Science.gov

Sample records for activated ras signaling

  1. ASPP1 and ASPP2 bind active RAS, potentiate RAS signalling and enhance p53 activity in cancer cells

    PubMed Central

    Wang, Y; Godin-Heymann, N; Dan Wang, X; Bergamaschi, D; Llanos, S; Lu, X

    2013-01-01

    RAS mutations occur frequently in human cancer and activated RAS signalling contributes to tumour development and progression. Apart from its oncogenic effects on cell growth, active RAS has tumour-suppressive functions via its ability to induce cellular senescence and apoptosis. RAS is known to induce p53-dependent cell cycle arrest, yet its effect on p53-dependent apoptosis remains unclear. We report here that apoptosis-stimulating protein of p53 (ASPP) 1 and 2, two activators of p53, preferentially bind active RAS via their N-terminal RAS-association domains (RAD). Additionally, ASPP2 colocalises with and contributes to RAS cellular membrane localisation and potentiates RAS signalling. In cancer cells, ASPP1 and ASPP2 cooperate with oncogenic RAS to enhance the transcription and apoptotic function of p53. Thus, loss of ASPP1 and ASPP2 in human cancer cells may contribute to the full transforming property of RAS oncogene. PMID:23392125

  2. TLN-4601, a novel anticancer agent, inhibits Ras signaling post Ras prenylation and before MEK activation.

    PubMed

    Boufaied, Nadia; Wioland, My-Anh; Falardeau, Pierre; Gourdeau, Henriette

    2010-06-01

    TLN-4601 is a structurally novel farnesylated dibenzodiazepinone discovered through DECIPHER, Thallion's proprietary drug discovery platform. The compound was shown to have a broad cytotoxic activity (low micromol/l) when tested in the NCI 60 tumor cell line panel and has shown in-vivo antitumor activity in several xenograft models. Related to its farnesylated moiety, the effect of TLN-4601 on Ras mitogen-activated protein kinase signaling was assessed. Downstream Ras signaling events, Raf-1, MEK, and ERK1/2 phosphorylation in MCF7 cells were evaluated by western blot analysis. TLN-4601 prevented epidermal growth factor-induced phosphorylation of Raf-1, MEK, and ERK1/2. This effect was time-dependent and dose-dependent with complete inhibition of protein phosphorylation within 4-6 h at 10 micromol/l. The inhibition of Ras signaling was not mediated by the inhibition of protein prenylation, documented by the lack of effect TLN-4601 on the prenylation of HDJ2 (specific substrate of farnesyltransferase), RAP1A (specific substrate of geranylgeranyl transferase-1), or Ras. As TLN-4601 did not inhibit EGFR, Raf-1, MEK or ERK1/2 kinase activities, the inhibitory effect of TLN-4601 on Ras signaling is not mediated by direct kinase inhibition. Using an Elk-1 trans-activation reporter assay, we found that TLN-4601 inhibits the MEK/ERK pathway at the level of Raf-1. Interestingly, TLN-4601 induces Raf-1 proteasomal-dependent degradation. These data indicate that TLN-4601 may inhibit the Ras-mitogen-activated protein kinase-signaling pathway by depleting the Raf-1 protein.

  3. Overexpressed galectin-3 in pancreatic cancer induces cell proliferation and invasion by binding Ras and activating Ras signaling.

    PubMed

    Song, Shumei; Ji, Baoan; Ramachandran, Vijaya; Wang, Huamin; Hafley, Margarete; Logsdon, Craig; Bresalier, Robert S

    2012-01-01

    Pancreatic cancer (PDAC) is a lethal disease with a five-year survival of 3-5%. Mutations in K-Ras are found in nearly all cases, but K-Ras mutations alone are not sufficient for the development of PDAC. Additional factors contribute to activation of Ras signaling and lead to tumor formation. Galectin-3 (Gal-3), a multifunctional β-galactoside-binding protein, is highly expressed in PDAC. We therefore investigated the functional role of Gal-3 in pancreatic cancer progression and its relationship to Ras signaling. Expression of Gal-3 was determined by immunohistochemistry, Q-PCR and immunoblot. Functional studies were performed using pancreatic cell lines genetically engineered to express high or low levels of Gal-3. Ras activity was examined by Raf pull-down assays. Co-immunoprecipitation and immunofluorescence were used to assess protein-protein interactions. In this study, we demonstrate that Gal-3 was highly up-regulated in human tumors and in a mutant K-Ras mouse model of PDAC. Down-regulation of Gal-3 by lentivirus shRNA decreased PDAC cell proliferation and invasion in vitro and reduced tumor volume and size in an orthotopic mouse model. Gal-3 bound Ras and maintained Ras activity; down-regulation of Gal-3 decreased Ras activity as well as Ras down-stream signaling including phosphorylation of ERK and AKT and Ral A activity. Transfection of Gal-3 cDNA into PDAC cells with low-level Gal-3 augmented Ras activity and its down-stream signaling. These results suggest that Gal-3 contributes to pancreatic cancer progression, in part, by binding Ras and activating Ras signaling. Gal-3 may therefore be a potential novel target for this deadly disease. PMID:22900040

  4. Hepatitis B virus HBx protein activates Ras-GTP complex formation and establishes a Ras, Raf, MAP kinase signaling cascade.

    PubMed Central

    Benn, J; Schneider, R J

    1994-01-01

    Hepatitis B virus produces a small (154-amino acid) transcriptional transactivating protein, HBx, which is required for viral infection and has been implicated in virus-mediated liver oncogenesis. However, the molecular mechanism for HBx activity and its possible influence on cell proliferation have remained obscure. A number of studies suggest that HBx may stimulate transcription by indirectly activating transcription factors, possibly by influencing cell signaling pathways. We now present biochemical evidence that HBx activates Ras and rapidly induces a cytoplasmic signaling cascade linking Ras, Raf, and mitogen-activated protein kinase (MAP kinase), leading to transcriptional transactivation. HBx strongly elevates levels of GTP-bound Ras, activated and phosphorylated Raf, and tyrosine-phosphorylated and activated MAP kinase. Transactivation of transcription factor AP-1 by HBx is blocked by inhibition of Ras or Raf activities but not by inhibition of Ca(2+)- and diacylglycerol-dependent protein kinase C. HBx was also found to stimulate DNA synthesis in serum-starved cells. The hepatitis B virus HBx protein therefore stimulates Ras-GTP complex formation and promotes downstream signaling through Raf and MAP kinases, and may influence cell proliferation. Images PMID:7937954

  5. Ras-mutant cancer cells display B-Raf binding to Ras that activates extracellular signal-regulated kinase and is inhibited by protein kinase A phosphorylation.

    PubMed

    Li, Yanping; Takahashi, Maho; Stork, Philip J S

    2013-09-20

    The small G protein Ras regulates proliferation through activation of the mitogen-activated protein (MAP) kinase (ERK) cascade. The first step of Ras-dependent activation of ERK signaling is Ras binding to members of the Raf family of MAP kinase kinase kinases, C-Raf and B-Raf. Recently, it has been reported that in melanoma cells harboring oncogenic Ras mutations, B-Raf does not bind to Ras and does not contribute to basal ERK activation. For other types of Ras-mutant tumors, the relative contributions of C-Raf and B-Raf are not known. We examined non-melanoma cancer cell lines containing oncogenic Ras mutations and express both C-Raf and B-Raf isoforms, including the lung cancer cell line H1299 cells. Both B-Raf and C-Raf were constitutively bound to oncogenic Ras and contributed to Ras-dependent ERK activation. Ras binding to B-Raf and C-Raf were both subject to inhibition by the cAMP-dependent protein kinase PKA. cAMP inhibited the growth of H1299 cells and Ras-dependent ERK activation via PKA. PKA inhibited the binding of Ras to both C-Raf and B-Raf through phosphorylations of C-Raf at Ser-259 and B-Raf at Ser-365, respectively. These studies demonstrate that in non-melanocytic Ras-mutant cancer cells, Ras signaling to B-Raf is a significant contributor to ERK activation and that the B-Raf pathway, like that of C-Raf, is a target for inhibition by PKA. We suggest that cAMP and hormones coupled to cAMP may prove useful in dampening the effects of oncogenic Ras in non-melanocytic cancer cells through PKA-dependent actions on B-Raf as well as C-Raf.

  6. Muscarinic receptors transform NIH 3T3 cells through a Ras-dependent signalling pathway inhibited by the Ras-GTPase-activating protein SH3 domain.

    PubMed Central

    Mattingly, R R; Sorisky, A; Brann, M R; Macara, I G

    1994-01-01

    Expression of certain subtypes of human muscarinic receptors in NIH 3T3 cells provides an agonist-dependent model of cellular transformation by formation of foci in response to carbachol. Although focus formation correlates with the ability of the muscarinic receptors to activate phospholipase C, the actual mitogenic signal transduction pathway is unknown. Through cotransfection experiments and measurement of the activation state of native and epitope-tagged Ras proteins, the contributions of Ras and Ras GTPase-activating protein (Ras-GAP) to muscarinic receptor-dependent transformation were defined. Transforming muscarinic receptors were able to activate Ras, and such activation was required for transformation because focus formation was inhibited by coexpression of either Ras with a dominant-negative mutation or constructs of Ras-GAP that include the catalytic domain. Coexpression of the N-terminal region of GAP or of its isolated SH3 (Src homology 3) domain, but not its SH2 domain, was also sufficient to suppress muscarinic receptor-dependent focus formation. Point mutations at conserved residues in the Ras-GAP SH3 domain reversed its action, leading to an increase in carbachol-dependent transformation. The inhibitory effect of expression of the Ras-GAP SH3 domain occurs proximal to Ras activation and is selective for the mitogenic pathway activated by carbachol, as cellular transformation by either v-Ras or trkA/nerve growth factor is unaffected. Images PMID:7969134

  7. Ras-activated Dsor1 promotes Wnt signaling in Drosophila development.

    PubMed

    Hall, Eric T; Verheyen, Esther M

    2015-12-15

    Wnt/Wingless (Wg) and Ras-MAPK signaling both play fundamental roles in growth and cell fate determination, and when dysregulated, can lead to tumorigenesis. Several conflicting modes of interaction between Ras-MAPK and Wnt signaling have been identified in specific cellular contexts, causing synergistic or antagonistic effects on target genes. We find novel evidence that the Drosophila homolog of the dual specificity kinases MEK1/2 (also known as MAP2K1/2), Downstream of Raf1 (Dsor1), is required for Wnt signaling. Knockdown of Dsor1 results in loss of Wg target gene expression, as well as reductions in stabilized Armadillo (Arm; Drosophila β-catenin). We identify a close physical interaction between Dsor1 and Arm, and find that catalytically inactive Dsor1 causes a reduction in active Arm. These results suggest that Dsor1 normally counteracts the Axin-mediated destruction of Arm. We find that Ras-Dsor1 activity is independent of upstream activation by EGFR, and instead it appears to be activated by the insulin-like growth factor receptor to promote Wg signaling. Taken together, our results suggest that there is a new crosstalk pathway between insulin and Wg signaling that is mediated by Dsor1. PMID:26542023

  8. Small Molecule APY606 Displays Extensive Antitumor Activity in Pancreatic Cancer via Impairing Ras-MAPK Signaling

    PubMed Central

    Guo, Na; Liu, Zuojia; Zhao, Wenjing; Wang, Erkang; Wang, Jin

    2016-01-01

    Pancreatic cancer has been found with abnormal expression or mutation in Ras proteins. Oncogenic Ras activation exploits their extensive signaling reach to affect multiple cellular processes, in which the mitogen-activated protein kinase (MAPK) signaling exerts important roles in tumorigenesis. Therapies targeted Ras are thus of major benefit for pancreatic cancer. Although small molecule APY606 has been successfully picked out by virtual drug screening based on Ras target receptor, its in-depth mechanism remains to be elucidated. We herein assessed the antitumor activity of APY606 against human pancreatic cancer Capan-1 and SW1990 cell lines and explored the effect of Ras-MAPK and apoptosis-related signaling pathway on the activity of APY606. APY606 treatment resulted in a dose- and time-dependent inhibition of cancer cell viability. Additionally, APY606 exhibited strong antitumor activity, as evidenced not only by reduction in tumor cell invasion, migration and mitochondrial membrane potential but also by alteration in several apoptotic indexes. Furthermore, APY606 treatment directly inhibited Ras-GTP and the downstream activation of MAPK, which resulted in the down-regulation of anti-apoptotic protein Bcl-2, leading to the up-regulation of mitochondrial apoptosis pathway-related proteins (Bax, cytosolic Cytochrome c and Caspase 3) and of cyclin-dependent kinase 2 and Cyclin A, E. These data suggest that impairing Ras-MAPK signaling is a novel mechanism of action for APY606 during therapeutic intervention in pancreatic cancer. PMID:27223122

  9. Fendiline Inhibits K-Ras Plasma Membrane Localization and Blocks K-Ras Signal Transmission

    PubMed Central

    van der Hoeven, Dharini; Cho, Kwang-jin; Ma, Xiaoping; Chigurupati, Sravanthi; Parton, Robert G.

    2013-01-01

    Ras proteins regulate signaling pathways important for cell growth, differentiation, and survival. Oncogenic mutant Ras proteins are commonly expressed in human tumors, with mutations of the K-Ras isoform being most prevalent. To be active, K-Ras must undergo posttranslational processing and associate with the plasma membrane. We therefore devised a high-content screening assay to search for inhibitors of K-Ras plasma membrane association. Using this assay, we identified fendiline, an L-type calcium channel blocker, as a specific inhibitor of K-Ras plasma membrane targeting with no detectable effect on the localization of H- and N-Ras. Other classes of L-type calcium channel blockers did not mislocalize K-Ras, suggesting a mechanism that is unrelated to calcium channel blockade. Fendiline did not inhibit K-Ras posttranslational processing but significantly reduced nanoclustering of K-Ras and redistributed K-Ras from the plasma membrane to the endoplasmic reticulum (ER), Golgi apparatus, endosomes, and cytosol. Fendiline significantly inhibited signaling downstream of constitutively active K-Ras and endogenous K-Ras signaling in cells transformed by oncogenic H-Ras. Consistent with these effects, fendiline blocked the proliferation of pancreatic, colon, lung, and endometrial cancer cell lines expressing oncogenic mutant K-Ras. Taken together, these results suggest that inhibitors of K-Ras plasma membrane localization may have utility as novel K-Ras-specific anticancer therapeutics. PMID:23129805

  10. GILZ mediates the antiproliferative activity of glucocorticoids by negative regulation of Ras signaling

    PubMed Central

    Ayroldi, Emira; Zollo, Ornella; Bastianelli, Alessandra; Marchetti, Cristina; Agostini, Massimiliano; Di Virgilio, Rosa; Riccardi, Carlo

    2007-01-01

    Tsc22d3 coding for glucocorticoid-induced leucine zipper (GILZ) was initially identified as a dexamethasone-responsive gene involved in the control of T lymphocyte activation and apoptosis. However, the physiological role of this molecule and its function in the biological activity of glucocorticoids (GCs) has not been clarified. Here, we demonstrate that GILZ interacts directly with Ras in vitro and in vivo as shown by GILZ and Ras coimmunoprecipitation and colocalization upon PMA activation in primary mouse spleen T lymphocytes and thymus cells. The analysis of GILZ mutants showed that they bound Ras through the tuberous sclerosis complex box (TSC) and, depending on the Ras activation level, formed a trimeric complex with Ras and Raf, which we previously identified as a GILZ binder. As a consequence of these interactions, GILZ diminished the activation of Ras and Raf downstream targets including ERK1/2, AKT/PKB serine/threonine kinase, and retinoblastoma (Rb) phosphorylation and cyclin D1 expression, leading to inhibition of Ras- and Raf-dependent cell proliferation and Ras-induced NIH-3T3 transformation. GILZ silencing resulted in an increase in concanavalin A–induced T cell proliferation and, most notably, inhibition of dexamethasone antiproliferative effects. Together, these findings indicate that GILZ serves as a negative regulator of Ras- and Raf-induced proliferation and is an important mediator of the antiproliferative effect of GCs. PMID:17492054

  11. Ras-Guanine Nucleotide-Releasing Factor 1 (Ras-GRF1) Controls Activation of Extracellular Signal-Regulated Kinase (ERK) Signaling in the Striatum and Long-Term Behavioral Responses to Cocaine

    PubMed Central

    Fasano, Stefania; D’Antoni, Angela; Orban, Paul C.; Valjent, Emmanuel; Putignano, Elena; Vara, Hugo; Pizzorusso, Tommaso; Giustetto, Maurizio; Yoon, Bongjune; Soloway, Paul; Maldonado, Rafael; Caboche, Jocelyne; Brambilla, Riccardo

    2010-01-01

    Background Ras-extracellular signal-regulated kinase (Ras-ERK) signaling is central to the molecular machinery underlying cognitive functions. In the striatum, ERK1/2 kinases are co-activated by glutamate and dopamine D1/5 receptors, but the mechanisms providing such signaling integration are still unknown. The Ras-guanine nucleotide-releasing factor 1 (Ras-GRF1), a neuronal specific activator of Ras-ERK signaling, is a likely candidate for coupling these neurotransmitter signals to ERK kinases in the striatonigral medium spiny neurons (MSN) and for modulating behavioral responses to drug abuse such as cocaine. Methods We used genetically modified mouse mutants for Ras-GRF1 as a source of primary MSN cultures and organotypic slices, to perform both immunoblot and immunofluorescence studies in response to glutamate and dopamine receptor agonists. Mice were also subjected to behavioral and immunohistochemical investigations upon treatment with cocaine. Results Phosphorylation of ERK1/2 in response to glutamate, dopamine D1 agonist, or both stimuli simultaneously is impaired in Ras-GRF1– deficient striatal cells and organotypic slices of the striatonigral MSN compartment. Consistently, behavioral responses to cocaine are also affected in mice deficient for Ras-GRF1 or overexpressing it. Both locomotor sensitization and conditioned place preference are significantly attenuated in Ras-GRF1– deficient mice, whereas a robust facilitation is observed in overexpressing transgenic animals. Finally, we found corresponding changes in ERK1/2 activation and in accumulation of FosB/ΔFosB, a well-characterized marker for long-term responses to cocaine, in MSN from these animals. Conclusions These results strongly implicate Ras-GRF1 in the integration of the two main neurotransmitter inputs to the striatum and in the maladaptive modulation of striatal networks in response to cocaine. PMID:19446794

  12. Ras CAAX peptidomimetic FTI-277 selectively blocks oncogenic Ras signaling by inducing cytoplasmic accumulation of inactive Ras-Raf complexes.

    PubMed

    Lerner, E C; Qian, Y; Blaskovich, M A; Fossum, R D; Vogt, A; Sun, J; Cox, A D; Der, C J; Hamilton, A D; Sebti, S M

    1995-11-10

    Ras-induced malignant transformation requires Ras farnesylation, a lipid posttranslational modification catalyzed by farnesyltransferase (FTase). Inhibitors of this enzyme have been shown to block Ras-dependent transformation, but the mechanism by which this occurs remains largely unknown. We have designed FTI-276, a peptide mimetic of the COOH-terminal Cys-Val-Ile-Met of K-Ras4B that inhibited potently FTase in vitro (IC50 = 500 pM) and was highly selective for FTase over geranylgeranyltransferase I (GGTase I) (IC50 = 50 nM). FTI-277, the methyl ester derivative of FTI-276, was extremely potent (IC50 = 100 nM) at inhibiting H-Ras, but not the geranylgeranylated Rap1A processing in whole cells. Treatment of H-Ras oncogene-transformed NIH 3T3 cells with FTI-277 blocked recruitment to the plasma membrane and subsequent activation of the serine/threonine kinase c-Raf-1 in cells transformed by farnesylated Ras (H-RasF), but not geranylgeranylated, Ras (H-RasGG). FTI-277 induced accumulation of cytoplasmic non-farnesylated H-Ras that was able to bind Raf and form cytoplasmic Ras/Raf complexes in which Raf kinase was not activated. Furthermore, FTI-277 blocked constitutive activation of mitogen-activated protein kinase (MAPK) in H-RasF, but not H-RasGG, or Raf-transformed cells. FTI-277 also inhibited oncogenic K-Ras4B processing and constitutive activation of MAPK, but the concentrations required were 100-fold higher than those needed for H-Ras inhibition. The results demonstrate that FTI-277 blocks Ras oncogenic signaling by accumulating inactive Ras/Raf complexes in the cytoplasm, hence preventing constitutive activation of the MAPK cascade.

  13. Signaling through mitogen-activated protein kinase and Rac/Rho does not duplicate the effects of activated Ras on skeletal myogenesis.

    PubMed

    Ramocki, M B; Johnson, S E; White, M A; Ashendel, C L; Konieczny, S F; Taparowsky, E J

    1997-07-01

    The ability of basic helix-loop-helix muscle regulatory factors (MRFs), such as MyoD, to convert nonmuscle cells to a myogenic lineage is regulated by numerous growth factor and oncoprotein signaling pathways. Previous studies have shown that H-Ras 12V inhibits differentiation to a skeletal muscle lineage by disrupting MRF function via a mechanism that is independent of the dimerization, DNA binding, and inherent transcriptional activation properties of the proteins. To investigate the intracellular signaling pathway(s) that mediates the inhibition of MRF-induced myogenesis by oncogenic Ras, we tested two transformation-defective H-Ras 12V effector domain variants for their ability to alter terminal differentiation. H-Ras 12V,35S retains the ability to activate the Raf/MEK/mitogen-activated protein (MAP) kinase cascade, whereas H-Ras 12V,40C is unable to interact directly with Raf-1 yet still influences other signaling intermediates, including Rac and Rho. Expression of each H-Ras 12V variant in C3H10T1/2 cells abrogates MyoD-induced activation of the complete myogenic program, suggesting that MAP kinase-dependent and -independent Ras signaling pathways individually block myogenesis in this model system. However, additional studies with constitutively activated Rac1 and RhoA proteins revealed no negative effects on MyoD-induced myogenesis. Similarly, treatment of Ras-inhibited myoblasts with the MEK1 inhibitor PD98059 revealed that elevated MAP kinase activity is not a significant contributor to the H-Ras 12V effect. These data suggest that an additional Ras pathway, distinct from the well-characterized MAP kinase and Rac/Rho pathways known to be important for the transforming function of activated Ras, is primarily responsible for the inhibition of myogenesis by H-Ras 12V.

  14. Activated Ras Signals Developmental Progression of Recombinase-activating Gene (RAG)-deficient Pro-B Lymphocytes

    PubMed Central

    Shaw, Albert C.; Swat, Wojciech; Ferrini, Roger; Davidson, Laurie; Alt, Frederick W.

    1999-01-01

    To elucidate the intracellular pathways that mediate early B cell development, we directed expression of activated Ras to the B cell lineage in the context of the recombination-activating gene 1 (RAG1)-deficient background (referred to as Ras–RAG). Similar to the effects of an immunoglobulin (Ig) μ heavy chain (HC) transgene, activated Ras caused progression of RAG1–deficient progenitor (pro)-B cells to cells that shared many characteristics with precursor (pre)-B cells, including downregulation of surface CD43 expression plus expression of λ5, RAG2, and germline κ locus transcripts. However, these Ras–RAG pre-B cells also upregulated surface markers characteristic of more mature B cell stages and populated peripheral lymphoid tissues, with an overall phenotype reminiscent of B lineage cells generated in a RAG- deficient background as a result of expression of an Ig μ HC together with a Bcl-2 transgene. Taken together, these findings suggest that activated Ras signaling in pro-B cells induces developmental progression by activating both differentiation and survival signals. PMID:9874569

  15. The E3 ubiquitin ligase Trim7 mediates c-Jun/AP-1 activation by Ras signalling

    PubMed Central

    Chakraborty, Atanu; Diefenbacher, Markus E.; Mylona, Anastasia; Kassel, Olivier; Behrens, Axel

    2015-01-01

    The c-Jun/AP-1 transcription factor controls key cellular behaviours, including proliferation and apoptosis, in response to JNK and Ras/MAPK signalling. While the JNK pathway has been well characterised, the mechanism of activation by Ras was elusive. Here we identify the uncharacterised ubiquitin ligase Trim7 as a critical component of AP-1 activation via Ras. We found that MSK1 directly phosphorylates Trim7 in response to direct activation by the Ras–Raf–MEK–ERK pathway, and this modification stimulates Trim7 E3 ubiquitin ligase activity. Trim7 mediates Lys63-linked ubiquitination of the AP-1 coactivator RACO-1, leading to RACO-1 protein stabilisation. Consequently, Trim7 depletion reduces RACO-1 levels and AP-1-dependent gene expression. Moreover, transgenic overexpression of Trim7 increases lung tumour burden in a Ras-driven cancer model, and knockdown of Trim7 in established xenografts reduces tumour growth. Thus, phosphorylation-ubiquitination crosstalk between MSK1, Trim7 and RACO-1 completes the long sought-after mechanism linking growth factor signalling and AP-1 activation. PMID:25851810

  16. Drugging Ras GTPase: a comprehensive mechanistic and signaling structural view.

    PubMed

    Lu, Shaoyong; Jang, Hyunbum; Gu, Shuo; Zhang, Jian; Nussinov, Ruth

    2016-09-21

    Ras proteins are small GTPases, cycling between inactive GDP-bound and active GTP-bound states. Through these switches they regulate signaling that controls cell growth and proliferation. Activating Ras mutations are associated with approximately 30% of human cancers, which are frequently resistant to standard therapies. Over the past few years, structural biology and in silico drug design, coupled with improved screening technology, led to a handful of promising inhibitors, raising the possibility of drugging Ras proteins. At the same time, the invariable emergence of drug resistance argues for the critical importance of additionally honing in on signaling pathways which are likely to be involved. Here we overview current advances in Ras structural knowledge, including the conformational dynamic of full-length Ras in solution and at the membrane, therapeutic inhibition of Ras activity by targeting its active site, allosteric sites, and Ras-effector protein-protein interfaces, Ras dimers, the K-Ras4B/calmodulin/PI3Kα trimer, and targeting Ras with siRNA. To mitigate drug resistance, we propose signaling pathways that can be co-targeted along with Ras and explain why. These include pathways leading to the expression (or activation) of YAP1 and c-Myc. We postulate that these and Ras signaling pathways, MAPK/ERK and PI3K/Akt/mTOR, act independently and in corresponding ways in cell cycle control. The structural data are instrumental in the discovery and development of Ras inhibitors for treating RAS-driven cancers. Together with the signaling blueprints through which drug resistance can evolve, this review provides a comprehensive and innovative master plan for tackling mutant Ras proteins.

  17. Drugging Ras GTPase: a comprehensive mechanistic and signaling structural view.

    PubMed

    Lu, Shaoyong; Jang, Hyunbum; Gu, Shuo; Zhang, Jian; Nussinov, Ruth

    2016-09-21

    Ras proteins are small GTPases, cycling between inactive GDP-bound and active GTP-bound states. Through these switches they regulate signaling that controls cell growth and proliferation. Activating Ras mutations are associated with approximately 30% of human cancers, which are frequently resistant to standard therapies. Over the past few years, structural biology and in silico drug design, coupled with improved screening technology, led to a handful of promising inhibitors, raising the possibility of drugging Ras proteins. At the same time, the invariable emergence of drug resistance argues for the critical importance of additionally honing in on signaling pathways which are likely to be involved. Here we overview current advances in Ras structural knowledge, including the conformational dynamic of full-length Ras in solution and at the membrane, therapeutic inhibition of Ras activity by targeting its active site, allosteric sites, and Ras-effector protein-protein interfaces, Ras dimers, the K-Ras4B/calmodulin/PI3Kα trimer, and targeting Ras with siRNA. To mitigate drug resistance, we propose signaling pathways that can be co-targeted along with Ras and explain why. These include pathways leading to the expression (or activation) of YAP1 and c-Myc. We postulate that these and Ras signaling pathways, MAPK/ERK and PI3K/Akt/mTOR, act independently and in corresponding ways in cell cycle control. The structural data are instrumental in the discovery and development of Ras inhibitors for treating RAS-driven cancers. Together with the signaling blueprints through which drug resistance can evolve, this review provides a comprehensive and innovative master plan for tackling mutant Ras proteins. PMID:27396271

  18. YES oncogenic activity is specified by its SH4 domain and regulates RAS/MAPK signaling in colon carcinoma cells.

    PubMed

    Dubois, Fanny; Leroy, Cédric; Simon, Valérie; Benistant, Christine; Roche, Serge

    2015-01-01

    Members of the SRC family of tyrosine kinases (SFK) display important functions in human cancer, but their specific role in tumorigenesis remains unclear. We previously demonstrated that YES regulates a unique oncogenic signaling important for colorectal cancer (CRC) progression that is not shared with SRC. Here, we addressed the underlying mechanism involved in this process. We show that YES oncogenic signaling relies on palmitoylation of its SH4 domain that controls YES localization in cholesterol-enriched membrane micro-domains. Specifically, deletion of the palmitoylation site compromised YES transforming activity, while addition of a palmitoylation site in the SH4 domain of SRC was sufficient for SRC to restore the transforming properties of cells in which YES had been silenced. Subsequently, SILAC phosphoproteomic analysis revealed that micro-domain-associated cell adhesive components and receptor tyrosine kinases are major YES substrates. YES also phosphorylates upstream regulators of RAS/MAPK signaling, including EGFR, SHC and SHP2, which were not targeted by SRC due to the absence of palmitoylation. Accordingly, EGFR-induced MAPK activity was attenuated by YES down-regulation, while increased RAS activity significantly restored cell transformation that was lost upon YES silencing. Collectively, these results uncover a critical role for the SH4 domain in the specification of SFK oncogenic activity and a selective role for YES in the induction of RAS/MAPK signaling in CRC cells.

  19. Basic Calcium Phosphate Crystals Activate c-fos Expression Through a Ras/ERK Dependent Signaling Mechanism

    PubMed Central

    Major, Michael L.; Cheung, Herman S.; Misra, Ravi P.

    2007-01-01

    Diseases caused by calcium pyrophosphate dihydrate (CPPD) and basic calcium phosphate (BCP) crystals occur frequently in osteoarthritic joints. Both crystals induce mitogenesis, metalloproteinase synthesis and secretion by fibroblasts and chondrocytes, promoting degradation of articular tissue. We investigated the mechanism by which BCP activates the c-fos proto-oncogene, which has been shown to activate various matrix metalloproteinases (MMPs). We demonstrate that BCP crystals induce c-fos expression primarily through a Ras/ERK dependent signaling mechanism targeting two highly conserved regulatory binding sites, the serum response element (SRE) and the cAMP response element (CRE). These results establish a calcium crystal induced, calcium/Calmodulin independent, signaling pathway in which BCP crystals activate Ras/MAPK, which can directly target an SRF-containing transcription factor complex, to induce fibroblasts to secrete metalloproteinases. PMID:17307136

  20. Photochemical Modulation of Ras-Mediated Signal Transduction using Caged Farnesyltransferase Inhibitors: Activation via One- and Two-Photon Excitation

    PubMed Central

    Abate-Pella, Daniel; Zeliadt, Nicholette A.; Ochocki, Joshua D.; Warmka, Janel K.; Dore, Timothy M.; Blank, David A.; Wattenberg, Elizabeth V.; Distefano, Mark D.

    2012-01-01

    The creation of caged molecules involves the attachment of protecting groups to biologically active compounds such as ligands, substrates, and drugs that can be removed under specific conditions. Photoremovable caging groups are the most common due to their ability to be removed with high spatial and temporal resolution. Here, the synthesis and photochemistry of a caged inhibitor of protein farnesyltransferase, Bhc-FTI, is described. The inhibitor was caged by alkylation of a critical thiol functional group with a Bhc moiety; while Bhc is well established as a protecting group for carboxylates and phosphates, it has not been extensively used to cage sulfhydryls. The resulting caged molecule, Bhc-FTI, can be photolyzed with UV light to release the inhibitor (FTI) that prevents Ras farnesylation, Ras membrane localization and downstream signaling. Finally, it is shown that Bhc-FTI can be uncaged by two-photon excitation to produce FTI at levels sufficient to inhibit Ras localization and alter cell morphology. Given the widespread involvement of Ras proteins in signal transduction pathways, this caged inhibitor should be useful in a plethora of studies. PMID:22492666

  1. A Small Molecule RAS-Mimetic Disrupts RAS Association with Effector Proteins to Block Signaling.

    PubMed

    Athuluri-Divakar, Sai Krishna; Vasquez-Del Carpio, Rodrigo; Dutta, Kaushik; Baker, Stacey J; Cosenza, Stephen C; Basu, Indranil; Gupta, Yogesh K; Reddy, M V Ramana; Ueno, Lynn; Hart, Jonathan R; Vogt, Peter K; Mulholland, David; Guha, Chandan; Aggarwal, Aneel K; Reddy, E Premkumar

    2016-04-21

    Oncogenic activation of RAS genes via point mutations occurs in 20%-30% of human cancers. The development of effective RAS inhibitors has been challenging, necessitating new approaches to inhibit this oncogenic protein. Functional studies have shown that the switch region of RAS interacts with a large number of effector proteins containing a common RAS-binding domain (RBD). Because RBD-mediated interactions are essential for RAS signaling, blocking RBD association with small molecules constitutes an attractive therapeutic approach. Here, we present evidence that rigosertib, a styryl-benzyl sulfone, acts as a RAS-mimetic and interacts with the RBDs of RAF kinases, resulting in their inability to bind to RAS, disruption of RAF activation, and inhibition of the RAS-RAF-MEK pathway. We also find that ribosertib binds to the RBDs of Ral-GDS and PI3Ks. These results suggest that targeting of RBDs across multiple signaling pathways by rigosertib may represent an effective strategy for inactivation of RAS signaling. PMID:27104980

  2. The regulation of oncogenic Ras/ERK signalling by dual-specificity mitogen activated protein kinase phosphatases (MKPs).

    PubMed

    Kidger, Andrew M; Keyse, Stephen M

    2016-02-01

    Dual-specificity MAP kinase (MAPK) phosphatases (MKPs or DUSPs) are well-established negative regulators of MAPK signalling in mammalian cells and tissues. By virtue of their differential subcellular localisation and ability to specifically recognise, dephosphorylate and inactivate different MAPK isoforms, they are key spatiotemporal regulators of pathway activity. Furthermore, as they are transcriptionally regulated as downstream targets of MAPK signalling they can either act as classical negative feedback regulators or mediate cross talk between distinct MAPK pathways. Because MAPKs and particularly Ras/ERK signalling are implicated in cancer initiation and development, the observation that MKPs are abnormally regulated in human tumours has been interpreted as evidence that these enzymes can either suppress or promote carcinogenesis. However, definitive evidence of such roles has been lacking. Here we review recent work based on the use of mouse models, biochemical studies and clinical data that demonstrate key roles for MKPs in modulating the oncogenic potential of Ras/ERK signalling and also indicate that these enzymes may play a role in the response of tumours to certain anticancer drugs. Overall, this work reinforces the importance of negative regulatory mechanisms in modulating the activity of oncogenic MAPK signalling and indicates that MKPs may provide novel targets for therapeutic intervention in cancer. PMID:26791049

  3. Lipopolysaccharide signals activation of tumor necrosis factor biosynthesis through the ras/raf-1/MEK/MAPK pathway.

    PubMed Central

    Geppert, T. D.; Whitehurst, C. E.; Thompson, P.; Beutler, B.

    1994-01-01

    BACKGROUND: Lipopolysaccharide (LPS) is known to activate macrophages, causing the release of toxic cytokines that may provoke inflammation and shock. One of the most important and best studied of these cytokines is tumor necrosis factor (TNF). Details of the signaling pathway leading to TNF biosynthesis remain unclear. The pathway is branched in the sense that TNF gene transcription and TNF mRNA translation are both strongly stimulated by LPS. Recent evidence has indicated that MAP kinase homologs become phosphorylated in LPS-stimulated cells, suggesting their possible involvement in signal transduction. We sought to test this hypothesis. MATERIALS AND METHODS: Measurements of LPS-induced MEK and ERK2 activity were undertaken in LPS-sensitive and LPS-insensitive cells. Transfection studies, in which dominant inhibitors of ras and raf-1 were used to block signaling to the level of MAP kinase, were carried out in order to judge whether the TNF gene transcription and TNF mRNA translation are modulated through this pathway. RESULTS: In RAW 264.7 mouse macrophages, both ERK2 and MEK1 activity are induced by LPS treatment. In the same cell line, dominant negative inhibitors of ras and raf-1 block LPS-induced activation of the TNF promoter, as well as derepression of the translational blockade normally imposed by the TNF 3'-untranslated region. A constitutively active form of raf-1 (raf-BXB) was found to augment, but not replace, the LPS signal. In LPS-insensitive cells (RAW 264.7 x NIH 3T3 fusion hybrid cells and primary macrophages derived from C3H/HeJ mice), ERK2 activity was found to be refractory to induction by LPS. CONCLUSIONS: The ras/raf-1/MEK/MAPK pathway is chiefly responsible for transduction of the LPS signal to the level of the TNF gene and mRNA. raf and raf-1 lie upstream from (or actually represent) the physical branchpoints of the transcriptional and translation activation signals generated by LPS. The lesions that prevent LPS signaling in macrophages

  4. Endogenous K-ras signaling in erythroid differentiation.

    PubMed

    Zhang, Jing; Lodish, Harvey F

    2007-08-15

    K-ras is one of the most frequently mutated genes in virtually all types of human cancers. Using mouse fetal liver erythroid progenitors as a model system, we studied the role of endogenous K-ras signaling in erythroid differentiation. When oncogenic K-ras is expressed from its endogenous promoter, it hyperactivates cytokine-dependent signaling pathways and results in a partial block in erythroid differentiation. In erythroid progenitors deficient in K-ras, cytokine-dependent Akt activation is greatly reduced, leading to delays in erythroid differentiation. Thus, both loss- and gain-of-Kras functions affect erythroid differentiation through modulation of cytokine signaling. These results support the notion that in human cancer patients oncogenic Ras signaling might be controlled by antagonizing essential cytokines.

  5. Inhibition of Ras oncogenic activity by Ras protooncogenes.

    PubMed

    Diaz, Roberto; Lue, Jeffrey; Mathews, Jeremy; Yoon, Andrew; Ahn, Daniel; Garcia-España, Antonio; Leonardi, Peter; Vargas, Marcelo P; Pellicer, Angel

    2005-01-10

    Point mutations in ras genes have been found in a large number and wide variety of human tumors. These oncogenic Ras mutants are locked in an active GTP-bound state that leads to a constitutive and deregulated activation of Ras function. The dogma that ras oncogenes are dominant, whereby the mutation of a single allele in a cell will predispose the host cell to transformation regardless of the presence of the normal allele, is being challenged. We have seen that increasing amounts of Ras protooncogenes are able to inhibit the activity of the N-Ras oncogene in the activation of Elk in NIH 3T3 cells and in the formation of foci. We have been able to determine that the inhibitory effect is by competition between Ras protooncogenes and the N-Ras oncogene that occurs first at the effector level at the membranes, then at the processing level and lastly at the effector level in the cytosol. In addition, coexpression of the N-Ras protooncogene in thymic lymphomas induced by the N-Ras oncogene is associated with increased levels of p107, p130 and cyclin A and decreased levels of Rb. In the present report, we have shown that the N-Ras oncogene is not truly dominant over Ras protooncogenes and their competing activities might be depending on cellular context.

  6. Chemical biology tools for regulating RAS signaling complexity in space and time.

    PubMed

    van Hattum, Hilde; Waldmann, Herbert

    2014-09-18

    Rat sarcoma (RAS) family members are small GTPases that control a number of signaling pathways important for normal cellular proliferation. Therefore, it is no surprise that a significant portion of human tumors express constitutively active mutated RAS proteins, which leads to deregulation of RAS signaling pathways, resulting in pathological perturbations of cell growth and death. Although the molecular details of RAS signaling cascades are well understood, there is still a largely unmet need for small molecule probes to control RAS signaling in space and time. More broadly, given the prevalence of mutated RAS in cancer, the need to translate the insights obtained from using small molecule probes into clinically useful drugs is also significant. In this review, we introduce RAS proteins and the signaling pathways they are involved in, and discuss some of the innovative chemical biology approaches to regulate RAS signaling, which include the exploitation of newly identified binding pockets, covalent inhibitors for mutated RAS, and RAS localization impairment.

  7. Nobiletin induces inhibitions of Ras activity and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase signaling to suppress cell proliferation in C6 rat glioma cells.

    PubMed

    Aoki, Koichi; Yokosuka, Akihito; Mimaki, Yoshihiro; Fukunaga, Kohji; Yamakuni, Tohru

    2013-01-01

    Ras, a small G-protein, physiologically directs cell proliferation and cell cycle via regulation of mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling cascade. Dysregulation of Ras/MEK/ERK signaling has been reported to cause tumorigenesis and gliomas. Nobiletin, a citrus flavonoid, has been shown to have anti-tumor cells action. However, it remains elusive whether nobiletin could affect Ras activity. In this study, we provide the first evidence that nobiletin suppresses the proliferation by inhibiting Ras activity in C6 glioma cells, a rat glioma cell line. First, Ras pull-down assay showed that nobiletin inhibits Ras activity in a concentration-dependent manner in C6 cells. Second, farnesyltransferase inhibitor I, a Ras inhibitor, and U0126, a MEK inhibitor, induced an inhibition of the cell proliferation in C6 cells, while the cell proliferation was inhibited by nobiletin as well. Third, western blotting revealed that nobiletin showed inhibitory effects on MEK and ERK phopsphorylation levels in a concentration-dependent manner. Finally, such an inhibitory effect on the level of ERK phosphorylation by nobiletin was appreciably prevented by Gö6976, a selective inhibitor of conventional protein kinase Cs (PKCs) showing Ca(2+)-sensitivity, while GF109203X, a general inhibitor for PKCs, and BAPTA, a cell-permeable Ca(2+) chelator, to a lesser extent, suppressed a reduction of the phosphorylation. These findings suggest that the proliferation of C6 cells is Ras- and MEK/ERK signaling-dependent, and that nobiletin suppresses the cell proliferation by inhibiting Ras activity and MEK/ERK signaling cascade probably via a Ca(2+)-sensitive PKC-dependent mechanism. Thus, the natural compound has potential to be a therapeutic agent for glioma.

  8. Calmodulin binds to K-Ras, but not to H- or N-Ras, and modulates its downstream signaling.

    PubMed

    Villalonga, P; López-Alcalá, C; Bosch, M; Chiloeches, A; Rocamora, N; Gil, J; Marais, R; Marshall, C J; Bachs, O; Agell, N

    2001-11-01

    Activation of Ras induces a variety of cellular responses depending on the specific effector activated and the intensity and amplitude of this activation. We have previously shown that calmodulin is an essential molecule in the down-regulation of the Ras/Raf/MEK/extracellularly regulated kinase (ERK) pathway in cultured fibroblasts and that this is due at least in part to an inhibitory effect of calmodulin on Ras activation. Here we show that inhibition of calmodulin synergizes with diverse stimuli (epidermal growth factor, platelet-derived growth factor, bombesin, or fetal bovine serum) to induce ERK activation. Moreover, even in the absence of any added stimuli, activation of Ras by calmodulin inhibition was observed. To identify the calmodulin-binding protein involved in this process, calmodulin affinity chromatography was performed. We show that Ras and Raf from cellular lysates were able to bind to calmodulin. Furthermore, Ras binding to calmodulin was favored in lysates with large amounts of GTP-bound Ras, and it was Raf independent. Interestingly, only one of the Ras isoforms, K-RasB, was able to bind to calmodulin. Furthermore, calmodulin inhibition preferentially activated K-Ras. Interaction between calmodulin and K-RasB is direct and is inhibited by the calmodulin kinase II calmodulin-binding domain. Thus, GTP-bound K-RasB is a calmodulin-binding protein, and we suggest that this binding may be a key element in the modulation of Ras signaling.

  9. Interferon-β Signaling Contributes to Ras Transformation

    PubMed Central

    Tsai, Yu-Chen; Pestka, Sidney; Wang, Lu-Hai; Runnels, Loren W.; Wan, Shan; Lyu, Yi Lisa; Liu, Leroy F.

    2011-01-01

    Increasing evidence has pointed to activated type I interferon signaling in tumors. However, the molecular basis for such activation and its role in tumorigenesis remain unclear. In the current studies, we report that activation of type I interferon (IFN) signaling in tumor cells is primarily due to elevated secretion of the type I interferon, IFN-β. Studies in oncogene-transformed cells suggest that oncogenes such as Ras and Src can activate IFN-β signaling. Significantly, elevated IFN-β signaling in Ras-transformed mammary epithelial MCF-10A cells was shown to contribute to Ras transformation as evidenced by morphological changes, anchorage-independent growth, and migratory properties. Our results demonstrate for the first time that the type I IFN, IFN-β, contributes to Ras transformation and support the notion that oncogene-induced cytokines play important roles in oncogene transformation. PMID:21897875

  10. Lead acetate induces EGFR activation upstream of SFK and PKC{alpha} linkage to the Ras/Raf-1/ERK signaling

    SciTech Connect

    Wang, C.-Y.; Wang, Y.-T.; Tzeng, D.-W.; Yang, J.-L.

    2009-03-01

    Lead acetate (Pb), a probable human carcinogen, can activate protein kinase C (PKC) upstream of extracellular signal-regulated kinase 1 and 2 (ERK1/2). Yet, it remains unclear whether Pb activation of PKC {yields} ERK1/2 involves receptor/non-receptor tyrosine kinases and the Ras signaling transducer. Here we demonstrate a novel mechanism elicited by Pb for transmitting ERK1/2 signaling in CL3 human non-small-cell lung adenocarcinoma cells. Pb induction of higher steady-state levels of Ras-GTP was essential for increasing phospho-Raf-1{sup S338} and phospho-ERK1/2. Pre-treatment of the cells with a conventional PKC inhibitor Goe6976 or depleting PKC{alpha} using specific small interfering RNA blocked Pb induction of Ras-GTP. Pb also activated cellular tyrosine kinases. Specific pharmacological inhibitors, PD153035 for epidermal growth factor receptor (EGFR) and SU6656 for Src family tyrosine kinases (SFK), but not AG1296 for platelet-derived growth factor receptor, could suppress the Pb-induced tyrosine kinases, PKC{alpha}, Ras-GTP, phospho-Raf-1{sup S338} and phospho-ERK1/2. Furthermore, phosphorylation of tyrosines on the EGFR multiple autophosphorylation sites and the conserved SFK autophosphorylation site occurred during exposure of cells to Pb for 1-5 min and 5-30 min, respectively. Intriguingly, Pb activation of EGFR required the intrinsic kinase activity but not dimerization of the receptor. Inhibition of SFK or PKC{alpha} activities did not affect EGFR phosphorylation, while knockdown of EGFR blocked SFK phosphorylation and PKC{alpha} activation following Pb. Together, these results indicate that immediate activation of EGFR in response to Pb is obligatory for activation of SFK and PKC{alpha} and subsequent the Ras-Raf-1-MKK1/2-ERK1/2 signaling cascade.

  11. Chaperone-mediated specificity in Ras and Rap signaling.

    PubMed

    Azoulay-Alfaguter, Inbar; Strazza, Marianne; Mor, Adam

    2015-01-01

    Ras and Rap proteins are closely related small guanosine triphosphatase (GTPases) that share similar effector-binding domains but operate in a very different signaling networks; Ras has a dominant role in cell proliferation, while Rap mediates cell adhesion. Ras and Rap proteins are regulated by several shared processes such as post-translational modification, phosphorylation, activation by guanine exchange factors and inhibition by GTPase-activating proteins. Sub-cellular localization and trafficking of these proteins to and from the plasma membrane are additional important regulatory features that impact small GTPases function. Despite its importance, the trafficking mechanisms of Ras and Rap proteins are not completely understood. Chaperone proteins play a critical role in trafficking of GTPases and will be the focus of the discussion in this work. We will review several aspects of chaperone biology focusing on specificity toward particular members of the small GTPase family. Understanding this specificity should provide key insights into drug development targeting individual small GTPases.

  12. Signal integration by lipid-mediated spatial cross talk between Ras nanoclusters.

    PubMed

    Zhou, Yong; Liang, Hong; Rodkey, Travis; Ariotti, Nicholas; Parton, Robert G; Hancock, John F

    2014-03-01

    Lipid-anchored Ras GTPases form transient, spatially segregated nanoclusters on the plasma membrane that are essential for high-fidelity signal transmission. The lipid composition of Ras nanoclusters, however, has not previously been investigated. High-resolution spatial mapping shows that different Ras nanoclusters have distinct lipid compositions, indicating that Ras proteins engage in isoform-selective lipid sorting and accounting for different signal outputs from different Ras isoforms. Phosphatidylserine is a common constituent of all Ras nanoclusters but is only an obligate structural component of K-Ras nanoclusters. Segregation of K-Ras and H-Ras into spatially and compositionally distinct lipid assemblies is exquisitely sensitive to plasma membrane phosphatidylserine levels. Phosphatidylserine spatial organization is also modified by Ras nanocluster formation. In consequence, Ras nanoclusters engage in remote lipid-mediated communication, whereby activated H-Ras disrupts the assembly and operation of spatially segregated K-Ras nanoclusters. Computational modeling and experimentation reveal that complex effects of caveolin and cortical actin on Ras nanoclustering are similarly mediated through regulation of phosphatidylserine spatiotemporal dynamics. We conclude that phosphatidylserine maintains the lateral segregation of diverse lipid-based assemblies on the plasma membrane and that lateral connectivity between spatially remote lipid assemblies offers important previously unexplored opportunities for signal integration and signal processing.

  13. Cyclin E1 and RTK/RAS signaling drive CDK inhibitor resistance via activation of E2F and ETS.

    PubMed

    Taylor-Harding, Barbie; Aspuria, Paul-Joseph; Agadjanian, Hasmik; Cheon, Dong-Joo; Mizuno, Takako; Greenberg, Danielle; Allen, Jenieke R; Spurka, Lindsay; Funari, Vincent; Spiteri, Elizabeth; Wang, Qiang; Orsulic, Sandra; Walsh, Christine; Karlan, Beth Y; Wiedemeyer, W Ruprecht

    2015-01-20

    High-grade serous ovarian cancers (HGSOC) are genomically complex, heterogeneous cancers with a high mortality rate, due to acquired chemoresistance and lack of targeted therapy options. Cyclin-dependent kinase inhibitors (CDKi) target the retinoblastoma (RB) signaling network, and have been successfully incorporated into treatment regimens for breast and other cancers. Here, we have compared mechanisms of response and resistance to three CDKi that target either CDK4/6 or CDK2 and abrogate E2F target gene expression. We identify CCNE1 gain and RB1 loss as mechanisms of resistance to CDK4/6 inhibition, whereas receptor tyrosine kinase (RTK) and RAS signaling is associated with CDK2 inhibitor resistance. Mechanistically, we show that ETS factors are mediators of RTK/RAS signaling that cooperate with E2F in cell cycle progression. Consequently, CDK2 inhibition sensitizes cyclin E1-driven but not RAS-driven ovarian cancer cells to platinum-based chemotherapy. In summary, this study outlines a rational approach for incorporating CDKi into treatment regimens for HGSOC. PMID:25557169

  14. Cyclin E1 and RTK/RAS signaling drive CDK inhibitor resistance via activation of E2F and ETS

    PubMed Central

    Taylor-Harding, Barbie; Aspuria, Paul-Joseph; Agadjanian, Hasmik; Cheon, Dong-Joo; Mizuno, Takako; Greenberg, Danielle; Allen, Jenieke R.; Spurka, Lindsay; Funari, Vincent; Spiteri, Elizabeth; Wang, Qiang; Orsulic, Sandra; Walsh, Christine; Karlan, Beth Y.; Wiedemeyer, W. Ruprecht

    2015-01-01

    High-grade serous ovarian cancers (HGSOC) are genomically complex, heterogeneous cancers with a high mortality rate, due to acquired chemoresistance and lack of targeted therapy options. Cyclin-dependent kinase inhibitors (CDKi) target the retinoblastoma (RB) signaling network, and have been successfully incorporated into treatment regimens for breast and other cancers. Here, we have compared mechanisms of response and resistance to three CDKi that target either CDK4/6 or CDK2 and abrogate E2F target gene expression. We identify CCNE1 gain and RB1 loss as mechanisms of resistance to CDK4/6 inhibition, whereas receptor tyrosine kinase (RTK) and RAS signaling is associated with CDK2 inhibitor resistance. Mechanistically, we show that ETS factors are mediators of RTK/RAS signaling that cooperate with E2F in cell cycle progression. Consequently, CDK2 inhibition sensitizes cyclin E1-driven but not RAS-driven ovarian cancer cells to platinum-based chemotherapy. In summary, this study outlines a rational approach for incorporating CDKi into treatment regimens for HGSOC. PMID:25557169

  15. RalA, a GTPase targeted by miR-181a, promotes transformation and progression by activating the Ras-related signaling pathway in chronic myelogenous leukemia

    PubMed Central

    Luo, Xiaochuang; Yang, Juhua; Li, Yumin; Li, Tianfu; Wang, Ruirui; Fei, Jia

    2016-01-01

    BCR/ABL is a well-known activator of multiple signaling pathways. RalA, a Ras downstream signaling molecule and a small GTPase, plays an important role in Bcr-Abl-induced leukemogenesis but the exact mechanism remains elusive. Here, we show that RalA GTPase activity is commonly high in chronic myelogenous leukemia (CML) cell lines and patient samples. Overexpression of RalA results in malignant transformation and progression, and induces resistance to imatinib (IM) in BaF3 and K562 cell lines. RalA reduced survival and led to IM resistance in a xenografted mouse model. Ablation of RalA by either siRNA or miR-181a, a RalA targeting microRNA, attenuated the malignant phenotypes in K562 cells. RBC8, a selective Ral inhibitor, enhanced the inhibitory effects of IM in K562, KCL22 and BaF3-P210 cells. Interestingly, the phospho-specific protein microarray assay revealed that multiple phosphorylation signal proteins were decreased by RalA inhibition, including SAPK, JNK, SRC, VEGFR2, P38 MAPK, c-Kit, JunB, and Keratin18. Among them, P38 MAPK and SAPK/JNK are Ras downstream signaling kinases. Taken together, RalA GTPase might be an important oncogene activating the Ras-related signaling pathway in CML. PMID:26967392

  16. Effect of acerola cherry extract on cell proliferation and activation of ras signal pathway at the promotion stage of lung tumorigenesis in mice.

    PubMed

    Nagamine, Isao; Akiyama, Tsutomu; Kainuma, Motoomi; Kumagai, Hitomi; Satoh, Haruna; Yamada, Kazuhiko; Yano, Tomohiro; Sakurai, Hidetoshi

    2002-02-01

    The present study was undertaken to estimate the effect of acerola cherry extract (ACE) pretreatment on cell proliferation and the activation of Ras signal pathway at a promotion stage of lung tumorigenesis in mice treated with 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Pretreatment with ACE (dose, 70mg/kg body weight and 700 mg/kg body weight) inhibited increases in the levels of proliferating nuclear cell antigen and ornithine decarboxylase at the promotion stage. This treatment of ACE also suppressed the activation of Ras signal pathway at the same stage. These results suggest that ACE regulates abnormal cell growth at the promotion stage of lung tumorigenesis in mice treated with NNK as a result of suppression of the initiation stage.

  17. TC21 and Ras share indistinguishable transforming and differentiating activities.

    PubMed

    Graham, S M; Oldham, S M; Martin, C B; Drugan, J K; Zohn, I E; Campbell, S; Der, C J

    1999-03-25

    Constitutively activated mutants of the Ras-related protein TC21/R-Ras2 cause tumorigenic transformation of NIH3T3 cells. However, unlike Ras, TC21 fails to bind to and activate the Raf-1 serine-threonine kinase. Thus, whereas Ras transformation is critically dependent on Raf-1 TC21 activity is promoted by activation of Raf-independent signaling pathways. In the present study, we have further compared the functions of Ras and TC21. First we determined the basis for the inability of TC21 to activate Raf-1. Whereas Ras can interact with the two distinct Ras-binding sequences in NH2-terminus of Raf-1, designated RBS1 and Raf-Cys, TC21 could only bind Raf-Cys. Thus, the inability of TC21 to bind to RBS1 may prevent it from promoting the translocation of Raf-1 to the plasma membrane. Second, we found that TC21 is an activator of the JNK and p38, but not ERK, mitogen-activated protein kinase cascades and that TC21 transforming activity was dependent on Rac function. Thus, like Ras, TC21 may activate a Rac/JNK pathway. Third, we determined if TC21 could cause the same biological consequences as Ras in three distinct cell types. Like Ras, activated TC21 caused transformation of RIE-1 rat intestinal epithelial cells and terminal differentiation of PC12 pheochromocytoma cells. Finally, activated TC21 blocked serum starvation-induced differentiation of C2 myoblasts, whereas dominant negative TC21 greatly accelerated this differentiation process. Therefore, TC21 and Ras share indistinguishable biological activities in all cell types that we have evaluated. These results support the importance of Raf-independent pathways in mediating the actions of Ras and TC21.

  18. Activation of p21ras/MAPK signal transduction molecules decreases with age in mitogen-stimulated T cells from rats.

    PubMed

    Pahlavani, M A; Harris, M D; Richardson, A

    1998-04-10

    Signal transduction is ubiquitously involved in the initiation of physiological signals that lead to growth and proliferation of cells. The signaling cascade mediated by the mitogen-activated protein kinase (MAPK) is considered essential for T cell growth and function. Therefore, it was of interest to determine the influence of age on the induction of MAPK in mitogen-activated T cells. T cells from young (4-6 months) and old (24-26 months) rats responded to concanavalin A (Con A) stimulation by increasing MAPK, c-jun amino terminal kinase (JNK), and p21ras activities. The time course of induction of MAPK/JNK and p21ras activities was similar in T cells isolated from young and old rats. The induction of JNK activity did not change significantly with age; however, the induction of MAPK and p21ras activities was significantly less (50 to 65%) in T cells from old rats than in T cells from young rats. Although the relative protein levels of p42 and p44 MAPK did not change with age, the proportion of the phosphorylated p44 MAPK decreased with age. In addition, it was found that the in vitro kinase activities of the T cell receptor-associated protein tyrosine kinase Lck (p56Lck) and ZAP-70 but not Fyn (p59Fyn) were lower in T cells from old rats than in T cells from young rats. The decline in activities of these signaling molecules with age was not associated with changes in their corresponding protein levels. Thus, our results demonstrate that aging alters the activation of the signal transduction cascade that leads to T cell activation.

  19. A Model for Direction Sensing in Dictyostelium discoideum: Ras Activity and Symmetry Breaking Driven by a Gβγ-Mediated, Gα2-Ric8 -- Dependent Signal Transduction Network

    PubMed Central

    Cheng, Yougan; Othmer, Hans

    2016-01-01

    Chemotaxis is a dynamic cellular process, comprised of direction sensing, polarization and locomotion, that leads to the directed movement of eukaryotic cells along extracellular gradients. As a primary step in the response of an individual cell to a spatial stimulus, direction sensing has attracted numerous theoretical treatments aimed at explaining experimental observations in a variety of cell types. Here we propose a new model of direction sensing based on experiments using Dictyostelium discoideum (Dicty). The model is built around a reaction-diffusion-translocation system that involves three main component processes: a signal detection step based on G-protein-coupled receptors (GPCR) for cyclic AMP (cAMP), a transduction step based on a heterotrimetic G protein Gα2βγ, and an activation step of a monomeric G-protein Ras. The model can predict the experimentally-observed response of cells treated with latrunculin A, which removes feedback from downstream processes, under a variety of stimulus protocols. We show that Gα2βγ cycling modulated by Ric8, a nonreceptor guanine exchange factor for Gα2 in Dicty, drives multiple phases of Ras activation and leads to direction sensing and signal amplification in cAMP gradients. The model predicts that both Gα2 and Gβγ are essential for direction sensing, in that membrane-localized Gα2*, the activated GTP-bearing form of Gα2, leads to asymmetrical recruitment of RasGEF and Ric8, while globally-diffusing Gβγ mediates their activation. We show that the predicted response at the level of Ras activation encodes sufficient ‘memory’ to eliminate the ‘back-of-the wave’ problem, and the effects of diffusion and cell shape on direction sensing are also investigated. In contrast with existing LEGI models of chemotaxis, the results do not require a disparity between the diffusion coefficients of the Ras activator GEF and the Ras inhibitor GAP. Since the signal pathways we study are highly conserved between Dicty

  20. A Model for Direction Sensing in Dictyostelium discoideum: Ras Activity and Symmetry Breaking Driven by a Gβγ-Mediated, Gα2-Ric8 -- Dependent Signal Transduction Network.

    PubMed

    Cheng, Yougan; Othmer, Hans

    2016-05-01

    Chemotaxis is a dynamic cellular process, comprised of direction sensing, polarization and locomotion, that leads to the directed movement of eukaryotic cells along extracellular gradients. As a primary step in the response of an individual cell to a spatial stimulus, direction sensing has attracted numerous theoretical treatments aimed at explaining experimental observations in a variety of cell types. Here we propose a new model of direction sensing based on experiments using Dictyostelium discoideum (Dicty). The model is built around a reaction-diffusion-translocation system that involves three main component processes: a signal detection step based on G-protein-coupled receptors (GPCR) for cyclic AMP (cAMP), a transduction step based on a heterotrimetic G protein Gα2βγ, and an activation step of a monomeric G-protein Ras. The model can predict the experimentally-observed response of cells treated with latrunculin A, which removes feedback from downstream processes, under a variety of stimulus protocols. We show that [Formula: see text] cycling modulated by Ric8, a nonreceptor guanine exchange factor for [Formula: see text] in Dicty, drives multiple phases of Ras activation and leads to direction sensing and signal amplification in cAMP gradients. The model predicts that both [Formula: see text] and Gβγ are essential for direction sensing, in that membrane-localized [Formula: see text], the activated GTP-bearing form of [Formula: see text], leads to asymmetrical recruitment of RasGEF and Ric8, while globally-diffusing Gβγ mediates their activation. We show that the predicted response at the level of Ras activation encodes sufficient 'memory' to eliminate the 'back-of-the wave' problem, and the effects of diffusion and cell shape on direction sensing are also investigated. In contrast with existing LEGI models of chemotaxis, the results do not require a disparity between the diffusion coefficients of the Ras activator GEF and the Ras inhibitor GAP. Since

  1. Delineation of the Roles Played by RasG and RasC in cAMP-dependent Signal Transduction during the Early Development of Dictyostelium discoideum

    PubMed Central

    Bolourani, Parvin; Spiegelman, George B.

    2006-01-01

    On starvation, the cellular slime mold Dictyostelium discoideum initiates a program of development leading to formation of multicellular structures. The initial cell aggregation requires chemotaxis to cyclic AMP (cAMP) and relay of the cAMP signal by the activation of adenylyl cyclase (ACA), and it has been shown previously that the Ras protein RasC is involved in both processes. Insertional inactivation of the rasG gene resulted in delayed aggregation and a partial inhibition of early gene expression, suggesting that RasG also has a role in early development. Both chemotaxis and ACA activation were reduced in the rasG− cells, but the effect on chemotaxis was more pronounced. When the responses of rasG− cells to cAMP were compared with the responses of rasC− and rasC−rasG− strains, generated in otherwise isogenic backgrounds, these studies revealed that signal transduction through RasG is more important in chemotaxis and early gene expression, but that signal transduction through RasC is more important in ACA activation. Because the loss of either of the two Ras proteins alone did not result in a total loss of signal output down either of the branches of the cAMP signal-response pathway, there appears to be some overlap of function. PMID:16885420

  2. Ras activation and symmetry breaking during Dictyostelium chemotaxis.

    PubMed

    Kortholt, Arjan; Keizer-Gunnink, Ineke; Kataria, Rama; Van Haastert, Peter J M

    2013-10-01

    Central to chemotaxis is the molecular mechanism by which a shallow spatial gradient of chemoattractant induces symmetry breaking of activated signaling molecules. Previously, we have used Dictyostelium mutants to investigate the minimal requirements for chemotaxis, and identified a basal signaling module providing activation of Ras and F-actin at the leading edge. Here, we show that Ras activation after application of a pipette releasing the chemoattractant cAMP has three phases, each depending on specific guanine-nucleotide-exchange factors (GEFs). Initially a transient activation of Ras occurs at the entire cell boundary, which is proportional to the local cAMP concentrations and therefore slightly stronger at the front than in the rear of the cell. This transient Ras activation is present in gα2 (gpbB)-null cells but not in gβ (gpbA)-null cells, suggesting that Gβγ mediates the initial activation of Ras. The second phase is symmetry breaking: Ras is activated only at the side of the cell closest to the pipette. Symmetry breaking absolutely requires Gα2 and Gβγ, but not the cytoskeleton or four cAMP-induced signaling pathways, those dependent on phosphatidylinositol (3,4,5)-triphosphate [PtdIns(3,4,5)P3], cGMP, TorC2 and PLA2. As cells move in the gradient, the crescent of activated Ras in the front half of the cell becomes confined to a small area at the utmost front of the cell. Confinement of Ras activation leads to cell polarization, and depends on cGMP formation, myosin and F-actin. The experiments show that activation, symmetry breaking and confinement of Ras during Dictyostelium chemotaxis uses different G-protein subunits and a multitude of Ras GEFs and GTPase-activating proteins (GAPs).

  3. Gas6-mediated survival in NIH3T3 cells activates stress signalling cascade and is independent of Ras.

    PubMed

    Goruppi, S; Ruaro, E; Varnum, B; Schneider, C

    1999-07-22

    Gas6 is a growth factor membrane of the vitamin K-dependent family of proteins which is preferentially expressed in quiescent cells. Gas6 was identified as the ligand for Axl tyrosine kinase receptor family. Consistent with this, Gas6 was previously reported to induce cell cycle re-entry of serum-starved NIH3T3 cells and to prevent cell death after complete growth factor withdrawal, the survival effect being uncoupled from Gas6-induced mitogenesis. We have previously demonstrated that both Gas6 mitogenic and survival effects are mediated by Src and the phosphatidylinositol3-OH kinase (PI3K). Here we report that Ras is required for Gas6 mitogenesis but is dispensable for its survival effect. Gas6-induced survival requires the activity of the small GTPases of the Rho family, Rac and Rho, together with the downstream kinase Pak. Overexpression of the respective dominant negative constructs abrogates Gas6-mediated survival functions. Addition of Gas6 to serum starved cells results in the activation of AKT/PKB and in the phosphorylation of the Bcl-2 family member, Bad. By ectopic expression of a catalytically inactive form of AKT/PKB, we demonstrate that AKT/PKB is necessary for Gas6-mediated survival functions. We further show evidence that Gas6 stimulation of serum starved NIH3T3 cells results in a transient ERK, JNK/SAPK and p38 MAPK activation. Blocking ERK activation did not influence Gas6-induced survival, suggesting that such pathway is not involved in Gas6 protection from cell death. On the contrary we found that the late constitutive increase of p38 MAPK activity associated with cell death was downregulated in Gas6-treated NIH3T3 cells thus suggesting that Gas6 might promote survival by interfering with this pathway. Taken together the evidence here provided identity elements involved in Gas6 signalling more specifically elucidating the pathway responsible for Gas6-induced cell survival under conditions that do not allow cell proliferation.

  4. Regulation of H-Ras-driven MAPK signaling, transformation and tumorigenesis, but not PI3K signaling and tumor progression, by plasma membrane microdomains.

    PubMed

    Michael, J V; Wurtzel, J G T; Goldfinger, L E

    2016-05-30

    In this study, we assessed the contributions of plasma membrane (PM) microdomain targeting to the functions of H-Ras and R-Ras. These paralogs have identical effector-binding regions, but variant C-terminal targeting domains (tDs) which are responsible for lateral microdomain distribution: activated H-Ras targets to lipid ordered/disordered (Lo/Ld) domain borders, and R-Ras to Lo domains (rafts). We hypothesized that PM distribution regulates Ras-effector interactions and downstream signaling. We used tD swap mutants, and assessed effects on signal transduction, cell proliferation, transformation and tumorigenesis. R-Ras harboring the H-Ras tD (R-Ras-tH) interacted with Raf, and induced Raf and ERK phosphorylation similar to H-Ras. R-Ras-tH stimulated proliferation and transformation in vitro, and these effects were blocked by both MEK and PI3K inhibition. Conversely, the R-Ras tD suppressed H-Ras-mediated Raf activation and ERK phosphorylation, proliferation and transformation. Thus, Ras access to Raf at the PM is sufficient for MAPK activation and is a principal component of Ras mitogenesis and transformation. Fusion of the R-Ras extended N-terminal domain to H-Ras had no effect on proliferation, but inhibited transformation and tumor progression, indicating that the R-Ras N-terminus also contributes negative regulation to these Ras functions. PI3K activation was tD independent; however, H-Ras was a stronger activator of PI3K than R-Ras, with either tD. PI3K inhibition nearly ablated transformation by R-Ras-tH, H-Ras and H-Ras-tR, whereas MEK inhibition had a modest effect on Ras-tH-driven transformation but no effect on H-Ras-tR transformation. R-Ras-tH supported tumor initiation, but not tumor progression. While H-Ras-tR-induced transformation was reduced relative to H-Ras, tumor progression was robust and similar to H-Ras. H-Ras tumor growth was moderately suppressed by MEK inhibition, which had no effect on H-Ras-tR tumor growth. In contrast, PI3K inhibition

  5. Nucleophosmin and Nucleolin Regulate K-Ras Plasma Membrane Interactions and MAPK Signal Transduction*

    PubMed Central

    Inder, Kerry L.; Lau, Chiyan; Loo, Dorothy; Chaudhary, Natasha; Goodall, Andrew; Martin, Sally; Jones, Alun; van der Hoeven, Dharini; Parton, Robert G.; Hill, Michelle M.; Hancock, John F.

    2009-01-01

    The spatial organization of Ras proteins into nanoclusters on the inner leaflet of the plasma membrane is essential for high fidelity signaling through the MAPK pathway. Here we identify two selective regulators of K-Ras nanoclustering from a proteomic screen for K-Ras interacting proteins. Nucleophosmin (NPM) and nucleolin are predominantly localized to the nucleolus but also have extranuclear functions. We show that a subset of NPM and nucleolin localizes to the inner leaflet of plasma membrane and forms specific complexes with K-Ras but not other Ras isoforms. Active GTP-loaded and inactive GDP-loaded K-Ras both interact with NPM, although NPM-K-Ras binding is increased by growth factor receptor activation. NPM and nucleolin both stabilize K-Ras levels on the plasma membrane, but NPM concurrently increases the clustered fraction of GTP-K-Ras. The increase in nanoclustered GTP-K-Ras in turn enhances signal gain in the MAPK pathway. In summary these results reveal novel extranucleolar functions for NPM and nucleolin as regulators of K-Ras nanocluster formation and activation of the MAPK pathway. The study also identifies a new class of K-Ras nanocluster regulator that operates independently of the structural scaffold galectin-3. PMID:19661056

  6. K-Ras Promotes Tumorigenicity through Suppression of Non-canonical Wnt Signaling.

    PubMed

    Wang, Man-Tzu; Holderfield, Matthew; Galeas, Jacqueline; Delrosario, Reyno; To, Minh D; Balmain, Allan; McCormick, Frank

    2015-11-19

    K-Ras and H-Ras share identical effectors and have similar properties; however, the high degree of tumor-type specificity associated with K-Ras and H-Ras mutations suggests that they have unique roles in oncogenesis. Here, we report that oncogenic K-Ras, but not H-Ras, suppresses non-canonical Wnt/Ca(2+) signaling, an effect that contributes strongly to its tumorigenic properties. K-Ras does this by binding to calmodulin and so reducing CaMKii activity and expression of Fzd8. Restoring Fzd8 in K-Ras mutant pancreatic cells suppresses malignancy, whereas depletion of Fzd8 in H-Ras(V12)-transformed cells enhances their tumor initiating capacity. Interrupting K-Ras-calmodulin binding using genetic means or by treatment with an orally active protein kinase C (PKC)-activator, prostratin, represses tumorigenesis in K-Ras mutant pancreatic cancer cells. These findings provide an alternative way to selectively target this "undruggable" protein.

  7. K-RAS(V12) Induces Autocrine Production of EGFR Ligands and Mediates Radioresistance Through EGFR-Dependent Akt Signaling and Activation of DNA-PKcs

    SciTech Connect

    Minjgee, Minjmaa; Toulany, Mahmoud; Kehlbach, Rainer; Giehl, Klaudia; Rodemann, H. Peter

    2011-12-01

    Purpose: It is known that postirradiation survival of tumor cells presenting mutated K-RAS is mediated through autocrine activation of epidermal growth factor receptor (EGFR). In this study the molecular mechanism of radioresistance of cells overexpressing mutated K-RAS(V12) was investigated. Methods and Materials: Head-and-neck cancer cells (FaDu) presenting wild-type K-RAS were transfected with empty vector or vector expressing mutated K-RAS(V12). The effect of K-RAS(V12) on autocrine production of EGFR ligands, activation of EGFR downstream pathways, DNA damage repair, and postirradiation survival was analyzed. Results: Conditioned medium collected from K-RAS(V12)-transfected cells enhanced activation of the phosphatidylinositol-3-kinase-Akt pathway and increased postirradiation survival of wild-type K-RAS parental cells when compared with controls. These effects were reversed by amphiregulin (AREG)-neutralizing antibody. In addition, secretion of the EGFR ligands AREG and transforming growth factor {alpha} was significantly increased upon overexpression of K-RAS(V12). Expression of mutated K-RAS(V12) resulted in an increase in radiation-induced DNA-dependent protein kinase catalytic subunit (DNA-PKcs) phosphorylation at S2056. This increase was accompanied by increased repair of DNA double-strand breaks. Abrogation of DNA-PKcs phosphorylation by serum depletion or AREG-neutralizing antibody underscored the role of autocrine production of EGFR ligands, namely, AREG, in regulating DNA-PKcs activation in K-RAS mutated cells. Conclusions: These data indicate that radioresistance of K-RAS mutated tumor cells is at least in part due to constitutive production of EGFR ligands, which mediate enhanced repair of DNA double-strand breaks through the EGFR-phosphatidylinositol-3-kinase-Akt cascade.

  8. Paradoxical activation of MEK/ERK signaling induced by B-Raf inhibition enhances DR5 expression and DR5 activation-induced apoptosis in Ras-mutant cancer cells.

    PubMed

    Oh, You-Take; Deng, Jiusheng; Yue, Ping; Sun, Shi-Yong

    2016-01-01

    B-Raf inhibitors have been used for the treatment of some B-Raf-mutated cancers. They effectively inhibit B-Raf/MEK/ERK signaling in cancers harboring mutant B-Raf, but paradoxically activates MEK/ERK in Ras-mutated cancers. Death receptor 5 (DR5), a cell surface pro-apoptotic protein, triggers apoptosis upon ligation with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or aggregation. This study focused on determining the effects of B-Raf inhibition on DR5 expression and DR5 activation-induced apoptosis in Ras-mutant cancer cells. Using chemical and genetic approaches, we have demonstrated that the B-Raf inhibitor PLX4032 induces DR5 upregulation exclusively in Ras-mutant cancer cells; this effect is dependent on Ras/c-Raf/MEK/ERK signaling activation. PLX4032 induces DR5 expression at transcriptional levels, largely due to enhancing CHOP/Elk1-mediated DR5 transcription. Pre-exposure of Ras-mutated cancer cells to PLX4032 sensitizes them to TRAIL-induced apoptosis; this is also a c-Raf/MEK/ERK-dependent event. Collectively, our findings highlight a previously undiscovered effect of B-Raf inhibition on the induction of DR5 expression and the enhancement of DR5 activation-induced apoptosis in Ras-mutant cancer cells and hence may suggest a novel therapeutic strategy against Ras-mutated cancer cells by driving their death due to DR5-dependent apoptosis through B-Raf inhibition.

  9. Rasputin, the Drosophila homologue of the RasGAP SH3 binding protein, functions in ras- and Rho-mediated signaling.

    PubMed

    Pazman, C; Mayes, C A; Fanto, M; Haynes, S R; Mlodzik, M

    2000-04-01

    The small GTPase Ras plays an important role in many cellular signaling processes. Ras activity is negatively regulated by GTPase activating proteins (GAPs). It has been proposed that RasGAP may also function as an effector of Ras activity. We have identified and characterized the Drosophila homologue of the RasGAP-binding protein G3BP encoded by rasputin (rin). rin mutants are viable and display defects in photoreceptor recruitment and ommatidial polarity in the eye. Mutations in rin/G3BP genetically interact with components of the Ras signaling pathway that function at the level of Ras and above, but not with Raf/MAPK pathway components. These interactions suggest that Rin is required as an effector in Ras signaling during eye development, supporting an effector role for RasGAP. The ommatidial polarity phenotypes of rin are similar to those of RhoA and the polarity genes, e.g. fz and dsh. Although rin/G3BP interacts genetically with RhoA, affecting both photoreceptor differentiation and polarity, it does not interact with the gain-of-function genotypes of fz and dsh. These data suggest that Rin is not a general component of polarity generation, but serves a function specific to Ras and RhoA signaling pathways.

  10. Visualizing and Quantitating the Spatiotemporal Regulation of Ras/ERK Signaling by Dual-Specificity Mitogen-Activated Protein Phosphatases (MKPs).

    PubMed

    Caunt, Christopher J; Kidger, Andrew M; Keyse, Stephen M

    2016-01-01

    The spatiotemporal regulation of the Ras/ERK pathway is critical in determining the physiological and pathophysiological outcome of signaling. Dual-specificity mitogen-activated protein kinase (MAPK) phosphatases (DUSPs or MKPs) are key regulators of pathway activity and may also localize ERK to distinct subcellular locations. Here we present methods largely based on the use of high content microscopy to both visualize and quantitate the subcellular distribution of activated (p-ERK) and total ERK in populations of mouse embryonic fibroblasts derived from mice lacking DUSP5, a nuclear ERK-specific MKP. Such methods in combination with rescue experiments using adenoviral vectors encoding wild-type and mutant forms of DUSP5 have allowed us to visualize specific defects in ERK regulation in these cells thus confirming the role of this phosphatase as both a nuclear regulator of ERK activity and localization. PMID:27514808

  11. Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts.

    PubMed

    Irani, K; Xia, Y; Zweier, J L; Sollott, S J; Der, C J; Fearon, E R; Sundaresan, M; Finkel, T; Goldschmidt-Clermont, P J

    1997-03-14

    NIH 3T3 fibroblasts stably transformed with a constitutively active isoform of p21(Ras), H-RasV12 (v-H-Ras or EJ-Ras), produced large amounts of the reactive oxygen species superoxide (.O2-). .O2- production was suppressed by the expression of dominant negative isoforms of Ras or Rac1, as well as by treatment with a farnesyltransferase inhibitor or with diphenylene iodonium, a flavoprotein inhibitor. The mitogenic activity of cells expressing H-RasV12 was inhibited by treatment with the chemical antioxidant N-acetyl-L-cysteine. Mitogen-activated protein kinase (MAPK) activity was decreased and c-Jun N-terminal kinase (JNK) was not activated in H-RasV12-transformed cells. Thus, H-RasV12-induced transformation can lead to the production of .O2- through one or more pathways involving a flavoprotein and Rac1. The implication of a reactive oxygen species, probably .O2-, as a mediator of Ras-induced cell cycle progression independent of MAPK and JNK suggests a possible mechanism for the effects of antioxidants against Ras-induced cellular transformation.

  12. p21ras initiates Rac-1 but not phosphatidyl inositol 3 kinase/PKB, mediated signaling pathways in T lymphocytes.

    PubMed

    Genot, E; Reif, K; Beach, S; Kramer, I; Cantrell, D

    1998-10-01

    p21ras is activated by the T cell antigen receptor (TCR) and then co-ordinates important signaling pathways for T lymphocyte activation. Effector pathways for this guanine nucleotide binding protein in T cells are mediated by the serine/threonine kinase Raf-1 and the Ras-related GTPase Rac-1. In fibroblasts, an important effector for the Ras oncogene is Phosphatidylinositol 3-kinase (PtdIns 3-kinase). Activation of this lipid kinase is able to induce critical Rac-1 signaling pathways and can couple p21ras to cell survival mechanisms via the serine/threonine kinase Akt/PKB. The role of PtdIns 3-kinase in Ras signaling in T cells has not been explored. In the present study, we examined the ability of PtdIns 3-kinase to initiate the Rac-1 signaling pathways important for T cell activation. We also examined the possibility that Akt/PKB is regulated by Ras signaling pathways in T lymphocytes. The results show that Ras can initiate a Rac-1 mediated pathway that regulates the transcriptional function of AP-1 complexes. PtdIns 3-kinase signals cannot mimic p21ras and induce the Rac mediated responses of AP-1 transcriptional activation. Moreover, neither TCR or Ras activation of AP-1 is dependent on PtdIns 3-kinase. PKB is activated in response to triggering of the T cell antigen receptor; PtdIns 3-kinase activity is both required and sufficient for this TCR response. In contrast, p21ras signals are unable to induce Akt/PKB activity in T cell nor is Ras function required for Akt/PKB activation in response to the TCR. The present data thus highlight that PtdIns 3-kinase and Akt/PKB are not universal Ras effector molecules. Ras can initiate Rac-1 regulated signaling pathways in the context of T cell antigen receptor function independently of PtdIns 3-kinase activity.

