Science.gov

Sample records for activated receptor ppar

  1. Peroxisome proliferator-activated receptors (PPARs) and PPAR agonists: the 'future' in dermatology therapeutics?

    PubMed

    Gupta, Mrinal; Mahajan, Vikram K; Mehta, Karaninder S; Chauhan, Pushpinder S; Rawat, Ritu

    2015-11-01

    Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors and comprise three different isoforms namely PPARα, PPARγ, and PPARβ/δ with PPARβ/δ being the predominant subtype in human keratinocytes. After binding with specific ligands, PPARs regulate gene expression, cell growth and differentiation, apoptosis, inflammatory responses, and tumorogenesis. PPARs also modulate a wide variety of skin functions including keratinocyte proliferation, epidermal barrier formation, wound healing, melanocyte proliferation, and sebum production. Recent studies have shown the importance of PPARs in the pathogenesis of many dermatological disorders. Clinical trials have suggested possible role of PPAR agonists in the management of various dermatoses ranging from acne vulgaris, psoriasis, hirsutism, and lipodystrophy to cutaneous malignancies including melanoma. This article is intended to be a primer for dermatologists in their understanding of clinical relevance of PPARs and PPAR agonists in dermatology therapeutics. PMID:25986745

  2. Fatty acid activation of peroxisome proliferator-activated receptor (PPAR).

    PubMed

    Bocos, C; Göttlicher, M; Gearing, K; Banner, C; Enmark, E; Teboul, M; Crickmore, A; Gustafsson, J A

    1995-06-01

    Peroxisome proliferators such as clofibric acid, nafenopin, and WY-14,643 have been shown to activate peroxisome proliferator-activated receptor (PPAR), a member of the steroid nuclear receptor superfamily. We have cloned the cDNA from rat that is homologous to that from mouse, which encodes a 97% similar protein. To search for physiologically occurring activators, we established a transcriptional transactivation assay by stably expressing in CHO cells a chimera of rat PPAR and the human glucocorticoid receptor that activates expression of the placental alkaline phosphatase reporter gene under the control of the mouse mammary tumor virus promoter. 150 microM concentrations of arachidonic or linoleic acid but not of dehydroepiandrosterone, cholesterol, or 25-hydroxy-cholesterol, activated the receptor chimera. In addition, saturated fatty acids induced the reporter gene. Shortening the chain length to n = 6 or introduction of an omega-terminal carboxylic group abolished the activation potential of the fatty acid. To test whether a common PPAR binding metabolite might be formed from free fatty acids we tested the effects of differentially beta-oxidizable fatty acids and inhibitors of fatty acid metabolism. The peroxisomal proliferation-inducing, non-beta-oxidizable, tetradecylthioacetic acid activated PPAR to the same extent as the strong peroxisomal proliferator WY-14,643, whereas the homologous beta-oxidizable tetradecylthiopropionic acid was only as potent as a non-substituted fatty acid. Cyclooxygenase inhibitors, radical scavengers or cytochrome P450 inhibitors did not affect activation of PPAR. In conclusion, beta-oxidation is apparently not required for the formation of the PPAR-activating molecule and this moiety might be a fatty acid, its ester with CoA, or a further derivative of the activated fatty acid prior to beta-oxidation of the acyl-CoA ester. PMID:7626496

  3. PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR (PPAR) AGONISTS AS PROMISING NEW MEDICATIONS FOR DRUG ADDICTION: PRECLINICAL EVIDENCE

    PubMed Central

    Foll, Bernard Le; Ciano, Patricia Di; Panlilio, Leigh V.; Goldberg, Steven R.; Ciccocioppo, Roberto

    2013-01-01

    This review examines the growing literature on the role of peroxisome proliferator-activated receptors (PPARs) in addiction. There are two subtypes of PPAR receptors that have been studied in addiction: PPAR-α and PPAR-γ. The role of each PPAR subtype in common models of addictive behavior, mainly pre-clinical models, is summarized. In particular, studies are reviewed that investigated the effects of PPAR-α agonists on relapse, sensitization, conditioned place preference, withdrawal and drug intake, and effects of PPAR-γ agonists on relapse, withdrawal and drug intake. Finally, studies that investigated the effects of PPAR agonists on neural pathways of addiction are reviewed. Taken together this preclinical data indicates that PPAR agonists are promising new medications for drug addiction treatment. PMID:23614675

  4. IP receptor-dependent activation of PPAR{gamma} by stable prostacyclin analogues

    SciTech Connect

    Falcetti, Emilia; Flavell, David M.; Staels, Bart; Tinker, Andrew; Haworth, Sheila G.; Clapp, Lucie H. . E-mail: l.clapp@ucl.ac.uk

    2007-09-07

    Stable prostacyclin analogues can signal through cell surface IP receptors or by ligand binding to nuclear peroxisome proliferator-activated receptors (PPARs). So far these agents have been reported to activate PPAR{alpha} and PPAR{delta} but not PPAR{gamma}. Given PPAR{gamma} agonists and prostacyclin analogues both inhibit cell proliferation, we postulated that the IP receptor might elicit PPAR{gamma} activation. Using a dual luciferase reporter gene assay in HEK-293 cells stably expressing the IP receptor or empty vector, we found that prostacyclin analogues only activated PPAR{gamma} in the presence of the IP receptor. Moreover, the novel IP receptor antagonist, RO1138452, but not inhibitors of the cyclic AMP pathway, prevented activation. Likewise, the anti-proliferative effects of treprostinil observed in IP receptor expressing cells, were partially inhibited by the PPAR{gamma} antagonist, GW9662. We conclude that PPAR{gamma} is activated through the IP receptor via a cyclic AMP-independent mechanism and contributes to the anti-growth effects of prostacyclin analogues.

  5. Dual and pan-peroxisome proliferator-activated receptors (PPAR) co-agonism: the bezafibrate lessons.

    PubMed

    Tenenbaum, Alexander; Motro, Michael; Fisman, Enrique Z

    2005-01-01

    There are three peroxisome proliferator-activated receptors (PPARs) subtypes which are commonly designated PPAR alpha, PPAR gamma and PPAR beta/delta. PPAR alpha activation increases high density lipoprotein (HDL) cholesterol synthesis, stimulates "reverse" cholesterol transport and reduces triglycerides. PPAR gamma activation results in insulin sensitization and antidiabetic action. Until recently, the biological role of PPAR beta/delta remained unclear. However, treatment of obese animals by specific PPAR delta agonists results in normalization of metabolic parameters and reduction of adiposity. Combined treatments with PPAR gamma and alpha agonists may potentially improve insulin resistance and alleviate atherogenic dyslipidemia, whereas PPAR delta properties may prevent the development of overweight which typically accompanies "pure" PPAR gamma ligands. The new generation of dual-action PPARs--the glitazars, which target PPAR-gamma and PPAR-alpha (like muraglitazar and tesaglitazar) are on deck in late-stage clinical trials and may be effective in reducing cardiovascular risk, but their long-term clinical effects are still unknown. A number of glitazars have presented problems at a late stage of clinical trials because of serious side-effects (including ragaglitazar and farglitazar). The old and well known lipid-lowering fibric acid derivative bezafibrate is the first clinically tested pan--(alpha, beta/delta, gamma) PPAR activator. It is the only pan-PPAR activator with more than a quarter of a century of therapeutic experience with a good safety profile. Therefore, bezafibrate could be considered (indeed, as a "post hoc" understanding) as an "archetype" of a clinically tested pan-PPAR ligand. Bezafibrate leads to considerable raising of HDL cholesterol and reduces triglycerides, improves insulin sensitivity and reduces blood glucose level, significantly lowering the incidence of cardiovascular events and new diabetes in patients with features of metabolic

  6. Review of the expression of Peroxisome Proliferator Activated Receptors alpha (PPARα), beta (PPAR β), and gamma (PPAR() in rodent and human development.

    EPA Science Inventory

    The peroxisome proliferator-activated receptors (PPAR) belong to the nuclear hormone receptor superfamily and there are three primary isotypes, PPARα, β, and (. These receptors regulate important physiological processes that impact lipid homeostasis, inflammation, adipogenesis, r...

  7. Phytol directly activates peroxisome proliferator-activated receptor {alpha} (PPAR{alpha}) and regulates gene expression involved in lipid metabolism in PPAR{alpha}-expressing HepG2 hepatocytes

    SciTech Connect

    Goto, Tsuyoshi; Takahashi, Nobuyuki; Kato, Sota; Egawa, Kahori; Ebisu, Shogo; Moriyama, Tatsuya; Fushiki, Tohru; Kawada, Teruo . E-mail: fat@kais.kyoto-u.ac.jp

    2005-11-18

    The peroxisome proliferator-activated receptor (PPAR) is one of the indispensable transcription factors for regulating lipid metabolism in various tissues. In our screening for natural compounds that activate PPAR using luciferase assays, a branched-carbon-chain alcohol (a component of chlorophylls), phytol, has been identified as a PPAR{alpha}-specific activator. Phytol induced the increase in PPAR{alpha}-dependent luciferase activity and the degree of in vitro binding of a coactivator, SRC-1, to GST-PPAR{alpha}. Moreover, the addition of phytol upregulated the expression of PPAR{alpha}-target genes at both mRNA and protein levels in PPAR{alpha}-expressing HepG2 hepatocytes. These findings indicate that phytol is functional as a PPAR{alpha} ligand and that it stimulates the expression of PPAR{alpha}-target genes in intact cells. Because PPAR{alpha} activation enhances circulating lipid clearance, phytol may be important in managing abnormalities in lipid metabolism.

  8. Recruited metastasis suppressor NM23-H2 attenuates expression and activity of peroxisome proliferator-activated receptor (PPAR) in human cholangiocarcinoma

    PubMed Central

    He, Fang; York, J. Philippe; Burroughs, Sherilyn Gordon; Qin, Lidong; Xia, Jintang; Chen, De; Quigley, Eamonn M.; Webb, Paul; LeSage, Gene D.; Xia, Xuefeng

    2015-01-01

    Background Peroxisome proliferator-activated receptor (PPAR) is a versatile regulator of distinct biological processes and overexpression of PPAR in cancer may be partially related to its suppression of its own co-regulators. Aims To determine whether recruited suppressor proteins bind to and regulate PPAR expression, activity and PPAR -dependent cholangiocarcinoma proliferation. Methods Yeast two-hybrid assays were done using murine PPAR as bait. PPAR mRNA expression was determined by qPCR. Protein expression was measured by western blot. Immunohistochemistry and fluorescence microscopy were used to determine PPAR expression and co-localization with NDP Kinase alpha (NM23-H2). Cell proliferation assays were performed to determine cell numbers. Results Yeast two-hybrid screening identified NM23-H2 as a PPAR binding protein and their interaction was confirmed. Overexpressed PPAR or treatment with the agonist GW501516 resulted in increased cell proliferation. NM23-H2 siRNA activated PPAR luciferase promoter activity, upregulated PPAR RNA and protein expression and increased GW501516-stimulated CCA growth. Overexpression of NM23-H2 inhibited PPAR luciferase promoter activity, downregulated PPAR expression and AKT phosphorylation and reduced GW501516-stimulated CCA growth. Conclusions We report the novel association of NM23-H2 with PPAR and the negative regulation of PPAR expression by NM23-H2 binding to the C-terminal region of PPAR. These findings provide evidence that the metastasis suppressor NM23-H2 is involved in the regulation of PPAR -mediated proliferation. PMID:25277864

  9. Medium Chain Fatty Acids Are Selective Peroxisome Proliferator Activated Receptor (PPAR) γ Activators and Pan-PPAR Partial Agonists

    PubMed Central

    Ayers, Steven D.; Lin, Jean Z.; Cvoro, Aleksandra; Silveira, Rodrigo L.; Martínez, Leandro; Souza, Paulo C. T.; Saidemberg, Daniel; Deng, Tuo; Amato, Angela Angelica; Togashi, Marie; Hsueh, Willa A.; Phillips, Kevin; Palma, Mário Sérgio; Neves, Francisco A. R.; Skaf, Munir S.; Webb, Paul; Polikarpov, Igor

    2012-01-01

    Thiazolidinediones (TZDs) act through peroxisome proliferator activated receptor (PPAR) γ to increase insulin sensitivity in type 2 diabetes (T2DM), but deleterious effects of these ligands mean that selective modulators with improved clinical profiles are needed. We obtained a crystal structure of PPARγ ligand binding domain (LBD) and found that the ligand binding pocket (LBP) is occupied by bacterial medium chain fatty acids (MCFAs). We verified that MCFAs (C8–C10) bind the PPARγ LBD in vitro and showed that they are low-potency partial agonists that display assay-specific actions relative to TZDs; they act as very weak partial agonists in transfections with PPARγ LBD, stronger partial agonists with full length PPARγ and exhibit full blockade of PPARγ phosphorylation by cyclin-dependent kinase 5 (cdk5), linked to reversal of adipose tissue insulin resistance. MCFAs that bind PPARγ also antagonize TZD-dependent adipogenesis in vitro. X-ray structure B-factor analysis and molecular dynamics (MD) simulations suggest that MCFAs weakly stabilize C-terminal activation helix (H) 12 relative to TZDs and this effect is highly dependent on chain length. By contrast, MCFAs preferentially stabilize the H2-H3/β-sheet region and the helix (H) 11-H12 loop relative to TZDs and we propose that MCFA assay-specific actions are linked to their unique binding mode and suggest that it may be possible to identify selective PPARγ modulators with useful clinical profiles among natural products. PMID:22649490

  10. Peroxisome Proliferator-Activated Receptor (PPAR): Balance for Survival in Parasitic Infections

    PubMed Central

    Chan, Marion M.; Evans, Kyle W.; Moore, Andrea R.; Fong, Dunne

    2010-01-01

    Parasitic infections induce a magnitude of host responses. At the opposite ends of the spectrum are those that ensure the host's needs to eliminate the invaders and to minimize damage to its own tissues. This review analyzes how parasites would manipulate immunity by activating the immunosuppressive nuclear factor, peroxisome proliferator-activated receptors (PPARs) with type 2 cytokines and free fatty acids from arachidonic acid metabolism. PPARs limit the action of type 1 immunity, in which classically activated macrophages act through the production of proinflammatory signals, to spare the parasites. They also favor the development of alternately activated macrophages which control inflammation so the host would not be destroyed. Possibly, the nuclear factors hold a pivotal role in the establishment of chronic infection by delicately balancing the pro- and anti-inflammatory signaling mechanisms and their ligands may be used as combination therapeutics to limit host pathology. PMID:20169106

  11. Adaptability and selectivity of human peroxisome proliferator-activated receptor (PPAR) pan agonists revealed from crystal structures

    SciTech Connect

    Oyama, Takuji; Toyota, Kenji; Waku, Tsuyoshi; Hirakawa, Yuko; Nagasawa, Naoko; Kasuga, Jun-ichi; Hashimoto, Yuichi; Miyachi, Hiroyuki; Morikawa, Kosuke

    2009-08-01

    The structures of the ligand-binding domains (LBDs) of human peroxisome proliferator-activated receptors (PPARα, PPARγ and PPARδ) in complexes with a pan agonist, an α/δ dual agonist and a PPARδ-specific agonist were determined. The results explain how each ligand is recognized by the PPAR LBDs at an atomic level. Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone receptor family, which is defined as transcriptional factors that are activated by the binding of ligands to their ligand-binding domains (LBDs). Although the three PPAR subtypes display different tissue distribution patterns and distinct pharmacological profiles, they all are essentially related to fatty-acid and glucose metabolism. Since the PPARs share similar three-dimensional structures within the LBDs, synthetic ligands which simultaneously activate two or all of the PPARs could be potent candidates in terms of drugs for the treatment of abnormal metabolic homeostasis. The structures of several PPAR LBDs were determined in complex with synthetic ligands, derivatives of 3-(4-alkoxyphenyl)propanoic acid, which exhibit unique agonistic activities. The PPARα and PPARγ LBDs were complexed with the same pan agonist, TIPP-703, which activates all three PPARs and their crystal structures were determined. The two LBD–ligand complex structures revealed how the pan agonist is adapted to the similar, but significantly different, ligand-binding pockets of the PPARs. The structures of the PPARδ LBD in complex with an α/δ-selective ligand, TIPP-401, and with a related δ-specific ligand, TIPP-204, were also determined. The comparison between the two PPARδ complexes revealed how each ligand exhibits either a ‘dual selective’ or ‘single specific’ binding mode.

  12. Cell death is induced by ciglitazone, a peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) agonist, independently of PPAR{gamma} in human glioma cells

    SciTech Connect

    Lee, Myoung Woo; Kim, Dae Seong; Kim, Hye Ryung; Kim, Hye Jin; Yang, Jin Mo; Ryu, Somi; Noh, Yoo Hun; Lee, Soo Hyun; Son, Meong Hi; Jung, Hye Lim; Yoo, Keon Hee; Koo, Hong Hoe; Sung, Ki Woong

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Greater than 30 {mu}M ciglitazone induces cell death in glioma cells. Black-Right-Pointing-Pointer Cell death by ciglitazone is independent of PPAR{gamma} in glioma cells. Black-Right-Pointing-Pointer CGZ induces cell death by the loss of MMP via decreased Akt. -- Abstract: Peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) regulates multiple signaling pathways, and its agonists induce apoptosis in various cancer cells. However, their role in cell death is unclear. In this study, the relationship between ciglitazone (CGZ) and PPAR{gamma} in CGZ-induced cell death was examined. At concentrations of greater than 30 {mu}M, CGZ, a synthetic PPAR{gamma} agonist, activated caspase-3 and induced apoptosis in T98G cells. Treatment of T98G cells with less than 30 {mu}M CGZ effectively induced cell death after pretreatment with 30 {mu}M of the PPAR{gamma} antagonist GW9662, although GW9662 alone did not induce cell death. This cell death was also observed when cells were co-treated with CGZ and GW9662, but was not observed when cells were treated with CGZ prior to GW9662. In cells in which PPAR{gamma} was down-regulated cells by siRNA, lower concentrations of CGZ (<30 {mu}M) were sufficient to induce cell death, although higher concentrations of CGZ ( Greater-Than-Or-Slanted-Equal-To 30 {mu}M) were required to induce cell death in control T98G cells, indicating that CGZ effectively induces cell death in T98G cells independently of PPAR{gamma}. Treatment with GW9662 followed by CGZ resulted in a down-regulation of Akt activity and the loss of mitochondrial membrane potential (MMP), which was accompanied by a decrease in Bcl-2 expression and an increase in Bid cleavage. These data suggest that CGZ is capable of inducing apoptotic cell death independently of PPAR{gamma} in glioma cells, by down-regulating Akt activity and inducing MMP collapse.

  13. Fatty Acid Amide Hydrolase (FAAH) Inhibition Enhances Memory Acquisition through Activation of PPAR-alpha Nuclear Receptors

    ERIC Educational Resources Information Center

    Mazzola, Carmen; Medalie, Julie; Scherma, Maria; Panlilio, Leigh V.; Solinas, Marcello; Tanda, Gianluigi; Drago, Filippo; Cadet, Jean Lud; Goldberg, Steven R.; Yasar, Sevil

    2009-01-01

    Inhibitors of fatty acid amide hydrolase (FAAH) increase endogenous levels of anandamide (a cannabinoid CB[subscript 1]-receptor ligand) and oleoylethanolamide and palmitoylethanolamide (OEA and PEA, ligands for alpha-type peroxisome proliferator-activated nuclear receptors, PPAR-alpha) when and where they are naturally released in the brain.…

  14. Urine acidification has no effect on peroxisome proliferator-activated receptor (PPAR) signaling or epidermal growth factor (EGF) expression in rat urinary bladder urothelium

    SciTech Connect

    Achanzar, William E. Moyer, Carolyn F.; Marthaler, Laura T.; Gullo, Russell; Chen, Shen-Jue; French, Michele H.; Watson, Linda M.; Rhodes, James W.; Kozlosky, John C.; White, Melvin R.; Foster, William R.; Burgun, James J.; Car, Bruce D.; Cosma, Gregory N.; Dominick, Mark A.

    2007-09-15

    We previously reported prevention of urolithiasis and associated rat urinary bladder tumors by urine acidification (via diet acidification) in male rats treated with the dual peroxisome proliferator-activated receptor (PPAR){alpha}/{gamma} agonist muraglitazar. Because urine acidification could potentially alter PPAR signaling and/or cellular proliferation in urothelium, we evaluated urothelial cell PPAR{alpha}, PPAR{delta}, PPAR{gamma}, and epidermal growth factor receptor (EGFR) expression, PPAR signaling, and urothelial cell proliferation in rats fed either a normal or an acidified diet for 5, 18, or 33 days. A subset of rats in the 18-day study also received 63 mg/kg of the PPAR{gamma} agonist pioglitazone daily for the final 3 days to directly assess the effects of diet acidification on responsiveness to PPAR{gamma} agonism. Urothelial cell PPAR{alpha} and {gamma} expression and signaling were evaluated in the 18- and 33-day studies by immunohistochemical assessment of PPAR protein (33-day study only) and quantitative real-time polymerase chain reaction (qRT-PCR) measurement of PPAR-regulated gene expression. In the 5-day study, EGFR expression and phosphorylation status were evaluated by immunohistochemical staining and egfr and akt2 mRNA levels were assessed by qRT-PCR. Diet acidification did not alter PPAR{alpha}, {delta}, or {gamma} mRNA or protein expression, PPAR{alpha}- or {gamma}-regulated gene expression, total or phosphorylated EGFR protein, egfr or akt2 gene expression, or proliferation in urothelium. Moreover, diet acidification had no effect on pioglitazone-induced changes in urothelial PPAR{gamma}-regulated gene expression. These results support the contention that urine acidification does not prevent PPAR{gamma} agonist-induced bladder tumors by altering PPAR{alpha}, {gamma}, or EGFR expression or PPAR signaling in rat bladder urothelium.

  15. In vitro screening of 200 pesticides for agonistic activity via mouse peroxisome proliferator-activated receptor (PPAR){alpha} and PPAR{gamma} and quantitative analysis of in vivo induction pathway

    SciTech Connect

    Takeuchi, Shinji; Matsuda, Tadashi; Kobayashi, Satoshi; Takahashi, Tetsuo; Kojima, Hiroyuki . E-mail: kojima@iph.pref.hokkaido.jp

    2006-12-15

    Peroxisome proliferator-activated receptors (PPARs) are ligand-dependent transcription factors and key regulators of lipid metabolism and cell differentiation. However, there have been few studies reporting on a variety of environmental chemicals, which may interact with these receptors. In the present study, we characterized mouse PPAR{alpha} and PPAR{gamma} agonistic activities of 200 pesticides (29 organochlorines, 11 diphenyl ethers, 56 organophosphorus pesticides, 12 pyrethroids, 22 carbamates, 11 acid amides, 7 triazines, 8 ureas and 44 others) by in vitro reporter gene assays using CV-1 monkey kidney cells. Three of the 200 pesticides, diclofop-methyl, pyrethrins and imazalil, which have different chemical structures, showed PPAR{alpha}-mediated transcriptional activities in a dose-dependent manner. On the other hand, none of the 200 pesticides showed PPAR{gamma} agonistic activity at concentrations {<=} 10{sup -5} M. To investigate the in vivo effects of diclofop-methyl, pyrethrins and imazalil, we examined the gene expression of PPAR{alpha}-inducible cytochrome P450 4As (CYP4As) in the liver of female mice intraperitoneally injected with these compounds ({<=} 300 mg/kg). RT-PCR revealed significantly high induction levels of CYP4A10 and CYP4A14 mRNAs in diclofop-methyl- and pyrethrins-treated mice, whereas imazalil induced almost no gene expressions of CYP4As. In particular, diclofop-methyl induced as high levels of CYP4A mRNAs as WY-14643, a potent PPAR{alpha} agonist. Thus, most of the 200 pesticides tested do not activate PPAR{alpha} or PPAR{gamma} in in vitro assays, but only diclofop-methyl and pyrethrins induce PPAR{alpha} agonistic activity in vivo as well as in vitro.

  16. ACTIVATION OF MOUSE AND HUMAN PEROXISOME PROLIFERATOR-ACTIVATED RECEPTORS (PPAR ALPHA, GAMMA, BETA DELTA) BY PERFLUOROOCTANOIC ACID (PFOA) AND PERFLUOROOCTANE SULFONATE (PFOS)

    EPA Science Inventory

    This study evaluates the potential for perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS) to activate peroxisome proliferator-activated receptors (PPARs), using a transient transfection cell assay. Cos-1 cells were cultured in DMEM with fetal bovine serum (FBS) in ...

  17. ACTIVATION OF PPAR GAMMA RECEPTORS REDUCES LEVODOPA-INDUCED DYSKINESIAS IN 6-OHDA-LESIONED RATS

    PubMed Central

    Martinez, A. A.; Morgese, M. G.; Pisanu, A.; Macheda, T.; Paquette, M. A.; Seillier, A.; Cassano, T.; Carta, A.R.; Giuffrida, A.

    2014-01-01

    Long-term administration of L-3,4-dihydroxyphenylalanine (levodopa), the mainstay treatment for Parkinson’s disease (PD), is accompanied by fluctuations in its duration of action and motor complications (dyskinesia) that dramatically affect the quality of life of patients. Levodopa-induced dyskinesias (LID) can be modeled in rats with unilateral 6-OHDA lesions via chronic administration of levodopa, which causes increasingly severe axial, limb and oro-facial abnormal involuntary movements (AIMs) over time. In previous studies, we showed that direct activation of CB1 cannabinoid receptors alleviated rat AIMs. Interestingly, elevation of the endocannabinoid anandamide by URB597 (URB), an inhibitor of endocannabinoid catabolism, produced an anti-dyskinetic response that was only partially mediated via CB1 receptors and required the concomitant blockade of transient receptor potential vanilloid type-1 (TRPV1) channels by capsazepine (CPZ) [1]. In this study, we showed that stimulation of peroxisome proliferator-activated receptors (PPAR), a family of transcription factors activated by anandamide, contributes to the anti-dyskinetic effects of URB+CPZ, and that direct activation of the PPARγ subtype by rosiglitazone (RGZ) alleviates levodopa-induced AIMs in 6-OHDA rats. AIM reduction was associated with an attenuation of levodopa-induced increase of dynorphin, zif-268 and of ERK phosphorylation in the denervated striatum. RGZ treatment did not decrease striatal levodopa and dopamine bioavailability, nor did it affect levodopa antiparkinsonian activity. Collectively, these data indicate that PPARγ may represent a new pharmacological target for the treatment of LID. PMID:25486547

  18. PEROXISOME-PROLIFERATOR ACTIVATED RECEPTORS AS A MACROMOLECULAR TARGET FOR CHEMICAL TOXICITY: MODELS OF THE INTERACTIONS OF PPARS WITH PERFLUORINATED ORGANIC COMPOUNDS.

    EPA Science Inventory

    The Peroxisome Proliferator Activated Receptors (PPARs), a class of nuclear receptors that modulate both transcription and metabolic processes, are implicated in a variety of metabolic disorders linked to lipidogenesis, adipose tissue accumulation, fatty-acid oxidation pathways, ...

  19. Activated AMPK inhibits PPAR-{alpha} and PPAR-{gamma} transcriptional activity in hepatoma cells.

    PubMed

    Sozio, Margaret S; Lu, Changyue; Zeng, Yan; Liangpunsakul, Suthat; Crabb, David W

    2011-10-01

    AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-α (PPAR-α) are critical regulators of short-term and long-term fatty acid oxidation, respectively. We examined whether the activities of these molecules were coordinately regulated. H4IIEC3 cells were transfected with PPAR-α and PPAR-γ expression plasmids and a peroxisome-proliferator-response element (PPRE) luciferase reporter plasmid. The cells were treated with PPAR agonists (WY-14,643 and rosiglitazone), AMPK activators 5-aminoimidazole-4-carboxamide riboside (AICAR) and metformin, and the AMPK inhibitor compound C. Both AICAR and metformin decreased basal and WY-14,643-stimulated PPARactivity; compound C increased agonist-stimulated reporter activity and partially reversed the effect of the AMPK activators. Similar effects on PPAR-γ were seen, with both AICAR and metformin inhibiting PPRE reporter activity. Compound C increased basal PPARactivity and rosiglitazone-stimulated activity. In contrast, retinoic acid receptor-α (RAR-α), another nuclear receptor that dimerizes with retinoid X receptor (RXR), was largely unaffected by the AMPK activators. Compound C modestly increased AM580 (an RAR agonist)-stimulated activity. The AMPK activators did not affect PPAR-α binding to DNA, and there was no consistent correlation between effects of the AMPK activators and inhibitor on PPAR and the nuclear localization of AMPK-α subunits. Expression of either a constitutively active or dominant negative AMPK-α inhibited basal and WY-14,643-stimulated PPARactivity and basal and rosiglitazone-stimulated PPARactivity. We concluded that the AMPK activators AICAR and metformin inhibited transcriptional activities of PPAR-α and PPAR-γ, whereas inhibition of AMPK with compound C activated both PPARs. The effects of AMPK do not appear to be mediated through effects on RXR or on PPAR/RXR binding to DNA. These effects are independent of kinase activity and instead appear to

  20. An update on PPAR activation by cannabinoids.

    PubMed

    O'Sullivan, Saoirse Elizabeth

    2016-06-01

    Some cannabinoids activate the different isoforms of PPARs (α, β and γ), as shown through the use of reporter gene assays, binding studies, selective antagonists and knockout studies. Activation of all isoforms, but primarily PPARα and γ, mediates some (but not all) of the analgesic, neuroprotective, neuronal function modulation, anti-inflammatory, metabolic, anti-tumour, gastrointestinal and cardiovascular effects of some cannabinoids, often in conjunction with activation of the more traditional target sites of action such as the cannabinoid CB1 and CB2 receptors and the TRPV1 ion channel. PPARs also mediate some of the effects of inhibitors of endocannabinoid degradation or transport. Cannabinoids may be chaperoned to the PPARs by fatty acid binding proteins. The aims of this review are to update the evidence supporting PPAR activation by cannabinoids and to review the physiological responses to cannabinoids that are mediated, and not mediated, by PPAR activation. PMID:27077495

  1. Induction of human adiponectin gene transcription by telmisartan, angiotensin receptor blocker, independently on PPAR-{gamma} activation

    SciTech Connect

    Moriuchi, Akie ||. E-mail: f1195@cc.nagasaki-u-ac.jp; Shimamura, Mika; Kita, Atsushi; Kuwahara, Hironaga; Satoh, Tsuyoshi; Satoh, Tsuyoshi; Fujishima, Keiichiro; Fukushima, Keiko |; Hayakawa, Takao; Mizuguchi, Hiroyuki; Nagayama, Yuji; Kawasaki, Eiji

    2007-05-18

    Adiponectin, an adipose tissue-specific plasma protein, has been shown to ameliorate insulin resistance and inhibit the process of atherosclerosis. Recently, several reports have stated that angiotensin type 1 receptor blockers (ARBs), increase adiponectin plasma level, and ameliorate insulin resistance. Telmisartan, a subclass of ARBs, has been shown to be a partial agonist of the peroxisome proliferator-activated receptor (PPAR)-{gamma}, and to increase the plasma adiponectin level. However, the transcriptional regulation of the human adiponectin gene by telmisartan has not been determined yet. To elucidate the effect of telmisartan on adiponectin, the stimulatory regulation of human adiponectin gene by telmisartan was investigated in 3T3-L1 adipocytes, utilizing adenovirus-mediated luciferase reporter gene-transferring technique. This study indicates that telmisartan may stimulate adiponectin transcription independent of PPAR-{gamma}.

  2. Prenatal Polycyclic Aromatic Hydrocarbon, Adiposity, Peroxisome Proliferator-Activated Receptor (PPAR) γ Methylation in Offspring, Grand-Offspring Mice

    PubMed Central

    Yan, Zhonghai; Zhang, Hanjie; Maher, Christina; Arteaga-Solis, Emilio; Champagne, Frances A.; Wu, Licheng; McDonald, Jacob D.; Yan, Beizhan; Schwartz, Gary J.; Miller, Rachel L.

    2014-01-01

    Rationale Greater levels of prenatal exposure to polycyclic aromatic hydrocarbon (PAH) have been associated with childhood obesity in epidemiological studies. However, the underlying mechanisms are unclear. Objectives We hypothesized that prenatal PAH over-exposure during gestation would lead to weight gain and increased fat mass in offspring and grand-offspring mice. Further, we hypothesized that altered adipose gene expression and DNA methylation in genes important to adipocyte differentiation would be affected. Materials and Methods Pregnant dams were exposed to a nebulized PAH mixture versus negative control aerosol 5 days a week, for 3 weeks. Body weight was recorded from postnatal day (PND) 21 through PND60. Body composition, adipose cell size, gene expression of peroxisome proliferator-activated receptor (PPAR) γ, CCAAT/enhancer-binding proteins (C/EBP) α, cyclooxygenase (Cox)-2, fatty acid synthase (FAS) and adiponectin, and DNA methylation of PPAR γ, were assayed in both the offspring and grand-offspring adipose tissue. Findings Offspring of dams exposed to greater PAH during gestation had increased weight, fat mass, as well as higher gene expression of PPAR γ, C/EBP α, Cox2, FAS and adiponectin and lower DNA methylation of PPAR γ. Similar differences in phenotype and DNA methylation extended through the grand-offspring mice. Conclusions Greater prenatal PAH exposure was associated with increased weight, fat mass, adipose gene expression and epigenetic changes in progeny. PMID:25347678

  3. Anthranilic acid derivatives as nuclear receptor modulators--development of novel PPAR selective and dual PPAR/FXR ligands.

