Science.gov

Sample records for activated ras signaling

  1. ASPP1 and ASPP2 bind active RAS, potentiate RAS signalling and enhance p53 activity in cancer cells

    PubMed Central

    Wang, Y; Godin-Heymann, N; Dan Wang, X; Bergamaschi, D; Llanos, S; Lu, X

    2013-01-01

    RAS mutations occur frequently in human cancer and activated RAS signalling contributes to tumour development and progression. Apart from its oncogenic effects on cell growth, active RAS has tumour-suppressive functions via its ability to induce cellular senescence and apoptosis. RAS is known to induce p53-dependent cell cycle arrest, yet its effect on p53-dependent apoptosis remains unclear. We report here that apoptosis-stimulating protein of p53 (ASPP) 1 and 2, two activators of p53, preferentially bind active RAS via their N-terminal RAS-association domains (RAD). Additionally, ASPP2 colocalises with and contributes to RAS cellular membrane localisation and potentiates RAS signalling. In cancer cells, ASPP1 and ASPP2 cooperate with oncogenic RAS to enhance the transcription and apoptotic function of p53. Thus, loss of ASPP1 and ASPP2 in human cancer cells may contribute to the full transforming property of RAS oncogene. PMID:23392125

  2. RasGRP3, a Ras activator, contributes to signaling and the tumorigenic phenotype in human melanoma

    PubMed Central

    Li, Luowei; Kedei, Noemi; Tóth, Zsuzsanna E.; Czap, Alexandra; Velasquez, Julia F.; Mihova, Daniela; Michalowski, Aleksandra M.; Yuspa, Stuart H.; Blumberg, Peter M.

    2014-01-01

    RasGRP3, an activator for H-Ras, R-Ras and Rap1/2, has emerged as an important mediator of signaling downstream from receptor coupled phosphoinositide turnover in B and T cells. Here, we report that RasGRP3 showed a high level of expression in multiple human melanoma cell lines as well as in a subset of human melanoma tissue samples. Suppression of endogenous RasGRP3 expression in these melanoma cell lines reduced Ras-GTP formation as well as c-Met expression and Akt phosphorylation downstream from HGF or EGF stimulation. RasGRP3 suppression also inhibited cell proliferation and reduced both colony formation in soft agar and xenograft tumor growth in immunodeficient mice, demonstrating the importance of RasGRP3 for the transformed phenotype of the melanoma cells. Reciprocally, overexpression of RasGRP3 in human primary melanocytes altered cellular morphology, markedly enhanced cell proliferation, and rendered the cells tumorigenic in a mouse xenograft model. Suppression of RasGRP3 expression in these cells inhibited downstream RasGRP3 responses and suppressed cell growth, confirming the functional role of RasGRP3 in the altered behavior of these cells. The identification of the role of RasGRP3 in melanoma highlights its importance, as a Ras activator, in the phosphoinositide signaling pathway in human melanoma and provides a new potential therapeutic target. PMID:21602881

  3. Overexpressed galectin-3 in pancreatic cancer induces cell proliferation and invasion by binding Ras and activating Ras signaling.

    PubMed

    Song, Shumei; Ji, Baoan; Ramachandran, Vijaya; Wang, Huamin; Hafley, Margarete; Logsdon, Craig; Bresalier, Robert S

    2012-01-01

    Pancreatic cancer (PDAC) is a lethal disease with a five-year survival of 3-5%. Mutations in K-Ras are found in nearly all cases, but K-Ras mutations alone are not sufficient for the development of PDAC. Additional factors contribute to activation of Ras signaling and lead to tumor formation. Galectin-3 (Gal-3), a multifunctional β-galactoside-binding protein, is highly expressed in PDAC. We therefore investigated the functional role of Gal-3 in pancreatic cancer progression and its relationship to Ras signaling. Expression of Gal-3 was determined by immunohistochemistry, Q-PCR and immunoblot. Functional studies were performed using pancreatic cell lines genetically engineered to express high or low levels of Gal-3. Ras activity was examined by Raf pull-down assays. Co-immunoprecipitation and immunofluorescence were used to assess protein-protein interactions. In this study, we demonstrate that Gal-3 was highly up-regulated in human tumors and in a mutant K-Ras mouse model of PDAC. Down-regulation of Gal-3 by lentivirus shRNA decreased PDAC cell proliferation and invasion in vitro and reduced tumor volume and size in an orthotopic mouse model. Gal-3 bound Ras and maintained Ras activity; down-regulation of Gal-3 decreased Ras activity as well as Ras down-stream signaling including phosphorylation of ERK and AKT and Ral A activity. Transfection of Gal-3 cDNA into PDAC cells with low-level Gal-3 augmented Ras activity and its down-stream signaling. These results suggest that Gal-3 contributes to pancreatic cancer progression, in part, by binding Ras and activating Ras signaling. Gal-3 may therefore be a potential novel target for this deadly disease. PMID:22900040

  4. The Differential Effects of Wild-Type and Mutated K-Ras on MST2 Signaling Are Determined by K-Ras Activation Kinetics

    PubMed Central

    Romano, David; Maccario, Helene; Doherty, Carolanne; Quinn, Niall P.

    2013-01-01

    K-Ras is frequently mutated in human cancers. Mutant (mt) K-Ras can stimulate both oncogenic transformation and apoptosis through activation of extracellular signal-regulated kinase (ERK) and AKT pathways and the MST2 pathway, respectively. The biological outcome is determined by the balance and cross talk between these pathways. In colorectal cancer (CRC), a K-Ras mutation is negatively correlated with MST2 expression, as mt K-Ras can induce apoptosis by activating the MST2 pathway. However, wild-type (wt) K-Ras can prevent the activation of the MST2 pathway upon growth factor stimulation and enable transformation by mt K-Ras in CRC cells that express MST2. Here we have investigated the mechanism by which wt and mt K-Ras differentially regulate the MST2 pathway and MST2-dependent apoptosis. The ability of K-Ras to activate MST2 and MST2-dependent apoptosis is determined by the differential activation kinetics of mt K-Ras and wt K-Ras. Chronic activation of K-Ras by mutation or overexpression of Ras exchange factors results in the activation of MST2 and LATS1, increased MST2-LATS1 complex formation, and apoptosis. In contrast, transient K-Ras activation upon epidermal growth factor (EGF) stimulation prevents the formation of the MST2-LATS1 complex in an AKT-dependent manner. Our data suggest that the close relationship between Ras prosurvival and proapoptotic signaling is coordinated via the differential regulation of the MST2-LATS1 interaction by transient and chronic stimuli. PMID:23459937

  5. Alphavirus production is inhibited in neurofibromin 1-deficient cells through activated RAS signalling

    SciTech Connect

    Kolokoltsova, Olga A. Domina, Aaron M. Kolokoltsov, Andrey A. Davey, Robert A. | Weaver, Scott C. || Watowich, Stanley J. ||

    2008-07-20

    Virus-host interactions essential for alphavirus pathogenesis are poorly understood. To address this shortcoming, we coupled retrovirus insertional mutagenesis and a cell survival selection strategy to generate clonal cell lines broadly resistant to Sindbis virus (SINV) and other alphaviruses. Resistant cells had significantly impaired SINV production relative to wild-type (WT) cells, although virus binding and fusion events were similar in both sets of cells. Analysis of the retroviral integration sites identified the neurofibromin 1 (NF1) gene as disrupted in alphavirus-resistant cell lines. Subsequent analysis indicated that expression of NF1 was significantly reduced in alphavirus-resistant cells. Importantly, independent down-regulation of NF1 expression in WT HEK 293 cells decreased virus production and increased cell viability during SINV infection, relative to infected WT cells. Additionally, we observed hyperactive RAS signalling in the resistant HEK 293 cells, which was anticipated because NF1 is a negative regulator of RAS. Expression of constitutively active RAS (HRAS-G12V) in a WT HEK 293 cell line resulted in a marked delay in virus production, compared with infected cells transfected with parental plasmid or dominant-negative RAS (HRAS-S17N). This work highlights novel host cell determinants required for alphavirus pathogenesis and suggests that RAS signalling may play an important role in neuronal susceptibility to SINV infection.

  6. Ras-activated Dsor1 promotes Wnt signaling in Drosophila development.

    PubMed

    Hall, Eric T; Verheyen, Esther M

    2015-12-15

    Wnt/Wingless (Wg) and Ras-MAPK signaling both play fundamental roles in growth and cell fate determination, and when dysregulated, can lead to tumorigenesis. Several conflicting modes of interaction between Ras-MAPK and Wnt signaling have been identified in specific cellular contexts, causing synergistic or antagonistic effects on target genes. We find novel evidence that the Drosophila homolog of the dual specificity kinases MEK1/2 (also known as MAP2K1/2), Downstream of Raf1 (Dsor1), is required for Wnt signaling. Knockdown of Dsor1 results in loss of Wg target gene expression, as well as reductions in stabilized Armadillo (Arm; Drosophila β-catenin). We identify a close physical interaction between Dsor1 and Arm, and find that catalytically inactive Dsor1 causes a reduction in active Arm. These results suggest that Dsor1 normally counteracts the Axin-mediated destruction of Arm. We find that Ras-Dsor1 activity is independent of upstream activation by EGFR, and instead it appears to be activated by the insulin-like growth factor receptor to promote Wg signaling. Taken together, our results suggest that there is a new crosstalk pathway between insulin and Wg signaling that is mediated by Dsor1. PMID:26542023

  7. The Kinase Activity-deficient Isoform of the Protein Araf Antagonizes Ras/Mitogen-activated Protein Kinase (Ras/MAPK) Signaling in the Zebrafish Embryo*

    PubMed Central

    Xiong, Cong; Liu, Xingfeng; Meng, Anming

    2015-01-01

    Raf kinases are important components of the Ras-Raf-Mek-Erk pathway and also cross-talk with other signaling pathways. Araf kinase has been demonstrated to inhibit TGF-β/Smad2 signaling by directly phosphorylating and accelerating degradation of activated Smad2. In this study, we show that the araf gene expresses in zebrafish embryos to produce a shorter transcript variant, araf-tv2, in addition to the full-length variant araf-tv1. araf-tv2 is predicted to encode a C-terminally truncated peptide without the kinase activity domain. Araf-tv2 can physically associate with Araf-tv1 but does not antagonize the inhibitory effect of Araf-tv1 on TGF-β/Smad2 signaling. Instead, Araf-tv2 interacts strongly with Kras and Nras, ultimately blocking MAPK activation by these Ras proteins. In zebrafish embryos, overexpression of araf-tv2 is sufficient to inhibit Fgf/Ras-promoted Erk activation, mesodermal induction, dorsal development, and neuroectodermal posteriorization. Therefore, different isoforms of Araf may participate in similar developmental processes but by regulating different signaling pathways. PMID:26306042

  8. Small Molecule APY606 Displays Extensive Antitumor Activity in Pancreatic Cancer via Impairing Ras-MAPK Signaling.

    PubMed

    Guo, Na; Liu, Zuojia; Zhao, Wenjing; Wang, Erkang; Wang, Jin

    2016-01-01

    Pancreatic cancer has been found with abnormal expression or mutation in Ras proteins. Oncogenic Ras activation exploits their extensive signaling reach to affect multiple cellular processes, in which the mitogen-activated protein kinase (MAPK) signaling exerts important roles in tumorigenesis. Therapies targeted Ras are thus of major benefit for pancreatic cancer. Although small molecule APY606 has been successfully picked out by virtual drug screening based on Ras target receptor, its in-depth mechanism remains to be elucidated. We herein assessed the antitumor activity of APY606 against human pancreatic cancer Capan-1 and SW1990 cell lines and explored the effect of Ras-MAPK and apoptosis-related signaling pathway on the activity of APY606. APY606 treatment resulted in a dose- and time-dependent inhibition of cancer cell viability. Additionally, APY606 exhibited strong antitumor activity, as evidenced not only by reduction in tumor cell invasion, migration and mitochondrial membrane potential but also by alteration in several apoptotic indexes. Furthermore, APY606 treatment directly inhibited Ras-GTP and the downstream activation of MAPK, which resulted in the down-regulation of anti-apoptotic protein Bcl-2, leading to the up-regulation of mitochondrial apoptosis pathway-related proteins (Bax, cytosolic Cytochrome c and Caspase 3) and of cyclin-dependent kinase 2 and Cyclin A, E. These data suggest that impairing Ras-MAPK signaling is a novel mechanism of action for APY606 during therapeutic intervention in pancreatic cancer. PMID:27223122

  9. Small Molecule APY606 Displays Extensive Antitumor Activity in Pancreatic Cancer via Impairing Ras-MAPK Signaling

    PubMed Central

    Guo, Na; Liu, Zuojia; Zhao, Wenjing; Wang, Erkang; Wang, Jin

    2016-01-01

    Pancreatic cancer has been found with abnormal expression or mutation in Ras proteins. Oncogenic Ras activation exploits their extensive signaling reach to affect multiple cellular processes, in which the mitogen-activated protein kinase (MAPK) signaling exerts important roles in tumorigenesis. Therapies targeted Ras are thus of major benefit for pancreatic cancer. Although small molecule APY606 has been successfully picked out by virtual drug screening based on Ras target receptor, its in-depth mechanism remains to be elucidated. We herein assessed the antitumor activity of APY606 against human pancreatic cancer Capan-1 and SW1990 cell lines and explored the effect of Ras-MAPK and apoptosis-related signaling pathway on the activity of APY606. APY606 treatment resulted in a dose- and time-dependent inhibition of cancer cell viability. Additionally, APY606 exhibited strong antitumor activity, as evidenced not only by reduction in tumor cell invasion, migration and mitochondrial membrane potential but also by alteration in several apoptotic indexes. Furthermore, APY606 treatment directly inhibited Ras-GTP and the downstream activation of MAPK, which resulted in the down-regulation of anti-apoptotic protein Bcl-2, leading to the up-regulation of mitochondrial apoptosis pathway-related proteins (Bax, cytosolic Cytochrome c and Caspase 3) and of cyclin-dependent kinase 2 and Cyclin A, E. These data suggest that impairing Ras-MAPK signaling is a novel mechanism of action for APY606 during therapeutic intervention in pancreatic cancer. PMID:27223122

  10. Targeting oncogenic Ras signaling in hematologic malignancies

    PubMed Central

    Ward, Ashley F.; Braun, Benjamin S.

    2012-01-01

    Ras proteins are critical nodes in cellular signaling that integrate inputs from activated cell surface receptors and other stimuli to modulate cell fate through a complex network of effector pathways. Oncogenic RAS mutations are found in ∼ 25% of human cancers and are highly prevalent in hematopoietic malignancies. Because of their structural and biochemical properties, oncogenic Ras proteins are exceedingly difficult targets for rational drug discovery, and no mechanism-based therapies exist for cancers with RAS mutations. This article reviews the properties of normal and oncogenic Ras proteins, the prevalence and likely pathogenic role of NRAS, KRAS, and NF1 mutations in hematopoietic malignancies, relevant animal models of these cancers, and implications for drug discovery. Because hematologic malignancies are experimentally tractable, they are especially valuable platforms for addressing the fundamental question of how to reverse the adverse biochemical output of oncogenic Ras in cancer. PMID:22898602

  11. Epigenomic Regulation of Smad1 Signaling During Cellular Senescence Induced by Ras Activation.

    PubMed

    Kaneda, Atsushi; Nonaka, Aya; Fujita, Takanori; Yamanaka, Ryota; Fujimoto, Mai; Miyazono, Kohei; Aburatani, Hiroyuki

    2016-01-01

    Epigenomic modification plays important roles in regulating gene expression during development, differentiation, and cellular senescence. When oncogenes are activated, cells fall into stable growth arrest to block cellular proliferation, which is called oncogene-induced senescence. We recently identified through genome-wide analyses that Bmp2-Smad1 signal and its regulation by harmonized epigenomic alteration play an important role in Ras-induced senescence of mouse embryonic fibroblasts. We describe in this chapter the methods for analyses of epigenomic alteration and Smad1 targets on genome-wide scale. PMID:26520136

  12. A new genetic model of activity-induced Ras signaling dependent pre-synaptic plasticity in Drosophila

    PubMed Central

    Freeman, Amanda; Bowers, Mallory; Mortimer, Alysia Vrailas; Timmerman, Christina; Roux, Stephanie; Ramaswami, Mani; Sanyal, Subhabrata

    2010-01-01

    Techniques to induce activity-dependent neuronal plasticity in vivo allow the underlying signaling pathways to be studied in their biological context. Here, we demonstrate activity-induced plasticity at neuromuscular synapses of Drosophila double mutant for comatose (an NSF mutant) and Kum (a SERCA mutant), and present an analysis of the underlying signaling pathways. comt; Kum (CK) double mutants exhibit increased locomotor activity under normal culture conditions, concomitant with a larger neuromuscular junction synapse and stably elevated evoked transmitter release. The observed enhancements of synaptic size and transmitter release in CK mutants are completely abrogated by: a) reduced activity of motor neurons; b) attenuation of the Ras/ERK signaling cascade; or c) inhibition of the transcription factors Fos and CREB. all of which restrict synaptic properties to near wild type levels. Together, these results document neural activity-dependent plasticity of motor synapses in CK animals that requires Ras/ERK signaling and normal transcriptional activity of Fos and CREB. Further, novel in vivo reporters of neuronal Ras activation and Fos transcription also confirm increased signaling through a Ras/AP-1 pathway in motor neurons of CK animals, consistent with results from our genetic experiments. Thus, this study: a) provides a robust system in which to study activity-induced synaptic plasticity in vivo; b) establishes a causal link between neural activity, Ras signaling, transcriptional regulation and pre-synaptic plasticity in glutamatergic motor neurons of Drosophila larvae; and c) presents novel, genetically encoded reporters for Ras and AP-1 dependent signaling pathways in Drosophila. PMID:20193670

  13. Comparative proteomic analysis of compartmentalised Ras signalling

    PubMed Central

    Hernandez-Valladares, Maria; Prior, Ian A.

    2015-01-01

    Ras proteins are membrane bound signalling hubs that operate from both the cell surface and endomembrane compartments. However, the extent to which intracellular pools of Ras can contribute to cell signalling is debated. To address this, we have performed a global screen of compartmentalised Ras signalling. We find that whilst ER/Golgi- and endosomal-Ras only generate weak outputs, Ras localised to the mitochondria or Golgi significantly and distinctly influence both the abundance and phosphorylation of a wide range of proteins analysed. Our data reveal that ~80% of phosphosites exhibiting large (≥1.5-fold) changes compared to control can be modulated by organellar Ras signalling. The majority of compartmentalised Ras-specific responses are predicted to influence gene expression, RNA splicing and cell proliferation. Our analysis reinforces the concept that compartmentalisation influences Ras signalling and provides detailed insight into the widespread modulation of responses downstream of endomembranous Ras signalling. PMID:26620772

  14. Sur8/Shoc2 promotes cell motility and metastasis through activation of Ras-PI3K signaling

    PubMed Central

    Kaduwal, Saluja; Jeong, Woo-Jeong; Park, Jong-Chan; Lee, Kug Hwa; Lee, Young-Mi; Jeon, Soung-Hoo; Lim, Yong-Beom; Min, Do Sik; Choi, Kang-Yell

    2015-01-01

    Sur8 (also known as Shoc2) is a Ras-Raf scaffold protein that modulates signaling through extracellular signal-regulated kinase (ERK) pathway. Although Sur8 has been shown to be a scaffold protein of the Ras-ERK pathway, its interaction with other signaling pathways and its involvement in tumor malignancy has not been reported. We identified that Sur8 interacts with the p110α subunit of phosphatidylinositol 3-kinase (PI3K), as well as with Ras and Raf, and these interactions are increased in an epidermal growth factor (EGF)- and oncogenic Ras-dependent manner. Sur8 regulates cell migration and invasion via activation of Rac and matrix metalloproteinases (MMPs). Interestingly, using inhibitors of MEK and PI3K we found Sur8 mediates these cellular behaviors predominantly through PI3K pathway. We further found that human metastatic melanoma tissues had higher Sur8 content followed by activations of Akt, ERK, and Rac. Lentivirus-mediated Sur8-knockdown attenuated metastatic potential of highly invasive B16-F10 melanoma cells indicating the role of Sur8 in melanoma metastasis. This is the first report to identify the role of scaffold protein Sur8 in regulating cell motility, invasion, and metastasis through activation of both ERK and PI3K pathways. PMID:26384305

  15. The E3 ubiquitin ligase Trim7 mediates c-Jun/AP-1 activation by Ras signalling

    PubMed Central

    Chakraborty, Atanu; Diefenbacher, Markus E.; Mylona, Anastasia; Kassel, Olivier; Behrens, Axel

    2015-01-01

    The c-Jun/AP-1 transcription factor controls key cellular behaviours, including proliferation and apoptosis, in response to JNK and Ras/MAPK signalling. While the JNK pathway has been well characterised, the mechanism of activation by Ras was elusive. Here we identify the uncharacterised ubiquitin ligase Trim7 as a critical component of AP-1 activation via Ras. We found that MSK1 directly phosphorylates Trim7 in response to direct activation by the Ras–Raf–MEK–ERK pathway, and this modification stimulates Trim7 E3 ubiquitin ligase activity. Trim7 mediates Lys63-linked ubiquitination of the AP-1 coactivator RACO-1, leading to RACO-1 protein stabilisation. Consequently, Trim7 depletion reduces RACO-1 levels and AP-1-dependent gene expression. Moreover, transgenic overexpression of Trim7 increases lung tumour burden in a Ras-driven cancer model, and knockdown of Trim7 in established xenografts reduces tumour growth. Thus, phosphorylation-ubiquitination crosstalk between MSK1, Trim7 and RACO-1 completes the long sought-after mechanism linking growth factor signalling and AP-1 activation. PMID:25851810

  16. YES oncogenic activity is specified by its SH4 domain and regulates RAS/MAPK signaling in colon carcinoma cells

    PubMed Central

    Dubois, Fanny; Leroy, Cédric; Simon, Valérie; Benistant, Christine; Roche, Serge

    2015-01-01

    Members of the SRC family of tyrosine kinases (SFK) display important functions in human cancer, but their specific role in tumorigenesis remains unclear. We previously demonstrated that YES regulates a unique oncogenic signaling important for colorectal cancer (CRC) progression that is not shared with SRC. Here, we addressed the underlying mechanism involved in this process. We show that YES oncogenic signaling relies on palmitoylation of its SH4 domain that controls YES localization in cholesterol-enriched membrane micro-domains. Specifically, deletion of the palmitoylation site compromised YES transforming activity, while addition of a palmitoylation site in the SH4 domain of SRC was sufficient for SRC to restore the transforming properties of cells in which YES had been silenced. Subsequently, SILAC phosphoproteomic analysis revealed that micro-domain-associated cell adhesive components and receptor tyrosine kinases are major YES substrates. YES also phosphorylates upstream regulators of RAS/MAPK signaling, including EGFR, SHC and SHP2, which were not targeted by SRC due to the absence of palmitoylation. Accordingly, EGFR-induced MAPK activity was attenuated by YES down-regulation, while increased RAS activity significantly restored cell transformation that was lost upon YES silencing. Collectively, these results uncover a critical role for the SH4 domain in the specification of SFK oncogenic activity and a selective role for YES in the induction of RAS/MAPK signaling in CRC cells. PMID:26269757

  17. Ras trafficking, localization and compartmentalized signalling

    PubMed Central

    Prior, Ian A.; Hancock, John F.

    2012-01-01

    Ras proteins are proto-oncogenes that are frequently mutated in human cancers. Three closely related isoforms, HRAS, KRAS and NRAS, are expressed in all cells and have overlapping but distinctive functions. Recent work has revealed how differences between the Ras isoforms in their trafficking, localization and protein-membrane orientation enable signalling specificity to be determined. We review the various strategies used to characterize compartmentalized Ras localization and signalling. Localization is an important contextual modifier of signalling networks and insights from the Ras system are of widespread relevance for researchers interested in signalling initiated from membranes. PMID:21924373

  18. Activation of the Ras/mitogen-activated protein kinase signaling pathway alone is not sufficient to induce glucose uptake in 3T3-L1 adipocytes.

    PubMed Central

    van den Berghe, N; Ouwens, D M; Maassen, J A; van Mackelenbergh, M G; Sips, H C; Krans, H M

    1994-01-01

    The signal transduction pathway by which insulin stimulates glucose transport is largely unknown, but a role for tyrosine and serine/threonine kinases has been proposed. Since mitogen-activated protein (MAP) kinase is activated by insulin through phosphorylation on both tyrosine and threonine residues, we investigated whether MAP kinase and its upstream regulator, p21ras, are involved in insulin-mediated glucose transport. We did this by examining the time- and dose-dependent stimulation of glucose uptake in relation to the activation of Ras-GTP formation and MAP kinase by thrombin, epidermal growth factor (EGF), and insulin in 3T3-L1 adipocytes. Ras-GTP formation was stimulated transiently by all three agonists, with a peak at 5 to 10 min. Thrombin induced a second peak at approximately 30 min. The activation of p21ras was paralleled by both the phosphorylation and the activation of MAP kinase: transient for insulin and EGF and biphasic for thrombin. However, despite the strong activation of Ras-GTP formation and MAP kinase by EGF and thrombin, glucose uptake was not stimulated by these agonists, in contrast to the eightfold stimulation of 2-deoxy-D-[14C]glucose uptake by insulin. In addition, insulin-mediated glucose transport was not potentiated by thrombin or EGF. Although these results cannot exclude the possibility that p21ras and/or MAP kinase is needed in conjunction with other signaling molecules that are activated by insulin and not by thrombin or EGF, they show that the Ras/MAP kinase signaling pathway alone is not sufficient to induce insulin-mediated glucose transport. Images PMID:7511205

  19. Regulation of Ras Exchange Factors and Cellular Localization of Ras Activation by Lipid Messengers in T Cells

    PubMed Central

    Jun, Jesse E.; Rubio, Ignacio; Roose, Jeroen P.

    2013-01-01

    The Ras-MAPK signaling pathway is highly conserved throughout evolution and is activated downstream of a wide range of receptor stimuli. Ras guanine nucleotide exchange factors (RasGEFs) catalyze GTP loading of Ras and play a pivotal role in regulating receptor-ligand induced Ras activity. In T cells, three families of functionally important RasGEFs are expressed: RasGRF, RasGRP, and Son of Sevenless (SOS)-family GEFs. Early on it was recognized that Ras activation is critical for T cell development and that the RasGEFs play an important role herein. More recent work has revealed that nuances in Ras activation appear to significantly impact T cell development and selection. These nuances include distinct biochemical patterns of analog versus digital Ras activation, differences in cellular localization of Ras activation, and intricate interplays between the RasGEFs during distinct T cell developmental stages as revealed by various new mouse models. In many instances, the exact nature of these nuances in Ras activation or how these may result from fine-tuning of the RasGEFs is not understood. One large group of biomolecules critically involved in the control of RasGEFs functions are lipid second messengers. Multiple, yet distinct lipid products are generated following T cell receptor (TCR) stimulation and bind to different domains in the RasGRP and SOS RasGEFs to facilitate the activation of the membrane-anchored Ras GTPases. In this review we highlight how different lipid-based elements are generated by various enzymes downstream of the TCR and other receptors and how these dynamic and interrelated lipid products may fine-tune Ras activation by RasGEFs in developing T cells. PMID:24027568

  20. Ras and Rap Signaling in Synaptic Plasticity and Mental Disorders

    PubMed Central

    Stornetta, Ruth L.; Zhu, J. Julius

    2011-01-01

    The Ras family GTPases (Ras, Rap1, and Rap2) and their downstream mitogen-activated protein kinases (ERK, JNK, and p38MAPK) and PI3K signaling cascades control various physiological processes. In neuronal cells, recent studies have shown that these parallel cascades signal distinct forms of AMPA-sensitive glutamate receptor trafficking during experience-dependent synaptic plasticity and adaptive behavior. Interestingly, both hypo- and hyper-activation of Ras/Rap signaling impair the capacity of synaptic plasticity, underscoring the importance of a “happy-medium” dynamic regulation of the signaling. Moreover, accumulating reports have linked various genetic defects that either up- or down-regulate Ras/Rap signaling with a number of mental disorders associated with learning disability (e.g., Alzheimer’s disease, Angelman syndrome, autism, cardio-facio-cutaneous syndrome, Coffin-Lowry syndrome, Costello syndrome, Cowden and Bannayan-Riley-Ruvalcaba syndromes, fragile X syndrome, neurofibromatosis type 1, Noonan syndrome, schizophrenia, tuberous sclerosis, and X-linked mental retardation), highlighting the necessity of happy-medium dynamic regulation of Ras/Rap signaling in learning behavior. Thus, the recent advances in understanding of neuronal Ras/Rap signaling provide a useful guide for developing novel treatments for mental diseases. PMID:20431046

  1. RasGRP1 opposes proliferative EGFR–SOS1–Ras signals and restricts intestinal epithelial cell growth

    PubMed Central

    Depeille, Philippe; Henricks, Linda M.; van de Ven, Robert A. H.; Lemmens, Ed; Wang, Chih-Yang; Matli, Mary; Werb, Zena; Haigis, Kevin M.; Donner, David; Warren, Robert; Roose, Jeroen P.

    2015-01-01

    The character of EGFR signals can influence cell fate but mechanistic insights into intestinal EGFR-Ras signalling are limited. Here we show that two distinct Ras nucleotide exchange factors, RasGRP1 and SOS1, lie downstream of EGFR but act in functional opposition. RasGRP1 is expressed in intestinal crypts where it restricts epithelial growth. High RasGRP1 expression in colorectal cancer (CRC) patient samples correlates with a better clinical outcome. Biochemically, we find that RasGRP1 creates a negative feedback loop that limits proliferative EGFR–SOS1–Ras signals in CRC cells. Genetic Rasgrp1 depletion from mice with either an activating mutation in KRas or with aberrant Wnt signalling due to a mutation in Apc resulted in both cases in exacerbated Ras–ERK signalling and cell proliferation. The unexpected opposing cell biological effects of EGFR–RasGRP1 and EGFR–SOS1 signals in the same cell shed light on the intricacy of EGFR-Ras signalling in normal epithelium and carcinoma. PMID:26005835

  2. Lead acetate induces EGFR activation upstream of SFK and PKC{alpha} linkage to the Ras/Raf-1/ERK signaling

    SciTech Connect

    Wang, C.-Y.; Wang, Y.-T.; Tzeng, D.-W.; Yang, J.-L.

    2009-03-01

    Lead acetate (Pb), a probable human carcinogen, can activate protein kinase C (PKC) upstream of extracellular signal-regulated kinase 1 and 2 (ERK1/2). Yet, it remains unclear whether Pb activation of PKC {yields} ERK1/2 involves receptor/non-receptor tyrosine kinases and the Ras signaling transducer. Here we demonstrate a novel mechanism elicited by Pb for transmitting ERK1/2 signaling in CL3 human non-small-cell lung adenocarcinoma cells. Pb induction of higher steady-state levels of Ras-GTP was essential for increasing phospho-Raf-1{sup S338} and phospho-ERK1/2. Pre-treatment of the cells with a conventional PKC inhibitor Goe6976 or depleting PKC{alpha} using specific small interfering RNA blocked Pb induction of Ras-GTP. Pb also activated cellular tyrosine kinases. Specific pharmacological inhibitors, PD153035 for epidermal growth factor receptor (EGFR) and SU6656 for Src family tyrosine kinases (SFK), but not AG1296 for platelet-derived growth factor receptor, could suppress the Pb-induced tyrosine kinases, PKC{alpha}, Ras-GTP, phospho-Raf-1{sup S338} and phospho-ERK1/2. Furthermore, phosphorylation of tyrosines on the EGFR multiple autophosphorylation sites and the conserved SFK autophosphorylation site occurred during exposure of cells to Pb for 1-5 min and 5-30 min, respectively. Intriguingly, Pb activation of EGFR required the intrinsic kinase activity but not dimerization of the receptor. Inhibition of SFK or PKC{alpha} activities did not affect EGFR phosphorylation, while knockdown of EGFR blocked SFK phosphorylation and PKC{alpha} activation following Pb. Together, these results indicate that immediate activation of EGFR in response to Pb is obligatory for activation of SFK and PKC{alpha} and subsequent the Ras-Raf-1-MKK1/2-ERK1/2 signaling cascade.

  3. Ras Homolog Enriched in Brain (Rheb) Enhances Apoptotic Signaling*

    PubMed Central

    Karassek, Sascha; Berghaus, Carsten; Schwarten, Melanie; Goemans, Christoph G.; Ohse, Nadine; Kock, Gerd; Jockers, Katharina; Neumann, Sebastian; Gottfried, Sebastian; Herrmann, Christian; Heumann, Rolf; Stoll, Raphael

    2010-01-01

    Rheb is a homolog of Ras GTPase that regulates cell growth, proliferation, and regeneration via mammalian target of rapamycin (mTOR). Because of the well established potential of activated Ras to promote survival, we sought to investigate the ability of Rheb signaling to phenocopy Ras. We found that overexpression of lipid-anchored Rheb enhanced the apoptotic effects induced by UV light, TNFα, or tunicamycin in an mTOR complex 1 (mTORC1)-dependent manner. Knocking down endogenous Rheb or applying rapamycin led to partial protection, identifying Rheb as a mediator of cell death. Ras and c-Raf kinase opposed the apoptotic effects induced by UV light or TNFα but did not prevent Rheb-mediated apoptosis. To gain structural insight into the signaling mechanisms, we determined the structure of Rheb-GDP by NMR. The complex adopts the typical canonical fold of RasGTPases and displays the characteristic GDP-dependent picosecond to nanosecond backbone dynamics of the switch I and switch II regions. NMR revealed Ras effector-like binding of activated Rheb to the c-Raf-Ras-binding domain (RBD), but the affinity was 1000-fold lower than the Ras/RBD interaction, suggesting a lack of functional interaction. shRNA-mediated knockdown of apoptosis signal-regulating kinase 1 (ASK-1) strongly reduced UV or TNFα-induced apoptosis and suppressed enhancement by Rheb overexpression. In conclusion, Rheb-mTOR activation not only promotes normal cell growth but also enhances apoptosis in response to diverse toxic stimuli via an ASK-1-mediated mechanism. Pharmacological regulation of the Rheb/mTORC1 pathway using rapamycin should take the presence of cellular stress into consideration, as this may have clinical implications. PMID:20685651

  4. Signal Integration by Lipid-Mediated Spatial Cross Talk between Ras Nanoclusters

    PubMed Central

    Zhou, Yong; Liang, Hong; Rodkey, Travis; Ariotti, Nicholas; Parton, Robert G.

    2014-01-01

    Lipid-anchored Ras GTPases form transient, spatially segregated nanoclusters on the plasma membrane that are essential for high-fidelity signal transmission. The lipid composition of Ras nanoclusters, however, has not previously been investigated. High-resolution spatial mapping shows that different Ras nanoclusters have distinct lipid compositions, indicating that Ras proteins engage in isoform-selective lipid sorting and accounting for different signal outputs from different Ras isoforms. Phosphatidylserine is a common constituent of all Ras nanoclusters but is only an obligate structural component of K-Ras nanoclusters. Segregation of K-Ras and H-Ras into spatially and compositionally distinct lipid assemblies is exquisitely sensitive to plasma membrane phosphatidylserine levels. Phosphatidylserine spatial organization is also modified by Ras nanocluster formation. In consequence, Ras nanoclusters engage in remote lipid-mediated communication, whereby activated H-Ras disrupts the assembly and operation of spatially segregated K-Ras nanoclusters. Computational modeling and experimentation reveal that complex effects of caveolin and cortical actin on Ras nanoclustering are similarly mediated through regulation of phosphatidylserine spatiotemporal dynamics. We conclude that phosphatidylserine maintains the lateral segregation of diverse lipid-based assemblies on the plasma membrane and that lateral connectivity between spatially remote lipid assemblies offers important previously unexplored opportunities for signal integration and signal processing. PMID:24366544

  5. Activated K-Ras, But Not H-Ras or N-Ras, Regulates Brain Neural Stem Cell Proliferation in a Raf/Rb-Dependent Manner

    PubMed Central

    Bender, R. Hugh F.; Haigis, Kevin M.; Gutmann, David H.

    2016-01-01

    Neural stem cells (NSCs) give rise to all the major cell types in the brain, including neurons, oligodendrocytes, and astrocytes. However, the intracellular signaling pathways that govern brain NSC proliferation and differentiation have been incompletely characterized to date. Since some neurodevelopmental brain disorders (Costello syndrome and Noonan syndrome) are caused by germline activating mutations in the RAS genes, Ras small GTPases are likely critical regulators of brain NSC function. In the mammalian brain, Ras exists as three distinct molecules (H-Ras, K-Ras, and N-Ras), each with different subcellular localizations, downstream signaling effectors, and biological effects. Leveraging a novel series of conditional-activated Ras molecule-expressing genetically engineered mouse strains, we demonstrate that activated K-Ras, but not H-Ras or N-Ras, expression increases brain NSC growth in a Raf-dependent, but Mek-independent, manner. Moreover, we show that activated K-Ras regulation of brain NSC proliferation requires Raf binding and suppression of retinoblastoma (Rb) function. Collectively, these observations establish tissue-specific differences in activated Ras molecule regulation of brain cell growth that operate through a noncanonical mechanism. PMID:25788415

  6. Cyclin E1 and RTK/RAS signaling drive CDK inhibitor resistance via activation of E2F and ETS.

    PubMed

    Taylor-Harding, Barbie; Aspuria, Paul-Joseph; Agadjanian, Hasmik; Cheon, Dong-Joo; Mizuno, Takako; Greenberg, Danielle; Allen, Jenieke R; Spurka, Lindsay; Funari, Vincent; Spiteri, Elizabeth; Wang, Qiang; Orsulic, Sandra; Walsh, Christine; Karlan, Beth Y; Wiedemeyer, W Ruprecht

    2015-01-20

    High-grade serous ovarian cancers (HGSOC) are genomically complex, heterogeneous cancers with a high mortality rate, due to acquired chemoresistance and lack of targeted therapy options. Cyclin-dependent kinase inhibitors (CDKi) target the retinoblastoma (RB) signaling network, and have been successfully incorporated into treatment regimens for breast and other cancers. Here, we have compared mechanisms of response and resistance to three CDKi that target either CDK4/6 or CDK2 and abrogate E2F target gene expression. We identify CCNE1 gain and RB1 loss as mechanisms of resistance to CDK4/6 inhibition, whereas receptor tyrosine kinase (RTK) and RAS signaling is associated with CDK2 inhibitor resistance. Mechanistically, we show that ETS factors are mediators of RTK/RAS signaling that cooperate with E2F in cell cycle progression. Consequently, CDK2 inhibition sensitizes cyclin E1-driven but not RAS-driven ovarian cancer cells to platinum-based chemotherapy. In summary, this study outlines a rational approach for incorporating CDKi into treatment regimens for HGSOC. PMID:25557169

  7. Cyclin E1 and RTK/RAS signaling drive CDK inhibitor resistance via activation of E2F and ETS

    PubMed Central

    Taylor-Harding, Barbie; Aspuria, Paul-Joseph; Agadjanian, Hasmik; Cheon, Dong-Joo; Mizuno, Takako; Greenberg, Danielle; Allen, Jenieke R.; Spurka, Lindsay; Funari, Vincent; Spiteri, Elizabeth; Wang, Qiang; Orsulic, Sandra; Walsh, Christine; Karlan, Beth Y.; Wiedemeyer, W. Ruprecht

    2015-01-01

    High-grade serous ovarian cancers (HGSOC) are genomically complex, heterogeneous cancers with a high mortality rate, due to acquired chemoresistance and lack of targeted therapy options. Cyclin-dependent kinase inhibitors (CDKi) target the retinoblastoma (RB) signaling network, and have been successfully incorporated into treatment regimens for breast and other cancers. Here, we have compared mechanisms of response and resistance to three CDKi that target either CDK4/6 or CDK2 and abrogate E2F target gene expression. We identify CCNE1 gain and RB1 loss as mechanisms of resistance to CDK4/6 inhibition, whereas receptor tyrosine kinase (RTK) and RAS signaling is associated with CDK2 inhibitor resistance. Mechanistically, we show that ETS factors are mediators of RTK/RAS signaling that cooperate with E2F in cell cycle progression. Consequently, CDK2 inhibition sensitizes cyclin E1-driven but not RAS-driven ovarian cancer cells to platinum-based chemotherapy. In summary, this study outlines a rational approach for incorporating CDKi into treatment regimens for HGSOC. PMID:25557169

  8. Ras Conformational Ensembles, Allostery, and Signaling.

    PubMed

    Lu, Shaoyong; Jang, Hyunbum; Muratcioglu, Serena; Gursoy, Attila; Keskin, Ozlem; Nussinov, Ruth; Zhang, Jian

    2016-06-01

    Ras proteins are classical members of small GTPases that function as molecular switches by alternating between inactive GDP-bound and active GTP-bound states. Ras activation is regulated by guanine nucleotide exchange factors that catalyze the exchange of GDP by GTP, and inactivation is terminated by GTPase-activating proteins that accelerate the intrinsic GTP hydrolysis rate by orders of magnitude. In this review, we focus on data that have accumulated over the past few years pertaining to the conformational ensembles and the allosteric regulation of Ras proteins and their interpretation from our conformational landscape standpoint. The Ras ensemble embodies all states, including the ligand-bound conformations, the activated (or inactivated) allosteric modulated states, post-translationally modified states, mutational states, transition states, and nonfunctional states serving as a reservoir for emerging functions. The ensemble is shifted by distinct mutational events, cofactors, post-translational modifications, and different membrane compositions. A better understanding of Ras biology can contribute to therapeutic strategies. PMID:26815308

  9. RalA, a GTPase targeted by miR-181a, promotes transformation and progression by activating the Ras-related signaling pathway in chronic myelogenous leukemia

    PubMed Central

    Luo, Xiaochuang; Yang, Juhua; Li, Yumin; Li, Tianfu; Wang, Ruirui; Fei, Jia

    2016-01-01

    BCR/ABL is a well-known activator of multiple signaling pathways. RalA, a Ras downstream signaling molecule and a small GTPase, plays an important role in Bcr-Abl-induced leukemogenesis but the exact mechanism remains elusive. Here, we show that RalA GTPase activity is commonly high in chronic myelogenous leukemia (CML) cell lines and patient samples. Overexpression of RalA results in malignant transformation and progression, and induces resistance to imatinib (IM) in BaF3 and K562 cell lines. RalA reduced survival and led to IM resistance in a xenografted mouse model. Ablation of RalA by either siRNA or miR-181a, a RalA targeting microRNA, attenuated the malignant phenotypes in K562 cells. RBC8, a selective Ral inhibitor, enhanced the inhibitory effects of IM in K562, KCL22 and BaF3-P210 cells. Interestingly, the phospho-specific protein microarray assay revealed that multiple phosphorylation signal proteins were decreased by RalA inhibition, including SAPK, JNK, SRC, VEGFR2, P38 MAPK, c-Kit, JunB, and Keratin18. Among them, P38 MAPK and SAPK/JNK are Ras downstream signaling kinases. Taken together, RalA GTPase might be an important oncogene activating the Ras-related signaling pathway in CML. PMID:26967392

  10. Involvement of deregulated epiregulin expression in tumorigenesis in vivo through activated Ki-Ras signaling pathway in human colon cancer cells.

    PubMed

    Baba, I; Shirasawa, S; Iwamoto, R; Okumura, K; Tsunoda, T; Nishioka, M; Fukuyama, K; Yamamoto, K; Mekada, E; Sasazuki, T

    2000-12-15

    To identify the genes located downstream of the activated Ki-Ras signaling pathways in human colon cancer cells, a PCR-based cDNA subtraction library was constructed between HCT116 cells and HCT116-derived activated Ki-ras-disrupted cells (HKe3). One of the genes in HCT116 that was evidently up-regulated was epiregulin, a member of the epidermal growth factor family that is expressed in many kinds of human cancer cells. HKe3-stable transfectants expressing activated Ki-Ras regained over-expression of epiregulin. To further elucidate the biochemical structure and significance of epiregulin expression in tumorigenesis, HKe3-stable transfectants expressing epiregulin (e3-pSE cells) were established. Epiregulin existed as highly glycosylated membrane-bound forms, and TPA rapidly induced ectodomain shedding of epiregulin. Furthermore, the conditioned medium of e3-pSE cells showed more DNA synthesis for 32D cells expressing epidermal growth factor receptor (DER) cells than that of HKe3. Although anchorage-independent growth in soft agar was not observed for e3-pSE cells, tumorigenicity in nude mice was observed evidently, and their growth rate was correlated with each amount of exogenous epiregulin expression. These results suggested that activated Ki-Ras will be one of the factors contributing to the overexpression of epiregulin in human colon cancer cells, and that epiregulin will play a critical role in human tumorigenesis in vivo. PMID:11156386

  11. Site–Specific Monoubiquitination Activates Ras by Impeding GTPase Activating Protein Function

    PubMed Central

    Baker, Rachael; Lewis, Steven M.; Sasaki, Atsuo T.; Wilkerson, Emily M.; Locasale, Jason W.; Cantley, Lewis C.; Kuhlman, Brian; Dohlman, Henrik G.; Campbell, Sharon L.

    2012-01-01

    SUMMARY Cell growth and differentiation are controlled by growth factor receptors coupled to the GTPase Ras. Oncogenic mutations disrupt GTPase activity leading to persistent Ras signaling and cancer progression. Recent evidence indicates that monoubiquitination of Ras leads to Ras activation. Mutation of the primary site of monoubiquitination impairs the ability of activated K–Ras to promote tumor growth. To determine the mechanism of human Ras activation we chemically ubiquitinated the protein and analyzed its function by NMR, computational modeling, and biochemical activity measurements. We established that monoubiquitination has little effect on Ras GTP binding, GTP hydrolysis, or exchange factor activation, but severely abrogates the response to GTPase activating proteins in a site–specific manner. These findings reveal a new mechanism by which Ras can trigger persistent signaling in the absence of receptor activation or an oncogenic mutation. PMID:23178454

  12. A novel role for copper in Ras/mitogen-activated protein kinase signaling.

    PubMed

    Turski, Michelle L; Brady, Donita C; Kim, Hyung J; Kim, Byung-Eun; Nose, Yasuhiro; Counter, Christopher M; Winge, Dennis R; Thiele, Dennis J

    2012-04-01

    Copper (Cu) is essential for development and proliferation, yet the cellular requirements for Cu in these processes are not well defined. We report that Cu plays an unanticipated role in the mitogen-activated protein (MAP) kinase pathway. Ablation of the Ctr1 high-affinity Cu transporter in flies and mouse cells, mutation of Ctr1, and Cu chelators all reduce the ability of the MAP kinase kinase Mek1 to phosphorylate the MAP kinase Erk. Moreover, mice bearing a cardiac-tissue-specific knockout of Ctr1 are deficient in Erk phosphorylation in cardiac tissue. in vitro investigations reveal that recombinant Mek1 binds two Cu atoms with high affinity and that Cu enhances Mek1 phosphorylation of Erk in a dose-dependent fashion. Coimmunoprecipitation experiments suggest that Cu is important for promoting the Mek1-Erk physical interaction that precedes the phosphorylation of Erk by Mek1. These results demonstrate a role for Ctr1 and Cu in activating a pathway well known to play a key role in normal physiology and in cancer. PMID:22290441

  13. A Model for Direction Sensing in Dictyostelium discoideum: Ras Activity and Symmetry Breaking Driven by a Gβγ-Mediated, Gα2-Ric8 -- Dependent Signal Transduction Network

    PubMed Central

    Cheng, Yougan; Othmer, Hans

    2016-01-01

    Chemotaxis is a dynamic cellular process, comprised of direction sensing, polarization and locomotion, that leads to the directed movement of eukaryotic cells along extracellular gradients. As a primary step in the response of an individual cell to a spatial stimulus, direction sensing has attracted numerous theoretical treatments aimed at explaining experimental observations in a variety of cell types. Here we propose a new model of direction sensing based on experiments using Dictyostelium discoideum (Dicty). The model is built around a reaction-diffusion-translocation system that involves three main component processes: a signal detection step based on G-protein-coupled receptors (GPCR) for cyclic AMP (cAMP), a transduction step based on a heterotrimetic G protein Gα2βγ, and an activation step of a monomeric G-protein Ras. The model can predict the experimentally-observed response of cells treated with latrunculin A, which removes feedback from downstream processes, under a variety of stimulus protocols. We show that Gα2βγ cycling modulated by Ric8, a nonreceptor guanine exchange factor for Gα2 in Dicty, drives multiple phases of Ras activation and leads to direction sensing and signal amplification in cAMP gradients. The model predicts that both Gα2 and Gβγ are essential for direction sensing, in that membrane-localized Gα2*, the activated GTP-bearing form of Gα2, leads to asymmetrical recruitment of RasGEF and Ric8, while globally-diffusing Gβγ mediates their activation. We show that the predicted response at the level of Ras activation encodes sufficient ‘memory’ to eliminate the ‘back-of-the wave’ problem, and the effects of diffusion and cell shape on direction sensing are also investigated. In contrast with existing LEGI models of chemotaxis, the results do not require a disparity between the diffusion coefficients of the Ras activator GEF and the Ras inhibitor GAP. Since the signal pathways we study are highly conserved between Dicty

  14. A Model for Direction Sensing in Dictyostelium discoideum: Ras Activity and Symmetry Breaking Driven by a Gβγ-Mediated, Gα2-Ric8 -- Dependent Signal Transduction Network.

    PubMed

    Cheng, Yougan; Othmer, Hans

    2016-05-01

    Chemotaxis is a dynamic cellular process, comprised of direction sensing, polarization and locomotion, that leads to the directed movement of eukaryotic cells along extracellular gradients. As a primary step in the response of an individual cell to a spatial stimulus, direction sensing has attracted numerous theoretical treatments aimed at explaining experimental observations in a variety of cell types. Here we propose a new model of direction sensing based on experiments using Dictyostelium discoideum (Dicty). The model is built around a reaction-diffusion-translocation system that involves three main component processes: a signal detection step based on G-protein-coupled receptors (GPCR) for cyclic AMP (cAMP), a transduction step based on a heterotrimetic G protein Gα2βγ, and an activation step of a monomeric G-protein Ras. The model can predict the experimentally-observed response of cells treated with latrunculin A, which removes feedback from downstream processes, under a variety of stimulus protocols. We show that [Formula: see text] cycling modulated by Ric8, a nonreceptor guanine exchange factor for [Formula: see text] in Dicty, drives multiple phases of Ras activation and leads to direction sensing and signal amplification in cAMP gradients. The model predicts that both [Formula: see text] and Gβγ are essential for direction sensing, in that membrane-localized [Formula: see text], the activated GTP-bearing form of [Formula: see text], leads to asymmetrical recruitment of RasGEF and Ric8, while globally-diffusing Gβγ mediates their activation. We show that the predicted response at the level of Ras activation encodes sufficient 'memory' to eliminate the 'back-of-the wave' problem, and the effects of diffusion and cell shape on direction sensing are also investigated. In contrast with existing LEGI models of chemotaxis, the results do not require a disparity between the diffusion coefficients of the Ras activator GEF and the Ras inhibitor GAP. Since

  15. A novel quinoline, MT477: suppresses cell signaling through Ras molecular pathway, inhibits PKC activity, and demonstrates in vivo anti-tumor activity against human carcinoma cell lines.

    PubMed

    Jasinski, Piotr; Welsh, Brandon; Galvez, Jorge; Land, David; Zwolak, Pawel; Ghandi, Lori; Terai, Kaoru; Dudek, Arkadiusz Z

    2008-06-01

    MT477 is a novel thiopyrano[2,3-c]quinoline that has been identified using molecular topology screening as a potential anticancer drug with a high activity against protein kinase C (PKC) isoforms. The objective of the present study was to determine the mechanism of action of MT477 and its activity against human cancer cell lines. MT477 interfered with PKC activity as well as phosphorylation of Ras and ERK1/2 in H226 human lung carcinoma cells. It also induced poly-caspase-dependent apoptosis. MT477 had a dose-dependent (0.006 to 0.2 mM) inhibitory effect on cellular proliferation of H226, MCF-7, U87, LNCaP, A431 and A549 cancer cell lines as determined by in vitro proliferation assays. Two murine xenograft models of human A431 and H226 lung carcinoma were used to evaluate tumor response to intraperitoneal administration of MT477 (33 microg/kg, 100 microg/kg, and 1 mg/kg). Tumor growth was inhibited by 24.5% in A431 and 43.67% in H226 xenografts following MT477 treatment, compared to vehicle controls (p < 0.05). In conclusion, our empirical findings are consistent with molecular modeling of MT477's activity against PKC. We also found, however, that its mechanism of action occurs through suppressing Ras signaling, indicating that its effects on apoptosis and tumor growth in vivo may be mediated by Ras as well as PKC. We propose, therefore, that MT477 warrants further development as an anticancer drug. PMID:17957339

  16. CaM interaction and Ser181 phosphorylation as new K-Ras signaling modulators

    PubMed Central

    Alvarez-Moya, Blanca; Barceló, Carles; Tebar, Francesc; Jaumot, Montserrat

    2011-01-01

    The small G-protein Ras was the first oncogene to be identified and has a very important contribution to human cancer development (20–23% prevalence). K-RasB, one of the members of the Ras family, is the one that is most mutated and plays a prominent role in pancreatic, colon and lung cancer development. Ras proteins are membrane bound GTPases that cycle between inactive, GDP-bound and active, GTP-bound, states. Most of the research into K-RasB activity regulation has focused on the analysis of how GTP-exchange factors (GEFs) and GTPase activating proteins (GAPs) are regulated by external and internal signals. In contrast, oncogenic K-RasB has a very low GTPase activity and furthermore is not deactivated by GAPs. Consequently, the consensus was that activity of oncogenic K-RasB was not modulated. In this extra view we recapitulate some recent data showing that calmodulin binding to K-RasB inhibits phosphorylation of K-RasB at Ser181, near to the membrane anchoring domain, modulating signaling of both non-oncogenic and oncogenic K-RasB. This may be relevant to normal cell physiology, but also opens new therapeutic perspectives for the inhibition of oncogenic K-RasB signaling in tumors. PMID:21776410

  17. Regulation of H-Ras-driven MAPK signaling, transformation and tumorigenesis, but not PI3K signaling and tumor progression, by plasma membrane microdomains.

    PubMed

    Michael, J V; Wurtzel, J G T; Goldfinger, L E

    2016-01-01

    In this study, we assessed the contributions of plasma membrane (PM) microdomain targeting to the functions of H-Ras and R-Ras. These paralogs have identical effector-binding regions, but variant C-terminal targeting domains (tDs) which are responsible for lateral microdomain distribution: activated H-Ras targets to lipid ordered/disordered (Lo/Ld) domain borders, and R-Ras to Lo domains (rafts). We hypothesized that PM distribution regulates Ras-effector interactions and downstream signaling. We used tD swap mutants, and assessed effects on signal transduction, cell proliferation, transformation and tumorigenesis. R-Ras harboring the H-Ras tD (R-Ras-tH) interacted with Raf, and induced Raf and ERK phosphorylation similar to H-Ras. R-Ras-tH stimulated proliferation and transformation in vitro, and these effects were blocked by both MEK and PI3K inhibition. Conversely, the R-Ras tD suppressed H-Ras-mediated Raf activation and ERK phosphorylation, proliferation and transformation. Thus, Ras access to Raf at the PM is sufficient for MAPK activation and is a principal component of Ras mitogenesis and transformation. Fusion of the R-Ras extended N-terminal domain to H-Ras had no effect on proliferation, but inhibited transformation and tumor progression, indicating that the R-Ras N-terminus also contributes negative regulation to these Ras functions. PI3K activation was tD independent; however, H-Ras was a stronger activator of PI3K than R-Ras, with either tD. PI3K inhibition nearly ablated transformation by R-Ras-tH, H-Ras and H-Ras-tR, whereas MEK inhibition had a modest effect on Ras-tH-driven transformation but no effect on H-Ras-tR transformation. R-Ras-tH supported tumor initiation, but not tumor progression. While H-Ras-tR-induced transformation was reduced relative to H-Ras, tumor progression was robust and similar to H-Ras. H-Ras tumor growth was moderately suppressed by MEK inhibition, which had no effect on H-Ras-tR tumor growth. In contrast, PI3K inhibition

  18. K-RAS(V12) Induces Autocrine Production of EGFR Ligands and Mediates Radioresistance Through EGFR-Dependent Akt Signaling and Activation of DNA-PKcs

    SciTech Connect

    Minjgee, Minjmaa; Toulany, Mahmoud; Kehlbach, Rainer; Giehl, Klaudia; Rodemann, H. Peter

    2011-12-01

    Purpose: It is known that postirradiation survival of tumor cells presenting mutated K-RAS is mediated through autocrine activation of epidermal growth factor receptor (EGFR). In this study the molecular mechanism of radioresistance of cells overexpressing mutated K-RAS(V12) was investigated. Methods and Materials: Head-and-neck cancer cells (FaDu) presenting wild-type K-RAS were transfected with empty vector or vector expressing mutated K-RAS(V12). The effect of K-RAS(V12) on autocrine production of EGFR ligands, activation of EGFR downstream pathways, DNA damage repair, and postirradiation survival was analyzed. Results: Conditioned medium collected from K-RAS(V12)-transfected cells enhanced activation of the phosphatidylinositol-3-kinase-Akt pathway and increased postirradiation survival of wild-type K-RAS parental cells when compared with controls. These effects were reversed by amphiregulin (AREG)-neutralizing antibody. In addition, secretion of the EGFR ligands AREG and transforming growth factor {alpha} was significantly increased upon overexpression of K-RAS(V12). Expression of mutated K-RAS(V12) resulted in an increase in radiation-induced DNA-dependent protein kinase catalytic subunit (DNA-PKcs) phosphorylation at S2056. This increase was accompanied by increased repair of DNA double-strand breaks. Abrogation of DNA-PKcs phosphorylation by serum depletion or AREG-neutralizing antibody underscored the role of autocrine production of EGFR ligands, namely, AREG, in regulating DNA-PKcs activation in K-RAS mutated cells. Conclusions: These data indicate that radioresistance of K-RAS mutated tumor cells is at least in part due to constitutive production of EGFR ligands, which mediate enhanced repair of DNA double-strand breaks through the EGFR-phosphatidylinositol-3-kinase-Akt cascade.

  19. Paradoxical activation of MEK/ERK signaling induced by B-Raf inhibition enhances DR5 expression and DR5 activation-induced apoptosis in Ras-mutant cancer cells

    PubMed Central

    Oh, You-Take; Deng, Jiusheng; Yue, Ping; Sun, Shi-Yong

    2016-01-01

    B-Raf inhibitors have been used for the treatment of some B-Raf–mutated cancers. They effectively inhibit B-Raf/MEK/ERK signaling in cancers harboring mutant B-Raf, but paradoxically activates MEK/ERK in Ras-mutated cancers. Death receptor 5 (DR5), a cell surface pro-apoptotic protein, triggers apoptosis upon ligation with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or aggregation. This study focused on determining the effects of B-Raf inhibition on DR5 expression and DR5 activation-induced apoptosis in Ras-mutant cancer cells. Using chemical and genetic approaches, we have demonstrated that the B-Raf inhibitor PLX4032 induces DR5 upregulation exclusively in Ras-mutant cancer cells; this effect is dependent on Ras/c-Raf/MEK/ERK signaling activation. PLX4032 induces DR5 expression at transcriptional levels, largely due to enhancing CHOP/Elk1-mediated DR5 transcription. Pre-exposure of Ras-mutated cancer cells to PLX4032 sensitizes them to TRAIL-induced apoptosis; this is also a c-Raf/MEK/ERK-dependent event. Collectively, our findings highlight a previously undiscovered effect of B-Raf inhibition on the induction of DR5 expression and the enhancement of DR5 activation-induced apoptosis in Ras-mutant cancer cells and hence may suggest a novel therapeutic strategy against Ras-mutated cancer cells by driving their death due to DR5-dependent apoptosis through B-Raf inhibition. PMID:27222248

  20. Paradoxical activation of MEK/ERK signaling induced by B-Raf inhibition enhances DR5 expression and DR5 activation-induced apoptosis in Ras-mutant cancer cells.

    PubMed

    Oh, You-Take; Deng, Jiusheng; Yue, Ping; Sun, Shi-Yong

    2016-01-01

    B-Raf inhibitors have been used for the treatment of some B-Raf-mutated cancers. They effectively inhibit B-Raf/MEK/ERK signaling in cancers harboring mutant B-Raf, but paradoxically activates MEK/ERK in Ras-mutated cancers. Death receptor 5 (DR5), a cell surface pro-apoptotic protein, triggers apoptosis upon ligation with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or aggregation. This study focused on determining the effects of B-Raf inhibition on DR5 expression and DR5 activation-induced apoptosis in Ras-mutant cancer cells. Using chemical and genetic approaches, we have demonstrated that the B-Raf inhibitor PLX4032 induces DR5 upregulation exclusively in Ras-mutant cancer cells; this effect is dependent on Ras/c-Raf/MEK/ERK signaling activation. PLX4032 induces DR5 expression at transcriptional levels, largely due to enhancing CHOP/Elk1-mediated DR5 transcription. Pre-exposure of Ras-mutated cancer cells to PLX4032 sensitizes them to TRAIL-induced apoptosis; this is also a c-Raf/MEK/ERK-dependent event. Collectively, our findings highlight a previously undiscovered effect of B-Raf inhibition on the induction of DR5 expression and the enhancement of DR5 activation-induced apoptosis in Ras-mutant cancer cells and hence may suggest a novel therapeutic strategy against Ras-mutated cancer cells by driving their death due to DR5-dependent apoptosis through B-Raf inhibition. PMID:27222248

  1. A novel Ras GTPase (Ras3) regulates conidiation, multi-stress tolerance and virulence by acting upstream of Hog1 signaling pathway in Beauveria bassiana.

    PubMed

    Guan, Yi; Wang, Ding-Yi; Ying, Sheng-Hua; Feng, Ming-Guang

    2015-09-01

    Two Ras ATPases (Ras1 and Ras2) are well known to regulate antagonistically or cooperatively various cellular events in many fungi. Here we show the significance of a novel Ras homolog (Ras3) for Beauveria bassiana. Ras3 possesses five domains and two GTP/GDP switches typical for Ras family and was proven to localize to plasma membrane despite the position change of a membrane-targeting cysteine in C-terminal CAAX motif. Deletion of ras3 altered temporal transcription pattern of ras1 instead of ras2. Compared with wild-type, Δras3 grew significantly faster in a rich medium but slower in some minimal media, and produced far fewer conidia with impaired quality, which was evident with slower germination, attenuated virulence, reduced thermotolerance and decreased UV-B resistance. Moreover, Δras3 was much more sensitive to the oxidative stress of menadione than of H2O2 and to the stress of high osmolarity than of cell wall perturbation during growth. The high sensitivity of Δras3 to menadione was concurrent with reductions in both gene transcripts and total activity of superoxide dismutases. Intriguingly, the high osmosensitivity was concurrent with not only reduced transcripts of a critical transcription factor (Msn2) and most signaling proteins in the high-osmolarity-glycerol pathway of Δras3 but nearly undetectable phosphorylation signal of Hog1 hallmarking the pathway. All the changes were restored by ras3 complementation. Taken together, Ras3 is involved in the Hog1 pathway required for osmoregulation and hence can positively regulate conidiation, germination, multi-stress tolerance and virulence linked to the biological control potential of the filamentous insect pathogen. PMID:26162967

  2. Visualizing and Quantitating the Spatiotemporal Regulation of Ras/ERK Signaling by Dual-Specificity Mitogen-Activated Protein Phosphatases (MKPs).

    PubMed

    Caunt, Christopher J; Kidger, Andrew M; Keyse, Stephen M

    2016-01-01

    The spatiotemporal regulation of the Ras/ERK pathway is critical in determining the physiological and pathophysiological outcome of signaling. Dual-specificity mitogen-activated protein kinase (MAPK) phosphatases (DUSPs or MKPs) are key regulators of pathway activity and may also localize ERK to distinct subcellular locations. Here we present methods largely based on the use of high content microscopy to both visualize and quantitate the subcellular distribution of activated (p-ERK) and total ERK in populations of mouse embryonic fibroblasts derived from mice lacking DUSP5, a nuclear ERK-specific MKP. Such methods in combination with rescue experiments using adenoviral vectors encoding wild-type and mutant forms of DUSP5 have allowed us to visualize specific defects in ERK regulation in these cells thus confirming the role of this phosphatase as both a nuclear regulator of ERK activity and localization. PMID:27514808

  3. Ras Family Small GTPase-mediated Neuroprotective Signaling in Stroke

    PubMed Central

    Shi, Geng-Xian; Andres, Douglas A.; Cai, Weikang

    2012-01-01

    Selective neuronal cell death is one of the major causes of neuronal damage following stroke, and cerebral cells naturally mobilize diverse survival signaling pathways to protect against ischemia. Importantly, therapeutic strategies designed to improve endogenous anti-apoptotic signaling appear to hold great promise in stroke treatment. While a variety of complex mechanisms have been implicated in the pathogenesis of stroke, the overall mechanisms governing the balance between cell survival and death are not well-defined. Ras family small GTPases are activated following ischemic insults, and in turn, serve as intrinsic switches to regulate neuronal survival and regeneration. Their ability to integrate diverse intracellular signal transduction pathways makes them critical regulators and potential therapeutic targets for neuronal recovery after stroke. This article highlights the contribution of Ras family GTPases to neuroprotective signaling cascades, including mitogen-activated protein kinase (MAPK) family protein kinase- and AKT/PKB-dependent signaling pathways as well as the regulation of cAMP response element binding (CREB), Forkhead box O (FoxO) and hypoxia-inducible factor 1(HIF1) transcription factors, in stroke. PMID:21521171

  4. P120-GAP associated with syndecan-2 to function as an active switch signal for Src upon transformation with oncogenic ras

    SciTech Connect

    Huang, J.-W.; Chen, C.-L.; Chuang, N.-N. . E-mail: zonnc@sinica.edu.tw

    2005-04-15

    BALB/3T3 cells transfected with plasmids pcDNA3.1-[S-ras(Q{sub 61}K)] of shrimp Penaeus japonicus were applied to reveal a complex of p120-GAP/syndecan-2 being highly expressed upon transformation. Of interest, most of the p120-GAP/syndecan-2 complex was localized at caveolae, a membrane microdomain enriched with caveolin-1. To confirm the molecular interaction between syndecan-2 and p120-GAP, we further purified p120-GAP protein from mouse brains by using an affinity column of HiTrap-RACK1 and expressed mouse RACK1-encoded fusion protein and mouse syndecan-2-encoded fusion protein in bacteria. We report molecular affinities exist between p120-GAP and RACK1, syndecan-2 and RACK1 as well as p120-GAP and syndecan-2. The selective affinity between p120-GAP and syndecan-2 was found to be sufficient to detach RACK1. The p120-GAP/syndecan-2 complex was demonstrated to keep Src tyrosine kinase in an activated form. On the other hand, the syndecan-2/RACK1 complex was found to have Src in an inactivated form. These data indicate that the p120-GAP/syndecan-2 complex at caveolae could provide a docking site for Src to transmit tyrosine signaling, implying that syndecan-2/p120-GAP functions as a tumor promoter upon transformation with oncogenic ras of shrimp P. japonicus.

  5. Ras-GTP dimers activate the Mitogen-Activated Protein Kinase (MAPK) pathway

    PubMed Central

    Nan, Xiaolin; Tamgüney, Tanja M.; Collisson, Eric A.; Lin, Li-Jung; Pitt, Cameron; Galeas, Jacqueline; Lewis, Sophia; Gray, Joe W.; McCormick, Frank; Chu, Steven

    2015-01-01

    Rat sarcoma (Ras) GTPases regulate cell proliferation and survival through effector pathways including Raf-MAPK, and are the most frequently mutated genes in human cancer. Although it is well established that Ras activity requires binding to both GTP and the membrane, details of how Ras operates on the cell membrane to activate its effectors remain elusive. Efforts to target mutant Ras in human cancers to therapeutic benefit have also been largely unsuccessful. Here we show that Ras-GTP forms dimers to activate MAPK. We used quantitative photoactivated localization microscopy (PALM) to analyze the nanoscale spatial organization of PAmCherry1-tagged KRas 4B (hereafter referred to KRas) on the cell membrane under various signaling conditions. We found that at endogenous expression levels KRas forms dimers, and KRasG12D, a mutant that constitutively binds GTP, activates MAPK. Overexpression of KRas leads to formation of higher order Ras nanoclusters. Conversely, at lower expression levels, KRasG12D is monomeric and activates MAPK only when artificially dimerized. Moreover, dimerization and signaling of KRas are both dependent on an intact CAAX (C, cysteine; A, aliphatic; X, any amino acid) motif that is also known to mediate membrane localization. These results reveal a new, dimerization-dependent signaling mechanism of Ras, and suggest Ras dimers as a potential therapeutic target in mutant Ras-driven tumors. PMID:26080442

  6. Ras-GTP dimers activate the mitogen-activated protein kinase (MAPK) pathway

    DOE PAGESBeta

    Nan, Xiaolin; Tamgüney, Tanja M.; Collisson, Eric A.; Lin, Li -Jung; Pitt, Cameron; Galeas, Jacqueline; Lewis, Sophia; Gray, Joe W.; McCormick, Frank; Chu, Steven

    2015-06-16

    Rat sarcoma (Ras) GTPases regulate cell proliferation and survival through effector pathways including Raf-MAPK, and are the most frequently mutated genes in human cancer. Although it is well established that Ras activity requires binding to both GTP and the membrane, details of how Ras operates on the cell membrane to activate its effectors remain elusive. Efforts to target mutant Ras in human cancers to therapeutic benefit have also been largely unsuccessful. Here we show that Ras-GTP forms dimers to activate MAPK. We used quantitative photoactivated localization microscopy (PALM) to analyze the nanoscale spatial organization of PAmCherry1-tagged KRas 4B (hereafter referredmore » to KRas) on the cell membrane under various signaling conditions. We found that at endogenous expression levels KRas forms dimers, and KRasG12D, a mutant that constitutively binds GTP, activates MAPK. Overexpression of KRas leads to formation of higher order Ras nanoclusters. Conversely, at lower expression levels, KRasG12D is monomeric and activates MAPK only when artificially dimerized. Moreover, dimerization and signaling of KRas are both dependent on an intact CAAX (C, cysteine; A, aliphatic; X, any amino acid) motif that is also known to mediate membrane localization. These results reveal a new, dimerization-dependent signaling mechanism of Ras, and suggest Ras dimers as a potential therapeutic target in mutant Ras-driven tumors.« less

  7. Ras-GTP dimers activate the mitogen-activated protein kinase (MAPK) pathway

    SciTech Connect

    Nan, Xiaolin; Tamgüney, Tanja M.; Collisson, Eric A.; Lin, Li -Jung; Pitt, Cameron; Galeas, Jacqueline; Lewis, Sophia; Gray, Joe W.; McCormick, Frank; Chu, Steven

    2015-06-16

    Rat sarcoma (Ras) GTPases regulate cell proliferation and survival through effector pathways including Raf-MAPK, and are the most frequently mutated genes in human cancer. Although it is well established that Ras activity requires binding to both GTP and the membrane, details of how Ras operates on the cell membrane to activate its effectors remain elusive. Efforts to target mutant Ras in human cancers to therapeutic benefit have also been largely unsuccessful. Here we show that Ras-GTP forms dimers to activate MAPK. We used quantitative photoactivated localization microscopy (PALM) to analyze the nanoscale spatial organization of PAmCherry1-tagged KRas 4B (hereafter referred to KRas) on the cell membrane under various signaling conditions. We found that at endogenous expression levels KRas forms dimers, and KRasG12D, a mutant that constitutively binds GTP, activates MAPK. Overexpression of KRas leads to formation of higher order Ras nanoclusters. Conversely, at lower expression levels, KRasG12D is monomeric and activates MAPK only when artificially dimerized. Moreover, dimerization and signaling of KRas are both dependent on an intact CAAX (C, cysteine; A, aliphatic; X, any amino acid) motif that is also known to mediate membrane localization. These results reveal a new, dimerization-dependent signaling mechanism of Ras, and suggest Ras dimers as a potential therapeutic target in mutant Ras-driven tumors.

  8. Mutant K-RAS Promotes Invasion and Metastasis in Pancreatic Cancer Through GTPase Signaling Pathways

    PubMed Central

    Padavano, Julianna; Henkhaus, Rebecca S; Chen, Hwudaurw; Skovan, Bethany A; Cui, Haiyan; Ignatenko, Natalia A

    2015-01-01

    Pancreatic ductal adenocarcinoma is one of the most aggressive malignancies, characterized by the local invasion into surrounding tissues and early metastasis to distant organs. Oncogenic mutations of the K-RAS gene occur in more than 90% of human pancreatic cancers. The goal of this study was to investigate the functional significance and downstream effectors of mutant K-RAS oncogene in the pancreatic cancer invasion and metastasis. We applied the homologous recombination technique to stably disrupt K-RAS oncogene in the human pancreatic cell line MiaPaCa-2, which carries the mutant K-RASG12C oncogene in both alleles. Using in vitro assays, we found that clones with disrupted mutant K-RAS gene exhibited low RAS activity, reduced growth rates, increased sensitivity to the apoptosis inducing agents, and suppressed motility and invasiveness. In vivo assays showed that clones with decreased RAS activity had reduced tumor formation ability in mouse xenograft model and increased survival rates in the mouse orthotopic pancreatic cancer model. We further examined molecular pathways downstream of mutant K-RAS and identified RhoA GTP activating protein 5, caveolin-1, and RAS-like small GTPase A (RalA) as key effector molecules, which control mutant K-RAS-dependent migration and invasion in MiaPaCa-2 cells. Our study provides rational for targeting RhoA and RalA GTPase signaling pathways for inhibition of pancreatic cancer metastasis. PMID:26512205

  9. The GTPase-activating protein of Ras suppresses platelet-derived growth factor beta receptor signaling by silencing phospholipase C-gamma 1.

    PubMed Central

    Valius, M; Secrist, J P; Kazlauskas, A

    1995-01-01

    The beta receptor for platelet-derived growth factor (beta PDGFR) is activated by binding of PDGF and undergoes phosphorylation at multiple tyrosine residues. The tyrosine-phosphorylated receptor associates with numerous SH2-domain-containing proteins which include phospholipase C-gamma 1 (PLC gamma), the GTPase-activating protein of Ras (GAP), the p85 subunit of phosphatidylinositol 3 kinase (PI3K), the phosphotyrosine phosphatase Syp, and several other proteins. Our previous studies indicated that PI3K and PLC gamma were required for relay of the mitogenic signal of beta PDGFR, whereas GAP and Syp did not appear to be required for this response. In this study, we further investigated the role of GAP and Syp in mitogenic signaling by beta PDGFR. Focusing on the PLC gamma-dependent branch of beta PDGFR signaling, we constructed a series of mutant beta PDGFRs that contained the binding sites for pairs of the receptor-associated proteins: PLC gamma and PI3K, PLC gamma and GAP, or PLC gamma and Syp. Characterization of these mutants showed that while all receptors were catalytically active and bound similar amounts of PLC gamma, they differed dramatically in their ability to initiate DNA synthesis. This signaling deficiency related to an inability to efficiently tyrosine phosphorylate and activate PLC gamma. Surprisingly, the crippled receptor was the one that recruited PLC gamma and GAP. Thus, GAP functions to suppress signal relay by the beta PDGFR, and it does so by silencing PLC gamma. These findings demonstrate that the biological response to PDGF depends not only on the ability of the beta PDGFR to recruit signal relay enzymes but also on the blend of these receptor-associated proteins. PMID:7760802

  10. The Tumor Suppressor DiRas3 Forms a Complex with H-Ras and C-RAF Proteins and Regulates Localization, Dimerization, and Kinase Activity of C-RAF*

    PubMed Central

    Baljuls, Angela; Beck, Matthias; Oenel, Ayla; Robubi, Armin; Kroschewski, Ruth; Hekman, Mirko; Rudel, Thomas; Rapp, Ulf R.

    2012-01-01

    The maternally imprinted Ras-related tumor suppressor gene DiRas3 is lost or down-regulated in more than 60% of ovarian and breast cancers. The anti-tumorigenic effect of DiRas3 is achieved through several mechanisms, including inhibition of cell proliferation, motility, and invasion, as well as induction of apoptosis and autophagy. Re-expression of DiRas3 in cancer cells interferes with the signaling through Ras/MAPK and PI3K. Despite intensive research, the mode of interference of DiRas3 with the Ras/RAF/MEK/ERK signal transduction is still a matter of speculation. In this study, we show that DiRas3 associates with the H-Ras oncogene and that activation of H-Ras enforces this interaction. Furthermore, while associated with DiRas3, H-Ras is able to bind to its effector protein C-RAF. The resulting multimeric complex consisting of DiRas3, C-RAF, and active H-Ras is more stable than the two protein complexes H-Ras·C-RAF or H-Ras·DiRas3, respectively. The consequence of this complex formation is a DiRas3-mediated recruitment and anchorage of C-RAF to components of the membrane skeleton, suppression of C-RAF/B-RAF heterodimerization, and inhibition of C-RAF kinase activity. PMID:22605333

  11. Study Illuminates K-Ras4B Activation, Which May Help Predict Drug Resistance | Poster

    Cancer.gov

    Until recently, researchers studying RAS, a family of proteins involved in transmitting signals within cells, believed that the exchange of guanosine 5’-diphosphate (GDP) by guanosine triphosphate (GTP) was sufficient to activate the protein. Once activated, RAS can cause unintended and overactive signaling in cells, which can lead to cell division and, ultimately, cancer.

  12. Pleiotrophin mediates hematopoietic regeneration via activation of RAS.

    PubMed

    Himburg, Heather A; Yan, Xiao; Doan, Phuong L; Quarmyne, Mamle; Micewicz, Eva; McBride, William; Chao, Nelson J; Slamon, Dennis J; Chute, John P

    2014-11-01

    Hematopoietic stem cells (HSCs) are highly susceptible to ionizing radiation-mediated death via induction of ROS, DNA double-strand breaks, and apoptotic pathways. The development of therapeutics capable of mitigating ionizing radiation-induced hematopoietic toxicity could benefit both victims of acute radiation sickness and patients undergoing hematopoietic cell transplantation. Unfortunately, therapies capable of accelerating hematopoietic reconstitution following lethal radiation exposure have remained elusive. Here, we found that systemic administration of pleiotrophin (PTN), a protein that is secreted by BM-derived endothelial cells, substantially increased the survival of mice following radiation exposure and after myeloablative BM transplantation. In both models, PTN increased survival by accelerating the recovery of BM hematopoietic stem and progenitor cells in vivo. PTN treatment promoted HSC regeneration via activation of the RAS pathway in mice that expressed protein tyrosine phosphatase receptor-zeta (PTPRZ), whereas PTN treatment did not induce RAS signaling in PTPRZ-deficient mice, suggesting that PTN-mediated activation of RAS was dependent upon signaling through PTPRZ. PTN strongly inhibited HSC cycling following irradiation, whereas RAS inhibition abrogated PTN-mediated induction of HSC quiescence, blocked PTN-mediated recovery of hematopoietic stem and progenitor cells, and abolished PTN-mediated survival of irradiated mice. These studies demonstrate the therapeutic potential of PTN to improve survival after myeloablation and suggest that PTN-mediated hematopoietic regeneration occurs in a RAS-dependent manner. PMID:25250571

  13. The Ras-Erk-ETS-Signaling Pathway Is a Drug Target for Longevity.

    PubMed

    Slack, Cathy; Alic, Nazif; Foley, Andrea; Cabecinha, Melissa; Hoddinott, Matthew P; Partridge, Linda

    2015-07-01

    Identifying the molecular mechanisms that underlie aging and their pharmacological manipulation are key aims for improving lifelong human health. Here, we identify a critical role for Ras-Erk-ETS signaling in aging in Drosophila. We show that inhibition of Ras is sufficient for lifespan extension downstream of reduced insulin/IGF-1 (IIS) signaling. Moreover, direct reduction of Ras or Erk activity leads to increased lifespan. We identify the E-twenty six (ETS) transcriptional repressor, Anterior open (Aop), as central to lifespan extension caused by reduced IIS or Ras attenuation. Importantly, we demonstrate that adult-onset administration of the drug trametinib, a highly specific inhibitor of Ras-Erk-ETS signaling, can extend lifespan. This discovery of the Ras-Erk-ETS pathway as a pharmacological target for animal aging, together with the high degree of evolutionary conservation of the pathway, suggests that inhibition of Ras-Erk-ETS signaling may provide an effective target for anti-aging interventions in mammals. PMID:26119340

  14. PGA1-induced apoptosis involves specific activation of H-Ras and N-Ras in cellular endomembranes.

    PubMed

    Anta, B; Pérez-Rodríguez, A; Castro, J; García-Domínguez, C A; Ibiza, S; Martínez, N; Durá, L M; Hernández, S; Gragera, T; Peña-Jiménez, D; Yunta, M; Zarich, N; Crespo, P; Serrador, J M; Santos, E; Muñoz, A; Oliva, J L; Rojas-Cabañeros, J M

    2016-01-01

    The cyclopentenone prostaglandin A1 (PGA1) is an inducer of cell death in cancer cells. However, the mechanism that initiates this cytotoxic response remains elusive. Here we report that PGA1 triggers apoptosis by a process that entails the specific activation of H- and N-Ras isoforms, leading to caspase activation. Cells without H- and N-Ras did not undergo apoptosis upon PGA1 treatment; in these cells, the cellular demise was rescued by overexpression of either H-Ras or N-Ras. Consistently, the mutant H-Ras-C118S, defective for binding PGA1, did not produce cell death. Molecular analysis revealed a key role for the RAF-MEK-ERK signaling pathway in the apoptotic process through the induction of calpain activity and caspase-12 cleavage. We propose that PGA1 evokes a specific physiological cell death program, through H- and N-Ras, but not K-Ras, activation at endomembranes. Our results highlight a novel mechanism that may be of potential interest for tumor treatment. PMID:27468687

  15. PGA1-induced apoptosis involves specific activation of H-Ras and N-Ras in cellular endomembranes

    PubMed Central

    Anta, B; Pérez-Rodríguez, A; Castro, J; García- Domínguez, C A; Ibiza, S; Martínez, N; Durá, L M; Hernández, S; Gragera, T; Peña-Jiménez, D; Yunta, M; Zarich, N; Crespo, P; Serrador, J M; Santos, E; Muñoz, A; Oliva, J L; Rojas-Cabañeros, J M

    2016-01-01

    The cyclopentenone prostaglandin A1 (PGA1) is an inducer of cell death in cancer cells. However, the mechanism that initiates this cytotoxic response remains elusive. Here we report that PGA1 triggers apoptosis by a process that entails the specific activation of H- and N-Ras isoforms, leading to caspase activation. Cells without H- and N-Ras did not undergo apoptosis upon PGA1 treatment; in these cells, the cellular demise was rescued by overexpression of either H-Ras or N-Ras. Consistently, the mutant H-Ras-C118S, defective for binding PGA1, did not produce cell death. Molecular analysis revealed a key role for the RAF-MEK-ERK signaling pathway in the apoptotic process through the induction of calpain activity and caspase-12 cleavage. We propose that PGA1 evokes a specific physiological cell death program, through H- and N-Ras, but not K-Ras, activation at endomembranes. Our results highlight a novel mechanism that may be of potential interest for tumor treatment. PMID:27468687

  16. Decoding RAS isoform and codon-specific signalling

    PubMed Central

    Newlaczyl, Anna U.; Hood, Fiona E.; Coulson, Judy M.; Prior, Ian A.