  13. Canonical RTK-Ras-ERK signaling and related alternative pathways

    PubMed Central

    Sundaram, Meera V.

    2013-01-01

    Receptor Tyrosine Kinase (RTK)-Ras-Extracellular signal-regulated kinase (ERK) signaling pathways control many aspects of C. elegans development and behavior. Studies in C. elegans helped elucidate the basic framework of the RTK-Ras-ERK pathway and continue to provide insights into its complex regulation, its biological roles, how it elicits cell-type appropriate responses, and how it interacts with other signaling pathways to do so. C. elegans studies have also revealed biological contexts in which alternative RTK- or Ras-dependent pathways are used instead of the canonical pathway. PMID:23908058

  14. P120-GAP associated with syndecan-2 to function as an active switch signal for Src upon transformation with oncogenic ras

    SciTech Connect

    Huang, J.-W.; Chen, C.-L.; Chuang, N.-N. . E-mail: zonnc@sinica.edu.tw

    2005-04-15

    BALB/3T3 cells transfected with plasmids pcDNA3.1-[S-ras(Q{sub 61}K)] of shrimp Penaeus japonicus were applied to reveal a complex of p120-GAP/syndecan-2 being highly expressed upon transformation. Of interest, most of the p120-GAP/syndecan-2 complex was localized at caveolae, a membrane microdomain enriched with caveolin-1. To confirm the molecular interaction between syndecan-2 and p120-GAP, we further purified p120-GAP protein from mouse brains by using an affinity column of HiTrap-RACK1 and expressed mouse RACK1-encoded fusion protein and mouse syndecan-2-encoded fusion protein in bacteria. We report molecular affinities exist between p120-GAP and RACK1, syndecan-2 and RACK1 as well as p120-GAP and syndecan-2. The selective affinity between p120-GAP and syndecan-2 was found to be sufficient to detach RACK1. The p120-GAP/syndecan-2 complex was demonstrated to keep Src tyrosine kinase in an activated form. On the other hand, the syndecan-2/RACK1 complex was found to have Src in an inactivated form. These data indicate that the p120-GAP/syndecan-2 complex at caveolae could provide a docking site for Src to transmit tyrosine signaling, implying that syndecan-2/p120-GAP functions as a tumor promoter upon transformation with oncogenic ras of shrimp P. japonicus.

  15. Approach for targeting Ras with small molecules that activate SOS-mediated nucleotide exchange.

    PubMed

    Burns, Michael C; Sun, Qi; Daniels, R Nathan; Camper, DeMarco; Kennedy, J Phillip; Phan, Jason; Olejniczak, Edward T; Lee, Taekyu; Waterson, Alex G; Rossanese, Olivia W; Fesik, Stephen W

    2014-03-01

    Aberrant activation of the small GTPase Ras by oncogenic mutation or constitutively active upstream receptor tyrosine kinases results in the deregulation of cellular signals governing growth and survival in ∼30% of all human cancers. However, the discovery of potent inhibitors of Ras has been difficult to achieve. Here, we report the identification of small molecules that bind to a unique pocket on the Ras:Son of Sevenless (SOS):Ras complex, increase the rate of SOS-catalyzed nucleotide exchange in vitro, and modulate Ras signaling pathways in cells. X-ray crystallography of Ras:SOS:Ras in complex with these molecules reveals that the compounds bind in a hydrophobic pocket in the CDC25 domain of SOS adjacent to the Switch II region of Ras. The structure-activity relationships exhibited by these compounds can be rationalized on the basis of multiple X-ray cocrystal structures. Mutational analyses confirmed the functional relevance of this binding site and showed it to be essential for compound activity. These molecules increase Ras-GTP levels and disrupt MAPK and PI3K signaling in cells at low micromolar concentrations. These small molecules represent tools to study the acute activation of Ras and highlight a pocket on SOS that may be exploited to modulate Ras signaling.

  16. Ras-GTP dimers activate the mitogen-activated protein kinase (MAPK) pathway

    SciTech Connect

    Nan, Xiaolin; Tamgüney, Tanja M.; Collisson, Eric A.; Lin, Li -Jung; Pitt, Cameron; Galeas, Jacqueline; Lewis, Sophia; Gray, Joe W.; McCormick, Frank; Chu, Steven

    2015-06-16

    Rat sarcoma (Ras) GTPases regulate cell proliferation and survival through effector pathways including Raf-MAPK, and are the most frequently mutated genes in human cancer. Although it is well established that Ras activity requires binding to both GTP and the membrane, details of how Ras operates on the cell membrane to activate its effectors remain elusive. Efforts to target mutant Ras in human cancers to therapeutic benefit have also been largely unsuccessful. Here we show that Ras-GTP forms dimers to activate MAPK. We used quantitative photoactivated localization microscopy (PALM) to analyze the nanoscale spatial organization of PAmCherry1-tagged KRas 4B (hereafter referred to KRas) on the cell membrane under various signaling conditions. We found that at endogenous expression levels KRas forms dimers, and KRasG12D, a mutant that constitutively binds GTP, activates MAPK. Overexpression of KRas leads to formation of higher order Ras nanoclusters. Conversely, at lower expression levels, KRasG12D is monomeric and activates MAPK only when artificially dimerized. Moreover, dimerization and signaling of KRas are both dependent on an intact CAAX (C, cysteine; A, aliphatic; X, any amino acid) motif that is also known to mediate membrane localization. These results reveal a new, dimerization-dependent signaling mechanism of Ras, and suggest Ras dimers as a potential therapeutic target in mutant Ras-driven tumors.

  17. Ras-GTP dimers activate the Mitogen-Activated Protein Kinase (MAPK) pathway

    PubMed Central

    Nan, Xiaolin; Tamgüney, Tanja M.; Collisson, Eric A.; Lin, Li-Jung; Pitt, Cameron; Galeas, Jacqueline; Lewis, Sophia; Gray, Joe W.; McCormick, Frank; Chu, Steven

    2015-01-01

    Rat sarcoma (Ras) GTPases regulate cell proliferation and survival through effector pathways including Raf-MAPK, and are the most frequently mutated genes in human cancer. Although it is well established that Ras activity requires binding to both GTP and the membrane, details of how Ras operates on the cell membrane to activate its effectors remain elusive. Efforts to target mutant Ras in human cancers to therapeutic benefit have also been largely unsuccessful. Here we show that Ras-GTP forms dimers to activate MAPK. We used quantitative photoactivated localization microscopy (PALM) to analyze the nanoscale spatial organization of PAmCherry1-tagged KRas 4B (hereafter referred to KRas) on the cell membrane under various signaling conditions. We found that at endogenous expression levels KRas forms dimers, and KRasG12D, a mutant that constitutively binds GTP, activates MAPK. Overexpression of KRas leads to formation of higher order Ras nanoclusters. Conversely, at lower expression levels, KRasG12D is monomeric and activates MAPK only when artificially dimerized. Moreover, dimerization and signaling of KRas are both dependent on an intact CAAX (C, cysteine; A, aliphatic; X, any amino acid) motif that is also known to mediate membrane localization. These results reveal a new, dimerization-dependent signaling mechanism of Ras, and suggest Ras dimers as a potential therapeutic target in mutant Ras-driven tumors. PMID:26080442

  18. Ras-GTP dimers activate the mitogen-activated protein kinase (MAPK) pathway

    DOE PAGES

    Nan, Xiaolin; Tamgüney, Tanja M.; Collisson, Eric A.; Lin, Li -Jung; Pitt, Cameron; Galeas, Jacqueline; Lewis, Sophia; Gray, Joe W.; McCormick, Frank; Chu, Steven

    2015-06-16

    Rat sarcoma (Ras) GTPases regulate cell proliferation and survival through effector pathways including Raf-MAPK, and are the most frequently mutated genes in human cancer. Although it is well established that Ras activity requires binding to both GTP and the membrane, details of how Ras operates on the cell membrane to activate its effectors remain elusive. Efforts to target mutant Ras in human cancers to therapeutic benefit have also been largely unsuccessful. Here we show that Ras-GTP forms dimers to activate MAPK. We used quantitative photoactivated localization microscopy (PALM) to analyze the nanoscale spatial organization of PAmCherry1-tagged KRas 4B (hereafter referredmore » to KRas) on the cell membrane under various signaling conditions. We found that at endogenous expression levels KRas forms dimers, and KRasG12D, a mutant that constitutively binds GTP, activates MAPK. Overexpression of KRas leads to formation of higher order Ras nanoclusters. Conversely, at lower expression levels, KRasG12D is monomeric and activates MAPK only when artificially dimerized. Moreover, dimerization and signaling of KRas are both dependent on an intact CAAX (C, cysteine; A, aliphatic; X, any amino acid) motif that is also known to mediate membrane localization. These results reveal a new, dimerization-dependent signaling mechanism of Ras, and suggest Ras dimers as a potential therapeutic target in mutant Ras-driven tumors.« less

  19. Mutant K-RAS Promotes Invasion and Metastasis in Pancreatic Cancer Through GTPase Signaling Pathways

    PubMed Central

    Padavano, Julianna; Henkhaus, Rebecca S; Chen, Hwudaurw; Skovan, Bethany A; Cui, Haiyan; Ignatenko, Natalia A

    2015-01-01

    Pancreatic ductal adenocarcinoma is one of the most aggressive malignancies, characterized by the local invasion into surrounding tissues and early metastasis to distant organs. Oncogenic mutations of the K-RAS gene occur in more than 90% of human pancreatic cancers. The goal of this study was to investigate the functional significance and downstream effectors of mutant K-RAS oncogene in the pancreatic cancer invasion and metastasis. We applied the homologous recombination technique to stably disrupt K-RAS oncogene in the human pancreatic cell line MiaPaCa-2, which carries the mutant K-RASG12C oncogene in both alleles. Using in vitro assays, we found that clones with disrupted mutant K-RAS gene exhibited low RAS activity, reduced growth rates, increased sensitivity to the apoptosis inducing agents, and suppressed motility and invasiveness. In vivo assays showed that clones with decreased RAS activity had reduced tumor formation ability in mouse xenograft model and increased survival rates in the mouse orthotopic pancreatic cancer model. We further examined molecular pathways downstream of mutant K-RAS and identified RhoA GTP activating protein 5, caveolin-1, and RAS-like small GTPase A (RalA) as key effector molecules, which control mutant K-RAS-dependent migration and invasion in MiaPaCa-2 cells. Our study provides rational for targeting RhoA and RalA GTPase signaling pathways for inhibition of pancreatic cancer metastasis. PMID:26512205

  20. A Sos-derived peptidimer blocks the Ras signaling pathway by binding both Grb2 SH3 domains and displays antiproliferative activity.

    PubMed

    Cussac, D; Vidal, M; Leprince, C; Liu, W Q; Cornille, F; Tiraboschi, G; Roques, B P; Garbay, C

    1999-01-01

    With the aim of interrupting the growth factor-stimulated Ras signaling pathway at the level of the Grb2-Sos interaction, a peptidimer, made of two identical proline-rich sequences from Sos linked by a lysine spacer, was designed using structural data from Grb2 and a proline-rich peptide complexed with its SH3 domains. The peptidimer affinity for Grb2 is 40 nM whereas that of the monomer is 16 microM, supporting the dual recognition of both Grb2 SH3 domains by the dimer. At 50 nM, the peptidimer blocks selectively Grb2-Sos complexation in ER 22 (CCL 39 fibroblasts overexpressing epidermal growth factor receptor) cellular extracts. The peptidimer specifically recognizes Grb2 and does not interact with PI3K or Nck, two SH3 domain-containing adaptors. The peptidimer was modified to enter cells by coupling to a fragment of Antennapedia homeodomain. At 10 microM, the conjugate inhibits the Grb2-Sos interaction (100%) and MAP kinase (ERK1 and ERK2) phosphorylation (60%) without modifying cellular growth of ER 22 cells. At the same concentration, the conjugate also inhibits both MAP kinase activation induced by nerve growth factor or epidermal growth factor in PC12 cells, and differentiation triggered by nerve growth factor. Finally, when tested for its antiproliferative activity, the conjugate was an efficient inhibitor of the colony formation of transformed NIH3T3/HER2 cells grown in soft agar, with an IC50 of around 1 microM. Thus, the designed peptidimers appear to be interesting leads to investigate signaling and intracellular processes and for designing selective inhibitors of tumorigenic Ras-dependent processes.

  1. Lipopolysaccharide enhances bradykinin-induced signal transduction via activation of Ras/Raf/MEK/MAPK in canine tracheal smooth muscle cells

    PubMed Central

    Luo, Shue-Fen; Wang, Chuan-Chwan; Chiu, Chi-Tso; Chien, Chin-Sung; Hsiao, Li-Der; Lin, Chien-Huang; Yang, Chuen-Mao

    2000-01-01

    Bacterial lipopolysaccharide (LPS) was found to induce inflammatory responses and to enhance bronchial hyperreactivity to several contractile agonists. However, the implication of LPS in the pathogenesis of bronchial hyperreactivity was not completely understood. Therefore, in this study, we investigated the effect of LPS on mitogen-activated protein kinase (MAPK) activation associated with potentiation of bradykinin (BK)-induced inositol phosphates (IPs) accumulation and Ca2+ mobilization in canine cultured tracheal smooth muscle cells (TSMCs).LPS stimulated phosphorylation of p42/p44 MAPK in a time- and concentration-dependent manner using a Western blot analysis against a specific phosphorylated form of MAPK antibody. Maximal stimulation of the p42 and p44 MAPK isoforms occurred after 7 min-incubation and the maximal effect was achieved with 100 μg ml−1 LPS.Pretreatment of TSMCs with LPS potentiated BK-induced IPs accumulation and Ca2+ mobilization. However, there was no effect on the IPs response induced by endothelin-1, 5-hydroxytryptamine, and carbachol. In addition, pretreatment with PDGF-BB enhanced BK-induced IPs response.These enhancements by LPS and PDGF-BB might be due to an increase in BK B2 receptor density (Bmax) in TSMCs, characterized by competitive inhibition of [3H]-BK binding using B1 and B2 receptor-selective reagents.The enhancing effects of LPS and PDGF-BB were attenuated by PD98059, an inhibitor of MAPK kinase (MEK), suggesting that the effect of LPS may share a common signalling pathway with PDGF-BB in TSMCs.Furthermore, overexpression of dominant negative mutants, H-Ras-15A and Raf-N4, significantly suppressed p42/p44 MAPK activation induced by LPS and PDGF-BB, indicating that Ras and Raf may be required for activation of these kinases.These results suggest that the augmentation of BK-induced responses produced by LPS might be, at least in part, mediated through activation of Ras/Raf/MEK/MAPK pathway in TSMCs. PMID:10952668

  2. K-Ras4B phosphorylation at Ser181 is inhibited by calmodulin and modulates K-Ras activity and function.

    PubMed

    Alvarez-Moya, B; López-Alcalá, C; Drosten, M; Bachs, O; Agell, N

    2010-11-01

    Fine tuning of Ras activity is widely known as a mechanism to induce different cellular responses. Recently, we have shown that calmodulin (CaM) binds to K-Ras and that K-Ras phosphorylation inhibits its interaction with CaM. In this study we report that CaM inhibits K-Ras phosphorylation at Ser181 by protein kinase C (PKC) in vivo, and this is a mechanism to modulate K-Ras activity and signaling. Although CaM inhibition increased the activation of endogenous K-Ras, PKC inhibition decreased its activation status. We demonstrate that K-Ras phosphorylation decreased susceptibility to p120GAP activity. Accordingly, we also observed that non-phosphorylable K-Ras mutant exhibits a less sustained activation profile and do not efficiently activate AKT at low growth factor doses compared with wild-type K-Ras. It is interesting that the physiological responses induced by K-Ras are affected by this phosphorylation; when K-Ras cannot be phosphorylated it exhibits a remarkably decreased ability to stimulate proliferation in non-saturated serum conditions. Finally, we demonstrate that phosphorylation also regulates oncogenic K-Ras functions, as focus formation capacity, mobility and apoptosis resistance upon adriamycin treatment of cells expressing oncogenic K-Ras that cannot be phosphorylated are highly compromised. Moreover, at low serum concentration proliferation and survival is practically inhibited when cells cannot phosphorylate oncogenic K-Ras. In this condition, K-Ras phosphorylation is essential to ensure a proper activation of mitogen-activated protein kinase and PI3K/AKT pathways. In summary, our findings suggest that the interplay between CaM interaction and PKC phosphorylation is essential to regulate non-oncogenic and oncogenic K-Ras activity and functionality.

  3. A requirement for extracellular signal-regulated kinase (ERK) function in the activation of AP-1 by Ha-Ras, phorbol 12-myristate 13-acetate, and serum.

    PubMed Central

    Frost, J A; Geppert, T D; Cobb, M H; Feramisco, J R

    1994-01-01

    The role of ERK-1 and ERK-2 in wild-type (wt) Ha-Ras, phorbol 12-myristate 13-acetate (PMA), and serum-induced AP-1 activity was studied. Microinjection of ERK-specific substrate peptides inhibited the induction of AP-1 activity by all three stimuli, whereas a control peptide had no effect. By using eukaryotic expression constructs encoding wt ERK-1 and kinase-deficient mutants of ERKs 1 and 2, it was found that ERK-1 and ERK-2 activities are required for AP-1 activation stimulated by either wt Ha-Ras, PMA, or serum. Overexpression of ERK-1 augmented wt Ha-Ras stimulation of AP-1, while having no effect upon PMA or serum stimulation. Overexpression of either kinase-deficient ERK-1 or kinase-deficient ERK-2 partially inhibited AP-1 activation by wt Ha-Ras but had no effect on PMA or serum-induced activation. Coexpression of both interfering mutants abolished AP-1 induction by wt Ha-Ras, PMA, or serum. We conclude that ERKs are necessary components in the pathway leading to the activation of AP-1 stimulated by these agents. Images PMID:8170999

  4. Acquisition of contextual discrimination involves the appearance of a RAS-GRF1/p38 mitogen-activated protein (MAP) kinase-mediated signaling pathway that promotes long term potentiation (LTP).

    PubMed

    Jin, Shan-Xue; Arai, Junko; Tian, Xuejun; Kumar-Singh, Rajendra; Feig, Larry A

    2013-07-26

    RAS-GRF1 is a guanine nucleotide exchange factor with the ability to activate RAS and RAC GTPases in response to elevated calcium levels. We previously showed that beginning at 1 month of age, RAS-GRF1 mediates NMDA-type glutamate receptor (NMDAR)-induction of long term depression in the CA1 region of the hippocampus of mice. Here we show that beginning at 2 months of age, when mice first acquire the ability to discriminate between closely related contexts, RAS-GRF1 begins to contribute to the induction of long term potentiation (LTP) in the CA1 hippocampus by mediating the action of calcium-permeable, AMPA-type glutamate receptors (CP-AMPARs). Surprisingly, LTP induction by CP-AMPARs through RAS-GRF1 occurs via activation of p38 MAP kinase rather than ERK MAP kinase, which has more frequently been linked to LTP. Moreover, contextual discrimination is blocked by knockdown of Ras-Grf1 expression specifically in the CA1 hippocampus, infusion of a p38 MAP kinase inhibitor into the CA1 hippocampus, or the injection of an inhibitor of CP-AMPARs. These findings implicate the CA1 hippocampus in the developmentally dependent capacity to distinguish closely related contexts through the appearance of a novel LTP-supporting signaling pathway.

  5. The PDZ Protein Canoe/AF-6 Links Ras-MAPK, Notch and Wingless/Wnt Signaling Pathways by Directly Interacting with Ras, Notch and Dishevelled

    PubMed Central

    Carmena, Ana; Speicher, Stephan; Baylies, Mary

    2006-01-01

    Over the past few years, it has become increasingly apparent that signal transduction pathways are not merely linear cascades; they are organized into complex signaling networks that require high levels of regulation to generate precise and unique cell responses. However, the underlying regulatory mechanisms by which signaling pathways cross-communicate remain poorly understood. Here we show that the Ras-binding protein Canoe (Cno)/AF-6, a PDZ protein normally associated with cellular junctions, is a key modulator of Wingless (Wg)/Wnt, Ras-Mitogen Activated Protein Kinase (MAPK) and Notch (N) signaling pathways cross-communication. Our data show a repressive effect of Cno/AF-6 on these three signaling pathways through physical interactions with Ras, N and the cytoplasmic protein Dishevelled (Dsh), a key Wg effector. We propose a model in which Cno, through those interactions, actively coordinates, at the membrane level, Ras-MAPK, N and Wg signaling pathways during progenitor specification. PMID:17183697

  6. The Tumor Suppressor DiRas3 Forms a Complex with H-Ras and C-RAF Proteins and Regulates Localization, Dimerization, and Kinase Activity of C-RAF*

    PubMed Central

    Baljuls, Angela; Beck, Matthias; Oenel, Ayla; Robubi, Armin; Kroschewski, Ruth; Hekman, Mirko; Rudel, Thomas; Rapp, Ulf R.

    2012-01-01

    The maternally imprinted Ras-related tumor suppressor gene DiRas3 is lost or down-regulated in more than 60% of ovarian and breast cancers. The anti-tumorigenic effect of DiRas3 is achieved through several mechanisms, including inhibition of cell proliferation, motility, and invasion, as well as induction of apoptosis and autophagy. Re-expression of DiRas3 in cancer cells interferes with the signaling through Ras/MAPK and PI3K. Despite intensive research, the mode of interference of DiRas3 with the Ras/RAF/MEK/ERK signal transduction is still a matter of speculation. In this study, we show that DiRas3 associates with the H-Ras oncogene and that activation of H-Ras enforces this interaction. Furthermore, while associated with DiRas3, H-Ras is able to bind to its effector protein C-RAF. The resulting multimeric complex consisting of DiRas3, C-RAF, and active H-Ras is more stable than the two protein complexes H-Ras·C-RAF or H-Ras·DiRas3, respectively. The consequence of this complex formation is a DiRas3-mediated recruitment and anchorage of C-RAF to components of the membrane skeleton, suppression of C-RAF/B-RAF heterodimerization, and inhibition of C-RAF kinase activity. PMID:22605333

  7. Up-regulation of IGF-1R by mutant RAS in leukemia and potentiation of RAS signaling inhibitors by small molecule inhibition of IGF-1R

    PubMed Central

    Weisberg, Ellen; Nonami, Atsushi; Chen, Zhao; Nelson, Erik; Chen, Yongfei; Liu, Feiyang; Cho, Haeyeon; Zhang, Jianming; Sattler, Martin; Mitsiades, Constantine; Wong, Kwok-Kin; Liu, Qingsong; Gray, Nathanael; Griffin, James D.

    2014-01-01

    Purpose Activating mutations in the RAS oncogene occur frequently in human leukemias. Direct targeting of RAS has proven to be challenging, although targeting of downstream RAS mediators, such as MEK, is currently being tested clinically. Given the complexity of RAS signaling, it is likely that combinations of targeted agents will be more effective than single agents. Experimental Design A chemical screen using RAS-dependent leukemia cells was developed to identify compounds with unanticipated activity in the presence of a MEK inhibitor, and led to identification of inhibitors of IGF-1R. Results were validated using cell-based proliferation assays and apoptosis, cell cycle, and gene knockdown assays, immunoprecipitation and immunoblotting, and a non-invasive in vivo bioluminescence model of acute myeloid leukemia (AML). Results Mechanistically, IGF-1R protein expression/activity was substantially increased in mutant RAS-expressing cells, and suppression of RAS led to decreases in IGF-1R. Synergy between MEK and IGF-1R inhibitors correlated with induction of apoptosis, inhibition of cell cycle progression, and decreased phospho-S6 and phospho-4E-BP1. In vivo, NSG mice tail vein-injected with OCI-AML3-luc+ cells showed significantly lower tumor burden following one week of daily oral administration of 50 mg/kg NVP-AEW541 (IGF-1R inhibitor) combined with 25 mg/kg AZD6244 (MEK inhibitor), as compared to mice treated with either agent alone. Drug combination effects observed in cell-based assays were generalized to additional mutant RAS-positive neoplasms. Conclusions The finding that downstream inhibitors of RAS signaling and IGF-1R inhibitors have synergistic activity warrants further clinical investigation of IGF-1R and RAS signaling inhibition as a potential treatment strategy for RAS-driven malignancies. PMID:25186968

  8. Notch-1 expression levels in 3T3-L1 cells influence ras signaling and transformation by oncogenic ras.

    PubMed

    Ruiz-Hidalgo, M J; Garcés, C; Laborda, J

    1999-04-01

    Notch proteins participate in interactions between several cell types involved on the specification of numerous cell fates during development. We previously showed that enforced downregulation of Notch-1 expression prevented adipogenesis of 3T3-L1 cells. Since adipogenesis of 3T3-L1 cells can be induced by oncogenic ras, we studied whether this was also the case in 3T3-L1 cells with decreased levels of Notch-1 expression. We found that oncogenic ras induces transformation and not differentiation of 3T3-L1 cells with diminished levels of Notch-1. This result suggests that Notch-1 is implicated in the interpretation of signals leading to activation of p21 Ras.

  9. Membrane potential modulates plasma membrane phospholipid dynamics and K-Ras signaling

    PubMed Central

    Zhou, Yong; Wong, Ching-On; Cho, Kwang-jin; van der Hoeven, Dharini; Liang, Hong; Thakur, Dhananiay P.; Luo, Jialie; Babic, Milos; Zinsmaier, Konrad E.; Zhu, Michael X.; Hu, Hongzhen; Venkatachalam, Kartik; Hancock, John F.

    2015-01-01

    Plasma membrane depolarization can trigger cell proliferation, but how membrane potential influences mitogenic signaling is uncertain. Here, we show that plasma membrane depolarization induces nanoscale reorganization of phosphatidylserine and phosphatidylinositol 4,5-bisphosphate but not other anionic phospholipids. K-Ras, which is targeted to the plasma membrane by electrostatic interactions with phosphatidylserine, in turn undergoes enhanced nanoclustering. Depolarization-induced changes in phosphatidylserine and K-Ras plasma membrane organization occur in fibroblasts, excitable neuroblastoma cells, and Drosophila neurons in vivo and robustly amplify K-Ras–dependent mitogen-activated protein kinase (MAPK) signaling. Conversely, plasma membrane repolarization disrupts K-Ras nanoclustering and inhibits MAPK signaling. By responding to voltage-induced changes in phosphatidylserine spatiotemporal dynamics, K-Ras nanoclusters set up the plasma membrane as a biological field-effect transistor, allowing membrane potential to control the gain in mitogenic signaling circuits. PMID:26293964

  10. Study Illuminates K-Ras4B Activation, Which May Help Predict Drug Resistance | Poster

    Cancer.gov

    Until recently, researchers studying RAS, a family of proteins involved in transmitting signals within cells, believed that the exchange of guanosine 5’-diphosphate (GDP) by guanosine triphosphate (GTP) was sufficient to activate the protein. Once activated, RAS can cause unintended and overactive signaling in cells, which can lead to cell division and, ultimately, cancer.

  11. The Ras-Erk-ETS-Signaling Pathway Is a Drug Target for Longevity

    PubMed Central

    Slack, Cathy; Alic, Nazif; Foley, Andrea; Cabecinha, Melissa; Hoddinott, Matthew P.; Partridge, Linda

    2015-01-01

    Summary Identifying the molecular mechanisms that underlie aging and their pharmacological manipulation are key aims for improving lifelong human health. Here, we identify a critical role for Ras-Erk-ETS signaling in aging in Drosophila. We show that inhibition of Ras is sufficient for lifespan extension downstream of reduced insulin/IGF-1 (IIS) signaling. Moreover, direct reduction of Ras or Erk activity leads to increased lifespan. We identify the E-twenty six (ETS) transcriptional repressor, Anterior open (Aop), as central to lifespan extension caused by reduced IIS or Ras attenuation. Importantly, we demonstrate that adult-onset administration of the drug trametinib, a highly specific inhibitor of Ras-Erk-ETS signaling, can extend lifespan. This discovery of the Ras-Erk-ETS pathway as a pharmacological target for animal aging, together with the high degree of evolutionary conservation of the pathway, suggests that inhibition of Ras-Erk-ETS signaling may provide an effective target for anti-aging interventions in mammals. Video Abstract PMID:26119340

  12. The Ras-Erk-ETS-Signaling Pathway Is a Drug Target for Longevity.

    PubMed

    Slack, Cathy; Alic, Nazif; Foley, Andrea; Cabecinha, Melissa; Hoddinott, Matthew P; Partridge, Linda

    2015-07-01

    Identifying the molecular mechanisms that underlie aging and their pharmacological manipulation are key aims for improving lifelong human health. Here, we identify a critical role for Ras-Erk-ETS signaling in aging in Drosophila. We show that inhibition of Ras is sufficient for lifespan extension downstream of reduced insulin/IGF-1 (IIS) signaling. Moreover, direct reduction of Ras or Erk activity leads to increased lifespan. We identify the E-twenty six (ETS) transcriptional repressor, Anterior open (Aop), as central to lifespan extension caused by reduced IIS or Ras attenuation. Importantly, we demonstrate that adult-onset administration of the drug trametinib, a highly specific inhibitor of Ras-Erk-ETS signaling, can extend lifespan. This discovery of the Ras-Erk-ETS pathway as a pharmacological target for animal aging, together with the high degree of evolutionary conservation of the pathway, suggests that inhibition of Ras-Erk-ETS signaling may provide an effective target for anti-aging interventions in mammals.

  13. PGA1-induced apoptosis involves specific activation of H-Ras and N-Ras in cellular endomembranes.

    PubMed

    Anta, B; Pérez-Rodríguez, A; Castro, J; García-Domínguez, C A; Ibiza, S; Martínez, N; Durá, L M; Hernández, S; Gragera, T; Peña-Jiménez, D; Yunta, M; Zarich, N; Crespo, P; Serrador, J M; Santos, E; Muñoz, A; Oliva, J L; Rojas-Cabañeros, J M

    2016-01-01

    The cyclopentenone prostaglandin A1 (PGA1) is an inducer of cell death in cancer cells. However, the mechanism that initiates this cytotoxic response remains elusive. Here we report that PGA1 triggers apoptosis by a process that entails the specific activation of H- and N-Ras isoforms, leading to caspase activation. Cells without H- and N-Ras did not undergo apoptosis upon PGA1 treatment; in these cells, the cellular demise was rescued by overexpression of either H-Ras or N-Ras. Consistently, the mutant H-Ras-C118S, defective for binding PGA1, did not produce cell death. Molecular analysis revealed a key role for the RAF-MEK-ERK signaling pathway in the apoptotic process through the induction of calpain activity and caspase-12 cleavage. We propose that PGA1 evokes a specific physiological cell death program, through H- and N-Ras, but not K-Ras, activation at endomembranes. Our results highlight a novel mechanism that may be of potential interest for tumor treatment. PMID:27468687

  14. PGA1-induced apoptosis involves specific activation of H-Ras and N-Ras in cellular endomembranes

    PubMed Central

    Anta, B; Pérez-Rodríguez, A; Castro, J; García- Domínguez, C A; Ibiza, S; Martínez, N; Durá, L M; Hernández, S; Gragera, T; Peña-Jiménez, D; Yunta, M; Zarich, N; Crespo, P; Serrador, J M; Santos, E; Muñoz, A; Oliva, J L; Rojas-Cabañeros, J M

    2016-01-01

    The cyclopentenone prostaglandin A1 (PGA1) is an inducer of cell death in cancer cells. However, the mechanism that initiates this cytotoxic response remains elusive. Here we report that PGA1 triggers apoptosis by a process that entails the specific activation of H- and N-Ras isoforms, leading to caspase activation. Cells without H- and N-Ras did not undergo apoptosis upon PGA1 treatment; in these cells, the cellular demise was rescued by overexpression of either H-Ras or N-Ras. Consistently, the mutant H-Ras-C118S, defective for binding PGA1, did not produce cell death. Molecular analysis revealed a key role for the RAF-MEK-ERK signaling pathway in the apoptotic process through the induction of calpain activity and caspase-12 cleavage. We propose that PGA1 evokes a specific physiological cell death program, through H- and N-Ras, but not K-Ras, activation at endomembranes. Our results highlight a novel mechanism that may be of potential interest for tumor treatment. PMID:27468687

  15. PGA1-induced apoptosis involves specific activation of H-Ras and N-Ras in cellular endomembranes.

    PubMed

    Anta, B; Pérez-Rodríguez, A; Castro, J; García-Domínguez, C A; Ibiza, S; Martínez, N; Durá, L M; Hernández, S; Gragera, T; Peña-Jiménez, D; Yunta, M; Zarich, N; Crespo, P; Serrador, J M; Santos, E; Muñoz, A; Oliva, J L; Rojas-Cabañeros, J M

    2016-07-28

    The cyclopentenone prostaglandin A1 (PGA1) is an inducer of cell death in cancer cells. However, the mechanism that initiates this cytotoxic response remains elusive. Here we report that PGA1 triggers apoptosis by a process that entails the specific activation of H- and N-Ras isoforms, leading to caspase activation. Cells without H- and N-Ras did not undergo apoptosis upon PGA1 treatment; in these cells, the cellular demise was rescued by overexpression of either H-Ras or N-Ras. Consistently, the mutant H-Ras-C118S, defective for binding PGA1, did not produce cell death. Molecular analysis revealed a key role for the RAF-MEK-ERK signaling pathway in the apoptotic process through the induction of calpain activity and caspase-12 cleavage. We propose that PGA1 evokes a specific physiological cell death program, through H- and N-Ras, but not K-Ras, activation at endomembranes. Our results highlight a novel mechanism that may be of potential interest for tumor treatment.

  16. Association between GRB2/Sos and insulin receptor substrate 1 is not sufficient for activation of extracellular signal-regulated kinases by interleukin-4: implications for Ras activation by insulin.

    PubMed

    Pruett, W; Yuan, Y; Rose, E; Batzer, A G; Harada, N; Skolnik, E Y

    1995-03-01

    Insulin receptor substrate 1 (IRS-1) mediates the activation of a variety of signaling pathways by the insulin and insulin-like growth factor 1 receptors by serving as a docking protein for signaling molecules with SH2 domains. We and others have shown that in response to insulin stimulation IRS-1 binds GRB2/Sos and have proposed that this interaction is important in mediating Ras activation by the insulin receptor. Recently, it has been shown that the interleukin (IL)-4 receptor also phosphorylates IRS-1 and an IRS-1-related molecule, 4PS. Unlike insulin, however, IL-4 fails to activate Ras, extracellular signal-regulated kinases (ERKs), or mitogen-activated protein kinases. We have reconstituted the IL-4 receptor into an insulin-responsive L6 myoblast cell line and have shown that IRS-1 is tyrosine phosphorylated to similar degrees in response to insulin and IL-4 stimulation in this cell line. In agreement with previous findings, IL-4 failed to activate the ERKs in this cell line or to stimulate DNA synthesis, whereas the same responses were activated by insulin. Surprisingly, IL-4's failure to activate ERKs was not due to a failure to stimulate the association of tyrosine-phosphorylated IRS-1 with GRB2/Sos; the amounts of GRB2/Sos associated with IRS-1 were similar in insulin- and IL-4-stimulated cells. Moreover, the amounts of phosphatidylinositol 3-kinase activity associated with IRS-1 were similar in insulin- and IL-4-stimulated cells. In contrast to insulin, however, IL-4 failed to induce tyrosine phosphorylation of Shc or association of Shc with GRB2. Thus, ERK activation correlates with Shc tyrosine phosphorylation and formation of an Shc/GRB2 complex. Thus, ERK activation correlates with Shc tyrosine phosphorylation and formation of an Shc/GRB2 complex. Previous studies have indicated that activation of ERks in this cell line is dependent upon Ras since a dominant-negative Ras (Asn-17) blocks ERK activation by insulin. Our findings, taken in the context

  17. Oncogenic Ras activation of Raf/mitogen-activated protein kinase-independent pathways is sufficient to cause tumorigenic transformation.

    PubMed Central

    Khosravi-Far, R; White, M A; Westwick, J K; Solski, P A; Chrzanowska-Wodnicka, M; Van Aelst, L; Wigler, M H; Der, C J

    1996-01-01

    Substantial evidence supports a critical role for the activation of the Raf-1/MEK/mitogen-activated protein kinase pathway in oncogenic Ras-mediated transformation. For example, dominant negative mutants of Raf-1, MEK, and mitogen-activated protein kinase all inhibit Ras transformation. Furthermore, the observation that plasma membrane-localized Raf-1 exhibits the same transforming potency as oncogenic Ras suggests that Raf-1 activation alone is sufficient to mediate full Ras transforming activity. However, the recent identification of other candidate Ras effectors (e.g., RalGDS and phosphatidylinositol-3 kinase) suggests that activation of other downstream effector-mediated signaling pathways may also mediate Ras transforming activity. In support of this, two H-Ras effector domain mutants, H-Ras(12V, 37G) and H-Ras(12V, 40C), which are defective for Raf binding and activation, induced potent tumorigenic transformation of some strains of NIH 3T3 fibroblasts. These Raf-binding defective mutants of H-Ras induced a transformed morphology that was indistinguishable from that induced by activated members of Rho family proteins. Furthermore, the transforming activities of both of these mutants were synergistically enhanced by activated Raf-1 and inhibited by the dominant negative RhoA(19N) mutant, indicating that Ras may cause transformation that occurs via coordinate activation of Raf-dependent and -independent pathways that involves Rho family proteins. Finally, cotransfection of H-Ras(12V, 37G) and H-Ras(12V, 40C) resulted in synergistic cooperation of their focus-forming activities, indicating that Ras activates at least two Raf-independent, Ras effector-mediated signaling events. PMID:8668210

  18. Disorders of dysregulated signal traffic through the RAS-MAPK pathway: phenotypic spectrum and molecular mechanisms

    PubMed Central

    Tartaglia, Marco; Gelb, Bruce D.

    2010-01-01

    RAS GTPases control a major signaling network implicated in several cellular functions, including cell fate determination, proliferation, survival, differentiation, migration, and senescence. Within this network, signal flow through the RAF-MEK-ERK pathway, the first identified mitogen-associated protein kinase (MAPK) cascade, mediates early and late developmental processes controlling morphology determination, organogenesis, synaptic plasticity and growth. Signaling through the RAS-MAPK cascade is tightly controlled, and its enhanced activation represents a well-known event in oncogenesis. Unexpectedly, in the past few years, inherited dysregulation of this pathway has been recognized as the cause underlying a group of clinically related disorders sharing facial dysmorphism, cardiac defects, reduced postnatal growth, ectodermal anomalies, variable cognitive deficits and susceptibility to certain malignancies as major features. These disorders are caused by heterozygosity for mutations in genes encoding RAS proteins, regulators of RAS function, modulators of RAS interaction with effectors or downstream signal transducers. Here, we provide an overview of the phenotypic spectrum associated with germline mutations perturbing RAS-MAPK signaling, the unpredicted molecular mechanisms converging towards the dysregulation of this signaling cascade, and major genotype-phenotype correlations. PMID:20958325

  19. Ras pathway signaling accelerates programmed cell death in the pathogenic fungus Candida albicans.

    PubMed

    Phillips, Andrew J; Crowe, Jonathan D; Ramsdale, Mark

    2006-01-17

    A better understanding of the molecular basis of programmed cell death (PCD) in fungi could provide information that is useful in the design of antifungal drugs that combat life-threatening fungal infections. Harsh environmental stresses, such as acetic acid or hydrogen peroxide, have been shown to induce PCD in the pathogenic fungus Candida albicans. In this study, we show that dying cells progress from an apoptotic state to a secondary necrotic state and that the rate at which this change occurs is proportional to the intensity of the stimulus. Also, we found that the temporal response is modulated by Ras-cAMP-PKA signals. Mutations that block Ras-cAMP-PKA signaling (ras1Delta, cdc35Delta, tpk1Delta, and tpk2Delta) suppress or delay the apoptotic response, whereas mutations that stimulate signaling (RAS1(val13) and pde2Delta) accelerate the rate of entry of cells into apoptosis. Pharmacological stimulation or inhibition of Ras signaling reinforces these findings. Transient increases in endogenous cAMP occur under conditions that stimulate apoptosis but not growth arrest. Death-specific changes in the abundance of different isoforms of the PKA regulatory subunit, Bcy1p, are also observed. Activation of Ras signals may regulate PCD of C. albicans, either by inhibiting antiapoptotic functions (such as stress responses) or by activating proapoptotic functions. PMID:16407097

  20. Novel triterpenoids isolated from raisins exert potent antiproliferative activities by targeting mitochondrial and Ras/Raf/ERK signaling in human breast cancer cells.

    PubMed

    Liu, Juan; Wang, Yihai; Liu, Rui Hai; He, Xiangjiu

    2016-07-13

    Raisins are produced in many regions of the world and may be eaten raw or used in cooking, baking and brewing. Bioactivity-guided fractionation of raisins was used to determine the chemical identity of bioactive constituents. Seven triterpenoids, including three novel triterpenoids, were isolated and identified. The novel triterpenoids were elucidated to be 3β,13β-dihydroxy-12,13-dihydrooleanolic acid (1), 3β,12β,13β-trihydroxy-12,13-dihydrooleanolic acid (2, TOA), and 3β,13β-dihydroxy-12,13-dihydroursolic acid (7), respectively. TOA showed the highest antiproliferative activity against MCF-7/DOX cells, with an EC50 value of 3.60 ± 0.55 μM. Compounds 1, 3 and 7 also exhibited potent antiproliferative activity against MCF-7/DOX cells, with an EC50 value of 7.10 ± 0.65, 10.22 ± 0.90 and 8.91 ± 1.12 μM. Compounds 1 and 2 also exhibited potent antioxidant activities. Moreover, the detailed cytotoxic mechanisms of TOA were investigated by targeting the mitochondrial and protein tyrosine kinase signaling (Ras/Raf/ERK). The results strongly demonstrated that the novel triterpenoids isolated from raisins could be promising candidates for therapy of breast cancer. PMID:27359376

  1. Activation of intracellular kinases in Xenopus oocytes by p21ras and phospholipases: a comparative study.

    PubMed

    Carnero, A; Lacal, J C

    1995-02-01

    Signal transduction induced by generations of second messengers from membrane phospholipids is a major regulatory mechanism in the control of cell proliferation. Indeed, oncogenic p21ras alters the intracellular levels of phospholipid metabolites in both mammalian cells and Xenopus oocytes. However, it is still controversial whether this alteration it is biologically significant. We have analyzed the ras-induced signal transduction pathway in Xenopus oocytes and have correlated its mechanism of activation with that of the three most relevant phospholipases (PLs). After microinjection, ras-p21 induces a rapid PLD activation followed by a late PLA2 activation. By contrast, phosphatidylcholine-specific PLC was not activated under similar conditions. When each of these PLs was studied for its ability to activate intracellular signalling kinases, all of them were found to activate maturation-promoting factor efficiently. However, only PLD was able to activate MAP kinase and S6 kinase II, a similar pattern to that induced by p21ras proteins. Thus, the comparison of activated enzymes after microinjection of p21ras or PLs indicated that only PLD microinjection mimetized p21ras signalling. Finally, inhibition of the endogenous PLD activity by neomycin substantially reduced the biological activity of p21ras. All these results suggest that PLD activation may constitute a relevant step in ras-induced germinal vesicle breakdown in Xenopus oocytes.

  2. Activated Ki-Ras complements erythropoietin signaling in CTLL-2 cells, inducing tyrosine phosphorylation of a 160-kDa protein.

    PubMed Central

    Yamamura, Y; Noda, M; Ikawa, Y

    1994-01-01

    We have previously shown that expression of erythropoietin (EPO) receptor (EPOR) alone failed to confer EPO responsiveness on the interleukin 2-dependent T-cell line CTLL-2, whereas the introduction of the EPOR into interleukin 3-dependent pro-B-cell lines, such as BAF-B03, allowed the cells to proliferate in response to EPO. Here, we report that additional expression of v-Ki-Ras conferred EPO-dependent growth on CTLL-2 cells expressing the EPOR, with additional formation of a high-affinity EPOR. To investigate possible mechanisms of EPOR downstream signaling induced by v-Ki-Ras expression in these CTLL-2-derived cells, we carried out anti-phosphotyrosine immunoblot analysis of the EPOR complex immunoprecipitated with anti-EPOR antibody from lysates of cells with and without cytokine stimulation, revealing two 160-kDa and 130-kDa phosphotyrosyl proteins. An anti-JAK2 antibody did not react with these proteins, suggesting that they may represent cellular components involved in an EPO-EPOR signaling pathway induced by v-Ki-Ras. Similar phosphotyrosyl proteins were present among Friend erythroleukemia cell lines, in which the Friend virus gp55/EPOR complex on the cell surface constitutively sends signals for cell growth. Images PMID:7522324

  3. Degradation of Activated K-Ras Orthologue via K-Ras-specific Lysine Residues Is Required for Cytokinesis*

    PubMed Central

    Sumita, Kazutaka; Yoshino, Hirofumi; Sasaki, Mika; Majd, Nazanin; Kahoud, Emily Rose; Takahashi, Hidenori; Takeuchi, Koh; Kuroda, Taruho; Lee, Susan; Charest, Pascale G.; Takeda, Kosuke; Asara, John M.; Firtel, Richard A.; Anastasiou, Dimitrios; Sasaki, Atsuo T.

    2014-01-01

    Mammalian cells encode three closely related Ras proteins, H-Ras, N-Ras, and K-Ras. Oncogenic K-Ras mutations frequently occur in human cancers, which lead to dysregulated cell proliferation and genomic instability. However, mechanistic role of the Ras isoform regulation have remained largely unknown. Furthermore, the dynamics and function of negative regulation of GTP-loaded K-Ras have not been fully investigated. Here, we demonstrate RasG, the Dictyostelium orthologue of K-Ras, is targeted for degradation by polyubiquitination. Both ubiquitination and degradation of RasG were strictly associated with RasG activity. High resolution tandem mass spectrometry (LC-MS/MS) analysis indicated that RasG ubiquitination occurs at C-terminal lysines equivalent to lysines found in human K-Ras but not in H-Ras and N-Ras homologues. Substitution of these lysine residues with arginines (4KR-RasG) diminished RasG ubiquitination and increased RasG protein stability. Cells expressing 4KR-RasG failed to undergo proper cytokinesis and resulted in multinucleated cells. Ectopically expressed human K-Ras undergoes polyubiquitin-mediated degradation in Dictyostelium, whereas human H-Ras and a Dictyostelium H-Ras homologue (RasC) are refractory to ubiquitination. Our results indicate the existence of GTP-loaded K-Ras orthologue-specific degradation system in Dictyostelium, and further identification of the responsible E3-ligase may provide a novel therapeutic approach against K-Ras-mutated cancers. PMID:24338482

  4. An Active RFID Accountability System (RAS) for Constrained Wireless Environments

    SciTech Connect

    Barker, Alan M; Hanson, Gregory R; Sexton, Angela Kay; Jones Jr, J P; Freer, Eva B; Sjoreen, Andrea L

    2011-01-01

    A team from Oak Ridge National Laboratory (ORNL) has developed an RFID Accountability System (RAS) that allows items with active RFID tags to be tracked in environments where tags may not be able to transmit their location continuously. The system uses activators that transmit a short range signal. Active RFID tags are in a sleep state until they encounter an activator. Then they transmit a signal that is picked up by the antennas installed throughout the building. This paper presents the theory of operation, application areas, lessons learned, and key features developed over the course of seven years of development and use.

  5. Contrasting signaling pathways of alpha1A- and alpha1B-adrenergic receptor subtype activation of phosphatidylinositol 3-kinase and Ras in transfected NIH3T3 cells.

    PubMed

    Hu, Z W; Shi, X Y; Lin, R Z; Hoffman, B B

    1999-01-01

    Activation of protein kinases is an important intermediate step in signaling pathways of many G protein-coupled receptors including alpha1-adrenergic receptors. The present study was designed to investigate the capacity of the three cloned subtypes of human alpha1-receptors, namely, alpha1A, alpha1B and alpha1D to activate phosphatidylinositol 3-kinase (PI 3-kinase) and p21ras in transfected NIH3T3 cells. Norepinephrine activated PI 3-kinase in cells expressing human alpha1A and alpha1B via pertussis toxin-insensitive G proteins; alpha1D-receptors did not detectably activate this kinase. Transient transfection of NIH 3T3 cells with the alpha-subunit of the G protein transducin (alpha(t)) a scavenger of betagamma-subunits released from activated G proteins, inhibited alpha1B-receptor but not alpha1A-receptor-stimulated PI 3-kinase activity. Stimulation of both alpha1A- and alpha1B-receptors activated p21ras and stimulated guanine nucleotide exchange on Ras protein. Overexpression of a dominant negative mutant of p21ras attenuated alpha1B-receptor but not alpha1A-receptor activation of PI 3-kinase. Overexpression of a dominant negative mutant of PI 3-kinase attenuated alpha1A- but not alpha1B-receptor-stimulated mitogen-activated protein kinase activity. These results demonstrate the capacity for heterologous signaling of the alpha1-adrenergic receptor subtypes in promoting cellular responses in NIH3T3 cells.

  6. Interactions between Ras1, dMyc, and dPI3K signaling in the developing Drosophila wing

    PubMed Central

    Prober, David A.; Edgar, Bruce A.

    2002-01-01

    The Ras GTPase links extracellular signals to intracellular mechanisms that control cell growth, the cell cycle, and cell identity. An activated form of Drosophila Ras (RasV12) promotes these processes in the developing wing, but the effector pathways involved are unclear. Here, we present evidence indicating that RasV12 promotes cell growth and G1/S progression by increasing dMyc protein levels and activating dPI3K signaling, and that it does so via separate effector pathways. We also show that endogenous Ras is required to maintain normal levels of dMyc, but not dPI3K signaling during wing development. Finally, we show that induction of dMyc and regulation of cell identity are separable effects of Raf/MAPK signaling. These results suggest that Ras may only affect PI3K signaling when mutationally activated, such as in RasV12-transformed cells, and provide a basis for understanding the synergy between Ras and other growth-promoting oncogenes in cancer. PMID:12208851

  7. Nitric oxide mediates N-methyl-D-aspartate receptor-induced activation of p21ras.

    PubMed

    Yun, H Y; Gonzalez-Zulueta, M; Dawson, V L; Dawson, T M

    1998-05-12

    N-methyl-D-aspartate (NMDA) glutamate receptor-mediated increases in intracellular calcium are thought to play a critical role in synaptic plasticity. The mechanisms by which changes in cytoplasmic calcium transmit the glutamate signal to the nucleus, which is ultimately important for long-lasting neuronal responses, are poorly understood. We show that NMDA receptor stimulation leads to activation of p21(ras) (Ras) through generation of nitric oxide (NO) via neuronal NO synthase. The competitive NO synthase inhibitor, L-nitroarginine methyl ester, prevents Ras activation elicited by NMDA and this effect is competitively reversed by the NO synthase substrate, L-arginine. NMDA receptor stimulation fails to activate Ras in neuronal cultures from mice lacking neuronal NO synthase. NMDA-induced Ras activation occurs through a cGMP-independent pathway as 1H-[1,2,4]oxadiazolo[4,3-alpha]quinoxalin-1-one (ODQ), a potent and selective inhibitor of guanylyl cyclase, has no effect on NMDA receptor-induced activation of Ras, and the cell-permeable cGMP analog, 8Br-cGMP, does not activate Ras. Furthermore, NO directly activates immunoprecipitated Ras from neurons. NMDA also elicits tyrosine phosphorylation of extracellular signal-regulated kinases, a downstream effector pathway of Ras, through a NO/non-cGMP dependent mechanism, thus supporting the physiologic relevance of endogenous NO regulation of Ras. These results suggest that Ras is a physiologic target of endogenously produced NO and indicates a signaling pathway for NMDA receptor activation that may be important for long-lasting neuronal responses.

  8. RAS - Screens & Assays

    Cancer.gov

    A primary goal of the RAS Initiative is to develop assays for RAS activity, localization, and signaling and adapt those assays so they can be used for finding new drug candidates. Explore the work leading to highly validated screening protocols.

  9. EGFR phosphorylates FAM129B to promote Ras activation

    PubMed Central

    Ji, Haitao; Lee, Jong-Ho; Wang, Yugang; Pang, Yilin; Zhang, Tao; Xia, Yan; Zhong, Lianjin; Lyu, Jianxin; Lu, Zhimin

    2016-01-01

    Ras GTPase-activating proteins (GAPs) are important regulators for Ras activation, which is instrumental in tumor development. However, the mechanism underlying this regulation remains elusive. We demonstrate here that activated EGFR phosphorylates the Y593 residue of the protein known as family with sequence similarity 129, member B (FAM129B), which is overexpressed in many types of human cancer. FAM129B phosphorylation increased the interaction between FAM129B and Ras, resulting in reduced binding of p120-RasGAP to Ras. FAM129B phosphorylation promoted Ras activation, increasing ERK1/2- and PKM2-dependent β-catenin transactivation and leading to the enhanced glycolytic gene expression and the Warburg effect; promoting tumor cell proliferation and invasion; and supporting brain tumorigenesis. Our studies unearthed a novel and important mechanism underlying EGFR-mediated Ras activation in tumor development. PMID:26721396

  10. H-Ras Increases Urokinase Expression and Cell Invasion in Genetically Modified Human Astrocytes Through Ras/Raf/MEK Signaling Pathway

    PubMed Central

    ZHAO, YUNGE; XIAO, AIZHEN; DIPIERRO, CHARLES G.; ABDEL-FATTAH, RANA; AMOS, SAMSON; REDPATH, GERARD T.; CARPENTER, JOAN E.; PIEPER, RUSSELL O.; HUSSAINI, ISA M.

    2008-01-01

    Previous study reported that the activation of Ras pathway cooperated with E6/E7-mediated inactivation of p53/pRb to transform immortalized normal human astrocytes (NHA/hTERT) into intracranial tumors strongly resembling human astrocytomas. The mechanism of how H-Ras contributes to astrocytoma formation is unclear. Using genetically modified NHA cells (E6/E7/hTERT and E6/E7/hTERT/Ras cells) as models, we investigated the mechanism of Ras-induced tumorigenesis. The overexpression of constitutively active H-RasV12 in E6/E7/hTERT cells robustly increased the levels of urokinase plasminogen activator (uPA) mRNA, protein, activity and invasive capacity of the E6/E7/hTERT/Ras cells. However, the expressions of MMP-9 and MMP-2 did not significantly change in the E6/E7/hTERT and E6/E7/hTERT/Ras cells. Furthermore, E6/E7/hTERT/Ras cells also displayed higher level of uPA activity and were more invasive than E6/E7/hTERT cells in 3D culture, and formed an intracranial tumor mass in a NOD-SCID mouse model. uPA specific inhibitor (B428) and uPA neutralizing antibody decreased uPA activity and invasion in E6/E7/hTERT/Ras cells. uPA-deficient U-1242 glioblastoma cells were less invasive in vitro and exhibited reduced tumor growth and infiltration into normal brain in xenograft mouse model. Inhibitors of Ras (FTA), Raf (Bay 54−9085) and MEK (UO126), but not of phosphatidylinositol 3-kinase (PI3K) (LY294002) and of protein kinase C (BIM) pathways, inhibited uPA activity and cell invasion. Our results suggest that H-Ras increased uPA expression and activity via the Ras/Raf/MEK signaling pathway leading to enhanced cell invasion and this may contribute to increased invasive growth properties of astrocytomas. PMID:18383343

  11. Domain contributions to signaling specificity differences between Ras-guanine nucleotide releasing factor (Ras-GRF) 1 and Ras-GRF2.

    PubMed

    Jin, Shan-Xue; Bartolome, Christopher; Arai, Junko A; Hoffman, Laurel; Uzturk, B Gizem; Kumar-Singh, Rajendra; Waxham, M Neal; Feig, Larry A

    2014-06-01

    Ras-GRF1 (GRF1) and Ras-GRF2 (GRF2) constitute a family of similar calcium sensors that regulate synaptic plasticity. They are both guanine exchange factors that contain a very similar set of functional domains, including N-terminal pleckstrin homology, coiled-coil, and calmodulin-binding IQ domains and C-terminal Dbl homology Rac-activating domains, Ras-exchange motifs, and CDC25 Ras-activating domains. Nevertheless, they regulate different forms of synaptic plasticity. Although both GRF proteins transduce calcium signals emanating from NMDA-type glutamate receptors in the CA1 region of the hippocampus, GRF1 promotes LTD, whereas GRF2 promotes θ-burst stimulation-induced LTP (TBS-LTP). GRF1 can also mediate high frequency stimulation-induced LTP (HFS-LTP) in mice over 2-months of age, which involves calcium-permeable AMPA-type glutamate receptors. To add to our understanding of how proteins with similar domains can have different functions, WT and various chimeras between GRF1 and GRF2 proteins were tested for their abilities to reconstitute defective LTP and/or LTD in the CA1 hippocampus of Grf1/Grf2 double knock-out mice. These studies revealed a critical role for the GRF2 CDC25 domain in the induction of TBS-LTP by GRF proteins. In contrast, the N-terminal pleckstrin homology and/or coiled-coil domains of GRF1 are key to the induction of HFS-LTP by GRF proteins. Finally, the IQ motif of GRF1 determines whether a GRF protein can induce LTD. Overall, these findings show that for the three forms of synaptic plasticity that are regulated by GRF proteins in the CA1 hippocampus, specificity is encoded in only one or two domains, and a different set of domains for each form of synaptic plasticity.

  12. A non-cell-autonomous role for Ras signaling in C. elegans neuroblast delamination

    PubMed Central

    Parry, Jean M.; Sundaram, Meera V.

    2014-01-01

    Receptor tyrosine kinase (RTK) signaling through Ras influences many aspects of normal cell behavior, including epithelial-to-mesenchymal transition, and aberrant signaling promotes both tumorigenesis and metastasis. Although many such effects are cell-autonomous, here we show a non-cell-autonomous role for RTK-Ras signaling in the delamination of a neuroblast from an epithelial organ. The C. elegans renal-like excretory organ is initially composed of three unicellular epithelial tubes, namely the canal, duct and G1 pore cells; however, the G1 cell later delaminates from the excretory system to become a neuroblast and is replaced by the G2 cell. G1 delamination and G2 intercalation involve cytoskeletal remodeling, interconversion of autocellular and intercellular junctions and migration over a luminal extracellular matrix, followed by G1 junction loss. LET-23/EGFR and SOS-1, an exchange factor for Ras, are required for G1 junction loss but not for initial cytoskeletal or junction remodeling. Surprisingly, expression of activated LET-60/Ras in the neighboring duct cell, but not in the G1 or G2 cells, is sufficient to rescue sos-1 delamination defects, revealing that Ras acts non-cell-autonomously to permit G1 delamination. We suggest that, similarly, oncogenic mutations in cells within a tumor might help create a microenvironment that is permissive for other cells to detach and ultimately metastasize. PMID:25371363

  13. TLN-4601 suppresses growth and induces apoptosis of pancreatic carcinoma cells through inhibition of Ras-ERK MAPK signaling

    PubMed Central

    2010-01-01

    Background TLN-4601 is a structurally novel farnesylated dibenzodiazepinone discovered using Thallion's proprietary DECIPHER® technology, a genomics and bioinformatics platform that predicts the chemical structures of secondary metabolites based on gene sequences obtained by scanning bacterial genomes. Our recent studies suggest that TLN-4601 inhibits the Ras-ERK MAPK pathway post Ras prenylation and prior to MEK activation. The Ras-ERK MAPK signaling pathway is a well-validated oncogenic cascade based on its central role in regulating the growth and survival of cells from a broad spectrum of human tumors. Furthermore, RAS isoforms are the most frequently mutated oncogenes, occurring in approximately 30% of all human cancers, and KRAS is the most commonly mutated RAS gene, with a greater than 90% incidence of mutation in pancreatic cancer. Results To evaluate whether TLN-4601 interferes with K-Ras signaling, we utilized human pancreatic epithelial cells and demonstrate that TLN-4601 treatment resulted in a dose- and time-dependent inhibition of Ras-ERK MAPK signaling. The compound also reduced Ras-GTP levels and induced apoptosis. Finally, treatment of MIA PaCa-2 tumor-bearing mice with TLN-4601 resulted in antitumor activity and decreased tumor Raf-1 protein levels. Conclusion These data, together with phase I/II clinical data showing tolerability of TLN-4601, support conducting a clinical trial in advanced pancreatic cancer patients. PMID:21044336

  14. siRNA blocking the RAS signalling pathway and inhibits the growth of oesophageal squamous cell carcinoma in nude mice.

    PubMed

    Wang, Xinjie; Zheng, Yuling; Fan, Qingxia; Zhang, Xudong; Shi, Yonggang

    2014-12-01

    The aim of this study was to study RAS-siRNA blocking RAS pathway and suppressing cell growth in human oesophageal squamous cell carcinoma in nude mice. The methods in this study was to construct RAS-siRNA expression vector, establish 40 oesophageal squamous cell carcinoma xenograft animal models and divided them into five groups: control group, siRNA control group, RAS-siRNA group, paclitaxel group and RAS-siRNA and paclitaxel group. We observed tumour growth in nude mice, studied histology by HE staining, tumour growth inhibition by TUNEL assay and detected the RAS, MAPK and cyclin D1 protein expression by immunohistochemistry and western blot. We have obtained the following results: (i) successfully established animal models; (ii) nude mice in each group after treatment inhibited tumour volume was significantly reduced compared with the control group (p < 0.05); (iii) compared with the control group, the number of apoptotic cells were significantly increased in the siRNA control group and the RAS-siRNA group, and the number of apoptosis cells in the paclitaxel and RAS-siRNA group is significantly most than the paclitaxel group and RAS-siRNA group (p < 0.05); and (iv) after treatment, RAS, MAPK and cyclin D1 expression in five groups was decreasing gradually. After adding paclitaxel, the protein expression in the paclitaxel and RAS-siRNA group was significantly lower than that of paclitaxel group, negative control and paclitaxel group (p < 0.05). We therefore conclude that RAS-siRNA can block the RAS signal transduction pathway, reduce the activity of tumour cells, arrest tumour cell cycle, promote apoptosis, inhibit cell proliferation and increase tumour cell sensitivity to chemotherapeutic drugs.

  15. Nf1 regulates hematopoietic progenitor cell growth and ras signaling in response to multiple cytokines.

    PubMed

    Zhang, Y Y; Vik, T A; Ryder, J W; Srour, E F; Jacks, T; Shannon, K; Clapp, D W

    1998-06-01

    Neurofibromin, the protein encoded by the NF1 tumor-suppressor gene, negatively regulates the output of p21(ras) (Ras) proteins by accelerating the hydrolysis of active Ras-guanosine triphosphate to inactive Ras-guanosine diphosphate. Children with neurofibromatosis type 1 (NF1) are predisposed to juvenile chronic myelogenous leukemia (JCML) and other malignant myeloid disorders, and heterozygous Nf1 knockout mice spontaneously develop a myeloid disorder that resembles JCML. Both human and murine leukemias show loss of the normal allele. JCML cells and Nf1-/- hematopoietic cells isolated from fetal livers selectively form abnormally high numbers of colonies derived from granulocyte-macrophage progenitors in cultures supplemented with low concentrations of granulocyte-macrophage colony stimulating factor (GM-CSF). Taken together, these data suggest that neurofibromin is required to downregulate Ras activation in myeloid cells exposed to GM-CSF. We have investigated the growth and proliferation of purified populations of hematopoietic progenitor cells isolated from Nf1 knockout mice in response to the cytokines interleukin (IL)-3 and stem cell factor (SCF), as well as to GM-CSF. We found abnormal proliferation of both immature and lineage-restricted progenitor populations, and we observed increased synergy between SCF and either IL-3 or GM-CSF in Nf1-/- progenitors. Nf1-/- fetal livers also showed an absolute increase in the numbers of immature progenitors. We further demonstrate constitutive activation of the Ras-Raf-MAP (mitogen-activated protein) kinase signaling pathway in primary c-kit+ Nf1-/- progenitors and hyperactivation of MAP kinase after growth factor stimulation. The results of these experiments in primary hematopoietic cells implicate Nf1 as playing a central role in regulating the proliferation and survival of primitive and lineage-restricted myeloid progenitors in response to multiple cytokines by modulating Ras output.

  16. Systemic Regulation of RAS/MAPK Signaling by the Serotonin Metabolite 5-HIAA

    PubMed Central

    Schmid, Tobias; Snoek, L. Basten; Fröhli, Erika; van der Bent, M. Leontien; Kammenga, Jan; Hajnal, Alex

    2015-01-01

    Human cancer is caused by the interplay of mutations in oncogenes and tumor suppressor genes and inherited variations in cancer susceptibility genes. While many of the tumor initiating mutations are well characterized, the effect of genetic background variation on disease onset and progression is less understood. We have used C. elegans genetics to identify genetic modifiers of the oncogenic RAS/MAPK signaling pathway. Quantitative trait locus analysis of two highly diverged C. elegans isolates combined with allele swapping experiments identified the polymorphic monoamine oxidase A (MAOA) gene amx-2 as a negative regulator of RAS/MAPK signaling. We further show that the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA), which is a product of MAOA catalysis, systemically inhibits RAS/MAPK signaling in different organs of C. elegans. Thus, MAOA activity sets a global threshold for MAPK activation by controlling 5-HIAA levels. To our knowledge, 5-HIAA is the first endogenous small molecule that acts as a systemic inhibitor of RAS/MAPK signaling. PMID:25978500

  17. EGFR-Ras-Raf Signaling in Epidermal Stem Cells: Roles in Hair Follicle Development, Regeneration, Tissue Remodeling and Epidermal Cancers

    PubMed Central

    Doma, Eszter; Rupp, Christian; Baccarini, Manuela

    2013-01-01

    The mammalian skin is the largest organ of the body and its outermost layer, the epidermis, undergoes dynamic lifetime renewal through the activity of somatic stem cell populations. The EGFR-Ras-Raf pathway has a well-described role in skin development and tumor formation. While research mainly focuses on its role in cutaneous tumor initiation and maintenance, much less is known about Ras signaling in the epidermal stem cells, which are the main targets of skin carcinogenesis. In this review, we briefly discuss the properties of the epidermal stem cells and review the role of EGFR-Ras-Raf signaling in keratinocyte stem cells during homeostatic and pathological conditions. PMID:24071938

  18. The RET/PTC-RAS-BRAF linear signaling cascade mediates the motile and mitogenic phenotype of thyroid cancer cells

    PubMed Central

    Melillo, Rosa Marina; Castellone, Maria Domenica; Guarino, Valentina; De Falco, Valentina; Cirafici, Anna Maria; Salvatore, Giuliana; Caiazzo, Fiorina; Basolo, Fulvio; Giannini, Riccardo; Kruhoffer, Mogens; Orntoft, Torben; Fusco, Alfredo; Santoro, Massimo

    2005-01-01

    In papillary thyroid carcinomas (PTCs), rearrangements of the RET receptor (RET/PTC) and activating mutations in the BRAF or RAS oncogenes are mutually exclusive. Here we show that the 3 proteins function along a linear oncogenic signaling cascade in which RET/PTC induces RAS-dependent BRAF activation and RAS- and BRAF-dependent ERK activation. Adoptive activation of the RET/PTC-RAS-BRAF axis induced cell proliferation and Matrigel invasion of thyroid follicular cells. Gene expression profiling revealed that the 3 oncogenes activate a common transcriptional program in thyroid cells that includes upregulation of the CXCL1 and CXCL10 chemokines, which in turn stimulate proliferation and invasion. Thus, motile and mitogenic properties are intrinsic to transformed thyroid cells and are governed by an epistatic oncogenic signaling cascade. PMID:15761501

  19. Defined spatiotemporal features of RAS-ERK signals dictate cell fate in MCF-7 mammary epithelial cells

    PubMed Central

    Herrero, Ana; Casar, Berta; Colón-Bolea, Paula; Agudo-Ibáñez, Lorena; Crespo, Piero

    2016-01-01

    Signals conveyed through the RAS-ERK pathway are essential for the determination of cell fate. It is well established that signal variability is achieved in the different microenvironments in which signals unfold. It is also known that signal duration is critical for decisions concerning cell commitment. However, it is unclear how RAS-ERK signals integrate time and space in order to elicit a given biological response. To investigate this, we used MCF-7 cells, in which EGF-induced transient ERK activation triggers proliferation, whereas sustained ERK activation in response to heregulin leads to adipocytic differentiation. We found that both proliferative and differentiating signals emanate exclusively from plasma membrane–disordered microdomains. Of interest, the EGF signal can be transformed into a differentiating stimulus by HRAS overexpression, which prolongs ERK activation, but only if HRAS localizes at disordered membrane. On the other hand, HRAS signals emanating from the Golgi complex induce apoptosis and can prevent heregulin-induced differentiation. Our results indicate that within the same cellular context, RAS can exert different, even antagonistic, effects, depending on its sublocalization. Thus cell destiny is defined by the ability of a stimulus to activate RAS at the appropriate sublocalization for an adequate period while avoiding switching on opposing RAS signals. PMID:27099370

  20. CARD9 mediates Dectin-1–induced ERK activation by linking Ras-GRF1 to H-Ras for antifungal immunity

    PubMed Central

    Tang, Bing; Zhu, Le-Le; Liu, Yan-Hui; Zhao, Xue-Qiang; Gorjestani, Sara; Hsu, Yen-Michael S.; Yang, Long; Guan, Jian-Hong; Xu, Guo-Tong

    2014-01-01

    Dectin-1 functions as a pattern recognition receptor for sensing fungal infection. It has been well-established that Dectin-1 induces innate immune responses through caspase recruitment domain-containing protein 9 (CARD9)–mediated NF-κB activation. In this study, we find that CARD9 is dispensable for NF-κB activation induced by Dectin-1 ligands, such as curdlan or Candida albicans yeast. In contrast, we find that CARD9 regulates H-Ras activation by linking Ras-GRF1 to H-Ras, which mediates Dectin-1–induced extracellular signal-regulated protein kinase (ERK) activation and proinflammatory responses when stimulated by their ligands. Mechanistically, Dectin-1 engagement initiates spleen tyrosine kinase (Syk)–dependent Ras-GRF1 phosphorylation, and the phosphorylated Ras-GRF1 recruits and activates H-Ras through forming a complex with CARD9, which leads to activation of ERK downstream. Finally, we show that inhibiting ERK activation significantly accelerates the death of C. albicans–infected mice, and this inhibitory effect is dependent on CARD9. Together, our studies reveal a molecular mechanism by which Dectin-1 induces H-Ras activation that leads to ERK activation for host innate immune responses against fungal infection. PMID:25267792

  1. Activation of ras oncogenes preceding the onset of neoplasia

    SciTech Connect

    Kumar, R.; Barbacid, M. ); Sukumar, S. )

    1990-06-01

    The identification of ras oncogenes in human and animal cancers including precancerous lesions indicates that these genes participate in the early stages of neoplastic development. Yet, these observations do not define the timing of ras oncogene activation in the multistep process of carcinogenesis. To ascertain the timing of ras oncogene activation, an animal model system was devised that involves the induction of mammary carcinomas in rats exposed at birth to the carcinogen nitrosomethylurea. High-resolution restriction fragment length polymorphism analysis of polymerase chain reaction-amplified ras sequences revealed the presence of both H-ras and K-ras oncogenes in normal mammary glands 2 weeks after carcinogen treatment and at least 2 months before the onset of neoplasia. These ras oncogenes can remain latent within the mammary gland until exposure to estrogens, demonstrating that activation of ras oncogenes can precede the onset of neoplasia and suggesting that normal physiological proliferative processes such as estrogen-induced mammary gland development may lead to neoplasia if the targeted cells harbor latent ras oncogenes.

  2. Imaging of Ras/Raf activity induced by low energy laser irradiation in living cell using FRET

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Chen, Tong-Sheng; Xing, Da

    2005-01-01

    Ras/Raf signaling pathway is an important signaling pathway that governs cell proliferation, differential and apoptosis. Low-energy laser irradiation (LELI) was found to modulate various processes. Generally, cell proliferation is induced by low doses LELI and apoptosis is induced by high doses LELI. Mechanism of biological effect of LELI has not been clear. Recently, activation of MEK (mitogen-activated protein kinase) and ERK (extracellular-signal-regulated kinase), which are downstream protein kinases of Ras/Raf, are observed during LELI-induced cell proliferation by immunoprecipitation and western blot analysis. RaichuRas reporter consisting of fusions of H-ras, the Ras-binding domain of Raf (RafRBD), a cyan fluorescent protein (CFP) and a yellow fluorescent protein (YFP). Therefore, intramolecular binding of GTP-Ras to RafRBD brings CFP close to YFP and increases FRET between CFP and YFP. Human lung adenocarcinoma cell line (ASTC-a-1) was transfected with the plasmid (pRaichuRas) and then treated with LELI at dose of 60J/cm2. Effect of LELI on Ras/Raf in physiological condition of living cells was observed by fluorescence resonance energy transfer (FRET) technique during lung adenocarcinoma cell apoptosis induced by high dose (60J/cm2) LELI. Experimental results showed that after high dose LELI treatment, the binding of Ras and Raf decreases obviously, Ras/Raf signaling pathway deregulates and cell apoptosis occurs.

  3. Activation of a human c-K-ras oncogene.

    PubMed Central

    Yamamoto, F; Perucho, M

    1984-01-01

    The human lung carcinomas PR310 and PR371 contain activated c-K-ras oncogenes. The oncogene of PR371 was found to present a mutation at codon 12 of the first coding exon which substitutes cysteine for glycine in the encoded p21 protein. We report here that the transforming gene of PR310 tumor contains a mutation in the second coding exon. An A----T transversion at codon 61 results in the incorporation of histidine instead of glutamine in the c-K-ras gene product. By constructing c-K-ras/c-H-ras chimeric genes we show that this point mutation is sufficient to confer transforming potential to ras genes, and that a hybrid ras gene coding for a protein mutant at both codons 12 and 61 is also capable of transforming NIH3T3 cells. The relative transforming potency of p21 proteins encoded by ras genes mutant at codons 12, 61 or both has been analyzed. Our studies also show that the coding exons of ras genes, including the fourth, can be interchanged and the chimeric p21 ras proteins retain their oncogenic ability in normal rodent established cell lines. PMID:6096811

  4. Molecular kinetics. Ras activation by SOS: allosteric regulation by altered fluctuation dynamics.

    PubMed

    Iversen, Lars; Tu, Hsiung-Lin; Lin, Wan-Chen; Christensen, Sune M; Abel, Steven M; Iwig, Jeff; Wu, Hung-Jen; Gureasko, Jodi; Rhodes, Christopher; Petit, Rebecca S; Hansen, Scott D; Thill, Peter; Yu, Cheng-Han; Stamou, Dimitrios; Chakraborty, Arup K; Kuriyan, John; Groves, Jay T

    2014-07-01

    Activation of the small guanosine triphosphatase H-Ras by the exchange factor Son of Sevenless (SOS) is an important hub for signal transduction. Multiple layers of regulation, through protein and membrane interactions, govern activity of SOS. We characterized the specific activity of individual SOS molecules catalyzing nucleotide exchange in H-Ras. Single-molecule kinetic traces revealed that SOS samples a broad distribution of turnover rates through stochastic fluctuations between distinct, long-lived (more than 100 seconds), functional states. The expected allosteric activation of SOS by Ras-guanosine triphosphate (GTP) was conspicuously absent in the mean rate. However, fluctuations into highly active states were modulated by Ras-GTP. This reveals a mechanism in which functional output may be determined by the dynamical spectrum of rates sampled by a small number of enzymes, rather than the ensemble average.

  5. Lin28-let7 Modulates Radiosensitivity of Human Cancer Cells With Activation of K-Ras

    SciTech Connect

    Oh, Jee-Sun.; Kim, Jae-Jin; Byun, Ju-Yeon; Kim, In-Ah

    2010-01-15

    Purpose: To evaluate the potential of targeting Lin28-let7 microRNA regulatory network for overcoming the radioresistance of cancer cells having activated K-Ras signaling. Methods and Materials: A549 lung carcinoma cells and ASPC1 pancreatic cancer cells possessing K-RAS mutation were transfected with pre-let7a microRNA or Lin28 siRNA, respectively. Clonogenic assay, quantitative reverse transcription polymerase chain reaction, and Western analysis were performed. The effects of Lin28 on SQ20B cells having wild-type K-RAS, and a normal fibroblast were also assessed. Results: The overexpression of let-7a decreased expression of K-Ras and radiosensitized A549 cells. Inhibition of Lin28, a repressor of let-7, attenuated K-Ras expression and radiosensitized A549 and ASPC1 cells. Neither SQ20B cells expressing wild-type K-RAS nor HDF, the normal human fibroblasts, were radiosensitized by this approach. Conclusions: The Lin28-let7 regulatory network may be a potentially useful therapeutic target for overcoming the radioresistance of human cancers having activated K-Ras signaling.

  6. Ras signaling gets fine-tuned: regulation of multiple pathogenic traits of Candida albicans.

    PubMed

    Inglis, Diane O; Sherlock, Gavin

    2013-10-01

    Candida albicans is an opportunistic fungal pathogen that can cause disseminated infection in patients with indwelling catheters or other implanted medical devices. A common resident of the human microbiome, C. albicans responds to environmental signals, such as cell contact with catheter materials and exposure to serum or CO2, by triggering the expression of a variety of traits, some of which are known to contribute to its pathogenic lifestyle. Such traits include adhesion, biofilm formation, filamentation, white-to-opaque (W-O) switching, and two recently described phenotypes, finger and tentacle formation. Under distinct sets of environmental conditions and in specific cell types (mating type-like a [MTLa]/alpha cells, MTL homozygotes, or daughter cells), C. albicans utilizes (or reutilizes) a single signal transduction pathway-the Ras pathway-to affect these phenotypes. Ras1, Cyr1, Tpk2, and Pde2, the proteins of the Ras signaling pathway, are the only nontranscriptional regulatory proteins that are known to be essential for regulating all of these processes. How does C. albicans utilize this one pathway to regulate all of these phenotypes? The regulation of distinct and yet related processes by a single, evolutionarily conserved pathway is accomplished through the use of downstream transcription factors that are active under specific environmental conditions and in different cell types. In this minireview, we discuss the role of Ras signaling pathway components and Ras pathway-regulated transcription factors as well as the transcriptional regulatory networks that fine-tune gene expression in diverse biological contexts to generate specific phenotypes that impact the virulence of C. albicans.

  7. Monitoring Ras Interactions with the Nucleotide Exchange Factor Son of Sevenless (Sos) Using Site-specific NMR Reporter Signals and Intrinsic Fluorescence*

    PubMed Central

    Vo, Uybach; Vajpai, Navratna; Flavell, Liz; Bobby, Romel; Breeze, Alexander L.; Embrey, Kevin J.; Golovanov, Alexander P.

    2016-01-01

    The activity of Ras is controlled by the interconversion between GTP- and GDP-bound forms partly regulated by the binding of the guanine nucleotide exchange factor Son of Sevenless (Sos). The details of Sos binding, leading to nucleotide exchange and subsequent dissociation of the complex, are not completely understood. Here, we used uniformly 15N-labeled Ras as well as [13C]methyl-Met,Ile-labeled Sos for observing site-specific details of Ras-Sos interactions in solution. Binding of various forms of Ras (loaded with GDP and mimics of GTP or nucleotide-free) at the allosteric and catalytic sites of Sos was comprehensively characterized by monitoring signal perturbations in the NMR spectra. The overall affinity of binding between these protein variants as well as their selected functional mutants was also investigated using intrinsic fluorescence. The data support a positive feedback activation of Sos by Ras·GTP with Ras·GTP binding as a substrate for the catalytic site of activated Sos more weakly than Ras·GDP, suggesting that Sos should actively promote unidirectional GDP → GTP exchange on Ras in preference of passive homonucleotide exchange. Ras·GDP weakly binds to the catalytic but not to the allosteric site of Sos. This confirms that Ras·GDP cannot properly activate Sos at the allosteric site. The novel site-specific assay described may be useful for design of drugs aimed at perturbing Ras-Sos interactions. PMID:26565026

  8. Monitoring Ras Interactions with the Nucleotide Exchange Factor Son of Sevenless (Sos) Using Site-specific NMR Reporter Signals and Intrinsic Fluorescence.

