitors. Type I inhibitor is a protein of MW 22,000-24,000 which inhibits specifically cyclic AMP-(cAMP) dependent protein kinase (APK) as a competitive inhibitor of catalytic subunits of the enzyme. Type I inhibitor activity changes inversely according to the activation of adenylate cyclase and the changes in cAMP content in tissues. It seems that type I inhibitor serves as a factor preventing spontaneous cAMP-dependent phosphorylation in unstimulated cell. The other thermostable protein which inhibits APK activity has been found in Sertoli cell-enriched testis (testis inhibitor). Physiological role of the testis inhibitor is unknown. Type II inhibitor is a protein of MW 15,000 which blocks phosphorylation mediated by cAMP and cyclic GMP (cGMP) dependent (APK and GPK) and cyclic nucleotide independent protein kinases as a competitive inhibitor of substrate proteins. Activity of this inhibitor specifically changes in reciprocal manner to the changes in cGMP content. It seems that type II inhibitor serves as a factor preventing the phosphorylation catalyzed by GPK when cGMP content is low. Stimulation of guanylate cyclase and activation of GPK is followed by a decrease of type II inhibitor activity. This change in relationship between activities of GPK and type II inhibitor allows for effective phosphorylation catalyzed by this enzyme when cGMP content is increased.

  1. The specific activation of TRPC4 by Gi protein subtype.

    PubMed

    Jeon, Jae-Pyo; Lee, Kyu Pil; Park, Eun Jung; Sung, Tae Sik; Kim, Byung Joo; Jeon, Ju-Hong; So, Insuk

    2008-12-12

    The classical type of transient receptor potential channel (TRPC) is a molecular candidate for Ca(2+)-permeable cation channels in mammalian cells. Especially, TRPC4 has the similar properties to Ca(2+)-permeable nonselective cation channels (NSCCs) activated by muscarinic stimulation in visceral smooth muscles. In visceral smooth muscles, NSCCs activated by muscarinic stimulation were blocked by anti-Galphai/o antibodies. However, there is still no report which Galpha proteins are involved in the activation process of TRPC4. Among Galpha proteins, only Galphai protein can activate TRPC4 channel. The activation effect of Galphai was specific for TRPC4 because Galphai has no activation effect on TRPC5, TRPC6 and TRPV6. Coexpression with muscarinic receptor M2 induced TRPC4 current activation by muscarinic stimulation with carbachol, which was inhibited by pertussis toxin. These results suggest that Galphai is involved specifically in the activation of TRPC4.

  2. Comprehensive mapping of protein N-glycosylation in human liver by combining hydrophilic interaction chromatography and hydrazide chemistry.

    PubMed

    Zhu, Jun; Sun, Zhen; Cheng, Kai; Chen, Rui; Ye, Mingliang; Xu, Bo; Sun, Deguang; Wang, Liming; Liu, Jing; Wang, Fangjun; Zou, Hanfa

    2014-03-07

    Although glycoproteomics is greatly developed in recent years, our knowledge about N-glycoproteome of human tissues is still very limited. In this study, we comprehensively mapped the N-glycosylation sites of human liver by combining click maltose-hydrophilic interaction chromatography (HILIC) and the improved hydrazide chemistry. The specificity could be as high as 90% for hydrazide chemistry and 80% for HILIC. Altogether, we identified 14,480 N-glycopeptides matched with N-!P-[S|T|C] sequence motif from human liver, corresponding to 2210 N-glycoproteins and 4783 N-glycosylation sites. These N-glycoproteins are widely involved into different types of biological processes, such as hepatic stellate cell activation and acute phase response of human liver, which all highly associate with the progression of liver diseases. Moreover, the exact N-glycosylation sites of some key-regulating proteins within different human liver physiological processes were also obtained, such as E-cadherin, transforming growth factor beta receptor and 29 members of G protein coupled receptors family.

  3. A novel approach for targeted elimination of CSPG4-positive triple-negative breast cancer cells using a MAP tau-based fusion protein.

    PubMed

    Amoury, Manal; Mladenov, Radoslav; Nachreiner, Thomas; Pham, Anh-Tuan; Hristodorov, Dmitrij; Di Fiore, Stefano; Helfrich, Wijnand; Pardo, Alessa; Fey, Georg; Schwenkert, Michael; Thepen, Theophilus; Kiessling, Fabian; Hussain, Ahmad F; Fischer, Rainer; Kolberg, Katharina; Barth, Stefan

    2016-08-15

    Chondroitin sulfate proteoglycan 4 (CSPG4) has been identified as a highly promising target antigen for immunotherapy of triple-negative breast cancer (TNBC). TNBC represents a highly aggressive heterogeneous group of tumors lacking expression of estrogen, progesterone and human epidermal growth factor receptor 2. TNBC is particularly prevalent among young premenopausal women. No suitable targeted therapies are currently available and therefore, novel agents for the targeted elimination of TNBC are urgently needed. Here, we present a novel cytolytic fusion protein (CFP), designated αCSPG4(scFv)-MAP, that consists of a high affinity CSPG4-specific single-chain antibody fragment (scFv) genetically fused to a functionally enhanced form of the human microtubule-associated protein (MAP) tau. Our data indicate that αCSPG4(scFv)-MAP efficiently targets CSPG4(+) TNBC-derived cell lines MDA-MB-231 and Hs 578T and potently inhibits their growth with IC50 values of ∼200 nM. Treatment with αCSPG(scFv)-MAP resulted in induction of the mitochondrial stress pathway by activation of caspase-9 as well as endonuclease G translocation to the nucleus, while induction of the caspase-3 apoptosis pathway was not detectable. Importantly, in vivo studies in mice bearing human breast cancer xenografts revealed efficient targeting to and accumulation of αCSPG4(scFv)-MAP at tumor sites resulting in prominent tumor regression. Taken together, this preclinical proof of concept study confirms the potential clinical value of αCSPG4(scFv)-MAP as a novel targeted approach for the elimination of CSPG4-positive TNBC.

  4. An isoform of microtubule-associated protein 2 (MAP2) containing four repeats of the tubulin-binding motif.

    PubMed

    Doll, T; Meichsner, M; Riederer, B M; Honegger, P; Matus, A

    1993-10-01

    Microtubule-associated protein 2 (MAP2) exists in both high- and low-molecular mass isoforms, each of which has a tubulin-binding domain consisting of 3 imperfect tandem repeats of 31 amino acids containing a more highly conserved 18 amino acid 'core' sequence. We describe here a novel form of low molecular mass MAP2 (MAP2c) that contains an additional 4th repeat of this tubulin-binding motif. Like the 3 previously known repeat sequences, this 4th copy is highly conserved between MAP2 and the two other known members of the same gene family, tau and MAP4. In each of these three genes the additional 4th repeat is inserted between the 1st and 2nd repeats of the 3-repeat form of the molecule. Experiments with brain cell cultures, in which the relative proportions of neurons and glia had been manipulated by drug treatment, showed that 4-repeat MAP2c is associated with glial cells whereas 3-repeat MAP2c is expressed in neurons. Whereas 3-repeat MAP2c is expressed early in development and then declines, the level of 4-repeat MAP2c increases later in development, corresponding to the relatively late differentiation of glial cells compared to neurons. When transfected into non-neuronal cells, the 4-repeat version of MAP2c behaved indistinguishably from the 3-repeat form in stabilising and rearranging cellular microtubules. The presence of an additional 4th repeat of the tubulin-binding motif in all three members of the MAP2 gene family suggests that this variant arose prior to their differentiation from an ancestral gene.

  5. Assessment of the Activation State of Rho Family GTP-Binding Proteins in Breast Cancer Cells and Specimens

    DTIC Science & Technology

    2004-08-01

    with the yeast cell division cycle protein Caenorhabditis elegans , 23 in Drosophila Cdc24 and the human break point cluster region melanogaster and 46...Graf fused to MLL Abbreviations: C. elegans , Caenorhabditis elegans ; FAK, focal-adhesion kinase; GAP, GTPase-activating protein; MAP, mitogen...suppressors are the prominent ones. Overexpression or mutation of these receptors and many signal transducers downstream of these receptors, as well as genetic

  6. Protein Crystal Growth Activities on STS-42

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Protein Crystal Growth (PCG) middeck payload is currently manifested to fly on STS-42 in January 1992. This payload is a joint effort between NASA s Office of Commercial Programs (OCP) and Office of Space Science and Applications (OSSA). The PCG experiments are managed by the Center for Macromolecular Crystallography (CMC), a NASA Center for the Commercial Development of Space (CCDS) based at the University of Alabama at Birmingham (UAB). This is the eighth flight of a payload in the PCG program that is jointly sponsored by the OCP and the OSSA. The flight hardware for STS-42 includes six Vapor Diffusion Apparatus (VDA) trays stored in two Refrigerator/Incubator Modules (R/TM s). The VDA trays will simultaneously conduct 120 experiments involving 15 different protein compounds, four of which are sponsored by the OCP, the UAB CCDS, and four co-investigators.

  7. Breadboard activities for advanced protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Banish, Michael

    1993-01-01

    The proposed work entails the design, assembly, testing, and delivery of a turn-key system for the semi-automated determination of protein solubilities as a function of temperature. The system will utilize optical scintillation as a means of detecting and monitoring nucleation and crystallite growth during temperature lowering (or raising, with retrograde solubility systems). The deliverables of this contract are: (1) turn-key scintillation system for the semi-automatic determination of protein solubilities as a function of temperature, (2) instructions and software package for the operation of the scintillation system, and (3) one semi-annual and one final report including the test results obtained for ovostatin with the above scintillation system.

  8. Bayesian active learning of neural firing rate maps with transformed gaussian process priors.

    PubMed

    Park, Mijung; Weller, J Patrick; Horwitz, Gregory D; Pillow, Jonathan W

    2014-08-01

    A firing rate map, also known as a tuning curve, describes the nonlinear relationship between a neuron's spike rate and a low-dimensional stimulus (e.g., orientation, head direction, contrast, color). Here we investigate Bayesian active learning methods for estimating firing rate maps in closed-loop neurophysiology experiments. These methods can accelerate the characterization of such maps through the intelligent, adaptive selection of stimuli. Specifically, we explore the manner in which the prior and utility function used in Bayesian active learning affect stimulus selection and performance. Our approach relies on a flexible model that involves a nonlinearly transformed gaussian process (GP) prior over maps and conditionally Poisson spiking. We show that infomax learning, which selects stimuli to maximize the information gain about the firing rate map, exhibits strong dependence on the seemingly innocuous choice of nonlinear transformation function. We derive an alternate utility function that selects stimuli to minimize the average posterior variance of the firing rate map and analyze the surprising relationship between prior parameterization, stimulus selection, and active learning performance in GP-Poisson models. We apply these methods to color tuning measurements of neurons in macaque primary visual cortex.

  9. Mapping Active Faults and Tectonic Geomorphology offshore central California

    NASA Astrophysics Data System (ADS)

    Johnson, S. Y.; Watt, J. T.; Hart, P. E.; Sliter, R. W.; Wong, F. L.

    2009-12-01

    In June 2008, and July 2009, the USGS conducted two high-resolution, marine, seismic-reflection surveys across the continental shelf and upper slope between Piedras Blancas and Point Sal, central California, in order to better characterize regional earthquake sources. More than 1,300 km of single-channel seismic data were acquired aboard the USGS R/V Parke Snavely using a 500-joule mini-sparker source fired at a 0.5-second shot interval and recorded with a 15-meter streamer. Most tracklines were run perpendicular to the coast at 800-meter spacing, extending from the nearshore (~ 10-15 m water depth) to as far as 20 km offshore. Sub-bottom imaging varies with substrate, ranging from outstanding (100 to 150 m of penetration) in inferred Quaternary shallow marine, shelf and upper slope deposits to poor (0 to 10 m) in the Mesozoic basement rocks. Marine magnetic data were collected simultaneously on this survey, and both data sets are being integrated with new aeromagnetic data, publicly available industry seismic-reflection data, onshore geology, seismicity, and high-resolution bathymetry. Goals of the study are to map geology, structure, and sediment distribution; to document fault location, length, segmentation, shallow geometry and structure; and to identify possible sampling targets for constraining fault slip rates, earthquake recurrence, and tsunami hazard potential. The structure and tectonic geomorphology of the >100-km-long, right-lateral, Hosgri fault zone and its connections to the Los Osos, Pecho, Oceano and other northwest-trending inboard faults are the focus of this ongoing work. The Hosgri fault forms the eastern margin of the offshore Santa Maria basin and coincides in places with the outer edge of the narrow (5- to 15-km-wide), structurally complex continental shelf. The Hosgri is imaged as a relatively continuous, vertical fault zone that extends upward to the seafloor; varies significantly and rapidly along strike; and incorporates numerous

  10. Mapping the Sinorhizobium meliloti 1021 solute-binding protein-dependent transportome

    PubMed Central

    Mauchline, T. H.; Fowler, J. E.; East, A. K.; Sartor, A. L.; Zaheer, R.; Hosie, A. H. F.; Poole, P. S.; Finan, T. M.

    2006-01-01

    The number of solute-binding protein-dependent transporters in rhizobia is dramatically increased compared with the majority of other bacteria so far sequenced. This increase may be due to the high affinity of solute-binding proteins for solutes, permitting the acquisition of a broad range of growth-limiting nutrients from soil and the rhizosphere. The transcriptional induction of these transporters was studied by creating a suite of plasmid and integrated fusions to nearly all ATP-binding cassette (ABC) and tripartite ATP-independent periplasmic (TRAP) transporters of Sinorhizobium meliloti. In total, specific inducers were identified for 76 transport systems, amounting to ≈47% of the ABC uptake systems and 53% of the TRAP transporters in S. meliloti. Of these transport systems, 64 are previously uncharacterized in Rhizobia and 24 were induced by solutes not known to be transported by ABC- or TRAP-uptake systems in any organism. This study provides a global expression map of one of the largest transporter families (transportome) and an invaluable tool to both understand their solute specificity and the relationships between members of large paralogous families. PMID:17101990

  11. New constitutive latex osmotin-like proteins lacking antifungal activity.

    PubMed

    Freitas, Cleverson D T; Silva, Maria Z R; Bruno-Moreno, Frederico; Monteiro-Moreira, Ana C O; Moreira, Renato A; Ramos, Márcio V

    2015-11-01

    Proteins that share similar primary sequences to the protein originally described in salt-stressed tobacco cells have been named osmotins. So far, only two osmotin-like proteins were purified and characterized of latex fluids. Osmotin from Carica papaya latex is an inducible protein lacking antifungal activity, whereas the Calotropis procera latex osmotin is a constitutive antifungal protein. To get additional insights into this subject, we investigated osmotins in latex fluids of five species. Two potential osmotin-like proteins in Cryptostegia grandiflora and Plumeria rubra latex were detected by immunological cross-reactivity with polyclonal antibodies produced against the C. procera latex osmotin (CpOsm) by ELISA, Dot Blot and Western Blot assays. Osmotin-like proteins were not detected in the latex of Thevetia peruviana, Himatanthus drasticus and healthy Carica papaya fruits. Later, the two new osmotin-like proteins were purified through immunoaffinity chromatography with anti-CpOsm immobilized antibodies. Worth noting the chromatographic efficiency allowed for the purification of the osmotin-like protein belonging to H. drasticus latex, which was not detectable by immunoassays. The identification of the purified proteins was confirmed after MS/MS analyses of their tryptic digests. It is concluded that the constitutive osmotin-like proteins reported here share structural similarities to CpOsm. However, unlike CpOsm, they did not exhibit antifungal activity against Fusarium solani and Colletotrichum gloeosporioides. These results suggest that osmotins of different latex sources may be involved in distinct physiological or defensive events.

  12. On the role of phosphatidylethanolamine in the inhibition of activated protein C activity by antiphospholipid antibodies.

    PubMed Central

    Smirnov, M D; Triplett, D T; Comp, P C; Esmon, N L; Esmon, C T

    1995-01-01

    Phosphatidylethanolamine (PE) is an important membrane component for supporting activated protein C anticoagulant activity but has little influence on prothrombin activation. This difference constitutes a potential mechanism for selective inhibition of the protein C anticoagulant pathway by lupus anticoagulants and/or antiphospholipid antibodies. In this study, we demonstrate that the presence of PE augments lupus anticoagulant activity. In the plasma of some patients with lupus anticoagulants, activated protein C anticoagulant activity is more potently inhibited than prothrombin activation. As a result, in the presence of activated protein C and PE, these patient plasmas clot faster than normal plasma. Patients with minimal lupus anticoagulant activity are identified whose plasma potently inhibits activated protein C anticoagulant activity. This process is also PE dependent. In three patient plasmas, these phenomena are shown to be due to immunoglobulins. The PE requirement in the expression of activated protein C anticoagulant activity and the PE dependence of some antiphospholipid antibodies provide a mechanistic basis for the selective inhibition of the protein C pathway. Inhibition of activated protein C function may be a common mechanism contributing to increased thrombotic risk in certain patients with antiphospholipid antibodies. PMID:7814631

  13. Expression of proteins and protein kinase activity during germination of aerial spores of Streptomyces granaticolor.

    PubMed

    Mikulík, Karel; Bobek, Jan; Bezousková, Silvia; Benada, Oldrich; Kofronová, Olga

    2002-11-29

    Dormant aerial spores of Streptomyces granaticolor contain pre-existing pool of mRNA and active ribosomes for rapid translation of proteins required for earlier steps of germination. Activated spores were labeled for 30 min with [35S]methionine/cysteine in the presence or absence of rifamycin (400 microg/ml) and resolved by two-dimensional electrophoresis. About 320 proteins were synthesized during the first 30 min of cultivation at the beginning of swelling, before the first DNA replication. Results from nine different experiments performed in the presence of rifamycin revealed 15 protein spots. Transition from dormant spores to swollen spores is not affected by the presence of rifamycin but further development of spores is stopped. To support existence of pre-existing pool of mRNA in spores, cell-free extract of spores (S30 fraction) was used for in vitro protein synthesis. These results indicate that RNA of spores possesses mRNA functionally competent and provides templates for protein synthesis. Cell-free extracts isolated from spores, activated spores, and during spore germination were further examined for in vitro protein phosphorylation. The analyses show that preparation from dormant spores catalyzes phosphorylation of only seven proteins. In the absence of phosphatase inhibitors, several proteins were partially dephosphorylated. The activation of spores leads to a reduction in phosphorylation activity. Results from in vitro phosphorylation reaction indicate that during germination phosphorylation/dephosphorylation of proteins is a complex function of developmental changes.