    2014-01-01

    RAS proteins are key signalling hubs that are oncogenically mutated in 30% of all cancer cases. Three genes encode almost identical isoforms that are ubiquitously expressed, but are not functionally redundant. The network responses associated with each isoform and individual oncogenic mutations remain to be fully characterized. In the present article, we review recent data defining the differences between the RAS isoforms and their most commonly mutated codons and discuss the underlying mechanisms. PMID:25109951

  17. Disorders of dysregulated signal traffic through the RAS-MAPK pathway: phenotypic spectrum and molecular mechanisms

    PubMed Central

    Tartaglia, Marco; Gelb, Bruce D.

    2010-01-01

    RAS GTPases control a major signaling network implicated in several cellular functions, including cell fate determination, proliferation, survival, differentiation, migration, and senescence. Within this network, signal flow through the RAF-MEK-ERK pathway, the first identified mitogen-associated protein kinase (MAPK) cascade, mediates early and late developmental processes controlling morphology determination, organogenesis, synaptic plasticity and growth. Signaling through the RAS-MAPK cascade is tightly controlled, and its enhanced activation represents a well-known event in oncogenesis. Unexpectedly, in the past few years, inherited dysregulation of this pathway has been recognized as the cause underlying a group of clinically related disorders sharing facial dysmorphism, cardiac defects, reduced postnatal growth, ectodermal anomalies, variable cognitive deficits and susceptibility to certain malignancies as major features. These disorders are caused by heterozygosity for mutations in genes encoding RAS proteins, regulators of RAS function, modulators of RAS interaction with effectors or downstream signal transducers. Here, we provide an overview of the phenotypic spectrum associated with germline mutations perturbing RAS-MAPK signaling, the unpredicted molecular mechanisms converging towards the dysregulation of this signaling cascade, and major genotype-phenotype correlations. PMID:20958325

  18. Novel triterpenoids isolated from raisins exert potent antiproliferative activities by targeting mitochondrial and Ras/Raf/ERK signaling in human breast cancer cells.

    PubMed

    Liu, Juan; Wang, Yihai; Liu, Rui Hai; He, Xiangjiu

    2016-07-13

    Raisins are produced in many regions of the world and may be eaten raw or used in cooking, baking and brewing. Bioactivity-guided fractionation of raisins was used to determine the chemical identity of bioactive constituents. Seven triterpenoids, including three novel triterpenoids, were isolated and identified. The novel triterpenoids were elucidated to be 3β,13β-dihydroxy-12,13-dihydrooleanolic acid (1), 3β,12β,13β-trihydroxy-12,13-dihydrooleanolic acid (2, TOA), and 3β,13β-dihydroxy-12,13-dihydroursolic acid (7), respectively. TOA showed the highest antiproliferative activity against MCF-7/DOX cells, with an EC50 value of 3.60 ± 0.55 μM. Compounds 1, 3 and 7 also exhibited potent antiproliferative activity against MCF-7/DOX cells, with an EC50 value of 7.10 ± 0.65, 10.22 ± 0.90 and 8.91 ± 1.12 μM. Compounds 1 and 2 also exhibited potent antioxidant activities. Moreover, the detailed cytotoxic mechanisms of TOA were investigated by targeting the mitochondrial and protein tyrosine kinase signaling (Ras/Raf/ERK). The results strongly demonstrated that the novel triterpenoids isolated from raisins could be promising candidates for therapy of breast cancer. PMID:27359376

  19. Role of Ras signaling in the induction of snail by transforming growth factor-beta.

    PubMed

    Horiguchi, Kana; Shirakihara, Takuya; Nakano, Ayako; Imamura, Takeshi; Miyazono, Kohei; Saitoh, Masao

    2009-01-01

    The epithelial-mesenchymal transition (EMT) is a crucial morphological event that occurs during the progression of epithelial tumors. EMT can be induced by transforming growth factor (TGF)-beta in some tumor cells. Here, we demonstrate the molecular mechanism whereby Snail, a key regulator of EMT, is induced by TGF-beta in tumor cells. Snail induction by TGF-beta was highly dependent on cooperation with active Ras signals, and silencing of Ras abolished Snail induction by TGF-beta in pancreatic cancer Panc-1 cells. Transfection of constitutively active Ras into HeLa cells led to induction of Snail by TGF-beta, while representative direct targets of TGF-beta, including Smad7 and PAI-1, were not affected by Ras signaling. Using mitogen-activated protein kinase inhibitors or Smad3 or Smad2 mutants, we found that phosphorylation at the linker region of Smad2/3 was not required for the induction of Snail by TGF-beta. Taken together, these findings indicate that Ras and TGF-beta-Smad signaling selectively cooperate in the induction of Snail, which occurs in a Smad-dependent manner, but independently of phosphorylation at the linker region of R-Smads by Ras signaling. PMID:19010789

  20. Differential activation of yeast adenylyl cyclase by Ras1 and Ras2 depends on the conserved N terminus.

    PubMed

    Hurwitz, N; Segal, M; Marbach, I; Levitzki, A

    1995-11-21

    Although both Ras1 and Ras2 activate adenylyl cyclase in yeast, a number of differences can be observed regarding their function in the cAMP pathway. To explore the relative contribution of conserved and variable domains in determining these differences, chimeric RAS1-RAS2 or RAS2-RAS1 genes were constructed by swapping the sequences encoding the variable C-terminal domains. These constructs were expressed in a cdc25ts ras1 ras2 strain. Biochemical data show that the difference in efficacy of adenylyl cyclase activation between the two Ras proteins resides in the highly conserved N-terminal domain. This finding is supported by the observation that Ras2 delta, in which the C-terminal domain of Ras2 has been deleted, is a more potent activator of the yeast adenylyl cyclase than Ras1 delta, in which the C-terminal domain of Ras1 has been deleted. These observations suggest that amino acid residues other than the highly conserved residues of the effector domain within the N terminus may determine the efficiency of functional interaction with adenylyl cyclase. Similar levels of intracellular cAMP were found in Ras1, Ras1-Ras2, Ras1 delta, Ras2, and Ras2-Ras1 strains throughout the growth curve. This was found to result from the higher expression of Ras1 and Ras1-Ras2, which compensate for their lower efficacy in activating adenylyl cyclase. These results suggest that the difference between the Ras1 and the Ras2 phenotype is not due to their different efficacy in activating the cAMP pathway and that the divergent C-terminal domains are responsible for these differences, through interaction with other regulatory elements. PMID:7479926

  1. GHF-1/Pit-1 functions as a cell-specific integrator of Ras signaling by targeting the Ras pathway to a composite Ets-1/GHF-1 response element.

    PubMed

    Bradford, A P; Conrad, K E; Tran, P H; Ostrowski, M C; Gutierrez-Hartmann, A

    1996-10-01

    Activation of the rat prolactin (rPRL) promoter by Ras is a prototypical example of tissue-specific transcriptional regulation in a highly differentiated cell type. Using a series of site-specific mutations and deletions of the proximal rPRL promoter we have mapped the major Ras/Raf response element (RRE) to a composite Ets-1/GHF-1 binding site located between positions -217 and -190. Mutation of either the Ets-1 or GHF-1 binding sites inhibits Ras and Raf activation of the rPRL promoter, and insertion of this RRE into the rat growth hormone promoter confers Ras responsiveness. We show that Ets-1 is expressed in GH4 cells and, consistent with their functional synergistic interaction, both Ets-1 and GHF-1 are able to bind specifically to this bipartite RRE. We confirm that Ets-1 or a related Ets factor is the nuclear target of the Ras pathway leading to activation of the rPRL promoter and demonstrate that Elk-1 and Net do not mediate the Ras response. Thus, the pituitary-specific POU homeodomain transcription factor, GHF-1, serves as a cell-specific signal integrator by functionally interacting with an Ets-1-like factor, at uniquely juxtaposed binding sites, thereby targeting an otherwise ubiquitous Ras signaling pathway to a select subset of cell-specific GHF-1-dependent genes. PMID:8798730

  2. RAS signalling through PI3-Kinase controls cell migration via modulation of Reelin expression

    PubMed Central

    Castellano, Esther; Molina-Arcas, Miriam; Krygowska, Agata Adelajda; East, Philip; Warne, Patricia; Nicol, Alastair; Downward, Julian

    2016-01-01

    RAS signalling through phosphoinositide 3-kinase (PI3-Kinase) has been shown to have an essential role in tumour initiation and maintenance. RAS also regulates cell motility and tumour invasiveness, but the role of direct RAS binding to PI3-Kinase in this remains uncertain. Here, we provide evidence that disruption of RAS interaction with PI3-Kinase p110α decreases cell motility and prevents activation of Rac GTPase. Analysis of gene expression in cells lacking RAS interaction with p110α reveals increased levels of the extracellular matrix glycoprotein Reelin and activation of its downstream pathway resulting in upregulation of E-cadherin expression. Induction of the Reelin/E-cadherin axis is also observed in Kras mutant lung tumours that are regressing due to blockade of RAS interaction with PI3-Kinase. Furthermore, loss of Reelin correlates with decreased survival of lung and breast cancer patients. Reelin thus plays a role in restraining RAS and PI3-kinase promotion of cell motility and potentially tumour metastasis. PMID:27071537

  3. Involvement of Ras/Raf/AP-1 in BMP-4 signaling during Xenopus embryonic development.

    PubMed Central

    Xu, R H; Dong, Z; Maeno, M; Kim, J; Suzuki, A; Ueno, N; Sredni, D; Colburn, N H; Kung, H F

    1996-01-01

    Previously, we elucidated the role of bone morphogenetic protein 4 (BMP-4) in the dorsal-ventral patterning of the Xenopus embryo by using a dominant negative mutant of the BMP-4 receptor (DN-BR). The present paper describes the involvement of Ras, Raf, and activator protein 1 (AP-1) in BMP-4 signaling during Xenopus embryonic development. The AP-1 activity was determined by injecting an AP-1-dependent luciferase reporter gene into two-cell-stage Xenopus embryos and measuring the luciferase activity at various developmental stages. We found that injection of BMP-4 mRNA increased AP-1 activity, whereas injection of DN-BR mRNA inhibited AP-1 activity. Similar inhibitory effects were seen with injection of mRNAs encoding dominant negative mutants of c-Ha-Ras, c-Raf, or c-Jun. These results suggest that the endogenous AP-1 activity is regulated by BMP-4/Ras/Raf/Jun signals. We next investigated the effects of Ras/Raf/AP-1 signals on the biological functions of BMP-4. DN-BR-induced dorsalization of the embryo, revealed by the formation of a secondary body axis or dorsalization of the ventral mesoderm explant analyzed by histological and molecular criteria, was significantly reversed by coinjection of [Val12]Ha-Ras, c-Raf, or c-Jun mRNA. Furthermore, the BMP-4-stimulated erythroid differentiation in the ventral mesoderm was substantially inhibited by coinjection with the dominant negative c-Ha-Ras, c-Raf, or c-Jun mutant. Our results suggest the involvement of Ras/Raf/AP-1 in the BMP-4 signaling pathway. Images Fig. 2 Fig. 3 Fig. 4 PMID:8570644

  4. An Active RFID Accountability System (RAS) for Constrained Wireless Environments

    SciTech Connect

    Barker, Alan M; Hanson, Gregory R; Sexton, Angela Kay; Jones Jr, J P; Freer, Eva B; Sjoreen, Andrea L

    2011-01-01

    A team from Oak Ridge National Laboratory (ORNL) has developed an RFID Accountability System (RAS) that allows items with active RFID tags to be tracked in environments where tags may not be able to transmit their location continuously. The system uses activators that transmit a short range signal. Active RFID tags are in a sleep state until they encounter an activator. Then they transmit a signal that is picked up by the antennas installed throughout the building. This paper presents the theory of operation, application areas, lessons learned, and key features developed over the course of seven years of development and use.

  5. SUMO wrestling with Ras

    PubMed Central

    Zhang, Haibo; Luo, Ji

    2016-01-01

    ABSTRACT This review discusses our current understanding of the small ubiquitin-like modifier (SUMO) pathway and how it functionally intersects with Ras signaling in cancer. The Ras family of small GTPases are frequently mutated in cancer. The role of the SUMO pathway in cancer and in Ras signaling is currently not well understood. Recent studies have shown that the SUMO pathway can both regulate Ras/MAPK pathway activity directly and support Ras-driven oncogenesis through the regulation of proteins that are not direct Ras effectors. We recently discovered that in Ras mutant cancer cells, the SUMOylation status of a subset of proteins is altered and one such protein, KAP1, is required for Ras-driven transformation. A better understanding of the functional interaction between the SUMO and Ras pathways could lead to new insights into the mechanism of Ras-driven oncogenesis. PMID:27057691

  6. EGFR phosphorylates FAM129B to promote Ras activation

    PubMed Central

    Ji, Haitao; Lee, Jong-Ho; Wang, Yugang; Pang, Yilin; Zhang, Tao; Xia, Yan; Zhong, Lianjin; Lyu, Jianxin; Lu, Zhimin

    2016-01-01

    Ras GTPase-activating proteins (GAPs) are important regulators for Ras activation, which is instrumental in tumor development. However, the mechanism underlying this regulation remains elusive. We demonstrate here that activated EGFR phosphorylates the Y593 residue of the protein known as family with sequence similarity 129, member B (FAM129B), which is overexpressed in many types of human cancer. FAM129B phosphorylation increased the interaction between FAM129B and Ras, resulting in reduced binding of p120-RasGAP to Ras. FAM129B phosphorylation promoted Ras activation, increasing ERK1/2- and PKM2-dependent β-catenin transactivation and leading to the enhanced glycolytic gene expression and the Warburg effect; promoting tumor cell proliferation and invasion; and supporting brain tumorigenesis. Our studies unearthed a novel and important mechanism underlying EGFR-mediated Ras activation in tumor development. PMID:26721396

  7. Ras, Rac1, and phosphatidylinositol-3-kinase (PI3K) signaling in nitric oxide induced endothelial cell migration.

    PubMed

    Eller-Borges, Roberta; Batista, Wagner L; da Costa, Paulo E; Tokikawa, Rita; Curcio, Marli F; Strumillo, Scheilla T; Sartori, Adriano; Moraes, Miriam S; de Oliveira, Graciele A; Taha, Murched O; Fonseca, Fábio V; Stern, Arnold; Monteiro, Hugo P

    2015-05-01

    The small GTP-binding proteins Ras and Rac1 are molecular switches exchanging GDP for GTP and converting external signals in response to a variety of stimuli. Ras and Rac1 play an important role in cell proliferation, cell differentiation, and cell migration. Rac1 is directly involved in the reorganization and changes in the cytoskeleton during cell motility. Nitric oxide (NO) stimulates the Ras - ERK1/2 MAP kinases signaling pathway and is involved in the interaction between Ras and the phosphatidyl-inositol-3 Kinase (PI3K) signaling pathway and cell migration. This study utilizes bradykinin (BK), which promotes endogenous production of NO, in an investigation of the role of NO in the activation of Rac1 in rabbit aortic endothelial cells (RAEC). NO-derived from BK stimulation of RAEC and incubation of the cells with the s-nitrosothiol S-nitrosoglutathione (GSNO) activated Rac1. NO-derived from BK stimulation promoted RAEC migration over a period of 12 h. The use of RAEC permanently transfected with the dominant negative mutant of Ras (Ras(N17)) or with the non-nitrosatable mutant of Ras (Ras(C118S)); and the use of specific inhibitors of: Ras, PI3K, and Rac1 resulted in inhibition of NO-mediated Rac1 activation. BK-stimulated s-nitrosylation of Ras in RAEC mediates Rac1 activation and cell migration. Inhibition of NO-mediated Rac1 activation resulted in inhibition of endothelial cell migration. In conclusion, the NO indirect activation of Rac1 involves the direct participation of Ras and PI3K in the migration of endothelial cells stimulated with BK. PMID:25819133

  8. H-Ras Increases Urokinase Expression and Cell Invasion in Genetically Modified Human Astrocytes Through Ras/Raf/MEK Signaling Pathway

    PubMed Central

    ZHAO, YUNGE; XIAO, AIZHEN; DIPIERRO, CHARLES G.; ABDEL-FATTAH, RANA; AMOS, SAMSON; REDPATH, GERARD T.; CARPENTER, JOAN E.; PIEPER, RUSSELL O.; HUSSAINI, ISA M.

    2008-01-01

    Previous study reported that the activation of Ras pathway cooperated with E6/E7-mediated inactivation of p53/pRb to transform immortalized normal human astrocytes (NHA/hTERT) into intracranial tumors strongly resembling human astrocytomas. The mechanism of how H-Ras contributes to astrocytoma formation is unclear. Using genetically modified NHA cells (E6/E7/hTERT and E6/E7/hTERT/Ras cells) as models, we investigated the mechanism of Ras-induced tumorigenesis. The overexpression of constitutively active H-RasV12 in E6/E7/hTERT cells robustly increased the levels of urokinase plasminogen activator (uPA) mRNA, protein, activity and invasive capacity of the E6/E7/hTERT/Ras cells. However, the expressions of MMP-9 and MMP-2 did not significantly change in the E6/E7/hTERT and E6/E7/hTERT/Ras cells. Furthermore, E6/E7/hTERT/Ras cells also displayed higher level of uPA activity and were more invasive than E6/E7/hTERT cells in 3D culture, and formed an intracranial tumor mass in a NOD-SCID mouse model. uPA specific inhibitor (B428) and uPA neutralizing antibody decreased uPA activity and invasion in E6/E7/hTERT/Ras cells. uPA-deficient U-1242 glioblastoma cells were less invasive in vitro and exhibited reduced tumor growth and infiltration into normal brain in xenograft mouse model. Inhibitors of Ras (FTA), Raf (Bay 54−9085) and MEK (UO126), but not of phosphatidylinositol 3-kinase (PI3K) (LY294002) and of protein kinase C (BIM) pathways, inhibited uPA activity and cell invasion. Our results suggest that H-Ras increased uPA expression and activity via the Ras/Raf/MEK signaling pathway leading to enhanced cell invasion and this may contribute to increased invasive growth properties of astrocytomas. PMID:18383343

  9. Abnormal Ras signaling in Costello syndrome (CS) negatively regulates enamel formation

    PubMed Central

    Goodwin, Alice F.; Tidyman, William E.; Jheon, Andrew H.; Sharir, Amnon; Zheng, Xu; Charles, Cyril; Fagin, James A.; McMahon, Martin; Diekwisch, Thomas G.H.; Ganss, Bernhard; Rauen, Katherine A.; Klein, Ophir D.

    2014-01-01

    RASopathies are syndromes caused by gain-of-function mutations in the Ras signaling pathway. One of these conditions, Costello syndrome (CS), is typically caused by an activating de novo germline mutation in HRAS and is characterized by a wide range of cardiac, musculoskeletal, dermatological and developmental abnormalities. We report that a majority of individuals with CS have hypo-mineralization of enamel, the outer covering of teeth, and that similar defects are present in a CS mouse model. Comprehensive analysis of the mouse model revealed that ameloblasts, the cells that generate enamel, lacked polarity, and the ameloblast progenitor cells were hyperproliferative. Ras signals through two main effector cascades, the mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI3K) pathways. To determine through which pathway Ras affects enamel formation, inhibitors targeting either PI3K or MEK 1 and 2 (MEK 1/2), kinases in the MAPK pathway, were utilized. MEK1/2 inhibition rescued the hypo-mineralized enamel, normalized the ameloblast polarity defect and restored normal progenitor cell proliferation. In contrast, PI3K inhibition only corrected the progenitor cell proliferation phenotype. We demonstrate for the first time the central role of Ras signaling in enamel formation in CS individuals and present the mouse incisor as a model system to dissect the roles of the Ras effector pathways in vivo. PMID:24057668

  10. Activated Drosophila Ras1 is selectively suppressed by isoprenyl transferase inhibitors.

    PubMed Central

    Kauffmann, R C; Qian, Y; Vogt, A; Sebti, S M; Hamilton, A D; Carthew, R W

    1995-01-01

    Ras CAAX (C = cysteine, A = aliphatic amino acid, and X = any amino acid) peptidomimetic inhibitors of farnesyl protein transferase suppress Ras-dependent cell transformation by preventing farnesylation of the Ras oncoprotein. These compounds are potential anticancer agents for tumors associated with Ras mutations. The peptidomimetic FTI-254 was tested for Ras1-inhibiting activity in whole animals by injection of activated Ras1val12 Drosophila larvae. FTI-254 decreased the ability of Ras1val12 to form supernumerary R7 photoreceptor cells in the compound eye of transformed flies. In contrast, it had no effect on the related supernumerary R7 phenotypes of flies transformed with either the activated sevenless receptor tyrosine kinase, Raf kinase, or a chimeric Ras1val12 protein that is membrane associated through myristylation instead of isoprenylation. Therefore, FTI-254 acts as an isoprenylation inhibitor to selectively inhibit Ras1val12 signaling activity in a whole-animal model system. Images Fig. 2 PMID:7479910

  11. A non-cell-autonomous role for Ras signaling in C. elegans neuroblast delamination

    PubMed Central

    Parry, Jean M.; Sundaram, Meera V.

    2014-01-01

    Receptor tyrosine kinase (RTK) signaling through Ras influences many aspects of normal cell behavior, including epithelial-to-mesenchymal transition, and aberrant signaling promotes both tumorigenesis and metastasis. Although many such effects are cell-autonomous, here we show a non-cell-autonomous role for RTK-Ras signaling in the delamination of a neuroblast from an epithelial organ. The C. elegans renal-like excretory organ is initially composed of three unicellular epithelial tubes, namely the canal, duct and G1 pore cells; however, the G1 cell later delaminates from the excretory system to become a neuroblast and is replaced by the G2 cell. G1 delamination and G2 intercalation involve cytoskeletal remodeling, interconversion of autocellular and intercellular junctions and migration over a luminal extracellular matrix, followed by G1 junction loss. LET-23/EGFR and SOS-1, an exchange factor for Ras, are required for G1 junction loss but not for initial cytoskeletal or junction remodeling. Surprisingly, expression of activated LET-60/Ras in the neighboring duct cell, but not in the G1 or G2 cells, is sufficient to rescue sos-1 delamination defects, revealing that Ras acts non-cell-autonomously to permit G1 delamination. We suggest that, similarly, oncogenic mutations in cells within a tumor might help create a microenvironment that is permissive for other cells to detach and ultimately metastasize. PMID:25371363

  12. Peroxiredoxin II promotes hepatic tumorigenesis through cooperation with Ras/Forkhead box M1 signaling pathway.

    PubMed

    Park, Y-H; Kim, S-U; Kwon, T-H; Kim, J-M; Song, I-S; Shin, H-J; Lee, B-K; Bang, D-H; Lee, S-J; Lee, D-S; Chang, K-T; Kim, B-Y; Yu, D-Y

    2016-07-01

    The current study was carried out to define the involvement of Peroxiredoxin (Prx) II in progression of hepatocellular carcinoma (HCC) and the underlying molecular mechanism(s). Expression and function of Prx II in HCC was determined using H-ras(G12V)-transformed HCC cells (H-ras(G12V)-HCC cells) and the tumor livers from H-ras(G12V)-transgenic (Tg) mice and HCC patients. Prx II was upregulated in H-ras(G12V)-HCC cells and H-ras(G12V)-Tg mouse tumor livers, the expression pattern of which highly similar to that of forkhead Box M1 (FoxM1). Moreover, either knockdown of FoxM1 or site-directed mutagenesis of FoxM1-binding site of Prx II promoter significantly reduced Prx II levels in H-ras(G12V)-HCC cells, indicating FoxM1 as a direct transcription factor of Prx II in HCC. Interestingly, the null mutation of Prx II markedly decreased the number and size of tumors in H-ras(G12V)-Tg livers. Consistent with this, knockdown of Prx II in H-ras(G12V)-HCC cells reduced the expression of cyclin D1, cell proliferation, anchorage-independent growth and tumor formation in athymic nude mice, whereas overexpression of Prx II increased or aggravated the tumor phenotypes. Importantly, the expression of Prx II was correlated with that of FoxM1 in HCC patients. The activation of extracellular signal-related kinase (ERK) pathway and the expression of FoxM1 and cyclin D1 were highly dependent on Prx II in H-ras(G12V)-HCC cells and H-ras(G12V)-Tg livers. Prx II is FoxM1-dependently-expressed antioxidant in HCC and function as an enhancer of Ras(G12V) oncogenic potential in hepatic tumorigenesis through activation of ERK/FoxM1/cyclin D1 cascade. PMID:26500057

  13. Ras protein/cAMP-dependent protein kinase signaling is negatively regulated by a deubiquitinating enzyme, Ubp3, in yeast.

    PubMed

    Li, Yang; Wang, Yuqi

    2013-04-19

    Ras proteins and cAMP-dependent protein kinase (protein kinase A, PKA) are important components of a nutrient signaling pathway that mediates cellular responses to glucose in yeast. The molecular mechanisms that regulate Ras/PKA-mediated signaling remain to be fully understood. Here, we provide evidence that Ras/PKA signaling is negatively regulated by a deubiquitinating enzyme, Ubp3. Disrupting the activity of Ubp3 leads to hyperactivation of PKA, as evidenced by much enhanced phosphorylation of PKA substrates, decreased accumulation of glycogen, larger cell size, and increased sensitivity to heat shock. Levels of intracellular cAMP and the active forms of Ras proteins are also elevated in the ubp3Δ mutant. Consistent with a possibility that the increased cAMP is responsible for the abnormal signaling behavior of the ubp3Δ mutant, overexpressing PDE2, which encodes a phosphodiesterase that hydrolyzes cAMP, significantly relieves the cell size increase and heat shock sensitivity of the mutant. Further analysis reveals that Ubp3 interacts with a Ras GTPase-accelerating protein, Ira2, and regulates its level of ubiquitination. Together, our data indicate that Ubp3 is a new regulator of the Ras/PKA signaling pathway and suggest that Ubp3 regulates this pathway by controlling the ubiquitination of Ras GTPase-accelerating protein Ira2. PMID:23476013

  14. Autophagic activity dictates the cellular response to oncogenic RAS

    PubMed Central

    Wang, Yihua; Wang, Xiao Dan; Lapi, Eleonora; Sullivan, Alexandra; Jia, Wei; He, You-Wen; Ratnayaka, Indrika; Zhong, Shan; Goldin, Robert D.; Goemans, Christoph G.; Tolkovsky, Aviva M.; Lu, Xin

    2012-01-01

    RAS is frequently mutated in human cancers and has opposing effects on autophagy and tumorigenesis. Identifying determinants of the cellular responses to RAS is therefore vital in cancer research. Here, we show that autophagic activity dictates the cellular response to oncogenic RAS. N-terminal Apoptosis-stimulating of p53 protein 2 (ASPP2) mediates RAS-induced senescence and inhibits autophagy. Oncogenic RAS-expressing ASPP2(Δ3/Δ3) mouse embryonic fibroblasts that escape senescence express a high level of ATG5/ATG12. Consistent with the notion that autophagy levels control the cellular response to oncogenic RAS, overexpressing ATG5, but not autophagy-deficient ATG5 mutant K130R, bypasses RAS-induced senescence, whereas ATG5 or ATG3 deficiency predisposes to it. Mechanistically, ASPP2 inhibits RAS-induced autophagy by competing with ATG16 to bind ATG5/ATG12 and preventing ATG16/ATG5/ATG12 formation. Hence, ASPP2 modulates oncogenic RAS-induced autophagic activity to dictate the cellular response to RAS: to proliferate or senesce. PMID:22847423

  15. Systemic Regulation of RAS/MAPK Signaling by the Serotonin Metabolite 5-HIAA

    PubMed Central

    Schmid, Tobias; Snoek, L. Basten; Fröhli, Erika; van der Bent, M. Leontien; Kammenga, Jan; Hajnal, Alex

    2015-01-01

    Human cancer is caused by the interplay of mutations in oncogenes and tumor suppressor genes and inherited variations in cancer susceptibility genes. While many of the tumor initiating mutations are well characterized, the effect of genetic background variation on disease onset and progression is less understood. We have used C. elegans genetics to identify genetic modifiers of the oncogenic RAS/MAPK signaling pathway. Quantitative trait locus analysis of two highly diverged C. elegans isolates combined with allele swapping experiments identified the polymorphic monoamine oxidase A (MAOA) gene amx-2 as a negative regulator of RAS/MAPK signaling. We further show that the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA), which is a product of MAOA catalysis, systemically inhibits RAS/MAPK signaling in different organs of C. elegans. Thus, MAOA activity sets a global threshold for MAPK activation by controlling 5-HIAA levels. To our knowledge, 5-HIAA is the first endogenous small molecule that acts as a systemic inhibitor of RAS/MAPK signaling. PMID:25978500

  16. The RET/PTC-RAS-BRAF linear signaling cascade mediates the motile and mitogenic phenotype of thyroid cancer cells

    PubMed Central

    Melillo, Rosa Marina; Castellone, Maria Domenica; Guarino, Valentina; De Falco, Valentina; Cirafici, Anna Maria; Salvatore, Giuliana; Caiazzo, Fiorina; Basolo, Fulvio; Giannini, Riccardo; Kruhoffer, Mogens; Orntoft, Torben; Fusco, Alfredo; Santoro, Massimo

    2005-01-01

    In papillary thyroid carcinomas (PTCs), rearrangements of the RET receptor (RET/PTC) and activating mutations in the BRAF or RAS oncogenes are mutually exclusive. Here we show that the 3 proteins function along a linear oncogenic signaling cascade in which RET/PTC induces RAS-dependent BRAF activation and RAS- and BRAF-dependent ERK activation. Adoptive activation of the RET/PTC-RAS-BRAF axis induced cell proliferation and Matrigel invasion of thyroid follicular cells. Gene expression profiling revealed that the 3 oncogenes activate a common transcriptional program in thyroid cells that includes upregulation of the CXCL1 and CXCL10 chemokines, which in turn stimulate proliferation and invasion. Thus, motile and mitogenic properties are intrinsic to transformed thyroid cells and are governed by an epistatic oncogenic signaling cascade. PMID:15761501

  17. CARD9 mediates Dectin-1-induced ERK activation by linking Ras-GRF1 to H-Ras for antifungal immunity.

    PubMed

    Jia, Xin-Ming; Tang, Bing; Zhu, Le-Le; Liu, Yan-Hui; Zhao, Xue-Qiang; Gorjestani, Sara; Hsu, Yen-Michael S; Yang, Long; Guan, Jian-Hong; Xu, Guo-Tong; Lin, Xin

    2014-10-20

    Dectin-1 functions as a pattern recognition receptor for sensing fungal infection. It has been well-established that Dectin-1 induces innate immune responses through caspase recruitment domain-containing protein 9 (CARD9)-mediated NF-κB activation. In this study, we find that CARD9 is dispensable for NF-κB activation induced by Dectin-1 ligands, such as curdlan or Candida albicans yeast. In contrast, we find that CARD9 regulates H-Ras activation by linking Ras-GRF1 to H-Ras, which mediates Dectin-1-induced extracellular signal-regulated protein kinase (ERK) activation and proinflammatory responses when stimulated by their ligands. Mechanistically, Dectin-1 engagement initiates spleen tyrosine kinase (Syk)-dependent Ras-GRF1 phosphorylation, and the phosphorylated Ras-GRF1 recruits and activates H-Ras through forming a complex with CARD9, which leads to activation of ERK downstream. Finally, we show that inhibiting ERK activation significantly accelerates the death of C. albicans-infected mice, and this inhibitory effect is dependent on CARD9. Together, our studies reveal a molecular mechanism by which Dectin-1 induces H-Ras activation that leads to ERK activation for host innate immune responses against fungal infection. PMID:25267792

  18. CARD9 mediates Dectin-1–induced ERK activation by linking Ras-GRF1 to H-Ras for antifungal immunity

    PubMed Central

    Tang, Bing; Zhu, Le-Le; Liu, Yan-Hui; Zhao, Xue-Qiang; Gorjestani, Sara; Hsu, Yen-Michael S.; Yang, Long; Guan, Jian-Hong; Xu, Guo-Tong

    2014-01-01

    Dectin-1 functions as a pattern recognition receptor for sensing fungal infection. It has been well-established that Dectin-1 induces innate immune responses through caspase recruitment domain-containing protein 9 (CARD9)–mediated NF-κB activation. In this study, we find that CARD9 is dispensable for NF-κB activation induced by Dectin-1 ligands, such as curdlan or Candida albicans yeast. In contrast, we find that CARD9 regulates H-Ras activation by linking Ras-GRF1 to H-Ras, which mediates Dectin-1–induced extracellular signal-regulated protein kinase (ERK) activation and proinflammatory responses when stimulated by their ligands. Mechanistically, Dectin-1 engagement initiates spleen tyrosine kinase (Syk)–dependent Ras-GRF1 phosphorylation, and the phosphorylated Ras-GRF1 recruits and activates H-Ras through forming a complex with CARD9, which leads to activation of ERK downstream. Finally, we show that inhibiting ERK activation significantly accelerates the death of C. albicans–infected mice, and this inhibitory effect is dependent on CARD9. Together, our studies reveal a molecular mechanism by which Dectin-1 induces H-Ras activation that leads to ERK activation for host innate immune responses against fungal infection. PMID:25267792

  19. Defined spatiotemporal features of RAS-ERK signals dictate cell fate in MCF-7 mammary epithelial cells

    PubMed Central

    Herrero, Ana; Casar, Berta; Colón-Bolea, Paula; Agudo-Ibáñez, Lorena; Crespo, Piero

    2016-01-01

    Signals conveyed through the RAS-ERK pathway are essential for the determination of cell fate. It is well established that signal variability is achieved in the different microenvironments in which signals unfold. It is also known that signal duration is critical for decisions concerning cell commitment. However, it is unclear how RAS-ERK signals integrate time and space in order to elicit a given biological response. To investigate this, we used MCF-7 cells, in which EGF-induced transient ERK activation triggers proliferation, whereas sustained ERK activation in response to heregulin leads to adipocytic differentiation. We found that both proliferative and differentiating signals emanate exclusively from plasma membrane–disordered microdomains. Of interest, the EGF signal can be transformed into a differentiating stimulus by HRAS overexpression, which prolongs ERK activation, but only if HRAS localizes at disordered membrane. On the other hand, HRAS signals emanating from the Golgi complex induce apoptosis and can prevent heregulin-induced differentiation. Our results indicate that within the same cellular context, RAS can exert different, even antagonistic, effects, depending on its sublocalization. Thus cell destiny is defined by the ability of a stimulus to activate RAS at the appropriate sublocalization for an adequate period while avoiding switching on opposing RAS signals. PMID:27099370

  20. Activation of ras oncogenes preceding the onset of neoplasia

    SciTech Connect

    Kumar, R.; Barbacid, M. ); Sukumar, S. )

    1990-06-01

    The identification of ras oncogenes in human and animal cancers including precancerous lesions indicates that these genes participate in the early stages of neoplastic development. Yet, these observations do not define the timing of ras oncogene activation in the multistep process of carcinogenesis. To ascertain the timing of ras oncogene activation, an animal model system was devised that involves the induction of mammary carcinomas in rats exposed at birth to the carcinogen nitrosomethylurea. High-resolution restriction fragment length polymorphism analysis of polymerase chain reaction-amplified ras sequences revealed the presence of both H-ras and K-ras oncogenes in normal mammary glands 2 weeks after carcinogen treatment and at least 2 months before the onset of neoplasia. These ras oncogenes can remain latent within the mammary gland until exposure to estrogens, demonstrating that activation of ras oncogenes can precede the onset of neoplasia and suggesting that normal physiological proliferative processes such as estrogen-induced mammary gland development may lead to neoplasia if the targeted cells harbor latent ras oncogenes.

  1. Suppression of albumin enhancer activity by H-ras and AP-1 in hepatocyte cell lines.

    PubMed Central

    Hu, J; Isom, H C

    1994-01-01

    We demonstrated, using a transient transfection assay, that the albumin enhancer increased the expression of the albumin promoter in a highly differentiated, simian virus 40 (SV40)-immortalized hepatocyte cell line, CWSV1, but was not functional in two ras-transformed cell lines (NR3 and NR4) derived from CWSV1 by stable transfection with the T24ras oncogene. A transient cotransfection assay showed that T24ras and normal c-Ha-ras were each able to inhibit the activity of the albumin enhancer in an immortal hepatocyte cell line. DNase I footprinting and gel mobility shift assays demonstrated that the DNA binding activities specific to the albumin enhancer were not decreased in the ras-transformed cells. ras also did not diminish the expression of HNF1 alpha, C/EBP alpha, HNF3 alpha, HNF3 beta, or HNF3 gamma but did significantly increase AP-1 binding activity. Three AP-1 binding sites were identified within the albumin enhancer, and DNA binding activities specific to these AP-1 sites were induced in the ras-transformed hepatocytes. Subsequent functional assays showed that overexpression of c-jun and c-fos inhibited the activity of the albumin enhancer. Site-directed mutagenesis of the AP-1 binding sites in the albumin enhancer partially abrogated the suppressing effect of ras and c-jun/c-fos on the enhancer. These functional studies therefore supported the results of the structural studies with AP-1. We conclude that the activity of the albumin enhancer is subject to regulation by ras signaling pathways and that the effect of ras on the albumin enhancer activity may be mediated by AP-1. Images PMID:8114691

  2. Activated Ras interacts with the Ral guanine nucleotide dissociation stimulator.

    PubMed Central

    Hofer, F; Fields, S; Schneider, C; Martin, G S

    1994-01-01

    The yeast two-hybrid system was used to identify proteins that interact with Ras. The H-Ras protein was found to interact with a guanine nucleotide dissociation stimulator (GDS) that has been previously shown to regulate guanine nucleotide exchange on another member of the Ras protein family, Ral. The interaction is mediated by the C-terminal, noncatalytic segment of the RalGDS and can be detected both in vivo, using the two-hybrid system, and in vitro, with purified recombinant proteins. The interaction of the RalGDS C-terminal segment with Ras is specific, dependent on activation of Ras by GTP, and blocked by a mutation that affects Ras effector function. These characteristics are similar to those previously demonstrated for the interaction between Ras and its putative effector, Raf, suggesting that the RalGDS may also be a Ras effector. Consistent with this idea, the RalGDS was found to inhibit the binding of Raf to Ras. Images PMID:7972015

  3. Lin28-let7 Modulates Radiosensitivity of Human Cancer Cells With Activation of K-Ras

    SciTech Connect

    Oh, Jee-Sun.; Kim, Jae-Jin; Byun, Ju-Yeon; Kim, In-Ah

    2010-01-15

    Purpose: To evaluate the potential of targeting Lin28-let7 microRNA regulatory network for overcoming the radioresistance of cancer cells having activated K-Ras signaling. Methods and Materials: A549 lung carcinoma cells and ASPC1 pancreatic cancer cells possessing K-RAS mutation were transfected with pre-let7a microRNA or Lin28 siRNA, respectively. Clonogenic assay, quantitative reverse transcription polymerase chain reaction, and Western analysis were performed. The effects of Lin28 on SQ20B cells having wild-type K-RAS, and a normal fibroblast were also assessed. Results: The overexpression of let-7a decreased expression of K-Ras and radiosensitized A549 cells. Inhibition of Lin28, a repressor of let-7, attenuated K-Ras expression and radiosensitized A549 and ASPC1 cells. Neither SQ20B cells expressing wild-type K-RAS nor HDF, the normal human fibroblasts, were radiosensitized by this approach. Conclusions: The Lin28-let7 regulatory network may be a potentially useful therapeutic target for overcoming the radioresistance of human cancers having activated K-Ras signaling.

  4. Monitoring Ras Interactions with the Nucleotide Exchange Factor Son of Sevenless (Sos) Using Site-specific NMR Reporter Signals and Intrinsic Fluorescence*

    PubMed Central

    Vo, Uybach; Vajpai, Navratna; Flavell, Liz; Bobby, Romel; Breeze, Alexander L.; Embrey, Kevin J.; Golovanov, Alexander P.

    2016-01-01

    The activity of Ras is controlled by the interconversion between GTP- and GDP-bound forms partly regulated by the binding of the guanine nucleotide exchange factor Son of Sevenless (Sos). The details of Sos binding, leading to nucleotide exchange and subsequent dissociation of the complex, are not completely understood. Here, we used uniformly 15N-labeled Ras as well as [13C]methyl-Met,Ile-labeled Sos for observing site-specific details of Ras-Sos interactions in solution. Binding of various forms of Ras (loaded with GDP and mimics of GTP or nucleotide-free) at the allosteric and catalytic sites of Sos was comprehensively characterized by monitoring signal perturbations in the NMR spectra. The overall affinity of binding between these protein variants as well as their selected functional mutants was also investigated using intrinsic fluorescence. The data support a positive feedback activation of Sos by Ras·GTP with Ras·GTP binding as a substrate for the catalytic site of activated Sos more weakly than Ras·GDP, suggesting that Sos should actively promote unidirectional GDP → GTP exchange on Ras in preference of passive homonucleotide exchange. Ras·GDP weakly binds to the catalytic but not to the allosteric site of Sos. This confirms that Ras·GDP cannot properly activate Sos at the allosteric site. The novel site-specific assay described may be useful for design of drugs aimed at perturbing Ras-Sos interactions. PMID:26565026

  5. Monitoring Ras Interactions with the Nucleotide Exchange Factor Son of Sevenless (Sos) Using Site-specific NMR Reporter Signals and Intrinsic Fluorescence.

    PubMed

    Vo, Uybach; Vajpai, Navratna; Flavell, Liz; Bobby, Romel; Breeze, Alexander L; Embrey, Kevin J; Golovanov, Alexander P

    2016-01-22

    The activity of Ras is controlled by the interconversion between GTP- and GDP-bound forms partly regulated by the binding of the guanine nucleotide exchange factor Son of Sevenless (Sos). The details of Sos binding, leading to nucleotide exchange and subsequent dissociation of the complex, are not completely understood. Here, we used uniformly (15)N-labeled Ras as well as [(13)C]methyl-Met,Ile-labeled Sos for observing site-specific details of Ras-Sos interactions in solution. Binding of various forms of Ras (loaded with GDP and mimics of GTP or nucleotide-free) at the allosteric and catalytic sites of Sos was comprehensively characterized by monitoring signal perturbations in the NMR spectra. The overall affinity of binding between these protein variants as well as their selected functional mutants was also investigated using intrinsic fluorescence. The data support a positive feedback activation of Sos by Ras·GTP with Ras·GTP binding as a substrate for the catalytic site of activated Sos more weakly than Ras·GDP, suggesting that Sos should actively promote unidirectional GDP → GTP exchange on Ras in preference of passive homonucleotide exchange. Ras·GDP weakly binds to the catalytic but not to the allosteric site of Sos. This confirms that Ras·GDP cannot properly activate Sos at the allosteric site. The novel site-specific assay described may be useful for design of drugs aimed at perturbing Ras-Sos interactions. PMID:26565026

  6. Endothelial nitric oxide synthase regulates N-Ras activation on the Golgi complex of antigen-stimulated T cells.

    PubMed

    Ibiza, Sales; Pérez-Rodríguez, Andrea; Ortega, Angel; Martínez-Ruiz, Antonio; Barreiro, Olga; García-Domínguez, Carlota A; Víctor, Víctor M; Esplugues, Juan V; Rojas, José M; Sánchez-Madrid, Francisco; Serrador, Juan M

    2008-07-29

    Ras/ERK signaling plays an important role in T cell activation and development. We recently reported that endothelial nitric oxide synthase (eNOS)-derived NO regulates T cell receptor (TCR)-dependent ERK activation by a cGMP-independent mechanism. Here, we explore the mechanisms through which eNOS exerts this regulation. We have found that eNOS-derived NO positively regulates Ras/ERK activation in T cells stimulated with antigen on antigen-presenting cells (APCs). Intracellular activation of N-, H-, and K-Ras was monitored with fluorescent probes in T cells stably transfected with eNOS-GFP or its G2A point mutant, which is defective in activity and cellular localization. Using this system, we demonstrate that eNOS selectively activates N-Ras but not K-Ras on the Golgi complex of T cells engaged with APC, even though Ras isoforms are activated in response to NO from donors. We further show that activation of N-Ras involves eNOS-dependent S-nitrosylation on Cys(118), suggesting that upon TCR engagement, eNOS-derived NO directly activates N-Ras on the Golgi. Moreover, wild-type but not C118S N-Ras increased TCR-dependent apoptosis, suggesting that S-nitrosylation of Cys(118) contributes to activation-induced T cell death. Our data define a signaling mechanism for the regulation of the Ras/ERK pathway based on the eNOS-dependent differential activation of N-Ras and K-Ras at specific cell compartments. PMID:18641128

  7. Endothelial nitric oxide synthase regulates N-Ras activation on the Golgi complex of antigen-stimulated T cells

    PubMed Central

    Ibiza, Sales; Pérez-Rodríguez, Andrea; Ortega, Ángel; Martínez-Ruiz, Antonio; Barreiro, Olga; García-Domínguez, Carlota A.; Víctor, Víctor M.; Esplugues, Juan V.; Rojas, José M.; Sánchez-Madrid, Francisco; Serrador, Juan M.

    2008-01-01

    Ras/ERK signaling plays an important role in T cell activation and development. We recently reported that endothelial nitric oxide synthase (eNOS)-derived NO regulates T cell receptor (TCR)-dependent ERK activation by a cGMP-independent mechanism. Here, we explore the mechanisms through which eNOS exerts this regulation. We have found that eNOS-derived NO positively regulates Ras/ERK activation in T cells stimulated with antigen on antigen-presenting cells (APCs). Intracellular activation of N-, H-, and K-Ras was monitored with fluorescent probes in T cells stably transfected with eNOS-GFP or its G2A point mutant, which is defective in activity and cellular localization. Using this system, we demonstrate that eNOS selectively activates N-Ras but not K-Ras on the Golgi complex of T cells engaged with APC, even though Ras isoforms are activated in response to NO from donors. We further show that activation of N-Ras involves eNOS-dependent S-nitrosylation on Cys118, suggesting that upon TCR engagement, eNOS-derived NO directly activates N-Ras on the Golgi. Moreover, wild-type but not C118S N-Ras increased TCR-dependent apoptosis, suggesting that S-nitrosylation of Cys118 contributes to activation-induced T cell death. Our data define a signaling mechanism for the regulation of the Ras/ERK pathway based on the eNOS-dependent differential activation of N-Ras and K-Ras at specific cell compartments. PMID:18641128

  8. M-Ras induces Ral and JNK activation to regulate MEK/ERK-independent gene expression in MCF-7 breast cancer cells

    PubMed Central

    Castro, Ariel F.; Campos, Tania; Babcock, Justin T.; Armijo, Marisol E.; Martinez-Conde, Alfonso; Pincheira, Roxana; Quilliam, Lawrence A.

    2011-01-01

    Constitutive activation of M-Ras has previously been reported to cause morphologic and growth transformation of murine cells, suggesting that M-Ras plays a role in tumorigenesis. Cell transformation by M-Ras correlated with weak activation of the Raf/MEK/ERK pathway, although contributions from other downstream effectors were suggested. Recent studies indicate that signaling events distinct from the Raf/MEK/ERK cascade are critical for human tumorigenesis. However, it is unknown what signaling events M-Ras triggers in human cells. Using constitutively active M-Ras (Q71L) containing additional mutations within its effector binding loop, we found that M-Ras induces MEK/ERK-dependent and -independent Elk1 activation as well as PI3K/Akt and JNK/cJun activation in human MCF-7 breast cancer cells. Among several human cell lines examined, M-Ras-induced MEK/ERK-independent Elk1 activation was only detected in MCF-7 cells, and correlated with Rlf /M-Ras interaction and Ral /JNK activation. Supporting a role for M-Ras signaling in breast cancer, EGF activated M-Ras and promoted its interaction with endogenous Rlf. In addition, constitutive activation of M-Ras induced estrogen-independent growth of MCF-7 cells that was dependent on PI3K/Akt, MEK/ERK and JNK activation. Thus, our studies demonstrate that M-Ras signaling activity differs between human cells, highlighting the importance of defining Ras protein signaling within each cell type, especially when designing treatments for Ras-induced cancer. These findings also demonstrate that M-Ras activity may be important for progression of EGFR-dependent tumors. PMID:22121046

  9. Basal but not luminal mammary epithelial cells require PI3K/mTOR signaling for Ras-driven overgrowth.

    PubMed

    Plichta, Kristin A; Mathers, Jessica L; Gestl, Shelley A; Glick, Adam B; Gunther, Edward J

    2012-11-15

    The mammary ducts of humans and mice are comprised of two main mammary epithelial cell (MEC) subtypes: a surrounding layer of basal MECs and an inner layer of luminal MECs. Breast cancer subtypes show divergent clinical behavior that may reflect properties inherent in their MEC compartment of origin. How the response to a cancer-initiating genetic event is shaped by MEC subtype remains largely unexplored. Using the mouse mammary gland, we designed organotypic three-dimensional culture models that permit challenge of discrete MEC compartments with the same oncogenic insult. Mammary organoids were prepared from mice engineered for compartment-restricted coexpression of oncogenic H-RAS(G12V) together with a nuclear fluorescent reporter. Monitoring of H-RAS(G12V)-expressing MECs during extended live cell imaging permitted visualization of Ras-driven phenotypes via video microscopy. Challenging either basal or luminal MECs with H-RAS(G12V) drove MEC proliferation and survival, culminating in aberrant organoid overgrowth. In each compartment, Ras activation triggered modes of collective MEC migration and invasion that contrasted with physiologic modes used during growth factor-initiated branching morphogenesis. Although basal and luminal Ras activation produced similar overgrowth phenotypes, inhibitor studies revealed divergent use of Ras effector pathways. Blocking either the phosphoinositide 3-kinase or the mammalian target of rapamycin pathway completely suppressed Ras-driven invasion and overgrowth of basal MECs, but only modestly attenuated Ras-driven phenotypes in luminal MECs. We show that MEC subtype defines signaling pathway dependencies downstream of Ras. Thus, cells-of-origin may critically determine the drug sensitivity profiles of mammary neoplasia. PMID:23010075

  10. R-Ras inhibits VEGF-induced p38MAPK activation and HSP27 phosphorylation in endothelial cells

    PubMed Central

    Sawada, Junko; Li, Fangfei; Komatsu, Masanobu

    2016-01-01

    R-Ras is a Ras family small GTPase highly expressed in mature functional blood vessels in normal tissues. It inhibits pathological angiogenesis and promotes vessel maturation and stabilization. Previous studies suggest that R-Ras affects cellular signaling in endothelial cells, pericytes, and smooth muscle cells to regulate vessel formation and remodeling in adult tissues. R-Ras suppresses VEGF-induced endothelial permeability and vessel sprouting while promoting normalization of pathologically developing vessels in mice. R-Ras attenuates VEGF receptor-2 (VEGFR2) activation by inhibiting internalization of the receptor upon VEGF ligand binding, leading to significant reduction of VEGFR2 autophosphorylation. Here, we show that R-Ras strongly suppresses VEGF-dependent activation of stress-activated protein kinase-2/p38 mitogen-activated protein kinase (SAPK2/p38MAPK) and phosphorylation of downstream heat shock protein 27 (HSP27), a regulator of actin cytoskeleton organization, in endothelial cells. The suppression of p38MAPK activation and HSP27 phosphorylation by R-Ras concurred with altered actin cytoskeleton architecture, reduced membrane protrusion, and inhibition of endothelial cell migration toward VEGF. Silencing of endogenous R-Ras by RNAi increased membrane protrusion and cell migration stimulated by VEGF, and these effects were offset by p38MAPK inhibitor SB203580. These results suggest that R-Ras regulates angiogenic activities of endothelial cells in part via inhibition of the p38MAPK-HSP27 axis of VEGF signaling. PMID:27029009

  11. Hyperactive Ras/MAPK signaling is critical for tibial nonunion fracture in neurofibromin-deficient mice.

    PubMed

    Sharma, Richa; Wu, Xiaohua; Rhodes, Steven D; Chen, Shi; He, Yongzheng; Yuan, Jin; Li, Jiliang; Yang, Xianlin; Li, Xiaohong; Jiang, Li; Kim, Edward T; Stevenson, David A; Viskochil, David; Xu, Mingjiang; Yang, Feng-Chun

    2013-12-01

    Neurofibromatosis type 1 (NF1) is a common genetic disorder affecting 1 in 3500 individuals. Patients with NF1 are predisposed to debilitating skeletal manifestations, including osteopenia/osteoporosis and long bone pseudarthrosis (nonunion fracture). Hyperactivation of the Ras/mitogen-activated protein kinase (MAPK) pathway in NF1 is known to underlie aberrant proliferation and differentiation in cell lineages, including osteoclast progenitors and mesenchymal stem cells (MSCs) also known as osteoblast progenitors (pro-OBLs). Our current study demonstrates the hyper Ras/MAPK as a critical pathway underlying the pathogenesis of NF1-associated fracture repair deficits. Nf1-deficient pro-OBLs exhibit Ras/MAPK hyperactivation. Introduction of the NF1 GTPase activating-related domain (NF1 GAP-related domain) in vitro is sufficient to rescue hyper Ras activity and enhance osteoblast (OBL) differentiation in Nf1(-/-) pro-OBLs and NF1 human (h) MSCs cultured from NF1 patients with skeletal abnormalities, including pseudarthrosis or scoliosis. Pharmacologic inhibition of mitogen-activated protein kinase kinase (MEK) signaling with PD98059 partially rescues aberrant Erk activation while enhancing OBL differentiation and expression of OBL markers, osterix and osteocalcin, in Nf1-deficient murine pro-OBLs. Similarly, MEK inhibition enhances OBL differentiation of hMSCs. In addition, PD98059 rescues aberrant osteoclast maturation in Nf1 haploinsufficient bone marrow mononuclear cells (BMMNCs). Importantly, MEK inhibitor significantly improves fracture healing in an NF1 murine model, Col2.3Cre;Nf1(flox/-). Collectively, these data indicate the Ras/MAPK cascade as a critical pathway in the pathogenesis of bone loss and pseudarthrosis related to NF1 mutations. These studies provide evidence for targeting the MAPK pathway to improve bone mass and treat pseudarthrosis in NF1. PMID:23863460

  12. Manumycin inhibits ras signal transduction pathway and induces apoptosis in COLO320-DM human colon tumourcells

    PubMed Central

    Paolo, A Di; Danesi, R; Nardini, D; Bocci, G; Innocenti, F; Fogli, S; Barachini, S; Marchetti, A; Bevilacqua, G; Tacca, M Del

    2000-01-01

    The aim of the present study was to assess the cytotoxicity of manumycin, a specific inhibitor of farnesyl:protein transferase, as well as its effects on protein isoprenylation and kinase-dependent signal transduction in COLO320-DM human colon adenocarcinoma which harbours a wild-type K- ras gene. Immunoblot analysis of isolated cell membranes and total cellular lysates of COLO320-DM cells demonstrated that manumycin dose-dependently reduced p21 ras farnesylation with a 50% inhibitory concentration (IC50) of 2.51 ± 0.11 μM and 2.68 ± 0.20 μM, respectively, while the geranylgeranylation of p21 rhoA and p21 rap1 was not affected. Manumycin dose-dependently inhibited (IC50= 2.40 ± 0.67 μM) the phosphorylation of the mitogen-activated protein kinase/extracellular-regulated kinase 2 (p42MAPK/ERK2), the main cytoplasmic effector of p21 ras, as well as COLO320-DM cell growth (IC50= 3.58 ± 0.27 μM) without affecting the biosynthesis of cholesterol. Mevalonic acid (MVA, 100 μM), a substrate of the isoprenoid synthesis, was unable to protect COLO320-DM cells from manumycin cytotoxicity. Finally, manumycin 1–25 μM for 24–72 h induced oligonucleosomal fragmentation in a dose- and time-dependent manner and MVA did not protect COLO320-DM cells from undergoing DNA cleavage. The present findings indicate that the inhibition of p21 ras processing and signal transduction by manumycin is associated with marked inhibition of cell proliferation and apoptosis in colon cancer cells and the effect on cell growth does not require the presence of a mutated ras gene for maximal expression of chemotherapeutic activity. © 2000 Cancer Research Campaign PMID:10732765

  13. The effect of aquaporin 5 overexpression on the Ras signaling pathway

    SciTech Connect

    Woo, Janghee; Lee, Juna; Kim, Myoung Sook; Jang, Se Jin; Sidransky, David; Moon, Chulso

    2008-03-07

    Human aquaporin 5 (AQP5) has been shown to be overexpressed in multiple cancers, such as pancreatic cancer and colon cancer. Furthermore, it has been reported that ectopic expression of AQP5 leads to many phenotypic changes characteristic of transformation. However, the biochemical mechanism leading to transformation in AQP5-overexpressing cells has not been clearly elucidated. In this report, the overexpression of AQP5 in NIH3T3 cells demonstrated a significant effect on Ras activity and, thus, cell proliferation. Furthermore, this influence was shown to be mediated by phosphorylation of the PKA consensus site of AQP5. This is the first evidence demonstrating an association between AQP5 and a signaling pathway, namely the Ras signal transduction pathway, which may be the basis of the oncogenic properties seen in AQP-overexpressing cells.

  14. EGFR/Ras/MAPK signaling mediates adult midgut epithelial homeostasis and regeneration in Drosophila

    PubMed Central

    Jiang, Huaqi; Grenley, Marc O.; Bravo, Maria-Jose; Blumhagen, Rachel Z.; Edgar, Bruce A.

    2010-01-01

    Many tissues in higher animals undergo dynamic homeostatic growth, wherein damaged or aged cells are replaced by the progeny of resident stem cells. To maintain homeostasis, stem cells must respond to tissue needs. Here we show that in response to damage or stress in the intestinal (midgut) epithelium of adult Drosophila, multiple EGFR ligands and rhomboids (intramembrane proteases that activate some EGFR ligands) are induced, leading to the activation of EGFR signaling in intestinal stem cells (ISCs). Activation of EGFR signaling promotes ISC division and midgut epithelium regeneration, thus maintaining tissue homeostasis. ISCs defective in EGFR signaling cannot grow or divide, are poorly maintained, and cannot support midgut epithelium regeneration following enteric infection by the bacterium, Pseudomonas entomophila. Furthermore, ISC proliferation induced by Jak/Stat signaling is dependent upon EGFR signaling. Thus the EGFR/Ras/MAPK signaling pathway plays central, essential roles in ISC maintenance and the feedback system that mediates intestinal homeostasis. PMID:21167805

  15. Ras history

    PubMed Central

    2010-01-01

    Although the roots of Ras sprouted from the rich history of retrovirus research, it was the discovery of mutationally activated RAS genes in human cancer in 1982 that stimulated an intensive research effort to understand Ras protein structure, biochemistry and biology. While the ultimate goal has been developing anti-Ras drugs for cancer treatment, discoveries from Ras have laid the foundation for three broad areas of science. First, they focused studies on the origins of cancer to the molecular level, with the subsequent discovery of genes mutated in cancer that now number in the thousands. Second, elucidation of the biochemical mechanisms by which Ras facilitates signal transduction established many of our fundamental concepts of how a normal cell orchestrates responses to extracellular cues. Third, Ras proteins are also founding members of a large superfamily of small GTPases that regulate all key cellular processes and established the versatile role of small GTP-binding proteins in biology. We highlight some of the key findings of the last 28 years. PMID:21686117

  16. Orchestration of Morphogenesis in Filamentous Fungi: Conserved Roles for Ras Signaling Networks

    PubMed Central

    Fortwendel, Jarrod R.

    2015-01-01

    Filamentous fungi undergo complex developmental programs including conidial germination, polarized morphogenesis, and differentiation of sexual and asexual structures. For many fungi, the coordinated completion of development is required for pathogenicity, as specialized morphological structures must be produced by the invading fungus. Ras proteins are highly conserved GTPase signal transducers and function as major regulators of growth and development in eukaryotes. Filamentous fungi typically express two Ras homologues, comprising distinct groups of Ras1-like and Ras2-like proteins based on sequence homology. Recent evidence suggests shared roles for both Ras1 and Ras2 homologues, but also supports the existence of unique functions in the areas of stress response and virulence. This review focuses on the roles played by both Ras protein groups during growth, development, and pathogenicity of a diverse array of filamentous fungi. PMID:26257821

  17. Bypassing both surface attachment and surface recognition requirements for appressorium formation by overactive ras signaling in Magnaporthe oryzae.

    PubMed

    Zhou, Xiaoying; Zhao, Xinhua; Xue, Chaoyang; Dai, Yafeng; Xu, Jin-Rong

    2014-09-01

    Magnaporthe oryzae forms a highly specialized infection structure called an appressorium for plant penetration. In M. oryzae and many other plant-pathogenic fungi, surface attachment and surface recognition are two essential requirements for appressorium formation. Development of appressoria in the air has not been reported. In this study, we found that expression of a dominant active MoRAS2(G18V) allele in M. oryzae resulted in the formation of morphologically abnormal appressoria on nonconducive surfaces, in liquid suspensions, and on aerial hyphae without attachment to hard surfaces. Both the Pmk1 mitogen-activated protein kinase cascade and cAMP signaling pathways that regulate surface recognition and appressorium morphogenesis in M. oryzae were overactivated in the MoRAS2(G18V) transformant. In mutants deleted of PMK1 or CPKA, expression of MoRAS2(G18V) had no significant effects on appressorium morphogenesis. Furthermore, expression of dominant MoRAS2 in Colletotrichum graminicola and C. gloeosporioides also caused the formation of appressorium-like structures in aerial hyphae. Overall, our data indicate that MoRas2 functions upstream from both the cAMP-PKA and Pmk1 pathways and overactive Ras signaling leads to improper activation of these two pathways and appressorium formation without surface attachment in appressorium-forming pathogens. PMID:24835254

  18. The small GTPases Ras and Rap1 bind to and control TORC2 activity.

    PubMed

    Khanna, Ankita; Lotfi, Pouya; Chavan, Anita J; Montaño, Nieves M; Bolourani, Parvin; Weeks, Gerald; Shen, Zhouxin; Briggs, Steven P; Pots, Henderikus; Van Haastert, Peter J M; Kortholt, Arjan; Charest, Pascale G

    2016-01-01

    Target of Rapamycin Complex 2 (TORC2) has conserved roles in regulating cytoskeleton dynamics and cell migration and has been linked to cancer metastasis. However, little is known about the mechanisms regulating TORC2 activity and function in any system. In Dictyostelium, TORC2 functions at the front of migrating cells downstream of the Ras protein RasC, controlling F-actin dynamics and cAMP production. Here, we report the identification of the small GTPase Rap1 as a conserved binding partner of the TORC2 component RIP3/SIN1, and that Rap1 positively regulates the RasC-mediated activation of TORC2 in Dictyostelium. Moreover, we show that active RasC binds to the catalytic domain of TOR, suggesting a mechanism of TORC2 activation that is similar to Rheb activation of TOR complex 1. Dual Ras/Rap1 regulation of TORC2 may allow for integration of Ras and Rap1 signaling pathways in directed cell migration. PMID:27172998

  19. The small GTPases Ras and Rap1 bind to and control TORC2 activity

    PubMed Central

    Khanna, Ankita; Lotfi, Pouya; Chavan, Anita J.; Montaño, Nieves M.; Bolourani, Parvin; Weeks, Gerald; Shen, Zhouxin; Briggs, Steven P.; Pots, Henderikus; Van Haastert, Peter J. M.; Kortholt, Arjan; Charest, Pascale G.

    2016-01-01

    Target of Rapamycin Complex 2 (TORC2) has conserved roles in regulating cytoskeleton dynamics and cell migration and has been linked to cancer metastasis. However, little is known about the mechanisms regulating TORC2 activity and function in any system. In Dictyostelium, TORC2 functions at the front of migrating cells downstream of the Ras protein RasC, controlling F-actin dynamics and cAMP production. Here, we report the identification of the small GTPase Rap1 as a conserved binding partner of the TORC2 component RIP3/SIN1, and that Rap1 positively regulates the RasC-mediated activation of TORC2 in Dictyostelium. Moreover, we show that active RasC binds to the catalytic domain of TOR, suggesting a mechanism of TORC2 activation that is similar to Rheb activation of TOR complex 1. Dual Ras/Rap1 regulation of TORC2 may allow for integration of Ras and Rap1 signaling pathways in directed cell migration. PMID:27172998

  20. The Significance of Ras Activity in Pancreatic Cancer Initiation

    PubMed Central

    Logsdon, Craig D.; Lu, Weiqin

    2016-01-01

    The genetic landscape of pancreatic cancer shows nearly ubiquitous mutations of K-RAS. However, oncogenic K-Rasmt alone is not sufficient to lead to pancreatic ductal adenocarcinoma (PDAC) in either human or in genetically modified adult mouse models. Many stimulants, such as high fat diet, CCK, LPS, PGE2 and others, have physiological effects at low concentrations that are mediated in part through modest increases in K-Ras activity. However, at high concentrations, they induce inflammation that, in the presence of oncogenic K-Ras expression, substantially accelerates PDAC formation. The mechanism involves increased activity of oncogenic K-Rasmt. Unlike what has been proposed in the standard paradigm for the role of Ras in oncogenesis, oncogenic K-Rasmt is now known to not be constitutively active. Rather, it can be activated by standard mechanisms similar to wild-type K-Ras, but its activity is sustained for a prolonged period. Furthermore, if the level of K-Ras activity exceeds a threshold at which it begins to generate its own activators, then a feed-forward loop is formed between K-Ras activity and inflammation and pathological processes including oncogenesis are initiated. Oncogenic K-Rasmt activation, a key event in PDAC initiation and development, is subject to complex regulatory mechanisms. Reagents which inhibit inflammation, such as the Cox2 inhibitor celecoxib, block the feed-forward loop and prevent induction of PDAC in models with endogenous oncogenic K-Rasmt. Increased understanding of the role of activating and inhibitory mechanisms on oncogenic K-Rasmt activity is of paramount importance for the development of preventive and therapeutic strategies to fight against this lethal disease. PMID:26929740

  1. Mitochondrial Activity and Cyr1 Are Key Regulators of Ras1 Activation of C. albicans Virulence Pathways

    PubMed Central

    Grahl, Nora; Demers, Elora G.; Lindsay, Allia K.; Harty, Colleen E.; Willger, Sven D.; Piispanen, Amy E.; Hogan, Deborah A.

    2015-01-01

    Candida albicans is both a major fungal pathogen and a member of the commensal human microflora. The morphological switch from yeast to hyphal growth is associated with disease and many environmental factors are known to influence the yeast-to-hyphae switch. The Ras1-Cyr1-PKA pathway is a major regulator of C. albicans morphogenesis as well as biofilm formation and white-opaque switching. Previous studies have shown that hyphal growth is strongly repressed by mitochondrial inhibitors. Here, we show that mitochondrial inhibitors strongly decreased Ras1 GTP-binding and activity in C. albicans and similar effects were observed in other Candida species. Consistent with there being a connection between respiratory activity and GTP-Ras1 binding, mutants lacking complex I or complex IV grew as yeast in hypha-inducing conditions, had lower levels of GTP-Ras1, and Ras1 GTP-binding was unaffected by respiratory inhibitors. Mitochondria-perturbing agents decreased intracellular ATP concentrations and metabolomics analyses of cells grown with different respiratory inhibitors found consistent perturbation of pyruvate metabolism and the TCA cycle, changes in redox state, increased catabolism of lipids, and decreased sterol content which suggested increased AMP kinase activity. Biochemical and genetic experiments provide strong evidence for a model in which the activation of Ras1 is controlled by ATP levels in an AMP kinase independent manner. The Ras1 GTPase activating protein, Ira2, but not the Ras1 guanine nucleotide exchange factor, Cdc25, was required for the reduction of Ras1-GTP in response to inhibitor-mediated reduction of ATP levels. Furthermore, Cyr1, a well-characterized Ras1 effector, participated in the control of Ras1-GTP binding in response to decreased mitochondrial activity suggesting a revised model for Ras1 and Cyr1 signaling in which Cyr1 and Ras1 influence each other and, together with Ira2, seem to form a master-regulatory complex necessary to integrate

  2. R-Ras Inhibits VEGF-Induced p38MAPK Activation and HSP27 Phosphorylation in Endothelial Cells.

    PubMed

    Sawada, Junko; Li, Fangfei; Komatsu, Masanobu

    2015-01-01

    R-Ras is a Ras family small GTPase that is highly expressed in mature functional blood vessels in normal tissues. It inhibits pathological angiogenesis and promotes vessel maturation and stabilization. Previous studies suggest that R-Ras affects cellular signaling in endothelial cells, pericytes and smooth-muscle cells to regulate vessel formation and remodeling in adult tissues. R-Ras suppresses VEGF-induced endothelial permeability and vessel sprouting while promoting normalization of pathologically developing vessels in mice. It attenuates VEGF receptor-2 (VEGFR2) activation by inhibiting internalization of the receptor upon VEGF ligand binding, leading to significant reduction of VEGFR2 autophosphorylation. Here, we show that R-Ras strongly suppresses the VEGF-dependent activation of stress-activated protein kinase-2/p38 mitogen-activated protein kinase (SAPK2/p38MAPK) and the phosphorylation of downstream heat-shock protein 27 (HSP27), a regulator of actin cytoskeleton organization, in endothelial cells. The suppression of p38MAPK activation and HSP27 phosphorylation by R-Ras concurred with altered actin cytoskeleton architecture, reduced membrane protrusion and inhibition of endothelial cell migration toward VEGF. Silencing of endogenous R-Ras by RNA interference increased membrane protrusion and cell migration stimulated by VEGF, and these effects were offset by p38MAPK inhibitor SB203580. These results suggest that R-Ras regulates angiogenic activities of endothelial cells in part via inhibition of the p38MAPK-HSP27 axis of VEGF signaling. PMID:27029009

  3. Modulation of Ras signaling alters the toxicity of hydroquinone, a benzene metabolite and component of cigarette smoke

    PubMed Central

    2014-01-01

    Background Benzene is an established human leukemogen, with a ubiquitous environmental presence leading to significant population exposure. In a genome-wide functional screen in the yeast Saccharomyces cerevisiae, inactivation of IRA2, a yeast ortholog of the human tumor suppressor gene NF1 (Neurofibromin), enhanced sensitivity to hydroquinone, an important benzene metabolite. Increased Ras signaling is implicated as a causal factor in the increased pre-disposition to leukemia of individuals with mutations in NF1. Methods Growth inhibition of yeast by hydroquinone was assessed in mutant strains exhibiting varying levels of Ras activity. Subsequently, effects of hydroquinone on both genotoxicity (measured by micronucleus formation) and proliferation of WT and Nf1 null murine hematopoietic precursors were assessed. Results Here we show that the Ras status of both yeast and mammalian cells modulates hydroquinone toxicity, indicating potential synergy between Ras signaling and benzene toxicity. Specifically, enhanced Ras signaling increases both hydroquinone-mediated growth inhibition in yeast and genotoxicity in mammalian hematopoetic precursors as measured by an in vitro erythroid micronucleus assay. Hydroquinone also increases proliferation of CFU-GM progenitor cells in mice with Nf1 null bone marrow relative to WT, the same cell type associated with benzene-associated leukemia. Conclusions Together our findings show that hydroquinone toxicity is modulated by Ras signaling. Individuals with abnormal Ras signaling could be more vulnerable to developing myeloid diseases after exposure to benzene. We note that hydroquinone is used cosmetically as a skin-bleaching agent, including by individuals with cafe-au-lait spots (which may be present in individuals with neurofibromatosis who have a mutation in NF1), which could be unadvisable given our findings. PMID:24386979

  4. Small molecule binding sites on the Ras:SOS complex can be exploited for inhibition of Ras activation.

    PubMed

    Winter, Jon J G; Anderson, Malcolm; Blades, Kevin; Brassington, Claire; Breeze, Alexander L; Chresta, Christine; Embrey, Kevin; Fairley, Gary; Faulder, Paul; Finlay, M Raymond V; Kettle, Jason G; Nowak, Thorsten; Overman, Ross; Patel, S Joe; Perkins, Paula; Spadola, Loredana; Tart, Jonathan; Tucker, Julie A; Wrigley, Gail

    2015-03-12

    Constitutively active mutant KRas displays a reduced rate of GTP hydrolysis via both intrinsic and GTPase-activating protein-catalyzed mechanisms, resulting in the perpetual activation of Ras pathways. We describe a fragment screening campaign using X-ray crystallography that led to the discovery of three fragment binding sites on the Ras:SOS complex. The identification of tool compounds binding at each of these sites allowed exploration of two new approaches to Ras pathway inhibition by stabilizing or covalently modifying the Ras:SOS complex to prevent the reloading of Ras with GTP. Initially, we identified ligands that bound reversibly to the Ras:SOS complex in two distinct sites, but these compounds were not sufficiently potent inhibitors to validate our stabilization hypothesis. We conclude by demonstrating that covalent modification of Cys118 on Ras leads to a novel mechanism of inhibition of the SOS-mediated interaction between Ras and Raf and is effective at inhibiting the exchange of labeled GDP in both mutant (G12C and G12V) and wild type Ras. PMID:25695162

  5. Tyrosine 763 of the murine granulocyte colony-stimulating factor receptor mediates Ras-dependent activation of the JNK/SAPK mitogen-activated protein kinase pathway.

    PubMed Central

    Rausch, O; Marshall, C J

    1997-01-01

    The receptor for granulocyte colony-stimulating factor (G-CSF) can mediate differentiation and proliferation of hemopoietic cells. A proliferative signal is associated with activation of the ERK mitogen-activated protein kinase (MAPK) pathway. To determine whether other MAPK pathways are activated by G-CSF signalling, we have investigated activation of JNK/SAPK in cells proliferating in response to G-CSF. Here we show that G-CSF and interleukin-3 activate JNK/SAPK in two hemopoietic cell lines. The region of the G-CSF receptor required for G-CSF-induced JNK/SAPK activation is located within the C-terminal 68 amino acids of the cytoplasmic domain, which contains Tyr 763. Mutation of Tyr 763 to Phe completely blocks JNK/SAPK activation. However, the C-terminal 68 amino acids are not required for ERK2 activation. We show that activation of JNK/SAPK, like that of ERK2, is dependent on Ras but that higher levels of Ras-GTP are associated with activation of JNK/SAPK than with activation of ERK2. Two separate functional regions of the G-CSF receptor contribute to activation of Ras. The Y763F mutation reduces G-CSF-induced Ras activation from 30 to 35% Ras-GTP to 10 to 13% Ras-GTP. Low levels of Ras activation (10 to 13% Ras-GTP), which are sufficient for ERK2 activation, require only the 100 membrane-proximal amino acids. High levels of Ras-GTP provided by expression of oncogenic Ras are not sufficient to activate JNK/SAPK. An additional signal, also mediated by Tyr 763, is required for activation of JNK/SAPK. PMID:9032244

  6. The novel plant homeodomain protein rhinoceros antagonizes Ras signaling in the Drosophila eye.

    PubMed Central

    Voas, Matthew G; Rebay, Ilaria

    2003-01-01

    The sequential specification of cell fates in the Drosophila eye requires repeated activation of the epidermal growth factor receptor (EGFR)/Ras/MAP kinase (MAPK) pathway. Equally important are the multiple layers of inhibitory regulation that prevent excessive or inappropriate signaling. Here we describe the molecular and genetic analysis of a previously uncharacterized gene, rhinoceros (rno), that we propose functions to restrict EGFR signaling in the eye. Loss of rno results in the overproduction of photoreceptors, cone cells, and pigment cells and a corresponding reduction in programmed cell death, all phenotypes characteristic of hyperactivated EGFR signaling. Genetic interactions between rno and multiple EGFR pathway components support this hypothesis. rno encodes a novel but evolutionarily conserved nuclear protein with a PHD zinc-finger domain, a motif commonly found in chromatin-remodeling factors. Future analyses of rno will help to elucidate the regulatory strategies that modulate EGFR signaling in the fly eye. PMID:14704181

  7. FGFR1 signaling in hypertrophic chondrocytes is attenuated by the Ras-GAP neurofibromin during endochondral bone formation

    PubMed Central

    Karolak, Matthew R.; Yang, Xiangli; Elefteriou, Florent

    2015-01-01

    Aberrant fibroblast growth factor receptor 3 (FGFR3) signaling disrupts chondrocyte proliferation and growth plate size and architecture, leading to various chondrodysplasias or bone overgrowth. These observations suggest that the duration, intensity and cellular context of FGFR signaling during growth plate chondrocyte maturation require tight, regulated control for proper bone elongation. However, the machinery fine-tuning FGFR signaling in chondrocytes is incompletely defined. We report here that neurofibromin, a Ras-GAP encoded by Nf1, has an overlapping expression pattern with FGFR1 and FGFR3 in prehypertrophic chondrocytes, and with FGFR1 in hypertrophic chondrocytes during endochondral ossification. Based on previous evidence that neurofibromin inhibits Ras-ERK signaling in chondrocytes and phenotypic analogies between mice with constitutive FGFR1 activation and Nf1 deficiency in Col2a1-positive chondrocytes, we asked whether neurofibromin is required to control FGFR1-Ras-ERK signaling in maturing chondrocytes in vivo. Genetic Nf1 ablation in Fgfr1-deficient chondrocytes reactivated Ras-ERK1/2 signaling in hypertrophic chondrocytes and reversed the expansion of the hypertrophic zone observed in mice lacking Fgfr1 in Col2a1-positive chondrocytes. Histomorphometric and gene expression analyses suggested that neurofibromin, by inhibiting Rankl expression, attenuates pro-osteoclastogenic FGFR1 signaling in hypertrophic chondrocytes. We also provide evidence suggesting that neurofibromin in prehypertrophic chondrocytes, downstream of FGFRs and via an indirect mechanism, is required for normal extension and organization of proliferative columns. Collectively, this study indicates that FGFR signaling provides an important input into the Ras-Raf-MEK-ERK1/2 signaling axis in chondrocytes, and that this input is differentially regulated during chondrocyte maturation by a complex intracellular machinery, of which neurofibromin is a critical component. PMID:25616962

  8. FGFR1 signaling in hypertrophic chondrocytes is attenuated by the Ras-GAP neurofibromin during endochondral bone formation.

    PubMed

    Karolak, Matthew R; Yang, Xiangli; Elefteriou, Florent

    2015-05-01

    Aberrant fibroblast growth factor receptor 3 (FGFR3) signaling disrupts chondrocyte proliferation and growth plate size and architecture, leading to various chondrodysplasias or bone overgrowth. These observations suggest that the duration, intensity and cellular context of FGFR signaling during growth plate chondrocyte maturation require tight, regulated control for proper bone elongation. However, the machinery fine-tuning FGFR signaling in chondrocytes is incompletely defined. We report here that neurofibromin, a Ras-GAP encoded by Nf1, has an overlapping expression pattern with FGFR1 and FGFR3 in prehypertrophic chondrocytes, and with FGFR1 in hypertrophic chondrocytes during endochondral ossification. Based on previous evidence that neurofibromin inhibits Ras-ERK signaling in chondrocytes and phenotypic analogies between mice with constitutive FGFR1 activation and Nf1 deficiency in Col2a1-positive chondrocytes, we asked whether neurofibromin is required to control FGFR1-Ras-ERK signaling in maturing chondrocytes in vivo. Genetic Nf1 ablation in Fgfr1-deficient chondrocytes reactivated Ras-ERK1/2 signaling in hypertrophic chondrocytes and reversed the expansion of the hypertrophic zone observed in mice lacking Fgfr1 in Col2a1-positive chondrocytes. Histomorphometric and gene expression analyses suggested that neurofibromin, by inhibiting Rankl expression, attenuates pro-osteoclastogenic FGFR1 signaling in hypertrophic chondrocytes. We also provide evidence suggesting that neurofibromin in prehypertrophic chondrocytes, downstream of FGFRs and via an indirect mechanism, is required for normal extension and organization of proliferative columns. Collectively, this study indicates that FGFR signaling provides an important input into the Ras-Raf-MEK-ERK1/2 signaling axis in chondrocytes, and that this input is differentially regulated during chondrocyte maturation by a complex intracellular machinery, of which neurofibromin is a critical component. PMID:25616962

  9. Epidermal growth factor and Ras regulate gene expression in GH4 pituitary cells by separate, antagonistic signal transduction pathways.