    PubMed

    Vo, Uybach; Vajpai, Navratna; Flavell, Liz; Bobby, Romel; Breeze, Alexander L; Embrey, Kevin J; Golovanov, Alexander P

    2016-01-22

    The activity of Ras is controlled by the interconversion between GTP- and GDP-bound forms partly regulated by the binding of the guanine nucleotide exchange factor Son of Sevenless (Sos). The details of Sos binding, leading to nucleotide exchange and subsequent dissociation of the complex, are not completely understood. Here, we used uniformly (15)N-labeled Ras as well as [(13)C]methyl-Met,Ile-labeled Sos for observing site-specific details of Ras-Sos interactions in solution. Binding of various forms of Ras (loaded with GDP and mimics of GTP or nucleotide-free) at the allosteric and catalytic sites of Sos was comprehensively characterized by monitoring signal perturbations in the NMR spectra. The overall affinity of binding between these protein variants as well as their selected functional mutants was also investigated using intrinsic fluorescence. The data support a positive feedback activation of Sos by Ras·GTP with Ras·GTP binding as a substrate for the catalytic site of activated Sos more weakly than Ras·GDP, suggesting that Sos should actively promote unidirectional GDP → GTP exchange on Ras in preference of passive homonucleotide exchange. Ras·GDP weakly binds to the catalytic but not to the allosteric site of Sos. This confirms that Ras·GDP cannot properly activate Sos at the allosteric site. The novel site-specific assay described may be useful for design of drugs aimed at perturbing Ras-Sos interactions.

  9. Endothelial nitric oxide synthase regulates N-Ras activation on the Golgi complex of antigen-stimulated T cells

    PubMed Central

    Ibiza, Sales; Pérez-Rodríguez, Andrea; Ortega, Ángel; Martínez-Ruiz, Antonio; Barreiro, Olga; García-Domínguez, Carlota A.; Víctor, Víctor M.; Esplugues, Juan V.; Rojas, José M.; Sánchez-Madrid, Francisco; Serrador, Juan M.

    2008-01-01

    Ras/ERK signaling plays an important role in T cell activation and development. We recently reported that endothelial nitric oxide synthase (eNOS)-derived NO regulates T cell receptor (TCR)-dependent ERK activation by a cGMP-independent mechanism. Here, we explore the mechanisms through which eNOS exerts this regulation. We have found that eNOS-derived NO positively regulates Ras/ERK activation in T cells stimulated with antigen on antigen-presenting cells (APCs). Intracellular activation of N-, H-, and K-Ras was monitored with fluorescent probes in T cells stably transfected with eNOS-GFP or its G2A point mutant, which is defective in activity and cellular localization. Using this system, we demonstrate that eNOS selectively activates N-Ras but not K-Ras on the Golgi complex of T cells engaged with APC, even though Ras isoforms are activated in response to NO from donors. We further show that activation of N-Ras involves eNOS-dependent S-nitrosylation on Cys118, suggesting that upon TCR engagement, eNOS-derived NO directly activates N-Ras on the Golgi. Moreover, wild-type but not C118S N-Ras increased TCR-dependent apoptosis, suggesting that S-nitrosylation of Cys118 contributes to activation-induced T cell death. Our data define a signaling mechanism for the regulation of the Ras/ERK pathway based on the eNOS-dependent differential activation of N-Ras and K-Ras at specific cell compartments. PMID:18641128

  10. M-Ras induces Ral and JNK activation to regulate MEK/ERK-independent gene expression in MCF-7 breast cancer cells

    PubMed Central

    Castro, Ariel F.; Campos, Tania; Babcock, Justin T.; Armijo, Marisol E.; Martinez-Conde, Alfonso; Pincheira, Roxana; Quilliam, Lawrence A.

    2011-01-01

    Constitutive activation of M-Ras has previously been reported to cause morphologic and growth transformation of murine cells, suggesting that M-Ras plays a role in tumorigenesis. Cell transformation by M-Ras correlated with weak activation of the Raf/MEK/ERK pathway, although contributions from other downstream effectors were suggested. Recent studies indicate that signaling events distinct from the Raf/MEK/ERK cascade are critical for human tumorigenesis. However, it is unknown what signaling events M-Ras triggers in human cells. Using constitutively active M-Ras (Q71L) containing additional mutations within its effector binding loop, we found that M-Ras induces MEK/ERK-dependent and -independent Elk1 activation as well as PI3K/Akt and JNK/cJun activation in human MCF-7 breast cancer cells. Among several human cell lines examined, M-Ras-induced MEK/ERK-independent Elk1 activation was only detected in MCF-7 cells, and correlated with Rlf /M-Ras interaction and Ral /JNK activation. Supporting a role for M-Ras signaling in breast cancer, EGF activated M-Ras and promoted its interaction with endogenous Rlf. In addition, constitutive activation of M-Ras induced estrogen-independent growth of MCF-7 cells that was dependent on PI3K/Akt, MEK/ERK and JNK activation. Thus, our studies demonstrate that M-Ras signaling activity differs between human cells, highlighting the importance of defining Ras protein signaling within each cell type, especially when designing treatments for Ras-induced cancer. These findings also demonstrate that M-Ras activity may be important for progression of EGFR-dependent tumors. PMID:22121046

  11. Signals from the AT2 (angiotensin type 2) receptor of angiotensin II inhibit p21ras and activate MAPK (mitogen-activated protein kinase) to induce morphological neuronal differentiation in NG108-15 cells.

    PubMed

    Gendron, L; Laflamme, L; Rivard, N; Asselin, C; Payet, M D; Gallo-Payet, N

    1999-09-01

    In a previous study, we had shown that activation of the AT2 (angiotensin type 2) receptor of angiotensin II (Ang II) induced morphological differentiation of the neuronal cell line NG108-15. In the present study, we investigated the nature of the possible intracellular mediators involved in the AT2 effect. We found that stimulation of AT2 receptors in NG108-15 cells resulted in time-dependent modulation of tyrosine phosphorylation of a number of cytoplasmic proteins. Stimulation of NG108-15 cells with Ang II induced a decrease in GTP-bound p21ras but a sustained increase in the activity of p42mapk and p44mapk as well as neurite outgrowth. Similarly, neurite elongation, increased polymerized tubulin levels, and increased mitogen-activated protein kinase (MAPK) activity were also observed in a stably transfected NG108-15 cell line expressing the dominant-negative mutant of p21ras, RasN17. These results support the observation that inhibition of p21ras did not impair the effect of Ang II on its ability to stimulate MAPK activity. While 10 microM of the MEK inhibitor, PD98059, only moderately affected elongation, 50 microM PD98059 completely blocked the Ang II- and the RasN17-mediated induction of neurite outgrowth. These results demonstrate that some of the events associated with the AT2 receptor-induced neuronal morphological differentiation of NG108-15 cells not only include inhibition of p21ras but an increase in MAPK activity as well, which is essential for neurite outgrowth.

  12. Transgenic activation of Ras in neurons increases synapse formation in mouse neocortex.

    PubMed

    Seeger, G; Gärtner, U; Arendt, Th

    2005-06-01

    The small G protein Ras, which is a molecular switch in neurotrophic signal transduction, is implicated in synaptic plasticity and synapse development during ontogeny and in the adult nervous system. To characterise the involvement of Ras-dependent signaling in synaptogenesis, the cortical synapse-to-neuron ratio was investigated in synRas mice overexpressing Val12-Ha-Ras in postmitotic neurons (introduced by Heumann, 2000). The number of synapses per neuron was analysed in cortical layers II/III of the somatosensory cortex at different stages of postnatal development by stereological methods. The synapse-to-neuron ratio was still identical in wild-type and synRas mice at postnatal day 4 before the onset of transgene expression. At P12, P47 and in the adult, analyses revealed a significant increase in the synapse-to-neuron ratio in synRas mice which correlated with the strength of transgene expression. The data presented here provide evidence that Ras activity might be profoundly involved in synaptogenesis by reinforcing the formation or maintenance of synapses during the development and in the adult.

  13. Mapping the functional versatility and fragility of Ras GTPase signaling circuits through in vitro network reconstitution.

    PubMed

    Coyle, Scott M; Lim, Wendell A

    2016-01-01

    The Ras-superfamily GTPases are central controllers of cell proliferation and morphology. Ras signaling is mediated by a system of interacting molecules: upstream enzymes (GEF/GAP) regulate Ras's ability to recruit multiple competing downstream effectors. We developed a multiplexed, multi-turnover assay for measuring the dynamic signaling behavior of in vitro reconstituted H-Ras signaling systems. By including both upstream regulators and downstream effectors, we can systematically map how different network configurations shape the dynamic system response. The concentration and identity of both upstream and downstream signaling components strongly impacted the timing, duration, shape, and amplitude of effector outputs. The distorted output of oncogenic alleles of Ras was highly dependent on the balance of positive (GAP) and negative (GEF) regulators in the system. We found that different effectors interpreted the same inputs with distinct output dynamics, enabling a Ras system to encode multiple unique temporal outputs in response to a single input. We also found that different Ras-to-GEF positive feedback mechanisms could reshape output dynamics in distinct ways, such as signal amplification or overshoot minimization. Mapping of the space of output behaviors accessible to Ras provides a design manual for programming Ras circuits, and reveals how these systems are readily adapted to produce an array of dynamic signaling behaviors. Nonetheless, this versatility comes with a trade-off of fragility, as there exist numerous paths to altered signaling behaviors that could cause disease. PMID:26765565

  14. Activated Ras Induces Cytoplasmic Vacuolation and Non-Apoptotic Death in Glioblastoma Cells via Novel Effector Pathways

    PubMed Central

    Kaul, Aparna; Overmeyer, Jean H.; Maltese, William A.

    2007-01-01

    Expression of activated H-Ras induces a unique form of non-apoptotic cell death in human glioblastoma cells and other specific tumor cell lines. The major cytopathological features of this form of death are the accumulation of large phase-lucent, LAMP1-positive, cytoplasmic vacuoles and increased autophagic activity. In this study we sought to determine if induction of cytoplasmic vacuolation a) depends on Ras farnesylation, b) is specific to H-Ras, and c) is mediated by signaling through the major known Ras effector pathways. We find that the unusual effects of activated H-Ras depend on farnesylation and membrane association of the GTPase. Both H-Ras(G12V) and K-Ras4B(G12V) stimulate vacuolation, but activated forms of Cdc42 and RhoA do not. Amino acid substitutions in the Ras effector domain, which are known to selectively impair its interactions with Raf kinase, class-I phosphatidylinositide 3-kinase (PI3K), or Ral nucleotide exchange factors, initially pointed to Raf as a possible mediator of cell vacuolation. However, the MEK inhibitor, PD98059, did not block the induction of vacuoles, and constitutively active Raf-Caax did not mimic the effects of Ras(G12V). Introduction of normal PTEN together with H-Ras(G12V) into U251 glioblastoma cells reduced the PI3K-dependent activation of Akt, but had no effect on vacuolation. Finally, co-expression of H-Ras(G12V) with a dominant-negative form of RalA did not suppress vacuolation. Taken together, the observations indicate that Ras activates non-conventional and perhaps unique effector pathways to induce cytoplasmic vacuolation in glioblastoma cells. Identification of the relevant signaling pathways may uncover specific molecular targets that can be manipulated to activate non-apoptotic cell death in this type of cancer. PMID:17210246

  15. The effect of aquaporin 5 overexpression on the Ras signaling pathway

    SciTech Connect

    Woo, Janghee; Lee, Juna; Kim, Myoung Sook; Jang, Se Jin; Sidransky, David; Moon, Chulso

    2008-03-07

    Human aquaporin 5 (AQP5) has been shown to be overexpressed in multiple cancers, such as pancreatic cancer and colon cancer. Furthermore, it has been reported that ectopic expression of AQP5 leads to many phenotypic changes characteristic of transformation. However, the biochemical mechanism leading to transformation in AQP5-overexpressing cells has not been clearly elucidated. In this report, the overexpression of AQP5 in NIH3T3 cells demonstrated a significant effect on Ras activity and, thus, cell proliferation. Furthermore, this influence was shown to be mediated by phosphorylation of the PKA consensus site of AQP5. This is the first evidence demonstrating an association between AQP5 and a signaling pathway, namely the Ras signal transduction pathway, which may be the basis of the oncogenic properties seen in AQP-overexpressing cells.

  16. EGFR/Ras/MAPK signaling mediates adult midgut epithelial homeostasis and regeneration in Drosophila

    PubMed Central

    Jiang, Huaqi; Grenley, Marc O.; Bravo, Maria-Jose; Blumhagen, Rachel Z.; Edgar, Bruce A.

    2010-01-01

    Many tissues in higher animals undergo dynamic homeostatic growth, wherein damaged or aged cells are replaced by the progeny of resident stem cells. To maintain homeostasis, stem cells must respond to tissue needs. Here we show that in response to damage or stress in the intestinal (midgut) epithelium of adult Drosophila, multiple EGFR ligands and rhomboids (intramembrane proteases that activate some EGFR ligands) are induced, leading to the activation of EGFR signaling in intestinal stem cells (ISCs). Activation of EGFR signaling promotes ISC division and midgut epithelium regeneration, thus maintaining tissue homeostasis. ISCs defective in EGFR signaling cannot grow or divide, are poorly maintained, and cannot support midgut epithelium regeneration following enteric infection by the bacterium, Pseudomonas entomophila. Furthermore, ISC proliferation induced by Jak/Stat signaling is dependent upon EGFR signaling. Thus the EGFR/Ras/MAPK signaling pathway plays central, essential roles in ISC maintenance and the feedback system that mediates intestinal homeostasis. PMID:21167805

  17. Ras history

    PubMed Central

    2010-01-01

    Although the roots of Ras sprouted from the rich history of retrovirus research, it was the discovery of mutationally activated RAS genes in human cancer in 1982 that stimulated an intensive research effort to understand Ras protein structure, biochemistry and biology. While the ultimate goal has been developing anti-Ras drugs for cancer treatment, discoveries from Ras have laid the foundation for three broad areas of science. First, they focused studies on the origins of cancer to the molecular level, with the subsequent discovery of genes mutated in cancer that now number in the thousands. Second, elucidation of the biochemical mechanisms by which Ras facilitates signal transduction established many of our fundamental concepts of how a normal cell orchestrates responses to extracellular cues. Third, Ras proteins are also founding members of a large superfamily of small GTPases that regulate all key cellular processes and established the versatile role of small GTP-binding proteins in biology. We highlight some of the key findings of the last 28 years. PMID:21686117

  18. Calmodulin modulates H-Ras mediated Raf-1 activation.

    PubMed

    Moretó, Jemina; Lladó, Anna; Vidal-Quadras, Maite; Calvo, Maria; Pol, Albert; Enrich, Carlos; Tebar, Francesc

    2008-06-01

    We have previously demonstrated that, in COS-1 cells, inhibition of calmodulin increases Ras-GTP levels although it decreases Raf-1 activity and consequently MAPK. The present study analyzes the role of calmodulin in the regulation of Raf-1. First we show, using FRET microscopy, that inhibition of Raf-1 was not a consequence of a decreased interaction between H-Ras and Raf-1. Besides, the analysis of the phosphorylation state of Raf-1 showed that calmodulin, through downstream PI3K, is essential to ensure the Ser338-Raf-1 phosphorylation, critical for Raf-1 activation. We also show that the expression of a dominant negative mutant of PI3K impairs the calmodulin-mediated Raf-1 activation; in addition, both calmodulin and PI3K inhibitors decrease phospho-Ser338 and Raf-1 activity from upstream active H-Ras (H-RasG12V) and this effect is dependent on endocytosis. Importantly, in H-Ras depleted COS-1 cells, calmodulin does not modulate MAPK activation. Altogether, the results suggest that calmodulin regulation of MAPK in COS-1 cells relies upon H-Ras control of Raf-1 activity and involves PI3K.

  19. Characterization of the intracellular signalling pathways that underlie growth-factor-stimulated glucose transport in Xenopus oocytes: evidence for ras- and rho-dependent pathways of phosphatidylinositol 3-kinase activation.

    PubMed Central

    Thomson, F J; Jess, T J; Moyes, C; Plevin, R; Gould, G W

    1997-01-01

    The stimulation of glucose transport is one of the early cellular responses to growth factors and is essential for cell proliferation, yet the molecular processes that underlie this response are poorly defined. The aim of this study was to characterize the role of the low-molecular-mass G-proteins, Ras and Rho, and their downstream targets, Raf protein kinase and phosphatidylinositol 3-kinase, in the regulation of glucose transport in Xenopus oocytes by two distinct growth-factor receptors: the insulin-like growth factor I (IGF-I) tyrosine kinase receptor and the heterotrimeric G-protein-coupled lysophosphatidic acid (LPA) receptor. Microinjection of a neutralizing anti-Ras antibody partially blocked IGF-I-stimulated deoxyglucose uptake but was without effect on LPA-stimulated deoxyglucose uptake. In contrast, microinjection of the C3 coenzyme of botulinum toxin, which selectively ADP-ribosylates and inactivates Rho, inhibited LPA-stimulated, but not IGF-I-stimulated, deoxyglucose uptake. Similarly, LPA- but not IGF-I-stimulated deoxyglucose uptake was attenuated in oocytes expressing a dominant negative rho construct. Cells expressing a dominant negative mutant of Raf protein kinase exhibited markedly reduced sensitivity to both LPA and IGF-I, consistent with a role for endogenous Raf in glucose uptake by both growth factors. Furthermore, expression of a constitutively activated form of raf-1 resulted in a growth-factor-independent increase in deoxyglucose uptake. Measurements of phosphatidylinositol 3-kinase activity in microinjected cells support the hypothesis that the IGF-I receptor stimulates glucose transport by a Ras-dependent activation of phosphatidylinositol 3-kinase, whereas the G-protein-coupled LPA receptor controls this response by a pathway that involves Rho-dependent activation of a distinct phosphatidylinositol 3-kinase. Thus we provide evidence for clear differences in the signalling pathways that control glucose transport by G

  20. The complexities and versatility of the RAS-to-ERK signalling system in normal and cancer cells.

    PubMed

    Fey, Dirk; Matallanas, David; Rauch, Jens; Rukhlenko, Oleksii S; Kholodenko, Boris N

    2016-10-01

    The intricate dynamic control and plasticity of RAS to ERK mitogenic, survival and apoptotic signalling has mystified researches for more than 30 years. Therapeutics targeting the oncogenic aberrations within this pathway often yield unsatisfactory, even undesired results, as in the case of paradoxical ERK activation in response to RAF inhibition. A direct approach of inhibiting single oncogenic proteins misses the dynamic network context governing the network signal processing. In this review, we discuss the signalling behaviour of RAS and RAF proteins in normal and in cancer cells, and the emerging systems-level properties of the RAS-to-ERK signalling network. We argue that to understand the dynamic complexities of this control system, mathematical models including mechanistic detail are required. Looking into the future, these dynamic models will build the foundation upon which more effective, rational approaches to cancer therapy will be developed. PMID:27350026

  1. RAS signaling promotes resistance to JAK inhibitors by suppressing BAD-mediated apoptosis.

    PubMed

    Winter, Peter S; Sarosiek, Kristopher A; Lin, Kevin H; Meggendorfer, Manja; Schnittger, Susanne; Letai, Anthony; Wood, Kris C

    2014-12-23

    Myeloproliferative neoplasms (MPNs) frequently have an activating mutation in the gene encoding Janus kinase 2 (JAK2). Thus, targeting the pathway mediated by JAK and its downstream substrate, signal transducer and activator of transcription (STAT), may yield clinical benefit for patients with MPNs containing the JAK2(V617F) mutation. Although JAK inhibitor therapy reduces splenomegaly and improves systemic symptoms in patients, this treatment does not appreciably reduce the number of neoplastic cells. To identify potential mechanisms underlying this inherent resistance phenomenon, we performed pathway-centric, gain-of-function screens in JAK2(V617F) hematopoietic cells and found that the activation of the guanosine triphosphatase (GTPase) RAS or its effector pathways [mediated by the kinases AKT and ERK (extracellular signal-regulated kinase)] renders cells insensitive to JAK inhibition. Resistant MPN cells became sensitized to JAK inhibitors when also exposed to inhibitors of the AKT or ERK pathways. Mechanistically, in JAK2(V617F) cells, a JAK2-mediated inactivating phosphorylation of the proapoptotic protein BAD [B cell lymphoma 2 (BCL-2)-associated death promoter] promoted cell survival. In sensitive cells, exposure to a JAK inhibitor resulted in dephosphorylation of BAD, enabling BAD to bind and sequester the prosurvival protein BCL-XL (BCL-2-like 1), thereby triggering apoptosis. In resistant cells, RAS effector pathways maintained BAD phosphorylation in the presence of JAK inhibitors, yielding a specific dependence on BCL-XL for survival. In patients with MPNs, activating mutations in RAS co-occur with the JAK2(V617F) mutation in the malignant cells, suggesting that RAS effector pathways likely play an important role in clinically observed resistance.

  2. The Significance of Ras Activity in Pancreatic Cancer Initiation

    PubMed Central

    Logsdon, Craig D.; Lu, Weiqin

    2016-01-01

    The genetic landscape of pancreatic cancer shows nearly ubiquitous mutations of K-RAS. However, oncogenic K-Rasmt alone is not sufficient to lead to pancreatic ductal adenocarcinoma (PDAC) in either human or in genetically modified adult mouse models. Many stimulants, such as high fat diet, CCK, LPS, PGE2 and others, have physiological effects at low concentrations that are mediated in part through modest increases in K-Ras activity. However, at high concentrations, they induce inflammation that, in the presence of oncogenic K-Ras expression, substantially accelerates PDAC formation. The mechanism involves increased activity of oncogenic K-Rasmt. Unlike what has been proposed in the standard paradigm for the role of Ras in oncogenesis, oncogenic K-Rasmt is now known to not be constitutively active. Rather, it can be activated by standard mechanisms similar to wild-type K-Ras, but its activity is sustained for a prolonged period. Furthermore, if the level of K-Ras activity exceeds a threshold at which it begins to generate its own activators, then a feed-forward loop is formed between K-Ras activity and inflammation and pathological processes including oncogenesis are initiated. Oncogenic K-Rasmt activation, a key event in PDAC initiation and development, is subject to complex regulatory mechanisms. Reagents which inhibit inflammation, such as the Cox2 inhibitor celecoxib, block the feed-forward loop and prevent induction of PDAC in models with endogenous oncogenic K-Rasmt. Increased understanding of the role of activating and inhibitory mechanisms on oncogenic K-Rasmt activity is of paramount importance for the development of preventive and therapeutic strategies to fight against this lethal disease. PMID:26929740

  3. A Functional Screen Reveals an Extensive Layer of Transcriptional and Splicing Control Underlying RAS/MAPK Signaling in Drosophila

    PubMed Central

    Ashton-Beaucage, Dariel; Udell, Christian M.; Gendron, Patrick; Sahmi, Malha; Lefrançois, Martin; Baril, Caroline; Guenier, Anne-Sophie; Duchaine, Jean; Lamarre, Daniel; Lemieux, Sébastien; Therrien, Marc

    2014-01-01

    The small GTPase RAS is among the most prevalent oncogenes. The evolutionarily conserved RAF-MEK-MAPK module that lies downstream of RAS is one of the main conduits through which RAS transmits proliferative signals in normal and cancer cells. Genetic and biochemical studies conducted over the last two decades uncovered a small set of factors regulating RAS/MAPK signaling. Interestingly, most of these were found to control RAF activation, thus suggesting a central regulatory role for this event. Whether additional factors are required at this level or further downstream remains an open question. To obtain a comprehensive view of the elements functionally linked to the RAS/MAPK cascade, we used a quantitative assay in Drosophila S2 cells to conduct a genome-wide RNAi screen for factors impacting RAS-mediated MAPK activation. The screen led to the identification of 101 validated hits, including most of the previously known factors associated to this pathway. Epistasis experiments were then carried out on individual candidates to determine their position relative to core pathway components. While this revealed several new factors acting at different steps along the pathway—including a new protein complex modulating RAF activation—we found that most hits unexpectedly work downstream of MEK and specifically influence MAPK expression. These hits mainly consist of constitutive splicing factors and thereby suggest that splicing plays a specific role in establishing MAPK levels. We further characterized two representative members of this group and surprisingly found that they act by regulating mapk alternative splicing. This study provides an unprecedented assessment of the factors modulating RAS/MAPK signaling in Drosophila. In addition, it suggests that pathway output does not solely rely on classical signaling events, such as those controlling RAF activation, but also on the regulation of MAPK levels. Finally, it indicates that core splicing components can also

  4. Mitochondrial Activity and Cyr1 Are Key Regulators of Ras1 Activation of C. albicans Virulence Pathways

    PubMed Central

    Grahl, Nora; Demers, Elora G.; Lindsay, Allia K.; Harty, Colleen E.; Willger, Sven D.; Piispanen, Amy E.; Hogan, Deborah A.

    2015-01-01

    Candida albicans is both a major fungal pathogen and a member of the commensal human microflora. The morphological switch from yeast to hyphal growth is associated with disease and many environmental factors are known to influence the yeast-to-hyphae switch. The Ras1-Cyr1-PKA pathway is a major regulator of C. albicans morphogenesis as well as biofilm formation and white-opaque switching. Previous studies have shown that hyphal growth is strongly repressed by mitochondrial inhibitors. Here, we show that mitochondrial inhibitors strongly decreased Ras1 GTP-binding and activity in C. albicans and similar effects were observed in other Candida species. Consistent with there being a connection between respiratory activity and GTP-Ras1 binding, mutants lacking complex I or complex IV grew as yeast in hypha-inducing conditions, had lower levels of GTP-Ras1, and Ras1 GTP-binding was unaffected by respiratory inhibitors. Mitochondria-perturbing agents decreased intracellular ATP concentrations and metabolomics analyses of cells grown with different respiratory inhibitors found consistent perturbation of pyruvate metabolism and the TCA cycle, changes in redox state, increased catabolism of lipids, and decreased sterol content which suggested increased AMP kinase activity. Biochemical and genetic experiments provide strong evidence for a model in which the activation of Ras1 is controlled by ATP levels in an AMP kinase independent manner. The Ras1 GTPase activating protein, Ira2, but not the Ras1 guanine nucleotide exchange factor, Cdc25, was required for the reduction of Ras1-GTP in response to inhibitor-mediated reduction of ATP levels. Furthermore, Cyr1, a well-characterized Ras1 effector, participated in the control of Ras1-GTP binding in response to decreased mitochondrial activity suggesting a revised model for Ras1 and Cyr1 signaling in which Cyr1 and Ras1 influence each other and, together with Ira2, seem to form a master-regulatory complex necessary to integrate

  5. Expression of oncogenic K-ras from its endogenous promoter leads to a partial block of erythroid differentiation and hyperactivation of cytokine-dependent signaling pathways.

    PubMed

    Zhang, Jing; Liu, Yangang; Beard, Caroline; Tuveson, David A; Jaenisch, Rudolf; Jacks, Tyler E; Lodish, Harvey F

    2007-06-15

    When overexpressed in primary erythroid progenitors, oncogenic Ras leads to the constitutive activation of its downstream signaling pathways, severe block of terminal erythroid differentiation, and cytokine-independent growth of primary erythroid progenitors. However, whether high-level expression of oncogenic Ras is required for these phenotypes is unknown. To address this issue, we expressed oncogenic K-ras (K-ras(G12D)) from its endogenous promoter using a tetracycline-inducible system. We show that endogenous K-ras(G12D) leads to a partial block of terminal erythroid differentiation in vivo. In contrast to results obtained when oncogenic Ras was overexpressed from retroviral vectors, endogenous levels of K-ras(G12D) fail to constitutively activate but rather hyperactivate cytokine-dependent signaling pathways, including Stat5, Akt, and p44/42 MAPK, in primary erythroid progenitors. This explains previous observations that hematopoietic progenitors expressing endogenous K-ras(G12D) display hypersensitivity to cytokine stimulation in various colony assays. Our results support efforts to modulate Ras signaling for treating hematopoietic malignancies.

  6. Effect of Angiotensin II and Small GTPase Ras Signaling Pathway Inhibition on Early Renal Changes in a Murine Model of Obstructive Nephropathy

    PubMed Central

    Rodríguez-Peña, Ana B.; Fuentes-Calvo, Isabel; Docherty, Neil G.; Arévalo, Miguel; Grande, María T.; Eleno, Nélida; Pérez-Barriocanal, Fernando; López-Novoa, José M.

    2014-01-01

    Tubulointerstitial fibrosis is a major feature of chronic kidney disease. Unilateral ureteral obstruction (UUO) in rodents leads to the development of renal tubulointerstitial fibrosis consistent with histopathological changes observed in advanced chronic kidney disease in humans. The purpose of this study was to assess the effect of inhibiting angiotensin II receptors or Ras activation on early renal fibrotic changes induced by UUO. Animals either received angiotensin II or underwent UUO. UUO animals received either losartan, atorvastatin, and farnesyl transferase inhibitor (FTI) L-744,832, or chaetomellic acid A (ChA). Levels of activated Ras, phospho-ERK1/2, phospho-Akt, fibronectin, and α-smooth muscle actin were subsequently quantified in renal tissue by ELISA, Western blot, and/or immunohistochemistry. Our results demonstrate that administration of angiotensin II induces activation of the small GTPase Ras/Erk/Akt signaling system, suggesting an involvement of angiotensin II in the early obstruction-induced activation of renal Ras. Furthermore, upstream inhibition of Ras signalling by blocking either angiotensin AT1 type receptor or by inhibiting Ras prenylation (atorvastatin, FTI o ChA) reduced the activation of the Ras/Erk/Akt signaling system and decreased the early fibrotic response in the obstructed kidney. This study points out that pharmacological inhibition of Ras activation may hold promise as a future strategy in the prevention of renal fibrosis. PMID:25101263

  7. Effect of angiotensin II and small GTPase Ras signaling pathway inhibition on early renal changes in a murine model of obstructive nephropathy.

    PubMed

    Rodríguez-Peña, Ana B; Fuentes-Calvo, Isabel; Docherty, Neil G; Arévalo, Miguel; Grande, María T; Eleno, Nélida; Pérez-Barriocanal, Fernando; López-Novoa, José M

    2014-01-01

    Tubulointerstitial fibrosis is a major feature of chronic kidney disease. Unilateral ureteral obstruction (UUO) in rodents leads to the development of renal tubulointerstitial fibrosis consistent with histopathological changes observed in advanced chronic kidney disease in humans. The purpose of this study was to assess the effect of inhibiting angiotensin II receptors or Ras activation on early renal fibrotic changes induced by UUO. Animals either received angiotensin II or underwent UUO. UUO animals received either losartan, atorvastatin, and farnesyl transferase inhibitor (FTI) L-744,832, or chaetomellic acid A (ChA). Levels of activated Ras, phospho-ERK1/2, phospho-Akt, fibronectin, and α-smooth muscle actin were subsequently quantified in renal tissue by ELISA, Western blot, and/or immunohistochemistry. Our results demonstrate that administration of angiotensin II induces activation of the small GTPase Ras/Erk/Akt signaling system, suggesting an involvement of angiotensin II in the early obstruction-induced activation of renal Ras. Furthermore, upstream inhibition of Ras signalling by blocking either angiotensin AT1 type receptor or by inhibiting Ras prenylation (atorvastatin, FTI o ChA) reduced the activation of the Ras/Erk/Akt signaling system and decreased the early fibrotic response in the obstructed kidney. This study points out that pharmacological inhibition of Ras activation may hold promise as a future strategy in the prevention of renal fibrosis.

  8. Small molecule binding sites on the Ras:SOS complex can be exploited for inhibition of Ras activation.

    PubMed

    Winter, Jon J G; Anderson, Malcolm; Blades, Kevin; Brassington, Claire; Breeze, Alexander L; Chresta, Christine; Embrey, Kevin; Fairley, Gary; Faulder, Paul; Finlay, M Raymond V; Kettle, Jason G; Nowak, Thorsten; Overman, Ross; Patel, S Joe; Perkins, Paula; Spadola, Loredana; Tart, Jonathan; Tucker, Julie A; Wrigley, Gail

    2015-03-12

    Constitutively active mutant KRas displays a reduced rate of GTP hydrolysis via both intrinsic and GTPase-activating protein-catalyzed mechanisms, resulting in the perpetual activation of Ras pathways. We describe a fragment screening campaign using X-ray crystallography that led to the discovery of three fragment binding sites on the Ras:SOS complex. The identification of tool compounds binding at each of these sites allowed exploration of two new approaches to Ras pathway inhibition by stabilizing or covalently modifying the Ras:SOS complex to prevent the reloading of Ras with GTP. Initially, we identified ligands that bound reversibly to the Ras:SOS complex in two distinct sites, but these compounds were not sufficiently potent inhibitors to validate our stabilization hypothesis. We conclude by demonstrating that covalent modification of Cys118 on Ras leads to a novel mechanism of inhibition of the SOS-mediated interaction between Ras and Raf and is effective at inhibiting the exchange of labeled GDP in both mutant (G12C and G12V) and wild type Ras.

  9. Role of neuronal ras activity in adult hippocampal neurogenesis and cognition.

    PubMed

    Manns, Martina; Leske, Oliver; Gottfried, Sebastian; Bichler, Zoë; Lafenêtre, Pauline; Wahle, Petra; Heumann, Rolf

    2011-01-01

    Hippocampal neurogenesis in the adult mammalian brain is modulated by various signals like growth factors, hormones, neuropeptides, and neurotransmitters. All of these factors can (but not necessarily do) converge on the activation of the G protein Ras. We used a transgenic mouse model (synRas mice) expressing constitutively activated G12V-Harvey Ras selectively in differentiated neurons to investigate the possible effects onto neurogenesis. H-Ras activation in neurons attenuates hippocampal precursor cell generation at an early stage of the proliferative cascade before neuronal lineage determination occurs. Therefore it is unlikely that the transgenically activated H-Ras in neurons mediates this effect by a direct, intracellular signaling mechanism. Voluntary exercise restores neurogenesis up to wild type level presumably mediated by brain-derived neurotrophic factor. Reduced neurogenesis is linked to impairments in spatial short-term memory and object recognition, the latter can be rescued by voluntary exercise, as well. These data support the view that new cells significantly increase complexity that can be processed by the hippocampal network when experience requires high demands to associate stimuli over time and/or space.

  10. Cross-talk between Ras and Rho signalling pathways in transformation favours proliferation and increased motility.

    PubMed

    Sahai, E; Olson, M F; Marshall, C J

    2001-02-15

    Transformation by oncogenic Ras requires the function of the Rho family GTPases. We find that Ras-transformed cells have elevated levels of RhoA-GTP, which functions to inhibit the expression of the cell cycle inhibitor p21/Waf1. These high levels of Rho-GTP are not a direct consequence of Ras signalling but are selected for in response to sustained ERK-MAP kinase signalling. While the elevated levels of Rho-GTP control the level of p21/Waf, they no longer regulate the formation of actin stress fibres in transformed cells. We show that the sustained ERK-MAP kinase signalling resulting from transformation by oncogenic Ras down-regulates ROCK1 and Rho-kinase, two Rho effectors required for actin stress fibre formation. The repression of Rho- dependent stress fibre formation by ERK-MAP kinase signalling contributes to the increased motility of Ras-transformed fibroblasts. Overexpression of the ROCK target LIM kinase restores actin stress fibres and inhibits the motility of Ras-transformed fibroblasts. We propose a model in which Ras and Rho signalling pathways cross-talk to promote signalling pathways favouring transformation.

  11. Modulation of the Ras/MAPK signalling pathway by the redox function of selenoproteins in Drosophila melanogaster.

    PubMed

    Morey, M; Serras, F; Baguñà, J; Hafen, E; Corominas, M

    2001-10-01

    Modulation of reactive oxygen species (ROS) plays a key role in signal transduction pathways. Selenoproteins act controlling the redox balance of the cell. We have studied how the alteration of the redox balance caused by patufet (selD(ptuf)), a null mutation in the Drosophila melanogaster selenophosphate synthetase 1 (sps1) gene, which codes for the SelD enzyme of the selenoprotein biosynthesis, affects the Ras/MAPK signalling pathway. The selD(ptuf) mutation dominantly suppresses the phenotypes in the eye and the wing caused by hyperactivation of the Ras/MAPK cassette and the activated forms of the Drosophila EGF receptor (DER) and Sevenless (Sev) receptor tyrosine kinases (RTKs), which signal in the eye and wing, respectively. No dominant interaction is observed with sensitized conditions in the Wnt, Notch, Insulin-Pi3K, and DPP signalling pathways. Our current hypothesis is that selenoproteins selectively modulate the Ras/MAPK signalling pathway through their antioxidant function. This is further supported by the fact that a selenoprotein-independent increase in ROS caused by the catalase amorphic Cat(n1) allele also reduces Ras/MAPK signalling. Here, we present the first evidence for the role of intracellular redox environment in signalling pathways in Drosophila as a whole organism.

  12. H-Ras-specific activation of Rac-MKK3/6-p38 pathway: its critical role in invasion and migration of breast epithelial cells.

    PubMed

    Shin, Ilchung; Kim, Seonhoe; Song, Hyun; Kim, Hyeong-Reh Choi; Moon, Aree

    2005-04-15

    Human tumors frequently exhibit constitutively activated Ras signaling, which contributes to the malignant phenotype. Mounting evidence suggests unique roles of the Ras family members, H-Ras, N-Ras and K-Ras, in normal and pathological conditions. In an effort to dissect distinct Ras isoform-specific functions in malignant phenotypic changes, we previously established H-Ras- and N-Ras-activated MCF10A human breast epithelial cell lines. Using these, we showed that p38 kinase is a key signaling molecule differentially regulated between H-Ras and N-Ras, leading to H-Ras-specific induction of invasive and migrative phenotypes. The present study is to further investigate H-Ras- and N-Ras-mediated signaling pathways and to unveil how these pathways are integrated for regulation of invasive/migrative phenotypic conversion of human breast epithelial cells. Here we report that the Rac-MAPK kinase (MKK)3/6-p38 pathway is a unique signaling pathway activated by H-Ras, leading to the invasive/migrative phenotype. In contrast, Raf-MEK-ERK and phosphatidylinositol 3-kinase-Akt pathways, which are fundamental to proliferation and differentiation, are activated by both H-Ras and N-Ras. A significant role for p38 in cell invasion is further supported by the observation that p38 activation by MKK6 transfection is sufficient to induce invasive and migrative phenotypes in MCF10A cells. Activation of the MKK6-p38 pathway results in a marked induction of matrix metalloproteinase (MMP)-2, whereas it had little effect on MMP-9, suggesting MMP-2 up-regulation by MKK6-p38 pathway as a key step for H-Ras-induced invasion and migration. We also provide evidence for cross-talk among the Rac, Raf, and phosphatidylinositol 3-kinase pathways critical for regulation of MMP-2 and MMP-9 expression and invasive phenotype. Taken together, the present study elucidated the role of the Rac-MKK3/6-p38 pathway leading to H-Ras-specific induction of malignant progression in breast epithelial cells

  13. The novel plant homeodomain protein rhinoceros antagonizes Ras signaling in the Drosophila eye.

    PubMed Central

    Voas, Matthew G; Rebay, Ilaria

    2003-01-01

    The sequential specification of cell fates in the Drosophila eye requires repeated activation of the epidermal growth factor receptor (EGFR)/Ras/MAP kinase (MAPK) pathway. Equally important are the multiple layers of inhibitory regulation that prevent excessive or inappropriate signaling. Here we describe the molecular and genetic analysis of a previously uncharacterized gene, rhinoceros (rno), that we propose functions to restrict EGFR signaling in the eye. Loss of rno results in the overproduction of photoreceptors, cone cells, and pigment cells and a corresponding reduction in programmed cell death, all phenotypes characteristic of hyperactivated EGFR signaling. Genetic interactions between rno and multiple EGFR pathway components support this hypothesis. rno encodes a novel but evolutionarily conserved nuclear protein with a PHD zinc-finger domain, a motif commonly found in chromatin-remodeling factors. Future analyses of rno will help to elucidate the regulatory strategies that modulate EGFR signaling in the fly eye. PMID:14704181

  14. Epidermal growth factor and Ras regulate gene expression in GH4 pituitary cells by separate, antagonistic signal transduction pathways.

    PubMed Central

    Pickett, C A; Gutierrez-Hartmann, A

    1995-01-01

    regions on the proximal rPRL promoter. One region maps between -255 and -212, near the Ras response element, and a second maps between -125 and -54. The latter region appears to involve footprint 2, a previously identified repressor site on the rPRL promoter. Neither footprint 1 nor 3, known GHF-1 binding sites, appears to be crucial to RGF-mediated rPRL promoter activation. The results of these studies indicate that in GH4 neuroendocrine cells, rPRL gene regulation by EGF is mediated by a signal transduction pathway that is separate and antagonistic to the Ras pathway. Hence, the functional role of the Ras/Raf/MAP kinase pathway in mediating transcriptional responses to EGF and other receptor tyrosine kinase may differ in highly specialized cell types. PMID:8524243

  15. Negative feedback regulation and desensitization of insulin- and epidermal growth factor-stimulated p21ras activation.

    PubMed

    Langlois, W J; Sasaoka, T; Saltiel, A R; Olefsky, J M

    1995-10-27

    Insulin and epidermal growth factor receptors transmit signals for cell proliferation and gene regulation through formation of active GTP-bound p21ras mediated by the guanine nucleotide exchange factor Sos. Sos is constitutively bound to the adaptor protein Grb2 and growth factor stimulation induces association of the Grb2/Sos complex with Shc and movement of Sos to the plasma membrane location of p21ras. Insulin or epidermal growth factor stimulation induces a rapid increase in p21ras levels, but after several minutes levels decline toward basal despite ongoing hormone stimulation. Here we show that deactivation of p21ras correlates closely with phosphorylation of Sos and dissociation of Sos from Grb2, and that inhibition of mitogen-activated protein (MAP) kinase kinase (also known as extracellular signal-related kinase (ERK) kinase, or MEK) blocks both events, resulting in prolonged p21ras activation. These data suggest that a negative feedback loop exists whereby activation of the Raf/MEK/MAP kinase cascade by p21ras causes Sos phosphorylation and, therefore, Sos/Grb2 dissociation, limiting the duration of p21ras activation by growth factors. A serine/threonine kinase downstream of MEK (probably MAP kinase) mediates this desensitization feedback pathway.

  16. Increased expression of the Ras suppressor Rsu-1 enhances Erk-2 activation and inhibits Jun kinase activation.

    PubMed

    Masuelli, L; Cutler, M L

    1996-10-01

    Studies were undertaken to determine the effect of the Ras suppressor Rsu-1 on Ras signal transduction pathways in two different cell backgrounds. An expression vector containing the mouse rsu-1 cDNA under the control of a mouse mammary tumor virus promoter was introduced into NIH 3T3 cells and the pheochromocytoma cell line PC12. Cell lines developed in the NIH 3T3 background expressed p33rsu-1 at approximately twice the normal endogenous level. However, PC12 cell clones which expressed p33rsu-1 at an increased level in a regulatable fashion in response to dexamethasone were isolated. Analysis of proteins involved in regulation of Ras and responsive to Ras signal transduction revealed similar changes in the two cell backgrounds in the presence of elevated p33rsu-1. There was an increase in the level of SOS, the guanine nucleotide exchange factor, and an increase in the percentage of GTP-bound Ras. In addition, there was an increase in the amount of p120 Ras-specific GTPase-activating protein (GAP) and GAP-associated p190. However, a decrease in Ras GTPase-activating activity was detected in lysates of the Rsu-1 transfectants, and immunoprecipitated p120 GAP from the Rsu-1 transfectants showed less Ras GTPase-activating activity than GAP from control cells. Activation of Erk-2 kinase by growth factor and tetradecanyol phorbol acetate was greater in the Rsu-1 transfectants than in control cells. However, c-Jun amino-terminal kinase activity (Jun kinase) was not activatable by epidermal growth factor in Rsu-1 PC12 cell transfectants, in contrast to the PC12 vector control cell line. Transient expression of p33rsu-1 in Cos1 cells following cotransfection with either hemagglutinin-tagged Jun kinase or hemagglutinin-tagged Erk-2 revealed that Rsu-1 expression inhibited constitutive Jun kinase activity while enhancing Erk-2 activity. Detection of in vitro binding of Rsu-1 to Raf-1 suggested that in Rsu-1 transfectants, increased activation of the Raf-1 pathway occurred

  17. Mapping the functional versatility and fragility of Ras GTPase signaling circuits through in vitro network reconstitution

    PubMed Central

    Coyle, Scott M; Lim, Wendell A

    2016-01-01

    The Ras-superfamily GTPases are central controllers of cell proliferation and morphology. Ras signaling is mediated by a system of interacting molecules: upstream enzymes (GEF/GAP) regulate Ras’s ability to recruit multiple competing downstream effectors. We developed a multiplexed, multi-turnover assay for measuring the dynamic signaling behavior of in vitro reconstituted H-Ras signaling systems. By including both upstream regulators and downstream effectors, we can systematically map how different network configurations shape the dynamic system response. The concentration and identity of both upstream and downstream signaling components strongly impacted the timing, duration, shape, and amplitude of effector outputs. The distorted output of oncogenic alleles of Ras was highly dependent on the balance of positive (GAP) and negative (GEF) regulators in the system. We found that different effectors interpreted the same inputs with distinct output dynamics, enabling a Ras system to encode multiple unique temporal outputs in response to a single input. We also found that different Ras-to-GEF positive feedback mechanisms could reshape output dynamics in distinct ways, such as signal amplification or overshoot minimization. Mapping of the space of output behaviors accessible to Ras provides a design manual for programming Ras circuits, and reveals how these systems are readily adapted to produce an array of dynamic signaling behaviors. Nonetheless, this versatility comes with a trade-off of fragility, as there exist numerous paths to altered signaling behaviors that could cause disease. DOI: http://dx.doi.org/10.7554/eLife.12435.001 PMID:26765565

  18. Oncogenic Ras diverts a host TNF tumor suppressor activity into tumor promoter.

    PubMed

    Cordero, Julia B; Macagno, Juan P; Stefanatos, Rhoda K; Strathdee, Karen E; Cagan, Ross L; Vidal, Marcos

    2010-06-15

    The roles of inflammatory cytokines and the immune response in cancer remain paradoxical. In the case of tumor necrosis factor (TNF), there is undisputed evidence indicating both protumor and antitumor activities. Recent work in Drosophila indicated that a TNF-dependent mechanism eliminates cells deficient for the polarity tumor suppressors dlg or scrib. In this study, however, we show that in tumors deficient for scrib that also expressed the Ras oncoprotein, the TNF signal was diverted into a protumor signal that enhanced tumor growth through larval arrest and stimulated invasive migration. In this case, TNF promoted malignancy and was detrimental to host survival. TNF was expressed at high levels by tumor-associated hemocytes recruited from the circulation. The expression of TNF by hemocytes was both necessary and sufficient to trigger TNF signaling in tumor cells. Our evidence suggests that tumors can evolve into malignancy through oncogenic Ras activation and the hijacking of TNF signaling.

  19. Nonradioactive methods for detecting activation of Ras-related small G proteins.

    PubMed

    Andres, Douglas A

    2004-01-01

    Ras-related small GTPases serve as critical regulators for a wide range of cellular signaling pathways and are activated by the conversion of the GDP-bound state to the GTP-bound conformation. Until recently, measurement of the GTP-bound active form of Ras-related G proteins involved immunoprecipitation of 32P-labeled protein followed by separation of the labeled GTP/GDP bound to GTPase. A new method based on the large affinity difference of the GTP- and GDP-bound form of Ras proteins for specific binding domains of effector proteins in vitro has been developed. By using glutathione S-transferase (GST) fusion proteins containing these binding domains, the GTP-bound form of the GTPase can be precipitated from cell lysates. In principle, this method can be used for all members of the Ras superfamily. Here we describe a general procedure to monitor the GTP-bound form of Ras-related GTPases. PMID:15173615

  20. Identification of murine homologues of the Drosophila son of sevenless gene: potential activators of ras.

    PubMed Central

    Bowtell, D; Fu, P; Simon, M; Senior, P

    1992-01-01

    Several findings suggest that signals from tyrosine kinases are transduced, at least in part, through ras proteins. These findings include (i) blockage of the transforming activity of constitutively active tyrosine kinases by inhibiting ras function and (ii) genetic screens in Caenorhabditis elegans and in Drosophila that identified ras genes as downstream effectors of tyrosine kinases. The recently isolated Drosophila gene Son of sevenless (Sos) is postulated to act as a positive regulatory link between tyrosine kinase and ras proteins by catalyzing exchange of GDP for GTP on ras protein. Such exchange proteins have been reported in extracts of mammalian cells but have not been previously characterized at a molecular level. As Sos appears to function in this role in Drosophila, we sought to isolate a vertebrate counterpart(s). We have characterized two widely expressed murine genes with a high degree of homology to Sos. Hybridization with human DNA and RNA indicates a high degree of conservation of these genes in other vertebrates. Images PMID:1631150

  1. Wild-Type N-Ras, Overexpressed in Basal-like Breast Cancer, Promotes Tumor Formation by Inducing IL-8 Secretion via JAK2 Activation.

    PubMed

    Zheng, Ze-Yi; Tian, Lin; Bu, Wen; Fan, Cheng; Gao, Xia; Wang, Hai; Liao, Yi-Hua; Li, Yi; Lewis, Michael T; Edwards, Dean; Zwaka, Thomas P; Hilsenbeck, Susan G; Medina, Daniel; Perou, Charles M; Creighton, Chad J; Zhang, Xiang H-F; Chang, Eric C

    2015-07-21

    Basal-like breast cancers (BLBCs) are aggressive, and their drivers are unclear. We have found that wild-type N-RAS is overexpressed in BLBCs but not in other breast cancer subtypes. Repressing N-RAS inhibits transformation and tumor growth, whereas overexpression enhances these processes even in preinvasive BLBC cells. We identified N-Ras-responsive genes, most of which encode chemokines; e.g., IL8. Expression levels of these chemokines and N-RAS in tumors correlate with outcome. N-Ras, but not K-Ras, induces IL-8 by binding and activating the cytoplasmic pool of JAK2; IL-8 then acts on both the cancer cells and stromal fibroblasts. Thus, BLBC progression is promoted by increasing activities of wild-type N-Ras, which mediates autocrine/paracrine signaling that can influence both cancer and stroma cells.

  2. The NPM-ALK tyrosine kinase mimics TCR signalling pathways, inducing NFAT and AP-1 by RAS-dependent mechanisms.

    PubMed

    Turner, Suzanne D; Yeung, Debra; Hadfield, Kathryn; Cook, Simon J; Alexander, Denis R

    2007-04-01

    Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) expression is associated with the lymphoid malignancy anaplastic large cell lymphoma (ALCL) and results from a t(2;5) chromosomal translocation. We show that NPM-ALK induces Ras activation and phosphorylation of the ERK MAP Kinase consistent with activation of the Ras-MAP Kinase pathway. Furthermore, we demonstrate that activation of Ras is necessary for inducing transcription via NFAT/AP-1 composite transcriptional binding sites. This activity is dependent on NPM-ALK forming complexes with proteins that bind to autophosphorylated tyrosine residues at positions 156, 567 and 664, associated with binding to IRS-1, Shc and PLCgamma, respectively. Specifically, NPM-ALK activates transcription from the TRE promoter element, an AP-1 binding region, an activity dependent on both Ras and Shc activity. Our results show that NPM-ALK mimics activated T-cell receptor signalling by inducing pathways associated with the activation of NFAT/AP-1 transcription factors that bind to promoter elements found in a broad array of cytokine genes.

  3. Active Ras Triggers Death in Glioblastoma Cells Through Hyperstimulation of Macropinocytosis

    PubMed Central

    Overmeyer, Jean H.; Kaul, Aparna; Johnson, Erin E.; Maltese, William A.

    2010-01-01

    Expression of activated Ras in glioblastoma cells induces accumulation of large phase-lucent cytoplasmic vacuoles, followed by cell death. This was previously described as autophagic cell death. However, unlike autophagosomes, the Ras-induced vacuoles are not bounded by a double membrane and do not sequester organelles or cytoplasm. Moreover, they are not acidic and do not contain the autophagosomal membrane protein, LC3-II. Here we show that the vacuoles are enlarged macropinosomes. They rapidly incorporate extracellular fluid-phase tracers, but do not sequester transferrin or the endosomal protein, EEA1. Ultimately, the cells expressing activated Ras detach from the substratum and rupture, coincident with the displacement of cytoplasm with huge macropinosome-derived vacuoles. These changes are accompanied by caspase activation, but the broad-spectrum caspase inhibitor, z-VAD, does not prevent cell death. Moreover, the majority of degenerating cells do not exhibit chromatin condensation typical of apoptosis. These observations provide evidence for a necrosis-like form of cell death initiated by dysregulation of macropinocytosis, which we have dubbed ‘methuosis’. An activated form of the Rac1 GTPase induces a similar form of cell death, suggesting that Ras acts through Rac-dependent signaling pathways to hyperstimulate macropinocytosis in glioblastoma. Further study of these signaling pathways may lead to the identification of other chemical and physiological triggers for this unusual form of cell death. PMID:18567800

  4. One-way membrane trafficking of SOS in receptor-triggered Ras activation.

    PubMed

    Christensen, Sune M; Tu, Hsiung-Lin; Jun, Jesse E; Alvarez, Steven; Triplet, Meredith G; Iwig, Jeffrey S; Yadav, Kamlesh K; Bar-Sagi, Dafna; Roose, Jeroen P; Groves, Jay T

    2016-09-01

    SOS is a key activator of the small GTPase Ras. In cells, SOS-Ras signaling is thought to be initiated predominantly by membrane recruitment of SOS via the adaptor Grb2 and balanced by rapidly reversible Grb2-SOS binding kinetics. However, SOS has multiple protein and lipid interactions that provide linkage to the membrane. In reconstituted-membrane experiments, these Grb2-independent interactions were sufficient to retain human SOS on the membrane for many minutes, during which a single SOS molecule could processively activate thousands of Ras molecules. These observations raised questions concerning how receptors maintain control of SOS in cells and how membrane-recruited SOS is ultimately released. We addressed these questions in quantitative assays of reconstituted SOS-deficient chicken B-cell signaling systems combined with single-molecule measurements in supported membranes. These studies revealed an essentially one-way trafficking process in which membrane-recruited SOS remains trapped on the membrane and continuously activates Ras until being actively removed via endocytosis. PMID:27501536

  5. One-way membrane trafficking of SOS in receptor-triggered Ras activation.

    PubMed

    Christensen, Sune M; Tu, Hsiung-Lin; Jun, Jesse E; Alvarez, Steven; Triplet, Meredith G; Iwig, Jeffrey S; Yadav, Kamlesh K; Bar-Sagi, Dafna; Roose, Jeroen P; Groves, Jay T

    2016-09-01

    SOS is a key activator of the small GTPase Ras. In cells, SOS-Ras signaling is thought to be initiated predominantly by membrane recruitment of SOS via the adaptor Grb2 and balanced by rapidly reversible Grb2-SOS binding kinetics. However, SOS has multiple protein and lipid interactions that provide linkage to the membrane. In reconstituted-membrane experiments, these Grb2-independent interactions were sufficient to retain human SOS on the membrane for many minutes, during which a single SOS molecule could processively activate thousands of Ras molecules. These observations raised questions concerning how receptors maintain control of SOS in cells and how membrane-recruited SOS is ultimately released. We addressed these questions in quantitative assays of reconstituted SOS-deficient chicken B-cell signaling systems combined with single-molecule measurements in supported membranes. These studies revealed an essentially one-way trafficking process in which membrane-recruited SOS remains trapped on the membrane and continuously activates Ras until being actively removed via endocytosis.

  6. Combination of a Selective HSP90α/β Inhibitor and a RAS-RAF-MEK-ERK Signaling Pathway Inhibitor Triggers Synergistic Cytotoxicity in Multiple Myeloma Cells

    PubMed Central

    Mimura, Naoya; Minami, Jiro; Ohguchi, Hiroto; Yoshida, Yasuhiro; Sagawa, Morihiko; Gorgun, Gullu; Cirstea, Diana; Cottini, Francesca; Jakubikova, Jana; Tai, Yu-Tzu; Chauhan, Dharminder; Richardson, Paul G.; Munshi, Nikhil; Ando, Kiyoshi; Utsugi, Teruhiro; Hideshima, Teru; Anderson, Kenneth C.

    2015-01-01

    Heat shock protein (HSP)90 inhibitors have shown significant anti-tumor activities in preclinical settings in both solid and hematological tumors. We previously reported that the novel, orally available HSP90α/β inhibitor TAS-116 shows significant anti-MM activities. In this study, we further examined the combination effect of TAS-116 with a RAS-RAF-MEK-ERK signaling pathway inhibitor in RAS- or BRAF-mutated MM cell lines. TAS-116 monotherapy significantly inhibited growth of RAS-mutated MM cell lines and was associated with decreased expression of downstream target proteins of the RAS-RAF-MEK-ERK signaling pathway. Moreover, TAS-116 showed synergistic growth inhibitory effects with the farnesyltransferase inhibitor tipifarnib, the BRAF inhibitor dabrafenib, and the MEK inhibitor selumetinib. Importantly, treatment with these inhibitors paradoxically enhanced p-C-Raf, p-MEK, and p-ERK activity, which was abrogated by TAS-116. TAS-116 also enhanced dabrafenib-induced MM cytotoxicity associated with mitochondrial damage-induced apoptosis, even in the BRAF-mutated U266 MM cell line. This enhanced apoptosis in RAS-mutated MM triggered by combination treatment was observed even in the presence of bone marrow stromal cells. Taken together, our results provide the rationale for novel combination treatment with HSP90α/β inhibitor and RAS-RAF-MEK-ERK signaling pathway inhibitors to improve outcomes in patients with in RAS- or BRAF-mutated MM. PMID:26630652

  7. Combination of a Selective HSP90α/β Inhibitor and a RAS-RAF-MEK-ERK Signaling Pathway Inhibitor Triggers Synergistic Cytotoxicity in Multiple Myeloma Cells.

    PubMed

    Suzuki, Rikio; Kikuchi, Shohei; Harada, Takeshi; Mimura, Naoya; Minami, Jiro; Ohguchi, Hiroto; Yoshida, Yasuhiro; Sagawa, Morihiko; Gorgun, Gullu; Cirstea, Diana; Cottini, Francesca; Jakubikova, Jana; Tai, Yu-Tzu; Chauhan, Dharminder; Richardson, Paul G; Munshi, Nikhil; Ando, Kiyoshi; Utsugi, Teruhiro; Hideshima, Teru; Anderson, Kenneth C

    2015-01-01

    Heat shock protein (HSP)90 inhibitors have shown significant anti-tumor activities in preclinical settings in both solid and hematological tumors. We previously reported that the novel, orally available HSP90α/β inhibitor TAS-116 shows significant anti-MM activities. In this study, we further examined the combination effect of TAS-116 with a RAS-RAF-MEK-ERK signaling pathway inhibitor in RAS- or BRAF-mutated MM cell lines. TAS-116 monotherapy significantly inhibited growth of RAS-mutated MM cell lines and was associated with decreased expression of downstream target proteins of the RAS-RAF-MEK-ERK signaling pathway. Moreover, TAS-116 showed synergistic growth inhibitory effects with the farnesyltransferase inhibitor tipifarnib, the BRAF inhibitor dabrafenib, and the MEK inhibitor selumetinib. Importantly, treatment with these inhibitors paradoxically enhanced p-C-Raf, p-MEK, and p-ERK activity, which was abrogated by TAS-116. TAS-116 also enhanced dabrafenib-induced MM cytotoxicity associated with mitochondrial damage-induced apoptosis, even in the BRAF-mutated U266 MM cell line. This enhanced apoptosis in RAS-mutated MM triggered by combination treatment was observed even in the presence of bone marrow stromal cells. Taken together, our results provide the rationale for novel combination treatment with HSP90α/β inhibitor and RAS-RAF-MEK-ERK signaling pathway inhibitors to improve outcomes in patients with in RAS- or BRAF-mutated MM.

  8. Interferon gamma activation of Raf-1 is Jak1-dependent and p21ras-independent.

    PubMed

    Sakatsume, M; Stancato, L F; David, M; Silvennoinen, O; Saharinen, P; Pierce, J; Larner, A C; Finbloom, D S

    1998-01-30

    Signal transduction through the interferongamma (IFNgamma) receptor involves the formation of a ligand-dependent multimolecular association of receptor chains (alpha and beta), Janus tyrosine kinases (Jak1 and Jak2), and the transcription factor (signal transducers and activators of transcription 1alpha (STAT1alpha)) in addition to activation of mitogen-activated protein kinases (MAPK). Interactions between components of the Jak/STAT cascade and the p21(ras)/Raf-1/MAPK cascade are unexplored. Treatment of HeLa cells with IFNgamma resulted in the rapid and transient activation of Raf-1 and MAPK. Parallel activation of cells resulted in essentially no enhancement of p21(ras) activation despite marked enhancement after treatment with epidermal growth factor. In HeLa (E1C3) and fibrosarcoma (U4A) cell lines, both of which are deficient in Jak1 kinase, Raf-1 activation by IFNgamma was absent. Reconstitution of Raf-1 activity was observed only with kinase active Jak1 in both cell lines. In COS cells, transient expression of wild type or kinase-inactive Jak1 coimmunoprecipitated with Raf-1, but activation of Raf-1 activity was only observed in cells expressing kinase-active Jak1. These observations suggest that a kinase-active Jak1 is required for IFNgamma activation of Raf-1 that is p21(ras)-independent.

  9. Leukotriene B(4) BLT receptor signaling regulates the level and stability of cyclooxygenase-2 (COX-2) mRNA through restricted activation of Ras/Raf/ERK/p42 AUF1 pathway.

    PubMed

    Zhai, Beibei; Yang, Huiqing; Mancini, Arturo; He, QingWen; Antoniou, John; Di Battista, John A

    2010-07-30

    Recent studies suggest that active resolution of the inflammatory response in animal models of arthritis may involve leukotriene B(4) (LTB(4))-dependent stimulation of "intermediate" prostaglandin production, which in turn favors the synthesis of "downstream" anti-inflammatory and pro-resolving lipoxins, resolvins, and protectins. We explored a putative mechanism involving LTB(4)-dependent control of cyclooxygenase-2 (COX-2) expression, the rate-limiting step in inflammatory prostaglandin biosynthesis. Indeed, LTB(4) potently up-regulated/stabilized interleukin-1beta-induced COX-2 mRNA and protein expression under conditions of COX-2 inhibitor-dependent blockade of PGE(2) release in human synovial fibroblasts (EC(50) = 16.5 + or - 1.7 nm for mRNA; 19 + or - 2.4 nm for protein, n = 4). The latter response was pertussis toxin-sensitive, and semi-quantitative reverse transcription-PCR confirmed the quantitative predominance of the BLT2 receptor. Transfection experiments, using human COX-2 promoter plasmids and chimeric luciferase-COX-2 mRNA 3'-untranslated region (3'-UTR) reporter constructs, revealed that LTB(4) exerted its stabilizing effect at the post-transcriptional level through a 116-bp adenylate/uridylate-rich sequence in the proximal region of the COX-2 3'-UTR. Using luciferase-COX-2 mRNA 3'-UTR reporter constructs and Ras/c-Raf expression and mutant constructs, we showed that the Ras/c-Raf/MEK1/2/ERK1/2 signaling pathway mediated LTB(4)-dependent COX-2 mRNA stabilization. Knockdown experiments with specific short hairpin RNAs confirmed that LTB(4) stabilization of COX-2 mRNA was apparently mediated through the RNA-binding protein, p42 AUF1. The nuclear export of p42 AUF1 was driven by c-Raf/MEK1/2/ERK1/2 signaling and sensitive to leptomycin B treatment, suggesting a CRM1-dependent mechanism. We conclude that LTB(4) may support the resolution phase of the inflammatory response by stabilizing COX-2, ensuring a reservoir of ambient pro-resolution lipid

  10. Combined rational design and a high throughput screening platform for identifying chemical inhibitors of a Ras-activating enzyme.

    PubMed

    Evelyn, Chris R; Biesiada, Jacek; Duan, Xin; Tang, Hong; Shang, Xun; Papoian, Ruben; Seibel, William L; Nelson, Sandra; Meller, Jaroslaw; Zheng, Yi

    2015-05-15

    The Ras family small GTPases regulate multiple cellular processes, including cell growth, survival, movement, and gene expression, and are intimately involved in cancer pathogenesis. Activation of these small GTPases is catalyzed by a special class of enzymes, termed guanine nucleotide exchange factors (GEFs). Herein, we developed a small molecule screening platform for identifying lead hits targeting a Ras GEF enzyme, SOS1. We employed an ensemble structure-based virtual screening approach in combination with a multiple tier high throughput experimental screen utilizing two complementary fluorescent guanine nucleotide exchange assays to identify small molecule inhibitors of GEF catalytic activity toward Ras. From a library of 350,000 compounds, we selected a set of 418 candidate compounds predicted to disrupt the GEF-Ras interaction, of which dual wavelength GDP dissociation and GTP-loading experimental screening identified two chemically distinct small molecule inhibitors. Subsequent biochemical validations indicate that they are capable of dose-dependently inhibiting GEF catalytic activity, binding to SOS1 with micromolar affinity, and disrupting GEF-Ras interaction. Mutagenesis studies in conjunction with structure-activity relationship studies mapped both compounds to different sites in the catalytic pocket, and both inhibited Ras signaling in cells. The unique screening platform established here for targeting Ras GEF enzymes could be broadly useful for identifying lead inhibitors for a variety of small GTPase-activating GEF reactions.

  11. Combined Rational Design and a High Throughput Screening Platform for Identifying Chemical Inhibitors of a Ras-activating Enzyme*

    PubMed Central

    Evelyn, Chris R.; Biesiada, Jacek; Duan, Xin; Tang, Hong; Shang, Xun; Papoian, Ruben; Seibel, William L.; Nelson, Sandra; Meller, Jaroslaw; Zheng, Yi

    2015-01-01

    The Ras family small GTPases regulate multiple cellular processes, including cell growth, survival, movement, and gene expression, and are intimately involved in cancer pathogenesis. Activation of these small GTPases is catalyzed by a special class of enzymes, termed guanine nucleotide exchange factors (GEFs). Herein, we developed a small molecule screening platform for identifying lead hits targeting a Ras GEF enzyme, SOS1. We employed an ensemble structure-based virtual screening approach in combination with a multiple tier high throughput experimental screen utilizing two complementary fluorescent guanine nucleotide exchange assays to identify small molecule inhibitors of GEF catalytic activity toward Ras. From a library of 350,000 compounds, we selected a set of 418 candidate compounds predicted to disrupt the GEF-Ras interaction, of which dual wavelength GDP dissociation and GTP-loading experimental screening identified two chemically distinct small molecule inhibitors. Subsequent biochemical validations indicate that they are capable of dose-dependently inhibiting GEF catalytic activity, binding to SOS1 with micromolar affinity, and disrupting GEF-Ras interaction. Mutagenesis studies in conjunction with structure-activity relationship studies mapped both compounds to different sites in the catalytic pocket, and both inhibited Ras signaling in cells. The unique screening platform established here for targeting Ras GEF enzymes could be broadly useful for identifying lead inhibitors for a variety of small GTPase-activating GEF reactions. PMID:25825487

  12. The cytokine-activated tyrosine kinase JAK2 activates Raf-1 in a p21ras-dependent manner.

    PubMed

    Xia, K; Mukhopadhyay, N K; Inhorn, R C; Barber, D L; Rose, P E; Lee, R S; Narsimhan, R P; D'Andrea, A D; Griffin, J D; Roberts, T M

    1996-10-15

    JAK2, a member of the Janus kinase superfamily was found to interact functionally with Raf-1, a central component of the ras/mitogen-activated protein kinase signal transduction pathway. Interferon-gamma and several other cytokines that are known to activate JAK2 kinase were also found to stimulate Raf-1 kinase activity toward MEK-1 in mammalian cells. In the baculovirus coexpression system, Raf-1 was activated by JAK2 in the presence of p21ras. Under these conditions, a ternary complex of p21ras, JAK2, and Raf-1 was observed. In contrast, in the absence of p21ras, coexpression of JAK2 and Raf-1 resulted in an overall decrease in the Raf-1 kinase activity. In addition, JAK2 phosphorylated Raf-1 at sites different from those phosphorylated by pp60v-src. In mammalian cells treated with either erythropoietin or interferon-gamma, a small fraction of Raf-1 coimmunoprecipitated with JAK2 in lysates of cells in which JAK2 was activated as judged by its state of tyrosine phosphorylation. Taken together, these data suggest that JAK2 and p21ras cooperate to activate Raf-1.

  13. Gamma Band Activity in the RAS-intracellular mechanisms

    PubMed Central

    Garcia-Rill, E.; Kezunovic, N.; D’Onofrio, S.; Luster, B.; Hyde, J.; Bisagno, V.; Urbano, F.J.

    2014-01-01

    Gamma band activity participates in sensory perception, problem solving, and memory. This review considers recent evidence showing that cells in the reticular activating system (RAS) exhibit gamma band activity, and describes the intrinsic membrane properties behind such manifestation. Specifically, we discuss how cells in the mesopontine pedunculopontine nucleus (PPN), intralaminar parafascicular nucleus (Pf), and pontine Subcoeruleus nucleus dorsalis (SubCD) all fire in the gamma band range when maximally activated, but no higher. The mechanisms involve high threshold, voltage-dependent P/Q-type calcium channels or sodium-dependent subthreshold oscillations. Rather than participating in the temporal binding of sensory events as in the cortex, gamma band activity in the RAS may participate in the processes of preconscious awareness, and provide the essential stream of information for the formulation of many of our actions. We address three necessary next steps resulting from these discoveries, an intracellular mechanism responsible for maintaining gamma band activity based on persistent G-protein activation, separate intracellular pathways that differentiate between gamma band activity during waking vs during REM sleep, and an intracellular mechanism responsible for the dysregulation in gamma band activity in schizophrenia. These findings open several promising research avenues that have not been thoroughly explored. What are the effects of sleep or REM sleep deprivation on these RAS mechanisms? Are these mechanisms involved in memory processing during waking and/or during REM sleep? Does gamma band processing differ during waking vs REM sleep after sleep or REM sleep deprivation? PMID:24309750

  14. Two types of RAS mutants that dominantly interfere with activators of RAS.

    PubMed Central

    Jung, V; Wei, W; Ballester, R; Camonis, J; Mi, S; Van Aelst, L; Wigler, M; Broek, D

    1994-01-01

    In the fission yeast Schizosaccharomyces pombe, ras1 regulates both sexual development (conjugation and sporulation) and cellular morphology. Two types of dominant interfering mutants were isolated in a genetic screen for ras1 mutants that blocked sexual development. The first type of mutation, at Ser-22, analogous to the H-rasAsn-17 mutant (L. A. Feig and G. M. Cooper, Mol. Cell. Biol. 8:3235-3243, 1988), blocked only conjugation, whereas a second type of mutation, at Asp-62, interfered with conjugation, sporulation, and cellular morphology. Analogous mutations at position 64 of Saccharomyces cerevisiae RAS2 or position 57 of human H-ras also resulted in dominant interfering mutants that interfered specifically and more profoundly than mutants of the first type with RAS-associated pathways in both S. pombe or S. cerevisiae. Genetic evidence indicating that both types of interfering mutants function upstream of RAS is provided. Biochemical evidence showing that the mutants are altered in their interaction with the CDC25 class of exchange factors is presented. We show that both H-rasAsn-17 and H-rasTyr-57, compared with wild-type H-ras, are defective in their guanine nucleotide-dependent release from human cdc25 and that this defect is more severe for the H-rasTyr-57 mutant. Such a defect would allow the interfering mutants to remain bound to, thereby sequestering RAS exchange factors. The more severe interference phenotype of this novel interfering mutant suggests that it functions by titrating out other positive regulators of RAS besides those encoded by ste6 and CDC25. Images PMID:8196614

  15. Identification of an essential signaling cascade for mitogen-activated protein kinase activation by angiotensin II in cultured rat vascular smooth muscle cells. Possible requirement of Gq-mediated p21ras activation coupled to a Ca2+/calmodulin-sensitive tyrosine kinase.

    PubMed

    Eguchi, S; Matsumoto, T; Motley, E D; Utsunomiya, H; Inagami, T

    1996-06-14

    In cultured rat vascular smooth muscle cells, angiotensin II (Ang II) induced a rapid increase in mitogen-activated protein kinase (MAPK) activity through the Ang II type 1 receptor, which was insensitive to pertussis toxin but was abolished by the phospholipase C inhibitor, U73122. The Ang II-induced MAPK activation was not affected by the protein kinase C inhibitor, GF109203X, and was only partially impaired by pretreatment with a phorbol ester, whereas both treatments completely prevented MAPK activation by the phorbol ester. Intracellular Ca2+ chelation by TMB-8, but not extracellular Ca2+ chelation or inhibition of Ca2+ influx, abolished Ang II-induced MAPK activation. The calmodulin inhibitor, calmidazolium, and the tyrosine kinase inhibitor, genistein, completely blocked MAPK activation by Ang II as well as by the Ca2+ ionophore A23187. Ang II caused a rapid increase in the binding of GTP to p21(ras), and this was inhibited by genistein, TMB-8, and calmidazolium but not by pertussis toxin or GF109203X. These data suggest that Ang II-induced MAPK activation through the Ang II type 1 receptor could be mediated by p21(ras)activation through a currently unidentified tyrosine kinase that lies downstream of Gq-coupled Ca2+/calmodulin signals.

  16. A p53-inducible microRNA-34a downregulates Ras signaling by targeting IMPDH

    SciTech Connect

    Kim, Hwa-Ryeon; Roe, Jae-Seok; Lee, Ji-Eun; Hwang, In-Young; Cho, Eun-Jung; Youn, Hong-Duk

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer p53 downregulates IMPDH. Black-Right-Pointing-Pointer p53-dependent miR-34a transactivation inhibits IMPDH transcription. Black-Right-Pointing-Pointer miR-34a-mediated inhibition of IMPDH downregulates GTP-dependent Ras signal. -- Abstract: p53 is a well-known transcription factor that controls cell cycle arrest and cell death in response to a wide range of stresses. Moreover, p53 regulates glucose metabolism and its mutation results in the metabolic switch to the Warburg effect found in cancer cells. Nucleotide biosynthesis is also critical for cell proliferation and the cell division cycle. Nonetheless, little is known about whether p53 regulates nucleotide biosynthesis. Here we demonstrated that p53-inducible microRNA-34a (miR-34a) repressed inosine 5 Prime -monophosphate dehydrogenase (IMPDH), a rate-limiting enzyme of de novo GTP biosynthesis. Treatment with anti-miR-34a inhibitor relieved the expression of IMPDH upon DNA damage. Ultimately, miR-34a-mediated inhibition of IMPDH resulted in repressed activation of the GTP-dependent Ras signaling pathway. In summary, we suggest that p53 has a novel function in regulating purine biosynthesis, aided by miR-34a-dependent IMPDH repression.

  17. Inactivation of RASA1 promotes melanoma tumorigenesis via R-Ras activation

    PubMed Central

    Sung, Hyeran; Kanchi, Krishna L.; Wang, Xue; Hill, Kristen S.; Messina, Jane L.; Lee, Ji-Hyun; Kim, Youngchul; Dees, Nathan D.; Ding, Li; Teer, Jamie K.; Yang, Shengyu; Sarnaik, Amod A.; Sondak, Vernon K.; Mulé, James J.; Wilson, Richard K.; Weber, Jeffrey S.; Kim, Minjung

    2016-01-01

    Inactivation of Ras GTPase activating proteins (RasGAPs) can activate Ras, increasing the risk for tumor development. Utilizing a melanoma whole genome sequencing (WGS) data from 13 patients, we identified two novel, clustered somatic missense mutations (Y472H and L481F) in RASA1 (RAS p21 protein activator 1, also called p120RasGAP). We have shown that wild type RASA1, but not identified mutants, suppresses soft agar colony formation and tumor growth of BRAF mutated melanoma cell lines via its RasGAP activity toward R-Ras (related RAS viral (r-ras) oncogene homolog) isoform. Moreover, R-Ras increased and RASA1 suppressed Ral-A activation among Ras downstream effectors. In addition to mutations, loss of RASA1 expression was frequently observed in metastatic melanoma samples on melanoma tissue microarray (TMA) and a low level of RASA1 mRNA expression was associated with decreased overall survival in melanoma patients with BRAF mutations. Thus, these data support that RASA1 is inactivated by mutation or by suppressed expression in melanoma and that RASA1 plays a tumor suppressive role by inhibiting R-Ras, a previously less appreciated member of the Ras small GTPases. PMID:26993606

  18. Ras regulates SCF(β-TrCP) protein activity and specificity via its effector protein NORE1A.

    PubMed

    Schmidt, M Lee; Donninger, Howard; Clark, Geoffrey J

    2014-11-01

    Ras is the most frequently activated oncogene found in human cancer, but its mechanisms of action remain only partially understood. Ras activates multiple signaling pathways to promote transformation. However, Ras can also exhibit a potent ability to induce growth arrest and death. NORE1A (RASSF5) is a direct Ras effector that acts as a tumor suppressor by promoting apoptosis and cell cycle arrest. Expression of NORE1A is frequently lost in human tumors, and its mechanism of action remains unclear. Here we show that NORE1A forms a direct, Ras-regulated complex with β-TrCP, the substrate recognition component of the SCF(β-TrCP) ubiquitin ligase complex. This interaction allows Ras to stimulate the ubiquitin ligase activity of SCF(β-TrCP) toward its target β-catenin, resulting in degradation of β-catenin by the 26 S proteasome. However, the action of Ras/NORE1A/β-TrCP is substrate-specific because IκB, another substrate of SCF(β-TrCP), is not sensitive to NORE1A-promoted degradation. We identify a completely new signaling mechanism for Ras that allows for the specific regulation of SCF(β-TrCP) targets. We show that the NORE1A levels in a cell may dictate the effects of Ras on the Wnt/β-catenin pathway. Moreover, because NORE1A expression is frequently impaired in tumors, we provide an explanation for the observation that β-TrCP can act as a tumor suppressor or an oncogene in different cell systems.

  19. Plant farnesyltransferase can restore yeast Ras signaling and mating

    SciTech Connect

    Yalovsky, S.; Callan, K.L.; Narita, J.O.

    1997-04-01

    Farnesyltransferase (FTase) is a heterodimeric enzyme that modifies a group of proteins, including Ras, in mammals and yeasts. Plant FTase {alpha} and {beta} subunits were cloned from tomato and expressed in the yeast Saccharomyces cerevisiae to assess their functional conservation in farnesylating Ras and a-factor proteins, which are important for cell growth and mating. The tomato FTase {beta} subunit (LeFTB) alone was unable to complement the growth defect of ram1{del} mutant yeast strains in which the chromosomal FTase {beta} subunit gene was deleted, but coexpression of LeFTB with the plant {alpha} subunit gene (LeFTA) restored normal growth, Ras membrane association, and mating. LeFTB contains a novel 66-amino-acid sequence domain whose deletion reduces the efficiency of tomato FTase to restore normal growth to yeast ram1{del} strains. Coexpression of LeFTA and LeFTB in either yeast or insect cells yielded a functional enzyme that correctly farnesylated CaaX-motif-containing peptides. Despite their low degree of sequence homology, yeast and plant FTases shared similar in vivo and in vitro substrate specificities, demonstrating that this enzymatic modification of proteins with intermediates from the isoprenoid biosynthesis pathway is conserved in evolutionarily divergent eukaryotes. 56 refs., 7 figs., 1 tab.

  20. The Rho-GTPase Rnd1 Suppresses Mammary Tumorigenesis and EMT by Restraining Ras-MAPK signaling

    PubMed Central

    Okada, Tomoyo; Sinha, Surajit; Esposito, Ilaria; Schiavon, Gaia; López-Lago, Miguel A.; Su, Wenjing; Pratilas, Christine A.; Abele, Cristina; Hernandez, Jonathan M.; Ohara, Masahiro; Okada, Morihito; Viale, Agnes; Heguy, Adriana; Socci, Nicholas D.; Sapino, Anna; Seshan, Venkatraman E.; Long, Stephen; Inghirami, Giorgio; Rosen, Neal; Giancotti, Filippo G.