  14. The role of photogeologic mapping in traverse planning: lessons learned from DRATS 2010 activities

    USGS Publications Warehouse

    Skinner, James A.; Fortezzo, Corey M.

    2013-01-01

    We produced a 1:24,000 scale photogeologic map of the Desert Research and Technology Studies (DRATS) 2010 simulated lunar mission traverse area and surrounding environments located within the northeastern part of the San Francisco Volcanic Field (SFVF), north-central Arizona. To mimic an exploratory mission, we approached the region "blindly" by rejecting prior knowledge or preconceived notions of the regional geologic setting and focused instead only on image and topographic base maps that were intended to be equivalent to pre-cursor mission "orbital returns". We used photogeologic mapping techniques equivalent to those employed during the construction of modern planetary geologic maps. Based on image and topographic base maps, we identified 4 surficial units (talus, channel, dissected, and plains units), 5 volcanic units (older cone, younger cone, older flow, younger flow, and block field units), and 5 basement units (grey-toned mottled, red-toned platy, red-toned layered, light-toned slabby, and light-toned layered units). Comparison of our remote-based map units with published field-based map units indicates that the two techniques yield pervasively similar results of contrasting detail, with higher accuracies linked to remote-based units that have high topographic relief and tonal contrast relative to adjacent units. We list key scientific questions that remained after photogeologic mapping and prior to DRATS activities and identify 13 specific observations that the crew and science team would need to make in order to address those questions and refine the interpreted geologic context. We translated potential observations into 62 recommended sites for visitation and observation during the mission traverse. The production and use of a mission-specific photogeologic map for DRATS 2010 activities resulted in strategic and tactical recommendations regarding observational context and hypothesis tracking over the course of an exploratory mission.

  15. The role of photogeologic mapping in traverse planning: Lessons from DRATS 2010 activities

    NASA Astrophysics Data System (ADS)

    Skinner, , James A.; Fortezzo, Corey M.

    2013-10-01

    We produced a 1:24,000 scale photogeologic map of the Desert Research and Technology Studies (DRATS) 2010 simulated lunar mission traverse area and surrounding environments located within the northeastern part of the San Francisco Volcanic Field (SFVF), north-central Arizona. To mimic an exploratory mission, we approached the region "blindly" by rejecting prior knowledge or preconceived notions of the regional geologic setting and focused instead only on image and topographic base maps that were intended to be equivalent to pre-cursor mission "orbital returns". We used photogeologic mapping techniques equivalent to those employed during the construction of modern planetary geologic maps. Based on image and topographic base maps, we identified 4 surficial units (talus, channel, dissected, and plains units), 5 volcanic units (older cone, younger cone, older flow, younger flow, and block field units), and 5 basement units (grey-toned mottled, red-toned platy, red-toned layered, light-toned slabby, and light-toned layered units). Comparison of our remote-based map units with published field-based map units indicates that the two techniques yield pervasively similar results of contrasting detail, with higher accuracies linked to remote-based units that have high topographic relief and tonal contrast relative to adjacent units. We list key scientific questions that remained after photogeologic mapping and prior to DRATS activities and identify 13 specific observations that the crew and science team would need to make in order to address those questions and refine the interpreted geologic context. We translated potential observations into 62 recommended sites for visitation and observation during the mission traverse. The production and use of a mission-specific photogeologic map for DRATS 2010 activities resulted in strategic and tactical recommendations regarding observational context and hypothesis tracking over the course of an exploratory mission.

  16. Adaptor protein Nck1 interacts with p120 Ras GTPase-activating protein and regulates its activity.

    PubMed

    Ger, Marija; Zitkus, Zigmantas; Valius, Mindaugas

    2011-10-01

    Adaptor protein Nck1 binds a number of intracellular proteins and influences various signaling pathways. Here we show that Nck1 directly binds and activates the GTPase-activating protein of Ras (RasGAP), which is responsible for the down-regulation of Ras. The first and the third SH3 domains of Nck1 and the NH(2)-terminal proline-rich sequence of RasGAP contribute most to the complex formation causing direct molecular interaction between the two proteins. Cell adhesion to the substrate is obligatory for the Nck1 and RasGAP association, as cell detachment makes RasGAP incapable of associating with Nck1. This leads to the complex dissipation, decrease of RasGAP activity and the increase of H-Ras-GTP level in the detached cells. Our findings reveal unexpected feature of adaptor protein Nck1 as the regulator of RasGAP activity.

  17. Mapping membrane activity in undiscovered peptide sequence space using machine learning.

    PubMed

    Lee, Ernest Y; Fulan, Benjamin M; Wong, Gerard C L; Ferguson, Andrew L

    2016-11-29

    There are some ∼1,100 known antimicrobial peptides (AMPs), which permeabilize microbial membranes but have diverse sequences. Here, we develop a support vector machine (SVM)-based classifier to investigate ⍺-helical AMPs and the interrelated nature of their functional commonality and sequence homology. SVM is used to search the undiscovered peptide sequence space and identify Pareto-optimal candidates that simultaneously maximize the distance σ from the SVM hyperplane (thus maximize its "antimicrobialness") and its ⍺-helicity, but minimize mutational distance to known AMPs. By calibrating SVM machine learning results with killing assays and small-angle X-ray scattering (SAXS), we find that the SVM metric σ correlates not with a peptide's minimum inhibitory concentration (MIC), but rather its ability to generate negative Gaussian membrane curvature. This surprising result provides a topological basis for membrane activity common to AMPs. Moreover, we highlight an important distinction between the maximal recognizability of a sequence to a trained AMP classifier (its ability to generate membrane curvature) and its maximal antimicrobial efficacy. As mutational distances are increased from known AMPs, we find AMP-like sequences that are increasingly difficult for nature to discover via simple mutation. Using the sequence map as a discovery tool, we find a unexpectedly diverse taxonomy of sequences that are just as membrane-active as known AMPs, but with a broad range of primary functions distinct from AMP functions, including endogenous neuropeptides, viral fusion proteins, topogenic peptides, and amyloids. The SVM classifier is useful as a general detector of membrane activity in peptide sequences.

  18. Prototype active scanner for nighttime oil spill mapping and classification

    NASA Technical Reports Server (NTRS)

    Sandness, G. A.; Ailes, S. B.

    1977-01-01

    A prototype, active, aerial scanner system was constructed for nighttime water pollution detection and nighttime multispectral imaging of the ground. An arc lamp was used to produce the transmitted light and four detector channels provided a multispectral measurement capability. The feasibility of the design concept was demonstrated by laboratory and flight tests of the prototype system.

  19. Genome-wide map of nuclear protein degradation shows NCoR1 turnover as a key to mitochondrial gene regulation.

    PubMed

    Catic, André; Suh, Carol Y; Hill, Cedric T; Daheron, Laurence; Henkel, Theresa; Orford, Keith W; Dombkowski, David M; Liu, Tao; Liu, X Shirley; Scadden, David T

    2013-12-05

    Transcription factor activity and turnover are functionally linked, but the global patterns by which DNA-bound regulators are eliminated remain poorly understood. We established an assay to define the chromosomal location of DNA-associated proteins that are slated for degradation by the ubiquitin-proteasome system. The genome-wide map described here ties proteolysis in mammalian cells to active enhancers and to promoters of specific gene families. Nuclear-encoded mitochondrial genes in particular correlate with protein elimination, which positively affects their transcription. We show that the nuclear receptor corepressor NCoR1 is a key target of proteolysis and physically interacts with the transcription factor CREB. Proteasome inhibition stabilizes NCoR1 in a site-specific manner and restrains mitochondrial activity by repressing CREB-sensitive genes. In conclusion, this functional map of nuclear proteolysis links chromatin architecture with local protein stability and identifies proteolytic derepression as highly dynamic in regulating the transcription of genes involved in energy metabolism.

  20. In situ protein folding and activation in bacterial inclusion bodies.

    PubMed

    Gonzalez-Montalban, Nuria; Natalello, Antonino; García-Fruitós, Elena; Villaverde, Antonio; Doglia, Silvia Maria

    2008-07-01

    Recent observations indicate that bacterial inclusion bodies formed in absence of the main chaperone DnaK result largely enriched in functional, properly folded recombinant proteins. Unfortunately, the molecular basis of this intriguing fact, with obvious biotechnological interest, remains unsolved. We have explored here two non-excluding physiological mechanisms that could account for this observation, namely selective removal of inactive polypeptides from inclusion bodies or in situ functional activation of the embedded proteins. By combining structural and functional analysis, we have not observed any preferential selection of inactive and misfolded protein species by the dissagregating machinery during inclusion body disintegration. Instead, our data strongly support that folding intermediates aggregated as inclusion bodies could complete their natural folding process once deposited in protein clusters, which conduces to significant functional activation. In addition, in situ folding and protein activation in inclusion bodies is negatively regulated by the chaperone DnaK.

  1. Protein stability and enzyme activity at extreme biological temperatures.

    PubMed

    Feller, Georges

    2010-08-18

    Psychrophilic microorganisms thrive in permanently cold environments, even at subzero temperatures. To maintain metabolic rates compatible with sustained life, they have improved the dynamics of their protein structures, thereby enabling appropriate molecular motions required for biological activity at low temperatures. As a consequence of this structural flexibility, psychrophilic proteins are unstable and heat-labile. In the upper range of biological temperatures, thermophiles and hyperthermophiles grow at temperatures > 100 °C and synthesize ultra-stable proteins. However, thermophilic enzymes are nearly inactive at room temperature as a result of their compactness and rigidity. At the molecular level, both types of extremophilic proteins have adapted the same structural factors, but in opposite directions, to address either activity at low temperatures or stability in hot environments. A model based on folding funnels is proposed accounting for the stability-activity relationships in extremophilic proteins.

  2. Interaction with the adaptor protein Shc prevents aberrant Erk activation in the absence of extracellular stimulus

    PubMed Central

    Suen, Kin Man; Lin, Chi-Chuan; George, Roger; Melo, Fernando A.; Biggs, Eleanor R.; Ahmed, Zamal; Drake, Melanie N.; Arur, Swathi; Arold, Stefan T.; Ladbury, John E.

    2014-01-01

    Control mechanisms that prevent aberrant signaling are necessary to maintain cellular homeostasis. We describe a novel mechanism by which the adaptor protein Shc binds directly to the MAP-kinase Erk, preventing its activation in the absence of extracellular stimulus. The Shc–Erk complex restricts Erk nuclear translocation, restraining Erk-dependent transcription of genes, including those responsible for oncogenic growth. The complex is formed through unique binding sites on both the Shc PTB domain and N-terminal lobe of Erk. Upon receptor tyrosine kinase stimulation, a conformational change within Shc—induced through interaction with the phosphorylated receptor—releases Erk allowing it to fulfill its role in signaling. Thus, in addition to its established role in promoting MAP-kinase signaling in stimulated cells, Shc negatively regulates Erk activation in the absence of growth factors and thus could be considered as a tumor suppressor in human cells. PMID:23584453

  3. Divide and Conquer Approach to Contact Map Overlap Problem Using 2D-Pattern Mining of Protein Contact Networks.

    PubMed

    Koneru, Suvarna Vani; Bhavani, Durga S

    2015-01-01

    A novel approach to Contact Map Overlap (CMO) problem is proposed using the two dimensional clusters present in the contact maps. Each protein is represented as a set of the non-trivial clusters of contacts extracted from its contact map. The approach involves finding matching regions between the two contact maps using approximate 2D-pattern matching algorithm and dynamic programming technique. These matched pairs of small contact maps are submitted in parallel to a fast heuristic CMO algorithm. The approach facilitates parallelization at this level since all the pairs of contact maps can be submitted to the algorithm in parallel. Then, a merge algorithm is used in order to obtain the overall alignment. As a proof of concept, MSVNS, a heuristic CMO algorithm is used for global as well as local alignment. The divide and conquer approach is evaluated for two benchmark data sets that of Skolnick and Ding et al. It is interesting to note that along with achieving saving of time, better overlap is also obtained for certain protein folds.

  4. Reverberation Mapping of the Dusty Tori in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Richmond, Michael; Batcheldor, Daniel; Buchanan, Catherine; Capetti, Alessandro; Moshe, Elitzur; Gallimore, Jack; Horne, Keith; Kishimoto, Makoto; Marconi, Alessandro; Mason, Rachel; Maiolino, Robert; Netzer, Hagai; Packham, Christopher; Perez, Enrique; Peterson, Brad; Tadhunter, Clive; Robinson, Andrew; Stirpe, Giovanna; Storchi-Bergmann, Thaisa

    2012-12-01

    Our current understanding of the size and structure of AGN tori is weak, despite their central role in AGN unification models and their importance for studies of supermassive black hole demographics. We propose to use the warm phase of Spitzer to determine the sizes of circum-nuclear dust tori in AGN. To accomplish this we will extend an existing Spitzer monitoring campaign, coordinated with ground-based observations, to measure the 'light echo' as the dust emission responds to variations in the AGN optical/UV continuum. We have selected a sample of 12 bright type 1 nuclei in close proximity to the Spitzer Continuous Viewing Zone which can be observed for at least 70% of the 365 day cycle. We will observe each AGN every 30 days for the whole of Cycle 9, roughly doubling our existing baseline of one year, permitting us to identify optical-IR time lags of many months. We will continue our current ground based monitoring program using a variety of telescopes to determine the AGN light-curves in the optical. These observations will sample the torus more faithfully than previous measurements made in the K-band. Such high fidelity, continuously sampled IR light curves covering ~years cannot be obtained from the ground, and are needed because the expected reverberation timescales are hundreds of days. We will apply well developed techniques to determine the reverberation lag and therefore obtain the characteristic size of the torus in this sample which spans a range of black hole mass and Eddington ratio. Our team contains many leading experts in reverberation mapping of AGN and in the observational study and theoretical modeling of the physics of the dusty torus. We are requesting a total of 14 hours in the cycle to perform our observations. These observations will provide a stringent observational test of current models for the obscuring torus in AGN. The required measurements - long timescales, continuous monitoring in the near-infrared - are possible only with the

  5. cDNA cloning and chromosomal mapping of a predicted coiled-coil proline-rich protein immunogenic in meningioma patients.

    PubMed

    Heckel, D; Brass, N; Fischer, U; Blin, N; Steudel, I; Türeci, O; Fackler, O; Zang, K D; Meese, E

    1997-11-01

    There is increasing evidence that tumor expressed genes induce immune responses in cancer patients. To identify meningioma expressed antigens, we established a meningioma expression library which was screened with autologous serum. Out of 20 positive cDNA clones eight share high sequence homologies as determined by sequence analysis. These eight clones can be grouped into three classes which differ in length and which are characterized by specific sequence variations. The longest open reading frame was found to be 2412 bp encoding an immunoreactive antigen termed meningioma expressed antigen 6 (MEA6). Using five sequence specific primer pairs, somatic hybrid panel mapping revealed locations of the three classes on several human chromosomes including chromosomes 2, 3, 6, 7, 9, 13 and 14. The mapping results were confirmed by fluorescence in situ hybridization. RT-PCR showed consistent expression of all classes in several meningiomas and additional tissues using the same set of primer pairs as for chromosomal mapping. The expression data were confirmed by northern blot analysis. For the predicted amino acid sequence BLASTX revealed a homology to a human C219-reactive peptide which was previously isolated by an antibody directed against p-glycoprotein. Sequence properties of the MEA protein include an acidic activation domain, a proline-rich region and two coiled-coil domains indicating protein binding and activation functions.

  6. Mitogen-activated protein kinase pathways are required for melatonin-mediated defense responses in plants.

    PubMed

    Lee, Hyoung Yool; Back, Kyoungwhan

    2016-04-01

    Melatonin enhances pathogen resistance by inducing the expression of a number of plant defense-related genes. To examine whether the melatonin-mediated pathogen resistance is associated with mitogen-activated protein kinase (MAPK) cascades, Arabidopsis and tobacco leaves were treated with melatonin and investigated for MAPK activation using an antiphospho-p44/42 MAPK (Erk1/2) monoclonal antibody. Two MAPKs, MPK3 and MPK6, were activated rapidly and transiently by 1 μm melatonin treatment in Arabidopsis. Its tobacco ortholog MAPKs were also activated. The activation of MPK3 and MPK6 by 2-hydroxymelatonin and N-acetylserotonin was also observed, albeit to a lesser degree than that by melatonin. Furthermore, MAPK activation by melatonin was uncoupled from G-protein signaling, because melatonin efficiently activated two MAPKs in a G-protein β knockout mutant (agb1). Suppression of both MPK3 and MPK6 in transgenic Arabidopsis exhibited significant decreases in the induction of defense-related gene expression and pathogen resistance relative to wild-type plants. Using an array of MAP kinase kinase (MKK) knockout mutants, we found that four MKKs, namely MKK4, MKK5, MKK7, and MKK9, are responsible for the activation of MPK3 and MPK6 by melatonin, indicating that melatonin-mediated innate immunity is triggered by MAPK signaling through MKK4/5/7/9-MPK3/6 cascades.

  7. Distance Mapping in Proteins Using Fluorescence Spectroscopy: Tyrosine, like Tryptophan, Quenches Bimane Fluorescence in a Distance-Dependent Manner

    PubMed Central

    2015-01-01

    Tryptophan-induced quenching of fluorophores (TrIQ) uses intramolecular fluorescence quenching to assess distances in proteins too small (<15 Å) to be easily probed by traditional Forster resonance energy transfer methods. A powerful aspect of TrIQ is its ability to obtain an ultrafast snapshot of a protein conformation, by identifying “static quenching” (contact between the Trp and probe at the moment of light excitation). Here we report new advances in this site-directed fluorescence labeling (SDFL) approach, gleaned from recent studies of T4 lysozyme (T4L). First, we show that like TrIQ, tyrosine-induced quenching (TyrIQ) occurs for the fluorophore bimane in a distance-dependent fashion, although with some key differences. The Tyr “sphere of quenching” for bimane (≤10 Å) is smaller than for Trp (≤15 Å, Cα–Cα distance), and the size difference between the quenching residue (Tyr) and control (Phe) differs by only a hydroxyl group. Second, we show how TrIQ and TyrIQ can be used together to assess the magnitude and energetics of a protein movement. In these studies, we placed a bimane (probe) and Trp or Tyr (quencher) on opposite ends of a “hinge” in T4L and conducted TrIQ and TyrIQ measurements. Our results are consistent with an ∼5 Å change in Cα–Cα distances between these sites upon substrate binding, in agreement with the crystal structures. Subsequent Arrhenius analysis suggests the activation energy barrier (Ea) to this movement is relatively low (∼1.5–2.5 kcal/mol). Together, these results demonstrate that TyrIQ, used together with TrIQ, significantly expands the power of quenching-based distance mapping SDFL studies. PMID:25144569

  8. Controlled Activation of Protein Rotational Dynamics Using Smart Hydrogel Tethering

    SciTech Connect

    Beech, Brenda M.; Xiong, Yijia; Boschek, Curt B.; Baird, Cheryl L.; Bigelow, Diana J.; Mcateer, Kathleen; Squier, Thomas C.