    PubMed

    Merk, Daniel; Lamers, Christina; Weber, Julia; Flesch, Daniel; Gabler, Matthias; Proschak, Ewgenij; Schubert-Zsilavecz, Manfred

    2015-02-01

    Nuclear receptors, especially the peroxisome proliferator activated receptors (PPARs) and the farnesoid X receptor (FXR) fulfill crucial roles in metabolic balance. Their activation offers valuable therapeutic potential which has high clinical relevance with the fibrates and glitazones as PPAR agonistic drugs. With growing knowledge about the various functions of nuclear receptors in many disorders, new selective or dual ligands of these pharmaceutical targets are however still required. Here we report the class of anthranilic acid derivatives as novel selective PPAR or dual FXR/PPAR ligands. We identified distinct molecular determinants that govern selectivity for each PPAR subtype or FXR as well as the amplitude of activation of the respective receptors. We thereby discovered several lead compounds for further optimization and developed a highly potent dual PPARα/FXR partial agonist that might have a beneficial synergistic effect on lipid homeostasis by simultaneous activation of two nuclear receptors involved in lipid metabolism. PMID:25583100

  4. Activation of peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}) suppresses postprandial lipidemia through fatty acid oxidation in enterocytes

    SciTech Connect

    Kimura, Rino; Takahashi, Nobuyuki; Murota, Kaeko; Yamada, Yuko; Niiya, Saori; Kanzaki, Noriyuki; Murakami, Yoko; Moriyama, Tatsuya; Goto, Tsuyoshi; Kawada, Teruo

    2011-06-24

    Highlights: {yields} PPAR{alpha} activation increased mRNA expression levels of fatty acid oxidation-related genes in human intestinal epithelial Caco-2 cells. {yields} PPAR{alpha} activation also increased oxygen consumption rate and CO{sub 2} production and decreased secretion of triglyceride and ApoB from Caco-2 cells. {yields} Orally administration of bezafibrate increased mRNA expression levels of fatty acid oxidation-related genes and CO{sub 2} production in small intestinal epithelial cells. {yields} Treatment with bezafibrate decreased postprandial serum concentration of triglyceride after oral injection of olive oil in mice. {yields} It suggested that intestinal lipid metabolism regulated by PPAR{alpha} activation suppresses postprandial lipidemia. -- Abstract: Activation of peroxisome proliferator-activated receptor (PPAR)-{alpha} which regulates lipid metabolism in peripheral tissues such as the liver and skeletal muscle, decreases circulating lipid levels, thus improving hyperlipidemia under fasting conditions. Recently, postprandial serum lipid levels have been found to correlate more closely to cardiovascular diseases than fasting levels, although fasting hyperlipidemia is considered an important risk of cardiovascular diseases. However, the effect of PPAR{alpha} activation on postprandial lipidemia has not been clarified. In this study, we examined the effects of PPAR{alpha} activation in enterocytes on lipid secretion and postprandial lipidemia. In Caco-2 enterocytes, bezafibrate, a potent PPAR{alpha} agonist, increased mRNA expression levels of fatty acid oxidation-related genes, such as acyl-CoA oxidase, carnitine palmitoyl transferase, and acyl-CoA synthase, and oxygen consumption rate (OCR) and suppressed secretion levels of both triglycerides and apolipoprotein B into the basolateral side. In vivo experiments revealed that feeding high-fat-diet containing bezafibrate increased mRNA expression levels of fatty acid oxidation-related genes and

  5. Activating Peroxisome Proliferator-Activated Receptors (PPARs): a New Sight for Chrysophanol to Treat Paraquat-Induced Lung Injury.

    PubMed

    Li, Ang; Liu, Yuguang; Zhai, Lu; Wang, Liying; Lin, Zhe; Wang, Shumin

    2016-04-01

    The aim of this study is to evaluate the protective effects of chrysophanol (CH) against paraquat (PQ)-induced pulmonary injury. Fifty BALB/C mice were randomized into five groups: (1) control, (2) PQ, (3) PQ + dexamethasone (Dex, 2 mg/kg), (4) PQ + CH (10 mg/kg), and (5) PQ + CH (20 mg/kg). A single dose of PQ (50 mg/kg, i.p.) was intraperitoneally given to induce acute lung injury. Then mice were treated with CH (10 and 20 mg/kg/day, orally) for 7 days. At the end of the experiment, animals were euthanized and then bronchoalveolar lavage fluid (BALF) and lung tissues were collected for histological observation, biochemical analysis, and Western blot analysis. Malondialdehyde (MDA), myeloperoxidase (MPO), superoxide dismutase (SOD), interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α (TNF-α) levels in BALF were determined. The levels of SOD and MDA in the lung were also detected. The peroxisome proliferator-activated receptor (PPAR)-γ and nuclear factor-kappaB (NF-κB) pathway proteins in the lung were determined by Western blot. Histological examination indicated that CH attenuated lung inflammation caused by PQ. Biochemical results showed that CH treatment significantly reduced the levels of MDA, MPO, and inflammatory cytokines and increased the level of SOD, compared to those in the PQ group. Meanwhile, Western Blot results revealed that CH increased PPAR-γ expression and inhibited NF-κB pathway activation after PQ challenge. These findings suggested the potential therapeutic effects of CH which is derived from a natural product on PQ-induced pulmonary injury. PMID:26920845

  6. Synthesis of new 8(S)-HETE analogs and their biological evaluation as activators of the PPAR nuclear receptors.

    PubMed

    Liutkus, Mélanie; Caijo, Frédéric; Girard, Anne-Lise; Ayral, Erwan; Audinot, Valérie; Boutin, Jean A; Renard, Pierre; Caignard, Daniel Henri; Dacquet, Catherine; Ktorza, Alain; Mosset, Paul; Grée, René

    2010-10-01

    Structural modifications around 8-HETE (8-hydroxyeicosatetraenoic acid), a natural agonist of the PPAR (peroxisome proliferator-activated receptor) nuclear receptors have led previously to the identification of a promising analog, the quinoline S 70655. Series of novel quinoline or benzoquinoline derivatives were designed through the modification of this lead. Variations of the nature of the aromatic core and of the side chains were carried out. The SAR studies indicated the high sensitivity of the upper acid chain to modifications as well as the strong effect of the length and size of the lipophilic side chain. They afforded several new promising PPARalpha/gamma dual agonists with a high PPARalpha activity in vitro. PMID:20518620

  7. Peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist inhibits collagen synthesis in human hypertrophic scar fibroblasts by targeting Smad3 via miR-145

    SciTech Connect

    Zhu, Hua-Yu; Li, Chao; Zheng, Zhao; Zhou, Qin; Guan, Hao; Su, Lin-Lin; Han, Jun-Tao; Zhu, Xiong-Xiang; Wang, Shu-yue; Li, Jun Hu, Da-Hai

    2015-03-27

    The transcription factor peroxisome proliferator-activated receptor-γ (PPAR-γ) functions to regulate cell differentiation and lipid metabolism. Recently, its agonist has been documented to regulate extracellular matrix production in human dermal fibroblasts. This study explored the underlying molecular mechanisms and gene interactions in hypertrophic scar fibroblasts (HSFBs) in vitro. HSFBs were cultured and treated with or without PPAR-γ agonist or antagonist for gene expression. Bioinformatical analysis predicted that miR-145 could target Smad3 expression. Luciferase assay was used to confirm such an interaction. The data showed that PPAR-γ agonist troglitazone suppressed expression of Smad3 and Col1 in HSFBs. PPAR-γ agonist induced miR-145 at the gene transcriptional level, which in turn inhibited Smad3 expression and Col1 level in HSFBs. Furthermore, ELISA data showed that Col1 level in HSFBs was controlled by a feedback regulation mechanism involved in PPAR-γ agonist and antagonist-regulated expression of miR-145 and Smad3 in HSFBs. These findings indicate that PPAR-γ-miR-145-Smad3 axis plays a role in regulation of collagen synthesis in HSFBs. - Highlights: • PPAR-γ agonist inhibits collagen synthesis in HSFBs. • Smad3 and type I collagen expression are decreased by PPAR-γ agonist. • miR-145 expression is increased by PPAR-γ agonist in HSFBs. • Increased miR-145 inhibits collagen synthesis by targeting Smad3. • miR-145 regulates collagen synthesis.

  8. Crosstalk between the peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) and the vitamin D receptor (VDR) in human breast cancer cells: PPAR{gamma} binds to VDR and inhibits 1{alpha},25-dihydroxyvitamin D{sub 3} mediated transactivation

    SciTech Connect

    Alimirah, Fatouma; Peng, Xinjian; Yuan, Liang; Mehta, Rajeshwari R.; Knethen, Andreas von; Choubey, Divaker; Mehta, Rajendra G.

    2012-11-15

    Heterodimerization and cross-talk between nuclear hormone receptors often occurs. For example, estrogen receptor alpha (ER{alpha}) physically binds to peroxisome proliferator-activated receptor gamma (PPAR{gamma}) and inhibits its transcriptional activity. The interaction between PPAR{gamma} and the vitamin D receptor (VDR) however, is unknown. Here, we elucidate the molecular mechanisms linking PPAR{gamma} and VDR signaling, and for the first time we show that PPAR{gamma} physically associates with VDR in human breast cancer cells. We found that overexpression of PPAR{gamma} decreased 1{alpha},25-dihydroxyvitamin D{sub 3} (1,25D{sub 3}) mediated transcriptional activity of the vitamin D target gene, CYP24A1, by 49% and the activity of VDRE-luc, a vitamin D responsive reporter, by 75% in T47D human breast cancer cells. Deletion mutation experiments illustrated that helices 1 and 4 of PPAR{gamma}'s hinge and ligand binding domains, respectively, governed this suppressive function. Additionally, abrogation of PPAR{gamma}'s AF2 domain attenuated its repressive action on 1,25D{sub 3} transactivation, indicating that this domain is integral in inhibiting VDR signaling. PPAR{gamma} was also found to compete with VDR for their binding partner retinoid X receptor alpha (RXR{alpha}). Overexpression of RXR{alpha} blocked PPAR{gamma}'s suppressive effect on 1,25D{sub 3} action, enhancing VDR signaling. In conclusion, these observations uncover molecular mechanisms connecting the PPAR{gamma} and VDR pathways. -- Highlights: PPAR{gamma}'s role on 1{alpha},25-dihydroxyvitamin D{sub 3} transcriptional activity is examined. Black-Right-Pointing-Pointer PPAR{gamma} physically binds to VDR and inhibits 1{alpha},25-dihydroxyvitamin D{sub 3} action. Black-Right-Pointing-Pointer PPAR{gamma}'s hinge and ligand binding domains are important for this inhibitory effect. Black-Right-Pointing-Pointer PPAR{gamma} competes with VDR for the availability of their binding partner, RXR{alpha}.

  9. Unlike PPAR{gamma}, PPAR{alpha} or PPAR{beta}/{delta} activation does not promote human monocyte differentiation toward alternative macrophages

    SciTech Connect

    Bouhlel, Mohamed Amine; Brozek, John; Derudas, Bruno; Zawadzki, Christophe; Jude, Brigitte; Staels, Bart; Chinetti-Gbaguidi, Giulia

    2009-08-28

    Macrophages adapt their response to micro-environmental signals. While Th1 cytokines promote pro-inflammatory M1 macrophages, Th2 cytokines promote an 'alternative' anti-inflammatory M2 macrophage phenotype. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors expressed in macrophages where they control the inflammatory response. It has been shown that PPAR{gamma} promotes the differentiation of monocytes into anti-inflammatory M2 macrophages in humans and mice, while a role for PPAR{beta}/{delta} in this process has been reported only in mice and no data are available for PPAR{alpha}. Here, we show that in contrast to PPAR{gamma}, expression of PPAR{alpha} and PPAR{beta}/{delta} overall does not correlate with the expression of M2 markers in human atherosclerotic lesions, whereas a positive correlation with genes of lipid metabolism exists. Moreover, unlike PPAR{gamma}, PPAR{alpha} or PPAR{beta}/{delta} activation does not influence human monocyte differentiation into M2 macrophages in vitro. Thus, PPAR{alpha} and PPAR{beta}/{delta} do not appear to modulate the alternative differentiation of human macrophages.

  10. Pleiotropic Actions of Peroxisome Proliferator-Activated Receptors (PPARs) in Dysregulated Metabolic Homeostasis, Inflammation and Cancer: Current Evidence and Future Perspectives

    PubMed Central

    Laganà, Antonio Simone; Vitale, Salvatore Giovanni; Nigro, Angela; Sofo, Vincenza; Salmeri, Francesca Maria; Rossetti, Paola; Rapisarda, Agnese Maria Chiara; La Vignera, Sandro; Condorelli, Rosita Angela; Rizzo, Gianluca; Buscema, Massimo

    2016-01-01

    Background: Peroxisome proliferator-activated receptors (PPARs) have demonstrated a lot of important effects in the regulation of glucose and lipid metabolism and in the correct functioning of adipose tissue. Recently, many studies have evaluated a possible effect of PPARs on tumor cells. The purpose of this review is to describe the effects of PPARs, their action and their future prospective; Methods: Narrative review aimed to synthesize cutting-edge evidence retrieved from searches of computerized databases; Results: PPARs play a key role in metabolic diseases, which include several cardiovascular diseases, insulin resistance, type 2 diabetes, metabolic syndrome, impaired immunity and the increasing risk of cancer; in particular, PPARα and PPARβ/δ mainly enable energy combustion, while PPARγ contributes to energy storage by enhancing adipogenesis; Conclusion: PPAR agonists could represent interesting types of molecules that can treat not only metabolic diseases, but also inflammation and cancer. Additional research is needed for the identification of high-affinity, high-specificity agonists for the treatment of obesity, type 2 diabetes (T2DM) and other metabolic diseases. Further studies are needed also to elucidate the role of PPARs in cancer. PMID:27347932

  11. Regulation of hepatic peroxisome proliferator-activated receptor-alpha (PPAR-a) expression but not adiponectin by dietary protein in finishing pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary soy protein reduction and supplemental leucine (Leu) have been found to decrease leanness and increase muscle lipid content of pig carcasses respectively. Soy protein regulates adiponectin and peroxisome proliferator activated receptor-alpha (PPAR-a) in some species, but the effect of dieta...

  12. DEPENDENCE OF PPAR LIGAND-INDUCED MAPK SIGNALING ON EPIDERMAL GROWTH FACTOR RECEPTOR TRANSACTIVATION HEPARIN-BINDING EGF CLEAVAGE MEDIATES ZINC-INDUCED EGF RECEPTOR PHOSPHORYLATION

    EPA Science Inventory

    Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that function as ligand-activated transcription factors regulating lipid metabolism and homeostasis. In addition to their ability to regulate PPAR-mediated gene transcription, PPARalpha and gamma li...

  13. The PPAR{gamma} ligand ciglitazone regulates androgen receptor activation differently in androgen-dependent versus androgen-independent human prostate cancer cells

    SciTech Connect

    Moss, Patrice E.; Lyles, Besstina E.; Stewart, LaMonica V.

    2010-12-10

    The androgen receptor (AR) regulates growth and progression of androgen-dependent as well as androgen-independent prostate cancer cells. Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) agonists have been reported to reduce AR activation in androgen-dependent LNCaP prostate cancer cells. To determine whether PPAR{gamma} ligands are equally effective at inhibiting AR activity in androgen-independent prostate cancer, we examined the effect of the PPAR{gamma} ligands ciglitazone and rosiglitazone on C4-2 cells, an androgen- independent derivative of the LNCaP cell line. Luciferase-based reporter assays and Western blot analysis demonstrated that PPAR{gamma} ligand reduced dihydrotestosterone (DHT)-induced increases in AR activity in LNCaP cells. However, in C4-2 cells, these compounds increased DHT-induced AR driven luciferase activity. In addition, ciglitazone did not significantly alter DHT-mediated increases in prostate specific antigen (PSA) protein or mRNA levels within C4-2 cells. siRNA-based experiments demonstrated that the ciglitazone-induced regulation of AR activity observed in C4-2 cells was dependent on the presence of PPAR{gamma}. Furthermore, overexpression of the AR corepressor cyclin D1 inhibited the ability of ciglitazone to induce AR luciferase activity in C4-2 cells. Thus, our data suggest that both PPAR{gamma} and cyclin D1 levels influence the ability of ciglitazone to differentially regulate AR signaling in androgen-independent C4-2 prostate cancer cells.

  14. Integrated virtual screening for the identification of novel and selective peroxisome proliferator-activated receptor (PPAR) scaffolds.

    PubMed

    Nevin, Daniel K; Peters, Martin B; Carta, Giorgio; Fayne, Darren; Lloyd, David G

    2012-06-14

    We describe a fully customizable and integrated target-specific "tiered" virtual screening approach tailored to identifying and characterizing novel peroxisome proliferator activated receptor γ (PPARγ) scaffolds. Built on structure- and ligand-based computational techniques, a consensus protocol was developed for use in the virtual screening of chemical databases, focused toward retrieval of novel bioactive chemical scaffolds for PPARγ. Consequent from application, three novel PPAR scaffolds displaying distinct chemotypes have been identified, namely, 5-(4-(benzyloxy)-3-chlorobenzylidene)dihydro-2-thioxopyrimidine-4,6(1H,5H)-dione (MDG 548), 3-((4-bromophenoxy)methyl)-N-(4-nitro-1H-pyrazol-1-yl)benzamide (MDG 559), and ethyl 2-[3-hydroxy-5-(5-methyl-2-furyl)-2-oxo-4-(2-thienylcarbonyl)-2,5-dihydro-1H-pyrrol-1-yl]-4-methyl-1,3-thiazole-5-carboxylate (MDG 582). Fluorescence polarization(FP) and time resolved fluorescence resonance energy transfer (TR-FRET) show that these compounds display high affinity competitive binding to the PPARγ-LBD (EC(50) of 215 nM to 5.45 μM). Consequent characterization by a TR-FRET activation reporter assay demonstrated agonism of PPARγ by all three compounds (EC(50) of 467-594 nM). Additionally, differential PPAR isotype specificity was demonstrated through assay against PPARα and PPARδ subtypes. This work showcases the ability of target specific "tiered screen" protocols to successfully identify novel scaffolds of individual receptor subtypes with greater efficacy than isolated screening methods. PMID:22582973

  15. Activation of peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) induces cell death through MAPK-dependent mechanism in osteoblastic cells

    SciTech Connect

    Kim, Sung Hun; Yoo, Chong Il; Kim, Hui Taek; Park, Ji Yeon; Kwon, Chae Hwa; Keun Kim, Yong . E-mail: kim430@pusan.ac.kr

    2006-09-01

    The present study was undertaken to determine the role of the mitogen-activated protein kinase (MAPK) subfamilies in cell death induced by PPAR{gamma} agonists in osteoblastic cells. Ciglitazone and troglitazone, PPAR{gamma} agonists, resulted in a concentration- and time-dependent cell death, which was largely attributed to apoptosis. But a PPAR{alpha} agonist ciprofibrate did not affect the cell death. Ciglitazone caused reactive oxygen species (ROS) generation and ciglitazone-induced cell death was prevented by antioxidants, suggesting an important role of ROS generation in the ciglitazone-induced cell death. ROS generation and cell death induced by ciglitazone were inhibited by the PPAR{gamma} antagonist GW9662. Ciglitazone treatment caused activation of extracellular signal-regulated kinase (ERK) and p38. Activation of ERK was dependent on epidermal growth factor receptor (EGFR) and that of p38 was independent. Ciglitazone-induced cell death was significantly prevented by PD98059, an inhibitor of ERK upstream kinase MEK1/2, and SB203580, a p38 inhibitor. Ciglitazone treatment increased Bax expression and caused a loss of mitochondrial membrane potential, and its effect was prevented by N-acetylcysteine, PD98059, and SB203580. Ciglitazone induced caspase activation, which was prevented by PD98059 and SB203580. The general caspase inhibitor z-DEVD-FMK and the specific inhibitor of caspases-3 DEVD-CHO exerted the protective effect against the ciglitazone-induced cell death. The EGFR inhibitors AG1478 and suramin protected against the ciglitazone-induced cell death. Taken together, these findings suggest that the MAPK signaling pathways play an active role in mediating the ciglitazone-induced cell death of osteoblasts and function upstream of a mitochondria-dependent mechanism. These data may provide a novel insight into potential therapeutic strategies for treatment of osteoporosis.

  16. Effects of perfluorooctanoic acid (PFOA) on expression of peroxisome proliferator-activated receptors (PPAR) and nuclear receptor-regulated genes in fetal and postnatal mouse tissues.

    EPA Science Inventory

    PPARs regulate metabolism and can be activated by environmental contaminants such as perfluorooctanoic acid (PFOA). PFOA induces neonatal mortality, developmental delay, and growth deficits in mice. Studies in genetically altered mice showed that PPARa is required for PFOA-induce...

  17. Revealing a steroid receptor ligand as a unique PPAR[gamma] agonist

    SciTech Connect

    Lin, Shengchen; Han, Ying; Shi, Yuzhe; Rong, Hui; Zheng, Songyang; Jin, Shikan; Lin, Shu-Yong; Lin, Sheng-Cai; Li, Yong

    2012-06-28

    Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) regulates metabolic homeostasis and is a molecular target for anti-diabetic drugs. We report here the identification of a steroid receptor ligand, RU-486, as an unexpected PPAR{gamma} agonist, thereby uncovering a novel signaling route for this steroid drug. Similar to rosiglitazone, RU-486 modulates the expression of key PPAR{gamma} target genes and promotes adipocyte differentiation, but with a lower adipogenic activity. Structural and functional studies of receptor-ligand interactions reveal the molecular basis for a unique binding mode for RU-486 in the PPAR{gamma} ligand-binding pocket with distinctive properties and epitopes, providing the molecular mechanisms for the discrimination of RU-486 from thiazolidinediones (TZDs) drugs. Our findings together indicate that steroid compounds may represent an alternative approach for designing non-TZD PPAR{gamma} ligands in the treatment of insulin resistance.

  18. Quantitative expression patterns of peroxisome proliferator-activated receptor-{beta}/{delta} (PPAR{beta}/{delta}) protein in mice

    SciTech Connect

    Girroir, Elizabeth E.; Hollingshead, Holly E.; He Pengfei; Zhu Bokai; Perdew, Gary H.; Peters, Jeffrey M.

    2008-07-04

    The expression patterns of PPAR{beta}/{delta} have been described, but the majority of these data are based on mRNA data. To date, there are no reports that have quantitatively examined the expression of PPAR{beta}/{delta} protein in mouse tissues. In the present study, a highly specific PPAR{beta}/{delta} antibody was developed, characterized, and used to examine tissue expression patterns of PPAR{beta}/{delta}. As compared to commercially available anti-PPAR{beta}/{delta} antibodies, one of six polyclonal anti-PPAR{beta}/{delta} antibodies developed was significantly more effective for immunoprecipitation of in vitro-translated PPAR{beta}/{delta}. This antibody was used for quantitative Western blot analysis using radioactive detection methods. Expression of PPAR{beta}/{delta} was highest in colon, small intestine, liver, and keratinocytes as compared to other tissues including heart, spleen, skeletal muscle, lung, brain, and thymus. Interestingly, PPAR{beta}/{delta} expression was localized in the nucleus and RXR{alpha} can be co-immunoprecipitated with nuclear PPAR{beta}/{delta}. Results from these studies demonstrate that PPAR{beta}/{delta} expression is highest in intestinal epithelium, liver, and keratinocytes, consistent with significant biological roles in these tissues.

  19. Structure of the intact PPAR-Υ-RXR-α nuclear receptor complex on DNA

    SciTech Connect

    Chandra, Vikas; Huang, Pengxiang; Hamuro, Yoshitomo; Raghuram, Srilatha; Wang, Yongjun; Burris, Thomas P; Rastinejad, Fraydoon

    2009-01-09

    Nuclear receptors are multi-domain transcription factors that bind to DNA elements from which they regulate gene expression. The peroxisome proliferator-activated receptors (PPARs) form heterodimers with the retinoid X receptor (RXR), and PPAR-{gamma} has been intensively studied as a drug target because of its link to insulin sensitization. Previous structural studies have focused on isolated DNA or ligand-binding segments, with no demonstration of how multiple domains cooperate to modulate receptor properties. Here we present structures of intact PPAR-{gamma} and RXR-{alpha} as a heterodimer bound to DNA, ligands and coactivator peptides. PPAR-{gamma} and RXR-{alpha} form a non-symmetric complex, allowing the ligand-binding domain (LBD) of PPAR-{gamma} to contact multiple domains in both proteins. Three interfaces link PPAR-{gamma} and RXR-{alpha}, including some that are DNA dependent. The PPAR-{gamma} LBD cooperates with both DNA-binding domains (DBDs) to enhance response-element binding. The A/B segments are highly dynamic, lacking folded substructures despite their gene-activation properties.

  20. The orphan nuclear receptor DAX-1 acts as a novel transcriptional corepressor of PPAR{gamma}

    SciTech Connect

    Kim, Gwang Sik; Lee, Gha Young; Nedumaran, Balachandar; Park, Yun-Yong; Kim, Kyung Tae; Park, Sang Chul; Lee, Young Chul; Kim, Jae Bum Choi, Hueng-Sik

    2008-05-30

    DAX-1 is an atypical nuclear receptor (NR) which functions primarily as a transcriptional corepressor of other NRs via heterodimerization. Peroxisome proliferator-activated receptor (PPAR) {gamma} is a ligand-dependent NR which performs a key function in adipogenesis. In this study, we evaluated a novel cross-talk mechanism between DAX-1 and PPAR{gamma}. Transient transfection assays demonstrated that DAX-1 inhibits the transactivity of PPAR{gamma} in a dose-dependent manner. DAX-1 directly competed with the PPAR{gamma} coactivator (PGC)-1{alpha} for binding to PPAR{gamma}. Endogenous levels of DAX-1 were significantly lower in differentiated 3T3-L1 adipocytes as compared to preadipocytes. Using a retroviral expression system, we demonstrated that DAX-1 overexpression downregulates the expression of PPAR{gamma} target genes, resulting in an attenuation of adipogenesis in 3T3-L1 cells. Our results suggest that DAX-1 acts as a corepressor of PPAR{gamma} and performs a potential function in the regulation of PPAR{gamma}-mediated cellular differentiation.

  1. Monascin attenuates oxidative stress-mediated lung inflammation via peroxisome proliferator-activated receptor-gamma (PPAR-γ) and nuclear factor-erythroid 2 related factor 2 (Nrf-2) modulation.

    PubMed

    Hsu, Wei-Hsuan; Lee, Bao-Hong; Pan, Tzu-Ming

    2014-06-11

    We speculated that peroxisome proliferator-activated receptor (PPAR)-γ agonists may modulate the oxidative stress pathway to ameliorate the development of airway inflammation. The effect of Monascus-fermented metabolite monascin (MS) and rosiglitazone (Rosi) on oxidative stress-induced lung inflammation was evaluated. Luciferase assay and DNA binding activity assay were used to point out that MS may be a novel PPAR-γ agonist and nuclear factor-erythroid 2 related factor 2 (Nrf-2) activator. We used hydrogen peroxide (H2O2) to induce inflammation in lung epithelial cells. MS and Rosi prevented H2O2-induced ROS generation in A549 epithelial cells through PPAR-γ translocation, avoiding inflammatory mediator expression via inhibiting nuclear factor (NF)-κB translocation. The regulatory ability of MS was abolished by siRNA against PPAR-γ. MS also elevated antioxidant enzyme expression via Nrf-2 activation. Both PPAR-γ and Nrf-2 might have benefits against lung inflammation. MS regulated PPAR-γ and Nrf-2 to improve lung oxidative inflammation. PMID:24865672

  2. PPAR-β/δ activation promotes phospholipid transfer protein expression.

    PubMed

    Chehaibi, Khouloud; Cedó, Lídia; Metso, Jari; Palomer, Xavier; Santos, David; Quesada, Helena; Naceur Slimane, Mohamed; Wahli, Walter; Julve, Josep; Vázquez-Carrera, Manuel; Jauhiainen, Matti; Blanco-Vaca, Francisco; Escolà-Gil, Joan Carles

    2015-03-15

    The peroxisome proliferator-activated receptor (PPAR)-β/δ has emerged as a promising therapeutic target for treating dyslipidemia, including beneficial effects on HDL cholesterol (HDL-C). In the current study, we determined the effects of the PPAR-β/δ agonist GW0742 on HDL composition and the expression of liver HDL-related genes in mice and cultured human cells. The experiments were carried out in C57BL/6 wild-type, LDL receptor (LDLR)-deficient mice and PPAR-β/δ-deficient mice treated with GW0742 (10mg/kg/day) or a vehicle solution for 14 days. GW0742 upregulated liver phospholipid transfer protein (Pltp) gene expression and increased serum PLTP activity in mice. When given to wild-type mice, GW0742 significantly increased serum HDL-C and HDL phospholipids; GW0742 also raised serum potential to generate preβ-HDL formation. The GW0742-mediated effects on liver Pltp expression and serum enzyme activity were completely abolished in PPAR-β/δ-deficient mice. GW0742 also stimulated PLTP mRNA expression in mouse J774 macrophages, differentiated human THP-1 macrophages and human hepatoma Huh7. Collectively, our findings demonstrate a common transcriptional upregulation by GW0742-activated PPAR-β/δ of Pltp expression in cultured cells and in mouse liver resulting in enhanced serum PLTP activity. Our results also indicate that PPAR-β/δ activation may modulate PLTP-mediated preβ-HDL formation and macrophage cholesterol efflux. PMID:25662586

  3. Activation of vitamin D receptor (VDR)- and peroxisome proliferator-activated receptor (PPAR)-signaling pathways through 1,25(OH)2D3 in melanoma cell lines and other skin-derived cell lines

    PubMed Central

    Seifert, Markus; Tilgen, Wolfgang; Reichrath, Jörg

    2009-01-01

    We have investigated expression of vitamin D receptor (VDR) and peroxisome proliferator-activated receptors (PPAR)α, δ, γ in primary cultured normal melanocytes (NHM), melanoma cell lines (MeWo, SK-Mel-5, SK-Mel-25, SK-Mel-28), a cutaneous squamous cell carcinoma cell line (SCL-1) and an immortalized sebocyte cell line (SZ95). LNCaP prostate cancer cells, MCF-7 breast cancer cells and embryonic kidney cells (HEK-293) were used as controls. VDR and PPAR mRNA were detected, quantitated and compared in these cell lines using real-time quantitative polymerase chain reaction (RTqPCR). The expression patterns of these nuclear receptors (NRs) varied strongly between the different cell lines according to their origin. PPARδ and PPARγ were less strongly expressed in the melanoma cell lines and in the other skin-derived cell lines as compared to the control cell lines. PPARα and VDR were stronger expressed in the 1,25(OH)2D3-sensitive melanoma cells (MeWo and in SK-Mel-28) than in the 1,25(OH)2D3-resistent melanoma cell lines (SK-Mel-5 and SK-Mel-25) or in NHM. Interestingly, VDR expression was increased by the treatment with 1,25(OH)2D3 in 1,25(OH)2D3-sensitive melanoma cells but not in 1,25(OH)2D3-resistent melanoma cell lines. 1,25(OH)2D3 increased the expression of PPARα in almost all cell lines analyzed. Our results indicate a cross-talk between VDR- and PPAR-signaling pathways in various cell types including melanoma cells. Further investigations are required to investigate the physiological and pathophysiological relevance of this cross-talk. Because VDRand PPAR-signaling pathways regulate a multitude of genes that are of importance for a multitude of cellular functions including cell proliferation, cell differentiation, immune responses and apoptosis, the provided link between VDR and PPAR may open important new perspectives for treatment and prevention of melanoma and other diseases. PMID:20592797

  4. Antidiabetic effects of chamomile flowers extract in obese mice through transcriptional stimulation of nutrient sensors of the peroxisome proliferator-activated receptor (PPAR) family.

    PubMed

    Weidner, Christopher; Wowro, Sylvia J; Rousseau, Morten; Freiwald, Anja; Kodelja, Vitam; Abdel-Aziz, Heba; Kelber, Olaf; Sauer, Sascha

    2013-01-01

    Given the significant increases in the incidence of metabolic diseases, efficient strategies for preventing and treating of these common disorders are urgently needed. This includes the development of phytopharmaceutical products or functional foods to prevent or cure metabolic diseases. Plant extracts from edible biomaterial provide a potential resource of structurally diverse molecules that can synergistically interfere with complex disorders. In this study we describe the safe application of ethanolic chamomile (Matricaria recutita) flowers extract (CFE) for the treatment and prevention of type 2 diabetes and associated disorders. We show in vitro that this extract activates in particular nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) and its isotypes. In a cellular context, in human primary adipocytes CFE administration (300 µg/ml) led to specific expression of target genes of PPARγ, whereas in human hepatocytes CFE-induced we detected expression changes of genes that were regulated by PPARα. In vivo treatment of insulin-resistant high-fat diet (HFD)-fed C57BL/6 mice with CFE (200 mg/kg/d) for 6 weeks considerably reduced insulin resistance, glucose intolerance, plasma triacylglycerol, non-esterified fatty acids (NEFA) and LDL/VLDL cholesterol. Co-feeding of lean C57BL/6 mice a HFD with 200 mg/kg/d CFE for 20 weeks showed effective prevention of fatty liver formation and hepatic inflammation, indicating additionally hepatoprotective effects of the extract. Moreover, CFE treatment did not reveal side effects, which have otherwise been associated with strong synthetic PPAR-targeting molecules, such as weight gain, liver disorders, hemodilution or bone cell turnover. Taken together, modulation of PPARs and other factors by chamomile flowers extract has the potential to prevent or treat type 2 diabetes and related disorders. PMID:24265809

  5. Irbesartan, an angiotensin II receptor antagonist, with selective PPAR-gamma-modulating activity improves function and structure of chemotherapy-damaged ovaries in rats.