    PubMed Central

    Pickett, C A; Gutierrez-Hartmann, A

    1995-01-01

    regions on the proximal rPRL promoter. One region maps between -255 and -212, near the Ras response element, and a second maps between -125 and -54. The latter region appears to involve footprint 2, a previously identified repressor site on the rPRL promoter. Neither footprint 1 nor 3, known GHF-1 binding sites, appears to be crucial to RGF-mediated rPRL promoter activation. The results of these studies indicate that in GH4 neuroendocrine cells, rPRL gene regulation by EGF is mediated by a signal transduction pathway that is separate and antagonistic to the Ras pathway. Hence, the functional role of the Ras/Raf/MAP kinase pathway in mediating transcriptional responses to EGF and other receptor tyrosine kinase may differ in highly specialized cell types. PMID:8524243

  10. Mapping the functional versatility and fragility of Ras GTPase signaling circuits through in vitro network reconstitution

    PubMed Central

    Coyle, Scott M; Lim, Wendell A

    2016-01-01

    The Ras-superfamily GTPases are central controllers of cell proliferation and morphology. Ras signaling is mediated by a system of interacting molecules: upstream enzymes (GEF/GAP) regulate Ras’s ability to recruit multiple competing downstream effectors. We developed a multiplexed, multi-turnover assay for measuring the dynamic signaling behavior of in vitro reconstituted H-Ras signaling systems. By including both upstream regulators and downstream effectors, we can systematically map how different network configurations shape the dynamic system response. The concentration and identity of both upstream and downstream signaling components strongly impacted the timing, duration, shape, and amplitude of effector outputs. The distorted output of oncogenic alleles of Ras was highly dependent on the balance of positive (GAP) and negative (GEF) regulators in the system. We found that different effectors interpreted the same inputs with distinct output dynamics, enabling a Ras system to encode multiple unique temporal outputs in response to a single input. We also found that different Ras-to-GEF positive feedback mechanisms could reshape output dynamics in distinct ways, such as signal amplification or overshoot minimization. Mapping of the space of output behaviors accessible to Ras provides a design manual for programming Ras circuits, and reveals how these systems are readily adapted to produce an array of dynamic signaling behaviors. Nonetheless, this versatility comes with a trade-off of fragility, as there exist numerous paths to altered signaling behaviors that could cause disease. DOI: http://dx.doi.org/10.7554/eLife.12435.001 PMID:26765565

  11. Doxycycline enhances the Ras-MAPK signaling and proliferation of mouse thymic epithelial cells.

    PubMed

    Chen, Xun; Xia, Sheng; Li, Rong; Liu, Hui; Huang, Ying; Qian, Xiaoping; Xiao, Xueyuan; Xu, Xun; Lin, Xin; Tian, Yuxiang; Zong, Yangyong; He, Dacheng; Chen, Weifeng; Zhang, Yu; Shao, Qixiang

    2009-06-01

    Depletion of T-cell-dependent immunity is a major consideration for patients suffering from infections of human immunodeficiency virus (HIV), those undergoing organ transplantation, and those receiving anti-cancer chemotherapy and/or radiotherapy. In general, T-cell regeneration occurs in the thymus through thymopoiesis. We have found that doxycycline (Dox), a tetracycline derivative, enhances the proliferation of mouse thymic epithelial cells, which are unique in their capacity to support positive selection and are essential throughout the development of thymocytes. Cell cycle analysis indicates that the increased cell proliferation is due to a shortened G(0)/G(1) phase. To reveal the underlying mechanisms, we examined the expression of an array of molecules that regulate the cell cycle. The results show that in mouse thymic medullary-type epithelial cell line 1 (MTEC1) Dox leads to elevated levels of H-Ras, phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2), cyclin E, cyclin dependent kinase 4/2 (CDK4/CDK2), E2F3, and c-myc. These data, and the observation that the proliferation-enhancing effect is largely abolished following treatment with an ERK inhibitor support an active role of the Ras-ERK/mitogen-activated protein kinase (MAPK) signaling pathway. In conclusion, the present study reveals a new activity of an old family of antibiotics. The in vivo effect of Dox on immune reconstitution warrants further exploration. PMID:19330805

  12. Identification of murine homologues of the Drosophila son of sevenless gene: potential activators of ras.

    PubMed Central

    Bowtell, D; Fu, P; Simon, M; Senior, P

    1992-01-01

    Several findings suggest that signals from tyrosine kinases are transduced, at least in part, through ras proteins. These findings include (i) blockage of the transforming activity of constitutively active tyrosine kinases by inhibiting ras function and (ii) genetic screens in Caenorhabditis elegans and in Drosophila that identified ras genes as downstream effectors of tyrosine kinases. The recently isolated Drosophila gene Son of sevenless (Sos) is postulated to act as a positive regulatory link between tyrosine kinase and ras proteins by catalyzing exchange of GDP for GTP on ras protein. Such exchange proteins have been reported in extracts of mammalian cells but have not been previously characterized at a molecular level. As Sos appears to function in this role in Drosophila, we sought to isolate a vertebrate counterpart(s). We have characterized two widely expressed murine genes with a high degree of homology to Sos. Hybridization with human DNA and RNA indicates a high degree of conservation of these genes in other vertebrates. Images PMID:1631150

  13. One-way membrane trafficking of SOS in receptor-triggered Ras activation.

    PubMed

    Christensen, Sune M; Tu, Hsiung-Lin; Jun, Jesse E; Alvarez, Steven; Triplet, Meredith G; Iwig, Jeffrey S; Yadav, Kamlesh K; Bar-Sagi, Dafna; Roose, Jeroen P; Groves, Jay T

    2016-09-01

    SOS is a key activator of the small GTPase Ras. In cells, SOS-Ras signaling is thought to be initiated predominantly by membrane recruitment of SOS via the adaptor Grb2 and balanced by rapidly reversible Grb2-SOS binding kinetics. However, SOS has multiple protein and lipid interactions that provide linkage to the membrane. In reconstituted-membrane experiments, these Grb2-independent interactions were sufficient to retain human SOS on the membrane for many minutes, during which a single SOS molecule could processively activate thousands of Ras molecules. These observations raised questions concerning how receptors maintain control of SOS in cells and how membrane-recruited SOS is ultimately released. We addressed these questions in quantitative assays of reconstituted SOS-deficient chicken B-cell signaling systems combined with single-molecule measurements in supported membranes. These studies revealed an essentially one-way trafficking process in which membrane-recruited SOS remains trapped on the membrane and continuously activates Ras until being actively removed via endocytosis. PMID:27501536

  14. Combination of a Selective HSP90α/β Inhibitor and a RAS-RAF-MEK-ERK Signaling Pathway Inhibitor Triggers Synergistic Cytotoxicity in Multiple Myeloma Cells

    PubMed Central

    Mimura, Naoya; Minami, Jiro; Ohguchi, Hiroto; Yoshida, Yasuhiro; Sagawa, Morihiko; Gorgun, Gullu; Cirstea, Diana; Cottini, Francesca; Jakubikova, Jana; Tai, Yu-Tzu; Chauhan, Dharminder; Richardson, Paul G.; Munshi, Nikhil; Ando, Kiyoshi; Utsugi, Teruhiro; Hideshima, Teru; Anderson, Kenneth C.

    2015-01-01

    Heat shock protein (HSP)90 inhibitors have shown significant anti-tumor activities in preclinical settings in both solid and hematological tumors. We previously reported that the novel, orally available HSP90α/β inhibitor TAS-116 shows significant anti-MM activities. In this study, we further examined the combination effect of TAS-116 with a RAS-RAF-MEK-ERK signaling pathway inhibitor in RAS- or BRAF-mutated MM cell lines. TAS-116 monotherapy significantly inhibited growth of RAS-mutated MM cell lines and was associated with decreased expression of downstream target proteins of the RAS-RAF-MEK-ERK signaling pathway. Moreover, TAS-116 showed synergistic growth inhibitory effects with the farnesyltransferase inhibitor tipifarnib, the BRAF inhibitor dabrafenib, and the MEK inhibitor selumetinib. Importantly, treatment with these inhibitors paradoxically enhanced p-C-Raf, p-MEK, and p-ERK activity, which was abrogated by TAS-116. TAS-116 also enhanced dabrafenib-induced MM cytotoxicity associated with mitochondrial damage-induced apoptosis, even in the BRAF-mutated U266 MM cell line. This enhanced apoptosis in RAS-mutated MM triggered by combination treatment was observed even in the presence of bone marrow stromal cells. Taken together, our results provide the rationale for novel combination treatment with HSP90α/β inhibitor and RAS-RAF-MEK-ERK signaling pathway inhibitors to improve outcomes in patients with in RAS- or BRAF-mutated MM. PMID:26630652

  15. Combination of a Selective HSP90α/β Inhibitor and a RAS-RAF-MEK-ERK Signaling Pathway Inhibitor Triggers Synergistic Cytotoxicity in Multiple Myeloma Cells.

    PubMed

    Suzuki, Rikio; Kikuchi, Shohei; Harada, Takeshi; Mimura, Naoya; Minami, Jiro; Ohguchi, Hiroto; Yoshida, Yasuhiro; Sagawa, Morihiko; Gorgun, Gullu; Cirstea, Diana; Cottini, Francesca; Jakubikova, Jana; Tai, Yu-Tzu; Chauhan, Dharminder; Richardson, Paul G; Munshi, Nikhil; Ando, Kiyoshi; Utsugi, Teruhiro; Hideshima, Teru; Anderson, Kenneth C

    2015-01-01

    Heat shock protein (HSP)90 inhibitors have shown significant anti-tumor activities in preclinical settings in both solid and hematological tumors. We previously reported that the novel, orally available HSP90α/β inhibitor TAS-116 shows significant anti-MM activities. In this study, we further examined the combination effect of TAS-116 with a RAS-RAF-MEK-ERK signaling pathway inhibitor in RAS- or BRAF-mutated MM cell lines. TAS-116 monotherapy significantly inhibited growth of RAS-mutated MM cell lines and was associated with decreased expression of downstream target proteins of the RAS-RAF-MEK-ERK signaling pathway. Moreover, TAS-116 showed synergistic growth inhibitory effects with the farnesyltransferase inhibitor tipifarnib, the BRAF inhibitor dabrafenib, and the MEK inhibitor selumetinib. Importantly, treatment with these inhibitors paradoxically enhanced p-C-Raf, p-MEK, and p-ERK activity, which was abrogated by TAS-116. TAS-116 also enhanced dabrafenib-induced MM cytotoxicity associated with mitochondrial damage-induced apoptosis, even in the BRAF-mutated U266 MM cell line. This enhanced apoptosis in RAS-mutated MM triggered by combination treatment was observed even in the presence of bone marrow stromal cells. Taken together, our results provide the rationale for novel combination treatment with HSP90α/β inhibitor and RAS-RAF-MEK-ERK signaling pathway inhibitors to improve outcomes in patients with in RAS- or BRAF-mutated MM. PMID:26630652

  16. RasGAP Shields Akt from Deactivating Phosphatases in Fibroblast Growth Factor Signaling but Loses This Ability Once Cleaved by Caspase-3.

    PubMed

    Cailliau, Katia; Lescuyer, Arlette; Burnol, Anne-Françoise; Cuesta-Marbán, Álvaro; Widmann, Christian; Browaeys-Poly, Edith

    2015-08-01

    Fibroblast growth factor receptors (FGFRs) are involved in proliferative and differentiation physiological responses. Deregulation of FGFR-mediated signaling involving the Ras/PI3K/Akt and the Ras/Raf/ERK MAPK pathways is causally involved in the development of several cancers. The caspase-3/p120 RasGAP module is a stress sensor switch. Under mild stress conditions, RasGAP is cleaved by caspase-3 at position 455. The resulting N-terminal fragment, called fragment N, stimulates anti-death signaling. When caspase-3 activity further increases, fragment N is cleaved at position 157. This generates a fragment, called N2, that no longer protects cells. Here, we investigated in Xenopus oocytes the impact of RasGAP and its fragments on FGF1-mediated signaling during G2/M cell cycle transition. RasGAP used its N-terminal Src homology 2 domain to bind FGFR once stimulated by FGF1, and this was necessary for the recruitment of Akt to the FGFR complex. Fragment N, which did not associate with the FGFR complex, favored FGF1-induced ERK stimulation, leading to accelerated G2/M transition. In contrast, fragment N2 bound the FGFR, and this inhibited mTORC2-dependent Akt Ser-473 phosphorylation and ERK2 phosphorylation but not phosphorylation of Akt on Thr-308. This also blocked cell cycle progression. Inhibition of Akt Ser-473 phosphorylation and entry into G2/M was relieved by PHLPP phosphatase inhibition. Hence, full-length RasGAP favors Akt activity by shielding it from deactivating phosphatases. This shielding was abrogated by fragment N2. These results highlight the role played by RasGAP in FGFR signaling and how graded stress intensities, by generating different RasGAP fragments, can positively or negatively impact this signaling. PMID:26109071

  17. Combined Rational Design and a High Throughput Screening Platform for Identifying Chemical Inhibitors of a Ras-activating Enzyme*

    PubMed Central

    Evelyn, Chris R.; Biesiada, Jacek; Duan, Xin; Tang, Hong; Shang, Xun; Papoian, Ruben; Seibel, William L.; Nelson, Sandra; Meller, Jaroslaw; Zheng, Yi

    2015-01-01

    The Ras family small GTPases regulate multiple cellular processes, including cell growth, survival, movement, and gene expression, and are intimately involved in cancer pathogenesis. Activation of these small GTPases is catalyzed by a special class of enzymes, termed guanine nucleotide exchange factors (GEFs). Herein, we developed a small molecule screening platform for identifying lead hits targeting a Ras GEF enzyme, SOS1. We employed an ensemble structure-based virtual screening approach in combination with a multiple tier high throughput experimental screen utilizing two complementary fluorescent guanine nucleotide exchange assays to identify small molecule inhibitors of GEF catalytic activity toward Ras. From a library of 350,000 compounds, we selected a set of 418 candidate compounds predicted to disrupt the GEF-Ras interaction, of which dual wavelength GDP dissociation and GTP-loading experimental screening identified two chemically distinct small molecule inhibitors. Subsequent biochemical validations indicate that they are capable of dose-dependently inhibiting GEF catalytic activity, binding to SOS1 with micromolar affinity, and disrupting GEF-Ras interaction. Mutagenesis studies in conjunction with structure-activity relationship studies mapped both compounds to different sites in the catalytic pocket, and both inhibited Ras signaling in cells. The unique screening platform established here for targeting Ras GEF enzymes could be broadly useful for identifying lead inhibitors for a variety of small GTPase-activating GEF reactions. PMID:25825487

  18. Gamma Band Activity in the RAS-intracellular mechanisms

    PubMed Central

    Garcia-Rill, E.; Kezunovic, N.; D’Onofrio, S.; Luster, B.; Hyde, J.; Bisagno, V.; Urbano, F.J.

    2014-01-01

    Gamma band activity participates in sensory perception, problem solving, and memory. This review considers recent evidence showing that cells in the reticular activating system (RAS) exhibit gamma band activity, and describes the intrinsic membrane properties behind such manifestation. Specifically, we discuss how cells in the mesopontine pedunculopontine nucleus (PPN), intralaminar parafascicular nucleus (Pf), and pontine Subcoeruleus nucleus dorsalis (SubCD) all fire in the gamma band range when maximally activated, but no higher. The mechanisms involve high threshold, voltage-dependent P/Q-type calcium channels or sodium-dependent subthreshold oscillations. Rather than participating in the temporal binding of sensory events as in the cortex, gamma band activity in the RAS may participate in the processes of preconscious awareness, and provide the essential stream of information for the formulation of many of our actions. We address three necessary next steps resulting from these discoveries, an intracellular mechanism responsible for maintaining gamma band activity based on persistent G-protein activation, separate intracellular pathways that differentiate between gamma band activity during waking vs during REM sleep, and an intracellular mechanism responsible for the dysregulation in gamma band activity in schizophrenia. These findings open several promising research avenues that have not been thoroughly explored. What are the effects of sleep or REM sleep deprivation on these RAS mechanisms? Are these mechanisms involved in memory processing during waking and/or during REM sleep? Does gamma band processing differ during waking vs REM sleep after sleep or REM sleep deprivation? PMID:24309750

  19. Simvastatin induces a central hypotensive effect via Ras-mediated signalling to cause eNOS up-regulation

    PubMed Central

    Cheng, Wen-Han; Ho, Wen-Yu; Chang, Chien-Feng; Lu, Pei-Jung; Cheng, Pei-Wen; Yeh, Tung-Chen; Hong, Ling-Zong; Sun, Gwo-Ching; Hsiao, Michael; Tseng, Ching-Jiunn

    2013-01-01

    BACKGROUND AND PURPOSE Clinical studies indicate that statins have a BP-lowering effect in hypercholesterolemic individuals with hypertension. Specifically, statins modulate BP through the up-regulation of endothelial NOS (eNOS) activation in the brain. However, the signalling mechanisms through which statins enhance eNOS activation remain unclear. Therefore, we examined the possible signalling pathways involved in statin-mediated BP regulation in the nucleus tractus solitarii (NTS). EXPERIMENTAL APPROACH To investigate the involvement of Ras and other signalling pathways in simvastatin-induced effects on BP, BP and renal sympathetic nerve activity (RSNA) were determined in spontaneously hypertensive rats (SHRs) before and after i.c.v. administration of simvastatin in the absence and presence of a Ras-specific inhibitor (farnesyl thiosalicylic acid, FTS), a geranylgeranyltransferase inhibitor (GGTI-2133), a PI3K inhibitor (LY294002) or a MAPK-ERK kinase (MEK) inhibitor (PD98059). KEY RESULTS FTS significantly attenuated the decrease in BP and increased NO evoked by simvastatin and reversed the decrease in basal RSNA induced by simvastatin. Immunoblotting and pharmacological studies showed that inhibition of Ras activity by FTS significantly abolished simvastatin-induced phosphorylation of ERK1/2, ribosomal protein S6 kinase (RSK), Akt and decreased eNOS phosphorylation. Likewise, administration of Akt and ERK1/2 signalling inhibitors, LY294002 and PD98059, attenuated the reduction in BP evoked by simvastatin. Furthermore, i.c.v. simvastatin decreased Rac1 activation and the number of ROS-positive cells in the NTS. CONCLUSIONS AND IMPLICATIONS Simvastatin modulates central BP control in the NTS of SHRs by increasing Ras-mediated activation of the PI3K-Akt and ERK1/2-RSK signalling pathways, which then up-regulates eNOS activation. PMID:23889671

  20. A p53-inducible microRNA-34a downregulates Ras signaling by targeting IMPDH

    SciTech Connect

    Kim, Hwa-Ryeon; Roe, Jae-Seok; Lee, Ji-Eun; Hwang, In-Young; Cho, Eun-Jung; Youn, Hong-Duk

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer p53 downregulates IMPDH. Black-Right-Pointing-Pointer p53-dependent miR-34a transactivation inhibits IMPDH transcription. Black-Right-Pointing-Pointer miR-34a-mediated inhibition of IMPDH downregulates GTP-dependent Ras signal. -- Abstract: p53 is a well-known transcription factor that controls cell cycle arrest and cell death in response to a wide range of stresses. Moreover, p53 regulates glucose metabolism and its mutation results in the metabolic switch to the Warburg effect found in cancer cells. Nucleotide biosynthesis is also critical for cell proliferation and the cell division cycle. Nonetheless, little is known about whether p53 regulates nucleotide biosynthesis. Here we demonstrated that p53-inducible microRNA-34a (miR-34a) repressed inosine 5 Prime -monophosphate dehydrogenase (IMPDH), a rate-limiting enzyme of de novo GTP biosynthesis. Treatment with anti-miR-34a inhibitor relieved the expression of IMPDH upon DNA damage. Ultimately, miR-34a-mediated inhibition of IMPDH resulted in repressed activation of the GTP-dependent Ras signaling pathway. In summary, we suggest that p53 has a novel function in regulating purine biosynthesis, aided by miR-34a-dependent IMPDH repression.

  1. R-Ras protein inhibits autophosphorylation of vascular endothelial growth factor receptor 2 in endothelial cells and suppresses receptor activation in tumor vasculature.

    PubMed

    Sawada, Junko; Li, Fangfei; Komatsu, Masanobu

    2015-03-27

    Abnormal angiogenesis is associated with a broad range of medical conditions, including cancer. The formation of neovasculature with functionally defective blood vessels significantly impacts tumor progression, metastasis, and the efficacy of anticancer therapies. Vascular endothelial growth factor (VEGF) potently induces vascular permeability and vessel growth in the tumor microenvironment, and its inhibition normalizes tumor vasculature. In contrast, the signaling of the small GTPase R-Ras inhibits excessive angiogenic growth and promotes the maturation of regenerating blood vessels. R-Ras signaling counteracts VEGF-induced vessel sprouting, permeability, and invasive activities of endothelial cells. In this study, we investigated the effect of R-Ras on VEGF receptor 2 (VEGFR2) activation by VEGF, the key mechanism for angiogenic stimulation. We show that tyrosine phosphorylation of VEGFR2 is significantly elevated in the tumor vasculature and dermal microvessels of VEGF-injected skin in R-Ras knockout mice. In cultured endothelial cells, R-Ras suppressed the internalization of VEGFR2, which is required for full activation of the receptor by VEGF. Consequently, R-Ras strongly suppressed autophosphorylation of the receptor at all five major tyrosine phosphorylation sites. Conversely, silencing of R-Ras resulted in increased VEGFR2 phosphorylation. This effect of R-Ras on VEGFR2 was, at least in part, dependent on vascular endothelial cadherin. These findings identify a novel function of R-Ras to control the response of endothelial cells to VEGF and suggest an underlying mechanism by which R-Ras regulates angiogenesis. PMID:25645912

  2. Plant farnesyltransferase can restore yeast Ras signaling and mating

    SciTech Connect

    Yalovsky, S.; Callan, K.L.; Narita, J.O.

    1997-04-01

    Farnesyltransferase (FTase) is a heterodimeric enzyme that modifies a group of proteins, including Ras, in mammals and yeasts. Plant FTase {alpha} and {beta} subunits were cloned from tomato and expressed in the yeast Saccharomyces cerevisiae to assess their functional conservation in farnesylating Ras and a-factor proteins, which are important for cell growth and mating. The tomato FTase {beta} subunit (LeFTB) alone was unable to complement the growth defect of ram1{del} mutant yeast strains in which the chromosomal FTase {beta} subunit gene was deleted, but coexpression of LeFTB with the plant {alpha} subunit gene (LeFTA) restored normal growth, Ras membrane association, and mating. LeFTB contains a novel 66-amino-acid sequence domain whose deletion reduces the efficiency of tomato FTase to restore normal growth to yeast ram1{del} strains. Coexpression of LeFTA and LeFTB in either yeast or insect cells yielded a functional enzyme that correctly farnesylated CaaX-motif-containing peptides. Despite their low degree of sequence homology, yeast and plant FTases shared similar in vivo and in vitro substrate specificities, demonstrating that this enzymatic modification of proteins with intermediates from the isoprenoid biosynthesis pathway is conserved in evolutionarily divergent eukaryotes. 56 refs., 7 figs., 1 tab.

  3. SmgGDS antagonizes BPGAP1-induced Ras/ERK activation and neuritogenesis in PC12 cell differentiation.

    PubMed

    Ravichandran, Aarthi; Low, Boon Chuan

    2013-01-01

    BPGAP1 is a Rho GTPase-activating protein (RhoGAP) that regulates cell morphogenesis, cell migration, and ERK signaling by the concerted action of its proline-rich region (PRR), RhoGAP domain, and the BNIP-2 and Cdc42GAP homology (BCH) domain. Although multiple cellular targets for the PRR and RhoGAP have been identified, and their functions delineated, the mechanism by which the BCH domain regulates functions of BPGAP1 remains unclear. Here we show that its BCH domain induced robust ERK activation leading to PC12 cell differentiation by targeting specifically to K-Ras. Such stimulatory effect was inhibited, however, by both dominant-negative mutants of Mek2 (Mek2-K101A) and K-Ras (K-Ras-S17N) and also by the small G-protein GDP dissociation stimulator (SmgGDS). Consequently SmgGDS knockdown released this inhibition and resulted in a superinduction of K-Ras activation and PC12 differentiation mediated by BCH domain. These results demonstrate the versatility of the BCH domain of BPGAP1 in regulating ERK signaling by involving K-Ras and SmgGDS and support the unique role of BPGAP1 as a dual regulator for Ras and Rho signaling in cell morphogenesis and differentiation. PMID:23155002

  4. The Rho-GTPase Rnd1 Suppresses Mammary Tumorigenesis and EMT by Restraining Ras-MAPK signaling

    PubMed Central

    Okada, Tomoyo; Sinha, Surajit; Esposito, Ilaria; Schiavon, Gaia; López-Lago, Miguel A.; Su, Wenjing; Pratilas, Christine A.; Abele, Cristina; Hernandez, Jonathan M.; Ohara, Masahiro; Okada, Morihito; Viale, Agnes; Heguy, Adriana; Socci, Nicholas D.; Sapino, Anna; Seshan, Venkatraman E.; Long, Stephen; Inghirami, Giorgio; Rosen, Neal; Giancotti, Filippo G.

    2015-01-01

    SUMMARY We identified the Rho-GTPase Rnd1 as a candidate metastasis suppressor through bioinformatics analysis and showed that its depletion disrupt epithelial adhesion and polarity, induced Epithelial-to-Mesenchymal Transition (EMT), and cooperated with deregulated expression of c-Myc or loss of p53 to cause neoplastic conversion. Mechanistic studies revealed that Rnd1 suppresses Ras signalling by activating the GAP domain of Plexin B1, which inhibits Rap1. Rap1 inhibition in turn led to derepression of p120-RasGAP, which was able to inhibit Ras. Inactivation of Rnd1 in mammary epithelial cells induced highly undifferentiated and invasive tumors in mice. Conversely, Rnd1 expression inhibited spontaneous and experimental lung colonization in mouse models of metastasis. Genomic studies indicated that gene deletion in combination with epigenetic silencing or, more rarely, point mutation inactivates RND1 in human breast cancer. These results reveal a previously unappreciated mechanism through which Rnd1 restrains activation of Ras-MAPK signaling and breast tumor initiation and progression. PMID:25531777

  5. Genetic and Proteomic Evidence for Roles of Drosophila SUMO in Cell Cycle Control, Ras Signaling, and Early Pattern Formation

    PubMed Central

    Nie, Minghua; Xie, Yongming; Loo, Joseph A.; Courey, Albert J.

    2009-01-01

    SUMO is a protein modifier that is vital for multicellular development. Here we present the first system-wide analysis, combining multiple approaches, to correlate the sumoylated proteome (SUMO-ome) in a multicellular organism with the developmental roles of SUMO. Using mass-spectrometry-based protein identification, we found over 140 largely novel SUMO conjugates in the early Drosophila embryo. Enriched functional groups include proteins involved in Ras signaling, cell cycle, and pattern formation. In support of the functional significance of these findings, sumo germline clone embryos exhibited phenotypes indicative of defects in these same three processes. Our cell culture and immunolocalization studies further substantiate roles for SUMO in Ras signaling and cell cycle regulation. For example, we found that SUMO is required for efficient Ras-mediated MAP kinase activation upstream or at the level of Ras activation. We further found that SUMO is dynamically localized during mitosis to the condensed chromosomes, and later also to the midbody. Polo kinase, a SUMO substrate found in our screen, partially colocalizes with SUMO at both sites. These studies show that SUMO coordinates multiple regulatory processes during oogenesis and early embryogenesis. In addition, our database of sumoylated proteins provides a valuable resource for those studying the roles of SUMO in development. PMID:19529778

  6. Isoprenoid addition to Ras protein is the critical modification for its membrane association and transforming activity.

    PubMed Central

    Kato, K; Cox, A D; Hisaka, M M; Graham, S M; Buss, J E; Der, C J

    1992-01-01

    We have introduced a variety of amino acid substitutions into carboxyl-terminal CA1A2X sequence (C = cysteine; A = aliphatic; X = any amino acid) of the oncogenic [Val12]Ki-Ras4B protein to identify the amino acids that permit Ras processing (isoprenylation, proteolysis, and carboxyl methylation), membrane association, and transformation in cultured mammalian cells. While all substitutions were tolerated at the A1 position, substitutions at A2 and X reduced transforming activity. The A2 residue was important for both isoprenylation and AAX proteolysis, whereas the X residue dictated the extent and specificity of isoprenoid modification only. Differences were observed between Ras processing in living cells and farnesylation efficiency in a cell-free system. Finally, one farnesylated mutant did not undergo either proteolysis or carboxyl methylation but still displayed efficient membrane association (approximately 50%) and transforming activity, indicating that farnesylation alone can support Ras transforming activity. Since both farnesylation and carboxyl methylation are critical for yeast a-factor biological activity, the three CAAX-signaled modifications may have different contributions to the function of different CAAX-containing proteins. Images PMID:1631135

  7. Interplay Between HGF/SF-Met-Ras Signaling, Tumor Metabolism and Blood Flow as a Potential Target for Breast Cancer Therapy.

    PubMed

    Natan, Sari; Tsarfaty, Galia; Horev, Judith; Haklai, Roni; Kloog, Yoel; Tsarfaty, Ilan

    2014-01-01

    High glucose uptake and increase blood flow is a characteristic of most metastatic tumors. Activation of Ras signaling increases glycolytic flux into lactate, de novo nucleic acid synthesis and uncoupling of ATP synthase from the proton gradient. Met tyrosine kinase receptor signaling upon activation by its ligand, hepatocyte growth factor/scatter factor (HGF/SF), increases glycolysis, oxidative phosporylation, oxygen consumption, and tumor blood volume. Ras is a key factor in Met signaling. Using the Ras inhibitor S-trans,trans-farnesylthiosalicylic acid (FTS), we investigated interplay between HGF/SF-Met-Ras signaling, metabolism, and tumor blood-flow regulation. In vitro, HGF/SF-activated Met increased Ras activity, Erk phosphorylation, cell motility and glucose uptake, but did not affect ATP. FTS inhibited basal and HGF/SF-induced signaling and cell motility, while further increasing glucose uptake and inhibiting ATP production. In vivo, HGF/SF rapidly increased tumor blood volume. FTS did not affect basal blood-flow but abolished the HGF/SF effect. Our results further demonstrate the complex interplay between growth-factor-receptor signaling and cellular and tumor metabolism, as reflected in blood flow. Inhibition of Ras signaling does not affect glucose consumption or basal tumor blood flow but dramatically decreases ATP synthesis and the HGF/SF induced increase in tumor blood volume. These findings demonstrate that the HGF/SF-Met-Ras pathway critically influences tumor-cell metabolism and tumor blood-flow regulation. This pathway could potentially be used to individualize tumor therapy based on functional molecular imaging, and for combined signaling/anti-metabolic targeted therapy. PMID:25593982

  8. The Ras/PKA signaling pathway may control RNA polymerase II elongation via the Spt4p/Spt5p complex in Saccharomyces cerevisiae.

    PubMed Central

    Howard, Susie C; Hester, Arelis; Herman, Paul K

    2003-01-01

    The Ras signaling pathway in Saccharomyces cerevisiae controls cell growth via the cAMP-dependent protein kinase, PKA. Recent work has indicated that these effects on growth are due, in part, to the regulation of activities associated with the C-terminal domain (CTD) of the largest subunit of RNA polymerase II. However, the precise target of these Ras effects has remained unknown. This study suggests that Ras/PKA activity regulates the elongation step of the RNA polymerase II transcription process. Several lines of evidence indicate that Spt5p in the Spt4p/Spt5p elongation factor is the likely target of this control. First, the growth of spt4 and spt5 mutants was found to be very sensitive to changes in Ras/PKA signaling activity. Second, mutants with elevated levels of Ras activity shared a number of specific phenotypes with spt5 mutants and vice versa. Finally, Spt5p was efficiently phosphorylated by PKA in vitro. Altogether, the data suggest that the Ras/PKA pathway might be directly targeting a component of the elongating polymerase complex and that this regulation is important for the normal control of yeast cell growth. These data point out the interesting possibility that signal transduction pathways might directly influence the elongation step of RNA polymerase II transcription. PMID:14668364

  9. Role of H-Ras/ERK signaling in carbon nanotube-induced neoplastic-like transformation of human mesothelial cells

    PubMed Central

    Lohcharoenkal, Warangkana; Wang, Liying; Stueckle, Todd A.; Park, Jino; Tse, William; Dinu, Cerasela-Zoica; Rojanasakul, Yon

    2014-01-01

    Rapid development and deployment of engineered nanomaterials such as carbon nanotubes (CNTs) in various commercial and biomedical applications have raised concerns about their potential adverse health effects, especially their long-term effects which have not been well addressed. We demonstrated here that prolonged exposure of human mesothelial cells to single-walled CNT (SWCNT) induced neoplastic-like transformation as indicated by anchorage-independent cell growth and increased cell invasiveness. Such transformation was associated with an up-regulation of H-Ras and activation of ERK1/2. Downregulation of H-Ras by siRNA or inactivation of ERK by chemical inhibitor effectively inhibited the aggressive phenotype of SWCNT-exposed cells. Integrin alpha V and cortactin, but not epithelial-mesenchymal transition (EMT) transcriptional regulators, were up-regulated in the SWCNT-exposed cells, suggesting their role in the aggressive phenotype. Cortactin expression was shown to be controlled by the H-Ras/ERK signaling. Thus, our results indicate a novel role of H-Ras/ERK signaling and cortactin in the aggressive transformation of human mesothelial cells by SWCNT. PMID:24971065

  10. EGFR/Ras Signaling Controls Drosophila Intestinal Stem Cell Proliferation via Capicua-Regulated Genes

    PubMed Central

    Jin, Yinhua; Ha, Nati; Forés, Marta; Xiang, Jinyi; Gläßer, Christine; Maldera, Julieta; Jiménez, Gerardo; Edgar, Bruce A.

    2015-01-01

    Epithelial renewal in the Drosophila intestine is orchestrated by Intestinal Stem Cells (ISCs). Following damage or stress the intestinal epithelium produces ligands that activate the epidermal growth factor receptor (EGFR) in ISCs. This promotes their growth and division and, thereby, epithelial regeneration. Here we demonstrate that the HMG-box transcriptional repressor, Capicua (Cic), mediates these functions of EGFR signaling. Depleting Cic in ISCs activated them for division, whereas overexpressed Cic inhibited ISC proliferation and midgut regeneration. Epistasis tests showed that Cic acted as an essential downstream effector of EGFR/Ras signaling, and immunofluorescence showed that Cic’s nuclear localization was regulated by EGFR signaling. ISC-specific mRNA expression profiling and DNA binding mapping using DamID indicated that Cic represses cell proliferation via direct targets including string (Cdc25), Cyclin E, and the ETS domain transcription factors Ets21C and Pointed (pnt). pnt was required for ISC over-proliferation following Cic depletion, and ectopic pnt restored ISC proliferation even in the presence of overexpressed dominant-active Cic. These studies identify Cic, Pnt, and Ets21C as critical downstream effectors of EGFR signaling in Drosophila ISCs. PMID:26683696

  11. Low proliferation and high apoptosis of osteoblastic cells on hydrophobic surface are associated with defective Ras signaling

    SciTech Connect

    Chang, Eun-Ju; Kim, Hong-Hee; Huh, Jung-Eun; Kim, In-Ae; Seung Ko, Jea; Chung, Chong-Pyoung; Kim, Hyun-Man . E-mail: hyunmkim@plaza.snu.ac.kr

    2005-02-01

    The hydrophobic (HPB) nature of most polymeric biomaterials has been a major obstacle in using those materials in vivo due to low compatibility with cells. However, there is little knowledge of the molecular detail to explain how surface hydrophobicity affects cell responses. In this study, we compared the proliferation and apoptosis of human osteoblastic MG63 cells adhered to hydrophilic (HPL) and hydrophobic surfaces. On the hydrophobic surface, less formation of focal contacts and actin stress fibers, a delay in cell cycle progression, and an increase in apoptosis were observed. By using fibroblast growth factor 1 (FGF1) as a model growth factor, we also investigated intracellular signaling pathways on hydrophilic and hydrophobic surfaces. The activation of Ras, Akt, and ERK by FGF1 was impaired in MG63 cells on the hydrophobic surface. The overexpression of constitutively active form of Ras and Akt rescued those cells from apoptosis and recovered cell cycle progression. Furthermore, their overexpression also restored the actin cytoskeletal organization on the hydrophobic surface. Finally, the proliferative, antiapoptotic, and cytoskeletal effects of constitutively active Ras in MG63 cells on the hydrophobic surface were blocked by wortmannin and PD98059 that inhibit Akt and ERK activation, respectively. Therefore, our results suggest that the activation of Ras and its downstream molecules Akt and ERK to an appropriate level is one of crucial elements in the determination of osteoblast cell responses. The Ras pathway may represent a cell biological target that should be considered for successful surface modification of biomaterials to induce adequate cell responses in the bone tissue.

  12. Site-specific monoubiquitination activates Ras by impeding GTPase-activating protein function

    PubMed Central

    Hobbs, G Aaron; Gunawardena, Harsha P; Baker, Rachael; Campbell, Sharon L

    2013-01-01

    KRas has recently been shown to be activated by monoubiquitination (mUb). Similar to oncogenic mutations, mUb of Ras at position 147 activates Ras by causing a defect in GTPase activating protein (GAP) function. To characterize the mechanism by which mUb impairs GAP-mediated downregulation of Ras, we made various modifications at position 147 of Ras and examined the impact on Ras sensitivity to GAP function. Whereas small modifications (iodoacetamide and glutathione) at position 147 of Ras do not affect GAP-mediated hydrolysis, ligation of Ras to UbG76C (native linker), UbX77C (one residue longer), and PDZ2 (with a native ubiquitin linker) was defective in GAP-mediated GTP hydrolysis. However, restoration of GAP activity was observed for Ras modified with the PDZ2 domain containing a shorter and stiffer linker region than ubiquitin. Therefore, the properties of the linker region dictate whether modification affects GAP-mediated hydrolysis, and our data indicate that the GAP defect requires a minimum linker length of 7 to 8 residues. PMID:24030601

  13. Ras-dependent and -independent pathways target the mitogen-activated protein kinase network in macrophages.

    PubMed Central

    Büscher, D; Hipskind, R A; Krautwald, S; Reimann, T; Baccarini, M

    1995-01-01

    Mitogen-activated protein kinases (MAPKs) are activated upon a variety of extracellular stimuli in different cells. In macrophages, colony-stimulating factor 1 (CSF-1) stimulates proliferation, while bacterial lipopolysaccharide (LPS) inhibits cell growth and causes differentiation and activation. Both CSF-1 and LPS rapidly activate the MAPK network and induce the phosphorylation of two distinct ternary complex factors (TCFs), TCF/Elk and TCF/SAP. CSF-1, but not LPS, stimulated the formation of p21ras. GTP complexes. Expression of a dominant negative ras mutant reduced, but did not abolish, CSF-1-mediated stimulation of MEK and MAPK. In contrast, activation of the MEK kinase Raf-1 was Ras independent. Treatment with the phosphatidylcholine-specific phospholipase C inhibitor D609 suppressed LPS-mediated, but not CSF-1-mediated, activation of Raf-1, MEK, and MAPK. Similarly, down-regulation or inhibition of protein kinase C blocked MEK and MAPK induction by LPS but not that by CSF-1. Phorbol 12-myristate 13-acetate pretreatment led to the sustained activation of the Raf-1 kinase but not that of MEK and MAPK. Thus, activated Raf-1 alone does not support MEK/MAPK activation in macrophages. Phosphorylation of TCF/Elk but not that of TCF/SAP was blocked by all treatments that interfered with MAPK activation, implying that TCF/SAP was targeted by a MAPK-independent pathway. Therefore, CSF-1 and LPS target the MAPK network by two alternative pathways, both of which induce Raf-1 activation. The mitogenic pathway depends on Ras activity, while the differentiation signal relies on protein kinase C and phosphatidylcholine-specific phospholipase C activation. PMID:7799956

  14. Ras regulates alveolar macrophage formation of CXC chemokines and neutrophil activation in streptococcal M1 protein-induced lung injury.

    PubMed

    Zhang, Songen; Hwaiz, Rundk; Rahman, Milladur; Herwald, Heiko; Thorlacius, Henrik

    2014-06-15

    Streptococcal toxic shock syndrome (STSS) is associated with a high mortality rate. The M1 serotype of Streptococcus pyogenes is most frequently associated with STSS. Herein, we examined the role of Ras signaling in M1 protein-induced lung injury. Male C57BL/6 mice received the Ras inhibitor (farnesylthiosalicylic acid, FTS) prior to M1 protein challenge. Bronchoalveolar fluid and lung tissue were harvested for quantification of neutrophil recruitment, edema and CXC chemokine formation. Neutrophil expression of Mac-1 was quantified by use of flow cytometry. Quantitative RT-PCR was used to determine gene expression of CXC chemokines in alveolar macrophages. Administration of FTS reduced M1 protein-induced neutrophil recruitment, edema formation and tissue damage in the lung. M1 protein challenge increased Mac-1 expression on neutrophils and CXC chemokine levels in the lung. Inhibition of Ras activity decreased M1 protein-induced expression of Mac-1 on neutrophils and secretion of CXC chemokines in the lung. Moreover, FTS abolished M1 protein-provoked gene expression of CXC chemokines in alveolar macrophages. Ras inhibition decreased chemokine-mediated neutrophil migration in vitro. Taken together, our novel findings indicate that Ras signaling is a potent regulator of CXC chemokine formation and neutrophil infiltration in the lung. Thus, inhibition of Ras activity might be a useful way to antagonize streptococcal M1 protein-triggered acute lung injury. PMID:24704370

  15. Identification of a farnesol analog as a Ras function inhibitor using both an in vivo Ras activation sensor and a phenotypic screening approach

    PubMed Central

    Srinivasan, Kamalakkannan; Subramanian, Thangaiah; Spielmann, H. Peter

    2013-01-01

    Mutations in Ras isoforms such as K-Ras, N-Ras, and H-Ras contribute to roughly 85, 15, and 1 % of human cancers, respectively. Proper membrane targeting of these Ras isoforms, a prerequisite for Ras activity, requires farnesylation or geranylgeranylation at the C-terminal CAAX box. We devised an in vivo screening strategy based on monitoring Ras activation and phenotypic physiological outputs for assaying synthetic Ras function inhibitors (RFI). Ras activity was visualized by the trans-location of RBDRaf1-GFP to activated Ras at the plasma membrane. By using this strategy, we screened one synthetic farnesyl substrate analog (AGOH) along with nine putative inhibitors and found that only m-CN-AGOH inhibited Ras activation. Phenotypic analysis of starving cells could be used to monitor polarization, motility, and the inability of these treated cells to aggregate properly during fruiting body formation. Incorporation of AGOH and m-CN-AGOH to cellular proteins was detected by western blot. These screening assays can be incorporated into a high throughput screening format using Dictyostelium discoideum and automated microscopy to determine effective RFIs. These RFI candidates can then be further tested in mammalian systems. PMID:24194124

  16. A New View of Ras Isoforms in Cancers.

    PubMed

    Nussinov, Ruth; Tsai, Chung-Jung; Chakrabarti, Mayukh; Jang, Hyunbum

    2016-01-01

    Does small GTPase K-Ras4A have a single state or two states, one resembling K-Ras4B and the other N-Ras? A recent study of K-Ras4A made the remarkable observation that even in the absence of the palmitoyl, K-Ras4A can be active at the plasma membrane. Importantly, this suggests that K-Ras4A may exist in two distinct signaling states. In state 1, K-Ras4A is only farnesylated, like K-Ras4B; in state 2, farnesylated and palmitoylated, like N-Ras. The K-Ras4A hypervariable region sequence is positively charged, in between K-Ras4B and N-Ras. Taken together, this raises the possibility that the farnesylated but nonpalmitoylated state 1, like K-Ras4B, binds calmodulin and is associated with colorectal and other adenocarcinomas like lung cancer and pancreatic ductal adenocarcinoma. On the other hand, state 2 may be associated with melanoma and other cancers where N-Ras is a major contributor, such as acute myeloid leukemia. Importantly, H-Ras has two, singly and doubly, palmitoylated states that may also serve distinct functional roles. The multiple signaling states of palmitoylated Ras isoforms question the completeness of small GTPase Ras isoform statistics in different cancer types and call for reevaluation of concepts and protocols. They may also call for reconsideration of oncogenic Ras therapeutics. PMID:26659836

  17. Coherence and frequency in the reticular activating system (RAS)

    PubMed Central

    Garcia-Rill, Edgar; Kezunovic, Nebojsa; Hyde, James; Simon, Christen; Beck, Paige; Urbano, Francisco J.

    2012-01-01

    SUMMARY This review considers recent evidence showing that cells in the reticular activating system (RAS) exhibit 1) electrical coupling mainly in GABAergic cells, and 2) gamma band activity in virtually all of the cells. Specifically, cells in the mesopontine pedunculopontine nucleus (PPN), intralaminar parafascicular nucleus (Pf), and pontine dorsal subcoeruleus nucleus dorsalis (SubCD) 1) show electrical coupling, and 2) all fire in the beta/gamma band range when maximally activated, but no higher. The mechanism behind electrical coupling is important because the stimulant modafinil was shown to increase electrical coupling. We also provide recent findings demonstrating that all cells in the PPN and Pf have high threshold, voltage-dependent P/Q-type calcium channels that are essential to gamma band activity. On the other hand, all SubCD, and some PPN, cells manifested sodium-dependent subthreshold oscillations. A novel mechanism for sleep-wake control based on transmitter interactions, electrical coupling, and gamma band activity is described. We speculate that continuous sensory input will modulate coupling and induce gamma band activity in the RAS that could participate in the processes of preconscious awareness, and provide the essential stream of information for the formulation of many of our actions. PMID:23044219

  18. Immune response to bacteria induces dissemination of Ras-activated Drosophila hindgut cells

    PubMed Central

    Bangi, Erdem; Pitsouli, Chrysoula; Rahme, Laurence G; Cagan, Ross; Apidianakis, Yiorgos

    2012-01-01

    Although pathogenic bacteria are suspected contributors to colorectal cancer progression, cancer-promoting bacteria and their mode of action remain largely unknown. Here we report that sustained infection with the human intestinal colonizer Pseudomonas aeruginosa synergizes with the Ras1V12 oncogene to induce basal invasion and dissemination of hindgut cells to distant sites. Cross-talk between infection and dissemination requires sustained activation by the bacteria of the Imd–dTab2–dTak1 innate immune pathway, which converges with Ras1V12 signalling on JNK pathway activation, culminating in extracellular matrix degradation. Hindgut, but not midgut, cells are amenable to this cooperative dissemination, which is progressive and genetically and pharmacologically inhibitable. Thus, Drosophila hindgut provides a valuable system for the study of intestinal malignancies. PMID:22498775

  19. Targeting the RAS pathway by mitogen-activated protein kinase inhibitors.

    PubMed

    Kiessling, Michael K; Rogler, Gerhard

    2015-01-01

    Targeting of oncogenic driver mutations with small-molecule inhibitors resulted in powerful treatment options for cancer patients in recent years. The RAS (rat sarcoma) pathway is among the most frequently mutated pathways in human cancer. Whereas targeting mutant Kirsten RAS (KRAS) remains difficult, mutant B rapidly accelerated fibrosarcoma (BRAF) kinase is an established drug target in cancer. Now data show that neuroblastoma RAS (NRAS) and even Harvey RAS (HRAS) mutations could be predictive markers for treatment with mitogen-activated protein kinase (MEK) inhibitors. This review discusses recent preclinical and clinical studies of MEK inhibitors in BRAF and RAS mutant cancer. PMID:26691679

  20. Ras-Mek-Erk Signaling Regulates Nf1 Heterozygous Neointima Formation

    PubMed Central

    Stansfield, Brian K.; Bessler, Waylan K.; Mali, Raghuveer; Mund, Julie A.; Downing, Brandon D.; Kapur, Reuben; Ingram, David A.

    2015-01-01

    Neurofibromatosis type 1 (NF1) results from mutations in the NF1 tumor-suppressor gene, which encodes neurofibromin, a negative regulator of diverse Ras signaling cascades. Arterial stenosis is a nonneoplastic manifestation of NF1 that predisposes some patients to debilitating morbidity and sudden death. Recent murine studies demonstrate that Nf1 heterozygosity (Nf1+/−) in monocytes/macrophages significantly enhances intimal proliferation after arterial injury. However, the downstream Ras effector pathway responsible for this phenotype is unknown. Based on in vitro assays demonstrating enhanced extracellular signal-related kinase (Erk) signaling in Nf1+/− macrophages and vascular smooth muscle cells and in vivo evidence of Erk amplification without alteration of phosphatidylinositol 3-kinase signaling in Nf1+/− neointimas, we tested the hypothesis that Ras-Erk signaling regulates intimal proliferation in a murine model of NF1 arterial stenosis. By using a well-established in vivo model of inflammatory cell migration and standard cell culture, neurofibromin-deficient macrophages demonstrate enhanced sensitivity to growth factor stimulation in vivo and in vitro, which is significantly diminished in the presence of PD0325901, a specific inhibitor of Ras-Erk signaling in phase 2 clinical trials for cancer. After carotid artery injury, Nf1+/− mice demonstrated increased intimal proliferation compared with wild-type mice. Daily administration of PD0325901 significantly reduced Nf1+/− neointima formation to levels of wild-type mice. These studies identify the Ras-Erk pathway in neurofibromin-deficient macrophages as the aberrant pathway responsible for enhanced neointima formation. PMID:24211110

  1. Ras-Mek-Erk signaling regulates Nf1 heterozygous neointima formation.

    PubMed

    Stansfield, Brian K; Bessler, Waylan K; Mali, Raghuveer; Mund, Julie A; Downing, Brandon D; Kapur, Reuben; Ingram, David A

    2014-01-01

    Neurofibromatosis type 1 (NF1) results from mutations in the NF1 tumor-suppressor gene, which encodes neurofibromin, a negative regulator of diverse Ras signaling cascades. Arterial stenosis is a nonneoplastic manifestation of NF1 that predisposes some patients to debilitating morbidity and sudden death. Recent murine studies demonstrate that Nf1 heterozygosity (Nf1(+/-)) in monocytes/macrophages significantly enhances intimal proliferation after arterial injury. However, the downstream Ras effector pathway responsible for this phenotype is unknown. Based on in vitro assays demonstrating enhanced extracellular signal-related kinase (Erk) signaling in Nf1(+/-) macrophages and vascular smooth muscle cells and in vivo evidence of Erk amplification without alteration of phosphatidylinositol 3-kinase signaling in Nf1(+/-) neointimas, we tested the hypothesis that Ras-Erk signaling regulates intimal proliferation in a murine model of NF1 arterial stenosis. By using a well-established in vivo model of inflammatory cell migration and standard cell culture, neurofibromin-deficient macrophages demonstrate enhanced sensitivity to growth factor stimulation in vivo and in vitro, which is significantly diminished in the presence of PD0325901, a specific inhibitor of Ras-Erk signaling in phase 2 clinical trials for cancer. After carotid artery injury, Nf1(+/-) mice demonstrated increased intimal proliferation compared with wild-type mice. Daily administration of PD0325901 significantly reduced Nf1(+/-) neointima formation to levels of wild-type mice. These studies identify the Ras-Erk pathway in neurofibromin-deficient macrophages as the aberrant pathway responsible for enhanced neointima formation. PMID:24211110

  2. RAS/MAPK Activation Drives Resistance to Smo Inhibition, Metastasis, and Tumor Evolution in Shh Pathway-Dependent Tumors.

    PubMed

    Zhao, Xuesong; Ponomaryov, Tatyana; Ornell, Kimberly J; Zhou, Pengcheng; Dabral, Sukriti K; Pak, Ekaterina; Li, Wei; Atwood, Scott X; Whitson, Ramon J; Chang, Anne Lynn S; Li, Jiang; Oro, Anthony E; Chan, Jennifer A; Kelleher, Joseph F; Segal, Rosalind A

    2015-09-01

    Aberrant Shh signaling promotes tumor growth in diverse cancers. The importance of Shh signaling is particularly evident in medulloblastoma and basal cell carcinoma (BCC), where inhibitors targeting the Shh pathway component Smoothened (Smo) show great therapeutic promise. However, the emergence of drug resistance limits long-term efficacy, and the mechanisms of resistance remain poorly understood. Using new medulloblastoma models, we identify two distinct paradigms of resistance to Smo inhibition. Sufu mutations lead to maintenance of the Shh pathway in the presence of Smo inhibitors. Alternatively activation of the RAS-MAPK pathway circumvents Shh pathway dependency, drives tumor growth, and enhances metastatic behavior. Strikingly, in BCC patients treated with Smo inhibitor, squamous cell cancers with RAS/MAPK activation emerged from the antecedent BCC tumors. Together, these findings reveal a critical role of the RAS-MAPK pathway in drug resistance and tumor evolution of Shh pathway-dependent tumors. PMID:26130651

  3. RAS/MAPK activation drives resistance to Smo inhibition, metastasis and tumor evolution in Shh pathway-dependent tumors

    PubMed Central

    Zhao, Xuesong; Ponomaryov, Tatyana; Ornell, Kimberly J.; Zhou, Pengcheng; Dabral, Sukriti K.; Pak, Ekaterina; Li, Wei; Atwood, Scott X.; Whitson, Ramon J.; Chang, Anne Lynn S.; Li, Jiang; Oro, Anthony E.; Chan, Jennifer A.; Kelleher, Joseph F.; Segal, Rosalind A.

    2015-01-01

    Aberrant Shh signaling promotes tumor growth in diverse cancers. The importance of Shh signaling is particularly evident in medulloblastoma and basal cell carcinoma (BCC), where inhibitors targeting the Shh pathway component Smoothened (Smo) show great therapeutic promise. However, the emergence of drug resistance limits long-term efficacy and the mechanisms of resistance remain poorly understood. Using new medulloblastoma models, we identify two distinct paradigms of resistance to Smo inhibition. Sufu mutations lead to maintenance of the Shh pathway in the presence of Smo inhibitors. Alternatively activation of the RAS/MAPK pathway circumvents Shh pathway-dependency, drives tumor growth and enhances metastatic behavior. Strikingly, in BCC patients treated with Smo inhibitor, squamous cell cancers with RAS/MAPK activation emerged from the antecedent BCC tumors. Together these findings reveal a critical role of RAS/MAPK pathway in drug resistance and tumor evolution of Shh pathway-dependent tumors. PMID:26130651

  4. DA-Raf–dependent inhibition of the Ras-ERK signaling pathway in type 2 alveolar epithelial cells controls alveolar formation

    PubMed Central

    Watanabe-Takano, Haruko; Takano, Kazunori; Sakamoto, Akemi; Matsumoto, Kenji; Tokuhisa, Takeshi; Endo, Takeshi; Hatano, Masahiko

    2014-01-01

    Alveolar formation is coupled to the spatiotemporally regulated differentiation of alveolar myofibroblasts (AMYFs), which contribute to the morphological changes of interalveolar walls. Although the Ras-ERK signaling pathway is one of the key regulators for alveolar formation in developing lungs, the intrinsic molecular and cellular mechanisms underlying its role remain largely unknown. By analyzing the Ras-ERK signaling pathway during postnatal development of lungs, we have identified a critical role of DA-Raf1 (DA-Raf)—a dominant-negative antagonist for the Ras-ERK signaling pathway—in alveolar formation. DA-Raf–deficient mice displayed alveolar dysgenesis as a result of the blockade of AMYF differentiation. DA-Raf is predominantly expressed in type 2 alveolar epithelial cells (AEC2s) in developing lungs, and DA-Raf–dependent MEK1/2 inhibition in AEC2s suppresses expression of tissue inhibitor of matalloprotienase 4 (TIMP4), which prevents a subsequent proteolytic cascade matrix metalloproteinase (MMP)14–MMP2. Furthermore, MMP14–MMP2 proteolytic cascade regulates AMYF differentiation and alveolar formation. Therefore, DA-Raf–dependent inhibition of the Ras-ERK signaling pathway in AEC2s is required for alveolar formation via triggering MMP2 activation followed by AMYF differentiation. These findings reveal a pivotal role of the Ras-ERK signaling pathway in the dynamic regulation of alveolar development. PMID:24843139

  5. Therapeutic Strategies for Targeting Ras Proteins

    PubMed Central

    Gysin, Stephan; Salt, Megan; Young, Amy; McCormick, Frank

    2011-01-01

    Ras genes are frequently activated in cancer. Attempts to develop drugs that target mutant Ras proteins have, so far, been unsuccessful. Tumors bearing these mutations, therefore, remain among the most difficult to treat. Most efforts to block activated Ras have focused on pathways downstream. Drugs that inhibit Raf kinase have shown clinical benefit in the treatment of malignant melanoma. However, these drugs have failed to show clinical benefit in Ras mutant tumors. It remains unclear to what extent Ras depends on Raf kinase for transforming activity, even though Raf proteins bind directly to Ras and are certainly major effectors of Ras action in normal cells and in development. Furthermore, Raf kinase inhibitors can lead to paradoxical activation of the MAPK pathway. MEK inhibitors block the Ras-MAPK pathway, but often activate the PI3’-kinase, and have shown little clinical benefit as single agents. This activation is mediated by EGF-R and other receptor tyrosine kinases through relief of a negative feedback loop from ERK. Drug combinations that target multiple points within the Ras signaling network are likely to be necessary to achieve substantial clinical benefit. Other effectors may also contribute to Ras signaling and provide a source of targets. In addition, unbiased screens for genes necessary for Ras transformation have revealed new potential targets and have added to our understanding of Ras cancer biology. PMID:21779505

  6. BRAF vs RAS oncogenes: are mutations of the same pathway equal? differential signalling and therapeutic implications

    PubMed Central

    Oikonomou, Eftychia; Koustas, Evangelos; Goulielmaki, Maria; Pintzas, Alexander

    2014-01-01

    As the increased knowledge of tumour heterogeneity and genetic alterations progresses, it exemplifies the need for further personalized medicine in modern cancer management. Here, the similarities but also the differential effects of RAS and BRAF oncogenic signalling are examined and further implications in personalized cancer diagnosis and therapy are discussed. Redundant mechanisms mediated by the two oncogenes as well as differential regulation of signalling pathways and gene expression by RAS as compared to BRAF are addressed. The implications of RAS vs BRAF differential functions, in relevant tumour types including colorectal cancer, melanoma, lung cancer are discussed. Current therapeutic findings and future viewpoints concerning the exploitation of RAS-BRAF-pathway alterations for the development of novel therapeutics and efficient rational combinations, as well as companion tests for relevant markers of response will be evaluated. The concept that drug-resistant cells may also display drug dependency, such that altered dosing may prevent the emergence of lethal drug resistance posed a major therapy hindrance. PMID:25361007

  7. Noncanonical control of C. elegans germline apoptosis by the insulin/IGF-1 and Ras/MAPK signaling pathways.

    PubMed

    Perrin, A J; Gunda, M; Yu, B; Yen, K; Ito, S; Forster, S; Tissenbaum, H A; Derry, W B

    2013-01-01

    The insulin/IGF-1 pathway controls a number of physiological processes in the nematode worm Caenorhabditis elegans, including development, aging and stress response. We previously found that the Akt/PKB ortholog AKT-1 dampens the apoptotic response to genotoxic stress in the germline by negatively regulating the p53-like transcription factor CEP-1. Here, we report unexpected rearrangements to the insulin/IGF-1 pathway, whereby the insulin-like receptor DAF-2 and 3-phosphoinositide-dependent protein kinase PDK-1 oppose AKT-1 to promote DNA damage-induced apoptosis. While DNA damage does not affect phosphorylation at the PDK-1 site Thr350/Thr308 of AKT-1, it increased phosphorylation at Ser517/Ser473. Although ablation of daf-2 or pdk-1 completely suppressed akt-1-dependent apoptosis, the transcriptional activation of CEP-1 was unaffected, suggesting that daf-2 and pdk-1 act independently or downstream of cep-1 and akt-1. Ablation of the akt-1 paralog akt-2 or the downstream target of the insulin/IGF-1 pathway daf-16 (a FOXO transcription factor) restored sensitivity to damage-induced apoptosis in daf-2 and pdk-1 mutants. In addition, daf-2 and pdk-1 mutants have reduced levels of phospho-MPK-1/ERK in their germ cells, indicating that the insulin/IGF-1 pathway promotes Ras signaling in the germline. Ablation of the Ras effector gla-3, a negative regulator of mpk-1, restored sensitivity to apoptosis in daf-2 mutants, suggesting that gla-3 acts downstream of daf-2. In addition, the hypersensitivity of let-60/Ras gain-of-function mutants to damage-induced apoptosis was suppressed to wild-type levels by ablation of daf-2. Thus, insulin/IGF-1 signaling selectively engages AKT-2/DAF-16 to promote DNA damage-induced germ cell apoptosis downstream of CEP-1 through the Ras pathway. PMID:22935616

  8. Activation of RAS/ERK alone is insufficient to inhibit RXRα function and deplete retinoic acid in hepatocytes

    SciTech Connect

    Wang, Ai-Guo Song, Ya-Nan; Chen, Jun; Li, Hui-Ling; Dong, Jian-Yi; Cui, Hai-Peng; Yao, Liang; Li, Xue-Feng; Gao, Wen-Ting; Qiu, Ze-Wen; Wang, Fu-Jin; Wang, Jing-Yu

    2014-09-26

    Highlights: • The activation of RAS/ERK is insufficient to inhibit RXRα function and deplete RA. • The retinoid metabolism-related genes are down-regulated by ras oncogene. • The atRA has no effect on preventing hepatic tumorigenesis or curing the developed hepatic nodules. - Abstract: Activation of RAS/ERK signaling pathway, depletion of retinoid, and phosphorylation of retinoid X receptor alpha (RXRα) are frequent events found in liver tumors and thought to play important roles in hepatic tumorigenesis. However, the relationships among them still remained to be elucidated. By exploring the transgenic mouse model of hepatic tumorigenesis induced by liver-specific expression of H-ras12V oncogene, the activation of RAS/ERK, the mRNA expression levels of retinoid metabolism-related genes, the contents of retinoid metabolites, and phosphorylation of RXRα were determined. RAS/ERK signaling pathway was gradually and significantly activated in hepatic tumor adjacent normal liver tissues (P) and hepatic tumor tissues (T) of H-ras12V transgenic mice compared with normal liver tissues (Wt) of wild type mice. On the contrary, the mRNA expression levels of retinoid metabolism-related genes were significantly reduced in P and T compared with Wt. Interestingly, the retinoid metabolites 9-cis-retinoic acid (9cRA) and all-trans-retinoic acid (atRA), the well known ligands for nuclear transcription factor RXR and retinoic acid receptor (RAR), were significantly decreased only in T compared with Wt and P, although the oxidized polar metabolite of atRA, 4-keto-all-trans-retinoic-acid (4-keto-RA) was significantly decreased in both P and T compared with Wt. To our surprise, the functions of RXRα were significantly blocked only in T compared with Wt and P. Namely, the total protein levels of RXRα were significantly reduced and the phosphorylation levels of RXRα were significantly increased only in T compared with Wt and P. Treatment of H-ras12V transgenic mice at 5-week

  9. Harvey ras genes transform without mutant codons, apparently activated by truncation of a 5' exon (exon -1).

    PubMed Central

    Cichutek, K; Duesberg, P H

    1986-01-01

    The hypothesis is tested that the ras gene of Harvey sarcoma virus (Ha-SV) and the proto-ras DNAs from certain tumor cells derive transforming function from specific codons in which they differ from normal proto-ras genes. Molecularly cloned Harvey proviral vectors carrying viral ras, normal rat proto-ras, and recombinant ras genes in which the virus-specific ras codons 12 and 59 were replaced by proto-ras equivalents each transformed aneuploid mouse 3T3 cells after latent periods that ranged from 4 to 10 days. Viruses with or without virus-specific ras codons all transformed diploid rat cells in 3-5 days equally well. However, in the absence of virus replication, mutant codons were beneficial for transforming function. Deletion of non-ras regions of Ha-SV did not affect transforming function. We conclude that specific ras codons are not necessary for transforming function. Comparisons of the ras sequences of Ha-SV, BALB SV, and Rasheed SV with sequences of proto-ras genes from rat and man revealed an upstream proto-ras exon, termed exon -1. The 3' end of this exon is present in all three viruses and in a ras pseudogene of the rat. Since ras genes transform without mutation and since exon -1 is truncated in viral ras genes and all transforming proto-ras DNAs of the Harvey and the Kirsten ras family, we propose that ras genes are activated by truncation of exon -1 either via viral transduction or artificially via cloning and transfection. The proposal implies that untruncated proto-ras genes with point mutations may not be cellular cancer genes. Images PMID:3517865

  10. Ras and TGF-β signaling enhance cancer progression by promoting the ΔNp63 transcriptional program.

    PubMed

    Vasilaki, Eleftheria; Morikawa, Masato; Koinuma, Daizo; Mizutani, Anna; Hirano, Yudai; Ehata, Shogo; Sundqvist, Anders; Kawasaki, Natsumi; Cedervall, Jessica; Olsson, Anna-Karin; Aburatani, Hiroyuki; Moustakas, Aristidis; Miyazono, Kohei; Heldin, Carl-Henrik

    2016-01-01

    The p53 family of transcription factors includes p63, which is a master regulator of gene expression in epithelial cells. Determining whether p63 is tumor-suppressive or tumorigenic is complicated by isoform-specific and cellular context-dependent protein associations, as well as antagonism from mutant p53. ΔNp63 is an amino-terminal-truncated isoform, that is, the predominant isoform expressed in cancer cells of epithelial origin. In HaCaT keratinocytes, which have mutant p53 and ΔNp63, we found that mutant p53 antagonized ΔNp63 transcriptional activity but that activation of Ras or transforming growth factor-β (TGF-β) signaling pathways reduced the abundance of mutant p53 and strengthened target gene binding and activity of ΔNp63. Among the products of ΔNp63-induced genes was dual-specificity phosphatase 6 (DUSP6), which promoted the degradation of mutant p53, likely by dephosphorylating p53. Knocking down all forms of p63 or DUSP6 and DUSP7 (DUSP6/7) inhibited the basal or TGF-β-induced or epidermal growth factor (which activates Ras)-induced migration and invasion in cultures of p53-mutant breast cancer and squamous skin cancer cells. Alternatively, overexpressing ΔNp63 in the breast cancer cells increased their capacity to colonize various tissues upon intracardiac injection in mice, and this was inhibited by knocking down DUSP6/7 in these ΔNp63-overexpressing cells. High abundance of ΔNp63 in various tumors correlated with poor prognosis in patients, and this correlation was stronger in patients whose tumors also had a mutation in the gene encoding p53. Thus, oncogenic Ras and TGF-β signaling stimulate cancer progression through activation of the ΔNp63 transcriptional program. PMID:27555661

  11. Mutations in the phosphatidylinositol-3-kinase pathway predict for antitumor activity of the inhibitor PX-866 while oncogenic Ras is a dominant predictor for resistance

    PubMed Central

    Ihle, NathanT.; Lemos, Robert; Wipf, Peter; Yacoub, Adly; Mitchell, Clint; Siwak, Doris; Mills, Gordon B.; Dent, Paul; Kirkpatrick, D Lynn.; Powis, Garth

    2008-01-01

    The novel phosphatidylinositol-3-kinase (PI-3-kinase) inhibitor PX-866 was tested against 13 experimental human tumor xenografts derived from cell lines of various tissue origins. Mutant PI-3-kinase (PIK3CA) and loss of PTEN activity were sufficient but not necessary as predictors of sensitivity to the antitumor activity of the PI-3-K inhibitor PX-866 in the presence of wild type Ras, while mutant oncogenic Ras was a dominant determinant of resistance, even in tumors with coexisting mutations in PIK3CA. The level of activation of PI-3-kinase signaling measured by tumor phospho-Ser473-Akt was insufficient to predict in vivo antitumor response to PX-866. Reverse phase protein array (RPPA) revealed that the Ras dependent down stream targets c-Myc and cyclin B were elevated in cell lines resistant to PX-866 in vivo. Studies using an H-Ras construct to constitutively and preferentially activate the three best defined downstream targets of Ras, namely Raf, RalGDS, and PI-3-kinase, showed that mutant Ras mediates resistance through its ability to utilize multiple pathways for tumorigenesis. The identification of Ras and downstream signaling pathways driving resistance to PI-3-kinase inhibition may serve as an important guide for patient selection as inhibitors enter clinical trials, and for the development of rational combinations with other molecularly targeted agents. PMID:19117997

  12. How to Target Activated Ras Proteins: Direct Inhibition vs. Induced Mislocalization.

    PubMed

    Brock, Ethan J; Ji, Kyungmin; Reiners, John J; Mattingly, Raymond R

    2016-01-01

    Oncogenic Ras proteins are a driving force in a significant set of human cancers and wildtype, unmutated Ras proteins likely contribute to the malignant phenotype of many more. The overall challenge of targeting activated Ras proteins has great promise to treat cancer, but this goal has yet to be achieved. Significant efforts and resources have been committed to inhibiting Ras, but these energies have so far made little impact in the clinic. Direct attempts to target activated Ras proteins have faced many obstacles, including the fundamental nature of the gain-of-function oncogenic activity being produced by a loss-of-function at the biochemical level. Nevertheless, there has been very promising recent pre-clinical progress. The major strategy that has so far reached the clinic aimed to inhibit activated Ras indirectly through blocking its post-translational modification and inducing its mislocalization. While these efforts to indirectly target Ras through inhibition of farnesyl transferase (FTase) were rationally designed, this strategy suffered from insufficient attention to the distinctions between the isoforms of Ras. This led to subsequent failures in large-scale clinical trials targeting K-Ras driven lung, colon, and pancreatic cancers. Despite these setbacks, efforts to indirectly target activated Ras through inducing its mislocalization have persisted. It is plausible that FTase inhibitors may still have some utility in the clinic, perhaps in combination with statins or other agents. Alternative approaches for inducing mislocalization of Ras through disruption of its palmitoylation cycle or interaction with chaperone proteins are in early stages of development. PMID:26423696

  13. Aspafilioside B induces G2/M cell cycle arrest and apoptosis by up-regulating H-Ras and N-Ras via ERK and p38 MAPK signaling pathways in human hepatoma HepG2 cells.

    PubMed

    Liu, Wei; Ning, Rui; Chen, Rui-Ni; Huang, Xue-Feng; Dai, Qin-Sheng; Hu, Jin-Hua; Wang, Yu-Wen; Wu, Li-Li; Xiong, Jing; Hu, Gang; Guo, Qing-Long; Yang, Jian; Wang, Hao

    2016-05-01

    We recently establish that aspafilioside B, a steroidal saponin extracted from Asparagus filicinus, is an active cytotoxic component. However, its antitumor activity is till unknown. In this study, the anticancer effect of aspafilioside B against HCC cells and the underlying mechanisms were investigated. Our results showed that aspafilioside B inhibited the growth and proliferation of HCC cell lines. Further study revealed that aspafilioside B could significantly induce G2 phase cell cycle arrest and apoptosis, accompanying the accumulation of reactive oxygen species (ROS), but blocking ROS generation with N-acetyl-l-cysteine (NAC) could not prevent G2/M arrest and apoptosis. Additionally, treatment with aspafilioside B induced phosphorylation of extracellular signal-regulated kinase (ERK) and p38 MAP kinase. Moreover, both ERK inhibitor PD98059 and p38 inhibitor SB203580 almost abolished the G2/M phase arrest and apoptosis induced by aspafilioside B, and reversed the expression of cell cycle- and apoptosis-related proteins. We also found that aspafilioside B treatment increased both Ras and Raf activation, and transfection of cells with H-Ras and N-Ras shRNA almost attenuated aspafilioside B-induced G2 phase arrest and apoptosis as well as the ERK and p38 activation. Finally, in vivo, aspafilioside B suppressed tumor growth in mouse xenograft models, and the mechanism was the same as in vitro study. Collectively, these findings indicated that aspafilioside B may up-regulate H-Ras and N-Ras, causing c-Raf phosphorylation, and lead to ERK and p38 activation, which consequently induced the G2 phase arrest and apoptosis. This study provides the evidence that aspafilioside B is a promising therapeutic agent against HCC. PMID:25683703

  14. FMLP activates Ras and Raf in human neutrophils. Potential role in activation of MAP kinase.

    PubMed Central

    Worthen, G S; Avdi, N; Buhl, A M; Suzuki, N; Johnson, G L

    1994-01-01

    Chemoattractants bind to seven transmembrane-spanning, G-protein-linked receptors on polymorphonuclear leukocytes (neutrophils) and induce a variety of functional responses, including activation of microtubule-associated protein (MAP) kinase. Although the pathways by which MAP kinases are activated in neutrophils are unknown, we hypothesized that activation of the Ras/Raf pathway leading to activation of MAP/ERK kinase (MEK) would be induced by the chemoattractant f-met-leu-phe. Human neutrophils exposed to 10 nM FMLP for 30 s exhibited an MAP kinase kinase activity coeluting with MEK-1. Immunoprecipitation of Raf-1 kinase after stimulation with FMLP revealed an activity that phosphorylated MEK, was detectable at 30 s, and peaked at 2-3 min. Immunoprecipitation of Ras from both intact neutrophils labeled with [32P]orthophosphate and electropermeabilized neutrophils incubated with [32P]GTP was used to determine that FMLP treatment was associated with activation of Ras. Activation of both Ras and Raf was inhibited by treatment of neutrophils with pertussis toxin, indicating predominant linkage to the Gi2 protein. Although phorbol esters activated Raf, activation induced by FMLP appeared independent of protein kinase C, further suggesting that Gi2 was linked to Ras and Raf independent of phospholipase C and protein kinase C. Dibutyryl cAMP, which inhibits many neutrophil functional responses, blocked the activation of Raf by FMLP, suggesting that interruption of the Raf/MAP kinase pathway influences neutrophil responses to chemoattractants. These data suggest that Gi2-mediated receptor regulation of the Ras/Raf/MAP kinase pathway is a primary response to chemoattractants. Images PMID:8040337

  15. RasGRP3 regulates the migration of glioma cells via interaction with Arp3

    PubMed Central

    Lee, Hae Kyung; Finniss, Susan; Cazacu, Simona; Xiang, Cunli; Poisson, Laila M.; Blumberg, Peter M.; Brodie, Chaya

    2015-01-01

    Glioblastoma (GBM), the most aggressive primary brain tumors, are highly infiltrative. Although GBM express high Ras activity and Ras proteins have been implicated in gliomagenesis, Ras-activating mutations are not frequent in these tumors. RasGRP3, an important signaling protein responsive to diacylglycerol (DAG), increases Ras activation. Here, we examined the expression and functions of RasGRP3 in GBM and glioma cells. RasGRP3 expression was upregulated in GBM specimens and glioma stem cells compared with normal brains and neural stem cells, respectively. RasGRP3 activated Ras and Rap1 in glioma cells and increased cell migration and invasion partially via Ras activation. Using pull-down assay and mass spectroscopy we identified the actin-related protein, Arp3, as a novel interacting protein of RasGRP3. The interaction of RasGRP3 and Arp3 was validated by immunofluorescence staining and co-immunoprecipitation, and PMA, which activates RasGRP3 and induces its translocation to the peri-nuclear region, increased the association of Arp3 and RasGRP3. Arp3 was upregulated in GBM, regulated cell spreading and migration and its silencing partially decreased these effects of RasGRP3 in glioma cells. In summary, RasGRP3 acts as an important integrating signaling protein of the DAG and Ras signaling pathways and actin polymerization and represents an important therapeutic target in GBM. PMID:25682201

  16. RAS oncogenes: weaving a tumorigenic web

    PubMed Central

    Pylayeva-Gupta, Yuliya; Grabocka, Elda; Bar-Sagi, Dafna

    2013-01-01

    RAS proteins are essential components of signalling pathways that emanate from cell surface receptors. Oncogenic activation of these proteins owing to missense mutations is frequently detected in several types of cancer. A wealth of biochemical and genetic studies indicates that RAS proteins control a complex molecular circuitry that consists of a wide array of interconnecting pathways. In this Review, we describe how RAS oncogenes exploit their extensive signalling reach to affect multiple cellular processes that drive tumorigenesis. PMID:21993244

  17. RAS and Hedgehog--partners in crime.

    PubMed

    Lauth, Matthias

    2011-01-01

    Both RAS and Hedgehog (HH) pathway activation can be found in approximately one third of all cancers. In many cases, this activation occurs in the same tumor types, suggesting a positive impact of a simultaneous activation of RAS and HH on tumor development. This review aims to summarize the current knowledge about the molecular and functional crosstalk of RAS and HH signaling in the development of hyperproliferative disease. PMID:21622175

  18. Expression, Purification, and Characterization of Ras Protein (BmRas1) from Bombyx mori

    PubMed Central

    Quan, Yanping; Liu, Guangqiang; Yu, Wei; Nie, Zuoming; Chen, Jian; Lv, Zhengbing; Zhang, Yaozhou

    2012-01-01

    The Ras subfamily is the member of small G proteins superfamily involved in cellular signal transduction. Activation of Ras signaling causes cell growth, differentiation, and survival. Bombyx mori Ras-like protein (BmRas1) may belong to the Ras subfamily. It contained an H-N-K-Ras-like domain. The BmRas1 mRNA consisted of 1459 bp. The open reading frame contained 579 bp, encoding 192 amino acids. The protein had such secondary structures as α-helices, extended strand, and random coil. BmRas1 was expressed successfully in E. coli BL21. The recombinant protein was purified with metal-chelating affinity chromatography. The GTPase activity of purified protein was determined by FeSO4-(NH4)2MoO4 assay. The results showed that purified recombinant protein had intrinsic activity of GTPase. High titer polyclonal antibodies were generated by New Zealand rabbit immunized with purified protein. The gene expression features of BmRas1 at different stages and in different organs of the fifth instar larvae were analyzed by Western blot. The results showed that BmRas1 was expressed highly in three development stages including egg, pupae, and adult, but low expression in larva. BmRas1 was expressed in these tissues including head, malpighian tubule, genital gland, and silk gland. The purified recombinant protein would be utilized to further function studies of BmRas1. PMID:22536118

  19. Oog1, an oocyte-specific protein, interacts with Ras and Ras-signaling proteins during early embryogenesis

    SciTech Connect

    Tsukamoto, Satoshi; Ihara, Ryo; Aizawa, Akira; Kishida, Shosei; Kikuchi, Akira; Imai, Hiroshi; Minami, Naojiro . E-mail: naojiro@kais.kyoto-u.ac.jp

    2006-05-19

    We previously identified an oocyte-specific gene, Oogenesin 1 (Oog1), that encodes 326 amino acids containing a leucine zipper structure and a leucine-rich repeat. In the present study, to identify the interacting proteins of Oog1, we performed a yeast two-hybrid screening using a GV-oocyte cDNA library and found that Ral guanine nucleotide dissociation stimulator (RalGDS) is the binding partner of Oog1. Coimmunoprecipitation assay confirmed the interaction between Oog1 and RalGDS proteins. Colocalization experiments provide the evidence that the nuclear localization of RalGDS depends on the expression of Oog1. Interestingly, RalGDS protein localized in the nucleus rather than the cytoplasm between late 1-cell and early 2-cell stages, the time when Oog1 localizes in the nucleus. We also examined the interaction between Oog1 and Ras by GST pull-down assay and revealed that Oog1 interacts with Ras in a GTP-dependent manner. These findings suggest a role of Oog1 as a Ras-binding protein.