    2015-01-01

    SUMMARY We identified the Rho-GTPase Rnd1 as a candidate metastasis suppressor through bioinformatics analysis and showed that its depletion disrupt epithelial adhesion and polarity, induced Epithelial-to-Mesenchymal Transition (EMT), and cooperated with deregulated expression of c-Myc or loss of p53 to cause neoplastic conversion. Mechanistic studies revealed that Rnd1 suppresses Ras signalling by activating the GAP domain of Plexin B1, which inhibits Rap1. Rap1 inhibition in turn led to derepression of p120-RasGAP, which was able to inhibit Ras. Inactivation of Rnd1 in mammary epithelial cells induced highly undifferentiated and invasive tumors in mice. Conversely, Rnd1 expression inhibited spontaneous and experimental lung colonization in mouse models of metastasis. Genomic studies indicated that gene deletion in combination with epigenetic silencing or, more rarely, point mutation inactivates RND1 in human breast cancer. These results reveal a previously unappreciated mechanism through which Rnd1 restrains activation of Ras-MAPK signaling and breast tumor initiation and progression. PMID:25531777

  1. Cooperative interactions of PTEN deficiency and RAS activation in melanoma metastasis.

    PubMed

    Kim, Minjung

    2010-11-01

    Melanoma displays frequent activation of RAS/RAF/MAPK and PI3K/AKT signaling pathways as well as inactivation of CDKN2A (INK4a/ARF) and PTEN tumor suppressors via genetic and epigenetic alterations. Pathogenetic roles of these melanoma-prone mutations and their genetic interactions have been established in genetically engineered mouse models. Here, we catalog frequent genetic alterations observed in human melanomas and describe mouse models of melanoma initiation and progression, including our recent study that investigated the genetic interactions of RAS activation and PTEN loss in a CDKN2A (INK4a/ARF) null melanoma prone genetic background. We showed that loss of PTEN cooperates with HRAS activation, leading to increased development of melanoma and emergence of metastasis. Moreover, we observed that RNA i-mediated PTEN inactivation in RAS-driven melanomas enhanced migration and invasion with concomitant downregulation of E-cadherin, the major regulator of epithelial and mesenchymal transition, and enhanced AKT2 phosphorylation, which has been previously linked to invasion and metastasis of several cancer types, including breast and ovary. These data show that activated RAS cooperates with PTEN loss in melanoma genesis and progression.

  2. The Ras/PKA signaling pathway may control RNA polymerase II elongation via the Spt4p/Spt5p complex in Saccharomyces cerevisiae.

    PubMed Central

    Howard, Susie C; Hester, Arelis; Herman, Paul K

    2003-01-01

    The Ras signaling pathway in Saccharomyces cerevisiae controls cell growth via the cAMP-dependent protein kinase, PKA. Recent work has indicated that these effects on growth are due, in part, to the regulation of activities associated with the C-terminal domain (CTD) of the largest subunit of RNA polymerase II. However, the precise target of these Ras effects has remained unknown. This study suggests that Ras/PKA activity regulates the elongation step of the RNA polymerase II transcription process. Several lines of evidence indicate that Spt5p in the Spt4p/Spt5p elongation factor is the likely target of this control. First, the growth of spt4 and spt5 mutants was found to be very sensitive to changes in Ras/PKA signaling activity. Second, mutants with elevated levels of Ras activity shared a number of specific phenotypes with spt5 mutants and vice versa. Finally, Spt5p was efficiently phosphorylated by PKA in vitro. Altogether, the data suggest that the Ras/PKA pathway might be directly targeting a component of the elongating polymerase complex and that this regulation is important for the normal control of yeast cell growth. These data point out the interesting possibility that signal transduction pathways might directly influence the elongation step of RNA polymerase II transcription. PMID:14668364

  3. The Phosphotyrosine Phosphatase SHP-2 Participates in a Multimeric Signaling Complex and Regulates T Cell Receptor (TCR) coupling to the Ras/Mitogen-activated Protein Kinase (MAPK) Pathway in Jurkat T Cells

    PubMed Central

    Frearson, Julie A.; Alexander, Denis R.

    1998-01-01

    Src homology 2 (SH2) domain–containing phosphotyrosine phosphatases (SHPs) are increasingly being shown to play critical roles in protein tyrosine kinase–mediated signaling pathways. The role of SHP-1 as a negative regulator of T cell receptor (TCR) signaling has been established. To further explore the function of the other member of this family, SHP-2, in TCR-mediated events, a catalytically inactive mutant SHP-2 was expressed under an inducible promoter in Jurkat T cells. Expression of the mutant phosphatase significantly inhibited TCR-induced activation of the extracellular-regulated kinase (ERK)-2 member of the mitogen-activated protein kinase (MAPK) family, but had no effect on TCR-ζ chain tyrosine phosphorylation or TCR-elicited Ca2+ transients. Inactive SHP-2 was targeted to membranes resulting in the selective increase in tyrosine phosphorylation of three membrane-associated candidate SHP-2 substrates of 110 kD, 55-60 kD, and 36 kD, respectively. Analysis of immunoprecipitates containing inactive SHP-2 also indicated that the 110-kD and 36-kD Grb-2–associated proteins were putative substrates for SHP-2. TCR-stimulation of Jurkat T cells expressing wild-type SHP-2 resulted in the formation of a multimeric cytosolic complex composed of SHP-2, Grb-2, phosphatidylinositol (PI) 3′-kinase, and p110. A significant proportion of this complex was shown to be membrane associated, presumably as a result of translocation from the cytosol. Catalytically inactive SHP-2, rather than the wild-type PTPase, was preferentially localized in complex with Grb-2 and the p85 subunit of PI 3′-kinase, suggesting that the dephosphorylating actions of SHP-2 may regulate the association of these signaling molecules to the p110 complex. Our results show that SHP-2 plays a critical role in linking the TCR to the Ras/MAPK pathway in Jurkat T cells, and also provide some insight into the molecular interactions of SHP-2 that form the basis of this signal transduction process

  4. Cytodifferentiation potentiates aFGF-induced p21(ras)/Erk signaling pathway in rat cultured astrocytes.

    PubMed

    Asada, S; Kasuya, Y; Hama, H; Masaki, T; Goto, K

    1999-07-01

    MBP kinase detection assay revealed that acidic FGF (aFGF) augmented MBP kinase activity in a dose-dependent manner in astrocytes (AC). The molar potency of this action of aFGF in dibutyryl cyclic AMP (DBcAMP)-treated AC was significantly higher than that in quiescent AC. Consistently, the molar potency of accumulation of p21(ras)-GTP by aFGF was significantly higher in DBcAMP-treated AC than in quiescent AC. However, binding study showed that B(max) and K(D) for [(125)I]aFGF in DBcAMP-treated AC were quite similar to those in quiescent AC. Furthermore, the expression levels of Grb2, SOS, and p21(ras) were not changed by treatment of AC with DBcAMP. These results suggest that cytodifferentiation potentiates the p21(ras)/Erk signaling pathway in AC in response to aFGF without changing the expression levels of signaling molecules mediating from the FGF receptor to p21(ras).

  5. Role of H-Ras/ERK signaling in carbon nanotube-induced neoplastic-like transformation of human mesothelial cells

    PubMed Central

    Lohcharoenkal, Warangkana; Wang, Liying; Stueckle, Todd A.; Park, Jino; Tse, William; Dinu, Cerasela-Zoica; Rojanasakul, Yon

    2014-01-01

    Rapid development and deployment of engineered nanomaterials such as carbon nanotubes (CNTs) in various commercial and biomedical applications have raised concerns about their potential adverse health effects, especially their long-term effects which have not been well addressed. We demonstrated here that prolonged exposure of human mesothelial cells to single-walled CNT (SWCNT) induced neoplastic-like transformation as indicated by anchorage-independent cell growth and increased cell invasiveness. Such transformation was associated with an up-regulation of H-Ras and activation of ERK1/2. Downregulation of H-Ras by siRNA or inactivation of ERK by chemical inhibitor effectively inhibited the aggressive phenotype of SWCNT-exposed cells. Integrin alpha V and cortactin, but not epithelial-mesenchymal transition (EMT) transcriptional regulators, were up-regulated in the SWCNT-exposed cells, suggesting their role in the aggressive phenotype. Cortactin expression was shown to be controlled by the H-Ras/ERK signaling. Thus, our results indicate a novel role of H-Ras/ERK signaling and cortactin in the aggressive transformation of human mesothelial cells by SWCNT. PMID:24971065

  6. Activation of mitogen-activated protein kinase is necessary but not sufficient for proliferation of human thyroid epithelial cells induced by mutant Ras.

    PubMed

    Gire, V; Marshall, C J; Wynford-Thomas, D

    1999-08-26

    Given the high frequency of ras oncogene activation in several common human cancers, its signal pathways are an important target for novel therapy. For practical reasons, however, these have been studied mainly in the context of transformation of established fibroblast cell lines, whereas ras acts at an earlier stage in human tumorigenesis and predominantly on epithelial cells. Here we have developed a more directly relevant model - human primary thyroid epithelial cells - which are a major target of naturally-occurring Ras mutation, and in which expression of mutant Ras in culture induces clonal expansion without morphological transformation, closely reproducing the phenotype of the corresponding tumour in vivo. Transient or stable expression of mutant H-ras (by scrapeloading or retroviral infection) at levels which stimulated proliferation induced sustained activation and translocation of MAP kinase (MAPK) in these cells. Inhibition of the MAPK pathway at the level of MAPKK, by expression of a dominant-negative mutant or by the pharmacological inhibitor PD98059, efficiently blocked the proliferative response. Conversely, selective activation of MAPK by a constitutively-active MAPKK1 mutant failed to mimic the action of Ras and, although this was achievable with activated Raf, micro-injection of anti-ras antibodies showed that this still required endogenous wild-type Ras function. In contrast to recent results obtained with a rodent thyroid cell line (WRT), therefore, activation of the MAPK pathway is necessary, but not sufficient, for the proliferogenic action of mutant Ras on primary human thyroid cells. These data emphasize the unreliability of extrapolation from cell lines and establish the feasibility of using a more representative human epithelial model for Ras signalling studies.

  7. Cytokine signal transduction in P19 embryonal carcinoma cells: regulation of Stat3-mediated transactivation occurs independently of p21ras-Erk signaling.

    PubMed

    van Puijenbroek, A A; van der Saag, P T; Coffer, P J

    1999-09-15

    Ciliary neurotrophic factor (CNTF) and leukemia inhibitory factor (LIF) are members of a subfamily of related cytokines that share gp130 as common signal-transducing receptor component. CNTF has recently been demonstrated to induce increased survival and neuronal differentiation of P19 embryonal carcinoma (EC) cells; however, the molecular mechanisms underlying these effects are still elusive. Here we report that CNTF and LIF, but not interleukin-6, activated signal transducers and activators of transcription (STAT)-reporter constructs in P19 EC cells. Supershift analysis revealed that the STAT-element binding complex contained the transcription factor Stat3. Binding of Stat3 was inhibited by protein tyrosine kinase inhibitors, but not by the broad serine/threonine protein kinase inhibitor, H7. However, H7 inhibited CNTF-induced Stat3 transactivation. Using a dominant-negative p21ras construct and a specific inhibitor of mitogen-activated protein kinase kinase (MEK; PD098059) we demonstrated that CNTF-induced Stat3 transactivation was independent of the p21ras-mitogen-activated protein kinase (MAPK) pathway, while CNTF-induced MAPK activation was p21ras- and MEK-dependent. Taken together, our results demonstrate the activation of the p21ras-MAPK and STAT signal transduction pathways in response to CNTF and LIF in P19 EC cells and reveal that there is no modulating crosstalk between these pathways. Furthermore, our data suggest that CNTF- and LIF-induced Stat3 activation in P19 EC cells involves an H7-sensitive p21ras/MAPK- and Ca(2+)-independent kinase.

  8. Mitogen-activated protein kinase phosphatase-3 is a tumor promoter target in initiated cells that express oncogenic Ras.

    PubMed

    Warmka, Janel K; Mauro, Laura J; Wattenberg, Elizabeth V

    2004-08-01

    We have capitalized on the unique properties of the skin tumor promoter palytoxin, which does not activate protein kinase C, to investigate alternative mechanisms by which major signaling molecules can be modulated during carcinogenesis. We report here that palytoxin activates extracellular signal-regulated kinase (ERK) through a novel mechanism that involves inactivation of an ERK phosphatase in keratinocytes derived from initiated mouse skin (308 cells). Use of U0126 revealed that palytoxin requires the ERK kinase MEK to stimulate ERK activity, although palytoxin did not activate MEK. We found that 308 keratinocytes highly express mitogen-activated protein kinase phosphatase-3 (MKP-3), which selectively inactivates ERK. Palytoxin induced the loss of MKP-3 in a manner that corresponded to increased ERK phosphorylation. Complementary studies showed that sustained expression of exogenous MKP-3 inhibited palytoxin-stimulated ERK activation. As is characteristic of initiated keratinocytes, 308 cells express activated H-Ras. To investigate whether expression of oncogenic Ras is key to palytoxin-stimulated ERK activation, we determined how palytoxin affected ERK and MKP-3 in MCF10A human breast epithelial cells and in H-ras MCF10A cells, which stably express activated H-Ras. Palytoxin did not affect ERK activity in MCF10A cells, which had no detectable MKP-3. Like 308 cells, H-ras MCF10A cells highly express MKP-3. Strikingly, palytoxin stimulated ERK activity and induced a corresponding loss of MKP-3 in H-ras MCF10A cells. These studies indicate that in initiated cells palytoxin unleashes ERK activity by down-regulating MKP-3, an ERK inhibitor, and further suggest that MKP-3 may be a vulnerable target in cells that express oncogenic Ras.

  9. Ras/Raf/MEK/ERK Pathway Activation in Childhood Acute Lymphoblastic Leukemia and Its Therapeutic Targeting

    PubMed Central

    Knight, Thomas; Irving, Julie Anne Elizabeth

    2014-01-01

    Deregulation of the Ras/Raf/MEK/extracellular signal-regulated kinase pathway is a common event in childhood acute lymphoblastic leukemia and is caused by point mutation, gene deletion, and chromosomal translocation of a vast array of gene types, highlighting its importance in leukemia biology. Pathway activation can be therapeutically exploited and may guide new therapies needed for relapsed acute lymphoblastic leukemia and other high risk subgroups. PMID:25009801

  10. EGFR/Ras Signaling Controls Drosophila Intestinal Stem Cell Proliferation via Capicua-Regulated Genes.

    PubMed

    Jin, Yinhua; Ha, Nati; Forés, Marta; Xiang, Jinyi; Gläßer, Christine; Maldera, Julieta; Jiménez, Gerardo; Edgar, Bruce A

    2015-12-01

    Epithelial renewal in the Drosophila intestine is orchestrated by Intestinal Stem Cells (ISCs). Following damage or stress the intestinal epithelium produces ligands that activate the epidermal growth factor receptor (EGFR) in ISCs. This promotes their growth and division and, thereby, epithelial regeneration. Here we demonstrate that the HMG-box transcriptional repressor, Capicua (Cic), mediates these functions of EGFR signaling. Depleting Cic in ISCs activated them for division, whereas overexpressed Cic inhibited ISC proliferation and midgut regeneration. Epistasis tests showed that Cic acted as an essential downstream effector of EGFR/Ras signaling, and immunofluorescence showed that Cic's nuclear localization was regulated by EGFR signaling. ISC-specific mRNA expression profiling and DNA binding mapping using DamID indicated that Cic represses cell proliferation via direct targets including string (Cdc25), Cyclin E, and the ETS domain transcription factors Ets21C and Pointed (pnt). pnt was required for ISC over-proliferation following Cic depletion, and ectopic pnt restored ISC proliferation even in the presence of overexpressed dominant-active Cic. These studies identify Cic, Pnt, and Ets21C as critical downstream effectors of EGFR signaling in Drosophila ISCs.

  11. Involvement of the protein tyrosine phosphatase SHP-1 in Ras-mediated activation of the mitogen-activated protein kinase pathway.

    PubMed

    Krautwald, S; Büscher, D; Kummer, V; Buder, S; Baccarini, M

    1996-11-01

    Ubiquitously expressed SH2-containing tyrosine phosphatases interact physically with tyrosine kinase receptors or their substrates and relay positive mitogenic signals via the activation of the Ras-mitogen-activated protein kinase (MAPK) pathway. Conversely, the structurally related phosphatase SHP-1 is predominantly expressed in hemopoietic cells and becomes tyrosine phosphorylated upon colony-stimulating factor 1 treatment of macrophages without associating with the colony-stimulating factor 1 receptor tyrosine kinase. Mice lacking functional SHP-1 (me/me and me(v)/me(v)) develop systemic autoimmune disease with accumulation of macrophages, suggesting that SHP-1 may be a negative regulator of hemopoietic cell growth. By using macrophages expressing dominant negative Ras and the me(v)/me(v) mouse mutant, we show that SHP-1 is activated in the course of mitogenic signal transduction in a Ras-dependent manner and that its activity is necessary for the Ras-dependent activation of the MAPK pathway but not of the Raf-1 kinase. Consistent with a role for SHP-1 as an intermediate between Ras and the MEK-MAPK pathway, Ras-independent activation of the latter kinases by bacterial lipopolysaccharide occurred normally in me(v)/me(v) cells. Our results sharply accentuate the diversity of signal transduction in mammalian cells, in which the same signaling intermediates can be rearranged to form different pathways. PMID:8887625

  12. Involvement of the protein tyrosine phosphatase SHP-1 in Ras-mediated activation of the mitogen-activated protein kinase pathway.

    PubMed Central

    Krautwald, S; Büscher, D; Kummer, V; Buder, S; Baccarini, M

    1996-01-01

    Ubiquitously expressed SH2-containing tyrosine phosphatases interact physically with tyrosine kinase receptors or their substrates and relay positive mitogenic signals via the activation of the Ras-mitogen-activated protein kinase (MAPK) pathway. Conversely, the structurally related phosphatase SHP-1 is predominantly expressed in hemopoietic cells and becomes tyrosine phosphorylated upon colony-stimulating factor 1 treatment of macrophages without associating with the colony-stimulating factor 1 receptor tyrosine kinase. Mice lacking functional SHP-1 (me/me and me(v)/me(v)) develop systemic autoimmune disease with accumulation of macrophages, suggesting that SHP-1 may be a negative regulator of hemopoietic cell growth. By using macrophages expressing dominant negative Ras and the me(v)/me(v) mouse mutant, we show that SHP-1 is activated in the course of mitogenic signal transduction in a Ras-dependent manner and that its activity is necessary for the Ras-dependent activation of the MAPK pathway but not of the Raf-1 kinase. Consistent with a role for SHP-1 as an intermediate between Ras and the MEK-MAPK pathway, Ras-independent activation of the latter kinases by bacterial lipopolysaccharide occurred normally in me(v)/me(v) cells. Our results sharply accentuate the diversity of signal transduction in mammalian cells, in which the same signaling intermediates can be rearranged to form different pathways. PMID:8887625

  13. Low proliferation and high apoptosis of osteoblastic cells on hydrophobic surface are associated with defective Ras signaling

    SciTech Connect

    Chang, Eun-Ju; Kim, Hong-Hee; Huh, Jung-Eun; Kim, In-Ae; Seung Ko, Jea; Chung, Chong-Pyoung; Kim, Hyun-Man . E-mail: hyunmkim@plaza.snu.ac.kr

    2005-02-01

    The hydrophobic (HPB) nature of most polymeric biomaterials has been a major obstacle in using those materials in vivo due to low compatibility with cells. However, there is little knowledge of the molecular detail to explain how surface hydrophobicity affects cell responses. In this study, we compared the proliferation and apoptosis of human osteoblastic MG63 cells adhered to hydrophilic (HPL) and hydrophobic surfaces. On the hydrophobic surface, less formation of focal contacts and actin stress fibers, a delay in cell cycle progression, and an increase in apoptosis were observed. By using fibroblast growth factor 1 (FGF1) as a model growth factor, we also investigated intracellular signaling pathways on hydrophilic and hydrophobic surfaces. The activation of Ras, Akt, and ERK by FGF1 was impaired in MG63 cells on the hydrophobic surface. The overexpression of constitutively active form of Ras and Akt rescued those cells from apoptosis and recovered cell cycle progression. Furthermore, their overexpression also restored the actin cytoskeletal organization on the hydrophobic surface. Finally, the proliferative, antiapoptotic, and cytoskeletal effects of constitutively active Ras in MG63 cells on the hydrophobic surface were blocked by wortmannin and PD98059 that inhibit Akt and ERK activation, respectively. Therefore, our results suggest that the activation of Ras and its downstream molecules Akt and ERK to an appropriate level is one of crucial elements in the determination of osteoblast cell responses. The Ras pathway may represent a cell biological target that should be considered for successful surface modification of biomaterials to induce adequate cell responses in the bone tissue.

  14. Fibronectin-induced proliferation in thyroid cells is mediated by alphavbeta3 integrin through Ras/Raf-1/MEK/ERK and calcium/CaMKII signals.

    PubMed

    Illario, Maddalena; Cavallo, Anna Lina; Monaco, Sara; Di Vito, Ennio; Mueller, Frank; Marzano, Luigi A; Troncone, Giancarlo; Fenzi, Gianfranco; Rossi, Guido; Vitale, Mario

    2005-05-01

    We recently demonstrated in an immortalized thyroid cell line that integrin stimulation by fibronectin (FN) simultaneously activates two signaling pathways: Ras/Raf/MAPK kinase (Mek)/Erk and calcium Ca2+/calcium calmodulin-dependent kinase II (CaMKII). Both signals are necessary to stimulate Erk phosphorylation because CaMKII modulates Ras-induced Raf-1 activity. In this study we present evidence that extends these findings to normal human thyroid cells in primary culture, demonstrating its biological significance in a more physiological cell model. In normal thyroid cells, immobilized FN-induced activation of p21Ras and Erk phosphorylation. This pathway was responsible for FN-induced cell proliferation. Concurrent increase of intracellular Ca2+ concentration and CaMKII activation was observed. Both induction of p21Ras activity and increase of intracellular Ca2+ concentration were mediated by FN binding to alphavbeta3 integrin. Inhibition of the Ca2+/CaMKII signal pathway by calmodulin or CaMKII inhibitors completely abolished the FN-induced Erk phosphorylation. Binding to FN induced Raf-1 and CaMKII to form a protein complex, indicating that intersection between Ras/Raf/Mek/Erk and Ca2+/CaMKII signaling pathways occurred at Raf-1 level. Interruption of the Ca2+/CaMKII signal pathway arrested cell proliferation induced by FN. We also analyzed thyroid tumor cell lines that displayed concomitant aberrant integrin expression and signal transduction. These data confirm that integrin activation by FN in normal thyroid cells generates Ras/Raf/Mek/Erk and Ca2+/CaMKII signaling pathways and that both are necessary to stimulate cell proliferation, whereas in thyroid tumors integrin signaling is altered.

  15. Intracellular and intercellular signaling networks in cancer initiation, development and precision anti-cancer therapy: RAS acts as contextual signaling hub.

    PubMed

    Csermely, Peter; Korcsmáros, Tamás; Nussinov, Ruth

    2016-10-01

    Cancer initiation and development are increasingly perceived as systems-level phenomena, where intra- and inter-cellular signaling networks of the ecosystem of cancer and stromal cells offer efficient methodologies for outcome prediction and intervention design. Within this framework, RAS emerges as a 'contextual signaling hub', i.e. the final result of RAS activation or inhibition is determined by the signaling network context. Current therapies often 'train' cancer cells shifting them to a novel attractor, which has increased metastatic potential and drug resistance. The few therapy-surviving cancer cells are surrounded by massive cell death triggering a primordial adaptive and reparative general wound healing response. Overall, dynamic analysis of patient- and disease-stage specific intracellular and intercellular signaling networks may open new areas of anticancer therapy using multitarget drugs, drugs combinations, edgetic drugs, as well as help design 'gentler', differentiation and maintenance therapies. PMID:27395026

  16. Ras-dependent and -independent pathways target the mitogen-activated protein kinase network in macrophages.

    PubMed Central

    Büscher, D; Hipskind, R A; Krautwald, S; Reimann, T; Baccarini, M

    1995-01-01

    Mitogen-activated protein kinases (MAPKs) are activated upon a variety of extracellular stimuli in different cells. In macrophages, colony-stimulating factor 1 (CSF-1) stimulates proliferation, while bacterial lipopolysaccharide (LPS) inhibits cell growth and causes differentiation and activation. Both CSF-1 and LPS rapidly activate the MAPK network and induce the phosphorylation of two distinct ternary complex factors (TCFs), TCF/Elk and TCF/SAP. CSF-1, but not LPS, stimulated the formation of p21ras. GTP complexes. Expression of a dominant negative ras mutant reduced, but did not abolish, CSF-1-mediated stimulation of MEK and MAPK. In contrast, activation of the MEK kinase Raf-1 was Ras independent. Treatment with the phosphatidylcholine-specific phospholipase C inhibitor D609 suppressed LPS-mediated, but not CSF-1-mediated, activation of Raf-1, MEK, and MAPK. Similarly, down-regulation or inhibition of protein kinase C blocked MEK and MAPK induction by LPS but not that by CSF-1. Phorbol 12-myristate 13-acetate pretreatment led to the sustained activation of the Raf-1 kinase but not that of MEK and MAPK. Thus, activated Raf-1 alone does not support MEK/MAPK activation in macrophages. Phosphorylation of TCF/Elk but not that of TCF/SAP was blocked by all treatments that interfered with MAPK activation, implying that TCF/SAP was targeted by a MAPK-independent pathway. Therefore, CSF-1 and LPS target the MAPK network by two alternative pathways, both of which induce Raf-1 activation. The mitogenic pathway depends on Ras activity, while the differentiation signal relies on protein kinase C and phosphatidylcholine-specific phospholipase C activation. PMID:7799956

  17. Cancer stem cell drugs target K-ras signaling in a stemness context

    PubMed Central

    Najumudeen, A K; Jaiswal, A; Lectez, B; Oetken-Lindholm, C; Guzmán, C; Siljamäki, E; Posada, I M D; Lacey, E; Aittokallio, T; Abankwa, D

    2016-01-01

    Cancer stem cells (CSCs) are considered to be responsible for treatment relapse and have therefore become a major target in cancer research. Salinomycin is the most established CSC inhibitor. However, its primary mechanistic target is still unclear, impeding the discovery of compounds with similar anti-CSC activity. Here, we show that salinomycin very specifically interferes with the activity of K-ras4B, but not H-ras, by disrupting its nanoscale membrane organization. We found that caveolae negatively regulate the sensitivity to this drug. On the basis of this novel mechanistic insight, we defined a K-ras-associated and stem cell-derived gene expression signature that predicts the drug response of cancer cells to salinomycin. Consistent with therapy resistance of CSC, 8% of tumor samples in the TCGA-database displayed our signature and were associated with a significantly higher mortality. Using our K-ras-specific screening platform, we identified several new candidate CSC drugs. Two of these, ophiobolin A and conglobatin A, possessed a similar or higher potency than salinomycin. Finally, we established that the most potent compound, ophiobolin A, exerts its K-ras4B-specific activity through inactivation of calmodulin. Our data suggest that specific interference with the K-ras4B/calmodulin interaction selectively inhibits CSC. PMID:26973241

  18. Identification of a farnesol analog as a Ras function inhibitor using both an in vivo Ras activation sensor and a phenotypic screening approach

    PubMed Central

    Srinivasan, Kamalakkannan; Subramanian, Thangaiah; Spielmann, H. Peter

    2013-01-01

    Mutations in Ras isoforms such as K-Ras, N-Ras, and H-Ras contribute to roughly 85, 15, and 1 % of human cancers, respectively. Proper membrane targeting of these Ras isoforms, a prerequisite for Ras activity, requires farnesylation or geranylgeranylation at the C-terminal CAAX box. We devised an in vivo screening strategy based on monitoring Ras activation and phenotypic physiological outputs for assaying synthetic Ras function inhibitors (RFI). Ras activity was visualized by the trans-location of RBDRaf1-GFP to activated Ras at the plasma membrane. By using this strategy, we screened one synthetic farnesyl substrate analog (AGOH) along with nine putative inhibitors and found that only m-CN-AGOH inhibited Ras activation. Phenotypic analysis of starving cells could be used to monitor polarization, motility, and the inability of these treated cells to aggregate properly during fruiting body formation. Incorporation of AGOH and m-CN-AGOH to cellular proteins was detected by western blot. These screening assays can be incorporated into a high throughput screening format using Dictyostelium discoideum and automated microscopy to determine effective RFIs. These RFI candidates can then be further tested in mammalian systems. PMID:24194124

  19. A New View of Ras Isoforms in Cancers.

    PubMed

    Nussinov, Ruth; Tsai, Chung-Jung; Chakrabarti, Mayukh; Jang, Hyunbum

    2016-01-01

    Does small GTPase K-Ras4A have a single state or two states, one resembling K-Ras4B and the other N-Ras? A recent study of K-Ras4A made the remarkable observation that even in the absence of the palmitoyl, K-Ras4A can be active at the plasma membrane. Importantly, this suggests that K-Ras4A may exist in two distinct signaling states. In state 1, K-Ras4A is only farnesylated, like K-Ras4B; in state 2, farnesylated and palmitoylated, like N-Ras. The K-Ras4A hypervariable region sequence is positively charged, in between K-Ras4B and N-Ras. Taken together, this raises the possibility that the farnesylated but nonpalmitoylated state 1, like K-Ras4B, binds calmodulin and is associated with colorectal and other adenocarcinomas like lung cancer and pancreatic ductal adenocarcinoma. On the other hand, state 2 may be associated with melanoma and other cancers where N-Ras is a major contributor, such as acute myeloid leukemia. Importantly, H-Ras has two, singly and doubly, palmitoylated states that may also serve distinct functional roles. The multiple signaling states of palmitoylated Ras isoforms question the completeness of small GTPase Ras isoform statistics in different cancer types and call for reevaluation of concepts and protocols. They may also call for reconsideration of oncogenic Ras therapeutics. PMID:26659836

  20. Interaction of activated Ras with Raf-1 alone may be sufficient for transformation of rat2 cells.

    PubMed Central

    Stang, S; Bottorff, D; Stone, J C

    1997-01-01

    v-H-ras effector mutants have been assessed for transforming activity and for the ability of the encoded proteins to interact with Raf-1-, B-Raf-, byr2-, ralGDS-, and CDC25-encoded proteins in the yeast two-hybrid system. Transformation was assessed in rat2 cells as well as in a mutant cell line, rv68BUR, that affords a more sensitive transformation assay. Selected mutant Ras proteins were also examined for their ability to interact with an amino-terminal fragment of Raf-1 in vitro. Finally, possible cooperation between different v-H-ras effector mutants and between effector mutants and overexpressed Raf-1 was assessed. Ras transforming activity was shown to correlate best with the ability of the encoded protein to interact with Raf-1. No evidence for cooperation between v-H-ras effector mutants was found. Signaling through the Raf1-MEK-mitogen-activated protein kinase cascade may be the only effector pathway contributing to RAS transformation in these cells. PMID:9154803

  1. Effects of acrylonitrile on lymphocyte lipid rafts and RAS/RAF/MAPK/ERK signaling pathways.

    PubMed

    Li, X J; Li, B; Huang, J S; Shi, J M; Wang, P; Fan, W; Zhou, Y L

    2014-09-26

    Acrylonitrile (ACN) is a widely used chemical in the production of plastics, resins, nitriles, acrylic fibers, and synthetic rubber. Previous epidemiological investigations and animal studies have confirmed that ACN affects the lymphocytes and spleen. However, the immune toxicity mechanism is unknown. Lipid rafts are cell membrane structures that are rich in cholesterol and involved in cell signal transduction. The B cell lymophoma-10 (Bcl10) protein is a joint protein that is important in lymphocyte development and signal pathways. This study was conducted to examine the in vitro effects of ACN. We separated lipid rafts, and analyzed Bcl10 protein and caveolin. Western blotting was used to detect mitogen-activated protein kinase (MAPK) and phosphorylated MAPK levels. The results indicated that with increasing ACN concentration, the total amount of Bcl10 remained stable, but was concentrated mainly in part 4 to part 11 in electrophoretic band district which is high density in gradient centrifugation. Caveolin-1 was evaluated as a lipid raft marker protein; caveolin-1 content and position were relatively unchanged. Western blotting showed that in a certain range, MAPK protein was secreted at a higher level. At some ACN exposure levels, MAPK protein secretion was significantly decreased compared to the control group (P < 0.05). These results indicate that ACN can cause immune toxicity by damaging lipid raft structures, causing Bcl10 protein and lipid raft separation and restraining Ras-Raf-MAPK-extracellular signal-regulated kinase signaling pathways.

  2. Effects of acrylonitrile on lymphocyte lipid rafts and RAS/RAF/MAPK/ERK signaling pathways.

    PubMed

    Li, X J; Li, B; Huang, J S; Shi, J M; Wang, P; Fan, W; Zhou, Y L

    2014-01-01

    Acrylonitrile (ACN) is a widely used chemical in the production of plastics, resins, nitriles, acrylic fibers, and synthetic rubber. Previous epidemiological investigations and animal studies have confirmed that ACN affects the lymphocytes and spleen. However, the immune toxicity mechanism is unknown. Lipid rafts are cell membrane structures that are rich in cholesterol and involved in cell signal transduction. The B cell lymophoma-10 (Bcl10) protein is a joint protein that is important in lymphocyte development and signal pathways. This study was conducted to examine the in vitro effects of ACN. We separated lipid rafts, and analyzed Bcl10 protein and caveolin. Western blotting was used to detect mitogen-activated protein kinase (MAPK) and phosphorylated MAPK levels. The results indicated that with increasing ACN concentration, the total amount of Bcl10 remained stable, but was concentrated mainly in part 4 to part 11 in electrophoretic band district which is high density in gradient centrifugation. Caveolin-1 was evaluated as a lipid raft marker protein; caveolin-1 content and position were relatively unchanged. Western blotting showed that in a certain range, MAPK protein was secreted at a higher level. At some ACN exposure levels, MAPK protein secretion was significantly decreased compared to the control group (P < 0.05). These results indicate that ACN can cause immune toxicity by damaging lipid raft structures, causing Bcl10 protein and lipid raft separation and restraining Ras-Raf-MAPK-extracellular signal-regulated kinase signaling pathways. PMID:25299088

  3. Targeting the RAS pathway by mitogen-activated protein kinase inhibitors.

    PubMed

    Kiessling, Michael K; Rogler, Gerhard

    2015-01-01

    Targeting of oncogenic driver mutations with small-molecule inhibitors resulted in powerful treatment options for cancer patients in recent years. The RAS (rat sarcoma) pathway is among the most frequently mutated pathways in human cancer. Whereas targeting mutant Kirsten RAS (KRAS) remains difficult, mutant B rapidly accelerated fibrosarcoma (BRAF) kinase is an established drug target in cancer. Now data show that neuroblastoma RAS (NRAS) and even Harvey RAS (HRAS) mutations could be predictive markers for treatment with mitogen-activated protein kinase (MEK) inhibitors. This review discusses recent preclinical and clinical studies of MEK inhibitors in BRAF and RAS mutant cancer. PMID:26691679

  4. Coherence and frequency in the reticular activating system (RAS).

    PubMed

    Garcia-Rill, Edgar; Kezunovic, Nebojsa; Hyde, James; Simon, Christen; Beck, Paige; Urbano, Francisco J

    2013-06-01

    This review considers recent evidence showing that cells in the reticular activating system (RAS) exhibit (1) electrical coupling mainly in GABAergic cells, and (2) gamma band activity in virtually all of the cells. Specifically, cells in the mesopontine pedunculopontine nucleus (PPN), intralaminar parafascicular nucleus (Pf), and pontine dorsal subcoeruleus nucleus dorsalis (SubCD) (1) show electrical coupling, and (2) all fire in the beta/gamma band range when maximally activated, but no higher. The mechanism behind electrical coupling is important because the stimulant modafinil was shown to increase electrical coupling. We also provide recent findings demonstrating that all cells in the PPN and Pf have high threshold, voltage-dependent P/Q-type calcium channels that are essential to gamma band activity. On the other hand, all SubCD, and some PPN, cells manifested sodium-dependent subthreshold oscillations. A novel mechanism for sleep-wake control based on transmitter interactions, electrical coupling, and gamma band activity is described. We speculate that continuous sensory input will modulate coupling and induce gamma band activity in the RAS that could participate in the processes of preconscious awareness, and provide the essential stream of information for the formulation of many of our actions.

  5. The Ras/Raf/MEK/extracellular signal-regulated kinase pathway induces autocrine-paracrine growth inhibition via the leukemia inhibitory factor/JAK/STAT pathway.

    PubMed

    Park, Jong-In; Strock, Christopher J; Ball, Douglas W; Nelkin, Barry D

    2003-01-01

    Sustained activation of the Ras/Raf/MEK/extracellular signal-regulated kinase (ERK) pathway can lead to cell cycle arrest in many cell types. We have found, with human medullary thyroid cancer (MTC) cells, that activated Ras or c-Raf-1 can induce growth arrest by producing and secreting an autocrine-paracrine factor. This protein was purified from cell culture medium conditioned by Raf-activated MTC cells and was identified by mass spectrometry as leukemia inhibitory factor (LIF). LIF expression upon Raf activation and subsequent activation of JAK-STAT3 was also observed in small cell lung carcinoma cells, suggesting that this autocrine-paracrine signaling may be a common response to Ras/Raf activation. LIF was sufficient to induce growth arrest and differentiation of MTC cells. This effect was mediated through the gp130/JAK/STAT3 pathway, since anti-gp130 blocking antibody or dominant-negative STAT3 blocked the effects of LIF. Thus, LIF expression provides a novel mechanism allowing Ras/Raf signaling to activate the JAK-STAT3 pathway. In addition to this cell-extrinsic growth inhibitory pathway, we find that the Ras/Raf/MEK/ERK pathway induces an intracellular growth inhibitory signal, independent of the LIF/JAK/STAT3 pathway. Therefore, activation of the Ras/Raf/MEK/ERK pathway can lead to growth arrest and differentiation via at least two different signaling pathways. This use of multiple pathways may be important for "fail-safe" induction and maintenance of cell cycle arrest.

  6. The Ras/Raf/MEK/Extracellular Signal-Regulated Kinase Pathway Induces Autocrine-Paracrine Growth Inhibition via the Leukemia Inhibitory Factor/JAK/STAT Pathway

    PubMed Central

    Park, Jong-In; Strock, Christopher J.; Ball, Douglas W.; Nelkin, Barry D.

    2003-01-01

    Sustained activation of the Ras/Raf/MEK/extracellular signal-regulated kinase (ERK) pathway can lead to cell cycle arrest in many cell types. We have found, with human medullary thyroid cancer (MTC) cells, that activated Ras or c-Raf-1 can induce growth arrest by producing and secreting an autocrine-paracrine factor. This protein was purified from cell culture medium conditioned by Raf-activated MTC cells and was identified by mass spectrometry as leukemia inhibitory factor (LIF). LIF expression upon Raf activation and subsequent activation of JAK-STAT3 was also observed in small cell lung carcinoma cells, suggesting that this autocrine-paracrine signaling may be a common response to Ras/Raf activation. LIF was sufficient to induce growth arrest and differentiation of MTC cells. This effect was mediated through the gp130/JAK/STAT3 pathway, since anti-gp130 blocking antibody or dominant-negative STAT3 blocked the effects of LIF. Thus, LIF expression provides a novel mechanism allowing Ras/Raf signaling to activate the JAK-STAT3 pathway. In addition to this cell-extrinsic growth inhibitory pathway, we find that the Ras/Raf/MEK/ERK pathway induces an intracellular growth inhibitory signal, independent of the LIF/JAK/STAT3 pathway. Therefore, activation of the Ras/Raf/MEK/ERK pathway can lead to growth arrest and differentiation via at least two different signaling pathways. This use of multiple pathways may be important for “fail-safe” induction and maintenance of cell cycle arrest. PMID:12509453

  7. CHMP6 and VPS4A mediate recycling of Ras to the plasma membrane to promote growth factor signaling

    PubMed Central

    Zheng, Ze-Yi; Cheng, Chiang-Min; Fu, Xin-Rong; Chen, Liuh-Yow; Xu, Lizhong; Terrillon, Sonia; Wong, Stephen T.; Bar-Sagi, Dafna; Songyang, Zhou; Chang, Eric C.

    2011-01-01

    While Ras is well-known to function on the plasma membrane (PM) to mediate growth factor signaling, increasing evidence suggests that Ras has complex roles in the cytoplasm. To uncover these roles, we screened a cDNA library and isolated H-Ras-binding proteins that also influence Ras functions. Many isolated proteins regulate trafficking involving endosomes; CHMP6/VPS20 and VPS4A, which interact with ESCRT-III, were chosen for further study. We showed that the binding is direct and occurs in endosomes. Furthermore, the binding is most efficient when H-Ras has a functional effector-binding-loop and is GTP-bound and ubiquitylated. CHMP6 and VPS4A also bound N-Ras, but not K-Ras. Repressing CHMP6 and VPS4A blocked Ras-induced transformation, which correlated with inefficient Ras localization to the PM as measured by cell fractionation and photobleaching. Moreover, silencing CHMP6 and VPS4A also blocked EGFR recycling. These data suggest that Ras interacts with key ESCRT-III components to promote recycling of itself and EGFR back to the PM to create a positive feedback loop to enhance growth factor signaling. PMID:22231449

  8. miR-520c and miR-373 upregulate MMP9 expression by targeting mTOR and SIRT1, and activate the Ras/Raf/MEK/Erk signaling pathway and NF-κB factor in human fibrosarcoma cells.

    PubMed

    Liu, Ping; Wilson, Michael J

    2012-02-01

    MicroRNA 520c and 373 (miR-520c and miR-373) have been characterized as oncogenes and play critical roles in cancer cell metastasis. However, the relationship between these two microRNAs and matrix metalloproteinases (MMPs), which are important in cancer cell metastasis, remains unknown. Here, we report new evidence in which miR-520c and miR-373 effects in human fibrosarcoma HT1080 cells are associated with MMP9 activity, and this upregulation of MMP9 is not only at the activity and protein levels, but also at that of its mRNA. Our experimental data demonstrate that these effects occur not by direct binding to the MMP9 promoter, but by miR-520c and miR-373 directly targeting the 3'-untranslational region (UTR) of mRNAs of mTOR and SIRT1 (negative regulators of expression of MMP9 via inactivating the Ras/Raf/MEK/Erk signaling pathway and transcription factor NF-κB activity); and thus suppressing translation levels of SIRT1 and mTOR. Moreover, inhibition of key kinases of the Ras/Raf/MEK/Erk signaling pathway and Western blots for selected proteins further identified miR-520c and miR-373 as activating this signaling pathway and NF-κB. In conclusion, miR-520c and miR-373 increased the expression of MMP9 by directly targeting the 3'-UTRs of mRNAs of mTOR and SIRT1 and suppressing their translation; resulting in activation of the Ras/Raf/MEK/Erk signaling pathway and NF-κB; and, finally, increasing the mRNA, protein, and activity of MMP9 and enhancing cell migration and cell growth in 3D type I collagen gels.

  9. RAS/MAPK activation drives resistance to Smo inhibition, metastasis and tumor evolution in Shh pathway-dependent tumors

    PubMed Central

    Zhao, Xuesong; Ponomaryov, Tatyana; Ornell, Kimberly J.; Zhou, Pengcheng; Dabral, Sukriti K.; Pak, Ekaterina; Li, Wei; Atwood, Scott X.; Whitson, Ramon J.; Chang, Anne Lynn S.; Li, Jiang; Oro, Anthony E.; Chan, Jennifer A.; Kelleher, Joseph F.; Segal, Rosalind A.

    2015-01-01

    Aberrant Shh signaling promotes tumor growth in diverse cancers. The importance of Shh signaling is particularly evident in medulloblastoma and basal cell carcinoma (BCC), where inhibitors targeting the Shh pathway component Smoothened (Smo) show great therapeutic promise. However, the emergence of drug resistance limits long-term efficacy and the mechanisms of resistance remain poorly understood. Using new medulloblastoma models, we identify two distinct paradigms of resistance to Smo inhibition. Sufu mutations lead to maintenance of the Shh pathway in the presence of Smo inhibitors. Alternatively activation of the RAS/MAPK pathway circumvents Shh pathway-dependency, drives tumor growth and enhances metastatic behavior. Strikingly, in BCC patients treated with Smo inhibitor, squamous cell cancers with RAS/MAPK activation emerged from the antecedent BCC tumors. Together these findings reveal a critical role of RAS/MAPK pathway in drug resistance and tumor evolution of Shh pathway-dependent tumors. PMID:26130651

  10. Therapeutic Strategies for Targeting Ras Proteins

    PubMed Central

    Gysin, Stephan; Salt, Megan; Young, Amy; McCormick, Frank

    2011-01-01

    Ras genes are frequently activated in cancer. Attempts to develop drugs that target mutant Ras proteins have, so far, been unsuccessful. Tumors bearing these mutations, therefore, remain among the most difficult to treat. Most efforts to block activated Ras have focused on pathways downstream. Drugs that inhibit Raf kinase have shown clinical benefit in the treatment of malignant melanoma. However, these drugs have failed to show clinical benefit in Ras mutant tumors. It remains unclear to what extent Ras depends on Raf kinase for transforming activity, even though Raf proteins bind directly to Ras and are certainly major effectors of Ras action in normal cells and in development. Furthermore, Raf kinase inhibitors can lead to paradoxical activation of the MAPK pathway. MEK inhibitors block the Ras-MAPK pathway, but often activate the PI3’-kinase, and have shown little clinical benefit as single agents. This activation is mediated by EGF-R and other receptor tyrosine kinases through relief of a negative feedback loop from ERK. Drug combinations that target multiple points within the Ras signaling network are likely to be necessary to achieve substantial clinical benefit. Other effectors may also contribute to Ras signaling and provide a source of targets. In addition, unbiased screens for genes necessary for Ras transformation have revealed new potential targets and have added to our understanding of Ras cancer biology. PMID:21779505

  11. Insulin stimulates mitogen-activated protein kinase by a Ras-independent pathway in 3T3-L1 adipocytes.

    PubMed

    Carel, K; Kummer, J L; Schubert, C; Leitner, W; Heidenreich, K A; Draznin, B

    1996-11-29

    To characterize tissue-specific differences in insulin signaling, we compared the mechanisms of mitogen-activated protein (MAP) kinase activation by insulin in the mitogenically active 3T3-L1 fibroblasts with the metabolically active 3T3-L1 adipocytes. In both cell lines, insulin significantly increased p21(ras).GTP loading (1.5-2-fold) and MAP kinase activity (5-8-fold). Inhibition of Ras farnesylation with lovastatin blocked activation of p21(ras) and Raf-1 kinase in both 3T3-L1 fibroblasts and 3T3-L1 adipocytes. In 3T3-L1 fibroblasts, this was accompanied by an inhibition of the stimulatory effect of insulin on MAP kinase. In contrast, in 3T3-L1 adipocytes, despite an inhibition of activation of p21(ras) and Raf-1 by lovastatin, insulin continued to stimulate MAP kinase activity. Fractionation of the cell lysates on the FPLC Mono-Q column revealed that lovastatin inhibited insulin stimulation of ERK2 (and, to a lesser extent, ERK1) in 3T3-L1 fibroblasts and had no effect on the insulin-stimulated ERK2 in 3T3-L1 adipocytes. These results demonstrate an important distinction between the mechanism of insulin signaling in the metabolically and mitogenically active cells. Insulin activates MAP kinase by the Ras-dependent pathway in the 3T3-L1 fibroblasts and by the Ras-independent pathway in the 3T3-L1 adipocytes.

  12. Ras enhances Myc protein stability.

    PubMed

    Sears, R; Leone, G; DeGregori, J; Nevins, J R

    1999-02-01

    Various experiments have demonstrated a collaborative action of Myc and Ras, both in normal cell growth control as well as during oncogenesis. We now show that Ras enhances the accumulation of Myc activity by stabilizing the Myc protein. Whereas Myc has a very short half-life when produced in the absence of mitogenic signals, due to degradation by the 26S proteasome, the half-life of Myc increases markedly in growth-stimulated cells. This stabilization is dependent on the Ras/Raf/MAPK pathway and is not augmented by proteasome inhibition, suggesting that Ras inhibits the proteasome-dependent degradation of Myc. We propose that one aspect of Myc-Ras collaboration is an ability of Ras to enhance the accumulation of transcriptionally active Myc protein.

  13. Cloning and characterization of Ras-GRF2, a novel guanine nucleotide exchange factor for Ras.

    PubMed

    Fam, N P; Fan, W T; Wang, Z; Zhang, L J; Chen, H; Moran, M F

    1997-03-01

    Conversion of Ras proteins into an activated GTP-bound state able to bind effector proteins is catalyzed by specific guanine nucleotide exchange factors in response to a large number of extracellular stimuli. Here we report the isolation of mouse cDNAs encoding Ras-GRF2, a multidomain 135-kDa protein containing a COOH-terminal Cdc25-related domain that stimulates release of GDP from Ras but not other GTPases in vitro. Ras-GRF2 bound specifically to immobilized Ras lacking bound nucleotides, suggesting stabilization of the nucleotide-free form of Ras as a mechanism of catalyzing nucleotide exchange. The NH2-terminal region of Ras-GRF2 is predicted to contain features common to various signaling proteins including two pleckstrin homology domains and a Dbl homology region. Ras-GRF2 also contains an IQ motif which was required for its apparent constitutive association with calmodulin in epithelial cells ectopically expressing Ras-GRF2. Transient expression of Ras-GRF2 in kidney epithelial cells stimulated GTP binding by Ras and potentiated calcium ionophore-induced activation of mitogen-activated protein kinase (ERK1) dependent upon the IQ motif. Calcium influx caused Ras-GRF2 subcellular localization to change from cytosolic to peripheral, suggesting a possible mechanism for controlling Ras-GRF2 interactions with Ras at the plasma membrane. Epithelial cells overexpressing Ras-GRF2 are morphologically transformed and grow in a disorganized manner with minimal intercellular contacts. Northern analysis indicated a 9-kb GRF2 transcript in brain and lung, where p135 Ras-GRF2 is known to be expressed, and RNAs of 12 kb and 2.2 kb were detected in several tissues. Thus, Ras-GRF2 proteins with different domain structures may be widely expressed and couple diverse extracellular signals to Ras activation.

  14. Formation of the Ras dimer is essential for Raf-1 activation.

    PubMed

    Inouye, K; Mizutani, S; Koide, H; Kaziro, Y

    2000-02-11

    Although it is well established that Ras requires membrane localization for activation of its target molecule, Raf-1, the reason for this requirement is not fully understood. In this study, we found that modified Ras, which is purified from Sf9 cells, could activate Raf-1 in a cell-free system, when incorporated into liposome. Using a bifunctional cross-linker and a protein-fragmentation complementation assay, we detected dimer formation of Ras in the liposome and in the intact cells, respectively. These results suggest that dimerization of Ras in the lipid membrane is essential for activation of Raf-1. To support this, we found that, when fused to glutathione S-transferase (GST), unprocessed Ras expressed in Escherichia coli could bypass the requirement for liposome. A Ras-dependent Raf-1 activator, which we previously reported (Mizutani, S., Koide, H., and Kaziro, Y. (1998) Oncogene 16, 2781-2786), was still required for Raf-1 activation by GST-Ras. Furthermore, an enforced dimerization of unmodified oncogenic Ras mutant in human embryonic kidney (HEK) 293 cells, using a portion of gyrase B or estrogen receptor, also resulted in activation of Raf-1. From these results, we conclude that membrane localization allows Ras to form a dimer, which is essential, although not sufficient, for Raf-1 activation.

  15. Induction of p27Kip1 degradation and anchorage independence by Ras through the MAP kinase signaling pathway.

    PubMed

    Kawada, M; Yamagoe, S; Murakami, Y; Suzuki, K; Mizuno, S; Uehara, Y

    1997-08-01

    While most untransformed cells require substrate attachment for growth (anchorage dependence), the oncogenic transformed cells lack this requirement (anchorage independence) and are often tumorigenic. However, the mechanism of loss of anchorage dependence is not fully understood. When rat normal fibroblasts were cultured in suspension without substrate attachment, the cell cycle arrested in G1 phase and the cyclin-dependent kinase inhibitor p27Kip1 protein and its mRNA accumulated. Conditional expression of oncogenic Ras induced the G1-S transition of the cell cycle and significantly shortened the half-life of p27Kip1 protein without altering its mRNA level. Inhibition of the activation of mitogen-activated protein (MAP) kinase by cyclic AMP-elevating agents and a MEK inhibitor prevented the oncogenic Ras-induced degradation of p27Kip1. These results suggest that the loss of substrate attachment induces the cell cycle arrest through the up-regulation of p27Kip1 mRNA, but the oncogenic Ras confers anchorage independence by accelerating p27Kip1 degradation through the activation of the MAP kinase signaling pathway. Furthermore, we have found that p27Kip1 is phosphorylated by MAP kinase in vitro and the phosphorylated p27Kip1 cannot bind to and inhibit cdk2.

  16. The ζ isoform of diacylglycerol kinase plays a predominant role in regulatory T cell development and TCR-mediated ras signaling.

    PubMed

    Joshi, Rohan P; Schmidt, Amanda M; Das, Jayajit; Pytel, Dariusz; Riese, Matthew J; Lester, Melissa; Diehl, J Alan; Behrens, Edward M; Kambayashi, Taku; Koretzky, Gary A

    2013-11-26

    Diacylglycerol (DAG) is a critical second messenger that mediates T cell receptor (TCR)-stimulated signaling. The abundance of DAG is reduced by the diacylglycerol kinases (DGKs), which catalyze the conversion of DAG to phosphatidic acid (PA) and thus inhibit DAG-mediated signaling. In T cells, the predominant DGK isoforms are DGKα and DGKζ, and deletion of the genes encoding either isoform enhances DAG-mediated signaling. We found that DGKζ, but not DGKα, suppressed the development of natural regulatory T (T(reg)) cells and predominantly mediated Ras and Akt signaling downstream of the TCR. The differential functions of DGKα and DGKζ were not attributable to differences in protein abundance in T cells or in their localization to the contact sites between T cells and antigen-presenting cells. RasGRP1, a key DAG-mediated activator of Ras signaling, associated to a greater extent with DGKζ than with DGKα; however, in silico modeling of TCR-stimulated Ras activation suggested that a difference in RasGRP1 binding affinity was not sufficient to cause differences in the functions of each DGK isoform. Rather, the model suggested that a greater catalytic rate for DGKζ than for DGKα might lead to DGKζ exhibiting increased suppression of Ras-mediated signals compared to DGKα. Consistent with this notion, experimental studies demonstrated that DGKζ was more effective than DGKα at catalyzing the metabolism of DAG to PA after TCR stimulation. The enhanced effective enzymatic production of PA by DGKζ is therefore one possible mechanism underlying the dominant functions of DGKζ in modulating T(reg) cell development.

  17. The ζ Isoform of Diacylglycerol Kinase Plays a Predominant Role in Regulatory T Cell Development and TCR-Mediated Ras Signaling

    PubMed Central

    Joshi, Rohan P.; Schmidt, Amanda M.; Das, Jayajit; Pytel, Dariusz; Riese, Matthew J.; Lester, Melissa; Diehl, J. Alan; Behrens, Edward M.; Kambayashi, Taku; Koretzky, Gary A.

    2014-01-01

    Diacylglycerol (DAG) is a critical second messenger that mediates T cell receptor (TCR)–stimulated signaling. The abundance of DAG is reduced by the diacylglycerol kinases (DGKs), which catalyze the conversion of DAG to phosphatidic acid (PA) and thus inhibit DAG-mediated signaling. In T cells, the predominant DGK isoforms are DGKα and DGKζ, and deletion of the genes encoding either isoform enhances DAG-mediated signaling. We found that DGKζ, but not DGKα, suppressed the development of natural regulatory T (Treg) cells and predominantly mediated Ras and Akt signaling downstream of the TCR. The differential functions of DGKα and DGKζ were not attributable to differences in protein abundance in T cells or in their localization to the contact sites between T cells and antigen-presenting cells. RasGRP1, a key DAG-mediated activator of Ras signaling, associated to a greater extent with DGKζ than with DGKα; however, in silico modeling of TCR-stimulated Ras activation suggested that a difference in RasGRP1 binding affinity was not sufficient to cause differences in the functions of each DGK isoform. Rather, the model suggested that a greater catalytic rate for DGKζ than for DGKα might lead to DGKζ exhibiting increased suppression of Ras-mediated signals compared to DGKα. Consistent with this notion, experimental studies demonstrated that DGKζ was more effective than DGKα at catalyzing the metabolism of DAG to PA after TCR stimulation. The enhanced effective enzymatic production of PA by DGKζ is therefore one possible mechanism underlying the dominant functions of DGKζ in modulating Treg cell development. PMID:24280043

  18. Human type II Fcgamma receptors inhibit B cell activation by interacting with the p21(ras)-dependent pathway.

    PubMed

    Sármay, G; Koncz, G; Gergely, J

    1996-11-29

    Co-ligation of antigen receptors and type II Fcgamma receptors (FcgammaRIIb) on B cells interrupts signal transduction and ultimately inhibits antibody production. We have identified p52 Shc in the FcgammaRIIb1-specific immunoprecipitates isolated from the membrane fraction of BL41 Burkitt lymphoma cells following B cell receptor-FcgammaRIIb1 co-ligation. The insolubilized synthetic peptide representing the phosphorylated form of the tyrosine-based inhibitory motif of FcgammaRIIb also binds Shc from the lysates of activated but not from resting BL41 cells. This suggests that the binding does not depend on the interaction of FcgammaRIIb1-phosphotyrosine with the SH2 domain of Shc. Tyr phosphorylation of FcgammaRIIb1-associated Shc is low, indicating an impaired function. Shc is implicated in regulating p21(ras) activation; thus, we have compared p21(ras) activities in BL41 cells treated in different ways. p21(ras) activity is reduced when B cell receptor and FcgammaRIIb1 are co-ligated. p21(ras) couples protein-tyrosine kinase-dependent events to the Ser/Thr kinase-mediated signaling pathway leading to the activation of mitogen-activated protein kinases (MAPK). Our results show that B cell receptor-FcgammaRIIb1 co-cross-linking partially inhibits mitogen-activated protein kinase activity. We conclude that FcgammaRIIb1-dependent inhibition of human B cell activation may be based on interrupting signal transduction between protein-tyrosine kinases and the p21(ras)/mitogen-activated protein kinase-dependent activation pathway.

  19. K-Ras mutation-mediated IGF-1-induced feedback ERK activation contributes to the rapalog resistance in pancreatic ductal adenocarcinomas.

    PubMed

    Wei, Feng; Liu, Yan; Bellail, Anita C; Olson, Jeffrey J; Sun, Shi-Yong; Lu, Guoyue; Ding, Lijuan; Yuan, Changji; Wang, Guangyi; Hao, Chunhai

    2012-09-01

    Mammalian target of rapamycin complex 1 (mTORC1) is frequently activated in human cancers; however, clinical trials of rapalog (the mTORC1 inhibitors) have shown that pancreatic ductal adenocarcinomas (PDACs) resist to the treatment. Rapalog treatment activated the extracellular signal-regulated kinase (ERK) pathway in K-Ras mt PDAC cells. K-Ras knockdown abolished the insulin-like growth factor-1 (IGF-1)-induced ERK pathway in the K-Ras mt PDAC cells and enhanced the therapeutic efficacy of everolimus in treating K-Ras mt PDAC cells-derived mouse xenografts. The results indicate that targeting of K-Ras mutation may lead to the development of therapies that overcome rapalog resistance in PDAC.

  20. RasGRP3 limits Toll-like receptor-triggered inflammatory response in macrophages by activating Rap1 small GTPase

    PubMed Central

    Tang, Songqing; Chen, Taoyong; Yu, Zhou; Zhu, Xuhui; Yang, Mingjin; Xie, Bin; Li, Nan; Cao, Xuetao; Wang, Jianli

    2014-01-01

    Host immune cells can detect and destruct invading pathogens via pattern-recognition receptors. Small Rap GTPases act as conserved molecular switches coupling extracellular signals to various cellular responses, but their roles as regulators in Toll-like receptor (TLR) signalling have not been fully elucidated. Here we report that Ras guanine nucleotide-releasing protein 3 (RasGRP3), a guanine nucleotide-exchange factor activating Ras and Rap1, limits production of proinflammatory cytokines (especially IL-6) in macrophages by activating Rap1 on activation by low levels of TLR agonists. We demonstrate that RasGRP3, a dominant member of RasGRPs in macrophages, impairs TLR3/4/9-induced IL-6 production and relieves dextrane sulphate sodium-induced colitis and collagen-induced arthritis. In RasGRP3-deficient RAW264.7 cells obtained by CRISPR-Cas9 genome editing, TLR3/4/9-induced activation of Rap1 was inhibited while ERK1/2 activation was enhanced. Our study suggests that RasGRP3 limits inflammatory response by activating Rap1 on low-intensity pathogen infection, setting a threshold for preventing excessive inflammatory response. PMID:25118589

  1. MAF mediates crosstalk between Ras-MAPK and mTOR signaling in NF1

    PubMed Central

    Brundage, Meghan E.; Tandon, Preeti; Eaves, David W.; Williams, Jon P.; Miller, Shyra J.; Hennigan, Robert H.; Jegga, Anil; Cripe, Timothy P.; Ratner, Nancy

    2014-01-01

    Mutations in the neurofibromatosis type 1 (NF1 tumor suppressor gene are common in cancer, and can cause resistance to therapy. Using transcriptome analysis we identified MAF as an NF1 regulated transcription factor, and verified MAF regulation through RAS/MAPK/AP-1 signaling in malignant peripheral nerve sheath tumor (MPNST) cell lines. MAF was also downregulated in human MPNST. Acute re-expression of MAF promoted expression of glial differentiation markers in MPNST cells in vitro, decreased self-renewal of embryonic precursors and transiently affected tumor cell phenotypes in vitro by increasing MPNST cell death and reducing metabolic activity and anchorage independent growth. Paradoxically, chronic MAF overexpression enhanced MPNST cell tumor growth in vivo, correlating with elevated pS6 in vitro and in vivo. RAD001 blocked MAF-mediated tumor growth, and MAF regulated the mTOR pathway through DEPTOR. MAPK inhibition with NF1 loss of function is predicted to show limited efficacy due to reactivation of mTOR signaling via MAF. PMID:24509877

  2. Activation of RAS/ERK alone is insufficient to inhibit RXRα function and deplete retinoic acid in hepatocytes

    SciTech Connect

    Wang, Ai-Guo Song, Ya-Nan; Chen, Jun; Li, Hui-Ling; Dong, Jian-Yi; Cui, Hai-Peng; Yao, Liang; Li, Xue-Feng; Gao, Wen-Ting; Qiu, Ze-Wen; Wang, Fu-Jin; Wang, Jing-Yu

    2014-09-26

    Highlights: • The activation of RAS/ERK is insufficient to inhibit RXRα function and deplete RA. • The retinoid metabolism-related genes are down-regulated by ras oncogene. • The atRA has no effect on preventing hepatic tumorigenesis or curing the developed hepatic nodules. - Abstract: Activation of RAS/ERK signaling pathway, depletion of retinoid, and phosphorylation of retinoid X receptor alpha (RXRα) are frequent events found in liver tumors and thought to play important roles in hepatic tumorigenesis. However, the relationships among them still remained to be elucidated. By exploring the transgenic mouse model of hepatic tumorigenesis induced by liver-specific expression of H-ras12V oncogene, the activation of RAS/ERK, the mRNA expression levels of retinoid metabolism-related genes, the contents of retinoid metabolites, and phosphorylation of RXRα were determined. RAS/ERK signaling pathway was gradually and significantly activated in hepatic tumor adjacent normal liver tissues (P) and hepatic tumor tissues (T) of H-ras12V transgenic mice compared with normal liver tissues (Wt) of wild type mice. On the contrary, the mRNA expression levels of retinoid metabolism-related genes were significantly reduced in P and T compared with Wt. Interestingly, the retinoid metabolites 9-cis-retinoic acid (9cRA) and all-trans-retinoic acid (atRA), the well known ligands for nuclear transcription factor RXR and retinoic acid receptor (RAR), were significantly decreased only in T compared with Wt and P, although the oxidized polar metabolite of atRA, 4-keto-all-trans-retinoic-acid (4-keto-RA) was significantly decreased in both P and T compared with Wt. To our surprise, the functions of RXRα were significantly blocked only in T compared with Wt and P. Namely, the total protein levels of RXRα were significantly reduced and the phosphorylation levels of RXRα were significantly increased only in T compared with Wt and P. Treatment of H-ras12V transgenic mice at 5-week

  3. Ras activation in response to phorbol ester proceeds independently of the EGFR via an unconventional nucleotide-exchange factor system in COS-7 cells.

    PubMed

    Rubio, Ignacio; Rennert, Knut; Wittig, Ute; Beer, Katrin; Dürst, Matthias; Stang, Stacey L; Stone, Jim; Wetzker, Reinhard

    2006-09-01

    Ras is a major mediator of PE (phorbol ester) effects in mammalian cells. Various mechanisms for PE activation of Ras have been reported [Downward, Graves, Warne, Rayter and Cantrell (1990) Nature (London) 346, 719-723; Shu, Wu, Mosteller and Broek (2002) Mol. Cell. Biol. 22, 7758-7768; Roose, Mollenauer, Gupta, Stone and Weiss (2005) Mol. Cell. Biol. 25, 4426-4441; Grosse, Roelle, Herrlich, Höhn and Gudermann (2000) J. Biol. Chem. 275, 12251-12260], including pathways that target GAPs (GTPase-activating proteins) for inactivation and those that result in activation of GEFs (guanine nucleotide-exchange factors) Sos (son of sevenless homologue) or RasGRP (RAS guanyl releasing protein). However, a biochemical link between PE and GAP inactivation is missing and GEF stimulation is hard to reconcile with the observation that dominant-negative S17N-Ras does not compromise Ras-dependent ERK (extracellular-signal-regulated kinase) activation by PE. We have addressed this controversy and carried out an in-depth biochemical study of PE-induced Ras activation in COS-7 cells. Using a cell-permeabilization approach to monitor nucleotide exchange on Ras, we demonstrate that PE-induced Ras-GTP accumulation results from GEF stimulation. Nucleotide exchange stimulation by PE is prevented by PKC (protein kinase C) inhibition but not by EGFR [EGF (epidermal growth factor) receptor] blockade, despite the fact that EGFR inhibition aborts basal and PE-induced Shc (Src homology and collagen homology) phosphorylation and Shc-Grb2 (growth-factor-receptor-bound protein 2) association. In fact, EGFR inhibition ablates basal nucleotide exchange on Ras in growth-arrested COS-7 cells. These data disclose the existence of two separate GEF systems that operate independently from each other to accomplish PE-dependent formation of Ras-GTP and to maintain resting Ras-GTP levels respectively. We document that COS-7 cells do not express RasGRP and present evidence that the PE-responsive GEF system

  4. The RafC1 cysteine-rich domain contains multiple distinct regulatory epitopes which control Ras-dependent Raf activation.

    PubMed

    Daub, M; Jöckel, J; Quack, T; Weber, C K; Schmitz, F; Rapp, U R; Wittinghofer, A; Block, C

    1998-11-01

    Activation of c-Raf-1 (referred to as Raf) by Ras is a pivotal step in mitogenic signaling. Raf activation is initiated by binding of Ras to the regulatory N terminus of Raf. While Ras binding to residues 51 to 131 is well understood, the role of the RafC1 cysteine-rich domain comprising residues 139 to 184 has remained elusive. To resolve the function of the RafC1 domain, we have performed an exhaustive surface scanning mutagenesis. In our study, we defined a high-resolution map of multiple distinct functional epitopes within RafC1 that are required for both negative control of the kinase and the positive function of the protein. Activating mutations in three different epitopes enhanced Ras-dependent Raf activation, while only some of these mutations markedly increased Raf basal activity. One contiguous inhibitory epitope consisting of S177, T182, and M183 clearly contributed to Ras-Raf binding energy and represents the putative Ras binding site of the RafC1 domain. The effects of all RafC1 mutations on Ras binding and Raf activation were independent of Ras lipid modification. The inhibitory mutation L160A is localized to a position analogous to the phorbol ester binding site in the protein kinase C C1 domain, suggesting a function in cofactor binding. Complete inhibition of Ras-dependent Raf activation was achieved by combining mutations K144A and L160A, which clearly demonstrates an absolute requirement for correct RafC1 function in Ras-dependent Raf activation.

  5. Identification of a novel human kinase supporter of Ras (hKSR-2) that functions as a negative regulator of Cot (Tpl2) signaling.

    PubMed

    Channavajhala, Padma L; Wu, Leeying; Cuozzo, John W; Hall, J Perry; Liu, Wei; Lin, Lih-Ling; Zhang, Yuhua

    2003-11-21

    Kinase suppressor of Ras (KSR) is an integral and conserved component of the Ras signaling pathway. Although KSR is a positive regulator of the Ras/mitogen-activated protein (MAP) kinase pathway, the role of KSR in Cot-mediated MAPK activation has not been identified. The serine/threonine kinase Cot (also known as Tpl2) is a member of the MAP kinase kinase kinase (MAP3K) family that is known to regulate oncogenic and inflammatory pathways; however, the mechanism(s) of its regulation are not precisely known. In this report, we identify an 830-amino acid novel human KSR, designated hKSR-2, using predictions from genomic data base mining based on the structural profile of the KSR kinase domain. We show that, similar to the known human KSR, hKSR-2 co-immunoprecipitates with many signaling components of the Ras/MAPK pathway, including Ras, Raf, MEK-1, and ERK-1/2. In addition, we demonstrate that hKSR-2 co-immunoprecipitates with Cot and that co-expression of hKSR-2 with Cot significantly reduces Cot-mediated MAPK and NF-kappaB activation. This inhibition is specific to Cot, because Ras-induced ERK and IkappaB kinase-induced NF-kappaB activation are not significantly affected by hKSR-2 co-expression. Moreover, Cot-induced interleukin-8 production in HeLa cells is almost completely inhibited by the concurrent expression of hKSR-2, whereas transforming growth factor beta-activated kinase 1 (TAK1)/TAK1-binding protein 1 (TAB1)-induced interleukin-8 production is not affected by hKSR-2 co-expression. Taken together, these results indicate that hKSR-2, a new member of the KSR family, negatively regulates Cot-mediated MAP kinase and NF-kappaB pathway signaling. PMID:12975377

  6. Differential Regulation of N-Myc and c-Myc Synthesis, Degradation, and Transcriptional Activity by the Ras/Mitogen-activated Protein Kinase Pathway*

    PubMed Central

    Kapeli, Katannya; Hurlin, Peter J.

    2011-01-01

    Myc transcription factors are important regulators of proliferation and can promote oncogenesis when deregulated. Deregulated Myc expression in cancers can result from MYC gene amplification and translocation but also from alterations in mitogenic signaling pathways that affect Myc levels through both transcriptional and post-transcription mechanisms. For example, mutations in Ras family GTPase proteins that cause their constitutive activation can increase cellular levels of c-Myc by interfering with its rapid proteasomal degradation. Although enhanced protein stability is generally thought to be applicable to other Myc family members, here we show that c-Myc and its paralog N-Myc respond to oncogenic H-Ras (H-RasG12V) in very different ways. H-RasG12V promotes accumulation of both c-Myc and N-Myc, but although c-Myc accumulation is achieved by enhanced protein stability, N-Myc accumulation is associated with an accelerated rate of translation that overcomes a surprising H-RasG12V-mediated destabilization of N-Myc. We show that H-RasG12V-mediated degradation of N-Myc functions independently of key phosphorylation sites in the highly conserved Myc homology box I region that controls c-Myc protein stability by oncogenic Ras. Finally, we found that N-Myc and c-Myc transcriptional activity is associated with their proteasomal degradation but that N-Myc may be uniquely dependent on Ras-stimulated proteolysis for target gene expression. Taken together, these studies provide mechanistic insight into how oncogenic Ras augments N-Myc levels in cells and suggest that enhanced N-Myc translation and degradation-coupled transactivation may contribute to oncogenesis. PMID:21908617

  7. Ras and TGF-β signaling enhance cancer progression by promoting the ΔNp63 transcriptional program.

    PubMed

    Vasilaki, Eleftheria; Morikawa, Masato; Koinuma, Daizo; Mizutani, Anna; Hirano, Yudai; Ehata, Shogo; Sundqvist, Anders; Kawasaki, Natsumi; Cedervall, Jessica; Olsson, Anna-Karin; Aburatani, Hiroyuki; Moustakas, Aristidis; Miyazono, Kohei; Heldin, Carl-Henrik

    2016-01-01

    The p53 family of transcription factors includes p63, which is a master regulator of gene expression in epithelial cells. Determining whether p63 is tumor-suppressive or tumorigenic is complicated by isoform-specific and cellular context-dependent protein associations, as well as antagonism from mutant p53. ΔNp63 is an amino-terminal-truncated isoform, that is, the predominant isoform expressed in cancer cells of epithelial origin. In HaCaT keratinocytes, which have mutant p53 and ΔNp63, we found that mutant p53 antagonized ΔNp63 transcriptional activity but that activation of Ras or transforming growth factor-β (TGF-β) signaling pathways reduced the abundance of mutant p53 and strengthened target gene binding and activity of ΔNp63. Among the products of ΔNp63-induced genes was dual-specificity phosphatase 6 (DUSP6), which promoted the degradation of mutant p53, likely by dephosphorylating p53. Knocking down all forms of p63 or DUSP6 and DUSP7 (DUSP6/7) inhibited the basal or TGF-β-induced or epidermal growth factor (which activates Ras)-induced migration and invasion in cultures of p53-mutant breast cancer and squamous skin cancer cells. Alternatively, overexpressing ΔNp63 in the breast cancer cells increased their capacity to colonize various tissues upon intracardiac injection in mice, and this was inhibited by knocking down DUSP6/7 in these ΔNp63-overexpressing cells. High abundance of ΔNp63 in various tumors correlated with poor prognosis in patients, and this correlation was stronger in patients whose tumors also had a mutation in the gene encoding p53. Thus, oncogenic Ras and TGF-β signaling stimulate cancer progression through activation of the ΔNp63 transcriptional program. PMID:27555661

  8. The mucin MUC4 is a transcriptional and post-transcriptional target of K-ras oncogene in pancreatic cancer. Implication of MAPK/AP-1, NF-κB and RalB signaling pathways.

    PubMed

    Vasseur, Romain; Skrypek, Nicolas; Duchêne, Belinda; Renaud, Florence; Martínez-Maqueda, Daniel; Vincent, Audrey; Porchet, Nicole; Van Seuningen, Isabelle; Jonckheere, Nicolas

    2015-12-01

    The membrane-bound mucinMUC4 is a high molecularweight glycoprotein frequently deregulated in cancer. In pancreatic cancer, one of the most deadly cancers in occidental countries, MUC4 is neo-expressed in the preneoplastic stages and thereafter is involved in cancer cell properties leading to cancer progression and chemoresistance. K-ras oncogene is a small GTPase of the RAS superfamily, highly implicated in cancer. K-ras mutations are considered as an initiating event of pancreatic carcinogenesis and K-ras oncogenic activities are necessary components of cancer progression. However, K-ras remains clinically undruggable. Targeting early downstream K-ras signaling in cancer may thus appear as an interesting strategy and MUC4 regulation by K-ras in pancreatic carcinogenesis remains unknown. Using the Pdx1-Cre; LStopL-K-rasG12D mouse model of pancreatic carcinogenesis, we show that the in vivo early neo-expression of the mucin Muc4 in pancreatic intraepithelial neoplastic lesions (PanINs) induced by mutated K-ras is correlated with the activation of ERK, JNK and NF-κB signaling pathways. In vitro, transfection of constitutively activated K-rasG12V in pancreatic cancer cells led to the transcriptional upregulation of MUC4. This activation was found to be mediated at the transcriptional level by AP-1 and NF-κB transcription factors via MAPK, JNK and NF-κB pathways and at the posttranscriptional level by a mechanism involving the RalB GTPase. Altogether, these results identify MUC4 as a transcriptional and post-transcriptional target of K-ras in pancreatic cancer. This opens avenues in developing new approaches to target the early steps of this deadly cancer.

  9. RasGRP3 regulates the migration of glioma cells via interaction with Arp3

    PubMed Central

    Lee, Hae Kyung; Finniss, Susan; Cazacu, Simona; Xiang, Cunli; Poisson, Laila M.; Blumberg, Peter M.; Brodie, Chaya

    2015-01-01

    Glioblastoma (GBM), the most aggressive primary brain tumors, are highly infiltrative. Although GBM express high Ras activity and Ras proteins have been implicated in gliomagenesis, Ras-activating mutations are not frequent in these tumors. RasGRP3, an important signaling protein responsive to diacylglycerol (DAG), increases Ras activation. Here, we examined the expression and functions of RasGRP3 in GBM and glioma cells. RasGRP3 expression was upregulated in GBM specimens and glioma stem cells compared with normal brains and neural stem cells, respectively. RasGRP3 activated Ras and Rap1 in glioma cells and increased cell migration and invasion partially via Ras activation. Using pull-down assay and mass spectroscopy we identified the actin-related protein, Arp3, as a novel interacting protein of RasGRP3. The interaction of RasGRP3 and Arp3 was validated by immunofluorescence staining and co-immunoprecipitation, and PMA, which activates RasGRP3 and induces its translocation to the peri-nuclear region, increased the association of Arp3 and RasGRP3. Arp3 was upregulated in GBM, regulated cell spreading and migration and its silencing partially decreased these effects of RasGRP3 in glioma cells. In summary, RasGRP3 acts as an important integrating signaling protein of the DAG and Ras signaling pathways and actin polymerization and represents an important therapeutic target in GBM. PMID:25682201

  10. Aspafilioside B induces G2/M cell cycle arrest and apoptosis by up-regulating H-Ras and N-Ras via ERK and p38 MAPK signaling pathways in human hepatoma HepG2 cells.

    PubMed

    Liu, Wei; Ning, Rui; Chen, Rui-Ni; Huang, Xue-Feng; Dai, Qin-Sheng; Hu, Jin-Hua; Wang, Yu-Wen; Wu, Li-Li; Xiong, Jing; Hu, Gang; Guo, Qing-Long; Yang, Jian; Wang, Hao

    2016-05-01

    We recently establish that aspafilioside B, a steroidal saponin extracted from Asparagus filicinus, is an active cytotoxic component. However, its antitumor activity is till unknown. In this study, the anticancer effect of aspafilioside B against HCC cells and the underlying mechanisms were investigated. Our results showed that aspafilioside B inhibited the growth and proliferation of HCC cell lines. Further study revealed that aspafilioside B could significantly induce G2 phase cell cycle arrest and apoptosis, accompanying the accumulation of reactive oxygen species (ROS), but blocking ROS generation with N-acetyl-l-cysteine (NAC) could not prevent G2/M arrest and apoptosis. Additionally, treatment with aspafilioside B induced phosphorylation of extracellular signal-regulated kinase (ERK) and p38 MAP kinase. Moreover, both ERK inhibitor PD98059 and p38 inhibitor SB203580 almost abolished the G2/M phase arrest and apoptosis induced by aspafilioside B, and reversed the expression of cell cycle- and apoptosis-related proteins. We also found that aspafilioside B treatment increased both Ras and Raf activation, and transfection of cells with H-Ras and N-Ras shRNA almost attenuated aspafilioside B-induced G2 phase arrest and apoptosis as well as the ERK and p38 activation. Finally, in vivo, aspafilioside B suppressed tumor growth in mouse xenograft models, and the mechanism was the same as in vitro study. Collectively, these findings indicated that aspafilioside B may up-regulate H-Ras and N-Ras, causing c-Raf phosphorylation, and lead to ERK and p38 activation, which consequently induced the G2 phase arrest and apoptosis. This study provides the evidence that aspafilioside B is a promising therapeutic agent against HCC.

  11. Aspafilioside B induces G2/M cell cycle arrest and apoptosis by up-regulating H-Ras and N-Ras via ERK and p38 MAPK signaling pathways in human hepatoma HepG2 cells.