    PubMed

    Abdel-Raheem, Ihab T; Omran, Gamal A; Katary, Mohamed Alaa

    2015-06-01

    Cyclophosphamide (CYP) is a chemotherapeutic agent with a potent ovarian toxic effect. CYP induces granulosa cell apoptosis and oxidative stress. Irbesartan (IRB) is a unique ARB with a peroxisome proliferator-activated receptor-gamma (PPAR-γ) agonistic activity. As PPARactivation exerts anti-inflammatory effects and reduces ROS production, IRB may further reduce inflammatory chemokine expression and suppress apoptotic cell death. Therefore, this study aimed to evaluate the effects of IRB on the development of CYP-induced ovarian damage. Rats were divided into four groups: control group, IRB group (100 mg/kg, orally), CYP group (100 mg/kg, i.p. single injection), and IRB+CYP group (IRB administered 9 days before and 6 days after CYP administration). Rats sacrificed on day 16 of experiment; estradiol (E2), FSH, and TNF-α levels were estimated in serum. Reduced glutathione (GSH), malondialdehyde (MDA), superoxide dismutase (SOD) and caspase-3 activities, myeloperoxidase (MPO), and IL-10 levels were determined in ovarian tissues. Protein expressions of p53, caspase-3, Ki-67, and Rad-51 were estimated by immunohistochemical and Western blot techniques. CYP produced ovarian damage as indicated from the decline in serum E2; elevation in FSH; unbalance in tissue oxidative stress parameters; increase in MPO, TNF-α levels, caspase-3 activity/expression, p53, and Rad-51 expression; and decrease in IL-10 contents, without effect on Ki-67. On the other hand, IRB, significantly reduced the toxic effects of CYP as indicted from normalization of E2, FSH, oxidative stress, apoptotic, and inflammatory mediators. These data were further supported by histopathological studies. Thus, co-administration of IRB may be promising in alleviating the ovarian toxic effects of CYP. PMID:25824615

  6. Peroxisome proliferator-activated receptors (PPAR) downregulate the expression of pro-inflammatory molecules in an experimental model of myocardial infarction.

    PubMed

    Ibarra-Lara, María de la Luz; Sánchez-Aguilar, María; Soria, Elizabeth; Torres-Narváez, Juan Carlos; Del Valle-Mondragón, Leonardo; Cervantes-Pérez, Luz Graciela; Pérez-Severiano, Francisca; Ramírez-Ortega, Margarita Del Carmen; Pastelín-Hernández, Gustavo; Oidor-Chan, Víctor Hugo; Sánchez-Mendoza, Alicia

    2016-06-01

    Myocardial infarction (MI) has been associated with an inflammatory response and a rise in TNF-α, interleukin (IL)-1β, and IL-6. Peroxisome proliferator-activated receptors (PPARs) promote a decreased expression of inflammatory molecules. We aimed to study whether PPAR stimulation by clofibrate decreases inflammation and reduces infarct size in rats with MI. Male Wistar rats were randomized into 3 groups: control, MI + vehicle, and MI + clofibrate (100 mg/kg). Treatment was administered for 3 consecutive days, previous to 2 h of MI. MI induced an increase in protein expression, mRNA content, and enzymatic activity of inducible nitric oxide synthase (iNOS). Additionally, MI incited an increased expression of matrix metalloproteinase (MMP)-2 and MMP-9, intercellular adhesion molecule (ICAM)-1, and IL-6. MI also elevated the nuclear content of nuclear factor-κB (NF-κB) and decreased IκB, both in myocyte nuclei and cytosol. Clofibrate treatment prevented MI-induced changes in iNOS, MMP-2 and MMP-9, ICAM-1, IL-6, NF-κB, and IκB. Infarct size was smaller in clofibrate-treated rats compared to MI-vehicle animals. In silico analysis exhibited 3 motifs shared by genes from renin-angiotensin system, PPARα, iNOS, MMP-2 and MMP-9, ICAM-1, and VCAM-1, suggesting a cross regulation. In conclusion, PPARα-stimulation prevents overexpression of pro-inflammatory molecules and preserves viability in an experimental model of acute MI. PMID:27050838

  7. Rosiglitazone, a Peroxisome Proliferator-Activated Receptor (PPAR)-γ Agonist, Attenuates Inflammation Via NF-κB Inhibition in Lipopolysaccharide-Induced Peritonitis.

    PubMed

    Zhang, Yun-Fang; Zou, Xun-Liang; Wu, Jun; Yu, Xue-Qing; Yang, Xiao

    2015-12-01

    We assessed the anti-inflammatory effect of peroxisome proliferator-activated receptor (PPAR)-γ agonist, rosiglitazone, in a lipopolysaccharide (LPS)-induced peritonitis rat model. LPS was intraperitoneally injected into rats to establish peritonitis model. Male Sprague-Dawley (SD) rats were assigned to normal saline (the solvent of LPS), LPS, rosiglitazone plus LPS, and rosiglitazone alone. A simple peritoneal equilibrium test was performed with 20 ml 4.25 % peritoneal dialysis fluid. We measured the leukocyte count in dialysate and ultrafiltration volume. Peritoneal membrane histochemical staining was performed, and peritoneal thickness was assessed. CD40 and intercellular adhesion molecule-1 messenger RNA (ICAM-1 mRNA) levels in rat visceral peritoneum were detected by reverse transcription (RT)-PCR. IL-6 in rat peritoneal dialysis effluent was measured using enzyme-linked immunosorbent assay. The phosphorylation of NF-κB-p65 and IκBα was analyzed by Western blot. LPS administration resulted in increased peritoneal thickness and decreased ultrafiltration volume. Rosiglitazone pretreatment significantly decreased peritoneal thickness. In addition to CD40 and ICAM-1 mRNA expression, the IL-6, p-p65, and p-IκBα protein expressions were enhanced in LPS-administered animals. Rosiglitazone pretreatment significantly decreased ICAM-1 mRNA upregulation, secretion of IL-6 protein, and phosphorylation of NF-κB-p65 and IκBα without decreasing CD40 mRNA expression. Rosiglitazone has a protective effect in peritonitis, simultaneously decreasing NF-κB phosphorylation, suggesting that NF-κB signaling pathway mediated peritoneal inflammation induced by LPS. PPAR-γ might be considered a potential therapeutic target against peritonitis. PMID:26047949

  8. Cloning and characterization of microsomal triglyceride transfer protein gene and its potential connection with peroxisome proliferator-activated receptor (PPAR) in blunt snout bream (Megalobrama amblycephala).

    PubMed

    Li, Jun-Yi; Zhang, Ding-Dong; Jiang, Guang-Zhen; Li, Xiang-Fei; Zhang, Chun-Nuan; Zhou, Man; Liu, Wen-Bin; Xu, Wei-Na

    2015-11-01

    Microsomal triglyceride transfer protein (MTTP), a major intracellular protein capable of transferring neutral lipids, plays a pivotal role in the assembly and secretion of apolipoprotein B-containing lipoproteins. In this study, MTTP cDNA was firstly cloned from the liver of blunt snout bream (Megalobrama amblycephala), the full-length cDNA covered 3457-bp with an open reading frame of 2661-bp, which encodes 886 amino acids, including a putative signal peptide of 24 amino acids long. After the feeding trial, a graded tissue-specific expression pattern of MTTP was observed and high expression abundance in the liver and intestine indicated its major function in lipid transport in this fish species. In addition, expression of genes encoding MTTP as well as peroxisome proliferator-activated receptor (PPAR), which are transcription factors and serve as key regulators in lipid homoeostasis, was all affected by dietary lipid and choline supplementations. Elevated dietary lipid levels significantly increased the liver, intestinal and muscle MTTP mRNA abundance. Additionally, the down-regulation of MTTP expression in the liver and muscle was observed when fish were fed with inadequate choline supplementation in high-fat diet, yet up-regulated as supplementing extra choline in diet. Expressions of PPARα and PPARβ in the liver and muscle showed similar trend of MTTP expression. The results suggested the potential connection of MTTP and PPAR in response to different dietary nutritional factors. Furthermore, extra choline supplementations could promote lipid transfer and enhance fatty acid oxidation, which indicated a molecular mechanism of choline on diminishing fat accumulation in blunt snout bream. PMID:26210738

  9. PPAR{alpha} deficiency augments a ketogenic diet-induced circadian PAI-1 expression possibly through PPAR{gamma} activation in the liver

    SciTech Connect

    Oishi, Katsutaka; Uchida, Daisuke; Ohkura, Naoki; Horie, Shuichi

    2010-10-15

    Research highlights: {yields} PPAR{alpha} deficiency augments a ketogenic diet-induced circadian PAI-1 expression. {yields} Hepatic expressions of PPAR{gamma} and PCG-1{alpha} are induced by a ketogenic diet. {yields} PPAR{gamma} antagonist attenuates a ketogenic diet-induced PAI-1 expression. {yields} Ketogenic diet advances the phase of circadian clock in a PPAR{alpha}-independent manner. -- Abstract: An increased level of plasminogen activator inhibitor-1 (PAI-1) is considered a risk factor for cardiovascular diseases, and PAI-1 gene expression is under the control of molecular circadian clocks in mammals. We recently showed that PAI-1 expression is augmented in a phase-advanced circadian manner in mice fed with a ketogenic diet (KD). To determine whether peroxisome proliferator-activated receptor {alpha} (PPAR{alpha}) is involved in hypofibrinolytic status induced by a KD, we examined the expression profiles of PAI-1 and circadian clock genes in PPAR{alpha}-null KD mice. Chronic administration of bezafibrate induced the PAI-1 gene expression in a PPAR{alpha}-dependent manner. Feeding with a KD augmented the circadian expression of PAI-1 mRNA in the hearts and livers of wild-type (WT) mice as previously described. The KD-induced mRNA expression of typical PPAR{alpha} target genes such as Cyp4A10 and FGF21 was damped in PPAR{alpha}-null mice. However, plasma PAI-1 concentrations were significantly more elevated in PPAR{alpha}-null KD mice in accordance with hepatic mRNA levels. These observations suggest that PPAR{alpha} activation is dispensable for KD-induced PAI-1 expression. We also found that hyperlipidemia, fatty liver, and the hepatic expressions of PPAR{gamma} and its coactivator PCG-1{alpha} were more effectively induced in PPAR{alpha}-null, than in WT mice on a KD. Furthermore, KD-induced hepatic PAI-1 expression was significantly suppressed by supplementation with bisphenol A diglycidyl ether, a PPAR{gamma} antagonist, in both WT and PPAR

  10. Gene Expression Patterns Associated with Peroxisome Proliferator-activated Receptor (PPAR) Signaling in the Longissimus dorsi of Hanwoo (Korean Cattle)

    PubMed Central

    Lim, Dajeong; Chai, Han-Ha; Lee, Seung-Hwan; Cho, Yong-Min; Choi, Jung-Woo; Kim, Nam-Kuk

    2015-01-01

    Adipose tissue deposited within muscle fibers, known as intramuscular fat (IMF or marbling), is a major determinant of meat quality and thereby affects its economic value. The biological mechanisms that determine IMF content are therefore of interest. In this study, 48 genes involved in the bovine peroxisome proliferator-activated receptor signaling pathway, which is involved in lipid metabolism, were investigated to identify candidate genes associated with IMF in the longissimus dorsi of Hanwoo (Korean cattle). Ten genes, retinoid X receptor alpha, peroxisome proliferator-activated receptor gamma (PPARG), phospholipid transfer protein, stearoyl-CoA desaturase, nuclear receptor subfamily 1 group H member 3, fatty acid binding protein 3 (FABP3), carnitine palmitoyltransferase II, acyl-Coenzyme A dehydrogenase long chain (ACADL), acyl-Coenzyme A oxidase 2 branched chain, and fatty acid binding protein 4, showed significant effects with regard to IMF and were differentially expressed between the low- and high-marbled groups (p<0.05). Analysis of the gene co-expression network based on Pearson’s correlation coefficients identified 10 up-regulated genes in the high-marbled group that formed a major cluster. Among these genes, the PPARG-FABP4 gene pair exhibited the strongest correlation in the network. Glycerol kinase was found to play a role in mediating activation of the differentially expressed genes. We categorized the 10 significantly differentially expressed genes into the corresponding downstream pathways and investigated the direct interactive relationships among these genes. We suggest that fatty acid oxidation is the major downstream pathway affecting IMF content. The PPARG/RXRA complex triggers activation of target genes involved in fatty acid oxidation resulting in increased triglyceride formation by ATP production. Our findings highlight candidate genes associated with the IMF content of the loin muscle of Korean cattle and provide insight into the

  11. Preferential PPARactivation reduces neuroinflammation, and blocks neurodegeneration in vivo.

    PubMed

    Esmaeili, Mohammad A; Yadav, Shilpi; Gupta, Ravi Kr; Waggoner, Garrett R; Deloach, Abigail; Calingasan, Noel Y; Beal, M Flint; Kiaei, Mahmoud

    2016-01-15

    Neuroinflammation, immune reactivity and mitochondrial abnormalities are considered as causes and/or contributors to neuronal degeneration. Peroxisome proliferator-activated receptors (PPARs) regulate both inflammatory and multiple other pathways that are implicated in neurodegeneration. In the present study, we investigated the efficacy of fenofibrate (Tricor), a pan-PPAR agonist that activates PPAR-α as well as other PPARs. We administered fenofibrate to superoxide dismutase 1 (SOD1(G93A)) mice daily prior to any detectable phenotypes and then animal behavior, pathology and longevity were assessed. Treated animals showed a significant slowing of the progression of disease with weight loss attenuation, enhanced motor performance, delayed onset and survival extension. Histopathological analysis of the spinal cords showed that neuronal loss was significantly attenuated in fenofibrate-treated mice. Mitochondria were preserved as indicated by Cytochrome c immunostaining in the spinal cord, which maybe partly due to increased expression of the PPAR-γ co-activator 1-α. The total mRNA analysis revealed that neuroprotective and anti-inflammatory genes were elevated, while neuroinflammatory genes were down-regulated. This study demonstrates that the activation of PPAR-α action via fenofibrate leads to neuroprotection by both reducing neuroinflammation and protecting mitochondria, which leads to a significant increase in survival in SOD1(G93A) mice. Therefore, the development of therapeutic strategies to activate PPAR-α as well as other PPARs may lead to new therapeutic agents to slow or halt the progression of amyotrophic lateral sclerosis. PMID:26604138

  12. O-GlcNAc modification of PPAR{gamma} reduces its transcriptional activity

    SciTech Connect

    Ji, Suena; Park, Sang Yoon; Roth, Juergen; Kim, Hoe Suk; Cho, Jin Won

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer We found that PPAR{gamma} is modified by O-GlcNAc in 3T3-L1 adipocytes. Black-Right-Pointing-Pointer The Thr54 of PPAR{gamma}1 is the major O-GlcNAc site. Black-Right-Pointing-Pointer Transcriptional activity of PPAR{gamma}1 was decreased on treatment with the OGA inhibitor. -- Abstract: The peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}), a member of the nuclear receptor superfamily, is a key regulator of adipogenesis and is important for the homeostasis of the adipose tissue. The {beta}-O-linked N-acetylglucosamine (O-GlcNAc) modification, a posttranslational modification on various nuclear and cytoplasmic proteins, is involved in the regulation of protein function. Here, we report that PPAR{gamma} is modified by O-GlcNAc in 3T3-L1 adipocytes. Mass spectrometric analysis and mutant studies revealed that the threonine 54 of the N-terminal AF-1 domain of PPAR{gamma} is the major O-GlcNAc site. Transcriptional activity of wild type PPAR{gamma} was decreased 30% by treatment with the specific O-GlcNAcase (OGA) inhibitor, but the T54A mutant of PPAR{gamma} did not respond to inhibitor treatment. In 3T3-L1 cells, an increase in O-GlcNAc modification by OGA inhibitor reduced PPAR{gamma} transcriptional activity and terminal adipocyte differentiation. Our results suggest that the O-GlcNAc state of PPAR{gamma} influences its transcriptional activity and is involved in adipocyte differentiation.

  13. A Selective Novel Peroxisome Proliferator–Activated Receptor (PPAR)-α Antagonist Induces Apoptosis and Inhibits Proliferation of CLL Cells In Vitro and In Vivo

    PubMed Central

    Messmer, Davorka; Lorrain, Kymmy; Stebbins, Karin; Bravo, Yalda; Stock, Nicholas; Cabrera, Geraldine; Correa, Lucia; Chen, Austin; Jacintho, Jason; Chiorazzi, Nicholas; Yan, Xiao Jie; Spaner, David; Prasit, Peppi; Lorrain, Daniel

    2015-01-01

    Tumor-specific metabolic changes can reveal new therapeutic targets. Our findings implicate a supporting role for fatty acid metabolism in chronic lymphocytic leukemia (CLL) cell survival. Peroxisome proliferator–activated receptor (PPAR)-α, a major transcriptional regulator of fatty acid oxidation, was recently shown to be upregulated in CLL. To evaluate PPARα as a potential therapeutic target, we developed a highly selective, potent small molecule antagonist of PPARα, NXT629. NXT629 inhibited agonist-induced transcription of PPARα-regulated genes, demonstrating target engagement in CLL cells. Furthermore, NXT629 induced apoptosis of CLL cells even in the presence of a protective microenvironment. To mimic the proliferative lymphoid compartment of CLL, we examined the activity of NXT629 on CLL cells that were stimulated to proliferate in vitro. NXT629 reduced the number of leukemia cells undergoing cell division. In addition, in two xenograft mouse models of CLL (one a model for nondividing and one for dividing CLL), NXT629 reduced the number of viable CLL cells in vivo. Overall, these results suggest that fatty acid metabolism promotes survival and proliferation of primary CLL cells and that inhibiting PPARα gene regulation could be a new therapeutic approach to treating CLL. PMID:26070013

  14. Telmisartan, an AT1 receptor blocker and a PPAR gamma activator, alleviates liver fibrosis induced experimentally by Schistosoma mansoni infection

    PubMed Central

    2013-01-01

    Background Hepatic schistosomiasis is considered to be one of the most prevalent forms of chronic liver disease in the world due to its complication of liver fibrosis. The demonstration of the pro-fibrogenic role of angiotensin (Ang) II in chronic liver disease brought up the idea that anti-Ang II agents may be effective in improving hepatic fibrosis by either blocking Ang II type 1 (AT1) receptors or inhibiting the angiotensin converting enzyme. Peroxisome proliferator-activated receptors gamma (PPARγ) activation has been also shown to inhibit hepatic stellate cell activation and progression of fibrosis. The present study has aimed at testing the anti-fibrogenic effects of telmisartan; an AT1 receptor blocker and a PPARγ partial agonist, alone or combined with praziquantel (PZQ) on Schistosoma mansoni-induced liver fibrosis in mice. Methods To achieve the aim of the study, two sets of experiments were performed in which telmisartan was initiated at the 5th (set 1) and the 10th (set 2) weeks post infection to assess drug efficacy in both acute and chronic stages of liver fibrosis, respectively. Schistosoma mansoni-infected mice were randomly divided into the following four groups: infected-control (I), telmisartan-treated (II), PZQ-treated (III), and telmisartan+PZQ-treated (IV). In addition, a normal non-infected group was used for comparison. Parasitological (hepatomesenteric worm load and oogram pattern), histopathological, morphometric, immunohistochemical (hepatic expressions of matrix metalloproteinase-2; MMP-2 and tissue inhibitor of metalloproteinase-2; TIMP-2), and biochemical (serum transforming growth factor beta 1; TGF-β1 and liver function tests) studies were performed. Results Telmisartan failed to improve the parasitological parameters, while it significantly (P<0.05) decreased the mean granuloma diameter, area of fibrosis, and serum TGF-β1. Additionally, telmisartan increased MMP-2 and decreased TIMP-2 hepatic expression. Combined treatment

  15. Activation of Central PPAR-γ Attenuates Angiotensin II-Induced Hypertension

    PubMed Central

    Yu, Yang; Xue, Bao-Jian; Wei, Shun-Guang; Zhang, Zhi-Hua; Beltz, Terry G; Guo, Fang; Johnson, Alan Kim; Felder, Robert B

    2015-01-01

    Inflammation and renin-angiotensin system activity in the brain contribute to hypertension through effects on fluid intake, vasopressin release, and sympathetic nerve activity. We recently reported that activation of brain peroxisome proliferator-activated receptor (PPAR)-γ in heart failure rats reduced inflammation and renin-angiotensin system activity in the hypothalamic paraventricular nucleus and ameliorated the peripheral manifestations of heart failure. We hypothesized that activation of brain PPAR-γ might have beneficial effects in angiotensin II-induced hypertension. Sprague-Dawley rats received a 2-week subcutaneous infusion of angiotensin II (120 ng/kg/min) combined with a continuous intracerebroventricular infusion of vehicle, the PPAR-γ agonist pioglitazone (3 nmol/h) or the PPAR-γ antagonist GW9662 (7 nmol/h). Angiotensin II+vehicle rats had increased mean blood pressure, increased sympathetic drive as indicated by the mean blood pressure response to ganglionic blockade, and increased water consumption. PPAR-γ mRNA in subfornical organ and hypothalamic paraventricular nucleus was unchanged, but PPAR-γ DNA binding activity was reduced. mRNA for interleukin-1β, tumor necrosis factor-α, cyclooxygenase-2 and angiotensin II type-1 receptor was augmented in both nuclei, and hypothalamic paraventricular nucleus neuronal activity was increased. The plasma vasopressin response to a 6-hour water restriction also increased. These responses to angiotensin II were exacerbated by GW9662 and ameliorated by pioglitazone, which increased PPAR-γ mRNA and PPAR-γ DNA binding activity in subfornical organ and hypothalamic paraventricular nucleus. Pioglitazone and GW9662 had no effects on control rats. The results suggest that activating brain PPAR-γ to reduce central inflammation and brain renin-angiotensin system activity may be a useful adjunct in the treatment of angiotensin II-dependent hypertension. PMID:26101342

  16. Activation of central PPAR-γ attenuates angiotensin II-induced hypertension.

    PubMed

    Yu, Yang; Xue, Bao-Jian; Wei, Shun-Guang; Zhang, Zhi-Hua; Beltz, Terry G; Guo, Fang; Johnson, Alan Kim; Felder, Robert B

    2015-08-01

    Inflammation and renin-angiotensin system activity in the brain contribute to hypertension through effects on fluid intake, vasopressin release, and sympathetic nerve activity. We recently reported that activation of brain peroxisome proliferator-activated receptor (PPAR)-γ in heart failure rats reduced inflammation and renin-angiotensin system activity in the hypothalamic paraventricular nucleus and ameliorated the peripheral manifestations of heart failure. We hypothesized that the activation of brain PPAR-γ might have beneficial effects in angiotensin II-induced hypertension. Sprague-Dawley rats received a 2-week subcutaneous infusion of angiotensin II (120 ng/kg per minute) combined with a continuous intracerebroventricular infusion of vehicle, the PPAR-γ agonist pioglitazone (3 nmol/h) or the PPAR-γ antagonist GW9662 (7 nmol/h). Angiotensin II+vehicle rats had increased mean blood pressure, increased sympathetic drive as indicated by the mean blood pressure response to ganglionic blockade, and increased water consumption. PPAR-γ mRNA in subfornical organ and hypothalamic paraventricular nucleus was unchanged, but PPAR-γ DNA-binding activity was reduced. mRNA for interleukin-1β, tumor necrosis factor-α, cyclooxygenase-2, and angiotensin II type 1 receptor was augmented in both nuclei, and hypothalamic paraventricular nucleus neuronal activity was increased. The plasma vasopressin response to a 6-hour water restriction also increased. These responses to angiotensin II were exacerbated by GW9662 and ameliorated by pioglitazone, which increased PPAR-γ mRNA and PPAR-γ DNA-binding activity in subfornical organ and hypothalamic paraventricular nucleus. Pioglitazone and GW9662 had no effects on control rats. The results suggest that activating brain PPAR-γ to reduce central inflammation and brain renin-angiotensin system activity may be a useful adjunct in the treatment of angiotensin II-dependent hypertension. PMID:26101342

  17. PPAR-γ agonist stabilizes KLF4 protein via activating Akt signaling and reducing KLF4 ubiquitination

    SciTech Connect

    Sun, Yan; Zheng, Bin; Zhang, Xin-hua; He, Ming; Guo, Zong-wei; Wen, Jin-kun

    2014-01-10

    Highlights: •PPAR-γ increases KLF4 protein level but does not influence KLF4 gene transcription. •The increase of KLF4 protein levels induced by pioglitazone is PPAR-γ-dependent. •Pioglitazone stabilizes KLF4 protein via activating Akt signaling and reducing KLF4 ubiquitination. -- Abstract: Peroxisome proliferator activated receptor γ (PPAR-γ) plays important roles in cell cycle regulation, differentiation and apoptosis. Krüppel-like factor 4 (KLF4) modulates vascular smooth muscle cell (VSMC) phenotype. Both KLF4 and PPAR-γ are involved in VSMC proliferation and differentiation. However, the actual relationship between KLF4 and PPAR-γ in VSMCs is not clear. In this study, we found that PPAR-γ agonist pioglitazone increases KLF4 protein levels but does not influence KLF4 gene transcription. PPAR-γ overexpression increases, while PPAR-γ knockdown reduces KLF4 expression, suggesting that the increase in KLF4 protein levels induced by pioglitazone is PPAR-γ-dependent. Further study showed that pioglitazone enhances KLF4 protein stability through reducing KLF4 ubiquitination. Furthermore, we demonstrated that stabilization of KLF4 by pioglitazone was related to the activation of Akt signaling pathway. Taken together, we revealed that PPAR-γ agonist pioglitazone stabilizes KLF4 protein via activating Akt signaling and reducing KLF4 ubiquitination, providing further insights into PPAR-γ and KLF4 in regulating each other’s expression in VSMCs.

  18. Activation of PPAR{gamma} is not involved in butyrate-induced epithelial cell differentiation

    SciTech Connect

    Ulrich, S.; Waechtershaeuser, A.; Loitsch, S.; Knethen, A. von; Bruene, B.; Stein, J. . E-mail: j.stein@em.uni-frankfurt.de

    2005-10-15

    Histone deacetylase-inhibitors affect growth and differentiation of intestinal epithelial cells by inducing expression of several transcription factors, e.g. Peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) or vitamin D receptor (VDR). While activation of VDR by butyrate mainly seems to be responsible for cellular differentiation, the activation of PPAR{gamma} in intestinal cells remains to be elucidated. The aim of this study was to determine the role of PPAR{gamma} in butyrate-induced cell growth inhibition and differentiation induction in Caco-2 cells. Treatment with PPAR{gamma} ligands ciglitazone and BADGE (bisphenol A diglycidyl) enhanced butyrate-induced cell growth inhibition in a dose- and time-dependent manner, whereas cell differentiation was unaffected after treatment with PPAR{gamma} ligands rosiglitazone and MCC-555. Experiments were further performed in dominant-negative PPAR{gamma} mutant cells leading to an increase in cell growth whereas butyrate-induced cell differentiation was again unaffected. The present study clearly demonstrated that PPAR{gamma} is involved in butyrate-induced inhibition of cell growth, but seems not to play an essential role in butyrate-induced cell differentiation.

  19. Sleep and neurochemical modulation by the nuclear peroxisome proliferator-activated receptor α (PPAR-α) in rat.

    PubMed

    Mijangos-Moreno, Stephanie; Poot-Aké, Alwin; Guzmán, Khalil; Arankowsky-Sandoval, Gloria; Arias-Carrión, Oscar; Zaldívar-Rae, Jaime; Sarro-Ramírez, Andrea; Murillo-Rodríguez, Eric

    2016-04-01

    The peroxisome proliferator-activated receptor alpha (PPARα) is a nuclear protein that plays an essential role in diverse neurobiological processes. However, the role of PPARα on the sleep modulation is unknown. Here, rats treated with an intrahypothalamic injection of Wy14643 (10μg/1μL; PPARα agonist) enhanced wakefulness and decreased slow wave sleep and rapid eye movement sleep whereas MK-886 (10μg/1μL; PPARα antagonist) promoted opposite effects. Moreover, Wy14643 increased dopamine, norepinephrine, serotonin, and adenosine contents collected from nucleus accumbens. The levels of these neurochemicals were diminished after MK-886 treatment. The current findings suggest that PPARα may participate in the sleep and neurochemical modulation. PMID:26450400

  20. Therapeutic potential of the dual peroxisome proliferator activated receptor (PPAR)α/γ agonist aleglitazar in attenuating TNF-α-mediated inflammation and insulin resistance in human adipocytes.

    PubMed

    Massaro, Marika; Scoditti, Egeria; Pellegrino, Mariangela; Carluccio, Maria Annunziata; Calabriso, Nadia; Wabitsch, Martin; Storelli, Carlo; Wright, Matthew; De Caterina, Raffaele

    2016-05-01

    Adipose tissue inflammation is a mechanistic link between obesity and its related sequelae, including insulin resistance and type 2 diabetes. Dual ligands of peroxisome proliferator activated receptor (PPAR)α and γ, combining in a single molecule the metabolic and inflammatory-regulatory properties of α and γ agonists, have been proposed as a promising therapeutic strategy to antagonize adipose tissue inflammation. Here we investigated the effects of the dual PPARα/γ agonist aleglitazar on human adipocytes challenged with inflammatory stimuli. Human Simpson-Golabi-Behmel syndrome (SGBS) adipocytes were treated with aleglitazar or - for comparison - the selective agonists for PPARα or γ fenofibrate or rosiglitazone, respectively, for 24h before stimulation with TNF-α. Aleglitazar, at concentrations as low as 10nmol/L, providing the half-maximal transcriptional activation of both PPARα and PPARγ, reduced the stimulated expression of several pro-inflammatory mediators including interleukin (IL)-6, the chemokine CXC-L10, and monocyte chemoattractant protein (MCP)-1. Correspondingly, media from adipocytes treated with aleglitazar reduced monocyte migration, consistent with suppression of MCP-1 secretion. Under the same conditions, aleglitazar also reversed the TNF-α-mediated suppression of insulin-stimulated ser473 Akt phosphorylation and decreased the TNF-α-induced ser312 IRS1 phosphorylation, two major switches in insulin-mediated metabolic activities, restoring glucose uptake in insulin-resistant adipocytes. Such effects were similar to those obtainable with a combination of single PPARα and γ agonists. In conclusion, aleglitazar reduces inflammatory activation and dysfunction in insulin signaling in activated adipocytes, properties that may benefit diabetic and obese patients. The effect of aleglitazar was consistent with dual PPARα and γ agonism, but with no evidence of synergism. PMID:26976796

  1. A Novel Peroxisome Proliferator-activated Receptor (PPAR)γ Agonist 2-Hydroxyethyl 5-chloro-4,5-didehydrojasmonate Exerts Anti-Inflammatory Effects in Colitis.