  20. RasGRP1 and RasGRP3 Are Required for Efficient Generation of Early Thymic Progenitors.

    PubMed

    Golec, Dominic P; Henao Caviedes, Laura M; Baldwin, Troy A

    2016-09-01

    T cell development is dependent on the migration of progenitor cells from the bone marrow to the thymus. Upon reaching the thymus, progenitors undergo a complex developmental program that requires inputs from various highly conserved signaling pathways including the Notch and Wnt pathways. To date, Ras signaling has not been implicated in the very earliest stages of T cell differentiation, but members of a family of Ras activators called RasGRPs have been shown to be involved at multiple stages of T cell development. We examined early T cell development in mice lacking RasGRP1, RasGRP3, and RasGRPs 1 and 3. We report that RasGRP1- and RasGRP3-deficient thymi show significantly reduced numbers of early thymic progenitors (ETPs) relative to wild type thymi. Furthermore, RasGRP1/3 double-deficient thymi show significant reductions in ETP numbers compared with either RasGRP1 or RasGRP3 single-deficient thymi, suggesting that both RasGRP1 and RasGRP3 regulate the generation of ETPs. In addition, competitive bone marrow chimera experiments reveal that RasGRP1/3 double-deficient progenitors intrinsically generate ETPs less efficiently than wild type progenitors. Finally, RasGRP1/3-deficient progenitors show impaired migration toward the CCR9 ligand, CCL25, suggesting that RasGRP1 and RasGRP3 may regulate progenitor entry into the thymus through a CCR9-dependent mechanism. These data demonstrate that, in addition to Notch and Wnt, the highly conserved Ras pathway is critical for the earliest stages of T cell development and further highlight the importance of Ras signaling during thymocyte maturation. PMID:27465532

  1. DISC1 regulates astrogenesis in the embryonic brain via modulation of RAS/MEK/ERK signaling through RASSF7.

    PubMed

    Wang, Shukun; Liang, Qingli; Qiao, Huimin; Li, Hong; Shen, Tianjin; Ji, Fen; Jiao, Jianwei

    2016-08-01

    Disrupted in schizophrenia 1 (DISC1) is known as a high susceptibility gene for schizophrenia. Recent studies have indicated that schizophrenia might be caused by glia defects and dysfunction. However, there is no direct evidence of a link between the schizophrenia gene DISC1 and gliogenesis defects. Thus, an investigation into the involvement of DISC1 (a ubiquitously expressed brain protein) in astrogenesis during the late stage of mouse embryonic brain development is warranted. Here, we show that suppression of DISC1 expression represses astrogenesis in vitro and in vivo, and that DISC1 overexpression substantially enhances the process. Furthermore, mouse and human DISC1 overexpression rescued the astrogenesis defects caused by DISC1 knockdown. Mechanistically, DISC1 activates the RAS/MEK/ERK signaling pathway via direct association with RASSF7. Also, the pERK complex undergoes nuclear translocation and influences the expression of genes related to astrogenesis. In summary, our results demonstrate that DISC1 regulates astrogenesis by modulating RAS/MEK/ERK signaling via RASSF7 and provide a framework for understanding how DISC1 dysfunction might lead to neuropsychiatric diseases. PMID:27287808

  2. Structural analysis of autoinhibition in the Ras-specific exchange factor RasGRP1

    PubMed Central

    Iwig, Jeffrey S; Vercoulen, Yvonne; Das, Rahul; Barros, Tiago; Limnander, Andre; Che, Yan; Pelton, Jeffrey G; Wemmer, David E; Roose, Jeroen P; Kuriyan, John

    2013-01-01

    RasGRP1 and SOS are Ras-specific nucleotide exchange factors that have distinct roles in lymphocyte development. RasGRP1 is important in some cancers and autoimmune diseases but, in contrast to SOS, its regulatory mechanisms are poorly understood. Activating signals lead to the membrane recruitment of RasGRP1 and Ras engagement, but it is unclear how interactions between RasGRP1 and Ras are suppressed in the absence of such signals. We present a crystal structure of a fragment of RasGRP1 in which the Ras-binding site is blocked by an interdomain linker and the membrane-interaction surface of RasGRP1 is hidden within a dimerization interface that may be stabilized by the C-terminal oligomerization domain. NMR data demonstrate that calcium binding to the regulatory module generates substantial conformational changes that are incompatible with the inactive assembly. These features allow RasGRP1 to be maintained in an inactive state that is poised for activation by calcium and membrane-localization signals. DOI: http://dx.doi.org/10.7554/eLife.00813.001 PMID:23908768

  3. Uncoupling of EGFR-RAS signaling and nuclear localization of YBX1 in colorectal cancer.

    PubMed

    Roßner, F; Gieseler, C; Morkel, M; Royer, H-D; Rivera, M; Bläker, H; Dietel, M; Schäfer, R; Sers, C

    2016-01-01

    The transcription factor YBX1 can act as a mediator of signals transmitted via the EGFR-RAS-MAPK axis. YBX1 expression has been associated with tumor progression and prognosis in multiple types of cancer. Immunohistochemical studies have revealed dependency between YBX1 expression and individual EGFR family members. We analyzed YBX1 and EGFR family proteins in a colorectal cancer (CRC) cohort and provide functional analyses of YBX1 in the context of EGFR-RAS-MAPK signaling. Immunohistochemistry for YBX1 and EGFR family receptors with two antibodies for YBX1 and EGFR were performed and related to clinicopathological data. We employed Caco2 cells expressing an inducible KRASV12 gene to determine effects on localization and levels of YBX1. Mouse xenografts of Caco2-KRASV12 cells were used to determine YBX1 dynamics in a tissue context. The two different antibodies against YBX1 showed discordant immunohistochemical stainings in cell culture and clinical specimens. Expression of YBX1 and EGFR family members were not correlated in CRC. Analysis of Caco2 xenografts displayed again heterogeneity of YBX1 staining with both antibodies. Our results suggest that YBX1 is controlled via complex regulatory mechanisms involving tumor stroma interaction and signal transduction processes. Our study highlights that YBX1 antibodies have different specificities, advocating their use in a combined manner. PMID:26779809

  4. Label-free quantitative phosphoproteomics with novel pairwise abundance normalization reveals synergistic RAS and CIP2A signaling

    PubMed Central

    Kauko, Otto; Laajala, Teemu Daniel; Jumppanen, Mikael; Hintsanen, Petteri; Suni, Veronika; Haapaniemi, Pekka; Corthals, Garry; Aittokallio, Tero; Westermarck, Jukka; Imanishi, Susumu Y.

    2015-01-01

    Hyperactivated RAS drives progression of many human malignancies. However, oncogenic activity of RAS is dependent on simultaneous inactivation of protein phosphatase 2A (PP2A) activity. Although PP2A is known to regulate some of the RAS effector pathways, it has not been systematically assessed how these proteins functionally interact. Here we have analyzed phosphoproteomes regulated by either RAS or PP2A, by phosphopeptide enrichment followed by mass-spectrometry-based label-free quantification. To allow data normalization in situations where depletion of RAS or PP2A inhibitor CIP2A causes a large uni-directional change in the phosphopeptide abundance, we developed a novel normalization strategy, named pairwise normalization. This normalization is based on adjusting phosphopeptide abundances measured before and after the enrichment. The superior performance of the pairwise normalization was verified by various independent methods. Additionally, we demonstrate how the selected normalization method influences the downstream analyses and interpretation of pathway activities. Consequently, bioinformatics analysis of RAS and CIP2A regulated phosphoproteomes revealed a significant overlap in their functional pathways. This is most likely biologically meaningful as we observed a synergistic survival effect between CIP2A and RAS expression as well as KRAS activating mutations in TCGA pan-cancer data set, and synergistic relationship between CIP2A and KRAS depletion in colony growth assays. PMID:26278961

  5. Past, Present, and Future of Targeting Ras for Cancer Therapies.

    PubMed

    Tan, Zhi; Zhang, Shuxing

    2016-01-01

    For decades, mutant Ras (mut-Ras) proteins have been identified as drivers of multiple cancers including pancreatic, lung, and colon cancers. However, targeting this oncogene has been challenging and no Ras inhibitors are on the market to date. Lately several candidates targeting the downstream pathways of Ras signaling, including PI3K and Raf, were approved for cancer treatment. However, they do not present promising therapeutic effects on patients harboring Ras mutations. Recently, a variety of compounds have been reported to impair the activity of Ras, and these exciting discoveries reignite the hope for development of novel drugs targeting mut-Ras. In this article, we will review the progress made in this field and the current state-of-the-art technologies to develop Ras inhibitors. Also we will discuss the future direction of targeting Ras. PMID:26423695

  6. Neutron radiation can activate K-ras via a point mutation in codon 146 and induces a different spectrum of ras mutations than does gamma radiation.

    PubMed Central

    Sloan, S R; Newcomb, E W; Pellicer, A

    1990-01-01

    Neutron radiation is known to produce tumors in animals and cause cell transformation. We have developed a protocol to efficiently induce thymic lymphomas in RF/J mice by a single acute dose of neutron irradiation. Activated ras genes were detected in 17% (4 of 24) of the tumors analyzed. One of the tumors contained a K-ras gene activated by a point mutation in codon 146. Activating ras mutations at position 146 have not been previously detected in any known human or animal tumors. The spectrum of ras mutations detected in neutron radiation-induced thymic lymphomas was different from that seen in thymic lymphomas induced by gamma radiation in the same strain of mice. These results may have important implications for the mechanisms by which different types of radiation damage DNA. Images PMID:2403644

  7. The novel RacE-binding protein GflB sharpens Ras activity at the leading edge of migrating cells

    PubMed Central

    Senoo, Hiroshi; Cai, Huaqing; Wang, Yu; Sesaki, Hiromi; Iijima, Miho

    2016-01-01

    Directional sensing, a process in which cells convert an external chemical gradient into internal signaling events, is essential in chemotaxis. We previously showed that a Rho GTPase, RacE, regulates gradient sensing in Dictyostelium cells. Here, using affinity purification and mass spectrometry, we identify a novel RacE-binding protein, GflB, which contains a Ras GEF domain and a Rho GAP domain. Using biochemical and gene knockout approaches, we show that GflB balances the activation of Ras and Rho GTPases, which enables cells to precisely orient signaling events toward higher concentrations of chemoattractants. Furthermore, we find that GflB is located at the leading edge of migrating cells, and this localization is regulated by the actin cytoskeleton and phosphatidylserine. Our findings provide a new molecular mechanism that connects directional sensing and morphological polarization. PMID:27009206

  8. The novel RacE-binding protein GflB sharpens Ras activity at the leading edge of migrating cells.

    PubMed

    Senoo, Hiroshi; Cai, Huaqing; Wang, Yu; Sesaki, Hiromi; Iijima, Miho

    2016-05-15

    Directional sensing, a process in which cells convert an external chemical gradient into internal signaling events, is essential in chemotaxis. We previously showed that a Rho GTPase, RacE, regulates gradient sensing in Dictyostelium cells. Here, using affinity purification and mass spectrometry, we identify a novel RacE-binding protein, GflB, which contains a Ras GEF domain and a Rho GAP domain. Using biochemical and gene knockout approaches, we show that GflB balances the activation of Ras and Rho GTPases, which enables cells to precisely orient signaling events toward higher concentrations of chemoattractants. Furthermore, we find that GflB is located at the leading edge of migrating cells, and this localization is regulated by the actin cytoskeleton and phosphatidylserine. Our findings provide a new molecular mechanism that connects directional sensing and morphological polarization. PMID:27009206

  9. Renewing the conspiracy theory debate: does Raf function alone to mediate Ras oncogenesis?

    PubMed

    Repasky, Gretchen A; Chenette, Emily J; Der, Channing J

    2004-11-01

    Ras proteins function as signal transducers and are mutationally activated in many human cancers. In 1993, Raf was identified as a key downstream effector of Ras signaling, and it was believed then that the primary function of Ras was simply to facilitate Raf activation. However, the subsequent discovery of other proteins that are effectors of Ras function suggested that oncogenic activities of Ras are mediated by both Raf-dependent and Raf-independent signaling. Further complexity arose with the identification of Ras effectors with putative tumor suppressor, rather than oncogenic, functions. However, the recent identification of B-raf mutations in human cancers has renewed the debate regarding whether Raf activation alone promotes Ras-mediated oncogenesis. In this article, we summarize the current knowledge of the contribution of Ras effectors in Ras-mediated oncogenesis. PMID:15519853

  10. Involvement of the Ras/extracellular signal-regulated kinase signalling pathway in the regulation of ERCC-1 mRNA levels by insulin.

    PubMed Central

    Lee-Kwon, W; Park, D; Bernier, M

    1998-01-01

    Expression of DNA repair enzymes, which includes ERCC-1, might be under the control of hormonal and growth factor stimulation. In the present study it was observed that insulin increased ERCC-1 mRNA levels both in Chinese hamster ovary cells overexpressing human insulin receptors (HIRc cells) and in fully differentiated 3T3-L1 adipocytes. To investigate the mechanisms underlying the increase in ERCC-1 gene expression in HIRc cells, we used a variety of pharmacological tools known to inhibit distinct signalling pathways. None of these inhibitors affected the amount of ERCC-1 mRNA in unstimulated cells. The pretreatment of cells with two chemically unrelated phosphatidylinositol 3'-kinase inhibitors, wortmannin and LY294002, failed to block the doubling of ERCC-1 mRNA content by insulin. Similarly, inhibition of pp70 S6 kinase by rapamycin had no apparent effects on this insulin response. In contrast, altering the p21(ras)-dependent pathway with either manumycin, an inhibitor of Ras farnesylation, or PD98059, an inhibitor of the mitogen-activated protein kinase/extracellular signal-regulated protein kinase (ERK) kinase, suppressed the induction of ERCC-1 mRNA by insulin (P<0.001). Furthermore inhibition of RNA and protein synthesis negatively regulated the expression of this insulin-regulated gene (P<0.005). These results suggest that insulin enhances ERCC-1 mRNA levels by the activation of the Ras-ERK-dependent pathway without the involvement of the phosphatidylinositol 3'-kinase/pp70 S6 kinase. PMID:9531502

  11. Differentiation of central nervous system neuronal cells by fibroblast-derived growth factor requires at least two signaling pathways: roles for Ras and Src.

    PubMed Central

    Kuo, W L; Chung, K C; Rosner, M R

    1997-01-01

    To evaluate the role of mitogen-activated protein (MAP) kinase and other signaling pathways in neuronal cell differentiation by basic fibroblast-derived growth factor (bFGF), we used a conditionally immortalized cell line from rat hippocampal neurons (H19-7). Previous studies have shown that activation of MAP kinase kinase (MEK) is insufficient to induce neuronal differentiation of H19-7 cells. To test the requirement for MEK and MAP kinase (ERK1 and ERK2), H19-7 cells were treated with the MEK inhibitor PD098059. Although the MEK inhibitor blocked the induction of differentiation by constitutively activated Raf, the H19-7 cells still underwent differentiation by bFGF. These results suggest that an alternative pathway is utilized by bFGF for differentiation of the hippocampal neuronal cells. Expression in the H19-7 cells of a dominant-negative Ras (N17-Ras) or Raf (C4-Raf) blocked differentiation by bFGF, suggesting that Ras and probably Raf are required. Expression of dominant-negative Src (pcSrc295Arg) or microinjection of an anti-Src antibody blocked differentiation by bFGF in H19-7 cells, indicating that bFGF also signals through a Src kinase-mediated pathway. Although neither constitutively activated MEK (MEK-2E) nor v-Src was sufficient individually to differentiate the H19-7 cells, coexpression of constitutively activated MEK and v-Src induced neurite outgrowth. These results suggest that (i) activation of MAP kinase (ERK1 and ERK2) is neither necessary nor sufficient for differentiation by bFGF; (ii) activation of Src kinases is necessary but not sufficient for differentiation by bFGF; and (iii) differentiation of H19-7 neuronal cells by bFGF requires at least two signaling pathways activated by Ras and Src. PMID:9234720

  12. A Small Ras-like protein Ray/Rab1c modulates the p53-regulating activity of PRPK

    SciTech Connect

    Abe, Yasuhito . E-mail: yasuhito@m.ehime-u.ac.jp; Takeuchi, Takashi; Imai, Yoshinori; Murase, Ryuichi; Kamei, Yoshiaki; Fujibuchi, Taketsugu; Matsumoto, Suguru; Ueda, Norifumi; Kito, Katsumi; Ogasawara, Masahito; Shigemoto, Kazuhiro

    2006-05-26

    PRPK phosphorylates serine-15 residue of p53 and enhances transcriptional activity. PRPK possesses a bipartite nuclear localization signal and localizes in nucleus when over-expressed in cells. However, intrinsic PRPK localizes mainly in the cytosol in situ. While studying the mechanisms in the distribution of intrinsic PRPK, we identified a PRPK binding protein, an ubiquitously expressed Small Ras-like GTPase, Rab1c, also named Ray or Rab35. The over-expressed Ray was distributed in the nucleus, cytosol, and cell membrane. Both Ray wild type and GTP-restrictively binding mutant Ray-Q67L, but not guanine nucleotide unstable binding mutant Ray-N120I, partially distributed the over-expressed PRPK to the cytosol and also suppressed the PRPK-induced p53-transcriptional activity profoundly. A Small Ras-like GTPase protein Ray was thus indicated to modulate p53 transcriptional activity of PRPK.

  13. cDNA cloning and chromosomal mapping of a novel human GAP (GAP1M), GTPase-activating protein of Ras

    SciTech Connect

    Li, Shaowei; Nakamura, Shun; Hattori, Seisuke

    1996-08-01

    We have previously isolated a novel Ras GTPase-activating protein (Ras GAP), Gapl{sup m}, from rat brain. Gap1{sup m} is considered to be a negative regulator of the Ras signaling pathways, like other Ras GAPs, neurofibromin, which is a gene product of the neurofibromatosis type I gene, and p120GAP. In this study we have isolated a human cDNA of this Gap and mapped the gene. The gene encodes a protein of 853 amino acids that shows 89% sequence identity to rat Gapl{sup m}. The human gene was mapped to chromosome 3 by PCR analysis on a panel of human-mouse hybrid cells. FISH analysis refined the location of the gene further to 3q22-q23. 11 refs., 2 figs.

  14. A C-terminal domain of GAP is sufficient to stimulate ras p21 GTPase activity.

    PubMed Central

    Marshall, M S; Hill, W S; Ng, A S; Vogel, U S; Schaber, M D; Scolnick, E M; Dixon, R A; Sigal, I S; Gibbs, J B

    1989-01-01

    The cDNA for bovine ras p21 GTPase activating protein (GAP) has been cloned and the 1044 amino acid polypeptide encoded by the clone has been shown to bind the GTP complexes of both normal and oncogenic Harvey (Ha) ras p21. To identify the regions of GAP critical for the catalytic stimulation of ras p21 GTPase activity, a series of truncated forms of GAP protein were expressed in Escherichia coli. The C-terminal 343 amino acids of GAP (residues 702-1044) were observed to bind Ha ras p21-GTP and stimulate Ha ras p21 GTPase activity with the same efficiency (kcat/KM congruent to 1 x 10(6) M-1 s-1 at 24 degrees C) as GAP purified from bovine brain or full-length GAP expressed in E. coli. Deletion of the final 61 amino acid residues of GAP (residues 986-1044) rendered the protein insoluble upon expression in E. coli. These results define a distinct catalytic domain at the C terminus of GAP. In addition, GAP contains amino acid similarity with the B and C box domains conserved among phospholipase C-II, the crk oncogene product, and the non-receptor tyrosine kinase oncogene products. This homologous region is located in the N-terminal half of GAP outside of the catalytic domain that stimulates ras p21 GTPase activity and may constitute a distinct structural or functional domain within the GAP protein. Images PMID:2545441

  15. RasGRP1 overexpression in T-ALL increases basal nucleotide exchange on Ras rendering the Ras/PI3K/Akt pathway responsive to protumorigenic cytokines.

    PubMed

    Ksionda, O; Melton, A A; Bache, J; Tenhagen, M; Bakker, J; Harvey, R; Winter, S S; Rubio, I; Roose, J P

    2016-07-14

    Ras GTPases are activated by RasGEFs and inactivated by RasGAPs, which stimulate the hydrolysis of RasGTP to inactive RasGDP. GTPase-impairing somatic mutations in RAS genes, such as KRAS(G12D), are among the most common oncogenic events in metastatic cancer. A different type of cancer Ras signal, driven by overexpression of the RasGEF RasGRP1 (Ras guanine nucleotide-releasing protein 1), was recently implicated in pediatric T-cell acute lymphoblastic leukemia (T-ALL) patients and murine models, in which RasGRP1 T-ALLs expand in response to treatment with interleukins (ILs) 2, 7 and 9. Here, we demonstrate that IL-2/7/9 stimulation activates Erk and Akt pathways downstream of Ras in RasGRP1 T-ALL but not in normal thymocytes. In normal lymphocytes, RasGRP1 is recruited to the membrane by diacylglycerol (DAG) in a phospholipase C-γ (PLCγ)-dependent manner. Surprisingly, we find that leukemic RasGRP1-triggered Ras-Akt signals do not depend on acute activation of PLCγ to generate DAG but rely on baseline DAG levels instead. In agreement, using three distinct assays that measure different aspects of the RasGTP/GDP cycle, we established that overexpression of RasGRP1 in T-ALLs results in a constitutively high GTP-loading rate of Ras, which is constantly counterbalanced by hydrolysis of RasGTP. KRAS(G12D) T-ALLs do not show constitutive GTP loading of Ras. Thus, we reveal an entirely novel type of leukemogenic Ras signals that is based on a RasGRP1-driven increased in flux through the RasGTP/GDP cycle, which is mechanistically very different from KRAS(G12D) signals. Our studies highlight the dynamic balance between RasGEF and RasGAP in these T-ALLs and put forth a new model in which IL-2/7/9 decrease RasGAP activity. PMID:26549032

  16. Regulation of the Notch target gene Hes-1 by TGF{alpha} induced Ras/MAPK signaling in human neuroblastoma cells

    SciTech Connect

    Stockhausen, Marie-Therese; Sjoelund, Jonas; Axelson, Hakan . E-mail: hakan.axelson@molmed.mas.lu.se

    2005-10-15

    Ras and Notch signaling have recently been shown to cooperate in the maintenance of neoplastic transformation. Here, we show that TGF{alpha}, a known activator of Ras signaling, can drive cell proliferation and at the same time induce the expression of the Notch target Hes-1 in the neuroblastoma cell line SK-N-BE(2)c. The up-regulation of Hes-1 occurred both at the transcriptional and protein levels and by use of EGFR and MEK inhibitors we could show that the Hes-1 response was dependent on activation of the MAP kinase ERK. Blocking Notch activation by {gamma}-secretase inhibition did not profoundly affect the Hes-1 levels, neither in untreated nor in TGF{alpha} treated cells. The up-regulation of Hes-1 was associated with down-regulation of its pro-neuronal target gene Hash-1. Taken together, these results show that TGF{alpha} is a potent mitogen of neuroblastoma cells and suggest a connection between activation of ERK and Hes-1, thus providing a link between the Ras and Notch signaling pathways.

  17. Signal-transducing protein phosphorylation cascades mediated by Ras/Rho proteins in the mammalian cell: the potential for multiplex signalling.

    PubMed Central

    Denhardt, D T

    1996-01-01

    The features of three distinct protein phosphorylation cascades in mammalian cells are becoming clear. These signalling pathways link receptor-mediated events at the cell surface or intracellular perturbations such as DNA damage to changes in cytoskeletal structure, vesicle transport and altered transcription factor activity. The best known pathway, the Ras-->Raf-->MEK-->ERK cascade [where ERK is extracellular-signal-regulated kinase and MEK is mitogen-activated protein (MAP) kinase/ERK kinase], is typically stimulated strongly by mitogens and growth factors. The other two pathways, stimulated primarily by assorted cytokines, hormones and various forms of stress, predominantly utilize p21 proteins of the Rho family (Rho, Rac and CDC42), although Ras can also participate. Diagnostic of each pathway is the MAP kinase component, which is phosphorylated by a unique dual-specificity kinase on both tyrosine and threonine in one of three motifs (Thr-Glu-Tyr, Thr-Phe-Tyr or Thr-Gly-Tyr), depending upon the pathway. In addition to activating one or more protein phosphorylation cascades, the initiating stimulus may also mobilize a variety of other signalling molecules (e.g. protein kinase C isoforms, phospholipid kinases, G-protein alpha and beta gamma subunits, phospholipases, intracellular Ca2+). These various signals impact to a greater or lesser extent on multiple downstream effectors. Important concepts are that signal transmission often entails the targeted relocation of specific proteins in the cell, and the reversible formation of protein complexes by means of regulated protein phosphorylation. The signalling circuits may be completed by the phosphorylation of upstream effectors by downstream kinases, resulting in a modulation of the signal. Signalling is terminated and the components returned to the ground state largely by dephosphorylation. There is an indeterminant amount of cross-talk among the pathways, and many of the proteins in the pathways belong to families

  18. Tyrosine kinase/p21ras/MAP-kinase pathway activation by estradiol-receptor complex in MCF-7 cells.

    PubMed Central

    Migliaccio, A; Di Domenico, M; Castoria, G; de Falco, A; Bontempo, P; Nola, E; Auricchio, F

    1996-01-01

    The mechanism by which estradiol acts on cell multiplication is still unclear. Under conditions of estradiol-dependent growth, estradiol treatment of human mammary cancer MCF-7 cells triggers rapid and transient activation of the mitogen-activated (MAP) kinases, erk-1 and erk-2, increases the active form of p21ras, tyrosine phosphorylation of Shc and p190 protein and induces association of p190 to p21ras-GAP. Both Shc and p190 are substrates of activated src and once phosphorylated, they interact with other proteins and upregulate p21ras. Estradiol activates the tyrosine kinase/p21ras/MAP-kinase pathway in MCF-7 cells with kinetics which are similar to those of peptide mitogens. It is only after introduction of the human wild-type 67 kDa estradiol receptor cDNA that Cos cells become estradiol-responsive in terms of erk-2 activity. This finding, together with the inhibition by the pure anti-estrogen ICI 182 780 of the stimulatory effect of estradiol on each step of the pathway in MCF-7 cells proves that the classic estradiol receptor is responsible for the transduction pathway activation. Transfection experiments of Cos cells with the estradiol receptor cDNA and in vitro experiments with c-src show that the estradiol receptor activates c-src and this activation requires occupancy of the receptor by hormone. Our experiments suggest that c-src is an initial and integral part of the signaling events mediated by the estradiol receptor. Images PMID:8635462

  19. ASPP2 Is a Novel Pan-Ras Nanocluster Scaffold

    PubMed Central

    Posada, Itziar M. D.; Serulla, Marc; Zhou, Yong; Oetken-Lindholm, Christina

    2016-01-01

    Ras-induced senescence mediated through ASPP2 represents a barrier to tumour formation. It is initiated by ASPP2’s interaction with Ras at the plasma membrane, which stimulates the Raf/MEK/ERK signaling cascade. Ras to Raf signalling requires Ras to be organized in nanoscale signalling complexes, called nanocluster. We therefore wanted to investigate whether ASPP2 affects Ras nanoclustering. Here we show that ASPP2 increases the nanoscale clustering of all oncogenic Ras isoforms, H-ras, K-ras and N-ras. Structure-function analysis with ASPP2 truncation mutants suggests that the nanocluster scaffolding activity of ASPP2 converges on its α-helical domain. While ASPP2 increased effector recruitment and stimulated ERK and AKT phosphorylation, it did not increase colony formation of RasG12V transformed NIH/3T3 cells. By contrast, ASPP2 was able to suppress the transformation enhancing ability of the nanocluster scaffold Gal-1, by competing with the specific effect of Gal-1 on H-rasG12V- and K-rasG12V-nanoclustering, thus imposing ASPP2’s ERK and AKT signalling signature. Similarly, ASPP2 robustly induced senescence and strongly abrogated mammosphere formation irrespective of whether it was expressed alone or together with Gal-1, which by itself showed the opposite effect in Ras wt or H-ras mutant breast cancer cells. Our results suggest that Gal-1 and ASPP2 functionally compete in nanocluster for active Ras on the plasma membrane. ASPP2 dominates the biological outcome, thus switching from a Gal-1 supported growth-promoting setting to a senescence inducing and stemness suppressive program in cancer cells. Our results support Ras nanocluster as major integrators of tumour fate decision events. PMID:27437940

  20. A novel combination of K-ras and myc amplification accompanied by point mutational activation of K-ras in a human lung cancer.

    PubMed Central

    Taya, Y; Hosogai, K; Hirohashi, S; Shimosato, Y; Tsuchiya, R; Tsuchida, N; Fushimi, M; Sekiya, T; Nishimura, S

    1984-01-01

    Amplifications of two oncogenes, c-K-ras-2 and c-myc, were found in a human lung giant cell carcinoma (LGCC) Lu-65, which is maintained in nude mice. The extent of c-K-ras-2 and myc amplifications were estimated to be 10- and 8-fold, respectively, by means of the Southern hybridization procedure. In addition, NIH3T3 cells were transformed by transfection of Lu-65 DNA and the transforming gene was identified as c-K-ras-2. c-K-ras-2 genes were cloned from a gene library of Lu-65 and a single point mutation causing a substitution of cysteine for glycine in codon 12 was found by DNA sequencing. It was concluded that the amplification of the c-myc and c-K-ras-2 genes are accompanied by point mutational activation of c-K-ras-2 in the human LGCC Lu-65. This is the first report of multiple gene amplification accompanied by a point mutation of oncogenes in human cancer cells, providing further support for the idea that co-operation of at least two activated cellular oncogenes is required for carcinogenesis. Images Fig. 1. Fig. 2. Fig. 3. Fig. 5. PMID:6098458

  1. Farnesyl transferase inhibitor FTI-277 inhibits breast cell invasion and migration by blocking H-Ras activation

    PubMed Central

    Lee, Kyung Hun; Koh, Minsoo; Moon, Aree

    2016-01-01

    Hyperactive Ras promotes proliferation and malignant phenotypic conversion of cells in cancer. Ras protein must be associated with cellular membranes for its oncogenic activities through post-translational modifications, including farnesylation. Farnesyltransferase (FTase) is essential for H-Ras membrane targeting, and H-Ras, but not N-Ras, has been demonstrated to cause an invasive phenotype in MCF10A breast epithelial cells. In the present study, it was observed that an FTase inhibitor (FTI), FTI-277, blocked epidermal growth factor (EGF)-induced H-Ras activation, but not N-Ras activation in MDA-MB-231 cells, which express wild-type H-Ras and N-Ras. FTI-277 exerted a more potent inhibitory effect on the proliferation of H-Ras-MCF10A cells and Hs578T breast cancer cells expressing an active mutant of H-Ras than that of MDA-MB-231 cells. The invasive/migratory phenotypes of the H-Ras-MCF10A and Hs578T cells were effectively inhibited by FTI-277 treatment. By contrast, FTI-277 did not affect the invasive/migratory phenotypes of MDA-MB-231 cells. However, the EGF-induced invasion of MDA-MB-231 cells was decreased by FTI-277, implicating that FTI-277 inhibits breast cell invasion and migration by blocking H-Ras activation. Taken together, the results of the present study suggest that FTase inhibition by FTI-277 may be an effective strategy for targeting H-Ras-mediated proliferation, migration and invasion of breast cells. PMID:27602167

  2. Human iPS Cell-Derived Neurons Uncover the Impact of Increased Ras Signaling in Costello Syndrome

    PubMed Central

    Rooney, Gemma E.; Goodwin, Alice F.; Depeille, Philippe; Sharir, Amnon; Schofield, Claude M.; Yeh, Erika; Roose, Jeroen P.; Klein, Ophir D.; Rauen, Katherine A.; Weiss, Lauren A.

    2016-01-01

    Increasing evidence implicates abnormal Ras signaling as a major contributor in neurodevelopmental disorders, yet how such signaling causes cortical pathogenesis is unknown. We examined the consequences of aberrant Ras signaling in the developing mouse brain and uncovered several critical phenotypes, including increased production of cortical neurons and morphological deficits. To determine whether these phenotypes are recapitulated in humans, we generated induced pluripotent stem (iPS) cell lines from patients with Costello syndrome (CS), a developmental disorder caused by abnormal Ras signaling and characterized by neurodevelopmental abnormalities, such as cognitive impairment and autism. Directed differentiation toward a neuroectodermal fate revealed an extended progenitor phase and subsequent increased production of cortical neurons. Morphological analysis of mature neurons revealed significantly altered neurite length and soma size in CS patients. This study demonstrates the synergy between mouse and human models and validates the use of iPS cells as a platform to study the underlying cellular pathologies resulting from signaling deficits. SIGNIFICANCE STATEMENT Increasing evidence implicates Ras signaling dysfunction as a major contributor in psychiatric and neurodevelopmental disorders, such as cognitive impairment and autism, but the underlying cortical cellular pathogenesis remains unclear. This study is the first to reveal human neuronal pathogenesis resulting from abnormal Ras signaling and provides insights into how these phenotypic abnormalities likely contribute to neurodevelopmental disorders. We also demonstrate the synergy between mouse and human models, thereby validating the use of iPS cells as a platform to study underlying cellular pathologies resulting from signaling deficits. Recapitulating human cellular pathologies in vitro facilitates the future high throughput screening of potential therapeutic agents that may reverse phenotypic and

  3. First step of glycosylphosphatidylinositol (GPI) biosynthesis cross-talks with ergosterol biosynthesis and Ras signaling in Candida albicans.

    PubMed

    Yadav, Bhawna; Bhatnagar, Shilpi; Ahmad, Mohammad Faiz; Jain, Priyanka; Pratyusha, Vavilala A; Kumar, Pravin; Komath, Sneha Sudha

    2014-02-01

    Candida albicans is a leading cause of fungal infections worldwide. It has several glycosylphosphatidylinositol (GPI)-anchored virulence factors. Inhibiting GPI biosynthesis attenuates its virulence. Building on our previous work, we explore the interaction of GPI biosynthesis in C. albicans with ergosterol biosynthesis and hyphal morphogenesis. This study is also the first report of transcriptional co-regulation existing between two subunits of the multisubunit enzyme complex, GPI-N-acetylglucosaminyltransferase (GPI-GnT), involved in the first step of GPI anchor biosynthesis in eukaryotes. Using mutational analysis, we show that the accessory subunits, GPI2 and GPI19, of GPI-GnT exhibit opposite effects on ergosterol biosynthesis and Ras signaling (which determines hyphal morphogenesis). This is because the two subunits negatively regulate one another; GPI19 mutants show up-regulation of GPI2, whereas GPI2 mutants show up-regulation of GPI19. Two different models were examined as follows. First, the two GPI-GnT subunits independently interact with ergosterol biosynthesis and Ras signaling. Second, the two subunits mutually regulate one another and thereby regulate sterol levels and Ras signaling. Analysis of double mutants of these subunits indicates that GPI19 controls ergosterol biosynthesis through ERG11 levels, whereas GPI2 determines the filamentation by cross-talk with Ras1 signaling. Taken together, this suggests that the first step of GPI biosynthesis talks to and regulates two very important pathways in C. albicans. This could have implications for designing new antifungal strategies. PMID:24356967

  4. Opposing activities of the Ras and Hippo pathways converge on regulation of YAP protein turnover.

    PubMed

    Hong, Xin; Nguyen, Hung Thanh; Chen, Qingfeng; Zhang, Rui; Hagman, Zandra; Voorhoeve, P Mathijs; Cohen, Stephen M

    2014-11-01

    Cancer genomes accumulate numerous genetic and epigenetic modifications. Yet, human cellular transformation can be accomplished by a few genetically defined elements. These elements activate key pathways required to support replicative immortality and anchorage independent growth, a predictor of tumorigenesis in vivo. Here, we provide evidence that the Hippo tumor suppressor pathway is a key barrier to Ras-mediated cellular transformation. The Hippo pathway targets YAP1 for degradation via the βTrCP-SCF ubiquitin ligase complex. In contrast, the Ras pathway acts oppositely, to promote YAP1 stability through downregulation of the ubiquitin ligase complex substrate recognition factors SOCS5/6. Depletion of SOCS5/6 or upregulation of YAP1 can bypass the requirement for oncogenic Ras in anchorage independent growth in vitro and tumor formation in vivo. Through the YAP1 target, Amphiregulin, Ras activates the endogenous EGFR pathway, which is required for transformation. Thus, the oncogenic activity of Ras(V12) depends on its ability to counteract Hippo pathway activity, creating a positive feedback loop, which depends on stabilization of YAP1. PMID:25180228

  5. Opposing activities of the Ras and Hippo pathways converge on regulation of YAP protein turnover

    PubMed Central

    Hong, Xin; Nguyen, Hung Thanh; Chen, Qingfeng; Zhang, Rui; Hagman, Zandra; Voorhoeve, P Mathijs; Cohen, Stephen M

    2014-01-01

    Cancer genomes accumulate numerous genetic and epigenetic modifications. Yet, human cellular transformation can be accomplished by a few genetically defined elements. These elements activate key pathways required to support replicative immortality and anchorage independent growth, a predictor of tumorigenesis in vivo. Here, we provide evidence that the Hippo tumor suppressor pathway is a key barrier to Ras-mediated cellular transformation. The Hippo pathway targets YAP1 for degradation via the βTrCP-SCF ubiquitin ligase complex. In contrast, the Ras pathway acts oppositely, to promote YAP1 stability through downregulation of the ubiquitin ligase complex substrate recognition factors SOCS5/6. Depletion of SOCS5/6 or upregulation of YAP1 can bypass the requirement for oncogenic Ras in anchorage independent growth in vitro and tumor formation in vivo. Through the YAP1 target, Amphiregulin, Ras activates the endogenous EGFR pathway, which is required for transformation. Thus, the oncogenic activity of RasV12 depends on its ability to counteract Hippo pathway activity, creating a positive feedback loop, which depends on stabilization of YAP1. PMID:25180228

  6. Serum-dependent transcriptional networks identify distinct functional roles for H-Ras and N-Ras during initial stages of the cell cycle

    PubMed Central

    2009-01-01

    Background Using oligonucleotide microarrays, we compared transcriptional profiles corresponding to the initial cell cycle stages of mouse fibroblasts lacking the small GTPases H-Ras and/or N-Ras with those of matching, wild-type controls. Results Serum-starved wild-type and knockout ras fibroblasts had very similar transcriptional profiles, indicating that H-Ras and N-Ras do not significantly control transcriptional responses to serum deprivation stress. In contrast, genomic disruption of H-ras or N-ras, individually or in combination, determined specific differential gene expression profiles in response to post-starvation stimulation with serum for 1 hour (G0/G1 transition) or 8 hours (mid-G1 progression). The absence of N-Ras caused significantly higher changes than the absence of H-Ras in the wave of transcriptional activation linked to G0/G1 transition. In contrast, the absence of H-Ras affected the profile of the transcriptional wave detected during G1 progression more strongly than did the absence of N-Ras. H-Ras was predominantly functionally associated with growth and proliferation, whereas N-Ras had a closer link to the regulation of development, the cell cycle, immunomodulation and apoptosis. Mechanistic analysis indicated that extracellular signal-regulated kinase (ERK)-dependent activation of signal transducer and activator of transcription 1 (Stat1) mediates the regulatory effect of N-Ras on defense and immunity, whereas the pro-apoptotic effects of N-Ras are mediated through ERK and p38 mitogen-activated protein kinase signaling. Conclusions Our observations confirm the notion of an absolute requirement for different peaks of Ras activity during the initial stages of the cell cycle and document the functional specificity of H-Ras and N-Ras during those processes. PMID:19895680

  7. Synthesis, biological, and biophysical studies of DAG-indololactones designed as selective activators of RasGRP.

    PubMed

    Garcia, Lia C; Donadío, Lucia Gandolfi; Mann, Ella; Kolusheva, Sofiya; Kedei, Noemi; Lewin, Nancy E; Hill, Colin S; Kelsey, Jessica S; Yang, Jing; Esch, Timothy E; Santos, Marina; Peach, Megan L; Kelley, James A; Blumberg, Peter M; Jelinek, Raz; Marquez, Victor E; Comin, Maria J

    2014-06-15

    The development of selective agents capable of discriminating between protein kinase C (PKC) isoforms and other diacylglycerol (DAG)-responsive C1 domain-containing proteins represents an important challenge. Recent studies have highlighted the role that Ras guanine nucleotide-releasing protein (RasGRP) isoforms play both in immune responses as well as in the development of prostate cancer and melanoma, suggesting that the discovery of selective ligands could have potential therapeutic value. Thus far, the N-methyl-substituted indololactone 1 is the agonist with the highest reported potency and selectivity for RasGRP relative to PKC. Here we present the synthesis, binding studies, cellular assays and biophysical analysis of interactions with model membranes of a family of regioisomers of 1 (compounds 2-5) that differ in the position of the linkage between the indole ring and the lactone moiety. These structural variations were studied to explore the interaction of the active complex (C1 domain-ligand) with cellular membranes, which is believed to be an important factor for selectivity in the activation of DAG-responsive C1 domain containing signaling proteins. All compounds were potent and selective activators of RasGRP when compared to PKCα with selectivities ranging from 6 to 65 fold. However, the parent compound 1 was appreciably more selective than any of the other isomers. In intact cells, modest differences in the patterns of translocation of the C1 domain targets were observed. Biophysical studies using giant vesicles as model membranes did show substantial differences in terms of molecular interactions impacting lipid organization, dynamics and membrane insertion. However, these differences did not yield correspondingly large changes in patterns of biological response, at least for the parameters examined. PMID:24794745

  8. Synthesis, Biological, and Biophysical Studies of DAG-indololactones Designed as Selective Activators of RasGRP

    PubMed Central

    Garcia, Lia C.; Donadío, Lucia Gandolfi; Mann, Ella; Kolusheva, Sofiya; Kedei, Noemi; Lewin, Nancy E.; Hill, Colin S.; Kelsey, Jessica S.; Yang, Jing; Esch, Timothy E.; Santos, Marina; Peach, Megan L.; Kelley, James A.; Blumberg, Peter M.; Jelinek, Raz; Marquez, Victor E.; Comin, Maria J.

    2014-01-01

    The development of selective agents capable of discriminating between protein kinase C (PKC) isoforms and other diacylglycerol (DAG)-responsive C1 domain-containing proteins represents an important challenge. Recent studies have highlighted the role that Ras guanine nucleotide-releasing protein (RasGRP) isoforms play both in immune responses as well as in the development of prostate cancer and melanoma, suggesting that the discovery of selective ligands could have potential therapeutic value. Thus far, the N-methyl-substituted indololactone 1 is the agonist with the highest reported potency and selectivity for RasGRP relative to PKC. Here we present the synthesis, binding studies, cellular assays and biophysical analysis of interactions with model membranes of a family of regioisomers of 1 (compounds 2 to 5) that differ in the position of the linkage between the indole ring and the lactone moiety. These structural variations were studied to explore the interaction of the active complex (C1 domain-ligand) with cellular membranes, which is believed to be an important factor for selectivity in the activation of DAG-responsive C1 domain containing signaling proteins. All compounds were potent and selective activators of RasGRP when compared to PKCα with selectivities ranging from 6 to 65 fold. However, the parent compound 1 was appreciably more selective than any of the other isomers. In intact cells, modest differences in the patterns of translocation of the C1 domain targets were observed. Biophysical studies using giant vesicles as model membranes did show substantial differences in terms of molecular interactions impacting lipid organization, dynamics and membrane insertion. However, these differences did not yield correspondingly large changes in patterns of biological response, at least for the parameters examined. PMID:24794745

  9. Pharmacological modulation of oncogenic Ras by natural products and their derivatives: Renewed hope in the discovery of novel anti-Ras drugs.

    PubMed

    Quah, Shun Ying; Tan, Michelle Siying; Teh, Yuan Han; Stanslas, Johnson

    2016-06-01

    Oncogenic rat sarcoma (Ras) is linked to the most fatal cancers such as those of the pancreas, colon, and lung. Decades of research to discover an efficacious drug that can block oncogenic Ras signaling have yielded disappointing results; thus, Ras was considered "undruggable" until recently. Inhibitors that directly target Ras by binding to previously undiscovered pockets have been recently identified. Some of these molecules are either isolated from natural products or derived from natural compounds. In this review, we described the potential of these compounds and other inhibitors of Ras signaling in drugging Ras. We highlighted the modes of action of these compounds in suppressing signaling pathways activated by oncogenic Ras, such as mitogen-activated protein kinase (MAPK) signaling and the phosphoinositide-3-kinase (PI3K) pathways. The anti-Ras strategy of these compounds can be categorized into four main types: inhibition of Ras-effector interaction, interference of Ras membrane association, prevention of Ras-guanosine triphosphate (GTP) formation, and downregulation of Ras proteins. Another promising strategy that must be validated experimentally is enhancement of the intrinsic Ras-guanosine triphosphatase (GTPase) activity by small chemical entities. Among the inhibitors of Ras signaling that were reported thus far, salirasib and TLN-4601 have been tested for their clinical efficacy. Although both compounds passed phase I trials, they failed in their respective phase II trials. Therefore, new compounds of natural origin with relevant clinical activity against Ras-driven malignancies are urgently needed. Apart from salirasib and TLN-4601, some other compounds with a proven inhibitory effect on Ras signaling include derivatives of salirasib, sulindac, polyamine, andrographolide, lipstatin, levoglucosenone, rasfonin, and quercetin. PMID:27016467

  10. Effects of RAF inhibitors on PI3K/AKT signalling depend on mutational status of the RAS/RAF signalling axis

    PubMed Central

    Fritsche-Guenther, Raphaela; Witzel, Franziska; Kempa, Stefan; Brummer, Tilman; Sers, Christine; Blüthgen, Nils

    2016-01-01

    Targeted therapies within the RAS/RAF/MEK/ERK signalling axis become increasingly popular, yet cross-talk and feedbacks in the signalling network lead to unexpected effects. Here we look systematically into how inhibiting RAF and MEK with clinically relevant inhibitors result in changes in PI3K/AKT activation. We measure the signalling response using a bead-based ELISA, and use a panel of three cell lines, and isogenic cell lines that express mutant forms of the oncogenes KRAS and BRAF to interrogate the effects of the MEK and RAF inhibitors on signalling. We find that treatment with the RAF inhibitors have opposing effects on AKT phosphorylation depending on the mutational status of two important oncogenes, KRAS and BRAF. If these two genes are in wildtype configuration, RAF inhibitors reduce AKT phosphorylation. In contrast, if BRAF or KRAS are mutant, RAF inhibitors will leave AKT phosphorylation unaffected or lead to an increase of AKT phosphorylation. Down-regulation of phospho-AKT by RAF inhibitors also extends to downstream transcription factors, and correlates with apoptosis induction. Our results show that oncogenes rewire signalling such that targeted therapies can have opposing effects on parallel pathways, which depend on the mutational status of the cell. PMID:26799289

  11. Effects of RAF inhibitors on PI3K/AKT signalling depend on mutational status of the RAS/RAF signalling axis.

    PubMed

    Fritsche-Guenther, Raphaela; Witzel, Franziska; Kempa, Stefan; Brummer, Tilman; Sers, Christine; Blüthgen, Nils

    2016-02-16

    Targeted therapies within the RAS/RAF/MEK/ERK signalling axis become increasingly popular, yet cross-talk and feedbacks in the signalling network lead to unexpected effects. Here we look systematically into how inhibiting RAF and MEK with clinically relevant inhibitors result in changes in PI3K/AKT activation. We measure the signalling response using a bead-based ELISA, and use a panel of three cell lines, and isogenic cell lines that express mutant forms of the oncogenes KRAS and BRAF to interrogate the effects of the MEK and RAF inhibitors on signalling. We find that treatment with the RAF inhibitors have opposing effects on AKT phosphorylation depending on the mutational status of two important oncogenes, KRAS and BRAF. If these two genes are in wildtype configuration, RAF inhibitors reduce AKT phosphorylation. In contrast, if BRAF or KRAS are mutant, RAF inhibitors will leave AKT phosphorylation unaffected or lead to an increase of AKT phosphorylation. Down-regulation of phospho-AKT by RAF inhibitors also extends to downstream transcription factors, and correlates with apoptosis induction. Our results show that oncogenes rewire signalling such that targeted therapies can have opposing effects on parallel pathways, which depend on the mutational status of the cell. PMID:26799289

  12. Involvement of Ras in survival responsiveness to nitric oxide toxicity in pheochromocytoma cells.

    PubMed

    Jeong, Hyun Sik; Kim, Seong Won; Baek, Kwang Jin; Lee, Hee Sung; Kwon, Nyoun Soo; Kim, Young-Myeong; Yun, Hye-Young

    2002-11-01

    Nitric oxide (NO) plays a key role in attenuation of tumor growth by activated macrophages that generate large amount of cytotoxic/cytostatic free radicals. However, some tumor cells may survive from NO cytotoxicity and continue to proliferate to malignant tumors. Since a protooncogene product Ras was shown to be activated by NO, this study investigated the involvement of Ras in the cell survival in response to NO cytotoxicity in pheochromocytoma (PC12) cells. Treatment with Ras inhibitor or constitutive expression of dominant negative Ras markedly increased NO-induced cell death. NO-resistant PC12 cells (PC12-NO-R) exhibited higher steady state Ras activity than the parental PC12 cells. Inducible expression using tetracycline-on (Tet-on) system of Ras mutants (dominant negative Ras or dominant active Ras) demonstrated that blockade of Ras activity increased NO-induced cell death whereas enhancement of Ras activity attenuated NO-induced cell death. Furthermore, inducible expression of NO-insensitive mutant Ras selectively increased cellular vulnerability to NO but not to ROS. NO, Ras inhibitor and extracellular signal-regulated kinase (Erk) blocker synergistically increased cell death. These observations suggest that Ras activity may be a critical factor for survival response of tumor cells to NO toxicity and pharmacological agents affecting Ras activity may enhance efficacy of NO-mediated tumor therapies. PMID:12635656

  13. Regulation of SREBPs by Sphingomyelin in Adipocytes via a Caveolin and Ras-ERK-MAPK-CREB Signaling Pathway.

    PubMed

    Makdissy, Nehman; Haddad, Katia; Mouawad, Charbel; Popa, Iuliana; Younsi, Mohamed; Valet, Philippe; Brunaud, Laurent; Ziegler, Olivier; Quilliot, Didier

    2015-01-01

    Sterol response element binding protein (SREBP) is a key transcription factor in insulin and glucose metabolism. We previously demonstrated that elevated levels of membrane sphingomyelin (SM) were related to peroxisome proliferator-activated receptor-γ (PPARγ), which is a known target gene of SREBP-1 in adipocytes. However, the role of SM in SREBP expression in adipocytes remains unknown. In human abdominal adipose tissue from obese women with various concentrations of fasting plasma insulin, SREBP-1 proteins decreased in parallel with increases in membrane SM levels. An inverse correlation was found between the membrane SM content and the levels of SREBP-1c/ERK/Ras/PPARγ/CREB proteins. For the first time, we demonstrate the effects of SM and its signaling pathway in 3T3-F442A adipocytes. These cells were enriched or unenriched with SM in a range of concentrations similar to those observed in obese subjects by adding exogenous natural SMs (having different acyl chain lengths) or by inhibiting neutral sphingomyelinase. SM accumulated in caveolae of the plasma membrane within 24 h and then in the intracellular space. SM enrichment decreased SREBP-1 through the inhibition of extracellular signal-regulated protein kinase (ERK) but not JNK or p38 mitogen-activated protein kinase (MAPK). Ras/Raf-1/MEK1/2 and KSR proteins, which are upstream mediators of ERK, were down-regulated, whereas SREBP-2/caveolin and cholesterol were up-regulated. In SM-unmodulated adipocytes treated with DL-1-Phenyl-2-Palmitoylamino-3-morpholino-1-propanol (PPMP), where the ceramide level increased, the expression levels of SREBPs and ERK were modulated in an opposite direction relative to the SM-enriched cells. SM inhibited the insulin-induced expression of SREBP-1. Rosiglitazone, which is an anti-diabetic agent and potent activator of PPARγ, reversed the effects of SM on SREBP-1, PPARγ and CREB. Taken together, these findings provide novel insights indicating that excess membrane SM might

  14. Regulation of SREBPs by Sphingomyelin in Adipocytes via a Caveolin and Ras-ERK-MAPK-CREB Signaling Pathway

    PubMed Central

    Makdissy, Nehman; Popa, Iuliana; Younsi, Mohamed; Valet, Philippe; Brunaud, Laurent; Ziegler, Olivier; Quilliot, Didier

    2015-01-01

    Sterol response element binding protein (SREBP) is a key transcription factor in insulin and glucose metabolism. We previously demonstrated that elevated levels of membrane sphingomyelin (SM) were related to peroxisome proliferator–activated receptor-γ (PPARγ), which is a known target gene of SREBP-1 in adipocytes. However, the role of SM in SREBP expression in adipocytes remains unknown. In human abdominal adipose tissue from obese women with various concentrations of fasting plasma insulin, SREBP-1 proteins decreased in parallel with increases in membrane SM levels. An inverse correlation was found between the membrane SM content and the levels of SREBP-1c/ERK/Ras/PPARγ/CREB proteins. For the first time, we demonstrate the effects of SM and its signaling pathway in 3T3-F442A adipocytes. These cells were enriched or unenriched with SM in a range of concentrations similar to those observed in obese subjects by adding exogenous natural SMs (having different acyl chain lengths) or by inhibiting neutral sphingomyelinase. SM accumulated in caveolae of the plasma membrane within 24 h and then in the intracellular space. SM enrichment decreased SREBP-1 through the inhibition of extracellular signal-regulated protein kinase (ERK) but not JNK or p38 mitogen-activated protein kinase (MAPK). Ras/Raf-1/MEK1/2 and KSR proteins, which are upstream mediators of ERK, were down-regulated, whereas SREBP-2/caveolin and cholesterol were up-regulated. In SM-unmodulated adipocytes treated with DL-1-Phenyl-2-Palmitoylamino-3-morpholino-1-propanol (PPMP), where the ceramide level increased, the expression levels of SREBPs and ERK were modulated in an opposite direction relative to the SM-enriched cells. SM inhibited the insulin-induced expression of SREBP-1. Rosiglitazone, which is an anti-diabetic agent and potent activator of PPARγ, reversed the effects of SM on SREBP-1, PPARγ and CREB. Taken together, these findings provide novel insights indicating that excess membrane SM

  15. The tumor suppressor p53 inhibits Net, an effector of Ras/extracellular signal-regulated kinase signaling.

    PubMed

    Nakade, Koji; Zheng, Hong; Ganguli, Gitali; Buchwalter, Gilles; Gross, Christian; Wasylyk, Bohdan

    2004-02-01

    The tumor suppressor function of p53 is linked to its ability to repress gene expression, but the mechanisms of specific gene repression are poorly understood. We report that wild-type p53 inhibits an effector of the Ras oncogene/mitogen-activated protein (MAP) kinase pathway, the transcription factor Net. Tumor-associated mutant p53s are less efficient inhibitors. p53 inhibits by preventing phosphorylation of Net by MAP kinases. Loss of p53 in vivo leads to increased Net phosphorylation in response to wound healing and UV irradiation of skin. Our results show that p53 can repress specific gene expression by inhibiting Net, a factor implicated in cell cycle entry. PMID:14729959

  16. Genomic classification of the RAS network identifies a personalized treatment strategy for lung cancer

    PubMed Central

    El-Chaar, Nader N.; Piccolo, Stephen R.; Boucher, Kenneth M.; Cohen, Adam L.; Chang, Jeffrey T.; Moos, Philip J.; Bild, Andrea H.

    2014-01-01

    Better approaches are needed to evaluate a single patient's drug response at the genomic level. Targeted therapy for signaling pathways in cancer has met limited success in part due to the exceedingly interwoven nature of the pathways. In particular, the highly complex RAS network has been challenging to target. Effectively targeting the pathway requires development of techniques that measure global network activity to account for pathway complexity. For this purpose, we used a gene-expression-based biomarker for RAS network activity in non-small cell lung cancer (NSCLC) cells, and screened for drugs whose efficacy were significantly highly correlated to RAS network activity. Results identified EGFR and MEK co-inhibition as the most effective treatment for RAS-active NSCLC amongst a panel of over 360 compounds and fractions. RAS activity was identified in both RAS-mutant and wild-type lines, indicating broad characterization of RAS signaling inclusive of multiple mechanisms of RAS activity, and not solely based on mutation status. Mechanistic studies demonstrated that co-inhibition of EGFR and MEK induced apoptosis and blocked both EGFR-RAS-RAF-MEK-ERK and EGFR-PI3K-AKT-RPS6 nodes simultaneously in RAS-active, but not RAS-inactive NSCLC. These results provide a comprehensive strategy to personalize treatment of NSCLC based on RAS network dysregulation and provide proof-of-concept of a genomic approach to classify and target complex signaling networks. PMID:24908424

  17. NF1 regulation of RAS/ERK signaling is required for appropriate granule neuron progenitor expansion and migration in cerebellar development.

    PubMed

    Sanchez-Ortiz, Efrain; Cho, Woosung; Nazarenko, Inga; Mo, Wei; Chen, Jian; Parada, Luis F

    2014-11-01

    Cerebellar development is regulated by a coordinated spatiotemporal interplay between granule neuron progenitors (GNPs), Purkinje neurons, and glia. Abnormal development can trigger motor deficits, and more recent data indicate important roles in aspects of memory, behavior, and autism spectrum disorders (ASDs). Germline mutation in the NF1 tumor suppressor gene underlies Neurofibromatosis type 1, a complex disease that enhances susceptibility to certain cancers and neurological disorders, including intellectual deficits and ASD. The NF1 gene encodes for neurofibromin, a RAS GTPase-activating protein, and thus negatively regulates the RAS signaling pathway. Here, using mouse models to direct conditional NF1 ablation in either embryonic cerebellar progenitors or neonatal GNPs, we show that neurofibromin is required for appropriate development of cerebellar folia layering and structure. Remarkably, neonatal administration of inhibitors of the ERK pathway reversed the morphological defects. Thus, our findings establish a critical cell-autonomous role for the NF1-RAS-ERK pathway in the appropriate regulation of cerebellar development and provide a basis for using neonatal ERK inhibitor-based therapies to treat NF1-induced cerebellar disorders. PMID:25367036

  18. Biochemical similarity of Schizosaccharomyces pombe ras1 protein with RAS2 protein of Saccharomyces cervisiae.

    PubMed

    Onozawa, T; Danjoh, I; Fujiyama, A

    1995-07-01

    Schizosaccharomyces pombe contains single ras oncogene homologue, ras1, that functions in the signal transduction pathway conducting the cell's mating processes. To understand the biochemical basis of yeast ras proteins, we have purified the ras1 protein and compared the major biochemical constants with those of RAS2 protein from Saccharomyces cerevisiae and mammalian ras proteins. The purified ras1 protein showed a remarkably high Kd value for GDP binding (178 nM) and for binding with ATP. In contrast, the Kd value for GTP binding and the rate of GTPase activity were 64 nM and 77 x 10(-6) s-1 at 37 degrees C, respectively; both were higher than normal p21ras protein, but at the same level as the RAS2 protein. We directly measured rate of GTP binding and GDP binding which were 3.9 x 10(-3) s-1 and 1.8 x 10(-3) s-1 at 30 degrees C, respectively. On the other hand, exchange rates between bound and free nucleotides remained almost constant throughout the tested combination of GTP and GDP, and were several-fold lower than the binding rate. These results suggest that the release of the guanine nucleotide is the rate-limiting step in the ras-GTP/GDP cycle. As a whole, the biochemical properties of the ras1 protein are close to those of the RAS2 protein, although these two proteins function differently in the signal transduction pathway in the cells. PMID:7483844

  19. The renewed battle against RAS-mutant cancers.

    PubMed

    Zhang, Fuquan; Cheong, Jit Kong

    2016-05-01

    The RAS genes encode for members of a large superfamily of guanosine-5'-triphosphate (GTP)-binding proteins that control diverse intracellular signaling pathways to promote cell proliferation. Somatic mutations in the RAS oncogenes are the most common activating lesions found in human cancers. These mutations invariably result in the gain-of-function of RAS by impairing GTP hydrolysis and are frequently associated with poor responses to standard cancer therapies. In this review, we summarize key findings of past and present landmark studies that have deepened our understanding of the RAS biology in the context of oncogenesis. We also discuss how emerging areas of research could further bolster a renewed global effort to target the largely undruggable oncogenic RAS and/or its activated downstream effector signaling cascades to achieve better treatment outcomes for RAS-mutant cancer patients. PMID:26892781

  20. Signal Activation and Inactivation by the Gα Helical Domain: A Long-Neglected Partner in G Protein Signaling

    PubMed Central

    Dohlman, Henrik G.; Jones, Janice C.

    2013-01-01

    Heterotrimeric guanine nucleotide–binding proteins (G proteins) are positioned at the top of many signal transduction pathways. The G protein α subunit is composed of two domains, one that resembles Ras and another that is composed entirely of α helices. Historically, most attention has focused on the Ras-like domain, but emerging evidence reveals that the helical domain is an active participant in G protein signaling. PMID:22649098

  1. VEGF neutralizing aerosol therapy in primary pulmonary adenocarcinoma with K-ras activating-mutations.

    PubMed

    Hervé, Virginie; Rabbe, Nathalie; Guilleminault, Laurent; Paul, Flora; Schlick, Laurène; Azzopardi, Nicolas; Duruisseaux, Michael; Fouquenet, Delphine; Montharu, Jérôme; Redini, Françoise; Paintaud, Gilles; Lemarié, Etienne; Cadranel, Jacques; Wislez, Marie; Heuzé-Vourc'h, Nathalie

    2014-01-01

    K-ras mutations promote angiogenesis in lung cancer and contribute to the drug resistance of cancer cells. It is not clear whether K-ras mutated adenocarcinomas are sensitive to anti-angiogenic therapy with monoclonal antibodies (mAbs) that target vascular endothelial growth factor (VEGF). Anti-angiogenic mAbs are usually delivered systemically, but only a small proportion reaches the lung after intravenous injection. We investigated the relevance of a non-invasive pulmonary route for the delivery of anti-VEGF mAbs in the mouse K-ras(LA1) model. We found that pulmonary delivery of these mAbs significantly reduced the number of tumor lesions and inhibited malignant progression. The antitumor effect involves the VEGFR2-dependent inhibition of blood vessel growth, which impairs tumor proliferation. Pharmacokinetic analysis of aerosolized anti-VEGF showed its low rate of passage into the bloodstream, suggesting that this delivery route is associated with reduced systemic side effects. Our findings highlight the value of the aerosol route for administration of anti-angiogenic mAbs in pulmonary adenocarcinoma with K-ras activating-mutations. PMID:25484066

  2. MK2 Regulates Ras Oncogenesis through Stimulating ROS Production

    PubMed Central

    Kobayashi, Yusuke; Qi, Xiaomei

    2012-01-01

    Ras signals through both mitogenic and stress pathways and studies of Ras regulatory effects of stress pathways hold great promise to control Ras-dependent malignancies. Our previous work showed Ras activation of a stress kinase (MAPK-activated protein kinase 2 [MK2]), and here, we examine regulatory effects of MK2 on Ras oncogenesis. MK2 knockout was shown to increase Ras transformation in mouse embryonic fibroblasts (MEFs) in vitro and to enhance the resultant tumor growth in mice, indicating a tumor suppressor activity. In Ras-dependent and -independent human colon cancer, however, MK2-forced expression increases and MK2 depletion decreases the malignant growth, suggesting its oncogenic activity. The oncogenic activity of MK2 couples with its activation by both stress and mitogenic signals through extracellular signal–regulated kinase and p38α pathways, whereas its tumor-suppressing effect links to its stimulation only by stress downstream of p38α. Of interest, MK2 was shown to decrease intracellular levels of reactive oxygen species (ROS) in MEFs but increase its production in human colon cancer cells, and experiments with antioxidants revealed that ROS is required for Ras oncogenesis in both systems. These results indicate that MK2 can increase or decrease Ras oncogenesis dependent of its ROS regulatory activities. PMID:23264852

  3. Immunomodulatory activity of Āmalaki Rasāyana: An experimental evaluation

    PubMed Central

    Rajani, Jignesh; Ashok, B.K.; Galib; Patgiri, B.J.; Prajapati, P.K.; Ravishankar, B.

    2012-01-01

    Background: Ayurvedic system of medicine holds a number of drugs that improves the immunity. Āmalaki (Emblica officinalis) is one such drug. Researches with crude extracts of Āmalaki have proven the antioxidant and immunomodulatory activities. But, works on Āmalaki Rasāyana are not found reported. Aims: Considering this, two samples of Āmalaki Rasāyana (AR7 and AR21) were studied to evaluate comparative immunomodulatory activity against the cyclophosphamide immunosuppression in rats. Materials and Methods: Test drugs were prepared by following classical guidelines. Wistar strain albino rats of either sex were used in the study. Statistical Analysis: For comparison of data from cyclophosphamide control group with remaining cyclophosphamide plus test drug administered groups one way ANOVA with Dunnett's multiple t-test (DMTT) was employed. Results and Conclusions: Āmalaki Rasāyana possesses significant immunostimulant activity and moderate cytoprotective activity. AR21 was found to have better activity profile in terms of both immunostimulant as well as cytoprotective activity. PMID:24167334

  4. Tfs1p, a Member of the PEBP Family, Inhibits the Ira2p but Not the Ira1p Ras GTPase-Activating Protein in Saccharomyces cerevisiae

    PubMed Central

    Chautard, Hélène; Jacquet, Michel; Schoentgen, Françoise; Bureaud, Nicole; Bénédetti, Hélène

    2004-01-01

    Ras proteins are guanine nucleotide-binding proteins that are highly conserved among eukaryotes. They are involved in signal transduction pathways and are tightly regulated by two sets of antagonistic proteins: GTPase-activating proteins (GAPs) inhibit Ras proteins, whereas guanine exchange factors activate them. In this work, we describe Tfs1p, the first physiological inhibitor of a Ras GAP, Ira2p, in Saccharomyces cerevisiae. TFS1 is a multicopy suppressor of the cdc25-1 mutation in yeast and corresponds to the so-called Ic CPY cytoplasmic inhibitor. Moreover, Tfs1p belongs to the phosphatidylethanolamine-binding protein (PEBP) family, one member of which is RKIP, a kinase and serine protease inhibitor and a metastasis inhibitor in prostate cancer. In this work, the results of (i) a two-hybrid screen of a yeast genomic library, (ii) glutathione S-transferase pulldown experiments, (iii) multicopy suppressor tests of cdc25-1 mutants, and (iv) stress resistance tests to evaluate the activation level of Ras demonstrate that Tfs1p interacts with and inhibits Ira2p. We further show that the conserved ligand-binding pocket of Tfs1—the hallmark of the PEBP family—is important for its inhibitory activity. PMID:15075275

  5. Andrographolide derivatives inhibit guanine nucleotide exchange and abrogate oncogenic Ras function.

    PubMed

    Hocker, Harrison J; Cho, Kwang-Jin; Chen, Chung-Ying K; Rambahal, Nandini; Sagineedu, Sreenivasa Rao; Shaari, Khozirah; Stanslas, Johnson; Hancock, John F; Gorfe, Alemayehu A

    2013-06-18

    Aberrant signaling by oncogenic mutant rat sarcoma (Ras) proteins occurs in ∼15% of all human tumors, yet direct inhibition of Ras by small molecules has remained elusive. Recently, several small-molecule ligands have been discovered that directly bind Ras and inhibit its function by interfering with exchange factor binding. However, it is unclear whether, or how, these ligands could lead to drugs that act against constitutively active oncogenic mutant Ras. Using a dynamics-based pocket identification scheme, ensemble docking, and innovative cell-based assays, here we show that andrographolide (AGP)--a bicyclic diterpenoid lactone isolated from Andrographis paniculata--and its benzylidene derivatives bind to transient pockets on Kirsten-Ras (K-Ras) and inhibit GDP-GTP exchange. As expected for inhibitors of exchange factor binding, AGP derivatives reduced GTP loading of wild-type K-Ras in response to acute EGF stimulation with a concomitant reduction in MAPK activation. Remarkably, however, prolonged treatment with AGP derivatives also reduced GTP loading of, and signal transmission by, oncogenic mutant K-RasG12V. In sum, the combined analysis of our computational and cell biology results show that AGP derivatives directly bind Ras, block GDP-GTP exchange, and inhibit both wild-type and oncogenic K-Ras signaling. Importantly, our findings not only show that nucleotide exchange factors are required for oncogenic Ras signaling but also demonstrate that inhibiting nucleotide exchange is a valid approach to abrogating the function of oncogenic mutant Ras. PMID:23737504

  6. Andrographolide derivatives inhibit guanine nucleotide exchange and abrogate oncogenic Ras function

    PubMed Central

    Hocker, Harrison J.; Cho, Kwang-Jin; Chen, Chung-Ying K.; Rambahal, Nandini; Sagineedu, Sreenivasa Rao; Shaari, Khozirah; Stanslas, Johnson; Hancock, John F.; Gorfe, Alemayehu A.

    2013-01-01

    Aberrant signaling by oncogenic mutant rat sarcoma (Ras) proteins occurs in ∼15% of all human tumors, yet direct inhibition of Ras by small molecules has remained elusive. Recently, several small-molecule ligands have been discovered that directly bind Ras and inhibit its function by interfering with exchange factor binding. However, it is unclear whether, or how, these ligands could lead to drugs that act against constitutively active oncogenic mutant Ras. Using a dynamics-based pocket identification scheme, ensemble docking, and innovative cell-based assays, here we show that andrographolide (AGP)—a bicyclic diterpenoid lactone isolated from Andrographis paniculata—and its benzylidene derivatives bind to transient pockets on Kirsten-Ras (K-Ras) and inhibit GDP–GTP exchange. As expected for inhibitors of exchange factor binding, AGP derivatives reduced GTP loading of wild-type K-Ras in response to acute EGF stimulation with a concomitant reduction in MAPK activation. Remarkably, however, prolonged treatment with AGP derivatives also reduced GTP loading of, and signal transmission by, oncogenic mutant K-RasG12V. In sum, the combined analysis of our computational and cell biology results show that AGP derivatives directly bind Ras, block GDP–GTP exchange, and inhibit both wild-type and oncogenic K-Ras signaling. Importantly, our findings not only show that nucleotide exchange factors are required for oncogenic Ras signaling but also demonstrate that inhibiting nucleotide exchange is a valid approach to abrogating the function of oncogenic mutant Ras. PMID:23737504

  7. Phosphotyrosine-mediated LAT assembly on membranes drives kinetic bifurcation in recruitment dynamics of the Ras activator SOS.

    PubMed

    Huang, William Y C; Yan, Qingrong; Lin, Wan-Chen; Chung, Jean K; Hansen, Scott D; Christensen, Sune M; Tu, Hsiung-Lin; Kuriyan, John; Groves, Jay T

    2016-07-19

    The assembly of cell surface receptors with downstream signaling molecules is a commonly occurring theme in multiple signaling systems. However, little is known about how these assemblies modulate reaction kinetics and the ultimate propagation of signals. Here, we reconstitute phosphotyrosine-mediated assembly of extended linker for the activation of T cells (LAT):growth factor receptor-bound protein 2 (Grb2):Son of Sevenless (SOS) networks, derived from the T-cell receptor signaling system, on supported membranes. Single-molecule dwell time distributions reveal two, well-differentiated kinetic species for both Grb2 and SOS on the LAT assemblies. The majority fraction of membrane-recruited Grb2 and SOS both exhibit fast kinetics and single exponential dwell time distributions, with average dwell times of hundreds of milliseconds. The minor fraction exhibits much slower kinetics, extending the dwell times to tens of seconds. Considering this result in the context of the multistep process by which the Ras GEF (guanine nucleotide exchange factor) activity of SOS is activated indicates that kinetic stabilization from the LAT assembly may be important. This kinetic proofreading effect would additionally serve as a stochastic noise filter by reducing the relative probability of spontaneous SOS activation in the absence of receptor triggering. The generality of receptor-mediated assembly suggests that such effects may play a role in multiple receptor proximal signaling processes. PMID:27370798

  8. Involvement of H- and N-Ras isoforms in transforming growth factor-{beta}1-induced proliferation and in collagen and fibronectin synthesis

    SciTech Connect

    Martinez-Salgado, Carlos . E-mail: carloms@usal.es; Fuentes-Calvo, Isabel; Garcia-Cenador, Begona; Santos, Eugenio; Lopez-Novoa, Jose M.

    2006-07-01

    Transforming growth factor {beta}1 (TGF-{beta}1) has a relevant role in the origin and maintenance of glomerulosclerosis and tubule-interstitial fibrosis. TGF-{beta} and Ras signaling pathways are closely related: TGF-{beta}1 overcomes Ras mitogenic effects and Ras counteracts TGF-{beta} signaling. Tubule-interstitial fibrosis is associated to increases in Ras, Erk, and Akt activation in a renal fibrosis model. We study the role of N- and H-Ras isoforms, and the involvement of the Ras effectors Erk and Akt, in TGF-{beta}1-mediated extracellular matrix (ECM) synthesis and proliferation, using embrionary fibroblasts from double knockout (KO) mice for H- and N-Ras (H-ras {sup -/-}/N-ras {sup -/-}) isoforms and from heterozygote mice (H-ras {sup +/-}/N-ras {sup +/-}). ECM synthesis is increased in basal conditions in H-ras {sup -/-}/N-ras {sup -/-} fibroblasts, this increase being higher after stimulation with TGF-{beta}1. TGF-{beta}1-induced fibroblast proliferation is smaller in H-ras {sup -/-}/N-ras {sup -/-} than in H-ras {sup +/-}/N-ras {sup +/-} fibroblasts. Erk activation is decreased in H-ras {sup -/-}/N-ras {sup -/-} fibroblasts; inhibition of Erk activation reduces fibroblast proliferation. Akt activation is higher in double KO fibroblasts than in heterozygotes; inhibition of Akt activation also inhibits ECM synthesis. We suggest that H- and N-Ras isoforms downregulate ECM synthesis, and mediate proliferation, in part through MEK/Erk activation. PI3K-Akt pathway activation may be involved in the increase in ECM synthesis observed in the absence of H- and N-Ras.

  9. Review: Ras GTPases and myosin: Qualitative conservation and quantitative diversification in signal and energy transduction.

    PubMed

    Mueller, Matthias P; Goody, Roger S

    2016-08-01

    Most GTPases and many ATPases belong to the P-loop class of proteins with significant structural and mechanistic similarities. Here we compare and contrast the basic properties of the Ras family GTPases and myosin, and conclude that there are fundamental similarities but also distinct differences related to their specific roles. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 422-430, 2016. PMID:27018658

  10. H-Ras Modulates N-Methyl-d-aspartate Receptor Function via Inhibition of Src Tyrosine Kinase Activity*

    PubMed Central

    Thornton, Claire; Yaka, Rami; Dinh, Son; Ron, Dorit

    2005-01-01

    Tyrosine phosphorylation of the NR2A and NR2B subunits of the N-methyl-d-aspartate (NMDA) receptor by Src protein-tyrosine kinases modulates receptor channel activity and is necessary for the induction of long term potentiation (LTP). Deletion of H-Ras increases both NR2 tyrosine phosphorylation and NMDA receptor-mediated hippocampal LTP. Here we investigated whether H-Ras regulates phosphorylation and function of the NMDA receptor via Src family protein-tyrosine kinases. We identified Src as a novel H-Ras binding partner. H-Ras bound to Src but not Fyn both in vitro and in brain via the Src kinase domain. Cotransfection of H-Ras and Src inhibited Src activity and decreased NR2A tyrosine phosphorylation. Treatment of rat brain slices with Tat-H-Ras depleted NR2A from the synaptic membrane, decreased endogenous Src activity and NR2A phosphorylation, and decreased the magnitude of hip-pocampal LTP. No change was observed for NR2B. We suggest that H-Ras negatively regulates Src phosphorylation of NR2A and retention of NR2A into the synaptic membrane leading to inhibition of NMDA receptor function. This mechanism is specific for Src and NR2A and has implications for studies in which regulation of NMDA receptor-mediated LTP is important, such as synaptic plasticity, learning, and memory and addiction. PMID:12695509

  11. Characterization of the Ras homologue of Schistosoma mansoni.

    PubMed

    Osman, A; Niles, E G; LoVerde, P T

    1999-05-15

    Ras is a member of a super-family of guanine-binding or G-proteins. Ras functions as a molecular switch in the transduction of signals generated by the activation of a variety of cell surface receptors and relays the signals to downstream effectors. Little is known about signal transduction in schistosomes. In order for Schistosoma mansoni to survive different immune responses triggered by the host as well as to migrate from the site of penetration at the skin to the final destination in portal circulation, they must receive signals from the host environment and respond to them in a way that allows their survival. We have isolated the schistosome Ras cDNA by using sequence information of the schistosome Ras homologue submitted to the Genbank database. Analysis of the encoded peptide revealed 81% identity and 92% similarity with K-Ras from various species. Ras is a single copy gene as determined by quantitative hybridization experiments. The cDNA was cloned into pGEX-4T and the expressed peptide was used to generate specific antibody reagents. Affinity purified antibodies identified a 23 kDa native protein that localizes to the subtegument. Ras is not associated with the tegument. Ras is expressed in all the developmental stages of the parasite. However, Ras is over-expressed in female worms compared to males. Schistosome Ras was also shown to be post-translationally modified by addition of farnesyl isoprenoid moiety to the cysteine residue in the C-terminal box. Using a schistosome extract in vitro SmRas farnesylation was inhibited by the farnesyl transferase inhibitor, FTI-277, at concentrations comparable to those required to inhibit K-Ras processing. These initial studies on signal transduction in schistosomes should provide a solid basis for improving our understanding of schistosome-host interactions. PMID:10376991

  12. Pharmacological inhibition of HSP90 and ras activity as a new strategy in the treatment of HNSCC.

    PubMed

    Misso, Gabriella; Giuberti, Gaia; Lombardi, Angela; Grimaldi, Anna; Ricciardiello, Filippo; Giordano, Antonio; Tagliaferri, Pierosandro; Abbruzzese, Alberto; Caraglia, Michele

    2013-01-01

    Advanced head and neck squamous cell cancer (HNSCC) is currently treated with taxane-based chemotherapy. We have previously shown that docetaxel (DTX) induces a ras-dependent survival signal that can be antagonized by farnesyl transferase inhibitors (FTI) such as tipifarnib (TIP). Here we show that the synergistic TIP/DTX combination determines synergistic apoptotic conditions but, at the same time, it modulates the expression of the components of the multichaperone complex that is, in turn, involved in the regulation of the stability of members of the ras-mediated pathway. Therefore, we have stably transfected HNSCC KB and Hep-2 cells with a plasmid encoding for HSP90. The expression of the protein was increased in both transfected cell lines but its activation status was increased in Hep-2 clones and decreased in KB clones. On the basis of these results, we have treated both parental and HSP90-transfected cells with a HSP90 inhibitor geldanamycin (GA). We have found that the antiproliferative activity of GA is dependent upon the activation status of HSP90 and that it is strongly synergistic when added in combination with TIP but not with DTX in cells overexpressing HSP90 and even more in cells with increased HSP90 activity. These data were paralleled by the decreased expression and activity of the components belonging to the ras→mediated signal transduction pathway. The present results suggest that multichaperone complex activation could be a resistance mechanism to the anti-proliferative and apoptotic effects induced by TIP and that the combination of FTIs such as TIP with GA could be a suitable therapeutic strategy in the treatment of HSP90-overexpressing HNSCC. PMID:22566192

  13. Differential involvement of Ras-GRF1 and Ras-GRF2 in L-DOPA-induced dyskinesia

    PubMed Central

    Bido, Simone; Solari, Nicola; Indrigo, Marzia; D’Antoni, Angela; Brambilla, Riccardo; Morari, Michele; Fasano, Stefania

    2015-01-01

    Objective Recent findings have shown that pharmacogenetic manipulations of the Ras-ERK pathway provide a therapeutic means to tackle l-3,4-dihydroxyphenylalanine (l-DOPA)-induced dyskinesia (LID). First, we investigated whether a prolonged l-DOPA treatment differentially affected ERK signaling in medium spiny neurons of the direct pathway (dMSNs) and in cholinergic aspiny interneurons (ChIs) and assessed the role of Ras-GRF1 in both subpopulations. Second, using viral-assisted technology, we probed Ras-GRF1 and Ras-GRF2 as potential targets in this pathway. We investigated how selective blockade of striatal Ras-GRF1 or Ras-GRF2 expression impacted on LID (induction, maintenance, and reversion) and its neurochemical correlates. Methods We used both Ras-GRF1 knockout mice and lentiviral vectors (LVs) delivering short-hairpin RNA sequences (shRNAs) to obtain striatum-specific gene knockdown of Ras-GRF1 and Ras-GRF2. The consequences of these genetic manipulations were evaluated in the 6-hydroxydopamine mouse model of Parkinson’s disease. Escalating doses of l-DOPA were administered and then behavioral analysis with immunohistochemical assays and in vivo microdialysis were performed. Results Ras-GRF1 was found essential in controlling ERK signaling in dMSNs, but its ablation did not prevent ERK activation in ChIs. Moreover, striatal injection of LV-shRNA/Ras-GRF1 attenuated dyskinesia development and ERK-dependent signaling, whereas LV-shRNA/Ras-GRF2 was without effect, ruling out the involvement of Ras-GRF2 in LID expression. Accordingly, Ras-GRF1 but not Ras-GRF2 striatal gene-knockdown reduced l-DOPA-induced GABA and glutamate release in the substantia nigra pars reticulata, a neurochemical correlate of dyskinesia. Finally, inactivation of Ras-GRF1 provided a prolonged anti-dyskinetic effect for up to 7 weeks and significantly attenuated symptoms in animals with established LID. Interpretation Our results suggest that Ras-GRF1 is a promising target for LID

  14. Differential utilization of Ras signaling pathways by macrophage colony-stimulating factor (CSF) and granulocyte-macrophage CSF receptors during macrophage differentiation.