    PubMed

    Liu, Wei; Ning, Rui; Chen, Rui-Ni; Huang, Xue-Feng; Dai, Qin-Sheng; Hu, Jin-Hua; Wang, Yu-Wen; Wu, Li-Li; Xiong, Jing; Hu, Gang; Guo, Qing-Long; Yang, Jian; Wang, Hao

    2016-05-01

    We recently establish that aspafilioside B, a steroidal saponin extracted from Asparagus filicinus, is an active cytotoxic component. However, its antitumor activity is till unknown. In this study, the anticancer effect of aspafilioside B against HCC cells and the underlying mechanisms were investigated. Our results showed that aspafilioside B inhibited the growth and proliferation of HCC cell lines. Further study revealed that aspafilioside B could significantly induce G2 phase cell cycle arrest and apoptosis, accompanying the accumulation of reactive oxygen species (ROS), but blocking ROS generation with N-acetyl-l-cysteine (NAC) could not prevent G2/M arrest and apoptosis. Additionally, treatment with aspafilioside B induced phosphorylation of extracellular signal-regulated kinase (ERK) and p38 MAP kinase. Moreover, both ERK inhibitor PD98059 and p38 inhibitor SB203580 almost abolished the G2/M phase arrest and apoptosis induced by aspafilioside B, and reversed the expression of cell cycle- and apoptosis-related proteins. We also found that aspafilioside B treatment increased both Ras and Raf activation, and transfection of cells with H-Ras and N-Ras shRNA almost attenuated aspafilioside B-induced G2 phase arrest and apoptosis as well as the ERK and p38 activation. Finally, in vivo, aspafilioside B suppressed tumor growth in mouse xenograft models, and the mechanism was the same as in vitro study. Collectively, these findings indicated that aspafilioside B may up-regulate H-Ras and N-Ras, causing c-Raf phosphorylation, and lead to ERK and p38 activation, which consequently induced the G2 phase arrest and apoptosis. This study provides the evidence that aspafilioside B is a promising therapeutic agent against HCC. PMID:25683703

  12. Glycosphingolipid synthesis inhibitor represses cytokine-induced activation of the Ras-MAPK pathway in embryonic neural precursor cells.

    PubMed

    Yanagisawa, Makoto; Nakamura, Kazuo; Taga, Tetsuya

    2005-09-01

    Neuronal and glial cells in the central nervous system are generated from common neural precursor cells during development. To evaluate the functions of glycosphingolipids (GSLs) in neural precursor cells, neuroepithelial cells (NECs) were prepared from mouse embryos (E14.5), and the effects of an inhibitor of glucosylceramide synthesis, D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), on NECs was investigated. In PDMP-treated NECs, the expression of GD3, a major ganglioside of NECs, disappeared. We found that basic fibroblast growth factor (bFGF)-induced proliferation and extracellular signal-regulated kinase (ERK) activation were repressed in PDMP-treated NECs. Leukemia inhibitory factor (LIF)-induced ERK activation was also abolished in PDMP-treated NECs, suggesting that PDMP specifically represses the Ras-MAPK pathway. bFGF-induced activation of the Ras-MAPK pathway in NECs is dependent on GSL-enriched microdomains, lipid rafts. The organization of lipid rafts and the distribution of Ras and Grb2-SOS in the microdomains were not affected. However, Ras activation was repressed in PDMP-treated NECs. In PDMP-treated NECs, some neuronal genes were up-regulated and glial genes were down-regulated. These results suggest that GSLs might be involved in the proliferation, survival, signal transduction and differentiation of NECs.

  13. RAS oncogenes: weaving a tumorigenic web

    PubMed Central

    Pylayeva-Gupta, Yuliya; Grabocka, Elda; Bar-Sagi, Dafna

    2013-01-01

    RAS proteins are essential components of signalling pathways that emanate from cell surface receptors. Oncogenic activation of these proteins owing to missense mutations is frequently detected in several types of cancer. A wealth of biochemical and genetic studies indicates that RAS proteins control a complex molecular circuitry that consists of a wide array of interconnecting pathways. In this Review, we describe how RAS oncogenes exploit their extensive signalling reach to affect multiple cellular processes that drive tumorigenesis. PMID:21993244

  14. FMLP activates Ras and Raf in human neutrophils. Potential role in activation of MAP kinase.

    PubMed Central

    Worthen, G S; Avdi, N; Buhl, A M; Suzuki, N; Johnson, G L

    1994-01-01

    Chemoattractants bind to seven transmembrane-spanning, G-protein-linked receptors on polymorphonuclear leukocytes (neutrophils) and induce a variety of functional responses, including activation of microtubule-associated protein (MAP) kinase. Although the pathways by which MAP kinases are activated in neutrophils are unknown, we hypothesized that activation of the Ras/Raf pathway leading to activation of MAP/ERK kinase (MEK) would be induced by the chemoattractant f-met-leu-phe. Human neutrophils exposed to 10 nM FMLP for 30 s exhibited an MAP kinase kinase activity coeluting with MEK-1. Immunoprecipitation of Raf-1 kinase after stimulation with FMLP revealed an activity that phosphorylated MEK, was detectable at 30 s, and peaked at 2-3 min. Immunoprecipitation of Ras from both intact neutrophils labeled with [32P]orthophosphate and electropermeabilized neutrophils incubated with [32P]GTP was used to determine that FMLP treatment was associated with activation of Ras. Activation of both Ras and Raf was inhibited by treatment of neutrophils with pertussis toxin, indicating predominant linkage to the Gi2 protein. Although phorbol esters activated Raf, activation induced by FMLP appeared independent of protein kinase C, further suggesting that Gi2 was linked to Ras and Raf independent of phospholipase C and protein kinase C. Dibutyryl cAMP, which inhibits many neutrophil functional responses, blocked the activation of Raf by FMLP, suggesting that interruption of the Raf/MAP kinase pathway influences neutrophil responses to chemoattractants. These data suggest that Gi2-mediated receptor regulation of the Ras/Raf/MAP kinase pathway is a primary response to chemoattractants. Images PMID:8040337

  15. Laser microdissection and microarray analysis of the hippocampus of Ras-GRF1 knockout mice reveals gene expression changes affecting signal transduction pathways related to memory and learning.

    PubMed

    Fernández-Medarde, A; Porteros, A; de las Rivas, J; Núñez, A; Fuster, J J; Santos, E

    2007-04-25

    We used manual macrodissection or laser capture microdissection (LCM) to isolate tissue sections of the hippocampus area of Ras-GRF1 wild type and knockout mice brains, and analyzed their transcriptional patterns using commercial oligonucleotide microarrays. Comparison between the transcriptomes of macrodissected and microdissected samples showed that the LCM samples allowed detection of significantly higher numbers of differentially expressed genes, with higher statistical rates of significance. These results validate LCM as a reliable technique for in vivo genomic studies in the brain hippocampus, where contamination by surrounding areas (not expressing Ras-GRF1) increases background noise and impairs identification of differentially expressed genes. Comparison between wild type and knockout LCM hippocampus samples revealed that Ras-GRF1 elimination caused significant gene expression changes, mostly affecting signal transduction and related neural processes. The list of 36 most differentially expressed genes included loci concerned mainly with Ras/G protein signaling and cytoskeletal organization (i.e. 14-3-3gamma/zeta, Kcnj6, Clasp2) or related, cross-talking pathways (i.e. jag2, decorin, strap). Consistent with the phenotypes shown by Ras-GRF1 knockout mice, many of these differentially expressed genes play functional roles in processes such as sensory development and function (i.e. Sptlc1, antiquitin, jag2) and/or neurological development/neurodegeneration processes affecting memory and learning. Indeed, potential links to neurodegenerative diseases such as Alzheimer disease (AD) or Creutzfeldt-Jacobs disease (CJD), have been reported for a number of differentially expressed genes identified in this study (Ptma, Aebp2, Clasp2, Hebp1, 14-3-3gamma/zeta, Csnk1delta, etc.). These data, together with the previously described role of IRS and insulin (known Ras-GRF1 activators) in AD, warrant further investigation of a potential functional link of Ras-GRF1 to

  16. Genetic analysis of the Kirsten-ras-revertant 1 gene: Potentiation of its tumor suppressor activity by specific point mutations

    SciTech Connect

    Kitayama, Hitoshi Univ. of Tsukuba, Ibaraki ); Matsuzaki, Tomoko; Ikawa, Yoji; Noda, Makoto )

    1990-06-01

    Kirsten-ras-revertant 1 (Krev-1) cDNA encodes a ras-related protein and exhibits an activity of inducing flat revertants at certain frequencies (2-5% of total transfectants) when introduced into a v-K-ras-transformed mouse NIH 3T3 cell line, DT. Toward understanding the mechanism of action of Krev-1 protein, the authors constructed a series of point mutants of Krev-1 cDNA and tested their biological activities in DT cells and HT1080 human fibrosarcoma cells harboring the activated N-ras gene. Substitutions of the amino acid residues in the putative guanine nucleotide-binding regions (Asp{sup 17} and Asn{sup 116}), in the putative effector-binding domain (residue 38), at the putative acylation site (Cys{sup 181}), and at the unique Thr{sup 61} all decreased the transformation suppressor activity. On the other hand, substitutions such as Gly{sup 12} to Val{sup 12} and Gln{sup 63} to Glu{sup 63} were found to significantly increase the transformation suppressor/tumor suppressor activity of Krev-1. These findings are consistent with the idea that Krev-1 protein is regulated like many other G proteins by the guanine triphosphate/guanine diphosphate-exchange mechanism probably in response to certain negative growth-regulatory signals.

  17. [RAS/MAPK signal transduction pathway and its role in the pathogenesis of Noonan syndrome].

    PubMed

    Gos, Monika; Leszkiewicz, Monika; Abramowicz, Anna

    2012-01-01

    Noonan syndrome (NS) is one of the most frequent dysmorphic syndromes in children with a frequency of 1/1000-1/2500 of newborns. Noonan syndrome is a multi-organ disease with a broad spectrum of clinical symptoms. The most characteristic features of NS are: craniofacial dysmorphy, short stature, cardiovascular defects, bone and skeletal defects and delayed puberty (cryptorchidism in males). Noonan syndrome has a genetic background and is inherited in autosomal dominant manner. The recent studies have shown that it is due to the presence of mutation in one of the genes encoding proteins of RAS/MAPK signalling pathway responsible for cell proliferation and differentiation. Till now, NS causing mutations were identified in PTPN11, SOS1, RAF1, KRAS, BRAF, SHOC2 and NRAS genes, and this may partially explain the broad phenotypic spectrum observed in patients. Noonan syndrome is one of the RAS-opathies, therefore the molecular analysis of RAS/ MAPK genes might be a very useful tool in clinical differentiation of the disease.

  18. Ras gene activation in gastric adenocarcinoma of Chinese patients in Taiwan

    SciTech Connect

    Tzeng, C.C.; Lee, W.Y.; Jin, Y.T.

    1994-09-01

    In order to assess the implication of mutational activation of members of the ras family of cellular proto-oncogenes in the development of gastric cancers in Chinese patients, a series of 55 cases of gastric adenocarcinoma in Taiwan was studied. Genomic deoxyribonucleic acid obtained from formalin-fixed paraffin-embedded archival tumor tissue was amplified by polymerase chain reaction and then analyzed by dot blot hybridation assay with allele-specific oligonucleotide probes to detect mutations at codons 12, 13, and 61 of c-Ki-ras, c-Ha-ras, and c-N-ras. Twelve (12.8%) of the 55 carcinomas examined harbored a point mutation. Of the 12 mutations, 8 (66.6%) were detected in Ha-ras codon 12. Our result is consistent with reports from mainland China and Korea, but different from those of Japan and the United States. This difference is probably attributable to different eating and drinking habits.

  19. Choline phosphate potentiates sphingosine-1-phosphate-induced Raf-1 kinase activation dependent of Ras--phosphatidylinositol-3-kinase pathway.

    PubMed

    Lee, Michael; Han, Sang Seop

    2002-04-01

    In NIH3T3 cells, sphingosine-1-phosphate (S1P) caused a significant increase of Raf-1 kinase activity as early as 2 min. Interestingly, choline phosphate (ChoP) produced synergistic increase of S1P-stimulated Raf-1 kinase activation in the presence of ATP while showing additive effect in the absence of ATP. However, Raf-1 kinase activation induced by S1P decreased in the presence of ATP when applied alone. The overexpression of N-terminal fragment of Raf-1 (RfI) to inhibit Raf--Ras interaction caused the inhibition of S1P-induced Raf-1 kinase activation. Also, wortmannin, phosphatidylinositol-3-kinase (PI3K) inhibitor, exhibited inhibitory effects on S1P-induced activation of Raf-1 kinase. In addition, we demonstrated that the chemical antioxidant, N-acetylcysteine attenuated Raf-1 activation induced by S1P, suggesting that H(2)O(2) may be required for the signalling pathway leading to Raf-1 activation. This H(2)O(2)-induced Raf-1 kinase activation was also blocked by inhibition of Ras--PI3K signalling pathway using alpha-hydroxyfarnesylphosphonic acid and wortmannin. Taken together, these results indicate that S1P-induced Raf-1 kinase activation is mediated by H(2)O(2) stimulation of Ras--PI3K pathway, and is enhanced by ChoP in the presence of ATP.

  20. RasGRP1 and RasGRP3 Are Required for Efficient Generation of Early Thymic Progenitors.

    PubMed

    Golec, Dominic P; Henao Caviedes, Laura M; Baldwin, Troy A

    2016-09-01

    T cell development is dependent on the migration of progenitor cells from the bone marrow to the thymus. Upon reaching the thymus, progenitors undergo a complex developmental program that requires inputs from various highly conserved signaling pathways including the Notch and Wnt pathways. To date, Ras signaling has not been implicated in the very earliest stages of T cell differentiation, but members of a family of Ras activators called RasGRPs have been shown to be involved at multiple stages of T cell development. We examined early T cell development in mice lacking RasGRP1, RasGRP3, and RasGRPs 1 and 3. We report that RasGRP1- and RasGRP3-deficient thymi show significantly reduced numbers of early thymic progenitors (ETPs) relative to wild type thymi. Furthermore, RasGRP1/3 double-deficient thymi show significant reductions in ETP numbers compared with either RasGRP1 or RasGRP3 single-deficient thymi, suggesting that both RasGRP1 and RasGRP3 regulate the generation of ETPs. In addition, competitive bone marrow chimera experiments reveal that RasGRP1/3 double-deficient progenitors intrinsically generate ETPs less efficiently than wild type progenitors. Finally, RasGRP1/3-deficient progenitors show impaired migration toward the CCR9 ligand, CCL25, suggesting that RasGRP1 and RasGRP3 may regulate progenitor entry into the thymus through a CCR9-dependent mechanism. These data demonstrate that, in addition to Notch and Wnt, the highly conserved Ras pathway is critical for the earliest stages of T cell development and further highlight the importance of Ras signaling during thymocyte maturation. PMID:27465532

  1. Identification and characterization of rain, a novel Ras-interacting protein with a unique subcellular localization.

    PubMed

    Mitin, Natalia Y; Ramocki, Melissa B; Zullo, Alfred J; Der, Channing J; Konieczny, Stephen F; Taparowsky, Elizabeth J

    2004-05-21

    The Ras small GTPase functions as a signaling node and is activated by extracellular stimuli. Upon activation, Ras interacts with a spectrum of functionally diverse downstream effectors and stimulates multiple cytoplasmic signaling cascades that regulate cellular proliferation, differentiation, and apoptosis. In addition to the association of Ras with the plasma membrane, recent studies have established an association of Ras with Golgi membranes. Whereas the effectors of signal transduction by activated, plasma membrane-localized Ras are well characterized, very little is known about the effectors used by Golgi-localized Ras. In this study, we report the identification of a novel Ras-interacting protein, Rain, that may serve as an effector for endomembrane-associated Ras. Rain does not share significant sequence similarity with any known mammalian proteins, but contains a Ras-associating domain that is found in RalGDS, AF-6, and other characterized Ras effectors. Rain interacts with Ras in a GTP-dependent manner in vitro and in vivo, requires an intact Ras core effector-binding domain for this interaction, and thus fits the definition of a Ras effector. Unlike other Ras effectors, however, Rain is localized to perinuclear, juxta-Golgi vesicles in intact cells and is recruited to the Golgi by activated Ras. Finally, we found that Rain cooperates with activated Raf and causes synergistic transformation of NIH3T3 cells. Taken together, these observations support a role for Rain as a novel protein that can serve as an effector of endomembrane-localized Ras.

  2. The value of genomics in dissecting the RAS-network and in guiding therapeutics for RAS-driven cancers.

    PubMed

    Shrestha, Gajendra; MacNeil, Shelley M; McQuerry, Jasmine A; Jenkins, David F; Sharma, Sunil; Bild, Andrea H

    2016-10-01

    The rise in genomic knowledge over the past decade has revealed the molecular etiology of many diseases, and has identified intricate signaling network activity in human cancers. Genomics provides the opportunity to determine genome structure and capture the activity of thousands of molecular events concurrently, which is important for deciphering highly complex genetic diseases such as cancer. In this review, we focus on genomic efforts directed towards one of cancer's most frequently mutated networks, the RAS pathway. Genomic tools such as gene expression signatures and assessment of mutations across the RAS network enable the capture of RAS signaling complexity. Due to this high level of interaction and cross-talk within the network, efforts to target RAS signaling in the clinic have generally failed, and we currently lack the ability to directly inhibit the RAS protein with high efficacy. We propose that the use of gene expression data can identify effective treatments that broadly inhibit the RAS network as this approach measures pathway activity independent of mutation status or any single mechanism of activation. Here, we review the genomic studies that map the complexity of the RAS network in cancer, and that show how genomic measurements of RAS pathway activation can identify effective RAS inhibition strategies. We also address the challenges and future directions for treating RAS-driven tumors. In summary, genomic assessment of RAS signaling provides a level of complexity necessary to accurately map the network that matches the intricacy of RAS pathway interactions in cancer.

  3. The value of genomics in dissecting the RAS-network and in guiding therapeutics for RAS-driven cancers.

    PubMed

    Shrestha, Gajendra; MacNeil, Shelley M; McQuerry, Jasmine A; Jenkins, David F; Sharma, Sunil; Bild, Andrea H

    2016-10-01

    The rise in genomic knowledge over the past decade has revealed the molecular etiology of many diseases, and has identified intricate signaling network activity in human cancers. Genomics provides the opportunity to determine genome structure and capture the activity of thousands of molecular events concurrently, which is important for deciphering highly complex genetic diseases such as cancer. In this review, we focus on genomic efforts directed towards one of cancer's most frequently mutated networks, the RAS pathway. Genomic tools such as gene expression signatures and assessment of mutations across the RAS network enable the capture of RAS signaling complexity. Due to this high level of interaction and cross-talk within the network, efforts to target RAS signaling in the clinic have generally failed, and we currently lack the ability to directly inhibit the RAS protein with high efficacy. We propose that the use of gene expression data can identify effective treatments that broadly inhibit the RAS network as this approach measures pathway activity independent of mutation status or any single mechanism of activation. Here, we review the genomic studies that map the complexity of the RAS network in cancer, and that show how genomic measurements of RAS pathway activation can identify effective RAS inhibition strategies. We also address the challenges and future directions for treating RAS-driven tumors. In summary, genomic assessment of RAS signaling provides a level of complexity necessary to accurately map the network that matches the intricacy of RAS pathway interactions in cancer. PMID:27338857

  4. Structural analysis of autoinhibition in the Ras-specific exchange factor RasGRP1

    PubMed Central

    Iwig, Jeffrey S; Vercoulen, Yvonne; Das, Rahul; Barros, Tiago; Limnander, Andre; Che, Yan; Pelton, Jeffrey G; Wemmer, David E; Roose, Jeroen P; Kuriyan, John

    2013-01-01

    RasGRP1 and SOS are Ras-specific nucleotide exchange factors that have distinct roles in lymphocyte development. RasGRP1 is important in some cancers and autoimmune diseases but, in contrast to SOS, its regulatory mechanisms are poorly understood. Activating signals lead to the membrane recruitment of RasGRP1 and Ras engagement, but it is unclear how interactions between RasGRP1 and Ras are suppressed in the absence of such signals. We present a crystal structure of a fragment of RasGRP1 in which the Ras-binding site is blocked by an interdomain linker and the membrane-interaction surface of RasGRP1 is hidden within a dimerization interface that may be stabilized by the C-terminal oligomerization domain. NMR data demonstrate that calcium binding to the regulatory module generates substantial conformational changes that are incompatible with the inactive assembly. These features allow RasGRP1 to be maintained in an inactive state that is poised for activation by calcium and membrane-localization signals. DOI: http://dx.doi.org/10.7554/eLife.00813.001 PMID:23908768

  5. The Ras/Rap GTPase activating protein RASA3: from gene structure to in vivo functions.

    PubMed

    Schurmans, Stéphane; Polizzi, Séléna; Scoumanne, Ariane; Sayyed, Sufyan; Molina-Ortiz, Patricia

    2015-01-01

    RASA3 (or GTPase Activating Protein III, R-Ras GTPase-activating protein, GAP1(IP4BP)) is a GTPase activating protein of the GAP1 subfamily which targets Ras and Rap1. RASA3 was originally purified from pig platelet membranes through its intrinsic ability to bind inositol 1,3,4,5-tetrakisphosphate (I(1,3,4,5)P4) with high affinity, hence its first name GAP1(IP4BP) (for GAP1 subfamily member which binds I(1,3,4,5)P4). RASA3 was thus the first I(1,3,4,5)P4 receptor identified and cloned. The in vitro and in vivo functions of RASA3 remained somewhat elusive for a long time. However, recently, using genetically-modified mice and cells derived from these mice, the function of RASA3 during megakaryopoiesis, megakaryocyte adhesion and migration as well as integrin signaling has been reported. The goal of this review is thus to summarize and comment recent and less recent data in the literature on RASA3, in particular on the in vivo function of this specific GAP1 subfamily member.

  6. Binding of calcium ions to Ras promotes Ras guanine nucleotide exchange under emulated physiological conditions.

    PubMed

    Liao, Jun-Ming; Mo, Zhong-Ying; Wu, Ling-Jia; Chen, Jie; Liang, Yi

    2008-11-01

    Both Ras protein and calcium play significant roles in various cellular processes via complex signaling transduction networks. However, it is not well understood whether and how Ca(2+) can directly regulate Ras function. Here we demonstrate by isothermal titration calorimetry that Ca(2+) directly binds to the H-Ras.GDP.Mg(2+) complex with moderate affinity at the first binding site followed by two weak binding events. The results from limited proteinase degradation show that Ca(2+) protects the fragments of H-Ras from being further degraded by trypsin and by proteinase K. HPLC studies together with fluorescence spectroscopic measurements indicate that binding of Ca(2+) to the H-Ras.GDP.Mg(2+) complex remarkably promotes guanine nucleotide exchange on H-Ras under emulated physiological Ca(2+) concentration conditions. Addition of high concentrations of either of two macromolecular crowding agents, Ficoll 70 and dextran 70, dramatically enhances H-Ras guanine nucleotide exchange extent in the presence of Ca(2+) at emulated physiological concentrations, and the nucleotide exchange extent increases significantly with the concentrations of crowding agents. Together, these results indicate that binding of calcium ions to H-Ras remarkably promotes H-Ras guanine nucleotide exchange under emulated physiological conditions. We thus propose that Ca(2+) may activate Ras signaling pathway by interaction with Ras, providing clues to understand the role of calcium in regulating Ras function in physiological environments.

  7. An oncogene-tumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and NF-κB

    PubMed Central

    Min, Junxia; Zaslavsky, Alexander; Fedele, Giuseppe; McLaughlin, Sara K.; Reczek, Elizabeth E.; De Raedt, Thomas; Guney, Isil; Strochlic, David E.; Laura, E.; Beroukhim, Rameen; Bronson, Roderick T.; Ryeom, Sandra; Hahn, William C.; Loda, Massimo; Cichowski, Karen

    2010-01-01

    Metastasis is responsible for the majority of prostate cancer-related deaths; however, little is known about the molecular mechanisms that underlie this process. Here we identify an oncogene-tumor suppressor cascade that promotes prostate cancer initiation and metastasis by coordinately activating Ras and NF-κB. Specifically, we show that loss of the RasGAP gene DAB2IP induces metastatic prostate cancer in a murine model. Notably, DAB2IP functions as a signaling scaffold that coordinately regulates Ras and NF-κB through distinct domains to promote tumor initiation and metastasis, respectively. DAB2IP is suppressed in human prostate cancer where expression inversely correlates with tumor grade and predicts prognosis. Moreover, we report that epigenetic silencing of DAB2IP is a key mechanism by which the polycomb-group protein EZH2 activates Ras, NF-κB, and triggers metastasis. These studies define the mechanism by which two major pathways can be simultaneously activated in metastatic prostate cancer and establish EZH2 as a driver of metastasis. PMID:20154697

  8. OSBP-related protein 3 (ORP3) coupling with VAMP-associated protein A regulates R-Ras activity.

    PubMed

    Weber-Boyvat, Marion; Kentala, Henriikka; Lilja, Johanna; Vihervaara, Terhi; Hanninen, Raisa; Zhou, You; Peränen, Johan; Nyman, Tuula A; Ivaska, Johanna; Olkkonen, Vesa M

    2015-02-15

    ORP3 is an R-Ras interacting oxysterol-binding protein homolog that regulates cell adhesion and is overexpressed in several cancers. We investigated here a novel function of ORP3 dependent on its targeting to both the endoplasmic reticulum (ER) and the plasma membrane (PM). Using biochemical and cell imaging techniques we demonstrate the mechanistic requirements for the subcellular targeting and function of ORP3 in control of R-Ras activity. We show that hyperphosphorylated ORP3 (ORP3-P) selectively interacts with the ER membrane protein VAPA, and ORP3-VAPA complexes are targeted to PM sites via the ORP3 pleckstrin homology (PH) domain. A novel FFAT (two phenylalanines in an acidic tract)-like motif was identified in ORP3; only disruption of both the FFAT-like and canonical FFAT motif abolished the phorbol-12-myristate-13-acetate (PMA) stimulated interaction of ORP3-P with VAPA. Co-expression of ORP3 and VAPA induced R-Ras activation, dependent on the interactions of ORP3 with VAPA and the PM. Consistently, downstream AktS473 phosphorylation and β1-integrin activity were enhanced by ORP3-VAPA. To conclude, phosphorylation of ORP3 controls its association with VAPA. Furthermore, we present evidence that ORP3-VAPA complexes stimulate R-Ras signaling.

  9. Label-free quantitative phosphoproteomics with novel pairwise abundance normalization reveals synergistic RAS and CIP2A signaling.

    PubMed

    Kauko, Otto; Laajala, Teemu Daniel; Jumppanen, Mikael; Hintsanen, Petteri; Suni, Veronika; Haapaniemi, Pekka; Corthals, Garry; Aittokallio, Tero; Westermarck, Jukka; Imanishi, Susumu Y

    2015-08-17

    Hyperactivated RAS drives progression of many human malignancies. However, oncogenic activity of RAS is dependent on simultaneous inactivation of protein phosphatase 2A (PP2A) activity. Although PP2A is known to regulate some of the RAS effector pathways, it has not been systematically assessed how these proteins functionally interact. Here we have analyzed phosphoproteomes regulated by either RAS or PP2A, by phosphopeptide enrichment followed by mass-spectrometry-based label-free quantification. To allow data normalization in situations where depletion of RAS or PP2A inhibitor CIP2A causes a large uni-directional change in the phosphopeptide abundance, we developed a novel normalization strategy, named pairwise normalization. This normalization is based on adjusting phosphopeptide abundances measured before and after the enrichment. The superior performance of the pairwise normalization was verified by various independent methods. Additionally, we demonstrate how the selected normalization method influences the downstream analyses and interpretation of pathway activities. Consequently, bioinformatics analysis of RAS and CIP2A regulated phosphoproteomes revealed a significant overlap in their functional pathways. This is most likely biologically meaningful as we observed a synergistic survival effect between CIP2A and RAS expression as well as KRAS activating mutations in TCGA pan-cancer data set, and synergistic relationship between CIP2A and KRAS depletion in colony growth assays.

  10. Activation of Ras, Raf-1 and protein kinase C in differentiating human neuroblastoma cells after treatment with phorbolester and NGF.

    PubMed

    Söderholm, H; Olsson, A; Lavenius, E; Rönnstrand, L; Nånberg, E

    2001-02-01

    The human neuroblastoma cell line SH-SY5Y/TrkA differentiates in vitro and acquires a sympathetic phenotype in response to phorbolester (activator of protein kinase C, PKC) in the presence of serum or growth factors, or nerve growth factor (NGF). We have now investigated to what extent phorbolester and NGF cause activation of Ras and Raf-1 and the involvement of PKC in this response in differentiating SH-SY5Y/TrkA cells. NGF stimulated increased accumulation of Ras-GTP and a threefold activation of Raf-1. In contrast, 12-O-tetradecanoylphorbol-13-acetate (TPA) had no effect on the amount of Ras-GTP but led to a smaller activation of Raf-1. NGF caused a limited increase in phosphorylation of Raf-1 compared with TPA, and NGF-induced Raf activity was independent of PKC. Analysis of phosphorylation of the endogenous PKC substrate myristoylated alanine-rich C-kinase substrate (MARCKS), and of subcellular distribution of PKC-alpha, -delta, and -epsilon revealed that NGF only caused a very small activation of PKC in SH-SY5Y/TrkA cells. The results identify Raf-1 as a target for both TPA- and NGF-induced signals in differentiating SH-SY5Y/TrkA cells and demonstrate that signalling to Raf-1 was mediated via distinct mechanisms.

  11. AKT and N-Ras co-activation in the mouse liver promotes rapid carcinogenesis via mTORC1, FOXM1/SKP2, and c-Myc pathways

    PubMed Central

    Ho, Coral; Wang, Chunmei; Mattu, Sandra; Destefanis, Giulia; Ladu, Sara; Delogu, Salvatore; Armbruster, Julia; Fan, Lingling; Lee, Susie A.; Jiang, Lijie; Dombrowski, Frank; Evert, Matthias; Chen, Xin; Calvisi, Diego F.

    2011-01-01

    Activation of v-akt murine thymoma viral oncogene homolog (AKT) and Ras pathways is often implicated in carcinogenesis. However, the oncogenic cooperation between these two cascades in relationship to hepatocellular carcinoma (HCC) development remains undetermined. To investigate this issue, we generated a mouse model characterized by combined overexpression of activated forms of AKT and neuroblastoma Ras viral oncogene homolog (N-Ras) protooncogenes in the liver via hydrodynamic gene transfer. The molecular mechanisms underlying crosstalk between AKT and N-Ras were assessed in the mouse model and further evaluated in human and murine HCC cell lines. We found that co-expression of AKT and N-Ras resulted in a dramatic acceleration of liver tumor development when compared with mice overexpressing AKT alone, whereas N-Ras alone did not lead to tumor formation. At the cellular level, concomitant upregulation of AKT and N-Ras resulted in increased proliferation and microvascularization when compared with AKT injected mice. Mechanistic studies suggested that accelerated hepatocarcinogenesis driven by AKT and N-Ras resulted from a strong activation of mammalian target of rapamycin complex 1 (mTORC1). Furthermore, elevated expression of FOXM1/SKP2 and c-Myc also contributed to rapid tumor growth in AKT/Ras mice, yet via mTORC1-independent mechanisms. The biological effects of co-activation of AKT and N-Ras were then recapitulated in vitro using HCC cell lines, which supports the functional significance of mTORC1, FOXM1/SKP2 and c-Myc signaling cascades in mediating AKT and N-Ras induced liver tumor development. Conclusion Our data demonstrate the in vivo crosstalk between the AKT and Ras pathways in promoting liver tumor development, and the pivotal role of mTORC1-dependent and independent pathways in mediating AKT and Ras induced hepatocarcinogenesis. PMID:21993994

  12. The novel RacE-binding protein GflB sharpens Ras activity at the leading edge of migrating cells

    PubMed Central

    Senoo, Hiroshi; Cai, Huaqing; Wang, Yu; Sesaki, Hiromi; Iijima, Miho

    2016-01-01

    Directional sensing, a process in which cells convert an external chemical gradient into internal signaling events, is essential in chemotaxis. We previously showed that a Rho GTPase, RacE, regulates gradient sensing in Dictyostelium cells. Here, using affinity purification and mass spectrometry, we identify a novel RacE-binding protein, GflB, which contains a Ras GEF domain and a Rho GAP domain. Using biochemical and gene knockout approaches, we show that GflB balances the activation of Ras and Rho GTPases, which enables cells to precisely orient signaling events toward higher concentrations of chemoattractants. Furthermore, we find that GflB is located at the leading edge of migrating cells, and this localization is regulated by the actin cytoskeleton and phosphatidylserine. Our findings provide a new molecular mechanism that connects directional sensing and morphological polarization. PMID:27009206

  13. The mitogen-activated protein kinase cascade is activated by B-Raf in response to nerve growth factor through interaction with p21ras.

    PubMed Central

    Jaiswal, R K; Moodie, S A; Wolfman, A; Landreth, G E

    1994-01-01

    Nerve growth factor (NGF) activates the mitogen-activated protein (MAP) kinase cascade through a p21ras-dependent signal transduction pathway in PC12 cells. The linkage between p21ras and MEK1 was investigated to identify those elements which participate in the regulation of MEK1 activity. We have screened for MEK activators using a coupled assay in which the MAP kinase cascade has been reconstituted in vitro. We report that we have detected a single NGF-stimulated MEK-activating activity which has been identified as B-Raf. PC12 cells express both B-Raf and c-Raf1; however, the MEK-activating activity was found only in fractions containing B-Raf. c-Raf1-containing fractions did not exhibit a MEK-activating activity. Gel filtration analysis revealed that the B-Raf eluted with an apparent M(r) of 250,000 to 300,000, indicating that it is present within a stable complex with other unidentified proteins. Immunoprecipitation with B-Raf-specific antisera quantitatively precipitated all MEK activator activity from these fractions. We also demonstrate that B-Raf, as well as c-Raf1, directly interacted with activated p21ras immobilized on silica beads. NGF treatment of the cells had no effect on the ability of B-Raf or c-Raf1 to bind to activated p21ras. These data indicate that this interaction was not dependent upon the activation state of these enzymes; however, MEK kinase activity was found to be associated with p21ras following incubation with NGF-treated samples at levels higher than those obtained from unstimulated cells. These data provide direct evidence that NGF-stimulated B-Raf is responsible for the activation of the MAP kinase cascade in PC12 cells, whereas c-Raf1 activity was not found to function within this pathway. Images PMID:7935411

  14. A Small Ras-like protein Ray/Rab1c modulates the p53-regulating activity of PRPK

    SciTech Connect

    Abe, Yasuhito . E-mail: yasuhito@m.ehime-u.ac.jp; Takeuchi, Takashi; Imai, Yoshinori; Murase, Ryuichi; Kamei, Yoshiaki; Fujibuchi, Taketsugu; Matsumoto, Suguru; Ueda, Norifumi; Kito, Katsumi; Ogasawara, Masahito; Shigemoto, Kazuhiro

    2006-05-26

    PRPK phosphorylates serine-15 residue of p53 and enhances transcriptional activity. PRPK possesses a bipartite nuclear localization signal and localizes in nucleus when over-expressed in cells. However, intrinsic PRPK localizes mainly in the cytosol in situ. While studying the mechanisms in the distribution of intrinsic PRPK, we identified a PRPK binding protein, an ubiquitously expressed Small Ras-like GTPase, Rab1c, also named Ray or Rab35. The over-expressed Ray was distributed in the nucleus, cytosol, and cell membrane. Both Ray wild type and GTP-restrictively binding mutant Ray-Q67L, but not guanine nucleotide unstable binding mutant Ray-N120I, partially distributed the over-expressed PRPK to the cytosol and also suppressed the PRPK-induced p53-transcriptional activity profoundly. A Small Ras-like GTPase protein Ray was thus indicated to modulate p53 transcriptional activity of PRPK.

  15. Induction of MAP kinase phosphatase 3 through Erk/MAP kinase activation in three oncogenic Ras (H-, K- and N-Ras)-expressing NIH/3T3 mouse embryonic fibroblast cell lines

    PubMed Central

    Koo, JaeHyung; Wang, Sen; Kang, NaNa; Hur, Sun Jin; Bahk, Young Yil

    2016-01-01

    Ras oncoproteins are small molecular weight GTPases known for their involvement in oncogenesis, which operate in a complex signaling network with multiple effectors. Approximately 25% of human tumors possess mutations in a member of this family. The Raf1/MEK/Erk1/2 pathway is one of the most intensively studied signaling mechanisms. Different levels of regulation account for the inactivation of MAP kinases by MAPK phosphatases in a cell type- and stimuli-dependent manner. In the present study, using three inducible Ras-expressing NIH/3T3 cell lines, we demonstrated that MKP3 upregulation requires the activation of the Erk1/2 pathway, which correlates with the shutdown of this pathway. We also demonstrated, by applying pharmacological inhibitors and effector mutants of Ras, that induction of MKP3 at the protein level is positively regulated by the oncogenic Ras/Raf/MEK/Erk1/2 signaling pathway. [BMB Reports 2016; 49(7): 370-375] PMID:26818088

  16. cDNA cloning and chromosomal mapping of a novel human GAP (GAP1M), GTPase-activating protein of Ras

    SciTech Connect

    Li, Shaowei; Nakamura, Shun; Hattori, Seisuke

    1996-08-01

    We have previously isolated a novel Ras GTPase-activating protein (Ras GAP), Gapl{sup m}, from rat brain. Gap1{sup m} is considered to be a negative regulator of the Ras signaling pathways, like other Ras GAPs, neurofibromin, which is a gene product of the neurofibromatosis type I gene, and p120GAP. In this study we have isolated a human cDNA of this Gap and mapped the gene. The gene encodes a protein of 853 amino acids that shows 89% sequence identity to rat Gapl{sup m}. The human gene was mapped to chromosome 3 by PCR analysis on a panel of human-mouse hybrid cells. FISH analysis refined the location of the gene further to 3q22-q23. 11 refs., 2 figs.

  17. Classic Ras Proteins Promote Proliferation and Survival Via Distinct Phosphoproteome Alterations in Neurofibromin-Null Malignant Peripheral Nerve Sheath Tumor Cells

    PubMed Central

    Brossier, Nicole M.; Prechtl, Amanda M.; Longo, Jody Fromm; Barnes, Stephen; Wilson, Landon S.; Byer, Stephanie J.; Brosius, Stephanie N.; Carroll, Steven L.

    2015-01-01

    Neurofibromin, the tumor suppressor encoded by the neurofibromatosis type 1 (NF1) gene, potentially suppresses the activation of H-Ras, N-Ras and K-Ras. However, it is not known whether these classic Ras proteins are hyperactivated in NF1-null nerve sheath tumors, how they contribute to tumorigenesis and what signaling pathways mediate their effects. Here we show that H-Ras, N-Ras and K-Ras are coexpressed with their activators, (guanine nucleotide exchange factors), in neurofibromin-null malignant peripheral nerve sheath tumor (MPNST) cells and that all 3 Ras proteins are activated. Dominant negative (DN) H-Ras, a pan-inhibitor of the classic Ras family, inhibited MPNST proliferation and survival, but not migration. However, NF1-null MPNST cells were variably dependent on individual Ras proteins. In some lines, ablation of H-Ras, N-Ras and/or K-Ras inhibited mitogenesis. In others, ablation of a single Ras protein had no effect on proliferation; in these lines, ablation of a single Ras protein resulted in compensatory increases in the activation and/or expression of other Ras proteins. Using mass spectrometry-based phosphoproteomics, we identified 7 signaling networks affecting morphology, proliferation and survival that are regulated by DN H-Ras. Thus, neurofibromin loss activates multiple classic Ras proteins that promote proliferation and survival by regulating several distinct signaling cascades. PMID:25946318

  18. Classic Ras Proteins Promote Proliferation and Survival via Distinct Phosphoproteome Alterations in Neurofibromin-Null Malignant Peripheral Nerve Sheath Tumor Cells.

    PubMed

    Brossier, Nicole M; Prechtl, Amanda M; Longo, Jody Fromm; Barnes, Stephen; Wilson, Landon S; Byer, Stephanie J; Brosius, Stephanie N; Carroll, Steven L

    2015-06-01

    Neurofibromin, the tumor suppressor encoded by the neurofibromatosis type 1 (NF1) gene, potentially suppresses the activation of H-Ras, N-Ras, and K-Ras. However, it is not known whether these classic Ras proteins are hyperactivated in NF1-null nerve sheath tumors, how they contribute to tumorigenesis, and what signaling pathways mediate their effects. Here we show that H-Ras, N-Ras, and K-Ras are coexpressed with their activators (guanine nucleotide exchange factors) in neurofibromin-null malignant peripheral nerve sheath tumor (MPNST) cells, and that all 3 Ras proteins are activated. Dominant negative (DN) H-Ras, a pan-inhibitor of the classic Ras family, inhibited MPNST proliferation and survival, but not migration. However, NF1-null MPNST cells were variably dependent on individual Ras proteins. In some lines, ablation of H-Ras, N-Ras, and/or K-Ras inhibited mitogenesis. In others, ablation of a single Ras protein had no effect on proliferation; in these lines, ablation of a single Ras protein resulted in compensatory increases in the activation and/or expression of other Ras proteins. Using mass spectrometry-based phosphoproteomics, we identified 7 signaling networks affecting morphology, proliferation, and survival that are regulated by DN H-Ras. Thus, neurofibromin loss activates multiple classic Ras proteins that promote proliferation and survival by regulating several distinct signaling cascades.

  19. Inhibiting the cyclin-dependent kinase CDK5 blocks pancreatic cancer formation and progression through the suppression of Ras-Ral signaling.

    PubMed

    Feldmann, Georg; Mishra, Anjali; Hong, Seung-Mo; Bisht, Savita; Strock, Christopher J; Ball, Douglas W; Goggins, Michael; Maitra, Anirban; Nelkin, Barry D

    2010-06-01

    Cyclin-dependent kinase 5 (CDK5), a neuronal kinase that functions in migration, has been found to be activated in some human cancers in which it has been implicated in promoting metastasis. In this study, we investigated the role of CDK5 in pancreatic cancers in which metastatic disease is most common at diagnosis. CDK5 was widely active in pancreatic cancer cells. Functional ablation significantly inhibited invasion, migration, and anchorage-independent growth in vitro, and orthotopic tumor formation and systemic metastases in vivo. CDK5 blockade resulted in the profound inhibition of Ras signaling through its critical effectors RalA and RalB. Conversely, restoring Ral function rescued the effects of CDK5 inhibition in pancreatic cancer cells. Our findings identify CDK5 as a pharmacologically tractable target to degrade Ras signaling in pancreatic cancer.

  20. Inhibiting the cyclin-dependent kinase CDK5 blocks pancreatic cancer formation and progression via suppression of Ras-Ral signaling

    PubMed Central

    Feldmann, Georg; Mishra, Anjali; Hong, Seung-Mo; Bisht, Savita; Strock, Christopher J.; Ball, Douglas W.; Goggins, Michael; Maitra, Anirban; Nelkin, Barry D.

    2011-01-01

    Cyclin-dependent kinase 5 (CDK5), a neuronal kinase that functions in migration, has been found to be activated in some human cancers where it has been implicated in promoting metastasis. In this study, we investigated the role of CDK5 in pancreatic cancers where metastatic disease is most common at diagnosis. CDK5 was widely active in pancreatic cancer cells. Functional ablation significantly inhibited invasion, migration and anchorage-independent growth in vitro, and orthotopic tumor formation and systemic metastases in vivo. CDK5 blockade resulted in profound inhibition of Ras signaling through its critical effectors RalA and RalB. Conversely, restoring Ral function rescued the effects of CDK5 inhibition in pancreatic cancer cells. Our findings identify CDK5 as a pharmacologically tractable target to degrade Ras signaling in pancreatic cancer. PMID:20484029

  1. Ocular albinism type 1-induced melanoma cell migration is mediated through the RAS/RAF/MEK/ERK signaling pathway.

    PubMed

    Bai, Jun; Xie, Xin; Lei, Yun; An, Gaili; He, Li; Lv, Xiaopeng

    2014-07-01

    Malignant melanoma has the highest risk of mortality among all types of skin cancer due to its highly metastatic potential. The ocular albinism type 1 (OA1) protein is a pigment cell‑specific glycoprotein, which shares significant structural and functional features with G protein‑coupled receptors. However, the role of OA1 in melanoma has yet to be elucidated. The present study aimed to investigate whether OA1 is involved in melanoma cell migration. OA1 was found to stimulate cell migration in a dose‑dependent manner in cultured human melanoma cells. Furthermore, knockdown of OA1 using small interfering RNA was observed to significantly inhibit melanoma cell migration. In addition, the mechanism underlying OA1‑induced melanoma cell migration was investigated. Stimulation of the RAS/RAF/mitogen activated protein kinase kinase (MEK)/extracellular signal‑regulated kinase (ERK) pathway using growth factors enhanced OA1 expression and melanoma cell migration, whereas inhibition of this pathway using U0126 was observed to markedly decrease OA1 expression and the number of migrated cells. These findings indicate that OA1 is involved in melanoma cell migration and that OA1‑induced melanoma cell migration is mediated through the RAS/RAF/MEK/ERK signaling pathway. Therefore, OA1 may serve as a novel therapeutic target for melanoma. PMID:24736838

  2. Differential requirement of RasGRP1 for γδ T cell development and activation

    PubMed Central

    Chen, Yong; Ci, Xinxin; Gorentla, Balachandra; Sullivan, Sarah A.; Stone, James C.; Zhang, Weiguo; Pereira, Pablo; Lu, Jianxin; Zhong, Xiao-Ping

    2012-01-01

    γδ T cells (γδT) belong to a distinct T cell lineage that performs immune functions different from αβ T cells (αβT). Previous studies have established that Erk1/2 MAPKs are critical for positive selection of αβT cells. Additional evidence also suggests that elevated Erk1/2 activity promotes γδT cell generation. RasGRP1, a guanine nucleotide releasing factor for Ras, plays an important role in positive selection of αβT cells by activating the Ras-Erk1/2 pathway. In this report, we demonstrate that RasGRP1 is critical for TCR-induced Erk1/2 activation in γδT cells but exerts different roles for γδT cell generation and activation. Deficiency of RasGRP1 does not obviously affect γδT cell numbers in the thymus but leads to increased γδT cells, particularly CD4−CD8+ γδT cells, in the peripheral lymphoid organs. The virtually unhindered γδT cell development in the RasGRP1−/− thymus proved to be cell intrinsic, while the increase in CD8+ γδT cells is caused by non-cell-intrinsic mechanisms. Our data provides genetic evidence that decreased Erk1/2 activation in the absence of RasGRP1 is compatible for γδT cell generation. Although RasGRP1 is dispensable for γδT cell generation, RasGRP1-deficient γδT cells are defective in proliferation following TCR stimulation. Additionally, RasGRP1-deficient γδT cells are impaired to produce IL-17 but not IFNγ. Together, these observations have revealed that RasGRP1 plays differential roles for γδ and αβ T cell development but is critical for γδT cell proliferation and production of IL-17. PMID:22623331

  3. ASPP2 Is a Novel Pan-Ras Nanocluster Scaffold

    PubMed Central

    Posada, Itziar M. D.; Serulla, Marc; Zhou, Yong; Oetken-Lindholm, Christina

    2016-01-01

    Ras-induced senescence mediated through ASPP2 represents a barrier to tumour formation. It is initiated by ASPP2’s interaction with Ras at the plasma membrane, which stimulates the Raf/MEK/ERK signaling cascade. Ras to Raf signalling requires Ras to be organized in nanoscale signalling complexes, called nanocluster. We therefore wanted to investigate whether ASPP2 affects Ras nanoclustering. Here we show that ASPP2 increases the nanoscale clustering of all oncogenic Ras isoforms, H-ras, K-ras and N-ras. Structure-function analysis with ASPP2 truncation mutants suggests that the nanocluster scaffolding activity of ASPP2 converges on its α-helical domain. While ASPP2 increased effector recruitment and stimulated ERK and AKT phosphorylation, it did not increase colony formation of RasG12V transformed NIH/3T3 cells. By contrast, ASPP2 was able to suppress the transformation enhancing ability of the nanocluster scaffold Gal-1, by competing with the specific effect of Gal-1 on H-rasG12V- and K-rasG12V-nanoclustering, thus imposing ASPP2’s ERK and AKT signalling signature. Similarly, ASPP2 robustly induced senescence and strongly abrogated mammosphere formation irrespective of whether it was expressed alone or together with Gal-1, which by itself showed the opposite effect in Ras wt or H-ras mutant breast cancer cells. Our results suggest that Gal-1 and ASPP2 functionally compete in nanocluster for active Ras on the plasma membrane. ASPP2 dominates the biological outcome, thus switching from a Gal-1 supported growth-promoting setting to a senescence inducing and stemness suppressive program in cancer cells. Our results support Ras nanocluster as major integrators of tumour fate decision events. PMID:27437940

  4. The Ras oncogene signals centrosome amplification in mammary epithelial cells through cyclin D1/Cdk4 and Nek2

    PubMed Central

    Zeng, X; Shaikh, FY; Harrison, MK; Adon, AM; Trimboli, AJ; Carroll, KA; Sharma, N; Timmers, C; Chodosh, LA; Leone, G; Saavedra, HI

    2010-01-01

    Centrosome amplification (CA) contributes to carcinogenesis by generating aneuploidy. Elevated frequencies of CA in most benign breast lesions and primary tumors suggest a causative role for CA in breast cancers. Clearly, identifying which and how altered signal transduction pathways contribute to CA is crucial to breast cancer control. Although a causative and cooperative role for c-Myc and Ras in mammary tumorigenesis is well documented, their ability to generate CA during mammary tumor initiation remains unexplored. To answer that question, K-RasG12D and c-Myc were induced in mouse mammary glands. Although CA was observed in mammary tumors initiated by c-Myc or K-RasG12D, it was detected only in premalignant mammary lesions expressing K-RasG12D. CA, both in vivo and in vitro, was associated with increased expression of the centrosome-regulatory proteins, cyclin D1 and Nek2. Abolishing the expression of cyclin D1, Cdk4 or Nek2 in MCF10A human mammary epithelial cells expressing H-RasG12V abrogated Ras-induced CA, whereas silencing cyclin E1 or B2 had no effect. Thus, we conclude that CA precedes mammary tumorigenesis, and interfering with centrosome-regulatory targets suppresses CA. PMID:20581865

  5. Ras activation mediates WISP-1-induced increases in cell motility and matrix metalloproteinase expression in human osteosarcoma.

    PubMed

    Wu, Chien-Lin; Tsai, Hsiao-Chi; Chen, Zhen-Wei; Wu, Chi-Ming; Li, Te-Mao; Fong, Yi-Chin; Tang, Chih-Hsin

    2013-12-01

    WISP-1 is a cysteine-rich protein that belongs to the CCN (Cyr61, CTGF, Nov) family of matrix cellular proteins. Osteosarcoma is a type of highly malignant tumor with a potent capacity to invade locally and cause distant metastasis. However, the effect of WISP-1 on migration activity in human osteosarcoma cells is mostly unknown. In this study, we first found that the expression of WISP-1 in osteosarcoma patients was significantly higher than that in normal bone and corrected with tumor stage. Exogenous treatment of osteosarcoma cells with WISP-1 promoted cell motility and matrix metalloproteinase (MMP)-2 and MMP-9 expression. In addition, the Ras and Raf-1 inhibitor or siRNA abolished WISP-1-induced cell migration and MMP expression. On the other hand, activation of the Ras, Raf-1, MEK, ERK, and NF-κB signaling pathway after WISP-1 treatment was demonstrated, and WISP-1-induced expression of MMPs and migration activity were inhibited by the specific inhibitor, and mutant of MEK, ERK, and NF-κB cascades. Taken together, our results indicated that WISP-1 enhances the migration of osteosarcoma cells by increasing MMP-2 and MMP-9 expression through the integrin receptor, Ras, Raf-1, MEK, ERK, and NF-κB signal transduction pathway.

  6. Signal-transducing protein phosphorylation cascades mediated by Ras/Rho proteins in the mammalian cell: the potential for multiplex signalling.

    PubMed Central

    Denhardt, D T

    1996-01-01

    The features of three distinct protein phosphorylation cascades in mammalian cells are becoming clear. These signalling pathways link receptor-mediated events at the cell surface or intracellular perturbations such as DNA damage to changes in cytoskeletal structure, vesicle transport and altered transcription factor activity. The best known pathway, the Ras-->Raf-->MEK-->ERK cascade [where ERK is extracellular-signal-regulated kinase and MEK is mitogen-activated protein (MAP) kinase/ERK kinase], is typically stimulated strongly by mitogens and growth factors. The other two pathways, stimulated primarily by assorted cytokines, hormones and various forms of stress, predominantly utilize p21 proteins of the Rho family (Rho, Rac and CDC42), although Ras can also participate. Diagnostic of each pathway is the MAP kinase component, which is phosphorylated by a unique dual-specificity kinase on both tyrosine and threonine in one of three motifs (Thr-Glu-Tyr, Thr-Phe-Tyr or Thr-Gly-Tyr), depending upon the pathway. In addition to activating one or more protein phosphorylation cascades, the initiating stimulus may also mobilize a variety of other signalling molecules (e.g. protein kinase C isoforms, phospholipid kinases, G-protein alpha and beta gamma subunits, phospholipases, intracellular Ca2+). These various signals impact to a greater or lesser extent on multiple downstream effectors. Important concepts are that signal transmission often entails the targeted relocation of specific proteins in the cell, and the reversible formation of protein complexes by means of regulated protein phosphorylation. The signalling circuits may be completed by the phosphorylation of upstream effectors by downstream kinases, resulting in a modulation of the signal. Signalling is terminated and the components returned to the ground state largely by dephosphorylation. There is an indeterminant amount of cross-talk among the pathways, and many of the proteins in the pathways belong to families

  7. Tyrosine kinase/p21ras/MAP-kinase pathway activation by estradiol-receptor complex in MCF-7 cells.

    PubMed Central

    Migliaccio, A; Di Domenico, M; Castoria, G; de Falco, A; Bontempo, P; Nola, E; Auricchio, F

    1996-01-01

    The mechanism by which estradiol acts on cell multiplication is still unclear. Under conditions of estradiol-dependent growth, estradiol treatment of human mammary cancer MCF-7 cells triggers rapid and transient activation of the mitogen-activated (MAP) kinases, erk-1 and erk-2, increases the active form of p21ras, tyrosine phosphorylation of Shc and p190 protein and induces association of p190 to p21ras-GAP. Both Shc and p190 are substrates of activated src and once phosphorylated, they interact with other proteins and upregulate p21ras. Estradiol activates the tyrosine kinase/p21ras/MAP-kinase pathway in MCF-7 cells with kinetics which are similar to those of peptide mitogens. It is only after introduction of the human wild-type 67 kDa estradiol receptor cDNA that Cos cells become estradiol-responsive in terms of erk-2 activity. This finding, together with the inhibition by the pure anti-estrogen ICI 182 780 of the stimulatory effect of estradiol on each step of the pathway in MCF-7 cells proves that the classic estradiol receptor is responsible for the transduction pathway activation. Transfection experiments of Cos cells with the estradiol receptor cDNA and in vitro experiments with c-src show that the estradiol receptor activates c-src and this activation requires occupancy of the receptor by hormone. Our experiments suggest that c-src is an initial and integral part of the signaling events mediated by the estradiol receptor. Images PMID:8635462

  8. Enhancement of inositol phospholipid metabolism and activation of protein kinase C in ras-transformed rat fibroblasts

    SciTech Connect

    Huang, M.; Chida, K.; Kamata, N.; Nose, K.; Kato, M.; Homma, Y.; Takenawa, T.; Kuroki, T.

    1988-12-05

    The inositol phospholipid metabolism is one of the main pathways of signal transduction in cells. We measured the activities of its key enzymes in v-Ha-ras-transformed 208F rat fibroblasts. In the ras-transformed clones, incorporation of (TSP)Pi into intermediates of the inositol phospholipid metabolism was stimulated. The activities of phosphatidylinositol and phosphatidylinositol-4-phosphate kinases in the transformed clones were about 35-50% more than in untransformed cells, indicating increased inositol phospholipid metabolism. However, the activity of diacylglycerol kinase in their membrane fraction was 25-35% less than that of untransformed cells, although the total diacylglycerol kinase activity did not change. The imbalance of these kinases could constitute one of the main reasons leading to the increased level of inositol phosphates and the accumulation of diacylglycerol to 2-2.2 times that in control 208F cells. Phosphatidylinositol-4,5-bisphosphate-phospholipase C activity did not change on the transformation when assayed under various conditions. The increased level of diacylglycerol caused intracellular translocation, activation, and down-regulation of protein kinase C changes which may be one of the essential events in transformation by the v-Ha-ras gene.

  9. Reciprocal actions of NCAM and tPA via a Ras-dependent MAPK activation in rat hippocampal neurons.

    PubMed

    Son, Hyeon; Seuk Kim, Jin; Mogg Kim, Jung; Lee, Sang-Hun; Lee, Yong-Sung

    2002-10-25

    In an attempt to identify the functions of neural cell adhesion molecule (NCAM) and tissue plasminogen activator (tPA) in hippocampal synaptic plasticity, we investigated the relationship between the two molecules by focusing on mitogen-activated protein kinase (MAPK), an essential enzyme in this process. NCAM clustering in cultured hippocampal neurons transiently induced MAPK within 10min. Moreover, soluble NCAM also induced a Ras-dependent MAPK activation. Conversely, MAPK activation led to an increase in the expressions of all three isoforms of NCAM. Treatment of neurons with tPA and plasminogen induced a Ras-dependent MAPK activation and tPA-plasmin degradation of NCAM was mediated in a MAPK-dependent manner. Soluble NCAM transiently inhibited tPA mRNA expression levels in a MAPK-dependent manner, while stimulation of MAPK alone induced tPA reduction in cells. These results collectively indicate that NCAM and tPA reciprocally act as important regulators in the modulation of synaptic plasticity via a Ras-MAPK-involved signaling pathway. In turn, MAPK activation may cause tPA degradation or a decrease in expression to promote synaptic plasticity.

  10. Farnesyl transferase inhibitor FTI-277 inhibits breast cell invasion and migration by blocking H-Ras activation

    PubMed Central

    Lee, Kyung Hun; Koh, Minsoo; Moon, Aree

    2016-01-01

    Hyperactive Ras promotes proliferation and malignant phenotypic conversion of cells in cancer. Ras protein must be associated with cellular membranes for its oncogenic activities through post-translational modifications, including farnesylation. Farnesyltransferase (FTase) is essential for H-Ras membrane targeting, and H-Ras, but not N-Ras, has been demonstrated to cause an invasive phenotype in MCF10A breast epithelial cells. In the present study, it was observed that an FTase inhibitor (FTI), FTI-277, blocked epidermal growth factor (EGF)-induced H-Ras activation, but not N-Ras activation in MDA-MB-231 cells, which express wild-type H-Ras and N-Ras. FTI-277 exerted a more potent inhibitory effect on the proliferation of H-Ras-MCF10A cells and Hs578T breast cancer cells expressing an active mutant of H-Ras than that of MDA-MB-231 cells. The invasive/migratory phenotypes of the H-Ras-MCF10A and Hs578T cells were effectively inhibited by FTI-277 treatment. By contrast, FTI-277 did not affect the invasive/migratory phenotypes of MDA-MB-231 cells. However, the EGF-induced invasion of MDA-MB-231 cells was decreased by FTI-277, implicating that FTI-277 inhibits breast cell invasion and migration by blocking H-Ras activation. Taken together, the results of the present study suggest that FTase inhibition by FTI-277 may be an effective strategy for targeting H-Ras-mediated proliferation, migration and invasion of breast cells. PMID:27602167

  11. Farnesyl transferase inhibitor FTI-277 inhibits breast cell invasion and migration by blocking H-Ras activation

    PubMed Central

    Lee, Kyung Hun; Koh, Minsoo; Moon, Aree

    2016-01-01

    Hyperactive Ras promotes proliferation and malignant phenotypic conversion of cells in cancer. Ras protein must be associated with cellular membranes for its oncogenic activities through post-translational modifications, including farnesylation. Farnesyltransferase (FTase) is essential for H-Ras membrane targeting, and H-Ras, but not N-Ras, has been demonstrated to cause an invasive phenotype in MCF10A breast epithelial cells. In the present study, it was observed that an FTase inhibitor (FTI), FTI-277, blocked epidermal growth factor (EGF)-induced H-Ras activation, but not N-Ras activation in MDA-MB-231 cells, which express wild-type H-Ras and N-Ras. FTI-277 exerted a more potent inhibitory effect on the proliferation of H-Ras-MCF10A cells and Hs578T breast cancer cells expressing an active mutant of H-Ras than that of MDA-MB-231 cells. The invasive/migratory phenotypes of the H-Ras-MCF10A and Hs578T cells were effectively inhibited by FTI-277 treatment. By contrast, FTI-277 did not affect the invasive/migratory phenotypes of MDA-MB-231 cells. However, the EGF-induced invasion of MDA-MB-231 cells was decreased by FTI-277, implicating that FTI-277 inhibits breast cell invasion and migration by blocking H-Ras activation. Taken together, the results of the present study suggest that FTase inhibition by FTI-277 may be an effective strategy for targeting H-Ras-mediated proliferation, migration and invasion of breast cells.

  12. Human iPS Cell-Derived Neurons Uncover the Impact of Increased Ras Signaling in Costello Syndrome

    PubMed Central

    Rooney, Gemma E.; Goodwin, Alice F.; Depeille, Philippe; Sharir, Amnon; Schofield, Claude M.; Yeh, Erika; Roose, Jeroen P.; Klein, Ophir D.; Rauen, Katherine A.; Weiss, Lauren A.

    2016-01-01

    Increasing evidence implicates abnormal Ras signaling as a major contributor in neurodevelopmental disorders, yet how such signaling causes cortical pathogenesis is unknown. We examined the consequences of aberrant Ras signaling in the developing mouse brain and uncovered several critical phenotypes, including increased production of cortical neurons and morphological deficits. To determine whether these phenotypes are recapitulated in humans, we generated induced pluripotent stem (iPS) cell lines from patients with Costello syndrome (CS), a developmental disorder caused by abnormal Ras signaling and characterized by neurodevelopmental abnormalities, such as cognitive impairment and autism. Directed differentiation toward a neuroectodermal fate revealed an extended progenitor phase and subsequent increased production of cortical neurons. Morphological analysis of mature neurons revealed significantly altered neurite length and soma size in CS patients. This study demonstrates the synergy between mouse and human models and validates the use of iPS cells as a platform to study the underlying cellular pathologies resulting from signaling deficits. SIGNIFICANCE STATEMENT Increasing evidence implicates Ras signaling dysfunction as a major contributor in psychiatric and neurodevelopmental disorders, such as cognitive impairment and autism, but the underlying cortical cellular pathogenesis remains unclear. This study is the first to reveal human neuronal pathogenesis resulting from abnormal Ras signaling and provides insights into how these phenotypic abnormalities likely contribute to neurodevelopmental disorders. We also demonstrate the synergy between mouse and human models, thereby validating the use of iPS cells as a platform to study underlying cellular pathologies resulting from signaling deficits. Recapitulating human cellular pathologies in vitro facilitates the future high throughput screening of potential therapeutic agents that may reverse phenotypic and

  13. Activation of ras oncogene in aflatoxin-induced rat liver carcinogenesis.

    PubMed Central

    Sinha, S; Webber, C; Marshall, C J; Knowles, M A; Proctor, A; Barrass, N C; Neal, G E

    1988-01-01

    The presence of activated transforming genes was investigated in four primary aflatoxin-induced rat liver tumors in male Fischer rats, in two cell lines generated from such tumors, in an epithelial liver-derived nontransformed cell line, and in the latter cell line after transformation by aflatoxin B1 in vitro. When DNA extracted from these sources was transfected into NIH 3T3 cells, negative results were obtained from focus assays. Cotransfection of these DNA samples with a gene for resistance to G418, followed by selection for resistance to that antibiotic, and tumorigenicity testing in nude mice demonstrated DNA-mediated transfer of the neoplastic phenotype in all cases except for DNA from the nontransformed cell line. DNA extracted from these primary nude mouse tumors used in a secondary round of transfection with NIH 3T3 cells gave positive results in focus assays, which were conserved through succeeding rounds of transfection. By use of appropriate radiolabeled probes, activated ras oncogenes were detected in all samples. N-ras activation was detected in three of the primary rat liver tumors and both hepatoma cell lines. Ki-ras activation was detected in one primary rat liver tumor, and Ha-ras activation was detected in the cell line transformed in vitro with activated aflatoxin B1. The activated Ki-ras oncogene was further characterized by use of synthetic oligonucleotide probes and was shown to contain a G----A transition at the second nucleotide in codon 12. Images PMID:3287372

  14. Transforming growth factor-beta1 induces activation of Ras, Raf-1, MEK and MAPK in rat hepatic stellate cells.

    PubMed

    Reimann, T; Hempel, U; Krautwald, S; Axmann, A; Scheibe, R; Seidel, D; Wenzel, K W

    1997-02-10

    The transdifferentiation of hepatic stellate cells into myofibroblast-like cells and the proliferation of the transdifferentiated cells are controlled by TGF-beta1. Little is known about the intracellular signal transducers of TGF-beta1. In this paper we show that in cultured hepatic stellate cells TGF-beta1 induces activation of Ras, Raf-1, MEK and MAPK p42 and p44. The activation of MAPK depends on the activation of MEK. Our data exclude that the observed effects are mediated by a bFGF or PDGF autocrine loop. PMID:9038360

  15. Disentangling information flow in the Ras-cAMP signaling network.

    PubMed

    Carter, Gregory W; Rupp, Steffen; Fink, Gerald R; Galitski, Timothy

    2006-04-01

    The perturbation of signal-transduction molecules elicits genomic-expression effects that are typically neither restricted to a small set of genes nor uniform. Instead there are broad, varied, and complex changes in expression across the genome. These observations suggest that signal transduction is not mediated by isolated pathways of information flow to distinct groups of genes in the genome. Rather, multiple entangled paths of information flow influence overlapping sets of genes. Using the Ras-cAMP pathway in Saccharomyces cerevisiae as a model system, we perturbed key pathway elements and collected genomic-expression data. Singular value decomposition was applied to separate the genome-wide transcriptional response into weighted expression components exhibited by overlapping groups of genes. Molecular interaction data were integrated to connect gene groups to perturbed signaling elements. The resulting series of linked subnetworks maps multiple putative pathways of information flow through a dense signaling network, and provides a set of testable hypotheses for complex gene-expression effects across the genome.

  16. NMR characterization of full-length farnesylated and non-farnesylated H-Ras and its implications for Raf activation.

    PubMed

    Thapar, Roopa; Williams, Jason G; Campbell, Sharon L

    2004-11-01

    The C terminus, also known as the hypervariable region (residues 166-189), of H-, N-, and K-Ras proteins has sequence determinants necessary for full activation of downstream effectors such as Raf kinase and PI-3 kinase as well as for the correct targeting of Ras proteins to lipid rafts and non-raft membranes. There is considerable interest in understanding how residues in the extreme C terminus of the different Ras proteins and farnesylation of the CaaX box cysteine affect Ras membrane localization and allosteric activation of Raf kinase. To provide insights into the structural and dynamic changes that occur in Ras upon farnesylation, we have used NMR spectroscopy to compare the properties of truncated H-Ras (1-166), to non-processed full-length H-Ras (residues 1-185) and full-length (1-189) farnesylated H-Ras. We report that the C-terminal helix alpha-5 extends to residue N172, and the remaining 17 amino acid residues in the C terminus are conformationally averaged in solution. Removal of either 23 or 18 amino acid residues from the C terminus of full length H-Ras generates truncated H-Ras (1-166) and H-Ras (1-171) proteins, respectively, that have been structurally characterized and are biochemical active. Here we report that C-terminal truncation of H-Ras results in minor structural and dynamic perturbations that are propagated throughout the H-Ras protein including increased flexibility of the central beta-sheet and the C-terminal helix alpha-5. Ordering of residues in loop-2, which is involved in Raf CRD binding is also observed. Farnesylation of full-length H-Ras at C186 does not result in detectable conformational changes in H-Ras. Chemical shift mapping studies of farnesylated and non-farnesylated forms of H-Ras with the Raf-CRD show that the farnesyl moiety, the extreme H-Ras C terminus and residues 23-30, contribute to H-Ras:Raf-CRD interactions, thereby increasing the affinity of H-Ras for the Raf-CRD.

  17. First Step of Glycosylphosphatidylinositol (GPI) Biosynthesis Cross-talks with Ergosterol Biosynthesis and Ras Signaling in Candida albicans*

    PubMed Central

    Yadav, Bhawna; Bhatnagar, Shilpi; Ahmad, Mohammad Faiz; Jain, Priyanka; Pratyusha, Vavilala A.; Kumar, Pravin; Komath, Sneha Sudha

    2014-01-01

    Candida albicans is a leading cause of fungal infections worldwide. It has several glycosylphosphatidylinositol (GPI)-anchored virulence factors. Inhibiting GPI biosynthesis attenuates its virulence. Building on our previous work, we explore the interaction of GPI biosynthesis in C. albicans with ergosterol biosynthesis and hyphal morphogenesis. This study is also the first report of transcriptional co-regulation existing between two subunits of the multisubunit enzyme complex, GPI-N-acetylglucosaminyltransferase (GPI-GnT), involved in the first step of GPI anchor biosynthesis in eukaryotes. Using mutational analysis, we show that the accessory subunits, GPI2 and GPI19, of GPI-GnT exhibit opposite effects on ergosterol biosynthesis and Ras signaling (which determines hyphal morphogenesis). This is because the two subunits negatively regulate one another; GPI19 mutants show up-regulation of GPI2, whereas GPI2 mutants show up-regulation of GPI19. Two different models were examined as follows. First, the two GPI-GnT subunits independently interact with ergosterol biosynthesis and Ras signaling. Second, the two subunits mutually regulate one another and thereby regulate sterol levels and Ras signaling. Analysis of double mutants of these subunits indicates that GPI19 controls ergosterol biosynthesis through ERG11 levels, whereas GPI2 determines the filamentation by cross-talk with Ras1 signaling. Taken together, this suggests that the first step of GPI biosynthesis talks to and regulates two very important pathways in C. albicans. This could have implications for designing new antifungal strategies. PMID:24356967

  18. Serum-dependent transcriptional networks identify distinct functional roles for H-Ras and N-Ras during initial stages of the cell cycle

    PubMed Central

    2009-01-01

    Background Using oligonucleotide microarrays, we compared transcriptional profiles corresponding to the initial cell cycle stages of mouse fibroblasts lacking the small GTPases H-Ras and/or N-Ras with those of matching, wild-type controls. Results Serum-starved wild-type and knockout ras fibroblasts had very similar transcriptional profiles, indicating that H-Ras and N-Ras do not significantly control transcriptional responses to serum deprivation stress. In contrast, genomic disruption of H-ras or N-ras, individually or in combination, determined specific differential gene expression profiles in response to post-starvation stimulation with serum for 1 hour (G0/G1 transition) or 8 hours (mid-G1 progression). The absence of N-Ras caused significantly higher changes than the absence of H-Ras in the wave of transcriptional activation linked to G0/G1 transition. In contrast, the absence of H-Ras affected the profile of the transcriptional wave detected during G1 progression more strongly than did the absence of N-Ras. H-Ras was predominantly functionally associated with growth and proliferation, whereas N-Ras had a closer link to the regulation of development, the cell cycle, immunomodulation and apoptosis. Mechanistic analysis indicated that extracellular signal-regulated kinase (ERK)-dependent activation of signal transducer and activator of transcription 1 (Stat1) mediates the regulatory effect of N-Ras on defense and immunity, whereas the pro-apoptotic effects of N-Ras are mediated through ERK and p38 mitogen-activated protein kinase signaling. Conclusions Our observations confirm the notion of an absolute requirement for different peaks of Ras activity during the initial stages of the cell cycle and document the functional specificity of H-Ras and N-Ras during those processes. PMID:19895680

  19. GGPPS, a new EGR-1 target gene, reactivates ERK 1/2 signaling through increasing Ras prenylation.

    PubMed

    Shen, Ning; Shao, Yue; Lai, Shan-Shan; Qiao, Long; Yang, Run-Lin; Xue, Bin; Pan, Fei-Yan; Chen, Hua-Qun; Li, Chao-Jun

    2011-12-01

    Cigarette smoke activates the extracellular signal-regulated kinase (ERK) 1/2 mitogen activated-protein kinase pathway, which, in turn, is responsible for early growth response gene-1 (EGR-1) activation. Here we provide evidence that EGR-1 activation can also reactivate ERK 1/2 mitogen activated-protein kinase through a positive feedback loop through its target gene (geranylgeranyl diphosphate synthase) GGPPS. For the first time, the GGPPS gene is identified as a target of EGR-1, as EGR-1 can directly bind to the predicted consensus-binding site in the GGPPS promoter and regulate its transcription. Long-term observations show that there are two ERK 1/2 phosphorylation peaks after cigarette smoke extract stimulation in human lung epithelial Beas-2B cells. The first peak (at 10 minutes) is responsible for EGR-1 accumulation, and the second (at 4 hours) is diminished after the disruption of EGR-1 transcriptional activity. EGR-1 overexpression enhances Ras prenylation and membrane association in a GGPPS-dependent manner, and it augments ERK 1/2 activation. Likewise, a great reduction of the second peak of ERK 1/2 phosphorylation is observed during long-term cigarette smoke extract stimulation in cells where GGPPS is disrupted. Thus, we have uncovered an intricate positive feedback loop in which ERK 1/2-activated EGR-1 promotes ERK 1/2 reactivation through promoting GGPPS transcription, which might affect cigarette smoke-related lung pathological processes.

  20. An orthosteric inhibitor of the RAS-SOS interaction.

    PubMed

    Nickerson, Seth; Joy, Stephen T; Arora, Paramjit S; Bar-Sagi, Dafna

    2013-01-01

    Rat sarcoma (RAS) proteins are signaling nodes that transduce extracellular cues into precise alterations in cellular physiology by engaging effector pathways. RAS signaling thus regulates diverse cell processes including proliferation, migration, differentiation, and survival. Owing to this central role in governing mitogenic signals, RAS pathway components are often dysregulated in human diseases. Targeted therapy of RAS pathways has generally not been successful, largely because of the robust biochemistry of the targets and their multifaceted network of molecular regulators. The rate-limiting step of RAS activation is Son of Sevenless (SOS)-mediated nucleotide exchange involving a single evolutionarily conserved catalytic helix from SOS. Structure function data of this mechanism provided a strong platform to design an SOS-derived, helically constrained peptide mimic as an inhibitor of the RAS-SOS interaction. In this chapter, we review RAS-SOS signaling dynamics and present evidence supporting the novel paradigm of inhibiting their interaction as a therapeutic strategy. We then describe a method of generating helically constrained peptide mimics of protein surfaces, which we have employed to inhibit the RAS-SOS active site interaction. The biochemical and functional properties of this SOS mimic support the premise that inhibition of RAS-nucleotide exchange can effectively block RAS activation and downstream signaling.

  1. The BTB/POZ-ZF Transcription Factor dPLZF Is Involved in Ras/ERK Signaling During Drosophila Wing Development

    PubMed Central

    Maeng, Oky; Son, Wonseok; Chung, Jongkyeong; Lee, Kyu-Sun; Lee, Young-Ha; Yoo, Ook-Joon; Cha, Guang-Ho; Paik, Sang-Gi

    2012-01-01

    In Drosophila, broad complex, tramtrack, bric à brac (BTB)/ poxvirus and zinc finger (POZ) transcription factors are essential regulators of development. We searched the Drosophila genome for BTB/POZ-ZF domains and discovered an unknown Drosophila gene, dPLZF, which encodes an orthologue of human PLZF. We then characterized the biological function of the dPLZF via genetic interaction analysis. Ectopic expression of dPLZF in the wing induced extra vein formation during wing development in Drosophila. Genetic interactions between dPLZF and Ras or extracellular signal-regulated kinase (ERK) significantly enhanced the formation of vein cells. On the other hand, loss-of-function mutations in dPLZF resulted in a dramatic suppression of the extra and ectopic vein formation induced by elevated Ras/ERK signaling. Moreover, dPLZF activity upregulated the expression of rhomboid (rho) and spitz, which perform crucial functions in vein cell formation in the developing wing. These results indicate that dPLZF is a transcription factor controlled by the Ras/ERK signaling pathway, which is a prominent regulator of vein cell formation during wing development in Drosophila. PMID:22544070

  2. Ras activation of a Rac1 exchange factor, Tiam1, mediates neurotrophin-3-induced Schwann cell migration

    PubMed Central

    Yamauchi, Junji; Miyamoto, Yuki; Tanoue, Akito; Shooter, Eric M.; Chan, Jonah R.

    2005-01-01

    Endogenous neurotrophins positively and negatively regulate migration of premyelinating Schwann cells before the initiation of myelination. Neurotrophin-3 (NT3) acting through the TrkC receptor tyrosine kinase stimulates Schwann cell migration via the Rho GTPases Rac1 and Cdc42. We previously demonstrated that TrkC directly phosphorylates and activates Dbs, the guanine-nucleotide exchange factor (GEF) for Cdc42, to partially mediate Schwann cell migration. Here, we identify T lymphoma invasion and metastasis (Tiam) 1 as the Rac1-specific guanine-nucleotide exchange factor involved in NT3-induced Schwann cell migration. Furthermore, the interaction between the small GTPase Ras and Tiam1 plays an essential role in the activation of Rac1. Taken together, these results suggest that NT3 activation of TrkC stimulates Schwann cell migration through two parallel signaling units, Ras/Tiam1/Rac1 and Dbs/Cdc42, and that Schwann cell migration is uniquely regulated in the case of Ras and Rac1, by two different types of small GTPases. PMID:16203995

  3. Activated Ki-Ras suppresses 12-O-tetradecanoylphorbol-13-acetate-induced activation of the c-Jun NH2-terminal kinase pathway in human colon cancer cells.

    PubMed

    Okumura, K; Shirasawa, S; Nishioka, M; Sasazuki, T

    1999-05-15

    Although the frequency of activated Ki-ras genes is high in human colorectal tumors, much less is known of activated Ki-ras-mediated signaling pathways. Using gene targeting, we examined HCT116 cells that contain the Gly-13-->Asp mutation of Ki-ras and activated Ki-ras-disrupted clones derived from HCT116. 12-O-Tetradecanoylphorbol-13-acetate (TPA) induced immediate early genes, such as c-Jun, c-Fos, and Egr-1 in activated Ki-ras-disrupted clones, whereas c-Jun induction was rare in HCT116. TPA induced both phosphorylation of stress-activated protein kinase kinase 1 (SEK1) and c-Jun NH2-terminal kinase (JNK) in the activated Ki-ras-disrupted clones but not in HCT116. On the other hand, TPA-induced mitogen-activated protein kinase kinase 1/2 (MEK1/2)-extracellular signal-regulated kinase (ERK) activation was equally induced between HCT116 and the Ki-ras-disrupted clones. Furthermore, TPA-induced SEK1-JNK activation was observed in a DLD-1-derived activated Ki-ras-disrupted clone but not in DLD-1. The TPA-induced SEK1-JNK activation in these disrupted clones was completely inhibited by the protein kinase C (PKC) inhibitor, GF109203X (1 microM), but not by another PKC inhibitor, H7 (50 microM), whereas TPA-induced MEK1/2-ERK activation was partially and completely inhibited by GF109203X (1 microM) and H7 (50 microM), respectively. A phosphoinositol 3-kinase inhibitor, LY294002, did not inhibit the TPA-induced SEK1-JNK activation. Taken together, these results suggest that activated Ki-Ras-mediated signals are involved in the SEK1-JNK pathway through a PKC isotype that is distinct from that involved in MEK1/2-ERK activation in human colon cancer cells and independent of phosphoinositol 3-kinase activation, and the imbalance between ERK and JNK activity caused by activated Ki-Ras may play critical roles in human colorectal tumorigenesis.

  4. Influence of aging and caloric restriction on activation of Ras/MAPK, calcineurin, and CaMK-IV activities in rat T cells.