    PubMed

    Choo, Jieun; Lee, Yunna; Yan, Xin-Jia; Noh, Tae Hwan; Kim, Seong Jin; Son, Sujin; Pothoulakis, Charalabos; Moon, Hyung Ryong; Jung, Jee H; Im, Eunok

    2015-10-16

    Inflammatory bowel disease (IBD) is a chronic inflammatory disease with increasing incidence and prevalence worldwide. Here we investigated the newly synthesized jasmonate analogue 2-hydroxyethyl 5-chloro-4,5-didehydrojasmonate (J11-Cl) for its anti-inflammatory effects on intestinal inflammation. First, to test whether J11-Cl can activate peroxisome proliferator-activated receptors (PPARs), we performed docking simulations because J11-Cl has a structural similarity with anti-inflammatory 15-deoxy-Δ(12,14)-prostaglandin J2 (15d-PGJ2), one of the endogenous ligands of PPARγ. J11-Cl bound to the ligand binding domain of PPARγ in the same manner as 15d-PGJ2 and rosiglitazone, and significantly increased transcriptional activity of PPARγ. In animal experiments, colitis was significantly reduced in mice with J11-Cl treatment, determined by analyses of survival rate, body weight changes, clinical symptoms, and histological evaluation. Moreover, J11-Cl decreased production of pro-inflammatory cytokines including IL-6, IL-8, and G-CSF as well as chemokines including chemokine (C-C motif) ligand (CCL)20, chemokine (C-X-C motif) ligand (CXCL)2, CXCL3, and chemokine (C-X3-C motif) ligand 1 (CX3CL1) in colon tissues, and LPS or TNF-α-stimulated macrophages and epithelial cells. In contrast, production of anti-inflammatory cytokines including IL-2 and IL-4 as well as the proliferative factor, GM-CSF, was increased by J11-Cl. Furthermore, inhibition of MAPKs and NF-κB activation by J11-Cl was also observed. J11-Cl reduced intestinal inflammation by increasing the transcriptional activity of PPARγ and modulating inflammatory signaling pathways. Therefore, our study suggests that J11-Cl may serve as a novel therapeutic agent against IBD. PMID:26342083

  2. PPAR-α and glucocorticoid receptor synergize to promote erythroid progenitor self-renewal.

    PubMed

    Lee, Hsiang-Ying; Gao, Xiaofei; Barrasa, M Inmaculada; Li, Hu; Elmes, Russell R; Peters, Luanne L; Lodish, Harvey F

    2015-06-25

    Many acute and chronic anaemias, including haemolysis, sepsis and genetic bone marrow failure diseases such as Diamond-Blackfan anaemia, are not treatable with erythropoietin (Epo), because the colony-forming unit erythroid progenitors (CFU-Es) that respond to Epo are either too few in number or are not sensitive enough to Epo to maintain sufficient red blood cell production. Treatment of these anaemias requires a drug that acts at an earlier stage of red cell formation and enhances the formation of Epo-sensitive CFU-E progenitors. Recently, we showed that glucocorticoids specifically stimulate self-renewal of an early erythroid progenitor, burst-forming unit erythroid (BFU-E), and increase the production of terminally differentiated erythroid cells. Here we show that activation of the peroxisome proliferator-activated receptor α (PPAR-α) by the PPAR-α agonists GW7647 and fenofibrate synergizes with the glucocorticoid receptor (GR) to promote BFU-E self-renewal. Over time these agonists greatly increase production of mature red blood cells in cultures of both mouse fetal liver BFU-Es and mobilized human adult CD34(+) peripheral blood progenitors, with a new and effective culture system being used for the human cells that generates normal enucleated reticulocytes. Although Ppara(-/-) mice show no haematological difference from wild-type mice in both normal and phenylhydrazine (PHZ)-induced stress erythropoiesis, PPAR-α agonists facilitate recovery of wild-type but not Ppara(-/-) mice from PHZ-induced acute haemolytic anaemia. We also show that PPAR-α alleviates anaemia in a mouse model of chronic anaemia. Finally, both in control and corticosteroid-treated BFU-E cells, PPAR-α co-occupies many chromatin sites with GR; when activated by PPAR-α agonists, additional PPAR-α is recruited to GR-adjacent sites and presumably facilitates GR-dependent BFU-E self-renewal. Our discovery of the role of PPAR-α agonists in stimulating self-renewal of early erythroid

  3. Inhibition of Th2 cytokine production in T cells by monascin via PPARactivation.

    PubMed

    Hsu, Wei-Hsuan; Lee, Bao-Hong; Hsu, Ya-Wen; Pan, Tzu-Ming

    2013-08-28

    Yellow pigment monascin (MS) is a secondary metabolite isolated from Monascus -fermented products and has numerous physiological activities. However, the potential use of MS for immunomodulation remains unclear. We showed that MS and the synthetic peroxisome proliferator-activated receptor (PPAR)-γ ligand rosiglitazone (RG) significantly inhibited the production of Th2 cytokines, including IL-4, IL-5, and IL-13, in PMA/ionomycin-activated mouse EL-4 T cells. Moreover, we showed that this was due to cellular PPAR-γ translocation. These results indicate that MS and RG promote PPAR-γ-DNA interactions and suggest that the regulatory effects of MS and RG on Th2 cytokine production could be abolished with PPAR-γ antagonist treatment. MS and RG also suppressed Th2 transcription factor translocation (e.g., GATA-3 and nuclear factor of activated T cells) by preventing the phosphorylation of protein kinase C and signal transducer and activator of transcription 6. PMID:23848565

  4. Modulation Peroxisome Proliferators Activated Receptor alpha (PPAR α) and Acyl Coenzyme A: Cholesterol Acyltransferase1 (ACAT1) Gene expression by Fatty Acids in Foam cell

    PubMed Central

    Zavvar Reza, Javad; Doosti, Mahmoud; salehipour, Masoud; PackneJad, Malehieh; Mojarrad, Majed; Heidari, Mansour; Emamian, Effat S

    2009-01-01

    Background One of the most important factors in the initiation and progression of atherosclerosis is the default in macrophage cholesterol homeostasis. Many genes and transcription factors such as Peroxisome Proliferators Activated Receptors (PPARs) and Acyl Coenzyme A: Cholesterol Acyltransferase1 (ACAT1) are involved in cholesterol homeostasis. Fatty Acids are important ligands of PPARα and the concentration of them can effect expression of ACAT1. So this study designed to clarified on the role of these genes and fatty acids on the lipid metabolism in foam cells. Methods This study examined effects of c9, t11-Conjugated Linoleic Acid(c9, t11-CLA), Alpha Linolenic Acid (LA), Eicosapentaenoic Acid (EPA) on the PPARα and ACAT1 genes expression by using Real time PCR and cholesterol homeostasis in THP-1 macrophages derived foam cells. Results Incubation of c9, t11-CLA, LA cause a significant reduction in intracellular Total Cholesterol, Free Cholesterol, cellular and Estrified Cholesterol concentrations (P ≤ 0.05). CLA and LA had no significant effect on the mRNA levels of ACAT1, but EPA increased ACAT1 mRNA expression (P = 0.003). Treatment with EPA increased PPARα mRNA levels (P ≤ 0.001), although CLA, LA had no significant effect on PPARα mRNA expression. Conclusion In conclusion, it seems that different fatty acids have different effects on gene expression and lipid metabolism and for complete conception study of the genes involved in lipid metabolism in foam cell all at once maybe is benefit. PMID:19725980

  5. PPAR-pan activation induces hepatic oxidative stress and lipidomic remodelling.

    PubMed

    Ament, Zsuzsanna; West, James A; Stanley, Elizabeth; Ashmore, Tom; Roberts, Lee D; Wright, Jayne; Nicholls, Andrew W; Griffin, Julian L

    2016-06-01

    The peroxisome proliferator-activated receptors (PPARs) are ligand activated nuclear receptors that regulate cellular homoeostasis and metabolism. PPARs control the expression of genes involved in fatty-acid and lipid metabolism. Despite evidence showing beneficial effects of their activation in the treatment of metabolic diseases, particularly dyslipidaemias and type 2 diabetes, PPAR agonists have also been associated with a variety of side effects and adverse pathological changes. Agonists have been developed that simultaneously activate the three PPAR receptors (PPARα, γ and δ) in the hope that the beneficial effects can be harnessed while avoiding some of the negative side effects. In this study, the hepatic effects of a discontinued PPAR-pan agonist (a triple agonist of PPAR-α, -γ, and -δ), was investigated after dietary treatment of male Sprague-Dawley (SD) rats. The agonist induced liver enlargement in conjunction with metabolomic and lipidomic remodelling. Increased concentrations of several metabolites related to processes of oxidation, such as oxo-methionine, methyl-cytosine and adenosyl-methionine indicated increased stress and immune status. These changes are reflected in lipidomic changes, and increased energy demands as determined by free fatty acid (decreased 18:3 n-3, 20:5 n-3 and increased ratios of n-6/n-3 fatty acids) triacylglycerol, phospholipid (decreased and increased bulk changes respectively) and eicosanoid content (increases in PGB2 and 15-deoxy PGJ2). We conclude that the investigated PPAR agonist, GW625019, induces liver enlargement, accompanied by lipidomic remodelling, oxidative stress and increases in several pro-inflammatory eicosanoids. This suggests that such pathways should be monitored in the drug development process and also outline how PPAR agonists induce liver proliferation. PMID:26654758

  6. Design and synthesis of silicon-containing fatty acid amide derivatives as novel peroxisome proliferator-activated receptor (PPAR) agonists.

    PubMed

    Kajita, Daisuke; Nakamura, Masaharu; Matsumoto, Yotaro; Ishikawa, Minoru; Hashimoto, Yuichi; Fujii, Shinya

    2015-08-15

    We recently reported that diphenylsilane structure can function as a cis-stilbene mimetic. Here, we investigate whether silyl functionality can also serve as a mimetic of aliphatic cis-olefin. We designed and synthesized various silyl derivatives of oleoylethanolamide (OEA: 8), an endogenous cis-olefin-containing PPARα agonist, and evaluated their PPARα/δ/γ agonistic activity. We found that diethylsilyl derivative 20 exhibited PPARα/δ agonistic activity, and we also obtained a PPARδ-selective agonist, 32. Our results suggest that incorporation of silyl functionality is a useful option for structural development of biologically active compounds. PMID:26071639

  7. Activity landscape modeling of PPAR ligands with dual-activity difference maps.

    PubMed

    Méndez-Lucio, Oscar; Pérez-Villanueva, Jaime; Castillo, Rafael; Medina-Franco, José L

    2012-06-01

    Activation of peroxisome proliferator-activated receptor (PPAR) subtypes offers a promising strategy for the treatment of diabetes mellitus and metabolic diseases. Selective and dual PPAR agonists have been developed and the systematic characterization of their structure-activity relationships (SAR) is of major significance. Herein, we report a systematic description of the SAR of 168 compounds screened against the three PPAR subtypes using the principles of activity landscape modeling. As part of our effort to develop and apply chemoinformatic tools to navigate through activity landscapes, we employed consensus dual-activity difference maps recently reported. The analysis is based on pairwise relationships of potency difference and structure-similarity which were calculated from the combination of four different 2D and 3D structure representations. Dual-activity difference maps uncovered regions in the landscape with similar SAR for two or three receptor subtypes as well as regions with inverse SAR, that is, changes in structure that increase activity for one subtype but decrease activity for the other subtype. Analysis of pairs of compounds with high structure similarity revealed the presence of single-, dual-, and 'pan-receptor' activity cliffs, that is, small changes in structure with high changes in potency for one, two, or three receptor subtypes, respectively. Single-, dual-, and pan-receptor scaffold hops are also discussed. The analysis of the chemical structures of selected data points reported in this paper points to specific structural features that are helpful for the design of new PPAR agonists. The approach presented in this work is general and can be extended to analyze larger data sets. PMID:22564380

  8. Astaxanthin reduces hepatic lipid accumulations in high-fat-fed C57BL/6J mice via activation of peroxisome proliferator-activated receptor (PPAR) alpha and inhibition of PPAR gamma and Akt.

    PubMed

    Jia, Yaoyao; Wu, Chunyan; Kim, Jiyoung; Kim, Bobae; Lee, Sung-Joon

    2016-02-01

    We have previously reported that astaxanthin (AX), a dietary carotenoid, directly interacts with peroxisome proliferator-activated receptors PPARα and PPARγ, activating PPARα while inhibiting PPARγ, and thus reduces lipid accumulation in hepatocytes in vitro. To investigate the effects of AX in vivo, high-fat diet (HFD)-fed C57BL/6J mice were orally administered AX (6 or 30mg/kg body weight) or vehicle for 8weeks. AX significantly reduced the levels of triglyceride both in plasma and in liver compared with the control HFD mice. AX significantly improved liver histology and thus reduced both steatosis and inflammation scores of livers with hematoxylin and eosin staining. The number of inflammatory macrophages and Kupffer cells were reduced in livers by AX administration assessed with F4/80 staining. Hepatic PPARα-responsive genes involved in fatty acid uptake and β-oxidation were upregulated, whereas inflammatory genes were downregulated by AX administration. In vitro radiolabeled assays revealed that hepatic fatty acid oxidation was induced by AX administration, whereas fatty acid synthesis was not changed in hepatocytes. In mechanism studies, AX inhibited Akt activity and thus decreased SREBP1 phosphorylation and induced Insig-2a expression, both of which delayed nuclear translocation of SREBP1 and subsequent hepatic lipogenesis. Additionally, inhibition of the Akt-mTORC1 signaling axis by AX stimulated hepatic autophagy that could promote degradation of lipid droplets. These suggest that AX lowers hepatic lipid accumulation in HFD-fed mice via multiple mechanisms. In addition to the previously reported differential regulation of PPARα and PPARγ, inhibition of Akt activity and activation of hepatic autophagy reduced hepatic steatosis in mouse livers. PMID:26878778

  9. Regulation of miR-200c by nuclear receptors PPAR{alpha}, LRH-1 and SHP

    SciTech Connect

    Zhang, Yuxia; Yang, Zhihong; Whitby, Richard; Wang, Li

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer Knockdown of PPAR{alpha} and LRH-1 abolishes miR-200c inhibition of HCC cell migration. Black-Right-Pointing-Pointer SHP represses miR-200c expression via inhibition of the activity of PPAR{alpha} and LRH-1. Black-Right-Pointing-Pointer RJW100 exhibits strong ability to downregulate ZEB1 and ZEB2 proteins. -- Abstract: We investigated regulation of miR-200c expression by nuclear receptors. Ectopic expression of miR-200c inhibited MHCC97H cell migration, which was abrogated by the synergistic effects of PPAR{alpha} and LRH-1 siRNAs. The expression of miR-200c was decreased by PPAR{alpha}/LRH-1 siRNAs and increased by SHP siRNAs, and overexpression of the receptors reversed the effects of their respective siRNAs. SHP siRNAs also drastically enhanced the ability of the LRH-1 agonist RJW100 to induce miR-200c and downregulate ZEB1 and ZEB2 proteins. Co-expression of PPAR{alpha} and LRH-1 moderately transactivated the miR-200c promoter, which was repressed by SHP co-expression. RJW100 caused strong activation of the miR-200c promoter. This is the first report to demonstrate that miR-200c expression is controlled by nuclear receptors.

  10. Balanced pan-PPAR activator bezafibrate in combination with statin: comprehensive lipids control and diabetes prevention?

    PubMed

    Tenenbaum, Alexander; Fisman, Enrique Z

    2012-01-01

    All fibrates are peroxisome proliferators-activated receptors (PPARs)-alpha agonists with ability to decrease triglyceride and increase high density lipoprotein- cholesterol (HDL-C). However, bezafibrate has a unique characteristic profile of action since it activates all three PPAR subtypes (alpha, gamma and delta) at comparable doses. Therefore, bezafibrate operates as a pan-agonist for all three PPAR isoforms. Selective PPAR gamma agonists (thiazolidinediones) are used to treat type 2 diabetes mellitus (T2DM). They improve insulin sensitivity by up-regulating adipogenesis, decreasing free fatty acid levels, and reversing insulin resistance. However, selective PPAR gamma agonists also cause water retention, weight gain, peripheral edema, and congestive heart failure. The expression of PPAR beta/ delta in essentially all cell types and tissues (ubiquitous presence) suggests its potential fundamental role in cellular biology. PPAR beta/ delta effects correlated with enhancement of fatty acid oxidation, energy consumption and adaptive thermogenesis. Together, these data implicate PPAR beta/delta in fuel combustion and suggest that pan-PPAR agonists that include a component of PPAR beta/delta activation might offset some of the weight gain issues seen with selective PPAR gamma agonists, as was demonstrated by bezafibrate studies. Suggestively, on the whole body level all PPARs acting as one orchestra and balanced pan-PPAR activation seems as an especially attractive pharmacological goal. Conceptually, combined PPAR gamma and alpha action can target simultaneously insulin resistance and atherogenic dyslipidemia, whereas PPAR beta/delta properties may prevent the development of overweight. Bezafibrate, as all fibrates, significantly reduced plasma triglycerides and increased HDL-C level (but considerably stronger than other major fibrates). Bezafibrate significantly decreased prevalence of small, dense low density lipoproteins particles, remnants, induced

  11. PPAR-gamma activation fails to provide myocardial protection in ischemia and reperfusion in pigs.

    PubMed

    Xu, Ya; Gen, Michael; Lu, Li; Fox, Jennifer; Weiss, Sara O; Brown, R Dale; Perlov, Daniel; Ahmad, Hasan; Zhu, Peili; Greyson, Clifford; Long, Carlin S; Schwartz, Gregory G

    2005-03-01

    Peroxisome proliferator-activated receptor (PPAR)-gamma modulates substrate metabolism and inflammatory responses. In experimental rats subjected to myocardial ischemia-reperfusion (I/R), thiazolidinedione PPAR-gamma activators reduce infarct size and preserve left ventricular function. Troglitazone is the only PPAR-gamma activator that has been shown to be protective in I/R in large animals. However, because troglitazone contains both alpha-tocopherol and thiazolidinedione moieties, whether PPAR-gamma activation per se is protective in myocardial I/R in large animals remains uncertain. To address this question, 56 pigs were treated orally for 8 wk with troglitazone (75 mg x kg(-1) x day(-1)), rosiglitazone (3 mg x kg(-1) x day(-1)), or alpha-tocopherol (73 mg x kg(-1) x day(-1), equimolar to troglitazone dose) or received no treatment. Pigs were then anesthetized and subjected to 90 min of low-flow regional myocardial ischemia and 90 min of reperfusion. Myocardial expression of PPAR-gamma, determined by ribonuclease protection assay, increased with troglitazone and rosiglitazone compared with no treatment. Rosiglitazone had no significant effect on myocardial contractile function (Frank-Starling relations), substrate uptake, or expression of proinflammatory cytokines during I/R compared with untreated pigs. In contrast, preservation of myocardial contractile function and lactate uptake were greater and cytokine expression was attenuated in pigs treated with troglitazone or alpha-tocopherol compared with untreated pigs. Multivariate analysis indicated that presence of an alpha-tocopherol, but not a thiazolidinedione, moiety in the test compound was significantly related to greater contractile function and lactate uptake and lower cytokine expression during I/R. We conclude that PPAR-gamma activation is not protective in a porcine model of myocardial I/R. Protective effects of troglitazone are attributable to its alpha-tocopherol moiety. These findings, in

  12. PPAR activation induces M1 macrophage polarization via cPLA₂-COX-2 inhibition, activating ROS production against Leishmania mexicana.

    PubMed

    Díaz-Gandarilla, J A; Osorio-Trujillo, C; Hernández-Ramírez, V I; Talamás-Rohana, P

    2013-01-01

    Defence against Leishmania depends upon Th1 inflammatory response and, a major problem in susceptible models, is the turnoff of the leishmanicidal activity of macrophages with IL-10, IL-4, and COX-2 upregulation, as well as immunosuppressive PGE2, all together inhibiting the respiratory burst. Peroxisome proliferator-activated receptors (PPAR) activation is responsible for macrophages polarization on Leishmania susceptible models where microbicide functions are deactivated. In this paper, we demonstrated that, at least for L. mexicana, PPAR activation, mainly PPAR γ , induced macrophage activation through their polarization towards M1 profile with the increase of microbicide activity against intracellular pathogen L. mexicana. PPAR activation induced IL-10 downregulation, whereas the production of proinflammatory cytokines such as TNF- α , IL-1 β , and IL-6 remained high. Moreover, PPAR agonists treatment induced the deactivation of cPLA2-COX-2-prostaglandins pathway together with an increase in TLR4 expression, all of whose criteria meet the M1 macrophage profile. Finally, parasite burden, in treated macrophages, was lower than that in infected nontreated macrophages, most probably associated with the increase of respiratory burst in these treated cells. Based on the above data, we conclude that PPAR agonists used in this work induces M1 macrophages polarization via inhibition of cPLA2 and the increase of aggressive microbicidal activity via reactive oxygen species (ROS) production. PMID:23555077

  13. Peroxisome proliferator-activated receptor (PPAR)-binding protein (PBP) but not PPAR-interacting protein (PRIP) is required for nuclear translocation of constitutive androstane receptor in mouse liver

    SciTech Connect

    Guo Dongsheng; Sarkar, Joy; Ahmed, Mohamed R.; Viswakarma, Navin; Jia Yuzhi; Yu Songtao; Sambasiva Rao, M.; Reddy, Janardan K. . E-mail: jkreddy@northwestern.edu

    2006-08-25

    The constitutive androstane receptor (CAR) regulates transcription of phenobarbital-inducible genes that encode xenobiotic-metabolizing enzymes in liver. CAR is localized to the hepatocyte cytoplasm but to be functional, it translocates into the nucleus in the presence of phenobarbital-like CAR ligands. We now demonstrate that adenovirally driven EGFP-CAR, as expected, translocates into the nucleus of normal wild-type hepatocytes following phenobarbital treatment under both in vivo and in vitro conditions. Using this approach we investigated the role of transcription coactivators PBP and PRIP in the translocation of EGFP-CAR into the nucleus of PBP and PRIP liver conditional null mouse hepatocytes. We show that coactivator PBP is essential for nuclear translocation of CAR but not PRIP. Adenoviral expression of both PBP and EGFP-CAR restored phenobarbital-mediated nuclear translocation of exogenously expressed CAR in PBP null livers in vivo and in PBP null primary hepatocytes in vitro. CAR translocation into the nucleus of PRIP null livers resulted in the induction of CAR target genes such as CYP2B10, necessary for the conversion of acetaminophen to its hepatotoxic intermediate metabolite, N-acetyl-p-benzoquinone imine. As a consequence, PRIP-deficiency in liver did not protect from acetaminophen-induced hepatic necrosis, unlike that exerted by PBP deficiency. These results establish that transcription coactivator PBP plays a pivotal role in nuclear localization of CAR, that it is likely that PBP either enhances nuclear import or nuclear retention of CAR in hepatocytes, and that PRIP is redundant for CAR function.

  14. Leptin rapidly activates PPARs in C2C12 muscle cells

    SciTech Connect

    Bendinelli, Paola; Piccoletti, Roberta . E-mail: Roberta.Piccoletti@unimi.it; Maroni, Paola

    2005-07-08

    Experimental evidence suggests that leptin operates on the tissues, including skeletal muscle, also by modulating gene expression. Using electrophoretic mobility shift assays, we have shown that physiological doses of leptin promptly increase the binding of C2C12 cell nuclear extracts to peroxisome proliferator-activated receptor (PPAR) response elements in oligonucleotide probes and that all three PPAR isoforms participate in DNA-binding complexes. We pre-treated C2C12 cells with AACOCF{sub 3}, a specific inhibitor of cytosolic phospholipase A{sub 2} (cPLA{sub 2}), an enzyme that supplies ligands to PPARs, and found that it abrogates leptin-induced PPAR DNA-binding activity. Leptin treatment significantly increased cPLA{sub 2} activity, evaluated as the release of [{sup 3}H]arachidonic acid from pre-labelled C2C12 cells, as well as phosphorylation. Further, using MEK1 inhibitor PD-98059 we showed that leptin activates cPLA{sub 2} through ERK induction. These results support a direct effect of leptin on skeletal muscle cells, and suggest that the hormone may modulate muscle transcription also by precocious activation of PPARs through ERK-cPLA{sub 2} pathway.

  15. Human peroxisome proliferator-activated receptor mRNA and protein expression during development

    EPA Science Inventory

    The peroxisome proliferator-activated receptors (PPAR) are nuclear hormone receptors that regulate lipid and glucose homeostasis and are important in reproduction and development. PPARs are targets ofpharmaceuticals and are also activated by environmental contaminants, including ...

  16. PPAR{alpha} gene expression is up-regulated by LXR and PXR activators in the small intestine

    SciTech Connect

    Inoue, Jun; Satoh, Shin-ichi; Kita, Mariko; Nakahara, Mayuko; Hachimura, Satoshi; Miyata, Masaaki; Nishimaki-Mogami, Tomoko; Sato, Ryuichiro

    2008-07-11

    LXR, PXR, and PPAR{alpha} are members of a nuclear receptor family which regulate the expression of genes involved in lipid metabolism. Here, we show the administration of T0901317 stimulates PPAR{alpha} gene expression in the small intestine but not in the liver of both normal and FXR-null mice. The administration of LXR specific ligand GW3965, or PXR specific ligand PCN has the same effect, indicating that ligand-dependent activation of LXR and PXR, but not FXR, is responsible for the increased gene expression of PPAR{alpha} in the mouse small intestine.

  17. Myelin alters the inflammatory phenotype of macrophages by activating PPARs

    PubMed Central

    2013-01-01

    Background Foamy macrophages, containing myelin degradation products, are abundantly found in active multiple sclerosis (MS) lesions. Recent studies have described an altered phenotype of macrophages after myelin internalization. However, mechanisms by which myelin affects the phenotype of macrophages and how this phenotype influences lesion progression remain unclear. Results We demonstrate that myelin as well as phosphatidylserine (PS), a phospholipid found in myelin, reduce nitric oxide production by macrophages through activation of peroxisome proliferator-activated receptor β/δ (PPARβ/δ). Furthermore, uptake of PS by macrophages, after intravenous injection of PS-containing liposomes (PSLs), suppresses the production of inflammatory mediators and ameliorates experimental autoimmune encephalomyelitis (EAE), an animal model of MS. The protective effect of PSLs in EAE animals is associated with a reduced immune cell infiltration into the central nervous system and decreased splenic cognate antigen specific proliferation. Interestingly, PPARβ/δ is activated in foamy macrophages in active MS lesions, indicating that myelin also activates PPARβ/δ in macrophages in the human brain. Conclusion Our data show that myelin modulates the phenotype of macrophages by PPAR activation, which may subsequently dampen MS lesion progression. Moreover, our results suggest that myelin-derived PS mediates PPARβ/δ activation in macrophages after myelin uptake. The immunoregulatory impact of naturally-occurring myelin lipids may hold promise for future MS therapeutics. PMID:24252308

  18. N-3 PUFA Supplementation Triggers PPARActivation and PPAR-α/NF-κB Interaction: Anti-Inflammatory Implications in Liver Ischemia-Reperfusion Injury

    PubMed Central

    Zúñiga, Jessica; Cancino, Milena; Medina, Fernando; Varela, Patricia; Vargas, Romina; Tapia, Gladys; Videla, Luis A.; Fernández, Virginia

    2011-01-01

    Dietary supplementation with the n-3 polyunsaturated fatty acids (n-3 PUFA) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) to rats preconditions the liver against ischemia-reperfusion (IR) injury, with reduction of the enhanced nuclear factor-κB (NF-κB) functionality occurring in the early phase of IR injury, and recovery of IR-induced pro-inflammatory cytokine response. The aim of the present study was to test the hypothesis that liver preconditioning by n-3 PUFA is exerted through peroxisone proliferator-activated receptor α (PPAR-α) activation and interference with NF-κB activation. For this purpose we evaluated the formation of PPAR-α/NF-κBp65 complexes in relation to changes in PPARactivation, IκB-α phosphorylation and serum levels and expression of interleukin (IL)-1β and tumor necrosis factor (TNF)-α in a model of hepatic IR-injury (1 h of ischemia and 20 h of reperfusion) or sham laparotomy (controls) in male Sprague Dawley rats. Animals were previously supplemented for 7 days with encapsulated fish oil (General Nutrition Corp., Pittsburg, PA) or isovolumetric amounts of saline (controls). Normalization of IR-altered parameters of liver injury (serum transaminases and liver morphology) was achieved by dietary n-3 PUFA supplementation. EPA and DHA suppression of the early IR-induced NF-κB activation was paralleled by generation of PPAR-α/NF-κBp65 complexes, in concomitance with normalization of the IR-induced IκB-α phosphorylation. PPARactivation by n-3 PUFA was evidenced by enhancement in the expression of the PPAR-α-regulated Acyl-CoA oxidase (Acox) and Carnitine-Palmitoyl-CoA transferase I (CPT-I) genes. Consistent with these findings, normalization of IR-induced expression and serum levels of NF-κB-controlled cytokines IL-lβ and TNF-α was observed at 20 h of reperfusion. Taken together, these findings point to an antagonistic effect of PPAR-α on NF-κB-controlled transcription of pro-inflammatory mediators. This

  19. Telmisartan prevented cognitive decline partly due to PPAR-{gamma} activation

    SciTech Connect

    Mogi, Masaki; Li Jianmei; Tsukuda, Kana; Iwanami, Jun; Min, Li-Juan; Sakata, Akiko; Fujita, Teppei; Iwai, Masaru; Horiuchi, Masatsugu

    2008-10-24

    Telmisartan is a unique angiotensin receptor blocker (ARB) and partial agonist of peroxisome proliferator-activated receptor (PPAR)-{gamma}. Here, we investigated the preventive effect of telmisartan on cognitive decline in Alzheimer disease. In ddY mice, intracerebroventricular injection of A{beta} 1-40 significantly attenuated their cognitive function evaluated by shuttle avoidance test. Pretreatment with a non-hypotensive dose of telmisartan significantly inhibited such cognitive decline. Interestingly, co-treatment with GW9662, a PPAR-{gamma} antagonist, partially inhibited this improvement of cognitive decline. Another ARB, losartan, which has less PPAR-{gamma} agonistic effect, also inhibited A{beta}-injection-induced cognitive decline; however the effect was smaller than that of telmisartan and was not affected by GW9662. Immunohistochemical staining for A{beta} showed the reduced A{beta} deposition in telmisartan-treated mice. However, this reduction was not observed in mice co-administered GW9662. These findings suggest that ARB has a preventive effect on cognitive impairment in Alzheimer disease, and telmisartan, with PPAR-{gamma} activation, could exert a stronger effect.

  20. Reactive Oxygen Species (ROS) Mediate p300-dependent STAT1 Protein Interaction with Peroxisome Proliferator-activated Receptor (PPAR)-γ in CD36 Protein Expression and Foam Cell Formation.

    PubMed

    Kotla, Sivareddy; Rao, Gadiparthi N

    2015-12-18

    Previously, we have demonstrated that 15(S)-hydroxyeicosatetranoic acid (15(S)-HETE) induces CD36 expression involving STAT1. Many studies have shown that peroxisome proliferator-activated receptor (PPAR)-γ mediates CD36 expression. Therefore, we asked the question whether these transcriptional factors interact with each other in the regulation of CD36 expression by 15(S)-HETE. Here, we show that STAT1 interacts with PPARγ in the induction of CD36 expression and foam cell formation by 15(S)-HETE. In addition, using molecular biological approaches such as EMSA, supershift EMSA, ChIP, re-ChIP, and promoter-reporter gene assays, we demonstrate that the STAT1 and PPARγ complex binds to the STAT-binding site at -107 nucleotides in the CD36 promoter and enhances its activity. Furthermore, the interaction of STAT1 with PPARγ depends on STAT1 acetylation, which is mediated by p300. In addition, our findings show that reactive oxygen species-dependent Syk and Pyk2 stimulation is required for p300 tyrosine phosphorylation and activation. Together, these results demonstrate that an interaction between STAT1, p300, and peroxisome proliferator-activated receptor-γ is required for 15(S)-HETE-induced CD36 expression, oxidized low density lipoprotein uptake, and foam cell formation, critical events underlying the pathogenesis of atherosclerosis. PMID:26504087

  1. HCV core protein induces hepatic lipid accumulation by activating SREBP1 and PPAR{gamma}

    SciTech Connect

    Kim, Kook Hwan; Hong, Sung Pyo; Kim, KyeongJin; Park, Min Jung; Kim, Kwang Jin; Cheong, JaeHun . E-mail: molecule85@pusan.ac.kr

    2007-04-20

    Hepatic steatosis is a common feature in patients with chronic hepatitis C virus (HCV) infection. HCV core protein plays an important role in the development of hepatic steatosis in HCV infection. Because SREBP1 (sterol regulatory element binding protein 1) and PPAR{gamma} (peroxisome proliferators-activated receptor {gamma}) are involved in the regulation of lipid metabolism of hepatocyte, we sought to determine whether HCV core protein may impair the expression and activity of SREBP1 and PPAR{gamma}. In this study, it was demonstrated that HCV core protein increases the gene expression of SREBP1 not only in Chang liver, Huh7, and HepG2 cells transiently transfected with HCV core protein expression plasmid, but also in Chang liver-core stable cells. Furthermore, HCV core protein enhanced the transcriptional activity of SREBP1. In addition, HCV core protein elevated PPAR{gamma} transcriptional activity. However, HCV core protein had no effect on PPAR{gamma} gene expression. Finally, we showed that HCV core protein stimulates the genes expression of lipogenic enzyme and fatty acid uptake associated protein. Therefore, our finding provides a new insight into the mechanism of hepatic steatosis by HCV infection.

  2. Palmitoylethanolamide Modulates Inflammation-Associated Vascular Endothelial Growth Factor (VEGF) Signaling via the Akt/mTOR Pathway in a Selective Peroxisome Proliferator-Activated Receptor Alpha (PPAR-α)-Dependent Manner

    PubMed Central

    Sarnelli, Giovanni; D’Alessandro, Alessandra; Iuvone, Teresa; Capoccia, Elena; Gigli, Stefano; Pesce, Marcella; Seguella, Luisa; Nobile, Nicola; Aprea, Giovanni; Maione, Francesco; de Palma, Giovanni Domenico; Cuomo, Rosario; Steardo, Luca; Esposito, Giuseppe

    2016-01-01

    Background and Aim Angiogenesis is emerging as a pivotal process in chronic inflammatory pathologies, promoting immune infiltration and prompting carcinogenesis. Ulcerative Colitis (UC) and Crohn’s Disease (CD) represent paradigmatic examples of intestinal chronic inflammatory conditions in which the process of neovascularization correlates with the severity and progression of the diseases. Molecules able to target the angiogenesis have thus the potential to synergistically affect the disease course. Beyond its anti-inflammatory effect, palmitoylethanolamide (PEA) is able to reduce angiogenesis in several chronic inflammatory conditions, but no data about its anti-angiogenic activity in colitis have been produced, yet. Methods The effects of PEA on inflammation-associated angiogenesis in mice with dextran sulphate sodium (DSS)-induced colitis and in patients with UC were assessed. The release of Vascular Endothelial Growth Factor (VEGF), the hemoglobin tissue content, the expression of CD31 and of phosphatidylinositol 3-kinase/Akt/mammalian-target-of-rapamycin (mTOR) signaling axis were all evaluated in the presence of different concentrations of PEA and concomitant administration of PPAR-α and -γ antagonists. Results Our results demonstrated that PEA, in a selective peroxisome proliferator activated receptor (PPAR)-α dependent mechanism, inhibits colitis-associated angiogenesis, decreasing VEGF release and new vessels formation. Furthermore, we demonstrated that the mTOR/Akt axis regulates, at least partly, the angiogenic process in IBD and that PEA directly affects this pathway. Conclusions Our results suggest that PEA may improve inflammation-driven angiogenesis in colonic mucosa, thus reducing the mucosal damage and potentially affecting disease progression and the shift towards the carcinogenesis. PMID:27219328

  3. Molecular recognition of nitrated fatty acids by PPAR[gamma

    SciTech Connect

    Li, Yong; Zhang, Jifeng; Schopfer, Francisco J.; Martynowski, Dariusz; Garcia-Barrio, Minerva T.; Kovach, Amanda; Suino-Powell, Kelly; Baker, Paul R.S.; Freeman, Bruce A.; Chen, Y. Eugene; Xu, H. Eric

    2010-03-08

    Peroxisome proliferator activated receptor-{gamma} (PPAR{gamma}) regulates metabolic homeostasis and adipocyte differentiation, and it is activated by oxidized and nitrated fatty acids. Here we report the crystal structure of the PPAR{gamma} ligand binding domain bound to nitrated linoleic acid, a potent endogenous ligand of PPAR{gamma}. Structural and functional studies of receptor-ligand interactions reveal the molecular basis of PPAR{gamma} discrimination of various naturally occurring fatty acid derivatives.

  4. Uncoupling protein-2 up-regulation and enhanced cyanide toxicity are mediated by PPAR{alpha} activation and oxidative stress

    SciTech Connect

    Zhang, X.; Li, L.; Prabhakaran, K.; Zhang, L.; Leavesley, H.B.; Borowitz, J.L.; Isom, G.E.

    2007-08-15

    Uncoupling protein 2 (UCP-2) is an inner mitochondrial membrane proton carrier that modulates mitochondrial membrane potential ({delta}{psi}{sub m}) and uncouples oxidative phosphorylation. We have shown that up-regulation of UCP-2 by Wy14,643, a selective peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}) agonist, enhances cyanide cytotoxicity. The pathway by which Wy14,643 up-regulates UCP-2 was determined in a dopaminergic cell line (N27 cells). Since dopaminergic mesencephalic cells are a primary brain target of cyanide, the N27 immortalized mesencephalic cell was used in this study. Wy14,643 produced a concentration- and time-dependent up-regulation of UCP-2 that was linked to enhanced cyanide-induced cell death. MK886 (PPAR{alpha} antagonist) or PPAR{alpha} knock-down by RNA interference (RNAi) inhibited PPAR{alpha} activity as shown by the peroxisome proliferator response element-luciferase reporter assay, but only partially decreased up-regulation of UCP-2. The role of oxidative stress as an alternative pathway to UCP-2 up-regulation was determined. Wy14,643 induced a rapid surge of ROS generation and loading cells with glutathione ethyl ester (GSH-EE) or pre-treatment with vitamin E attenuated up-regulation of UCP-2. On the other hand, RNAi knockdown of PPAR{alpha} did not alter ROS generation, suggesting a PPAR{alpha}-independent component to the response. Co-treatment with PPAR{alpha}-RNAi and GSH-EE blocked both the up-regulation of UCP-2 by Wy14,643 and the cyanide-induced cell death. It was concluded that a PPAR{alpha}-mediated pathway and an oxidative stress pathway independent of PPAR{alpha} mediate the up-regulation of UCP-2 and subsequent increased vulnerability to cyanide-induced cytotoxicity.