    PubMed

    Guidez, F; Li, A C; Horvai, A; Welch, J S; Glass, C K

    1998-07-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) independently stimulate the proliferation and differentiation of macrophages from bone marrow progenitor cells. Although the GM-CSF and M-CSF receptors are unrelated, both couple to Ras-dependent signal transduction pathways, suggesting that these pathways might account for common actions of GM-CSF and M-CSF on the expression of macrophage-specific genes. To test this hypothesis, we have investigated the mechanisms by which GM-CSF and M-CSF regulate the expression of the macrophage scavenger receptor A (SR-A) gene. We demonstrate that induction of the SR-A gene by M-CSF is dependent on AP-1 and cooperating Ets domain transcription factors that bind to sites in an M-CSF-dependent enhancer located 4.1 to 4.5 kb upstream of the transcriptional start site. In contrast, regulation by GM-CSF requires a separate enhancer located 4.5 to 4.8 kb upstream of the transcriptional start site that confers both immediate-early and sustained transcriptional responses. Results of a combination of DNA binding experiments and functional assays suggest that immediate transcriptional responses are mediated by DNA binding proteins that are constitutively bound to the GM-CSF enhancer and are activated by Ras. At 12 to 24 h after GM-CSF treatment, the GM-CSF enhancer becomes further occupied by additional DNA binding proteins that may contribute to sustained transcriptional responses. In concert, these studies indicate that GM-CSF and M-CSF differentially utilize Ras-dependent signal transduction pathways to regulate scavenger receptor gene expression, consistent with the distinct functional properties of M-CSF- and GM-CSF-derived macrophages. PMID:9632769

  15. Effects of mutant human Ki-ras{sup G12C} gene dosage on murine lung tumorigenesis and signaling to its downstream effectors

    SciTech Connect

    Dance-Barnes, Stephanie T.; Kock, Nancy D.; Floyd, Heather S.; Moore, Joseph E.; Mosley, Libyadda J.; D'Agostino, Ralph B.; Pettenati, Mark J.; Miller, Mark Steven

    2008-08-15

    Studies in cell culture have suggested that the level of RAS expression can influence the transformation of cells and the signaling pathways stimulated by mutant RAS expression. However, the levels of RAS expression in vivo appear to be subject to feedback regulation, limiting the total amount of RAS protein that can be expressed. We utilized a bitransgenic mouse lung tumor model that expressed the human Ki-ras{sup G12C} allele in a tetracycline-inducible, lung-specific manner. Treatment for 12 months with 500 {mu}g/ml of doxycycline (DOX) allowed for maximal expression of the human Ki-ras{sup G12C} allele in the lung, and resulted in the development of focal hyperplasia and adenomas. We determined if different levels of mutant RAS expression would influence the phenotype of the lung lesions. Treatment with 25, 100 and 500 {mu}g/ml of DOX resulted in dose-dependent increases in transgene expression and tumor multiplicity. Microscopic analysis of the lungs of mice treated with the 25 {mu}g/ml dose of DOX revealed infrequent foci of hyperplasia, whereas mice treated with the 100 and 500 {mu}g/ml doses exhibited numerous hyperplastic foci and also adenomas. Immunohistochemical and RNA analysis of the downstream effector pathways demonstrated that different levels of mutant RAS transgene expression resulted in differences in the expression and/or phosphorylation of specific signaling molecules. Our results suggest that the molecular alterations driving tumorigenesis may differ at different levels of mutant Ki-ras{sup G12C} expression, and this should be taken into consideration when inducible transgene systems are utilized to promote tumorigenesis in mouse models.

  16. Galectin-1 dimers can scaffold Raf-effectors to increase H-ras nanoclustering.

    PubMed

    Blaževitš, Olga; Mideksa, Yonatan G; Šolman, Maja; Ligabue, Alessio; Ariotti, Nicholas; Nakhaeizadeh, Hossein; Fansa, Eyad K; Papageorgiou, Anastassios C; Wittinghofer, Alfred; Ahmadian, Mohammad R; Abankwa, Daniel

    2016-01-01

    Galectin-1 (Gal-1) dimers crosslink carbohydrates on cell surface receptors. Carbohydrate-derived inhibitors have been developed for cancer treatment. Intracellularly, Gal-1 was suggested to interact with the farnesylated C-terminus of Ras thus specifically stabilizing GTP-H-ras nanoscale signalling hubs in the membrane, termed nanoclusters. The latter activity may present an alternative mechanism for how overexpressed Gal-1 stimulates tumourigenesis. Here we revise the current model for the interaction of Gal-1 with H-ras. We show that it indirectly forms a complex with GTP-H-ras via a high-affinity interaction with the Ras binding domain (RBD) of Ras effectors. A computationally generated model of the Gal-1/C-Raf-RBD complex is validated by mutational analysis. Both cellular FRET as well as proximity ligation assay experiments confirm interaction of Gal-1 with Raf proteins in mammalian cells. Consistently, interference with H-rasG12V-effector interactions basically abolishes H-ras nanoclustering. In addition, an intact dimer interface of Gal-1 is required for it to positively regulate H-rasG12V nanoclustering, but negatively K-rasG12V nanoclustering. Our findings suggest stacked dimers of H-ras, Raf and Gal-1 as building blocks of GTP-H-ras-nanocluster at high Gal-1 levels. Based on our results the Gal-1/effector interface represents a potential drug target site in diseases with aberrant Ras signalling. PMID:27087647

  17. Galectin-1 dimers can scaffold Raf-effectors to increase H-ras nanoclustering

    PubMed Central

    Blaževitš, Olga; Mideksa, Yonatan G.; Šolman, Maja; Ligabue, Alessio; Ariotti, Nicholas; Nakhaeizadeh, Hossein; Fansa, Eyad K.; Papageorgiou, Anastassios C.; Wittinghofer, Alfred; Ahmadian, Mohammad R.; Abankwa, Daniel

    2016-01-01

    Galectin-1 (Gal-1) dimers crosslink carbohydrates on cell surface receptors. Carbohydrate-derived inhibitors have been developed for cancer treatment. Intracellularly, Gal-1 was suggested to interact with the farnesylated C-terminus of Ras thus specifically stabilizing GTP-H-ras nanoscale signalling hubs in the membrane, termed nanoclusters. The latter activity may present an alternative mechanism for how overexpressed Gal-1 stimulates tumourigenesis. Here we revise the current model for the interaction of Gal-1 with H-ras. We show that it indirectly forms a complex with GTP-H-ras via a high-affinity interaction with the Ras binding domain (RBD) of Ras effectors. A computationally generated model of the Gal-1/C-Raf-RBD complex is validated by mutational analysis. Both cellular FRET as well as proximity ligation assay experiments confirm interaction of Gal-1 with Raf proteins in mammalian cells. Consistently, interference with H-rasG12V-effector interactions basically abolishes H-ras nanoclustering. In addition, an intact dimer interface of Gal-1 is required for it to positively regulate H-rasG12V nanoclustering, but negatively K-rasG12V nanoclustering. Our findings suggest stacked dimers of H-ras, Raf and Gal-1 as building blocks of GTP-H-ras-nanocluster at high Gal-1 levels. Based on our results the Gal-1/effector interface represents a potential drug target site in diseases with aberrant Ras signalling. PMID:27087647

  18. R-Ras contributes to LTP and contextual discrimination.

    PubMed

    Darcy, M J; Jin, S-X; Feig, L A

    2014-09-26

    The ability to discriminate between closely related contexts is a specific form of hippocampal-dependent learning that may be impaired in certain neurodegenerative disorders such as Alzheimer's and Down Syndrome. However, signaling pathways regulating this form of learning are poorly understood. Previous studies have shown that the calcium-dependent exchange factor Ras-GRF1, an activator of Rac, Ras and R-Ras GTPases, is important for this form of learning and memory. Moreover, the ability to discriminate contexts was linked to the ability of Ras-GRF1 to promote high-frequency stimulation long-term potentiation (HFS-LTP) via the activation of p38 Map kinase. Here, we show that R-Ras is involved in this form of learning by using virally-delivered miRNAs targeting R-Ras into the CA1 region of the dorsal hippocampus and observing impaired contextual discrimination. Like the loss of GRF1, knockdown of R-Ras in the CA1 also impairs the induction of HFS-LTP and p38 Map kinase. Nevertheless, experiments indicate that this involvement of R-Ras in HFS-LTP that is required for contextual discrimination is independent of Ras-GRF1. Thus, R-Ras is a novel regulator of a form of hippocampal-dependent LTP as well as learning and memory that is affected in certain forms of neurodegenerative diseases. PMID:25043327

  19. Comparative Transcriptome Analysis Reveals Novel Roles of the Ras and Cyclic AMP Signaling Pathways in Environmental Stress Response and Antifungal Drug Sensitivity in Cryptococcus neoformans ▿ †

    PubMed Central

    Maeng, Shinae; Ko, Young-Joon; Kim, Gyu-Bum; Jung, Kwang-Woo; Floyd, Anna; Heitman, Joseph; Bahn, Yong-Sun

    2010-01-01

    The cyclic AMP (cAMP) pathway plays a central role in the growth, differentiation, and virulence of pathogenic fungi, including Cryptococcus neoformans. Three upstream signaling regulators of adenylyl cyclase (Cac1), Ras, Aca1, and Gpa1, have been demonstrated to control the cAMP pathway in C. neoformans, but their functional relationship remains elusive. We performed a genome-wide transcriptome analysis with a DNA microarray using the ras1Δ, gpa1Δ, cac1Δ, aca1Δ, and pka1Δ pka2Δ mutants. The aca1Δ, gpa1Δ, cac1Δ, and pka1Δ pka2Δ mutants displayed similar transcriptome patterns, whereas the ras1Δ mutant exhibited transcriptome patterns distinct from those of the wild type and the cAMP mutants. Interestingly, a number of environmental stress response genes are modulated differentially in the ras1Δ and cAMP mutants. In fact, the Ras signaling pathway was found to be involved in osmotic and genotoxic stress responses and the maintenance of cell wall integrity via the Cdc24-dependent signaling pathway. Notably, the Ras and cAMP mutants exhibited hypersensitivity to a polyene drug, amphotericin B, without showing effects on ergosterol biosynthesis, which suggested a novel method of antifungal combination therapy. Among the cAMP-dependent gene products that we characterized, two small heat shock proteins, Hsp12 and Hsp122, were found to be involved in the polyene antifungal drug susceptibility of C. neoformans. PMID:20097740

  20. The Ras Inhibitors Caveolin-1 and Docking Protein 1 Activate Peroxisome Proliferator-Activated Receptor γ through Spatial Relocalization at Helix 7 of Its Ligand-Binding Domain ▿

    PubMed Central

    Burgermeister, Elke; Friedrich, Teresa; Hitkova, Ivana; Regel, Ivonne; Einwächter, Henrik; Zimmermann, Wolfgang; Röcken, Christoph; Perren, Aurel; Wright, Matthew B.; Schmid, Roland M.; Seger, Rony; Ebert, Matthias P. A.

    2011-01-01

    Peroxisome proliferator-activated receptor γ (PPARγ) is a transcription factor that promotes differentiation and cell survival in the stomach. PPARγ upregulates and interacts with caveolin-1 (Cav1), a scaffold protein of Ras/mitogen-activated protein kinases (MAPKs). The cytoplasmic-to-nuclear localization of PPARγ is altered in gastric cancer (GC) patients, suggesting a so-far-unknown role for Cav1 in spatial regulation of PPARγ signaling. We show here that loss of Cav1 accelerated proliferation of normal stomach and GC cells in vitro and in vivo. Downregulation of Cav1 increased Ras/MAPK-dependent phosphorylation of serine 84 in PPARγ and enhanced nuclear translocation and ligand-independent transcription of PPARγ target genes. In contrast, Cav1 overexpression sequestered PPARγ in the cytosol through interaction of the Cav1 scaffolding domain (CSD) with a conserved hydrophobic motif in helix 7 of PPARγ's ligand-binding domain. Cav1 cooperated with the endogenous Ras/MAPK inhibitor docking protein 1 (Dok1) to promote the ligand-dependent transcriptional activity of PPARγ and to inhibit cell proliferation. Ligand-activated PPARγ also reduced tumor growth and upregulated the Ras/MAPK inhibitors Cav1 and Dok1 in a murine model of GC. These results suggest a novel mechanism of PPARγ regulation by which Ras/MAPK inhibitors act as scaffold proteins that sequester and sensitize PPARγ to ligands, limiting proliferation of gastric epithelial cells. PMID:21690289

  1. Anti-tumor activity of ESX1 on cancer cells harboring oncogenic K-ras mutation

    SciTech Connect

    Nakajima, Junta; Ishikawa, Susumu; Hamada, Jun-Ichi; Yanagihara, Masatomo; Koike, Takao; Hatakeyama, Masanori

    2008-05-23

    Human ESX1 is a 65-kilodalton (kDa) paired-like homeoprotein that is proteolytically processed into N-terminal 45-kDa and C-terminal 20-kDa fragments. The N-terminal ESX1 fragment, which contains the homeodomain, localizes to the nucleus and represses mRNA transcription from the K-ras gene. When we inoculated human colorectal carcinoma HCT116 constitutive expressing N-terminal region of ESX1 (N-ESX1) into nude mice, transfectant cells uniformly showed decreased tumor-forming activity compared with that of the parental cells. Furthermore, pretreatment of HCT116 carcinoma cells with a fusion protein consisting of N-ESX1 and the protein-transduction domain derived from the human immunodeficiency virus type-1 TAT protein gave rise to a dramatic reduction in the tumorigenicity of HCT116 cells in nude mice. Our results provide first in vivo evidence for the molecular targeting therapeutic application of the K-ras repressor ESX1, especially TAT-mediated transduction of N-ESX1, in the treatment of human cancers having oncogenic K-ras mutations.

  2. Cocaine increases Ras-guanine nucleotide-releasing factor 1 protein expression in the rat striatum in vivo.

    PubMed

    Zhang, Guo-Chi; Hoffmann, Jason; Parelkar, Nikhil K; Liu, Xian-Yu; Mao, Li-Min; Fibuch, Eugene E; Wang, John Q

    2007-11-01

    Psychostimulants activate the Ras-mitogen-activated protein kinase (Ras-MAPK) cascade in the limbic reward circuit and thereby trigger a transcription-dependent mechanism underlying enduring synaptic plasticity related to addictive properties of drugs of abuse. The Ras-specific activator, Ras-guanine nucleotide-releasing factor (Ras-GRF), is predominantly expressed at synapses and is thought to actively regulate Ras-MAPK responses to changing synaptic signals. In this study, a possible influence of cocaine on Ras-GRF gene expression at the protein level in the rat striatum was investigated in vivo. A single systemic injection of cocaine induced an increase in Ras-GRF1 protein levels in both the dorsal (caudoputamen) and ventral (nucleus accumbens) striatum. The increase in Ras-GRF1 proteins was dose-dependent and was a delayed and transient event. In contrast to Ras-GRF1, a closely related Ras-GRF2 showed no change in its protein abundance following cocaine administration. These data identify the Ras activator, Ras-GRF1, although not Ras-GRF2, as a susceptible target to cocaine stimulation in striatal neurons. PMID:17931779

  3. Compartmentalized Ras Proteins Transform NIH 3T3 Cells with Different Efficiencies▿ †

    PubMed Central

    Cheng, Chiang-Min; Li, Huiling; Gasman, Stéphane; Huang, Jian; Schiff, Rachel; Chang, Eric C.

    2011-01-01

    Ras GTPases were long thought to function exclusively from the plasma membrane (PM). However, a current model suggests that Ras proteins can compartmentalize to regulate different functions, and an oncogenic H-Ras mutant that is restricted to the endomembrane can still transform cells. In this study, we demonstrated that cells transformed by endomembrane-restricted oncogenic H-Ras formed tumors in nude mice. To define downstream targets of endomembrane Ras pathways, we analyzed Cdc42, which concentrates in the endomembrane and has been shown to act downstream of Ras in Schizosaccharomyces pombe. Our data show that cell transformation induced by endomembrane-restricted oncogenic H-Ras was blocked when Cdc42 activity was inhibited. Moreover, H-Ras formed a complex with Cdc42 on the endomembrane, and this interaction was enhanced when H-Ras was GTP bound or when cells were stimulated by growth factors. H-Ras binding evidently induced Cdc42 activation by recruiting and/or activating Cdc42 exchange factors. In contrast, when constitutively active H-Ras was restricted to the PM by fusing to a PM localization signal from the Rit GTPase, the resulting protein did not detectably activate Cdc42 although it activated Raf-1 and efficiently induced hallmarks of Ras-induced senescence in human BJ foreskin fibroblasts. Surprisingly, PM-restricted oncogenic Ras when expressed alone could only weakly transform NIH 3T3 cells; however, when constitutively active Cdc42 was coexpressed, together they transformed cells much more efficiently than either one alone. These data suggest that efficient cell transformation requires Ras proteins to interact with Cdc42 on the endomembrane and that in order for a given Ras protein to fully transform cells, multiple compartment-specific Ras pathways need to work cooperatively. PMID:21189290

  4. Phenotypic Screening Identifies Protein Synthesis Inhibitors as H-Ras-Nanocluster-Increasing Tumor Growth Inducers.

    PubMed

    Najumudeen, Arafath K; Posada, Itziar M D; Lectez, Benoit; Zhou, Yong; Landor, Sebastian K-J; Fallarero, Adyary; Vuorela, Pia; Hancock, John; Abankwa, Daniel

    2015-12-15

    Ras isoforms H-, N-, and K-ras are each mutated in specific cancer types at varying frequencies and have different activities in cell fate control. On the plasma membrane, Ras proteins are laterally segregated into isoform-specific nanoscale signaling hubs, termed nanoclusters. As Ras nanoclusters are required for Ras signaling, chemical modulators of nanoclusters represent ideal candidates for the specific modulation of Ras activity in cancer drug development. We therefore conducted a chemical screen with commercial and in-house natural product libraries using a cell-based H-ras-nanoclustering FRET assay. Next to established Ras inhibitors, such as a statin and farnesyl-transferase inhibitor, we surprisingly identified five protein synthesis inhibitors as positive regulators. Using commonly employed cycloheximide as a representative compound, we show that protein synthesis inhibition increased nanoclustering and effector recruitment specifically of active H-ras but not of K-ras. Consistent with these data, cycloheximide treatment activated both Erk and Akt kinases and specifically promoted H-rasG12V-induced, but not K-rasG12V-induced, PC12 cell differentiation. Intriguingly, cycloheximide increased the number of mammospheres, which are enriched for cancer stem cells. Depletion of H-ras in combination with cycloheximide significantly reduced mammosphere formation, suggesting an exquisite synthetic lethality. The potential of cycloheximide to promote tumor cell growth was also reflected in its ability to increase breast cancer cell tumors grown in ovo. These results illustrate the possibility of identifying Ras-isoform-specific modulators using nanocluster-directed screening. They also suggest an unexpected feedback from protein synthesis inhibition to Ras signaling, which might present a vulnerability in certain tumor cell types. PMID:26568031

  5. Activating the Expression of Human K-rasG12D Stimulates Oncogenic Transformation in Transgenic Goat Fetal Fibroblast Cells

    PubMed Central

    Gong, Jianhua; Wang, Zhongde; Polejaeva, Irina; Salgia, Ravi; Kao, Chien-Min; Chen, Chin-Tu; Chen, Guangchun; Chen, Liaohai

    2014-01-01

    Humane use of preclinical large animal cancer models plays a critical role in understanding cancer biology and developing therapeutic treatments. Among the large animal candidates, goats have great potentials as sustainable sources for large animal cancer model development. Goats are easier to handle and cheaper to raise. The genome of the goats has been sequenced recently. It has been known that goats develop skin, adrenal cortex, breast and other types of cancers. Technically, goats are subject to somatic cell nuclear transfer more efficiently and exhibit better viability through the cloning process. Towards the development of a goat cancer model, we created a transgenic goat fetal fibroblast (GFF) cell as the donor cell for SCNT. Human mutated K-ras (hK-rasG12D) was chosen as the transgene, as it is present in 20% of cancers. Both hK-rasG12D and a herpes simplex viral thymidine kinase (HSV1-tk) reporter genes, flanked by a pair of LoxP sites, were knocked in the GFF endogenous K-ras locus through homologous recombination. Following Cre-mediated activation (with a 95% activation efficiency), hK-rasG12D and HSV1-tk were expressed in the transgenic GFF cells, evidently through the presence of corresponding mRNAs, and confirmed by HSV1-tk protein function assay. The hK-rasG12D expressing GFF cells exhibited enhanced proliferation rates and an anchorage-independent growth behavior. They were able to initiate tumor growth in athymic nude mice. In conclusion, after activating hK-rasG12D gene expression, hK-rasG12D transgenic GFF cells were transformed into tumorgenesis cells. Transgenic goats via SCNT using the above-motioned cells as the donor cells have been established. PMID:24594684

  6. Ras1-Mediated Modulation of Drosophila Homeotic Function in Cell and Segment Identity

    PubMed Central

    Boube, M.; Benassayag, C.; Seroude, L.; Cribbs, D. L.

    1997-01-01

    Mutations of the Drosophila homeotic proboscipedia gene (pb; the Hox-A2/B2 homologue) provoke dose-sensitive defects. These were used to search for dose-sensitive dominant modifiers of pb function. Two identified interacting genes were the proto-oncogene Ras1 and its functional antagonist Gap1, prominent intermediaries in known signal transduction pathways. Ras1(+) is a positive modifier of pb activity both in normal and ectopic cell contexts, while the Ras1-antagonist Gap1 has an opposite effect. A general role for Ras1 in homeotic function is likely, since Ras1(+) activity also modulates functions of the homeotic loci Sex combs reduced and Ultrabithorax. Our data suggest that the modulation occurs by a mechanism independent of transcriptional control of the homeotic loci themselves, or of the Ras1/Gap1 genes. Taken together our data support a role for Ras1-mediated cell signaling in the homeotic control of segmental differentiation. PMID:9178011

  7. RAS Interaction with PI3K

    PubMed Central

    Castellano, Esther; Downward, Julian

    2011-01-01

    RAS proteins are small GTPases known for their involvement in oncogenesis: around 25% of human tumors present mutations in a member of this family. RAS operates in a complex signaling network with multiple activators and effectors, which allows them to regulate many cellular functions such as cell proliferation, differentiation, apoptosis, and senescence. Phosphatidylinositol 3-kinase (PI3K) is one of the main effector pathways of RAS, regulating cell growth, cell cycle entry, cell survival, cytoskeleton reorganization, and metabolism. However, it is the involvement of this pathway in human tumors that has attracted most attention. PI3K has proven to be necessary for RAS-induced transformation in vitro, and more importantly, mice with mutations in the PI3K catalytic subunit p110α that block its ability to interact with RAS are highly resistant to endogenous oncogenic KRAS-induced lung tumorigenesis and HRAS-induced skin carcinogenesis. These animals also have a delayed development of the lymphatic vasculature. Many PI3K inhibitors have been developed that are now in clinical trials. However, it is a complex pathway with many feedback loops, and interactions with other pathways make the results of its inhibition hard to predict. Combined therapy with another RAS-regulated pathway such as RAF/MEK/ERK may be the most effective way to treat cancer, at least in animal models mimicking the human disease. In this review, we will summarize current knowledge about how RAS regulates one of its best-known effectors, PI3K. PMID:21779497

  8. The hypervariable region of K-Ras4B is responsible for its specific interactions with Calmodulin

    PubMed Central

    Abraham, Sherwin J.; Nolet, Ryan P.; Calvert, Richard J.; Anderson, Lucy M.; Gaponenko, Vadim

    2009-01-01

    K-Ras4B belongs to the family of p21 Ras GTPases, which play an important role in cell proliferation, survival and motility. The p21 Ras proteins such as K-Ras4B, K-Ras4A, H-Ras, and N-Ras, share 85% sequence homology and activate very similar signaling pathways. Only the C-terminal hypervariable regions differ significantly. A growing body of literature demonstrates that each Ras isoform possesses unique functions in normal physiological processes as well as in pathogenesis. One of the central questions in the field of Ras biology is how these very similar proteins achieve such remarkable specificity in protein-protein interactions that regulate signal transduction pathways. Here we explore specific binding of K-Ras4B to calmodulin. Using NMR techniques and isothermal titration calorimetry we demonstrate that the hypervariable region of K-Ras contributes in a major way to the interaction with calmodulin while the catalytic domain of K-Ras4B provides a way to control the interaction by nucleotide binding. The hypervariable region of K-Ras4B binds specifically to the C-terminal domain of Ca2+-loaded calmodulin with micromolar affinity, while the GTP-γ-S loaded catalytic domain of K-Ras4B may interact with the N-terminal domain of calmodulin. PMID:19583261

  9. Adenosine dialdehyde suppresses MMP-9-mediated invasion of cancer cells by blocking the Ras/Raf-1/ERK/AP-1 signaling pathway.

    PubMed

    Kim, Ji Hye; Kim, Jong Heon; Kim, Seung Cheol; Yi, Young-Su; Yang, Woo Seok; Yang, Yanyan; Kim, Han Gyung; Lee, Jae Yong; Kim, Kyung-Hee; Yoo, Byong Chul; Hong, Sungyoul; Cho, Jae Youl

    2013-11-01

    Adenosine dialdehyde (AdOx) inhibits transmethylation by the accumulation of S-adenosylhomocysteine (SAH), a negative feedback inhibitor of methylation, through the suppression of SAH hydrolase (SAHH). In this study, we aimed to determine the regulatory effect of AdOx on cancer invasion by using three different cell lines: MDA-MB-231, MCF-7, and U87. The invasive capacity of these cells in the presence (MCF-7) or absence (MDA-MB-231 and U87) of phorbal 12-myristate 13-acetate (PMA) was strongly decreased by AdOx treatment. Furthermore, the expression, secretion, and activation of matrix metalloproteinase (MMP)-9, a critical enzyme regulating cell invasion, in these cells were diminished by AdOx treatment. AdOx strongly suppressed AP-1-mediated luciferase activity and, in parallel, reduced the translocation of c-Fos and c-Jun into the nucleus. AdOx was shown to block a series of upstream AP-1 activation signaling complexes composed of extracellular signal-related kinase (ERK), mitogen-activated protein ERK kinase (MEK)1/2, Raf-1, and Ras, as assessed by measuring the levels of the phosphorylated and membrane-translocated forms. Furthermore, we found that suppression of SAHH by siRNA and 3-deazaadenosine, knock down of isoprenylcysteine carboxyl methyltransferase (ICMT), and treatment with SAH showed inhibitory patterns similar to those of AdOx. Therefore, our data suggest that AdOx is capable of targeting the methylation reaction regulated by SAHH and ICMT and subsequently downregulating MMP-9 expression and decreasing invasion of cancer cells through inhibition of the Ras/Raf-1/ERK/AP-1 pathway. PMID:23994169

  10. Nucleophosmin Mutants Promote Adhesion, Migration and Invasion of Human Leukemia THP-1 Cells through MMPs Up-regulation via Ras/ERK MAPK Signaling

    PubMed Central

    Xian, Jingrong; Shao, Huiyuan; Chen, Xianchun; Zhang, Shuaishuai; Quan, Jing; Zou, Qin; Jin, Hongjun; Zhang, Ling

    2016-01-01

    Acute myeloid leukemia (AML) with mutated nucleophosmin (NPM1) has been defined as a unique subgroup in the new classification of myeloid neoplasm, and the AML patients with mutated NPM1 frequently present extramedullary infiltration, but how NPM1 mutants regulate this process remains elusive. In this study, we found that overexpression of type A NPM1 gene mutation (NPM1-mA) enhanced the adhesive, migratory and invasive potential in THP-1 AML cells lacking mutated NPM1. NPM1-mA had up-regulated expression and gelatinolytic matrix metalloprotease-2 (MMP-2)/MMP-9 activity, as assessed by real-time PCR, western blotting and gelatin zymography. Following immunoprecipitation analysis to identify the interaction of NPM1-mA with K-Ras, we focused on the effect of NPM1-mA overexpression on the Ras/Mitogen-activated protein kinase (MAPK) signaling axis and showed that NPM1-mA increased the MEK and ERK phosphorylation levels, as evaluated by western blotting. Notably, a specific inhibitor of the ERK/MAPK pathway (PD98059), but not p38/MAPK, JNK/MAPK or PI3-K/AKT inhibitors, markedly decreased the cell invasion numbers in a transwell assay. Further experiments demonstrated that blocking the ERK/MAPK pathway by PD98059 resulted in reduced MMP-2/9 protein levels and MMP-9 activity. Additionally, NPM1-mA overexpression had down-regulated gene expression and protein production of tissue inhibitor of MMP-2 (TIMP-2) in THP-1 cells. Furthermore, evaluation of gene expression data from The Cancer Genome Atlas (TCGA) dataset revealed that MMP-2 was overexpressed in AML patient samples with NPM1 mutated and high MMP-2 expression associated with leukemic skin infiltration. Taken together, our results reveal that NPM1 mutations contribute to the invasive potential of AML cells through MMPs up-regulation via Ras/ERK MAPK signaling pathway activation and offer novel insights into the potential role of NPM1 mutations in leukemogenesis. PMID:26884713

  11. Lysine-acetylation as a fundamental regulator of Ran function: Implications for signaling of proteins of the Ras-superfamily

    PubMed Central

    Knyphausen, Philipp; Kuhlmann, Nora; de Boor, Susanne; Lammers, Michael

    2015-01-01

    The small GTP-binding protein Ran is involved in the regulation of essential cellular processes in interphase but also in mitotic cells: Ran controls the nucleocytoplasmic transport of proteins and RNA, it regulates mitotic spindle formation and nuclear envelope assembly. Deregulations in Ran dependent processes were implicated in the development of severe diseases such as cancer and neurodegenerative disorders. To understand how Ran-function is regulated is therefore of highest importance. Recently, several lysine-acetylation sites in Ran were identified by quantitative mass-spectrometry, some being located in highly important regions such as the P-loop, switch I, switch II and the G5/SAK motif. We recently reported that lysine-acetylation regulates nearly all aspects of Ran-function such as RCC1 catalyzed nucleotide exchange, intrinsic nucleotide hydrolysis, its interaction with NTF2 and the formation of import- and export-complexes. As a hint for its biological importance, we identified Ran-specific lysine-deacetylases (KDACs) and -acetyltransferases (KATs). Also for other small GTPases such as Ras, Rho, Cdc42, and for many effectors and regulators thereof, lysine-acetylation sites were discovered. However, the functional impact of lysine-acetylation as a regulator of protein function has only been marginally investigated so far. We will discuss recent findings of lysine-acetylation as a novel modification to regulate Ras-protein signaling. PMID:26507377

  12. NF2 loss promotes oncogenic RAS-induced thyroid cancers via YAP-dependent transactivation of RAS proteins and sensitizes them to MEK inhibition

    PubMed Central

    Garcia-Rendueles, Maria E.R.; Ricarte-Filho, Julio C.; Untch, Brian R.; Landa, Iňigo; Knauf, Jeffrey A.; Voza, Francesca; Smith, Vicki E.; Ganly, Ian; Taylor, Barry S.; Persaud, Yogindra; Oler, Gisele; Fang, Yuqiang; Jhanwar, Suresh C.; Viale, Agnes; Heguy, Adriana; Huberman, Kety H.; Giancotti, Filippo; Ghossein, Ronald; Fagin, James A.

    2015-01-01

    Ch22q LOH is preferentially associated with RAS mutations in papillary and in poorly differentiated thyroid cancer (PDTC). The 22q tumor suppressor NF2, encoding merlin, is implicated in this interaction because of its frequent loss of function in human thyroid cancer cell lines. Nf2 deletion or Hras mutation are insufficient for transformation, whereas their combined disruption leads to murine PDTC with increased MAPK signaling. Merlin loss induces RAS signaling in part through inactivation of Hippo, which activates a YAP-TEAD transcriptional program. We find that the three RAS genes are themselves YAP-TEAD1 transcriptional targets, providing a novel mechanism of promotion of RAS-induced tumorigenesis. Moreover, pharmacological disruption of YAP-TEAD with verteporfin blocks RAS transcription and signaling, and inhibits cell growth. The increased MAPK output generated by NF2 loss in RAS-mutant cancers may inform therapeutic strategies, as it generates greater dependency on the MAPK pathway for viability. PMID:26359368

  13. The Pore-Forming α-Toxin from Clostridium septicum Activates the MAPK Pathway in a Ras-c-Raf-Dependent and Independent Manner

    PubMed Central

    Chakravorty, Anjana; Awad, Milena M.; Cheung, Jackie K.; Hiscox, Thomas J.; Lyras, Dena; Rood, Julian I.

    2015-01-01

    Clostridium septicum is the causative agent of atraumatic gas gangrene, with α-toxin, an extracellular pore-forming toxin, essential for disease. How C. septicum modulates the host’s innate immune response is poorly defined, although α-toxin-intoxicated muscle cells undergo cellular oncosis, characterised by mitochondrial dysfunction and release of reactive oxygen species. Nonetheless, the signalling events that occur prior to the initiation of oncosis are poorly characterised. Our aims were to characterise the ability of α-toxin to activate the host mitogen activated protein kinase (MAPK) signalling pathway both in vitro and in vivo. Treatment of Vero cells with purified α-toxin activated the extracellular-signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 arms of the MAPK pathway and stimulated the release of TNF-α in a dose-dependent manner. Studies using inhibitors of all three MAPK components suggested that activation of ERK occurred in a Ras-c-Raf dependent manner, whereas activation of JNK and p38 occurred by a Ras-independent mechanism. Toxin-mediated activation was dependent on efficient receptor binding and pore formation and on an influx of extracellular calcium ions. In the mouse myonecrosis model we showed that the MAPK pathway was activated in tissues of infected mice, implying that it has an important role in the disease process. PMID:25675415

  14. The pore-forming α-toxin from clostridium septicum activates the MAPK pathway in a Ras-c-Raf-dependent and independent manner.

    PubMed

    Chakravorty, Anjana; Awad, Milena M; Cheung, Jackie K; Hiscox, Thomas J; Lyras, Dena; Rood, Julian I

    2015-02-01

    Clostridium septicum is the causative agent of atraumatic gas gangrene, with α-toxin, an extracellular pore-forming toxin, essential for disease. How C. septicum modulates the host's innate immune response is poorly defined, although α-toxin-intoxicated muscle cells undergo cellular oncosis, characterised by mitochondrial dysfunction and release of reactive oxygen species. Nonetheless, the signalling events that occur prior to the initiation of oncosis are poorly characterised. Our aims were to characterise the ability of α-toxin to activate the host mitogen activated protein kinase (MAPK) signalling pathway both in vitro and in vivo. Treatment of Vero cells with purified α-toxin activated the extracellular-signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 arms of the MAPK pathway and stimulated the release of TNF-α in a dose-dependent manner. Studies using inhibitors of all three MAPK components suggested that activation of ERK occurred in a Ras-c-Raf dependent manner, whereas activation of JNK and p38 occurred by a Ras-independent mechanism. Toxin-mediated activation was dependent on efficient receptor binding and pore formation and on an influx of extracellular calcium ions. In the mouse myonecrosis model we showed that the MAPK pathway was activated in tissues of infected mice, implying that it has an important role in the disease process. PMID:25675415

  15. ERK2-dependent reactivation of Akt mediates the limited response of tumor cells with constitutive K-RAS activity to PI3K inhibition

    PubMed Central

    Toulany, Mahmoud; Minjgee, Minjmaa; Saki, Mohammad; Holler, Marina; Meier, Friedegund; Eicheler, Wolfgang; Rodemann, H Peter

    2014-01-01

    K-RAS mutated (K-RASmut) non-small cell lung cancer (NSCLC) cells are resistant to EGFR targeting strategies. We investigated the impact of K-RAS activity irrespective of mutational status in the EGFR-independent increase in clonogenic cell survival. An analysis of the K-RAS activity status revealed a constitutively high K-RAS activity in K-RASmut NSCLC cells and also in head and neck squamous cell carcinoma (HNSCC) cells overexpressing wild-type K-RAS (K-RASwt). Similar to K-RAS-mutated cells, increased K-RAS activity in HNSCC cells overexpressing K-RASwt was associated with the stimulated production of the EGFR ligand amphiregulin and resistance to EGFR tyrosine kinase (EGFR-TK) inhibitors such as erlotinib. Expression of mutated K-RAS stimulated Akt phosphorylation and increased plating efficiency. Conversely, knockdown of K-RAS in K-RASmut NSCLC cells and in HNSCC cells presenting overexpression of K-RASwt resulted in sensitization to the anti-clonogenic activity of erlotinib. K-RAS activity results in EGFR-dependent and EGFR-independent Akt activity. The short-term treatment (2 h) of cells with EGFR-TK or PI3K inhibitors (erlotinib and PI-103) resulted in the repression of Akt activation, whereas long-term treatment (24 h) with inhibitors led to the reactivation of Akt and improved clonogenicity. The Akt re-activation was MAPK-ERK2-dependent and associated with a lack of complete response to anti-clonogenic activity of PI-103. A complete response was observed when PI-103 was combined with MEK inhibitor PD98059. Together, clonogenicity inhibition in tumor cells presenting constitutive K-RAS activity independent of K-RAS mutational status can be achieved by targeting of EGFR downstream pathways, i.e., PI3K alone or the combination of PI3K and MAPK inhibitors. PMID:24351425

  16. Intermolecular biparatopic trapping of ErbB2 prevents compensatory activation of PI3K/AKT via RAS-p110 crosstalk.

    PubMed

    Tamaskovic, Rastislav; Schwill, Martin; Nagy-Davidescu, Gabriela; Jost, Christian; Schaefer, Dagmar C; Verdurmen, Wouter P R; Schaefer, Jonas V; Honegger, Annemarie; Plückthun, Andreas

    2016-01-01

    Compensatory mechanisms, such as relief of AKT-ErbB3-negative feedback, are known to desensitize ErbB2-dependent tumours to targeted therapy. Here we describe an adaptation mechanism leading to reactivation of the PI3K/AKT pathway during trastuzumab treatment, which occurs independently of ErbB3 re-phosphorylation. This signalling bypass of phospho-ErbB3 operates in ErbB2-overexpressing cells via RAS-PI3K crosstalk and is attributable to active ErbB2 homodimers. As demonstrated by dual blockade of ErbB2/RAS and ErbB3 by means of pharmacological inhibition, RNA interference or by specific protein binders obstructing the RAS-p110α interaction, both routes must be blocked to prevent reactivation of the PI3K/AKT pathway. Applying these general principles, we developed biparatopic designed ankyrin repeat proteins (DARPins) trapping ErbB2 in a dimerization-incompetent state, which entail pan-ErbB inhibition and a permanent OFF state in the oncogenic signalling, thereby triggering extensive apoptosis in ErbB2-addicted tumours. Thus, these novel insights into mechanisms underlying network robustness provide a guide for overcoming adaptation response to ErbB2/ErbB3-targeted therapy. PMID:27255951

  17. Unbiased RNAi screen for hepcidin regulators links hepcidin suppression to proliferative Ras/RAF and nutrient-dependent mTOR signaling.

    PubMed

    Mleczko-Sanecka, Katarzyna; Roche, Franziska; da Silva, Ana Rita; Call, Debora; D'Alessio, Flavia; Ragab, Anan; Lapinski, Philip E; Ummanni, Ramesh; Korf, Ulrike; Oakes, Christopher; Damm, Georg; D'Alessandro, Lorenza A; Klingmüller, Ursula; King, Philip D; Boutros, Michael; Hentze, Matthias W; Muckenthaler, Martina U

    2014-03-01

    The hepatic hormone hepcidin is a key regulator of systemic iron metabolism. Its expression is largely regulated by 2 signaling pathways: the "iron-regulated" bone morphogenetic protein (BMP) and the inflammatory JAK-STAT pathways. To obtain broader insights into cellular processes that modulate hepcidin transcription and to provide a resource to identify novel genetic modifiers of systemic iron homeostasis, we designed an RNA interference (RNAi) screen that monitors hepcidin promoter activity after the knockdown of 19 599 genes in hepatocarcinoma cells. Interestingly, many of the putative hepcidin activators play roles in signal transduction, inflammation, or transcription, and affect hepcidin transcription through BMP-responsive elements. Furthermore, our work sheds light on new components of the transcriptional machinery that maintain steady-state levels of hepcidin expression and its responses to the BMP- and interleukin-6-triggered signals. Notably, we discover hepcidin suppression mediated via components of Ras/RAF MAPK and mTOR signaling, linking hepcidin transcriptional control to the pathways that respond to mitogen stimulation and nutrient status. Thus using a combination of RNAi screening, reverse phase protein arrays, and small molecules testing, we identify links between the control of systemic iron homeostasis and critical liver processes such as regeneration, response to injury, carcinogenesis, and nutrient metabolism. PMID:24385536

  18. Inhibition of Acid Sphingomyelinase Depletes Cellular Phosphatidylserine and Mislocalizes K-Ras from the Plasma Membrane.

    PubMed

    Cho, Kwang-Jin; van der Hoeven, Dharini; Zhou, Yong; Maekawa, Masashi; Ma, Xiaoping; Chen, Wei; Fairn, Gregory D; Hancock, John F

    2015-01-01

    K-Ras must localize to the plasma membrane for biological activity; thus, preventing plasma membrane interaction blocks K-Ras signal output. Here we show that inhibition of acid sphingomyelinase (ASM) mislocalizes both the K-Ras isoforms K-Ras4A and K-Ras4B from the plasma membrane to the endomembrane and inhibits their nanoclustering. We found that fendiline, a potent ASM inhibitor, reduces the phosphatidylserine (PtdSer) and cholesterol content of the inner plasma membrane. These lipid changes are causative because supplementation of fendiline-treated cells with exogenous PtdSer rapidly restores K-Ras4A and K-Ras4B plasma membrane binding, nanoclustering, and signal output. Conversely, supplementation with exogenous cholesterol restores K-Ras4A but not K-Ras4B nanoclustering. These experiments reveal different operational pools of PtdSer on the plasma membrane. Inhibition of ASM elevates cellular sphingomyelin and reduces cellular ceramide levels. Concordantly, delivery of recombinant ASM or exogenous ceramide to fendiline-treated cells rapidly relocalizes K-Ras4B and PtdSer to the plasma membrane. K-Ras4B mislocalization is also recapitulated in ASM-deficient Neimann-Pick type A and B fibroblasts. This study identifies sphingomyelin metabolism as an indirect regulator of K-Ras4A and K-Ras4B signaling through the control of PtdSer plasma membrane content. It also demonstrates the critical and selective importance of PtdSer to K-Ras4A and K-Ras4B plasma membrane binding and nanoscale spatial organization. PMID:26572827

  19. Inhibition of Acid Sphingomyelinase Depletes Cellular Phosphatidylserine and Mislocalizes K-Ras from the Plasma Membrane

    PubMed Central

    Cho, Kwang-jin; van der Hoeven, Dharini; Zhou, Yong; Maekawa, Masashi; Ma, Xiaoping; Chen, Wei

    2015-01-01

    K-Ras must localize to the plasma membrane for biological activity; thus, preventing plasma membrane interaction blocks K-Ras signal output. Here we show that inhibition of acid sphingomyelinase (ASM) mislocalizes both the K-Ras isoforms K-Ras4A and K-Ras4B from the plasma membrane to the endomembrane and inhibits their nanoclustering. We found that fendiline, a potent ASM inhibitor, reduces the phosphatidylserine (PtdSer) and cholesterol content of the inner plasma membrane. These lipid changes are causative because supplementation of fendiline-treated cells with exogenous PtdSer rapidly restores K-Ras4A and K-Ras4B plasma membrane binding, nanoclustering, and signal output. Conversely, supplementation with exogenous cholesterol restores K-Ras4A but not K-Ras4B nanoclustering. These experiments reveal different operational pools of PtdSer on the plasma membrane. Inhibition of ASM elevates cellular sphingomyelin and reduces cellular ceramide levels. Concordantly, delivery of recombinant ASM or exogenous ceramide to fendiline-treated cells rapidly relocalizes K-Ras4B and PtdSer to the plasma membrane. K-Ras4B mislocalization is also recapitulated in ASM-deficient Neimann-Pick type A and B fibroblasts. This study identifies sphingomyelin metabolism as an indirect regulator of K-Ras4A and K-Ras4B signaling through the control of PtdSer plasma membrane content. It also demonstrates the critical and selective importance of PtdSer to K-Ras4A and K-Ras4B plasma membrane binding and nanoscale spatial organization. PMID:26572827

  20. Dysregulated RasGRP1 Responds to Cytokine Receptor Input in T Cell Leukemogenesis

    PubMed Central

    Hartzell, Catherine; Ksionda, Olga; Lemmens, Ed; Coakley, Kristen; Yang, Ming; Dail, Monique; Harvey, Richard C.; Govern, Christopher; Bakker, Jeroen; Lenstra, Tineke L.; Ammon, Kristin; Boeter, Anne; Winter, Stuart S.; Loh, Mignon; Shannon, Kevin; Chakraborty, Arup K.; Wabl, Matthias; Roose, Jeroen P.

    2013-01-01

    Enhanced signaling by the small guanosine triphosphatase Ras is common in T cell acute lymphoblastic leukemia/lymphoma (T-ALL, but the underlying mechanisms are unclear. Here, we identified the guanine nucleotide exchange factor RasGRP1 (Rasgrp1 in mice) as a Ras activator that contributes to leukemogenesis. We found increased RasGRP1 expression in many pediatric T-ALL patients, which we did not observe in rare early T cell precursor (ETP) T-ALL patients with KRAS and NRAS mutations, such as K-RasG12D. Leukemia screens in wild-type mice, but not in mice expressing the mutant K-RasG12D that encodes a constitutively active Ras, yielded frequent retroviral insertions that led to increased Rasgrp1 expression. Rasgrp1 and oncogenic K-RasG12D promoted T-ALL through distinct mechanisms. In K-RasG12D T-ALLs, we found that enhanced Ras activation did not lead to cell cycle arrest. In mouse T-ALL cells with increased Rasgrp1 expression, we found that Rasgrp1 contributed to a previously uncharacterized cytokine receptor–activated Ras pathway that stimulated the proliferation of T-ALL cells in vivo, which was accompanied by dynamic patterns of activation of effector kinases downstream of Ras in individual T-ALLs. Reduction of Rasgrp1 abundance reduced cytokine-stimulated Ras signaling and decreased the proliferation of T-ALL in vivo, suggesting that patients with this cancer should be screened for increased abundance of RasGRP1 to customize treatment. PMID:23532335

  1. Regulation of protein kinase C activity in neuronal differentiation induced by the N-ras oncogene in PC-12 cells.

    PubMed Central

    Lacal, J C; Cuadrado, A; Jones, J E; Trotta, R; Burstein, D E; Thomson, T; Pellicer, A

    1990-01-01

    Expression of the N-ras oncogene under the control of the glucocorticoid-responsive promoter in the pheochromocytoma cell line UR61, a subline of PC-12 cells, has been used to investigate the differentiation process to neuronal cells triggered by ras oncogenes (I. Guerrero, A. Pellicer, and D. E. Burstein, Biochem. Biophys. Res. Commun. 150:1185-1192, 1988). Using ras-inducible cell lines, we observed that expression of the oncogenic N-ras p21 protein interferes with the ability of phorbol esters to induce downregulation of protein kinase C. This effect was associated with the appearance of immunologically detectable protein kinase C as well as the activity of the enzyme as analyzed either by binding of [3H]phorbol-12,13-dibutyrate in intact cells or by in vitro kinase activity. These results indicate a relationship between ras p21 and protein kinase C in neuronal differentiation in this model system. Comparison to the murine fibroblast system suggests that this relationship may be functional. Images PMID:2188105

  2. Ras activity late in G1 phase required for p27kip1 downregulation, passage through the restriction point, and entry into S phase in growth factor-stimulated NIH 3T3 fibroblasts.

    PubMed Central

    Takuwa, N; Takuwa, Y

    1997-01-01

    It is well documented that Ras functions as a molecular switch for reentry into the cell cycle at the border between G0 and G1 by transducing extracellular growth stimuli into early G1 mitogenic signals. In the present study, we investigated the role of Ras during the late stage of the G1 phase by using NIH 3T3 (M17) fibroblasts in which the expression of a dominant negative Ras mutant, p21(Ha-Ras[Asn17]), is induced in response to dexamethasone treatment. We found that delaying the expression of Ras(Asn17) until late in the G1 phase by introducing dexamethasone 3 h after the addition of epidermal growth factor (EGF) abolished the downregulation of the p27kip1 cyclin-dependent kinase (CDK) inhibitor which normally occurred during this period, with resultant suppression of cyclin Ds/CDK4 and cyclin E/CDK2 and G1 arrest. The immunodepletion of p27kip1 completely eliminated the CDK inhibitor activity from EGF-stimulated, dexamethasone-treated cell lysate. The failure of p27kip1 downregulation and G1 arrest was also observed in cells in which Ras(Asn17) was induced after growth stimulation with a phorbol ester or alpha-thrombin and was mimicked by the addition late in the G1 phase of inhibitors for phosphatidylinositol-3-kinase. Ras-mediated downregulation of p27kip1 involved both the suppression of synthesis and the stimulation of the degradation of the protein. Unlike the earlier expression of Ras(Asn17) at the border between G0 and G1, its delayed expression did not compromise the EGF-stimulated transient activation of extracellular signal-regulated kinases or inhibit the stimulated expression of a principal D-type cyclin, cyclin D1, until close to the border between G1 and S. We conclude that Ras plays temporally distinct, phase-specific roles throughout the G1 phase and that Ras function late in G1 is required for p27kip1 downregulation and passage through the restriction point, a prerequisite for entry into the S phase. PMID:9271412

  3. Tyrosine phosphorylation of RAS by ABL allosterically enhances effector binding

    PubMed Central

    Ting, Pamela Y.; Johnson, Christian W.; Fang, Cong; Cao, Xiaoqing; Graeber, Thomas G.; Mattos, Carla; Colicelli, John

    2015-01-01

    RAS proteins are signal transduction gatekeepers that mediate cell growth, survival, and differentiation through interactions with multiple effector proteins. The RAS effector RAS- and RAB-interacting protein 1 (RIN1) activates its own downstream effectors, the small GTPase RAB5 and the tyrosine kinase Abelson tyrosine-protein kinase (ABL), to modulate endocytosis and cytoskeleton remodeling. To identify ABL substrates downstream of RAS-to-RIN1 signaling, we examined human HEK293T cells overexpressing components of this pathway. Proteomic analysis revealed several novel phosphotyrosine peptides, including Harvey rat sarcoma oncogene (HRAS)-pTyr137. Here we report that ABL phosphorylates tyrosine 137 of H-, K-, and NRAS. Increased RIN1 levels enhanced HRAS-Tyr137 phosphorylation by nearly 5-fold, suggesting that RAS-stimulated RIN1 can drive ABL-mediated RAS modification in a feedback circuit. Tyr137 is well conserved among RAS orthologs and is part of a transprotein H-bond network. Crystal structures of HRASY137F and HRASY137E revealed conformation changes radiating from the mutated residue. Although consistent with Tyr137 participation in allosteric control of HRAS function, the mutations did not alter intrinsic GTP hydrolysis rates in vitro. HRAS-Tyr137 phosphorylation enhanced HRAS signaling capacity in cells, however, as reflected by a 4-fold increase in the association of phosphorylated HRASG12V with its effector protein RAF proto-oncogene serine/threonine protein kinase 1 (RAF1). These data suggest that RAS phosphorylation at Tyr137 allosterically alters protein conformation and effector binding, providing a mechanism for effector-initiated modulation of RAS signaling.—Ting, P. Y., Johnson, C. W., Fang, C., Cao, X., Graeber, T. G., Mattos, C., Colicelli, J. Tyrosine phosphorylation of RAS by ABL allosterically enhances effector binding. PMID:25999467

  4. Function of RasGRP3 in the formation and progression of human breast cancer

    PubMed Central

    2014-01-01

    Introduction Ras guanine nucleotide exchange factors (RasGEFs) mediate the activation of the Ras signaling pathway that is over activated in many human cancers. The RasGRP3, an activator of H-Ras and R-Ras protein exerts oncogenic effects and the overexpression of the protein is observed in numerous malignant cancer types. Here, we investigated the putative alteration of expression and potential function of RasGRP3 in the formation and progression of human breast cancer. Methods The RasGRP3 and phosphoRasGRP3 expressions were examined in human invasive ductal adenocarcinoma derived samples and cell lines (BT-474, JIMT-1, MCF7, SK-BR-3, MDA-MB-453, T-47D) both in mRNA (Q-PCR) and protein (Western blot; immunohistochemistry) levels. To explore the biological function of the protein, RasGRP3 knockdown cultures were established. To assess the role of RasGRP3 in the viability of cells, annexin-V/PI staining and MitoProbe™ DilC1 (5) assay were performed. To clarify the function of the protein in cell proliferation and in the development of chemotherapeutic resistance, CyQuant assay was performed. To observe the RasGRP3 function in tumor formation, the Severe combined immunodeficiency (SCID) mouse model was used. To investigate the role of the protein in Ras-related signaling Q-PCR and Western blot experiments were performed. Results RasGRP3 expression was elevated in human breast tumor tissue samples as well as in multiple human breast cancer cell lines. Down-regulation of RasGRP3 expression in breast cancer cells decreased cell proliferation, induced apoptosis in MCF7 cells, and sensitized T-47D cells to the action of drugs Tamoxifen and trastuzumab (Herceptin). Gene silencing of RasGRP3 reduced tumor formation in mouse xenografts as well. Inhibition of RasGRP3 expression also reduced Akt, ERK1/2 and estrogen receptor alpha phosphorylation downstream from IGF-I insulin like growth factor-I (IGF-I) or epidermal growth factor (EGF) stimulation confirming the functional

  5. Propiconazole-enhanced hepatic cell proliferation is associated with dysregulation of the cholesterol biosynthesis pathway leading to activation of Erk1/2 through Ras farnesylation

    SciTech Connect

    Murphy, Lynea A.; Moore, Tanya; Nesnow, Stephen

    2012-04-15

    Propiconazole is a mouse hepatotumorigenic fungicide designed to inhibit CYP51, a key enzyme in the biosynthesis of ergosterol in fungi and is widely used in agriculture to prevent fungal growth. Metabolomic studies in mice revealed that propiconazole increased levels of hepatic cholesterol metabolites and bile acids, and transcriptomic studies revealed that genes within the cholesterol biosynthesis, cholesterol metabolism and bile acid biosyntheses pathways were up-regulated. Hepatic cell proliferation was also increased by propiconazole. AML12 immortalized hepatocytes were used to study propiconazole's effects on cell proliferation focusing on the dysregulation of cholesterol biosynthesis and resulting effects on Ras farnesylation and Erk1/2 activation as a primary pathway. Mevalonate, a key intermediate in the cholesterol biosynthesis pathway, increases cell proliferation in several cancer cell lines and tumors in vivo and serves as the precursor for isoprenoids (e.g. farnesyl pyrophosphate) which are crucial in the farnesylation of the Ras protein by farnesyl transferase. Farnesylation targets Ras to the cell membrane where it is involved in signal transduction, including the mitogen-activated protein kinase (MAPK) pathway. In our studies, mevalonic acid lactone (MVAL), a source of mevalonic acid, increased cell proliferation in AML12 cells which was reduced by farnesyl transferase inhibitors (L-744,832 or manumycin) or simvastatin, an HMG-CoA reductase inhibitor, indicating that this cell system responded to alterations in the cholesterol biosynthesis pathway. Cell proliferation in AML12 cells was increased by propiconazole which was reversed by co-incubation with L-744,832 or simvastatin. Increasing concentrations of exogenous cholesterol muted the proliferative effects of propiconazole and the inhibitory effects of L-733,832, results ascribed to reduced stimulation of the endogenous cholesterol biosynthesis pathway. Western blot analysis of subcellular

  6. RasGRP1 Transgenic Mice Develop Cutaneous Squamous Cell Carcinomas in Response to Skin Wounding

    PubMed Central

    Diez, Federico R.; Garrido, Ann A.; Sharma, Amrish; Luke, Courtney T.; Stone, James C.; Dower, Nancy A.; Cline, J. Mark; Lorenzo, Patricia S.

    2009-01-01

    Models of epidermal carcinogenesis have demonstrated that Ras is a critical molecule involved in tumor initiation and progression. Previously, we have shown that RasGRP1 increases the susceptibility of mice to skin tumorigenesis when overexpressed in the epidermis by a transgenic approach, related to its ability to activate Ras. Moreover, RasGRP1 transgenic mice develop spontaneous papillomas and cutaneous squamous cell carcinomas, some of which appear to originate in sites of injury, suggesting that RasGRP1 may be responding to signals generated during the wound-healing process. In this study, we examined the response of the RasGRP1 transgenic animals to full-thickness incision wounding of the skin, and demonstrated that they respond by developing tumors along the wounded site. The tumors did not present mutations in the H-ras gene, but Rasgrp1 transgene dosage correlated with tumor susceptibility and size. Analysis of serum cytokines showed increased levels of granulocyte colony-stimulating factor in transgenic animals after wounding. Furthermore, in vitro experiments with primary keratinocytes showed that granulocyte colony-stimulating factor stimulated Ras activation, although RasGRP1 was dispensable for this effect. Since granulocyte colony-stimulating factor has been recently associated with proliferation of skin cancer cells, our results may help in the elucidation of pathways that activate Ras in the epidermis during tumorigenesis in the absence of oncogenic ras mutations. PMID:19497993

  7. Adhesion-related kinase induction of migration requires phosphatidylinositol-3-kinase and ras stimulation of rac activity in immortalized gonadotropin-releasing hormone neuronal cells.

    PubMed

    Nielsen-Preiss, Sheila M; Allen, Melissa P; Xu, Mei; Linseman, Daniel A; Pawlowski, John E; Bouchard, R J; Varnum, Brian C; Heidenreich, Kim A; Wierman, Margaret E

    2007-06-01

    GnRH neurons migrate into the hypothalamus during development. Although migratory defects may result in disordered activation of the reproductive axis and lead to delayed or absent sexual maturation, specific factors regulating GnRH neuronal migration remain largely unknown. The receptor tyrosine kinase, adhesion-related kinase (Ark) (also known as Axl, UFO, and Tyro7), has been implicated in the migration of GnRH neuronal cells. Binding of its ligand, growth arrest-specific gene 6 (Gas6), promotes cytoskeletal remodeling and migration of NLT GnRH neuronal cells via Rac and p38 MAPK. Here, we examined the Axl effectors proximal to Rac in the signaling pathway. Gas6/Axl-induced lamellipodia formation and migration were blocked after phosphatidylinositol-3-kinase (PI3K) inhibition in GnRH neuronal cells. The p85 subunit of PI3K coimmunoprecipitated with Axl and was phosphorylated in a Gas6-sensitive manner. In addition, PI3K inhibition in GnRH neuronal cells diminished Gas6-induced Rac activation. Exogenous expression of a dominant-negative form of Ras also decreased GnRH neuronal lamellipodia formation, migration, and Rac activation. PI3K inhibition blocked Ras in addition to Rac activation and migration. In contrast, pharmacological blockade of the phospholipase C gamma effectors, protein kinase C or calcium/calmodulin protein kinase II, had no effect on Gas6/Axl signaling to promote Rac activation or stimulate cytoskeletal reorganization and migration. Together, these data show that the PI3K-Ras pathway is a major mediator of Axl actions upstream of Rac to induce GnRH neuronal cell migration. PMID:17332061

  8. RasGRP Ras guanine nucleotide exchange factors in cancer

    PubMed Central

    Ksionda, Olga; Limnander, Andre

    2014-01-01

    Summary RasGRP proteins are activators of Ras and other related small GTPases by the virtue of functioning as guanine nucleotide exchange factors (GEFs). In vertebrates, four RasGRP family members have been described. RasGRP-1 through −4 share many structural domains but there are also subtle differences between each of the different family members. Whereas SOS RasGEFs are ubiquitously expressed, RasGRP proteins are expressed in distinct patterns, such as in different cells of the hematopoietic system and in the brain. Most studies have concentrated on the role of RasGRP proteins in the development and function of immune cell types because of the predominant RasGRP expression profiles in these cells and the immune phenotypes of mice deficient for Rasgrp genes. However, more recent studies demonstrate that RasGRPs also play an important role in tumorigenesis. Examples are skin- and hematological-cancers but also solid malignancies such as melanoma or prostate cancer. These novel studies bring up many new and unanswered questions related to the molecular mechanism of RasGRP-driven oncogenesis, such as new receptor systems that RasGRP appears to respond to as well as regulatory mechanism for RasGRP expression that appear to be perturbed in these cancers. Here we will review some of the known aspects of RasGRP biology in lymphocytes and will discuss the exciting new notion that RasGRP Ras exchange factors play a role in oncogenesis downstream of various growth factor receptors. PMID:24744772

  9. Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling

    PubMed Central

    Lin, Athena W.; Barradas, Marta; Stone, James C.; van Aelst, Linda; Serrano, Manuel; Lowe, Scott W.

    1998-01-01

    Oncogenic Ras transforms immortal rodent cells to a tumorigenic state, in part, by constitutively transmitting mitogenic signals through the mitogen-activated protein kinase (MAPK) cascade. In primary cells, Ras is initially mitogenic but eventually induces premature senescence involving the p53 and p16INK4a tumor suppressors. Constitutive activation of MEK (a component of the MAPK cascade) induces both p53 and p16, and is required for Ras-induced senescence of normal human fibroblasts. Furthermore, activated MEK permanently arrests primary murine fibroblasts but forces uncontrolled mitogenesis and transformation in cells lacking either p53 or INK4a. The precisely opposite response of normal and immortalized cells to constitutive activation of the MAPK cascade implies that premature senescence acts as a fail-safe mechanism to limit the transforming potential of excessive Ras mitogenic signaling. Consequently, constitutive MAPK signaling activates p53 and p16 as tumor suppressors. PMID:9765203

  10. Rational design of small molecule inhibitors targeting the Ras GEF, SOS1

    PubMed Central

    Evelyn, Chris R.; Duan, Xin; Biesiada, Jacek; Seibel, William L.; Meller, Jaroslaw; Zheng, Yi

    2014-01-01

    Summary Ras GTPases regulate intracellular signaling involved in cell proliferation. Elevated Ras signaling activity has been associated with human cancers. Ras activation is catalyzed by guanine-nucleotide exchange factors (GEFs), of which SOS1 is a major member that transduces receptor tyrosine kinase signaling to Ras. We have developed a rational approach coupling virtual screening with experimental screening in identifying small-molecule inhibitors targeting the catalytic site of SOS1 and SOS1-regulated Ras activity. A lead inhibitor, NSC-658497, is found to bind to SOS1, competitively suppresses SOS1-Ras interaction, and dose-dependently inhibits SOS1 GEF activity. Mutagenesis and structure-activity relationship studies map the NSC-658497 site of action to the SOS1 catalytic site, and define the chemical moieties in the inhibitor essential for the activity. NSC-658497 showed dose-dependent efficacy in inhibiting Ras, downstream signaling activities, and associated cell proliferation. These studies establish a proof of principle for rational design of small-molecule inhibitors targeting Ras GEF enzymatic activity. PMID:25455859

  11. CONTRIBUTION OF INSPIRATORY FLOW TO ACTIVATION OF EGFR, RAS, MAPK, ATF-2 AND C-JUN DURING LUNG STRETCH

    EPA Science Inventory

    Contribution of Inspiratory Flow to Activation of EGFR, Ras, MAPK, ATF-2 and c-Jun during Lung Stretch

    R. Silbajoris 1, Z. Li 2, J. M. Samet 1 and Y. C. Huang 1. 1 NHEERL, ORD, US EPA, RTP, NC and 2 CEMALB, UNC-CH, Chapel Hill, NC .

    Mechanical ventilation with larg...

  12. Mechanism of bracken fern carcinogenesis: evidence for H-ras activation via initial adenine alkylation by ptaquiloside.

    PubMed

    Prakash, A S; Pereira, T N; Smith, B L; Shaw, G; Seawright, A A

    1996-01-01

    Bracken fern (Pteridium spp.) causes cancer of the oesophagus and the urinary bladder in cattle and sheep. Ptaquiloside (PT) is believed to be the carcinogenic principle which alkylates DNA when activated to its unstable dienone form (APT) under alkaline conditions. In this report we present evidence for the presence of PT-DNA adducts in the ileum of bracken fem-fed calves using the 32P-postlabelling assay. H-ras mutations were also observed in the ileum using single strand conformation polymorphism (SSCP) technique. Mutations corresponding to adenine to pyrimidine transversions in the codon 61 of H-ras were identified by the cycle sequencing method. In vitro DNA alkylation studies showed that APT alkylated H-ras primarily at the adenines. In addition, the rate of depurination of alkylated adenine was sequence dependent. Investigation of DNA template activity using a plasmid DNA showed that DNA synthesis by T7 DNA polymerase was terminated by the presence of all alkylated bases but certain apurinic sites allowed the DNA synthesis to continue. These results suggest that initial alkylation of adenine by PT in codon 61 followed by depurination and error in DNA synthesis lead to activation of H-ras proto-oncogene. PMID:8946397

  13. Oncogenic Ras stimulates Eiger/TNF exocytosis to promote growth

    PubMed Central

    Chabu, Chiswili; Xu, Tian

    2014-01-01

    Oncogenic mutations in Ras deregulate cell death and proliferation to cause cancer in a significant number of patients. Although normal Ras signaling during development has been well elucidated in multiple organisms, it is less clear how oncogenic Ras exerts its effects. Furthermore, cancers with oncogenic Ras mutations are aggressive and generally resistant to targeted therapies or chemotherapy. We identified the exocytosis component Sec15 as a synthetic suppressor of oncogenic Ras in an in vivo Drosophila mosaic screen. We found that oncogenic Ras elevates exocytosis and promotes the export of the pro-apoptotic ligand Eiger (Drosophila TNF). This blocks tumor cell death and stimulates overgrowth by activating the JNK-JAK-STAT non-autonomous proliferation signal from the neighboring wild-type cells. Inhibition of Eiger/TNF exocytosis or interfering with the JNK-JAK-STAT non-autonomous proliferation signaling at various steps suppresses oncogenic Ras-mediated overgrowth. Our findings highlight important cell-intrinsic and cell-extrinsic roles of exocytosis during oncogenic growth and provide a new class of synthetic suppressors for targeted therapy approaches. PMID:25411211

  14. Ras GTPases Modulate Morphogenesis, Sporulation and Cellulase Gene Expression in the Cellulolytic Fungus Trichoderma reesei

    PubMed Central

    Zhang, Jiwei; Zhang, Yanmei; Zhong, Yaohua; Qu, Yinbo; Wang, Tianhong

    2012-01-01

    Background The model cellulolytic fungus Trichoderma reesei (teleomorph Hypocrea jecorina) is capable of responding to environmental cues to compete for nutrients in its natural saprophytic habitat despite its genome encodes fewer degradative enzymes. Efficient signalling pathways in perception and interpretation of environmental signals are indispensable in this process. Ras GTPases represent a kind of critical signal proteins involved in signal transduction and regulation of gene expression. In T. reesei the genome contains two Ras subfamily small GTPases TrRas1 and TrRas2 homologous to Ras1 and Ras2 from S. cerevisiae, but their functions remain unknown. Methodology/Principal Findings Here, we have investigated the roles of GTPases TrRas1 and TrRas2 during fungal morphogenesis and cellulase gene expression. We show that both TrRas1 and TrRas2 play important roles in some cellular processes such as polarized apical growth, hyphal branch formation, sporulation and cAMP level adjustment, while TrRas1 is more dominant in these processes. Strikingly, we find that TrRas2 is involved in modulation of cellulase gene expression. Deletion of TrRas2 results in considerably decreased transcription of cellulolytic genes upon growth on cellulose. Although the strain carrying a constitutively activated TrRas2G16V allele exhibits increased cellulase gene transcription, the cbh1 and cbh2 expression in this mutant still strictly depends on cellulose, indicating TrRas2 does not directly mediate the transmission of the cellulose signal. In addition, our data suggest that the effect of TrRas2 on cellulase gene is exerted through regulation of transcript abundance of cellulase transcription factors such as Xyr1, but the influence is independent of cAMP signalling pathway. Conclusions/Significance Together, these findings elucidate the functions for Ras signalling of T. reesei in cellular morphogenesis, especially in cellulase gene expression, which contribute to deciphering the

  15. Analysis of K-Ras Nuclear Expression in Fibroblasts and Mesangial Cells

    PubMed Central

    Fuentes-Calvo, Isabel; Blázquez-Medela, Ana M.; Santos, Eugenio; López-Novoa, José M.; Martínez-Salgado, Carlos

    2010-01-01

    Background Ras GTPases are considered cytoplasmic proteins that must be localized to cell membranes for activation, and there are few evidences of the presence of any Ras isoform in nuclei of eukaryotic cells. Methodology/Principal Findings Using conventional antibodies and inmunocytochemistry, differential centrifugation and western blot, we have observed the putative presence of K-Ras isoform in the nuclei of fibroblasts and mesangial cells. In order to avoid cross-reactions with other Ras isoforms, and using antibodies against K-Ras (R-3400, H3845-M01, sc-30) or pan-Ras (05-516, OP40) in cells that only expressed the K-Ras isoform (fibroblasts obtained from H-ras−/−,N-ras−/− mice) we also detected some nuclear positive expression. To further probe the identity of nuclear K-Ras, we have generated K-Ras knockout (K-ras−/−) embrionary fibroblasts by mating of K-ras+/− heterozygote mice. Using specific antibodies, only H- and N-Ras isoforms were observed in the cytoplasm of K-ras−/− fibroblasts. However, both K-Ras4A and K-Ras4B positive signals were detected by immunocytochemistry and Western blot with two commercial antibodies (sc-522 and sc-521 against each isoforms, respectively) in both cytoplasm and nuclei from K-ras−/− fibroblasts. Conclusions/Significance We show that the presence of K-Ras4B in fibroblast nuclei, already described by other authors, is probably due to a cross-reaction of the antibody with an undetermined nucleolar protein. Although this study also shows the possible nuclear expression of K-Ras isoform in fibroblasts or in mesangial cells, it also reveals the importance of being cautious in these studies about distribution of protein isoforms due to some important limitations imposed by the unspecificity of the antibodies or contaminations in cellular preparations. PMID:20090846

  16. MicroRNA-122 confers sorafenib resistance to hepatocellular carcinoma cells by targeting IGF-1R to regulate RAS/RAF/ERK signaling pathways.

    PubMed

    Xu, Yanmin; Huang, Ji; Ma, Leina; Shan, Juanjuan; Shen, Junjie; Yang, Zhi; Liu, Limei; Luo, Yongli; Yao, Chao; Qian, Cheng

    2016-02-28

    Sorafenib is the first-line treatment for advanced hepatocellular carcinoma (HCC), but the clinical response to sorafenib is seriously limited by drug resistance. In this study, we investigated the molecular mechanisms of sorafenib resistance in HCC cells. Our miRNA microarray data indicate that liver-specific miR-122 expression was significantly reduced in sorafenib-resistant cells. Overexpression of miR-122 made drug-tolerant cells sensitive to sorafenib and induced apoptosis. Insulin-like growth factor 1 receptor (IGF-1R) was validated as a target of miR-122 and was repressed by this miRNA. miR-122-induced apoptosis was repressed by the IGF-1R activator IGFI or IGFII. Conversely, the IGF-1R inhibitor PPP or NVP-AEW541 in combination with sorafenib significantly induced cell apoptosis and disrupted tolerance to drugs in vitro. These results indicated that activation of IGF-1R by ectopic down-regulation of miR-122 counteracted the effects of sorafenib-induced apoptosis, thus conferring sorafenib resistance. Further study revealed that activation of IGF-1R by miR-122 down-regulation contributed to activation of RAS/RAF/ERK signaling, which was associated with drug resistance. Our data imply that an intimate correlation between miR-122 and IGF-1R abnormal expression is a critical determinant of sorafenib tolerance. PMID:26655273

  17. Inhibition of SHP2-mediated dephosphorylation of Ras suppresses oncogenesis

    PubMed Central

    Bunda, Severa; Burrell, Kelly; Heir, Pardeep; Zeng, Lifan; Alamsahebpour, Amir; Kano, Yoshihito; Raught, Brian; Zhang, Zhong-Yin; Zadeh, Gelareh; Ohh, Michael

    2015-01-01

    Ras is phosphorylated on a conserved tyrosine at position 32 within the switch I region via Src kinase. This phosphorylation inhibits the binding of effector Raf while promoting the engagement of GTPase-activating protein (GAP) and GTP hydrolysis. Here we identify SHP2 as the ubiquitously expressed tyrosine phosphatase that preferentially binds to and dephosphorylates Ras to increase its association with Raf and activate downstream proliferative Ras/ERK/MAPK signalling. In comparison to normal astrocytes, SHP2 activity is elevated in astrocytes isolated from glioblastoma multiforme (GBM)-prone H-Ras(12V) knock-in mice as well as in glioma cell lines and patient-derived GBM specimens exhibiting hyperactive Ras. Pharmacologic inhibition of SHP2 activity attenuates cell proliferation, soft-agar colony formation and orthotopic GBM growth in NOD/SCID mice and decelerates the progression of low-grade astrocytoma to GBM in a spontaneous transgenic glioma mouse model. These results identify SHP2 as a direct activator of Ras and a potential therapeutic target for cancers driven by a previously ‘undruggable' oncogenic or hyperactive Ras. PMID:26617336

  18. RELIEF OF PROFOUND FEEDBACK INHIBITION OF MITOGENIC SIGNALING BY RAF INHIBITORS ATTENUATES THEIR ACTIVITY IN BRAFV600E MELANOMAS

    PubMed Central

    Lito, Piro; Pratilas, Christine A.; Joseph, Eric W.; Tadi, Madhavi; Halilovic, Ensar; Zubrowski, Matthew; Huang, Alan; Wong, Wai Lin; Callahan, Margaret K.; Merghoub, Taha; Wolchok, Jedd D.; de Stanchina, Elisa; Chandarlapaty, Sarat; Poulikakos, Poulikos I.; Fagin, James A.; Rosen, Neal

    2012-01-01

    SUMMARY BRAFV600E drives tumors by dysregulating ERK signaling. In these tumors, we show that high levels of ERK-dependent negative feedback potently suppress ligand-dependent mitogenic signaling and Ras function. BRAFV600E activation is Ras-independent and it signals as a RAF-inhibitor sensitive monomer. RAF inhibitors potently inhibit RAF monomers and ERK signaling, causing relief of ERK-dependent feedback, reactivation of ligand-dependent signal transduction, increased Ras-GTP and generation of RAF inhibitor-resistant RAF dimers. This results in a rebound in ERK activity and culminates in a new steady state, wherein ERK signaling is elevated compared to its initial nadir after RAF inhibition. In this state, ERK signaling is RAF inhibitor resistant, and MEK inhibitor sensitive, and combined inhibition results in enhancement of ERK-pathway inhibition and antitumor activity. PMID:23153539

  19. Ultra-sensitive biosensor for K-ras gene detection using enzyme capped gold nanoparticles conjugates for signal amplification.

    PubMed

    Fang, Xian; Bai, Lijuan; Han, Xiaowei; Wang, Jiao; Shi, Anqi; Zhang, Yuzhong

    2014-09-01

    In this study, an ultra-sensitive hairpin DNA-based electrochemical DNA biosensor for K-ras gene detection is described. Gold nanoparticles (Au-NPs) and horseradish peroxidase (HRP)-streptavidin capped Au-NPs (HAS) conjugates are used for signal amplification. Initially, hairpin DNA dually labeled with thiol at its 5' end and with biotin at its 3' end is immobilized on the surface of Au-NPs modified electrode, and the hairpin DNA is in a "closed" state; hence, the HAS conjugates are shielded from being approached by the biotin due to steric hindrance. However, in the presence of target DNA, the target DNA hybridizes with the loop structure of hairpin DNA and causes conformational change, resulting in biotin forced away from the electrode surface, thereby becoming accessible for the HAS conjugates. Thus, the HAS conjugates are linked to the electrode surface via the specific interaction between biotin and streptavidin. Electrochemical detection was performed in phosphate-buffered saline (PBS) containing tetramethylbenzidine (TMB) and H2O2. Under optimal conditions, the peak current differences (ΔI) are linear with the target DNA in the range from 0.1 fM to 1 nM with a detection limit of 0.035 fM. Furthermore, this biosensor also demonstrates its excellent specificity for single-base mismatched DNA. PMID:24939462

  20. Uncoupling of EGFR–RAS signaling and nuclear localization of YBX1 in colorectal cancer

    PubMed Central

    Roßner, F; Gieseler, C; Morkel, M; Royer, H-D; Rivera, M; Bläker, H; Dietel, M; Schäfer, R; Sers, C

    2016-01-01

    The transcription factor YBX1 can act as a mediator of signals transmitted via the EGFR–RAS–MAPK axis. YBX1 expression has been associated with tumor progression and prognosis in multiple types of cancer. Immunohistochemical studies have revealed dependency between YBX1 expression and individual EGFR family members. We analyzed YBX1 and EGFR family proteins in a colorectal cancer (CRC) cohort and provide functional analyses of YBX1 in the context of EGFR–RAS–MAPK signaling. Immunohistochemistry for YBX1 and EGFR family receptors with two antibodies for YBX1 and EGFR were performed and related to clinicopathological data. We employed Caco2 cells expressing an inducible KRASV12 gene to determine effects on localization and levels of YBX1. Mouse xenografts of Caco2-KRASV12 cells were used to determine YBX1 dynamics in a tissue context. The two different antibodies against YBX1 showed discordant immunohistochemical stainings in cell culture and clinical specimens. Expression of YBX1 and EGFR family members were not correlated in CRC. Analysis of Caco2 xenografts displayed again heterogeneity of YBX1 staining with both antibodies. Our results suggest that YBX1 is controlled via complex regulatory mechanisms involving tumor stroma interaction and signal transduction processes. Our study highlights that YBX1 antibodies have different specificities, advocating their use in a combined manner. PMID:26779809

  1. Oncolytic reovirus induces intracellular redistribution of Ras to promote apoptosis and progeny virus release.

    PubMed

    Garant, K A; Shmulevitz, M; Pan, L; Daigle, R M; Ahn, D-G; Gujar, S A; Lee, P W K

    2016-02-11

    Reovirus is a naturally oncolytic virus that preferentially replicates in Ras-transformed cells and is currently undergoing clinical trials as a cancer therapeutic. Ras transformation promotes reovirus oncolysis by enhancing virion disassembly during entry, viral progeny production, and virus release through apoptosis; however, the mechanism behind the latter is not well understood. Here, we show that reovirus alters the intracellular location of oncogenic Ras to induce apoptosis of H-RasV12-transformed fibroblasts. Reovirus infection decreases Ras palmitoylation levels and causes accumulation of Ras in the Golgi through Golgi fragmentation. With the Golgi being the site of Ras palmitoylation, treatment of target cells with the palmitoylation inhibitor, 2-bromopalmitate (2BP), prompts a greater accumulation of H-RasV12 in the Golgi, and a dose-dependent increase in progeny virus release and subsequent spread. Conversely, tethering H-RasV12 to the plasma membrane (thereby preventing its movement to the Golgi) allows for efficient virus production, but results in basal levels of reovirus-induced cell death. Analysis of Ras downstream signaling reveals that cells expressing cycling H-RasV12 have elevated levels of phosphorylated JNK (c-Jun N-terminal kinase), and that Ras retained at the Golgi body by 2BP increases activation of the MEKK1/MKK4/JNK signaling pathway to promote cell death. Collectively, our data suggest that reovirus induces Golgi fragmentation of target cells, and the subsequent accumulation of oncogenic Ras in the Golgi body initiates apoptotic signaling events required for virus release and spread. PMID:25961930

  2. Semaphorin-7a reverses the ERF-induced inhibition of EMT in Ras-dependent mouse mammary epithelial cells.

    PubMed

    Allegra, Maryline; Zaragkoulias, Andreas; Vorgia, Elena; Ioannou, Marina; Litos, Gabriele; Beug, Hartmut; Mavrothalassitis, George

    2012-10-01

    Epithelial-to-mesenchymal transition (EMT) is a key process in cancer progression and metastasis, requiring cooperation of the epidermal growth factor/Ras with the transforming growth factor-β (TGF-β) signaling pathway in a multistep process. The molecular mechanisms by which Ras signaling contributes to EMT, however, remain elusive to a large extent. We therefore examined the transcriptional repressor Ets2-repressor factor (ERF)-a bona fide Ras-extracellular signal-regulated kinase/mitogen-activated protein kinase effector-for its ability to interfere with TGF-β-induced EMT in mammary epithelial cells (EpH4) expressing oncogenic Ras (EpRas). ERF-overexpressing EpRas cells failed to undergo TGF-β-induced EMT, formed three-dimensional tubular structures in collagen gels, and retained expression of epithelial markers. Transcriptome analysis indicated that TGF-β signaling through Smads was mostly unaffected, and ERF suppressed the TGF-β-induced EMT via Semaphorin-7a repression. Forced expression of Semaphorin-7a in ERF-overexpressing EpRas cells reestablished their ability to undergo EMT. In contrast, inhibition of Semaphorin-7a in the parental EpRas cells inhibited their ability to undergo TGF-β-induced EMT. Our data suggest that oncogenic Ras may play an additional role in EMT via the ERF, regulating Semaphorin-7a and providing a new interconnection between the Ras- and the TGF-β-signaling pathways. PMID:22875994

  3. RAS diseases in children

    PubMed Central

    Niemeyer, Charlotte M.