    PubMed

    Pahlavani, M A; Vargas, D M

    2000-02-01

    The signaling cascade mediated by Ras (p21ras) and MAPK (mitogen-activated protein kinase) and calcium/calmodulin regulating enzymes, calcineurin (CaN) and CaMK-IV, are considered to be essential for T-cell growth and function. In the present study, the effect of aging and caloric restriction (CR) on the induction of Ras and MAPK activation by concanavalin A (ConA) was studied. Splenic T cells were isolated from young (4-6 months) and old (22-24 months) rats that had free access to food (control group), and from caloric restricted old (22-24 months) rats that beginning at 6 weeks of age were fed 60%(40% caloric restriction) of the diet consumed by the control rats. We found that the induction of Ras activity in T cells isolated from control old rats was lower (P<0.001) than that in control young rats. However, the levels of Ras activity in T cells isolated from CR old rats were similar to the levels in the age-matched control rats. The induction of MAPK activity in T cells isolated from control old rats and CR old rats was significantly less than in T cells isolated from control young rats, and caloric restriction significantly (P<0.05) reduced the age-related decline in MAPK activation. We also measured the induction of CaN and CaMK-IV activities by ConA in T cells from control young and old and CR old rats. The induction of both CaN and CaMK-IV activity decreased with age. Caloric restriction significantly (P<0.05) reduced the age-related decline in CaN activity, but had no significant effect on CaMK-IV activity. The changes in Ras/MAPK activation and in CaN and CaMK-IV activity with age or with CR were not associated with alterations in their corresponding protein levels. Thus, caloric restriction has a differential effect on the activation of the upstream signaling molecules that are altered with age.

  5. Synthesis, biological, and biophysical studies of DAG-indololactones designed as selective activators of RasGRP.

    PubMed

    Garcia, Lia C; Donadío, Lucia Gandolfi; Mann, Ella; Kolusheva, Sofiya; Kedei, Noemi; Lewin, Nancy E; Hill, Colin S; Kelsey, Jessica S; Yang, Jing; Esch, Timothy E; Santos, Marina; Peach, Megan L; Kelley, James A; Blumberg, Peter M; Jelinek, Raz; Marquez, Victor E; Comin, Maria J

    2014-06-15

    The development of selective agents capable of discriminating between protein kinase C (PKC) isoforms and other diacylglycerol (DAG)-responsive C1 domain-containing proteins represents an important challenge. Recent studies have highlighted the role that Ras guanine nucleotide-releasing protein (RasGRP) isoforms play both in immune responses as well as in the development of prostate cancer and melanoma, suggesting that the discovery of selective ligands could have potential therapeutic value. Thus far, the N-methyl-substituted indololactone 1 is the agonist with the highest reported potency and selectivity for RasGRP relative to PKC. Here we present the synthesis, binding studies, cellular assays and biophysical analysis of interactions with model membranes of a family of regioisomers of 1 (compounds 2-5) that differ in the position of the linkage between the indole ring and the lactone moiety. These structural variations were studied to explore the interaction of the active complex (C1 domain-ligand) with cellular membranes, which is believed to be an important factor for selectivity in the activation of DAG-responsive C1 domain containing signaling proteins. All compounds were potent and selective activators of RasGRP when compared to PKCα with selectivities ranging from 6 to 65 fold. However, the parent compound 1 was appreciably more selective than any of the other isomers. In intact cells, modest differences in the patterns of translocation of the C1 domain targets were observed. Biophysical studies using giant vesicles as model membranes did show substantial differences in terms of molecular interactions impacting lipid organization, dynamics and membrane insertion. However, these differences did not yield correspondingly large changes in patterns of biological response, at least for the parameters examined.

  6. Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway.

    PubMed Central

    Khwaja, A; Rodriguez-Viciana, P; Wennström, S; Warne, P H; Downward, J

    1997-01-01

    Upon detachment from the extracellular matrix, epithelial cells enter into programmed cell death, a phenomenon known as anoikis, ensuring that they are unable to survive in an inappropriate location. Activated ras oncogenes protect cells from this form of apoptosis. The nature of the survival signals activated by integrin engagement and usurped by oncogenic Ras are unknown: here we show that in both cases phosphoinositide 3-OH kinase (PI 3-kinase), but not Raf, mediates this protection, acting through protein kinase B/Akt (PKB/Akt). Constitutively activated PI 3-kinase or PKB/Akt block anoikis, while inhibition of PI 3-kinase abrogates protection by Ras, but not PKB/Akt. Inhibition of either PI 3-kinase or PKB/Akt induces apoptosis in adherent epithelial cells. Attachment of cells to matrix leads to rapid elevation of the levels of PI 3-kinase lipid products and PKB/Akt activity, both of which remain high in Ras-transformed cells even in suspension. PI 3-kinase acting through PKB/Akt is therefore implicated as a key mediator of the aberrant survival of Ras-transformed epithelial cells in the absence of attachment, and mediates matrix-induced survival of normal epithelial cells. PMID:9184223

  7. Proteomic and functional genomic landscape of receptor tyrosine kinase and ras to extracellular signal-regulated kinase signaling.

    PubMed

    Friedman, Adam A; Tucker, George; Singh, Rohit; Yan, Dong; Vinayagam, Arunachalam; Hu, Yanhui; Binari, Richard; Hong, Pengyu; Sun, Xiaoyun; Porto, Maura; Pacifico, Svetlana; Murali, Thilakam; Finley, Russell L; Asara, John M; Berger, Bonnie; Perrimon, Norbert

    2011-10-25

    Characterizing the extent and logic of signaling networks is essential to understanding specificity in such physiological and pathophysiological contexts as cell fate decisions and mechanisms of oncogenesis and resistance to chemotherapy. Cell-based RNA interference (RNAi) screens enable the inference of large numbers of genes that regulate signaling pathways, but these screens cannot provide network structure directly. We describe an integrated network around the canonical receptor tyrosine kinase (RTK)-Ras-extracellular signal-regulated kinase (ERK) signaling pathway, generated by combining parallel genome-wide RNAi screens with protein-protein interaction (PPI) mapping by tandem affinity purification-mass spectrometry. We found that only a small fraction of the total number of PPI or RNAi screen hits was isolated under all conditions tested and that most of these represented the known canonical pathway components, suggesting that much of the core canonical ERK pathway is known. Because most of the newly identified regulators are likely cell type- and RTK-specific, our analysis provides a resource for understanding how output through this clinically relevant pathway is regulated in different contexts. We report in vivo roles for several of the previously unknown regulators, including CG10289 and PpV, the Drosophila orthologs of two components of the serine/threonine-protein phosphatase 6 complex; the Drosophila ortholog of TepIV, a glycophosphatidylinositol-linked protein mutated in human cancers; CG6453, a noncatalytic subunit of glucosidase II; and Rtf1, a histone methyltransferase.

  8. Effects of RAF inhibitors on PI3K/AKT signalling depend on mutational status of the RAS/RAF signalling axis

    PubMed Central

    Fritsche-Guenther, Raphaela; Witzel, Franziska; Kempa, Stefan; Brummer, Tilman; Sers, Christine; Blüthgen, Nils

    2016-01-01

    Targeted therapies within the RAS/RAF/MEK/ERK signalling axis become increasingly popular, yet cross-talk and feedbacks in the signalling network lead to unexpected effects. Here we look systematically into how inhibiting RAF and MEK with clinically relevant inhibitors result in changes in PI3K/AKT activation. We measure the signalling response using a bead-based ELISA, and use a panel of three cell lines, and isogenic cell lines that express mutant forms of the oncogenes KRAS and BRAF to interrogate the effects of the MEK and RAF inhibitors on signalling. We find that treatment with the RAF inhibitors have opposing effects on AKT phosphorylation depending on the mutational status of two important oncogenes, KRAS and BRAF. If these two genes are in wildtype configuration, RAF inhibitors reduce AKT phosphorylation. In contrast, if BRAF or KRAS are mutant, RAF inhibitors will leave AKT phosphorylation unaffected or lead to an increase of AKT phosphorylation. Down-regulation of phospho-AKT by RAF inhibitors also extends to downstream transcription factors, and correlates with apoptosis induction. Our results show that oncogenes rewire signalling such that targeted therapies can have opposing effects on parallel pathways, which depend on the mutational status of the cell. PMID:26799289

  9. Adenovirus-mediated gene transfer of dominant negative ras(asn17) in 3T3L1 adipocytes does not alter insulin-stimulated P13-kinase activity or glucose transport.

    PubMed

    Gnudi, L; Frevert, E U; Houseknecht, K L; Erhardt, P; Kahn, B B

    1997-01-01

    Recent studies suggest that the ras-map kinase and PI3-kinase cascades converge. We sought to determine whether PI3-kinase is downstream of ras in insulin signaling in a classic insulin target cell. We generated a recombinant adenovirus encoding dominant negative ras by cloning the human H-ras cDNA with a ser to asn substitution at amino acid 17 (ras(asn17)) into the pACCMVpLpA vector and cotransfecting 293 cells with the pJM17 plasmid containing the adenoviral genome. Efficiency of gene transfer was assessed by infecting fully differentiated 3T3L1 adipocytes with a recombinant adenovirus expressing beta-galactosidase (beta-gal); greater than 70% of cells were infected. Infection of adipocytes with ras(asn17) resulted in 10-fold greater expression than endogenous ras. This high efficiency gene transfer allowed biochemical assays. Insulin stimulation of ras-GTP formation was inhibited in ras(asn17)-expressing cells. Map kinase gel mobility shift revealed that insulin (1 UM) or epidermal growth factor (100 ng/ml) resulted in the appearance of a hyperphosphorylated species of p42 map kinase in uninfected cells and those expressing beta-gal but not in cells expressing ras(asn17). In contrast, insulin increased IRS-1-associated PI3-kinase activity approximately 10-fold in control cells and high level overexpression of ras(asn17) did not impair this effect. Similarly, insulin and epidermal growth factor activation of total (no immunoprecipitation) PI3-kinase activity in both cytosol and total cellular membranes and insulin stimulation of glucose transport were not affected by expression of dominant negative ras. Thus, adenovirus-mediated gene transfer is effective for studying insulin signaling in fully differentiated insulin target cells. Inhibition of ras activation abolishes insulin-stimulated phosphorylation of map kinase but does not affect insulin stimulation of PI3-kinase activity. In normal cell physiology, PI3-kinase does not appear to be downstream of ras in

  10. Regulation of Caenorhabditis elegans p53/CEP-1–Dependent Germ Cell Apoptosis by Ras/MAPK Signaling

    PubMed Central

    Rutkowski, Rachael; Dickinson, Robin; Stewart, Graeme; Craig, Ashley; Schimpl, Marianne; Keyse, Stephen M.; Gartner, Anton

    2011-01-01

    Maintaining genome stability in the germline is thought to be an evolutionarily ancient role of the p53 family. The sole Caenorhabditis elegans p53 family member CEP-1 is required for apoptosis induction in meiotic, late-stage pachytene germ cells in response to DNA damage and meiotic recombination failure. In an unbiased genetic screen for negative regulators of CEP-1, we found that increased activation of the C. elegans ERK orthologue MPK-1, resulting from either loss of the lip-1 phosphatase or activation of let-60 Ras, results in enhanced cep-1–dependent DNA damage induced apoptosis. We further show that MPK-1 is required for DNA damage–induced germ cell apoptosis. We provide evidence that MPK-1 signaling regulates the apoptotic competency of germ cells by restricting CEP-1 protein expression to cells in late pachytene. Restricting CEP-1 expression to cells in late pachytene is thought to ensure that apoptosis doesn't occur in earlier-stage cells where meiotic recombination occurs. MPK-1 signaling regulates CEP-1 expression in part by regulating the levels of GLD-1, a translational repressor of CEP-1, but also via a GLD-1–independent mechanism. In addition, we show that MPK-1 is phosphorylated and activated upon ionising radiation (IR) in late pachytene germ cells and that MPK-1–dependent CEP-1 activation may be in part direct, as these two proteins interact in a yeast two-hybrid assay. In summary, we report our novel finding that MAP kinase signaling controls CEP-1–dependent apoptosis by several different pathways that converge on CEP-1. Since apoptosis is also restricted to pachytene stage cells in mammalian germlines, analogous mechanisms regulating p53 family members are likely to be conserved throughout evolution. PMID:21901106

  11. Regulation of SREBPs by Sphingomyelin in Adipocytes via a Caveolin and Ras-ERK-MAPK-CREB Signaling Pathway.

    PubMed

    Makdissy, Nehman; Haddad, Katia; Mouawad, Charbel; Popa, Iuliana; Younsi, Mohamed; Valet, Philippe; Brunaud, Laurent; Ziegler, Olivier; Quilliot, Didier

    2015-01-01

    Sterol response element binding protein (SREBP) is a key transcription factor in insulin and glucose metabolism. We previously demonstrated that elevated levels of membrane sphingomyelin (SM) were related to peroxisome proliferator-activated receptor-γ (PPARγ), which is a known target gene of SREBP-1 in adipocytes. However, the role of SM in SREBP expression in adipocytes remains unknown. In human abdominal adipose tissue from obese women with various concentrations of fasting plasma insulin, SREBP-1 proteins decreased in parallel with increases in membrane SM levels. An inverse correlation was found between the membrane SM content and the levels of SREBP-1c/ERK/Ras/PPARγ/CREB proteins. For the first time, we demonstrate the effects of SM and its signaling pathway in 3T3-F442A adipocytes. These cells were enriched or unenriched with SM in a range of concentrations similar to those observed in obese subjects by adding exogenous natural SMs (having different acyl chain lengths) or by inhibiting neutral sphingomyelinase. SM accumulated in caveolae of the plasma membrane within 24 h and then in the intracellular space. SM enrichment decreased SREBP-1 through the inhibition of extracellular signal-regulated protein kinase (ERK) but not JNK or p38 mitogen-activated protein kinase (MAPK). Ras/Raf-1/MEK1/2 and KSR proteins, which are upstream mediators of ERK, were down-regulated, whereas SREBP-2/caveolin and cholesterol were up-regulated. In SM-unmodulated adipocytes treated with DL-1-Phenyl-2-Palmitoylamino-3-morpholino-1-propanol (PPMP), where the ceramide level increased, the expression levels of SREBPs and ERK were modulated in an opposite direction relative to the SM-enriched cells. SM inhibited the insulin-induced expression of SREBP-1. Rosiglitazone, which is an anti-diabetic agent and potent activator of PPARγ, reversed the effects of SM on SREBP-1, PPARγ and CREB. Taken together, these findings provide novel insights indicating that excess membrane SM might

  12. Cellular and subcellular localization of Ras guanyl nucleotide-releasing protein in the rat hippocampus.

    PubMed

    Pierret, P; Vallée, A; Mechawar, N; Dower, N A; Stone, J C; Richardson, P M; Dunn, R J

    2001-01-01

    Ras guanyl nucleotide-releasing protein (RasGRP) is a recently discovered Ras guanyl nucleotide exchange factor that is expressed in selected regions of the rodent CNS, with high levels of expression in the hippocampus. Biochemical studies suggest that RasGRP can activate the Ras signal pathway in response to changes in diacylglycerol and possibly calcium. To investigate potential sites for RasGRP signaling, we have determined the cellular and subcellular localization of RasGRP protein in adult rat hippocampus, and have also examined the appearance of RasGRP mRNA and protein during hippocampal development. RasGRP immunoreactivity is predominately localized to those neurons participating in the direct cortico-hippocampo-cortical loop. In both hippocampal and entorhinal neurons, RasGRP protein appeared to be localized to both dendrites and somata, but not to axons. Electron microscopy of hippocampal pyramidal cells confirmed RasGRP immunoreactivity in neuronal cell bodies and dendrites, where it appeared to be associated with microtubules. The localization of RasGRP to dendrites suggests a role for this pathway in the regulation of dendritic function. Examination of developing hippocampal structures indicated that RasGRP mRNA and protein appear synchronously during the first 2 weeks of postnatal development as these neurons become fully mature. This result indicates that the RasGRP signal transduction pathway is not required during early hippocampal development, but is a feature of mature neurons during the later stages of development.

  13. Oncogenic Ras pushes (and pulls) cell cycle progression through ERK activation.

    PubMed

    Campbell, Paul M

    2014-01-01

    The Ras-Raf-MEK-ERK signaling cascade is capable of channeling a wide variety of extracellular signals into control of cell proliferation, differentiation, senescence, and death. Because aberrant regulation at all steps of this signaling axis is observed in cancer, it remains an area of great interest in the field of tumor biology. Here we present evidence of the intricate and delicate levels of control of this pathway as it pertains to cell cycle regulation and illustrate how this control is not simply a rheostat.

  14. A WXW motif is required for the anticancer activity of the TAT-RasGAP317-326 peptide.

    PubMed

    Barras, David; Chevalier, Nadja; Zoete, Vincent; Dempsey, Rosemary; Lapouge, Karine; Olayioye, Monilola A; Michielin, Olivier; Widmann, Christian

    2014-08-22

    TAT-RasGAP317-326, a cell-permeable 10-amino acid-long peptide derived from the N2 fragment of p120 Ras GTPase-activating protein (RasGAP), sensitizes tumor cells to apoptosis induced by various anticancer therapies. This RasGAP-derived peptide, by targeting the deleted in liver cancer-1 (DLC1) tumor suppressor, also hampers cell migration and invasion by promoting cell adherence and by inhibiting cell movement. Here, we systematically investigated the role of each amino acid within the RasGAP317-326 sequence for the anticancer activities of TAT-RasGAP317-326. We report here that the first three amino acids of this sequence, tryptophan, methionine, and tryptophan (WMW), are necessary and sufficient to sensitize cancer cells to cisplatin-induced apoptosis and to reduce cell migration. The WMW motif was found to be critical for the binding of fragment N2 to DLC1. These results define the interaction mode between the active anticancer sequence of RasGAP and DLC1. This knowledge will facilitate the design of small molecules bearing the tumor-sensitizing and antimetastatic activities of TAT-RasGAP317-326.

  15. Signal Activation and Inactivation by the Gα Helical Domain: A Long-Neglected Partner in G Protein Signaling

    PubMed Central

    Dohlman, Henrik G.; Jones, Janice C.

    2013-01-01

    Heterotrimeric guanine nucleotide–binding proteins (G proteins) are positioned at the top of many signal transduction pathways. The G protein α subunit is composed of two domains, one that resembles Ras and another that is composed entirely of α helices. Historically, most attention has focused on the Ras-like domain, but emerging evidence reveals that the helical domain is an active participant in G protein signaling. PMID:22649098

  16. GTP-dependent association of Raf-1 with Ha-Ras: identification of Raf as a target downstream of Ras in mammalian cells.

    PubMed Central

    Koide, H; Satoh, T; Nakafuku, M; Kaziro, Y

    1993-01-01

    Ras is involved in signal transduction of various factors for growth, differentiation, and oncogenesis. Recent studies have revealed several proteins that function upstream and downstream of the Ras signaling pathway. However, its immediate downstream target molecular has not yet been identified. In an effort to identify the Ras-associated downstream proteins, we added recombinant Ha-Ras in a GTP-bound form to cell-free lysates and used several antibodies against Ras to immunoprecipitate Ras complexes. We found that a serine/threonine kinase, Raf-1, was coimmunoprecipitated with Ha-Ras by two anti-Ras antibodies (LA069 and Y13-238), whereas a neutralizing antibody against Ras (Y13-259) could not precipitate Raf-1. The coimmunoprecipitation was observed with a complex of Ras and guanosine 5'-[gamma- thio]triphosphate but not with a complex of Ras and guanosine 5'-[beta-thio]diphosphate. The GTP-dependent association of Ha-Ras with Raf-1 was observed with lysates of various types of cultured cells, including NIH 3T3, pheochromocytoma (PC) 12, Ba/F3, and Jurkat T cells, and also with crude extracts from rat brain. Furthermore, Raf-1 was precipitated with a transforming Ha-Ras mutant ([Val12]Ras) and wild-type Ha-Ras but not with an effector-region mutant ([Leu35,ARg37]Ras) that lacks transforming activity. These results indicate that Ras.GTP physically associates with Raf either directly or through other component(s) and strongly suggest that Raf functions in close downstream proximity to Ras in mammalian cells. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8378348

  17. Biochemical similarity of Schizosaccharomyces pombe ras1 protein with RAS2 protein of Saccharomyces cervisiae.

    PubMed

    Onozawa, T; Danjoh, I; Fujiyama, A

    1995-07-01

    Schizosaccharomyces pombe contains single ras oncogene homologue, ras1, that functions in the signal transduction pathway conducting the cell's mating processes. To understand the biochemical basis of yeast ras proteins, we have purified the ras1 protein and compared the major biochemical constants with those of RAS2 protein from Saccharomyces cerevisiae and mammalian ras proteins. The purified ras1 protein showed a remarkably high Kd value for GDP binding (178 nM) and for binding with ATP. In contrast, the Kd value for GTP binding and the rate of GTPase activity were 64 nM and 77 x 10(-6) s-1 at 37 degrees C, respectively; both were higher than normal p21ras protein, but at the same level as the RAS2 protein. We directly measured rate of GTP binding and GDP binding which were 3.9 x 10(-3) s-1 and 1.8 x 10(-3) s-1 at 30 degrees C, respectively. On the other hand, exchange rates between bound and free nucleotides remained almost constant throughout the tested combination of GTP and GDP, and were several-fold lower than the binding rate. These results suggest that the release of the guanine nucleotide is the rate-limiting step in the ras-GTP/GDP cycle. As a whole, the biochemical properties of the ras1 protein are close to those of the RAS2 protein, although these two proteins function differently in the signal transduction pathway in the cells. PMID:7483844

  18. 1H, 15N and 13C backbone assignments of GDP-bound human H-Ras mutant G12V.

    PubMed

    Amin, Nader; Chiarparin, Elisabetta; Coyle, Joe; Nietlispach, Daniel; Williams, Glyn

    2016-04-01

    Harvey Ras (H-Ras) is a membrane-associated GTPase with critical functions in cell proliferation and differentiation. The G12V mutant of H-Ras is one of the most commonly encountered oncoproteins in human cancer. This mutation disrupts the GTPase activity of H-Ras, leading to constitutive activation and aberrant downstream signalling. Here we report the backbone resonance assignments of human H-Ras mutant G12V lacking the C-terminal membrane attachment domain.

  19. VEGF neutralizing aerosol therapy in primary pulmonary adenocarcinoma with K-ras activating-mutations.

    PubMed

    Hervé, Virginie; Rabbe, Nathalie; Guilleminault, Laurent; Paul, Flora; Schlick, Laurène; Azzopardi, Nicolas; Duruisseaux, Michael; Fouquenet, Delphine; Montharu, Jérôme; Redini, Françoise; Paintaud, Gilles; Lemarié, Etienne; Cadranel, Jacques; Wislez, Marie; Heuzé-Vourc'h, Nathalie

    2014-01-01

    K-ras mutations promote angiogenesis in lung cancer and contribute to the drug resistance of cancer cells. It is not clear whether K-ras mutated adenocarcinomas are sensitive to anti-angiogenic therapy with monoclonal antibodies (mAbs) that target vascular endothelial growth factor (VEGF). Anti-angiogenic mAbs are usually delivered systemically, but only a small proportion reaches the lung after intravenous injection. We investigated the relevance of a non-invasive pulmonary route for the delivery of anti-VEGF mAbs in the mouse K-ras(LA1) model. We found that pulmonary delivery of these mAbs significantly reduced the number of tumor lesions and inhibited malignant progression. The antitumor effect involves the VEGFR2-dependent inhibition of blood vessel growth, which impairs tumor proliferation. Pharmacokinetic analysis of aerosolized anti-VEGF showed its low rate of passage into the bloodstream, suggesting that this delivery route is associated with reduced systemic side effects. Our findings highlight the value of the aerosol route for administration of anti-angiogenic mAbs in pulmonary adenocarcinoma with K-ras activating-mutations. PMID:25484066

  20. Activation of c-Jun-NH2-kinase by UV irradiation is dependent on p21ras.

    PubMed

    Adler, V; Pincus, M R; Polotskaya, A; Montano, X; Friedman, F K; Ronai, Z

    1996-09-20

    We have demonstrated previously that Jun-NH2-kinase (JNK) activation in vitro is potentiated by association with the p21(ras) protein. To determine if in vivo activation of JNK also depends on p21(ras), we have used M1311 cells that carry the cDNA for the neutralizing antibody to p21(ras), Y13-259, under a dexamethasone-inducible promoter. The ability of UV to activate JNK gradually decreased over a 4-day period of cell growth in dexamethasone. This decrease coincides with weaker transcriptional activation measured via gel shift and chloramphenicol acetyltransferase assays. Peptides corresponding to amino acids 96-110 on p21(ras), which were shown to block Ras-JNK association, inhibited UV-mediated JNK activation in mouse fibroblast 3T3-4A cells as well as in M1311 cells, further supporting the role of p21(ras) in UV-mediated JNK activation. Overall, the present studies provide in vivo confirmation of the role p21(ras) plays in JNK activation by UV irradiation.

  1. Transforming and oncogenic potential of activated c-Ha-ras in three immortalized human breast epithelial cell lines.

    PubMed

    Wang, B; Soule, H D; Miller, F R

    1997-01-01

    The ability of activated c-Ha-ras (codon 12 valine) to transform human breast epithelial cells varied for three different immortalized normal human breast epithelial cell lines established from two different women. Although activated c-Ha-ras may transform and induce a preneoplastic phenotype in MCF10A cells, activated c-Ha-ras was not sufficient to transform MCF10-2A cells. Only two of three MCF10-2A clones which expressed mutant p21 protein acquired the ability to form colonies in soft agar. When xenografted into nude beige mice, two MCF10-2A clones formed squamous carcinomas and one formed no lesions at all. The ability to form tumors did not correlate with growth in soft agar. All three activated c-Ha-ras-transfected clones of MCF-12A formed colonies in soft agar but only two produced squamous carcinomas in nude beige mice. Unlike activated c-Ha-ras-transfected MCF10A cells, none of the activated c-Ha-ras-transfected MCF10-2A or MCF-12A clones formed ducts in xenografts. Rather, initial xenograft lesions consisted of nests of cells with squamous differentiation. These observations illustrate that additional events are involved in the transformation and progression of human breast epithelial cells with activated c-Ha-ras.

  2. Ras/ERK signaling pathway is involved in curcumin-induced cell cycle arrest and apoptosis in human gastric carcinoma AGS cells.

    PubMed

    Cao, Ai-Li; Tang, Qing-Feng; Zhou, Wen-Chao; Qiu, Yan-Yan; Hu, Song-Jiao; Yin, Pei-Hao

    2015-01-01

    Curcumin, the biologically active compound from the rhizome of Curcuma longa, could inhibit cell growth and induce apoptosis in gastric carcinoma. However, the underlying mechanism of curcumin on gastric carcinoma cells still needs further investigation. In this study, morphological observation indicated that curcumin inhibited the proliferation of AGS cells in a dose-dependent manner. According to the flow cytometric analysis, curcumin treatment resulted in G2/M arrest in AGS cells, accompanied with an increased expression of cyclin B1 and a decreased expression of cyclin D1. In addition, DNA ladders were observed by gel electrophoresis. Meanwhile, the activities of caspase-3, -8, and -9 were also enhanced in curcumin-treated AGS cells. Nevertheless, the increased activities could be inhibited by benzyloxycarbonyl-Val-Ala-Asp (OME)-fluoromethylketone (z-VAD-fmk), which suggested that the apoptosis was caspase-dependent. Furthermore, downregulation of rat sarcoma (Ras) and upregulation of extracellular-signal-regulated kinase (ERK) were also observed in AGS cells treated with curcumin by Western blot. U0126, an ERK inhibitor, blocked curcumin-induced apoptosis. The results suggested that curcumin inhibited the growth of the AGS cells and induced apoptosis through the activation of Ras/ERK signaling pathway and downstream caspase cascade, and curcumin might be a potential target for the treatment of gastric carcinoma.

  3. Immunomodulatory activity of Āmalaki Rasāyana: An experimental evaluation

    PubMed Central

    Rajani, Jignesh; Ashok, B.K.; Galib; Patgiri, B.J.; Prajapati, P.K.; Ravishankar, B.

    2012-01-01

    Background: Ayurvedic system of medicine holds a number of drugs that improves the immunity. Āmalaki (Emblica officinalis) is one such drug. Researches with crude extracts of Āmalaki have proven the antioxidant and immunomodulatory activities. But, works on Āmalaki Rasāyana are not found reported. Aims: Considering this, two samples of Āmalaki Rasāyana (AR7 and AR21) were studied to evaluate comparative immunomodulatory activity against the cyclophosphamide immunosuppression in rats. Materials and Methods: Test drugs were prepared by following classical guidelines. Wistar strain albino rats of either sex were used in the study. Statistical Analysis: For comparison of data from cyclophosphamide control group with remaining cyclophosphamide plus test drug administered groups one way ANOVA with Dunnett's multiple t-test (DMTT) was employed. Results and Conclusions: Āmalaki Rasāyana possesses significant immunostimulant activity and moderate cytoprotective activity. AR21 was found to have better activity profile in terms of both immunostimulant as well as cytoprotective activity. PMID:24167334

  4. Phosphotyrosine-mediated LAT assembly on membranes drives kinetic bifurcation in recruitment dynamics of the Ras activator SOS.

    PubMed

    Huang, William Y C; Yan, Qingrong; Lin, Wan-Chen; Chung, Jean K; Hansen, Scott D; Christensen, Sune M; Tu, Hsiung-Lin; Kuriyan, John; Groves, Jay T

    2016-07-19

    The assembly of cell surface receptors with downstream signaling molecules is a commonly occurring theme in multiple signaling systems. However, little is known about how these assemblies modulate reaction kinetics and the ultimate propagation of signals. Here, we reconstitute phosphotyrosine-mediated assembly of extended linker for the activation of T cells (LAT):growth factor receptor-bound protein 2 (Grb2):Son of Sevenless (SOS) networks, derived from the T-cell receptor signaling system, on supported membranes. Single-molecule dwell time distributions reveal two, well-differentiated kinetic species for both Grb2 and SOS on the LAT assemblies. The majority fraction of membrane-recruited Grb2 and SOS both exhibit fast kinetics and single exponential dwell time distributions, with average dwell times of hundreds of milliseconds. The minor fraction exhibits much slower kinetics, extending the dwell times to tens of seconds. Considering this result in the context of the multistep process by which the Ras GEF (guanine nucleotide exchange factor) activity of SOS is activated indicates that kinetic stabilization from the LAT assembly may be important. This kinetic proofreading effect would additionally serve as a stochastic noise filter by reducing the relative probability of spontaneous SOS activation in the absence of receptor triggering. The generality of receptor-mediated assembly suggests that such effects may play a role in multiple receptor proximal signaling processes.

  5. Activation of c-Ki-ras gene in human pancreatic cancer.

    PubMed

    Prassolov, V S; Sakamoto, H; Nishimura, S; Terada, M; Sugimura, T

    1985-09-01

    DNA isolated from a lymph node with metastasis from pancreatic adenocarcinoma in a Japanese male patient transformed NIH3T3 cells upon transfection by the calcium-phosphate precipitation technique. Analysis of DNA from the transformant revealed the presence of an activated human c-Ki-ras gene, which is considered to be responsible for the transformation of the NIH3T3 cells.

  6. VPS35 binds farnesylated N-Ras in the cytosol to regulate N-Ras trafficking.

    PubMed

    Zhou, Mo; Wiener, Heidi; Su, Wenjuan; Zhou, Yong; Liot, Caroline; Ahearn, Ian; Hancock, John F; Philips, Mark R

    2016-08-15

    Ras guanosine triphosphatases (GTPases) regulate signaling pathways only when associated with cellular membranes through their C-terminal prenylated regions. Ras proteins move between membrane compartments in part via diffusion-limited, fluid phase transfer through the cytosol, suggesting that chaperones sequester the polyisoprene lipid from the aqueous environment. In this study, we analyze the nature of the pool of endogenous Ras proteins found in the cytosol. The majority of the pool consists of farnesylated, but not palmitoylated, N-Ras that is associated with a high molecular weight (HMW) complex. Affinity purification and mass spectrographic identification revealed that among the proteins found in the HMW fraction is VPS35, a latent cytosolic component of the retromer coat. VPS35 bound to N-Ras in a farnesyl-dependent, but neither palmitoyl- nor guanosine triphosphate (GTP)-dependent, fashion. Silencing VPS35 increased N-Ras's association with cytoplasmic vesicles, diminished GTP loading of Ras, and inhibited mitogen-activated protein kinase signaling and growth of N-Ras-dependent melanoma cells. PMID:27502489

  7. Galectin-1 dimers can scaffold Raf-effectors to increase H-ras nanoclustering

    PubMed Central

    Blaževitš, Olga; Mideksa, Yonatan G.; Šolman, Maja; Ligabue, Alessio; Ariotti, Nicholas; Nakhaeizadeh, Hossein; Fansa, Eyad K.; Papageorgiou, Anastassios C.; Wittinghofer, Alfred; Ahmadian, Mohammad R.; Abankwa, Daniel

    2016-01-01

    Galectin-1 (Gal-1) dimers crosslink carbohydrates on cell surface receptors. Carbohydrate-derived inhibitors have been developed for cancer treatment. Intracellularly, Gal-1 was suggested to interact with the farnesylated C-terminus of Ras thus specifically stabilizing GTP-H-ras nanoscale signalling hubs in the membrane, termed nanoclusters. The latter activity may present an alternative mechanism for how overexpressed Gal-1 stimulates tumourigenesis. Here we revise the current model for the interaction of Gal-1 with H-ras. We show that it indirectly forms a complex with GTP-H-ras via a high-affinity interaction with the Ras binding domain (RBD) of Ras effectors. A computationally generated model of the Gal-1/C-Raf-RBD complex is validated by mutational analysis. Both cellular FRET as well as proximity ligation assay experiments confirm interaction of Gal-1 with Raf proteins in mammalian cells. Consistently, interference with H-rasG12V-effector interactions basically abolishes H-ras nanoclustering. In addition, an intact dimer interface of Gal-1 is required for it to positively regulate H-rasG12V nanoclustering, but negatively K-rasG12V nanoclustering. Our findings suggest stacked dimers of H-ras, Raf and Gal-1 as building blocks of GTP-H-ras-nanocluster at high Gal-1 levels. Based on our results the Gal-1/effector interface represents a potential drug target site in diseases with aberrant Ras signalling. PMID:27087647

  8. Effects of mutant human Ki-ras{sup G12C} gene dosage on murine lung tumorigenesis and signaling to its downstream effectors

    SciTech Connect

    Dance-Barnes, Stephanie T.; Kock, Nancy D.; Floyd, Heather S.; Moore, Joseph E.; Mosley, Libyadda J.; D'Agostino, Ralph B.; Pettenati, Mark J.; Miller, Mark Steven

    2008-08-15

    Studies in cell culture have suggested that the level of RAS expression can influence the transformation of cells and the signaling pathways stimulated by mutant RAS expression. However, the levels of RAS expression in vivo appear to be subject to feedback regulation, limiting the total amount of RAS protein that can be expressed. We utilized a bitransgenic mouse lung tumor model that expressed the human Ki-ras{sup G12C} allele in a tetracycline-inducible, lung-specific manner. Treatment for 12 months with 500 {mu}g/ml of doxycycline (DOX) allowed for maximal expression of the human Ki-ras{sup G12C} allele in the lung, and resulted in the development of focal hyperplasia and adenomas. We determined if different levels of mutant RAS expression would influence the phenotype of the lung lesions. Treatment with 25, 100 and 500 {mu}g/ml of DOX resulted in dose-dependent increases in transgene expression and tumor multiplicity. Microscopic analysis of the lungs of mice treated with the 25 {mu}g/ml dose of DOX revealed infrequent foci of hyperplasia, whereas mice treated with the 100 and 500 {mu}g/ml doses exhibited numerous hyperplastic foci and also adenomas. Immunohistochemical and RNA analysis of the downstream effector pathways demonstrated that different levels of mutant RAS transgene expression resulted in differences in the expression and/or phosphorylation of specific signaling molecules. Our results suggest that the molecular alterations driving tumorigenesis may differ at different levels of mutant Ki-ras{sup G12C} expression, and this should be taken into consideration when inducible transgene systems are utilized to promote tumorigenesis in mouse models.

  9. CD11c gene expression in hairy cell leukemia is dependent upon activation of the proto-oncogenes ras and junD.

    PubMed

    Nicolaou, Fotini; Teodoridis, Jens M; Park, Heiyoung; Georgakis, Alexander; Farokhzad, Omid C; Böttinger, Erwin P; Da Silva, Nicolas; Rousselot, Philippe; Chomienne, Christine; Ferenczi, Katalin; Arnaout, M Amin; Shelley, C Simon

    2003-05-15

    Hairy cell leukemia (HCL) is a chronic lymphoproliferative disease, the cause of which is unknown. Diagnostic of HCL is abnormal expression of the gene that encodes the beta2 integrin CD11c. In order to determine the cause of CD11c gene expression in HCL the CD11c gene promoter was characterized. Transfection of the CD11c promoter linked to a luciferase reporter gene indicated that it is sufficient to direct expression in hairy cells. Mutation analysis demonstrated that of predominant importance to the activity of the CD11c promoter is its interaction with the activator protein-1 (AP-1) family of transcription factors. Comparison of nuclear extracts prepared from hairy cells with those prepared from other cell types indicated that hairy cells exhibit abnormal constitutive expression of an AP-1 complex containing JunD. Functional inhibition of AP-1 expressed by hairy cells reduced CD11c promoter activity by 80%. Inhibition of Ras, which represents an upstream activator of AP-1, also significantly inhibited the CD11c promoter. Furthermore, in the hairy cell line EH, inhibition of Ras signaling through mitogen-activated protein kinase/extracellular signal-regulated kinase kinases 1 and 2 (MEK1/2) reduced not only CD11c promoter activity but also reduced both CD11c surface expression and proliferation. Expression in nonhairy cells of a dominant-positive Ras mutant activated the CD11c promoter to levels equivalent to those in hairy cells. Together, these data indicate that the abnormal expression of the CD11c gene characteristic of HCL is dependent upon activation of the proto-oncogenes ras and junD.

  10. dpl-1 DP and efl-1 E2F act with lin-35 Rb to antagonize Ras signaling in C. elegans vulval development.

    PubMed

    Ceol, C J; Horvitz, H R

    2001-03-01

    The synthetic multivulva (synMuv) genes define two functionally redundant pathways that antagonize RTK/Ras signaling during Caenorhabditis elegans vulval induction. The synMuv gene lin-35 encodes a protein similar to the mammalian tumor suppressor pRB and has been proposed to act as a transcriptional repressor. Studies using mammalian cells have shown that pRB can prevent cell cycle progression by inhibiting DP/E2F-mediated transcriptional activation. We identified C. elegans genes that encode proteins similar to DP or E2F. Loss-of-function mutations in two of these genes, dpl-1 DP and efl-1 E2F, caused the same vulval abnormalities as do lin-35 Rb loss-of-function mutations. We propose that rather than being inhibited by lin-35 Rb, dpl-1 DP and efl-1 E2F act with lin-35 Rb in transcriptional repression to antagonize RTK/Ras signaling during vulval development.

  11. Anti-tumor activity of ESX1 on cancer cells harboring oncogenic K-ras mutation

    SciTech Connect

    Nakajima, Junta; Ishikawa, Susumu; Hamada, Jun-Ichi; Yanagihara, Masatomo; Koike, Takao; Hatakeyama, Masanori

    2008-05-23

    Human ESX1 is a 65-kilodalton (kDa) paired-like homeoprotein that is proteolytically processed into N-terminal 45-kDa and C-terminal 20-kDa fragments. The N-terminal ESX1 fragment, which contains the homeodomain, localizes to the nucleus and represses mRNA transcription from the K-ras gene. When we inoculated human colorectal carcinoma HCT116 constitutive expressing N-terminal region of ESX1 (N-ESX1) into nude mice, transfectant cells uniformly showed decreased tumor-forming activity compared with that of the parental cells. Furthermore, pretreatment of HCT116 carcinoma cells with a fusion protein consisting of N-ESX1 and the protein-transduction domain derived from the human immunodeficiency virus type-1 TAT protein gave rise to a dramatic reduction in the tumorigenicity of HCT116 cells in nude mice. Our results provide first in vivo evidence for the molecular targeting therapeutic application of the K-ras repressor ESX1, especially TAT-mediated transduction of N-ESX1, in the treatment of human cancers having oncogenic K-ras mutations.

  12. N-terminally myristoylated Ras proteins require palmitoylation or a polybasic domain for plasma membrane localization.

    PubMed

    Cadwallader, K A; Paterson, H; Macdonald, S G; Hancock, J F

    1994-07-01

    Plasma membrane targeting of Ras requires CAAX motif modifications together with a second signal from an adjacent polybasic domain or nearby cysteine palmitoylation sites. N-terminal myristoylation is known to restore membrane binding to H-ras C186S (C-186 is changed to S), a mutant protein in which all CAAX processing is abolished. We show here that myristoylated H-ras C186S is a substrate for palmitoyltransferase, despite the absence of C-terminal farnesylation, and that palmitoylation is absolutely required for plasma membrane targeting of myristoylated H-ras. Similarly, the polybasic domain is required for specific plasma membrane targeting of myristoylated K-ras. In contrast, the combination of myristoylation plus farnesylation results in the mislocalization of Ras to numerous intracellular membranes. Ras that is only myristoylated does not bind with a high affinity to any membrane. The specific targeting of Ras to the plasma membrane is therefore critically dependent on signals that are contained in the hypervariable domain but can be supported by N-terminal myristoylation or C-terminal prenylation. Interestingly, oncogenic Ras G12V that is localized correctly to the plasma membrane leads to mitogen-activated protein kinase activation irrespective of the combination of targeting signals used for localization, whereas Ras G12V that is mislocalized to the cytosol or to other membranes activates mitogen-activated protein kinase only if the Ras protein is farnesylated.

  13. Phenotypic Screening Identifies Protein Synthesis Inhibitors as H-Ras-Nanocluster-Increasing Tumor Growth Inducers.

    PubMed

    Najumudeen, Arafath K; Posada, Itziar M D; Lectez, Benoit; Zhou, Yong; Landor, Sebastian K-J; Fallarero, Adyary; Vuorela, Pia; Hancock, John; Abankwa, Daniel

    2015-12-15

    Ras isoforms H-, N-, and K-ras are each mutated in specific cancer types at varying frequencies and have different activities in cell fate control. On the plasma membrane, Ras proteins are laterally segregated into isoform-specific nanoscale signaling hubs, termed nanoclusters. As Ras nanoclusters are required for Ras signaling, chemical modulators of nanoclusters represent ideal candidates for the specific modulation of Ras activity in cancer drug development. We therefore conducted a chemical screen with commercial and in-house natural product libraries using a cell-based H-ras-nanoclustering FRET assay. Next to established Ras inhibitors, such as a statin and farnesyl-transferase inhibitor, we surprisingly identified five protein synthesis inhibitors as positive regulators. Using commonly employed cycloheximide as a representative compound, we show that protein synthesis inhibition increased nanoclustering and effector recruitment specifically of active H-ras but not of K-ras. Consistent with these data, cycloheximide treatment activated both Erk and Akt kinases and specifically promoted H-rasG12V-induced, but not K-rasG12V-induced, PC12 cell differentiation. Intriguingly, cycloheximide increased the number of mammospheres, which are enriched for cancer stem cells. Depletion of H-ras in combination with cycloheximide significantly reduced mammosphere formation, suggesting an exquisite synthetic lethality. The potential of cycloheximide to promote tumor cell growth was also reflected in its ability to increase breast cancer cell tumors grown in ovo. These results illustrate the possibility of identifying Ras-isoform-specific modulators using nanocluster-directed screening. They also suggest an unexpected feedback from protein synthesis inhibition to Ras signaling, which might present a vulnerability in certain tumor cell types. PMID:26568031

  14. Phenotypic Screening Identifies Protein Synthesis Inhibitors as H-Ras-Nanocluster-Increasing Tumor Growth Inducers.

    PubMed

    Najumudeen, Arafath K; Posada, Itziar M D; Lectez, Benoit; Zhou, Yong; Landor, Sebastian K-J; Fallarero, Adyary; Vuorela, Pia; Hancock, John; Abankwa, Daniel

    2015-12-15

    Ras isoforms H-, N-, and K-ras are each mutated in specific cancer types at varying frequencies and have different activities in cell fate control. On the plasma membrane, Ras proteins are laterally segregated into isoform-specific nanoscale signaling hubs, termed nanoclusters. As Ras nanoclusters are required for Ras signaling, chemical modulators of nanoclusters represent ideal candidates for the specific modulation of Ras activity in cancer drug development. We therefore conducted a chemical screen with commercial and in-house natural product libraries using a cell-based H-ras-nanoclustering FRET assay. Next to established Ras inhibitors, such as a statin and farnesyl-transferase inhibitor, we surprisingly identified five protein synthesis inhibitors as positive regulators. Using commonly employed cycloheximide as a representative compound, we show that protein synthesis inhibition increased nanoclustering and effector recruitment specifically of active H-ras but not of K-ras. Consistent with these data, cycloheximide treatment activated both Erk and Akt kinases and specifically promoted H-rasG12V-induced, but not K-rasG12V-induced, PC12 cell differentiation. Intriguingly, cycloheximide increased the number of mammospheres, which are enriched for cancer stem cells. Depletion of H-ras in combination with cycloheximide significantly reduced mammosphere formation, suggesting an exquisite synthetic lethality. The potential of cycloheximide to promote tumor cell growth was also reflected in its ability to increase breast cancer cell tumors grown in ovo. These results illustrate the possibility of identifying Ras-isoform-specific modulators using nanocluster-directed screening. They also suggest an unexpected feedback from protein synthesis inhibition to Ras signaling, which might present a vulnerability in certain tumor cell types.

  15. Raf activation by Ras and promotion of cellular metastasis require phosphorylation of prohibitin in the raft domain of the plasma membrane.

    PubMed

    Chiu, C-F; Ho, M-Y; Peng, J-M; Hung, S-W; Lee, W-H; Liang, C-M; Liang, S-M

    2013-02-01

    Prohibitin (PHB) is indispensable for Ras-induced Raf-1 activation, cell migration and growth; however, the exact role of PHB in the molecular pathogenesis of cancer metastasis remains largely unexamined. Here, we found a positive correlation between plasma membrane-associated PHB and the clinical stages of cancer. The level of PHB phosphorylated at threonine 258 (T258) and tyrosine 259 (Y259) in human cancer-cell membranes correlated with the invasiveness of cancer cells. Overexpression of phosphorylated PHB (phospho-PHB) in the lipid-raft domain of the cell membrane enhanced cell migration/invasion through PI3K/Akt and Raf-1/ERK activation. It also enhanced epithelial-mesenchymal transition, matrix metalloproteinase-2 activity and invasiveness of cancer cells in vitro. Immunoprecipitation analysis demonstrated that phospho-PHB associated with Raf-1, Akt and Ras in the membrane and was essential for the activation of Raf-1 signaling by Ras. Mice implanted with cancer cells stably overexpressing PHB in the plasma membrane showed enlarged cervical tumors, enhanced metastasis and shorter survival time compared with mice implanted with cancer cells without PHB overexpression. Dephosphorylation of PHB at T258 by site-directed mutagenesis diminished the in vitro and in vivo effects of PHB. These results suggest that increase in phospho-PHB T258 in the raft domain of the plasma membrane has a role in the Ras-driven activation of PI3K/Akt and Raf-1/ERK-signaling cascades and results in the promotion of cancer metastasis.

  16. The hypervariable region of K-Ras4B is responsible for its specific interactions with Calmodulin

    PubMed Central

    Abraham, Sherwin J.; Nolet, Ryan P.; Calvert, Richard J.; Anderson, Lucy M.; Gaponenko, Vadim

    2009-01-01

    K-Ras4B belongs to the family of p21 Ras GTPases, which play an important role in cell proliferation, survival and motility. The p21 Ras proteins such as K-Ras4B, K-Ras4A, H-Ras, and N-Ras, share 85% sequence homology and activate very similar signaling pathways. Only the C-terminal hypervariable regions differ significantly. A growing body of literature demonstrates that each Ras isoform possesses unique functions in normal physiological processes as well as in pathogenesis. One of the central questions in the field of Ras biology is how these very similar proteins achieve such remarkable specificity in protein-protein interactions that regulate signal transduction pathways. Here we explore specific binding of K-Ras4B to calmodulin. Using NMR techniques and isothermal titration calorimetry we demonstrate that the hypervariable region of K-Ras contributes in a major way to the interaction with calmodulin while the catalytic domain of K-Ras4B provides a way to control the interaction by nucleotide binding. The hypervariable region of K-Ras4B binds specifically to the C-terminal domain of Ca2+-loaded calmodulin with micromolar affinity, while the GTP-γ-S loaded catalytic domain of K-Ras4B may interact with the N-terminal domain of calmodulin. PMID:19583261

  17. The hypervariable region of K-Ras4B is responsible for its specific interactions with calmodulin.

    PubMed

    Abraham, Sherwin J; Nolet, Ryan P; Calvert, Richard J; Anderson, Lucy M; Gaponenko, Vadim

    2009-08-18

    K-Ras4B belongs to the family of p21 Ras GTPases, which play an important role in cell proliferation, survival, and motility. The p21 Ras proteins, such as K-Ras4B, K-Ras4A, H-Ras, and N-Ras, share 85% sequence homology and activate very similar signaling pathways. Only the C-terminal hypervariable regions differ significantly. A growing body of literature demonstrates that each Ras isoform possesses unique functions in normal physiological processes as well as in pathogenesis. One of the central questions in the field of Ras biology is how these very similar proteins achieve such remarkable specificity in protein-protein interactions that regulate signal transduction pathways. Here we explore specific binding of K-Ras4B to calmodulin. Using NMR techniques and isothermal titration calorimetry, we demonstrate that the hypervariable region of K-Ras4B contributes in a major way to the interaction with calmodulin, while the catalytic domain of K-Ras4B provides a way to control the interaction by nucleotide binding. The hypervariable region of K-Ras4B binds specifically to the C-terminal domain of Ca(2+)-loaded calmodulin with micromolar affinity, while the GTP-gamma-S-loaded catalytic domain of K-Ras4B may interact with the N-terminal domain of calmodulin.

  18. Inhibition of the Ras/Raf/ERK1/2 Signaling Pathway Restores Cultured Spinal Cord-Injured Neuronal Migration, Adhesion, and Dendritic Spine Development.

    PubMed

    Xu, Dongdong; Cao, Fujiang; Sun, Shiwei; Liu, Tao; Feng, Shiqing

    2016-08-01

    The Ras/Raf/ERK1/2 signaling pathway plays an important role in central and peripheral neurons in functions such as dendritic arborization, neuronal polarity, and axon assembly. However, emerging evidence also shows that up-regulation of this signaling pathway may lead to the development of spinal cord injury. The present study aimed to determine the effects of Ras/Raf/ERK1/2 signaling pathway inhibition on properties of spinal cord-injured neurons. First, neurons from spinal cord-injured C57BL/6 J mouse pups and sham-operated C57BL/6 J mouse pups were harvested. Then, immunofluorescence, western blotting, cell adhesion and cell migration assays, and DiI labeling were employed to investigate the effect of Ras/Raf/ERK1/2 signaling pathway inhibition on spinal cord-injured neurons. Immunofluorescence results of synapse formation indicated that the experimental spinal cord injury model was successfully established. Western blot results identified upregulated Erk phosphorylation in the spinal cord-injured neurons, and also showed that U0126 inhibited phosphorylation of Erk, which is a downstream kinase in the Ras/Raf signaling pathway. Additionally, cell migration and adhesion was significantly increased in the spinal cord-injured neurons. DiI labeling results also showed an increased formation of mature spines after inhibition of Ras/Raf/ERK1/2 signaling. Taken together, these results suggested that the Ras/Raf/ERK1/2 signaling pathway could serve as an effective treatment target for spinal cord injury.

  19. VEGF activates protein kinase C-dependent, but Ras-independent Raf-MEK-MAP kinase pathway for DNA synthesis in primary endothelial cells.

    PubMed

    Takahashi, T; Ueno, H; Shibuya, M

    1999-04-01

    KDR/FIk-1 tyrosine kinase, one of the two VEGF receptors induces mitogenesis and differentiation of vascular endothelial cells. We have previously reported that a major target molecule of KDR/Flk-1 kinase is PLC-gamma, and that VEGF induces activation of MAP kinase, mainly mediated by protein kinase C (PKC) in the NIH3T3 cells overexpressing KDR/FIk-1 (Takahashi and Shibuya, 1997). However, the signal transduction initiated from VEGF in endothelial cells remains to be elucidated. In primary sinusoidal endothelial cells which showed strictly VEGF-dependent growth, we found that VEGF stimulated the activation of Raf-1-MEK-MAP kinase cascade. To our surprise, an important regulator, Ras was not efficiently activated to a significant level in response to VEGF. Consistent with this, dominant-negative Ras did not block the VEGF-induced phosphorylation of MAP kinase. On the other hand, PKC-specific inhibitors severely reduced VEGF-dependent phosphorylation of MEK, activation of MAP kinase and subsequent DNA synthesis. A potent PI3 kinase inhibitor, Wortmannin, could not inhibit either of them. These results suggest that in primary endothelial cells, VEGF-induced activation of Raf-MEK-MAP kinase and DNA synthesis are mainly mediated by PKC-dependent pathway, much more than by Ras-dependent or PI3 kinase-dependent pathway.

  20. Paeonia lactiflora Extract Attenuating Cerebral Ischemia and Arterial Intimal Hyperplasia Is Mediated by Paeoniflorin via Modulation of VSMC Migration and Ras/MEK/ERK Signaling Pathway

    PubMed Central

    Chen, Yuh-Fung; Wu, Kuo-Jen; Wood, W. Gibson

    2013-01-01

    Paeonia lactiflora is a well-known traditional Chinese medicine. Paeoniflorin is an active component found in Paeonia lactiflora, which is used to treat smooth muscle spasms and pain and to protect the cardiovascular system. The objective of this study was to determine if Paeonia lactiflora would be protective in rodent models of cerebral ischemia and arterial intimal hyperplasia. Paeonia lactiflora extract (PLex) and paeoniflorin (PF) significantly attenuated cerebral infarction in ischemia/reperfusion injury rats and the severity of intimal hyperplasia in mice where the carotid artery was ligated. PLex and PF reduced PDGF-stimulated VSMC proliferation and migration in a dose-dependent manner by MTT, wound healing, and transwell assays. PF significantly reduced protein levels of Ras, MEK, p-MEK and p-ERK, but not MMP-2 and MMP-9. In summary, Paeonia lactiflora reduced cerebral ischemia and arterial intimal hyperplasia which were mainly made via the intermediary of PF. The protective effect of PF was related to the modulation of the Ras/MEK/ERK signaling pathway. PMID:23818926

  1. A Ras subfamily GTPase shows cell cycle-dependent nuclear localization

    PubMed Central

    Sutherland, Brent W.; Spiegelman, George B.; Weeks, Gerald

    2001-01-01

    Previously characterized Ras subfamily proteins have been found to be predominantly associated with the plasma membrane where they function in signal transduction pathways to convey extracellular signals to intracellular targets. Here, we provide evidence that the Dictyostelium Ras subfamily protein RasB has a novel subcellular localization and function. The protein is predominantly localized in the nucleus during most of the cell cycle. Furthermore, during mitosis and cytokinesis RasB assumes a diffuse cellular localization despite the fact that the nuclear membrane stays intact. The linkage between the position of RasB in the cell and division suggests that it may have a role in nuclear division. Consistent with this idea, rasB– cells exhibit severe growth defects and cells overexpressing an activated version of RasB are multinucleate. PMID:11606416

  2. Propiconazole-enhanced hepatic cell proliferation is associated with dysregulation of the cholesterol biosynthesis pathway leading to activation of Erk1/2 through Ras farnesylation.

    PubMed

    Murphy, Lynea A; Moore, Tanya; Nesnow, Stephen

    2012-04-15

    Propiconazole is a mouse hepatotumorigenic fungicide designed to inhibit CYP51, a key enzyme in the biosynthesis of ergosterol in fungi and is widely used in agriculture to prevent fungal growth. Metabolomic studies in mice revealed that propiconazole increased levels of hepatic cholesterol metabolites and bile acids, and transcriptomic studies revealed that genes within the cholesterol biosynthesis, cholesterol metabolism and bile acid biosyntheses pathways were up-regulated. Hepatic cell proliferation was also increased by propiconazole. AML12 immortalized hepatocytes were used to study propiconazole's effects on cell proliferation focusing on the dysregulation of cholesterol biosynthesis and resulting effects on Ras farnesylation and Erk1/2 activation as a primary pathway. Mevalonate, a key intermediate in the cholesterol biosynthesis pathway, increases cell proliferation in several cancer cell lines and tumors in vivo and serves as the precursor for isoprenoids (e.g. farnesyl pyrophosphate) which are crucial in the farnesylation of the Ras protein by farnesyl transferase. Farnesylation targets Ras to the cell membrane where it is involved in signal transduction, including the mitogen-activated protein kinase (MAPK) pathway. In our studies, mevalonic acid lactone (MVAL), a source of mevalonic acid, increased cell proliferation in AML12 cells which was reduced by farnesyl transferase inhibitors (L-744,832 or manumycin) or simvastatin, an HMG-CoA reductase inhibitor, indicating that this cell system responded to alterations in the cholesterol biosynthesis pathway. Cell proliferation in AML12 cells was increased by propiconazole which was reversed by co-incubation with L-744,832 or simvastatin. Increasing concentrations of exogenous cholesterol muted the proliferative effects of propiconazole and the inhibitory effects of L-733,832, results ascribed to reduced stimulation of the endogenous cholesterol biosynthesis pathway. Western blot analysis of subcellular

  3. NF2 loss promotes oncogenic RAS-induced thyroid cancers via YAP-dependent transactivation of RAS proteins and sensitizes them to MEK inhibition

    PubMed Central

    Garcia-Rendueles, Maria E.R.; Ricarte-Filho, Julio C.; Untch, Brian R.; Landa, Iňigo; Knauf, Jeffrey A.; Voza, Francesca; Smith, Vicki E.; Ganly, Ian; Taylor, Barry S.; Persaud, Yogindra; Oler, Gisele; Fang, Yuqiang; Jhanwar, Suresh C.; Viale, Agnes; Heguy, Adriana; Huberman, Kety H.; Giancotti, Filippo; Ghossein, Ronald; Fagin, James A.

    2015-01-01

    Ch22q LOH is preferentially associated with RAS mutations in papillary and in poorly differentiated thyroid cancer (PDTC). The 22q tumor suppressor NF2, encoding merlin, is implicated in this interaction because of its frequent loss of function in human thyroid cancer cell lines. Nf2 deletion or Hras mutation are insufficient for transformation, whereas their combined disruption leads to murine PDTC with increased MAPK signaling. Merlin loss induces RAS signaling in part through inactivation of Hippo, which activates a YAP-TEAD transcriptional program. We find that the three RAS genes are themselves YAP-TEAD1 transcriptional targets, providing a novel mechanism of promotion of RAS-induced tumorigenesis. Moreover, pharmacological disruption of YAP-TEAD with verteporfin blocks RAS transcription and signaling, and inhibits cell growth. The increased MAPK output generated by NF2 loss in RAS-mutant cancers may inform therapeutic strategies, as it generates greater dependency on the MAPK pathway for viability. PMID:26359368

  4. Nucleophosmin Mutants Promote Adhesion, Migration and Invasion of Human Leukemia THP-1 Cells through MMPs Up-regulation via Ras/ERK MAPK Signaling

    PubMed Central

    Xian, Jingrong; Shao, Huiyuan; Chen, Xianchun; Zhang, Shuaishuai; Quan, Jing; Zou, Qin; Jin, Hongjun; Zhang, Ling

    2016-01-01

    Acute myeloid leukemia (AML) with mutated nucleophosmin (NPM1) has been defined as a unique subgroup in the new classification of myeloid neoplasm, and the AML patients with mutated NPM1 frequently present extramedullary infiltration, but how NPM1 mutants regulate this process remains elusive. In this study, we found that overexpression of type A NPM1 gene mutation (NPM1-mA) enhanced the adhesive, migratory and invasive potential in THP-1 AML cells lacking mutated NPM1. NPM1-mA had up-regulated expression and gelatinolytic matrix metalloprotease-2 (MMP-2)/MMP-9 activity, as assessed by real-time PCR, western blotting and gelatin zymography. Following immunoprecipitation analysis to identify the interaction of NPM1-mA with K-Ras, we focused on the effect of NPM1-mA overexpression on the Ras/Mitogen-activated protein kinase (MAPK) signaling axis and showed that NPM1-mA increased the MEK and ERK phosphorylation levels, as evaluated by western blotting. Notably, a specific inhibitor of the ERK/MAPK pathway (PD98059), but not p38/MAPK, JNK/MAPK or PI3-K/AKT inhibitors, markedly decreased the cell invasion numbers in a transwell assay. Further experiments demonstrated that blocking the ERK/MAPK pathway by PD98059 resulted in reduced MMP-2/9 protein levels and MMP-9 activity. Additionally, NPM1-mA overexpression had down-regulated gene expression and protein production of tissue inhibitor of MMP-2 (TIMP-2) in THP-1 cells. Furthermore, evaluation of gene expression data from The Cancer Genome Atlas (TCGA) dataset revealed that MMP-2 was overexpressed in AML patient samples with NPM1 mutated and high MMP-2 expression associated with leukemic skin infiltration. Taken together, our results reveal that NPM1 mutations contribute to the invasive potential of AML cells through MMPs up-regulation via Ras/ERK MAPK signaling pathway activation and offer novel insights into the potential role of NPM1 mutations in leukemogenesis. PMID:26884713

  5. Oncogenic K-Ras promotes proliferation in quiescent intestinal stem cells.

    PubMed

    Gierut, Jessica J; Lyons, Jesse; Shah, Manasvi S; Genetti, Casie; Breault, David T; Haigis, Kevin M

    2015-07-01

    K-Ras is a monomeric GTPase that controls cellular and tissue homeostasis. Prior studies demonstrated that mutationally activated K-Ras (K-Ras(G12D)) signals through MEK to promote expansion and hyperproliferation of the highly mitotically active transit-amplifying cells (TACs) in the intestinal crypt. Its effect on normally quiescent stem cells was unknown, however. Here, we have used an H2B-Egfp transgenic system to demonstrate that K-Ras(G12D) accelerates the proliferative kinetics of quiescent intestinal stem cells. As in the TAC compartment, the effect of mutant K-Ras on the quiescent stem cell is dependent upon activation of MEK. Mutant K-Ras is also able to increase self-renewal potential of intestinal stem cells following damage. These results demonstrate that mutant K-Ras can influence intestinal homeostasis on multiple levels.

  6. Protective Effects of Gallic Acid Against NiSO4-Induced Toxicity Through Down-Regulation of the Ras/ERK Signaling Pathway in Beas-2B Cells

    PubMed Central

    An, Xuejun; Zhou, Aijia; Yang, Yue; Wang, Yue; Xin, Rui; Tian, Chao; Wu, Yonghui

    2016-01-01

    Background This study aimed to explore the preventive effects of gallic acid (GA) on the toxicity induced by NiSO4 in Beas-2B cells. Material/Methods Beas-2B cell viability was measured by MTT assay. The degree of oxidative stress was detected by measuring the levels of reactive oxygen species (ROS) and lipid peroxide (LPO). The rate of apoptosis was measured by flow cytometry. Ras/ERK-related protein levels were analyzed by Western blot analysis, which including Ras, ERK, c-Myc, PARP, and PARP cleavage. Results MTT assay showed that NiSO4 induced cytotoxicity, while GA had a protective role against toxicity. Additionally, GA could reduce the apoptotic cell number and the level of ROS in Beas-2B cells induced by NiSO4. Western blot analysis demonstrated that NiSO4 could up-regulate the related protein in the Ras/ERK signaling pathway. Furthermore, we observed that GA could alleviate the toxicity of NiSO4 through regulating protein changes in the Ras/ERK signaling pathway. Conclusions Preventive effects of GA on NiSO4-induced cytotoxicity in Beas-2B cells may be through the Ras/ERK signaling pathways. PMID:27676106

  7. Crosstalk of Ras and Rho: activation of RhoA abates Kras-induced liver tumorigenesis in transgenic zebrafish models.

    PubMed

    Chew, T W; Liu, X J; Liu, L; Spitsbergen, J M; Gong, Z; Low, B C

    2014-05-22

    RAS and Rho small GTPases are key molecular switches that control cell dynamics, cell growth and tissue development through their distinct signaling pathways. Although much has been learnt about their individual functions in both cell and animal models, the physiological and pathophysiological consequences of their signaling crosstalk in multi-cellular context in vivo remain largely unknown, especially in liver development and liver tumorigenesis. Furthermore, the roles of RhoA in RAS-mediated transformation and their crosstalk in vitro remain highly controversial. When challenged with carcinogens, zebrafish developed liver cancer that resembles the human liver cancer both molecularly and histopathologically. Capitalizing on the growing importance and relevance of zebrafish (Danio rerio) as an alternate cancer model, we have generated liver-specific, Tet-on-inducible transgenic lines expressing oncogenic Kras(G12V), RhoA, constitutively active RhoA(G14V) or dominant-negative RhoA(T19N). Double-transgenic lines expressing Kras(G12V) with one of the three RhoA genes were also generated. Based on quantitative bioimaging and molecular markers for genetic and signaling aberrations, we showed that the induced expression of oncogenic Kras during early development led to liver enlargement and hepatocyte proliferation, associated with elevated Erk phosphorylation, activation of Akt2 and modulation of its two downstream targets, p21Cip and S6 kinase. Such an increase in liver size and Akt2 expression was augmented by dominant-negative RhoA(T19N), but was abrogated by the constitutive-active RhoA(G14V). Consequently, induced expression of the oncogenic Kras in adult transgenic fish led to the development of hepatocellular carcinomas. Survival studies further revealed that the co-expression of dominant-negative RhoA(T19N) with oncogenic Kras increased the mortality rate compared with the other single or double-transgenic lines. This study provides evidence of the previously

  8. Lysine-acetylation as a fundamental regulator of Ran function: Implications for signaling of proteins of the Ras-superfamily

    PubMed Central

    Knyphausen, Philipp; Kuhlmann, Nora; de Boor, Susanne; Lammers, Michael

    2015-01-01

    The small GTP-binding protein Ran is involved in the regulation of essential cellular processes in interphase but also in mitotic cells: Ran controls the nucleocytoplasmic transport of proteins and RNA, it regulates mitotic spindle formation and nuclear envelope assembly. Deregulations in Ran dependent processes were implicated in the development of severe diseases such as cancer and neurodegenerative disorders. To understand how Ran-function is regulated is therefore of highest importance. Recently, several lysine-acetylation sites in Ran were identified by quantitative mass-spectrometry, some being located in highly important regions such as the P-loop, switch I, switch II and the G5/SAK motif. We recently reported that lysine-acetylation regulates nearly all aspects of Ran-function such as RCC1 catalyzed nucleotide exchange, intrinsic nucleotide hydrolysis, its interaction with NTF2 and the formation of import- and export-complexes. As a hint for its biological importance, we identified Ran-specific lysine-deacetylases (KDACs) and -acetyltransferases (KATs). Also for other small GTPases such as Ras, Rho, Cdc42, and for many effectors and regulators thereof, lysine-acetylation sites were discovered. However, the functional impact of lysine-acetylation as a regulator of protein function has only been marginally investigated so far. We will discuss recent findings of lysine-acetylation as a novel modification to regulate Ras-protein signaling. PMID:26507377

  9. MLL-AF6 fusion oncogene sequesters AF6 into the nucleus to trigger RAS activation in myeloid leukemia.

    PubMed

    Manara, Elena; Baron, Emma; Tregnago, Claudia; Aveic, Sanja; Bisio, Valeria; Bresolin, Silvia; Masetti, Riccardo; Locatelli, Franco; Basso, Giuseppe; Pigazzi, Martina

    2014-07-10

    A rare location, t(6;11)(q27;q23) (MLL-AF6), is associated with poor outcome in childhood acute myeloid leukemia (AML). The described mechanism by which MLL-AF6, through constitutive self-association and in cooperation with DOT-1L, activates aberrant gene expression does not explain the biological differences existing between t(6;11)-rearranged and other MLL-positive patients nor their different clinical outcome. Here, we show that AF6 is expressed in the cytoplasm of healthy bone marrow cells and controls rat sarcoma viral oncogene (RAS)-guanosine triphosphate (GTP) levels. By contrast, in MLL-AF6-rearranged cells, AF6 is found localized in the nucleus, leading to aberrant activation of RAS and of its downstream targets. Silencing MLL-AF6, we restored AF6 localization in the cytoplasm, thus mediating significant reduction of RAS-GTP levels and of cell clonogenic potential. The rescue of RAS-GTP levels after MLL-AF6 and AF6 co-silencing confirmed that MLL-AF6 oncoprotein potentiates the activity of the RAS pathway through retention of AF6 within the nucleus. Exposure of MLL-AF6-rearranged AML blasts to tipifarnib, a RAS inhibitor, leads to cell autophagy and apoptosis, thus supporting RAS targeting as a novel potential therapeutic strategy in patients carrying t(6;11). Altogether, these data point to a novel role of the MLL-AF6 chimera and show that its gene partner, AF6, is crucial in AML development.

  10. Inhibition of Acid Sphingomyelinase Depletes Cellular Phosphatidylserine and Mislocalizes K-Ras from the Plasma Membrane.

    PubMed

    Cho, Kwang-Jin; van der Hoeven, Dharini; Zhou, Yong; Maekawa, Masashi; Ma, Xiaoping; Chen, Wei; Fairn, Gregory D; Hancock, John F

    2015-01-01

    K-Ras must localize to the plasma membrane for biological activity; thus, preventing plasma membrane interaction blocks K-Ras signal output. Here we show that inhibition of acid sphingomyelinase (ASM) mislocalizes both the K-Ras isoforms K-Ras4A and K-Ras4B from the plasma membrane to the endomembrane and inhibits their nanoclustering. We found that fendiline, a potent ASM inhibitor, reduces the phosphatidylserine (PtdSer) and cholesterol content of the inner plasma membrane. These lipid changes are causative because supplementation of fendiline-treated cells with exogenous PtdSer rapidly restores K-Ras4A and K-Ras4B plasma membrane binding, nanoclustering, and signal output. Conversely, supplementation with exogenous cholesterol restores K-Ras4A but not K-Ras4B nanoclustering. These experiments reveal different operational pools of PtdSer on the plasma membrane. Inhibition of ASM elevates cellular sphingomyelin and reduces cellular ceramide levels. Concordantly, delivery of recombinant ASM or exogenous ceramide to fendiline-treated cells rapidly relocalizes K-Ras4B and PtdSer to the plasma membrane. K-Ras4B mislocalization is also recapitulated in ASM-deficient Neimann-Pick type A and B fibroblasts. This study identifies sphingomyelin metabolism as an indirect regulator of K-Ras4A and K-Ras4B signaling through the control of PtdSer plasma membrane content. It also demonstrates the critical and selective importance of PtdSer to K-Ras4A and K-Ras4B plasma membrane binding and nanoscale spatial organization. PMID:26572827

  11. Attenuation of TGF-β signaling suppresses premature senescence in a p21-dependent manner and promotes oncogenic Ras-mediated metastatic transformation in human mammary epithelial cells

    PubMed Central

    Lin, Shu; Yang, Junhua; Elkahloun, Abdel G.; Bandyopadhyay, Abhik; Wang, Long; Cornell, John E.; Yeh, I-Tien; Agyin, Joseph; Tomlinson, Gail; Sun, Lu-Zhe

    2012-01-01

    The molecular mechanisms that drive triple-negative, basal-like breast cancer progression are elusive. Few molecular targets have been identified for the prevention or treatment of this disease. Here we developed a series of isogenic basal-like human mammary epithelial cells (HMECs) with altered transforming growth factor-β (TGF-β) sensitivity and different malignancy, resembling a full spectrum of basal-like breast carcinogenesis, and determined the molecular mechanisms that contribute to oncogene-induced transformation of basal-like HMECs when TGF-β signaling is attenuated. We found that expression of a dominant-negative type II receptor (DNRII) of TGF-β abrogated autocrine TGF-β signaling in telomerase-immortalized HMECs and suppressed H-Ras-V12–induced senescence-like growth arrest (SLGA). Furthermore, coexpression of DNRII and H-Ras-V12 rendered HMECs highly tumorigenic and metastatic in vivo in comparison with H-Ras-V12–transformed HMECs that spontaneously escaped H-Ras-V12–induced SLGA. Microarray analysis revealed that p21 was the major player mediating Ras-induced SLGA, and attenuated or loss of p21 expression contributed to the escape from SLGA when autocrine TGF-β signaling was blocked in HMECs. Furthermore, knockdown of p21 also suppressed H-Ras-V12–induced SLGA. Our results identify that autocrine TGF-β signaling is an integral part of the cellular anti-transformation network by suppressing the expression of a host of genes, including p21-regulated genes, that mediate oncogene-induced transformation in basal-like breast cancer. PMID:22357622

  12. Suppression of Erk activation and in vivo growth in esophageal cancer cells by the dominant negative Ras mutant, N116Y.

    PubMed

    Senmaru, N; Shichinohe, T; Takeuchi, M; Miyamoto, M; Sazawa, A; Ogiso, Y; Takahashi, T; Okushiba, S; Takimoto, M; Kato, H; Kuzumaki, N

    1998-10-29

    Our previous studies demonstrated that introduction of a dominant negative H-ras mutant, N116Y, inhibits the growth of various types of cancer cells in vitro. In this study, we tested the efficacy of N116Y in blocking the growth of esophageal cancer cells using an adenoviral vector. Infection with N116Y adenovirus, (AdCMV-N116Y), in which N116Y expression is driven by the cytomegalovirus promoter, significantly reduced the in vitro growth of all esophageal cancer cell lines studied. Esophageal cancer cells that contained wild-type K-ras and H-ras (TE8, SGF3, SGF7) were more sensitive to AdCMV-N116Y than HEC46 cells that expressed mutant K-ras protein. Most importantly, direct injection of AdCMV-N116Y into TE8- or SGF3-induced tumors in nude mice suppressed their growth significantly. To examine the suppressive mechanism of N116Y, cell cycle profile and the activation of extracellular signal-regulated kinase 2 (Erk2) were examined by flow cytometry and Western blot analysis, respectively. In TE8 cells, progression into S phase was clearly blocked after infection with AdCMV-N116Y. Infection with AdCMV-N116Y did not strongly suppress the activation of Erk2 after EGF stimulation in serum-starved HEC46 cells, whereas it completely suppressed activation in TE8, SGF3 and SGF7 cells. Our observations suggest that N116Y reduces growth of human esophageal cancer cells and suppresses the activation of Erk2; they also indicate that N116Y is a potential candidate gene for human esophageal cancer gene therapy.

  13. Ras chaperones: new targets for cancer and immunotherapy.

    PubMed

    Kloog, Yoel; Elad-Sfadia, Galit; Haklai, Roni; Mor, Adam

    2013-01-01

    The Ras inhibitor S-trans,trans-farnesylthiosalicylic acid (FTS, Salirasib®) interferes with Ras membrane interactions that are crucial for Ras-dependent signaling and cellular transformation. FTS had been successfully evaluated in clinical trials of cancer patients. Interestingly, its effect is mediated by targeting Ras chaperones that serve as key coordinators for Ras proper folding and delivery, thus offering a novel target for cancer therapy. The development of new FTS analogs has revealed that the specific modifications to the FTS carboxyl group by esterification and amidation yielded compounds with improved growth inhibitory activity. When FTS was combined with additional therapeutic agents its activity toward Ras was significantly augmented. FTS should be tested not only in cancer but also for genetic diseases associated with abnormal Ras signaling, as well as for various inflammatory and autoimmune disturbances, where Ras plays a major role. We conclude that FTS has a great potential both as a safe anticancer drug and as a promising immune modulator agent. PMID:25033809

  14. Activation of RAF-1 through Ras and protein kinase Calpha mediates 1alpha,25(OH)2-vitamin D3 regulation of the mitogen-activated protein kinase pathway in muscle cells.

    PubMed

    Buitrago, Claudia Graciela; Pardo, Veronica González; de Boland, Ana R; Boland, Ricardo

    2003-01-24

    We have previously shown that stimulation of proliferation of avian embryonic muscle cells (myoblasts) by 1alpha,25(OH)(2)-vitamin D(3) (1alpha,25(OH)(2)D(3)) is mediated by activation of the mitogen-activated protein kinase (MAPK; ERK1/2). To understand how 1alpha,25(OH)(2)D(3) up-regulates the MAPK cascade, we have investigated whether the hormone acts upstream through stimulation of Raf-1 and the signaling mechanism by which this effect might take place. Treatment of chick myoblasts with 1alpha,25(OH)(2)D(3) (1 nm) caused a fast increase of Raf-1 serine phosphorylation (1- and 3-fold over basal at 1 and 2 min, respectively), indicating activation of Raf-1 by the hormone. These effects were abolished by preincubation of cells with a specific Ras inhibitor peptide that involves Ras in 1alpha,25(OH)(2)D(3) stimulation of Raf-1. 1alpha,25(OH)(2)D(3) rapidly induced tyrosine de-phosphorylation of Ras-GTPase-activating protein, suggesting that inhibition of Ras-GTP hydrolysis is part of the mechanism by which 1alpha,25(OH)(2)D(3) activates Ras in myoblasts. The protein kinase C (PKC) inhibitors calphostin C, bisindolylmaleimide I, and Ro 318220 blocked 1alpha,25(OH)(2)D(3)-induced Raf-1 serine phosphorylation, revealing that hormone stimulation of Raf-1 also involves PKC. In addition, transfection of muscle cells with an antisense oligodeoxynucleotide against PKCalpha mRNA suppressed serine phosphorylation by 1alpha,25(OH)(2)D(3). The increase in MAPK activity and tyrosine phosphorylation caused by 1alpha,25(OH)(2)D(3) could be abolished by Ras inhibitor peptide, compound PD 98059, which prevents the activation of MEK by Raf-1, or incubation of cell lysates before 1alpha,25(OH)(2)D(3) exposure with an anti-Raf-1 antibody. In conclusion, these results demonstrate for the first time in a 1alpha,25(OH)(2)D(3) target cell that activation of Raf-1 via Ras and PKCalpha-dependent serine phosphorylation plays a central role in hormone stimulation of the MAPK-signaling pathway

  15. CD16-mediated p21ras activation is associated with Shc and p36 tyrosine phosphorylation and their binding with Grb2 in human natural killer cells

    PubMed Central

    1996-01-01

    The Src homology (SH) 2/SH3 domain-containing protein Grb2 and the oncoprotein Shc have been implicated in a highly conserved mechanism that regulates p21ras activation. We investigated the involvement of these adaptor proteins in the signaling pathway induced by CD16 or interleukin (IL) 2R triggering in human natural killer (NK) cells. Both p46 and p52 forms of Shc were rapidly and transiently tyrosine phosphorylated upon CD16 or IL-2 stimulation with different kinetics. Shc immunoprecipitates from lysates of CD16- or IL-2-stimulated NK cells contained Grb2 and an unidentified 145-kD tyrosine phosphoprotein. Grb2 immunoprecipitates from anti-CD16-stimulated NK cells contained not only Shc, but also a 36-kD tyrosine phosphoprotein (p36). The interaction between Grb2 and Shc or p36 occurred via the Grb2SH2 domain as indicated by in vitro binding assays using a bacteriologically synthesized glutathione S-transferase-Grb2SH2 fusion protein. We also present evidence that p21ras is activated by CD16 and IL-2R cross-linking. Accumulation of guanosine triphosphate-bound Ras was detected within 1 minute and occurred with kinetics similar to inductive protein tyrosine phosphorylation and Grb2 association of Shc and p36 adaptor proteins. PMID:8551221

  16. Mitogen-activated protein kinase and abscisic acid signal transduction.

    PubMed

    Heimovaara-Dijkstra, S; Testerink, C; Wang, M

    2000-01-01

    The phytohormone abscisic acid (ABA) is a classical plant hormone, responsible for regulation of abscission, diverse aspects of plant and seed development, stress responses and germination. It was found that ABA signal transduction in plants can involve the activity of type 2C-phosphatases (PP2C), calcium, potassium, pH and a transient activation of MAP kinase. The ABA signal transduction cascades have been shown to be tissue-specific, the transient activation of MAP kinase has until now only been found in barley aleurone cells. However, type 2C phosphatases are involved in the induction of most ABA responses, as shown by the PP2C-deficient abi-mutants. These phosphatases show high homology with phosphatases that regulate MAP kinase activity in yeast. In addition, the role of farnesyl transferase as a negative regulator of ABA responses also indicates towards involvement of MAP kinase in ABA signal transduction. Farnesyl transferase is known to regulate Ras proteins, Ras proteins in turn are known to regulate MAP kinase activation. Interestingly, Ras-like proteins were detected in barley aleurone cells. Further establishment of the involvement of MAP kinase in ABA signal transduction and its role therein, still awaits more study.