    2014-09-05

    Stimulus-responsive hydrogel materials that stabilize and control protein dynamics have the potential to enable a range of applications to take advantage of the inherent specificity and catalytic efficiencies of proteins. Here we describe the modular construction of a hydrogel using an engineered calmodulin (CaM) within a polyethylene glycol (PEG) matrix that involves the reversible tethering of proteins through an engineered CaM-binding sequence. For these measurements, maltose binding protein (MBP) was isotopically labeled with [13C] and [15N], permitting dynamic structural measurements using TROSY-HSQC NMR spectroscopy. Upon initial formation of hydrogels protein dynamics are suppressed, with concomitant increases in protein stability. Relaxation of the hydrogel matrix following transient heating results in the activation of protein dynamics and restoration of substrate-induced large-amplitude domain motions necessary for substrate binding.

  9. Specific degradation of the mucus adhesion-promoting protein (MapA) of Lactobacillus reuteri to an antimicrobial peptide.

    PubMed

    Bøhle, Liv Anette; Brede, Dag Anders; Diep, Dzung B; Holo, Helge; Nes, Ingolf F

    2010-11-01

    The intestinal flora of mammals contains lactic acid bacteria (LAB) that may provide positive health effects for the host. Such bacteria are referred to as probiotic bacteria. From a pig, we have isolated a Lactobacillus reuteri strain that produces an antimicrobial peptide (AMP). The peptide was purified and characterized, and it was unequivocally shown that the AMP was a well-defined degradation product obtained from the mucus adhesion-promoting protein (MapA); it was therefore termed AP48-MapA. This finding demonstrates how large proteins might inherit unexpected pleiotropic functions by conferring antimicrobial capacities on the producer. The MapA/AP48-MapA system is the first example where a large protein of an intestinal LAB is shown to give rise to such an AMP. It is also of particular interest that the protein that provides this AMP is associated with the binding of the bacterium producing it to the surface/lining of the gut. This finding gives us new perspective on how some probiotic bacteria may successfully compete in this environment and thereby contribute to a healthy microbiota.

  10. The human renin-binding protein gene (RENBP) maps in Xq28

    SciTech Connect

    Ouweland, A.M.W. van der; Verdijk, M.; Oost, B.A. van ); Kiochis, P.; Poustka, A. )

    1994-05-01

    The authors report here the successful application of the method by which cDNA libraries are screened with positionally identified genomic clones. Human cosmid clones were selected from a cosmid library derived from the Q1Z cell line. This Q1Z cell line is a hamster-human somatic cell hybrid that contains the Xq28 region as its sole human component. To search for kidney-expressed genes, they screened a kidney cDNA library purchased from Clontech with cosmid-derived probes. Based on the physical mapping of the vasopressin V2 receptor gene close to the L1CAM gene, they analyzed cosmids derived from this region. One of the cosmids was 12B2, located 50 kb from the L1CAM gene. A 20-kb EcoRI subclone from the 12B2 cosmid was used as probe. This fragment did not hybridize to the probe 2-55 in contrast to the whole cosmid 12B2. Screening of 200,000 cDNA clones resulted in the identification of two positive clones. After sequence determination, it appeared that one of the positive cDNA clones contained Escherichia coli DNA as insert (data not shown). The other cDNA (pMV24) contained an open reading frame corresponding to the 243 amino-terminal amino acids of the human renin binding protein. The RENBP gene maps to interval 3 between the loci for DX52 and G-6-PD. This is the same interval as that for the color blindness gene, DXS707, and the AVPR2, L1CAM, and QM genes. This result confirms that the isolated RENBP cDNA originates from the same location as that from which the parental cosmid clone was derived. 28 refs., 1 fig.

  11. Mapping Muscles Activation to Force Perception during Unloading

    PubMed Central

    Toma, Simone; Lacquaniti, Francesco

    2016-01-01

    It has been largely proved that while judging a force humans mainly rely on the motor commands produced to interact with that force (i.e., sense of effort). Despite of a large bulk of previous investigations interested in understanding the contributions of the descending and ascending signals in force perception, very few attempts have been made to link a measure of neural output (i.e., EMG) to the psychophysical performance. Indeed, the amount of correlation between EMG activity and perceptual decisions can be interpreted as an estimate of the contribution of central signals involved in the sensation of force. In this study we investigated this correlation by measuring the muscular activity of eight arm muscles while participants performed a quasi-isometric force detection task. Here we showed a method to quantitatively describe muscular activity (“muscle-metric function”) that was directly comparable to the description of the participants' psychophysical decisions about the stimulus force. We observed that under our experimental conditions, muscle-metric absolute thresholds and the shape of the muscle-metric curves were closely related to those provided by the psychophysics. In fact a global measure of the muscles considered was able to predict approximately 60% of the perceptual decisions total variance. Moreover the inter-subjects differences in psychophysical sensitivity showed high correlation with both participants' muscles sensitivity and participants' joint torques. Overall, our findings gave insights into both the role played by the corticospinal motor commands while performing a force detection task and the influence of the gravitational muscular torque on the estimation of vertical forces. PMID:27032087

  12. Mapping the Potential for Eolian Surface Activity in Grasslands of the High Plains using Landsat Images

    NASA Technical Reports Server (NTRS)

    Gutmann, Ethan Dain

    2002-01-01

    There are over 100,000 square kilometers of eolian sand dunes and sand sheets in the High Plains of the central United States. These land-forms may be unstable and may reactivate again as a result of land-use, climate change, or natural climatic variability. The main goal of this thesis was to develop a model that could be used to map an estimate of future dune activity. Multi-temporal calibrated Landsats 5 Thematic Mapper (TM) and 7 Enhanced Thematic Map per Plus (ETM+) NDVI imagery were used in conjunction with the CENTURY vegetation model to correlate vegetation cover to climatic variability. This allows the creation of a predicted vegetation map which, combined with current wind and soil data, was used to create a potential sand transport map for range land in the High Plains under drought conditions.

  13. Dependency of microtubule-associated proteins (MAPs) for tubulin stability and assembly; use of estramustine phosphate in the study of microtubules.

    PubMed

    Fridén, B; Wallin, M

    1991-07-10

    Microtubule-associated proteins (MAPs) were separated from tubulin with several different methods. The ability of the isolated MAPs to reinduce assembly of phosphocellulose purified tubulin differed markedly between the different methods. MAPs isolated by addition of 0.35 M NaCl to taxol-stabilized microtubules stimulated tubulin assembly most effectively, while addition of 0.6 M NaCl produced MAPs with a substantially lower ability to stimulate tubulin assembly. The second best preparation was achieved with phosphocellulose chromatographic separation of MAPs with 0.6 M NaCl elution. The addition of estramustine phosphate to microtubules reconstituted of MAPs prepared by 0.35 M NaCl or phosphocellulose chromatography, induced less disassembly than for microtubules assembled from unseparated proteins, and was almost without effect on microtubules reconstituted from MAPs prepared by taxol and 0.6 M NaCl. Estramustine phosphate binds to the tubulin binding part of the MAPs, and the results do therefore indicate that the MAPs are altered by the separation methods. Since the MAPs are regarded as highly stable molecules, one probable alteration could be aggregation of the MAPs, as also indicated by the results. The purified tubulin itself seemed not to be affected by the phosphocellulose purification, since the microtubule proteins were unchanged by the low buffer strenght used during the cromatography. However, the assembly competence after a prolonged incubation of the microtubule proteins at 4 degrees C was dependent on intact bindings between the tubulin and MAPs.

  14. Task-free presurgical mapping using functional magnetic resonance imaging intrinsic activity

    PubMed Central

    Liu, Hesheng; Buckner, Randy L.; Talukdar, Tanveer; Tanaka, Naoaki; Madsen, Joseph R.; Stufflebeam, Steven M.

    2013-01-01

    Object Low-frequency components of the spontaneous functional MR imaging signal provide information about the intrinsic functional and anatomical organization of the brain. The ability to use such methods in individual patients may provide a powerful tool for presurgical planning. The authors explore the feasibility of presurgical motor function mapping in which a task-free paradigm is used. Methods Six surgical candidates with tumors or epileptic foci near the motor cortex participated in this study. The investigators directly compared task-elicited activation of the motor system to activation obtained from intrinsic activity correlations. The motor network within the unhealthy hemisphere was identified based on intrinsic activity correlations, allowing distortions of functional anatomy caused by the tumor and epilepsy to be directly visualized. The precision of the motor function mapping was further explored in 1 participant by using direct cortical stimulation. Results The motor regions localized based on the spontaneous activity correlations were quite similar to the regions defined by actual movement tasks and cortical stimulation. Using intrinsic activity correlations, it was possible to map the motor cortex in presurgical patients. Conclusions This task-free paradigm may provide a powerful approach to map functional anatomy in patients without task compliance and allow multiple brain systems to be determined in a single scanning session. PMID:19361264

  15. Teaching Plate Tectonic Concepts using GeoMapApp Learning Activities

    NASA Astrophysics Data System (ADS)

    Goodwillie, A. M.; Kluge, S.

    2012-12-01

    GeoMapApp Learning Activities ( http://serc.carleton.edu/geomapapp/collection.html ) can help educators to expose undergraduate students to a range of earth science concepts using high-quality data sets in an easy-to-use map-based interface called GeoMapApp. GeoMapApp Learning Activities require students to interact with and analyse research-quality geoscience data as a means to explore and enhance their understanding of underlying content and concepts. Each activity is freely available through the SERC-Carleton web site and offers step-by-step student instructions and answer sheets. Also provided are annotated educator versions of the worksheets that include teaching tips, additional content and suggestions for further work. The activities can be used "off-the-shelf". Or, since the educator may require flexibility to tailor the activities, the documents are provided in Word format for easy modification. Examples of activities include one on the concept of seafloor spreading that requires students to analyse global seafloor crustal age data to calculate spreading rates in different ocean basins. Another activity has students explore hot spots using radiometric age dating of rocks along the Hawaiian-Emperor seamount chain. A third focusses upon the interactive use of contours and profiles to help students visualise 3-D topography on 2-D computer screens. A fourth activity provides a study of mass wasting as revealed through geomorphological evidence. The step-by-step instructions and guided inquiry approach reduce the need for teacher intervention whilst boosting the time that students can spend on productive exploration and learning. The activities can be used, for example, in a classroom lab with the educator present and as self-paced assignments in an out-of-class setting. GeoMapApp Learning Activities are funded through the NSF GeoEd program and are aimed at students in the introductory undergraduate, community college and high school levels. The activities are

  16. Mapping human brain fatty acid amide hydrolase activity with PET

    PubMed Central

    Rusjan, Pablo M; Wilson, Alan A; Mizrahi, Romina; Boileau, Isabelle; Chavez, Sofia E; Lobaugh, Nancy J; Kish, Stephen J; Houle, Sylvain; Tong, Junchao

    2013-01-01

    Endocannabinoid tone has recently been implicated in a number of prevalent neuropsychiatric conditions. [11C]CURB is the first available positron emission tomography (PET) radiotracer for imaging fatty acid amide hydrolase (FAAH), the enzyme which metabolizes the prominent endocannabinoid anandamide. Here, we sought to determine the most suitable kinetic modeling approach for quantifying [11C]CURB that binds selectively to FAAH. Six healthy volunteers were scanned with arterial blood sampling for 90 minutes. Kinetic parameters were estimated regionally using a one-tissue compartment model (TCM), a 2-TCM with and without irreversible trapping, and an irreversible 3-TCM. The 2-TCM with irreversible trapping provided the best identifiability of PET outcome measures among the approaches studied (coefficient of variation (COV) of the net influx constant Ki and the composite parameter λk3 (λ=K1/k2) <5%, and COV(k3)<10%). Reducing scan time to 60 minutes did not compromise the identifiability of rate constants. Arterial spin labeling measures of regional cerebral blood flow were only slightly correlated with Ki, but not with k3 or λk3. Our data suggest that λk3 is sensitive to changes in FAAH activity, therefore, optimal for PET quantification of FAAH activities with [11C]CURB. Simulations showed that [11C]CURB binding in healthy subjects is far from a flow-limited uptake. PMID:23211960

  17. Cloning of three novel neuronal Cdk5 activator binding proteins.

    PubMed

    Ching, Y P; Qi, Z; Wang, J H

    2000-01-25

    Neuronal Cdc2-like kinase (Nclk) is involved in the regulation of neuronal differentiation and neuro-cytoskeleton dynamics. The active kinase consists of a catalytic subunit, Cdk5, and a 25 kDa activator protein (p25nck5a) derived from a 35 kDa neuronal-specific protein (p35nck5a). As an extension of our previous study (Qi, Z., Tang, D., Zhu, X., Fujita, D.J., Wang, J.H., 1998. Association of neurofilament proteins with neuronal Cdk5 activator. J. Biol. Chem. 270, 2329-2335), which showed that neurofilament is one of the p35nck5a-associated proteins, we now report the isolation of three other novel p35nck5a-associated proteins using the yeast two-hybrid screen. The full-length forms of these three novel proteins, designated C42, C48 and C53, have a molecular mass of 66, 24, and 57 kDa, respectively. Northern analysis indicates that these novel proteins are widely expressed in human tissues, including the heart, brain, skeletal muscle, placenta, lung, liver, kidney and pancreas. The bacterially expressed glutathione S-transferase (GST)-fusion forms of these three proteins were able to co-precipitate p35nck5a complexed with Cdk5 from insect cell lysate. Among these three proteins, only C48 and C53 can be phosphorylated by Nclk, suggesting that they may be the substrates of Nclk. Sequence homology searches have suggested that the C48 protein is marginally related to restin protein, whereas the C42 protein has homologues of unknown function in Caenorhabditis elegans and Arabidopsis thaliana.

  18. Reconstructing Genome-Wide Protein–Protein Interaction Networks Using Multiple Strategies with Homologous Mapping

    PubMed Central

    Lo, Yu-Shu; Huang, Sing-Han; Luo, Yong-Chun; Lin, Chun-Yu; Yang, Jinn-Moon

    2015-01-01

    Background One of the crucial steps toward understanding the biological functions of a cellular system is to investigate protein–protein interaction (PPI) networks. As an increasing number of reliable PPIs become available, there is a growing need for discovering PPIs to reconstruct PPI networks of interesting organisms. Some interolog-based methods and homologous PPI families have been proposed for predicting PPIs from the known PPIs of source organisms. Results Here, we propose a multiple-strategy scoring method to identify reliable PPIs for reconstructing the mouse PPI network from two well-known organisms: human and fly. We firstly identified the PPI candidates of target organisms based on homologous PPIs, sharing significant sequence similarities (joint E-value ≤ 1 × 10−40), from source organisms using generalized interolog mapping. These PPI candidates were evaluated by our multiple-strategy scoring method, combining sequence similarities, normalized ranks, and conservation scores across multiple organisms. According to 106,825 PPI candidates in yeast derived from human and fly, our scoring method can achieve high prediction accuracy and outperform generalized interolog mapping. Experiment results show that our multiple-strategy score can avoid the influence of the protein family size and length to significantly improve PPI prediction accuracy and reflect the biological functions. In addition, the top-ranked and conserved PPIs are often orthologous/essential interactions and share the functional similarity. Based on these reliable predicted PPIs, we reconstructed a comprehensive mouse PPI network, which is a scale-free network and can reflect the biological functions and high connectivity of 292 KEGG modules, including 216 pathways and 76 structural complexes. Conclusions Experimental results show that our scoring method can improve the predicting accuracy based on the normalized rank and evolutionary conservation from multiple organisms. Our predicted

  19. Identification of a common protein association region in the neuronal Cdk5 activator.

    PubMed

    Wang, X; Ching, Y P; Lam, W H; Qi, Z; Zhang, M; Wang, J H

    2000-10-13

    Cyclin-dependent protein kinase 5 (Cdk5) depends on the association with neuronal Cdk5 activator (Nck5a) for kinase activity. A variety of cellular proteins have been shown to undergo high affinity association with Nck5a, including three novel proteins, C42, C48, and C53 found by a yeast two-hybrid screen (Ching, Y. P., Qi, Z., and Wang, J. H. (2000) Gene 242, 285-294). The three proteins show competitive binding to Nck5a suggesting that they bind at a common site. The binding site has been mapped to a region of 26 amino acid residues (residues 145 to 170) at the N-terminal boundary of the kinase activation domain of Nck5a. This region of Nck5a contains an amphipathic alpha-helix whose hydrophobic face is involved in Cdk5 activation (Chin, K. T., Ohki, S, Tang, D., Cheng, H. C., Wang, J. H. , and Zhang, M. (1999) J. Biol. Chem. 274, 7120-7127). Several lines of evidence suggest that Nck5a interacts with the binding proteins at the hydrophilic face of the amphipathic alpha-helix. First, the Nck5a-(145-170) peptide can bind Cdk5 and Nck5a-binding proteins simultaneously. Second, the association of Nck5a-(145-170) to C48 can be markedly reduced by high ionic strength whereas the interaction between Nck5a and Cdk5 is not affected. Third, substitution of Glu(157) by glutamine in Nck5a-(145-170) abolishes the peptide's ability to bind to the three Nck5a-binding proteins without diminishing its Cdk5 binding activity.

  20. Phosphorylation site mapping of soluble proteins: bioinformatical filtering reveals potential plastidic phosphoproteins in Arabidopsis thaliana.

    PubMed

    Lohrig, Katharina; Müller, Bernd; Davydova, Joulia; Leister, Dario; Wolters, Dirk Andreas

    2009-04-01

    Protein phosphorylation is a major mode of regulation of metabolism, gene expression, and cell architecture. A combination of phosphopeptide enrichment strategies based on TiO(2) and IMAC in addition to our MudPIT strategy revealed the detection of 181 phosphorylation sites which are located on 125 potentially plastidic proteins predicted by GoMiner, TargetP/Predotar in Arabidopsis thaliana. In our study phosphorylation on serine is favored over threonine and this in turn over phosphorylation on tyrosine residues, showing a percentage of 67.4% to 24.3% to 8.3% for pS:pT:pY. Four phosphorylated residues (S208, Y239, T246 and T330), identified by our approach have been fitted to the structure of the activated form of spinach RuBisCO, which are located in close proximity to the substrate binding site for ribulosebisphosphate. Potentially, these phosphorylation sites exert a direct influence on the catalytic activity of the enzyme. Such examples show nicely the value of the presented mass spectrometric dataset for further biochemical applications, since alternative mutation analysis often turns out to be unsuccessful, caused by mutations in essential proteins which result in lethal phenotypes.