    2014-01-01

    RAS genes encode a family of 21 kDa proteins that are an essential hub for a number of survival, proliferation, differentiation and senescence pathways. Signaling of the RAS-GTPases through the RAF-MEK-ERK pathway, the first identified mitogen-associated protein kinase (MAPK) cascade is essential in development. A group of genetic syndromes, named “RASopathies”, had been identified which are caused by heterozygosity for germline mutations in genes that encode protein components of the RAS/MAPK pathway. Several of these clinically overlapping disorders, including Noonan syndrome, Noonan-like CBL syndrome, Costello syndrome, cardio-facio-cutaneous (CFC) syndrome, neurofibromatosis type I, and Legius syndrome, predispose to cancer and abnormal myelopoiesis in infancy. This review focuses on juvenile myelomonocytic leukemia (JMML), a malignancy of early childhood characterized by initiating germline and/or somatic mutations in five genes of the RAS/MAPK pathway: PTPN11, CBL, NF-1, KRAS and NRAS. Natural courses of these five subtypes differ, although hematopoietic stem cell transplantation remains the only curative therapy option for most children with JMML. With whole-exome sequencing studies revealing few secondary lesions it will be crucial to better understand the RAS/MAPK signaling network with its crosstalks and feed-back loops to carefully design early clinical trials with novel pharmacological agents in this still puzzling leukemia. PMID:25420281

  4. Extracellular signal-regulated kinase 2 (ERK-2) mediated phosphorylation regulates nucleo-cytoplasmic shuttling and cell growth control of Ras-associated tumor suppressor protein, RASSF2

    SciTech Connect

    Kumari, Gita; Mahalingam, S.

    2009-10-01

    Ras GTPase controls the normal cell growth through binding with an array of effector molecules, such as Raf and PI3-kinase in a GTP-dependent manner. RASSF2, a member of the Ras association domain family, is known to be involved in the suppression of cell growth and is frequently down-regulated in various tumor tissues by promoter hypermethylation. In the present study, we demonstrate that RASSF2 shuttles between nucleus and cytoplasm by a signal-mediated process and its export from the nucleus is sensitive to leptomycin B. Amino acids between 240 to 260 in the C-terminus of RASSF2 harbor a functional nuclear export signal (NES), which is necessary and sufficient for efficient export of RASSF2 from the nucleus. Substitution of conserved Ile254, Val257 and Leu259 within the minimal NES impaired RASSF2 export from the nucleus. In addition, wild type but not the nuclear export defective RASSF2 mutant interacts with export receptor, CRM-1 and exported from the nucleus. Surprisingly, we observed nucleolar localization for the nuclear export defective mutant suggesting the possibility that RASSF2 may localize in different cellular compartments transiently in a cell cycle dependent manner and the observed nuclear localization for wild type protein may be due to faster export kinetics from the nucleolus. Furthermore, our data suggest that RASSF2 is specifically phosphorylated by MAPK/ERK-2 and the inhibitors of MAPK pathway impair the phosphorylation and subsequently block the export of RASSF2 from the nucleus. These data clearly suggest that ERK-2 mediated phosphorylation plays an important role in regulating the nucleo-cytoplasmic shuttling of RASSF2. Interestingly, nuclear import defective mutant of RASSF2 failed to induce cell cycle arrest at G1/S phase and apoptosis suggesting that RASSF2 regulates cell growth in a nuclear localization dependent manner. Collectively, these data provided evidence for the first time that MAPK/ERK-2 mediated phosphorylation regulates

  5. Xenopus H-RasV12 promotes entry into meiotic M phase and cdc2 activation independently of Mos and p42(MAPK).

    PubMed

    Dupré, Aude; Suziedelis, Kestutis; Valuckaite, Ryte; de Gunzburg, Jean; Ozon, René; Jessus, Catherine; Haccard, Olivier

    2002-09-19

    In the Xenopus oocyte, progesterone triggers M phase Promoting Factor (MPF) activation in a protein synthesis dependent manner. Although the synthesis of the p42(MAPK) activator Mos appears to be required for MPF activation, p42(MAPK) activity has been shown to be dispensable. To clarify this paradox, we attempted to activate the p42(MAPK) pathway independently of Mos synthesis by cloning and using Xenopus H-Ras in the oocyte. We demonstrate that the injection of the constitutively active Xe H-RasV12 mutant induces p42(MAPK) and MPF activation through two independent pathways. Xe H-RasV12 induces only a partial activation of p42(MAPK) when protein synthesis and MPF activation are prevented. A full level of p42(MAPK) activation is reached when MPF is activated and Mos is present. In contrast, MPF activation induced by Xe H-RasV12 is achieved independently of Mos synthesis and p42(MAPK) activation but still depends on protein synthesis. Therefore, the amphibian oocyte represents a new model system to analyse an original H-Ras pathway ending to MPF activation and distinct from the p42(MAPK) pathway. The identification of the proteins synthesized in response to Xe H-RasV12 and required for MPF activation, represents an important clue in understanding the mechanism of progesterone action. PMID:12226746

  6. RLIP76 regulates Arf6-dependent cell spreading and migration by linking ARNO with activated R-Ras at recycling endosomes.

    PubMed

    Wurtzel, Jeremy G T; Lee, Seunghyung; Singhal, Sharad S; Awasthi, Sanjay; Ginsberg, Mark H; Goldfinger, Lawrence E

    2015-11-27

    R-Ras small GTPase enhances cell spreading and motility via RalBP1/RLIP76, an R-Ras effector that links GTP-R-Ras to activation of Arf6 and Rac1 GTPases. Here, we report that RLIP76 performs these functions by binding cytohesin-2/ARNO, an Arf GTPase guanine exchange factor, and connecting it to R-Ras at recycling endosomes. RLIP76 formed a complex with R-Ras and ARNO by binding ARNO via its N-terminus (residues 1-180) and R-Ras via residues 180-192. This complex was present in Rab11-positive recycling endosomes and the presence of ARNO in recycling endosomes required RLIP76, and was not supported by RLIP76(Δ1-180) or RLIP76(Δ180-192). Spreading and migration required RLIP76(1-180), and RLIP76(Δ1-180) blocked ARNO recruitment to recycling endosomes, and spreading. Arf6 activation with an ArfGAP inhibitor overcame the spreading defects in RLIP76-depleted cells or cells expressing RLIP76(Δ1-180). Similarly, RLIP76(Δ1-180) or RLIP76(Δ180-192) suppressed Arf6 activation. Together these results demonstrate that RLIP76 acts as a scaffold at recycling endosomes by binding activated R-Ras, recruiting ARNO to activate Arf6, thereby contributing to cell spreading and migration. PMID:26498519

  7. TP53 and Let-7a micro-RNA Regulate K-Ras Activity in HCT116 Colorectal Cancer Cells

    PubMed Central

    Luu, Carrie; Heinrich, Eileen L.; Duldulao, Marjun; Arrington, Amanda K.; Fakih, Marwan; Garcia-Aguilar, Julio; Kim, Joseph

    2013-01-01

    Recent reports have indicated that KRAS and TP53 mutations predict response to therapy in colorectal cancer. However, little is known about the relationship between these two common genetic alterations. Micro-RNAs (miRNAs), a class of noncoding RNA implicated in cellular processes, have been increasingly linked to KRAS and TP53. We hypothesized that lethal-7a (let-7a) miRNA regulates KRAS through TP53. To investigate the relationship between KRAS, TP53, and let-7a, we used HCT116 KRASmut human colorectal cancer cells with four different genotypic modifications in TP53 (TP53−/−, TP53+/−, TP53mut/+, and TP53mut/−). Using these cells we observed that K-Ras activity was higher in cells with mutant or knocked out TP53 alleles, suggesting that wild-type TP53 may suppress K-Ras activity. Let-7a was present in HCT116 KRASmut cells, though there was no correlation between let-7a level and TP53 genotype status. To explore how let-7a may regulate K-Ras in the different TP53 genotype cells we used let-7a inhibitor and demonstrated increased K-Ras activity across all TP53, thus corroborating prior reports that let-7a regulates K-Ras. To assess potential clinical implications of this regulatory network, we examined the influence of TP53 genotype and let-7a inhibition on colon cancer cell survival following chemoradiation therapy (CRT). We observed that cells with complete loss of wild-type TP53 alleles (−/− or −/mut) were resistant to CRT following treatment with 5-fluorouracil and radiation. Further increase in K-Ras activity with let-7a inhibition did not impact survival in these cells. In contrast, cells with single or double wild-type TP53 alleles were moderately responsive to CRT and exhibited resistance when let-7a was inhibited. In summary, our results show a complex regulatory system involving TP53, KRAS, and let-7a. Our results may provide clues to understand and target these interactions in colorectal cancer. PMID:23936455

  8. XRP44X, an Inhibitor of Ras/Erk Activation of the Transcription Factor Elk3, Inhibits Tumour Growth and Metastasis in Mice.

    PubMed

    Semenchenko, Kostyantyn; Wasylyk, Christine; Cheung, Henry; Tourrette, Yves; Maas, Peter; Schalken, Jack A; van der Pluijm, Gabri; Wasylyk, Bohdan

    2016-01-01

    Transcription factors have an important role in cancer but are difficult targets for the development of tumour therapies. These factors include the Ets family, and in this study Elk3 that is activated by Ras oncogene /Erk signalling, and is involved in angiogenesis, malignant progression and epithelial-mesenchymal type processes. We previously described the identification and in-vitro characterisation of an inhibitor of Ras / Erk activation of Elk3 that also affects microtubules, XRP44X. We now report an initial characterisation of the effects of XRP44X in-vivo on tumour growth and metastasis in three preclinical models mouse models, subcutaneous xenografts, intra-cardiac injection-bone metastasis and the TRAMP transgenic mouse model of prostate cancer progression. XRP44X inhibits tumour growth and metastasis, with limited toxicity. Tumours from XRP44X-treated animals have decreased expression of genes containing Elk3-like binding motifs in their promoters, Elk3 protein and phosphorylated Elk3, suggesting that perhaps XRP44X acts in part by inhibiting the activity of Elk3. Further studies are now warranted to develop XRP44X for tumour therapy. PMID:27427904

  9. XRP44X, an Inhibitor of Ras/Erk Activation of the Transcription Factor Elk3, Inhibits Tumour Growth and Metastasis in Mice

    PubMed Central

    Cheung, Henry; Tourrette, Yves; Maas, Peter; Schalken, Jack A; van der Pluijm, Gabri

    2016-01-01

    Transcription factors have an important role in cancer but are difficult targets for the development of tumour therapies. These factors include the Ets family, and in this study Elk3 that is activated by Ras oncogene /Erk signalling, and is involved in angiogenesis, malignant progression and epithelial-mesenchymal type processes. We previously described the identification and in-vitro characterisation of an inhibitor of Ras / Erk activation of Elk3 that also affects microtubules, XRP44X. We now report an initial characterisation of the effects of XRP44X in-vivo on tumour growth and metastasis in three preclinical models mouse models, subcutaneous xenografts, intra-cardiac injection-bone metastasis and the TRAMP transgenic mouse model of prostate cancer progression. XRP44X inhibits tumour growth and metastasis, with limited toxicity. Tumours from XRP44X-treated animals have decreased expression of genes containing Elk3-like binding motifs in their promoters, Elk3 protein and phosphorylated Elk3, suggesting that perhaps XRP44X acts in part by inhibiting the activity of Elk3. Further studies are now warranted to develop XRP44X for tumour therapy. PMID:27427904

  10. P68 RNA Helicase (DDX5) Alters Activity of Cis- and Trans-Acting Factors of the Alternative Splicing of H-Ras

    PubMed Central

    Kokolo, Mariette; Bach-Elias, Montse

    2008-01-01

    Background H-Ras pre-mRNA undergoes an alternative splicing process to render two proteins, namely p21 H-Ras and p19 H-Ras, due to either the exclusion or inclusion of the alternative intron D exon (IDX), respectively. p68 RNA helicase (p68) is known to reduce IDX inclusion. Principal Findings Here we show that p68 unwinds the stem-loop IDX-rasISS1 structure and prevents binding of hnRNP H to IDX-rasISS1. We also found that p68 alters the dynamic localization of SC35, a splicing factor that promotes IDX inclusion. The knockdown of hnRNP A1, FUS/TLS and hnRNP H resulted in upregulation of the expression of the gene encoding the SC35-binding protein, SFRS2IP. Finally, FUS/TLS was observed to upregulate p19 expression and to stimulate IDX inclusion, and in vivo RNAi-mediated depletion of hnRNP H decreased p19 H-Ras abundance. Significance Taken together, p68 is shown to be an essential player in the regulation of H-Ras expression as well as in a vital transduction signal pathway tied to cell proliferation and many cancer processes. PMID:18698352

  11. Ras in Cancer and Developmental Diseases

    PubMed Central

    Fernández-Medarde, Alberto; Santos, Eugenio

    2011-01-01

    Somatic, gain-of-function mutations in ras genes were the first specific genetic alterations identified in human cancer about 3 decades ago. Studies during the last quarter century have characterized the Ras proteins as essential components of signaling networks controlling cellular proliferation, differentiation, or survival. The oncogenic mutations of the H-ras, N-ras, or K-ras genes frequently found in human tumors are known to throw off balance the normal outcome of those signaling pathways, thus leading to tumor development. Oncogenic mutations in a number of other upstream or downstream components of Ras signaling pathways (including membrane RTKs or cytosolic kinases) have been detected more recently in association with a variety of cancers. Interestingly, the oncogenic Ras mutations and the mutations in other components of Ras/MAPK signaling pathways appear to be mutually exclusive events in most tumors, indicating that deregulation of Ras-dependent signaling is the essential requirement for tumorigenesis. In contrast to sporadic tumors, separate studies have identified germline mutations in Ras and various other components of Ras signaling pathways that occur in specific association with a number of different familial, developmental syndromes frequently sharing common phenotypic cardiofaciocutaneous features. Finally, even without being a causative force, defective Ras signaling has been cited as a contributing factor to many other human illnesses, including diabetes and immunological and inflammatory disorders. We aim this review at summarizing and updating current knowledge on the contribution of Ras mutations and altered Ras signaling to development of various tumoral and nontumoral pathologies. PMID:21779504

  12. A single amino acid change in Raf-1 inhibits Ras binding and alters Raf-1 function.

    PubMed Central

    Fabian, J R; Vojtek, A B; Cooper, J A; Morrison, D K

    1994-01-01

    Ras and Raf-1 are key proteins involved in the transmission of developmental and proliferative signals generated by receptor and nonreceptor tyrosine kinases. Genetic and biochemical studies demonstrate that Raf-1 functions downstream of Ras in many signaling pathways. Although Raf-1 directly associates with GTP-bound Ras, an effect of this interaction on Raf-1 activity in vivo has not been established. To examine the biological consequence of the Ras/Raf-1 interaction in vivo, we set out to identify key residues of Raf-1 required for Ras binding. In this report, we show that a single amino acid mutation in Raf-1 (Arg89 to Leu) disrupted the interaction with Ras in vitro and in the yeast two-hybrid system. This mutation prevented Ras-mediated but not tyrosine kinase-mediated enzymatic activation of Raf-1 in the baculovirus/Sf9 expression system. Furthermore, kinase-defective Raf-1 proteins containing the Arg89-->Leu mutation were no longer dominant-inhibitory or capable of blocking Ras-mediated signal transduction in Xenopus laevis oocytes. These results demonstrate that the association of Raf-1 and Ras modulates both the kinase activity and the biological function of Raf-1 and identify Arg89 as a critical residue involved in this interaction. In addition, the finding that tyrosine kinases can stimulate the enzymatic activity of Raf-1 proteins containing a mutation at the Ras-interaction site suggests that Raf-1 can be activated by Ras-independent pathways. Images PMID:8016101

  13. Phosphorylation at threonine-235 by a ras-dependent mitogen-activated protein kinase cascade is essential for transcription factor NF-IL6.

    PubMed Central

    Nakajima, T; Kinoshita, S; Sasagawa, T; Sasaki, K; Naruto, M; Kishimoto, T; Akira, S

    1993-01-01

    NF-IL6, a member of the basic leucine zipper (bZIP) family transcription factors, is involved in expression of inducible genes involved in immune and inflammatory responses. We observed that coexpression of oncogenic p21ras stimulated the transactivating activity of NF-IL6 and induced phosphorylation of Thr-235 located just N-terminal to the DNA binding domain of NF-IL6. Recently, mitogen-activated protein (MAP) kinases have been shown to be implicated in the cellular response to activated ras. Purified MAP kinases specifically phosphorylated Thr-235 of NF-IL6 in vitro. Mutation of Thr-235 abolished the ras-dependent activation of NF-IL6. From these results, we conclude that NF-IL6 is regulated through phosphorylation by MAP kinases in response to activated ras. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8384717

  14. Tregs utilize beta-galactoside-binding protein to transiently inhibit PI3K/p21ras activity of human CD8+ T cells to block their TCR-mediated ERK activity and proliferation.

    PubMed

    Baatar, Dolgor; Olkhanud, Purevdorj B; Wells, Valerie; Indig, Fred E; Mallucci, Livio; Biragyn, Arya

    2009-10-01

    Regulatory T cells (Tregs) and beta-galactoside-binding protein (betaGBP), a regulatory protein often found expressed at sites of immunological privilege, have similar functions. Their presence affects the outcome of harmful autoimmunity and cancers, including experimental autoimmune encephalomyelitis and malignant gliomas. Here we report a novel pathway by which Tregs express and utilize betaGBP to control CD8(+) T cell responses partially activating TCR signaling but blocking PI3K activity. As a result, this leads to a loss of p21(ras), ERK and Akt activities despite activation of TCR proximal signals, such as phosphorylation of CD3zeta, Zap70, Lat and PKCtheta. Although non-processive TCR signaling often leads to cell anergy, Tregs/betaGBP did not affect cell viability. Instead, betaGBP/Tregs transiently prevented activation of CD8(+) T cells with self-antigens, while keeping their responses to xenogeneic antigens unaffected. PMID:19520156

  15. Colon epithelial cell differentiation is inhibited by constitutive c-myb expression or mutant APC plus activated RAS.

    PubMed

    Ramsay, Robert G; Ciznadija, Daniel; Sicurella, Catherine; Reyes, Nancy; Mitchelhill, Ken; Darcy, Phillip K; D'Abaco, Giovanna; Mantamadiotis, Theo

    2005-01-01

    Blocked differentiation is a hallmark of cancer cells and the restoration of differentiation programs in vivo is an actively pursued clinical aim. Understanding the key regulators of cyto-differentiation may focus therapies on molecules that reactivate this process. c-myb expression declines rapidly when human colon cancer epithelial cells are induced to differentiate with the physiologically relevant short-chain fatty acid, sodium butyrate. These cells show increased expression of alkaline phosphatase and cytokeratin 8. Similarly, murine Immorto-epithelial cells derived from wild-type colon cells also show c-myb mRNA declines when induced to differentiate with sodium butyrate. Immorto-cells harboring a single APC mutation are indistinguishable from wild-type cells with regard to differentiation, while addition of activated RAS alone markedly enhances differentiation. In marked contrast, complete differentiation arrest occurs when both APC and RAS are mutated. Expression of MybER, a 4-hydroxytamoxifen-activatable form of c-Myb, blocks differentiation in wildtype and APC mutant Immorto-cell lines as well as LIM1215 human colon carcinoma cells. These data identify two pathways of oncogenic change that lead to retarded epithelial cell differentiation, one involving the presence of a single APC mutation in conjunction with activated RAS or alternatively constitutive c-myb expression. PMID:15684716

  16. The heterotrimeric G q protein-coupled angiotensin II receptor activates p21 ras via the tyrosine kinase-Shc-Grb2-Sos pathway in cardiac myocytes.

    PubMed Central

    Sadoshima, J; Izumo, S

    1996-01-01

    p21 ras plays as important role in cell proliferation, transformation and differentiation. Recently, the requirement of p21 ras has been suggested for cellular responses induced by stimulation of heterotrimeric G protein-coupled receptors. However, it remains to be determined how agonists for G protein-coupled receptors activate p21 ras in metazoans. We show here that stimulation of the G q protein-coupled angiotensin II (Ang II) receptor causes activation of p21 ras in cardiac myocytes. The p21 ras activation by Ang II is mediated by an increase in the guanine nucleotide exchange activity, but not by an inhibition of the GTPase-activating protein. Ang II causes rapid tyrosine phosphorylation of Shc and its association with Grb2 and mSos-1, a guanine nucleotide exchange factor of p21 ras. This leads to translocation of mSos-1 to the membrane fraction. Shc associates with the SH3 domain of Fyn whose tyrosine kinase activity is activated by Ang II with a similar time course as that of tyrosine phosphorylation of Shc. Ang II-induced increase in the guanine nucleotide exchange activity was inhibited by a peptide ligand specific to the SH3 domain of the Src family tyrosine kinases. These results suggest that an agonist for a pertussis toxin-insensitive G protein-coupled receptor may initiate the cross-talk with non-receptor-type tyrosine kinases, thereby activating p21 ras using a similar mechanism as receptor tyrosine kinase-induced p21 ras activation. Images PMID:8631299

  17. Plk2 Raps up Ras to subdue synapses

    PubMed Central

    Lee, Kea Joo; Hoe, Hyang-Sook

    2011-01-01

    We recently identified the activity-inducible protein kinase Plk2 as a novel overseer of the balance between Ras and Rap small GTPases. Plk2 achieves a profound level of regulatory control by interacting with and phosphorylating at least four Ras and Rap guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). Combined, these actions result in synergistic suppression of Ras and hyperstimulation of Rap signaling. Perturbation of Plk2 function abolished homeostatic adaptation of synapses to enhanced activity and impaired behavioral adaptation in various learning tasks, indicating that this regulation was critical for maintaining appropriate Ras/Rap levels. These studies provide insights into the highly cooperative nature of Ras and Rap regulation in neurons. However, different GEF and GAP substrates of Plk2 also controlled specific aspects of dendritic spine morphology, illustrating the ability of individual GAPs/GEFs to assemble microdomains of Ras and Rap signaling that respond to different stimuli and couple to distinct output pathways. PMID:21776418

  18. Oncogenic synergism between ErbB1, nucleolin, and mutant Ras.

    PubMed

    Farin, Keren; Schokoroy, Sari; Haklai, Roni; Cohen-Or, Ifat; Elad-Sfadia, Galit; Reyes-Reyes, Merit E; Bates, Paula J; Cox, Adrienne D; Kloog, Yoel; Pinkas-Kramarski, Ronit

    2011-03-15

    Alterations in the ErbB family of growth factor receptors, their signaling components, and mutational activation of Ras proteins are major contributors to malignant transformation. Recently, mutant Ras was shown to be capable of activating ErbB receptors in a ligand-independent manner. Furthermore, it was observed that nucleolin, a transcriptional regulator and ribosome biogenesis factor, can bind both K-Ras and the cytoplasmic tail of ErbB receptors to enhance ErbB receptor activation. However, the functional significance of these interactions to cancer pathogenesis has not been probed. Here, we show that endogenous nucleolin interacts simultaneously in vivo with endogenous Ras and ErbB1 (EGFR) in cancer cells. The C-terminal 212 amino acids of nucleolin were determined to be sufficient to interact with ErbB1 and all Ras protein isoforms (H-, N-, and K-Ras). Nucleolin partially colocalizes with Ras at the plasma membrane. Moreover, activated but not wild-type Ras facilitates nucleolin interaction with ErbB1 and stabilizes ErbB1 receptor levels. Most importantly, these three oncogenes synergistically facilitate anchorage-independent cell growth in vitro and tumor growth in vivo. Our findings suggest strategies to target nucleolin as a general approach to inhibiting ErbB- and Ras-driven cancers. PMID:21257709

  19. Cholangiocyte N-Ras Protein Mediates Lipopolysaccharide-induced Interleukin 6 Secretion and Proliferation*

    PubMed Central

    O'Hara, Steven P.; Splinter, Patrick L.; Trussoni, Christy E.; Gajdos, Gabriella B.; Lineswala, Pooja N.; LaRusso, Nicholas F.

    2011-01-01

    Cholangiocytes, the epithelial cells lining the bile ducts in the liver, are periodically exposed to potentially injurious microbes and/or microbial products. As a result, cholangiocytes actively participate in microbe-associated, hepatic proinflammatory responses. We previously showed that infection of cultured human cholangiocytes with the protozoan parasite, Cryptosporidium parvum, or treatment with Gram-negative bacteria-derived LPS, activates NFκB in a myeloid differentiation 88 (MyD88)-dependent manner. Here, we describe a novel signaling pathway initiated by Toll-like receptors (TLRs) involving the small GTPase, Ras, that mediates cholangiocyte proinflammatory cytokine production and induction of cholangiocyte proliferation. Using cultured human cholangiocytes and a Ras activation assay, we found that agonists of plasma membrane TLRs (TLR 1, 2, 4, 5, and 6) rapidly (<10 min) activated N-Ras, but not other p21 Ras isoforms, resulting in the rapid (<15 min) phosphorylation of the downstream Ras effector, ERK1/2. RNA interference-induced depletion of TRAF6, a downstream effector of MyD88 and known activator of MAPK signaling, had no effect on N-Ras activation. Following N-Ras activation the proinflammatory cytokine, IL6, is rapidly secreted. Using a luciferase reporter, we demonstrated that LPS treatment induced IL6 promoter-driven luciferase which was suppressed using MEK/ERK pharmacologic inhibitors (PD98059 or U0126) and RNAi-induced depletion of N-Ras. Finally, we showed that LPS increased cholangiocyte proliferation (1.5-fold), which was inhibited by depletion of N-Ras; TLR agonist-induced proliferation was also inhibited following pretreatment with an IL6 receptor-blocking antibody. Together, our results support a novel signaling axis involving microbial activation of N-Ras likely involved in the cholangiocyte pathogen-induced proinflammatory response. PMID:21757746

  20. Discovery of 1-(3,3-dimethylbutyl)-3-(2-fluoro-4-methyl-5-(7-methyl-2-(methylamino)pyrido[2,3-d]pyrimidin-6-yl)phenyl)urea (LY3009120) as a pan-RAF inhibitor with minimal paradoxical activation and activity against BRAF or RAS mutant tumor cells.

    PubMed

    Henry, James R; Kaufman, Michael D; Peng, Sheng-Bin; Ahn, Yu Mi; Caldwell, Timothy M; Vogeti, Lakshminarayana; Telikepalli, Hanumaiah; Lu, Wei-Ping; Hood, Molly M; Rutkoski, Thomas J; Smith, Bryan D; Vogeti, Subha; Miller, David; Wise, Scott C; Chun, Lawrence; Zhang, Xiaoyi; Zhang, Youyan; Kays, Lisa; Hipskind, Philip A; Wrobleski, Aaron D; Lobb, Karen L; Clay, Julia M; Cohen, Jeffrey D; Walgren, Jennie L; McCann, Denis; Patel, Phenil; Clawson, David K; Guo, Sherry; Manglicmot, Danalyn; Groshong, Chris; Logan, Cheyenne; Starling, James J; Flynn, Daniel L

    2015-05-28

    The RAS-RAF-MEK-MAPK cascade is an essential signaling pathway, with activation typically mediated through cell surface receptors. The kinase inhibitors vemurafenib and dabrafenib, which target oncogenic BRAF V600E, have shown significant clinical efficacy in melanoma patients harboring this mutation. Because of paradoxical pathway activation, both agents were demonstrated to promote growth and metastasis of tumor cells with RAS mutations in preclinical models and are contraindicated for treatment of cancer patients with BRAF WT background, including patients with KRAS or NRAS mutations. In order to eliminate the issues associated with paradoxical MAPK pathway activation and to provide therapeutic benefit to patients with RAS mutant cancers, we sought to identify a compound not only active against BRAF V600E but also wild type BRAF and CRAF. On the basis of its superior in vitro and in vivo profile, compound 13 was selected for further development and is currently being evaluated in phase I clinical studies. PMID:25965804

  1. Cooperative loss of RAS feedback regulation drives myeloid leukemognesis

    PubMed Central

    Zhao, Zhen; Chen, Chi-Chao; Rillahan, Cory D.; Shen, Ronglai; Kitzing, Thomas; McNerney, Megan E.; Diaz-Flores, Ernesto; Zuber, Johannes; Shannon, Kevin; Le Beau, Michelle M.; Spector, Mona S.; Kogan, Scott C.; Lowe, Scott W.

    2015-01-01

    RAS network activation is common in human cancers and, in acute myeloid leukemia (AML), achieved mainly through gain-of-function mutations in KRAS, NRAS, or the FLT3 receptor tyrosine kinase1. In mice, we show that premalignant myeloid cells harboring a KrasG12D allele retain low Ras signaling owing to a negative feedback involving Spry4 that prevents transformation. In humans, SPRY4 is located on chromosome 5q, a region affected by large heterozygous deletion that are associated with an aggressive disease in which gain-of-function RAS pathway mutations are rare. These 5q deletions often co-occur with chromosome 17 alterations involving deletion of NF1 - another RAS negative regulator - and TP53. Accordingly, combined suppression of Spry4, Nf1 and Trp53 produces high Ras signaling and drives AML in mice. Therefore, SPRY4 is a 5q tumor suppressor whose disruption contributes to a lethal AML subtype that appears to acquire RAS pathway activation through loss of negative regulators. PMID:25822087

  2. RAS Synthetic Lethal Screens Revisited: Still Seeking the Elusive Prize?

    PubMed Central

    Downward, Julian

    2015-01-01

    The RAS genes are critical oncogenic drivers activated by point mutation in some 20% of human malignancies. However, no pharmacological approaches to targeting RAS proteins directly have yet succeeded, leading to suggestions that these proteins may be “undruggable.” This has led to two alternative indirect approaches to targeting RAS function in cancer. One has been to target RAS signaling pathways downstream at tractable enzymes such as kinases, particularly in combination. The other, which is the focus of this review, has been to seek targets that are essential in cells bearing an activated RAS oncogene, but not those without. This synthetic lethal approach, while rooted in ideas from invertebrate genetics, has been inspired most strongly by the successful use of PARP inhibitors, such as olaparib, in the clinic to treat BRCA defective cancers. Several large-scale screens have been carried out using RNA interference-mediated expression silencing to find genes that are uniquely essential to RAS mutant but not wild type cells. These screens have been notable for the low degree of overlap between their results, with the possible exception of proteasome components, and have yet to lead to successful new clinical approaches to the treatment of RAS mutant cancers. Possible reasons for these disappointing results are discussed here, along with a re-evaluation of the approaches taken. Based on experience to date, RAS synthetic lethality has so far fallen some way short of its original promise and remains unproven as an approach to finding effective new ways of tackling RAS mutant cancers. PMID:25878361

  3. Revisiting G3BP1 as a RasGAP Binding Protein: Sensitization of Tumor Cells to Chemotherapy by the RasGAP 317–326 Sequence Does Not Involve G3BP1

    PubMed Central

    Annibaldi, Alessandro; Dousse, Aline; Martin, Sophie; Tazi, Jamal; Widmann, Christian

    2011-01-01

    RasGAP is a multifunctional protein that controls Ras activity and that is found in chromosomal passenger complexes. It also negatively or positively regulates apoptosis depending on the extent of its cleavage by caspase-3. RasGAP has been reported to bind to G3BP1 (RasGAP SH3-domain-binding protein 1), a protein regulating mRNA stability and stress granule formation. The region of RasGAP (amino acids 317–326) thought to bind to G3BP1 corresponds exactly to the sequence within fragment N2, a caspase-3-generated fragment of RasGAP, that mediates sensitization of tumor cells to genotoxins. While assessing the contribution of G3BP1 in the anti-cancer function of a cell-permeable peptide containing the 317–326 sequence of RasGAP (TAT-RasGAP317–326), we found that, in conditions where G3BP1 and RasGAP bind to known partners, no interaction between G3BP1 and RasGAP could be detected. TAT-RasGAP317–326 did not modulate binding of G3BP1 to USP10, stress granule formation or c-myc mRNA levels. Finally, TAT-RasGAP317–326 was able to sensitize G3BP1 knock-out cells to cisplatin-induced apoptosis. Collectively these results indicate that G3BP1 and its putative RasGAP binding region have no functional influence on each other. Importantly, our data provide arguments against G3BP1 being a genuine RasGAP-binding partner. Hence, G3BP1-mediated signaling may not involve RasGAP. PMID:22205990

  4. Activation of the c-H-ras proto-oncogene by retrovirus insertion and chromosomal rearrangement in a Moloney leukemia virus-induced T-cell leukemia.

    PubMed Central

    Ihle, J N; Smith-White, B; Sisson, B; Parker, D; Blair, D G; Schultz, A; Kozak, C; Lunsford, R D; Askew, D; Weinstein, Y

    1989-01-01

    A rearrangement of the c-H-ras locus was detected in a T-cell line (DA-2) established from a Moloney leukemia virus-induced tumor. This rearrangement was associated with the high-level expression of H-ras RNA and the H-ras gene product, p21. DNA from DA-2 cells transformed fibroblasts in DNA transfection experiments, and the transformed fibroblasts contained the rearranged H-ras locus. The rearrangement involved one allele and was present in tissue from the primary tumor from which the cell line was isolated. Cloning and sequencing of the rearranged allele and comparison with the normal allele demonstrated that the rearrangement was complex and probably resulted from the integration of a retrovirus in the H-ras locus between a 5' noncoding exon and the first coding exon and a subsequent homologous recombination between this provirus and another newly acquired provirus also located on chromosome 7. These events resulted in the translocation of the coding exons of the H-ras locus away from the 5' noncoding exon region to a new genomic site on chromosome 7. Sequencing of the coding regions of the gene failed to detect mutations in the 12th, 13th, 59th, or 61st codons. The possible reasons for the complexity of the rearrangement and the significance of the activation of the H-ras locus to T-cell transformation are discussed. Images PMID:2542606

  5. Modeling the Transcriptional Consequences of Epidermal Growth Factor Receptor Ablation in Ras-Initiated Squamous Cancer

    PubMed Central

    Wright, Lisa Nolan; Ryscavage, Andrew; Merlino, Glenn; Yuspa, Stuart H.

    2011-01-01

    Purpose EGFR targeted therapy is in clinical use to treat squamous cell carcinoma of the head and neck and other cancers of lining epithelium. Ras mutations in these tumors are a negative prognostic factor for response and skin inflammation is an adverse reaction to therapy. We investigated transcriptional and biochemical changes that could account for the confounding effects of RAS activation and inflammation in a squamous tissue. Experimental Design We performed gene expression profiling on oncogenic Ras transformed and wildtype mouse and human keratinocytes with EGFR ablated chronically by genetic deletion or acutely by drug treatment and followed leads provided by pathway analysis with biochemical studies. Results We identified a 25 gene signature specific to the Ras-EGFR ablation interaction and a distinct 19 gene EGFR ablation signature on normal keratinocytes. EGFR ablation in the context of wildtype Ras reduces ontologies favoring cell cycle control and transcription while oncogenic Ras enriches ontologies for ion channels and membrane transporters, particularly focused on calcium homeostasis. Ontologies between chronic EGFR ablation and acute pharmacological ablation were unique, both with and without Ras activation. p38α is activated in response to abrogation of EGFR signaling under conditions of Ras activation in both mouse and human keratinocytes and in RAS transformed tumor orthografts of EGFR ablated mouse keratinocytes. EGFR ablation in the absence of oncogenic Ras revealed Erk and IL-1β related pathways. Conclusion These findings reveal unrecognized interactions between Ras and EGFR signaling in squamous tumor cells that could influence the therapeutic response to EGFR ablation therapy. PMID:22068661

  6. Both p21ras and pp60v-src are required, but neither alone is sufficient, to activate the Raf-1 kinase.

    PubMed Central

    Williams, N G; Roberts, T M; Li, P

    1992-01-01

    The raf genes encode a family of cytoplasmic proteins with intrinsic protein-serine/threonine kinase activity. The c-raf gene is the cellular homolog of v-raf, the transforming gene of murine sarcoma virus 3611. The constitutive kinase activity of the v-Raf protein has been implicated in transformation and mitogenesis. The activity of Raf-1, the protein product of the c-raf gene, is normally suppressed by a regulatory N-terminal domain. Activation of various tyrosine-kinase growth factor receptors results in activation of Raf-1 and its hyperphosphorylation. Further, Raf-1 has been shown to act either downstream or independently of the p21ras protein, as indicated by experiments involving microinjection of anti-Ras antibodies. To investigate the potential role of p21ras in the activation of Raf-1 by tyrosine kinases, we have used the baculovirus/Sf9 cell system to overproduce various wild-type and mutant forms of pp60src, p21ras, and Raf-1 proteins. We show that either pp60v-src or p21c-ras can independently activate the autokinase activity of Raf-1, but only to a limited extent. Surprisingly, both pp60v-src and p21c-ras are required to fully activate Raf-1. Analysis of the Raf-1 autokinase activity in vitro shows that Raf-1 autophosphorylation sites are distributed equally on serine and threonine residues. When Raf-1 is analyzed by immunoblotting, as previously reported for mammalian cell experiments, a marked increase in the apparent molecular weight of Raf-1 is seen only when it is coexpressed with both pp60v-src and p21ras. Images PMID:1372995

  7. Activated kRas protects colon cancer cells from cucurbitacin-induced apoptosis; the role of p53 and p21

    PubMed Central

    Escandell, José M.; Kaler, Pawan; Recio, M. Carmen; Sasazuki, Takehiko; Shirasawa, Senji; Augenlicht, Leonard; Ríos, José-Luis; Klampfer, Lidija

    2008-01-01

    Cucurbitacins have been shown to inhibit proliferation in a variety of cancer cell lines. The aim of this study was to determine their biological activity in colon cancer cell lines that do not harbor activated STAT3, the key target of cucurbitacin. In order to establish the role of activated kRas in the responsiveness of cells to cucurbitacins, we performed experiments in isogenic colon cancer cell lines, HCT116 and Hke-3, which differ only by the presence of an activated kRas allele. We compared the activity of 23, 24-dihydrocucurbitacin B (DHCB) and cucurbitacin R (CCR), two cucurbitacins that we recently isolated, with cucurbitacin I (CCI), a cucurbitacin with established antitumorigenic activity. We showed that cucurbitacins induced dramatic changes in the cytoskeleton (collapse of actin and bundling of tubulin microfilaments), inhibited proliferation and finally induced apoptosis of both HCT116 and Hke3 cells. However, the presence of oncogenic k-Ras significantly decreased the sensitivity of cells to the three cucurbitacins tested, CCR, DHCB and CCI. We confirmed that mutational activation of kRas protects cells from cucurbitacin-induced apoptosis using nontransfromed intestinal epithelial cells with inducible expression of k-RasV12. Cucurbitacins induced the expression of p53 and p21 predominantly in HCT116 cells that harbor mutant Ras. Using HCT116 cells with targeted deletion of p53 or p21 we confirmed that p53 and p21 protect cells from apoptosis induced by cucurbitacins. These results demonstrated that sensitivity of human colon cancer cell lines to cucurbitacins depends on the kRas and p53/p21 status, and established that cucurbitacins can exert antitumorigenic activity in the absence of activated STAT3. PMID:18561895

  8. Activated kRas protects colon cancer cells from cucurbitacin-induced apoptosis: the role of p53 and p21.

    PubMed

    Escandell, José M; Kaler, Pawan; Recio, M Carmen; Sasazuki, Takehiko; Shirasawa, Senji; Augenlicht, Leonard; Ríos, José-Luis; Klampfer, Lidija

    2008-07-15

    Cucurbitacins have been shown to inhibit proliferation in a variety of cancer cell lines. The aim of this study was to determine their biological activity in colon cancer cell lines that do not harbor activated STAT3, the key target of cucurbitacin. In order to establish the role of activated kRas in the responsiveness of cells to cucurbitacins, we performed experiments in isogenic colon cancer cell lines, HCT116 and Hke-3, which differ only by the presence of an activated kRas allele. We compared the activity of 23, 24-dihydrocucurbitacin B (DHCB) and cucurbitacin R (CCR), two cucurbitacins that we recently isolated, with cucurbitacin I (CCI), a cucurbitacin with established antitumorigenic activity. We showed that cucurbitacins induced dramatic changes in the cytoskeleton (collapse of actin and bundling of tubulin microfilaments), inhibited proliferation and finally induced apoptosis of both HCT116 and Hke-3 cells. However, the presence of oncogenic kRas significantly decreased the sensitivity of cells to the three cucurbitacins tested, CCR, DHCB and CCI. We confirmed that mutational activation of kRas protects cells from cucurbitacin-induced apoptosis using nontransformed intestinal epithelial cells with inducible expression of kRasV12. Cucurbitacins induced the expression of p53 and p21 predominantly in HCT116 cells that harbor mutant Ras. Using HCT116 cells with targeted deletion of p53 or p21 we confirmed that p53 and p21 protect cells from apoptosis induced by cucurbitacins. These results demonstrated that sensitivity of human colon cancer cell lines to cucurbitacins depends on the kRas and p53/p21 status, and established that cucurbitacins can exert antitumorigenic activity in the absence of activated STAT3. PMID:18561895

  9. Simvastatin inhibits the activation of p21ras and prevents the loss of dopaminergic neurons in a mouse model of Parkinson's disease

    PubMed Central

    Ghosh, Anamitra; Roy, Avik; Matras, Joanna; Brahmachari, Saurav; Gendelman, Howard E.; Pahan, Kalipada

    2010-01-01

    Parkinson's disease (PD) is second only to Alzheimer's disease as the most common devastating human neurodegenerative disorder. Despite intense investigation, no interdictive therapy is available for PD. We investigated whether simvastatin, an FDA-approved cholesterol-lowering drug, could protect against nigrostriatal degeneration following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxication to model PD in mice. First, MPP+ induced the activation of p21ras and NF-κB in mouse microglial cells. Inhibition of MPP+-induced activation of NF-κB by Δp21ras, a dominant-negative mutant of p21ras, supported the involvement of p21ras in MPP+-induced microglial activation of NF-κB. Interestingly, simvastatin attenuated activation of both p21ras and NF-κB in MPP+-stimulated microglial cells. Consistently, we found a very rapid activation of p21ras in vivo in the substantia nigra pars compacta of MPTP-intoxicated mice. However, after oral administration, simvastatin entered into the nigra, reduced nigral activation of p21ras, attenuated nigral activation of NF-κB, inhibited nigral expression of proinflammatory molecules, and suppressed nigral activation of glial cells. These findings paralleled dopaminergic neuronal protection, normalized striatal neurotransmitters, and improved motor functions in MPTP-intoxicated mice. Similarly, pravastatin, another cholesterol-lowering drug, suppressed microglial inflammatory responses and protected dopaminergic neurons in MPTP-intoxicated mice; but at levels less than simvastatin. Furthermore, both the statins administered 2 days after initiation of the disease were still capable of inhibiting the demise of dopaminergic neurons and concomitant loss of neurotransmitters suggesting that statins are capable of slowing down the progression of neuronal loss in the MPTP mouse model. Therefore, we conclude that statins may be of therapeutic benefit for PD patients. PMID:19864567

  10. ROLE OF RAS IN METAL-INDUCED EGF RECEPTOR AND NFKB SIGNALING IN HUMAN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    We have shown previously that EGF receptor signaling is triggered by some metals associated with ambient air particles. Western blot using phospho-specific antibodies showed that As, Zn and V activated EGF receptor tyrosine kinase and the downstream kinases, MEK1/2 and ERK1/2. Us...

  11. Protein phosphatase 1α is a Ras-activated Bad phosphatase that regulates interleukin-2 deprivation-induced apoptosis

    PubMed Central

    Ayllón, Verónica; Martínez-A, Carlos; García, Alphonse; Cayla, Xavier; Rebollo, Angelita

    2000-01-01

    Growth factor deprivation is a physiological mechanism to regulate cell death. We utilize an interleukin-2 (IL-2)-dependent murine T-cell line to identify proteins that interact with Bad upon IL-2 stimulation or deprivation. Using the yeast two-hybrid system, glutathione S-transferase (GST) fusion proteins and co-immunoprecipitation techniques, we found that Bad interacts with protein phosphatase 1α (PP1α). Serine phosphorylation of Bad is induced by IL-2 and its dephosphorylation correlates with appearance of apoptosis. IL-2 deprivation induces Bad dephosphorylation, suggesting the involvement of a serine phosphatase. A serine/threonine phosphatase activity, sensitive to the phosphatase inhibitor okadaic acid, was detected in Bad immunoprecipitates from IL-2-stimulated cells, increasing after IL-2 deprivation. This enzymatic activity also dephosphorylates in vivo 32P-labeled Bad. Treatment of cells with okadaic acid blocks Bad dephosphorylation and prevents cell death. Finally, Ras activation controls the catalytic activity of PP1α. These results strongly suggest that Bad is an in vitro and in vivo substrate for PP1α phosphatase and that IL-2 deprivation-induced apoptosis may operate by regulating Bad phosphorylation through PP1α phosphatase, whose enzymatic activity is regulated by Ras. PMID:10811615

  12. Established and emerging fluorescence-based assays for G-protein function: Ras-superfamily GTPases.

    PubMed

    Rojas, Rafael J; Kimple, Randall J; Rossman, Kent L; Siderovski, David P; Sondek, John

    2003-06-01

    Ras and Rho GTPases are signaling proteins that regulate a variety of physiological events and are intimately linked to the progression of cancer. Recently, a variety of fluorescence-based assays have been refined to monitor activation of these GTPases. This review summarizes current fluorescence-based techniques for studying Ras superfamily GTPases with an emphasis on practical examples and high-throughput applications. These techniques are not only useful for biochemical characterization of Ras superfamily members, but will also facilitate the discovery of small molecule therapeutics designed to inhibit signal transduction mediated by GTPases. PMID:12769685

  13. Oncogenic Ras/Src cooperativity in pancreatic neoplasia

    PubMed Central

    Shields, DJ; Murphy, EA; Desgrosellier, JS; Mielgo, A; Lau, SKM; Barnes, LA; Lesperance, J; Huang, M; Schmedt, C; Tarin, D; Lowy, AM; Cheresh, DA

    2011-01-01

    Pancreas cancer is one of the most lethal malignancies and is characterized by activating mutations of Kras, present in 95% of patients. More than 60% of pancreatic cancers also display increased c-Src activity, which is associated with poor prognosis. Although loss of tumor suppressor function (for example, p16, p53, Smad4) combined with oncogenic Kras signaling has been shown to accelerate pancreatic duct carcinogenesis, it is unclear whether elevated Src activity contributes to Kras-dependent tumorigenesis or is simply a biomarker of disease progression. Here, we demonstrate that in the context of oncogenic Kras, activation of c-Src through deletion of C-terminal Src kinase (CSK) results in the development of invasive pancreatic ductal adenocarcinoma (PDA) by 5–8 weeks. In contrast, deletion of CSK alone fails to induce neoplasia, while oncogenic Kras expression yields PDA at low frequency after a latency of 12 months. Analysis of cell lines derived from Ras/Src-induced PDA’s indicates that oncogenic Ras/Src cooperativity may lead to genomic instability, yet Ras/Src-driven tumor cells remain dependent on Src signaling and as such, Src inhibition suppresses growth of Ras/Src-driven tumors. These findings demonstrate that oncogenic Ras/Src cooperate to accelerate PDA onset and support further studies of Src-directed therapies in pancreatic cancer. PMID:21242978

  14. Ras transformation uncouples the kinesin-coordinated cellular nutrient response.

    PubMed

    Zaganjor, Elma; Weil, Lauren M; Gonzales, Joshua X; Minna, John D; Cobb, Melanie H

    2014-07-22

    The kinesin family members (KIFs) KIF2A and KIF2C depolymerize microtubules, unlike the majority of other kinesins, which transport cargo along microtubules. KIF2A regulates the localization of lysosomes in the cytoplasm, which assists in activation of the mechanistic target of rapamycin complex 1 (mTORC1) on the lysosomal surface. We find that the closely related kinesin KIF2C also influences lysosomal organization in immortalized human bronchial epithelial cells (HBECs). Expression of KIF2C and, to a lesser extent, KIF2A in untransformed and mutant K-Ras-transformed cells is regulated by ERK1/2. Prolonged inhibition of ERK1/2 activation with PD0325901 mimics nutrient deprivation by disrupting lysosome organization and decreasing mTORC1 activity in HBEC, suggesting a long-term mechanism for optimization of mTORC1 activity by ERK1/2. We tested the hypothesis that up-regulation of KIF2C and KIF2A by ERK1/2 caused aberrant lysosomal positioning and mTORC1 activity in a mutant K-Ras-dependent cancer and cancer model. In Ras-transformed cells, however, mTORC1 activity and lysosome organization appear independent of ERK1/2 and these kinesins although ERK1/2 activity and the kinesins are required for Ras-dependent proliferation and migration. We conclude that mutant K-Ras repurposes these signaling and regulatory proteins to support the transformed phenotype. PMID:25002494

  15. PP2A-mediated regulation of Ras signaling in G2 is essential for stable quiescence and normal G1 length

    PubMed Central

    Naetar, Nana; Soundarapandian, Velmurugan; Litovchick, Larisa; Goguen, Kelsey L.; Sablina, Anna A.; Bowman-Colin, Christian; Sicinski, Piotr; Hahn, William C.; DeCaprio, James A.; Livingston, David M.

    2014-01-01

    SUMMARY Quiescence (G0) allows cycling cells to reversibly cease proliferation. A decision to enter quiescence is suspected of occurring early in G1, before the restriction point, R. Surprisingly, we have identified G2 as an interval during which inhibition of the protein phosphatase, PP2A, results in failure to exhibit stable quiescence. This effect is accompanied by shortening of the ensuing G1. The PP2A subcomplex required for stable G0 contains the B56γ B subunit. Following PP2A inhibition in G2, aberrant overexpression of cyclin E occurs during mitosis and is responsible for overriding quiescence. Strikingly, suppression of Ras signaling re-establishes normal cyclin E levels during M and restores G0. These data point to PP2A-B56γ-driven Ras signaling-modulation in G2 as essential for suppressing aberrant cyclin E expression during mitosis and, thereby, achieving normal G0 control. Thus, G2 is an interval during which the length and growth factor dependence of the next G1 interval are established. PMID:24857551

  16. PP2A-mediated regulation of Ras signaling in G2 is essential for stable quiescence and normal G1 length.

    PubMed

    Naetar, Nana; Soundarapandian, Velmurugan; Litovchick, Larisa; Goguen, Kelsey L; Sablina, Anna A; Bowman-Colin, Christian; Sicinski, Piotr; Hahn, William C; DeCaprio, James A; Livingston, David M

    2014-06-19

    Quiescence (G0) allows cycling cells to reversibly cease proliferation. A decision to enter quiescence is suspected of occurring early in G1, before the restriction point (R). Surprisingly, we have identified G2 as an interval during which inhibition of the protein phosphatase PP2A results in failure to exhibit stable quiescence. This effect is accompanied by shortening of the ensuing G1. The PP2A subcomplex required for stable G0 contains the B56γ B subunit. After PP2A inhibition in G2, aberrant overexpression of cyclin E occurs during mitosis and is responsible for overriding quiescence. Strikingly, suppression of Ras signaling re-establishes normal cyclin E levels during M and restores G0. These data point to PP2A-B56γ-driven Ras signaling modulation in G2 as essential for suppressing aberrant cyclin E expression during mitosis and thereby achieving normal G0 control. Thus, G2 is an interval during which the length and growth factor dependence of the next G1 interval are established. PMID:24857551

  17. Diesel Exhaust Particles Activate the Matrix-Metalloproteinase-1 Gene in Human Bronchial Epithelia in a β-Arrestin–Dependent Manner via Activation of RAS

    PubMed Central

    Li, Jinju; Ghio, Andrew J.; Cho, Seung-Hyun; Brinckerhoff, Constance E.; Simon, Sidney A.; Liedtke, Wolfgang

    2009-01-01

    Background Diesel exhaust particles (DEPs) are globally relevant air pollutants that exert a detrimental human health impact. However, mechanisms of damage by DEP exposure to human respiratory health and human susceptibility factors are only partially known. Matrix metalloproteinase-1 (MMP-1) has been implied as an (etio)pathogenic factor in human lung and airway diseases such as emphysema, chronic obstructive pulmonary disease, chronic asthma, tuberculosis, and bronchial carcinoma and has been reported to be regulated by DEPs. Objective We elucidated the molecular mechanisms of DEPs’ up-regulation of MMP-1. Methods/Results Using permanent and primary human bronchial epithelial (HBE) cells at air–liquid interface, we show that DEPs activate the human MMP-1 gene via RAS and subsequent activation of RAF-MEK-ERK1/2 mitogen-activated protein kinase signaling, which can be scaffolded by β-arrestins. Short interfering RNA mediated β-arrestin1/2 knockout eliminated formation, subsequent nuclear trafficking of phosphorylated ERK1/2, and resulting MMP-1 transcriptional activation. Transcriptional regulation of the human MMP-1 promoter was strongly influenced by the presence of the –1607GG polymorphism, present in 60–80% of humans, which led to striking up-regulation of MMP-1 transcriptional activation. Conclusion Our results confirm up-regulation of MMP-1 in response to DEPs in HBE and provide new mechanistic insight into how these epithelia, the first line of protection against environmental insults, up-regulate MMP-1 in response to DEP inhalation. These mechanisms include a role for the human –1607GG polymorphism as a susceptibility factor for an accentuated response, which critically depends on the ability of β-arrestin1/2 to generate scaffolding and nuclear trafficking of phosphorylated ERK1/2. PMID:19337515

  18. A Model System for Activation-Induced Alternative Splicing of CD45 Pre-mRNA in T Cells Implicates Protein Kinase C and Ras

    PubMed Central

    Lynch, Kristen W.; Weiss, Arthur

    2000-01-01

    Multiple isoforms of the protein tyrosine phosphatase CD45 are expressed on the surface of human T cells. Interestingly, the expression of these isoforms has been shown to vary significantly upon T-cell activation. In this report, we describe a novel cell line-based model system in which we can mimic the activation-induced alternative splicing of CD45 observed in primary T cells. Of the many proximal signaling events induced by T-cell stimulation, we show that activation of protein kinase C and activation of Ras are important for the switch toward the exclusion of CD45 variable exons, whereas events related to Ca2+ flux are not. In addition, the ability of cycloheximide to block the activation-induced alternative splicing of CD45 suggests a requirement for de novo protein synthesis. We further demonstrate that sequences which have previously been implicated in the tissue-specific regulation of CD45 variable exons are likewise necessary and sufficient for activation-induced splicing. These results provide an initial understanding of the requirements for CD45 alternative splicing upon T-cell activation, and they confirm the importance of this novel cell line in facilitating a more detailed analysis of the activation-induced regulation of CD45 than has been previously possible. PMID:10594010

  19. RAS Laboratory Groups

    Cancer.gov

    The RAS Initiative uses multiple technologies to attack RAS-driven cancers. The resources of the Frederick National Lab allocated to the RAS Hub are organized into seven laboratory groups, each contributing to the collaborative effort.

  20. The RAS Initiative

    Cancer.gov

    NCI established the RAS Initiative to explore innovative approaches for attacking the proteins encoded by mutant forms of RAS genes and to ultimately create effective, new therapies for RAS-related cancers.

  1. The combinatorial activation of the PI3K and Ras/MAPK pathways is sufficient for aggressive tumor formation, while individual pathway activation supports cell persistence

    PubMed Central

    Thompson, Keyata N.; Whipple, Rebecca A.; Yoon, Jennifer R.; Lipsky, Michael; Charpentier, Monica S.; Boggs, Amanda E.; Chakrabarti, Kristi R.; Bhandary, Lekhana; Hessler, Lindsay K.; Martin, Stuart S.; Vitolo, Michele I.

    2015-01-01

    A high proportion of human tumors maintain activation of both the PI3K and Ras/MAPK pathways. In basal-like breast cancer (BBC), PTEN expression is decreased/lost in over 50% of cases, leading to aberrant activation of the PI3K pathway. Additionally, BBC cell lines and tumor models have been shown to exhibit an oncogenic Ras-like gene transcriptional signature, indicating activation of the Ras/MAPK pathway. To directly test how the PI3K and Ras/MAPK pathways contribute to tumorigenesis, we deleted PTEN and activated KRas within non-tumorigenic MCF-10A breast cells. Neither individual mutation was sufficient to promote tumorigenesis, but the combination promoted robust tumor growth in mice. However, in vivo bioluminescence reveals that each mutation has the ability to promote a persistent phenotype. Inherent in the concept of tumor cell dormancy, a stage in which residual disease is present but remains asymptomatic, viable cells with each individual mutation can persist in vivo during a period of latency. The persistent cells were excised from the mice and showed increased levels of the cell cycle arrest proteins p21 and p27 compared to the aggressively growing PTEN−/−KRAS(G12V) cells. Additionally, when these persistent cells were placed into growth-promoting conditions, they were able to re-enter the cell cycle and proliferate. These results highlight the potential for either PTEN loss or KRAS activation to promote cell survival in vivo, and the unique ability of the combined mutations to yield rapid tumor growth. This could have important implications in determining recurrence risk and disease progression in tumor subtypes where these mutations are common. PMID:26497685

  2. c-Myc inhibits Ras-mediated differentiation of pheochromocytoma cells by blocking c-Jun up-regulation.

    PubMed

    Vaqué, José P; Fernández-García, Belén; García-Sanz, Pablo; Ferrandiz, Nuria; Bretones, Gabriel; Calvo, Fernando; Crespo, Piero; Marín, María C; León, Javier

    2008-02-01

    Although mutant Ras proteins were originally described as transforming oncoproteins, they induce growth arrest, senescence, and/or differentiation in many cell types. c-Myc is an oncogenic transcription factor that cooperates with Ras in cellular transformation and oncogenesis. However, the Myc-Ras relationship in cellular differentiation is largely unknown. Here, we have analyzed the effects of c-Myc on PC12-derived cells (UR61 cell line), harboring an inducible N-Ras oncogene. In these cells, Ras activation induces neuronal-like differentiation by a process involving c-Jun activation. We found that c-Myc inhibited Ras-mediated differentiation by a mechanism that involves the blockade of c-Jun induction in response to Ras signal. Accordingly, ectopically expressed c-Jun could bypass c-Myc impediment of Ras-induced differentiation and activator protein 1 activation. Interestingly, it did not rescue the proliferative arrest elicited by Ras and did not enhance the differentiation-associated apoptosis. The blockade of Ras-mediated induction of c-Jun takes place at the level of c-Jun proximal promoter. Mutational analysis revealed that c-Myc regions involved in DNA binding and transactivation are required to block differentiation and c-Jun induction. c-Myc does not seem to require Miz-1 to inhibit differentiation and block c-Jun induction. Furthermore, Max is not required for c-Myc activity, as UR61 cells lack a functional Max gene. c-Myc-inhibitory effect on the Ras/c-Jun connection is not restricted to UR61 cells as it can occur in other cell types as K562 or HEK293. In conclusion, we describe a novel interplay between c-Myc and c-Jun that controls the ability of Ras to trigger the differentiation program of pheochromocytoma cells. PMID:18314492

  3. The nitric oxide-sensitive p21Ras-ERK pathway mediates S-nitrosoglutathione-induced apoptosis

    SciTech Connect

    Tsujita, Maristela; Batista, Wagner L.; Ogata, Fernando T.; Monteiro, Hugo P. Arai, Roberto J.

    2008-05-16

    p21Ras protein plays a critical role in cellular signaling that induces either cell cycle progression or apoptosis. Nitric oxide (NO) has been consistently reported to activate p21Ras through the redox sensitive cysteine residue (118). In this study, we demonstrated that the p21Ras-ERK pathway regulates THP-1 monocyte/macrophage apoptosis induced by S-nitrosoglutathione (SNOG). This was apparent from studies in THP-1 cells expressing NO-insensitive p21Ras (p21Ras{sup C118S}) where the pro-apoptotic action of SNOG was almost abrogated. Three major MAP kinase pathways (ERK, JNK, and p38) that are downstream to p21Ras were investigated. It was observed that only the activation of ERK1/2 MAP kinases by SNOG in THP-1 cells was attributable to p21Ras. The inhibition of the ERK pathway by PD98059 markedly attenuated apoptosis in SNOG-treated THP-1 cells, but had a marginal effect on SNOG-treated THP-1 cells expressing NO-insensitive p21Ras. The inhibition of the JNK and p38 pathways by selective inhibitors had no marked effects on the percentage of apoptosis. The induction of p21Waf1 expression by SNOG was observed in THP-1 cells harboring mutant and wild-type p21Ras, however in cells expressing mutant Ras, the expression of p21Waf1 was significantly attenuated. The treatment of THP-1 cells expressing wild-type p21Ras with PD98059 resulted in significant attenuation of p21Waf1 expression. These results indicate that the redox sensitive p21Ras-ERK pathway plays a critical role in sensing and delivering the pro-apoptotic signaling mediated by SNOG.

  4. The nitric oxide-sensitive p21Ras-ERK pathway mediates S-nitrosoglutathione-induced apoptosis.

    PubMed

    Tsujita, Maristela; Batista, Wagner L; Ogata, Fernando T; Stern, Arnold; Monteiro, Hugo P; Arai, Roberto J

    2008-05-16

    p21Ras protein plays a critical role in cellular signaling that induces either cell cycle progression or apoptosis. Nitric oxide (NO) has been consistently reported to activate p21Ras through the redox sensitive cysteine residue (118). In this study, we demonstrated that the p21Ras-ERK pathway regulates THP-1 monocyte/macrophage apoptosis induced by S-nitrosoglutathione (SNOG). This was apparent from studies in THP-1 cells expressing NO-insensitive p21Ras (p21Ras(C118S)) where the pro-apoptotic action of SNOG was almost abrogated. Three major MAP kinase pathways (ERK, JNK, and p38) that are downstream to p21Ras were investigated. It was observed that only the activation of ERK1/2 MAP kinases by SNOG in THP-1 cells was attributable to p21Ras. The inhibition of the ERK pathway by PD98059 markedly attenuated apoptosis in SNOG-treated THP-1 cells, but had a marginal effect on SNOG-treated THP-1 cells expressing NO-insensitive p21Ras. The inhibition of the JNK and p38 pathways by selective inhibitors had no marked effects on the percentage of apoptosis. The induction of p21Waf1 expression by SNOG was observed in THP-1 cells harboring mutant and wild-type p21Ras, however in cells expressing mutant Ras, the expression of p21Waf1 was significantly attenuated. The treatment of THP-1 cells expressing wild-type p21Ras with PD98059 resulted in significant attenuation of p21Waf1 expression. These results indicate that the redox sensitive p21Ras-ERK pathway plays a critical role in sensing and delivering the pro-apoptotic signaling mediated by SNOG. PMID:18325324

  5. Stabilization of C-RAF:KSR1 complex by DiRas3 reduces availability of C-RAF for dimerization with B-RAF.

    PubMed

    Baljuls, Angela; Dobrzyński, Maciej; Rauch, Jens; Rauch, Nora; Kolch, Walter

    2016-10-01

    RAF family kinases are central components of the Ras-RAF-MEK-ERK cascade. Dimerization is a key mechanism of RAF activation in response to physiological, pathological and pharmacological signals. It is mediated by a dimer interface region in the RAF kinase domain that is also conserved in KSR, a scaffolding protein that binds RAF, MEK and ERK. The regulation of RAF dimerization is incompletely understood. Especially little is known about the molecular mechanism involved in the selection of the dimerization partner. Previously, we reported that Ras-dependent binding of the tumour suppressor DiRas3 to C-RAF inhibits the C-RAF:B-RAF heterodimerization. Here we show that DiRas3 binds to KSR1 independently of its interaction with activated Ras and RAF. Our data also suggest that depending on the local stoichiometry between DiRas3 and oncogenic Ras, DiRas3 can either enhance homodimerization of KSR1 or recruit KSR1 to the Ras:C-RAF complex and thereby reduce the availability of C-RAF for binding to B-RAF. This mechanism, which is shared between A-RAF and C-RAF, may be involved in the regulation of Ras12V-induced cell transformation by DiRas3. PMID:27368419

  6. A Flt3 and Ras-dependent Pathway Primes B Cell Development by Inducing A State of IL7-responsiveness

    PubMed Central

    Li, Lin-Xi; Goetz, Christine A.; Katerndahl, Casey D.S.; Sakaguchi, Nobuo; Farrar, Michael A.

    2009-01-01

    Ras plays an important role in B cell development. However, the stage at which Ras governs B cell development remains unclear. Moreover, the upstream receptors and downstream effectors of Ras that govern B cell differentiation remain undefined. Using mice that express a dominant negative form of Ras, we demonstrate that Ras-mediated signaling plays a critical role in the development of common lymphoid progenitors (CLP). This developmental block parallels that found in flt3−/− mice, suggesting that Flt3 is an important upstream activator of Ras in early B cell progenitors. Ras inhibition impaired proliferation of CLP and pre-pro-B cells but not pro-B cells. Rather, Ras promotes STAT5-dependent pro-B cell differentiation by enhancing IL7Rα levels and suppressing socs2 and socs3 expression. Our results suggest a model in which Flt3/Ras-dependent signals play a critical role in B cell development by priming early B cell progenitors for subsequent STAT5-dependent B cell differentiation. PMID:20065110

  7. Hyphal Guidance and Invasive Growth in Candida albicans Require the Ras-Like GTPase Rsr1p and Its GTPase-Activating Protein Bud2p

    PubMed Central

    Hausauer, Danielle L.; Gerami-Nejad, Maryam; Kistler-Anderson, Cassandra; Gale, Cheryl A.

    2005-01-01

    Candida albicans, the most prevalent fungal pathogen of humans, causes superficial mycoses, invasive mucosal infections, and disseminated systemic disease. Many studies have shown an intriguing association between C. albicans morphogenesis and the pathogenesis process. For example, hyphal cells have been observed to penetrate host epithelial cells at sites of wounds and between cell junctions. Ras- and Rho-type GTPases regulate many morphogenetic processes in eukaryotes, including polarity establishment, cell proliferation, and directed growth in response to extracellular stimuli. We found that the C. albicans Ras-like GTPase Rsr1p and its predicted GTPase-activating protein Bud2p localized to the cell cortex, at sites of incipient daughter cell growth, and provided landmarks for the positioning of daughter yeast cells and hyphal cell branches, similar to the paradigm in the model yeast Saccharomyces cerevisiae. However, in contrast to S. cerevisiae, CaRsr1p and CaBud2p were important for morphogenesis: C. albicans strains lacking Rsr1p or Bud2p had abnormal yeast and hyphal cell shapes and frequent bends and promiscuous branching along the hypha and were unable to invade agar. These defects were associated with abnormal actin patch polarization, unstable polarisome localization at hyphal tips, and mislocalized septin rings, consistent with the idea that GTP cycling of Rsr1p stabilizes the axis of polarity primarily to a single focus, thus ensuring normal cell shape and a focused direction of polarized growth. We conclude that the Rsr1p GTPase functions as a polarity landmark for hyphal guidance and may be an important mediator of extracellular signals during processes such as host invasion. PMID:16002653

  8. 8-Hydroxyquinoline-based inhibitors of the Rce1 protease disrupt Ras membrane localization in human cells.

    PubMed

    Mohammed, Idrees; Hampton, Shahienaz E; Ashall, Louise; Hildebrandt, Emily R; Kutlik, Robert A; Manandhar, Surya P; Floyd, Brandon J; Smith, Haley E; Dozier, Jonathan K; Distefano, Mark D; Schmidt, Walter K; Dore, Timothy M

    2016-01-15

    Ras converting enzyme 1 (Rce1) is an endoprotease that catalyzes processing of the C-terminus of Ras protein by removing -aaX from the CaaX motif. The activity of Rce1 is crucial for proper localization of Ras to the plasma membrane where it functions. Ras is responsible for transmitting signals related to cell proliferation, cell cycle progression, and apoptosis. The disregulation of these pathways due to constitutively active oncogenic Ras can ultimately lead to cancer. Ras, its effectors and regulators, and the enzymes that are involved in its maturation process are all targets for anti-cancer therapeutics. Key enzymes required for Ras maturation and localization are the farnesyltransferase (FTase), Rce1, and isoprenylcysteine carboxyl methyltransferase (ICMT). Among these proteins, the physiological role of Rce1 in regulating Ras and other CaaX proteins has not been fully explored. Small-molecule inhibitors of Rce1 could be useful as chemical biology tools to understand further the downstream impact of Rce1 on Ras function and serve as potential leads for cancer therapeutics. Structure-activity relationship (SAR) analysis of a previously reported Rce1 inhibitor, NSC1011, has been performed to generate a new library of Rce1 inhibitors. The new inhibitors caused a reduction in Rce1 in vitro activity, exhibited low cell toxicity, and induced mislocalization of EGFP-Ras from the plasma membrane in human colon carcinoma cells giving rise to a phenotype similar to that observed with siRNA knockdowns of Rce1 expression. Several of the new inhibitors were more effective at mislocalizing K-Ras compared to a potent farnesyltransferase inhibitor (FTI), which is significant because of the preponderance of K-Ras mutations in cancer. PMID:26706114

  9. Integrating signals between cAMP and the RAS/RAF/MEK/ERK signalling pathways. Based on the anniversary prize of the Gesellschaft für Biochemie und Molekularbiologie Lecture delivered on 5 July 2003 at the Special FEBS Meeting in Brussels.

    PubMed

    Dumaz, Nicolas; Marais, Richard

    2005-07-01

    One of the hallmarks of cAMP is its ability to inhibit proliferation in many cell types, but stimulate proliferation in others. Clearly cAMP has cell type specific effects and the outcome on proliferation is largely attributed to crosstalk from cAMP to the RAS/RAF/mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK pathway. We review the crosstalk between these two ancient and conserved pathways, describing the molecular mechanisms underlying the interactions between these pathways and discussing their possible biological importance. PMID:16008550

  10. Specific Conformational States of Ras GTPase upon Effector Binding

    PubMed Central

    2012-01-01

    To uncover the structural and dynamical determinants involved in the highly specific binding of Ras GTPase to its effectors, the conformational states of Ras in uncomplexed form and complexed to the downstream effectors Byr2, PI3Kγ, PLCε, and RalGDS were investigated using molecular dynamics and cross-comparison of the trajectories. The subtle changes in the dynamics and conformations of Ras upon effector binding require an analysis that targets local changes independent of global motions. Using a structural alphabet, a computational procedure is proposed to quantify local conformational changes. Positions detected by this approach were characterized as either specific for a particular effector, specific for an effector domain type, or as effector unspecific. A set of nine structurally connected residues (Ras residues 5–8, 32–35, 39–42, 55–59, 73–78, and 161–165), which link the effector binding site to the distant C-terminus, changed dynamics upon effector binding, indicating a potential effector-unspecific signaling route within the Ras structure. Additional conformational changes were detected along the N-terminus of the central β-sheet. Besides the Ras residues at the effector interface (e.g., D33, E37, D38, and Y40), which adopt effector-specific local conformations, the binding signal propagates from the interface to distant hot-spot residues, in particular to Y5 and D57. The results of this study reveal possible conformational mechanisms for the stabilization of the active state of Ras upon downstream effector binding and for the structural determinants responsible for effector specificity. PMID:23316125

  11. Inhibition of the Ras-Net (Elk-3) pathway by a novel pyrazole that affects microtubules.

    PubMed

    Wasylyk, Christine; Zheng, Hong; Castell, Christelle; Debussche, Laurent; Multon, Marie-Christine; Wasylyk, Bohdan

    2008-03-01

    Net (Elk-3/SAP-2/Erp) is a transcription factor that is phosphorylated and activated by the Ras-extracellular signal-regulated kinase (Erk) signaling pathway and is involved in wound healing, angiogenesis, and tumor growth. In a cell-based screen for small molecule inhibitors of Ras activation of Net transcriptional activity, we identified a novel pyrazole, XRP44X. XRP44X inhibits fibroblast growth factor 2 (FGF-2)-induced Net phosphorylation by the Ras-Erk signaling upstream from Ras. It also binds to the colchicine-binding site of tubulin, depolymerizes microtubules, stimulates cell membrane blebbing, and affects the morphology of the actin skeleton. Interestingly, Combretastin-A4, which produces similar effects on the cytoskeleton, also inhibits FGF-2 Ras-Net signaling. This differs from other classes of agents that target microtubules, which have either little effect (vincristine) or no effect (docetaxel and nocodazole) on the Ras-Net pathway. XRP44X inhibits various cellular properties, including cell growth, cell cycle progression, and aortal sprouting, similar to other molecules that bind to the tubulin colchicine site. XRP44X has the potentially interesting property of connecting two important pathways involved in cell transformation and may thereby represent an interesting class of molecules that could be developed for cancer treatment. PMID:18316589

  12. Absence of K-Ras Reduces Proliferation and Migration But Increases Extracellular Matrix Synthesis in Fibroblasts.

    PubMed

    Muñoz-Félix, José M; Fuentes-Calvo, Isabel; Cuesta, Cristina; Eleno, Nélida; Crespo, Piero; López-Novoa, José M; Martínez-Salgado, Carlos

    2016-10-01

    The involvement of Ras-GTPases in the development of renal fibrosis has been addressed in the last decade. We have previously shown that H- and N-Ras isoforms participate in the regulation of fibrosis. Herein, we assessed the role of K-Ras in cellular processes involved in the development of fibrosis: proliferation, migration, and extracellular matrix (ECM) proteins synthesis. K-Ras knockout (KO) mouse embryonic fibroblasts (K-ras(-/-) ) stimulated with transforming growth factor-β1 (TGF-β1) exhibited reduced proliferation and impaired mobility than wild-type fibroblasts. Moreover, an increase on ECM production was observed in K-Ras KO fibroblasts in basal conditions. The absence of K-Ras was accompanied by reduced Ras activation and ERK phosphorylation, and increased AKT phosphorylation, but no differences were observed in TGF-β1-induced Smad signaling. The MEK inhibitor U0126 decreased cell proliferation independently of the presence of K-ras but reduced migration and ECM proteins expression only in wild-type fibroblasts, while the PI3K-AKT inhibitor LY294002 decreased cell proliferation, migration, and ECM synthesis in both types of fibroblasts. Thus, our data unveil that K-Ras and its downstream effector pathways distinctively regulate key biological processes in the development of fibrosis. Moreover, we show that K-Ras may be a crucial mediator in TGF-β1-mediated effects in this cell type. J. Cell. Physiol. 231: 2224-2235, 2016. © 2016 Wiley Periodicals, Inc. PMID:26873620

  13. Inter-cellular adhesion disruption and the RAS/RAF and beta-catenin signalling in lung cancer progression

    PubMed Central

    Götz, Rudolf

    2008-01-01

    Cadherin cell adhesion molecules play an essential role in creating tight intercellular association and their loss has been correlated with poor prognosis in human cancer. Mutational activation of protein kinases and loss of cell adhesion occur together in human lung adenocarcinoma but how these two pathways interconnect is only poorly understood. Mouse models of human lung adenocarcinoma with oncogene expression targeted to subtypes of lung epithelial cells led to formation of adenomas or adenocarcinomas that lacked metastatic potential. Conditional genetic abrogation of epithelial tumour cell adhesion in mice with benign lung tumours induced by oncogenic RAF kinase has been demonstrated to induce intratumourous vascularization (angiogenic switch), progression to invasive adenocarcinoma and micrometastasis. Importantly, breaking cell adhesion in benign oncogene-driven lung tumour cells activated β-catenin signalling and induced the expression of several genes that are normally expressed in intestine rather than the lung. I will discuss potential routes to nuclear β-catenin signalling in cancer and how nuclear β-catenin may epigenetically alter the plasticity of tumour cells during malignant progression. PMID:18492263

  14. Inhibition of ras oncogene: a novel approach to antineoplastic therapy.

    PubMed

    Scharovsky, O G; Rozados, V R; Gervasoni, S I; Matar, P

    2000-01-01

    The most frequently detected oncogene alterations, both in animal and human cancers, are the mutations in the ras oncogene family. These oncogenes are mutated or overexpressed in many human tumors, with a high incidence in tumors of the pancreas, thyroid, colon, lung and certain types of leukemia. Ras is a small guanine nucleotide binding protein that transduces biological information from the cell surface to cytoplasmic components within cells. The signal is transduced to the cell nucleus through second messengers, and it ultimately induces cell division. Oncogenic forms of p21(ras) lead to unregulated, sustained signaling through downstream effectors. The ras family of oncogenes is involved in the development of both primary tumors and metastases making it a good therapeutic target. Several therapeutic approaches to cancer have been developed pointing to reducing the altered gene product or to eliminating its biological function: (1) gene therapy with ribozymes, which are able to break down specific RNA sequences, or with antisense oligonucleotides, (2) immunotherapy through passive or active immunization protocols, and (3) inhibition of p21(ras) farnesylation either by inhibition of farnesyl transferase or synthesis inhibition of farnesyl moieties. PMID:10895051

  15. Signal focusing through active transport

    NASA Astrophysics Data System (ADS)

    Godec, Aljaž; Metzler, Ralf

    2015-07-01

    The accuracy of molecular signaling in biological cells and novel diagnostic devices is ultimately limited by the counting noise floor imposed by the thermal diffusion. Motivated by the fact that messenger RNA and vesicle-engulfed signaling molecules transiently bind to molecular motors and are actively transported in biological cells, we show here that the random active delivery of signaling particles to within a typical diffusion distance to the receptor generically reduces the correlation time of the counting noise. Considering a variety of signaling particle sizes from mRNA to vesicles and cell sizes from prokaryotic to eukaryotic cells, we show that the conditions for active focusing—faster and more precise signaling—are indeed compatible with observations in living cells. Our results improve the understanding of molecular cellular signaling and novel diagnostic devices.

  16. Hypergrowth mTORC1 Signals Translationally Activate the ARF Tumor Suppressor Checkpoint

    PubMed Central

    Miceli, Alexander P.; Saporita, Anthony J.

    2012-01-01

    The ARF tumor suppressor is a potent sensor of hyperproliferative cues emanating from oncogenic signaling. ARF responds to these cues by eliciting a cell cycle arrest, effectively abating the tumorigenic potential of these stimuli. Prior reports have demonstrated that oncogenic RasV12 signaling induces ARF through a mechanism mediated by the Dmp1 transcription factor. However, we now show that ARF protein is still induced in response to RasV12 in the absence of Dmp1 through the enhanced translation of existing Arf mRNAs. Here, we report that the progrowth Ras/tuberous sclerosis complex (TSC)/mTORC1 signaling pathway regulates ARF protein expression and triggers ARF-mediated tumor suppression through a novel translational mechanism. Hyperactivation of mTORC1 through Tsc1 loss resulted in a significant increase in ARF expression, activation of the p53 pathway, and a dramatic cell cycle arrest, which were completely reversed upon Arf deletion. ARF protein induced from RasV12 in the absence of Dmp1 repressed anchorage-independent colony formation in soft agar and tumor burden in an allograft model. Taken together, our data demonstrate the ability of the ARF tumor suppressor to respond to hypergrowth stimuli to prevent unwarranted tumor formation. PMID:22064482

  17. Lead identification for the K-Ras protein: virtual screening and combinatorial fragment-based approaches

    PubMed Central

    Pathan, Akbar Ali Khan; Panthi, Bhavana; Khan, Zahid; Koppula, Purushotham Reddy; Alanazi, Mohammed Saud; Sachchidanand; Parine, Narasimha Reddy; Chourasia, Mukesh

    2016-01-01

    Objective Kirsten rat sarcoma (K-Ras) protein is a member of Ras family belonging to the small guanosine triphosphatases superfamily. The members of this family share a conserved structure and biochemical properties, acting as binary molecular switches. The guanosine triphosphate-bound active K-Ras interacts with a range of effectors, resulting in the stimulation of downstream signaling pathways regulating cell proliferation, differentiation, and apoptosis. Efforts to target K-Ras have been unsuccessful until now, placing it among high-value molecules against which developing a therapy would have an enormous impact. K-Ras transduces signals when it binds to guanosine triphosphate by directly binding to downstream effector proteins, but in case of guanosine diphosphate-bound conformation, these interactions get disrupted. Methods In the present study, we targeted the nucleotide-binding site in the “on” and “off” state conformations of the K-Ras protein to find out suitable lead compounds. A structure-based virtual screening approach has been used to screen compounds from different databases, followed by a combinatorial fragment-based approach to design the apposite lead for the K-Ras protein. Results Interestingly, the designed compounds exhibit a binding preference for the “off” state over “on” state conformation of K-Ras protein. Moreover, the designed compounds’ interactions are similar to guanosine diphosphate and, thus, could presumably act as a potential lead for K-Ras. The predicted drug-likeness properties of these compounds suggest that these compounds follow the Lipinski’s rule of five and have tolerable absorption, distribution, metabolism, excretion and toxicity values. Conclusion Thus, through the current study, we propose targeting only “off” state conformations as a promising strategy for the design of reversible inhibitors to pharmacologically inhibit distinct conformations of K-Ras protein. PMID:27217775

  18. Inhibitors of Ras-SOS Interactions.

    PubMed

    Lu, Shaoyong; Jang, Hyunbum; Zhang, Jian; Nussinov, Ruth

    2016-04-19

    Activating Ras mutations are found in about 30 % of human cancers. Ras activation is regulated by guanine nucleotide exchange factors, such as the son of sevenless (SOS), which form protein-protein interactions (PPIs) with Ras and catalyze the exchange of GDP by GTP. This is the rate-limiting step in Ras activation. However, Ras surfaces lack any evident suitable pockets where a molecule might bind tightly, rendering Ras proteins still 'undruggable' for over 30 years. Among the alternative approaches is the design of inhibitors that target the Ras-SOS PPI interface, a strategy that is gaining increasing recognition for treating Ras mutant cancers. Herein we focus on data that has accumulated over the past few years pertaining to the design of small-molecule modulators or peptide mimetics aimed at the interface of the Ras-SOS PPI. We emphasize, however, that even if such Ras-SOS therapeutics are potent, drug resistance may emerge. To counteract this development, we propose "pathway drug cocktails", that is, drug combinations aimed at parallel (or compensatory) pathways. A repertoire of classified cancer, cell/tissue, and pathway/protein combinations would be beneficial toward this goal. PMID:26630662

  19. [Role of RAS in prehypertension].