  17. Tyrosine phosphorylation of RAS by ABL allosterically enhances effector binding

    PubMed Central

    Ting, Pamela Y.; Johnson, Christian W.; Fang, Cong; Cao, Xiaoqing; Graeber, Thomas G.; Mattos, Carla; Colicelli, John

    2015-01-01

    RAS proteins are signal transduction gatekeepers that mediate cell growth, survival, and differentiation through interactions with multiple effector proteins. The RAS effector RAS- and RAB-interacting protein 1 (RIN1) activates its own downstream effectors, the small GTPase RAB5 and the tyrosine kinase Abelson tyrosine-protein kinase (ABL), to modulate endocytosis and cytoskeleton remodeling. To identify ABL substrates downstream of RAS-to-RIN1 signaling, we examined human HEK293T cells overexpressing components of this pathway. Proteomic analysis revealed several novel phosphotyrosine peptides, including Harvey rat sarcoma oncogene (HRAS)-pTyr137. Here we report that ABL phosphorylates tyrosine 137 of H-, K-, and NRAS. Increased RIN1 levels enhanced HRAS-Tyr137 phosphorylation by nearly 5-fold, suggesting that RAS-stimulated RIN1 can drive ABL-mediated RAS modification in a feedback circuit. Tyr137 is well conserved among RAS orthologs and is part of a transprotein H-bond network. Crystal structures of HRASY137F and HRASY137E revealed conformation changes radiating from the mutated residue. Although consistent with Tyr137 participation in allosteric control of HRAS function, the mutations did not alter intrinsic GTP hydrolysis rates in vitro. HRAS-Tyr137 phosphorylation enhanced HRAS signaling capacity in cells, however, as reflected by a 4-fold increase in the association of phosphorylated HRASG12V with its effector protein RAF proto-oncogene serine/threonine protein kinase 1 (RAF1). These data suggest that RAS phosphorylation at Tyr137 allosterically alters protein conformation and effector binding, providing a mechanism for effector-initiated modulation of RAS signaling.—Ting, P. Y., Johnson, C. W., Fang, C., Cao, X., Graeber, T. G., Mattos, C., Colicelli, J. Tyrosine phosphorylation of RAS by ABL allosterically enhances effector binding. PMID:25999467

  18. RasGRP1 Transgenic Mice Develop Cutaneous Squamous Cell Carcinomas in Response to Skin Wounding

    PubMed Central

    Diez, Federico R.; Garrido, Ann A.; Sharma, Amrish; Luke, Courtney T.; Stone, James C.; Dower, Nancy A.; Cline, J. Mark; Lorenzo, Patricia S.

    2009-01-01

    Models of epidermal carcinogenesis have demonstrated that Ras is a critical molecule involved in tumor initiation and progression. Previously, we have shown that RasGRP1 increases the susceptibility of mice to skin tumorigenesis when overexpressed in the epidermis by a transgenic approach, related to its ability to activate Ras. Moreover, RasGRP1 transgenic mice develop spontaneous papillomas and cutaneous squamous cell carcinomas, some of which appear to originate in sites of injury, suggesting that RasGRP1 may be responding to signals generated during the wound-healing process. In this study, we examined the response of the RasGRP1 transgenic animals to full-thickness incision wounding of the skin, and demonstrated that they respond by developing tumors along the wounded site. The tumors did not present mutations in the H-ras gene, but Rasgrp1 transgene dosage correlated with tumor susceptibility and size. Analysis of serum cytokines showed increased levels of granulocyte colony-stimulating factor in transgenic animals after wounding. Furthermore, in vitro experiments with primary keratinocytes showed that granulocyte colony-stimulating factor stimulated Ras activation, although RasGRP1 was dispensable for this effect. Since granulocyte colony-stimulating factor has been recently associated with proliferation of skin cancer cells, our results may help in the elucidation of pathways that activate Ras in the epidermis during tumorigenesis in the absence of oncogenic ras mutations. PMID:19497993

  19. Propiconazole-enhanced hepatic cell proliferation is associated with dysregulation of the cholesterol biosynthesis pathway leading to activation of Erk1/2 through Ras farnesylation

    SciTech Connect

    Murphy, Lynea A.; Moore, Tanya; Nesnow, Stephen

    2012-04-15

    Propiconazole is a mouse hepatotumorigenic fungicide designed to inhibit CYP51, a key enzyme in the biosynthesis of ergosterol in fungi and is widely used in agriculture to prevent fungal growth. Metabolomic studies in mice revealed that propiconazole increased levels of hepatic cholesterol metabolites and bile acids, and transcriptomic studies revealed that genes within the cholesterol biosynthesis, cholesterol metabolism and bile acid biosyntheses pathways were up-regulated. Hepatic cell proliferation was also increased by propiconazole. AML12 immortalized hepatocytes were used to study propiconazole's effects on cell proliferation focusing on the dysregulation of cholesterol biosynthesis and resulting effects on Ras farnesylation and Erk1/2 activation as a primary pathway. Mevalonate, a key intermediate in the cholesterol biosynthesis pathway, increases cell proliferation in several cancer cell lines and tumors in vivo and serves as the precursor for isoprenoids (e.g. farnesyl pyrophosphate) which are crucial in the farnesylation of the Ras protein by farnesyl transferase. Farnesylation targets Ras to the cell membrane where it is involved in signal transduction, including the mitogen-activated protein kinase (MAPK) pathway. In our studies, mevalonic acid lactone (MVAL), a source of mevalonic acid, increased cell proliferation in AML12 cells which was reduced by farnesyl transferase inhibitors (L-744,832 or manumycin) or simvastatin, an HMG-CoA reductase inhibitor, indicating that this cell system responded to alterations in the cholesterol biosynthesis pathway. Cell proliferation in AML12 cells was increased by propiconazole which was reversed by co-incubation with L-744,832 or simvastatin. Increasing concentrations of exogenous cholesterol muted the proliferative effects of propiconazole and the inhibitory effects of L-733,832, results ascribed to reduced stimulation of the endogenous cholesterol biosynthesis pathway. Western blot analysis of subcellular

  20. Adhesion-related kinase induction of migration requires phosphatidylinositol-3-kinase and ras stimulation of rac activity in immortalized gonadotropin-releasing hormone neuronal cells.

    PubMed

    Nielsen-Preiss, Sheila M; Allen, Melissa P; Xu, Mei; Linseman, Daniel A; Pawlowski, John E; Bouchard, R J; Varnum, Brian C; Heidenreich, Kim A; Wierman, Margaret E

    2007-06-01

    GnRH neurons migrate into the hypothalamus during development. Although migratory defects may result in disordered activation of the reproductive axis and lead to delayed or absent sexual maturation, specific factors regulating GnRH neuronal migration remain largely unknown. The receptor tyrosine kinase, adhesion-related kinase (Ark) (also known as Axl, UFO, and Tyro7), has been implicated in the migration of GnRH neuronal cells. Binding of its ligand, growth arrest-specific gene 6 (Gas6), promotes cytoskeletal remodeling and migration of NLT GnRH neuronal cells via Rac and p38 MAPK. Here, we examined the Axl effectors proximal to Rac in the signaling pathway. Gas6/Axl-induced lamellipodia formation and migration were blocked after phosphatidylinositol-3-kinase (PI3K) inhibition in GnRH neuronal cells. The p85 subunit of PI3K coimmunoprecipitated with Axl and was phosphorylated in a Gas6-sensitive manner. In addition, PI3K inhibition in GnRH neuronal cells diminished Gas6-induced Rac activation. Exogenous expression of a dominant-negative form of Ras also decreased GnRH neuronal lamellipodia formation, migration, and Rac activation. PI3K inhibition blocked Ras in addition to Rac activation and migration. In contrast, pharmacological blockade of the phospholipase C gamma effectors, protein kinase C or calcium/calmodulin protein kinase II, had no effect on Gas6/Axl signaling to promote Rac activation or stimulate cytoskeletal reorganization and migration. Together, these data show that the PI3K-Ras pathway is a major mediator of Axl actions upstream of Rac to induce GnRH neuronal cell migration. PMID:17332061

  1. Rational design of small molecule inhibitors targeting the Ras GEF, SOS1

    PubMed Central

    Evelyn, Chris R.; Duan, Xin; Biesiada, Jacek; Seibel, William L.; Meller, Jaroslaw; Zheng, Yi

    2014-01-01

    Summary Ras GTPases regulate intracellular signaling involved in cell proliferation. Elevated Ras signaling activity has been associated with human cancers. Ras activation is catalyzed by guanine-nucleotide exchange factors (GEFs), of which SOS1 is a major member that transduces receptor tyrosine kinase signaling to Ras. We have developed a rational approach coupling virtual screening with experimental screening in identifying small-molecule inhibitors targeting the catalytic site of SOS1 and SOS1-regulated Ras activity. A lead inhibitor, NSC-658497, is found to bind to SOS1, competitively suppresses SOS1-Ras interaction, and dose-dependently inhibits SOS1 GEF activity. Mutagenesis and structure-activity relationship studies map the NSC-658497 site of action to the SOS1 catalytic site, and define the chemical moieties in the inhibitor essential for the activity. NSC-658497 showed dose-dependent efficacy in inhibiting Ras, downstream signaling activities, and associated cell proliferation. These studies establish a proof of principle for rational design of small-molecule inhibitors targeting Ras GEF enzymatic activity. PMID:25455859

  2. Rational design of small molecule inhibitors targeting the Ras GEF, SOS1.

    PubMed

    Evelyn, Chris R; Duan, Xin; Biesiada, Jacek; Seibel, William L; Meller, Jaroslaw; Zheng, Yi

    2014-12-18

    Ras GTPases regulate intracellular signaling involved in cell proliferation. Elevated Ras signaling activity has been associated with human cancers. Ras activation is catalyzed by guanine nucleotide exchange factors (GEFs), of which SOS1 is a major member that transduces receptor tyrosine kinase signaling to Ras. We have developed a rational approach coupling virtual screening with experimental screening in identifying small-molecule inhibitors targeting the catalytic site of SOS1 and SOS1-regulated Ras activity. A lead inhibitor, NSC-658497, was found to bind to SOS1, competitively suppress SOS1-Ras interaction, and dose-dependently inhibit SOS1 GEF activity. Mutagenesis and structure-activity relationship studies map the NSC-658497 site of action to the SOS1 catalytic site, and define the chemical moieties in the inhibitor essential for the activity. NSC-658497 showed dose-dependent efficacy in inhibiting Ras, downstream signaling activities, and associated cell proliferation. These studies establish a proof of principle for rational design of small-molecule inhibitors targeting Ras GEF enzymatic activity.

  3. RasGRP Ras guanine nucleotide exchange factors in cancer

    PubMed Central

    Ksionda, Olga; Limnander, Andre

    2014-01-01

    Summary RasGRP proteins are activators of Ras and other related small GTPases by the virtue of functioning as guanine nucleotide exchange factors (GEFs). In vertebrates, four RasGRP family members have been described. RasGRP-1 through −4 share many structural domains but there are also subtle differences between each of the different family members. Whereas SOS RasGEFs are ubiquitously expressed, RasGRP proteins are expressed in distinct patterns, such as in different cells of the hematopoietic system and in the brain. Most studies have concentrated on the role of RasGRP proteins in the development and function of immune cell types because of the predominant RasGRP expression profiles in these cells and the immune phenotypes of mice deficient for Rasgrp genes. However, more recent studies demonstrate that RasGRPs also play an important role in tumorigenesis. Examples are skin- and hematological-cancers but also solid malignancies such as melanoma or prostate cancer. These novel studies bring up many new and unanswered questions related to the molecular mechanism of RasGRP-driven oncogenesis, such as new receptor systems that RasGRP appears to respond to as well as regulatory mechanism for RasGRP expression that appear to be perturbed in these cancers. Here we will review some of the known aspects of RasGRP biology in lymphocytes and will discuss the exciting new notion that RasGRP Ras exchange factors play a role in oncogenesis downstream of various growth factor receptors. PMID:24744772

  4. PEA-15 potentiates H-Ras mediated epithelial cell transformation through Phospholipase D

    PubMed Central

    Sulzmaier, Florian J.; Valmiki, Mohana K. Gudur; Nelson, Deirdre A.; Caliva, Maisel J.; Geerts, Dirk; Matter, Michelle L.; White, Eileen P.; Ramos, Joe W.

    2011-01-01

    The small GTPase H-Ras is a proto-oncogene that activates a variety of different pathways including the extracellular-signal-regulated kinase mitogen-activated protein kinase (ERK/MAPK) pathway. H-Ras is mutated in many human malignancies and these mutations cause the protein to be constitutively active. PEA-15 blocks ERK-dependent gene transcription and inhibits proliferation by sequestering ERK in the cytoplasm. We therefore investigated whether PEA-15 influences H-Ras mediated transformation. We found that PEA-15 does not block H-Ras activated proliferation when H-Ras is constitutively active. We show instead that in H-Ras transformed mouse kidney epithelial cells, co-expression of PEA-15 resulted in enhanced soft agar colony growth and increased tumor growth in vivo. Overexpression of both H-Ras and PEA-15 resulted in accelerated G1/S cell cycle transition and increased activation of the ERK signaling pathway. PEA-15 mediated these effects through activation of its binding partner phospholipase D1 (PLD1). Inhibition of PLD1 or interference with PEA-15/PLD1 binding blocked PEA-15’s ability to increase ERK activation. Our findings reveal a novel mechanism by which PEA-15 positively regulates Ras/ERK signaling and increases the proliferation of H-Ras transformed epithelial cells through enhanced PLD1 expression and activation. Thus, our work provides a surprising mechanism by which PEA-15 augments H-Ras driven transformation. These data reveal that PEA-15 not only suppresses ERK signaling and tumorigenesis but can alternatively enhance tumorigenesis in the context of active Ras. PMID:22105357

  5. K-ras activation occurs frequently in mucinous adenocarcinomas and rarely in other common epithelial tumors of the human ovary.

    PubMed Central

    Enomoto, T.; Weghorst, C. M.; Inoue, M.; Tanizawa, O.; Rice, J. M.

    1991-01-01

    To explore the role of mutational activation of members of the ras family of cellular protooncogenes in the development of human ovarian neoplasms, a series of 37 ovarian tumors from Japanese patients was studied. These included 30 common epithelial tumors (1 mucinous tumor of borderline malignancy, 7 mucinous adenocarcinomas, and 22 nonmucinous carcinomas: 10 serous, 3 clear cell, 8 endometrioid, and 1 undifferentiated), 5 tumors of germ cell origin, and 2 sex cord/stromal cell tumors. Polymerase chain reaction was performed from selected areas of deparaffinized sections of formalin-fixed paraffin-embedded tissue, and the presence of activating point mutations in codons 12, 13, and 61 of the H-, N-, and K-ras genes was probed by dot-blot hybridization analysis with mutation specific oligonucleotides. Mutations in K-ras were also looked for by direct genomic sequencing. The overall frequency of ras gene mutations was 10/37 (27%). Mutations were detected only in K-ras, and were found in most of the mucinous tumors, including the one such tumor of borderline malignancy (6/8; 75%). In one mucinous adenocarcinoma, two mutations were detected in paraffin-embedded material that had not previously been found in high molecular weight DNA isolated from frozen tissue from the same case. K-ras mutations occurred significantly more frequently in mucinous tumors (6/8, 75%) than in serous carcinomas (2/10, 20%; P = 0.031) or in all nonmucinous types of epithelial ovarian tumors combined (3/22, 14%; P = 0.0031). Images Figure 1 Figure 2 PMID:1656759

  6. Ras Modifies Proliferation and Invasiveness of Cells Expressing Human Papillomavirus Oncoproteins▿

    PubMed Central

    Yoshida, Satoshi; Kajitani, Naoko; Satsuka, Ayano; Nakamura, Hiroyasu; Sakai, Hiroyuki

    2008-01-01

    Infection by human papillomavirus (HPV) is a major risk factor for human cervical carcinoma. However, the HPV infection alone is not sufficient for cancer formation. Cervical carcinogenesis is considered a multistep process accompanied by genetic alterations of the cell. Ras is activated in approximately 20% of human cancers, and it is related to the metastatic conversion of tumor cells. We investigated how Ras activation was involved in the malignant conversion of HPV-infected lesions. The active form of H-ras was introduced into human primary keratinocytes expressing the HPV type 18 (HPV18) oncoproteins E6 and/or E7. We analyzed the keratinocytes’ growth potentials and found that the activation of the Ras pathway induced senescence-like growth arrest. Senescence could be eliminated by high-risk E7 expression, suggesting that the pRb pathway was important for Ras-induced senescence. Then we analyzed the effect of Ras activation on epidermis development by using an organotypic “raft” culture and found that the E7 and H-ras coexpressions conferred invasive potential on the epidermis. This invasiveness resulted from the upregulation of MT1-MMP and MMP9 by H-ras and E7, respectively, in which the activation of the MEK/extracellular signal-regulated kinase pathway was involved. These results indicated that the activation of Ras or the related signal pathways promoted the malignant conversion of HPV-infected cells. PMID:18579583

  7. Activation of the Ras/Mitogen-Activated Protein Kinase Pathway by Kinase-Defective Epidermal Growth Factor Receptors Results in Cell Survival but Not Proliferation

    PubMed Central

    Walker, Francesca; Kato, Akiko; Gonez, L. Jorge; Hibbs, Margaret L.; Pouliot, Normand; Levitzki, Alexander; Burgess, Antony W.

    1998-01-01

    Signalling by the epidermal growth factor (EGF) receptor (EGFR) has been studied intensively, but for most cell types the analysis is complicated by the fact that EGFR not only homodimerizes but can also form heterodimers with other EGFR family members. Heterodimerization is a particular problem in the study of EGFR mutants, where the true phenotype of the mutants is confounded by the contribution of the heterodimer partner to signal transduction. We have made use of the murine hemopoietic cell line BaF/3, which does not express EGFR family members, to express wild-type (WT) EGFR, three kinase-defective EGFR mutants (V741G, Y740F, and K721R), or a C-terminally truncated EGFR (CT957) and have measured their responses to EGF. We found that under the appropriate conditions EGF can stimulate cell proliferation of BaF/3 cells expressing WT or CT957 EGFRs but not that of cells expressing the kinase-defective mutants. However, EGF promotes the survival of BaF/3 cells expressing either of the kinase-defective receptors (V741G and Y740F), indicating that these receptors can still transmit a survival signal. Analysis of the early signalling events by the WT, V741G, and Y740F mutant EGF receptors indicated that EGF stimulates comparable levels of Shc phosphorylation, Shc–GRB-2 association, and activation of Ras, B-Raf, and Erk-1. Blocking the mitogen-activated protein kinase (MAPK) signalling pathway with the specific inhibitor PD98059 abrogates completely the EGF-dependent survival of cells expressing the kinase-defective EGFR mutants but has no effect on the EGF-dependent proliferation mediated by WT and CT957 EGFRs. Similarly, the Src family kinase inhibitor PP1 abrogates EGF-dependent survival without affecting proliferation. However blocking phosphatidylinositol-3-kinase or JAK-2 kinase with specific inhibitors does arrest growth factor-dependent cell proliferation. Thus, EGFR-mediated mitogenic signalling in BaF/3 cells requires an intact EGFR tyrosine kinase activity

  8. CONTRIBUTION OF INSPIRATORY FLOW TO ACTIVATION OF EGFR, RAS, MAPK, ATF-2 AND C-JUN DURING LUNG STRETCH

    EPA Science Inventory

    Contribution of Inspiratory Flow to Activation of EGFR, Ras, MAPK, ATF-2 and c-Jun during Lung Stretch

    R. Silbajoris 1, Z. Li 2, J. M. Samet 1 and Y. C. Huang 1. 1 NHEERL, ORD, US EPA, RTP, NC and 2 CEMALB, UNC-CH, Chapel Hill, NC .

    Mechanical ventilation with larg...

  9. Expression of a dominant-negative Ras mutant does not affect stimulation of glucose uptake and glycogen synthesis by insulin.

    PubMed

    Dorrestijn, J; Ouwens, D M; Van den Berghe, N; Bos, J L; Maassen, J A

    1996-05-01

    It has previously been shown that insulin-induced stimulation of glucose uptake and glycogen synthesis requires activation of phosphatidylinositol-3-kinase (PI3kinase). Insulin also induces formation of RasGTP in cells and various studies have yielded inconsistent data with respect to the contribution of signalling pathways activated by RasGTP, to insulin-stimulated glucose uptake and glycogen synthesis. We have examined the requirement of RasGTP-mediated signalling for these insulin responses by expression of a dominant negative mutant of Ras (RasN17) in cells by vaccinia virus mediated gene transfer. This Ras-mutant abrogates the signalling pathways mediated by endogenous RasGTP. Subsequently, the ability of insulin to stimulate 2-deoxyglucose uptake and glycogen was examined. We observed that expression of RasN17 in 3T3L1 adipocytes did not affect the stimulation of hexose uptake by insulin. Similarly, expression of RasN17 in A14 cells, an NIH 3T3-derived cell line with high expression of insulin receptors, did not affect insulin-induced stimulation of glycogen synthesis. In both cell lines, insulin-induced phosphorylation of Mapkinase (Erk1,2) was abrogated after expression of RasN17, demonstrating the functional interference by RasN17 with signalling mediated by endogenous RasGTP. Wortmannin, an inhibitor of PI3kinase, abolished dose-dependently the insulin-induced stimulation of hexose uptake and glycogen synthesis without an effect on RasGTP levels in both cell types. We conclude that stimulation of glucose transport and glycogen synthesis by insulin occurs independently of RasGTP-mediated signalling.

  10. Presence of Ras guanyl nucleotide-releasing protein in striosomes of the mature and developing rat.

    PubMed

    Pierret, P; Mechawar, N; Vallée, A; Patel, J; Priestley, J V; Dunn, R J; Dower, N A; Stone, J C; Richardson, P M

    2002-01-01

    Ras signal transduction pathways have been implicated as key regulators in neuroplasticity and synaptic transmission in the brain. These pathways can be modulated by Ras guanyl nucleotide exchange factors, (GEF) which activate Ras proteins by catalysing the exchange of GDP for GTP. Ras guanyl nucleotide-releasing protein (RasGRP), a recently discovered Ras GEF, that links diacylglycerol and probably calcium to Ras signaling pathways, is expressed in brain as well as in T-cells. Here, we have used a highly selective monoclonal antibody against RasGRP to localize this protein within the striatum and related forebrain structures of developing and adult rats. RasGRP immunolabeling was found to be widespread in the mature and developing rat forebrain. Most notably, it presented a prominent patchy distribution throughout the striatum at birth and at all postnatal ages examined. These patches were found to correspond with the striosomal compartment of the striatum, as identified by micro-opioid receptor labeling in the adult. RasGRP-immunoreactivity was also observed in the matrix-like compartment surrounding these patches/striosomes but appeared later in development and was always weaker than in the patches. In both striatal compartments, RasGRP was exclusively expressed by medium-sized spiny neurons and showed no preference for neurons that project either directly or indirectly to the substantia nigra. At the ultrastructural level, immunogold labeling of RasGRP was confined to the cell bodies and dendritic shafts of these output neurons. We conclude that the prominent expression of RasGRP in striosomes may be of significance for diacylglycerol signaling in the striatum, and could be of importance for the processing of limbic-related activity within the basal ganglia.

  11. Post-translational modification of H-Ras is required for activation of, but not for association with, B-Raf.

    PubMed

    Okada, T; Masuda, T; Shinkai, M; Kariya, K; Kataoka, T

    1996-03-01

    B-Raf is regulated by Ras protein and acts as a mitogen-activated protein (MAP) kinase kinase kinase in PC12 cells and brain. Ras protein undergoes a series of post-translational modifications on its C-terminal CAAX motif, and the modifications are critical for its function. To elucidate the role of the post-translational modifications in interaction with, and activation of, B-Raf, we have analyzed a direct association between H-Ras and B-Raf, and constructed an in vitro system for B-Raf activation by H-Ras. By using methods based on inhibition of yeast adenylyl cyclase or RasGAP activity and by in vitro binding assays, we have shown that the segment of B-Raf corresponding to amino acid 1-326 binds directly to H-Ras with a dissociation constant (Kd) comparable to that of Raf-1 and that the binding is not significantly affected by the post-translational modifications. However, when the activity of B-Raf to stimulate MAP kinase was measured by using a cell-free system derived from rat brain cytosol, we observed that the unmodified form of H-Ras possesses an almost negligible activity to activate B-Raf in vitro compared to the fully modified form. H-RasSer-181,184 mutant, which was farnesylated but not palmitoylated, was equally active as the fully modified form. These results indicate that the post-translational modifications, especially farnesylation, are required for H-Ras to activate B-Raf even though they have no apparent effect on the binding properties of H-Ras to B-Raf.

  12. Absence of K-Ras Reduces Proliferation and Migration But Increases Extracellular Matrix Synthesis in Fibroblasts.

    PubMed

    Muñoz-Félix, José M; Fuentes-Calvo, Isabel; Cuesta, Cristina; Eleno, Nélida; Crespo, Piero; López-Novoa, José M; Martínez-Salgado, Carlos

    2016-10-01

    The involvement of Ras-GTPases in the development of renal fibrosis has been addressed in the last decade. We have previously shown that H- and N-Ras isoforms participate in the regulation of fibrosis. Herein, we assessed the role of K-Ras in cellular processes involved in the development of fibrosis: proliferation, migration, and extracellular matrix (ECM) proteins synthesis. K-Ras knockout (KO) mouse embryonic fibroblasts (K-ras(-/-) ) stimulated with transforming growth factor-β1 (TGF-β1) exhibited reduced proliferation and impaired mobility than wild-type fibroblasts. Moreover, an increase on ECM production was observed in K-Ras KO fibroblasts in basal conditions. The absence of K-Ras was accompanied by reduced Ras activation and ERK phosphorylation, and increased AKT phosphorylation, but no differences were observed in TGF-β1-induced Smad signaling. The MEK inhibitor U0126 decreased cell proliferation independently of the presence of K-ras but reduced migration and ECM proteins expression only in wild-type fibroblasts, while the PI3K-AKT inhibitor LY294002 decreased cell proliferation, migration, and ECM synthesis in both types of fibroblasts. Thus, our data unveil that K-Ras and its downstream effector pathways distinctively regulate key biological processes in the development of fibrosis. Moreover, we show that K-Ras may be a crucial mediator in TGF-β1-mediated effects in this cell type. J. Cell. Physiol. 231: 2224-2235, 2016. © 2016 Wiley Periodicals, Inc.

  13. Assessment of the chemosensitizing activity of TAT-RasGAP317-326 in childhood cancers.

    PubMed

    Chevalier, Nadja; Gross, Nicole; Widmann, Christian

    2015-01-01

    Although current anti-cancer protocols are reasonably effective, treatment-associated long-term side effects, induced by lack of specificity of the anti-cancer procedures, remain a challenging problem in pediatric oncology. TAT-RasGAP317-326 is a RasGAP-derived cell-permeable peptide that acts as a sensitizer to various anti-cancer treatments in adult tumor cells. In the present study, we assessed the effect of TAT-RasGAP317-326 in several childhood cancer cell lines. The RasGAP-derived peptide-induced cell death was analyzed in several neuroblastoma, Ewing sarcoma and leukemia cell lines (as well as in normal lymphocytes). Cell death was evaluated using flow cytometry methods in the absence or in the presence of the peptide in combination with various genotoxins used in the clinics (4-hydroperoxycyclophosphamide, etoposide, vincristine and doxorubicin). All tested pediatric tumors, in response to at least one genotoxin, were sensitized by TAT-RasGAP317-326. The RasGAP-derived peptide did not increase cell death of normal lymphocytes, alone or in combination with the majority of the tested chemotherapies. Consequently, TAT-RasGAP317-326 may benefit children with tumors by increasing the efficacy of anti-cancer therapies notably by allowing reductions in anti-cancer drug dosage and the associated drug-induced side effects.

  14. Inhibition of SHP2-mediated dephosphorylation of Ras suppresses oncogenesis

    PubMed Central

    Bunda, Severa; Burrell, Kelly; Heir, Pardeep; Zeng, Lifan; Alamsahebpour, Amir; Kano, Yoshihito; Raught, Brian; Zhang, Zhong-Yin; Zadeh, Gelareh; Ohh, Michael

    2015-01-01

    Ras is phosphorylated on a conserved tyrosine at position 32 within the switch I region via Src kinase. This phosphorylation inhibits the binding of effector Raf while promoting the engagement of GTPase-activating protein (GAP) and GTP hydrolysis. Here we identify SHP2 as the ubiquitously expressed tyrosine phosphatase that preferentially binds to and dephosphorylates Ras to increase its association with Raf and activate downstream proliferative Ras/ERK/MAPK signalling. In comparison to normal astrocytes, SHP2 activity is elevated in astrocytes isolated from glioblastoma multiforme (GBM)-prone H-Ras(12V) knock-in mice as well as in glioma cell lines and patient-derived GBM specimens exhibiting hyperactive Ras. Pharmacologic inhibition of SHP2 activity attenuates cell proliferation, soft-agar colony formation and orthotopic GBM growth in NOD/SCID mice and decelerates the progression of low-grade astrocytoma to GBM in a spontaneous transgenic glioma mouse model. These results identify SHP2 as a direct activator of Ras and a potential therapeutic target for cancers driven by a previously ‘undruggable' oncogenic or hyperactive Ras. PMID:26617336

  15. MicroRNA-122 confers sorafenib resistance to hepatocellular carcinoma cells by targeting IGF-1R to regulate RAS/RAF/ERK signaling pathways.

    PubMed

    Xu, Yanmin; Huang, Ji; Ma, Leina; Shan, Juanjuan; Shen, Junjie; Yang, Zhi; Liu, Limei; Luo, Yongli; Yao, Chao; Qian, Cheng

    2016-02-28

    Sorafenib is the first-line treatment for advanced hepatocellular carcinoma (HCC), but the clinical response to sorafenib is seriously limited by drug resistance. In this study, we investigated the molecular mechanisms of sorafenib resistance in HCC cells. Our miRNA microarray data indicate that liver-specific miR-122 expression was significantly reduced in sorafenib-resistant cells. Overexpression of miR-122 made drug-tolerant cells sensitive to sorafenib and induced apoptosis. Insulin-like growth factor 1 receptor (IGF-1R) was validated as a target of miR-122 and was repressed by this miRNA. miR-122-induced apoptosis was repressed by the IGF-1R activator IGFI or IGFII. Conversely, the IGF-1R inhibitor PPP or NVP-AEW541 in combination with sorafenib significantly induced cell apoptosis and disrupted tolerance to drugs in vitro. These results indicated that activation of IGF-1R by ectopic down-regulation of miR-122 counteracted the effects of sorafenib-induced apoptosis, thus conferring sorafenib resistance. Further study revealed that activation of IGF-1R by miR-122 down-regulation contributed to activation of RAS/RAF/ERK signaling, which was associated with drug resistance. Our data imply that an intimate correlation between miR-122 and IGF-1R abnormal expression is a critical determinant of sorafenib tolerance. PMID:26655273

  16. MicroRNA-122 confers sorafenib resistance to hepatocellular carcinoma cells by targeting IGF-1R to regulate RAS/RAF/ERK signaling pathways.

    PubMed

    Xu, Yanmin; Huang, Ji; Ma, Leina; Shan, Juanjuan; Shen, Junjie; Yang, Zhi; Liu, Limei; Luo, Yongli; Yao, Chao; Qian, Cheng

    2016-02-28

    Sorafenib is the first-line treatment for advanced hepatocellular carcinoma (HCC), but the clinical response to sorafenib is seriously limited by drug resistance. In this study, we investigated the molecular mechanisms of sorafenib resistance in HCC cells. Our miRNA microarray data indicate that liver-specific miR-122 expression was significantly reduced in sorafenib-resistant cells. Overexpression of miR-122 made drug-tolerant cells sensitive to sorafenib and induced apoptosis. Insulin-like growth factor 1 receptor (IGF-1R) was validated as a target of miR-122 and was repressed by this miRNA. miR-122-induced apoptosis was repressed by the IGF-1R activator IGFI or IGFII. Conversely, the IGF-1R inhibitor PPP or NVP-AEW541 in combination with sorafenib significantly induced cell apoptosis and disrupted tolerance to drugs in vitro. These results indicated that activation of IGF-1R by ectopic down-regulation of miR-122 counteracted the effects of sorafenib-induced apoptosis, thus conferring sorafenib resistance. Further study revealed that activation of IGF-1R by miR-122 down-regulation contributed to activation of RAS/RAF/ERK signaling, which was associated with drug resistance. Our data imply that an intimate correlation between miR-122 and IGF-1R abnormal expression is a critical determinant of sorafenib tolerance.

  17. Sodium butyrate suppresses the transforming activity of an activated N-ras oncogene in human colon carcinoma cells

    SciTech Connect

    Stoddart, J.H.; Niles, R.M. ); Lane, M.A. )

    1989-09-01

    The transforming activity of DNA from a newly established undifferentiated human colon carcinoma cell line (MIP-101) was tested in the NIH-3T3 transfection assay. Southern blot analysis of the transfectant DNA revealed the presence of a human N-ras oncogene. Here the authors report that there is a significant reduction in the transforming efficiency of the DNA from butyrate-treated MIP-101 cells. A nonspecific reduction in total DNA uptake as an explanation for these findings was eliminated by showing that there was similar uptake and expression of the thymidine kinase gene from the DNA of butyrate-treated and control MIP cells. An NIH-3T3 transformant carrying the human N-ras gene was evaluated for phenotypic reversion and DNA transforming ability after treatment with sodium butyrate. Although butyrate suppressed several transformed properties similar to MIP-101 cells, DNA from control and treated cultures had an identical level of transforming activity. The results suggest that the environment of the MIP cells may contain additional elements not present in the NIH-3T3 transformants which are required to observe the effect of butyrate on reduction of transforming activity.

  18. Transforming activity of the c-Ha-ras oncogene having two point mutations in codons 12 and 61.

    PubMed

    Sekiya, T; Prassolov, V S; Fushimi, M; Nishimura, S

    1985-09-01

    A recombinant plasmid carrying the human c-Ha-ras gene with two point mutations in codons 12 and 61 was constructed and its transforming activity on mouse NIH 3T3 cells was compared with those of genes with a single mutation in either codon 12 or 61. Quantitative analyses revealed that the gene with two mutations had essentially the same transforming activity as the genes with single mutations. These results indicate that a single mutation of the c-Ha-ras gene in either codon 12 or 61 is sufficient to activate the gene and that neither of the two mutation sites involved in activation of the gene needs to be intact for transforming activity.

  19. Nerve Growth Factor Regulation of Cyclin D1 in PC12 Cells through a p21RAS Extracellular Signal-regulated Kinase Pathway Requires Cooperative Interactions between Sp1 and Nuclear Factor-κB

    PubMed Central

    Marampon, Francesco; Casimiro, Mathew C.; Fu, Maofu; Powell, Michael J.; Popov, Vladimir M.; Lindsay, Jaime; Zani, Bianca M.; Ciccarelli, Carmela; Watanabe, Genichi; Lee, Richard J.

    2008-01-01

    The PC12 pheochromocytoma cell line responds to nerve growth factor (NGF) by exiting from the cell cycle and differentiating to induce extending neurites. Cyclin D1 is an important regulator of G1/S phase cell cycle progression, and it is known to play a role in myocyte differentiation in cultured cells. Herein, NGF induced cyclin D1 promoter, mRNA, and protein expression via the p21RAS pathway. Antisense- or small interfering RNA to cyclin D1 abolished NGF-mediated neurite outgrowth, demonstrating the essential role of cyclin D1 in NGF-mediated differentiation. Expression vectors encoding mutants of the Ras/mitogen-activated protein kinase pathway, and chemical inhibitors, demonstrated NGF induction of cyclin D1 involved cooperative interactions of extracellular signal-regulated kinase, p38, and phosphatidylinositol 3-kinase pathways downstream of p21RAS. NGF induced the cyclin D1 promoter via Sp1, nuclear factor-κB, and cAMP-response element/activated transcription factor sites. NGF induction via Sp1 involved the formation of a Sp1/p50/p107 complex. Cyclin D1 induction by NGF governs differentiation and neurite outgrowth in PC12 cells. PMID:18367547

  20. Ras transformation results in cleavage of reticulon protein Nogo-B that is associated with impairment of IFN response

    PubMed Central

    Ahn, Dae-Gyun; Sharif, Tanveer; Chisholm, Kenneth; Pinto, Devanand M; Gujar, Shashi A; Lee, Patrick WK

    2015-01-01

    Dysregulation of Ras signaling is the major cause of various cancers. Aberrant Ras signaling, however, provides a favorable environment for many viruses, making them suitable candidates as cancer-killing therapeutic agents. Susceptibility of cancer cells to such viruses is mainly due to impaired type I interferon (IFN) response, often as a result of activated Ras/ERK signaling in these cells. In this study, we searched for cellular factors modulated by Ras signaling and their potential involvement in promoting viral oncolysis. We found that upon Ras transformation of NIH-3T3 cells, the N-terminus of Nogo-B (reticulon 4) was proteolytically cleaved. Interestingly, Nogo knockdown (KD) in non-transformed and Ras-transformed cells both enhanced virus-induced IFN response, suggesting that both cleaved and uncleaved Nogo can suppress IFN response. However, pharmacological blockade of Nogo cleavage in Ras-transformed cells significantly enhanced virus-induced IFN response, suggesting that cleaved Nogo contributes to enhanced IFN suppression in these cells. We further showed that IFN suppression associated with Ras-induced Nogo-B cleavage was distinct from but synergistic with that associated with an activated Ras/ERK pathway. Our study therefore reveals an important and novel role of Nogo-B and its cleavage in the suppression of anti-viral immune responses by oncogenic Ras transformation. PMID:25946643

  1. Novel FTS-diamine/cinnamic acid hybrids inhibit tumor cell proliferation and migration and promote apoptosis via blocking Ras-related signaling in vitro.

    PubMed

    Ling, Yong; Zhao, Xinmei; Li, Xianghua; Wang, Xuemin; Yang, Yang; Wang, Zhiqiang; Wang, Xinyang; Zhang, Jie; Zhang, Yihua

    2015-02-01

    Novel FTS-diamine/cinnamic acid hybrids 7a-f were prepared, and their in vitro biological activities were evaluated. It was found that 7c showed the strongest anti-proliferation activities against cancer cells in vitro and significant growth inhibition of tumor in vivo, and more potential for inhibitory selectivity to tumor cells than intermediate 6 and FTS. Furthermore, the anti-proliferative effect of 7c in Lovo cell lines followed a similar pattern, which included a dose-dependent induction of cell apoptosis via the up-regulation of Bax as well as activated caspase-3 and down-regulation of Bcl-2, and the inhibition of cancer cells migration and invasion in a concentration-dependent way. More importantly, 7c could significantly block Ras-related signaling pathways, which may contribute to its pro-apoptotic induction of the cancer cell lines and its inhibition of carcinoma cell proliferation, migration, and invasion. Therefore, our novel findings may provide a new framework for the discovery of new FTS hybrids for the intervention of human carcinoma cells.

  2. Single cell analysis of low-power laser irradiation-induced activation of signaling pathway in cell proliferation

    NASA Astrophysics Data System (ADS)

    Xing, Da; Gao, Xuejuan

    2007-02-01

    Low-power laser irradiation (LPLI) has been shown to promote cell proliferation in various cell types, yet the mechanism of which has not been fully clarified. Investigating the signaling pathways involved in the laser irradiation is important for understanding these processes. The small G protein Ras works as a binary switch in many important intracellular signaling pathways and, therefore, has been one of the focal targets of signal-transduction investigations and drug development. The Ras/Raf/MEK/ERK (extracellular-signal-regulated kinase) signaling pathway is a network that governs proliferation, differentiation and cell survival. Recent studies suggest that Ras/Raf signaling pathway is involved in the LPLI-induced cell proliferation. On the other hand, Protein kinase Cs (PKCs), the Ca 2+ activated, phospholipid-dependent serine/threonine protein kinases, have been recently presumed to be involved in the regulation of cell proliferation induced by LPLI. In this report, to monitor the direct activations of Ras and PKCs after LPLI treatment in living cells in real time, Raichu-Ras reporter and C kinase activity reporter (CKAR) were utilized, both of which were constructed based on fluorescence resonance energy transfer (FRET) technique. The direct activation of Ras is predominantly initiated from the different microdomains of the plasma membrane. The results are monitored during cell proliferation induced by LPLI (0.8 J/cm2) in serum-starved COS-7 cells expressing Raichu-Ras reporter using FRET imaging on laser scanning confocal microscope. Furthermore, the increasing activation of PKCs is also monitored during cell proliferation induced by LPLI (0.8 J/cm2) in serum-starved human lung adenocarcinoma cells (ASTC-a-1) expressing CKAR reporter using the similar way. Taken together, the dynamic increases of H-Ras and PKCs activities are observed during the processes of cell proliferation induced by LPLI.

  3. Ultra-sensitive biosensor for K-ras gene detection using enzyme capped gold nanoparticles conjugates for signal amplification.

    PubMed

    Fang, Xian; Bai, Lijuan; Han, Xiaowei; Wang, Jiao; Shi, Anqi; Zhang, Yuzhong

    2014-09-01

    In this study, an ultra-sensitive hairpin DNA-based electrochemical DNA biosensor for K-ras gene detection is described. Gold nanoparticles (Au-NPs) and horseradish peroxidase (HRP)-streptavidin capped Au-NPs (HAS) conjugates are used for signal amplification. Initially, hairpin DNA dually labeled with thiol at its 5' end and with biotin at its 3' end is immobilized on the surface of Au-NPs modified electrode, and the hairpin DNA is in a "closed" state; hence, the HAS conjugates are shielded from being approached by the biotin due to steric hindrance. However, in the presence of target DNA, the target DNA hybridizes with the loop structure of hairpin DNA and causes conformational change, resulting in biotin forced away from the electrode surface, thereby becoming accessible for the HAS conjugates. Thus, the HAS conjugates are linked to the electrode surface via the specific interaction between biotin and streptavidin. Electrochemical detection was performed in phosphate-buffered saline (PBS) containing tetramethylbenzidine (TMB) and H2O2. Under optimal conditions, the peak current differences (ΔI) are linear with the target DNA in the range from 0.1 fM to 1 nM with a detection limit of 0.035 fM. Furthermore, this biosensor also demonstrates its excellent specificity for single-base mismatched DNA. PMID:24939462

  4. Renoprotective effect of renal liver-type fatty acid binding protein and angiotensin II type 1a receptor loss in renal injury caused by RAS activation.

    PubMed

    Ichikawa, Daisuke; Kamijo-Ikemori, Atsuko; Sugaya, Takeshi; Shibagaki, Yugo; Yasuda, Takashi; Katayama, Kimie; Hoshino, Seiko; Igarashi-Migitaka, Junko; Hirata, Kazuaki; Kimura, Kenjiro

    2014-03-15

    The aim of this study was to assess the renoprotective effect of renal human liver-type fatty acid binding protein (hL-FABP) and angiotensin II (ANG II) type 1A receptor (AT1a) loss in renal injury caused by renin-angiotensin system (RAS) activation. We established hL-FABP chromosomal transgenic mice (L-FABP(+/-)AT1a(+/+)), crossed the L-FABP(+/-)AT1a(+/+) with AT1a knockdown homo mice (L-FABP(-/-)AT1a(-/-)), and generated L-FABP(+/-)AT1a hetero mice (L-FABP(+/-)AT1a(+/-)). After the back-cross of these cubs, L-FABP(+/-)AT1a(-/-) were obtained. To activate the renal RAS, wild-type mice (L-FABP(-/-)AT1a(+/+)), L-FABP(+/-)AT1a(+/+), L-FABP(-/-)AT1a(+/-), L-FABP(+/-)AT1a(+/-), L-FABP(-/-)AT1a(-/-), and L-FABP(+/-)AT1a(-/-) were administered high-dose systemic ANG II infusion plus a high-salt diet for 28 days. In the L-FABP(-/-)AT1a(+/+), RAS activation (L-FABP(-/-)AT1a(+/+)RAS) caused hypertension and tubulointerstitial damage. In the L-FABP(+/-)AT1a(+/+)RAS, tubulointerstitial damage was significantly attenuated compared with L-FABP(-/-)AT1a(+/+)RAS. In the AT1a partial knockout (AT1a(+/-)) or complete knockout (AT1a(-/-)) mice, reduction of AT1a expression led to a significantly lower degree of renal injury compared with L-FABP(-/-)AT1a(+/+)RAS or L-FABP(+/-)AT1a(+/+)RAS mice. Renal injury in L-FABP(+/-)AT1a(+/-)RAS mice was significantly attenuated compared with L-FABP(-/-)AT1a(+/-)RAS mice. In both L-FABP(-/-)AT1a(-/-)RAS and L-FABP(+/-)AT1a(-/-)RAS mice, renal damage was rarely found. The degrees of renal hL-FABP expression and urinary hL-FABP levels increased by RAS activation and gradually decreased along with reduction of AT1a expression levels. In conclusion, in this mouse model, renal hL-FABP expression and a decrease in AT1a expression attenuated tubulointerstitial damage due to RAS activation.

  5. Involvement of the CDC25 gene product in the signal transmission pathway of the glucose-induced RAS-mediated cAMP signal in the yeast Saccharomyces cerevisiae.

    PubMed

    van Aelst, L; Jans, A W; Thevelein, J M

    1991-02-01

    Addition of glucose or related fermentable sugars to derepressed cells of the yeast Saccharomyces cerevisiae triggers a RAS-protein-mediated cAMP signal, which induces a protein phosphorylation cascade. Yeast strains without a functional CDC25 gene were deficient in basal cAMP synthesis and in the glucose-induced cAMP signal. Addition of dinitrophenol, which in wild-type strains strongly stimulates in vivo cAMP synthesis by lowering intracellular pH, did not enhance the cAMP level. cdc25 disruption mutants, in which the basal cAMP level was restored by the RAS2val19 oncogene or by disruption of the gene (PDE2) coding for the high-affinity phosphodiesterase, were still deficient in the glucose- and acidification-induced cAMP responses. These results indicate that the CDC25 gene product is required not only for basal cAMP synthesis in yeast but also for specific activation of cAMP synthesis by the signal transmission pathway leading from glucose to adenyl cyclase. They also show that intracellular acidification stimulates the pathway at or upstream of the CDC25 protein. When shifted to the restrictive temperature, cells with the temperature sensitive cdc25-5 mutation lost their cAMP content within a few minutes. After prolonged incubation at the restrictive temperature, cells with this mutation, and also those with the temperature sensitive cdc25-1 mutation, arrested at the 'start' point (in G1) of the cell cycle, and subsequently accumulated in the resting state G0. In contrast with cdc25-5 cells, however, the cAMP level did not decrease and normal glucose- and acidification-induced cAMP responses were observed when cdc25-1 cells were shifted to the restrictive temperature.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Uncoupling of EGFR–RAS signaling and nuclear localization of YBX1 in colorectal cancer

    PubMed Central

    Roßner, F; Gieseler, C; Morkel, M; Royer, H-D; Rivera, M; Bläker, H; Dietel, M; Schäfer, R; Sers, C

    2016-01-01

    The transcription factor YBX1 can act as a mediator of signals transmitted via the EGFR–RAS–MAPK axis. YBX1 expression has been associated with tumor progression and prognosis in multiple types of cancer. Immunohistochemical studies have revealed dependency between YBX1 expression and individual EGFR family members. We analyzed YBX1 and EGFR family proteins in a colorectal cancer (CRC) cohort and provide functional analyses of YBX1 in the context of EGFR–RAS–MAPK signaling. Immunohistochemistry for YBX1 and EGFR family receptors with two antibodies for YBX1 and EGFR were performed and related to clinicopathological data. We employed Caco2 cells expressing an inducible KRASV12 gene to determine effects on localization and levels of YBX1. Mouse xenografts of Caco2-KRASV12 cells were used to determine YBX1 dynamics in a tissue context. The two different antibodies against YBX1 showed discordant immunohistochemical stainings in cell culture and clinical specimens. Expression of YBX1 and EGFR family members were not correlated in CRC. Analysis of Caco2 xenografts displayed again heterogeneity of YBX1 staining with both antibodies. Our results suggest that YBX1 is controlled via complex regulatory mechanisms involving tumor stroma interaction and signal transduction processes. Our study highlights that YBX1 antibodies have different specificities, advocating their use in a combined manner. PMID:26779809

  7. Extracellular signal-regulated kinase 2 (ERK-2) mediated phosphorylation regulates nucleo-cytoplasmic shuttling and cell growth control of Ras-associated tumor suppressor protein, RASSF2

    SciTech Connect

    Kumari, Gita; Mahalingam, S.

    2009-10-01

    Ras GTPase controls the normal cell growth through binding with an array of effector molecules, such as Raf and PI3-kinase in a GTP-dependent manner. RASSF2, a member of the Ras association domain family, is known to be involved in the suppression of cell growth and is frequently down-regulated in various tumor tissues by promoter hypermethylation. In the present study, we demonstrate that RASSF2 shuttles between nucleus and cytoplasm by a signal-mediated process and its export from the nucleus is sensitive to leptomycin B. Amino acids between 240 to 260 in the C-terminus of RASSF2 harbor a functional nuclear export signal (NES), which is necessary and sufficient for efficient export of RASSF2 from the nucleus. Substitution of conserved Ile254, Val257 and Leu259 within the minimal NES impaired RASSF2 export from the nucleus. In addition, wild type but not the nuclear export defective RASSF2 mutant interacts with export receptor, CRM-1 and exported from the nucleus. Surprisingly, we observed nucleolar localization for the nuclear export defective mutant suggesting the possibility that RASSF2 may localize in different cellular compartments transiently in a cell cycle dependent manner and the observed nuclear localization for wild type protein may be due to faster export kinetics from the nucleolus. Furthermore, our data suggest that RASSF2 is specifically phosphorylated by MAPK/ERK-2 and the inhibitors of MAPK pathway impair the phosphorylation and subsequently block the export of RASSF2 from the nucleus. These data clearly suggest that ERK-2 mediated phosphorylation plays an important role in regulating the nucleo-cytoplasmic shuttling of RASSF2. Interestingly, nuclear import defective mutant of RASSF2 failed to induce cell cycle arrest at G1/S phase and apoptosis suggesting that RASSF2 regulates cell growth in a nuclear localization dependent manner. Collectively, these data provided evidence for the first time that MAPK/ERK-2 mediated phosphorylation regulates

  8. RAS Synthetic Lethal Screens Revisited: Still Seeking the Elusive Prize?

    PubMed

    Downward, Julian

    2015-04-15

    The RAS genes are critical oncogenic drivers activated by point mutation in some 20% of human malignancies. However, no pharmacologic approaches to targeting RAS proteins directly have yet succeeded, leading to suggestions that these proteins may be "undruggable." This has led to two alternative indirect approaches to targeting RAS function in cancer. One has been to target RAS signaling pathways downstream at tractable enzymes such as kinases, particularly in combination. The other, which is the focus of this review, has been to seek targets that are essential in cells bearing an activated RAS oncogene, but not those without. This synthetic lethal approach, while rooted in ideas from invertebrate genetics, has been inspired most strongly by the successful use of PARP inhibitors, such as olaparib, in the clinic to treat BRCA defective cancers. Several large-scale screens have been carried out using RNA interference-mediated expression silencing to find genes that are uniquely essential to RAS-mutant but not wild-type cells. These screens have been notable for the low degree of overlap between their results, with the possible exception of proteasome components, and have yet to lead to successful new clinical approaches to the treatment of RAS-mutant cancers. Possible reasons for these disappointing results are discussed here, along with a reevaluation of the approaches taken. On the basis of experience to date, RAS synthetic lethality has so far fallen some way short of its original promise and remains unproven as an approach to finding effective new ways of tackling RAS-mutant cancers. Clin Cancer Res; 21(8); 1802-9. ©2015 AACR. See all articles in this CCR Focus section, "Targeting RAS-Driven Cancers." PMID:25878361

  9. Activation of H-Ras and Rac1 correlates with epidermal growth factor-induced invasion in Hs578T and MDA-MB-231 breast carcinoma cells.

    PubMed

    Koh, Min-Soo; Moon, Aree

    2011-03-01

    There is considerable experimental evidence that hyperactive Ras proteins promote breast cancer growth and development including invasiveness, despite the low frequency of mutated forms of Ras in breast cancer. We have previously shown that H-Ras, but not N-Ras, induces an invasive phenotype mediated by small GTPase Rac1 in MCF10A human breast epithelial cells. Epidermal growth factor (EGF) plays an important role in aberrant growth and metastasis formation of many tumor types including breast cancer. The present study aims to investigate the correlation between EGF-induced invasiveness and Ras activation in four widely used breast cancer cell lines. Upon EGF stimulation, invasive abilities and H-Ras activation were significantly increased in Hs578T and MDA-MB-231 cell lines, but not in MDA-MB-453 and T47D cell lines. Using small interfering RNA (siRNA) to target H-Ras, we showed a crucial role of H-Ras in the invasive phenotype induced by EGF in Hs578T and MDA-MB-231 cells. Moreover, siRNA-knockdown of Rac1 significantly inhibited the EGF-induced invasiveness in these cells. Taken together, this study characterized human breast cancer cell lines with regard to the relationship between H-Ras activation and the invasive phenotype induced by EGF. Our data demonstrate that the activation of H-Ras and the downstream molecule Rac1 correlates with EGF-induced breast cancer cell invasion, providing important information on the regulation of malignant progression in mammary carcinoma cells.

  10. Persistent nicotine treatment potentiates amplification of the dihydrofolate reductase gene in rat lung epithelial cells as a consequence of Ras activation.

    PubMed

    Guo, Jinjin; Chu, Michelle; Abbeyquaye, Tetteh; Chen, Chang-Yan

    2005-08-26

    Although nicotine has been suggested to promote lung carcinogenesis, the mechanism of its action in this process remains unknown. The present investigation demonstrates that the treatment of rat lung epithelial cells with nicotine for various periods differentially mobilizes multiple intracellular pathways. Protein kinase C and phosphoinositide 3-OH-kinase are transiently activated after the treatment. Also, Ras and its downstream effector ERK1/2 are activated after long term exposure to nicotine. The activation of Ras by nicotine treatment is responsible for the subsequent perturbation of the methotrexate (MTX)-mediated G1 cell cycle restriction as well as an increase in production of reactive oxygen species. When p53 expression is suppressed by introducing E6, persistent exposure to nicotine enables dihydrofolate reductase gene amplification in the presence of methotrexate (MTX) and the formation of the MTX-resistant colonies. Altering the activity of phosphoinositide 3-OH-kinase has no effect on dihydrofolate reductase amplification. However, the suppression of protein kinase C dramatically affects the colony formation in soft agar. Thus, our data suggest that persistent exposure to nicotine perturbs the G1 checkpoint and causes DNA damage through the increase of the production of reactive oxygen species. However, a third element rendered by loss of p53 is required for the initiation of the process of gene amplification. Under p53-deficient conditions, the establishment of a full oncogenic transformation, in response to long term nicotine exposure, is achieved through the cooperation of multiple signaling pathways. PMID:15983034

  11. RLIP76 regulates Arf6-dependent cell spreading and migration by linking ARNO with activated R-Ras at recycling endosomes.

    PubMed

    Wurtzel, Jeremy G T; Lee, Seunghyung; Singhal, Sharad S; Awasthi, Sanjay; Ginsberg, Mark H; Goldfinger, Lawrence E

    2015-11-27

    R-Ras small GTPase enhances cell spreading and motility via RalBP1/RLIP76, an R-Ras effector that links GTP-R-Ras to activation of Arf6 and Rac1 GTPases. Here, we report that RLIP76 performs these functions by binding cytohesin-2/ARNO, an Arf GTPase guanine exchange factor, and connecting it to R-Ras at recycling endosomes. RLIP76 formed a complex with R-Ras and ARNO by binding ARNO via its N-terminus (residues 1-180) and R-Ras via residues 180-192. This complex was present in Rab11-positive recycling endosomes and the presence of ARNO in recycling endosomes required RLIP76, and was not supported by RLIP76(Δ1-180) or RLIP76(Δ180-192). Spreading and migration required RLIP76(1-180), and RLIP76(Δ1-180) blocked ARNO recruitment to recycling endosomes, and spreading. Arf6 activation with an ArfGAP inhibitor overcame the spreading defects in RLIP76-depleted cells or cells expressing RLIP76(Δ1-180). Similarly, RLIP76(Δ1-180) or RLIP76(Δ180-192) suppressed Arf6 activation. Together these results demonstrate that RLIP76 acts as a scaffold at recycling endosomes by binding activated R-Ras, recruiting ARNO to activate Arf6, thereby contributing to cell spreading and migration.

  12. XRP44X, an Inhibitor of Ras/Erk Activation of the Transcription Factor Elk3, Inhibits Tumour Growth and Metastasis in Mice

    PubMed Central

    Cheung, Henry; Tourrette, Yves; Maas, Peter; Schalken, Jack A; van der Pluijm, Gabri

    2016-01-01

    Transcription factors have an important role in cancer but are difficult targets for the development of tumour therapies. These factors include the Ets family, and in this study Elk3 that is activated by Ras oncogene /Erk signalling, and is involved in angiogenesis, malignant progression and epithelial-mesenchymal type processes. We previously described the identification and in-vitro characterisation of an inhibitor of Ras / Erk activation of Elk3 that also affects microtubules, XRP44X. We now report an initial characterisation of the effects of XRP44X in-vivo on tumour growth and metastasis in three preclinical models mouse models, subcutaneous xenografts, intra-cardiac injection-bone metastasis and the TRAMP transgenic mouse model of prostate cancer progression. XRP44X inhibits tumour growth and metastasis, with limited toxicity. Tumours from XRP44X-treated animals have decreased expression of genes containing Elk3-like binding motifs in their promoters, Elk3 protein and phosphorylated Elk3, suggesting that perhaps XRP44X acts in part by inhibiting the activity of Elk3. Further studies are now warranted to develop XRP44X for tumour therapy. PMID:27427904

  13. Ras in Cancer and Developmental Diseases

    PubMed Central

    Fernández-Medarde, Alberto; Santos, Eugenio

    2011-01-01

    Somatic, gain-of-function mutations in ras genes were the first specific genetic alterations identified in human cancer about 3 decades ago. Studies during the last quarter century have characterized the Ras proteins as essential components of signaling networks controlling cellular proliferation, differentiation, or survival. The oncogenic mutations of the H-ras, N-ras, or K-ras genes frequently found in human tumors are known to throw off balance the normal outcome of those signaling pathways, thus leading to tumor development. Oncogenic mutations in a number of other upstream or downstream components of Ras signaling pathways (including membrane RTKs or cytosolic kinases) have been detected more recently in association with a variety of cancers. Interestingly, the oncogenic Ras mutations and the mutations in other components of Ras/MAPK signaling pathways appear to be mutually exclusive events in most tumors, indicating that deregulation of Ras-dependent signaling is the essential requirement for tumorigenesis. In contrast to sporadic tumors, separate studies have identified germline mutations in Ras and various other components of Ras signaling pathways that occur in specific association with a number of different familial, developmental syndromes frequently sharing common phenotypic cardiofaciocutaneous features. Finally, even without being a causative force, defective Ras signaling has been cited as a contributing factor to many other human illnesses, including diabetes and immunological and inflammatory disorders. We aim this review at summarizing and updating current knowledge on the contribution of Ras mutations and altered Ras signaling to development of various tumoral and nontumoral pathologies. PMID:21779504

  14. Rck1 up-regulates pseudohyphal growth by activating the Ras2 and MAP kinase pathways independently in Saccharomyces cerevisiae.

    PubMed

    Chang, Miwha; Kang, Chang-Min; Park, Yong-Sung; Yun, Cheol-Won

    2014-02-21

    Previously, we reported that Rck1 regulates Hog1 and Slt2 activities and affects MAP kinase activity in Saccharomyces cerevisiae. Recently, we found that Rck1 up-regulates phospho-Kss1 and phospho-Fus3. Kss1 has been known as a component in the pseudohyphal growth pathway, and we attempted to identify the function of Rck1 in pseudohyphal growth. Rck1 up-regulated Ras2 at the protein level, not the transcriptional level. Additionally, FLO11 transcription was up-regulated by RCK1 over-expression. RCK1 expression was up-regulated during growth on SLAD+1% butanol medium. On nitrogen starvation agar plates, RCK1 over-expression induced pseudohyphal growth of colonies, and cells over-expressing RCK1 showed a filamentous morphology when grown in SLAD medium. Furthermore, 1-butanol greatly induced filamentous growth when RCK1 was over-expressed. Moreover, invasive growth was activated in haploid cells when RCK1 was over-expressed. The growth defect of cells observed on 1-butanol medium was recovered when RCK1 was over-expressed. Interestingly, Ras2 and phospho-Kss1 were up-regulated by Rck1 independently. Together, these results suggest that Rck1 promotes pseudohyphal growth by activating Ras2 and Kss1 via independent pathways in S. cerevisiae. PMID:24491552

  15. A role for RalGDS and a novel Ras effector in the Ras-mediated inhibition of skeletal myogenesis.

    PubMed

    Ramocki, M B; White, M A; Konieczny, S F; Taparowsky, E J

    1998-07-10

    Oncogenic Ras inhibits the differentiation of skeletal muscle cells through the activation of multiple downstream signaling pathways, including a Raf-dependent, mitogen-activated or extracellular signal-regulated kinase kinase/mitogen-activated protein kinase (MEK/MAPK)-independent pathway. Here we report that a non-Raf binding Ras effector-loop variant (H-Ras G12V,E37G), which retains interaction with the Ral guanine nucleotide dissociation stimulator (RalGDS), inhibits the conversion of MyoD-expressing C3H10T1/2 mouse fibroblasts to skeletal muscle. We show that H-Ras G12V,E37G, RalGDS, and the membrane-localized RalGDS CAAX protein inhibit the activity of alpha-actin-Luc, a muscle-specific reporter gene containing a necessary E-box and serum response factor (SRF) binding site, while a RalGDS protein defective for Ras interaction has no effect on alpha-actin-Luc transcription. H-Ras G12V,E37G does not activate endogenous MAPK, but does increase SRF-dependent transcription. Interestingly, RalGDS, RalGDS CAAX, and RalA G23V inhibit H-Ras G12V, E37G-induced expression of an SRF-regulated reporter gene, demonstrating that signaling through RalGDS does not duplicate the action of H-Ras G12V,E37G in this system. As additional evidence for this, we show that H-Ras G12V,E37G inhibits the expression of troponin I-Luc, an SRF-independent muscle-specific reporter gene, whereas RalGDS and RalGDS CAAX do not. Although our studies show that signaling through RalGDS can interfere with the expression of reporter genes dependent on SRF activity (including alpha-actin-Luc), our studies also provide strong evidence that an additional signaling molecule(s) activated by H-Ras G12V,E37G is required to achieve the complete inhibition of the myogenic differentiation program.

  16. The linker domain of the Ha-Ras hypervariable region regulates interactions with exchange factors, Raf-1 and phosphoinositide 3-kinase.

    PubMed

    Jaumot, Montserrat; Yan, Jun; Clyde-Smith, Jodi; Sluimer, Judith; Hancock, John F

    2002-01-01

    Ha-Ras and Ki-Ras have different distributions across plasma membrane microdomains. The Ras C-terminal anchors are primarily responsible for membrane micro-localization, but recent work has shown that the interaction of Ha-Ras with lipid rafts is modulated by GTP loading via a mechanism that requires the hypervariable region (HVR). We have now identified two regions in the HVR linker domain that regulate Ha-Ras raft association. Release of activated Ha-Ras from lipid rafts is blocked by deleting amino acids 173-179 or 166-172. Alanine replacement of amino acids 173-179 but not 166-172 restores wild type micro-localization, indicating that specific N-terminal sequences of the linker domain operate in concert with a more C-terminal spacer domain to regulate Ha-Ras raft association. Mutations in the linker domain that confine activated Ha-RasG12V to lipid rafts abrogate Raf-1, phosphoinositide 3-kinase, and Akt activation and inhibit PC12 cell differentiation. N-Myristoylation also prevents the release of activated Ha-Ras from lipid rafts and inhibits Raf-1 activation. These results demonstrate that the correct modulation of Ha-Ras lateral segregation is critical for downstream signaling. Mutations in the linker domain also suppress the dominant negative phenotype of Ha-RasS17N, indicating that HVR sequences are essential for efficient interaction of Ha-Ras with exchange factors in intact cells.

  17. Plk2 Raps up Ras to subdue synapses

    PubMed Central

    Lee, Kea Joo; Hoe, Hyang-Sook

    2011-01-01

    We recently identified the activity-inducible protein kinase Plk2 as a novel overseer of the balance between Ras and Rap small GTPases. Plk2 achieves a profound level of regulatory control by interacting with and phosphorylating at least four Ras and Rap guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). Combined, these actions result in synergistic suppression of Ras and hyperstimulation of Rap signaling. Perturbation of Plk2 function abolished homeostatic adaptation of synapses to enhanced activity and impaired behavioral adaptation in various learning tasks, indicating that this regulation was critical for maintaining appropriate Ras/Rap levels. These studies provide insights into the highly cooperative nature of Ras and Rap regulation in neurons. However, different GEF and GAP substrates of Plk2 also controlled specific aspects of dendritic spine morphology, illustrating the ability of individual GAPs/GEFs to assemble microdomains of Ras and Rap signaling that respond to different stimuli and couple to distinct output pathways. PMID:21776418

  18. Paeonol Inhibits Proliferation of Vascular Smooth Muscle Cells Stimulated by High Glucose via Ras-Raf-ERK1/2 Signaling Pathway in Coculture Model

    PubMed Central

    Chen, Junjun; Dai, Min; Wang, Yueqin

    2014-01-01

    Paeonol (Pae) has been previously reported to protect against atherosclerosis (AS) by inhibiting vascular smooth muscle cell (VSMC) proliferation or vascular endothelial cell (VEC) injury. But studies lack how VSMCs and VECs interact when Pae plays a role. The current study was based on a coculture model of VSMCs and VECs to investigate the protective mechanisms of Pae on atherosclerosis (AS) by determining the secretory function of VECs and proliferation of VSMCs focusing on the Ras-Raf-ERK1/2 signaling pathway. VECs were stimulated by high glucose. Our data showed that high concentration (35.5 mM) of glucose induced damage in VECs. Injury of VECs stimulated VSMC proliferation in the coculture model. Pae (120 μM) decreased vascular endothelial growth factor (VEGF) and platelet derivative growth factor B (PDGF-B) release from VECs and inhibited overexpression of Ras, P-Raf, and P-ERK proteins in VSMCs. The results indicate that diabetes modulates the inflammatory response in VECs to stimulate VSMC proliferation and promote the development of AS. Pae was beneficial by inhibiting the inflammatory effects of VECs on VSMC proliferation. This study suggests the inhibitory mechanism of Pae due to the inhibition of VEGF and PDGF-B secretion in VECs and Ras-Raf-ERK1/2 signaling pathway in VSMCs. PMID:25002903

  19. The heterotrimeric G q protein-coupled angiotensin II receptor activates p21 ras via the tyrosine kinase-Shc-Grb2-Sos pathway in cardiac myocytes.

    PubMed Central

    Sadoshima, J; Izumo, S

    1996-01-01

    p21 ras plays as important role in cell proliferation, transformation and differentiation. Recently, the requirement of p21 ras has been suggested for cellular responses induced by stimulation of heterotrimeric G protein-coupled receptors. However, it remains to be determined how agonists for G protein-coupled receptors activate p21 ras in metazoans. We show here that stimulation of the G q protein-coupled angiotensin II (Ang II) receptor causes activation of p21 ras in cardiac myocytes. The p21 ras activation by Ang II is mediated by an increase in the guanine nucleotide exchange activity, but not by an inhibition of the GTPase-activating protein. Ang II causes rapid tyrosine phosphorylation of Shc and its association with Grb2 and mSos-1, a guanine nucleotide exchange factor of p21 ras. This leads to translocation of mSos-1 to the membrane fraction. Shc associates with the SH3 domain of Fyn whose tyrosine kinase activity is activated by Ang II with a similar time course as that of tyrosine phosphorylation of Shc. Ang II-induced increase in the guanine nucleotide exchange activity was inhibited by a peptide ligand specific to the SH3 domain of the Src family tyrosine kinases. These results suggest that an agonist for a pertussis toxin-insensitive G protein-coupled receptor may initiate the cross-talk with non-receptor-type tyrosine kinases, thereby activating p21 ras using a similar mechanism as receptor tyrosine kinase-induced p21 ras activation. Images PMID:8631299

  20. Aberrant microRNA expression likely controls RAS oncogene activation during malignant transformation of human prostate epithelial and stem cells by arsenic.

    PubMed

    Ngalame, Ntube N O; Tokar, Erik J; Person, Rachel J; Xu, Yuanyuan; Waalkes, Michael P

    2014-04-01

    Inorganic arsenic (iAs), a human carcinogen, potentially targets the prostate. iAs malignantly transforms the RWPE-1 human prostate epithelial line to CAsE-PE cells, and a derivative normal stem cell (SC) line, WPE-stem, to As-Cancer SC (As-CSC) line. MicroRNAs (miRNA) are noncoding but exert negative control on expression by degradation or translational repression of target mRNAs. Aberrant miRNA expression is important in carcinogenesis. A miRNA array of CAsE-PE and As-CSC revealed common altered expression in both for pathways concerning oncogenesis, miRNA biogenesis, cell signaling, proliferation, and tumor metastasis and invasion. The KRAS oncogene is overexpressed in CAsE-PE cells but not by mutation or promoter hypomethylation, and is intensely overexpressed in As-CSC cells. In both transformants, decreased miRNAs targeting KRAS and RAS superfamily members occurred. Reduced miR-134, miR-373, miR-155, miR-138, miR-205, miR-181d, miR-181c, and let-7 in CAsE-PE cells correlated with increased target RAS oncogenes, RAN, RAB27A, RAB22A mRNAs, and KRAS protein. Reduced miR-143, miR-34c-5p, and miR-205 in As-CSC correlated with increased target RAN mRNA, and KRAS, NRAS, and RRAS proteins. The RAS/ERK and PI3K/PTEN/AKT pathways control cell survival, differentiation, and proliferation, and when dysregulated promote a cancer phenotype. iAs transformation increased expression of activated ERK kinase in both transformants and altered components of the PI3K/PTEN/AKT pathway including decreased PTEN and increases in BCL2, BCL-XL, and VEGF in the absence of AKT activation. Thus, dysregulated miRNA expression may be linked to RAS activation in both transformants.

  1. Direct Attack on RAS: Intramolecular Communication and Mutation-Specific Effects.

    PubMed

    Marcus, Kendra; Mattos, Carla

    2015-04-15

    The crystal structure of RAS was first solved 25 years ago. In spite of tremendous and sustained efforts, there are still no drugs in the clinic that directly target this major driver of human cancers. Recent success in the discovery of compounds that bind RAS and inhibit signaling has fueled renewed enthusiasm, and in-depth understanding of the structure and function of RAS has opened new avenues for direct targeting. To succeed, we must focus on the molecular details of the RAS structure and understand at a high-resolution level how the oncogenic mutants impair function. Structural networks of intramolecular communication between the RAS active site and membrane-interacting regions on the G-domain are disrupted in oncogenic mutants. Although conserved across the isoforms, these networks are near hot spots of protein-ligand interactions with amino acid composition that varies among RAS proteins. These differences could have an effect on stabilization of conformational states of interest in attenuating signaling through RAS. The development of strategies to target these novel sites will add a fresh direction in the quest to conquer RAS-driven cancers. Clin Cancer Res; 21(8); 1810-8. ©2015 AACR. See all articles in this CCR Focus section, "Targeting RAS-Driven Cancers." PMID:25878362

  2. Revisiting G3BP1 as a RasGAP Binding Protein: Sensitization of Tumor Cells to Chemotherapy by the RasGAP 317–326 Sequence Does Not Involve G3BP1

    PubMed Central

    Annibaldi, Alessandro; Dousse, Aline; Martin, Sophie; Tazi, Jamal; Widmann, Christian

    2011-01-01

    RasGAP is a multifunctional protein that controls Ras activity and that is found in chromosomal passenger complexes. It also negatively or positively regulates apoptosis depending on the extent of its cleavage by caspase-3. RasGAP has been reported to bind to G3BP1 (RasGAP SH3-domain-binding protein 1), a protein regulating mRNA stability and stress granule formation. The region of RasGAP (amino acids 317–326) thought to bind to G3BP1 corresponds exactly to the sequence within fragment N2, a caspase-3-generated fragment of RasGAP, that mediates sensitization of tumor cells to genotoxins. While assessing the contribution of G3BP1 in the anti-cancer function of a cell-permeable peptide containing the 317–326 sequence of RasGAP (TAT-RasGAP317–326), we found that, in conditions where G3BP1 and RasGAP bind to known partners, no interaction between G3BP1 and RasGAP could be detected. TAT-RasGAP317–326 did not modulate binding of G3BP1 to USP10, stress granule formation or c-myc mRNA levels. Finally, TAT-RasGAP317–326 was able to sensitize G3BP1 knock-out cells to cisplatin-induced apoptosis. Collectively these results indicate that G3BP1 and its putative RasGAP binding region have no functional influence on each other. Importantly, our data provide arguments against G3BP1 being a genuine RasGAP-binding partner. Hence, G3BP1-mediated signaling may not involve RasGAP. PMID:22205990

  3. Revisiting G3BP1 as a RasGAP binding protein: sensitization of tumor cells to chemotherapy by the RasGAP 317-326 sequence does not involve G3BP1.

    PubMed

    Annibaldi, Alessandro; Dousse, Aline; Martin, Sophie; Tazi, Jamal; Widmann, Christian

    2011-01-01

    RasGAP is a multifunctional protein that controls Ras activity and that is found in chromosomal passenger complexes. It also negatively or positively regulates apoptosis depending on the extent of its cleavage by caspase-3. RasGAP has been reported to bind to G3BP1 (RasGAP SH3-domain-binding protein 1), a protein regulating mRNA stability and stress granule formation. The region of RasGAP (amino acids 317-326) thought to bind to G3BP1 corresponds exactly to the sequence within fragment N2, a caspase-3-generated fragment of RasGAP, that mediates sensitization of tumor cells to genotoxins. While assessing the contribution of G3BP1 in the anti-cancer function of a cell-permeable peptide containing the 317-326 sequence of RasGAP (TAT-RasGAP₃₁₇₋₃₂₆), we found that, in conditions where G3BP1 and RasGAP bind to known partners, no interaction between G3BP1 and RasGAP could be detected. TAT-RasGAP₃₁₇₋₃₂₆ did not modulate binding of G3BP1 to USP10, stress granule formation or c-myc mRNA levels. Finally, TAT-RasGAP₃₁₇₋₃₂₆ was able to sensitize G3BP1 knock-out cells to cisplatin-induced apoptosis. Collectively these results indicate that G3BP1 and its putative RasGAP binding region have no functional influence on each other. Importantly, our data provide arguments against G3BP1 being a genuine RasGAP-binding partner. Hence, G3BP1-mediated signaling may not involve RasGAP.

  4. RAS Synthetic Lethal Screens Revisited: Still Seeking the Elusive Prize?

    PubMed Central

    Downward, Julian

    2015-01-01

    The RAS genes are critical oncogenic drivers activated by point mutation in some 20% of human malignancies. However, no pharmacological approaches to targeting RAS proteins directly have yet succeeded, leading to suggestions that these proteins may be “undruggable.” This has led to two alternative indirect approaches to targeting RAS function in cancer. One has been to target RAS signaling pathways downstream at tractable enzymes such as kinases, particularly in combination. The other, which is the focus of this review, has been to seek targets that are essential in cells bearing an activated RAS oncogene, but not those without. This synthetic lethal approach, while rooted in ideas from invertebrate genetics, has been inspired most strongly by the successful use of PARP inhibitors, such as olaparib, in the clinic to treat BRCA defective cancers. Several large-scale screens have been carried out using RNA interference-mediated expression silencing to find genes that are uniquely essential to RAS mutant but not wild type cells. These screens have been notable for the low degree of overlap between their results, with the possible exception of proteasome components, and have yet to lead to successful new clinical approaches to the treatment of RAS mutant cancers. Possible reasons for these disappointing results are discussed here, along with a re-evaluation of the approaches taken. Based on experience to date, RAS synthetic lethality has so far fallen some way short of its original promise and remains unproven as an approach to finding effective new ways of tackling RAS mutant cancers. PMID:25878361

  5. Methionine adenosyltransferase 2B-GIT1 complex serves as a scaffold to regulate Ras/Raf/MEK1/2 activity in human liver and colon cancer cells.

    PubMed

    Peng, Hui; Li, Tony W H; Yang, Heping; Moyer, Mary P; Mato, Jose M; Lu, Shelly C

    2015-04-01

    Methionine adenosyltransferase 2B (MAT2B) encodes for variant proteins V1 and V2 that interact with GIT1 to increase ERK activity and growth in human liver and colon cancer cells. MAT2B or GIT1 overexpression activates MEK. This study explores the mechanism for MEK activation. We examined protein-protein interactions by co-immunoprecipitation and verified by confocal microscopy and pull-down assay using recombinant or in vitro translated proteins. Results were confirmed in an orthotopic liver cancer model. We found that MAT2B and GIT1-mediated MEK1/2 activation was not mediated by PAK1 or Src in HepG2 or RKO cells. Instead, MAT2B and GIT1 interact with B-Raf and c-Raf and enhance recruitment of Raf proteins to MEK1/2. MAT2B-GIT1 activates c-Raf, which is the key mediator for MEK/12 activation, because this still occurred in RKO cells that express constitutively active B-Raf mutant. The mechanism lies with the ability of MAT2B-GIT1 to activate Ras and promote B-Raf/c-Raf heterodimerization. Interestingly, MAT2B but not GIT1 can directly interact with Ras, which increases protein stability. Finally, increased Ras-Raf-MEK signaling occurred in phenotypically more aggressive liver cancers overexpressing MAT2B variants and GIT1. In conclusion, interaction between MAT2B and GIT1 serves as a scaffold and facilitates signaling in multiple steps of the Ras/Raf/MEK/ERK pathway, further emphasizing the importance of MAT2B/GIT1 interaction in cancer growth.

  6. Original Research: Atorvastatin prevents rat cardiomyocyte hypertrophy induced by parathyroid hormone 1-34 associated with the Ras-ERK signaling.

    PubMed

    Liu, Xiaogang; Zou, Chunbo; Yu, Chengyuan; Xie, Rujuan; Sui, Manshu; Mu, Suhong; Li, Li; Zhao, Shilei

    2016-10-01

    We investigated the effects of atorvastatin (Ator) on cardiomyocyte hypertrophy (CMH) induced by rat parathyroid hormone 1-34 (PTH1-34) and Ras-extracellular signal regulated protein kinases 1/2 (ERK1/2) signaling. Rat cardiomyocytes were randomly divided into seven groups: normal controls (NC), PTH1-34 (10(-7) mol/L), Ator (10(-5) mol/L), farnesyl transferase inhibitors-276 (FTI-276, 4 × 10(-5) mol/L), PTH1-34 + Ator, PTH1-34 + FTI-276 and PTH1-34 + Ator + mevalonic acid (MVA, 10(-4) mol/L). After treatment, the hypertrophic responses of cardiomyocytes were assessed by measuring cell diameter, detecting protein synthesis, and single-cell protein content. The concentrations of hypertrophic markers such as atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) were measured by ELISA. Protein expressions of ERK1/2, p-ERK1/2 and Ras were detected by western blotting. The results showed that compared with the PTH1-34 group, cellular diameter, 3H-leucine incorporation, single-cell protein content, ANP and BNP concentration decreased by 12.07 µm, 1622 cpm/well, 84.34 pg, 7.13 ng/L and 20.04 µg/L, respectively, and the expressions of Ras and p-ERK1/2 were downregulated in PTH1-34 + Ator group (P < 0.05). Compared to the PTH1-34 + Ator group, the corresponding hypertrophic responses and hypertrophic markers increased by 4.95 µm, 750 cpm/well, 49.08 pg, 3.12 ng/L and 9.35 µg/L, respectively, and the expressions of Ras and p-ERK1/2 were upregulated in the PTH1-34 + Ator + MVA group (P < 0.05). In conclusion, Ator prevents neonatal rat CMH induced by PTH1-34 and Ras-ERK signaling may be involved in this process.

  7. Original Research: Atorvastatin prevents rat cardiomyocyte hypertrophy induced by parathyroid hormone 1-34 associated with the Ras-ERK signaling.