  1. Arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan, inhibits MAP kinases and AP-1 activation via potent MKK inhibition: the role in TNF-alpha inhibition.

    PubMed

    Cho, Min Kyung; Jang, Young Pyo; Kim, Young Choong; Kim, Sang Geon

    2004-10-01

    Arctigenin, naturally occurring in Bardanae fructus, Saussurea medusa, Arctium lappa L., Torreya nucifera and Ipomea cairica, is a phenylpropanoid dibenzylbutyrolactone lignan with antioxidant and anti-inflammatory activities. Previously, we showed that arctigenin potently inhibited the induction of nitric oxide synthase (iNOS) by lipopolysaccharide (LPS), which involved suppression of NF-kappaB activation. In the present study, we examined the effects of arctigenin on mitogen-activated protein (MAP) kinase activation in Raw264.7 cells and MAP kinase kinase (MKK) activity. The effect of arctigenin on activator protein-1 (AP-1) activation was also studied in association with tumor necrosis factor-alpha (TNF-alpha) expression. Immunoblot analysis showed that arctigenin inhibited phosphorylation of MAP kinases ERK1/2, p38 kinase and JNK and their activities in Raw264.7 cells treated with LPS. Arctigenin potently inhibited the activity of MKK1 in vitro with the IC(50) value of 1 nM. Gel shift and reporter gene analyses revealed that arctigenin inhibited LPS-inducible AP-1 binding to the AP-1 consensus oligonucleotide and AP-1-mediated reporter gene expression. In view of the potential role of AP-1 in the induction of TNF-alpha, we next examined the inhibitory effects of arctigenin on the expression of TNF-alpha. Arctigenin blocked TNF-alpha production and decreased the level of TNF-alpha mRNA in the cells exposed to LPS. These results showed that arctigenin inhibited activation of MAP kinases including ERK1/2, p38 kinase and JNK through the inhibition of MKK activities, leading to AP-1 inactivation, which might, at least in part, contribute to the inhibition of TNF-alpha production.

  2. Metaproteomics: Evaluation of protein extraction from activated sludge.

    PubMed

    Hansen, Susan Hove; Stensballe, Allan; Nielsen, Per Halkjaer; Herbst, Florian-Alexander

    2014-11-01

    Metaproteomic studies of full-scale activated sludge systems require reproducible protein extraction methods. A systematic evaluation of three different extractions protocols, each in combination with three different methods of cell lysis, and a commercial kit were evaluated. Criteria used for comparison of each method included the extracted protein concentration and the number of identified proteins and peptides as well as their phylogenetic, cell localization and functional distribution and quantitative reproducibility. Furthermore, the advantage of using specific metagenomes and a 2-step database approach was illustrated. The results recommend a protocol for protein extraction from activated sludge based on the protein extraction reagent B-Per and bead beating. The data have been deposited to the ProteomeXchange with identifier PXD000862 (http://proteomecentral.proteomexchange.org/dataset/PXD000862).

  3. Depletion of WRN protein causes RACK1 to activate several protein kinase C isoforms.

    PubMed

    Massip, L; Garand, C; Labbé, A; Perreault, E; Turaga, R V N; Bohr, V A; Lebel, M

    2010-03-11

    Werner's syndrome (WS) is a rare autosomal disease characterized by the premature onset of several age-associated pathologies. The protein defective in patients with WS (WRN) is a helicase/exonuclease involved in DNA repair, replication, transcription and telomere maintenance. In this study, we show that a knock down of the WRN protein in normal human fibroblasts induces phosphorylation and activation of several protein kinase C (PKC) enzymes. Using a tandem affinity purification strategy, we found that WRN physically and functionally interacts with receptor for activated C-kinase 1 (RACK1), a highly conserved anchoring protein involved in various biological processes, such as cell growth and proliferation. RACK1 binds strongly to the RQC domain of WRN and weakly to its acidic repeat region. Purified RACK1 has no impact on the helicase activity of WRN, but selectively inhibits WRN exonuclease activity in vitro. Interestingly, knocking down RACK1 increased the cellular frequency of DNA breaks. Depletion of the WRN protein in return caused a fraction of nuclear RACK1 to translocate out of the nucleus to bind and activate PKCdelta and PKCbetaII in the membrane fraction of cells. In contrast, different DNA-damaging treatments known to activate PKCs did not induce RACK1/PKCs association in cells. Overall, our results indicate that a depletion of the WRN protein in normal fibroblasts causes the activation of several PKCs through translocation and association of RACK1 with such kinases.

  4. Depletion of WRN protein causes RACK1 to activate several protein kinase C isoforms

    PubMed Central

    Massip, L; Garand, C; Labbé, A; Perreault, È; Turaga, RVN; Bohr, VA; Lebel, M

    2015-01-01

    Werner’s syndrome (WS) is a rare autosomal disease characterized by the premature onset of several age-associated pathologies. The protein defective in patients with WS (WRN) is a helicase/exonuclease involved in DNA repair, replication, transcription and telomere maintenance. In this study, we show that a knock down of the WRN protein in normal human fibroblasts induces phosphorylation and activation of several protein kinase C (PKC) enzymes. Using a tandem affinity purification strategy, we found that WRN physically and functionally interacts with receptor for activated C-kinase 1 (RACK1), a highly conserved anchoring protein involved in various biological processes, such as cell growth and proliferation. RACK1 binds strongly to the RQC domain of WRN and weakly to its acidic repeat region. Purified RACK1 has no impact on the helicase activity of WRN, but selectively inhibits WRN exonuclease activity in vitro. Interestingly, knocking down RACK1 increased the cellular frequency of DNA breaks. Depletion of the WRN protein in return caused a fraction of nuclear RACK1 to translocate out of the nucleus to bind and activate PKCδ and PKCβII in the membrane fraction of cells. In contrast, different DNA-damaging treatments known to activate PKCs did not induce RACK1/PKCs association in cells. Overall, our results indicate that a depletion of the WRN protein in normal fibroblasts causes the activation of several PKCs through translocation and association of RACK1 with such kinases. PMID:19966859

  5. Inhibition of the integrase of human immunodeficiency virus (HIV) type 1 by anti-HIV plant proteins MAP30 and GAP31.

    PubMed Central

    Lee-Huang, S; Huang, P L; Huang, P L; Bourinbaiar, A S; Chen, H C; Kung, H F

    1995-01-01

    MAP30 (Momordica anti-HIV protein of 30 kDa) and GAP31 (Gelonium anti-HIV protein of 31 kDa) are anti-HIV plant proteins that we have identified, purified, and cloned from the medicinal plants Momordica charantia and Gelonium multiflorum. These antiviral agents are capable of inhibiting infection of HIV type 1 (HIV-1) in T lymphocytes and monocytes as well as replication of the virus in already-infected cells. They are not toxic to normal uninfected cells because they are unable to enter healthy cells. MAP30 and GAP31 also possess an N-glycosidase activity on 28S ribosomal RNA and a topological activity on plasmid and viral DNAs including HIV-1 long terminal repeats (LTRs). LTRs are essential sites for integration of viral DNA into the host genome by viral integrase. We therefore investigated the effect of MAP30 and GAP31 on HIV-1 integrase. We report that both of these antiviral agents exhibit dose-dependent inhibition of HIV-1 integrase. Inhibition was observed in all of the three specific reactions catalyzed by the integrase, namely, 3' processing (specific cleavage of the dinucleotide GT from the viral substrate), strand transfer (integration), and "disintegration" (the reversal of strand transfer). Inhibition was studied by using oligonucleotide substrates with sequences corresponding to the U3 and U5 regions of HIV LTR. In the presence of 20 ng of viral substrate, 50 ng of target substrate, and 4 microM integrase, total inhibition was achieved at equimolar concentrations of the integrase and the antiviral proteins, with EC50 values of about 1 microM. Integration of viral DNA into the host chromosome is a vital step in the replicative cycle of retroviruses, including the AIDS virus. The inhibition of HIV-1 integrase by MAP30 and GAP31 suggests that impediment of viral DNA integration may play a key role in the anti-HIV activity of these plant proteins. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7568024

  6. SARS-CoV nucleocapsid protein interacts with cellular pyruvate kinase protein and inhibits its activity.

    PubMed

    Wei, Wei-Yen; Li, Hui-Chun; Chen, Chiung-Yao; Yang, Chee-Hing; Lee, Shen-Kao; Wang, Chia-Wen; Ma, Hsin-Chieh; Juang, Yue-Li; Lo, Shih-Yen

    2012-04-01

    The pathogenesis of SARS-CoV remains largely unknown. To study the function of the SARS-CoV nucleocapsid protein, we have conducted a yeast two-hybrid screening experiment to identify cellular proteins that may interact with the SARS-CoV nucleocapsid protein. Pyruvate kinase (liver) was found to interact with SARS-CoV nucleocapsid protein in this experiment. The binding domains of these two proteins were also determined using the yeast two-hybrid system. The physical interaction between the SARS-CoV nucleocapsid and cellular pyruvate kinase (liver) proteins was further confirmed by GST pull-down assay, co-immunoprecipitation assay and confocal microscopy. Cellular pyruvate kinase activity in hepatoma cells was repressed by SARS-CoV nucleocapsid protein in either transiently transfected or stably transfected cells. PK deficiency in red blood cells is known to result in human hereditary non-spherocytic hemolytic anemia. It is reasonable to assume that an inhibition of PKL activity due to interaction with SARS-CoV N protein is likely to cause the death of the hepatocytes, which results in the elevation of serum alanine aminotransferase and liver dysfunction noted in most SARS patients. Thus, our results suggest that SARS-CoV could reduce pyruvate kinase activity via its nucleocapsid protein, and this may in turn cause disease.

  7. Protein expression, characterization and activity comparisons of wild type and mutant DUSP5 proteins

    SciTech Connect

    Nayak, Jaladhi; Gastonguay, Adam J.; Talipov, Marat R.; Vakeel, Padmanabhan; Span, Elise A.; Kalous, Kelsey S.; Kutty, Raman G.; Jensen, Davin R.; Pokkuluri, Phani Raj; Sem, Daniel S.; Rathore, Rajendra; Ramchandran, Ramani

    2014-12-18

    Background: The mitogen-activated protein kinases (MAPKs) pathway is critical for cellular signaling, and proteins such as phosphatases that regulate this pathway are important for normal tissue development. Based on our previous work on dual specificity phosphatase-5 (DUSP5), and its role in embryonic vascular development and disease, we hypothesized that mutations in DUSP5 will affect its function. Results: In this study, we tested this hypothesis by generating full-length glutathione-S-transferase-tagged DUSP5 and serine 147 proline mutant (S147P) proteins from bacteria. Light scattering analysis, circular dichroism, enzymatic assays and molecular modeling approaches have been performed to extensively characterize the protein form and function. We demonstrate that both proteins are active and, interestingly, the S147P protein is hypoactive as compared to the DUSP5 WT protein in two distinct biochemical substrate assays. Furthermore, due to the novel positioning of the S147P mutation, we utilize computational modeling to reconstruct full-length DUSP5 and S147P to predict a possible mechanism for the reduced activity of S147P. Conclusion: Taken together, this is the first evidence of the generation and characterization of an active, full-length, mutant DUSP5 protein which will facilitate future structure-function and drug development-based studies.

  8. Protein expression, characterization and activity comparisons of wild type and mutant DUSP5 proteins

    DOE PAGES

    Nayak, Jaladhi; Gastonguay, Adam J.; Talipov, Marat R.; ...

    2014-12-18

    Background: The mitogen-activated protein kinases (MAPKs) pathway is critical for cellular signaling, and proteins such as phosphatases that regulate this pathway are important for normal tissue development. Based on our previous work on dual specificity phosphatase-5 (DUSP5), and its role in embryonic vascular development and disease, we hypothesized that mutations in DUSP5 will affect its function. Results: In this study, we tested this hypothesis by generating full-length glutathione-S-transferase-tagged DUSP5 and serine 147 proline mutant (S147P) proteins from bacteria. Light scattering analysis, circular dichroism, enzymatic assays and molecular modeling approaches have been performed to extensively characterize the protein form and function.more » We demonstrate that both proteins are active and, interestingly, the S147P protein is hypoactive as compared to the DUSP5 WT protein in two distinct biochemical substrate assays. Furthermore, due to the novel positioning of the S147P mutation, we utilize computational modeling to reconstruct full-length DUSP5 and S147P to predict a possible mechanism for the reduced activity of S147P. Conclusion: Taken together, this is the first evidence of the generation and characterization of an active, full-length, mutant DUSP5 protein which will facilitate future structure-function and drug development-based studies.« less

  9. On brain activity mapping: insights and lessons from Brain Decoding Project to map memory patterns in the hippocampus.

    PubMed

    Tsien, Joe Z; Li, Meng; Osan, Remus; Chen, Guifen; Lin, Longnian; Wang, Phillip Lei; Frey, Sabine; Frey, Julietta; Zhu, Dajiang; Liu, Tianming; Zhao, Fang; Kuang, Hui

    2013-09-01

    The BRAIN project recently announced by the president Obama is the reflection of unrelenting human quest for cracking the brain code, the patterns of neuronal activity that define who we are and what we are. While the Brain Activity Mapping proposal has rightly emphasized on the need to develop new technologies for measuring every spike from every neuron, it might be helpful to consider both the theoretical and experimental aspects that would accelerate our search for the organizing principles of the brain code. Here we share several insights and lessons from the similar proposal, namely, Brain Decoding Project that we initiated since 2007. We provide a specific example in our initial mapping of real-time memory traces from one part of the memory circuit, namely, the CA1 region of the mouse hippocampus. We show how innovative behavioral tasks and appropriate mathematical analyses of large datasets can play equally, if not more, important roles in uncovering the specific-to-general feature-coding cell assembly mechanism by which episodic memory, semantic knowledge, and imagination are generated and organized. Our own experiences suggest that the bottleneck of the Brain Project is not only at merely developing additional new technologies, but also the lack of efficient avenues to disseminate cutting edge platforms and decoding expertise to neuroscience community. Therefore, we propose that in order to harness unique insights and extensive knowledge from various investigators working in diverse neuroscience subfields, ranging from perception and emotion to memory and social behaviors, the BRAIN project should create a set of International and National Brain Decoding Centers at which cutting-edge recording technologies and expertise on analyzing large datasets analyses can be made readily available to the entire community of neuroscientists who can apply and schedule to perform cutting-edge research.

  10. Interaction maps of the Saccharomyces cerevisiae ESCRT-III protein Snf7.

    PubMed

    Sciskala, Barbara; Kölling, Ralf

    2013-11-01

    The Saccharomyces cerevisiae ESCRT-III protein Snf7 is part of an intricate interaction network at the endosomal membrane. Interaction maps of Snf7 were established by measuring the degree of binding of individual binding partners to putative binding motifs along the Snf7 sequence by glutathione S-transferase (GST) pulldown. For each interaction partner, distinct binding profiles were obtained. The following observations were made. The ESCRT-III subunits Vps20 and Vps24 showed a complementary binding pattern, suggesting a model for the series of events in the ESCRT-III functional cycle. Vps4 bound to individual Snf7 motifs but not to full-length Snf7. This suggests that Vps4 does not bind to the closed conformation of Snf7. We also demonstrate for the first time that the ALIX/Bro1 homologue Rim20 binds to the α6 helix of Snf7. Analysis of a Snf7 α6 deletion mutant showed that the α6 helix is crucial for binding of Bro1 and Rim20 in vivo and is indispensable for the multivesicular body (MVB)-sorting and Rim-signaling functions of Snf7. The Snf7Δα6 protein still appeared to be incorporated into ESCRT-III complexes at the endosomal membrane, but disassembly of the complex seemed to be defective. In summary, our study argues against the view that the ESCRT cycle is governed by single one-to-one interactions between individual components and emphasizes the network character of the ESCRT interactions.

  11. Specific modulation of protein activity by using a bioorthogonal reaction.

    PubMed

    Warner, John B; Muthusamy, Anand K; Petersson, E James

    2014-11-24

    Unnatural amino acids with bioorthogonal reactive groups have the potential to provide a rapid and specific mechanism for covalently inhibiting a protein of interest. Here, we use mutagenesis to insert an unnatural amino acid containing an azide group (Z) into the target protein at positions such that a "click" reaction with an alkyne modulator (X) will alter the function of the protein. This bioorthogonally reactive pair can engender specificity of X for the Z-containing protein, even if the target is otherwise identical to another protein, allowing for rapid target validation in living cells. We demonstrate our method using inhibition of the Escherichia coli enzyme aminoacyl transferase by both active-site occlusion and allosteric mechanisms. We have termed this a "clickable magic bullet" strategy, and it should be generally applicable to studying the effects of protein inhibition, within the limits of unnatural amino acid mutagenesis.

  12. Regulatory Crosstalk by Protein Kinases on CFTR Trafficking and Activity

    PubMed Central

    Farinha, Carlos M.; Swiatecka-Urban, Agnieszka; Brautigan, David L.; Jordan, Peter

    2016-01-01

    Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a member of the ATP binding cassette (ABC) transporter superfamily that functions as a cAMP-activated chloride ion channel in fluid-transporting epithelia. There is abundant evidence that CFTR activity (i.e., channel opening and closing) is regulated by protein kinases and phosphatases via phosphorylation and dephosphorylation. Here, we review recent evidence for the role of protein kinases in regulation of CFTR delivery to and retention in the plasma membrane. We review this information in a broader context of regulation of other transporters by protein kinases because the overall functional output of transporters involves the integrated control of both their number at the plasma membrane and their specific activity. While many details of the regulation of intracellular distribution of CFTR and other transporters remain to be elucidated, we hope that this review will motivate research providing new insights into how protein kinases control membrane transport to impact health and disease. PMID:26835446

  13. Regulatory crosstalk by protein kinases on CFTR trafficking and activity

    NASA Astrophysics Data System (ADS)

    Farinha, Carlos Miguel; Swiatecka-Urban, Agnieszka; Brautigan, David; Jordan, Peter

    2016-01-01

    Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a member of the ATP binding cassette (ABC) transporter superfamily that functions as a cAMP-activated chloride ion channel in fluid-transporting epithelia. There is abundant evidence that CFTR activity (i.e. channel opening and closing) is regulated by protein kinases and phosphatases via phosphorylation and dephosphorylation. Here, we review recent evidence for the role of protein kinases in regulation of CFTR delivery to and retention in the plasma membrane. We review this information in a broader context of regulation of other transporters by protein kinases because the overall functional output of transporters involves the integrated control of both their number at the plasma membrane and their specific activity. While many details of the regulation of intracellular distribution of CFTR and other transporters remain to be elucidated, we hope that this review will motivate research providing new insights into how protein kinases control membrane transport to impact health and disease.