    PubMed

    Inaba, Shinji; Iwai, Masaru; Horiuchi, Masatsugu

    2008-08-01

    Hypertension has long been recognized as a major risk factor of several cardiovascular diseases. It is well known that the renin-angiotensin system(RAS) is involved in the pathogenesis of both hypertension and hypertensive end-organ damage. Untreated hypertension is self-accelerating condition through RAS stimulation. Activation of RAS contributes to the transition from borderline hypertension to established hypertension. Recently, "the Seventh Report of Joint National Committee on Prevention, Detection, Evaluation and Treatment of High Blood Pressure (JNC 7)" proposed a new classification of borderline blood pressure levels, as "prehypertension". The therapeutic focus has begun to shift from the therapy of established hypertension to the prevention of hypertension. This review addressed the relationship between hypertension, prehypertension and the role of RAS. PMID:18700549

  20. Para-phenylenediamine-induces apoptosis via a pathway dependent on PTK-Ras-Raf-JNK activation but independent of the PI3K/Akt pathway in NRK-52E cells.

    PubMed

    Kasi, Reena A P; Moi, Chye Soi; Kien, Yip Wai; Yian, Koh Rhun; Chin, Ng Wei; Yen, Ng Khuen; Ponnudurai, Gnanajothy; Fong, Seow Heng

    2015-03-01

    para‑Phenylenediamine (p‑PD) is a potential carcinogen, and widely used in marketed hair dye formulations. In the present study, the role of the protein tyrosine kinase (PTK)/Ras/Raf/c‑Jun N‑terminal kinase (JNK) and phosphoinositide 3‑kinase (PI3k)/protein kinase B (Akt) pathways on the growth of NRK‑52E cells was investigated. The results demonstrated that p‑PD reduced cell viability in a dose‑dependent manner. The cell death due to apoptosis was confirmed by cell cycle analysis and an Annexin‑V‑fluorescein isothiocyanate binding assay. Subsequent to staining with 2',7'‑dichlorofluorescin diacetate, the treated cells demonstrated a significant increase in reactive oxygen species (ROS) generation compared with the controls. The effects of p‑PD on the signalling pathways were analysed by western blotting. p‑PD‑treated cells exhibited an upregulated phospho‑stress‑activated protein kinase/JNK protein expression level and downregulated Ras and Raf protein expression levels; however, Akt, Bcl‑2, Bcl‑XL and Bad protein expression levels were not significantly altered compared with the control. In conclusion, p‑PD induced apoptosis by a PTK/Ras/Raf/JNK‑dependent pathway and was independent of the PI3K/Akt pathway in NRK‑52E cells. PMID:25411820

  1. Novel approach to abuse the hyperactive K-Ras pathway for adenoviral gene therapy of colorectal cancer

    SciTech Connect

    Naumov, Inna; Kazanov, Dina; Lisiansky, Victoria; Starr, Alex; Aroch, Ilan; Shapira, Shiran; Kraus, Sarah; Arber, Nadir

    2012-01-15

    Background: Functional activation of oncogenic K-Ras signaling pathway plays an important role in the early events of colorectal carcinogenesis (CRC). K-Ras proto-oncogene is involved in 35-40% of CRC cases. Mutations in the Ras gene trigger the transduction of proliferative and anti-apoptotic signals, even in the absence of extra cellular stimuli. The objective of the current study was to use a gene-targeting approach to kill human CRC cells selectively harboring mutated K-Ras. Results: A recombinant adenovirus that carries a lethal gene, PUMA, under the control of a Ras responsive promoter (Ad-Py4-SV40-PUMA) was used selectively to target CRC cells (HCT116, SW480, DLD1 and RIE-Ras) that possess a hyperactive Ras pathway while using HT29 and RIE cells as a control that harbors wild type Ras and exhibit very low Ras activity. Control vector, without the Ras responsive promoter elements was used to assess the specificity of our 'gene therapy' approach. Both adenoviral vectors were assed in vitro and in xenograft model in vivo. Ad-Py4-SV40-PUMA showed high potency to induce {approx} 50% apoptosis in vitro, to abolish completely tumor formation by infecting cells with the Ad-Py4-SV40-PUMA prior xenografting them in nude mice and high ability to suppress by {approx} 35% tumor progression in vivo in already established tumors. Conclusions: Selective targeting of CRC cells with the activated Ras pathway may be a novel and effective therapy in CRC. The high potency of this adenoviral vector may help to overcome an undetectable micro metastasis that is the major hurdle in challenging with CRC.

  2. The roles of calcium/calmodulin-dependent and Ras/mitogen-activated protein kinases in the development of psychostimulant-induced behavioral sensitization.

    PubMed

    Licata, Stephanie C; Pierce, R Christopher

    2003-04-01

    Although the development of behavioral sensitization to psychostimulants such as cocaine and amphetamine is confined mainly to one nucleus in the brain, the ventral tegmental area (VTA), this process is nonetheless complex, involving a complicated interplay between neurotransmitters, neuropeptides and trophic factors. In the present review we present the hypothesis that calcium-stimulated second messengers, including the calcium/calmodulin-dependent protein kinases and the Ras/mitogen-activated protein kinases, represent the major biochemical pathways whereby converging extracellular signals are integrated and amplified, resulting in the biochemical and molecular changes in dopaminergic neurons in the VTA that represent the critical neuronal correlates of the development of behavioral sensitization to psychostimulants. Moreover, given the important role of calcium-stimulated second messengers in the expression of behavioral sensitization, these signal transduction systems may represent the biochemical substrate through which the transient neurochemical changes associated with the development of behavioral sensitization are translated into the persistent neurochemical, biochemical and molecular alterations in neuronal function that underlie the long-term expression of psychostimulant-induced behavioral sensitization. PMID:12641723

  3. SRC-DEPENDENT PHOSPHORYLATION OF THE EPIDERMAL GROWTH FACTOR RECEPTOR ON TYROSINE 845 IS REQUIRED FOR ZINC-INDUCED RAS ACTIVATION

    EPA Science Inventory

    Src-dependent Phosphorylation of the Epidermal Growth Factor Receptor on Tyrosine 845 Is Required for Zinc-induced Ras Activation
    Weidong Wu 1 , Lee M. Graves 2 , Gordon N. Gill 3 , Sarah J. Parsons 4 , and James M. Samet 5
    1 Center for Environmental Medicine and Lung Biolo...

  4. Areca Nut Components Affect COX-2, Cyclin B1/cdc25C and Keratin Expression, PGE2 Production in Keratinocyte Is Related to Reactive Oxygen Species, CYP1A1, Src, EGFR and Ras Signaling

    PubMed Central

    Chang, Hsiao-Hua; Chan, Chiu-Po; Yeh, Chien-Yang; Wang, Yin-Lin; Cheng, Ru-Hsiu; Hahn, Liang-Jiunn; Jeng, Jiiang-Huei

    2014-01-01

    Aims Chewing of betel quid (BQ) increases the risk of oral cancer and oral submucous fibrosis (OSF), possibly by BQ-induced toxicity and induction of inflammatory response in oral mucosa. Methods Primary gingival keratinocytes (GK cells) were exposed to areca nut (AN) components with/without inhibitors. Cytotoxicity was measured by 3-(4,5-dimethyl- thiazol- 2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay. mRNA and protein expression was evaluated by reverse transcriptase-polymerase chain reaction (RT-PCR) and western blotting. PGE2/PGF2α production was measured by enzyme-linked immunosorbent assays. Results Areca nut extract (ANE) stimulated PGE2/PGF2α production, and upregulated the expression of cyclooxygenase-2 (COX-2), cytochrome P450 1A1 (CYP1A1) and hemeoxygenase-1 (HO-1), but inhibited expression of keratin 5/14, cyclinB1 and cdc25C in GK cells. ANE also activated epidermal growth factor receptor (EGFR), Src and Ras signaling pathways. ANE-induced COX-2, keratin 5, keratin 14 and cdc25C expression as well as PGE2 production were differentially regulated by α–naphthoflavone (a CYP 1A1/1A2 inhibitor), PD153035 (EGFR inhibitor), pp2 (Src inhibitor), and manumycin A (a Ras inhibitor). ANE-induced PGE2 production was suppressed by piper betle leaf (PBL) extract and hydroxychavicol (two major BQ components), dicoumarol (a NAD(P)H:Quinone Oxidoreductase - NQO1 inhibitor) and curcumin. ANE-induced cytotoxicity was inhibited by catalase and enhanced by dicoumarol, suggesting that AN components may contribute to the pathogenesis of OSF and oral cancer via induction of aberrant differentiation, cytotoxicity, COX-2 expression, and PGE2/PGF2αproduction. Conclusions CYP4501A1, reactive oxygen species (ROS), EGFR, Src and Ras signaling pathways could all play a role in ANE-induced pathogenesis of oral cancer. Addition of PBL into BQ and curcumin consumption could inhibit the ANE-induced inflammatory response. PMID:25051199

  5. Regulation of RNA Polymerase I-Dependent Promoters by the Hepatitis B Virus X Protein via Activated Ras and TATA-Binding Protein

    PubMed Central

    Wang, Horng-Dar; Trivedi, Alpa; Johnson, Deborah L.

    1998-01-01

    The hepatitis B virus (HBV) X protein is essential for viral infectivity, and evidence indicates that it is a strong contributor to HBV-mediated oncogenesis. X has been shown to transactivate a wide variety of RNA polymerase (Pol) II-dependent, as well as RNA Pol III-dependent, promoters. In this study, we have investigated the possibility that X modulates RNA Pol I-dependent rRNA transcription. In both human hepatoma Huh7 and Drosophila Schneider S2 cell lines, X expression stimulated rRNA promoter activity. Extracts prepared from X-expressing cells stably transfected with an X gene also exhibited an increased ability to transcribe the rRNA promoter. The mechanism for X transactivation was examined by determining whether this regulatory event was dependent on Ras activation and increased TATA-binding protein (TBP) levels. Our previous studies have demonstrated that X, and the activation of Ras, produces an increase in the cellular levels of TBP (H.-D. Wang, A. Trivedi, and D. L. Johnson, Mol. Cell. Biol. 17:6838–6846, 1997). Expression of a dominant negative form of Ras blocked the X-mediated induction of the rRNA promoters, whereas expression of a constitutively activated form of Ras mimicked the enhancing effect of X on rRNA promoter activity. When TBP was overexpressed in either Huh7 or S2 cells, a dose-dependent increase in rRNA promoter activity was observed. To analyze whether the increase in TBP was modulating rRNA promoter activity indirectly, by increasing activity of RNA Pol II-dependent promoters, a Drosophila TBP cDNA was constructed with a mutation that eliminated its ability to stimulate RNA Pol II-dependent promoters. Transient expression of wild-type TBP in S2 cells increased the activities of specific RNA Pol I- and Pol II-dependent promoters. Expression of the mutant TBP protein failed to enhance the activity of the RNA Pol II-dependent promoters, yet the protein completely retained its ability to stimulate the rRNA promoter. Furthermore, the

  6. MicroRNA-based Therapeutic Strategies for Targeting Mutant and Wild Type RAS in Cancer

    PubMed Central

    Sharma, Sriganesh B.; Ruppert, J. Michael

    2015-01-01

    MicroRNAs (miRs) have been causally implicated in the progression and development of a wide variety of cancers. miRs modulate the activity of key cell signaling networks by regulating the translation of pathway component proteins. Thus, the pharmacological targeting of miRs that regulate cancer cell signaling networks, either by promoting (using miR-supplementation) or by suppressing (using anti-sense oligonucleotide based strategies) miR activity is an area of intense research. The RAS-Extracellular signal regulated kinase (ERK) pathway represents a major miR-regulated signaling network that endows cells with some of the classical hallmarks of cancer, and is often inappropriately activated in malignancies by somatic genetic alteration through point mutation or alteration of gene copy number. In addition, recent progress indicates that many tumors may be deficient in GTPase activating proteins (GAPs) due to the collaborative action of oncogenic microRNAs. Recent studies also suggest that in tumors harboring a mutant RAS allele there is a critical role for wild type RAS proteins in determining overall RAS-ERK pathway activity. Together, these two advances comprise a new opportunity for therapeutic intervention. In this review, we evaluate miR-based therapeutic strategies for modulating RAS-ERK signaling in cancers, in particular for more direct modulation of RAS-GTP levels, with the potential to complement current strategies in order to yield more durable treatment responses. To this end, we discuss the potential for miR-based therapies focused on three prominent miRs including the pan-RAS regulator let-7 and the GAP regulator comprised of miR-206 and miR-21 (miR-206/21). PMID:26284568

  7. Angiotensin II activates different calcium signaling pathways in adipocytes.

    PubMed

    Dolgacheva, Lyudmila P; Turovskaya, Maria V; Dynnik, Vladimir V; Zinchenko, Valery P; Goncharov, Nikolay V; Davletov, Bazbek; Turovsky, Egor A

    2016-03-01

    Angiotensin II (Ang II) is an important mammalian neurohormone involved in reninangiotensin system. Ang II is produced both constitutively and locally by RAS systems, including white fat adipocytes. The influence of Ang II on adipocytes is complex, affecting different systems of signal transduction from early Са(2+) responses to cell proliferation and differentiation, triglyceride accumulation, expression of adipokine-encoding genes and adipokine secretion. It is known that white fat adipocytes express all RAS components and Ang II receptors (АТ1 and АТ2). The current work was carried out with the primary white adipocytes culture, and Са(2+) signaling pathways activated by Ang II were investigated using fluorescent microscopy. Са(2+)-oscillations and transient responses of differentiated adipocytes to Ang II were registered in cells with both small and multiple lipid inclusions. Using inhibitory analysis and selective antagonists, we now show that Ang II initiates periodic Са(2+)-oscillations and transient responses by activating АТ1 and АТ2 receptors and involving branched signaling cascades: 1) Ang II → Gq → PLC → IP3 → IP3Rs → Ca(2+) 2) Gβγ → PI3Kγ → PKB 3) PKB → eNOS → NO → PKG 4) CD38 → cADPR → RyRs → Ca(2+) In these cascades, AT1 receptors play the leading role. The results of the present work open a perspective of using Ang II for correction of signal resistance of adipocytes often observed during obesity and type 2 diabetes. PMID:26850364

  8. Calcium-dependent immediate-early gene induction in lymphocytes is negatively regulated by p21Ha-ras.

    PubMed Central

    Chen, C Y; Forman, L W; Faller, D V

    1996-01-01

    The induction of immediate-early (IE) response genes, such as egr-1, c-fos, and c-jun, occurs rapidly after the activation of T lymphocytes. The process of activation involves calcium mobilization, activation of protein kinase C (PKC), and phosphorylation of tyrosine kinases. p21(ras), a guanine nucleotide binding factor, mediates T-cell signal transduction through PKC-dependent and PKC-independent pathways. The involvement of p21(ras) in the regulation of calcium-dependent signals has been suggested through analysis of its role in the activation of NF-AT. We have investigated the inductions of the IE genes in response to calcium signals in Jurkat cells (in the presence of activated p21(ras)) and their correlated consequences. The expression of activated p21(ras) negatively regulated the induction of IE genes by calcium ionophore. This inhibition of calcium-activated IE gene induction was reversed by treatment with cyclosporin A, suggesting the involvement of calcineurin in this regulation. A later result of inhibition of this activation pathway by p21(ras) was down-regulation of the activity of the transcription factor AP-1 and subsequent coordinate reductions in IL-2 gene expression and protein production. These results suggest that p2l(ras) is an essential mediator in generating not only positive but also negative modulatory mechanisms controlling the competence of T cells in response to inductive stimulations. PMID:8887687

  9. Heparin suppresses lipid raft-mediated signaling and ligand-independent EGF receptor activation.

    PubMed

    Liu, Yuan-Tao; Song, Lifang; Templeton, Douglas M

    2007-04-01

    Heparin is well known to suppress vascular smooth muscle cell (VSMC) proliferation, and attempts to exploit this therapeutically have led to recognition of multiple pathways for heparin's anti-mitogenic actions. At low concentrations (ca. 1 microg.ml(-1)), these suppressive effects may reflect physiological activities of endogenous heparan sulfates, and appear to be rapid responses to extracellular or cell surface-associated heparin. Because heparin has been shown to influence expression of caveolin proteins, and caveolae/lipid rafts are critical structures modulating cell signaling, we examined the effect of heparin on signaling involving cholesterol-rich membrane microdomains. The VSMC line PAC-1 activates the MAP kinase Erk in response to the cholesterol-sequestering agents methyl-beta-cyclodextrin and nystatin. This follows a temporal sequence that involves Ras-GTP activation of MEK, and is independent of PKC, Src, and PI3 kinase. However, ligand-independent phosphorylation of the EGF receptor (EGFR) by removal of cholesterol precedes Ras activation, and the EGFR kinase inhibitor AG1478 blocks Erk phosphorylation, supporting occurrence of the signaling sequence EGFR-Ras-MEK-Erk. Phosphorylation of EGFR occurs predominantly in caveolin-rich microdomains as identified by Western blotting of fractions from density gradient centrifugation of membranes prepared under detergent-free conditions. In these situations, heparin inhibits phosphorylation of EGFR on the Src-dependent site Tyr(845), but not the autophosphorylation of Tyr(1173), and decreases Ras activation and Erk phosphorylation. We conclude that heparin can suppress Erk signaling in VSMC with effects on site-specific phosphorylation of EGFR localized in caveolin-enriched lipid rafts. PMID:17226785

  10. Inorganic pyrophosphate generation by transforming growth factor-beta-1 is mainly dependent on ANK induction by Ras/Raf-1/extracellular signal-regulated kinase pathways in chondrocytes

    PubMed Central

    Cailotto, Frederic; Bianchi, Arnaud; Sebillaud, Sylvie; Venkatesan, Narayanan; Moulin, David; Jouzeau, Jean-Yves; Netter, Patrick

    2007-01-01

    ANK is a multipass transmembrane protein transporter thought to play a role in the export of intracellular inorganic pyrophosphate and so to contribute to the pathophysiology of chondrocalcinosis. As transforming growth factor-beta-1 (TGF-β1) was shown to favor calcium pyrophosphate dihydrate deposition, we investigated the contribution of ANK to the production of extracellular inorganic pyrophosphate (ePPi) by chondrocytes and the signaling pathways involved in the regulation of Ank expression by TGF-β1. Chondrocytes were exposed to 10 ng/mL of TGF-β1, and Ank expression was measured by quantitative polymerase chain reaction and Western blot. ePPi was quantified in cell supernatants. RNA silencing was used to define the respective roles of Ank and PC-1 in TGF-β1-induced ePPi generation. Finally, selective kinase inhibitors and dominant-negative/overexpression plasmid strategies were used to explore the contribution of several signaling pathways to Ank induction by TGF-β1. TGF-β1 strongly increased Ank expression at the mRNA and protein levels, as well as ePPi production. Using small interfering RNA technology, we showed that Ank contributed approximately 60% and PC-1 nearly 20% to TGF-β1-induced ePPi generation. Induction of Ank by TGF-β1 required activation of the extracellular signal-regulated kinase (ERK) pathway but not of p38-mitogen-activated protein kinase or of protein kinase A. In line with the general protein kinase C (PKC) inhibitor calphostin C, Gö6976 (a Ca2+-dependent PKC inhibitor) diminished TGF-β1-induced Ank expression by 60%, whereas a 10% inhibition was observed with rottlerin (a PKCδ inhibitor). These data suggest a regulatory role for calcium in TGF-β1-induced Ank expression. Finally, we demonstrated that the stimulatory effect of TGF-β1 on Ank expression was inhibited by the suppression of the Ras/Raf-1 pathway, while being enhanced by their constitutive activation. Transient overexpression of Smad 7, an inhibitory Smad, failed

  11. Disruption of the ARF transcriptional activator DMP1 facilitates cell immortalization, Ras transformation, and tumorigenesis

    PubMed Central

    Inoue, Kazushi; Wen, Renren; Rehg, Jerold E.; Adachi, Masashi; Cleveland, John L.; Roussel, Martine F.; Sherr, Charles J.

    2000-01-01

    The DMP1 transcription factor induces the ARF tumor suppressor gene in mouse fibroblasts, leading to cell cycle arrest in a p53-dependent manner. We disrupted sequences encoding the DNA-binding domain of DMP1 in mouse embryonic stem cells and derived animals lacking the functional protein. DMP1-null animals are small at birth, and males develop more slowly than their wild-type littermates. Some adult animals exhibit seizures and/or obstuctive uropathy, each of unknown cause. The growth of explanted DMP1-null mouse embryo fibroblasts (MEFs) is progressively retarded as cells are passaged in culture on defined transfer protocols; but, unlike the behavior of normal cells, p19ARF, Mdm2, and p53 levels remain relatively low and DMP1-null MEFs do not senesce. Whereas the establishment of cell lines from MEFs is usually always accompanied by either p53 or ARF loss of function, continuously passaged DMP1-null cells readily give rise to established 3T3 and 3T9 cell lines that retain wild-type ARF and functional p53 genes. Early-passage DMP1-null cells, like MEFs from either ARF-null or p53-null mice, can be morphologically transformed by oncogenic Ha-Ras (Val-12) alone. Splenic lymphocytes harvested from both DMP1-null and ARF-null mice exhibit enhanced proliferative responses in long-term cultures when stimulated to divide with antibody to CD3 and interleukin-2. Although only 1 of 40 DMP1-null animals spontaneously developed a tumor in the first year of life, neonatal treatment with dimethylbenzanthracene or ionizing radiation induced tumors of various histologic types that were not observed in similarly treated DMP1+/+ animals. Karyotypic analyses of MEFs and lymphomas from DMP1-null animals revealed pseudodiploid chromosome numbers, consistent with the retention of wild-type p53. Together, these data suggest that ARF function is compromised, but not eliminated, in animals lacking functional DMP1. PMID:10898794

  12. ARF-GEF cytohesin-2/ARNO regulates R-Ras and α5-integrin recycling through an EHD1-positive compartment

    PubMed Central

    Salem, Joseph C.; Reviriego-Mendoza, Marta M.; Santy, Lorraine C.

    2015-01-01

    When expressed in epithelial cells, cytohesin-2/ARNO, a guanine nucleotide exchange factor (GEF) for ARF small GTPases, causes a robust migration response. Recent evidence suggests that cytohesin-2/ARNO acts downstream of small the GTPase R-Ras to promote spreading and migration. We hypothesized that cytohesin-2/ARNO could transmit R-Ras signals by regulating the recycling of R-Ras through ARF activation. We found that Eps15-homology domain 1 (EHD1), a protein that associates with the endocytic recycling compartment (ERC), colocalizes with active R-Ras in transiently expressed HeLa cells. In addition, we show that EHD1-positive recycling endosomes are a novel compartment for cytohesin-2/ARNO. Knockdown or expression of GEF-inactive (E156K) cytohesin-2/ARNO causes R-Ras to accumulate on recycling endosomes containing EHD1 and inhibits cell spreading. E156K-ARNO also causes a reduction in focal adhesion size and number. Finally, we demonstrate that R-Ras/ARNO signaling is required for recycling of α5-integrin and R-Ras to the plasma membrane. These data establish a role for cytohesin-2/ARNO as a regulator of R-Ras and integrin recycling and suggest that ARF-regulated trafficking of R-Ras is required for R-Ras–dependent effects on spreading and adhesion formation. PMID:26378252

  13. Rasfonin, a novel 2-pyrone derivative, induces ras-mutated Panc-1 pancreatic tumor cell death in nude mice.

    PubMed

    Xiao, Z; Li, L; Li, Y; Zhou, W; Cheng, J; Liu, F; Zheng, P; Zhang, Y; Che, Y

    2014-01-01

    Rasfonin is a novel 2-pyrone derivative reported to induce apoptosis in ras-dependent cells. In this study, its effects on ras-mutated pancreatic cancer cells were investigated in vitro and in vivo. Two human pancreatic cancer cell lines Panc-1 (mutated K-ras) and BxPC-3 (wild-type K-ras) were selected to test the effects of rasfonin on cell proliferation, clone formation, migration and invasion in vitro. Immunoblotting was used to detect the expressions of EGFR-Ras-Raf-MEK-ERK signaling pathway proteins. Ras activity was measured using a pull-down ELISA kit and guanine exchange factor (GEF)/GTPase-activating proteins (GAP) activity was measured by [(3)H]-GDP radiometric ligand binding. For an in vivo study, CD1 nude mice bearing Panc-1 cells were treated with rasfonin or Salirasib (FTS). We found that rasfonin suppressed proliferation more strongly in Panc-1 cells (IC50=5.5 μM) than BxPC-3 cells (IC50=10 μM) in vitro. Clone formation, migration and invasion by Panc-1 cells were also reduced by rasfonin. Rasfonin had little effect on the farnesylation of Ras, but it strongly downregulated Ras activity and consequently phosphorylation of c-Raf/MEK/ERK. Further experiments indicated that rasfonin reduced Son of sevenless (Sos1) expression but did not alter GEF and GAP activities. The in vivo experiments also revealed that rasfonin (30 mg/kg) delayed the growth of xenograft tumors originating from Panc-1 cells. Tumor weight was ultimately decreased after 20 days of treatment of rasfonin. Rasfonin is a robust inhibitor of pancreatic cancers with the K-ras mutation. The reduction of Sos1 expression and the consequently depressed Ras-MAPK activity could be important in its anticancer activity. PMID:24853419

  14. Suppression of ras-transformants (review).

    PubMed

    Kuzumaki, N

    1991-01-01

    Transforming ras genes are the oncogenes most frequently identified in human cancers. This justifies the intense interest in finding ways to suppress oncogenicity in these gene family-mediated transformants. The methods of suppression can be classified as 1) genetical, 2) biological and 3) pharmacological. Most of the reagents used for the suppression inhibit rodent transformants induced by transfected viral or activated cellular ras oncogenes, but some of the reagents are also effective when applied to natural human transformants that contain activated ras oncogenes. The growth and tumorigenicity of the ras-transformants are suppressed by the inhibition of the integration, transcription, translation or post-translational modification of the ras genes and p21 ras proteins, as well as the inhibition of the expression of genes which collaborate in the ras-transformation or the enhancement of some tumor suppressor genes. These observations offer novel approaches to the investigation of malignant transformation by ras-oncogenes, and have potential application in treatment of ras-oncogene-induced tumors. PMID:2018365

  15. Comparison of liver oncogenic potential among human RAS isoforms

    PubMed Central

    Chung, Sook In; Moon, Hyuk; Ju, Hye-Lim; Kim, Dae Yeong; Cho, Kyung Joo; Ribback, Silvia; Dombrowski, Frank; Calvisi, Diego F.; Ro, Simon Weonsang

    2016-01-01

    Mutation in one of three RAS genes (i.e., HRAS, KRAS, and NRAS) leading to constitutive activation of RAS signaling pathways is considered a key oncogenic event in human carcinogenesis. Whether activated RAS isoforms possess different oncogenic potentials remains an unresolved question. Here, we compared oncogenic properties among RAS isoforms using liver-specific transgenesis in mice. Hydrodynamic transfection was performed using transposons expressing short hairpin RNA downregulating p53 and an activated RAS isoform, and livers were harvested at 23 days after gene delivery. No differences were found in the hepatocarcinogenic potential among RAS isoforms, as determined by both gross examination of livers and liver weight per body weight ratio (LW/BW) of mice expressing HRASQ61L, KRAS4BG12V and NRASQ61K. However, the tumorigenic potential differed significantly between KRAS splicing variants. The LW/BW ratio in KRAS4AG12V mice was significantly lower than in KRAS4BG12V mice (p < 0.001), and KRAS4AG12V mice lived significantly longer than KRRAS4BG12V mice (p < 0.0001). Notably, tumors from KRAS4AG12V mice displayed higher expression of the p16INK4A tumor suppressor when compared with KRAS4BG12V tumors. Forced overexpression of p16INK4A significantly reduced tumor growth in KRAS4BG12V mice, suggesting that upregulation of p16INK4A by KRAS4AG12V presumably delays tumor development driven by the latter oncogene. PMID:26799184

  16. Specific cancer-associated mutations in the switch III region of Ras increase tumorigenicity by nanocluster augmentation

    PubMed Central

    Šolman, Maja; Ligabue, Alessio; Blaževitš, Olga; Jaiswal, Alok; Zhou, Yong; Liang, Hong; Lectez, Benoit; Kopra, Kari; Guzmán, Camilo; Härmä, Harri; Hancock, John F; Aittokallio, Tero; Abankwa, Daniel

    2015-01-01

    Hotspot mutations of Ras drive cell transformation and tumorigenesis. Less frequent mutations in Ras are poorly characterized for their oncogenic potential. Yet insight into their mechanism of action may point to novel opportunities to target Ras. Here, we show that several cancer-associated mutations in the switch III region moderately increase Ras activity in all isoforms. Mutants are biochemically inconspicuous, while their clustering into nanoscale signaling complexes on the plasma membrane, termed nanocluster, is augmented. Nanoclustering dictates downstream effector recruitment, MAPK-activity, and tumorigenic cell proliferation. Our results describe an unprecedented mechanism of signaling protein activation in cancer. DOI: http://dx.doi.org/10.7554/eLife.08905.001 PMID:26274561

  17. Targeting RAS Membrane Association: Back to the Future for Anti-RAS Drug Discovery?

    PubMed Central

    Cox, Adrienne D.; Der, Channing J.; Philips, Mark R.

    2015-01-01

    RAS proteins require membrane association for their biological activity, making this association a logical target for anti-RAS therapeutics. Lipid modification of RAS proteins by a farnesyl isoprenoid is an obligate step in that association, and is an enzymatic process. Accordingly, farnesyltransferase inhibitors (FTIs) were developed as potential anti-RAS drugs. The lack of efficacy of FTIs as anti-cancer drugs was widely seen as indicating that blocking RAS membrane association was a flawed approach to cancer treatment. However, a deeper understanding of RAS modification and trafficking has revealed that this was an erroneous conclusion. In the presence of FTIs, KRAS and NRAS, which are the RAS isoforms most frequently mutated in cancer, become substrates for alternative modification, can still associate with membranes, and can still function. Thus, FTIs failed not because blocking RAS membrane association is an ineffective approach, but because FTIs failed to accomplish that task. Recent findings regarding RAS isoform trafficking and the regulation of RAS subcellular localization have rekindled interest in efforts to target these processes. In particular, improved understanding of the palmitoylation/depalmitoylation cycle that regulates RAS interaction with the plasma membrane, endomembranes and cytosol, and of the potential importance of RAS chaperones, have led to new approaches. Efforts to validate and target other enzymatically regulated post-translational modifications are also ongoing. In this review, we revisit lessons learned, describe the current state of the art, and highlight challenging but promising directions to achieve the goal of disrupting RAS membrane association and subcellular localization for anti-RAS drug development. PMID:25878363

  18. Nore1a drives Ras to flick the P53 senescence switch

    PubMed Central

    Donninger, Howard; Clark, Geoffrey J.

    2016-01-01

    ABSTRACT RAS-induced senescence is a protective mechanism to avoid unrestricted cell growth due to aberrant mitogenic signals; however, the exact mechanism by which RAS induces senescence is not known. We recently identified a novel pathway linking RAS to p53 via NORE1A and HIPK2 that mechanistically explains how Ras induces senescence. PMID:27314075

  19. Oncogenic RAS pathway activation promotes resistance to anti-VEGF therapy through G-CSF–induced neutrophil recruitment

    PubMed Central

    Phan, Vernon T.; Wu, Xiumin; Cheng, Jason H.; Sheng, Rebecca X.; Chung, Alicia S.; Zhuang, Guanglei; Tran, Christopher; Song, Qinghua; Kowanetz, Marcin; Sambrone, Amy; Tan, Martha; Meng, Y. Gloria; Jackson, Erica L.; Peale, Franklin V.; Junttila, Melissa R.; Ferrara, Napoleone

    2013-01-01

    Granulocyte-colony stimulating factor (G-CSF) promotes mobilization of CD11b+Gr1+ myeloid cells and has been implicated in resistance to anti-VEGF therapy in mouse models. High G-CSF production has been associated with a poor prognosis in cancer patients. Here we show that activation of the RAS/MEK/ERK pathway regulates G-CSF expression through the Ets transcription factor. Several growth factors induced G-CSF expression by a MEK-dependent mechanism. Inhibition of G-CSF release with a MEK inhibitor markedly reduced G-CSF production in vitro and synergized with anti-VEGF antibodies to reduce CD11b+Ly6G+ neutrophil mobilization and tumor growth and led to increased survival in animal models of cancer, including a genetically engineered mouse model of pancreatic adenocarcinoma. Analysis of biopsies from pancreatic cancer patients revealed increased phospho-MEK, G-CSF, and Ets expression and enhanced neutrophil recruitment compared with normal pancreata. These results provide insights into G-CSF regulation and on the mechanism of action of MEK inhibitors and point to unique anticancer strategies. PMID:23530240

  20. T24 human bladder carcinoma cells with activated Ha-ras protooncogene: Nontumorigenic cells susceptible to malignant transformation with carcinogen

    SciTech Connect

    Senger, D.R.; Perruzzi, C.A.; Ali, I.U. )

    1988-07-01

    A comparative analysis of T24 human bladder carcinoma cells and N-methyl-N{prime}-nitro-N-nitrosoguanidine (MeNNG)-transformed derivatives (MeNNG-T24) revealed the following: (i) The presence of an activated c-Ha-ras gene (in the absence of the normal allele) is sufficient to confer upon T24 cells a tumor-associated phenotype. (ii) MeNNG-transformed T24 cells not only acquire tumor-associated (in vitro) traits (growth in soft agar and rhodamine retention) but, are highly tumorigenic in nude mice. (iii) It is possible to render T24 cells tumorigenic by chemical transformation; therefore, the reason that T24 cells lack tumorigenicity is not because of possible incompatibilities between these cells and nude mice but, in fact, because T24 cells are not malignant. (iv) The loss of expression of a transformation-related M{sub r} 67,000 phosphoprotein by MeNNG-T24 cells after explanation of these cells from nude mouse tumors to in vitro culture indicates that culture conditions can be responsible for rapid phenotypic conversion of human tumor cell lines.

  1. Oncogenic RAS pathway activation promotes resistance to anti-VEGF therapy through G-CSF-induced neutrophil recruitment.

    PubMed

    Phan, Vernon T; Wu, Xiumin; Cheng, Jason H; Sheng, Rebecca X; Chung, Alicia S; Zhuang, Guanglei; Tran, Christopher; Song, Qinghua; Kowanetz, Marcin; Sambrone, Amy; Tan, Martha; Meng, Y Gloria; Jackson, Erica L; Peale, Franklin V; Junttila, Melissa R; Ferrara, Napoleone

    2013-04-01

    Granulocyte-colony stimulating factor (G-CSF) promotes mobilization of CD11b(+)Gr1(+) myeloid cells and has been implicated in resistance to anti-VEGF therapy in mouse models. High G-CSF production has been associated with a poor prognosis in cancer patients. Here we show that activation of the RAS/MEK/ERK pathway regulates G-CSF expression through the Ets transcription factor. Several growth factors induced G-CSF expression by a MEK-dependent mechanism. Inhibition of G-CSF release with a MEK inhibitor markedly reduced G-CSF production in vitro and synergized with anti-VEGF antibodies to reduce CD11b(+)Ly6G(+) neutrophil mobilization and tumor growth and led to increased survival in animal models of cancer, including a genetically engineered mouse model of pancreatic adenocarcinoma. Analysis of biopsies from pancreatic cancer patients revealed increased phospho-MEK, G-CSF, and Ets expression and enhanced neutrophil recruitment compared with normal pancreata. These results provide insights into G-CSF regulation and on the mechanism of action of MEK inhibitors and point to unique anticancer strategies. PMID:23530240

  2. Ras Oncogene-Mediated Progressive Silencing of Extracellular Superoxide Dismutase in Tumorigenesis

    PubMed Central

    Cammarota, Francesca; de Vita, Gabriella; Salvatore, Marco; Laukkanen, Mikko O.

    2015-01-01

    Extracellular superoxide dismutase (SOD3) is a secreted enzyme that uses superoxide anion as a substrate in a dismutase reaction that results in the formation of hydrogen peroxide. Both of these reactive oxygen species affect growth signaling in cells. Although SOD3 has growth-supporting characteristics, the expression of SOD3 is downregulated in epithelial cancer cells. In the current work, we studied the mechanisms regulating SOD3 expression in vitro using thyroid cell models representing different stages of thyroid cancer. We demonstrate that a low level of RAS activation increases SOD3 mRNA synthesis that then gradually decreases with increasing levels of RAS activation and the decreasing degree of differentiation of the cancer cells. Our data indicate that SOD3 regulation can be divided into two classes. The first class involves RAS–driven reversible regulation of SOD3 expression that can be mediated by the following mechanisms: RAS GTPase regulatory genes that are responsible for SOD3 self-regulation; RAS-stimulated p38 MAPK activation; and RAS-activated increased expression of the mir21 microRNA, which inversely correlates with sod3 mRNA expression. The second class involves permanent silencing of SOD3 mediated by epigenetic DNA methylation in cells that represent more advanced cancers. Therefore, the work suggests that SOD3 belongs to the group of ras oncogene-silenced genes. PMID:26550576

  3. Superoxide Inhibits Guanine Nucleotide Exchange Factor (GEF) Action on Ras, but not on Rho, through Desensitization of Ras to GEF

    PubMed Central

    2015-01-01

    Ras and Rho GTPases are molecular switches for various vital cellular signaling pathways. Overactivation of these GTPases often causes development of cancer. Guanine nucleotide exchange factors (GEFs) and oxidants function to upregulate these GTPases through facilitation of guanine nucleotide exchange (GNE) of these GTPases. However, the effect of oxidants on GEF functions, or vice versa, has not been known. We show that, via targeting Ras Cys51, an oxidant inhibits the catalytic action of Cdc25—the catalytic domain of RasGEFs—on Ras. However, the enhancement of Ras GNE by an oxidant continues regardless of the presence of Cdc25. Limiting RasGEF action by an oxidant may function to prevent the pathophysiological overactivation of Ras in the presence of both RasGEFs and oxidants. The continuous exposure of Ras to nitric oxide and its derivatives can form S-nitrosated Ras (Ras-SNO). This study also shows that an oxidant not only inhibits the catalytic action of Cdc25 on Ras-SNO but also fails to enhance Ras-SNO GNE. This lack of enhancement then populates the biologically inactive Ras-SNO in cells, which may function to prevent the continued redox signaling of the Ras pathophysiological response. Finally, this study also demonstrates that, unlike the case with RasGEFs, an oxidant does not inhibit the catalytic action of RhoGEF—Vav or Dbs—on Rho GTPases such as Rac1, RhoA, RhoC, and Cdc42. This result explains the results of the previous study in which, despite the presence of an oxidant, the catalytic action of Dbs in cells continued to enhance RhoC GNE. PMID:24422478

  4. Inhibition of Ras for cancer treatment: the search continues

    PubMed Central

    Baines, Antonio T.; Xu, Dapeng; Der, Channing J.

    2012-01-01

    Background The RAS oncogenes (HRAS, NRAS and KRAS) comprise the most frequently mutated class of oncogenes in human cancers (33%), stimulating intensive effort in developing anti-Ras inhibitors for cancer treatment. Discussion Despite intensive effort, to date no effective anti-Ras strategies have successfully made it to the clinic. We present an overview of past and ongoing strategies to inhibit oncogenic Ras in cancer. Conclusions Since approaches to directly target mutant Ras have not been successful, most efforts have focused on indirect approaches to block Ras membrane association or downstream effector signaling. While inhibitors of effector signaling are currently under clinical evaluation, genome-wide unbiased genetic screens have identified novel directions for future anti-Ras drug discovery. PMID:22004085

  5. K-Ras promotes the non-small lung cancer cells survival by cooperating with sirtuin 1 and p27 under ROS stimulation.

    PubMed

    Cheng, Dezhi; Zhao, Liang; Xu, Yunsheng; Ou, Rongying; Li, Gang; Yang, Han; Li, Wenfeng

    2015-09-01

    Cigarette smoking might lead to lung cancer. However, the related signaling pathways at molecular level remained unknown until now. In this study, we studied the signaling processes associated between tobacco exposure and lung cancer. First, we detected and validated pathway-specific gene expression at bronchial epithelium. These proteins reflected the activation of signaling pathways relevant to tobacco exposure, including ATM, BCL2, GPX1, K-Ras, IKBKB, and SIRT1. Tobacco smoking was simulated via reactive oxygen species (ROS) pathway. ROS not only arrested cell cycle at G1/S stage but also increased expressions of Sirt1 and p27. Further studies showed that the expression of p27 was dependent on ERK1/2 activation, and p27 itself could halt cell cycle by inhibiting the activation of CDKs. Moreover, activation of K-Ras, the key regulator of Ras/ERK pathway, was tightly regulated by enzyme activity of Sirt1. Deacetylation of K-Ras by Sirt1 increased the transformation of Ras-GTP to Ras-GDP, promoting the activation of downstream of ERK1/2. In reverse, Ras/ERK pathway could also regulate Sirt1 transcription. In conclusion, inhibition of Sirt1 may be an effective strategy for the prevention of tumor progression in high-risk patients or as a therapeutic strategy in established tumors. PMID:25894374

  6. Hybridization specificity, enzymatic activity and biological (Ha-ras) activity of oligonucleotides containing 2,4-dideoxy-beta-D-erythro-hexopyranosyl nucleosides.

    PubMed Central

    Augustyns, K; Godard, G; Hendrix, C; Van Aerschot, A; Rozenski, J; Saison-Behmoaras, T; Herdewijn, P

    1993-01-01

    Antisense oligonucleotides with a 2,4-dideoxyhexopyranosyl nucleoside incorporated at the 3'-end and at a mutation site of the Ha-ras oncogene mRNA were synthesized. Melting temperature studies revealed that an A*-G mismatch is more stable than an A*-T mismatch with these hexopyranosyl nucleosides incorporated at the mutation site. The oligonucleotides are stable against enzymatic degradation. RNase H mediated cleavage studies revealed selective cleavage of mutated Ha-ras mRNA. The oligonucleotide containing two pyranose nucleosides at the penultimate position activates RNase H more strongly than natural oligonucleotides. No correlation, however, was found between DNA - DNA or RNA - DNA melting temperatures and RNase H mediated cleavage capacity. Although the A*-G mismatch gives more stable hybridization than the A*-T base pairing, only the oligonucleotides containing an A*-T base pair are recognized by RNase H. This modification is situated 3 base pairs upstream to the cleavage site. Finally, the double pyranose modified oligonucleotide was able to reduce the growth of T24 cells (bladder carcinoma) while the unmodified antisense oligonucleotide was not. Images PMID:7694231

  7. Quadruple wild-type (WT) GIST: defining the subset of GIST that lacks abnormalities of KIT, PDGFRA, SDH, or RAS signaling pathways

    PubMed Central

    Pantaleo, Maria A; Nannini, Margherita; Corless, Christopher L; Heinrich, Michael C

    2015-01-01

    A subset of GISTs lack mutations in the KIT/PDGFRA or RAS pathways and yet retain an intact succinate dehydrogensase (SDH) complex. We propose that these KIT/PDGFRA/SDH/RAS-P WT GIST tumors be designated as quadruple wild-type (WT) GIST. Further molecular and clinicophatological characterization of quadruple WT GIST will help to determine their prognosis as well as assist in the optimization of medical management, including clinical test of novel therapies. PMID:25165019

  8. Quadruple wild-type (WT) GIST: defining the subset of GIST that lacks abnormalities of KIT, PDGFRA, SDH, or RAS signaling pathways.

    PubMed

    Pantaleo, Maria A; Nannini, Margherita; Corless, Christopher L; Heinrich, Michael C

    2015-01-01

    A subset of GISTs lack mutations in the KIT/PDGFRA or RAS pathways and yet retain an intact succinate dehydrogensase (SDH) complex. We propose that these KIT/PDGFRA/SDH/RAS-P WT GIST tumors be designated as quadruple wild-type (WT) GIST. Further molecular and clinicophatological characterization of quadruple WT GIST will help to determine their prognosis as well as assist in the optimization of medical management, including clinical test of novel therapies. PMID:25165019

  9. Contribution of the R-Ras2 GTP-binding protein to primary breast tumorigenesis and late-stage metastatic disease

    NASA Astrophysics Data System (ADS)

    Larive, Romain M.; Moriggi, Giulia; Menacho-Márquez, Mauricio; Cañamero, Marta; Álava, Enrique De; Alarcón, Balbino; Dosil, Mercedes; Bustelo, Xosé R.

    2014-05-01

    R-Ras2 is a transforming GTPase that shares downstream effectors with Ras subfamily proteins. However, little information exists about the function of this protein in tumorigenesis and its signalling overlap with classical Ras GTPases. Here we show, by combining loss- and gain-of-function studies in breast cancer cells, mammary epithelial cells and mouse models, that endogenous R-Ras2 has a role in both primary breast tumorigenesis and the late metastatic steps of cancer cells in the lung parenchyma. R-Ras2 drives tumorigenesis in a phosphatidylinostiol-3 kinase (PI3K)-dependent and signalling autonomous manner. By contrast, its prometastatic role requires other priming oncogenic signals and the engagement of several downstream elements. R-Ras2 function is required even in cancer cells exhibiting constitutive activation of classical Ras proteins, indicating that these GTPases are not functionally redundant. Our results also suggest that application of long-term R-Ras2 therapies will result in the development of compensatory mechanisms in breast tumours.

  10. Effect of Holocene sea level change on aeolian activity in the coastal plain of Ras El Hekma area, NW coast of Egypt

    NASA Astrophysics Data System (ADS)

    Farghaly, Enas; Torab, Magdy

    2015-04-01

    Ras El Hekma area located in north western coast of Egypt, west of Alexandria city for about 220 km, in this area, environmental changes during the Holocene can be interpreted based on morphological and sedimentological similarities between Holocene geomorphic features such as cemented beaches and fossilized dunes with recent coastal features. Sand dunes and nebkhas are the most common aeolian landforms and they occur in semi-arid climatic conditions. The active separated coastal dunes and nebkhas dunes of Ras El-Hekma area are located between the swash zone and the coastal limestone ridges as well as in the coastal sabkhas. The effect of waves during storms reaches far beyond the actual beach and can cause great changes to sandy beaches at an exceptional speed. Sand accumulated by swash drifts with the wind on open beaches and bays. The aeolian sand, which originates from fluvial-marine sediments washed by sea waves. the available sediment depends on fluvial transport to the littoral zone and on biological activity in the carbonate environments as well as on longshore and cross-shore currents. This paper treats the coastal dunes in Ras El Hekma area in their entirety and defines the effects of sea level change on coastal sand dunes and sabkhas dunes, it depends upon field geomorphic surveying, sampling and mapping as well as satellite image interpretation using ENVI software and GIS techniques.

  11. Cardiac remodelling and RAS inhibition.

    PubMed

    Ferrario, Carlos M

    2016-06-01

    Risk factors such as hypertension and diabetes are known to augment the activity and tissue expression of angiotensin II (Ang II), the major effector peptide of the renin-angiotensin system (RAS). Overstimulation of the RAS has been implicated in a chain of events that contribute to the pathogenesis of cardiovascular (CV) disease, including the development of cardiac remodelling. This chain of events has been termed the CV continuum. The concept of CV disease existing as a continuum was first proposed in 1991 and it is believed that intervention at any point within the continuum can modify disease progression. Treatment with antihypertensive agents may result in regression of left ventricular hypertrophy, with different drug classes exhibiting different degrees of efficacy. The greatest decrease in left ventricular mass is observed following treatment with angiotensin converting enzyme inhibitors (ACE-Is), which inhibit Ang II formation. Although ACE-Is and angiotensin receptor blockers (ARBs) provide significant benefits in terms of CV events and stroke, mortality remains high. This is partly due to a failure to completely suppress the RAS, and, as our knowledge has increased, an escape phenomenon has been proposed whereby the human sequence of the 12 amino acid substrate angiotensin-(1-12) is converted to Ang II by the mast cell protease, chymase. Angiotensin-(1-12) is abundant in a wide range of organs and has been shown to increase blood pressure in animal models, an effect abolished by the presence of ACE-Is or ARBs. This review explores the CV continuum, in addition to examining the influence of the RAS. We also consider novel pathways within the RAS and how new therapeutic approaches that target this are required to further reduce Ang II formation, and so provide patients with additional benefits from a more complete blockade of the RAS. PMID:27105891

  12. PAK1 is a breast cancer oncogene that coordinately activates MAPK and MET signaling

    PubMed Central

    Shrestha, Yashaswi; Schafer, Eric J.; Boehm, Jesse S.; Thomas, Sapana R.; He, Frank; Du, Jinyan; Wang, Shumei; Barretina, Jordi; Weir, Barbara A.; Zhao, Jean J.; Polyak, Kornelia; Golub, Todd R.; Beroukhim, Rameen; Hahn, William C.

    2011-01-01

    Activating mutations in the RAS family or BRAF frequently occur in many types of human cancers but are rarely detected in breast tumors. However, activation of the RAS-RAF-MEK-ERK Mitogen-Activated Protein Kinase (MAPK) pathway is commonly observed in human breast cancers, suggesting that other genetic alterations lead to activation of this signaling pathway. To identify breast cancer oncogenes that activate the MAPK pathway, we screened a library of human kinases for their ability to induce anchorage-independent growth in a derivative of immortalized human mammary epithelial cells (HMLE). We identified PAK1 as a kinase that permitted HMLE cells to form anchorage-independent colonies. PAK1 is amplified in several human cancer types, including 33% of breast tumor samples and cancer cell lines. The kinase activity of PAK1 is necessary for PAK1-induced transformation. Moreover, we show that PAK1 simultaneously activates MAPK and MET signaling; the latter via inhibition of Merlin. Disruption of these activities inhibits PAK1-driven anchorage-independent growth. These observations establish PAK1 amplification as an alternative mechanism for MAPK activation in human breast cancer and credential PAK1 as a breast cancer oncogene that coordinately regulates multiple signaling pathways, the cooperation of which leads to malignant transformation. PMID:22105362

  13. Detection of two novel mutations and relatively high incidence of H-RAS mutations in Vietnamese oral cancer.

    PubMed

    Murugan, Avaniyapuram Kannan; Hong, Nguyen Thi; Cuc, Tran Thi Kim; Hung, Nguyen Chan; Munirajan, Arasambattu Kannan; Ikeda, Masa-Aki; Tsuchida, Nobuo

    2009-10-01

    Oral squamous cell carcinoma is the sixth most common cancer in the world and the seventh most common cancer in Vietnam. The RAS and PI3K-AKT signaling pathways play an important role in oral carcinogenesis. Our previous study on PI3K signaling pathway showed the absence of PIK3CA and PTEN gene mutations in Vietnamese oral cancer. We thus hypothesized that the RAS could be more likely activated as an upstream effector. However, the status of RAS mutations in Vietnamese oral cancer had not been studied. In the present study, Fifty six primary tumor DNA samples were screened for mutations of hot spots in exons 1 and 2 of H-RAS and a part of the samples for exon 7 of ERK2 gene in which we previously reported a mutation in an OSCC cell line. The H-RAS mutations were detected in 10 of 56 tumors (18%). Two novel mutations were found, one was an insertion of three nucleotides (GGC) between codons 10 and 11 resulting in in-frame insertion of glycine (10(Gly)11) and the other was a missense mutation in codon 62 (GAG>GGG). We also found T81C single nucleotide polymorphism in 12 of 56 tumors (22%) and there was no mutation in exon 7 of ERK2 gene. The H-RAS mutation incidence showed significant association with advanced stages of the tumor and also with well-differentiated tumor grade. Our study is the first to report H-RAS mutation from Vietnamese ethnicity, with two novel mutations and relatively high incidence of H-RAS mutations. The results suggest that RAS is an important member in the PI3K-AKT signaling and could play an important role in the tumorigenesis of oral carcinoma. PMID:19628422

  14. CD8(+) T cells mediate RAS-induced psoriasis-like skin inflammation through IFN-γ.

    PubMed

    Gunderson, Andrew J; Mohammed, Javed; Horvath, Frank J; Podolsky, Michael A; Anderson, Cherie R; Glick, Adam B

    2013-04-01

    The RAS signaling pathway is constitutively activated in psoriatic keratinocytes. We expressed activated H-RAS(V12G) in suprabasal keratinocytes of adult mice and observed rapid development of a psoriasis-like skin phenotype characterized by basal keratinocyte hyperproliferation, acanthosis, hyperkeratosis, intraepidermal neutrophil microabscesses, and increased T helper type 1 (Th1)/Th17 and T cell type 1 (Tc1)/Tc17 skin infiltration. The majority of skin-infiltrating CD8(+) T cells coexpressed IFN-γ and IL-17A. When RAS was expressed on a Rag1-/- background, microabscess formation, inducible nitric oxide synthase expression, and keratinocyte hyperproliferation were suppressed. Depletion of CD8(+), but not CD4(+), T cells reduced cutaneous and systemic inflammation, the RAS-induced increase in cutaneous Th17 and IL-17(+) γδ T cells, and epidermal hyperproliferation to levels similar to a Rag1-/- background. Reconstitution of Rag1-/- inducible RAS mice with purified CD8(+) T cells restored microabscess formation and epidermal hyperproliferation. Neutralization of IFN-γ, but not of IL-17A, in CD8(+) T-cell-reconstituted Rag1-/- mice expressing RAS blocked CD8-mediated skin inflammation, inducible nitric oxide synthase expression, and keratinocyte hyperproliferation. These results show that CD8(+) T cells can orchestrate skin inflammation with psoriasis-like pathology in response to constitutive RAS activation in keratinocytes, and this is primarily mediated through IFN-γ. PMID:23151849

  15. Cell Type-Specific Activation of AKT and ERK Signaling Pathways by Small Negatively-Charged Magnetic Nanoparticles

    PubMed Central

    Rauch, Jens; Kolch, Walter; Mahmoudi, Morteza

    2012-01-01

    The interaction of nanoparticles (NPs) with living organisms has become a focus of public and scientific debate due to their potential wide applications in biomedicine, but also because of unwanted side effects. Here, we show that superparamagnetic iron oxide NPs (SPIONs) with different surface coatings can differentially affect signal transduction pathways. Using isogenic pairs of breast and colon derived cell lines we found that the stimulation of ERK and AKT signaling pathways by SPIONs is selectively dependent on the cell type and SPION type. In general, cells with Ras mutations respond better than their non-mutant counterparts. Small negatively charged SPIONs (snSPIONs) activated ERK to a similar extent as epidermal growth factor (EGF), and used the same upstream signaling components including activation of the EGF receptor. Importantly, snSPIONs stimulated the proliferation of Ras transformed breast epithelial cells as efficiently as EGF suggesting that NPs can mimic physiological growth factors. PMID:23162692

  16. Cell Type-Specific Activation of AKT and ERK Signaling Pathways by Small Negatively-Charged Magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Rauch, Jens; Kolch, Walter; Mahmoudi, Morteza

    2012-11-01

    The interaction of nanoparticles (NPs) with living organisms has become a focus of public and scientific debate due to their potential wide applications in biomedicine, but also because of unwanted side effects. Here, we show that superparamagnetic iron oxide NPs (SPIONs) with different surface coatings can differentially affect signal transduction pathways. Using isogenic pairs of breast and colon derived cell lines we found that the stimulation of ERK and AKT signaling pathways by SPIONs is selectively dependent on the cell type and SPION type. In general, cells with Ras mutations respond better than their non-mutant counterparts. Small negatively charged SPIONs (snSPIONs) activated ERK to a similar extent as epidermal growth factor (EGF), and used the same upstream signaling components including activation of the EGF receptor. Importantly, snSPIONs stimulated the proliferation of Ras transformed breast epithelial cells as efficiently as EGF suggesting that NPs can mimic physiological growth factors.

  17. Functional determinants of ras interference 1 mutants required for their inhbitory activity on endocytosis

    SciTech Connect

    Galvis, Adriana; Giambini, Hugo; Villasana, Zoilmar; Barbieri, M. Alejandro

    2009-03-10

    In this study, we initiated experiments to address the structure-function relationship of Rin1. A total of ten substitute mutations were created, and their effects on Rin1 function were examined. Of the ten mutants, four of them (P541A, E574A, Y577F, T580A) were defective in Rab5 binding, while two other Rin1 mutants (D537A, Y561F) partially interacted with Rab5. Mutations in several other residues (Y506F, Y523F, T572A, Y578F) resulted in partial loss of Rab5 function. Biochemical studies showed that six of them (D537A, P541A, Y561F, E574A, Y577F, T580A) were unable to activate Rab5 in an in vitro assay. In addition, Rin1: D537A and Rin1: Y561F mutants showed dominant inhibition of Rab5 function. Consistent with the biochemical studies, we observed that these two Rin1 mutants have lost their ability to stimulate the endocytosis of EGF, form enlarged Rab5-positive endosomes, or support in vitro endosome fusion. Based on these data, our results showed that mutations in the Vps9 domain of Rin1 lead to a loss-of-function phenotype, indicating a specific structure-function relationship between Rab5 and Rin1.

  18. CD4+ T-Cell Decline after the Interruption of Antiretroviral Therapy in ACTG A5170 Is Predicted by Differential Expression of Genes in the Ras Signaling Pathway*

    PubMed Central

    Wang, Zhining; Su, Zhaohui; Nau, Martin E.; Krambrink, Amy; Skiest, Daniel J.; Margolis, David M.

    2008-01-01

    Abstract Patterns of expressed genes examined in cryopreserved peripheral blood mononuclear cells (PBMCs) of seropositive persons electing to stop antiretroviral therapy in the AIDS Clinical Trials Group Study A5170 were scrutinized to identify markers capable of predicting the likelihood of CD4+ T-cell depletion after cessation of antiretroviral therapy (ART). A5170 was a multicenter, 96-week, prospective study of HIV-infected patients with immunological preservation on ART who elected to interrupt therapy. Study entry required that the CD4 count was greater than 350 cells/mm3 within 6 months of ART initiation. Median nadir CD4 count of enrollees was 436 cells/mm3. Two cohorts, matched for clinical characteristics, were selected from A5170. Twenty-four patients with an absolute CD4 cell decline of less that 20% at week 24 (good outcome group) and 24 with a CD4 cell decline of >20% (poor outcome group) were studied. The good outcome group had a decline in CD4+ T-cell count that was 50% less than the poor outcome group. Significance analysis of microarrays identified differential gene expression (DE) in the two groups in data obtained from Affymetrix Human FOCUS GeneChips. DE was significantly higher in the poor outcome group than in the good outcome group. Prediction analysis of microarrays (PAM-R) identified genes that classified persons as to progression with greater than 80% accuracy at therapy interruption (TI) as well as at 24 weeks after TI. Gene set enrichment analysis (GSEA) identified a set of genes in the Ras signaling pathway, associated with the downregulation of apoptosis, as significantly upregulated in the good outcome group at cessation of ART. These observations identify specific host cell processes associated with differential outcome in this cohort after TI. PMID:18724805

  19. Prostaglandin E2 Blocks Menadione-Induced Apoptosis through the Ras/Raf/Erk Signaling Pathway in Promonocytic Leukemia Cell Lines

    PubMed Central

    Yeo, Hyun-Seok; Shehzad, Adeeb; Lee, Young Sup

    2012-01-01

    Altered oxidative stress has long been observed in cancer cells, and this biochemical property of cancer cells represents a specific vulnerability that can be exploited for therapeutic benefit. The major role of an elevated oxidative stress for the efficacy of molecular targeted drugs is under investigation. Menadione is considered an attractive model for the study of oxidative stress, which can induce apoptosis in human leukemia HL-60 cell lines. Prostaglandin E2 (PGE2) via its receptors not only promotes cell survival but also reverses apoptosis and promotes cancer progression. Here, we present evidence for the biological role of PGE2 as a protective agent of oxidative stress-induced apoptosis in monocytic cells. Pretreatment of HL-60 cells with PGE2 markedly ameliorated the menadione-induced apoptosis and inhibited the degradation of PARP and lamin B. The EP2 receptor antagonist AH6809 abrogated the inhibitory effect of PGE2, suggesting the role of the EP2/cAMP system. The PKA inhibitor H89 also reversed apoptosis and decreased the PKA activity that was elevated 10-fold by PGE2. The treatment of HL-60 cells with NAC or zinc chloride showed a similar protective effect as with PGE2 on menadione-treated cells. Furthermore, PGE2 activated the Ras/Raf/MEK pathway, which in turn initiated ERK activation, and ultimately protected menadione-induced apoptosis. These results imply that PGE2 via cell survival pathways may protect oxidative stress-induced apoptosis in monocytic cells. This study warrants further pre-clinical investigation as well as application towards leukemia clinics. PMID:22450688

  20. Small-molecule binding of the axin RGS domain promotes β-catenin and Ras degradation.

    PubMed

    Cha, Pu-Hyeon; Cho, Yong-Hee; Lee, Sang-Kyu; Lee, JaeHeon; Jeong, Woo-Jeong; Moon, Byoung-San; Yun, Ji-Hye; Yang, Jee Sun; Choi, Sooho; Yoon, Juyong; Kim, Hyun-Yi; Kim, Mi-Yeon; Kaduwal, Saluja; Lee, Weontae; Min, Do Sik; Kim, Hoguen; Han, Gyoonhee; Choi, Kang-Yell

    2016-08-01

    Both the Wnt/β-catenin and Ras pathways are aberrantly activated in most human colorectal cancers (CRCs) and interact cooperatively in tumor promotion. Inhibition of these signaling may therefore be an ideal strategy for treating CRC. We identified KY1220, a compound that destabilizes both β-catenin and Ras, via targeting the Wnt/β-catenin pathway, and synthesized its derivative KYA1797K. KYA1797K bound directly to the regulators of G-protein signaling domain of axin, initiating β-catenin and Ras degradation through enhancement of the β-catenin destruction complex activating GSK3β. KYA1797K effectively suppressed the growth of CRCs harboring APC and KRAS mutations, as shown by various in vitro studies and by in vivo studies using xenograft and transgenic mouse models of tumors induced by APC and KRAS mutations. Destabilization of both β-catenin and Ras via targeting axin is a potential therapeutic strategy for treatment of CRC and other type cancers activated Wnt/β-catenin and Ras pathways. PMID:27294323

  1. Ras transformation uncouples the kinesin-coordinated cellular nutrient response

    PubMed Central

    Zaganjor, Elma; Weil, Lauren M.; Gonzales, Joshua X.; Minna, John D.; Cobb, Melanie H.

    2014-01-01

    The kinesin family members (KIFs) KIF2A and KIF2C depolymerize microtubules, unlike the majority of other kinesins, which transport cargo along microtubules. KIF2A regulates the localization of lysosomes in the cytoplasm, which assists in activation of the mechanistic target of rapamycin complex 1 (mTORC1) on the lysosomal surface. We find that the closely related kinesin KIF2C also influences lysosomal organization in immortalized human bronchial epithelial cells (HBECs). Expression of KIF2C and, to a lesser extent, KIF2A in untransformed and mutant K-Ras–transformed cells is regulated by ERK1/2. Prolonged inhibition of ERK1/2 activation with PD0325901 mimics nutrient deprivation by disrupting lysosome organization and decreasing mTORC1 activity in HBEC, suggesting a long-term mechanism for optimization of mTORC1 activity by ERK1/2. We tested the hypothesis that up-regulation of KIF2C and KIF2A by ERK1/2 caused aberrant lysosomal positioning and mTORC1 activity in a mutant K-Ras–dependent cancer and cancer model. In Ras-transformed cells, however, mTORC1 activity and lysosome organization appear independent of ERK1/2 and these kinesins although ERK1/2 activity and the kinesins are required for Ras-dependent proliferation and migration. We conclude that mutant K-Ras repurposes these signaling and regulatory proteins to support the transformed phenotype. PMID:25002494

  2. Epigenetic alteration to activate Bmp2-Smad signaling in Raf-induced senescence

    PubMed Central

    Fujimoto, Mai; Mano, Yasunobu; Anai, Motonobu; Yamamoto, Shogo; Fukuyo, Masaki; Aburatani, Hiroyuki; Kaneda, Atsushi

    2016-01-01

    AIM: To investigate epigenomic and gene expression alterations during cellular senescence induced by oncogenic Raf. METHODS: Cellular senescence was induced into mouse embryonic fibroblasts (MEFs) by infecting retrovirus to express oncogenic Raf (RafV600E). RNA was collected from RafV600E cells as well as MEFs without infection and MEFs with mock infection, and a genome-wide gene expression analysis was performed using microarray. The epigenomic status for active H3K4me3 and repressive H3K27me3 histone marks was analyzed by chromatin immunoprecipitation-sequencing for RafV600E cells on day 7 and for MEFs without infection. These data for Raf-induced senescence were compared with data for Ras-induced senescence that were obtained in our previous study. Gene knockdown and overexpression were done by retrovirus infection. RESULTS: Although the expression of some genes including secreted factors was specifically altered in either Ras- or Raf-induced senescence, many genes showed similar alteration pattern in Raf- and Ras-induced senescence. A total of 841 commonly upregulated 841 genes and 573 commonly downregulated genes showed a significant enrichment of genes related to signal and secreted proteins, suggesting the importance of alterations in secreted factors. Bmp2, a secreted protein to activate Bmp2-Smad signaling, was highly upregulated with gain of H3K4me3 and loss of H3K27me3 during Raf-induced senescence, as previously detected in Ras-induced senescence, and the knockdown of Bmp2 by shRNA lead to escape from Raf-induced senescence. Bmp2-Smad inhibitor Smad6 was strongly repressed with H3K4me3 loss in Raf-induced senescence, as detected in Ras-induced senescence, and senescence was also bypassed by Smad6 induction in Raf-activated cells. Different from Ras-induced senescence, however, gain of H3K27me3 did not occur in the Smad6 promoter region during Raf-induced senescence. When comparing genome-wide alteration between Ras- and Raf-induced senescence, genes

  3. Metabolic Dependencies in RAS-Driven Cancers.

    PubMed

    Kimmelman, Alec C

    2015-04-15

    The ability to inhibit the RAS oncogene has been the holy grail of oncology because of the critical role of this gene in a multitude of tumor types. In addition, RAS-mutant tumors are among the most aggressive and refractory to treatment. Although directly targeting the RAS oncogene has proven challenging, an alternative approach for treating RAS-driven cancers is to inhibit critical downstream events that are required for tumor maintenance. Indeed, much focus has been put on inhibiting signaling cascades downstream of RAS. Recent studies have shown that oncogenic RAS promotes a metabolic reprogramming of tumor cells, shifting them toward an anabolic metabolism necessary to produce biomass to support unconstrained proliferation. These cancers also use a diverse set of fuel sources to meet their metabolic needs and have even developed a variety of mechanisms to act as metabolic scavengers to obtain necessary metabolic substrates from both extracellular and intracellular sources. Collectively, these adaptations can create "metabolic bottlenecks" whereby tumor cells rely on particular pathways or rate-limiting metabolites. In this regard, inhibiting individual or combinations of these metabolic pathways can attenuate growth in preclinical models. Because these dependencies are tumor selective and downstream of oncogenic RAS, there is the opportunity for therapeutic intervention. Although targeting tumor metabolism is still in the early days of translation to patients, our continued advances in understanding critical metabolic adaptations in RAS-driven cancers, as well as the ability to study this altered metabolism in relevant tumor models, will accelerate the development of new therapeutic approaches. Clin Cancer Res; 21(8); 1828-34. ©2015 AACR. See all articles in this CCR Focus section, "Targeting RAS-Driven Cancers." PMID:25878364

  4. A Ras GAP is essential for cytokinesis and spatial patterning in Dictyostelium.

    PubMed

    Lee, S; Escalante, R; Firtel, R A

    1997-03-01

    Using the yeast two-hybrid system, we have identified developmentally regulated Dictyostelium genes whose encoded proteins interact with Ras-GTP but not Ras-GDP. By sequence homology and biochemical function, one of these genes encodes a Ras GAP (DdRasGAP1). Cells carrying a DdRasGAP1 gene disruption (ddrasgap1 null cells) have multiple, very distinct growth and developmental defects as elucidated by examining the phenotypes of ddrasgap1 null strains. First, vegetative ddrasgap1 null cells are very large and highly multinucleate cells when grown in suspension, indicating a severe defect in cytokinesis. When suspension-grown cells are plated in growth medium on plastic where they attach and can move, the cells rapidly become mono- and dinucleate by traction-mediated cell fission and continue to grow vegetatively with a number of nuclei (1-2) per cell, similar to wild-type cells. The multinucleate phenotype, combined with results indicating that constitutive expression of activated Ras does not yield highly multinucleate cells and data on Ras null mutants, suggest that Ras may need to cycle between GTP- and GDP-bound states for proper cytokinesis. After starvation, the large null cells undergo rapid fission when they start to move at the onset of aggregation, producing mononucleate cells that form a normal aggregate. Second, ddrasgap1 null cells also have multiple developmental phenotypes that indicate an essential role of DdRasGAP1 in controlling cell patterning. Multicellular development is normal through the mid-slug stage, after which morphological differentiation is very abnormal and no culminant is formed: no stalk cells and very few spores are detected. lacZ reporter studies show that by the mid-finger stage, much of the normal cell-type patterning is lost, indicating that proper DdRasGAP1 function and possibly normal Ras activity are necessary to maintain spatial organization and for induction of prestalk to stalk and prespore to spore cell differentiation

  5. Activity Dependent Signal Transduction in Skeletal Muscle

    NASA Technical Reports Server (NTRS)

    Hamilton, Susan L.

    1999-01-01

    The overall goals of this project are: 1) to define the initial signal transduction events whereby the removal of gravitational load from antigravity muscles, such as the soleus, triggers muscle atrophy, and 2) to develop countermeasures to prevent this from happening. Our rationale for this approach is that, if countermeasures can be developed to regulate these early events, we could avoid having to deal with the multiple cascades of events that occur downstream from the initial event. One of our major findings is that hind limb suspension causes an early and sustained increase in intracellular Ca(2+) concentration ([Ca (2+)](sub i)). In most cells the consequences of changes in ([Ca (2+)](sub i))depend on the amplitude, frequency and duration of the Ca(2+) signal and on other factors in the intracellular environment. We propose that muscle remodeling in microgravity represents a change in the balance among several CA(2+) regulated signal transduction pathways, in particular those involving the transcription factors NFAT and NFkB and the pro-apoptotic protein BAD. Other Ca(2+) sensitive pathways involving PKC, ras, rac, and CaM kinase II may also contribute to muscle remodeling.

  6. The Differential Palmitoylation States of N-Ras and H-Ras Determine Their Distinct Golgi Sub-compartment Localizations

    PubMed Central

    Lynch, Stephen J.; Snitkin, Harriet; Gumper, Iwona; Philips, Mark R.; Sabatini, David; Pellicer, Angel

    2014-01-01

    Despite a high degree of structural homology and shared exchange factors, effectors and GTPase activating proteins, a large body of evidence suggests functional heterogeneity among Ras isoforms. One aspect of Ras biology that may explain this heterogeneity is the differential subcellular localizations driven by the C-terminal hypervariable regions of Ras proteins. Spatial heterogeneity has been documented at the level of organelles: palmitoylated Ras isoforms (H-Ras and N-Ras) localize on the Golgi apparatus whereas K-Ras4B does not. We tested the hypothesis that spatial heterogeneity also exists at the sub-organelle level by studying the localization of differentially palmitoylated Ras isoforms within the Golgi apparatus. Using confocal, live cell fluorescent imaging and immunogold electron microscopy we found that, whereas the doubly palmitoylated H-Ras is distributed throughout the Golgi stacks, the singly palmitoylated N-Ras is polarized with a relative paucity of expression on the trans Golgi. Using palmitoylation mutants we show that the different sub-Golgi distributions of the Ras proteins are a consequence of their differential degree of palmitoylation. Thus, the acylation state of Ras proteins controls not only their distribution between the Golgi apparatus and the plasma membrane but also their distribution within the Golgi stacks. PMID:25158650

  7. NSD2 contributes to oncogenic RAS-driven transcription in lung cancer cells through long-range epigenetic activation

    PubMed Central

    García-Carpizo, Verónica; Sarmentero, Jacinto; Han, Bomie; Graña, Osvaldo; Ruiz-Llorente, Sergio; Pisano, David G.; Serrano, Manuel; Brooks, Harold B.; Campbell, Robert M.; Barrero, Maria J.

    2016-01-01

    The histone methyltransferase NSD2/WHSC1/MMSET is overexpressed in a number of solid tumors but its contribution to the biology of these tumors is not well understood. Here, we describe that NSD2 contributes to the proliferation of a subset of lung cancer cell lines by supporting oncogenic RAS transcriptional responses. NSD2 knock down combined with MEK or BRD4 inhibitors causes co-operative inhibitory responses on cell growth. However, while MEK and BRD4 inhibitors converge in the downregulation of genes associated with cancer-acquired super-enhancers, NSD2 inhibition affects the expression of clusters of genes embedded in megabase-scale regions marked with H3K36me2 and that contribute to the RAS transcription program. Thus, combinatorial therapies using MEK or BRD4 inhibitors together with NSD2 inhibition are likely to be needed to ensure a more comprehensive inhibition of oncogenic RAS-driven transcription programs in lung cancers with NSD2 overexpression. PMID:27604143

  8. NSD2 contributes to oncogenic RAS-driven transcription in lung cancer cells through long-range epigenetic activation.

    PubMed

    García-Carpizo, Verónica; Sarmentero, Jacinto; Han, Bomie; Graña, Osvaldo; Ruiz-Llorente, Sergio; Pisano, David G; Serrano, Manuel; Brooks, Harold B; Campbell, Robert M; Barrero, Maria J

    2016-01-01

    The histone methyltransferase NSD2/WHSC1/MMSET is overexpressed in a number of solid tumors but its contribution to the biology of these tumors is not well understood. Here, we describe that NSD2 contributes to the proliferation of a subset of lung cancer cell lines by supporting oncogenic RAS transcriptional responses. NSD2 knock down combined with MEK or BRD4 inhibitors causes co-operative inhibitory responses on cell growth. However, while MEK and BRD4 inhibitors converge in the downregulation of genes associated with cancer-acquired super-enhancers, NSD2 inhibition affects the expression of clusters of genes embedded in megabase-scale regions marked with H3K36me2 and that contribute to the RAS transcription program. Thus, combinatorial therapies using MEK or BRD4 inhibitors together with NSD2 inhibition are likely to be needed to ensure a more comprehensive inhibition of oncogenic RAS-driven transcription programs in lung cancers with NSD2 overexpression. PMID:27604143

  9. c-Ha-ras down regulates the alpha-fetoprotein gene but not the albumin gene in human hepatoma cells.

    PubMed Central

    Nakao, K; Lawless, D; Ohe, Y; Miyao, Y; Nakabayashi, H; Kamiya, H; Miura, K; Ohtsuka, E; Tamaoki, T

    1990-01-01

    We studied the effects of transfection of the normal c-Ha-ras gene, rasGly-12, and its oncogenic mutant, rasVal-12, on expression of the alpha-fetoprotein (AFP) and albumin genes in a human hepatoma cell line, HuH-7. The mutant and, to a lesser extent, the normal ras gene caused reduction of the AFP mRNA but not the albumin mRNA level in transfected HuH-7 cells. Cotransfection experiments with a rasVal-12 expression plasmid and a chloramphenicol acetyltransferase reporter gene fused to AFP regulatory sequences showed that rasVal-12 suppressed the activity of enhancer and promoter regions containing A + T-rich sequences (AT motif). In contrast, rasVal-12 did not affect the promoter activity of the albumin and human hepatitis B virus pre-S1 genes even though these promoters contain homologous A + T-rich elements. ras transfection appeared to induce phosphorylation of nuclear proteins that interact with the AFP AT motif, since gel mobility analysis revealed the formation of slow-moving complexes which was reversed by phosphatase treatment. However, similar changes in complex formation were observed with the albumin and hepatitis B surface antigen pre-S1 promoters. Therefore, this effect alone cannot explain the specific down regulation of the AFP promoter and enhancer activity. ras-mediated suppression of the AFP gene may reflect the process of developmental gene regulation in which AFP gene transcription is controlled by a G-protein-linked signal transduction cascade triggered by external growth stimuli. Images PMID:1690841

  10. Extracellular matrix-modulated Heartless signaling in Drosophila blood progenitors regulates their differentiation via a Ras/ETS/FOG pathway and target of rapamycin function.

    PubMed

    Dragojlovic-Munther, Michelle; Martinez-Agosto, Julian A

    2013-12-15

    Maintenance of hematopoietic progenitors ensures a continuous supply of blood cells during the lifespan of an organism. Thus, understanding the molecular basis for progenitor maintenance is a continued focus of investigation. A large pool of undifferentiated blood progenitors are maintained in the Drosophila hematopoietic organ, the larval lymph gland, by a complex network of signaling pathways that are mediated by niche-, progenitor-, or differentiated hemocyte-derived signals. In this study we examined the function of the Drosophila fibroblast growth factor receptor (FGFR), Heartless, a critical regulator of early lymph gland progenitor specification in the late embryo, during larval lymph gland hematopoiesis. Activation of Heartless signaling in hemocyte progenitors by its two ligands, Pyramus and Thisbe, is both required and sufficient to induce progenitor differentiation and formation of the plasmatocyte-rich lymph gland cortical zone. We identify two transcriptional regulators that function downstream of Heartless signaling in lymph gland progenitors, the ETS protein, Pointed, and the Friend-of-GATA (FOG) protein, U-shaped, which are required for this Heartless-induced differentiation response. Furthermore, cross-talk of Heartless and target of rapamycin signaling in hemocyte progenitors is required for lamellocyte differentiation downstream of Thisbe-mediated Heartless activation. Finally, we identify the Drosophila heparan sulfate proteoglycan, Trol, as a critical negative regulator of Heartless ligand signaling in the lymph gland, demonstrating that sequestration of differentiation signals by the extracellular matrix is a unique mechanism employed in blood progenitor maintenance that is of potential relevance to many other stem cell niches. PMID:23603494

  11. Extracellular matrix-modulated Heartless signaling in Drosophila blood progenitors regulates their differentiation via a Ras/ETS/FOG pathway and target of rapamycin function

    PubMed Central

    Dragojlovic-Munther, Michelle; Martinez-Agosto, Julian A

    2014-01-01

    Maintenance of hematopoietic progenitors ensures a continuous supply of blood cells during the lifespan of an organism. Thus, understanding the molecular basis for progenitor maintenance is a continued focus of investigation. A large pool of undifferentiated blood progenitors are maintained in the Drosophila hematopoietic organ, the larval lymph gland, by a complex network of signaling pathways that are mediated by niche-, progenitor-, or differentiated hemocyte-derived signals. In this study we examined the function of the Drosophila fibroblast growth factor receptor (FGFR), Heartless, a critical regulator of early lymph gland progenitor specification in the late embryo, during larval lymph gland hematopoiesis. Activation of Heartless signaling in hemocyte progenitors by its two ligands, Pyramus and Thisbe, is both required and sufficient to induce progenitor differentiation and formation of the plasmatocyte-rich lymph gland cortical zone. We identify two transcriptional regulators that function downstream of Heartless signaling in lymph gland progenitors, the ETS protein, Pointed, and the Friend-of-GATA (FOG) protein, U-shaped, which are required for this Heartless-induced differentiation response. Furthermore, cross-talk of Heartless and target of rapamycin signaling in hemocyte progenitors is required for lamellocyte differentiation downstream of Thisbe-mediated Heartless activation. Finally, we identify the Drosophila heparan sulfate proteoglycan, Trol, as a critical negative regulator of Heartless ligand signaling in the lymph gland, demonstrating that sequestration of differentiation signals by the extracellular matrix is a unique mechanism employed in blood progenitor maintenance that is of potential relevance to many other stem cell niches. PMID:23603494

  12. Rasfonin, a novel 2-pyrone derivative, induces ras-mutated Panc-1 pancreatic tumor cell death in nude mice

    PubMed Central

    Xiao, Z; Li, L; Li, Y; Zhou, W; Cheng, J; Liu, F; Zheng, P; Zhang, Y; Che, Y

    2014-01-01

    Rasfonin is a novel 2-pyrone derivative reported to induce apoptosis in ras-dependent cells. In this study, its effects on ras-mutated pancreatic cancer cells were investigated in vitro and in vivo. Two human pancreatic cancer cell lines Panc-1 (mutated K-ras) and BxPC-3 (wild-type K-ras) were selected to test the effects of rasfonin on cell proliferation, clone formation, migration and invasion in vitro. Immunoblotting was used to detect the expressions of EGFR–Ras–Raf–MEK–ERK signaling pathway proteins. Ras activity was measured using a pull-down ELISA kit and guanine exchange factor (GEF)/GTPase-activating proteins (GAP) activity was measured by [3H]-GDP radiometric ligand binding. For an in vivo study, CD1 nude mice bearing Panc-1 cells were treated with rasfonin or Salirasib (FTS). We found that rasfonin suppressed proliferation more strongly in Panc-1 cells (IC50=5.5 μM) than BxPC-3 cells (IC50=10 μM) in vitro. Clone formation, migration and invasion by Panc-1 cells were also reduced by rasfonin. Rasfonin had little effect on the farnesylation of Ras, but it strongly downregulated Ras activity and consequently phosphorylation of c-Raf/MEK/ERK. Further experiments indicated that rasfonin reduced Son of sevenless (Sos1) expression but did not alter GEF and GAP activities. The in vivo experiments also revealed that rasfonin (30 mg/kg) delayed the growth of xenograft tumors originating from Panc-1 cells. Tumor weight was ultimately decreased after 20 days of treatment of rasfonin. Rasfonin is a robust inhibitor of pancreatic cancers with the K-ras mutation. The reduction of Sos1 expression and the consequently depressed Ras–MAPK activity could be important in its anticancer activity. PMID:24853419

  13. Combined Inactivation of MYC and K-Ras Oncogenes Reverses Tumorigenesis in Lung Adenocarcinomas and Lymphomas

    PubMed Central

    Koh, Shan; Komatsubara, Kim; Chen, Joy; Horng, George; Bellovin, David I.; Giuriato, Sylvie; Wang, Craig S.; Whitsett, Jeffrey A.; Felsher, Dean W.