    PubMed

    Liu, Xiaogang; Zou, Chunbo; Yu, Chengyuan; Xie, Rujuan; Sui, Manshu; Mu, Suhong; Li, Li; Zhao, Shilei

    2016-10-01

    We investigated the effects of atorvastatin (Ator) on cardiomyocyte hypertrophy (CMH) induced by rat parathyroid hormone 1-34 (PTH1-34) and Ras-extracellular signal regulated protein kinases 1/2 (ERK1/2) signaling. Rat cardiomyocytes were randomly divided into seven groups: normal controls (NC), PTH1-34 (10(-7) mol/L), Ator (10(-5) mol/L), farnesyl transferase inhibitors-276 (FTI-276, 4 × 10(-5) mol/L), PTH1-34 + Ator, PTH1-34 + FTI-276 and PTH1-34 + Ator + mevalonic acid (MVA, 10(-4) mol/L). After treatment, the hypertrophic responses of cardiomyocytes were assessed by measuring cell diameter, detecting protein synthesis, and single-cell protein content. The concentrations of hypertrophic markers such as atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) were measured by ELISA. Protein expressions of ERK1/2, p-ERK1/2 and Ras were detected by western blotting. The results showed that compared with the PTH1-34 group, cellular diameter, 3H-leucine incorporation, single-cell protein content, ANP and BNP concentration decreased by 12.07 µm, 1622 cpm/well, 84.34 pg, 7.13 ng/L and 20.04 µg/L, respectively, and the expressions of Ras and p-ERK1/2 were downregulated in PTH1-34 + Ator group (P < 0.05). Compared to the PTH1-34 + Ator group, the corresponding hypertrophic responses and hypertrophic markers increased by 4.95 µm, 750 cpm/well, 49.08 pg, 3.12 ng/L and 9.35 µg/L, respectively, and the expressions of Ras and p-ERK1/2 were upregulated in the PTH1-34 + Ator + MVA group (P < 0.05). In conclusion, Ator prevents neonatal rat CMH induced by PTH1-34 and Ras-ERK signaling may be involved in this process. PMID:27190264

  8. Activation of the c-H-ras proto-oncogene by retrovirus insertion and chromosomal rearrangement in a Moloney leukemia virus-induced T-cell leukemia.

    PubMed Central

    Ihle, J N; Smith-White, B; Sisson, B; Parker, D; Blair, D G; Schultz, A; Kozak, C; Lunsford, R D; Askew, D; Weinstein, Y

    1989-01-01

    A rearrangement of the c-H-ras locus was detected in a T-cell line (DA-2) established from a Moloney leukemia virus-induced tumor. This rearrangement was associated with the high-level expression of H-ras RNA and the H-ras gene product, p21. DNA from DA-2 cells transformed fibroblasts in DNA transfection experiments, and the transformed fibroblasts contained the rearranged H-ras locus. The rearrangement involved one allele and was present in tissue from the primary tumor from which the cell line was isolated. Cloning and sequencing of the rearranged allele and comparison with the normal allele demonstrated that the rearrangement was complex and probably resulted from the integration of a retrovirus in the H-ras locus between a 5' noncoding exon and the first coding exon and a subsequent homologous recombination between this provirus and another newly acquired provirus also located on chromosome 7. These events resulted in the translocation of the coding exons of the H-ras locus away from the 5' noncoding exon region to a new genomic site on chromosome 7. Sequencing of the coding regions of the gene failed to detect mutations in the 12th, 13th, 59th, or 61st codons. The possible reasons for the complexity of the rearrangement and the significance of the activation of the H-ras locus to T-cell transformation are discussed. Images PMID:2542606

  9. The RASopathies: Developmental syndromes of Ras/MAPK pathway dysregulation

    PubMed Central

    Tidyman, William E.; Rauen, Katherine A.

    2009-01-01

    The Ras/mitogen activated protein kinase (MAPK) pathway is essential in the regulation of the cell cycle, differentiation, growth and cell senescence, all of which are critical to normal development. It is therefore not surprising that its dysregulation has profound effects on development. A class of developmental disorders, the “RASopathies”, is caused by germline mutations in genes that encode protein components of the Ras/MAPK pathway. The vast majority of these mutations result in increased signal transduction down the Ras/MAPK pathway, but usually to a lesser extent than somatic mutations associated with oncogenesis. Each syndrome exhibits unique phenotypic features, however, since they all cause dysregulation of the Ras/MAPK pathway, there are numerous overlapping phenotypic features between the syndromes, including characteristic facial features, cardiac defects, cutaneous abnormalities, neurocognitive delay and a predisposition to malignancies. Here we review the clinical and underlying molecular basis for each of these syndromes. PMID:19467855

  10. Differential expression of matrix metalloproteinases in activated c-ras-Ha-transfected immortalized human keratinocytes.

    PubMed Central

    Meade-Tollin, L. C.; Boukamp, P.; Fusenig, N. E.; Bowen, C. P.; Tsang, T. C.; Bowden, G. T.

    1998-01-01

    Elevated expression of matrix metalloproteinases (MMPs), a family of secreted proteinases that degrade matrix components of basement membranes and connective tissues, is strongly correlated with malignant expression in various human epithelial cancers and epithelial cancer cell lines. We have tested whether elevated levels of MMP expression are also associated with malignant progression in human cutaneous squamous cell carcinoma. Constitutive levels of expression of steady-state mRNA and of secreted protein encoded by three MMP genes (matrilysin, gelatinases A and B) were compared in a unique in vitro model of human skin carcinogenesis. This model is composed of the parental immortalized non-tumorigenic human keratinocyte line (HaCaT), and three activated c-Harvey-ras-oncogene transfected variants (A-4, I-7 and II-4). Although clone A-4 is non-tumorigenic, clones I-7 and II-4 exhibit benign and malignant tumorigenic phenotypes, respectively, after subcutaneous injection into athymic nude mice. Northern blot, Western blot, and zymogram analyses revealed three MMP-specific patterns of expression. Constitutive matrilysin mRNA expression was markedly increased in the I-7 cells compared with HaCaT, A-4 or II-4 cells. Secreted promatrilysin was distinctly increased in the tumorigenic I-7 and II-4 cells compared with the non-tumorigenic HaCaT and A-4 cells. Gelatinase A mRNA and secreted gelatinase A protein levels were increased in each transfectant compared with HaCaT. Both active and inactive forms of gelatinase A were detected. Gelatinase B transcripts were not detected, but an EDTA-inhibitable gelatinase activity comigrating with gelatinase B was moderately enhanced in both tumorigenic variants compared with the non-tumorigenic cells. Because promatrilysin and 92-kDa gelatinase secretion were increased in both benign and malignant tumorigenic cells, and not related to invasiveness in this model, it is concluded that enhanced constitutive expression of these two MMPs

  11. Fas-induced programmed cell death is mediated by a Ras-regulated O2- synthesis.

    PubMed Central

    Gulbins, E; Brenner, B; Schlottmann, K; Welsch, J; Heinle, H; Koppenhoefer, U; Linderkamp, O; Coggeshall, K M; Lang, F

    1996-01-01

    Fas induces apoptosis in lymphocytes via a poorly defined intracellular signalling cascade. Previously, we have demonstrated the involvement and significance of a signalling cascade from the Fas receptor via sphingomyelinases and ceramide to Ras in Fas-induced apoptosis. Here we demonstrate rapid and transient synthesis of reactive oxygen intermediates (ROI) via activation of Ras after Fas. Genetic inhibition of Ras by transfection of transdominant inhibitory N17Ras blocked Fas-mediated ROI synthesis and programmed cell death. Likewise, the antioxidants N-acetyl-cysteine and N-t-butyl-phenylnitrone abolished Fas-induced cell death, pointing to an important role for Ras-triggered ROI synthesis in Fas-mediated programmed cell death. Images Figure 1 Figure 3 PMID:8943716

  12. Simian virus 40 large T antigen contains two independent activities that cooperate with a ras oncogene to transform rat embryo fibroblasts.

    PubMed Central

    Cavender, J F; Conn, A; Epler, M; Lacko, H; Tevethia, M J

    1995-01-01

    The simian virus 40 large T antigen immortalizes growing primary cells in culture. In addition, this viral oncoprotein cooperates with an activated ras protein to produce dense foci on monolayers of rat embryo fibroblasts (REF). The relationship between independent immortalization and cooperative transformation with ras has not been defined. Previously, two regions of T antigen were shown to contain immortalization activities. An N-terminal fragment consisting of amino acids 1 to 147 immortalizes rodent cells (L. Sompayrac and K. J. Danna, Virology 181:412-415, 1991). Loss-of-function analysis indicated that immortalization depended on integrity of the T-antigen segments containing amino acids 351 to 450 and 533 to 626 (T. D. Kierstead and M. J. Tevethia, J. Virol. 67:1817-1829, 1993). The experiments described here were directed toward determining whether these same T-antigen regions were sufficient for cooperation with ras. Initially, constructs that produce T antigens containing amino acids 176 to 708 (T176-708) or 1 to 147 were tested in a ras cooperation assay. Both polypeptides cooperated with ras to produce dense foci on monolayers of primary REF. These results showed that T antigen contains two separate ras cooperation activities. In order to determine the N-terminal limit of the ras cooperation activity contained within the T176-708 polypeptide, a series of constructs designed to produce fusion proteins containing T-antigen segments beginning at residues 251, 301, 337, 351, 371, 401, 451, 501, 551, 601, and 651 was generated. Each of these constructs was tested for the capacity to cooperate with ras to produce dense foci on REF monolayers. The results indicated that a polypeptide containing T-antigen amino acids 251 to 708 (T251-708) was sufficient to cooperate with ras, whereas the more extensively truncated products were not. The abilities of the N-terminally truncated T antigens to bind p53 were examined in p53-deficient cells infected with a

  13. Isolation of genes specifically expressed in flat revertant cells derived from activated ras-transformed NIH 3T3 cells by treatment with azatyrosine.

    PubMed Central

    Krzyzosiak, W J; Shindo-Okada, N; Teshima, H; Nakajima, K; Nishimura, S

    1992-01-01

    We previously reported that mouse NIH 3T3 cells transformed by transfection of activated human c-Ha-ras become apparently normal upon treatment with the antibiotic azatyrosine. The revertant cells maintain their normal phenotype during prolonged culture in the absence of azatyrosine, although activated p21ras is still expressed. The normal phenotype induced by azatyrosine could be due to activation of expression of some cellular gene(s) in the cells that results in suppression of ras function. To identify the genes with increased expression in the revertant cells, we adopted differential screening of recombinants from a phage cDNA library made from mRNA of the revertant cells, hybridized with 32P-labeled cDNAs made from mRNAs of the ras-transformed NIH 3T3 cells and the revertant cells. Two clones thus isolated were found to be almost identical to the ras recision gene (rrg), which was identified as a tumor-suppressor gene by Contente et al. [Contente, S., Kenyon, K., Rimoldi, D. & Friedman, R. M. (1990) Science 249, 796-798]. Other genes identified were the collagen type III and rhoB genes. Approximately half the clones were found to contain a sequence corresponding to that of the murine retrovirus-like intracisternal A particle. We speculate that azatyrosine activates several cellular genes in the ras-transformed cells and that some of these genes, including rrg, act cooperatively to counteract ras function, resulting in reversion of the ras-transformed cells to the normal phenotype. Images PMID:1594588

  14. Platelet-derived growth factor and reactive oxygen species (ROS) regulate Ras protein levels in primary human fibroblasts via ERK1/2. Amplification of ROS and Ras in systemic sclerosis fibroblasts.

    PubMed

    Svegliati, Silvia; Cancello, Raffaella; Sambo, Paola; Luchetti, Michele; Paroncini, Paolo; Orlandini, Guido; Discepoli, Giancarlo; Paterno, Roberto; Santillo, Mariarosaria; Cuozzo, Concetta; Cassano, Silvana; Avvedimento, Enrico V; Gabrielli, Armando

    2005-10-28

    The levels of Ras proteins in human primary fibroblasts are regulated by PDGF (platelet-derived growth factor). PDGF induced post-transcriptionally Ha-Ras by stimulating reactive oxygen species (ROS) and ERK1/2. Activation of ERK1/2 and high ROS levels stabilize Ha-Ras protein, by inhibiting proteasomal degradation. We found a remarkable example in vivo of amplification of this circuitry in fibroblasts derived from systemic sclerosis (scleroderma) lesions, producing vast excess of ROS and undergoing rapid senescence. High ROS, Ha-Ras, and active ERK1/2 stimulated collagen synthesis, DNA damage, and accelerated senescence. Conversely ROS or Ras inhibition interrupted the signaling cascade and restored the normal phenotype. We conclude that in primary fibroblasts stabilization of Ras protein by ROS and ERK1/2 amplifies the response of the cells to growth factors and in systemic sclerosis represents a critical factor in the onset and progression of the disease. PMID:16081426

  15. Ras-dependent mitogen-activated protein kinase activation by G protein-coupled receptors. Convergence of Gi- and Gq-mediated pathways on calcium/calmodulin, Pyk2, and Src kinase.

    PubMed

    Della Rocca, G J; van Biesen, T; Daaka, Y; Luttrell, D K; Luttrell, L M; Lefkowitz, R J

    1997-08-01

    Many receptors that couple to heterotrimeric guanine-nucleotide binding proteins (G proteins) have been shown to mediate rapid activation of the mitogen-activated protein kinases Erk1 and Erk2. In different cell types, the signaling pathways employed appear to be a function of the available repertoire of receptors, G proteins, and effectors. In HEK-293 cells, stimulation of either alpha1B- or alpha2A-adrenergic receptors (ARs) leads to rapid 5-10-fold increases in Erk1/2 phosphorylation. Phosphorylation of Erk1/2 in response to stimulation of the alpha2A-AR is effectively attenuated by pretreatment with pertussis toxin or by coexpression of a Gbetagamma subunit complex sequestrant peptide (betaARK1ct) and dominant-negative mutants of Ras (N17-Ras), mSOS1 (SOS-Pro), and Raf (DeltaN-Raf). Erk1/2 phosphorylation in response to alpha1B-AR stimulation is also attenuated by coexpression of N17-Ras, SOS-Pro, or DeltaN-Raf, but not by coexpression of betaARK1ct or by pretreatment with pertussis toxin. The alpha1B- and alpha2A-AR signals are both blocked by phospholipase C inhibition, intracellular Ca2+ chelation, and inhibitors of protein-tyrosine kinases. Overexpression of a dominant-negative mutant of c-Src or of the negative regulator of c-Src function, Csk, results in attenuation of the alpha1B-AR- and alpha2A-AR-mediated Erk1/2 signals. Chemical inhibitors of calmodulin, but not of PKC, and overexpression of a dominant-negative mutant of the protein-tyrosine kinase Pyk2 also attenuate mitogen-activated protein kinase phosphorylation after both alpha1B- and alpha2A-AR stimulation. Erk1/2 activation, then, proceeds via a common Ras-, calcium-, and tyrosine kinase-dependent pathway for both Gi- and Gq/11-coupled receptors. These results indicate that in HEK-293 cells, the Gbetagamma subunit-mediated alpha2A-AR- and the Galphaq/11-mediated alpha1B-AR-coupled Erk1/2 activation pathways converge at the level of phospholipase C. These data suggest that calcium

  16. ROLE OF RAS IN METAL-INDUCED EGF RECEPTOR AND NFKB SIGNALING IN HUMAN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    We have shown previously that EGF receptor signaling is triggered by some metals associated with ambient air particles. Western blot using phospho-specific antibodies showed that As, Zn and V activated EGF receptor tyrosine kinase and the downstream kinases, MEK1/2 and ERK1/2. Us...

  17. RASSF7 negatively regulates pro-apoptotic JNK signaling by inhibiting the activity of phosphorylated-MKK7

    PubMed Central

    Takahashi, S; Ebihara, A; Kajiho, H; Kontani, K; Nishina, H; Katada, T

    2011-01-01

    Members of the Ras-association domain family (RASSF) of proteins influence apoptosis and cell cycling but little is known about the mechanisms. Here, we show that RASSF7 interacts with N-Ras and mitogen-activated protein kinase kinase 7 (MKK7) to negatively regulate c-Jun N-terminal kinase (JNK) signaling. Stress-induced JNK activation and apoptosis were markedly enhanced in cells depleted of RASSF7 or N-Ras by RNAi knockdown. An interaction with RASSF7 promoted the phosphorylated state of MKK7 but inhibited this kinase's ability to activate JNK. RASSF7 required its RA domain for both interaction with GTP-bound N-Ras and the anti-apoptotic response to stress stimuli. Following prolonged stress, however, RASSF7's anti-apoptotic effect was eliminated because of degradation of RASSF7 protein via the ubiquitin–proteasome pathway. Our results indicate that RASSF7 acts in concert with N-Ras to constitute a stress-sensitive temporary mechanism of apoptotic regulation. With initial stress, RASSF7/N-Ras promotes cell survival by inhibiting the MKK7/JNK pathway. However, with prolonged stress, RASSF7 protein undergoes degradation that allows cell death signaling to proceed. Our findings may account for the association of elevated RASSF7 with tumorigenesis. PMID:21278800

  18. RAS Laboratory Groups

    Cancer.gov

    The RAS Initiative uses multiple technologies to attack RAS-driven cancers. The resources of the Frederick National Lab allocated to the RAS Hub are organized into seven laboratory groups, each contributing to the collaborative effort.

  19. The RAS Initiative

    Cancer.gov

    NCI established the RAS Initiative to explore innovative approaches for attacking the proteins encoded by mutant forms of RAS genes and to ultimately create effective, new therapies for RAS-related cancers.

  20. Active macropinocytosis induction by stimulation of epidermal growth factor receptor and oncogenic Ras expression potentiates cellular uptake efficacy of exosomes

    PubMed Central

    Nakase, Ikuhiko; Kobayashi, Nahoko Bailey; Takatani-Nakase, Tomoka; Yoshida, Tetsuhiko

    2015-01-01

    Exosomes are approximately 100-nm vesicles that consist of a lipid bilayer of cellular membranes secreted in large quantities from various types of normal and disease-related cells. Endocytosis has been reported as a major pathway for the cellular uptake of exosomes; however, the detailed mechanisms of their cellular uptake are still unknown. Here, we demonstrate the active induction of macropinocytosis (accompanied by actin reorganisation, ruffling of plasma membrane, and engulfment of large volumes of extracellular fluid) by stimulation of cancer-related receptors and show that the epidermal growth factor (EGF) receptor significantly enhances the cellular uptake of exosomes. We also demonstrate that oncogenic K-Ras-expressing MIA PaCa-2 cells exhibit intensive macropinocytosis that actively transports extracellular exosomes into the cells compared with wild-type K-Ras-expressing BxPC-3 cells. Furthermore, encapsulation of the ribosome-inactivating protein saporin with EGF in exosomes using our simple electroporation method produces superior cytotoxicity via the enhanced cellular uptake of exosomes. Our findings contribute to the biological, pharmaceutical, and medical research fields in terms of understanding the macropinocytosis-mediated cellular uptake of exosomes with applications for exosomal delivery systems. PMID:26036864

  1. Active macropinocytosis induction by stimulation of epidermal growth factor receptor and oncogenic Ras expression potentiates cellular uptake efficacy of exosomes.

    PubMed

    Nakase, Ikuhiko; Kobayashi, Nahoko Bailey; Takatani-Nakase, Tomoka; Yoshida, Tetsuhiko

    2015-06-03

    Exosomes are approximately 100-nm vesicles that consist of a lipid bilayer of cellular membranes secreted in large quantities from various types of normal and disease-related cells. Endocytosis has been reported as a major pathway for the cellular uptake of exosomes; however, the detailed mechanisms of their cellular uptake are still unknown. Here, we demonstrate the active induction of macropinocytosis (accompanied by actin reorganisation, ruffling of plasma membrane, and engulfment of large volumes of extracellular fluid) by stimulation of cancer-related receptors and show that the epidermal growth factor (EGF) receptor significantly enhances the cellular uptake of exosomes. We also demonstrate that oncogenic K-Ras-expressing MIA PaCa-2 cells exhibit intensive macropinocytosis that actively transports extracellular exosomes into the cells compared with wild-type K-Ras-expressing BxPC-3 cells. Furthermore, encapsulation of the ribosome-inactivating protein saporin with EGF in exosomes using our simple electroporation method produces superior cytotoxicity via the enhanced cellular uptake of exosomes. Our findings contribute to the biological, pharmaceutical, and medical research fields in terms of understanding the macropinocytosis-mediated cellular uptake of exosomes with applications for exosomal delivery systems.

  2. c-Myc inhibits Ras-mediated differentiation of pheochromocytoma cells by blocking c-Jun up-regulation.

    PubMed

    Vaqué, José P; Fernández-García, Belén; García-Sanz, Pablo; Ferrandiz, Nuria; Bretones, Gabriel; Calvo, Fernando; Crespo, Piero; Marín, María C; León, Javier

    2008-02-01

    Although mutant Ras proteins were originally described as transforming oncoproteins, they induce growth arrest, senescence, and/or differentiation in many cell types. c-Myc is an oncogenic transcription factor that cooperates with Ras in cellular transformation and oncogenesis. However, the Myc-Ras relationship in cellular differentiation is largely unknown. Here, we have analyzed the effects of c-Myc on PC12-derived cells (UR61 cell line), harboring an inducible N-Ras oncogene. In these cells, Ras activation induces neuronal-like differentiation by a process involving c-Jun activation. We found that c-Myc inhibited Ras-mediated differentiation by a mechanism that involves the blockade of c-Jun induction in response to Ras signal. Accordingly, ectopically expressed c-Jun could bypass c-Myc impediment of Ras-induced differentiation and activator protein 1 activation. Interestingly, it did not rescue the proliferative arrest elicited by Ras and did not enhance the differentiation-associated apoptosis. The blockade of Ras-mediated induction of c-Jun takes place at the level of c-Jun proximal promoter. Mutational analysis revealed that c-Myc regions involved in DNA binding and transactivation are required to block differentiation and c-Jun induction. c-Myc does not seem to require Miz-1 to inhibit differentiation and block c-Jun induction. Furthermore, Max is not required for c-Myc activity, as UR61 cells lack a functional Max gene. c-Myc-inhibitory effect on the Ras/c-Jun connection is not restricted to UR61 cells as it can occur in other cell types as K562 or HEK293. In conclusion, we describe a novel interplay between c-Myc and c-Jun that controls the ability of Ras to trigger the differentiation program of pheochromocytoma cells.

  3. The nitric oxide-sensitive p21Ras-ERK pathway mediates S-nitrosoglutathione-induced apoptosis

    SciTech Connect

    Tsujita, Maristela; Batista, Wagner L.; Ogata, Fernando T.; Monteiro, Hugo P. Arai, Roberto J.

    2008-05-16

    p21Ras protein plays a critical role in cellular signaling that induces either cell cycle progression or apoptosis. Nitric oxide (NO) has been consistently reported to activate p21Ras through the redox sensitive cysteine residue (118). In this study, we demonstrated that the p21Ras-ERK pathway regulates THP-1 monocyte/macrophage apoptosis induced by S-nitrosoglutathione (SNOG). This was apparent from studies in THP-1 cells expressing NO-insensitive p21Ras (p21Ras{sup C118S}) where the pro-apoptotic action of SNOG was almost abrogated. Three major MAP kinase pathways (ERK, JNK, and p38) that are downstream to p21Ras were investigated. It was observed that only the activation of ERK1/2 MAP kinases by SNOG in THP-1 cells was attributable to p21Ras. The inhibition of the ERK pathway by PD98059 markedly attenuated apoptosis in SNOG-treated THP-1 cells, but had a marginal effect on SNOG-treated THP-1 cells expressing NO-insensitive p21Ras. The inhibition of the JNK and p38 pathways by selective inhibitors had no marked effects on the percentage of apoptosis. The induction of p21Waf1 expression by SNOG was observed in THP-1 cells harboring mutant and wild-type p21Ras, however in cells expressing mutant Ras, the expression of p21Waf1 was significantly attenuated. The treatment of THP-1 cells expressing wild-type p21Ras with PD98059 resulted in significant attenuation of p21Waf1 expression. These results indicate that the redox sensitive p21Ras-ERK pathway plays a critical role in sensing and delivering the pro-apoptotic signaling mediated by SNOG.

  4. Signal focusing through active transport.

    PubMed

    Godec, Aljaž; Metzler, Ralf

    2015-07-01

    The accuracy of molecular signaling in biological cells and novel diagnostic devices is ultimately limited by the counting noise floor imposed by the thermal diffusion. Motivated by the fact that messenger RNA and vesicle-engulfed signaling molecules transiently bind to molecular motors and are actively transported in biological cells, we show here that the random active delivery of signaling particles to within a typical diffusion distance to the receptor generically reduces the correlation time of the counting noise. Considering a variety of signaling particle sizes from mRNA to vesicles and cell sizes from prokaryotic to eukaryotic cells, we show that the conditions for active focusing-faster and more precise signaling-are indeed compatible with observations in living cells. Our results improve the understanding of molecular cellular signaling and novel diagnostic devices.

  5. The combinatorial activation of the PI3K and Ras/MAPK pathways is sufficient for aggressive tumor formation, while individual pathway activation supports cell persistence

    PubMed Central

    Thompson, Keyata N.; Whipple, Rebecca A.; Yoon, Jennifer R.; Lipsky, Michael; Charpentier, Monica S.; Boggs, Amanda E.; Chakrabarti, Kristi R.; Bhandary, Lekhana; Hessler, Lindsay K.; Martin, Stuart S.; Vitolo, Michele I.

    2015-01-01

    A high proportion of human tumors maintain activation of both the PI3K and Ras/MAPK pathways. In basal-like breast cancer (BBC), PTEN expression is decreased/lost in over 50% of cases, leading to aberrant activation of the PI3K pathway. Additionally, BBC cell lines and tumor models have been shown to exhibit an oncogenic Ras-like gene transcriptional signature, indicating activation of the Ras/MAPK pathway. To directly test how the PI3K and Ras/MAPK pathways contribute to tumorigenesis, we deleted PTEN and activated KRas within non-tumorigenic MCF-10A breast cells. Neither individual mutation was sufficient to promote tumorigenesis, but the combination promoted robust tumor growth in mice. However, in vivo bioluminescence reveals that each mutation has the ability to promote a persistent phenotype. Inherent in the concept of tumor cell dormancy, a stage in which residual disease is present but remains asymptomatic, viable cells with each individual mutation can persist in vivo during a period of latency. The persistent cells were excised from the mice and showed increased levels of the cell cycle arrest proteins p21 and p27 compared to the aggressively growing PTEN−/−KRAS(G12V) cells. Additionally, when these persistent cells were placed into growth-promoting conditions, they were able to re-enter the cell cycle and proliferate. These results highlight the potential for either PTEN loss or KRAS activation to promote cell survival in vivo, and the unique ability of the combined mutations to yield rapid tumor growth. This could have important implications in determining recurrence risk and disease progression in tumor subtypes where these mutations are common. PMID:26497685

  6. The combinatorial activation of the PI3K and Ras/MAPK pathways is sufficient for aggressive tumor formation, while individual pathway activation supports cell persistence.

    PubMed

    Thompson, Keyata N; Whipple, Rebecca A; Yoon, Jennifer R; Lipsky, Michael; Charpentier, Monica S; Boggs, Amanda E; Chakrabarti, Kristi R; Bhandary, Lekhana; Hessler, Lindsay K; Martin, Stuart S; Vitolo, Michele I

    2015-11-01

    A high proportion of human tumors maintain activation of both the PI3K and Ras/MAPK pathways. In basal-like breast cancer (BBC), PTEN expression is decreased/lost in over 50% of cases, leading to aberrant activation of the PI3K pathway. Additionally, BBC cell lines and tumor models have been shown to exhibit an oncogenic Ras-like gene transcriptional signature, indicating activation of the Ras/MAPK pathway. To directly test how the PI3K and Ras/MAPK pathways contribute to tumorigenesis, we deleted PTEN and activated KRas within non-tumorigenic MCF-10A breast cells. Neither individual mutation was sufficient to promote tumorigenesis, but the combination promoted robust tumor growth in mice. However, in vivo bioluminescence reveals that each mutation has the ability to promote a persistent phenotype. Inherent in the concept of tumor cell dormancy, a stage in which residual disease is present but remains asymptomatic, viable cells with each individual mutation can persist in vivo during a period of latency. The persistent cells were excised from the mice and showed increased levels of the cell cycle arrest proteins p21 and p27 compared to the aggressively growing PTEN-/-KRAS(G12V) cells. Additionally, when these persistent cells were placed into growth-promoting conditions, they were able to re-enter the cell cycle and proliferate. These results highlight the potential for either PTEN loss or KRAS activation to promote cell survival in vivo, and the unique ability of the combined mutations to yield rapid tumor growth. This could have important implications in determining recurrence risk and disease progression in tumor subtypes where these mutations are common. PMID:26497685

  7. A Flt3 and Ras-dependent Pathway Primes B Cell Development by Inducing A State of IL7-responsiveness

    PubMed Central

    Li, Lin-Xi; Goetz, Christine A.; Katerndahl, Casey D.S.; Sakaguchi, Nobuo; Farrar, Michael A.

    2009-01-01

    Ras plays an important role in B cell development. However, the stage at which Ras governs B cell development remains unclear. Moreover, the upstream receptors and downstream effectors of Ras that govern B cell differentiation remain undefined. Using mice that express a dominant negative form of Ras, we demonstrate that Ras-mediated signaling plays a critical role in the development of common lymphoid progenitors (CLP). This developmental block parallels that found in flt3−/− mice, suggesting that Flt3 is an important upstream activator of Ras in early B cell progenitors. Ras inhibition impaired proliferation of CLP and pre-pro-B cells but not pro-B cells. Rather, Ras promotes STAT5-dependent pro-B cell differentiation by enhancing IL7Rα levels and suppressing socs2 and socs3 expression. Our results suggest a model in which Flt3/Ras-dependent signals play a critical role in B cell development by priming early B cell progenitors for subsequent STAT5-dependent B cell differentiation. PMID:20065110

  8. TAT-RasGAP317-326 requires p53 and PUMA to sensitize tumor cells to genotoxins.

    PubMed

    Michod, David; Widmann, Christian

    2007-05-01

    Although chemotherapy has revolutionized cancer treatment, the associated side effects induced by lack of specificity to tumor cells remain a challenging problem. We have previously shown that TAT-RasGAP(317-326),a cell-permeable peptide derived from RasGAP, specifically sensitizes cancer cells to the action of genotoxins. The underlying mechanisms of this sensitization were not defined however. Here, we report that TAT-RasGAP(317-326) requires p53, but not the Ras effectors Akt and extracellular signal-regulated kinase, to mediate its tumor sensitization abilities. The TAT-RasGAP(317-326) peptide, although not modulating the transcriptional activity of p53 or its phosphorylation and acetylation status, nevertheless requires a functional p53 cellular status to increase the sensitivity of tumor cells to genotoxins. Genes regulated by p53 encode proapoptotic proteins, such as PUMA, and cell cycle control proteins, such as p21. The ability of TAT-RasGAP(317-326) to sensitize cancer cells was found to require PUMA but not p21. TAT-RasGAP(317-326) did not affect PUMA levels, however, but increased genotoxin-induced mitochondrial depolarization and caspase-3 activation. These results indicate that TAT-RasGAP(317-326) sensitizes tumor cells by activating signals that intersect with the p53 pathway downstream of, or at the level of, proapoptotic p53 target gene products to increase the activation of the mitochondrial death pathway.

  9. Integrating signals between cAMP and the RAS/RAF/MEK/ERK signalling pathways. Based on the anniversary prize of the Gesellschaft für Biochemie und Molekularbiologie Lecture delivered on 5 July 2003 at the Special FEBS Meeting in Brussels.

    PubMed

    Dumaz, Nicolas; Marais, Richard

    2005-07-01

    One of the hallmarks of cAMP is its ability to inhibit proliferation in many cell types, but stimulate proliferation in others. Clearly cAMP has cell type specific effects and the outcome on proliferation is largely attributed to crosstalk from cAMP to the RAS/RAF/mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK pathway. We review the crosstalk between these two ancient and conserved pathways, describing the molecular mechanisms underlying the interactions between these pathways and discussing their possible biological importance.

  10. Integrating signals between cAMP and the RAS/RAF/MEK/ERK signalling pathways. Based on the anniversary prize of the Gesellschaft für Biochemie und Molekularbiologie Lecture delivered on 5 July 2003 at the Special FEBS Meeting in Brussels.

    PubMed

    Dumaz, Nicolas; Marais, Richard

    2005-07-01

    One of the hallmarks of cAMP is its ability to inhibit proliferation in many cell types, but stimulate proliferation in others. Clearly cAMP has cell type specific effects and the outcome on proliferation is largely attributed to crosstalk from cAMP to the RAS/RAF/mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK pathway. We review the crosstalk between these two ancient and conserved pathways, describing the molecular mechanisms underlying the interactions between these pathways and discussing their possible biological importance. PMID:16008550

  11. Inhibition of ras oncogene: a novel approach to antineoplastic therapy.

    PubMed

    Scharovsky, O G; Rozados, V R; Gervasoni, S I; Matar, P

    2000-01-01

    The most frequently detected oncogene alterations, both in animal and human cancers, are the mutations in the ras oncogene family. These oncogenes are mutated or overexpressed in many human tumors, with a high incidence in tumors of the pancreas, thyroid, colon, lung and certain types of leukemia. Ras is a small guanine nucleotide binding protein that transduces biological information from the cell surface to cytoplasmic components within cells. The signal is transduced to the cell nucleus through second messengers, and it ultimately induces cell division. Oncogenic forms of p21(ras) lead to unregulated, sustained signaling through downstream effectors. The ras family of oncogenes is involved in the development of both primary tumors and metastases making it a good therapeutic target. Several therapeutic approaches to cancer have been developed pointing to reducing the altered gene product or to eliminating its biological function: (1) gene therapy with ribozymes, which are able to break down specific RNA sequences, or with antisense oligonucleotides, (2) immunotherapy through passive or active immunization protocols, and (3) inhibition of p21(ras) farnesylation either by inhibition of farnesyl transferase or synthesis inhibition of farnesyl moieties. PMID:10895051

  12. Signal focusing through active transport

    NASA Astrophysics Data System (ADS)

    Godec, Aljaž; Metzler, Ralf

    2015-07-01

    The accuracy of molecular signaling in biological cells and novel diagnostic devices is ultimately limited by the counting noise floor imposed by the thermal diffusion. Motivated by the fact that messenger RNA and vesicle-engulfed signaling molecules transiently bind to molecular motors and are actively transported in biological cells, we show here that the random active delivery of signaling particles to within a typical diffusion distance to the receptor generically reduces the correlation time of the counting noise. Considering a variety of signaling particle sizes from mRNA to vesicles and cell sizes from prokaryotic to eukaryotic cells, we show that the conditions for active focusing—faster and more precise signaling—are indeed compatible with observations in living cells. Our results improve the understanding of molecular cellular signaling and novel diagnostic devices.

  13. A RAS renaissance: emerging targeted therapies for KRAS-mutated non-small cell lung cancer.

    PubMed

    Vasan, Neil; Boyer, Julie L; Herbst, Roy S

    2014-08-01

    Of the numerous oncogenes implicated in human cancer, the most common and perhaps the most elusive to target pharmacologically is RAS. Since the discovery of RAS in the 1960s, numerous studies have elucidated the mechanism of activity, regulation, and intracellular trafficking of the RAS gene products, and of its regulatory pathways. These pathways yielded druggable targets, such as farnesyltransferase, during the 1980s to 1990s. Unfortunately, early clinical trials investigating farnesyltransferase inhibitors yielded disappointing results, and subsequent interest by pharmaceutical companies in targeting RAS waned. However, recent advances including the identification of novel regulatory enzymes (e.g., Rce1, Icmt, Pdeδ), siRNA-based synthetic lethality screens, and fragment-based small-molecule screens, have resulted in a "Ras renaissance," signified by new Ras and Ras pathway-targeted therapies that have led to new clinical trials of patients with Ras-driven cancers. This review gives an overview of KRas signaling pathways with an emphasis on novel targets and targeted therapies, using non-small cell lung cancer as a case example.

  14. Lead identification for the K-Ras protein: virtual screening and combinatorial fragment-based approaches

    PubMed Central

    Pathan, Akbar Ali Khan; Panthi, Bhavana; Khan, Zahid; Koppula, Purushotham Reddy; Alanazi, Mohammed Saud; Sachchidanand; Parine, Narasimha Reddy; Chourasia, Mukesh

    2016-01-01

    Objective Kirsten rat sarcoma (K-Ras) protein is a member of Ras family belonging to the small guanosine triphosphatases superfamily. The members of this family share a conserved structure and biochemical properties, acting as binary molecular switches. The guanosine triphosphate-bound active K-Ras interacts with a range of effectors, resulting in the stimulation of downstream signaling pathways regulating cell proliferation, differentiation, and apoptosis. Efforts to target K-Ras have been unsuccessful until now, placing it among high-value molecules against which developing a therapy would have an enormous impact. K-Ras transduces signals when it binds to guanosine triphosphate by directly binding to downstream effector proteins, but in case of guanosine diphosphate-bound conformation, these interactions get disrupted. Methods In the present study, we targeted the nucleotide-binding site in the “on” and “off” state conformations of the K-Ras protein to find out suitable lead compounds. A structure-based virtual screening approach has been used to screen compounds from different databases, followed by a combinatorial fragment-based approach to design the apposite lead for the K-Ras protein. Results Interestingly, the designed compounds exhibit a binding preference for the “off” state over “on” state conformation of K-Ras protein. Moreover, the designed compounds’ interactions are similar to guanosine diphosphate and, thus, could presumably act as a potential lead for K-Ras. The predicted drug-likeness properties of these compounds suggest that these compounds follow the Lipinski’s rule of five and have tolerable absorption, distribution, metabolism, excretion and toxicity values. Conclusion Thus, through the current study, we propose targeting only “off” state conformations as a promising strategy for the design of reversible inhibitors to pharmacologically inhibit distinct conformations of K-Ras protein. PMID:27217775

  15. Novel approach to abuse the hyperactive K-Ras pathway for adenoviral gene therapy of colorectal cancer

    SciTech Connect

    Naumov, Inna; Kazanov, Dina; Lisiansky, Victoria; Starr, Alex; Aroch, Ilan; Shapira, Shiran; Kraus, Sarah; Arber, Nadir

    2012-01-15

    Background: Functional activation of oncogenic K-Ras signaling pathway plays an important role in the early events of colorectal carcinogenesis (CRC). K-Ras proto-oncogene is involved in 35-40% of CRC cases. Mutations in the Ras gene trigger the transduction of proliferative and anti-apoptotic signals, even in the absence of extra cellular stimuli. The objective of the current study was to use a gene-targeting approach to kill human CRC cells selectively harboring mutated K-Ras. Results: A recombinant adenovirus that carries a lethal gene, PUMA, under the control of a Ras responsive promoter (Ad-Py4-SV40-PUMA) was used selectively to target CRC cells (HCT116, SW480, DLD1 and RIE-Ras) that possess a hyperactive Ras pathway while using HT29 and RIE cells as a control that harbors wild type Ras and exhibit very low Ras activity. Control vector, without the Ras responsive promoter elements was used to assess the specificity of our 'gene therapy' approach. Both adenoviral vectors were assed in vitro and in xenograft model in vivo. Ad-Py4-SV40-PUMA showed high potency to induce {approx} 50% apoptosis in vitro, to abolish completely tumor formation by infecting cells with the Ad-Py4-SV40-PUMA prior xenografting them in nude mice and high ability to suppress by {approx} 35% tumor progression in vivo in already established tumors. Conclusions: Selective targeting of CRC cells with the activated Ras pathway may be a novel and effective therapy in CRC. The high potency of this adenoviral vector may help to overcome an undetectable micro metastasis that is the major hurdle in challenging with CRC.

  16. Inhibitors of Ras-SOS Interactions.

    PubMed

    Lu, Shaoyong; Jang, Hyunbum; Zhang, Jian; Nussinov, Ruth

    2016-04-19

    Activating Ras mutations are found in about 30 % of human cancers. Ras activation is regulated by guanine nucleotide exchange factors, such as the son of sevenless (SOS), which form protein-protein interactions (PPIs) with Ras and catalyze the exchange of GDP by GTP. This is the rate-limiting step in Ras activation. However, Ras surfaces lack any evident suitable pockets where a molecule might bind tightly, rendering Ras proteins still 'undruggable' for over 30 years. Among the alternative approaches is the design of inhibitors that target the Ras-SOS PPI interface, a strategy that is gaining increasing recognition for treating Ras mutant cancers. Herein we focus on data that has accumulated over the past few years pertaining to the design of small-molecule modulators or peptide mimetics aimed at the interface of the Ras-SOS PPI. We emphasize, however, that even if such Ras-SOS therapeutics are potent, drug resistance may emerge. To counteract this development, we propose "pathway drug cocktails", that is, drug combinations aimed at parallel (or compensatory) pathways. A repertoire of classified cancer, cell/tissue, and pathway/protein combinations would be beneficial toward this goal.

  17. [Role of RAS in prehypertension].

    PubMed

    Inaba, Shinji; Iwai, Masaru; Horiuchi, Masatsugu

    2008-08-01

    Hypertension has long been recognized as a major risk factor of several cardiovascular diseases. It is well known that the renin-angiotensin system(RAS) is involved in the pathogenesis of both hypertension and hypertensive end-organ damage. Untreated hypertension is self-accelerating condition through RAS stimulation. Activation of RAS contributes to the transition from borderline hypertension to established hypertension. Recently, "the Seventh Report of Joint National Committee on Prevention, Detection, Evaluation and Treatment of High Blood Pressure (JNC 7)" proposed a new classification of borderline blood pressure levels, as "prehypertension". The therapeutic focus has begun to shift from the therapy of established hypertension to the prevention of hypertension. This review addressed the relationship between hypertension, prehypertension and the role of RAS. PMID:18700549

  18. Involvement of RAGE, NADPH oxidase, and Ras/Raf-1 pathway in glycated LDL-induced expression of heat shock factor-1 and plasminogen activator inhibitor-1 in vascular endothelial cells.

    PubMed

    Sangle, Ganesh V; Zhao, Ruozhi; Mizuno, Tooru M; Shen, Garry X

    2010-09-01

    Atherothrombotic cardiovascular diseases are the predominant causes of mortality of diabetic patients. Plasminogen activator inhibitor-1 (PAI-1) is the major physiological inhibitor for fibrinolysis, and it is also implicated in inflammation and tissue remodeling. Increased levels of PAI-1 and glycated low-density lipoprotein (glyLDL) were detected in patients with diabetes. Previous studies in our laboratory demonstrated that heat shock factor-1 (HSF1) is involved in glyLDL-induced PAI-1 overproduction in vascular endothelial cells (EC). The present study investigated transmembrane signaling mechanisms involved in glyLDL-induced HSF1 and PAI-1 up-regulation in cultured human vascular EC and streptozotocin-induced diabetic mice. Receptor for advanced glycation end products (RAGE) antibody prevented glyLDL-induced increase in the abundance of PAI-1 in EC. GlyLDL significantly increased the translocation of V-Ha-Ras Harvey rat sarcoma viral oncogene homologue (H-Ras) from cytoplasm to membrane compared with LDL. Farnesyltransferase inhibitor-277 or small interference RNA against H-Ras inhibited glyLDL-induced increases in HSF1 and PAI-1 in EC. Treatment with diphenyleneiodonium, a nicotinamide adenine dinucleotide phosphate oxidase (NOX) inhibitor, blocked glyLDL-induced translocation of H-Ras, elevated abundances of HSF1 and PAI-1 in EC, and increased release of hydrogen peroxide from EC. Small interference RNA for p22(phox) prevented glyLDL-induced expression of NOX2, HSF1, and PAI-1 in EC. GlyLDL significantly increased V-raf-1 murine leukemia viral oncogene homolog 1 (Raf-1) phosphorylation. Treatment with Raf-1 inhibitor blocked glyLDL-induced increase of PAI-1 mRNA in EC. The levels of RAGE, H-Ras, NOX4, HSF1, and PAI-1 were increased in hearts of streptozotocin-diabetic mice and positively correlated with plasma glucose. The results suggest that RAGE, NOX, and H-Ras/Raf-1 are implicated in the up-regulation of HSF1 or PAI-1 in vascular EC under diabetes

  19. Insulin, insulin-like growth factor-I, and platelet-derived growth factor activate extracellular signal-regulated kinase by distinct pathways in muscle cells.

    PubMed

    Tsakiridis, T; Tsiani, E; Lekas, P; Bergman, A; Cherepanov, V; Whiteside, C; Downey, G P

    2001-10-19

    We have investigated the signaling pathways initiated by insulin, insulin-like growth factor-1 (IGF-I), and platelet-derived growth factor (PDGF) leading to activation of the extracellular signal-regulated kinase (ERK) in L6 myotubes. Insulin but not IGF-I or PDGF-induced ERK activation was abrogated by Ras inhibition, either by treatment with the farnesyl transferase inhibitor FTP III, or by actin disassembly by cytochalasin D, previously shown to inhibit Ras activation. The protein kinase C (PKC) inhibitor bisindolylmaleimide abolished PDGF but not IGF-I or insulin-induced ERK activation. ERK activation by insulin, IGF-I, or PDGF was unaffected by the phosphatidylinositol 3-kinase inhibitor wortmannin but was abolished by the MEK inhibitor PD98059. In contrast, activation of the pathway involving phosphatidylinositol 3-kinase (PI3k), protein kinase B, and glycogen synthase kinase 3 (GSK3) was mediated similarly by all three receptors, through a PI 3-kinase-dependent but Ras- and actin-independent pathway. We conclude that ERK activation is mediated by distinct pathways including: (i) a cytoskeleton- and Ras-dependent, PKC-independent, pathway utilized by insulin, (ii) a PKC-dependent, cytoskeleton- and Ras-independent pathway used by PDGF, and (iii) a cytoskeleton-, Ras-, and PKC-independent pathway utilized by IGF-I.

  20. Signalling pathway leading to an activation of mitogen-activated protein kinase by stimulating M3 muscarinic receptor.

    PubMed

    Kim, J Y; Yang, M S; Oh, C D; Kim, K T; Ha, M J; Kang, S S; Chun, J S

    1999-01-15

    The signalling pathway leading to an activation of mitogen-activated protein (MAP) kinase subtypes Erk-1 and -2 upon stimulation of muscarinic receptor with carbachol in human neuroblastoma SK-N-BE2(C) cells was investigated. Carbachol activated Erk-1/-2 by stimulating M3 muscarinic receptor, as determined by specific antagonists for individual muscarinic receptors. The activation of Erk-1/-2 by carbachol was blocked by the inhibition or down-regulation of protein kinase C (PKC). Among the multiple PKC isoforms expressed in SK-N-BE2(C) cells, only PKCepsilon was activated by the treatment of carbachol, and selective down-regulation of PKCepsilon was sufficient to block Erk-1/-2 activation. Carbachol treatment induced activation of the serine/threonine protein kinase Raf, and an inhibition of Raf blocked Erk-1/-2 activation. Ectopic expression of inhibitory small GTPase Ras, RasN17, blocked the carbachol-induced Raf activation without affecting the activation of PKCepsilon, while the inhibition of PKC blocked the Raf activation. Thus, these results suggest that carbachol-induced activation of PKCepsilon mediates Erk-1/-2 activation by a sequential activation of Ras, Raf and MAP kinase kinase.

  1. Post-translational processing of purified human K-ras in Xenopus oocytes.

    PubMed

    Kaplan, J B; Sass, P M

    1991-01-01

    Membrane localization of ras p21 involves a complex series of post-translational processing events, including S-farnesylation of Cys-186, removal of three carboxyl-terminal amino acid residues, and methylation of the carboxyl-terminal farnesylcysteine residue. Palmitoylation of cysteine residues within the hypervariable region (amino acids 165-185) is also required for membrane localization of mammalian H-, N-, and K-ras(A). For K-ras(B), which contains no cysteine residues within the hypervariable region, a polybasic domain substitutes for palmitoylation as a second signal for plasma membrane targeting. In order to investigate the localization of K-ras(B) to the plasma membrane, we purified wild-type and mutant human K-ras(B) proteins from strains of E. coli harboring bacterial expression plasmids and injected them into Xenopus laevis oocytes. Our results show that wild-type and activated K-ras(B) proteins can be post-translationally modified and can induce meiotic maturation in Xenopus oocytes. A mutation at Cys-186 (Cys to Gly) abolished the ability of activated K-ras(B) to induce meiosis. Deprivation of isoprenyl precursors by the addition of lovastatin, a drug that blocks the synthesis of mevalonate, also abolished the ability of activated K-ras(B) to induce meiosis, although this inhibition could be overcome by the addition of exogenous mevalonate. Lovastatin did not block meiotic maturation induced by microinjection of purified mos protein, a component of the cytostatic factor that arrests Xenopus oocytes at the first meiotic prophase. These results indicate that post-translational isoprenylation of K-ras(B) is essential for plasma membrane targeting and induction of meiotic maturation in Xenopus oocytes and that further isoprenyl modification of proteins downstream from mos signal transduction is not essential for this process. PMID:16296004

  2. Across the universe of K-RAS mutations in non-small-cell-lung cancer.

    PubMed

    Piva, Sheila; Ganzinelli, Monica; Garassino, Marina Chiara; Caiola, Elisa; Farina, Gabriella; Broggini, Massimo; Marabese, Mirko

    2014-01-01

    RAS family proteins are important signaling molecules that regulate cell growth, survival and differentiation by coupling receptor activation to downstream effector pathways. Three distinct genes encode for the three different proteins H-, K-, and N- RAS. These proteins share high sequence homology, particularly at the N-Terminal domain. Among them, K-RAS is one of the most frequently mutated in human cancer. The majority of the mutations present in K-RAS are at codon 12 (from 80 to 100%) followed by codon 13 and 61. In all cases, aminoacid change leads to a constitutively activated protein. K-RAS mutations have a role in tumor development as well as in tumor progression and resistance. Despite the various studies which have been published, the prognostic and predictive role of K-RAS mutations is still under debate. Keeping in mind that the glycine present at position 12 can be substituted by valine, aspartic acid or cysteine, it could be well understood that each different substitution plays a different role in K-RAS-dependent processes. The present article focuses on the molecular and biological characteristics of K-RAS protein, its role in NSCLC tumor development and progression. We also present an overview of the preclinical models both in vitro and in vivo available to determine the role of K-RAS in tumor progression and response to treatment and on the recent results obtained in this field. Finally, we have considered the impact of KRAS mutations in clinical practice, analyzing the different recent trials that have taken into consideration K-RAS.

  3. Extended RAS analysis for anti-epidermal growth factor therapy in patients with metastatic colorectal cancer.

    PubMed

    Hecht, J Randolph; Douillard, Jean-Yves; Schwartzberg, Lee; Grothey, Axel; Kopetz, Scott; Rong, Alan; Oliner, Kelly S; Sidhu, Roger

    2015-09-01

    RAS family proteins (including KRAS and NRAS) play important roles in the epidermal growth factor receptor (EGFR) signaling pathway. Mutations in RAS genes (occurring at loci in exons 2, 3, and 4) often result in constitutive activation of RAS proteins and persistent downstream signaling. Mutations in KRAS exon 2 (codon 12/13) are an established predictor of lack of response to the anti-EGFR monoclonal antibodies cetuximab and panitumumab in patients with metastatic colorectal cancer (mCRC), and have been used routinely in clinical practice to identify patients unlikely to derive benefit from these therapies. However, a meaningful proportion of patients with mCRC have tumors bearing other mutations in RAS genes. Recent studies have demonstrated that evaluation of an extended panel of RAS mutations—including mutations in KRAS exon 2, 3, and 4 and NRAS exons 2, 3, and 4—can better define the patient population that is unlikely to benefit from anti-EGFR therapy, with concomitant improvements in outcomes in the more highly selected RAS wild-type group. This discovery has changed the practice of oncology and has the potential to spare patients from exposure to ineffective therapy. In the near future, it is important for the oncology community to validate extended RAS analysis assays and make certain that patients who are candidates for anti-EGFR therapy undergo appropriate testing and treatment.

  4. Stimulation of Ebola virus production from persistent infection through activation of the Ras/MAPK pathway.

    PubMed

    Strong, James E; Wong, Gary; Jones, Shane E; Grolla, Allen; Theriault, Steven; Kobinger, Gary P; Feldmann, Heinz

    2008-11-18

    Human infections with Ebola virus (EBOV) result in a deadly viral disease known as Ebola hemorrhagic fever. Up to 90% of infected patients die, and there is no available treatment or vaccine. The sporadic human outbreaks are believed to result when EBOV "jumps" from an infected animal to a person and is subsequently transmitted between persons by direct contact with infected blood or body fluids. This study was undertaken to investigate the mechanism by which EBOV can persistently infect and then escape from model cell and animal reservoir systems. We report a model system in which infection of mouse and bat cell lines with EBOV leads to persistence, which can be broken with low levels of lipopolysaccharide or phorbol-12-myristate-13-acetate (PMA). This reactivation depends on the Ras/MAPK pathway through inhibition of RNA-dependent protein kinase and eukaryotic initiation factor 2alpha phosphorylation and occurs at the level of protein synthesis. EBOV also can be evoked from mice 7 days after infection by PMA treatment, indicating that a similar mechanism occurs in vivo. Our findings suggest that EBOV may persist in nature through subclinical infection of a reservoir species, such as bats, and that appropriate physiological stimulation may result in increased replication and transmission to new hosts. Identification of a presumptive mechanism responsible for EBOV emergence from its reservoir underscores the "hit-and-run" nature of the initiation of human and/or nonhuman primate EBOV outbreaks and may provide insight into possible countermeasures to interfere with transmission. PMID:18981410

  5. SRC-DEPENDENT PHOSPHORYLATION OF THE EPIDERMAL GROWTH FACTOR RECEPTOR ON TYROSINE 845 IS REQUIRED FOR ZINC-INDUCED RAS ACTIVATION

    EPA Science Inventory

    Src-dependent Phosphorylation of the Epidermal Growth Factor Receptor on Tyrosine 845 Is Required for Zinc-induced Ras Activation
    Weidong Wu 1 , Lee M. Graves 2 , Gordon N. Gill 3 , Sarah J. Parsons 4 , and James M. Samet 5
    1 Center for Environmental Medicine and Lung Biolo...

  6. The Thyroid Hormone Receptor Is a Suppressor of ras-Mediated Transcription, Proliferation, and Transformation

    PubMed Central

    García-Silva, Susana; Aranda, Ana

    2004-01-01

    The thyroid hormone triiodothyronine (T3) has a profound effect on growth, differentiation, and metabolism in higher organisms. Here we demonstrate that T3 inhibits ras-induced proliferation in neuroblastoma cells and blocks induction of cyclin D1 expression by the oncogene. The hormone, at physiological concentrations, strongly antagonizes the transcriptional response mediated by the Ras/mitogen-activated protein kinase/ribosomal-S6 subunit kinase (Rsk) signaling pathway in cells expressing thyroid hormone receptors (TRs). T3 blocks the response to the oncogenic forms of the three ras isoforms (H-, K-, and N-ras) and both TRα and TRβ can mediate this action. The main target for induction of cyclin D1 transcription by oncogenic ras in neuroblastoma cells is a cyclic AMP response element (CRE) located in proximal promoter sequences, and T3 represses the transcriptional activity of b-Zip transcription factors such as CREB (CRE-binding protein) or ATF-2 (activation transcription factor 2) that are direct targets of Rsk2 and bind to this sequence. The hormone also blocks fibroblast transformation by oncogenic ras when TR is expressed. Furthermore, TRs act as suppressors of tumor formation by the oncogene in vivo in nude mice. The TRβ isoform has stronger antitransforming properties than the α isoform and can inhibit tumorigenesis even in hypothyroid mice. These results show the existence of a previously unrecognized transcriptional cross talk between the TRs and the ras oncogene which influences relevant processes such as cell proliferation, transformation, or tumorigenesis. PMID:15314161

  7. Measuring Ras-family GTP levels in vivo--running hot and cold.

    PubMed

    Castro, Ariel F; Rebhun, John F; Quilliam, Lawrence A

    2005-10-01

    The detection of Ras-family GTPase activity is important in the determination of cell signaling events elicited by numerous ligands and cellular processes. This has been made much easier in recent years by the use of glutathione S-transferase (GST)-fused Ras binding domains. These domains from downstream effectors such as Raf and RalGDS preferentially bind the GTP-bound Ras proteins enabling their extraction and subsequent quantification by immunoblotting. Despite this advance, effectors that efficiently discriminate between GTP- and GDP-bound states are not available for many Ras-family members. While this hampers the ability to detect activity in tissue specimens, it is still possible to metabolically label cells with (32)Pi to load the GTP/GDP pool with labeled nucleotides, immunoprecipitate the Ras protein and detect the bound label following thin layer chromatographic separation and exposure to film or a phosphorimager. Using a transfection system and antibodies that recognize epitope tags one can test the ability of a protein to work as a GEF or GAP for a certain GTPase. Alternatively, if an immunoprecipitating antibody is available to the target GTPase, then analysis of endogenous GTP/GDP ratio is possible. Here we describe the detection of M-Ras and Rap1 activity by GST-RBD pull-down as well as that of Rheb and epitope-tagged R-Ras by classical metabolic labeling and immunoprecipitation.

  8. Involvement of phosphatidylinositol 3-kinase, but not RalGDS, in TC21/R-Ras2-mediated transformation.

    PubMed

    Murphy, Gretchen A; Graham, Suzanne M; Morita, Staeci; Reks, Sarah E; Rogers-Graham, Kelley; Vojtek, Anne; Kelley, Grant G; Der, Channing J

    2002-03-22

    Oncogenic Ras and activated forms of the Ras-related protein TC21/R-Ras2 share similar abilities to alter cell proliferation. However, in contrast to Ras, we found previously that TC21 fails to activate the Raf-1 serine/threonine kinase. Thus, TC21 must utilize non-Raf effectors to regulate cell function. In this study, we determined that TC21 interacts strongly with some (RalGDS, RGL, RGL2/Rlf, AF6, and the phosphatidylinositol 3-kinase (PI3K) catalytic subunit p110delta), and weakly with other Ras small middle dotGTP-binding proteins. In addition, library screening identified novel TC21-interacting proteins. We also determined that TC21, similar to Ras, mediates activation of phospholipase Cepsilon. We then examined if RalGDS, a RalA guanine nucleotide exchange factor, or PI3K are effectors for TC21-mediated signaling and cell proliferation in murine fibroblasts. We found that overexpression of full-length RalGDS reduced the focus forming activity of activated TC21. Furthermore, expression of activated Ras, but not TC21, enhanced GTP loading on RalA. In fact, TC21 attenuated insulin-stimulated RalA small middle dotGTP formation. In contrast, like Ras, expression of activated TC21 resulted in membrane translocation and an increase in the PI3K-dependent phosphorylation of Akt, and inhibition of PI3K activity interfered with TC21 focus formation. Finally, unlike Ras, TC21 did not activate the Rac small GTPase, indicating that Ras may not activate Rac by PI3K. Taken together, these results suggest that PI3K, but not RalGDS, is an important mediator of cell proliferation by TC21.

  9. Oncogenic Ras modulates p38 MAPK-mediated inflammatory cytokine production in glioblastoma cells.

    PubMed

    Munoz, Lenka; Yeung, Yiu To; Grewal, Thomas

    2016-04-01

    Inflammation is an important factor promoting the progression of glioblastoma. In the present study we examined the contribution of Ras signaling and TNFα/IL-1β cytokines to the development of the glioblastoma inflammatory microenvironment. Enhanced activation of Ras through de-regulated activation of receptor tyrosine kinases, such as EGFR, PDGFR and cMet, is a hallmark of the majority of glioblastomas. Glioblastoma microenvironment contains high levels of TNFα and IL-1β, which mediate inflammation through induction of a local network of cytokines and chemokines. While many studies have focused on Ras- and TNFα/IL-1β-driven inflammation in isolation, little is known about the co-operation between these oncogenic and microenvironment-derived stimuli. Using constitutively active HRasG12V that mimics enhanced Ras activation, we demonstrate that elevated Ras activity in glioblastoma cells leads to up-regulation of IL-6 and IL-8. Furthermore, Ras synergizes with the microenvironment-derived TNFα and IL-1β resulting in amplified IL-6/IL-8 secretion. IL-8 secretion induced by Ras and TNFα/IL-1β is attenuated by inhibitors targeting Erk, JNK and p38 MAPK pathways. IL-6 secretion significantly decreased upon inhibition of JNK and p38 MAPK pathways. Interestingly, although constitutively active HRasG12V does not increase basal or TNFα/IL-1β stimulated p38 MAPK activity, HRasG12V increased the efficacy of the p38 MAPK inhibitor SB203580 to inhibit IL-1β-induced IL-6 secretion. In summary, oncogenic Ras co-operates with the microenvironment-derived TNFα/IL-1β to sustain inflammatory microenvironment, which was effectively attenuated via inhibition of p38 MAPK signaling. PMID:26794430

  10. Ras-related TC21 is activated by mutation in a breast cancer cell line, but infrequently in breast carcinomas in vivo.

    PubMed Central

    Barker, K. T.; Crompton, M. R.

    1998-01-01

    Activating ras mutations are found in many types of human tumour. Mutations in Harvey (H-), Kirsten (K-) and neuronal (N-) ras are, however, rarely found in breast carcinomas. TC21 is a ras family member that shares close homology to H-, K- and N-ras, and activating mutations have been found in ovarian carcinoma and leiomyosarcoma cell lines. We have examined panels of cDNAs from breast, ovarian and cervical cell lines, and primary and metastatic breast tumours for mutations in TC21 using a single-strand conformational polymorphism (SSCP)-based assay. One breast cancer cell line, CAL51, exhibited an altered SSCP pattern, compared with normal tissue, which was due to an A-T base change in codon 72, causing a predicted Gln-Leu activating mutation. Of nine primary and 15 metastatic breast tumour cDNAs analysed, none exhibited an altered pattern by SSCP. The apparently wild-type pattern by SSCP analysis was confirmed by sequence analysis of some of the cDNAs assayed. Thus, we conclude that mutations in TC21 are uncommon in breast carcinomas. Images Figure 1 Figure 2 Figure 3 PMID:9703274

  11. MicroRNA-based Therapeutic Strategies for Targeting Mutant and Wild Type RAS in Cancer

    PubMed Central

    Sharma, Sriganesh B.; Ruppert, J. Michael

    2015-01-01

    MicroRNAs (miRs) have been causally implicated in the progression and development of a wide variety of cancers. miRs modulate the activity of key cell signaling networks by regulating the translation of pathway component proteins. Thus, the pharmacological targeting of miRs that regulate cancer cell signaling networks, either by promoting (using miR-supplementation) or by suppressing (using anti-sense oligonucleotide based strategies) miR activity is an area of intense research. The RAS-Extracellular signal regulated kinase (ERK) pathway represents a major miR-regulated signaling network that endows cells with some of the classical hallmarks of cancer, and is often inappropriately activated in malignancies by somatic genetic alteration through point mutation or alteration of gene copy number. In addition, recent progress indicates that many tumors may be deficient in GTPase activating proteins (GAPs) due to the collaborative action of oncogenic microRNAs. Recent studies also suggest that in tumors harboring a mutant RAS allele there is a critical role for wild type RAS proteins in determining overall RAS-ERK pathway activity. Together, these two advances comprise a new opportunity for therapeutic intervention. In this review, we evaluate miR-based therapeutic strategies for modulating RAS-ERK signaling in cancers, in particular for more direct modulation of RAS-GTP levels, with the potential to complement current strategies in order to yield more durable treatment responses. To this end, we discuss the potential for miR-based therapies focused on three prominent miRs including the pan-RAS regulator let-7 and the GAP regulator comprised of miR-206 and miR-21 (miR-206/21). PMID:26284568

  12. Ras moves to stay in place.

    PubMed

    Schmick, Malte; Kraemer, Astrid; Bastiaens, Philippe I H

    2015-04-01

    Ras is a major intracellular signaling hub. This elevated position comes at a precarious cost: a single point mutation can cause aberrant signaling. The capacity of Ras for signaling is inextricably linked to its enrichment at the plasma membrane (PM). This PM localization is dynamically maintained by three essential elements: alteration of membrane affinities via lipidation and membrane-interaction motifs; trapping on specific membranes coupled with unidirectional vesicular transport to the PM; and regulation of diffusion via interaction with a solubilization factor. This system constitutes a cycle that primarily corrects for the entropic equilibration of Ras to all membranes that dilutes its signaling capacity. We illuminate how this reaction-diffusion system maintains an out-of-equilibrium localization of Ras GTPases and thereby confers signaling functionality to the PM.

  13. Regulation of Ras proteins by reactive nitrogen species.

    PubMed

    Davis, Michael F; Vigil, Dom; Campbell, Sharon L

    2011-08-01

    Ras GTPases have been a subject of intense investigation since the early 1980s, when single point mutations in Ras were shown to cause deregulated cell growth control. Subsequently, Ras was identified as the most prevalent oncogene found in human cancer. Ras proteins regulate a host of pathways involved in cell growth, differentiation, and apoptosis by cycling between inactive GDP-bound and active GTP-bound states. Regulation of Ras activity is controlled by cellular factors that alter guanine nucleotide cycling. Oncogenic mutations prevent protein regulatory factors from down-regulating Ras activity, thereby maintaining Ras in a chronically activated state. The central dogma in the field is that protein modulatory factors are the primary regulators of Ras activity. Since the mid-1990s, however, evidence has accumulated that small molecule reactive nitrogen species (RNS) can also influence Ras guanine nucleotide cycling. Herein, we review the basic chemistry behind RNS formation and discuss the mechanism through which various RNS enhance nucleotide exchange in Ras proteins. In addition, we present studies that demonstrate the physiological relevance of RNS-mediated Ras activation within the context of immune system function, brain function, and cancer development. We also highlight future directions and experimental methods that may enhance our ability to detect RNS-mediated activation in cell cultures and in vivo. The development of such methods may ultimately pave new directions for detecting and elucidating how Ras proteins are regulated by redox species, as well as for targeting redox-activated Ras in cancer and other disease states.

  14. Anti-tumour activity in RAS-driven tumours by blocking AKT and MEK

    PubMed Central

    Tolcher, Anthony W.; Khan, Khurum; Ong, Michael; Banerji, Udai; Papadimitrakopoulou, Vassiliki; Gandara, David R.; Patnaik, Amita; Baird, Richard D.; Olmos, David; Garrett, Christopher R.; Skolnik, Jeffrey M.; Rubin, Eric H.; Smith, Paul D.; Huang, Pearl; Learoyd, Maria; Shannon, Keith A.; Morosky, Anne; Tetteh, Ernestina; Jou, Ying-Ming; Papadopoulos, Kyriakos P.; Moreno, Victor; Kaiser, Brianne; Yap, Timothy A.; Yan, Li; de Bono, Johann S.

    2014-01-01

    Purpose KRAS is the most commonly mutated oncogene in human tumours. KRAS-mutant cells may exhibit resistance to the allosteric MEK1/2 inhibitor selumetinib (AZD6244; ARRY-142886) and allosteric AKT inhibitors (such as MK-2206), the combination of which may overcome resistance to both monotherapies. Experimental Design We conducted a dose/schedule-finding study evaluating MK-2206 and selumetinib in patients with advanced treatment-refractory solid tumours. Recommended dosing schedules were defined as MK-2206 135 mg weekly and selumetinib 100 mg once-daily. Results Grade 3 rash was the most common dose-limiting toxicity (DLT); other DLTs included grade 4 lipase increase, grade 3 stomatitis, diarrhoea, and fatigue, and grade 3 and grade 2 retinal pigment epithelium detachment. There were no meaningful pharmacokinetic drug-drug interactions. Clinical anti-tumour activity included RECIST 1.0-confirmed partial responses in non-small cell lung cancer and low-grade ovarian carcinoma. Conclusion Responses in KRAS-mutant cancers were generally durable. Clinical co-targeting of MEK and AKT signalling may be an important therapeutic strategy in KRAS-driven human malignancies (Trial NCT number NCT01021748). PMID:25516890

  15. Calcium-dependent immediate-early gene induction in lymphocytes is negatively regulated by p21Ha-ras.

    PubMed

    Chen, C Y; Forman, L W; Faller, D V

    1996-11-01

    The induction of immediate-early (IE) response genes, such as egr-1, c-fos, and c-jun, occurs rapidly after the activation of T lymphocytes. The process of activation involves calcium mobilization, activation of protein kinase C (PKC), and phosphorylation of tyrosine kinases. p21(ras), a guanine nucleotide binding factor, mediates T-cell signal transduction through PKC-dependent and PKC-independent pathways. The involvement of p21(ras) in the regulation of calcium-dependent signals has been suggested through analysis of its role in the activation of NF-AT. We have investigated the inductions of the IE genes in response to calcium signals in Jurkat cells (in the presence of activated p21(ras)) and their correlated consequences. The expression of activated p21(ras) negatively regulated the induction of IE genes by calcium ionophore. This inhibition of calcium-activated IE gene induction was reversed by treatment with cyclosporin A, suggesting the involvement of calcineurin in this regulation. A later result of inhibition of this activation pathway by p21(ras) was down-regulation of the activity of the transcription factor AP-1 and subsequent coordinate reductions in IL-2 gene expression and protein production. These results suggest that p2l(ras) is an essential mediator in generating not only positive but also negative modulatory mechanisms controlling the competence of T cells in response to inductive stimulations.

  16. Resveratrol induces apoptosis by directly targeting Ras-GTPase-activating protein SH3 domain-binding protein 1.

    PubMed

    Oi, N; Yuan, J; Malakhova, M; Luo, K; Li, Y; Ryu, J; Zhang, L; Bode, A M; Xu, Z; Li, Y; Lou, Z; Dong, Z

    2015-05-14

    Resveratrol (trans-3,5,4'-truhydroxystilbene) possesses a strong anticancer activity exhibited as the induction of apoptosis through p53 activation. However, the molecular mechanism and direct target(s) of resveratrol-induced p53 activation remain elusive. Here, the Ras-GTPase-activating protein SH3 domain-binding protein 1 (G3BP1) was identified as a potential target of resveratrol, and in vitro binding assay results using resveratrol-conjugated Sepharose 4B beads confirmed their direct binding. Depletion of G3BP1 significantly diminishes resveratrol-induced p53 expression and apoptosis. We also found that G3BP1 negatively regulates p53 expression by interacting with ubiquitin-specific protease 10 (USP10), a deubiquitinating enzyme of p53. Disruption of the interaction of p53 with USP10 by G3BP1 interference leads to the suppression of p53 deubiquitination. Resveratrol, on the other hand, directly binds to G3BP1 and prevents the G3BP1/USP10 interaction, resulting in enhanced USP10-mediated deubiquitination of p53, and consequently increased p53 expression. These findings disclose a novel mechanism of resveratrol-induced p53 activation and resveratrol-induced apoptosis by direct targeting of G3BP1.

  17. Targeting RAS Membrane Association: Back to the Future for Anti-RAS Drug Discovery?

    PubMed

    Cox, Adrienne D; Der, Channing J; Philips, Mark R

    2015-04-15

    RAS proteins require membrane association for their biologic activity, making this association a logical target for anti-RAS therapeutics. Lipid modification of RAS proteins by a farnesyl isoprenoid is an obligate step in that association, and is an enzymatic process. Accordingly, farnesyltransferase inhibitors (FTI) were developed as potential anti-RAS drugs. The lack of efficacy of FTIs as anticancer drugs was widely seen as indicating that blocking RAS membrane association was a flawed approach to cancer treatment. However, a deeper understanding of RAS modification and trafficking has revealed that this was an erroneous conclusion. In the presence of FTIs, KRAS and NRAS, which are the RAS isoforms most frequently mutated in cancer, become substrates for alternative modification, can still associate with membranes, and can still function. Thus, FTIs failed not because blocking RAS membrane association is an ineffective approach, but because FTIs failed to accomplish that task. Recent findings regarding RAS isoform trafficking and the regulation of RAS subcellular localization have rekindled interest in efforts to target these processes. In particular, improved understanding of the palmitoylation/depalmitoylation cycle that regulates RAS interaction with the plasma membrane, endomembranes, and cytosol, and of the potential importance of RAS chaperones, have led to new approaches. Efforts to validate and target other enzymatically regulated posttranslational modifications are also ongoing. In this review, we revisit lessons learned, describe the current state of the art, and highlight challenging but promising directions to achieve the goal of disrupting RAS membrane association and subcellular localization for anti-RAS drug development. Clin Cancer Res; 21(8); 1819-27. ©2015 AACR. See all articles in this CCR Focus section, "Targeting RAS-Driven Cancers." PMID:25878363

  18. Targeting RAS Membrane Association: Back to the Future for Anti-RAS Drug Discovery?

    PubMed

    Cox, Adrienne D; Der, Channing J; Philips, Mark R

    2015-04-15

    RAS proteins require membrane association for their biologic activity, making this association a logical target for anti-RAS therapeutics. Lipid modification of RAS proteins by a farnesyl isoprenoid is an obligate step in that association, and is an enzymatic process. Accordingly, farnesyltransferase inhibitors (FTI) were developed as potential anti-RAS drugs. The lack of efficacy of FTIs as anticancer drugs was widely seen as indicating that blocking RAS membrane association was a flawed approach to cancer treatment. However, a deeper understanding of RAS modification and trafficking has revealed that this was an erroneous conclusion. In the presence of FTIs, KRAS and NRAS, which are the RAS isoforms most frequently mutated in cancer, become substrates for alternative modification, can still associate with membranes, and can still function. Thus, FTIs failed not because blocking RAS membrane association is an ineffective approach, but because FTIs failed to accomplish that task. Recent findings regarding RAS isoform trafficking and the regulation of RAS subcellular localization have rekindled interest in efforts to target these processes. In particular, improved understanding of the palmitoylation/depalmitoylation cycle that regulates RAS interaction with the plasma membrane, endomembranes, and cytosol, and of the potential importance of RAS chaperones, have led to new approaches. Efforts to validate and target other enzymatically regulated posttranslational modifications are also ongoing. In this review, we revisit lessons learned, describe the current state of the art, and highlight challenging but promising directions to achieve the goal of disrupting RAS membrane association and subcellular localization for anti-RAS drug development. Clin Cancer Res; 21(8); 1819-27. ©2015 AACR. See all articles in this CCR Focus section, "Targeting RAS-Driven Cancers."

  19. Inorganic pyrophosphate generation by transforming growth factor-beta-1 is mainly dependent on ANK induction by Ras/Raf-1/extracellular signal-regulated kinase pathways in chondrocytes.

    PubMed

    Cailotto, Frederic; Bianchi, Arnaud; Sebillaud, Sylvie; Venkatesan, Narayanan; Moulin, David; Jouzeau, Jean-Yves; Netter, Patrick

    2007-01-01

    ANK is a multipass transmembrane protein transporter thought to play a role in the export of intracellular inorganic pyrophosphate and so to contribute to the pathophysiology of chondrocalcinosis. As transforming growth factor-beta-1 (TGF-beta1) was shown to favor calcium pyrophosphate dihydrate deposition, we investigated the contribution of ANK to the production of extracellular inorganic pyrophosphate (ePPi) by chondrocytes and the signaling pathways involved in the regulation of Ank expression by TGF-beta1. Chondrocytes were exposed to 10 ng/mL of TGF-beta1, and Ank expression was measured by quantitative polymerase chain reaction and Western blot. ePPi was quantified in cell supernatants. RNA silencing was used to define the respective roles of Ank and PC-1 in TGF-beta1-induced ePPi generation. Finally, selective kinase inhibitors and dominant-negative/overexpression plasmid strategies were used to explore the contribution of several signaling pathways to Ank induction by TGF-beta1. TGF-beta1 strongly increased Ank expression at the mRNA and protein levels, as well as ePPi production. Using small interfering RNA technology, we showed that Ank contributed approximately 60% and PC-1 nearly 20% to TGF-beta1-induced ePPi generation. Induction of Ank by TGF-beta1 required activation of the extracellular signal-regulated kinase (ERK) pathway but not of p38-mitogen-activated protein kinase or of protein kinase A. In line with the general protein kinase C (PKC) inhibitor calphostin C, Gö6976 (a Ca2+-dependent PKC inhibitor) diminished TGF-beta1-induced Ank expression by 60%, whereas a 10% inhibition was observed with rottlerin (a PKCdelta inhibitor). These data suggest a regulatory role for calcium in TGF-beta1-induced Ank expression. Finally, we demonstrated that the stimulatory effect of TGF-beta1 on Ank expression was inhibited by the suppression of the Ras/Raf-1 pathway, while being enhanced by their constitutive activation. Transient overexpression of Smad 7, an

  20. Synergism between K-rasVal12 and mutant Apc accelerates murine large intestinal tumourigenesis.

    PubMed

    Luo, Feijun; Poulogiannis, George; Ye, Hongtao; Hamoudi, Rifat; Arends, Mark J

    2011-07-01

    K-ras (KRAS) is mutated in 40-50% of human colorectal adenomas and carcinomas and plays key roles in cell proliferation, apoptosis, motility and differentiation, but its functional contribution to intestinal tumourigenesis in vivo remains incompletely understood. We have previously crossed K-rasVal12 transgenic mice with Ah-Cre mice to produce K-rasVal12/Cre offspring that inducibly express K-rasVal12 4A and 4B in the intestines, but this alone showed no significant effect on intestinal adenoma formation. Here, we crossed these mice with Min mice to evaluate the effect of K-rasVal12 and Apc mutation on intestinal tumourigenesis in vivo. The double mutant K-rasVal12/Cre/ApcMin/+ mice showed a moderate (1.86-fold) increase in adenomas in the small intestines, but a striking acceleration (6-fold increase) of large intestinal adenoma formation (P<0.01) and significantly reduced survival (by ~5 weeks) compared with control ApcMin/+ mice (P<0.01). There was recombination of the mutant K-rasVal12 transgene in 80% of large intestinal adenomas with expression of both K-rasVal12 4A and 4B isoform transcripts and expression of K-RasVal12 protein. The large intestinal adenomas showed immunohistochemical evidence of activation of MapK, Akt and Wnt signaling pathways and this was confirmed by quantitative RT-PCR analysis of relative transcript expression levels of target genes using a panel of 23 selected genes evaluated in both adenomas and non-tumour-bearing intestines. Several genes including Tiam1, Gastrin, CD44, uPA, Igfbp4, VEGF and Cox-2 that are known to be transcriptionally regulated by activation of the Wnt signaling pathway were found to be expressed at higher levels in the large intestinal adenomas from K-rasVal12/Cre/ApcMin/+ mice compared with those from controls, although other Wnt signaling pathway target genes remained unchanged. These data show that intestinal expression of K-rasVal12 accelerates Apc-initiated intestinal adenomagenesis in vivo with

  1. Structure of the dominant negative S17N mutant of Ras

    PubMed Central

    Nassar, Nicolas; Singh, Kavita; Garcia-Diaz, Miguel

    2010-01-01

    The use of the dominant negative mutant of Ras has been crucial in elucidating the cellular signaling of Ras in response to the activation of various membrane-bound receptors. Although several point mutants of Ras exhibit a dominant negative effect, the asparagine to serine mutation at position 17 (S17N) remains the most popular and the most effective at inhibiting the activation of endogenous Ras. It is now widely accepted that the dominant negative effect is due to the ability of the mutant to sequester upstream activators and its inability to activate downstream effectors. Here, we present the crystal structure of RasS17N in the GDP-bound form. In the three molecules that populate the asymmetric unit, the Mg2+ ion that normally coordinates the β-phosphate is absent because of steric hindrance from the Asn17 side chain. Instead, a Ca2+ ion is coordinating the α-phosphate. Also absent from one molecule is electron density for Phe28, a conserved residue that normally stabilizes the nucleotide’s guanine base. Except for Phe28, the nucleotide makes conserved interactions with Ras. Combined, the inability of Phe28 to stabilize the guanine base and the absence of a Mg2+ ion to neutralize the negative charges on the phosphates explain the weaker affinity of GDP for Ras. Our data suggest that the absence of the Mg2+ should also dramatically affect GTP binding to Ras and the proper positioning of Thr35 necessary for the activation of switch 1 and the binding to downstream effectors, a prerequisite for the triggering of signaling pathways. PMID:20131908

  2. RAS Initiative - Community Outreach

    Cancer.gov

    Through community and technical collaborations, workshops and symposia, and the distribution of reference reagents, the RAS Initiative seeks to increase the sharing of knowledge and resources essential to defeating cancers caused by mutant RAS genes.