  14. Protein-Protein Interactions in the Yeast Pheromone Response Pathway: Ste5p Interacts with All Members of the Map Kinase Cascade

    PubMed Central

    Printen, J. A.; Sprague-Jr., G. F.

    1994-01-01

    We have used the two-hybrid system of Fields and Song to identify protein-protein interactions that occur in the pheromone response pathway of the yeast Saccharomyces cerevisiae. Pathway components Ste4p, Ste5p, Ste7p, Ste11p, Ste12p, Ste20p, Fus3p and Kss1p were tested in all pairwise combinations. All of the interactions we detected involved at least one member of the MAP kinase cascade that is a central element of the response pathway. Ste5p, a protein of unknown biochemical function, interacted with protein kinases that operate at each step of the MAP kinase cascade, specifically with Ste11p (an MEKK), Ste7p (an MEK), and Fus3p (a MAP kinase). This finding suggests that one role of Ste5p is to serve as a scaffold to facilitate interactions among members of the kinase cascade. In this role as facilitator, Ste5p may make both signal propagation and signal attenuation more efficient. Ste5p may also help minimize cross-talk with other MAP kinase cascades and thus ensure the integrity of the pheromone response pathway. We also found that both Ste11p and Ste7p interact with Fus3p and Kss1p. Finally, we detected an interaction between one of the MAP kinases, Kss1p, and a presumptive target, the transcription factor Ste12p. We failed to detect interactions of Ste4p or Ste20p with any other component of the response pathway. PMID:7851759

  15. Structure–function analysis of the extracellular domain of the pneumococcal cell division site positioning protein MapZ

    PubMed Central

    Manuse, Sylvie; Jean, Nicolas L.; Guinot, Mégane; Lavergne, Jean-Pierre; Laguri, Cédric; Bougault, Catherine M.; VanNieuwenhze, Michael S.; Grangeasse, Christophe; Simorre, Jean-Pierre

    2016-01-01

    Accurate placement of the bacterial division site is a prerequisite for the generation of two viable and identical daughter cells. In Streptococcus pneumoniae, the positive regulatory mechanism involving the membrane protein MapZ positions precisely the conserved cell division protein FtsZ at the cell centre. Here we characterize the structure of the extracellular domain of MapZ and show that it displays a bi-modular structure composed of two subdomains separated by a flexible serine-rich linker. We further demonstrate in vivo that the N-terminal subdomain serves as a pedestal for the C-terminal subdomain, which determines the ability of MapZ to mark the division site. The C-terminal subdomain displays a patch of conserved amino acids and we show that this patch defines a structural motif crucial for MapZ function. Altogether, this structure–function analysis of MapZ provides the first molecular characterization of a positive regulatory process of bacterial cell division. PMID:27346279

  16. Structure-function analysis of the extracellular domain of the pneumococcal cell division site positioning protein MapZ

    NASA Astrophysics Data System (ADS)

    Manuse, Sylvie; Jean, Nicolas L.; Guinot, Mégane; Lavergne, Jean-Pierre; Laguri, Cédric; Bougault, Catherine M.; Vannieuwenhze, Michael S.; Grangeasse, Christophe; Simorre, Jean-Pierre

    2016-06-01

    Accurate placement of the bacterial division site is a prerequisite for the generation of two viable and identical daughter cells. In Streptococcus pneumoniae, the positive regulatory mechanism involving the membrane protein MapZ positions precisely the conserved cell division protein FtsZ at the cell centre. Here we characterize the structure of the extracellular domain of MapZ and show that it displays a bi-modular structure composed of two subdomains separated by a flexible serine-rich linker. We further demonstrate in vivo that the N-terminal subdomain serves as a pedestal for the C-terminal subdomain, which determines the ability of MapZ to mark the division site. The C-terminal subdomain displays a patch of conserved amino acids and we show that this patch defines a structural motif crucial for MapZ function. Altogether, this structure-function analysis of MapZ provides the first molecular characterization of a positive regulatory process of bacterial cell division.

  17. Isozymic forms of rat brain CA/sup 2 +/-activated and phospholipid-dependent protein kinase

    SciTech Connect

    Huang, K.P.; Huang, F.L.

    1986-05-01

    Three forms of Ca/sup 2 +/-activated and phospholipid-dependent protein kinase (protein kinase C) were purified from the cytosolic fraction of rat brain. These enzymes, designated as type I, II, and III protein kinase C, all have the similar molecular weight of 80 Kd, bind (/sup 3/H)-phorbol dibutyrate in the presence of Ca/sup 2 +/, and undergo autophosphorylation in the presence of Ca/sup 2 +/, phosphatidylserine, and diolein. Autophosphorylation of these kinases resulted in an incorporation of 1- 1.5 mol /sup 32/P/mol of enzyme. Analysis of the /sup 32/P-labeled tryptic peptides derived from the autophosphorylated protein kinase C by two-dimensional peptide mapping revealed that these kinases had different sites of autophosphorylation. Phosphoamino acid analysis revealed that the type I and type III protein kinase C mainly phosphorylated at Ser residue while the type II kinase phosphorylated at both Ser and Thr residues. In addition, polyclonal antibodies previously prepared against a mixed enzyme fraction preferentially inhibited the type I and type II enzymes but less effectively toward the type III enzyme. Monoclonal antibody specifically against the type II protein kinase C did not inhibit the type I or type III enzymes. These kinases also had different susceptibility to limited proteolysis by trypsin and upon proteolytic degradation they generate distinct fragments. These results demonstrate the presence of isozymic forms of protein kinase C in rat brain.

  18. Cellular reprogramming through mitogen-activated protein kinases

    PubMed Central

    Lee, Justin; Eschen-Lippold, Lennart; Lassowskat, Ines; Böttcher, Christoph; Scheel, Dierk

    2015-01-01

    Mitogen-activated protein kinase (MAPK) cascades are conserved eukaryote signaling modules where MAPKs, as the final kinases in the cascade, phosphorylate protein substrates to regulate cellular processes. While some progress in the identification of MAPK substrates has been made in plants, the knowledge on the spectrum of substrates and their mechanistic action is still fragmentary. In this focused review, we discuss the biological implications of the data in our original paper (Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana; Frontiers in Plant Science 5: 554) in the context of related research. In our work, we mimicked in vivo activation of two stress-activated MAPKs, MPK3 and MPK6, through transgenic manipulation of Arabidopsis thaliana and used phosphoproteomics analysis to identify potential novel MAPK substrates. Here, we plotted the identified putative MAPK substrates (and downstream phosphoproteins) as a global protein clustering network. Based on a highly stringent selection confidence level, the core networks highlighted a MAPK-induced cellular reprogramming at multiple levels of gene and protein expression—including transcriptional, post-transcriptional, translational, post-translational (such as protein modification, folding, and degradation) steps, and also protein re-compartmentalization. Additionally, the increase in putative substrates/phosphoproteins of energy metabolism and various secondary metabolite biosynthesis pathways coincides with the observed accumulation of defense antimicrobial substances as detected by metabolome analysis. Furthermore, detection of protein networks in phospholipid or redox elements suggests activation of downstream signaling events. Taken in context with other studies, MAPKs are key regulators that reprogram cellular events to orchestrate defense signaling in eukaryotes. PMID:26579181

  19. Map and Compass Skills for the Secondary School (Understanding Topographic Maps, Developing Compass Skills, and Orienteering). Instructional Activities Series IA/S-18.

    ERIC Educational Resources Information Center

    Larkin, Robert P.

    This activity is one of a series of 17 teacher-developed instructional activities for geography at the secondary-grade level described in SO 009 140. The activity investigates the development of compass skills, map skills, and orienteering. It employs the educational-games approach. Given specific exercises and instructions, students become…

  20. Brominated Flame Retardants, Tetrabromobisphenol A and Hexabromocyclododecane, Activate Mitogen-Activated Protein Kinases (MAPKs) in Human Natural Killer Cells

    PubMed Central

    Cato, Anita; Celada, Lindsay; Kibakaya, Esther Caroline; Simmons, Nadia; Whalen, Margaret M.

    2014-01-01

    NK cells provide a vital surveillance against virally infected cells, tumor cells, and antibody-coated cells through the release of cytolytic mediators and gamma interferon (IFN-γ). Hexabromocyclododecane (HBCD) is a brominated flame retardant used primarily in expanded (EPS) and extruded (XPS) polystyrene foams for thermal insulation in the building and construction industry. Tetrabromobisphenol A (TBBPA) is used both as a reactive and an additive flame retardant in a variety of materials. HBCD and TBBPA contaminate the environment and are found in human blood samples. In previous studies, we have shown that other environmental contaminants, such as the dibutyltin (DBT) and tributyltin (TBT), decrease NK lytic function by activating mitogen-activated protein kinases (MAPKs) in the NK cells. HBCD and TBBPA also interfere with NK cell(s) lytic function. The current study evaluates whether HBCD and/or TBBPA have the capacity to activate MAPKs and MAPK kinases (MAP2Ks). The effects of concentrations of HBCD and TBBPA that inhibited lytic function on the phosphorylation state and total levels of the MAPKs (p44/42, p38, and JNK) and the phosphorylation and total levels of the MAP2Ks (MEK1/2 and MKK3/6) were examined. Results indicate that exposure of human NK cells to 10-0.5 µM HBCD or TBBPA activate MAPKs and MAP2Ks. This HBCD and TBBPA-induced activation of MAPKs may leave them unavailable for activation by virally infected or tumor target cells and thus contributes to the observed decreases in lytic function seen in NK cells exposed to HBCD and TBBPA. PMID:25341744

  1. Auto-phosphorylation Represses Protein Kinase R Activity

    PubMed Central

    Wang, Die; de Weerd, Nicole A.; Willard, Belinda; Polekhina, Galina; Williams, Bryan R. G.; Sadler, Anthony J.

    2017-01-01

    The central role of protein kinases in controlling disease processes has spurred efforts to develop pharmaceutical regulators of their activity. A rational strategy to achieve this end is to determine intrinsic auto-regulatory processes, then selectively target these different states of kinases to repress their activation. Here we investigate auto-regulation of the innate immune effector protein kinase R, which phosphorylates the eukaryotic initiation factor 2α to inhibit global protein translation. We demonstrate that protein kinase R activity is controlled by auto-inhibition via an intra-molecular interaction. Part of this mechanism of control had previously been reported, but was then controverted. We account for the discrepancy and extend our understanding of the auto-inhibitory mechanism by identifying that auto-inhibition is paradoxically instigated by incipient auto-phosphorylation. Phosphor-residues at the amino-terminus instigate an intra-molecular interaction that enlists both of the N-terminal RNA-binding motifs of the protein with separate surfaces of the C-terminal kinase domain, to co-operatively inhibit kinase activation. These findings identify an innovative mechanism to control kinase activity, providing insight for strategies to better regulate kinase activity. PMID:28281686

  2. HMG Proteins and DNA Flexibility in Transcription Activation

    PubMed Central

    Ross, Eric D.; Hardwidge, Philip R.; Maher, L. James

    2001-01-01

    The relative stiffness of naked DNA is evident from measured values of longitudinal persistence length (∼150 bp) and torsional persistence length (∼180 bp). These parameters predict that certain arrangements of eukaryotic transcription activator proteins in gene promoters should be much more effective than others in fostering protein-protein interactions with the basal RNA polymerase II transcription apparatus. Thus, if such interactions require some kind of DNA looping, DNA loop energies should depend sensitively on helical phasing of protein binding sites, loop size, and intrinsic DNA curvature within the loop. Using families of artificial transcription templates where these parameters were varied, we were surprised to find that the degree of transcription activation by arrays of Gal4-VP1 transcription activators in HeLa cell nuclear extract was sensitive only to the linear distance separating a basal promoter from an array of bound activators on DNA templates. We now examine the hypothesis that this unexpected result is due to factors in the extract that act to enhance apparent DNA flexibility. We demonstrate that HeLa cell nuclear extract is rich in a heat-resistant activity that dramatically enhances apparent DNA longitudinal and torsional flexibility. Recombinant mammalian high-mobility group 2 (HMG-2) protein can substitute for this activity. We propose that the abundance of HMG proteins in eukaryotic nuclei provides an environment in which DNA is made sufficiently flexible to remove many constraints on protein binding site arrangements that would otherwise limit efficient transcription activation to certain promoter geometries. PMID:11533247

  3. Flood mapping by combining the strengths of optical and Sentinel active radar remote sensing

    NASA Astrophysics Data System (ADS)

    Winsemius, H. C.; Brakenridge, G. R.; Westerhoff, R.; Huizinga, J.; Villars, N.; Bishop, C.

    2012-04-01

    Flood mapping with remote sensing plays an important role in large scale disaster management procedures. For this purpose, the Dartmouth Flood Observatory (DFO) gained experience since 1993 with the production of flood maps from optical satellite imagery and has currently established, together with NASA collaborators, a fully automated, global, near real-time service. Another consortium is also presently working on an automated, near real-time, global flood mapping procedure called the 'Global Flood Observatory' (GFO), which will make use of high resolution Sentinel data. The procedure is currently tested on Envisat active radar (ASAR) imagery. Both the DFO and GFO projects provide open data output of their data and maps. The optical and radar approaches to flood mapping each have advantages and suffer from shortcomings. Optical remote sensing via the U.S. MODIS and VIIRS sensors is constrained by cloud cover but can attain a high revisit frequency (>2 /day), whereas the Envisat ASAR is not affected by cloud cover, but uses a lower revisit frequency (generally once/3 days, depending on the location). In this contribution, we demonstrate the combination of both approaches into one flood mapping result. This results in improved flood mapping in a case study over the Chao Phraya basin (Bangkok surroundings) during the recent October-November 2011 extreme flooding. The combined map shows that during overpass, ASAR reveals flooded regions over cloud-obscured areas, which clearly follow elevated features in the landscape such as roads, embankments and railways. Meanwhile, the high frequency of delivery of the optical information ensures timely information. Also, the quite different water classification methods used for the optical and ASAR data sources show good agreement and have been successfully merged into one GIS data product. This can also be automatically generated and disseminated on a global basis.

  4. High-resolution mapping of architectural DNA binding protein facilitation of a DNA repression loop in Escherichia coli.

    PubMed

    Becker, Nicole A; Maher, L James

    2015-06-09

    Double-stranded DNA is a locally inflexible polymer that resists bending and twisting over hundreds of base pairs. Despite this, tight DNA bending is biologically important for DNA packaging in eukaryotic chromatin and tight DNA looping is important for gene repression in prokaryotes. We and others have previously shown that sequence nonspecific DNA kinking proteins, such as Escherichia coli heat unstable and Saccharomyces cerevisiae non-histone chromosomal protein 6A (Nhp6A), facilitate lac repressor (LacI) repression loops in E. coli. It has been unknown if this facilitation involves direct protein binding to the tightly bent DNA loop or an indirect effect promoting global negative supercoiling of DNA. Here we adapt two high-resolution in vivo protein-mapping techniques to demonstrate direct binding of the heterologous Nhp6A protein at a LacI repression loop in living E. coli cells.

  5. Anthelmintic activity of Leucaena leucocephala protein extracts on Haemonchus contortus.

    PubMed

    Soares, Alexandra Martins dos Santos; de Araújo, Sandra Alves; Lopes, Suzana Gomes; Costa Junior, Livio Martins

    2015-01-01

    The objective of this study was to evaluate the effects of protein extracts obtained from the plant Leucaena leucocephala on the nematode parasite Haemonchus contortus. The seeds, shell and cotyledon of L. leucocephala were separated and their proteins extracted using a sodium phosphate buffer, and named as TE (total seed extract), SE (shell extract) and CE (cotyledon extract). Soluble protein content, protease, protease inhibitory and chitinase activity assays were performed. Exsheathment inhibition of H. contortus larvae were performed at concentrations of 0.6 mg mL-1, and egg hatch assays were conducted at protein concentrations of 0.8, 0.4, 0.2, 0.1 and 0.05 mg mL-1. The effective concentration for 50% hatching inhibition (EC50) was estimated by probit. Different proportions of soluble proteins, protease and chitinase were found in TE and CE. Protease inhibitory activity was detected in all extracts. The EC50 of the CE and TE extracts were 0.48 and 0.33 mg mL-1, respectively. No ovicidal effects on H. contortus were detected in SE extracts, and none of the protein extracts demonstrated larvicidal effects on H. contortus. We therefore conclude that protein extracts of L. leucocephala had a detrimental effect on nematode eggs, which can be correlated with the high protease and chitinase activity of these extracts.

  6. Steady-state compartmentalization of lipid membranes by active proteins.

    PubMed Central

    Sabra, M C; Mouritsen, O G

    1998-01-01

    Using a simple microscopic model of lipid-protein interactions, based on the hydrophobic matching principle, we study some generic aspects of lipid-membrane compartmentalization controlled by a dispersion of active integral membrane proteins. The activity of the proteins is simulated by conformational excitations governed by an external drive, and the deexcitation is controlled by interaction of the protein with its lipid surroundings. In response to the flux of energy into the proteins from the environment and the subsequent dissipation of energy into the lipid bilayer, the lipid-protein assembly reorganizes into a steady-state structure with a typical length scale determined by the strength of the external drive. In the specific case of a mixed dimyristoylphosphatidylcholine-distearoylphosphatidylcholine bilayer in the gel-fluid coexistence region, it is shown explicitly by computer simulation that the activity of an integral membrane protein can lead to a compartmentalization of the lipid-bilayer membrane. The compartmentalization is related to the dynamical process of phase separation and lipid domain formation. PMID:9533687

  7. Integrating passive and active remote sensing methods to assess and map soil salinity

    NASA Astrophysics Data System (ADS)

    Goldshleger, Naftaly; Chudnovsky Chudnovsky, Alexandra

    2013-04-01

    Irrigated lands in Israel are subjected to salinization processes, mostly as a result of using low-quality irrigation water. The Jezre'el Valley in northern Israel is an example of this phenomenon and thus it was selected to carry out this study. This area is characterized by increasing soil salinity over the years, followed by an increase in soil SAR (Sodium Adsorption Ration), which leads to a significant deterioration of the soil structure and a reduced infiltration rate. The traditional methods of mapping, by soil sampling (sampling, laboratory checks, and mapping) are time-consuming and do not provide near real-time information. An alternative method is suggested herein using active and passive remote sensing methods: (1) an hyperspectral data from the ground ASD field spectrometer and from the air, by AISA air-born sensor (2) EFDM- Frequency Domain Electro-Magnetic, and (3) GPR- ground penetration radar. The constructed PLS model was applied on the hyperspectral images, producing an EC thematic map of the surface. In addition, a sub-surface salinity map was generated by applying the surface - sub-surface correlation on the surface EC thematic map. The generated maps were found to be in good agreement with maps based on chemical data. The results indicated that traditional methods are correlated with the remote sensing ones and that merging the three remote sensing methodologies may yield a better picture than each of them alone. In addition, we discuss the advantages and disadvantages of applied in this study methods. It can be concluded that it is possible to account for soil salinity based on active and passive remote sensing means.