    2008-01-01

    Background Conditional transgenic models have established that tumors require sustained oncogene activation for tumor maintenance, exhibiting the phenomenon known as “oncogene-addiction.” However, most cancers are caused by multiple genetic events making it difficult to determine which oncogenes or combination of oncogenes will be the most effective targets for their treatment. Methodology/Principal Findings To examine how the MYC and K-rasG12D oncogenes cooperate for the initiation and maintenance of tumorigenesis, we generated double conditional transgenic tumor models of lung adenocarcinoma and lymphoma. The ability of MYC and K-rasG12D to cooperate for tumorigenesis and the ability of the inactivation of these oncogenes to result in tumor regression depended upon the specific tissue context. MYC-, K-rasG12D- or MYC/K-rasG12D-induced lymphomas exhibited sustained regression upon the inactivation of either or both oncogenes. However, in marked contrast, MYC-induced lung tumors failed to regress completely upon oncogene inactivation; whereas K-rasG12D-induced lung tumors regressed completely. Importantly, the combined inactivation of both MYC and K-rasG12D resulted more frequently in complete lung tumor regression. To account for the different roles of MYC and K-rasG12D in maintenance of lung tumors, we found that the down-stream mediators of K-rasG12D signaling, Stat3 and Stat5, are dephosphorylated following conditional K-rasG12D but not MYC inactivation. In contrast, Stat3 becomes dephosphorylated in lymphoma cells upon inactivation of MYC and/or K-rasG12D. Interestingly, MYC-induced lung tumors that failed to regress upon MYC inactivation were found to have persistent Stat3 and Stat5 phosphorylation. Conclusions/Significance Taken together, our findings point to the importance of the K-Ras and associated down-stream Stat effector pathways in the initiation and maintenance of lymphomas and lung tumors. We suggest that combined targeting of oncogenic

  14. H-ras activation is an early event in the ptaquiloside-induced carcinogenesis: comparison of acute and chronic toxicity in rats.

    PubMed

    Shahin, M; Moore, M R; Worrall, S; Smith, B L; Seawright, A A; Prakash, A S

    1998-09-18

    Bracken fern (Pteridium spp.) produces cancer of the urinary bladder and oesophagus in grazing animals and is a suspected human carcinogen. The carcinogenic principle ptaquiloside (PT), when activated to a dienone (APT), forms DNA adducts which eventually leads to tumor. Two groups of female Sprague-Dawley rats were given a chronic dose of 3 mg APT weekly for 10 weeks either by intravenous (i.v.) tail vein or by intragastric (i.g.) route. A third group was given a weekly dose of 6 mg of APT for 3 weeks by the i.g. route corresponding to acute dosing. Both chronic i.v. and i.g. dosed animals showed ischemic tubular necrosis in the kidney but only i.v. dosed animals developed adenocarcinomas of the mammary glands. Acutely dosed i.g. animals produced apoptotic bodies in the liver, necrosis of blood cell precursors in the bone marrow and ischemic tubular necrosis in the kidney but they did not develop tumors. No mutations were found in the H-ras and p53 genes in the mammary glands of either the i.g. rats or the tumor-bearing i.v. rats. However, the mammary glands of a fourth group of rats, which received APT by i.v. and killed before tumor development, carried Pu to Pu and Pu to Py double mutations in codons 58 and 59 of H-ras. This study indicates that the route of administration plays a role in the nature of the disease expression from ptaquiloside exposure. In addition to confirming the role of APT in the PT-induced carcinogenesis our finding suggests that activation of H-ras is an early event in the PT-carcinogenesis model. PMID:9753659

  15. MECP2 Is a Frequently Amplified Oncogene with a Novel Epigenetic Mechanism that Mimics the Role of Activated RAS in Malignancy

    PubMed Central

    Neupane, Manish; Clark, Allison P.; Landini, Serena; Birkbak, Nicolai J.; Eklund, Aron C.; Lim, Elgene; Culhane, Aedin C.; Barry, William T.; Schumacher, Steven E.; Beroukhim, Rameen; Szallasi, Zoltan; Vidal, Marc; Hill, David E.; Silver, Daniel P.

    2015-01-01

    An unbiased genome-scale screen for unmutated genes that drive cancer growth when overexpressed identified MECP2 as a novel oncogene. MECP2 resides in a region of the X-chromosome that is significantly amplified across 18% of cancers, and many cancer cell lines have amplified, overexpressed MECP2 and are dependent on MECP2 expression for growth. MECP2 copy number gain and RAS family member alterations are mutually exclusive in several cancer types. The MECP2 splicing isoforms activate the major growth factor pathways targeted by activated RAS, the MAPK and PI3K pathways. MECP2 rescued the growth of a KRASG12C-addicted cell line after KRAS down-regulation, and activated KRAS rescues the growth of an MECP2-addicted cell line after MECP2 downregulation. MECP2 binding to the epigenetic modification 5-hydroxymethylcytosine is required for efficient transformation. These observations suggest that MECP2 is a commonly amplified oncogene with an unusual epigenetic mode of action. PMID:26546296

  16. Signaling mechanisms for the activation of an embryonic gene program during the hypertrophy of cardiac ventricular muscle.

    PubMed

    Chien, R

    1992-01-01

    To study the signaling mechanisms which mediate ventricular hypertrophy, we utilized the induction of the ANF gene as a marker of the hypertrophic response. The induction of the atrial natriuretic factor gene (ANF) is one of the most conserved features of ventricular hypertrophy, occurring in multiple species (mouse, rat, hamster, canine, and human) in response to diverse stimuli (hormonal, mechanical, pressure/volume overload, genetic, IHSS, hypertension, etc.). The ANF gene is expressed in both the atrial and ventricular compartments during embryonic development, but shortly after birth ANF expression is down-regulated to negligible levels in the adult myocardium. Since the reactivation of ANF gene expression in the hypertrophied ventricle is a hallmark of the activation of an embryonic gene program, it has also become of interest to determine if similar mechanisms activate ANF expression during hypertrophy and the initial stages of cardiogenesis. A combination of cotransfection, microinjection, and transgenic approaches has been coupled to well characterized cultured cell systems and in vivo murine models employing normal and transgenic mice. The microinjection of oncogenic RAS proteins into living myocardial cells does not lead to the activation of cell proliferation, but activates ANF gene expression, as assessed by immunofluorescence. Co-transfection of mutant and wild-type RAS expression vectors with a ANF-luciferase fusion gene supports a direct effect of activated RAS on ANF gene transcription. Co-transfection of a dominant negative RAS vector effectively inhibits the induction of the ANF gene during alpha adrenergic mediated hypertrophy of ventricular muscle cells, thereby establishing that a RAS-mediated pathway is required for ANF induction.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1299210

  17. Genomic profiling of malignant phyllodes tumors reveals aberrations in FGFR1 and PI-3 kinase/RAS signaling pathways and provides insights into intratumoral heterogeneity.

    PubMed

    Liu, Su-Yang; Joseph, Nancy M; Ravindranathan, Ajay; Stohr, Bradley A; Greenland, Nancy Y; Vohra, Poonam; Hosfield, Elizabeth; Yeh, Iwei; Talevich, Eric; Onodera, Courtney; Van Ziffle, Jessica A; Grenert, James P; Bastian, Boris C; Chen, Yunn-Yi; Krings, Gregor

    2016-09-01

    Malignant phyllodes tumors of the breast are poorly understood rare neoplasms with potential for aggressive behavior. Few efficacious treatment options exist for progressed or metastatic disease. The molecular features of malignant phyllodes tumors are poorly defined, and a deeper understanding of the genetics of these tumors may shed light on pathogenesis and progression and potentially identify novel treatment approaches. We sequenced 510 cancer-related genes in 10 malignant phyllodes tumors, including 5 tumors with liposarcomatous differentiation and 1 with myxoid chondrosarcoma-like differentiation. Intratumoral heterogeneity was assessed by sequencing two separate areas in 7 tumors, including non-heterologous and heterologous components of tumors with heterologous differentiation. Activating hotspot mutations in FGFR1 were identified in 2 tumors. Additional recurrently mutated genes included TERT promoter (6/10), TP53 (4/10), PIK3CA (3/10), MED12 (3/10), SETD2 (2/10) and KMT2D (2/10). Together, genomic aberrations in FGFR/EGFR PI-3 kinase and RAS pathways were identified in 8 (80%) tumors and included mutually exclusive and potentially actionable activating FGFR1, PIK3CA and BRAF V600E mutations, inactivating TSC2 mutation, EGFR amplification and PTEN loss. Seven (70%) malignant phyllodes tumors harbored TERT aberrations (six promoter mutations, one amplification). For comparison, TERT promoter mutations were identified by Sanger sequencing in 33% borderline (n=12) and no (0%, n=8) benign phyllodes tumors (P=0.391 and P=0.013 vs malignant tumors, respectively). Genetic features specific to liposarcoma, including CDK4/MDM2 amplification, were not identified. Copy number analysis revealed intratumoral heterogeneity and evidence for divergent tumor evolution in malignant phyllodes tumors with and without heterologous differentiation. Tumors with liposarcomatous differentiation revealed more chromosomal aberrations in non-heterologous components compared with

  18. The RAS Problem

    Cancer.gov

    More than 30% of all human cancers, including a high percentage of lung and colon cancers and 95% of pancreatic cancers are driven by mutations and possibly amplification (increased copies) of RAS genes.

  19. RAS Ordinary Meeting

    NASA Astrophysics Data System (ADS)

    2014-08-01

    Here are summarized talks from the February and March RAS Ordinary Meetings. The February meeting also enjoyed the Eddington Lecture from Prof. Lisa Kewley (Australian National University) on galaxy evolution in 3D.

  20. Ha-ras oncogene expression directed by a milk protein gene promoter: tissue specificity, hormonal regulation, and tumor induction in transgenic mice

    SciTech Connect

    Andres, A.C.; Schoenenberger, C.A.; Groner, B.; Henninghausen, L.; LeMeur, M.; Gelinger, P.

    1987-03-01

    The activated human Ha-ras oncogene was subjected to the control of the promoter region of the murine whey acidic protein (Wap) gene, which is expressed in mammary epithelial cells in response to lactogenic hormones. The Wap-ras gene was stably introduced into the mouse germ line of five transgenic mice (one male and four females). Wap-ras expression was observed in the mammary glands of lactating females in two lines derived from female founders. The tissue-directed and hormone-dependent Wap expression was conferred on the Ha-ras oncogene. The signals governing Wap expression are located within 2.5 kilobases of 5' flanking sequence. The other two lines derived from female founders did not express the chimeric gene. In the line derived from the male founder the Wap-ras gene is integrated into the Y chromosome. Expression was found in the salivary gland of male animals only. After a long latency, Wap-ras-expressing mice developed tumors. The tumors arose in tissues expressing Wap-ras - i.e., mammary or salivary glands. Compared to the corresponding nonmalignant tissues, Wap-ras expression was enhanced in the tumors.

  1. Inhibition of RAS in diabetic nephropathy

    PubMed Central

    Yacoub, Rabi; Campbell, Kirk N

    2015-01-01

    Diabetic kidney disease (DKD) is a progressive proteinuric renal disorder in patients with type 1 or type 2 diabetes mellitus. It is a common cause of end-stage kidney disease worldwide, particularly in developed countries. Therapeutic targeting of the renin–angiotensin system (RAS) is the most validated clinical strategy for slowing disease progression. DKD is paradoxically a low systematic renin state with an increased intrarenal RAS activity implicated in its pathogenesis. Angiotensin II (AngII), the main peptide of RAS, is not only a vasoactive peptide but functions as a growth factor, activating interstitial fibroblasts and mesangial and tubular cells, while promoting the synthesis of extracellular matrix proteins. AngII also promotes podocyte injury through increased calcium influx and the generation of reactive oxygen species. Blockade of the RAS using either angiotensin converting enzyme inhibitors, or angiotensin receptor blockers can attenuate progressive glomerulosclerosis in animal models, and slows disease progression in humans with DKD. In this review, we summarize the role of intrarenal RAS activation in the pathogenesis and progression of DKD and the rationale for RAS inhibition in this population. PMID:25926752

  2. Resistance of R-Ras knockout mice to skin tumour induction

    PubMed Central

    May, Ulrike; Prince, Stuart; Vähätupa, Maria; Laitinen, Anni M.; Nieminen, Katriina; Uusitalo-Järvinen, Hannele; Järvinen, Tero A. H.

    2015-01-01

    The R-ras gene encodes a small GTPase that is a member of the Ras family. Despite close sequence similarities, R-Ras is functionally distinct from the prototypic Ras proteins; no transformative activity and no activating mutations of R-Ras in human malignancies have been reported for it. R-Ras activity appears inhibitory towards tumour proliferation and invasion, and to promote cellular quiescence. Contrary to this, using mice with a deletion of the R-ras gene, we found that R-Ras facilitates DMBA/TPA-induced skin tumour induction. The tumours appeared in wild-type (WT) mice on average 6 weeks earlier than in R-Ras knockout (R-Ras KO) mice. WT mice developed almost 6 times more tumours than R-Ras KO mice. Despite strong R-Ras protein expression in the dermal blood vessels, no R-Ras could be detected in the epidermis from where the tumours arose. The DMBA/TPA skin tumourigenesis-model is highly dependent upon inflammation, and we found a greatly attenuated skin inflammatory response to DMBA/TPA-treatment in the R-Ras KO mice in the context of leukocyte infiltration and proinflammatory cytokine expression. Thus, these data suggest that despite its characterised role in promoting cellular quiescence, R-Ras is pro-tumourigenic in the DMBA/TPA tumour model and important for the inflammatory response to DMBA/TPA treatment. PMID:26133397

  3. p19ARF and RasV12 Offer Opposing Regulation of DHX33 Translation To Dictate Tumor Cell Fate

    PubMed Central

    Zhang, Yandong; Saporita, Anthony J.

    2013-01-01

    DHX33 is a pivotal DEAH-box RNA helicase in the multistep process of RNA polymerase I-directed transcription of the ribosomal DNA locus. We explored the regulation of DHX33 expression by RasV12 and ARF to determine DHX33's role in sensing these opposing signals to regulate ribosome biogenesis. In wild-type primary fibroblasts, RasV12 infection induced a transient increase in DHX33 protein level, as well as an rRNA transcriptional rate that was eventually suppressed by a delayed activation of the ARF/p53 pathway. DHX33 expression was exclusively controlled at the level of translation. ARF caused a dramatic reduction in polysome-associated DHX33 mRNAs, while RasV12 led to a complete shift of existing DHX33 mRNAs to actively translating polysomes. The translation of DHX33 by RasV12 was sensitive to inhibitors of phosphatidylinositol 3-kinase, mTOR, and mitogen-activated protein and was pivotal for enhanced rRNA transcription and enhanced overall cellular protein translation. In addition, DHX33 knockdown abolished RasV12-induced rRNA transcription and protein translation and prevented both the in vitro and in vivo transforming properties of oncogenic RasV12. Our results directly implicate DHX33 as a crucial player in establishing rRNA synthesis rates in the face of RasV12 or ARF signals, adjusting ribosome biogenesis to match the appropriate growth or antigrowth signals. PMID:23401854

  4. Ammonium Activates Ouabain-Activated Signalling Pathway in Astrocytes: Therapeutic Potential of Ouabain Antagonist

    PubMed Central

    Song, Dan; Du, Ting

    2014-01-01

    The causal role of ammonium in hepatic encephalopathy was identified in 1930s. Astroglial cells are primary cellular elements of hepatic encephalopathy which conceptually, can be considered a toxic astrogliopathology. Previously we have reported that acute exposure to ammonium activated ouabain/Na,K-ATPase signalling pathway, which includes Src, EGF receptor, Raf, Ras, MEK and ERK1/2. Chronic incubation of astrocytes with ammonium increased production of endogenous ouabain-like compound. Ouabain antagonist canrenone abolished effects of ammonium on astrocytic swelling, ROS production, and upregulation of gene expression and function of TRPC1 and Cav1.2. However, ammonium induces multiple pathological modifications in astrocytes, and some of them may be not related to this signalling pathway. In this review, we focus on the effect of ammonium on ouabain/Na,K-ATPase signalling pathway and its involvement in ammonium-induced ROS production, cell swelling and aberration of Ca2+ signals in astrocytes. We also briefly discuss Na,K-ATPase, EGF receptor, endogenous ouabain and ouabain antagonist. PMID:25342941

  5. Relapsed neuroblastomas show frequent RAS-MAPK pathway mutations

    PubMed Central

    Eleveld, Thomas F.; Oldridge, Derek A.; Bernard, Virginie; Koster, Jan; Daage, Leo Colmet; Diskin, Sharon J.; Schild, Linda; Bentahar, Nadia Bessoltane; Bellini, Angela; Chicard, Mathieu; Lapouble, Eve; Combaret, Valérie; Legoix-Né, Patricia; Michon, Jean; Pugh, Trevor J.; Hart, Lori S.; Rader, JulieAnn; Attiyeh, Edward F.; Wei, Jun S.; Zhang, Shile; Naranjo, Arlene; Gastier-Foster, Julie M.; Hogarty, Michael D.; Asgharzadeh, Shahab; Smith, Malcolm A.; Guidry Auvil, Jaime M.; Watkins, Thomas B. K.; Zwijnenburg, Danny A.; Ebus, Marli E.; van Sluis, Peter; Hakkert, Anne; van Wezel, Esther; van der Schoot, C. Ellen; Westerhout, Ellen M.; Schulte, Johannes H.; Tytgat, Godelieve A.; Dolman, M. Emmy M.; Janoueix-Lerosey, Isabelle; Gerhard, Daniela S.; Caron, Huib N.; Delattre, Olivier; Khan, Javed; Versteeg, Rogier; Schleiermacher, Gudrun; Molenaar, Jan J.; Maris, John M.

    2016-01-01

    The majority of neuroblastoma patients have tumors that initially respond to chemotherapy, but a large proportion of patients will experience therapy-resistant relapses. The molecular basis of this aggressive phenotype is unknown. Whole genome sequencing of 23 paired diagnostic and relapsed neuroblastomas showed clonal evolution from the diagnostic tumor with a median of 29 somatic mutations unique to the relapse sample. Eighteen of the 23 relapse tumors (78%) showed mutations predicted to activate the RAS-MAPK signaling pathway. Seven events were detected only in the relapse tumor while the others showed clonal enrichment. In neuroblastoma cell lines we also detected a high frequency of activating mutations in the RAS-MAPK pathway (11/18, 61%) and these lesions predicted for sensitivity to MEK inhibition in vitro and in vivo. Our findings provide the rationale for genetic characterization of relapse neuroblastoma and show that RAS-MAPK pathway mutations may function as a biomarker for new therapeutic approaches to refractory disease. PMID:26121087

  6. Interfering with the interaction between ErbB1, nucleolin and Ras as a potential treatment for glioblastoma

    PubMed Central

    Kloog, Yoel; Pinkas-Kramarski, Ronit

    2014-01-01

    The three oncogenes, ErbB receptors, Ras proteins and nucleolin may contribute to malignant transformation. Previously, we demonstrated that nucleolin could bind both Ras protein and ErbB receptors. We also showed that the crosstalk between the three proteins facilitates anchorage independent growth and tumor growth in nude mice, and that inhibition of this interaction in prostate and colon cancer cells reduces tumorigenicity. In the present study, we show that treatment with Ras and nucleolin inhibitors reduces the oncogenic effect induced by ErbB1 receptor in U87-MG cells. This combined treatment enhances cell death, reduces cell proliferation and cell migration. Moreover, we demonstrate a pivotal role of nucleolin in ErbB1 activation by its ligand. Nucleolin inhibitor prevents EGF-induced receptor activation and its downstream signaling followed by reduced proliferation. Furthermore, inhibition of Ras by Salirasib (FTS), mainly reduces cell viability and motility. The combined treatment, which targets both Ras and nucleolin, additively reduces tumorigenicity both in vitro and in vivo. These results suggest that targeting both nucleolin and Ras may represent an additional opportunity for inhibiting cancers, including glioblastoma, that are driven by these oncogenes. PMID:25261371

  7. Interfering with the interaction between ErbB1, nucleolin and Ras as a potential treatment for glioblastoma.

    PubMed

    Goldshmit, Yona; Trangle, Sari Schokoroy; Kloog, Yoel; Pinkas-Kramarski, Ronit

    2014-09-30

    The three oncogenes, ErbB receptors, Ras proteins and nucleolin may contribute to malignant transformation. Previously, we demonstrated that nucleolin could bind both Ras protein and ErbB receptors. We also showed that the crosstalk between the three proteins facilitates anchorage independent growth and tumor growth in nude mice, and that inhibition of this interaction in prostate and colon cancer cells reduces tumorigenicity. In the present study, we show that treatment with Ras and nucleolin inhibitors reduces the oncogenic effect induced by ErbB1 receptor in U87-MG cells. This combined treatment enhances cell death, reduces cell proliferation and cell migration. Moreover, we demonstrate a pivotal role of nucleolin in ErbB1 activation by its ligand. Nucleolin inhibitor prevents EGF-induced receptor activation and its downstream signaling followed by reduced proliferation. Furthermore, inhibition of Ras by Salirasib (FTS), mainly reduces cell viability and motility. The combined treatment, which targets both Ras and nucleolin, additively reduces tumorigenicity both in vitro and in vivo. These results suggest that targeting both nucleolin and Ras may represent an additional opportunity for inhibiting cancers, including glioblastoma, that are driven by these oncogenes. PMID:25261371

  8. Ras-activated RSK1 phosphorylates EBP50 to regulate its nuclear localization and promote cell proliferation

    PubMed Central

    Lim, HooiCheng; Jou, Tzuu-Shuh

    2016-01-01

    Differential subcellular localization of EBP50 leads to its controversial role in cancer biology either as a tumor suppressor when it resides at the membrane periphery, or a tumor facilitator at the nucleus. However, the mechanism behind nuclear localization of EBP50 remains unclear. A RNA interference screening identified the downstream effector of the Ras-ERK cascade, RSK1, as the molecule unique for nuclear transport of EBP50. RSK1 binds to EBP50 and phosphorylates it at a conserved threonine residue at position 156 (T156) under the regulation of growth factor. Mutagenesis experiments confirmed the significance of T156 residue in nuclear localization of EBP50, cellular proliferation, and oncogenic transformation. Our study sheds light on a possible therapeutic strategy targeting at this aberrant nuclear expression of EBP50 without affecting the normal physiological function of EBP50 at other subcellular localization. PMID:26862730

  9. Interaction of Ras with phosphoinositide 3-kinase gamma.

    PubMed Central

    Rubio, I; Rodriguez-Viciana, P; Downward, J; Wetzker, R

    1997-01-01

    Phosphoinositide 3-kinase gamma (PI3Kgamma) can be activated in vitro by both alpha and betagamma subunits of heterotrimeric G-proteins and does not interact with p85, the regulatory subunit of PI3Kalpha. Here we demonstrate the binding of Ras to PI3Kgamma in vitro. An N-terminal region of PI3Kgamma was identified as a binding site for Ras. After co-expression with PI3Kgamma in COS-7 cells, Ras induced only a modest increase in PI3K activity compared with the stimulation of PI3Kalpha by Ras in the same cells. PMID:9307042

  10. Ras and autophagy in cancer development and therapy

    PubMed Central

    Schmukler, Eran; Kloog, Yoel; Pinkas-Kramarski, Ronit

    2014-01-01

    Autophagy, a process of self-degradation and turnover of cellular components, plays a complex role in cancer. Evidence exists to show that autophagy may support tumor growth and cell survival, whereas it can also contribute to tumor suppression and have anti-survival characteristics in different cellular systems. Numerous studies have described the effects of various oncogenes and tumor suppressors on autophagy. The small GTPase Ras is an oncogene involved in the regulation of various cell-signaling pathways, and is mutated in 33% of human cancers. In the present review, we discuss the interplay between Ras and autophagy in relation to oncogenesis. It appears that Ras can upregulate or downregulate autophagy through several signaling pathways. In turn, autophagy can affect the tumorigenicity driven by Ras, resulting in either tumor progression or repression, depending on the cellular context. Furthermore, Ras inhibitors were shown to induce autophagy in several cancer cell lines. PMID:24583697

  11. RAS isoforms and mutations in cancer at a glance.

    PubMed

    Hobbs, G Aaron; Der, Channing J; Rossman, Kent L

    2016-04-01

    RAS proteins (KRAS4A, KRAS4B, NRAS and HRAS) function as GDP-GTP-regulated binary on-off switches, which regulate cytoplasmic signaling networks that control diverse normal cellular processes. Gain-of-function missense mutations in RAS genes are found in ∼25% of human cancers, prompting interest in identifying anti-RAS therapeutic strategies for cancer treatment. However, despite more than three decades of intense effort, no anti-RAS therapies have reached clinical application. Contributing to this failure has been an underestimation of the complexities of RAS. First, there is now appreciation that the four human RAS proteins are not functionally identical. Second, with >130 different missense mutations found in cancer, there is an emerging view that there are mutation-specific consequences on RAS structure, biochemistry and biology, and mutation-selective therapeutic strategies are needed. In this Cell Science at a Glance article and accompanying poster, we provide a snapshot of the differences between RAS isoforms and mutations, as well as the current status of anti-RAS drug-discovery efforts. PMID:26985062

  12. Role of p21 RAS in p210 bcr-abl transformation of murine myeloid cells.

    PubMed

    Mandanas, R A; Leibowitz, D S; Gharehbaghi, K; Tauchi, T; Burgess, G S; Miyazawa, K; Jayaram, H N; Boswell, H S

    1993-09-15

    The p21 RAS product has been implicated as part of the downstream signaling of certain nonreceptor tyrosine kinase oncogenes and several growth factor receptor-ligand interactions. We have reported that the chronic myelogenous leukemia oncogene p210 bcr-abl transforms a growth-factor-dependent myeloid cell line NFS/N1.H7 to interleukin-3 (IL-3) independence. In these p210 bcr-abl-transformed cells (H7 bcr-abl.A54) and in two other murine myeloid cell lines transformed to IL-3 independence by p210 bcr-abl, endogenous p21 RAS is activated as determined by an elevated ratio of associated guanosine triphosphate (GTP)/guanosine diphosphate (GDP), assayed by thin-layer chromatography of the nucleotides eluted from p21 RAS after immunoprecipitation with the Y13-259 antibody. Treatment of p210 bcr-abl-transformed cells with a specific tyrosine kinase inhibitor herbimycin A resulted in diminished tyrosine phosphorylation of p210 bcr-abl and associated proteins, without major reduction in expression of the p210 bcr-abl protein itself. Inhibition of p210 bcr-abl-dependent tyrosine phosphorylation resulted in a reduction of active p21RAS-GTP complexes in the transformed cells, in diminished expression of the nuclear early response genes c-jun and c-fos, and in lower cellular proliferation rate. To further implicate p21 RAS in these functional events downstream of p210 bcr-abl tyrosine phosphorylation, we targeted G-protein function directly by limiting the availability of GTP with the inosine monophosphate dehydrogenase inhibitor, tiazofurin (TR). In p210 bcr-abl-transformed cells treated for 4 hours with TR, in which the levels of GTP were reduced by 50%, but GDP, guanosine monophosphate, and adenosine triphosphate (ATP) were unaffected, p210 bcr-abl tyrosine phosphorylation was at control levels. However, expression of c-fos and c-jun nuclear proto-oncogenes were strongly inhibited and p21 RAS activity was downregulated. These findings show that p210 bcr-abl transduces

  13. Signaling during platelet adhesion and activation

    PubMed Central

    Li, Zhenyu; Delaney, M. Keegan; O’Brien, Kelly A.; Du, Xiaoping

    2011-01-01

    Upon vascular injury, platelets are activated by adhesion to adhesive proteins like von Willebrand factor and collagen, or by soluble platelet agonists like ADP, thrombin, and thromboxane A2. These adhesive proteins and soluble agonists induce signal transduction via their respective receptors. The various receptor-specific platelet activation signaling pathways converge into common signaling events, which stimulate platelet shape change, granule secretion, and ultimately induce the “inside-out” signaling process leading to activation of the ligand binding function of integrin αIIbβ3. Ligand binding to integrin αIIbβ3 mediates platelet adhesion and aggregation and triggers “outside-in” signaling, resulting in platelet spreading, additional granule secretion, stabilization of platelet adhesion and aggregation, and clot retraction. It has become increasingly evident that agonist-induced platelet activation signals also crosstalk with integrin “outside-in” signals to regulate platelet responses. Platelet activation involves a series of rapid positive feedback loops that greatly amplify initial activation signals, and enable robust platelet recruitment and thrombus stabilization. Recent studies have provided novel insight into the molecular mechanisms of these processes. PMID:21071698

  14. Allosteric modulation of Ras positions Q61 for a direct role in catalysis

    PubMed Central

    Buhrman, Greg; Holzapfel, Genevieve; Fetics, Susan; Mattos, Carla

    2010-01-01

    Ras and its effector Raf are key mediators of the Ras/Raf/MEK/ERK signal transduction pathway. Mutants of residue Q61 impair the GTPase activity of Ras and are found prominently in human cancers. Yet the mechanism through which Q61 contributes to catalysis has been elusive. It is thought to position the catalytic water molecule for nucleophilic attack on the γ-phosphate of GTP. However, we previously solved the structure of Ras from crystals with symmetry of the space group R32 in which switch II is disordered and found that the catalytic water molecule is present. Here we present a structure of wild-type Ras with calcium acetate from the crystallization mother liquor bound at a site remote from the active site and likely near the membrane. This results in a shift in helix 3/loop 7 and a network of H-bonding interactions that propagates across the molecule, culminating in the ordering of switch II and placement of Q61 in the active site in a previously unobserved conformation. This structure suggests a direct catalytic role for Q61 where it interacts with a water molecule that bridges one of the γ-phosphate oxygen atoms to the hydroxyl group of Y32 to stabilize the transition state of the hydrolysis reaction. We propose that Raf together with the binding of Ca2+ and a negatively charged group mimicked in our structure by the acetate molecule induces the ordering of switch I and switch II to complete the active site of Ras. PMID:20194776

  15. RAS and RHO families of GTPases directly regulate distinct phosphoinositide 3-kinase isoforms.

    PubMed

    Fritsch, Ralph; de Krijger, Inge; Fritsch, Kornelia; George, Roger; Reason, Beth; Kumar, Madhu S; Diefenbacher, Markus; Stamp, Gordon; Downward, Julian

    2013-05-23

    RAS proteins are important direct activators of p110α, p110γ, and p110δ type I phosphoinositide 3-kinases (PI3Ks), interacting via an amino-terminal RAS-binding domain (RBD). Here, we investigate the regulation of the ubiquitous p110β isoform of PI3K, implicated in G-protein-coupled receptor (GPCR) signaling, PTEN-loss-driven cancers, and thrombocyte function. Unexpectedly, RAS is unable to interact with p110β, but instead RAC1 and CDC42 from the RHO subfamily of small GTPases bind and activate p110β via its RBD. In fibroblasts, GPCRs couple to PI3K through Dock180/Elmo1-mediated RAC activation and subsequent interaction with p110β. Cells from mice carrying mutations in the p110β RBD show reduced PI3K activity and defective chemotaxis, and these mice are resistant to experimental lung fibrosis. These findings revise our understanding of the regulation of type I PI3K by showing that both RAS and RHO family GTPases directly regulate distinct ubiquitous PI3K isoforms and that RAC activates p110β downstream of GPCRs. PMID:23706742

  16. Hyperactivation of Ha-ras oncogene, but not Ink4a/Arf deficiency, triggers bladder tumorigenesis.

    PubMed

    Mo, Lan; Zheng, Xiaoyong; Huang, Hong-Ying; Shapiro, Ellen; Lepor, Herbert; Cordon-Cardo, Carlos; Sun, Tung-Tien; Wu, Xue-Ru

    2007-02-01

    Although ras is a potent mitogenic oncogene, its tumorigenicity depends on cellular context and cooperative events. Here we show that low-level expression of a constitutively active Ha-ras in mouse urothelium induces simple urothelial hyperplasia that is resistant to progression to full-fledged bladder tumors even in the absence of Ink4a/Arf. In stark contrast, doubling of the gene dosage of the activated Ha-ras triggered early-onset, rapidly growing, and 100% penetrant tumors throughout the urinary tract. Tumor initiation required superseding a rate-limiting step between simple and nodular hyperplasia, the latter of which is marked by the emergence of mesenchymal components and the coactivation of AKT and STAT pathways as well as PTEN inactivation. These results indicate that overactivation of Ha-ras is both necessary and sufficient to induce bladder tumors along a low-grade, noninvasive papillary pathway, and they shed light on the recent findings that ras activation, via point mutation, overexpression, or intensified signaling from FGF receptor 3, occurs in 70%-90% of these tumors in humans. Our results highlight the critical importance of the dosage/strength of Ha-ras activation in dictating its tumorigenicity--a mechanism of oncogene activation not fully appreciated to date. Finally, our results have clinical implications, as inhibiting ras and/or its downstream effectors, such as AKT and STAT3/5, could provide alternative means to treat low-grade, superficial papillary bladder tumors, the most common tumor in the urinary system. PMID:17256055

  17. Dimerize RACK1 upon transformation with oncogenic ras

    SciTech Connect

    Chu, L.-Y.; Chen, Y.-H.; Chuang, N.-N. . E-mail: zonnc@sinica.edu.tw

    2005-05-06

    From our previous studies, we learned that syndecan-2/p120-GAP complex provided docking site for Src to prosecute tyrosine kinase activity upon transformation with oncogenic ras. And, RACK1 protein was reactive with syndecan-2 to keep Src inactivated, but not when Ras was overexpressed. In the present study, we characterized the reaction between RACK1 protein and Ras. RACK1 was isolated from BALB/3T3 cells transfected with plasmids pcDNA3.1-[S-ras(Q{sub 61}K)] of shrimp Penaeus japonicus and RACK1 was revealed to react with GTP-K{sub B}-Ras(Q{sub 61}K), not GDP-K{sub B}-Ras(Q{sub 61}K). This selective interaction between RACK1 and GTP-K{sub B}-Ras(Q{sub 61}K) was further confirmed with RACK1 of human placenta and mouse RACK1-encoded fusion protein. We found that RACK1 was dimerized upon reaction with GTP-K{sub B}-Ras(Q{sub 61}K), as well as with 14-3-3{beta} and geranylgeranyl pyrophosphate, as revealed by phosphorylation with Src tyrosine kinase. We reported the complex of RACK1/GTP-K{sub B}-Ras(Q{sub 61}K) reacted selectively with p120-GAP. This interaction was sufficient to dissemble RACK1 into monomers, a preferred form to compete for the binding of syndecan-2. These data indicate that the reaction of GTP-K{sub B}-Ras(Q{sub 61}K) with RACK1 in dimers may operate a mechanism to deplete RACK1 from reaction with syndecan-2 upon transformation by oncogenic ras and the RACK1/GTP-Ras complex may provide a route to react with p120-GAP and recycle monomeric RACK1 to syndecan-2.

  18. Hyaluronan Activates Cell Motility of v-Src-transformed Cells via Ras-Mitogen–activated Protein Kinase and Phosphoinositide 3-Kinase-Akt in a Tumor-specific Manner

    PubMed Central

    Sohara, Yasuyoshi; Ishiguro, Naoki; Machida, Kazuya; Kurata, Hisashi; Thant, Aye Aye; Senga, Takeshi; Matsuda, Satoru; Kimata, Koji; Iwata, Hisashi; Hamaguchi, Michinari

    2001-01-01

    We investigated the production of hyaluronan (HA) and its effect on cell motility in cells expressing the v-src mutants. Transformation of 3Y1 by v-src virtually activated HA secretion, whereas G2A v-src, a nonmyristoylated form of v-src defective in cell transformation, had no effect. In cells expressing the temperature-sensitive mutant of v-Src, HA secretion was temperature dependent. In addition, HA as small as 1 nM, on the other side, activated cell motility in a tumor-specific manner. HA treatment strongly activated the motility of v-Src–transformed 3Y1, whereas it showed no effect on 3Y1- and 3Y1-expressing G2A v-src. HA-dependent cell locomotion was strongly blocked by either expression of dominant-negative Ras or treatment with a Ras farnesyltransferase inhibitor. Similarly, both the MEK1 inhibitor and the kinase inhibitor clearly inhibited HA-dependent cell locomotion. In contrast, cells transformed with an active MEK1 did not respond to the HA. Finally, an anti-CD44–neutralizing antibody could block the activation of cell motility by HA as well as the HA-dependent phosphorylation of mitogen-activated protein kinase and Akt. Taken together, these results suggest that simultaneous activation of the Ras-mitogen-activated protein kinase pathway and the phosphoinositide 3-kinase pathway by the HA-CD44 interaction is required for the activation of HA-dependent cell locomotion in v-Src–transformed cells. PMID:11408591

  19. Rac-1 and Raf-1 kinases, components of distinct signaling pathways, activate myotonic dystrophy protein kinase

    NASA Technical Reports Server (NTRS)

    Shimizu, M.; Wang, W.; Walch, E. T.; Dunne, P. W.; Epstein, H. F.

    2000-01-01

    Myotonic dystrophy protein kinase (DMPK) is a serine-threonine protein kinase encoded by the myotonic dystrophy (DM) locus on human chromosome 19q13.3. It is a close relative of other kinases that interact with members of the Rho family of small GTPases. We show here that the actin cytoskeleton-linked GTPase Rac-1 binds to DMPK, and coexpression of Rac-1 and DMPK activates its transphosphorylation activity in a GTP-sensitive manner. DMPK can also bind Raf-1 kinase, the Ras-activated molecule of the MAP kinase pathway. Purified Raf-1 kinase phosphorylates and activates DMPK. The interaction of DMPK with these distinct signals suggests that it may play a role as a nexus for cross-talk between their respective pathways and may partially explain the remarkable pleiotropy of DM.

  20. Activated Notch1 signaling cooperates with papillomavirus oncogenes in transformation and generates resistance to apoptosis on matrix withdrawal through PKB/Akt.

    PubMed

    Rangarajan, A; Syal, R; Selvarajah, S; Chakrabarti, O; Sarin, A; Krishna, S

    2001-07-20

    Invasive cervical tumors, a major subset of human epithelial neoplasms, are characterized by the consistent presence of papillomavirus oncogenes 16 or 18 E6 and E7 products. Cervical tumors also consistently exhibit cytosolic and nuclear forms of Notch1, suggesting the possible persistent activation of the Notch pathway. Here we show that activated Notch1 synergizes with papillomavirus oncogenes in transformation of immortalized epithelial cells and leads to the generation of resistance to anoikis, an apoptotic response induced on matrix withdrawal. This resistance to anoikis by activated Notch1 is mediated through the activation of PKB/Akt, a key effector of activated Ras in transformation. We suggest that activated Notch signaling may serve to substitute for the lack of activated Ras mutations in the majority of human cervical neoplasms. PMID:11448155

  1. ¹H, ¹³C and ¹⁵N resonance assignment for the human K-Ras at physiological pH.

    PubMed

    Vo, Uybach; Embrey, Kevin J; Breeze, Alexander L; Golovanov, Alexander P

    2013-10-01

    K-Ras, a member of the Ras family of small GTPases, is involved in cell growth, proliferation, differentiation and apoptosis and is frequently mutated in cancer. The activity of Ras is mediated by the inter-conversion between GTP- and GDP- bound states. This conversion is regulated by binding of effector proteins such as guanine nucleotide exchange factors and GTPase activating proteins. Previously, NMR signals from these effector-binding regions of Ras often remained unassigned and largely unobservable due to conformational exchange and polysterism inherent to this protein. In this paper, we report the complete backbone and C(β), as well as partial H(α), H(β) and C(γ), NMR assignment for human K-Ras (residues 1-166) in the GDP-bound form at a physiological pH of 7.4. These data thereby make possible detailed monitoring of the functional cycle of Ras and its interactions with nucleotides and effector proteins through the observation of fingerprint signals from all the functionally important regions of the protein. PMID:22886485

  2. Resveratrol induces apoptosis by directly targeting Ras-GTPase activating protein SH3 domain binding protein 1 (G3BP1)

    PubMed Central

    Oi, Naomi; Yuan, Jian; Malakhova, Margarita; Luo, Kuntian; Li, Yunhui; Ryu, Joohyun; Zhang, Lei; Bode, Ann M.; Xu, Zengguang; Li, Yan; Lou, Zhenkun; Dong, Zigang

    2014-01-01

    Resveratrol possesses a strong anticancer activity exhibited as the induction of apoptosis through p53 activation. However, the molecular mechanism and direct target(s) of resveratrol-induced p53 activation remain elusive. Here, the Ras-GTPase activating protein SH3 domain binding protein 1 (G3BP1) was identified as a potential target of resveratrol, and in vitro binding assay results using resveratrol (RSVL)-conjugated Sepharose 4B beads confirmed their direct binding. Depletion of G3BP1 significantly diminishes resveratrol-induced p53 expression and apoptosis. We also found that G3BP1 negatively regulates p53 expression by interacting with ubiquitin-specific protease 10 (USP10), a deubiquitinating enzyme of p53. Disruption of the interaction of p53 with USP10 by G3BP1 interference leads to suppression of p53 deubiquitination. Resveratrol, on the other hand, directly binds to G3BP1 and prevents the G3BP1/USP10 interaction, resulting in enhanced USP10-mediated deubiquitination of p53 and consequently increased p53 expression. These findings disclose a novel mechanism of resveratrol-induced p53 activation and resveratrol-induced apoptosis by direct targeting of G3BP1. PMID:24998844

  3. Hyperactive RAS/PI3-K/MAPK Signaling Cascade in Migration and Adhesion of Nf1 Haploinsufficient Mesenchymal Stem/Progenitor Cells.

    PubMed

    Zhou, Yuan; He, Yongzheng; Sharma, Richa; Xing, Wen; Estwick, Selina A; Wu, Xiaohua; Rhodes, Steven D; Xu, Mingjiang; Yang, Feng-Chun

    2015-01-01

    Neurofibromatosis type 1 (NF1) is an autosomal dominant disease caused by mutations in the NF1 tumor suppressor gene, which affect approximately 1 out of 3000 individuals. Patients with NF1 suffer from a range of malignant and nonmalignant manifestations such as plexiform neurofibromas and skeletal abnormalities. We previously demonstrated that Nf1 haploinsufficiency in mesenchymal stem/progenitor cells (MSPCs) results in impaired osteoblastic differentiation, which may be associated with the skeletal manifestations in NF1 patients. Here we sought to further ascertain the role of Nf1 in modulating the migration and adhesion of MSPCs of the Nf1 haploinsufficient (Nf1(+/-)) mice. Nf1(+/-) MSPCs demonstrated increased nuclear-cytoplasmic ratio, increased migration, and increased actin polymerization as compared to wild-type (WT) MSPCs. Additionally, Nf1(+/-) MSPCs were noted to have significantly enhanced cell adhesion to fibronectin with selective affinity for CH271 with an overexpression of its complimentary receptor, CD49e. Nf1(+/-) MSPCs also showed hyperactivation of phosphoinositide 3-kinase (PI3-K) and mitogen activated protein kinase (MAPK) signaling pathways when compared to WT MSPCs, which were both significantly reduced in the presence of their pharmacologic inhibitors, LY294002 and PD0325901, respectively. Collectively, our study suggests that both PI3-K and MAPK signaling pathways play a significant role in enhanced migration and adhesion of Nf1 haploinsufficient MSPCs. PMID:26039236

  4. Transformation by v-Src: Ras-MAPK and PI3K-mTOR mediate parallel pathways.

    PubMed

    Penuel, E; Martin, G S

    1999-06-01

    An increase in the level of active, GTP-bound Ras is not necessary for transformation of chicken embryo fibroblasts (CEF) by v-Src. This suggests that other Ras-independent pathways contribute to transformation by v-Src. To address the possibility that activation of phosphatidylinositol-3-kinase (PI3K) and the mammalian target of rapamycin (mTOR/FRAP), represents one of these pathways, we have examined the effect of simultaneous inhibition of the Ras-MAPK and PI3K-mTOR pathways on transformation of CEF by v-Src. Transformation was assessed by the standard parameters of morphological alteration, increased hexose uptake, loss of density inhibition, and anchorage-independent growth. Inhibition of the Ras-MAPK pathway by expression of the dominant-negative Ras mutant HRasN17 or by addition of the MAPK kinase (MEK) inhibitor PD98059 reduced several of these parameters but failed to block transformation. Similarly, inhibition of the PI3K-mTOR pathway by addition of the PI3K inhibitor 2-[4-morpholinyl]-8-phenyl-4H-1-benzopyran-4-one (LY294002) or the mTOR inhibitor rapamycin, although reducing several parameters of transformation, also failed to block transformation. However, simultaneous inhibition of signaling by the Ras-MAPK pathway and the PI3K-mTOR pathway essentially blocked transformation. These data indicate that transformation of CEF by v-Src is mediated by two parallel pathways, the Ras-MAPK pathway and the PI-3K-mTOR pathway, which both contribute to transformation. The possibility that simultaneous activation of other pathways is also required is not excluded. PMID:10359590

  5. Transformation by v-Src: Ras-MAPK and PI3K-mTOR Mediate Parallel Pathways

    PubMed Central

    Penuel, Elicia; Martin, G. Steven

    1999-01-01

    An increase in the level of active, GTP-bound Ras is not necessary for transformation of chicken embryo fibroblasts (CEF) by v-Src. This suggests that other Ras-independent pathways contribute to transformation by v-Src. To address the possibility that activation of phosphatidylinositol-3-kinase (PI3K) and the mammalian target of rapamycin (mTOR/FRAP), represents one of these pathways, we have examined the effect of simultaneous inhibition of the Ras-MAPK and PI3K-mTOR pathways on transformation of CEF by v-Src. Transformation was assessed by the standard parameters of morphological alteration, increased hexose uptake, loss of density inhibition, and anchorage-independent growth. Inhibition of the Ras-MAPK pathway by expression of the dominant-negative Ras mutant HRasN17 or by addition of the MAPK kinase (MEK) inhibitor PD98059 reduced several of these parameters but failed to block transformation. Similarly, inhibition of the PI3K-mTOR pathway by addition of the PI3K inhibitor 2-[4-morpholinyl]-8-phenyl-4H-1-benzopyran-4-one (LY294002) or the mTOR inhibitor rapamycin, although reducing several parameters of transformation, also failed to block transformation. However, simultaneous inhibition of signaling by the Ras-MAPK pathway and the PI3K-mTOR pathway essentially blocked transformation. These data indicate that transformation of CEF by v-Src is mediated by two parallel pathways, the Ras-MAPK pathway and the PI-3K-mTOR pathway, which both contribute to transformation. The possibility that simultaneous activation of other pathways is also required is not excluded. PMID:10359590

  6. Mutational analysis of PI3K/AKT and RAS/RAF pathway activation in malignant salivary gland tumours with a new mutation of PIK3CA.

    PubMed

    Shalmon, B; Drendel, M; Wolf, M; Hirshberg, A; Cohen, Y

    2016-06-01

    The phosphoinositide 3-kinase (PIK3)/v-akt murine thymoma (AKT) oncogene pathway and the RAS/RAF pathway are involved in regulating the signalling of multiple biological processes, including apoptosis, metabolism, cell proliferation, and cell growth. Mutations in the genes within these pathways are frequently found in several tumours. The aim of this study was to investigate the frequency of mutations in the PIK3CA, BRAF, and KRAS genes in cases of malignant salivary gland tumours. Mutational analysis of the PIK3CA, KRAS, and BRAF genes was performed by direct sequencing of material from 21 patients with malignant salivary gland tumours who underwent surgery between 1992 and 2001. No mutations were found in the KRAS exon 2, BRAF exon 15, or PIK3CA exon 9 genes. However, an unpublished mutation of the PIK3CA gene in exon 20 (W1051 stop mutation) was found in one case of adenocarcinoma NOS. The impact of this mutation on the biological behaviour of the tumour has yet to be explored, however the patient with adenocarcinoma NOS harbouring this mutation has survived for over 20 years following surgery despite a high stage at presentation. Further studies with more homogeneous patient cohorts are needed to address whether this mutation reflects a different clinical presentation and may benefit from targeted treatment strategies. PMID:26811072

  7. K-Ras4B proteins are expressed in the nucleolus: Interaction with nucleolin.

    PubMed

    Birchenall-Roberts, Maria C; Fu, Tao; Kim, Soo-Gyung; Huang, Ying K; Dambach, Michael; Resau, James H; Ruscetti, Francis W

    2006-09-22

    Kirsten Ras4B (K-Ras4B) is a potent onco-protein that is expressed in the majority of human cell types and is frequently mutated in carcinomas. K-Ras4B, like other members of the Ras family of proteins, is considered to be a cytoplasmic protein that must be localized to the plasma membrane for activation. Here, using confocal microscopy and biochemical analysis, we show that K-Ras4B, but not H-Ras or the closely related K-Ras4A, is also present in the nucleoli of normal and transformed cells. Subcellular fractionation and immunostaining show that K-Ras4B is located not only in the cytoplasm, but also in the nucleolar compartment. Modification of a C-terminal hexa-lysine motif unique to K-Ras4B results in exclusively cytoplasmic forms of the protein. Nucleolin, a pleiotropic regulator of cellular processes, including transcriptional regulation, is also characterized by a nucleolar-like nuclear appearance. We show that K-Ras4B and nucleolin co-localize within the nucleus and that nucleolin physically associates with K-Ras4B. Inhibition of K-Ras4B/nucleolin association blocked nucleolar localization of K-Ras4B. Using siRNA to knockdown the expression of nucleolin eliminated the nucleolar localization of K-Ras4B and significantly repressed the activation of the well-characterized K-Ras4B transcriptional target Ap-1, but stimulated Elk1. These data provide evidence of a nucleolar localization of K-Ras4B and describe a functional association between K-Ras4B and nucleolin. PMID:16889753

  8. K-Ras4B proteins are expressed in the nucleolus: Interaction with nucleolin

    SciTech Connect

    Birchenall-Roberts, Maria C. . E-mail: birchena@mail.ncifcrf.gov; Fu, Tao; Kim, Soo-Gyung; Huang, Ying K.; Dambach, Michael; Resau, James H.; Ruscetti, Francis W.

    2006-09-22

    Kirsten Ras4B (K-Ras4B) is a potent onco-protein that is expressed in the majority of human cell types and is frequently mutated in carcinomas. K-Ras4B, like other members of the Ras family of proteins, is considered to be a cytoplasmic protein that must be localized to the plasma membrane for activation. Here, using confocal microscopy and biochemical analysis, we show that K-Ras4B, but not H-Ras or the closely related K-Ras4A, is also present in the nucleoli of normal and transformed cells. Subcellular fractionation and immunostaining show that K-Ras4B is located not only in the cytoplasm, but also in the nucleolar compartment. Modification of a C-terminal hexa-lysine motif unique to K-Ras4B results in exclusively cytoplasmic forms of the protein. Nucleolin, a pleiotropic regulator of cellular processes, including transcriptional regulation, is also characterized by a nucleolar-like nuclear appearance. We show that K-Ras4B and nucleolin co-localize within the nucleus and that nucleolin physically associates with K-Ras4B. Inhibition of K-Ras4B/nucleolin association blocked nucleolar localization of K-Ras4B. Using siRNA to knockdown the expression of nucleolin eliminated the nucleolar localization of K-Ras4B and significantly repressed the activation of the well-characterized K-Ras4B transcriptional target Ap-1, but stimulated Elk1. These data provide evidence of a nucleolar localization of K-Ras4B and describe a functional association between K-Ras4B and nucleolin.

  9. Regulating the Regulator: Post-Translational Modification of Ras

    PubMed Central

    Ahearn, Ian M.; Haigis, Kevin; Bar-Sagi, Dafna; Philips, Mark R.

    2013-01-01

    Ras proteins are monomeric GTPases that act as binary molecular switches to regulate a wide range of cellular processes. The exchange of GTP for GDP on Ras is regulated by guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs), which regulate the activation state of Ras without covalently modifying it. In contrast, post-translational modifications (PTMs) of Ras proteins direct them to various cellular membranes and, in some cases, modulate GTP–GDP exchange. Important Ras PTMs include the constitutive and irreversible remodelling of its C-terminal CAAX motif by farnesylation, proteolysis and methylation, reversible palmitoylation, and conditional modifications including phosphorylation, peptidyl-proly isomerisation, mono- and di-ubiquitination, nitrosylation, ADP ribosylation and glucosylation. PMID:22189424

  10. H-Ras regulation of TRAIL death receptor mediated apoptosis

    PubMed Central

    Chen, Jun-Jie; Bozza, William P.; Di, Xu; Zhang, Yaqin; Hallett, William; Zhang, Baolin

    2014-01-01

    TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis through the death receptors (DRs) 4 and/or 5 expressed on the cell surface. Multiple clinical trials are underway to evaluate the antitumor activity of recombinant human TRAIL and agonistic antibodies to DR4 or DR5. However, their therapeutic potential is limited by the high frequency of cancer resistance. Here we provide evidence demonstrating the role of H-Ras in TRAIL receptor mediated apoptosis. By analyzing the genome wide mRNA expression data of the NCI60 cancer cell lines, we found that H-Ras expression was consistently upregulated in TRAIL-resistant cell lines. By contrast, no correlation was found between TRAIL sensitivity and K-Ras expression levels or their mutational profiles. Notably, H-Ras upregulation associated with a surface deficiency of TRAIL death receptors. Selective inhibition of H-Ras activity in TRAIL-resistant cells restored the surface expression of both DR4 and DR5 without changing their total protein levels. The resulting cells became highly susceptible to both TRAIL and agonistic DR5 antibody, whereas K-Ras inhibition had little or no effect on TRAIL-induced apoptosis, indicating H-Ras plays a distinct role in the regulation of TRAIL death receptors. Further studies are warranted to determine the therapeutic potential of H-Ras-specific inhibitors in combination with TRAIL receptor agonists. PMID:25026275

  11. The role of antiangiogenic agents in the treatment of patients with advanced colorectal cancer according to K-RAS status.

    PubMed

    García-Alfonso, Pilar; Grande, Enrique; Polo, Eduardo; Afonso, Ruth; Reina, Juan José; Jorge, Mónica; Campos, Juan Manuel; Martínez, Virginia; Angeles, Cristina; Montagut, Clara

    2014-10-01

    Colorectal cancer (CRC) is the fourth most commonly diagnosed cancer worldwide. Recently, it has been found that about 40 % of patients with CRC have mutations in the K-RAS gene. Several clinical trials have showed that patients with metastatic colorectal cancer (mCRC) who present tumour-promoting mutations in signalling pathways involving the epidermal growth factor receptor (EGFR), which includes activating K-RAS mutations, do not respond to anti-EGFR drugs such as panitumumab and cetuximab. Hence, K-RAS status is now considered an important negative predictive factor for response to anti-EGFR drugs. Moreover, K-RAS status seems to have also a prognostic role in CRC, but this fact is somewhat controversial. Activity of antiangiogenic agents seems not to be influenced by K-RAS gene status. Tumour angiogenesis has attracted interest in attempts to improve the management of mCRC. The vascular endothelial growth factor (VEGF) pathway is fundamental to the regulation of angiogenesis, and research has focused on developing agents that selectively target it. In this way, the anti-VEGF antibody bevacizumab in combination with chemotherapy has provided important clinical benefits in terms of response rate, progression-free survival and overall survival to patients with mCRC. Efficacy data of bevacizumab in K-RAS wild-type patients seem to be comparable with the efficacy data observed with anti-EGFR therapies in a cross-trial comparison. Although there is a lack of prospective and randomized data in this setting, the combination of chemotherapy plus antiangiogenic agents could be considered as an effective alternative for the treatment of mCRC with independence of K-RAS gene status. Here, we review the available data we have in the literature of the use of antiangiogenic strategies in the treatment of mCRC nowadays. PMID:24793846

  12. The neurofibromin recruitment factor Spred1 binds to the GAP related domain without affecting Ras inactivation.

    PubMed

    Dunzendorfer-Matt, Theresia; Mercado, Ellen L; Maly, Karl; McCormick, Frank; Scheffzek, Klaus

    2016-07-01

    Neurofibromatosis type 1 (NF1) and Legius syndrome are related diseases with partially overlapping symptoms caused by alterations of the tumor suppressor genes NF1 (encoding the protein neurofibromin) and SPRED1 (encoding sprouty-related, EVH1 domain-containing protein 1, Spred1), respectively. Both proteins are negative regulators of Ras/MAPK signaling with neurofibromin functioning as a Ras-specific GTPase activating protein (GAP) and Spred1 acting on hitherto undefined components of the pathway. Importantly, neurofibromin has been identified as a key protein in the development of cancer, as it is genetically altered in a large number of sporadic human malignancies unrelated to NF1. Spred1 has previously been demonstrated to interact with neurofibromin via its N-terminal Ena/VASP Homology 1 (EVH1) domain and to mediate membrane translocation of its target dependent on its C-terminal Sprouty domain. However, the region of neurofibromin required for the interaction with Spred1 has remained unclear. Here we show that the EVH1 domain of Spred1 binds to the noncatalytic (GAPex) portion of the GAP-related domain (GRD) of neurofibromin. Binding is compatible with simultaneous binding of Ras and does not interfere with GAP activity. Our study points to a potential targeting function of the GAPex subdomain of neurofibromin that is present in all known canonical RasGAPs. PMID:27313208

  13. Comparative analysis of radiosensitizers for K-RAS mutant rectal cancers.

    PubMed

    Kleiman, Laura B; Krebs, Angela M; Kim, Stephen Y; Hong, Theodore S; Haigis, Kevin M

    2013-01-01

    Approximately 40% of rectal cancers harbor activating K-RAS mutations, and these mutations are associated with poor clinical response to chemoradiotherapy. We aimed to identify small molecule inhibitors (SMIs) that synergize with ionizing radiation (IR) ("radiosensitizers") that could be incorporated into current treatment strategies for locally advanced rectal cancers (LARCs) expressing mutant K-RAS. We first optimized a high-throughput assay for measuring individual and combined effects of SMIs and IR that produces similar results to the gold standard colony formation assay. Using this screening platform and K-RAS mutant rectal cancer cell lines, we tested SMIs targeting diverse signaling pathways for radiosensitizing activity and then evaluated our top hits in follow-up experiments. The two most potent radiosensitizers were the Chk1/2 inhibitor AZD7762 and the PI3K/mTOR inhibitor BEZ235. The chemotherapeutic agent 5-fluorouracil (5-FU), which is used to treat LARC, synergized with AZD7762 and enhanced radiosensitization by AZD7762. This study is the first to compare different SMIs in combination with IR for the treatment of K-RAS mutant rectal cancer, and our findings suggest that Chk1/2 inhibitors should be evaluated in new clinical trials for LARC. PMID:24349411

  14. The neurofibromin recruitment factor Spred1 binds to the GAP related domain without affecting Ras inactivation

    PubMed Central

    Dunzendorfer-Matt, Theresia; Mercado, Ellen L.; Maly, Karl; McCormick, Frank; Scheffzek, Klaus

    2016-01-01

    Neurofibromatosis type 1 (NF1) and Legius syndrome are related diseases with partially overlapping symptoms caused by alterations of the tumor suppressor genes NF1 (encoding the protein neurofibromin) and SPRED1 (encoding sprouty-related, EVH1 domain-containing protein 1, Spred1), respectively. Both proteins are negative regulators of Ras/MAPK signaling with neurofibromin functioning as a Ras-specific GTPase activating protein (GAP) and Spred1 acting on hitherto undefined components of the pathway. Importantly, neurofibromin has been identified as a key protein in the development of cancer, as it is genetically altered in a large number of sporadic human malignancies unrelated to NF1. Spred1 has previously been demonstrated to interact with neurofibromin via its N-terminal Ena/VASP Homology 1 (EVH1) domain and to mediate membrane translocation of its target dependent on its C-terminal Sprouty domain. However, the region of neurofibromin required for the interaction with Spred1 has remained unclear. Here we show that the EVH1 domain of Spred1 binds to the noncatalytic (GAPex) portion of the GAP-related domain (GRD) of neurofibromin. Binding is compatible with simultaneous binding of Ras and does not interfere with GAP activity. Our study points to a potential targeting function of the GAPex subdomain of neurofibromin that is present in all known canonical RasGAPs. PMID:27313208

  15. The cell of origin and subtype of K-Ras-induced lung tumors are modified by Notch and Sox2

    PubMed Central

    Xu, Xia; Huang, Lingling; Futtner, Christopher; Schwab, Brian; Rampersad, Rishi R.; Lu, Yun; Sporn, Thomas A.; Hogan, Brigid L.M.

    2014-01-01

    Cell type-specific conditional activation of oncogenic K-Ras is a powerful tool for investigating the cell of origin of adenocarcinomas in the mouse lung. Our previous studies showed that K-Ras activation with a CC10(Scgb1a1)-CreER driver leads to adenocarcinoma in a subset of alveolar type II cells and hyperplasia in the bronchioalveolar duct region. However, no tumors develop in the bronchioles, although recombination occurs throughout this region. To explore underlying mechanisms, we simultaneously modulated either Notch signaling or Sox2 levels in the CC10+ cells along with activation of K-Ras. Inhibition of Notch strongly inhibits adenocarcinoma formation but promotes squamous hyperplasia in the alveoli. In contrast, activation of Notch leads to widespread Sox2+, Sox9+, and CC10+ papillary adenocarcinomas throughout the bronchioles. Chromatin immunoprecipitation demonstrates Sox2 binding to NOTCH1 and NOTCH2 regulatory regions. In transgenic mouse models, overexpression of Sox2 leads to a significant reduction of Notch1 and Notch2 transcripts, while a 50% reduction in Sox2 leads to widespread papillary adenocarcinoma in the bronchioles. Taken together, our data demonstrate that the cell of origin of K-Ras-induced tumors in the lung depends on levels of Sox2 expression affecting Notch signaling. In addition, the subtype of tumors arising from type II cells is determined in part by Notch activation or suppression. PMID:25184679

  16. Dose-dependent carcinogenicity and frequent Ki-ras proto-oncogene activation by dietary N-nitrosodiethylamine in rainbow trout.

    PubMed

    Hendricks, J D; Cheng, R; Shelton, D W; Pereira, C B; Bailey, G S

    1994-07-01

    While the experimental data upon which current concepts in mechanistically based risk assessment and molecular epidemiology are grounded derive almost entirely from rodent models, fish models have several attributes (e.g., low background incidence, extremely low cost tumor studies, nonmammalian comparative status for extrapolation of mechanisms to humans) that make them valuable adjuncts for addressing these concepts. This report provides an initial characterization of the dose dependency of dietary N-nitrosodiethylamine (DEN) hepatocarcinogenicity in Shasta strain rainbow trout (Oncorhynchus mykiss) and the potential of DEN to elicit ras proto-oncogene activation in this species. Carcinogen was administered in the diet at five concentrations for 12 months. Necropsies were performed at 9, 12, and 18 months, the latter on fish maintained on control diet for 6 months after cessation of DEN exposure. The incidence of hepatic neoplasms at the lower dietary concentrations (< or = 70 ppm) did not consistently exceed that for control groups, which were higher in this particular study (2%) than expected (historically 0.1%). For the higher DEN concentrations, a linear relationship between the hepatic tumor incidence (expressed as log odds, log [p/(1-p)], where p = proportion of fish bearing tumors), and the logarithm of total cumulative dose was observed, with response being independent of the length of time (9 or 12 months) during which the dose was accumulated. The dose-response curve for fish maintained an additional 6 months postexposure was shifted toward higher incidence but was parallel to the curve for fish killed at cessation of exposure. The model predicts that doubling the dose will produce somewhat more than a doubling of the odds (p/(100-p)) for tumor incidence and that the odds for lesions 6 months postexposure will be approximately double those at cessation of exposure. Comparison of these results with previous studies using rats suggests an overall

  17. Targeting the K-Ras/PDEδ protein-protein interaction: the solution for Ras-driven cancers or just another therapeutic mirage?

    PubMed

    Frett, Brendan; Wang, Yuanxiang; Li, Hong-Yu

    2013-10-01

    The holy grail, finally? After years of unsuccessful attempts at drugging the Ras oncogene, a recent paper by Zimmerman et al. has revealed the possibility of inhibiting Ras signaling on a clinically relevant level by blocking the K-Ras/PDEδ protein-protein interaction. The results, reported in Nature, are highlighted herein with future implications and directions to evaluate the full clinical potential of this research. PMID:23939923

  18. Paired inhibitory and activating receptor signals.

    PubMed

    Taylor, L S; Paul, S P; McVicar, D W

    2000-01-01

    The immunological literature has become inundated with reports regarding paired inhibitory receptors. Paired inhibitory receptor systems are highly conserved families that contain receptors involved in either cellular inhibition or activation. In most cases the paired putative biochemical antagonists are co-expressed on a given cell and thought to bind similar, if not identical, ligands making their biological role difficult to understand. Examples of these systems include immunoglobulin (Ig)-like receptors (Killer Ig Receptors, Immunoglobulin-like Transcripts/Leukocyte Ig-like Receptors/Monocyte Macrophage Ig Receptors, and Paired Ig-like Receptors), and type II lectin-like receptor systems (NKG2 and Ly49). General characteristics of these inhibitory receptors include a cytoplasmic immunoreceptor tyrosine-based inhibitory motif (ITIM). The ITIM is phosphorylated upon engagement and recruits protein tyrosine phosphatases that dephosphorylate cellular substrates that would otherwise mediate activation. In contrast, the activating receptors of these pairs use charged residues within their transmembrane domains to associate with various signal transduction chains including the gamma chain of the receptor for the Fc portion of IgE, DAP12 or DAP10. Once phosphorylated, these chains direct the signal transduction cascade resulting in cellular activation. Here we review the signaling of several paired systems and present the current models for their signal transduction cascades. PMID:11258418

  19. K-Ras and cyclooxygenase-2 coactivation augments intraductal papillary mucinous neoplasm and Notch1 mimicking human pancreas lesions

    PubMed Central

    Chiblak, Sara; Steinbauer, Brigitte; Pohl-Arnold, Andrea; Kucher, Dagmar; Abdollahi, Amir; Schwager, Christian; Höft, Birgit; Esposito, Irene; Müller-Decker, Karin

    2016-01-01

    Mutational activation of K-Ras is an initiating event of pancreatic ductal adenocarcinomas (PDAC) that may develop either from pancreatic intraepithelial neoplasia (PanIN) or intraductal papillary mucinous neoplasms (IPMN). Cyclooxygenase-2 (COX-2)-derived prostaglandin E2 (PGE2) is causally related to pancreatic carcinogenesis. Here, we deciphered the impact of COX-2, a key modulator of inflammation, in concert with active mutant K-RasG12D on tumor burden and gene expression signature using compound mutant mouse lines. Concomitant activation of COX-2 and K-RasG12D accelerated the progression of pancreatic intraepithelial lesions predominantly with a cystic papillary phenotype resembling human IPMN. Transcriptomes derived from laser capture microdissected preneoplastic lesions of single and compound mutants revealed a signature that was significantly enriched in Notch1 signaling components. In vitro, Notch1 signaling was COX-2-dependent. In line with these findings, human IPMN stratified into intestinal, gastric and pancreatobillary types displayed Notch1 immunosignals with high prevalence, especially in the gastric lesions. In conclusion, a yet unknown link between activated Ras, protumorigenic COX-2 and Notch1 in IPMN onset was unraveled. PMID:27381829

  20. K-Ras and cyclooxygenase-2 coactivation augments intraductal papillary mucinous neoplasm and Notch1 mimicking human pancreas lesions.

    PubMed

    Chiblak, Sara; Steinbauer, Brigitte; Pohl-Arnold, Andrea; Kucher, Dagmar; Abdollahi, Amir; Schwager, Christian; Höft, Birgit; Esposito, Irene; Müller-Decker, Karin

    2016-01-01

    Mutational activation of K-Ras is an initiating event of pancreatic ductal adenocarcinomas (PDAC) that may develop either from pancreatic intraepithelial neoplasia (PanIN) or intraductal papillary mucinous neoplasms (IPMN). Cyclooxygenase-2 (COX-2)-derived prostaglandin E2 (PGE2) is causally related to pancreatic carcinogenesis. Here, we deciphered the impact of COX-2, a key modulator of inflammation, in concert with active mutant K-Ras(G12D) on tumor burden and gene expression signature using compound mutant mouse lines. Concomitant activation of COX-2 and K-Ras(G12D) accelerated the progression of pancreatic intraepithelial lesions predominantly with a cystic papillary phenotype resembling human IPMN. Transcriptomes derived from laser capture microdissected preneoplastic lesions of single and compound mutants revealed a signature that was significantly enriched in Notch1 signaling components. In vitro, Notch1 signaling was COX-2-dependent. In line with these findings, human IPMN stratified into intestinal, gastric and pancreatobillary types displayed Notch1 immunosignals with high prevalence, especially in the gastric lesions. In conclusion, a yet unknown link between activated Ras, protumorigenic COX-2 and Notch1 in IPMN onset was unraveled. PMID:27381829

  1. Chemopreventive effect of punicalagin, a novel tannin component isolated from Terminalia catappa, on H-ras-transformed NIH3T3 cells.

    PubMed

    Chen, Pin-Shern; Li, Jih-Heng

    2006-05-01

    Terminalia catappa and its major tannin component, punicalagin, have been characterized to possess antioxidative and anti-genotoxic activities. However, their effects on reactive oxygen species (ROS) mediated carcinogenesis are still unclear. In the present study, H-ras-transformed NIH3T3 cells were used to evaluate the chemopreventive effect of T. catappa water extract (TCE) and punicalagin. In the cell proliferation assay, TCE and punicalagin suppressed the proliferation of H-ras-transformed NIH3T3 cells with a dose-dependent manner but only partially affected non-transformed NIH3T3 cells proliferation. The differential cytotoxicity of TCE/punicalagin on the H-ras-transformed and non-transformed NIH3T3 cells indicated the selectivity of TCE/punicalagin against H-ras induced transformation. TCE or punicalagin treatment reduced anchorage-independent growth that could be due to a cell cycle arrest at G0/G1 phase. The intracellular superoxide level, known to modulate downstream signaling of Ras protein, was decreased by punicalagin treatments. The levels of phosphorylated JNK-1 and p38 were also decreased with punicalagin treatments. Thus, the chemopreventive effect of punicalagin against H-ras induced transformation could result from inhibition of the intracellular redox status and JNK-1/p38 activation. PMID:16242868

  2. E-Ras improves the efficiency of reprogramming by facilitating cell cycle progression through JNK-Sp1 pathway.

    PubMed

    Kwon, Yoo-Wook; Jang, Seulgi; Paek, Jae-Seung; Lee, Jae-Woong; Cho, Hyun-Jai; Yang, Han-Mo; Kim, Hyo-Soo

    2015-11-01

    We have previously shown that pluripotent stem cells can be induced from adult somatic cells which were exposed to protein extracts isolated from mouse embryonic stem cells (mESC). Interestingly, generation of induced pluripotent stem (iPS) cells depended on the background of ES cell lines; possible by extracts from C57, but not from E14. Proteomic analysis of two different mES cell lines (C57 and E14) shows that embryonic Ras (E-Ras) is expressed differently in two mES cell lines; high level of E-Ras only in C57 mESC whose extracts allows iPS cells production from somatic cells. Here, we show that E-Ras augments the efficiency in reprogramming of fibroblast by promoting cell proliferation. We found that over-expression of E-Ras in fibroblast increased cell proliferation which was caused by specific up-regulation of cyclins D and E, not A or B, leading to the accelerated G1 to S phase transition. To figure out the common transcription factor of cyclins D and E, we used TRANSFAC database and selected SP1 as a candidate which was confirmed as enhancer of cyclins D and E by luciferase promoter assay using mutants. As downstream signaling pathways, E-Ras activated only c-Jun N-terminal kinases (JNK) but not ERK or p38. Inhibition of JNK prevented E-Ras-mediated induction of pSP1, cyclins D, E, and cell proliferation. Finally, E-Ras transduction to fibroblast enhanced the efficiency of iPS cell generation by 4 factors (Oct4/Klf4/Sox2/C-myc), which was prevented by JNK inhibitor. In conclusion, E-Ras stimulates JNK, enhances binding of Sp1 on the promoter of cyclins D and E, leading to cell proliferation. E-Ras/JNK axis is a critical mechanism to generate iPS cells by transduction of 4 factors or by treatment of mESC protein extracts. PMID:26413787

  3. Yes-Associated Protein Contributes to the Development of Human Cutaneous Squamous Cell Carcinoma via Activation of RAS.

    PubMed

    Jia, Jinjing; Li, Changji; Luo, Suju; Liu-Smith, Feng; Yang, Jiao; Wang, Xin; Wang, Nanping; Lai, Baochang; Lei, Ting; Wang, Qiongyu; Xiao, Shengxiang; Shao, Yongping; Zheng, Yan

    2016-06-01

    Cutaneous squamous cell carcinoma (cSCC) is one of the most common skin malignant tumors with an increasing incidence. Studies have shown that Yes-associated protein (YAP) participates in the development of a variety of tumors as an oncogene, but to our knowledge its role in cSCC has not been reported. In this study, we used immunohistochemistry to show that YAP expression was elevated in cSCC samples of different stages versus in normal skin and that it was well correlated with the progression of the disease. Down-regulation of YAP in cSCC cell lines A431 and SCL-1 inhibited cell proliferation by inducing growth arrest during the G1/S phase transition, promoted apoptosis, and reduced invasion and migration abilities in vitro. Conversely, overexpression of YAP promoted cell proliferation and protected cells against basal and chemotherapy-induced apoptosis. These oncogenic effects of YAP were associated with activation of the RAS protein and its downstream AKT and ERK. Using a mouse xenograft model, we further showed that YAP depletion inhibited cSCC tumor growth in vivo. Our results suggested that YAP is involved in the carcinogenesis and development of cSCC and that it may serve as a biomarker or therapeutic target of this disease. PMID:26902922

  4. Molecular Pathways: Targeting the Dependence of Mutant RAS Cancers on the DNA Damage Response

    PubMed Central

    Grabocka, Elda; Commisso, Cosimo; Bar-Sagi, Dafna

    2014-01-01

    Of the genes mutated in cancer, RAS remains the most elusive to target. Recent technological advances and discoveries have greatly expanded our knowledge of the biology of oncogenic Ras and its role in cancer. As such, it has become apparent that a property that intimately accompanies RAS-driven tumorigenesis is the dependence of RAS mutant cells on a number of non-oncogenic signaling pathways. These dependencies arise as a means of adaptation to Ras-driven intracellular stresses and represent unique vulnerabilities of mutant RAS cancers. A number of studies have highlighted the dependence of mutant RAS cancers on the DNA damage response and identified the molecular pathways that mediate this process including signaling from wild-type Ras isoforms, ATR/Chk1, and DNA damage repair pathways. Here we review these findings, and discuss the combinatorial use of DNA damaging chemotherapy with blockade of wild-type H- and N-Ras signaling by farnesyltransferase inhibitors, Chk1 inhibitors, or small molecule targeting DNA damage repair as potential strategies through which the dependence of RAS cancers on the DNA damage response can be harnessed for therapeutic intervention. PMID:25424849

  5. Human Sos1: A guanine nucleotide exchange factor for ras that binds to GRB2

    SciTech Connect

    Chardin, P. ); Camonis, J.; Gale, N.W.; Aelst, L. Van; Wigler, M.H.; Bar-Sagi, D. ); Schlessinger, J. )

    1993-05-28

    A human complementary DNA was isolated that encodes a widely expressed protein, hSos1, that is closely related to Sos, the product of the Drosophila son of sevenless gene. The hSos1 protein contains a region of significant sequence similarity to CDC25, a guanine nucleotide exchange factor for Ras from yeast. A fragment of hSos1 encoding the CDC25-related domain complemented loss of CDC25 function in yeast. This hSos1 domain specifically stimulated guanine nucleotide exchange on mammalian Ras proteins in vitro. Mammalian cells overexpressing full-length hSos1 had increased guanine nucleotide exchange activity. Thus hSos1 is a guanine nucleotide exchange factor for Ras. The hSos1 interacted with growth factor receptor-bound protein 2 (GRB2) in vivo and in vitro. This interaction was mediated by the carboxyl-terminal domain of hSos1 and the Src homology 3 (SH3) domains of GRB2. These results suggest that the coupling of receptor tyrosine kinases to Ras signaling is mediated by a molecular complex consisting of GRB2 and hSos1. 42 refs., 5 figs.

  6. RAS Mutations and Oncogenesis: Not all RAS Mutations are Created Equally

    PubMed Central

    Miller, Mark Steven; Miller, Lance D.

    2012-01-01

    Mutation in RAS proteins is one of the most common genetic alterations observed in human and experimentally induced rodent cancers. In vivo, oncogenic mutations have been shown to occur at exons 12, 13, and 61, resulting in any 1 of 19 possible point mutations in a given tumor for a specific RAS isoform. While some studies have suggested a possible role of different mutant alleles in determining tumor severity and phenotype, no general consensus has emerged on the oncogenicity of different mutant alleles in tumor formation and progression. Part of this may be due to a lack of a single, signature pathway that shows significant alterations between different mutations. Rather, it is likely that subtle differences in the activation, or lack thereof, of downstream effectors by different RAS mutant alleles may determine the eventual outcome in terms of tumor phenotype. This paper reviews our current understanding of the potential role of different RAS mutations on tumorigenesis, highlights studies in model cell culture and in vivo systems, and discusses the potential of expression array and computational network modeling to dissect out differences in activated RAS genes in conferring a transforming phenotype. PMID:22303394

  7. Oncogenicity of human N-ras oncogene and proto-oncogene introduced into retroviral vectors

    SciTech Connect

    Souyri, M.; Vigon, I.; Charon, M.; Tambourin, P. )

    1989-09-01

    The N-ras gene is the only member of the ras family which has never been naturally transduced into a retrovirus. In order to study the in vitro and in vivo oncogenicity of N-ras and to compare its pathogenicity to that of H-ras, the authors have inserted an activated or a normal form of human N-ras cDNA into a slightly modified Harvey murine sarcoma virus-derived vector in which the H-ras p21 coding region had been deleted. The resulting constructions were transfected into NIH 3T3 cells. The activated N-ras-containing construct (HSN) induced 10{sup 4} foci per {mu}g of DNA and was found to be as transforming as H-ras was. After infection of the transfected cells by either the ecotropic Moloney murine leukemia virus or the amphotropic 4070A helper viruses, rescued transforming viruses were injected into newborn mice. Both pseudotypes of HSN virus containing activated N-ras induced the typical Harvey disease with similar latency. However, they found that the virus which contained normal N-ras p21 (HSn) was also pathogenic and induced splenomegaly, lymphadenopathies, and sarcoma in mice after a latency of 3 to 7 weeks. In addition, Moloney murine leukemia virus pseudotypes of N-ras caused neurological disorders in 30% of the infected animals. These results differed markedly from those of previous experiments in which the authors had inserted the activated form of N-ras in the pSV(X) vector: the resulting SVN-ras virus was transforming on NIH 3T3 cells but was poorly oncogenic in vivo. Altogether, these data demonstrated unequivocally that N-ras is potentially as oncogenic as H-ras and that such oncogenic effect could depend on the vector environment.

  8. RREB-1, a novel zinc finger protein, is involved in the differentiation response to Ras in human medullary thyroid carcinomas.

    PubMed Central

    Thiagalingam, A; De Bustros, A; Borges, M; Jasti, R; Compton, D; Diamond, L; Mabry, M; Ball, D W; Baylin, S B; Nelkin, B D

    1996-01-01

    An activated ras oncogene induces a program of differentiation in the human medullary thyroid cancer cell line TT. This differentiation process is accompanied by a marked increase in the transcription of the human calcitonin (CT) gene. We have localized a unique Ras-responsive transcriptional element (RRE) in the CT gene promoter. DNase I protection indicates two domains of protein-DNA interaction, and each domain separately can confer Ras-mediated transcriptional inducibility. This bipartite RRE was also found to be Raf responsive. By affinity screening, we have cloned a cDNA coding for a zinc finger transcription factor (RREB-1) that binds to the distal RRE. The consensus binding site for this factor is CCCCAAACCACCCC. RREB-1 is expressed ubiquitously in human tissues outside the adult brain. Overexpression of RREB-1 protein in TT cells confers the ability to mediate increased transactivation of the CT gene promoter-reporter construct during Ras- or Raf-induced differentiation. These data suggest that RREB-1 may play a role in Ras and Raf signal transduction in medullary thyroid cancer and other cells. PMID:8816445

  9. Analysis of Ras-induced overproliferation in Drosophila hemocytes.

    PubMed Central

    Asha, H; Nagy, Istvan; Kovacs, Gabor; Stetson, Daniel; Ando, Istvan; Dearolf, Charles R

    2003-01-01

    We use the Drosophila melanogaster larval hematopoietic system as an in vivo model for the genetic and functional genomic analysis of oncogenic cell overproliferation. Ras regulates cell proliferation and differentiation in multicellular eukaryotes. To further elucidate the role of activated Ras in cell overproliferation, we generated a collagen promoter-Gal4 strain