  5. Modulation of PPAR Expression and Activity in Response to Polyphenolic Compounds in High Fat Diets

    PubMed Central

    Domínguez-Avila, J. Abraham; González-Aguilar, Gustavo A.; Alvarez-Parrilla, Emilio; de la Rosa, Laura A.

    2016-01-01

    Peroxisome proliferator-activated receptors (PPAR) are transcription factors that modulate energy metabolism in liver, adipose tissue and muscle. High fat diets (HFD) can negatively impact PPAR expression or activity, favoring obesity, dyslipidemia, insulin resistance and other conditions. However, polyphenols (PP) found in vegetable foodstuffs are capable of positively modulating this pathway. We therefore focused this review on the possible effects that PP can have on PPAR when administered together with HFD. We found that PP from diverse sources, such as coffee, olives, rice, berries and others, are capable of inducing the expression of genes involved in a decrease of adipose mass, liver and serum lipids and lipid biosynthesis in animal and cell models of HFD. Since cells or gut bacteria can transform PP into different metabolites, it is possible that a synergistic or antagonistic effect ultimately occurs. PP molecules from vegetable sources are an interesting option to maintain or return to a state of energy homeostasis, possibly due to an adequate PPAR expression and activity. PMID:27367676

  6. Modulation of PPAR Expression and Activity in Response to Polyphenolic Compounds in High Fat Diets.

    PubMed

    Domínguez-Avila, J Abraham; González-Aguilar, Gustavo A; Alvarez-Parrilla, Emilio; de la Rosa, Laura A

    2016-01-01

    Peroxisome proliferator-activated receptors (PPAR) are transcription factors that modulate energy metabolism in liver, adipose tissue and muscle. High fat diets (HFD) can negatively impact PPAR expression or activity, favoring obesity, dyslipidemia, insulin resistance and other conditions. However, polyphenols (PP) found in vegetable foodstuffs are capable of positively modulating this pathway. We therefore focused this review on the possible effects that PP can have on PPAR when administered together with HFD. We found that PP from diverse sources, such as coffee, olives, rice, berries and others, are capable of inducing the expression of genes involved in a decrease of adipose mass, liver and serum lipids and lipid biosynthesis in animal and cell models of HFD. Since cells or gut bacteria can transform PP into different metabolites, it is possible that a synergistic or antagonistic effect ultimately occurs. PP molecules from vegetable sources are an interesting option to maintain or return to a state of energy homeostasis, possibly due to an adequate PPAR expression and activity. PMID:27367676

  7. Influence of the peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist, rosiglitazone and antagonist, biphenol-A-diglicydyl ether (BADGE) on the course of inflammation in the experimental model of colitis in rats.

    PubMed

    Dworzanski, T; Celinski, K; Korolczuk, A; Slomka, M; Radej, S; Czechowska, G; Madro, A; Cichoz-Lach, H

    2010-12-01

    PPAR-γ plays a role in the development of immune response, particularly in inflammation. The inflammatory reaction may be stimulated or suppressed by the presence of PPAR ligands. Some researchers suggest positive influence of the PPAR-γ agonist on suppression of the intestinal inflammatory process, yet there has not been much evidence showing that the antagonist of PPAR-γ can affect the inflammatory process. The aim of the present study was to define the mechanism by which PPAR-γ ligands affect the course of experimentally induced colitis in rats. Colitis was induced in rats by rectal administration of TNBS (trinitrobenzene sulfonate). Rosiglitazone was administrated to animals at the dose of 8 mg/kg four times via an intra-gastric probe. Biphenol-A-diglicydyl ether (BADGE) was administrated intraperitoneally at the dose of 120 mg/kg, three times every second day. One group of animals received rosiglitazone together with BADGE before the induction of inflammation. Histological and ELISA examinations of large intestine samples were performed. Levels of IL-1β, IL-6, TNF-α cytokines were determined in serum and homogenates. Rats exposed to rosiglitazone had higher body weight yet lower large intestine weight. Histological findings showed less ulceration, lower expression of crypts' loss and smaller oedema. Animals, which did not receive rosiglitazone, and those receiving it together with BADGE, developed more severe inflammatory changes. Rosiglitazone decreased the expression of inflammatory cytokines, such as IL-6 and TNF-α, both in serum and in intestinal homogenates. BADGE used with TNBS did not increase the expression of inflammatory cytokines; however, applied together with rosiglitazone, it caused inflammation similar to that observed among rats with experimentally induced colitis. Rosiglitazone reduces inflammation by decreasing the expression of IL-6 and TNF-α. BADGE administered with rosiglitazone blocks the activity of PPAR-γ and abolishes the

  8. Double gene deletion reveals the lack of cooperation between PPAR{alpha} and PPAR{beta} in skeletal muscle

    SciTech Connect

    Bedu, E.; Desplanches, D.; Pequignot, J.; Bordier, B.; Desvergne, B. . E-mail: beatrice.desvergne@unil.ch

    2007-06-15

    The peroxisome proliferator-activated receptors (PPARs) are involved in the regulation of most of the pathways linked to lipid metabolism. PPAR{alpha} and PPAR{beta} isotypes are known to regulate muscle fatty acid oxidation and a reciprocal compensation of their function has been proposed. Herein, we investigated muscle contractile and metabolic phenotypes in PPAR{alpha}-/-, PPAR{beta}-/-, and double PPAR{alpha}-/- {beta}-/- mice. Heart and soleus muscle analyses show that the deletion of PPAR{alpha} induces a decrease of the HAD activity ({beta}-oxidation) while soleus contractile phenotype remains unchanged. A PPAR{beta} deletion alone has no effect. However, these mild phenotypes are not due to a reciprocal compensation of PPAR{beta} and PPAR{alpha} functions since double gene deletion PPAR{alpha}-PPAR{beta} mostly reproduces the null PPAR{alpha}-mediated reduced {beta}-oxidation, in addition to a shift from fast to slow fibers. In conclusion, PPAR{beta} is not required for maintaining skeletal muscle metabolic activity and does not compensate the lack of PPAR{alpha} in PPAR{alpha} null mice.

  9. Time-course comparison of xenobiotic activators of CAR and PPAR{alpha} in mouse liver

    SciTech Connect

    Ross, Pamela K.; Woods, Courtney G.; Bradford, Blair U.; Kosyk, Oksana; Gatti, Daniel M.; Cunningham, Michael L.; Rusyn, Ivan

    2009-03-01

    Constitutive androstane receptor (CAR) and peroxisome proliferator activated receptor (PPAR){alpha} are transcription factors known to be primary mediators of liver effects, including carcinogenesis, by phenobarbital-like compounds and peroxisome proliferators, respectively, in rodents. Many similarities exist in the phenotypes elicited by these two classes of agents in rodent liver, and we hypothesized that the initial transcriptional responses to the xenobiotic activators of CAR and PPAR{alpha} will exhibit distinct patterns, but at later time-points these biological pathways will converge. In order to capture the global transcriptional changes that result from activation of these nuclear receptors over a time-course in the mouse liver, microarray technology was used. First, differences in basal expression of liver genes between C57Bl/6J wild-type and Car-null mice were examined and 14 significantly differentially expressed genes were identified. Next, mice were treated with phenobarbital (100 mg/kg by gavage for 24 h, or 0.085% w/w diet for 7 or 28 days), and liver gene expression changes with regards to both time and treatment were identified. While several pathways related to cellular proliferation and metabolism were affected by phenobarbital in wild-type mice, no significant changes in gene expression were found over time in the Car-nulls. Next, we determined commonalities and differences in the temporal response to phenobarbital and WY-14,643, a prototypical activator of PPAR {alpha}. Gene expression signatures from livers of wild-type mice C57Bl6/J mice treated with PB or WY-14,643 were compared. Similar pathways were affected by both compounds; however, considerable time-related differences were present. This study establishes common gene expression fingerprints of exposure to activators of CAR and PPAR{alpha} in rodent liver and demonstrates that despite similar phenotypic changes, molecular pathways differ between classes of chemical carcinogens.

  10. PPARactivation fails to provide myocardial protection in ischemia and reperfusion in pigs

    PubMed Central

    Xu, Ya; Gen, Michael; Lu, Li; Fox, Jennifer; Weiss, Sara O.; Brown, R. Dale; Perlov, Daniel; Ahmad, Hasan; Zhu, Peili; Greyson, Clifford; Long, Carlin S.; Schwartz, Gregory G.

    2010-01-01

    Peroxisome proliferator-activated receptor (PPAR)-γ modulates substrate metabolism and inflammatory responses. In experimental rats subjected to myocardial ischemia-reperfusion (I/R), thiazolidinedione PPARactivators reduce infarct size and preserve left ventricular function. Troglitazone is the only PPARactivator that has been shown to be protective in I/R in large animals. However, because troglitazone contains both α-tocopherol and thiazolidinedione moieties, whether PPARactivation per se is protective in myocardial I/R in large animals remains uncertain. To address this question, 56 pigs were treated orally for 8 wk with troglitazone (75 mg·kg−1 ·day−1), rosiglitazone (3 mg·kg−1 ·day−1), or α-tocopherol (73 mg·kg−1 ·day−1, equimolar to troglitazone dose) or received no treatment. Pigs were then anesthetized and subjected to 90 min of low-flow regional myocardial ischemia and 90 min of reperfusion. Myocardial expression of PPAR-γ, determined by ribonuclease protection assay, increased with troglitazone and rosiglitazone compared with no treatment. Rosiglitazone had no significant effect on myocardial contractile function (Frank-Starling relations), substrate uptake, or expression of proinflammatory cytokines during I/R compared with untreated pigs. In contrast, preservation of myocardial contractile function and lactate uptake were greater and cytokine expression was attenuated in pigs treated with troglitazone or α-tocopherol compared with untreated pigs. Multivariate analysis indicated that presence of an α-tocopherol, but not a thiazolidinedione, moiety in the test compound was significantly related to greater contractile function and lactate uptake and lower cytokine expression during I/R. We conclude that PPARactivation is not protective in a porcine model of myocardial I/R. Protective effects of troglitazone are attributable to its α-tocopherol moiety. These findings, in conjunction with prior rat studies, suggest

  11. Anti-diabetic action of Punica granatum flower extract: activation of PPAR-gamma and identification of an active component.

    PubMed

    Huang, Tom H W; Peng, Gang; Kota, Bhavani P; Li, George Q; Yamahara, Johji; Roufogalis, Basil D; Li, Yuhao

    2005-09-01

    Peroxisome proliferator-activated receptor (PPAR)-gamma activators are widely used in the treatment of type 2 diabetes because they improve the sensitivity of insulin receptors. Punica granatum flower (PGF) has been used as an anti-diabetic medicine in Unani medicinal literature. The mechanism of actions is, however, unknown. In the current study, we demonstrated that 6-week oral administration of methanol extract from PGF (500 mg/kg, daily) inhibited glucose loading-induced increase of plasma glucose levels in Zucker diabetic fatty rats (ZDF), a genetic animal model for type 2 diabetes, whereas it did not inhibit the increase in Zucker lean rats (ZL). The treatment did not lower the plasma glucose levels in fasted ZDF and ZL rats. Furthermore, RT-PCR results demonstrated that the PGF extract treatment in ZDF rats enhanced cardiac PPAR-gamma mRNA expression and restored the down-regulated cardiac glucose transporter (GLUT)-4 (the insulin-dependent isoform of GLUTs) mRNA. These results suggest that the anti-diabetic activity of PGF extract may result from improved sensitivity of the insulin receptor. From the in vitro studies, we demonstrated that the PGF extract enhanced PPAR-gamma mRNA and protein expression and increased PPAR-gamma-dependent mRNA expression and activity of lipoprotein lipase in human THP-1-differentiated macrophage cells. Phytochemical investigation demonstrated that gallic acid in PGF extract is mostly responsible for this activity. Thus, our findings indicate that PPAR-gamma is a molecular target for PGF extract and its prominent component gallic acid, and provide a better understanding of the potential mechanism of the anti-diabetic action of PGF. PMID:16102567

  12. Anti-diabetic action of Punica granatum flower extract: Activation of PPAR-{gamma} and identification of an active component

    SciTech Connect

    Huang, Tom H.W.; Peng Gang; Kota, Bhavani P.; Li, George Q.; Yamahara, Johji; Roufogalis, Basil D.; Li Yuhao . E-mail: yuhao@pharm.usyd.edu.au

    2005-09-01

    Peroxisome proliferator-activated receptor (PPAR)-{gamma} activators are widely used in the treatment of type 2 diabetes because they improve the sensitivity of insulin receptors. Punica granatum flower (PGF) has been used as an anti-diabetic medicine in Unani medicinal literature. The mechanism of actions is, however, unknown. In the current study, we demonstrated that 6-week oral administration of methanol extract from PGF (500 mg/kg, daily) inhibited glucose loading-induced increase of plasma glucose levels in Zucker diabetic fatty rats (ZDF), a genetic animal model for type 2 diabetes, whereas it did not inhibit the increase in Zucker lean rats (ZL). The treatment did not lower the plasma glucose levels in fasted ZDF and ZL rats. Furthermore, RT-PCR results demonstrated that the PGF extract treatment in ZDF rats enhanced cardiac PPAR-{gamma} mRNA expression and restored the down-regulated cardiac glucose transporter (GLUT)-4 (the insulin-dependent isoform of GLUTs) mRNA. These results suggest that the anti-diabetic activity of PGF extract may result from improved sensitivity of the insulin receptor. From the in vitro studies, we demonstrated that the PGF extract enhanced PPAR-{gamma} mRNA and protein expression and increased PPAR-{gamma}-dependent mRNA expression and activity of lipoprotein lipase in human THP-1-differentiated macrophage cells. Phytochemical investigation demonstrated that gallic acid in PGF extract is mostly responsible for this activity. Thus, our findings indicate that PPAR-{gamma} is a molecular target for PGF extract and its prominent component gallic acid, and provide a better understanding of the potential mechanism of the anti-diabetic action of PGF.

  13. PPARactivation by Tityus serrulatus venom regulates lipid body formation and lipid mediator production.

    PubMed

    Zoccal, Karina Furlani; Paula-Silva, Francisco Wanderley Garcia; Bitencourt, Claudia da Silva; Sorgi, Carlos Artério; Bordon, Karla de Castro Figueiredo; Arantes, Eliane Candiani; Faccioli, Lúcia Helena

    2015-01-01

    Tityus serrulatus venom (TsV) consists of numerous peptides with different physiological and pharmacological activities. Studies have shown that scorpion venom increases pro-inflammatory cytokine production, contributing to immunological imbalance, multiple organ dysfunction, and patient death. We have previously demonstrated that TsV is a venom-associated molecular pattern (VAMP) recognized by TLRs inducing intense inflammatory reaction through the production of pro-inflammatory cytokines and arachidonic acid-derived lipid mediators prostaglandin (PG)E2 and leukotriene (LT)B4. Lipid bodies (LBs) are potential sites for eicosanoid production by inflammatory cells. Moreover, recent studies have shown that the peroxisome proliferator-activated receptor gamma (PPAR-γ) is implicated in LB formation and acts as an important modulator of lipid metabolism during inflammation. In this study, we used murine macrophages to evaluate whether the LB formation induced by TsV after TLR recognition correlates with lipid mediator generation by macrophages and if it occurs through PPARactivation. We demonstrate that TsV acts through TLR2 and TLR4 stimulation and PPARactivation to induce LB formation and generation of PGE2 and LTB4. Our data also show that PPAR-γ negatively regulates the pro-inflammatory NF-κB transcription factor. Based on these results, we suggest that during envenomation, LBs constitute functional organelles for lipid mediator production through signaling pathways that depend on cell surface and nuclear receptors. These findings point to the inflammatory mechanisms that might also be triggered during human envenomation by TsV. PMID:25450800

  14. Three-in-one agonists for PPAR-α, PPAR-γ, and PPAR-δ from traditional Chinese medicine.

    PubMed

    Chen, Kuan-Chung; Chang, Su-Sen; Huang, Hung-Jin; Lin, Tu-Liang; Wu, Yong-Jiang; Chen, Calvin Yu-Chian

    2012-01-01

    Nowadays, the occurrence of metabolic syndrome, which is characterized by obesity and clinical disorders, has been increasing rapidly over the world. It induces several serious chronic diseases such as cardiovascular disease, dyslipidemia, gall bladder disease, hypertension, osteoarthritis, sleep apnea, stroke, and type 2 diabetes mellitus. Peroxisome proliferator-activated receptors (PPARs), which have three isoforms: PPAR-α, PPAR-γ, and PPAR-δ, are key regulators of adipogenesis, lipid and carbohydrate metabolism, and are potential drug targets for treating metabolic syndrome. The traditional Chinese medicine (TCM) compounds from TCM Database@Taiwan ( http://tcm.cmu.edu.tw/ ) were employed to virtually screen for potential PPAR agonists, and structure-based pharmacophore models were generated to identify the key interactions for each PPAR protein. In addition, molecular dynamics (MD) simulation was performed to evaluate the stability of the PPAR-ligand complexes in a dynamic state. (S)-Tryptophan-betaxanthin and berberrubine, which have higher Dock Score than controls, form stable interactions during MD, and are further supported by the structure-based pharmacophore models in each PPAR protein. Key features include stable H-bonds with Thr279 and Ala333 of PPAR-α, with Thr252, Thr253 and Lys331 of PPAR-δ, and with Arg316 and Glu371 of PPAR-γ. Hence, we propose the top two TCM candidates as potential lead compounds in developing agonists targeting PPARs protein for treating metabolic syndrome. PMID:22731403

  15. Differential activation of catalase expression and activity by PPAR agonists: Implications for astrocyte protection in anti-glioma therapy☆

    PubMed Central

    Khoo, Nicholas K.H.; Hebbar, Sachin; Zhao, Weiling; Moore, Steven A.; Domann, Frederick E.; Robbins, Mike E.

    2013-01-01

    Glioma survival is dismal, in part, due to an imbalance in antioxidant expression and activity. Peroxisome proliferator-activated receptor (PPAR) agonists have antineoplastic properties which present new redox-dependent targets for glioma anticancer therapies. Herein, we demonstrate that treatment of primary cultures of normal rat astrocytes with PPAR agonists increased the expression of catalase mRNA protein, and enzymatic activity. In contrast, these same agonists had no effect on catalase expression and activity in malignant rat glioma cells. The increase in steady-state catalase mRNA observed in normal rat astrocytes was due, in part, to de novo mRNA synthesis as opposed to increased catalase mRNA stability. Moreover, pioglitazone-mediated induction of catalase activity in normal rat astrocytes was completely blocked by transfection with a PPARγ-dominant negative plasmid. These data suggest that defects in PPAR-mediated signaling and gene expression may represent a block to normal catalase expression and induction in malignant glioma. The ability of PPAR agonists to differentially increase catalase expression and activity in normal astrocytes but not glioma cells suggests that these compounds might represent novel adjuvant therapeutic agents for the treatment of gliomas. PMID:24024139

  16. Irbesartan increased PPAR{gamma} activity in vivo in white adipose tissue of atherosclerotic mice and improved adipose tissue dysfunction

    SciTech Connect

    Iwai, Masaru; Kanno, Harumi; Senba, Izumi; Nakaoka, Hirotomo; Moritani, Tomozo; Horiuchi, Masatsugu

    2011-03-04

    Research highlights: {yields} Atherosclerotic apolipoprotein E-deficient (ApoEKO) mice were treated with irbesartan. {yields} Irbesartan decreased white adipose tissue weight without affecting body weight. {yields} DNA-binding for PPAR{gamma} was increased in white adipose tissue in vivo by irbesartan. {yields} Irbesartan increased adipocyte number in white adipose tissue. {yields} Irbesatan increased the expression of adiponectin and leptin in white adipose tissue. -- Abstract: The effect of the PPAR{gamma} agonistic action of an AT{sub 1} receptor blocker, irbesartan, on adipose tissue dysfunction was explored using atherosclerotic model mice. Adult male apolipoprotein E-deficient (ApoEKO) mice at 9 weeks of age were treated with a high-cholesterol diet (HCD) with or without irbesartan at a dose of 50 mg/kg/day for 4 weeks. The weight of epididymal and retroperitoneal adipose tissue was decreased by irbesartan without changing food intake or body weight. Treatment with irbesartan increased the expression of PPAR{gamma} in white adipose tissue and the DNA-binding activity of PPAR{gamma} in nuclear extract prepared from adipose tissue. The expression of adiponectin, leptin and insulin receptor was also increased by irbesartan. These results suggest that irbesartan induced activation of PPAR{gamma} and improved adipose tissue dysfunction including insulin resistance.

  17. The PPARactivator fenofibrate fails to provide myocardial protection in ischemia and reperfusion in pigs

    PubMed Central

    Xu, Ya; Lu, Li; Greyson, Clifford; Rizeq, Mona; Nunley, Karin; Wyatt, Beata; Bristow, Michael R.; Long, Carlin S.; Schwartz, Gregory G.

    2010-01-01

    Rodent studies suggest that peroxisome proliferator-activated receptor-α (PPAR-α) activation reduces myocardial ischemia-reperfusion (I/R) injury and infarct size; however, effects of PPARactivation in large animal models of myocardial I/R are unknown. We determined whether chronic treatment with the PPARactivator fenofibrate affects myocardial I/R injury in pigs. Domestic farm pigs were assigned to treatment with fenofibrate 50 mg·kg−1 ·day−1 orally or no drug treatment, and either a low-fat (4% by weight) or a high-fat (20% by weight) diet. After 4 wk, 66 pigs underwent 90 min low-flow regional myocardial ischemia and 120 min reperfusion under anesthetized open-chest conditions, resulting in myocardial stunning. The high-fat group received an infusion of triglyceride emulsion and heparin during this terminal experiment to maintain elevated arterial free fatty acid (FFA) levels. An additional 21 pigs underwent 60 min no-flow ischemia and 180 min reperfusion, resulting in myocardial infarction. Plasma concentration of fenofibric acid was similar to the EC50 for activation of PPAR-α in vitro and to maximal concentrations achieved in clinical use. Myocardial expression of PPAR-α mRNA was prominent but unaffected by fenofibrate treatment. Fenofibrate increased expression of carnitine palmitoyltransferase (CPT)-I mRNA in liver and decreased arterial FFA and lactate concentrations (each P < 0.01). However, fenofibrate did not affect myocardial CPT-I expression, substrate uptake, lipid accumulation, or contractile function during low-flow I/R in either the low- or high-fat group, nor did it affect myocardial infarct size. Despite expression of PPAR-α in porcine myocardium and effects of fenofibrate on systemic metabolism, treatment with this PPARactivator does not alter myocardial metabolic or contractile responses to I/R in pigs. PMID:16339839

  18. Involvement of peroxisome proliferator-activated receptor β/δ (PPAR β/δ) in BDNF signaling during aging and in Alzheimer disease: possible role of 4-hydroxynonenal (4-HNE).

    PubMed

    Benedetti, Elisabetta; D'Angelo, Barbara; Cristiano, Loredana; Di Giacomo, Erica; Fanelli, Francesca; Moreno, Sandra; Cecconi, Francesco; Fidoamore, Alessia; Antonosante, Andrea; Falcone, Roberta; Ippoliti, Rodolfo; Giordano, Antonio; Cimini, Annamaria

    2014-01-01

    Aging and many neurological disorders, such as AD, are linked to oxidative stress, which is considered the common effector of the cascade of degenerative events. In this phenomenon, reactive oxygen species play a fundamental role in the oxidative decomposition of polyunsaturated fatty acids, resulting in the formation of a complex mixture of aldehydic end products, such as malondialdehyde, 4-hydroxynonenal, and other alkenals. Interestingly, 4-HNE has been indicated as an intracellular agonist of peroxisome proliferator-activated receptor β/δ. In this study, we examined, at early and advanced AD stages (3, 9, and 18 months), the pattern of 4-HNE and its catabolic enzyme glutathione S-transferase P1 in relation to the expression of PPARβ/δ, BDNF signaling, as mRNA and protein, as well as on their pathological forms (i.e., precursors or truncated forms). The data obtained indicate a novel detrimental age-dependent role of PPAR β/δ in AD by increasing pro-BDNF and decreasing BDNF/TrkB survival pathways, thus pointing toward the possibility that a specific PPARβ/δ antagonist may be used to counteract the disease progression. PMID:24621497

  19. Peroxisome proliferator activated receptor α (PPARα) and PPAR gamma coactivator (PGC-1α) induce carnitine palmitoyltransferase IA (CPT-1A) via independent gene elements

    PubMed Central

    Song, Shulan; Attia, Ramy R.; Connaughton, Sara; Niesen, Melissa I.; Ness, Gene C.; Elam, Marshall B.; Hori, Roderick T.; Cook, George A.; Park, Edwards A.

    2010-01-01

    Long chain fatty acids and pharmacologic ligands for the peroxisome proliferator activated receptor alpha (PPARα) activate expression of genes involved in fatty acid and glucose oxidation including carnitine palmitoyltransferase-1A (CPT-1A) and pyruvate dehydrogenase kinase 4 (PDK4). CPT-1A catalyzes the transfer of long chain fatty acids from acyl-CoA to carnitine for translocation across the mitochondrial membranes and is an initiating step in the mitochondrial oxidation of long chain fatty acids. PDK4 phosphorylates and inhibits the pyruvate dehydrogenase complex (PDC) which catalyzes the conversion of pyruvate to acetyl-CoA in the glucose oxidation pathway. The activity of CPT-1A is modulated both by transcriptional changes as well as by malonyl-CoA inhibition. In the liver, CPT-1A and PDK4 gene expression are induced by starvation, high fat diets and PPARα ligands. Here, we characterized a binding site for PPARα in the second intron of the rat CPT-1A gene. Our studies indicated that WY14643 and long chain fatty acids induce CPT-1A gene expression through this element. In addition, we found that mutation of the PPARα binding site reduced the expression of CPT-1A-luciferase vectors in the liver of fasted rats. We had demonstrated previously that CPT-1A was stimulated by the peroxisome proliferator activated receptor gamma coactivator (PGC-1α) via sequences in the first intron of the rat CPT-1A gene. Surprisingly, PGC-1α did not enhance CPT-1A transcription through the PPARα binding site in the second intron. Following knockdown of PGC-1α with short hairpin RNA, the CPT-1A and PDK4 genes remained responsive to WY14643. Overall, our studies indicated that PPARα and PGC-1α stimulate transcription of the CPT-1A gene through different regions of the CPT-1A gene. PMID:20638986

  20. Synthesis of new carbo- and heterocyclic analogues of 8-HETE and evaluation of their activity towards the PPARs.

    PubMed

    Caijo, Frédéric; Mosset, Paul; Grée, René; Audinot-Bouchez, Valérie; Boutin, Jean; Renard, Pierre; Caignard, Daniel-Henri; Dacquet, Catherine

    2005-10-15

    A new class of dual PPARs alpha and gamma agonists was developed. These compounds are structural analogues of the arachidonic acid metabolite, the 8-(S)-HETE. A versatile strategy has been introduced to prepare the target molecules having different carbo- and heterocyclic cores and to modulate the unsaturations on the side chains. Their affinity towards the PPARs alpha and gamma receptors is reported, together with their transactivation percentage. Most of these derivatives have a good activity as dual agonists but the quinoline-derived products appear as the most promising compounds. PMID:16137885

  1. Bixin regulates mRNA expression involved in adipogenesis and enhances insulin sensitivity in 3T3-L1 adipocytes through PPAR{gamma} activation

    SciTech Connect

    Takahashi, Nobuyuki; Goto, Tsuyoshi; Taimatsu, Aki; Egawa, Kahori; Katoh, Sota; Kusudo, Tatsuya; Sakamoto, Tomoya; Ohyane, Chie; Lee, Joo-Young; Kim, Young-il; Uemura, Taku; Hirai, Shizuka; Kawada, Teruo

    2009-12-25

    Insulin resistance is partly due to suppression of insulin-induced glucose uptake into adipocytes. The uptake is dependent on adipocyte differentiation, which is controlled at mRNA transcription level. The peroxisome proliferator-activated receptor (PPAR), a ligand-regulated nuclear receptor, is involved in the differentiation. Many food-derived compounds serve as ligands to activate or inactivate PPAR. In this study, we demonstrated that bixin and norbixin (annatto extracts) activate PPAR{gamma} by luciferase reporter assay using GAL4-PPAR chimera proteins. To examine the effects of bixin on adipocytes, 3T3-L1 adipocytes were treated with bixin or norbixin. The treatment induced mRNA expression of PPAR{gamma} target genes such as adipocyte-specific fatty acid-binding protein (aP2), lipoprotein lipase (LPL), and adiponectin in differentiated 3T3-L1 adipocytes and enhanced insulin-dependent glucose uptake. The observations indicate that bixin acts as an agonist of PPAR{gamma} and enhances insulin sensitivity in 3T3-L1 adipocytes, suggesting that bixin is a valuable food-derived compound as a PPAR ligand to regulate lipid metabolism and to ameliorate metabolic syndrome.

  2. Haploinsufficiency in the PPAR{alpha} and LDL receptor genes leads to gender- and age-specific obesity and hyperinsulinemia

    SciTech Connect

    Sugiyama, Eiko . E-mail: eikoyoko@nagano-kentan.ac.jp; Tanaka, Naoki; Nakajima, Tamie; Kamijo, Yuji; Yokoyama, Shin; Li Yufeng; Gonzalez, Frank J.; Aoyama, Toshifumi

    2006-11-17

    When preparing peroxisome proliferator-activated receptor (PPAR){alpha}:low-density lipoprotein receptor (LDLR) (-/-) double knockout mice, we unexpectedly found a unique gender- and age-specific obesity in the F1 generation, PPAR{alpha} (+/-):LDLR (+/-), even in mice fed standard chow. Body weights of the male heterozygous mice increased up to about 60 g at 75 weeks of age, then decreased by about 30 g at 100 weeks of age. More than 95% of the heterozygous mice between 35- and 75-week-olds were overweight. Of interest, the obese heterozygous mice also exhibited hyperinsulinemia correlating with moderate insulin resistance. Hepatic gene expression of LDLR was lower than expected in the heterozygous mice, particularly at 50 and 75 weeks of age. In contrast, the hepatic expression of PPAR{alpha} was higher than expected in obese heterozygous mice, but decreased in non-obese older heterozygous mice. Modulated expression of these genes may be partially associated with the onset of the hyperinsulinemia.

  3. Peroxisome Proliferator Activated Receptors Alpha, Beta, and Gamma mRNA and protein expression in human fetal tissues

    EPA Science Inventory

    Peroxisome proliferator-activated receptors (PPARs) regulate lipid and glucose homeostasis, are targets of pharmaceuticals, and are also activated by environmental contaminants. Almost nothing is known about expression of PPARs during human fetal development. This study examine...

  4. Peroxisome Proliferator-Activated Receptor Alpha (PPARa), Beta (PPARI3), and Gamma (PPARy) Expression in Human Fetal Tissues.

    EPA Science Inventory

    Peroxisome proliferator-activated receptors (PPARs) regulate lipid and glucose homeostasis, are targets of pharmaceuticals, and are also activated by environmental contaminants. Almost nothing is known about expression of PPARs during human fetal development. This study uses qPCR...

  5. Regulation of PPAR{gamma} function by TNF-{alpha}

    SciTech Connect

    Ye Jianping

    2008-09-26

    The nuclear receptor PPAR{gamma} is a lipid sensor that regulates lipid metabolism through gene transcription. Inhibition of PPAR{gamma} activity by TNF-{alpha} is involved in pathogenesis of insulin resistance, atherosclerosis, inflammation, and cancer cachexia. PPAR{gamma} activity is regulated by TNF-{alpha} at pre-translational and post-translational levels. Activation of serine kinases including IKK, ERK, JNK, and p38 may be involved in the TNF-regulation of PPAR{gamma}. Of the four kinases, IKK is a dominant signaling molecule in the TNF-regulation of PPAR{gamma}. IKK acts through at least two mechanisms: inhibition of PPAR{gamma} expression and activation of PPAR{gamma} corepressor. In this review article, literature is reviewed with a focus on the mechanisms of PPAR{gamma} inhibition by TNF-{alpha}.

  6. Oxidized omega-3 fatty acids in fish oil inhibit leukocyte-endothelial interactions through activation of PPAR alpha.

    PubMed

    Sethi, Sanjeev; Ziouzenkova, Ouliana; Ni, Heyu; Wagner, Denisa D; Plutzky, Jorge; Mayadas, Tanya N

    2002-08-15

    Omega-3 fatty acids, which are abundant in fish oil, improve the prognosis of several chronic inflammatory diseases although the mechanism for such effects remains unclear. These fatty acids, such as eicosapentaenoic acid (EPA), are highly polyunsaturated and readily undergo oxidation. We show that oxidized, but not native unoxidized, EPA significantly inhibited human neutrophil and monocyte adhesion to endothelial cells in vitro by inhibiting endothelial adhesion receptor expression. In transcriptional coactivation assays, oxidized EPA potently activated the peroxisome proliferator-activated receptor alpha (PPAR alpha), a member of the nuclear receptor family. In vivo, oxidized, but not native, EPA markedly reduced leukocyte rolling and adhesion to venular endothelium of lipopolysaccharide (LPS)-treated mice. This occurred via a PPAR alpha-dependent mechanism because oxidized EPA had no such effect in LPS-treated PPAR alpha-deficient mice. Therefore, the beneficial effects of omega-3 fatty acids may be explained by a PPAR alpha-mediated anti-inflammatory effect of oxidized EPA. PMID:12149216

  7. [PPARs: structure, mechanisms of action and control. Note I].