  8. Activity-Independent Prespecification of Synaptic Partners in the Visual Map of Drosophila

    PubMed Central

    Hiesinger, P. Robin; Zhai, R. Grace; Zhou, Yi; Koh, Tong-Wey; Mehta, Sunil Q.; Schulze, Karen L.; Cao, Yu; Verstreken, Patrik; Clandinin, Thomas R.; Fischbach, Karl-Friedrich; Meinertzhagen, Ian A.; Bellen, Hugo J.

    2012-01-01

    Summary Specifying synaptic partners and regulating synaptic numbers are at least partly activity-dependent processes during visual map formation in all systems investigated to date [1–5]. In Drosophila, six photo-receptors that view the same point in visual space have to be sorted into synaptic modules called cartridges in order to form a visuotopically correct map [6, 7]. Synapse numbers per photoreceptor terminal and cartridge are both precisely regulated [8–10]. However, it is unknown whether an activity-dependent mechanism or a genetically encoded developmental program regulates synapse numbers. We performed a large-scale quantitative ultrastructural analysis of photoreceptor synapses in mutants affecting the generation of electrical potentials (norpA, trp;trpl), neurotransmitter release (hdc, syt), vesicle endocytosis (synj), the trafficking of specific guidance molecules during photoreceptor targeting (sec15), a specific guidance receptor required for visual map formation (Dlar), and 57 other novel synaptic mutants affecting 43 genes. Remarkably, in all these mutants, individual photoreceptors form the correct number of synapses per presynaptic terminal independently of cartridge composition. Hence, our data show that each photoreceptor forms a precise and constant number of afferent synapses independently of neuronal activity and partner accuracy. Our data suggest cell-autonomous control of synapse numbers as part of a developmental program of activity-independent steps that lead to a “hardwired” visual map in the fly brain. PMID:16979562

  9. Activity-independent prespecification of synaptic partners in the visual map of Drosophila.

    PubMed

    Hiesinger, P Robin; Zhai, R Grace; Zhou, Yi; Koh, Tong-Wey; Mehta, Sunil Q; Schulze, Karen L; Cao, Yu; Verstreken, Patrik; Clandinin, Thomas R; Fischbach, Karl-Friedrich; Meinertzhagen, Ian A; Bellen, Hugo J

    2006-09-19

    Specifying synaptic partners and regulating synaptic numbers are at least partly activity-dependent processes during visual map formation in all systems investigated to date . In Drosophila, six photoreceptors that view the same point in visual space have to be sorted into synaptic modules called cartridges in order to form a visuotopically correct map . Synapse numbers per photoreceptor terminal and cartridge are both precisely regulated . However, it is unknown whether an activity-dependent mechanism or a genetically encoded developmental program regulates synapse numbers. We performed a large-scale quantitative ultrastructural analysis of photoreceptor synapses in mutants affecting the generation of electrical potentials (norpA, trp;trpl), neurotransmitter release (hdc, syt), vesicle endocytosis (synj), the trafficking of specific guidance molecules during photoreceptor targeting (sec15), a specific guidance receptor required for visual map formation (Dlar), and 57 other novel synaptic mutants affecting 43 genes. Remarkably, in all these mutants, individual photoreceptors form the correct number of synapses per presynaptic terminal independently of cartridge composition. Hence, our data show that each photoreceptor forms a precise and constant number of afferent synapses independently of neuronal activity and partner accuracy. Our data suggest cell-autonomous control of synapse numbers as part of a developmental program of activity-independent steps that lead to a "hard-wired" visual map in the fly brain.

  10. Trajectories of Attentional Development: An Exploration with the Master Activation Map Model

    ERIC Educational Resources Information Center

    Michael, George A.; Lete, Bernard; Ducrot, Stephanie

    2013-01-01

    The developmental trajectories of several attention components, such as orienting, inhibition, and the guidance of selection by relevance (i.e., advance knowledge relevant to the task) were investigated in 498 participants (ages 7, 8, 9, 10, 11, and 20). The paradigm was based on Michael et al.'s (2006) master activation map model and consisted of…

  11. Putting Information in Perspective: A Mapping Activity to Help Students Understand the California Dilemma.

    ERIC Educational Resources Information Center

    Gersmehl, Philip J.

    1997-01-01

    Asserts that, to participate in a modern economy, every region needs at least one "bigjob" (basic income generating-job). Describes a mapping activity that helps students identify bigjobs in state economies. Uses California as an example and reveals that, contrary to popular opinion, real estate is California's bigjob. (MJP)

  12. Nanoscale mapping of catalytic activity using tip-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kumar, N.; Stephanidis, B.; Zenobi, R.; Wain, A. J.; Roy, D.

    2015-04-01

    Chemical mapping of a photocatalytic reaction with nanoscale spatial resolution is demonstrated for the first time using tip-enhanced Raman spectroscopy (TERS). An ultrathin alumina film applied to the Ag-coated TERS tip blocks catalytic interference whilst maintaining near-field electromagnetic enhancement, thus enabling spectroscopic imaging of catalytic activity on nanostructured Ag surfaces.

  13. Modeling the SHG activities of diverse protein crystals

    PubMed Central

    Haupert, Levi M.; DeWalt, Emma L.; Simpson, Garth J.

    2012-01-01

    A symmetry-additive ab initio model for second-harmonic generation (SHG) activity of protein crystals was applied to assess the likely protein-crystal coverage of SHG microscopy. Calculations were performed for 250 proteins in nine point-group symmetries: a total of 2250 crystals. The model suggests that the crystal symmetry and the limit of detection of the instrument are expected to be the strongest predictors of coverage of the factors considered, which also included secondary-structural content and protein size. Much of the diversity in SHG activity is expected to arise primarily from the variability in the intrinsic protein response as well as the orientation within the crystal lattice. Two or more orders-of-­magnitude variation in intensity are expected even within protein crystals of the same symmetry. SHG measurements of tetragonal lysozyme crystals confirmed detection, from which a protein coverage of ∼84% was estimated based on the proportion of proteins calculated to produce SHG responses greater than that of tetragonal lysozyme. Good agreement was observed between the measured and calculated ratios of the SHG intensity from lysozyme in tetragonal and monoclinic lattices. PMID:23090400

  14. Obesity-induced insulin resistance in human skeletal muscle is characterised by defective activation of p42/p44 MAP kinase.

    PubMed

    Ruiz-Alcaraz, Antonio J; Lipina, Christopher; Petrie, John R; Murphy, Michael J; Morris, Andrew D; Sutherland, Calum; Cuthbertson, Daniel J

    2013-01-01

    Insulin resistance (IR), an impaired cellular, tissue and whole body response to insulin, is a major pathophysiological defect of type 2 diabetes mellitus. Although IR is closely associated with obesity, the identity of the molecular defect(s) underlying obesity-induced IR in skeletal muscle remains controversial; reduced post-receptor signalling of the insulin receptor substrate 1 (IRS1) adaptor protein and downstream effectors such as protein kinase B (PKB) have previously been implicated. We examined expression and/or activation of a number of components of the insulin-signalling cascade in skeletal muscle of 22 healthy young men (with body mass index (BMI) range, 20-37 kg/m(2)). Whole body insulin sensitivity (M value) and body composition was determined by the hyperinsulinaemic (40 mU. min(-1).m(-2).), euglycaemic clamp and by dual energy X-ray absorptiometry (DEXA) respectively. Skeletal muscle (vastus lateralis) biopsies were taken before and after one hour of hyperinsulinaemia and the muscle insulin signalling proteins examined by western blot and immunoprecipitation assay. There was a strong inverse relationship between M-value and BMI. The most striking abnormality was significantly reduced insulin-induced activation of p42/44 MAP kinase, measured by specific assay, in the volunteers with poor insulin sensitivity. However, there was no relationship between individuals' BMI or M-value and protein expression/phosphorylation of IRS1, PKB, or p42/44 MAP kinase protein, under basal or hyperinsulinaemic conditions. In the few individuals with poor insulin sensitivity but preserved p42/44 MAP kinase activation, other signalling defects were evident. These findings implicate defective p42/44 MAP kinase signalling as a potential contributor to obesity-related IR in a non-diabetic population, although clearly multiple signalling defects underlie obesity associated IR.

  15. A conserved patch of hydrophobic amino acids modulates Myb activity by mediating protein-protein interactions.

    PubMed

    Dukare, Sandeep; Klempnauer, Karl-Heinz

    2016-07-01

    The transcription factor c-Myb plays a key role in the control of proliferation and differentiation in hematopoietic progenitor cells and has been implicated in the development of leukemia and certain non-hematopoietic tumors. c-Myb activity is highly dependent on the interaction with the coactivator p300 which is mediated by the transactivation domain of c-Myb and the KIX domain of p300. We have previously observed that conservative valine-to-isoleucine amino acid substitutions in a conserved stretch of hydrophobic amino acids have a profound effect on Myb activity. Here, we have explored the function of the hydrophobic region as a mediator of protein-protein interactions. We show that the hydrophobic region facilitates Myb self-interaction and binding of the histone acetyl transferase Tip60, a previously identified Myb interacting protein. We show that these interactions are affected by the valine-to-isoleucine amino acid substitutions and suppress Myb activity by interfering with the interaction of Myb and the KIX domain of p300. Taken together, our work identifies the hydrophobic region in the Myb transactivation domain as a binding site for homo- and heteromeric protein interactions and leads to a picture of the c-Myb transactivation domain as a composite protein binding region that facilitates interdependent protein-protein interactions of Myb with regulatory proteins.

  16. Biologically active protein fragments containing specific binding regions of serum albumin or related proteins

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor)

    1998-01-01

    In accordance with the present invention, biologically active protein fragments can be constructed which contain only those specific portions of the serum albumin family of proteins such as regions known as subdomains IIA and IIIA which are primarily responsible for the binding properties of the serum albumins. The artificial serums that can be prepared from these biologically active protein fragments are advantageous in that they can be produced much more easily than serums containing the whole albumin, yet still retain all or most of the original binding potential of the full albumin proteins. In addition, since the protein fragment serums of the present invention can be made from non-natural sources using conventional recombinant DNA techniques, they are far safer than serums containing natural albumin because they do not carry the potentially harmful viruses and other contaminants that will be found in the natural substances.

  17. Energy transfer at the active sites of heme proteins

    SciTech Connect

    Dlott, D.D.; Hill, J.R.

    1995-12-31

    Experiments using a picosecond pump-probe apparatus at the Picosecond Free-electron Laser Center at Stanford University, were performed to investigate the relaxation of carbon monoxide bound to the active sites of heme proteins. The significance of these experiments is two-fold: (1) they provide detailed information about molecular dynamics occurring at the active sites of proteins; and (2) they provide insight into the nature of vibrational relaxation processes in condensed matter. Molecular engineering is used to construct various molecular systems which are studied with the FEL. We have studied native proteins, mainly myoglobin obtained from different species, mutant proteins produced by genetic engineering using recombinant DNA techniques, and a variety of model systems which mimic the structures of the active sites of native proteins, which are produced using molecular synthesis. Use of these different systems permits us to investigate how specific molecular structural changes affect dynamical processes occurring at the active sites. This research provides insight into the problems of how different species needs are fulfilled by heme proteins which have greatly different functionality, which is induced by rather small structural changes.

  18. The AtMYB12 activation domain maps to a short C-terminal region of the transcription factor.

    PubMed

    Stracke, Ralf; Turgut-Kara, Neslihan; Weisshaar, Bernd

    2017-03-11

    The Arabidopsis thaliana R2R3-MYB transcription factor MYB12 is a light-inducible, flavonol-specific activator of flavonoid biosynthesis. The transactivation activity of the AtMYB12 protein was analyzed using a C-terminal deletion series in a transient A. thaliana protoplast assay with the goal of mapping the activation domain (AD). Although the deletion of the last 46 C-terminal amino acids did not affect the activation capacity, the deletion of the last 98 amino acids almost totally abolished transactivation of two different target promoters. A domain swap experiment using the yeast GAL4 DNA-binding domain revealed that the region from positions 282 to 328 of AtMYB12 was sufficient for transactivation. In contrast to the R2R3-MYB ADs known thus far, that of AtMYB12 is not located at the rearmost C-terminal end of the protein. The AtMYB12 AD is conserved in other experimentally proven R2R3-MYB flavonol regulators from different species.

  19. Application of Satellite SAR Imagery in Mapping the Active Layer of Arctic Permafrost

    NASA Technical Reports Server (NTRS)

    Li, Shu-Sun; Romanovsky, V.; Lovick, Joe; Wang, Z.; Peterson, Rorik

    2003-01-01

    A method of mapping the active layer of Arctic permafrost using a combination of conventional synthetic aperture radar (SAR) backscatter and more sophisticated interferometric SAR (INSAR) techniques is proposed. The proposed research is based on the sensitivity of radar backscatter to the freeze and thaw status of the surface soil, and the sensitivity of INSAR techniques to centimeter- to sub-centimeter-level surface differential deformation. The former capability of SAR is investigated for deriving the timing and duration of the thaw period for surface soil of the active layer over permafrost. The latter is investigated for the feasibility of quantitative measurement of frost heaving and thaw settlement of the active layer during the freezing and thawing processes. The resulting knowledge contributes to remote sensing mapping of the active layer dynamics and Arctic land surface hydrology.

  20. Utilizing avidity to improve antifreeze protein activity: a type III antifreeze protein trimer exhibits increased thermal hysteresis activity.

    PubMed

    Can, Özge; Holland, Nolan B

    2013-12-03

    Antifreeze proteins (AFPs) are ice growth inhibitors that allow the survival of several species living at temperatures colder than the freezing point of their bodily fluids. AFP activity is commonly defined in terms of thermal hysteresis, which is the difference observed for the solution freezing and melting temperatures. Increasing the thermal hysteresis activity of these proteins, particularly at low concentrations, is of great interest because of their wide range of potential applications. In this study, we have designed and expressed one-, two-, and three-domain antifreeze proteins to improve thermal hysteresis activity through increased binding avidity. The three-domain type III AFP yielded significantly greater activity than the one- and two-domain proteins, reaching a thermal hysteresis of >1.6 °C at a concentration of <1 mM. To elucidate the basis of this increase, the data were fit to a multidomain protein adsorption model based on the classical Langmuir isotherm. Fits of the data to the modified isotherms yield values for the equilibrium binding constants for the adsorption of AFP to ice and indicate that protein surface coverage is proportional to thermal hysteresis activity.

  1. Accurately mapping the location of the binding site for the interaction between hepatitis B virus X protein and cytochrome c oxidase III

    PubMed Central

    LI, DAN; DING, JIAN; CHEN, ZHIXIN; CHEN, YUN; LIN, NA; CHEN, FENGLIN; WANG, XIAOZHONG

    2015-01-01

    The hepatitis B virus (HBV) X protein (HBx) plays an important pathogenetic role in hepatocarcinoma tumorigenesis. As HBx does not have the ability to bind to double-stranded DNA (dsDNA), protein-protein interaction is crucial for HBx functions. In a previous study, we screened a novel HBx-interacting protein, the cytochrome c oxidase subunit III (COXIII). In the present study, we aimed to accurately map the location of the binding site for the interaction of HBx with COXIII. Two fragments of HBx mutants (X1 aa1-72 and X2 aa1-117) were amplified by polymerase chain reaction (PCR) and separately inserted into the pAS2-1 plasmid. PCR and gene sequencing confirmed the correct insertion of the mutant fragments in the plasmid. The tanscription of the mutant fragments in yeast cells was demonstrated by RT-PCR and western blot analysis confirmed that they were accurately translated into fusion proteins. Hybridization on solid medium and the detection of β-galactosidase (β-gal) activity indicated that the binding site for the interaction between HBx and COXIII was located between aa72 and aa117. Specific interactions between the HBxX2 protein and COXIII were verified by co-immunoprecipitation. To the best of our knowledge, this is the first study showing to demonstrate that aa72-117 in HBx is the key region for binding with COXIII. PMID:25483779

  2. Localization of the human stress responsive MAP kinase-like CSAIDs binding protein (CSBP) gene to chromosome 6p21.3/21.2

    SciTech Connect

    McDonnell, P.C.; Young, P.R.; DiLella, A.G.

    1995-09-01

    The proinflammatory cytokines interleukin 1 (IL-1) and tumor necrosis factor (TNF) play a pivotal role in the initiation of inflammatory responses. Soluble protein antagonists of IL-1 and TNF, such as IL-1ra, sTNFR-Fc fusion, and monoclonal antibodies to TNF have proven to be effective at blocking acute and chronic responses in a number of animal models of inflammatory diseases such as rheumatoid arthritis, septic shock, and inflammatory bowel disease. Consequently, there has been considerable interest in discovering compounds that could inhibit the production of these cytokines and might therefore become treatments. Recently, a structurally related series of pyridinyl imidazoles was found to block IL-1 and TNF production from LPS-stimulated human monocytes and to ameliorate inflammatory diseases significantly in vivo, leading to their being named CSAIDs (cytokine suppressive anti-inflammatory drugs). The protein target of these compounds, termed CSBP (CSAID binding protein), was discovered to be a new member of the MAP kinase family of serine-threonine protein kinases whose kinase activity is activated by LPS in human monocytes. Independently, the same kinase, or its rodent homologues, was found to respond also to chemical, thermal, and osmotic stress and IL-1 treatment. Inhibition of this kinase correlated with reduction in inflammatory cytokine production from LPS-activated monocytes. 15 refs., 1 fig.

  3. Heated Proteins are Still Active in a Functionalized Nanoporous Support

    SciTech Connect

    Chen, Baowei; Qi, Wen N.; Li, Xiaolin; Lei, Chenghong; Liu, Jun

    2013-07-08

    We report that even under the heated condition, the conformation and activity of a protein can be hoarded in a functionalized nanoporous support via non-covalent interaction, although the hoarded protein was not exhibiting the full protein activity, the protein released subsequently still maintained its native conformation and activity. Glucose oxidase (GOX) was spontaneously and largely entrapped in aminopropyl-functionalized mesoporous silica (NH2-FMS) at 20 oC via a dominant electrostatic interaction. Although FMS-GOX displayed 45% activity of the free enzyme in solution, the GOX released from FMS exhibited its 100% activity prior to the entrapment. Surprisingly, the released GOX from FMS still maintained 89% of its initial activity prior to the entrapment after FMS-GOX was incubated at 60 oC for 1 h prior to release, while the free GOX in solution lost nearly all activity under the same incubation. Intrinsic fluorescence emission of GOX and native electrophoresis demonstrated that the heating resulted in significant conformational changes and oligomeric structures of the free GOX, but FMS efficiently maintained the thermal stability of GOX therein and resisted the thermal denaturation and oligomeric aggregation.

  4. Counteracting Protein Kinase Activity in the Heart: The Multiple Roles of Protein Phosphatases

    PubMed Central

    Weber, Silvio; Meyer-Roxlau, Stefanie; Wagner, Michael; Dobrev, Dobromir; El-Armouche, Ali

    2015-01-01

    Decades of cardiovascular research have shown that variable and flexible levels of protein phosphorylation are necessary to maintain cardiac function. A delicate balance between phosphorylated and dephosphorylated states of proteins is guaranteed by a complex interplay of protein kinases (PKs) and phosphatases. Serine/threonine phosphatases, in particular members of the protein phosphatase (PP) family govern dephosphorylation of the majority of these cardiac proteins. Recent findings have however shown that PPs do not only dephosphorylate previously phosphorylated proteins as a passive control mechanism but are capable to actively control PK activity via different direct and indirect signaling pathways. These control mechanisms can take place on (epi-)genetic, (post-)transcriptional, and (post-)translational levels. In addition PPs themselves are targets of a plethora of proteinaceous interaction partner regulating their endogenous activity, thus adding another level of complexity and feedback control toward this system. Finally, novel approaches are underway to achieve spatiotemporal pharmacologic control of PPs which in turn can be used to fine-tune misleaded PK activity in heart disease. Taken together, this review comprehensively summarizes the major aspects of PP-mediated PK regulation and discusses the subsequent consequences of deregulated PP activity for cardiovascular diseases in depth. PMID:26617522

  5. GeoMapApp Learning Activities: Enabling the democratisation of geoscience learning

    NASA Astrophysics Data System (ADS)

    Goodwillie, A. M.; Kluge, S.

    2011-12-01

    GeoMapApp Learning Activities (http://serc.carleton.edu/geomapapp) are step-by-step guided inquiry geoscience education activities that enable students to dictate the pace of learning. They can be used in the classroom or out of class, and their guided nature means that the requirement for teacher intervention is minimised which allows students to spend increased time analysing and understanding a broad range of geoscience data, content and concepts. Based upon GeoMapApp (http://www.geomapapp.org), a free, easy-to-use map-based data exploration and visualisation tool, each activity furnishes the educator with an efficient package of downloadable documents. This includes step-by-step student instructions and answer sheet; a teacher's edition annotated worksheet containing teaching tips, additional content and suggestions for further work; quizzes for use before and after the activity to assess learning; and a multimedia tutorial. The activities can be used by anyone at any time in any place with an internet connection. In essence, GeoMapApp Learning Activities provide students with cutting-edge technology, research-quality geoscience data sets, and inquiry-based learning in a virtual lab-like environment. Examples of activities so far created are student calculation and analysis of the rate of seafloor spreading, and present-day evidence on the seafloor for huge ancient landslides around the Hawaiian islands. The activities are designed primarily for students at the community college, high school and introductory undergraduate levels, exposing students to content and concepts typically found in those settings.

  6. In-depth mapping of the mouse brain N-glycoproteome reveals widespread N-glycosylation of diverse brain proteins

    PubMed Central

    Fang, Pan; Wang, Xin-jian; Xue, Yu; Liu, Ming-qi; Zeng, Wen-feng; Zhang, Yang; Zhang, Lei; Gao, Xing; Yan, Guo-quan; Yao, Jun; Shen, Hua-li; Yang, Peng-yuan

    2016-01-01

    N-glycosylation is one of the most prominent and abundant posttranslational modifications of proteins. It is estimated that over 50% of mammalian proteins undergo glycosylation. However, the analysis of N-glycoproteins has been limited by the available analytical technology. In this study, we comprehensively mapped the N-glycosylation sites in the mouse brain proteome by combining complementary methods, which included seven protease treatments, four enrichment techniques and two fractionation strategies. Altogether, 13492 N-glycopeptides containing 8386 N-glycosylation sites on 3982 proteins were identified. After evaluating the performance of the above methods, we proposed a simple and efficient workflow for large-scale N-glycosylation site mapping. The optimized workflow yielded 80% of the initially identified N-glycosylation sites with considerably less effort. Analysis of the identified N-glycoproteins revealed that many of the mouse brain proteins are N-glycosylated, including those proteins in critical pathways for nervous system development and neurological disease. Additionally, several important biomarkers of various diseases were found to be N-glycosylated. These data confirm that N-glycosylation is important in both physiological and pathological processes in the brain, and provide useful details about numerous N-glycosylation sites in brain proteins. PMID:27259237

  7. Plasticity in developing brain: active auditory exposure impacts prelinguistic acoustic mapping.

    PubMed

    Benasich, April A; Choudhury, Naseem A; Realpe-Bonilla, Teresa; Roesler, Cynthia P

    2014-10-01

    A major task across infancy is the creation and tuning of the acoustic maps that allow efficient native language processing. This process crucially depends on ongoing neural plasticity and keen sensitivity to environmental cues. Development of sensory mapping has been widely studied in animal models, demonstrating that cortical representations of the sensory environment are continuously modified by experience. One critical period for optimizing human language mapping is early in the first year; however, the neural processes involved and the influence of passive compared with active experience are as yet incompletely understood. Here we demonstrate that, while both active and passive acoustic experience from 4 to 7 months of age, using temporally modulated nonspeech stimuli, impacts acoustic mapping, active experience confers a significant advantage. Using event-related potentials (ERPs), we show that active experience increases perceptual vigilance/attention to environmental acoustic stimuli (e.g., larger and faster P2 peaks) when compared with passive experience or maturation alone. Faster latencies are also seen for the change discrimination peak (N2*) that has been shown to be a robust infant predictor of later language through age 4 years. Sharpening is evident for both trained and untrained stimuli over and above that seen for maturation alone. Effects were also seen on ERP morphology for the active experience group with development of more complex waveforms more often seen in typically developing 12- to 24-month-old children. The promise of selectively "fine-tuning" acoustic mapping as it emerges has far-reaching implications for the amelioration and/or prevention of developmental language disorders.

  8. Protein kinase C activators inhibit capillary endothelial cell growth

    SciTech Connect

    Doctrow, S.R.

    1986-05-01

    Phorbol 12,13-dibutyrate (PDBu) binds specifically to bovine capillary endothelial (BCE) cells (K/sub d/ = 8nM) and inhibits the proliferation (K/sub 50/ = 6 +/- 4 nM). Under similar conditions, PDBu does not inhibit the growth of bovine aortic endothelial or smooth muscle cells. PDBu markedly attenuates the response of BCE cells to purified human hepatoma-derived growth factor which, in the absence of PDBu, stimulates BCE cell growth by about 3-fold. Several observations suggest that the inhibition of BCE cell growth by PDBu is mediated by protein kinase C: (1) different phorbol compounds inhibit BCE cell growth according to the relative potencies as protein kinase C activators (12-tetradecanoylphorbol 13-acetate > PDBu >> phorbol 12,13-diacetate >>>..beta..-phorbol; ..cap alpha..-phorbol 12,13-didecanoate). (2) Specific binding of PDBu to BCE cells is displaced by sn-1,2-dioctanoylglycerol (diC/sub 8/), a protein kinase C activator and an analog of the putative second messenger activating this kinase in vivo. The weak protein kinase C activator, sn-1,2-dibutyrylglycerol, does not affect PDBu binding. (3) A cytosolic extract from BCE cells contains a Ca/sup 2 +//phosphatidylserine-dependent kinase that is activated by diC/sub 8/ and PDBu, but not by ..beta..-phorbol. These results support a role for protein kinase C in suppressing capillary endothelial cell growth and may therefore have implications in the intracellular regulation of angiogenesis.

  9. Enzymatic Activity of the Scaffold Protein Rapsyn for Synapse Formation.

    PubMed

    Li, Lei; Cao, Yu; Wu, Haitao; Ye, Xinchun; Zhu, Zhihui; Xing, Guanglin; Shen, Chengyong; Barik, Arnab; Zhang, Bin; Xie, Xiaoling; Zhi, Wenbo; Gan, Lin; Su, Huabo; Xiong, Wen-Cheng; Mei, Lin

    2016-12-07

    Neurotransmission is ensured by a high concentration of neurotransmitter receptors at the postsynaptic membrane. This is mediated by scaffold proteins that bridge the receptors with cytoskeleton. One such protein is rapsyn (receptor-associated protein at synapse), which is essential for acetylcholine receptor (AChR) clustering and NMJ (neuromuscular junction) formation. We show that the RING domain of rapsyn contains E3 ligase activity. Mutation of the RING domain that abolishes the enzyme activity inhibits rapsyn- as well as agrin-induced AChR clustering in heterologous and muscle cells. Further biological and genetic studies support a working model where rapsyn, a classic scaffold protein, serves as an E3 ligase to induce AChR clustering and NMJ formation, possibly by regulation of AChR neddylation. This study identifies a previously unappreciated enzymatic function of rapsyn and a role of neddylation in synapse formation, and reveals a potential target of therapeutic intervention for relevant neurological disorders.

  10. The role of adapter proteins in T cell activation.

    PubMed

    Koretzky, G A; Boerth, N J

    1999-12-01

    Engagement of antigen receptors on lymphocytes leads to a myriad of complex signal transduction cascades. Recently, work from several laboratories has led to the identification and characterization of novel adapter molecules, proteins with no intrinsic enzymatic activity but which integrate signal transduction pathways by mediating protein-protein interactions. Interestingly, it appears that many of these adapter proteins play as critical a role as the effector enzymes themselves in both lymphocyte development and activation. This review describes some of the biochemical and molecular features of several of these newly identified hematopoietic cell-specific adapter molecules highlighting their importance in regulating (both positively and negatively) signal transduction mediated by the T cell antigen receptor.

  11. The regulation of AMP-activated protein kinase by phosphorylation.

    PubMed Central

    Stein, S C; Woods, A; Jones, N A; Davison, M D; Carling, D

    2000-01-01

    The AMP-activated protein kinase (AMPK) cascade is activated by an increase in the AMP/ATP ratio within the cell. AMPK is regulated allosterically by AMP and by reversible phosphorylation. Threonine-172 within the catalytic subunit (alpha) of AMPK (Thr(172)) was identified as the major site phosphorylated by the AMP-activated protein kinase kinase (AMPKK) in vitro. We have used site-directed mutagenesis to study the role of phosphorylation of Thr(172) on AMPK activity. Mutation of Thr(172) to an aspartic acid residue (T172D) in either alpha1 or alpha2 resulted in a kinase complex with approx. 50% the activity of the corresponding wild-type complex. The activity of wild-type AMPK decreased by greater than 90% following treatment with protein phosphatases, whereas the activity of the T172D mutant complex fell by only 10-15%. Mutation of Thr(172) to an alanine residue (T172A) almost completely abolished kinase activity. These results indicate that phosphorylation of Thr(172) accounts for most of the activation by AMPKK, but that other sites are involved. In support of this we have shown that AMPKK phosphorylates at least two other sites on the alpha subunit and one site on the beta subunit. Furthermore, we provide evidence that phosphorylation of Thr(172) may be involved in the sensitivity of the AMPK complex to AMP. PMID:10642499

  12. In-gel microwave-assisted acid hydrolysis of proteins combined with liquid chromatography tandem mass spectrometry for mapping protein sequences.

    PubMed

    Sun, Difei; Wang, Nan; Li, Liang

    2014-01-07

    We report an enabling method for mapping the protein sequence with high sequence coverage. This method combines the high separation power of gel electrophoresis for protein separation with the high sequence coverage capability of microwave-assisted acid hydrolysis (MAAH) mass spectrometry (MS). In-gel MAAH using 25% trifluoroacetic acid was developed and optimized for degrading the gel-separated protein into small peptides suitable for tandem MS sequencing. For bovine serum albumin (BSA) (∼67 kDa), with 4 μg of protein loading onto a gel for separation, followed by excising the protein gel band for in-gel MAAH and then injecting ∼2 μg of the resultant peptides into a liquid chromatography quadrupole time-of-flight mass spectrometer for analysis, 689 ± 54 (n = 3) unique peptides were identified with a protein sequence coverage of 99 ± 1%. Both the number of peptides detected and sequence coverage decreased as the sample amount decreased, mainly due to background interference: 316 ± 59 peptides and 94 ± 3% coverage for 2 μg loading, 136 ± 19 and 76 ± 5% for 1 μg loading, and 30 ± 2 and 32 ± 2% for 0.5 μg loading. To demonstrate the general applicability of the method, 10 gel bands from gel electrophoresis of an albumin-depleted human plasma sample were excised for in-gel MAAH LC-MS analysis. In total, 19 relatively high abundance proteins with molecular weights ranging from ∼8 to ∼160 kD could be mapped with coverage of 100% for six proteins (MW 8759 to 68 425 Da), 96-98% for five proteins (MW 11 458 to 36 431 Da), 92% for three proteins (MW 15 971 to 36 431 Da), 80-87% for four proteins (MW 42 287 to 162 134 Da), and 56% for one protein (MW 51 358 Da). Finally, to demonstrate the applicability of the method for more detailed analysis of complex protein mixtures, two-dimensional (2D) gel electrophoresis was combined with in-gel MAAH, affinity purification, and LC-MS/MS to characterize six bovine alpha-S1-casein phosphoprotein

  13. Identification of mitochondrial proteins and some of their precursors in two-dimensional electrophoretic maps of human cells

    SciTech Connect

    Anderson, L.

    1981-04-01

    A set of at least 30 proteins disappears from the two-dimensional electrophoretic pattern of human lymphoid cells treated with various antimitochondrial agents. This set is similar to the set of proteins found in isolated mitochondria (except for the presence of actin in the latter group), indicating that the inhibitor effect stops production of a majority of mature mitochondrial proteins. Several proteins having the characteristics of precursors to the major cytoplasmically synthesized mitochondrial proteins can be observed in cells during fast-pulse experiments and in a reticulocyte lysate system fed with total lymphoid cell RNA. In the three major instances of mitochondrial precursor-product processing, the removal peptide is quite basic in each case, suggesting that a lysine- or arginine-rich terminal sequence may be necessary for initial recognition by the mitochondrial protein uptake apparatus. The inhibitor effect allows easy identification of a large set of mitochondrial proteins in two-dimensional maps of various cells, thereby specifying a particularly tractable and functionally distinctive subset of the cellular proteins. The nature and wide scope of the effect support the concept of energy-dependent vectorial processing and indicate that such a mechanism is generally applicable to the major class of cytoplasmically synthesized mitochondrial proteins in mammalian cells.

  14. INCREASE IN ACTIVATED PROTEIN C MEDIATES ACUTE TRAUMATIC COAGULOPATHY IN MICE

    PubMed Central

    Chesebro, Brian B.; Rahn, Pamela; Carles, Michel; Esmon, Charles T.; Xu, Jun; Brohi, Karim; Frith, Daniel; Pittet, Jean-François; Cohen, Mitchell J.

    2013-01-01

    In severely injured and hypoperfused trauma patients, endogenous acute coagulopathy (EAC) is associated with an increased morbidity and mortality. Recent human data correlate this coagulopathy with activation of the protein C pathway. To examine the mechanistic role of protein C in the development of EAC, we used a mouse model of trauma and hemorrhagic shock, characterized by the combination of tissue injury and severe metabolic acidosis. Mice were subjected to one of four treatment groups: 1) C, control; 2) T, trauma (laparotomy); 3) H, hemorrhage (MAP, 35 mmHg × 60 min); 4) TH, trauma + hemorrhage. After 60 min, blood was drawn for analysis. Compared with C mice, the TH mice had a significantly elevated activated partial thromboplastin time (23.3 vs. 34.5 s) and significantly increased levels of activated protein C (aPC; 2.30 vs. 13.58 ng/mL). In contrast, T and H mice did not develop an elevated activated partial thromboplastin time or increased aPC. Selective inhibition of the anticoagulant property of aPC prevented the coagulopathy seen in response to trauma/hemorrhage (23.5 vs. 38.6 s [inhibitory vs. control monoclonal antibody]) with no impact on survival during the shock period. However, complete blockade of both the anticoagulant and cytoprotective functions of aPC caused 100% mortality within 45 min of shock, with histopathology evidence of pulmonary thrombosis and perivascular hemorrhage. These results indicate that our unique mouse model of T/H shock mimics our previous observations in trauma patients and demonstrates that EAC is mediated by the activation of the protein C pathway. In addition, the cytoprotective effect of protein C activation seems to be necessary for survival of the initial shock injury. PMID:19333141

  15. Protein profiling of mouse livers with peroxisome proliferator-activated receptor alpha activation.

    PubMed

    Chu, Ruiyin; Lim, Hanjo; Brumfield, Laura; Liu, Hong; Herring, Chris; Ulintz, Peter; Reddy, Janardan K; Davison, Matthew

    2004-07-01

    Peroxisome proliferator-activated receptor alpha (PPARalpha) is important in the induction of cell-specific pleiotropic responses, including the development of liver tumors, when it is chronically activated by structurally diverse synthetic ligands such as Wy-14,643 or by unmetabolized endogenous ligands resulting from the disruption of the gene encoding acyl coenzyme A (CoA) oxidase (AOX). Alterations in gene expression patterns in livers with PPARalpha activation were delineated by using a proteomic approach to analyze liver proteins of Wy-14,643-treated and AOX(-/-) mice. We identified 46 differentially expressed proteins in mouse livers with PPARalpha activation. Up-regulated proteins, including acetyl-CoA acetyltransferase, farnesyl pyrophosphate synthase, and carnitine O-octanoyltransferase, are involved in fatty acid metabolism, whereas down-regulated proteins, including ketohexokinase, formiminotransferase-cyclodeaminase, fructose-bisphosphatase aldolase B, sarcosine dehydrogenase, and cysteine sulfinic acid decarboxylase, are involved in carbohydrate and amino acid metabolism. Among stress response and xenobiotic metabolism proteins, selenium-binding protein 2 and catalase showed a dramatic approximately 18-fold decrease in expression and a modest approximately 6-fold increase in expression, respectively. In addition, glycine N-methyltransferase, pyrophosphate phosphohydrolase, and protein phosphatase 1D were down-regulated with PPARalpha activation. These observations establish proteomic profiles reflecting a common and predictable pattern of differential protein expression in livers with PPARalpha activation. We conclude that livers with PPARalpha activation are transcriptionally geared towards fatty acid combustion.