    PubMed

    Filip-Ciubotaru, Florina; Foia, Liliana; Manciuc, Carmen; Grigore, Cecilia

    2011-01-01

    PPARs (peroxisome proliferator activated receptors) are proteine receptors that act as transcription factors activated by ligands. There are three known isoforms of PPARs (alpha, beta/delta, gamma) with similar modulated structure, consisting of distinct regions with specific functions. PPARs activate transcription of their target genes by forming cytoplasmatic heterodimers (PPARs:RXR) with his partner RXR (retinoid X receptor), and once translocated into the nucleus bind to specific DNA sequence called PPRE (peroxisome proliferator response elements) and modulate the expression of genes. Each PPAR is differently expressed in various tissues. Modulatory function of PPARs is induced by natural or synthetic ligand binding. Additional activator proteins are recruited to form a complex that coordinates and regulates the expression of many genes. Moreover, nuclear receptors' activity is also regulated by posttranslational changes. PMID:21870744

  8. Management of cardiac fibrosis in diabetic rats; the role of peroxisome proliferator activated receptor gamma (PPAR-gamma) and calcium channel blockers (CCBs)

    PubMed Central

    2011-01-01

    Background Diabetes mellitus (DM) and hypertension (HTN) are accused of being responsible for the development of the cardiac fibrosis due to severe cardiomyopathy. Methods Blood glucose (BG) test was carried out, lipid concentrations, tumor necrosis factor alpha (TNF-α), transforming growth factor beta (TGF-β), matrix metalloproteinase (MMP-2), collagen-I and collagen-III were measured in male Albino rats weighing 179-219 g. The rats were divided into five groups, kept on either control diet or high fat diet (HFD), and simultaneously treated with rosiglitazone (PPAR-gamma) only for one group with 3 mg/kg/day via oral route for 30 days, and with rosiglitazone and felodipine combination for another group with 3 mg/kg/day and 5 mg/kg/day, respectively via oral route for 30 days. Results Diabetic hypertensive (DH) rats which fed on a HFD, injected with streptozotocin (STZ) (i.p.) and obstruction for its right kidney was occurred develop hyperglycemia, hypertension, cardiac fibrosis, hypertriglyceridemia, hypercholesterolemia, increased TNF-α, increased TGF-β, decreased MMP-2, increased collagen-I and increased collagen-III, when compared to rats fed on control diet. Treating the DH rats with rosiglitazone only causes a significant decrease for BG levels by 52.79%, triglycerides (TGs) by 24.05%, total cholesterol (T-Chol) by 30.23%, low density lipoprotein cholesterol (LDL-C) by 40.53%, TNF-α by 20.81%, TGF-β by 46.54%, collagen-I by 48.11% and collagen-III by 53.85% but causes a significant increase for MMP-2 by 272.73%. Moreover, Treating the DH rats with rosiglitazone and felodipine combination causes a significant decrease for BG levels by 61.08%, blood pressure (BP) by 16.78%, TGs by 23.80%, T-Chol by 33.27%, LDL-C by 45.18%, TNF-α by 22.82%, TGF-β by 49.31%, collagen-I by 64.15% and collagen-III by 53.85% but causes a significant increase for MMP-2 by 290.91%. Rosiglitazone alone failed to decrease the BP in DH rats in the current dosage and duration

  9. THE ROLE OF PEROXISOME PROLIFERATOR-ACTIVATED RECEPTORS IN CARCINOGENESIS AND CHEMOPREVENTION

    PubMed Central

    Peters, Jeffrey M.; Shah, Yatrik M.; Gonzalez, Frank J.

    2012-01-01

    Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that are involved in regulating glucose and lipid homeostasis, inflammation, proliferation and differentiation. Although all of these functions might contribute to the influence of PPARs in carcinogenesis, there is a distinct need for a balanced review of the literature and additional experimentation to determine the potential for targeting PPARs for cancer therapy and cancer chemoprevention. As PPAR agonists include drugs used for the treatment of metabolic diseases, a more complete understanding of the roles of PPARs in cancer will aid in determining any increased cancer risk for patients undergoing therapy with PPAR agonists. PMID:22318237

  10. Curcumin attenuates cardiac fibrosis in spontaneously hypertensive rats through PPARactivation

    PubMed Central

    Meng, Zhe; Yu, Xin-hui; Chen, Jun; Li, Ling; Li, Sheng

    2014-01-01

    Aim: To investigate the effects of curcumin (Cur) on cardiac fibrosis in spontaneously hypertensive rats (SHRs) and the mechanisms underlying the anti-fibrotic effect of Cur in rat cardiac fibroblasts (CFs) in vitro. Methods: SHRs were orally treated with Cur (100 mg·kg−1·d−1) or Cur (100 mg·kg−1·d−1) plus the PPAR-γ antagonist GW9662 (1 mg·kg−1·d−1) for 12 weeks. Cultured CFs were treated with angiotensin II (Ang II, 0.1 μmol/L) in vitro. The expression of relevant proteins and mRNAs was analyzed using Western blotting and real-time PCR, respectively. The expression and activity of peroxisome proliferator-activated receptor-γ (PPAR-γ) were detected using Western blotting and a DNA-binding assay, respectively. Results: Treatment of SHRs with Cur significantly decreased systolic blood pressure, blood Ang II concentration, heart weight/body weight ratio and left ventricle weight/body weight ratio, with concurrently decreased expression of connective tissue growth factor (CTGF), plasminogen activator inhibitor (PAI)-1, collagen III (Col III) and fibronectin (FN), and increased expression and activity of PPAR-γ in the left ventricle. Co-treatment with GW9662 partially abrogated the anti-fibrotic effects of Cur in SHRs. Pretreatment of CFs with Cur (5, 10, 20 μmol/L) dose-dependently inhibited Ang II-induced expression of CTGF, PAI-1, Col III and FN, and increased the expression and binding activity of PPAR-γ. Pretreatment with GW9662 partially reversed anti-fibrotic effects of Cur in vitro. Furthermore, pretreatment of CFs with Cur inhibited Ang II-induced expression of transforming growth factor-β1 (TGF-β1) and phosphorylation of Smad2/3, which were reversed by GW9662. Conclusion: Cur attenuates cardiac fibrosis in SHRs and inhibits Ang II-induced production of CTGF, PAI-1 and ECM in CFs in vitro. The crosstalk between PPAR-γ and TGF-β1/Smad2/3 signaling is involved in the anti-fibrotic and anti-proliferative effects of Cur. PMID:25132338

  11. Peroxisome Proliferator-Activated Receptors and the Heart: Lessons from the Past and Future Directions

    PubMed Central

    Lee, Wang-Soo; Kim, Jaetaek

    2015-01-01

    Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear family of ligand activated transcriptional factors and comprise three different isoforms, PPAR-α, PPAR-β/δ, and PPAR-γ. The main role of PPARs is to regulate the expression of genes involved in lipid and glucose metabolism. Several studies have demonstrated that PPAR agonists improve dyslipidemia and glucose control in animals, supporting their potential as a promising therapeutic option to treat diabetes and dyslipidemia. However, substantial differences exist in the therapeutic or adverse effects of specific drug candidates, and clinical studies have yielded inconsistent data on their cardioprotective effects. This review summarizes the current knowledge regarding the molecular function of PPARs and the mechanisms of the PPAR regulation by posttranslational modification in the heart. We also describe the results and lessons learned from important clinical trials on PPAR agonists and discuss the potential future directions for this class of drugs. PMID:26587015

  12. [PPAR receptors and insulin sensitivity: new agonists in development].

    PubMed

    Pégorier, J-P

    2005-04-01

    Thiazolidinediones (or glitazones) are synthetic PPARgamma (Peroxisome Proliferator-Activated Receptors gamma) ligands with well recognized effects on glucose and lipid metabolism. The clinical use of these PPARgamma agonists in type 2 diabetic patients leads to an improved glycemic control and an inhanced insulin sensitivity, and at least in animal models, to a protective effect on pancreatic beta-cell function. However, they can produce adverse effects, generally mild or moderate, but some of them (mainly peripheral edema and weight gain) may conduct to treatment cessation. Several pharmacological classes are currently in pre-clinical or clinical development, with the objective to retain the beneficial metabolic properties of PPARgamma agonists, either alone or in association with the PPARalpha agonists (fibrates) benefit on lipid profile, but devoid of the side-effects on weight gain and fluid retention. These new pharmacological classes: partial PPARgamma agonists, PPARgamma antagonists, dual PPARalpha/PPARgamma agonists, pan PPARalpha/beta(delta)/gamma agonists, RXR receptor agonists (rexinoids), are presented in this review. Main results from in vitro cell experiments and animal model studies are discussed, as well as the few published short-term studies in type 2 diabetic patients. PMID:15959400

  13. PPAR Activation Induces M1 Macrophage Polarization via cPLA2-COX-2 Inhibition, Activating ROS Production against Leishmania mexicana

    PubMed Central

    Díaz-Gandarilla, J. A.; Osorio-Trujillo, C.; Hernández-Ramírez, V. I.; Talamás-Rohana, P.

    2013-01-01

    Defence against Leishmania depends upon Th1 inflammatory response and, a major problem in susceptible models, is the turnoff of the leishmanicidal activity of macrophages with IL-10, IL-4, and COX-2 upregulation, as well as immunosuppressive PGE2, all together inhibiting the respiratory burst. Peroxisome proliferator-activated receptors (PPAR) activation is responsible for macrophages polarization on Leishmania susceptible models where microbicide functions are deactivated. In this paper, we demonstrated that, at least for L. mexicana, PPAR activation, mainly PPARγ, induced macrophage activation through their polarization towards M1 profile with the increase of microbicide activity against intracellular pathogen L. mexicana. PPAR activation induced IL-10 downregulation, whereas the production of proinflammatory cytokines such as TNF-α, IL-1β, and IL-6 remained high. Moreover, PPAR agonists treatment induced the deactivation of cPLA2-COX-2-prostaglandins pathway together with an increase in TLR4 expression, all of whose criteria meet the M1 macrophage profile. Finally, parasite burden, in treated macrophages, was lower than that in infected nontreated macrophages, most probably associated with the increase of respiratory burst in these treated cells. Based on the above data, we conclude that PPAR agonists used in this work induces M1 macrophages polarization via inhibition of cPLA2 and the increase of aggressive microbicidal activity via reactive oxygen species (ROS) production. PMID:23555077

  14. Salacia oblonga root improves postprandial hyperlipidemia and hepatic steatosis in Zucker diabetic fatty rats: Activation of PPAR-{alpha}

    SciTech Connect

    Hsun-Wei Huang, Tom; Peng Gang; Qian Li, George; Yamahara, Johji; Roufogalis, Basil D.; Li Yuhao . E-mail: yuhao@pharm.usyd.edu.au

    2006-02-01

    Salacia oblonga (SO) root is an Ayurvedic medicine with anti-diabetic and anti-obese properties. Peroxisome proliferator-activated receptor (PPAR)-{alpha}, a nuclear receptor, plays an important role in maintaining the homeostasis of lipid metabolism. Here, we demonstrate that chronic oral administration of the water extract from the root of SO to Zucker diabetic fatty (ZDF) rats, a genetic model of type 2 diabetes and obesity, lowered plasma triglyceride and total cholesterol (TC) levels, increased plasma high-density lipoprotein levels and reduced the liver contents of triglyceride, non-esterified fatty acids (NEFA) and the ratio of fatty droplets to total tissue. By contrast, the extract had no effect on plasma triglyceride and TC levels in fasted ZDF rats. After olive oil administration to ZDF the extract also inhibited the increase in plasma triglyceride levels. These results suggest that SO extract improves postprandial hyperlipidemia and hepatic steatosis in ZDF rats. Additionally, SO treatment enhanced hepatic expression of PPAR-{alpha} mRNA and protein, and carnitine palmitoyltransferase-1 and acyl-CoA oxidase mRNAs in ZDF rats. In vitro, SO extract and its main component mangiferin activated PPAR-{alpha} luciferase activity in human embryonic kidney 293 cells and lipoprotein lipase mRNA expression and enzyme activity in THP-1 differentiated macrophages; these effects were completely suppressed by a selective PPAR-{alpha} antagonist MK-886. The findings from both in vivo and in vitro suggest that SO extract functions as a PPAR-{alpha} activator, providing a potential mechanism for improvement of postprandial hyperlipidemia and hepatic steatosis in diabetes and obesity.

  15. CD97/ADGRE5 Inhibits LPS Induced NF-κB Activation through PPAR-γ Upregulation in Macrophages.

    PubMed

    Wang, Shuai; Sun, Zewei; Zhao, Wenting; Wang, Zhen; Wu, Mingjie; Pan, Yanyun; Yan, Hui; Zhu, Jianhua

    2016-01-01

    CD97/ADGRE5 protein is predominantly expressed on leukocytes and belongs to the EGF-TM7 receptors family. It mediates granulocytes accumulation in the inflammatory tissues and is involved in firm adhesion of PMNC on activated endothelial cells. There have not been any studies exploring the role of CD97 in LPS induced NF-κB activation in macrophages. Therefore, we first measured the CD97 expression in LPS treated human primary macrophages and subsequently analyzed the levels of inflammatory factor TNF-α and transcription factor NF-κB in these macrophages that have been manipulated with either CD97 knockdown or overexpression. We found that a reported anti-inflammatory transcription factor, PPAR-γ, was involved in the CD97 mediated NF-κB suppression. Furthermore, by immunofluorescence staining, we established that CD97 overexpression not only inhibited LPS induced p65 expression in the nucleus but also promoted the PPAR-γ expression. Moreover, using CD97 knockout THP-1 cells, we further demonstrated that CD97 promoted PPAR-γ expression and decreased LPS induced NF-κB activation. In conclusion, CD97 plays a negative role in LPS induced NF-κB activation and TNF-α secretion, partly through PPAR-γ upregulation. PMID:26997758

  16. CD97/ADGRE5 Inhibits LPS Induced NF-κB Activation through PPAR-γ Upregulation in Macrophages

    PubMed Central

    Wang, Shuai; Sun, Zewei; Zhao, Wenting; Wang, Zhen; Wu, Mingjie; Pan, Yanyun; Yan, Hui; Zhu, Jianhua

    2016-01-01

    CD97/ADGRE5 protein is predominantly expressed on leukocytes and belongs to the EGF-TM7 receptors family. It mediates granulocytes accumulation in the inflammatory tissues and is involved in firm adhesion of PMNC on activated endothelial cells. There have not been any studies exploring the role of CD97 in LPS induced NF-κB activation in macrophages. Therefore, we first measured the CD97 expression in LPS treated human primary macrophages and subsequently analyzed the levels of inflammatory factor TNF-α and transcription factor NF-κB in these macrophages that have been manipulated with either CD97 knockdown or overexpression. We found that a reported anti-inflammatory transcription factor, PPAR-γ, was involved in the CD97 mediated NF-κB suppression. Furthermore, by immunofluorescence staining, we established that CD97 overexpression not only inhibited LPS induced p65 expression in the nucleus but also promoted the PPAR-γ expression. Moreover, using CD97 knockout THP-1 cells, we further demonstrated that CD97 promoted PPAR-γ expression and decreased LPS induced NF-κB activation. In conclusion, CD97 plays a negative role in LPS induced NF-κB activation and TNF-α secretion, partly through PPAR-γ upregulation. PMID:26997758

  17. Targeting components of the stress system as potential therapies for the metabolic syndrome: the peroxisome-proliferator-activated receptors.

    PubMed

    Yumuk, Volkan D

    2006-11-01

    The three peroxisome-proliferator-activated receptor (PPAR) subtypes PPAR-alpha, PPAR-gamma, and PPAR-delta are ligand-activated transcription factors of the nuclear receptor family. PPARs form obligate heterodimers with the retinoid X receptor, which bind to peroxisome-proliferator-response elements (PPREs). PPAR-alpha is expressed mainly in liver, brown fat, kidney, heart, and skeletal muscle; PPAR-gamma in intestine and adipose tissue; PPAR-alpha and PPAR-gamma are both expressed in vascular endothelium, smooth muscle cells, macrophages, and foam cells; PPAR-delta in skeletal muscle, human embryonic kidney, intestine, heart, adipose tissue, developing brain, and keratinocytes. Intense interest in the development of drugs with new mechanisms of action for the metabolic syndrome has focused attention on nuclear receptors, such as PPARs that function as regulators of energy homeostasis. Agonists of PPAR-alpha and PPAR-gamma are currently used to treat diabetic dyslipidemia and type 2 diabetes. Dual PPAR-alpha/gamma agonists and PPAR-alpha/gamma/delta pan-agonists are under investigation for treatment of cardiovascular disease and the metabolic syndrome. Selective PPAR modulators (SPPARMs) are PPAR ligands that possess desirable efficacy and improved tolerance. Efforts are being made to identify novel partial agonists or antagonists for PPAR-gamma in order to combine their antidiabetic and antiobesity effects. Glucocorticoids are major mediators of the stress response and could be the link between stress and PPAR activator signaling and thus may affect the downstream metabolic pathways involved in fuel homeostasis. PMID:17148746

  18. The PPAR alpha gene is associated with triglyceride, low-density cholesterol and inflammation marker response to fenofibrate intervention: the GOLDN study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a peroxisome proliferator-activated receptor alpha (PPAR Alpha) agonist, fenofibrate favorably modulates dyslipidemia and inflammation markers, which are associated with cardiovascular risk. To determine whether variation in the PPAR Alpha receptor gene was associated with lipid and inflammatory ...

  19. Inhibition of FAAH and activation of PPAR: New approaches to the treatment of cognitive dysfunction and drug addiction

    PubMed Central

    Panlilio, Leigh V.; Justinova, Zuzana; Goldberg, Steven R.

    2013-01-01

    Enhancing the effects of endogenously-released cannabinoid ligands in the brain might provide therapeutic effects more safely and effectively than administering drugs that act directly at the cannabinoid receptor. Inhibitors of fatty acid amide hydrolase (FAAH) prevent the breakdown of endogenous ligands for cannabinoid receptors and peroxisome proliferator-activated receptors (PPAR), prolonging and enhancing the effects of these ligands when they are naturally released. This review considers recent research on the effects of FAAH inhibitors and PPAR activators in animal models of addiction and cognition (specifically learning and memory). These studies show that FAAH inhibitors can produce potentially therapeutic effects, some through cannabinoid receptors and some through PPAR. These effects include enhancing certain forms of learning, counteracting the rewarding effects of nicotine and alcohol, relieving symptoms of withdrawal from cannabis and other drugs, and protecting against relapse-like reinstatement of drug self-administration. Since FAAH inhibition might have a wide range of therapeutic actions but might also share some of the adverse effects of cannabis, it is noteworthy that at least one FAAH-inhibiting drug (URB597) has been found to have potentially beneficial effects but no indication of liability for abuse or dependence. Although these areas of research are new, the preliminary evidence indicates that they might lead to improved therapeutic interventions and a better understanding of the brain mechanisms underlying addiction and memory. PMID:23333350

  20. Oxidized LDL binding to LOX-1 upregulates VEGF expression in cultured bovine chondrocytes through activation of PPAR-{gamma}

    SciTech Connect

    Kanata, Sohya; Akagi, Masao . E-mail: makagi@med.kindai.ac.jp; Nishimura, Shunji; Hayakawa, Sumio; Yoshida, Kohji; Sawamura, Tatsuya; Munakata, Hiroshi; Hamanishi, Chiaki

    2006-09-29

    It has been reported that vascular endothelial growth factor (VEGF) and its receptors play an important role in the destruction of articular cartilage in osteoarthritis through increased production of matrix metalloproteinases. We investigated whether the oxidized low-density lipoprotein (ox-LDL) binding to lectin-like ox-LDL receptor-1 (LOX-1) upregulates VEGF expression in cultured bovine articular chondrocytes (BACs). Ox-LDL markedly increased VEGF mRNA expression and protein release in time- and dose-dependent manners, which was significantly suppressed by anti-LOX-1 antibody pretreatment. Activation of peroxisome proliferator-activated receptor (PPAR)-{gamma} was evident in BACs with ox-LDL addition and was attenuated by anti-LOX-1 antibody. The specific PPAR-{gamma} inhibitor GW9662 suppressed ox-LDL-induced VEGF expression. These results suggest that the ox-LDL/LOX-1 system upregulates VEGF expression in articular cartilage, at least in part, through activation of PPAR-{gamma} and supports the hypothesis that ox-LDL is involved in cartilage degradation via LOX-1.

  1. Peroxisome proliferator-activated receptor {alpha}-independent peroxisome proliferation

    SciTech Connect

    Zhang Xiuguo; Tanaka, Naoki . E-mail: naopi@hsp.md.shinshu-u.ac.jp; Nakajima, Takero; Kamijo, Yuji; Gonzalez, Frank J.; Aoyama, Toshifumi

    2006-08-11

    Hepatic peroxisome proliferation, increases in the numerical and volume density of peroxisomes, is believed to be closely related to peroxisome proliferator-activated receptor {alpha} (PPAR{alpha}) activation; however, it remains unknown whether peroxisome proliferation depends absolutely on this activation. To verify occurrence of PPAR{alpha}-independent peroxisome proliferation, fenofibrate treatment was used, which was expected to significantly enhance PPAR{alpha} dependence in the assay system. Surprisingly, a novel type of PPAR{alpha}-independent peroxisome proliferation and enlargement was uncovered in PPAR{alpha}-null mice. The increased expression of dynamin-like protein 1, but not peroxisome biogenesis factor 11{alpha}, might be associated with the PPAR{alpha}-independent peroxisome proliferation at least in part.

  2. PPAR-δ in Vascular Pathophysiology

    PubMed Central

    Wang, Nanping

    2008-01-01

    Peroxisome proliferator-activated receptors belong to the superfamily of ligand-dependent nuclear receptor transcription factors, which include three subtypes: PPAR-α, β/δ, and γ. PPAR-δ, play important roles in the regulation of cell growth and differentiation as well as tissue wound and repair. Emerging evidence has also demonstrated that PPAR-δ is implicated in lipids and glucose metabolism. Most recently, the direct effects of PPAR-δ on cardiovascular processes such as endothelial function and angiogenesis have also been investigated. Therefore, it is suggested that PPAR-δ may have critical roles in cardiovascular pathophysiology and is a potential target for therapeutic intervention of cardiovascular disorders such as atherosclerosis. PMID:19132133

  3. Screening of medicinal plants for PPPAR-alpha and PPAR-gamma activation and evaluation of their effects on glucose uptake and 3T3-L1 adipogenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Medicinal plants are a rich source of ligands for nuclear receptors. The present study was aimed to screen a collection of plant extracts for PPAR-alpha/gamma activating properties and identify the active extract that can stimulate cellular glucose uptake without enhancing the adipogenesis. A report...

  4. Indanylacetic acid derivatives carrying 4-thiazolyl-phenoxy tail groups, a new class of potent PPAR alpha/gamma/delta pan agonists: synthesis, structure-activity relationship, and in vivo efficacy.

    PubMed

    Rudolph, Joachim; Chen, Libing; Majumdar, Dyuti; Bullock, William H; Burns, Michael; Claus, Thomas; Dela Cruz, Fernando E; Daly, Michelle; Ehrgott, Frederick J; Johnson, Jeffrey S; Livingston, James N; Schoenleber, Robert W; Shapiro, Jeffrey; Yang, Ling; Tsutsumi, Manami; Ma, Xin

    2007-03-01

    Compounds that simultaneously activate the three peroxisome proliferator-activated receptor (PPAR) subtypes alpha, gamma, and delta hold potential to address the adverse metabolic and cardiovascular conditions associated with diabetes and the metabolic syndrome. We recently identified the indanylacetic acid moiety as a well-tunable PPAR agonist head group. Here we report the synthesis and structure-activity relationship (SAR) studies of novel aryl tail group derivatives that led to a new class of potent PPAR pan agonists. While most of the tail group modifications imparted potent PPAR delta agonist activity, improvement of PPAR alpha and gamma activity required the introduction of new heterocyclic substituents that were not known in the PPAR literature. Systematic optimization led to the discovery of 4-thiazolyl-phenyl derivatives with potent PPAR alpha/gamma/delta pan agonistic activity. The lead candidate from this series was found to exhibit excellent ADME properties and superior therapeutic potential compared to known PPAR gamma activating agents by favorably modulating lipid levels in hApoA1 mice and hyperlipidemic hamsters, while normalizing glucose levels in diabetic rodent models. PMID:17274610

  5. Activation of peroxisome proliferator-activated receptor-{alpha} enhances fatty acid oxidation in human adipocytes

    SciTech Connect

    Lee, Joo-Young; Hashizaki, Hikari; Goto, Tsuyoshi; Sakamoto, Tomoya; Takahashi, Nobuyuki; Kawada, Teruo

    2011-04-22

    Highlights: {yields} PPAR{alpha} activation increased mRNA expression levels of adipocyte differentiation marker genes and GPDH activity in human adipocytes. {yields} PPAR{alpha} activation also increased insulin-dependent glucose uptake in human adipocytes. {yields} PPAR{alpha} activation did not affect lipid accumulation in human adipocytes. {yields} PPAR{alpha} activation increased fatty acid oxidation through induction of fatty acid oxidation-related genes in human adipocytes. -- Abstract: Peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}) is a key regulator for maintaining whole-body energy balance. However, the physiological functions of PPAR{alpha} in adipocytes have been unclarified. We examined the functions of PPAR{alpha} using human multipotent adipose tissue-derived stem cells as a human adipocyte model. Activation of PPAR{alpha} by GW7647, a potent PPAR{alpha} agonist, increased the mRNA expression levels of adipocyte differentiation marker genes such as PPAR{gamma}, adipocyte-specific fatty acid-binding protein, and lipoprotein lipase and increased both GPDH activity and insulin-dependent glucose uptake level. The findings indicate that PPAR{alpha} activation stimulates adipocyte differentiation. However, lipid accumulation was not changed, which is usually observed when PPAR{gamma} is activated. On the other hand, PPAR{alpha} activation by GW7647 treatment induced the mRNA expression of fatty acid oxidation-related genes such as CPT-1B and AOX in a PPAR{alpha}-dependent manner. Moreover, PPAR{alpha} activation increased the production of CO{sub 2} and acid soluble metabolites, which are products of fatty acid oxidation, and increased oxygen consumption rate in human adipocytes. The data indicate that activation of PPAR{alpha} stimulates both adipocyte differentiation and fatty acid oxidation in human adipocytes, suggesting that PPAR{alpha} agonists could improve insulin resistance without lipid accumulation in adipocytes. The expected

  6. Effect of heterodimer partner RXR{alpha} on PPAR{gamma} activation function-2 helix in solution

    SciTech Connect

    Lu Jianyun Chen Minghe; Stanley, Susan E.; Li, Ellen

    2008-01-04

    The structural mechanism of allosteric communication between retinoid X receptor (RXR) and its heterodimer partners remains controversial. As a first step towards addressing this question, we report a nuclear magnetic resonance (NMR) study on the GW1929-bound peroxisome proliferator-activated receptor gamma (PPAR{gamma}) ligand-binding domain (LBD) with and without the 9-cis-retinoic acid (9cRA)-bound RXR{alpha} LBD. Sequence-specific {sup 13}C{sup {alpha}}, {sup 13}C{sup {beta}}, and {sup 13}CO resonance assignments have been established for over 95% of the 275 residues in the PPAR{gamma} LBD monomer. The {sup 1}HN, {sup 15}N, and {sup 13}CO chemical shift perturbations induced by the RXR{alpha} LBD binding are located at not only the heterodimer interface that includes the C-terminal residue Y477 but also residues Y473 and K474 in the activation function-2 (AF-2) helix. This result suggests that 9cRA-bound RXR{alpha} can affect the PPAR{gamma} AF-2 helix in solution and demonstrates that NMR is a powerful new tool for studying the mechanism of allosteric ligand activation in RXR heterodimers.

  7. Voluntary exercise prevents colonic inflammation in high-fat diet-induced obese mice by up-regulating PPARactivity

    SciTech Connect

    Liu, Wei-Xin; Wang, Ting; Zhou, Feng; Wang, Ying; Xing, Jun-Wei; Zhang, Shen; Gu, Shou-Zhi; Sang, Li-Xuan; Dai, Cong; Wang, Hai-Lan

    2015-04-10

    Obesity is associated with increased colonic inflammation, which elevates the risk of colon cancer. Although exercise exerts anti-inflammatory actions in multiple chronic diseases associated with inflammation, it is unknown whether this strategy prevents colonic inflammation in obesity. We hypothesized that voluntary exercise would suppress colonic inflammation in high-fat diet (HFD)-induced obesity by modulation of peroxisome proliferator-activated receptor (PPAR)-γ. Male C57Bl/6J mice fed either a control diet (6.5% fat, CON) or a high-fat diet (24% fat, HFD) were divided into sedentary, voluntary exercise or voluntary exercise with PPAR-γ antagonist GW9662 (10 mg/kg/day). All interventions took place for 12 weeks. Compared with CON-sedentary group, HFD-sedentary mice gained significantly more body weight and exhibited metabolic disorders. Molecular studies revealed that HFD-sedentary mice had increased expression of inflammatory mediators and activation of nuclear factor (NF)-κB in the colons, which were associated with decreased expression and activity of PPAR-γ. Voluntary exercise markedly attenuated body weight gain, improved metabolic disorders, and normalized the expression of inflammatory mediators and activation of NF-κB in the colons in HFD-mice while having no effects in CON-animals. Moreover, voluntary exercise significantly increased expression and activity of PPAR-γ in the colons in both HFD- and CON-animals. However, all of these beneficial effects induced by voluntary exercise were abolished by GW9662, which inhibited expression and activity of PPAR-γ. The results suggest that decreased PPARactivity in the colon of HFD-induced obesity may facilitate the inflammatory response and colon carcinogenesis. Voluntary exercise prevents colonic inflammation in HFD-induced obesity by up-regulating PPARactivity. - Highlights: • Obesity down-regulates PPAR-γ in the colon. • Down-regulated colonic PPAR-γ may facilitate inflammatory

  8. Peroxisome Proliferator-Activated Receptor Targets for the Treatment of Metabolic Diseases

    PubMed Central

    Monsalve, Francisco A.; Pyarasani, Radha D.; Delgado-Lopez, Fernando; Moore-Carrasco, Rodrigo

    2013-01-01

    Metabolic syndrome is estimated to affect more than one in five adults, and its prevalence is growing in the adult and pediatric populations. The most widely recognized metabolic risk factors are atherogenic dyslipidemia, elevated blood pressure, and elevated plasma glucose. Individuals with these characteristics commonly manifest a prothrombotic state and a proinflammatory state as well. Peroxisome proliferator-activated receptors (PPARs) may serve as potential therapeutic targets for treating the metabolic syndrome and its related risk factors. The PPARs are transcriptional factors belonging to the ligand-activated nuclear receptor superfamily. So far, three isoforms of PPARs have been identified, namely, PPAR-α, PPAR-β/δ, and PPAR-γ. Various endogenous and exogenous ligands of PPARs have been identified. PPAR-α and PPAR-γ are mainly involved in regulating lipid metabolism, insulin sensitivity, and glucose homeostasis, and their agonists are used in the treatment of hyperlipidemia and T2DM. Whereas PPAR-β/δ function is to regulate lipid metabolism, glucose homeostasis, anti-inflammation, and fatty acid oxidation and its agonists are used in the treatment of metabolic syndrome and cardiovascular diseases. This review mainly focuses on the biological role of PPARs in gene regulation and metabolic diseases, with particular focus on the therapeutic potential of PPAR modulators in the treatment of thrombosis. PMID:23781121

  9. Magnolol ameliorates lipopolysaccharide-induced acute lung injury in rats through PPAR-γ-dependent inhibition of NF-kB activation.

    PubMed

    Lin, Ming-Hsien; Chen, Meng-Chuan; Chen, Tso-Hsiao; Chang, Heng-Yuan; Chou, Tz-Chong

    2015-09-01

    Acute lung injury (ALI) has a high morbidity and mortality rate due to the serious inflammation and edema occurred in lung. Magnolol extracted from Magnolia officinalis, has been reported to exhibit anti-inflammatory, and antioxidant activities. Peroxisome proliferator-activated receptors (PPARs) are known to exert a cytoprotective effect against cellular inflammatory stress and oxidative injury. The aim of this study was to explore the involvement of PPAR-γ in the beneficial effect of magnolol in lipopolysaccharide (LPS)-induced ALI. We found that treatment with magnolol greatly improved the pathological features of ALI evidenced by reduction of lung edema, polymorphonuclear neutrophil infiltration, ROS production, the levels of pro-inflammatory cytokines in bronchoalveolar lavage fluid (BALF), the expression of iNOS and COX-2, and NF-κB activation in lungs exposed to LPS. Importantly, magnolol is capable of increasing the PPAR-γ expression and activity in lungs of ALI. However, blocking PPARactivity with GW9662 markedly abolished the protective and anti-inflammatory effects of magnolol. Taken together, the present study provides a novel mechanism accounting for the protective effect of magnolol in LPS-induced ALI is at least partly attributed to induction of PPAR-γ in lungs, and in turn suppressing NF-κB-related inflammatory responses. PMID:26072062

  10. PPARs Signaling and Cancer in the Gastrointestinal System

    PubMed Central

    Pazienza, Valerio; Vinciguerra, Manlio; Mazzoccoli, Gianluigi

    2012-01-01

    Nowadays, the study of the peroxisome proliferators activated receptors (PPARs) as potential targets for cancer prevention and therapy has gained a strong interest. From a biological point of view, the overall responsibility of PPARs in cancer development and progression is still controversial since several studies report both antiproliferative and tumor-promoting actions for these signaling molecules in human cancer cells and animal models. In this paper, we discuss PPARs functions in the context of different types of gastrointestinal cancer. PMID:23028383

  11. PPARs Integrate the Mammalian Clock and Energy Metabolism

    PubMed Central

    Chen, Lihong; Yang, Guangrui

    2014-01-01

    Peroxisome proliferator-activated receptors (PPARs) are a group of nuclear receptors that function as transcription factors regulating the expression of numerous target genes. PPARs play an essential role in various physiological and pathological processes, especially in energy metabolism. It has long been known that metabolism and circadian clocks are tightly intertwined. However, the mechanism of how they influence each other is not fully understood. Recently, all three PPAR isoforms were found to be rhythmically expressed in given mouse tissues. Among them, PPARα and PPARγ are direct regulators of core clock components, Bmal1 and Rev-erbα, and, conversely, PPARα is also a direct Bmal1 target gene. More importantly, recent studies using knockout mice revealed that all PPARs exert given functions in a circadian manner. These findings demonstrated a novel role of PPARs as regulators in correlating circadian rhythm and metabolism. In this review, we summarize advances in our understanding of PPARs in circadian regulation. PMID:24693278

  12. Activation of PPAR{delta} up-regulates fatty acid oxidation and energy uncoupling genes of mitochondria and reduces palmitate-induced apoptosis in pancreatic {beta}-cells

    SciTech Connect

    Wan, Jun; Jiang, Li; Lue, Qingguo; Ke, Linqiu; Li, Xiaoyu; Tong, Nanwei

    2010-01-15

    Recent evidence indicates that decreased oxidative capacity, lipotoxicity, and mitochondrial aberrations contribute to the development of insulin resistance and type 2 diabetes. The goal of this study was to investigate the effects of peroxisome proliferator-activated receptor {delta} (PPAR{delta}) activation on lipid oxidation, mitochondrial function, and insulin secretion in pancreatic {beta}-cells. After HIT-T15 cells (a {beta}-cell line) were exposed to high concentrations of palmitate and GW501516 (GW; a selective agonist of PPAR{delta}), we found that administration of GW increased the expression of PPAR{delta} mRNA. GW-induced activation of PPAR{delta} up-regulated carnitine palmitoyltransferase 1 (CPT1), long-chain acyl-CoA dehydrogenase (LCAD), pyruvate dehydrogenase kinase 4 (PDK4), and uncoupling protein 2 (UCP2); alleviated mitochondrial swelling; attenuated apoptosis; and reduced basal insulin secretion induced by increased palmitate in HIT cells. These results suggest that activation of PPAR{delta} plays an important role in protecting pancreatic {beta}-cells against aberrations caused by lipotoxicity in metabolic syndrome and diabetes.