  16. Cyclic AMP-dependent protein kinase activity in Trypanosoma cruzi.

    PubMed Central

    Ulloa, R M; Mesri, E; Esteva, M; Torres, H N; Téllez-Iñón, M T

    1988-01-01

    A cyclic AMP-dependent protein kinase activity from epimastigote forms of Trypanosoma cruzi was characterized. Cytosolic extracts were chromatographed on DEAE-cellulose columns, giving two peaks of kinase activity, which were eluted at 0.15 M- and 0.32 M-NaCl respectively. The second activity peak was stimulated by nanomolar concentrations of cyclic AMP. In addition, a cyclic AMP-binding protein co-eluted with the second kinase activity peak. Cyclic AMP-dependent protein kinase activity was further purified by gel filtration, affinity chromatography on histone-agarose and cyclic AMP-agarose, as well as by chromatography on CM-Sephadex. The enzyme ('holoenzyme') could be partially dissociated into two different components: 'catalytic' and 'regulatory'. The 'regulatory' component had specific binding for cyclic AMP, and it inhibited phosphotransferase activity of the homologous 'catalytic component' or of the 'catalytic subunit' from bovine heart. Cyclic AMP reversed these inhibitions. A 'holoenzyme preparation' was phosphorylated in the absence of exogenous phosphate acceptor and analysed by polyacrylamide-gel electrophoresis. A 56 kDa band was phosphorylated. The same preparation was analysed by Western blotting, by using polyclonal antibodies to the regulatory subunits of protein kinases type I or II. Both antibodies reacted with the 56 kDa band. Images Fig. 7. Fig. 8. PMID:2848508

  17. [Antimodification activity of the ArdA and Ocr proteins].

    PubMed

    Zavil'gel'skiĭ, G V; Kotova, V Iu; Rastorguev, S M

    2011-02-01

    The ArdA and Ocr antirestriction proteins, whose genes are in transmissible plasmids (ardA) and bacteriophage genomes (0.3 (ocr)), specifically inhibit type I restriction-modification enzymes. The Ocr protein (T7 bacteriophage) was shown to inhibit both restriction (endonuclease) and modification (methylase) activities of the EcoKI enzyme in a broad range of intracellular concentrations (starting from 10-20 molecules per cell). In contrast to Ocr, the ArdA protein (ColIb-P9 transmissible plasmid) inhibited both of the EcoKI activities only at high intracellular concentrations (30000-40000 molecules per cell). When the ArdA concentration was several fold lower, only endonuclease activity of EcoKI was inhibited. It was assumed that a poorer ArdA ability to inhibit EcoKI modification activity is related to the substantial difference in life cycle between transmissible plasmids (symbiosis with the bacterial cell) and bacteriophages (infection and lysis of bacteria). The Ocr and ArdA mutants that inhibited exclusively endonuclease activity of EcoKI were obtained. Antirestriction proteins incapable of homodimerization were assumed to inhibit only endonuclease activity of type I restriction-modification enzymes.

  18. Identification of a neuronal Cdk5 activator-binding protein as Cdk5 inhibitor.

    PubMed

    Ching, Yick-Pang; Pang, Andy S H; Lam, Wing-Ho; Qi, Robert Z; Wang, Jerry H

    2002-05-03

    Neuronal Cdc2-like kinase (Nclk) plays an important role in a variety of cellular processes, including neuronal cell differentiation, apoptosis, neuron migration, and formation of neuromuscular junction. The active kinase consists of a catalytic subunit, Cdk5, and an essential regulatory subunit, neuronal Cdk5 activator (p35(nck5a) or p25(nck5a)), which is expressed primarily in neurons of central nervous tissue. In our previous study using the yeast two-hybrid screening method, three novel p35(nck5a)-associated proteins were isolated. Here we show that one of these proteins, called C42, specifically inhibits the activation of Cdk5 by Nck5a. Co-immunoprecipitation data suggested that C42 and p35(nck5a) could form a complex within cultured mammalian cells. Deletion analysis has mapped the inhibitory domain of C42 to a region of 135 amino acids, which is conserved in Pho81, a yeast protein that inhibits the yeast cyclin-dependent protein kinase Pho85. The Pho85.Pho80 kinase complex has been shown to be the yeast functional homologue of the mammalian Cdk5/p35(nck5a) kinase.

  19. Mapping and characterization of the interaction interface between two polypyrimidine-tract binding proteins and a nova-type protein of Solanum tuberosum.

    PubMed

    Shah, Shweta; Butler, Nathaniel M; Hannapel, David J; Rao, A Gururaj

    2013-01-01

    Polypyrimidine tract-binding (PTB) proteins are RNA-binding proteins that generally contain four RNA recognition motifs (RRMs). In potato, six cDNAs encoding full-length PTB proteins have been identified. In the present study Nova1-like protein, designated StNova1, was identified as a potential interacting partner of the StPTB proteins via yeast two-hybrid screening. Nova protein is a RNA-binding protein that contains three K-homology (KH) domains. In humans, these proteins are involved in regulation of neuronal RNA metabolism but the role of Nova-like proteins in plants is poorly understood. We have validated this interaction and mapped the protein binding region on StNova1 and StPTB1 and -6 using a novel domain interaction phage display (DIPP) technique. The interaction between the two RNA-binding proteins StPTB1/6 and StNova1 is mediated through linker regions that are distinctly separated from the RRMs. Furthermore, using a random 21-mer phage-peptide library, we have identified a number of peptides with the consensus sequence motif [S/G][V/I][L/V]G that recognize the StPTB proteins. One over-represented peptide that recognizes StPTB6 contains the GVLGPWP sequence that is similar to the GIGGRYP sequence in the glycine-rich linker region between the KH2 and KH3 domains of StNova1. We show, through site-specific mutations, the importance of glycine and proline residues in StNova1-StPTB interactions.

  20. Hydrodynamic collective effects of active proteins in biological membranes

    NASA Astrophysics Data System (ADS)

    Koyano, Yuki; Kitahata, Hiroyuki; Mikhailov, Alexander S.

    2016-08-01

    Lipid bilayers forming biological membranes are known to behave as viscous two-dimensional fluids on submicrometer scales; usually they contain a large number of active protein inclusions. Recently, it was shown [A. S. Mikhailov and R. Kapral, Proc. Natl. Acad. Sci. USA 112, E3639 (2015), 10.1073/pnas.1506825112] that such active proteins should induce nonthermal fluctuating lipid flows leading to diffusion enhancement and chemotaxislike drift for passive inclusions in biomembranes. Here, a detailed analytical and numerical investigation of such effects is performed. The attention is focused on the situations when proteins are concentrated within lipid rafts. We demonstrate that passive particles tend to become attracted by active rafts and are accumulated inside them.

  1. [Regulation of G protein-coupled receptor kinase activity].

    PubMed

    Haga, T; Haga, K; Kameyama, K; Nakata, H

    1994-09-01

    Recent progress on the activation of G protein-coupled receptor kinases is reviewed. beta-Adrenergic receptor kinase (beta ARK) is activated by G protein beta gamma -subunits, which interact with the carboxyl terminal portion of beta ARK. Muscarinic receptor m2-subtypes are phosphorylated by beta ARK1 in the central part of the third intracellular loop (I3). Phosphorylation of I3-GST fusion protein by beta ARK1 is synergistically stimulated by the beta gamma -subunits and mastoparan or a peptide corresponding to portions adjacent to the transmembrane segments of m2-receptors or by beta gamma -subunits and the agonist-bound I3-deleted m2 variant. These results indicate that agonist-bound receptors serve as both substrates and activators of beta ARK.

  2. Genetic mapping and characterization of Pseudomonas aeruginosa mutants defective in the formation of extracellular proteins.

    PubMed Central

    Wretlind, B; Pavlovskis, O R

    1984-01-01

    We isolated 15 mutants of Pseudomonas aeruginosa PAO which were defective in the formation of certain extracellular proteins, such as elastase, staphylolytic enzyme, and lipase ( Xcp mutants). The mutations were mapped on the chromosome by conjugation and transduction. The locations were xcp -1 near 0', with the gene order cys-59- xcp -1- proB , and loci xcp -2, xcp -3, and xcp -31 at 35', with the gene order trpC , D- xcp -3/ xcp -31- xcp -2- argC . Loci xcp -4 and xcp -41 through xcp -44 were cotransducible with proA at 40'; loci xcp -5, xcp -51, xcp -52, and xcp53 were located at 55', with the gene order leu-10- trpF -met-9010- xcp -53- xcp -5/ xcp -51/ xcp+ ++-52, and xcp -6 was located at 65' to 70', between catA and mtu-9002. Nine mutations ( xcp -2, xcp -3, xcp -31, xcp -4, and xcp -41 through xcp -45) caused decreased production of extracellular enzymes. Six strains with mutations xcp -1, xcp -5, xcp -51, xcp -52, xcp -53, and xcp -6 produced cell-bound exoproteins and had defective release mechanisms. The regulation of production of alkaline phosphatase and phospholipase C is different from other exoproteins , such as elastase, but they all seem to share a common release mechanism. Alkaline protease had separate mechanisms for regulation and release, since this protease was found in culture supernatants of all but one of the mutants, and none of the strains had cell-bound enzyme. PMID:6427194

  3. [Histidine triad protein superfamily--biological function and enzymatic activity].

    PubMed

    Krakowiak, Agnieszka; Fryc, Izabela

    2012-01-01

    The HIT superfamily consists of proteins that share the histidine triad motif, His-X-His-X-His-X-X (where X is a hydrophobic amino acid), which constitutes enzymatic catalytic center. These enzymes act as nucleotidylyl hydrolase or transferase, and the mutation of the second histidine in the triad abolishes their activity. HIT proteins were found ubiquitous in all organisms and they were classified into 5 branches, which are represented by human proteins: HINT1, FHIT, Aprataxin, GALT and DCPS. Because HINT1 orthologs, which belong to the evolutionally oldest family branch, were found from prokaryotes to eukaryotes, it is clear that HIT motif was conserved during the evolution what means that the enzymatic activity is necessary for functions of these proteins. However, in few cases, e.g. HINT1 and FHIT, the connection between the biological function and the enzymatic activity is still obscure. In this review, the relations between biology and activity for 7 HIT proteins, which were found in human, are highlighted.

  4. Signal peptides are allosteric activators of the protein translocase

    PubMed Central

    Gouridis, Giorgos; Karamanou, Spyridoula; Gelis, Ioannis; Kalodimos, Charalampos G.; Economou, Anastassios

    2010-01-01

    Extra-cytoplasmic polypeptides are usually synthesized as “preproteins” carrying aminoterminal, cleavable signal peptides1 and secreted across membranes by translocases. The main bacterial translocase comprises the SecYEG protein-conducting channel and the peripheral ATPase motor SecA2,3. Most proteins destined for the periplasm and beyond are exported post-translationally by SecA2,3. Preprotein targeting to SecA is thought to involve signal peptides4 and chaperones like SecB5,6. Here we reveal that signal peptides have a novel role beyond targeting: they are essential allosteric activators of the translocase. Upon docking on their binding groove on SecA, signal peptides act in trans to drive three successive states: first, “triggering” that drives the translocase to a lower activation energy state; then “trapping” that engages non-native preprotein mature domains docked with high affinity on the secretion apparatus and, finally, “secretion” during which trapped mature domains undergo multiple turnovers of translocation in segments7. A significant contribution by mature domains renders signal peptides less critical in bacterial secretory protein targeting than currently assumed. Rather, it is their function as allosteric activators of the translocase that renders signal peptides essential for protein secretion. A role for signal peptides and targeting sequences as allosteric activators may be universal in protein translocases. PMID:19924216

  5. Activated ADF/cofilin sequesters phosphorylated microtubule-associated-protein during the assembly of Alzheimer-like neuritic cytoskeletal striations

    PubMed Central

    Whiteman, Ineka T.; Gervasio, Othon L.; Cullen, Karen M.; Guillemin, Gilles J.; Jeong, Erica V.; Witting, Paul K.; Antao, Shane T.; Minamide, Laurie S.; Bamburg, James R.; Goldsbury, Claire

    2009-01-01

    In Alzheimer disease (AD), rod-like cofilin aggregates (cofilin-actin rods) and thread-like inclusions containing phosphorylated microtubule-associated protein (pMAP) tau form in the brain (neuropil threads) and the extent of their presence correlates with cognitive decline and disease progression. The assembly mechanism of these respective pathological lesions and the relationship between them is poorly understood, yet vital to understanding the causes of sporadic AD. We demonstrate that during mitochondrial inhibition, activated actin-depolymerizing factor (ADF)/cofilin assemble into rods along processes of cultured primary neurons that recruit pMAP/tau and mimic neuropil threads. Fluorescence Resonance Energy Transfer (FRET) analysis revealed co-localization of cofilin-GFP and pMAP in rods, suggesting their close proximity within a cytoskeletal inclusion complex. The relationship between pMAP and cofilin-actin rods was further investigated using actin-modifying drugs and siRNA knockdown of ADF/cofilin in primary neurons. The results suggest that activation of ADF/cofilin and generation of cofilin-actin rods is required for the subsequent recruitment of pMAP into the inclusions. Additionally we were able to induce the formation of pMAP-positive ADF/cofilin rods by exposing cells to exogenous Aβ peptides. These results reveal a common pathway for pMAP and cofilin accumulation in neuronal processes. The requirement of activated ADF/cofilin for the sequestration of pMAP suggests that neuropil thread structures in the AD brain may be initiated by elevated cofilin activation and F-actin bundling that can be caused by oxidative stress, mitochondrial dysfunction or Aβ peptides, all suspected initiators of synaptic loss and neurodegeneration in AD. PMID:19828813

  6. Systematic Mapping of WNT-FZD Protein Interactions Reveals Functional Selectivity by Distinct WNT-FZD Pairs*

    PubMed Central

    Dijksterhuis, Jacomijn P.; Baljinnyam, Bolormaa; Stanger, Karen; Sercan, Hakki O.; Ji, Yun; Andres, Osler; Rubin, Jeffrey S.; Hannoush, Rami N.; Schulte, Gunnar

    2015-01-01

    The seven-transmembrane-spanning receptors of the FZD1–10 class are bound and activated by the WNT family of lipoglycoproteins, thereby inducing a complex network of signaling pathways. However, the specificity of the interaction between mammalian WNT and FZD proteins and the subsequent signaling cascade downstream of the different WNT-FZD pairs have not been systematically addressed to date. In this study, we determined the binding affinities of various WNTs for different members of the FZD family by using bio-layer interferometry and characterized their functional selectivity in a cell system. Using purified WNTs, we show that different FZD cysteine-rich domains prefer to bind to distinct WNTs with fast on-rates and slow off-rates. In a 32D cell-based system engineered to overexpress FZD2, FZD4, or FZD5, we found that WNT-3A (but not WNT-4, -5A, or -9B) activated the WNT-β-catenin pathway through FZD2/4/5 as measured by phosphorylation of LRP6 and β-catenin stabilization. Surprisingly, different WNT-FZD pairs showed differential effects on phosphorylation of DVL2 and DVL3, revealing a previously unappreciated DVL isoform selectivity by different WNT-FZD pairs in 32D cells. In summary, we present extensive mapping of WNT-FZD cysteine-rich domain interactions complemented by analysis of WNT-FZD pair functionality in a unique cell system expressing individual FZD isoforms. Differential WNT-FZD binding and selective functional readouts suggest that endogenous WNT ligands evolved with an intrinsic natural bias toward different downstream signaling pathways, a phenomenon that could be of great importance in the design of FZD-targeting drugs. PMID:25605717

  7. High-throughput mapping of brain-wide activity in awake and drug-responsive vertebrates.

    PubMed

    Lin, Xudong; Wang, Shiqi; Yu, Xudong; Liu, Zhuguo; Wang, Fei; Li, Wai Tsun; Cheng, Shuk Han; Dai, Qiuyun; Shi, Peng

    2015-02-07

    The reconstruction of neural activity across complete neural circuits, or brain activity mapping, has great potential in both fundamental and translational neuroscience research. Larval zebrafish, a vertebrate model, has recently been demonstrated to be amenable to whole brain activity mapping in behaving animals. Here we demonstrate a microfluidic array system ("Fish-Trap") that enables high-throughput mapping of brain-wide activity in awake larval zebrafish. Unlike the commonly practiced larva-processing methods using a rigid gel or a capillary tube, which are laborious and time-consuming, the hydrodynamic design of our microfluidic chip allows automatic, gel-free, and anesthetic-free processing of tens of larvae for microscopic imaging with single-cell resolution. Notably, this system provides the capability to directly couple pharmaceutical stimuli with real-time recording of neural activity in a large number of animals, and the local and global effects of pharmacoactive drugs on the nervous system can be directly visualized and evaluated by analyzing drug-induced functional perturbation within or across different brain regions. Using this technology, we tested a set of neurotoxin peptides and obtained new insights into how to exploit neurotoxin derivatives as therapeutic agents. The novel and versatile "Fish-Trap" technology can be readily unitized to study other stimulus (optical, acoustic, or physical) associated functional brain circuits using similar experimental strategies.

  8. Signaling through mitogen-activated protein kinase and Rac/Rho does not duplicate the effects of activated Ras on skeletal myogenesis.

    PubMed Central

    Ramocki, M B; Johnson, S E; White, M A; Ashendel, C L; Konieczny, S F; Taparowsky, E J

    1997-01-01

    The ability of basic helix-loop-helix muscle regulatory factors (MRFs), such as MyoD, to convert nonmuscle cells to a myogenic lineage is regulated by numerous growth factor and oncoprotein signaling pathways. Previous studies have shown that H-Ras 12V inhibits differentiation to a skeletal mus