  13. Coactivators in PPAR-Regulated Gene Expression

    PubMed Central

    Viswakarma, Navin; Jia, Yuzhi; Bai, Liang; Vluggens, Aurore; Borensztajn, Jayme; Xu, Jianming; Reddy, Janardan K.

    2010-01-01

    Peroxisome proliferator-activated receptor (PPAR)α, β (also known as δ), and γ function as sensors for fatty acids and fatty acid derivatives and control important metabolic pathways involved in the maintenance of energy balance. PPARs also regulate other diverse biological processes such as development, differentiation, inflammation, and neoplasia. In the nucleus, PPARs exist as heterodimers with retinoid X receptor-α bound to DNA with corepressor molecules. Upon ligand activation, PPARs undergo conformational changes that facilitate the dissociation of corepressor molecules and invoke a spatiotemporally orchestrated recruitment of transcription cofactors including coactivators and coactivator-associated proteins. While a given nuclear receptor regulates the expression of a prescribed set of target genes, coactivators are likely to influence the functioning of many regulators and thus affect the transcription of many genes. Evidence suggests that some of the coactivators such as PPAR-binding protein (PBP/PPARBP), thyroid hormone receptor-associated protein 220 (TRAP220), and mediator complex subunit 1 (MED1) may exert a broader influence on the functions of several nuclear receptors and their target genes. Investigations into the role of coactivators in the function of PPARs should strengthen our understanding of the complexities of metabolic diseases associated with energy metabolism. PMID:20814439

  14. PPARs: Protectors or Opponents of Myocardial Function?

    PubMed Central

    Pol, Christine J.; Lieu, Melissa; Drosatos, Konstantinos

    2015-01-01

    Over 5 million people in the United States suffer from the complications of heart failure (HF), which is a rapidly expanding health complication. Disorders that contribute to HF include ischemic cardiac disease, cardiomyopathies, and hypertension. Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor family. There are three PPAR isoforms: PPARα, PPARγ, and PPARδ. They can be activated by endogenous ligands, such as fatty acids, as well as by pharmacologic agents. Activators of PPARs are used for treating several metabolic complications, such as diabetes and hyperlipidemia that are directly or indirectly associated with HF. However, some of these drugs have adverse effects that compromise cardiac function. This review article aims to summarize the current basic and clinical research findings of the beneficial or detrimental effects of PPAR biology on myocardial function. PMID:26713088

  15. Involvement of PPAR receptors in the anticonvulsant effects of a cannabinoid agonist, WIN 55,212-2.

    PubMed

    Payandemehr, Borna; Ebrahimi, Ali; Gholizadeh, Ramtin; Rahimian, Reza; Varastehmoradi, Bardia; Gooshe, Maziar; Aghaei, Hossein Nayeb; Mousavizadeh, Kazem; Dehpour, Ahmad Reza

    2015-03-01

    Cannabinoid and PPAR receptors show well established interactions in a set of physiological effects. Regarding the seizure-modulating properties of both classes of receptors, the present study aimed to evaluate the roles of the PPAR-gamma, PPAR-alpha and CB1 receptors on the anticonvulsant effects of WIN 55,212-2 (WIN, a non selective cannabinoid agonist). The clonic seizure thresholds after intravenous administration of pentylenetetrazole (PTZ) were assessed in mice weighing 23-30 g. WIN increased the seizure threshold dose dependently. Pretreatment with pioglitazone, as a PPARγ agonist, potentiated the anticonvulsant effects of WIN, while PPARγ antagonist inhibited these anticonvulsant effects partially. On the other hand PPARα antagonist reduced the anticonvulsant effects of WIN significantly. Finally the combination of CB1 antagonist and PPARα antagonist could completely block the anticonvulsant properties of WIN. Taken together, these results show for the first time that a functional interaction exists between cannabinoid and PPAR receptors in the modulation of seizure susceptibility. PMID:25448777

  16. Induction of mitochondrial biogenesis and respiration is associated with mTOR regulation in hepatocytes of rats treated with the pan-PPAR activator tetradecylthioacetic acid (TTA)

    SciTech Connect

    Hagland, Hanne R.; Nilsson, Linn I.H.; Burri, Lena; Nikolaisen, Julie; Berge, Rolf K.; Tronstad, Karl J.

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer We investigated mechanisms of mitochondrial regulation in rat hepatocytes. Black-Right-Pointing-Pointer Tetradecylthioacetic acid (TTA) was employed to activate mitochondrial oxidation. Black-Right-Pointing-Pointer Mitochondrial biogenesis and respiration were induced. Black-Right-Pointing-Pointer It was confirmed that PPAR target genes were induced. Black-Right-Pointing-Pointer The mechanism involved activation mTOR. -- Abstract: The hypolipidemic effect of peroxisome proliferator-activated receptor (PPAR) activators has been explained by increasing mitochondrial fatty acid oxidation, as observed in livers of rats treated with the pan-PPAR activator tetradecylthioacetic acid (TTA). PPAR-activation does, however, not fully explain the metabolic adaptations observed in hepatocytes after treatment with TTA. We therefore characterized the mitochondrial effects, and linked this to signalling by the metabolic sensor, the mammalian target of rapamycin (mTOR). In hepatocytes isolated from TTA-treated rats, the changes in cellular content and morphology were consistent with hypertrophy. This was associated with induction of multiple mitochondrial biomarkers, including mitochondrial DNA, citrate synthase and mRNAs of mitochondrial proteins. Transcription analysis further confirmed activation of PPAR{alpha}-associated genes, in addition to genes related to mitochondrial biogenesis and function. Analysis of mitochondrial respiration revealed that the capacity of both electron transport and oxidative phosphorylation were increased. These effects coincided with activation of the stress related factor, ERK1/2, and mTOR. The protein level and phosphorylation of the downstream mTOR actors eIF4G and 4E-BP1 were induced. In summary, TTA increases mitochondrial respiration by inducing hypertrophy and mitochondrial biogenesis in rat hepatocytes, via adaptive regulation of PPARs as well as mTOR.

  17. Hydroxyeicosapentaenoic acids from the Pacific krill show high ligand activities for PPARs[S

    PubMed Central

    Yamada, Hidetoshi; Oshiro, Eriko; Kikuchi, Sayaka; Hakozaki, Mayuka; Takahashi, Hideyuki; Kimura, Ken-ichi

    2014-01-01

    PPARs regulate the expression of genes for energy metabolism in a ligand-dependent manner. PPARs can influence fatty acid oxidation, the level of circulating triglycerides, glucose uptake and insulin sensitivity. Here, we demonstrate that 5-hydroxyeicosapentaenoic acid (HEPE), 8-HEPE, 9-HEPE, 12-HEPE and 18-HEPE (hydroxylation products of EPA) obtained from methanol extracts of Pacific krill (Euphausia pacifica) can act as PPAR ligands. Two of these products, 8-HEPE and 9-HEPE, enhanced the transcription levels of GAL4-PPARs to a significantly greater extent than 5-HEPE, 12-HEPE, 18-HEPE, EPA, and EPA ethyl-ester. 8-HEPE also activated significantly higher transcription of GAL4-PPARα, GAL4-PPARγ, and GAL4-PPARδ than EPA at concentrations greater than 4, 64, and 64 μM, respectively. We also demonstrated that 8-HEPE increased the expression levels of genes regulated by PPARs in FaO, 3T3-F442A, and C2C12 cells. Furthermore, 8-HEPE enhanced adipogenesis and glucose uptake. By contrast, at the same concentrations, EPA showed weak or little effect, indicating that 8-HEPE was the more potent inducer of physiological effects. PMID:24668940

  18. Combined Treatment With Peroxisome Proliferator-Activated Receptor (PPAR) Gamma Ligands and Gamma Radiation Induces Apoptosis by PPARγ-Independent Up-Regulation of Reactive Oxygen Species-Induced Deoxyribonucleic Acid Damage Signals in Non-Small Cell Lung Cancer Cells

    SciTech Connect

    Han, Eun Jong; Im, Chang-Nim; Park, Seon Hwa; Moon, Eun-Yi; Hong, Sung Hee

    2013-04-01

    Purpose: To investigate possible radiosensitizing activities of the well-known peroxisome proliferator-activated receptor (PPAR)γ ligand ciglitazone and novel PPARγ ligands CAY10415 and CAY10506 in non-small cell lung cancer (NSCLC) cells. Methods and Materials: Radiosensitivity was assessed using a clonogenic cell survival assay. To investigate the mechanism underlying PPARγ ligand-induced radiosensitization, the subdiploid cellular DNA fraction was analyzed by flow cytometry. Activation of the caspase pathway by combined PPARγ ligands and γ-radiation treatment was detected by immunoblot analysis. Reactive oxygen species (ROS) were measured using 2,7-dichlorodihydrofluorescein diacetate and flow cytometry. Results: The 3 PPARγ ligands induced cell death and ROS generation in a PPARγ-independent manner, enhanced γ-radiation–induced apoptosis and caspase-3–mediated poly (ADP-ribose) polymerase (PARP) cleavage in vitro. The combined PPARγ ligand/γ-radiation treatment triggered caspase-8 activation, and this initiator caspase played an important role in the combination-induced apoptosis. Peroxisome proliferator-activated receptor-γ ligands may enhance the γ-radiation-induced DNA damage response, possibly by increasing γ-H2AX expression. Moreover, the combination treatment significantly increased ROS generation, and the ROS scavenger N-acetylcysteine inhibited the combined treatment-induced ROS generation and apoptotic cell death. Conclusions: Taken together, these results indicated that the combined treatment of PPARγ ligands and γ-radiation synergistically induced DNA damage and apoptosis, which was regulated by ROS.

  19. IP-receptor and PPARs trigger the conversion of human white to brite adipocyte induced by carbaprostacyclin.

    PubMed

    Ghandour, Rayane A; Giroud, Maude; Vegiopoulos, Alexandros; Herzig, Stephan; Ailhaud, Gérard; Amri, Ez-Zoubir; Pisani, Didier F

    2016-04-01

    Brite adipocytes recently discovered in humans are of considerable importance in energy expenditure by converting energy excess into heat. This property could be useful in the treatment of obesity, and nutritional aspects are relevant to this important issue. Using hMADS cells as a human cell model which undergoes a white to a brite adipocyte conversion, we had shown previously that arachidonic acid, the major metabolite of the essential nutrient Ω6-linoleic acid, plays a major role in this process. Its metabolites PGE2 and PGF2 alpha inhibit this process via a calcium-dependent pathway, whereas in contrast carbaprostacyclin (cPGI2), a stable analog of prostacyclin, activates white to brite adipocyte conversion. Herein, we show that cPGI2 generates via its cognate cell-surface receptor IP-R, a cyclic AMP-signaling pathway involving PKA activity which in turn induces the expression of UCP1. In addition, cPGI2 activates the pathway of nuclear receptors of the PPAR family, i.e. PPARα and PPARγ, which act separately from IP-R to up-regulate the expression of key genes involved in the function of brite adipocytes. Thus dual pathways are playing in concert for the occurrence of a browning process of human white adipocytes. These results make prostacyclin analogs as a new class of interesting molecules to treat obesity and associated diseases. PMID:26775637

  20. Hesperidin produces cardioprotective activity via PPAR-γ pathway in ischemic heart disease model in diabetic rats.

    PubMed

    Agrawal, Yogeeta O; Sharma, Pankaj Kumar; Shrivastava, Birendra; Ojha, Shreesh; Upadhya, Harshita M; Arya, Dharamvir Singh; Goyal, Sameer N

    2014-01-01

    The present study investigated the effect of hesperidin, a natural flavonoid, in cardiac ischemia and reperfusion (I/R) injury in diabetic rats. Male Wistar rats with diabetes were divided into five groups and were orally administered saline once daily (IR-sham and IR-control), Hesperidin (100 mg/kg/day; IR-Hesperidin), GW9962 (PPARreceptor antagonist), or combination of both for 14 days. On the 15th day, in the IR-control and IR-treatment groups, rats were subjected to left anterior descending (LAD) coronary artery occlusion for 45 minutes followed by a one-hour reperfusion. Haemodynamic parameters were recorded and rats were sacrificed; hearts were isolated for biochemical, histopathological, ultrastructural and immunohistochemistry. In the IR-control group, significant ventricular dysfunctions were observed along with enhanced expression of pro-apoptotic protein Bax. A decline in cardiac injury markers lactate dehydrogenase activity, CK-MB and increased content of thiobarbituric acid reactive substances, a marker of lipid peroxidation, and TNF-α were observed. Hesperidin pretreatment significantly improved mean arterial pressure, reduced left ventricular end-diastolic pressure, and improved both inotropic and lusitropic function of the heart (+LVdP/dt and -LVdP/dt) as compared to IR-control. Furthermore, hesperidin treatment significantly decreased the level of thiobarbituric acid reactive substances and reversed the activity of lactate dehydrogenase towards normal value. Hesperidin showed anti-apoptotic effects by upregulating Bcl-2 protein and decreasing Bax protein expression. Additionally, histopathological and ultrastructural studies reconfirmed the protective action of hesperidin. On the other hand, GW9662, selective PPARreceptor antagonist, produced opposite effects and attenuated the hesperidin induced improvements. The study for the first time evidence the involvement of PPAR-γ pathway in the cardioprotective activity of hesperidin in I

  1. Hesperidin Produces Cardioprotective Activity via PPAR-γ Pathway in Ischemic Heart Disease Model in Diabetic Rats

    PubMed Central

    Agrawal, Yogeeta O.; Sharma, Pankaj Kumar; Shrivastava, Birendra; Ojha, Shreesh; Upadhya, Harshita M.; Arya, Dharamvir Singh; Goyal, Sameer N.

    2014-01-01

    The present study investigated the effect of hesperidin, a natural flavonoid, in cardiac ischemia and reperfusion (I/R) injury in diabetic rats. Male Wistar rats with diabetes were divided into five groups and were orally administered saline once daily (IR-sham and IR-control), Hesperidin (100 mg/kg/day; IR-Hesperidin), GW9962 (PPARreceptor antagonist), or combination of both for 14 days. On the 15th day, in the IR-control and IR-treatment groups, rats were subjected to left anterior descending (LAD) coronary artery occlusion for 45 minutes followed by a one-hour reperfusion. Haemodynamic parameters were recorded and rats were sacrificed; hearts were isolated for biochemical, histopathological, ultrastructural and immunohistochemistry. In the IR-control group, significant ventricular dysfunctions were observed along with enhanced expression of pro-apoptotic protein Bax. A decline in cardiac injury markers lactate dehydrogenase activity, CK-MB and increased content of thiobarbituric acid reactive substances, a marker of lipid peroxidation, and TNF-α were observed. Hesperidin pretreatment significantly improved mean arterial pressure, reduced left ventricular end-diastolic pressure, and improved both inotropic and lusitropic function of the heart (+LVdP/dt and –LVdP/dt) as compared to IR-control. Furthermore, hesperidin treatment significantly decreased the level of thiobarbituric acid reactive substances and reversed the activity of lactate dehydrogenase towards normal value. Hesperidin showed anti-apoptotic effects by upregulating Bcl-2 protein and decreasing Bax protein expression. Additionally, histopathological and ultrastructural studies reconfirmed the protective action of hesperidin. On the other hand, GW9662, selective PPARreceptor antagonist, produced opposite effects and attenuated the hesperidin induced improvements. The study for the first time evidence the involvement of PPAR-γ pathway in the cardioprotective activity of hesperidin in I

  2. Molecular Recognition of Agonist and Antagonist for Peroxisome Proliferator-Activated Receptor-α Studied by Molecular Dynamics Simulations

    PubMed Central

    Liu, Mengyuan; Wang, Lushan; Zhao, Xian; Sun, Xun

    2014-01-01

    Peroxisome proliferator activated receptor-α (PPAR-α) is a ligand-activated transcription factor which plays important roles in lipid and glucose metabolism. The aim of this work is to find residues which selectively recognize PPAR-α agonists and antagonists. To achieve this aim, PPAR-α/13M and PPAR-α/471 complexes were subjected to perform molecular dynamics simulations. This research suggests that several key residues only participate in agonist recognition, while some other key residues only contribute to antagonist recognition. It is hoped that such work is useful for medicinal chemists to design novel PPAR-α agonists and antagonists. PMID:24837836

  3. Transforming growth factor-{beta} inhibits CCAAT/enhancer-binding protein expression and PPAR{gamma} activity in unloaded bone marrow stromal cells

    SciTech Connect

    Ahdjoudj, S.; Kaabeche, K.; Holy, X.; Fromigue, O.; Modrowski, D.; Zerath, E.; Marie, P.J. . E-mail: pierre.marie@larib.inserm.fr

    2005-02-01

    The molecular mechanisms regulating the adipogenic differentiation of bone marrow stromal cells in vivo remain largely unknown. In this study, we investigated the regulatory effects of transforming growth factor beta-2 (TGF-{beta}2) on transcription factors involved in adipogenic differentiation induced by hind limb suspension in rat bone marrow stromal cells in vivo. Time course real-time quantitative reverse-transcription polymerase chain reaction (RT-PCR) analysis of gene expression showed that skeletal unloading progressively increases the expression of CCAAT/enhancer-binding protein (C/EBP){alpha} and C/EBP{beta} {alpha} at 5 days in bone marrow stromal cells resulting in increased peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}2) transcripts at 7 days. TGF-{beta}2 administration in unloaded rats corrected the rise in C/EBP{alpha} and C/EBP{beta} transcripts induced by unloading in bone marrow stromal cells. This resulted in inhibition of PPAR{gamma}2 expression that was associated with increased Runx2 expression. Additionally, the inhibition of C/EBP{alpha} and C/EBP{beta} expression by TGF-{beta}2 was associated with increased PPAR{gamma} serine phosphorylation in bone marrow stromal cells, a mechanism that inhibits PPAR{gamma} transactivating activity. The sequential inhibitory effect of TGF-{beta}2 on C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma}2 resulted in reduced LPL expression and abolition of bone marrow stromal cell adipogenic differentiation, which contributed to prevent bone loss induced by skeletal unloading. We conclude that TGF-{beta}2 inhibits the excessive adipogenic differentiation of bone marrow stromal cells induced by skeletal unloading by inhibiting C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma} expression and activity, which provides a sequential mechanism by which TGF-{beta}2 regulates adipogenic differentiation of bone marrow stromal cells in vivo.

  4. The Current Knowledge of the Role of PPAR in Hepatic Ischemia-Reperfusion Injury

    PubMed Central

    Elias-Miró, M.; Jiménez-Castro, M. B.; Mendes-Braz, M.; Casillas-Ramírez, A.; Peralta, C.

    2012-01-01

    Strategies to improve the viability of steatotic livers could reduce the risk of dysfunction after surgery and increase the number of organs suitable for transplantation. Peroxisome proliferator-activated receptors (PPARs) are major regulators of lipid metabolism and inflammation. In this paper, we review the PPAR signaling pathways and present some of their lesser-known functions in liver regeneration. Potential therapies based on PPAR regulation will be discussed. The data suggest that further investigations are required to elucidate whether PPAR could be a potential therapeutic target in liver surgery and to determine the most effective therapies that selectively regulate PPAR with minor side effects. PMID:22675337

  5. Thyroid hormone receptors regulate adipogenesis and carcinogenesis via crosstalk signaling with peroxisome proliferator-activated receptors

    PubMed Central

    Lu, Changxue; Cheng, Sheue-Yann

    2012-01-01

    Peroxisome proliferator-activated receptors (PPARs) and thyroid hormone receptors (TRs) are members of the nuclear receptor superfamily. They are ligand-dependent transcription factors that interact with their cognate hormone response elements in the promoters to regulate respective target gene expression to modulate cellular functions. While the transcription activity of each is regulated by their respective ligands, recent studies indicate that via multiple mechanisms PPARs and TRs crosstalk to affect diverse biological functions. Here, we review recent advances in the understanding of the molecular mechanisms and biological impact of crosstalk between these two important nuclear receptors, focusing on their roles in adipogenesis and carcinogenesis. PMID:19741045

  6. Peroxisome proliferator-activated receptors in the cardiovascular system

    PubMed Central

    Bishop-Bailey, David

    2000-01-01

    Peroxisome proliferator-activated receptor (PPAR)s are a family of three nuclear hormone receptors, PPARα, -δ, and -γ, which are members of the steriod receptor superfamily. The first member of the family (PPARα) was originally discovered as the mediator by which a number of xenobiotic drugs cause peroxisome proliferation in the liver. Defined functions for all these receptors, until recently, mainly concerned their ability to regulate energy balance, with PPARα being involved in β-oxidation pathways, and PPARγ in the differentiation of adipocytes. Little is known about the functions of PPARδ, though it is the most ubiquitously expressed. Since their discovery, PPARs have been shown to be expressed in monocytes/macrophages, the heart, vascular smooth muscle cells, endothelial cells, and in atherosclerotic lesions. Furthermore, PPARs can be activated by a vast number of compounds including synthetic drugs, of the clofibrate, and anti-diabetic thiazoldinedione classes, polyunsaturated fatty acids, and a number of eicosanoids, including prostaglandins, lipoxygenase products, and oxidized low density lipoprotein. This review will aim to introduce the field of PPAR nuclear hormone receptors, and discuss the discovery and actions of PPARs in the cardiovascular system, as well as the source of potential ligands. PMID:10696077

  7. Common angiotensin receptor blockers may directly modulate the immune system via VDR, PPAR and CCR2b

    PubMed Central

    Marshall, Trevor G; Lee, Robert E; Marshall, Frances E

    2006-01-01

    Background There have been indications that common Angiotensin Receptor Blockers (ARBs) may be exerting anti-inflammatory actions by directly modulating the immune system. We decided to use molecular modelling to rapidly assess which of the potential targets might justify the expense of detailed laboratory validation. We first studied the VDR nuclear receptor, which is activated by the secosteroid hormone 1,25-dihydroxyvitamin-D. This receptor mediates the expression of regulators as ubiquitous as GnRH (Gonadatrophin hormone releasing hormone) and the Parathyroid Hormone (PTH). Additionally we examined Peroxisome Proliferator-Activated Receptor Gamma (PPARgamma), which affects the function of phagocytic cells, and the C-CChemokine Receptor, type 2b, (CCR2b), which recruits monocytes to the site of inflammatory immune challenge. Results Telmisartan was predicted to strongly antagonize (Ki≈0.04nmol) the VDR. The ARBs Olmesartan, Irbesartan and Valsartan (Ki≈10 nmol) are likely to be useful VDR antagonists at typical in-vivo concentrations. Candesartan (Ki≈30 nmol) and Losartan (Ki≈70 nmol) may also usefully inhibit the VDR. Telmisartan is a strong modulator of PPARgamma (Ki≈0.3 nmol), while Losartan (Ki≈3 nmol), Irbesartan (Ki≈6 nmol), Olmesartan and Valsartan (Ki≈12 nmol) also seem likely to have significant PPAR modulatory activity. Olmesartan andIrbesartan (Ki≈9 nmol) additionally act as antagonists of a theoretical modelof CCR2b. Initial validation of this CCR2b model was performed, and a proposed model for the AngiotensinII Type1 receptor (AT2R1) has been presented. Conclusion Molecular modeling has proven valuable to generate testable hypotheses concerning receptor/ligand binding and is an important tool in drug design. ARBs were designed to act as antagonists for AT2R1, and it was not surprising to discover their affinity for the structurally similar CCR2b. However, this study also found evidence that ARBs modulate the activation of two key

  8. Peroxisome proliferator-activated receptor gamma overexpression suppresses proliferation of human colon cancer cells

    SciTech Connect

    Tsukahara, Tamotsu; Haniu, Hisao

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer We examined the correlation between PPAR{gamma} expression and cell proliferation. Black-Right-Pointing-Pointer PPAR{gamma} overexpression reduces cell viability. Black-Right-Pointing-Pointer We show the synergistic effect of cell growth inhibition by a PPAR{gamma} agonist. -- Abstract: Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) plays an important role in the differentiation of intestinal cells and tissues. Our previous reports indicate that PPAR{gamma} is expressed at considerable levels in human colon cancer cells. This suggests that PPAR{gamma} expression may be an important factor for cell growth regulation in colon cancer. In this study, we investigated PPAR{gamma} expression in 4 human colon cancer cell lines, HT-29, LOVO, DLD-1, and Caco-2. Real-time polymerase chain reaction (PCR) and Western blot analysis revealed that the relative levels of PPAR{gamma} mRNA and protein in these cells were in the order HT-29 > LOVO > Caco-2 > DLD-1. We also found that PPAR{gamma} overexpression promoted cell growth inhibition in PPAR{gamma} lower-expressing cell lines (Caco-2 and DLD-1), but not in higher-expressing cells (HT-29 and LOVO). We observed a correlation between the level of PPAR{gamma} expression and the cells' sensitivity for proliferation.

  9. Reversal of the deleterious effects of chronic dietary HFCS-55 intake by PPAR-δ agonism correlates with impaired NLRP3 inflammasome activation.

    PubMed

    Collino, Massimo; Benetti, Elisa; Rogazzo, Mara; Mastrocola, Raffaella; Yaqoob, Muhammed M; Aragno, Manuela; Thiemermann, Christoph; Fantozzi, Roberto

    2013-01-15

    Although high-fructose corn syrup (HFCS-55) is the major sweetener in foods and soft-drinks, its potential role in the pathophysiology of diabetes and obesity ("diabesity") remains unclear. Peroxisome-proliferator activated receptor (PPAR)-δ agonists have never been tested in models of sugar-induced metabolic abnormalities. This study was designed to evaluate (i) the metabolic and renal consequences of HFCS-55 administration (15% wt/vol in drinking water) for 30 weeks on male C57Bl6/J mice and (ii) the effects of the selective PPAR-δ agonist GW0742 (1 mg/kg/day for 16 weeks) in this condition. HFCS-55 caused (i) hyperlipidemia, (ii) insulin resistance, and (iii) renal injury/inflammation. In the liver, HFCS-55 enhanced the expression of fructokinase resulting in hyperuricemia and caused abnormalities in known insulin-driven signaling events. In the kidney, HFCS-55 enhanced the expression of the NLRP3 (nucleotide-binding domain and leucine-rich-repeat-protein 3) inflammasome complex, resulting in caspase-1 activation and interleukin-1β production. All of the above effects of HFCS-55 were attenuated by the specific PPAR-δ agonist GW0742. Thus, we demonstrate for the first time that the specific PPAR-δ agonist GW0742 attenuates the metabolic abnormalities and the renal dysfunction/inflammation caused by chronic HFCS-55 exposure by preventing upregulation of fructokinase (liver) and activation of the NLRP3 inflammasome (kidney). PMID:23103566

  10. Activating effect of benzbromarone, a uricosuric drug, on peroxisome proliferator-activated receptors.

    PubMed

    Kunishima, Chiyoko; Inoue, Ikuo; Oikawa, Toshihiro; Nakajima, Hiromu; Komoda, Tsugikazu; Katayama, Shigehiro

    2007-01-01

    Benzbromarone, a uricosuric drug, reportedly causes hepatic hypertrophy accompanied by proliferation of peroxisomes in rats. To elucidate the mechanisms underlying induction of peroxisome proliferation by benzbromarone, we examined binding affinity for peroxisome proliferator-activated receptor alpha (PPARalpha) and gamma (PPARgamma), and effects on the binding activity of PPARs with peroxisome proliferation-responsive element (PPRE) and expression of the PPARs target protein. Binding affinity of benzbromarone for PPARalpha and PPARgamma was examined by reporter gene assay. Binding activity of PPARs with PPRE was determined by electric mobility shift assay, and expression of lipoprotein lipase (LPL) and acyl-CoA synthetase (ACS) by Western blot method. Benzbromarone displayed affinity for PPARalpha and PPARgamma, and promoted binding of PPARs to PPRE. Furthermore, cultured cells with benzbromarone added showed upregulated expression of LPL and ACS. These results suggest that benzbromarone induces peroxisome proliferation in hepatocytes by binding to PPARs, and controls expression of proteins related to lipid metabolism. PMID:18274627

  11. Activating Effect of Benzbromarone, a Uricosuric Drug, on Peroxisome Proliferator-Activated Receptors

    PubMed Central

    Kunishima, Chiyoko; Inoue, Ikuo; Oikawa, Toshihiro; Nakajima, Hiromu; Komoda, Tsugikazu; Katayama, Shigehiro

    2007-01-01

    Benzbromarone, a uricosuric drug, reportedly causes hepatic hypertrophy accompanied by proliferation of peroxisomes in rats. To elucidate the mechanisms underlying induction of peroxisome proliferation by benzbromarone, we examined binding affinity for peroxisome proliferator-activated receptor α (PPARα) and γ (PPARγ), and effects on the binding activity of PPARs with peroxisome proliferation-responsive element (PPRE) and expression of the PPARs target protein. Binding affinity of benzbromarone for PPARα and PPARγ was examined by reporter gene assay. Binding activity of PPARs with PPRE was determined by electric mobility shift assay, and expression of lipoprotein lipase (LPL) and acyl-CoA synthetase (ACS) by Western blot method. Benzbromarone displayed affinity for PPARα and PPARγ, and promoted binding of PPARs to PPRE. Furthermore, cultured cells with benzbromarone added showed upregulated expression of LPL and ACS. These results suggest that benzbromarone induces peroxisome proliferation in hepatocytes by binding to PPARs, and controls expression of proteins related to lipid metabolism. PMID:18274627

  12. Structural Basis for Iloprost as a Dual Peroxisome Proliferator-activated Receptor [alpha/delta] Agonist

    SciTech Connect

    Jin, Lihua; Lin, Shengchen; Rong, Hui; Zheng, Songyang; Jin, Shikan; Wang, Rui; Li, Yong

    2012-03-15

    Iloprost is a prostacyclin analog that has been used to treat many vascular conditions. Peroxisome proliferator-activated receptors (PPARs) are ligand-regulated transcription factors with various important biological effects such as metabolic and cardiovascular physiology. Here, we report the crystal structures of the PPAR{alpha} ligand-binding domain and PPAR{delta} ligand-binding domain bound to iloprost, thus providing unambiguous evidence for the direct interaction between iloprost and PPARs and a structural basis for the recognition of PPAR{alpha}/{delta} by this prostacyclin analog. In addition to conserved contacts for all PPAR{alpha} ligands, iloprost also initiates several specific interactions with PPARs using its unique structural groups. Structural and functional studies of receptor-ligand interactions reveal strong functional correlations of the iloprost-PPAR{alpha}/{delta} interactions as well as the molecular basis of PPAR subtype selectivity toward iloprost ligand. As such, the structural mechanism may provide a more rational template for designing novel compounds targeting PPARs with more favorable pharmacologic impact based on existing iloprost drugs.

  13. Peroxisome proliferator-activated receptor-{gamma} as a regulator of lung inflammation and repair.

    PubMed

    Standiford, Theodore J; Keshamouni, Venkateshwar G; Reddy, Raju C

    2005-01-01

    Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily that regulate the expression of genes involved in a variety of biological processes, including lipid metabolism and insulin sensitivity. Members of the PPAR family-in particular, PPAR-gamma-have more recently been shown to broadly regulate inflammatory and reparative responses. PPAR-gamma is expressed in both alveolar macrophages and neutrophils, and the ligand-dependent activation of this receptor results in suppression of leukocyte effector responses, including cytokine production, the elaboration of reactive oxygen and nitrogen species, and migratory responses. In addition to antiinflammatory effects, PPAR-gamma regulates diverse processes in lung stromal/parenchymal cells, including cell growth, differentiation, and apoptosis. Studies examining in vivo effects of PPAR-gamma have produced complex and at times conflicting results. However, evidence to date generally suggests that PPAR-gamma functions to dampen inflammation and injury in various animal models of acute lung injury. PPAR-gamma may also play an important role in other inflammatory/immune lung diseases, including ischemia-reperfusion injury, allergic airway inflammation, and cancer. The role of PPAR-gamma in human lung diseases, including acute lung injury, requires further study. PMID:16222042

  14. PPARs and Xenobiotic-Induced Adverse Effects:Relevance to Human Health

    EPA Science Inventory

    The peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor superfamily that act as transcription factors and play important roles in the regulation ofa variety of biological processes, such as adipocyte proliferation and differentiation, glucose h...

  15. Minireview: Challenges and opportunities in development of PPAR agonists.

    PubMed

    Wright, Matthew B; Bortolini, Michele; Tadayyon, Moh; Bopst, Martin

    2014-11-01

    The clinical impact of the fibrate and thiazolidinedione drugs on dyslipidemia and diabetes is driven mainly through activation of two transcription factors, peroxisome proliferator-activated receptors (PPAR)-α and PPAR-γ. However, substantial differences exist in the therapeutic and side-effect profiles of specific drugs. This has been attributed primarily to the complexity of drug-target complexes that involve many coregulatory proteins in the context of specific target gene promoters. Recent data have revealed that some PPAR ligands interact with other non-PPAR targets. Here we review concepts used to develop new agents that preferentially modulate transcriptional complex assembly, target more than one PPAR receptor simultaneously, or act as partial agonists. We highlight newly described on-target mechanisms of PPAR regulation including phosphorylation and nongenomic regulation. We briefly describe the recently discovered non-PPAR protein targets of thiazolidinediones, mitoNEET, and mTOT. Finally, we summarize the contributions of on- and off-target actions to select therapeutic and side effects of PPAR ligands including insulin sensitivity, cardiovascular actions, inflammation, and carcinogenicity. PMID:25148456

  16. Amplified inhibition of stellate cell activation pathways by PPAR-γ, RAR and RXR agonists.

    PubMed

    Sharvit, Efrat; Abramovitch, Shirley; Reif, Shimon; Bruck, Rafael

    2013-01-01

    Peroxisome proliferator activator receptors (PPAR) ligands such as 15-Δ12,13-prostaglandin L(2) [PJ] and all trans retinoic acid (ATRA) have been shown to inhibit the development of liver fibrosis. The role of ligands of retinoic X receptor (RXR) and its ligand, 9-cis, is less clear. The purpose of this study was to investigate the effects of combined treatment of the three ligends, PJ, ATRA and 9-cis, on key events during liver fibrosis in rat primary hepatic stellate cells (HSCs). We found that the anti-proliferative effect of the combined treatment of PJ, ATRA and 9-cis on HSCs was additive. Further experiments revealed that this inhibition was due to cell cycle arrest at the G0/G1 phase as demonstrated by FACS analysis. In addition, the combined treatment reduced cyclin D1 expression and increased p21 and p27 protein levels. Furthermore, we found that the three ligands down regulated the phosphorylation of mTOR and p70(S6K). The activation of HSCs was also inhibited by the three ligands as shown by inhibition of vitamin A lipid droplets depletion from HSCs. Studies using real time PCR and western blot analysis showed marked inhibition of collagen Iα1 and αSMA by the combination of the three ligands. These findings suggest that the combined use of PJ, ATRA and 9-cis causes inhibition of cell proliferation by cell cycle arrest and down-regulation of fibrotic markers to a greater extent compared to each of the ligands alone. PMID:24098526

  17. PPAR{gamma} regulates the expression of cholesterol metabolism genes in alveolar macrophages

    SciTech Connect

    Baker, Anna D.; Malur, Anagha; Barna, Barbara P.; Kavuru, Mani S.; Malur, Achut G.; Thomassen, Mary Jane

    2010-03-19

    Peroxisome proliferator-activated receptor-gamma (PPAR{gamma}) is a nuclear transcription factor involved in lipid metabolism that is constitutively expressed in the alveolar macrophages of healthy individuals. PPAR{gamma} has recently been implicated in the catabolism of surfactant by alveolar macrophages, specifically the cholesterol component of surfactant while the mechanism remains unclear. Studies from other tissue macrophages have shown that PPAR{gamma} regulates cholesterol influx, efflux, and metabolism. PPAR{gamma} promotes cholesterol efflux through the liver X receptor-alpha (LXR{alpha}) and ATP-binding cassette G1 (ABCG1). We have recently shown that macrophage-specific PPAR{gamma} knockout (PPAR{gamma} KO) mice accumulate cholesterol-laden alveolar macrophages that exhibit decreased expression of LXR{alpha} and ABCG1 and reduced cholesterol efflux. We hypothesized that in addition to the dysregulation of these cholesterol efflux genes, the expression of genes involved in cholesterol synthesis and influx was also dysregulated and that replacement of PPAR{gamma} would restore regulation of these genes. To investigate this hypothesis, we have utilized a Lentivirus expression system (Lenti-PPAR{gamma}) to restore PPAR{gamma} expression in the alveolar macrophages of PPAR{gamma} KO mice. Our results show that the alveolar macrophages of PPAR{gamma} KO mice have decreased expression of key cholesterol synthesis genes and increased expression of cholesterol receptors CD36 and scavenger receptor A-I (SRA-I). The replacement of PPAR{gamma} (1) induced transcription of LXR{alpha} and ABCG1; (2) corrected suppressed expression of cholesterol synthesis genes; and (3) enhanced the expression of scavenger receptors CD36. These results suggest that PPAR{gamma} regulates cholesterol metabolism in alveolar macrophages.

  18. PPARgene: A Database of Experimentally Verified and Computationally Predicted PPAR Target Genes.

    PubMed

    Fang, Li; Zhang, Man; Li, Yanhui; Liu, Yan; Cui, Qinghua; Wang, Nanping

    2016-01-01

    The peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors of the nuclear receptor superfamily. Upon ligand binding, PPARs activate target gene transcription and regulate a variety of important physiological processes such as lipid metabolism, inflammation, and wound healing. Here, we describe the first database of PPAR target genes, PPARgene. Among the 225 experimentally verified PPAR target genes, 83 are for PPARα, 83 are for PPARβ/δ, and 104 are for PPARγ. Detailed information including tissue types, species, and reference PubMed IDs was also provided. In addition, we developed a machine learning method to predict novel PPAR target genes by integrating in silico PPAR-responsive element (PPRE) analysis with high throughput gene expression data. Fivefold cross validation showed that the performance of this prediction method was significantly improved compared to the in silico PPRE analysis method. The prediction tool is also implemented in the PPARgene database. PMID:27148361

  19. PPARgene: A Database of Experimentally Verified and Computationally Predicted PPAR Target Genes

    PubMed Central

    Fang, Li; Zhang, Man; Li, Yanhui; Liu, Yan; Cui, Qinghua; Wang, Nanping

    2016-01-01

    The peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors of the nuclear receptor superfamily. Upon ligand binding, PPARs activate target gene transcription and regulate a variety of important physiological processes such as lipid metabolism, inflammation, and wound healing. Here, we describe the first database of PPAR target genes, PPARgene. Among the 225 experimentally verified PPAR target genes, 83 are for PPARα, 83 are for PPARβ/δ, and 104 are for PPARγ. Detailed information including tissue types, species, and reference PubMed IDs was also provided. In addition, we developed a machine learning method to predict novel PPAR target genes by integrating in silico PPAR-responsive element (PPRE) analysis with high throughput gene expression data. Fivefold cross validation showed that the performance of this prediction method was significantly improved compared to the in silico PPRE analysis method. The prediction tool is also implemented in the PPARgene database. PMID:27148361

  20. Monitoring Solution Structures of Peroxisome Proliferator-Activated Receptor β/δ upon Ligand Binding.

    PubMed

    Schwarz, Rico; Tänzler, Dirk; Ihling, Christian H; Sinz, Andrea

    2016-01-01

    Peroxisome proliferator-activated receptors (PPARs) have been intensively studied as drug targets to treat type 2 diabetes, lipid disorders, and metabolic syndrome. This study is part of our ongoing efforts to map conformational changes in PPARs in solution by a combination of chemical cross-linking and mass spectrometry (MS). To our best knowledge, we performed the first studies addressing solution structures of full-length PPAR-β/δ. We monitored the conformations of the ligand-binding domain (LBD) as well as full-length PPAR-β/δ upon binding of two agonists. (Photo-) cross-linking relied on (i) a variety of externally introduced amine- and carboxyl-reactive linkers and (ii) the incorporation of the photo-reactive amino acid p-benzoylphenylalanine (Bpa) into PPAR-β/δ by genetic engineering. The distances derived from cross-linking experiments allowed us to monitor conformational changes in PPAR-β/δ upon ligand binding. The cross-linking/MS approach proved highly advantageous to study nuclear receptors, such as PPARs, and revealed the interplay between DBD (DNA-binding domain) and LDB in PPAR-β/δ. Our results indicate the stabilization of a specific conformation through ligand binding in PPAR-β/δ LBD as well as full-length PPAR-β/δ. Moreover, our results suggest a close distance between the N- and C-terminal regions of full-length PPAR-β/δ in the presence of GW1516. Chemical cross-linking/MS allowed us gaining detailed insights into conformational changes that are induced in PPARs when activating ligands are present. Thus, cross-linking/MS should be added to the arsenal of structural methods available for studying nuclear receptors. PMID:26992147

  1. Monitoring Solution Structures of Peroxisome Proliferator-Activated Receptor β/δ upon Ligand Binding

    PubMed Central

    Schwarz, Rico; Tänzler, Dirk; Ihling, Christian H.; Sinz, Andrea

    2016-01-01

    Peroxisome proliferator-activated receptors (PPARs) have been intensively studied as drug targets to treat type 2 diabetes, lipid disorders, and metabolic syndrome. This study is part of our ongoing efforts to map conformational changes in PPARs in solution by a combination of chemical cross-linking and mass spectrometry (MS). To our best knowledge, we performed the first studies addressing solution structures of full-length PPAR-β/δ. We monitored the conformations of the ligand-binding domain (LBD) as well as full-length PPAR-β/δ upon binding of two agonists. (Photo-) cross-linking relied on (i) a variety of externally introduced amine- and carboxyl-reactive linkers and (ii) the incorporation of the photo-reactive amino acid p-benzoylphenylalanine (Bpa) into PPAR-β/δ by genetic engineering. The distances derived from cross-linking experiments allowed us to monitor conformational changes in PPAR-β/δ upon ligand binding. The cross-linking/MS approach proved highly advantageous to study nuclear receptors, such as PPARs, and revealed the interplay between DBD (DNA-binding domain) and LDB in PPAR-β/δ. Our results indicate the stabilization of a specific conformation through ligand binding in PPAR-β/δ LBD as well as full-length PPAR-β/δ. Moreover, our results suggest a close distance between the N- and C-terminal regions of full-length PPAR-β/δ in the presence of GW1516. Chemical cross-linking/MS allowed us gaining detailed insights into conformational changes that are induced in PPARs when activating ligands are present. Thus, cross-linking/MS should be added to the arsenal of structural methods available for studying nuclear receptors. PMID:26992147

  2. The balancing act - PPAR-γ's roles at the maternal-fetal interface.

    PubMed

    Kadam, Leena; Kohan-Ghadr, Hamid Reza; Drewlo, Sascha

    2015-04-01

    Peroxisome proliferator-activated receptor-gamma (PPAR-γ) belongs to the nuclear hormone receptor superfamily. Apart from being involved in lipid metabolism, like its other subtypes PPAR α and β, it is implicated to be crucial for successful placentation. While its role in extravillous trophoblast (EVT) differentiation has been studied, the involvement in villous trophoblast (VT) differentiation, fatty-acid metabolism, inflammatory responses, and oxidative pathways during pregnancy deserves more attention. PPAR-γ's potential role in balancing structural development and functional responsibilities at the maternal-fetal interface suggest a more central role for the receptor. The central role of PPAR-γ in pathways related to placental pathologies suggests a potential role of PPAR-γ in placental function. The molecular regulation of PPAR-γ in this context has been widely disregarded. In this review, we discuss the less explored functions of PPAR-γ in the areas of immunological responses and management of oxidative stress in the placenta. We also shed light on the involvement of PPAR-γ in pathologic pregnancies and briefly discuss the current models in the field. The ability to modulate PPAR-γ's activity using already available drugs makes it a tempting therapeutic target. Elucidation of the molecular pathways and specific targets regulated by PPAR-γ will provide more information on the role of PPAR-γ in placentation and related disorders in pregnancy. Furthermore it will close the critical gap in our knowledge about the differential regulation of PPAR-γ in the two trophoblast lineages. This will help to evaluate the usefulness and timing of PPAR-γ modulation in at risk pregnancies to improve placental and endothelial function. PMID:25475254

  3. Hesperidin blunts streptozotocin-isoproternol induced myocardial toxicity in rats by altering of PPARreceptor.

    PubMed

    Agrawal, Yogeeta O; Sharma, Pankaj Kumar; Shrivastava, Birendra; Arya, Dharamvir Singh; Goyal, Sameer N

    2014-08-01

    Hesperidin has been shown to possess cardioprotective and anti-diabetic potential. Hitherto, its molecular mechanism on isoproterenol (ISO)-induced myocardial dysfunction in diabetes is still not explored. Hence, for the first time we sought to investigate whether hesperidin exerts any beneficial effect on the pathophysiology of myocardial infarction (MI) in diabetes through the PPAR-γ pathway by assessing a variety of indices e.g., apoptosis, hemodynamic, biochemical and histoarchitectural changes. Diabetes was induced by a single dose of STZ (50 mg/kg IP). Diabetic rats received either hesperidin (100 mg/kg/day orally), the PPAR-γ antagonist GW9662 (1 mg/kg/day IP), or both for 14 days with concurrent administration of ISO (85 mg/kg SC) on days 13 and 14. ISO-STZ rats resulted in severe myocardial dysfunction (decreased ±LVdP/dt and increased LVEDP). In addition, augmented myocardial thiobarbituric acid-reactive substances and serum troponin-I with a concomitant decrease in level of glutathione and activities of catalase, superoxide dismutase antioxidants with cardiac injury biomarkers creatine kinase-MB isoenzyme, lactate dehydrogenase were seen. Morphological studies of the ISO-STZ challenged myocardium exhibited severe necrosis, edema and inflammatory changes. In Western blot analysis, Bcl-2 and PPAR-γ expression were decreased where as Bax expression was significantly increased, suggesting role of apoptosis in myocardial dysfunction. Interestingly, hesperidin treatment positively modulated these parameters as validated by improved hemodynamic and left ventricular functions, fortified endogenous anti-oxidant defence system and improved structural integrity of the myocardium. However, significant effects were lowered in animals treated with hesperidin plus GW9662. Moreover, down-regulated PPAR-γ and Bcl-2 expressions in myocardial infarcted diabetic hearts were increased by hesperidin treatment. Hence, for the first time the present study suggests that

  4. Role of Peroxisome Proliferator-Activated Receptor γ in Ocular Diseases

    PubMed Central

    Zhang, Su; Gu, Hongwei; Hu, Nan

    2015-01-01

    Peroxisome proliferator-activated receptor γ (PPAR γ), a member of the nuclear receptor superfamily, is a ligand-activated transcription factor that plays an important role in the control of a variety of physiological processes. The last decade has witnessed an increasing interest for the role played by the agonists of PPAR γ in antiangiogenesis, antifibrosis, anti-inflammation effects and in controlling oxidative stress response in various organs. As the pathologic mechanisms of major blinding diseases, such as age-related macular degeneration (AMD), diabetic retinopathy (DR), keratitis, and optic neuropathy, often involve neoangiogenesis and inflammation- and oxidative stress-mediated cell death, evidences are accumulating on the potential benefits of PPAR γ to improve or prevent these vision threatening eye diseases. In this paper we describe what is known about the role of PPAR γ in the ocular pathophysiological processes and PPAR γ agonists as novel adjuvants in the treatment of eye diseases. PMID:26146566

  5. The liver-enriched transcription factor CREBH is nutritionally regulated and activated by fatty acids and PPAR{alpha}

    SciTech Connect

    Danno, Hirosuke; Ishii, Kiyo-aki; Nakagawa, Yoshimi; Mikami, Motoki; Yamamoto, Takashi; Yabe, Sachiko; Furusawa, Mika; Kumadaki, Shin; Watanabe, Kazuhisa; Shimizu, Hidehisa; Matsuzaka, Takashi; Kobayashi, Kazuto; Takahashi, Akimitsu; Yatoh, Shigeru; Suzuki, Hiroaki; Yamada, Nobuhiro; Shimano, Hitoshi

    2010-01-08

    To elucidate the physiological role of CREBH, the hepatic mRNA and protein levels of CREBH were estimated in various feeding states of wild and obesity mice. In the fast state, the expression of CREBH mRNA and nuclear protein were high and profoundly suppressed by refeeding in the wild-type mice. In ob/ob mice, the refeeding suppression was impaired. The diet studies suggested that CREBH expression was activated by fatty acids. CREBH mRNA levels in the mouse primary hepatocytes were elevated by addition of the palmitate, oleate and eicosapenonate. It was also induced by PPAR{alpha} agonist and repressed by PPAR{alpha} antagonist. Luciferase reporter gene assays indicated that the CREBH promoter activity was induced by fatty acids and co-expression of PPAR{alpha}. Deletion studies identified the PPRE for PPAR{alpha} activation. Electrophoretic mobility shift assay and chromatin immunoprecipitation (ChIP) assay confirmed that PPAR{alpha} directly binds to the PPRE. Activation of CREBH at fasting through fatty acids and PPAR{alpha} suggest that CREBH is involved in nutritional regulation.

  6. Peroxisome proliferator activated receptor-γ and traumatic brain injury

    PubMed Central

    Qi, Lei; Jacob, Asha; Wang, Ping; Wu, Rongqian

    2010-01-01

    Traumatic brain injury (TBI) represents a major health care problem and a significant socioeconomic challenge worldwide. No specific therapy for TBI is available. The peroxisome proliferator activated receptor-γ (PPAR-γ) belongs to the nuclear receptor superfamily. Although PPAR-γ was originally characterized in adipose tissue as a regulator of lipid and glucose metabolism, recent studies showed that PPAR-γ is present in most cell types and plays a central role in the regulation of adipogenesis, glucose homeostasis, cellular differentiation, apoptosis and inflammation. Here, we reviewed the current literature on the molecular mechanisms of PPAR-γ-related neuroprotection after TBI. Growing evidence has indicated that the beneficial effects of PPARactivation in TBI appear to be mediated through downregulation of inflammatory responses, reduction of oxidative stress, inhibition of apoptosis, and promotion of neurogenesis. A thorough understanding of the PPAR-γ pathway will be critical to the development of therapeutic interventions for the treatment of patients with TBI. PMID:21072262

  7. Gypenoside XLIX, a naturally occurring gynosaponin, PPAR-alpha dependently inhibits LPS-induced tissue factor expression and activity in human THP-1 monocytic cells

    SciTech Connect

    Huang, Tom Hsun-Wei; Van Hoan Tran; Roufogalis, Basil D.; Li Yuhao . E-mail: yuhao@pharm.usyd.edu.au

    2007-01-01

    Tissue factor (TF) is involved not only in the progression of atherosclerosis and other cardiovascular diseases, but is also associated with tumor growth, metastasis, and angiogenesis and hence may be an attractive target for directed cancer therapeutics. Gynostemma pentaphyllum (GP) is widely used in the treatment of various cardiovascular diseases including atherosclerosis, as well as cancers. Gypenoside (Gyp) XLIX, a dammarane-type glycoside, is one of the prominent components in GP. We have recently reported Gyp XLIX to be a potent peroxisome proliferator-activated receptor (PPAR)-alpha activator. Here we demonstrate that Gyp XLIX (0-300 {mu}M) concentration dependently inhibited TF promoter activity after induction by the inflammatory stimulus lipopolysaccharide (LPS) in human monocytic THP-1 cells transfected with promoter reporter constructs pTF-LUC. Furthermore, Gyp XLIX inhibited LPS-induced TF mRNA and protein overexpression in THP-1 monocyte cells. Its inhibition of LPS-induced TF hyperactivity was further confirmed by chromogenic enzyme activity assay. The activities of Gyp XLIX reported in this study were similar to those of Wy-14643, a potent synthetic PPAR-alpha activator. Furthermore, the Gyp XLIX-induced inhibitory effect on TF luciferase activity was completely abolished in the presence of the PPAR-alpha selective antagonist MK-886. The present findings suggest that Gyp XLIX inhibits LPS-induced TF overexpression and enhancement of its activity in human THP-1 monocytic cells via PPAR-alpha-dependent pathways. The data provide new insights into the basis of the use of the traditional Chinese herbal medicine G. pentaphyllum for the treatment of cardiovascular and inflammatory diseases, as well as cancers.

  8. Examination of adipose depot-specific PPAR moieties

    SciTech Connect

    Dodson, M.V.; Vierck, J.L.; Hausman, G.J.; Guan, L.L.; Fernyhough, M.E.; Poulos, S.P.; Mir, P.S.; Jiang, Z.

    2010-04-02

    Molecular mechanisms of peroxisome proliferator activated receptors (PPARs) are being defined rapidly, as illustrated by the volume of papers published. Much of the research is directed towards a clinical end-point/application; however, the non-homogeneous nature of adipose depots in laboratory animals is spurring similar research in domestic meat animals (such as beef cattle). Moreover, the size of adipose depots in meat animals remains an attractive feature for using them to obtain cells for PPAR research. Examination of meat-animal depot-specific PPAR moieties may provide novel information about adipocyte regulation that might be extrapolated to all animals.

  9. Inhibition of Macrophage CD36 Expression and Cellular Oxidized Low Density Lipoprotein (oxLDL) Accumulation by Tamoxifen: A PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR (PPAR)γ-DEPENDENT MECHANISM.

    PubMed

    Yu, Miao; Jiang, Meixiu; Chen, Yuanli; Zhang, Shuang; Zhang, Wenwen; Yang, Xiaoxiao; Li, Xiaoju; Li, Yan; Duan, Shengzhong; Han, Jihong; Duan, Yajun

    2016-08-12

    Macrophage CD36 binds and internalizes oxidized low density lipoprotein (oxLDL) to facilitate foam cell formation. CD36 expression is activated by peroxisome proliferator-activated receptor γ (PPARγ). Tamoxifen, an anti-breast cancer medicine, has demonstrated pleiotropic functions including cardioprotection with unfully elucidated mechanisms. In this study, we determined that treatment of ApoE-deficient mice with tamoxifen reduced atherosclerosis, which was associated with decreased CD36 and PPARγ expression in lesion areas. At the cellular level, we observed that tamoxifen inhibited CD36 protein expression in human THP-1 monocytes, THP-1/PMA macrophages, and human blood monocyte-derived macrophages. Associated with decreased CD36 protein expression, tamoxifen reduced cellular oxLDL accumulation in a CD36-dependent manner. At the transcriptional level, tamoxifen decreased CD36 mRNA expression, promoter activity, and the binding of the PPARγ response element in CD36 promoter to PPARγ protein. Tamoxifen blocked ligand-induced PPARγ nuclear translocation and CD36 expression, but it increased PPARγ phosphorylation, which was due to that tamoxifen-activated ERK1/2. Furthermore, deficiency of PPARγ expression in macrophages abolished the inhibitory effect of tamoxifen on CD36 expression or cellular oxLDL accumulation both in vitro and in vivo Taken together, our study demonstrates that tamoxifen inhibits CD36 expression and cellular oxLDL accumulation by inactivating the PPARγ signaling pathway, and the inhibition of macrophage CD36 expression can be attributed to the anti-atherogenic properties of tamoxifen. PMID:27358406

  10. Peroxisome Proliferator-Activated Receptor Agonist Treatment of Alcohol-Induced Hepatic Insulin Resistance

    PubMed Central

    de la Monte, Suzanne M.; Pang, Maoyin; Chaudhry, Rajeeve; Duan, Kevin; Longato, Lisa; Carter, Jade; Ouh, Jiyun; Wands, Jack R.

    2011-01-01

    Chronic ethanol exposure impairs insulin signaling in the liver. Peroxisome-proliferator activated receptor (PPAR) agonists function as insulin sensitizers and are used to treat type 2 diabetes mellitus. We examined the therapeutic effectiveness of PPAR agonists in reducing alcoholic hepatitis and hepatic insulin resistance in a model of chronic ethanol feeding. Adult male Long Evans rats were pair fed with isocaloric liquid diets containing 0% (control) or 37% ethanol (caloric content; 9.2% v/v) for 8 weeks. After 3 weeks on the diets, the rats were treated with vehicle, or a PPAR-α, PPAR-δ, or PPAR-γ agonist twice weekly by i.p. injection. Livers were harvested for histopathological, gene expression (RT-PCR), protein (Western and ELISA), and receptor binding studies. Ethanol-fed rats developed steatohepatitis with disordered hepatic chord architecture, increased hepatocellular apoptosis, reduced binding to the insulin, IGF-1, and IGF-2 receptors, and decreased expression of glyceraldehyde-3-phosphate dehydrogenase and aspartyl-(asparaginyl)-β-hydroxylase (mediates remodeling), which are regulated by insulin/IGF signaling. PPAR-α, PPAR-δ, or PPAR-γ agonist treatments reduced the severity of ethanol-mediated liver injury, including hepatic architectural disarray and steatosis. In addition, PPAR-δ and PPAR-γ agonists reduced insulin/IGF resistance and increased insulin/IGF-responsive gene expression. In conclusion, PPAR agonists may help reduce the severity of chronic ethanol-induced liver injury and insulin/IGF resistance, even in the context of continued high-level ethanol consumption. PMID:21426453

  11. Peroxisome proliferator-activated receptor ligands as antiatherogenic agents: panacea or another Pandora's box?

    PubMed

    Molavi, Behzad; Rasouli, Neda; Mehta, Jawahar L

    2002-01-01

    Peroxisome proliferator activated receptors (PPARs) are members of the nuclear receptor super family that modulate gene expression upon ligand activation. They are 3 major subtypes of PPARs: alpha, delta (also called beta), and gamma. PPAR-gamma is widely expressed in the cardiovascular system and is involved in the regulation of tissue inflammation and smooth muscle cell growth pathways as well as in lipoprotein metabolism and coagulation cascades. PPAR-gamma ligands of (e.g., rosigitazone and pioglitazone) have been shown to exert antiatherogenic effects both in vitro and in vivo. PPAR-alpha ligands (e.g., clofibrate and benzofibrate) modulate lipoprotein metabolism, and affect inflammation and coagulation cascade. These effects may be helpful in resolving the dilemma arising from studies that showed significant mortality and morbidity benefits of fibrates in the face of minimal changes in HDL-cholesterol levels. The role of PPAR-delta in atherogenesis remains largely unknown, although it appears that PPAR-delta activation affects lipoprotein metabolism. PPAR ligands appear to be promising agents in limiting atherosclerosis; however, large-scale clinical trials are required to assess their safety and efficacy before they can be added to the clinicians' arsenal of antiatherosclerotic agents. PMID:12000972

  12. The roles of peroxisome proliferator-activated receptors in the metabolic syndrome.

    PubMed

    Mansour, Mahmoud

    2014-01-01

    The epidemic of obesity and its association with insulin resistance, glucose intolerance, hypertension, and dyslipidemia, collectively known as the metabolic syndrome or syndrome X, is one of the most challenging health problems facing industrialized countries. The nuclear receptors, peroxisome proliferator-activated receptors (PPARs alpha (α), beta (β) also known as delta (δ), and gamma (γ)), have well-documented roles in lipid and glucose metabolism. Pharmacologically, PPARα is activated by fibrate hypolipidemic drugs, whereas PPARγ is activated by insulin sensitizers thiazolidinediones (TZDs). No marketed drug is yet available for PPARβ(δ). The identification of fibrates and TZDs as respective ligands for PPARα and PPARγ was a groundbreaking finding that sparked notable pharmaceutical interest in PPARs as potential drug targets for treatment of the metabolic syndrome. Limiting side effects associated with clinical use of TZDs have emerged in recent years. New and novel PPAR drugs with broad safety margins and therapeutic potentials for the metabolic syndrome are in development. These include partial, dual, or pan PPAR agonists; PPAR antagonists; and selective PPAR modulators. The objective of this chapter is to highlight the therapeutic benefits of targeting more than one PPAR subtype in the treatment of the metabolic syndrome. The pros and cons observed during clinical use of TZDs and the strategies and progress made in the production of new generations of safe and effective PPAR ligands are discussed. PMID:24373239

  13. Evolutionary Pattern and Regulation Analysis to Support Why Diversity Functions Existed within PPAR Gene Family Members

    PubMed Central

    Yan, Xiping; Wang, Guosong; Liu, Hehe; Gan, Xiang; Zhang, Tao; Wang, Jiwen; Li, Liang

    2015-01-01

    Peroxisome proliferators-activated receptor (PPAR) gene family members exhibit distinct patterns of distribution in tissues and differ in functions. The purpose of this study is to investigate the evolutionary impacts on diversity functions of PPAR members and the regulatory differences on gene expression patterns. 63 homology sequences of PPAR genes from 31 species were collected and analyzed. The results showed that three isolated types of PPAR gene family may emerge from twice times of gene duplication events. The conserved domains of HOLI (ligand binding domain of hormone receptors) domain and ZnF_C4 (C4 zinc finger in nuclear in hormone receptors) are essential for keeping basic roles of PPAR gene family, and the variant domains of LCRs may be responsible for their divergence in functions. The positive selection sites in HOLI domain are benefit for PPARs to evolve towards diversity functions. The evolutionary variants in the promoter regions and 3′ UTR regions of PPARs result into differential transcription factors and miRNAs involved in regulating PPAR members, which may eventually affect their expressions and tissues distributions. These results indicate that gene duplication event, selection pressure on HOLI domain, and the variants on promoter and 3′ UTR are essential for PPARs evolution and diversity functions acquired. PMID:25961030

  14. Chronic Expression of PPAR-δ by Oligodendrocyte Lineage Cells in the Injured Rat Spinal Cord

    PubMed Central

    Almad, Akshata; McTigue, Dana M.

    2014-01-01

    The transcription factor peroxisome proliferator-activated receptor (PPAR)-δ promotes oligodendrocyte differentiation and myelin formation in vitro and is prevalent throughout the brain and spinal cord. Its expression after injury, however, has not been examined. Thus, we used a spinal contusion model to examine the spatiotemporal expression of PPAR-δ in naïve and injured spinal cords from adult rats. As previously reported, PPAR-δ was expressed by neurons and oligodendrocytes in uninjured spinal cords; PPAR-δ was also detected in NG2 cells (potential oligodendrocyte progenitors) within the white matter and gray matter. After spinal cord injury (SCI), PPAR-δ mRNA and protein were present early and increased over time. Overall PPAR-δ+ cell numbers declined at 1 day post injury (dpi), likely reflecting neuron loss, and then rose through 14 dpi. A large proportion of NG2 cells expressed PPAR-δ after SCI, especially along lesion borders. PPAR-δ+ NG2 cell numbers were significantly higher than naive by 7 dpi and remained elevated through at least 28 dpi. PPAR-δ+ oligodendrocyte numbers declined at 1 dpi and then increased over time such that >20% of oligodendrocytes expressed PPAR-δ after SCI compared with ~10% in uninjured tissue. The most prominent increase in PPAR-δ+ oligodendrocytes was along lesion borders where at least a portion of newly generated oligodendrocytes (bromode-oxyuridine +) were PPAR-δ+. Consistent with its role in cellular differentiation, the early rise in PPAR-δ+ NG2 cells followed by an increase in new PPAR-δ+ oligodendrocytes suggests that this transcription factor may be involved in the robust oligodendrogenesis detected previously along SCI lesion borders. PMID:20058304

  15. Orange peel extract, containing high levels of polymethoxyflavonoid, suppressed UVB-induced COX-2 expression and PGE2 production in HaCaT cells through PPARactivation.

    PubMed

    Yoshizaki, Norihiro; Fujii, Takahiro; Masaki, Hitoshi; Okubo, Takeshi; Shimada, Kunio; Hashizume, Ron

    2014-10-01

    Ultraviolet light (UV) induces an inflammatory response in the skin by cyclooxygenase (COX)-2 expression and prostaglandin (PG) E2 production. Citrus peel has been used as a natural medicine. It contains polymethoxyflavonoids (PMFs) as a major ingredient, which have anti-inflammatory activity. We obtained orange peel extract containing high levels of PMFs. The extract suppressed UVB-induced COX-2 expression and PGE2 production in HaCaT cells. Furthermore, it was found that this extract acted as a peroxisome proliferator-activated receptor (PPAR)-γ agonist. The suppression of UVB-induced COX-2 expression by this extract was inhibited by GW 9662 and T0070907, which are both PPAR-γ antagonists. It is therefore suggested that orange peel extract, containing high levels of PMFs, suppresses UVB-induced COX-2 expression and PGE2 production through PPAR-γ. Hence, these extracts could provide useful protection against or alleviation of UV damage. PMID:25234831

  16. Overfeeding energy upregulates peroxisome proliferator-activated receptor (PPAR)γ-controlled adipogenic and lipolytic gene networks but does not affect proinflammatory markers in visceral and subcutaneous adipose depots of Holstein cows.

    PubMed

    Ji, P; Drackley, J K; Khan, M J; Loor, J J

    2014-01-01

    Our objective was to determine the effects of overfeeding energy on gene expression in mesenteric (MAT), omental (OAT), and subcutaneous (SAT) adipose tissue (AT) from nonpregnant and nonlactating Holstein cows. Eighteen cows were randomly assigned to either a low energy [LE, net energy for lactation (NE(L)) = 1.35 Mcal/kg of dry matter (DM)] or high energy (HE, NE(L) = 1.62 Mcal/kg of DM) diets for 8 wk. Cows were then euthanized and subsamples of MAT, OAT, and SAT were harvested for transcript profiling via quantitative PCR of 34 genes involved in lipogenesis, triacylglycerol (TAG) synthesis, lipolysis, lactate signaling, transcription regulation, and inflammation. The interaction of dietary energy and AT depot was only significant for LPL, which indicated a consistent response among the 3 sites. The expression of key genes related to de novo fatty acid synthesis (FASN) and desaturation (SCD) was upregulated by HE compared with LE. Other genes associated with those processes, such as ACLY, ACACA, ELOVL6, FABP4, GPAM, and LPIN1, were numerically upregulated by HE. The expression of lipolytic (PNPLA2 and ABHD5) genes was upregulated and the antilypolytic lactate receptor HCAR1 was downregulated with HE compared with LE. The putative transcription regulator THRSP was upregulated and the transcription regulator PPARG tended to be upregulated by HE, whereas SREBF1 was downregulated. Among adipocytokines, HE tended to upregulate the expression of CCL2, whereas IL6R was downregulated. Overall, results indicated that overfeeding energy may increase AT mass at least in part by stimulating transcription of the network encompassing key genes associated with de novo synthesis. In response to energy overfeeding, the expression of PPARG rather than SREBF1 was closely associated with most adipogenic or lipogenic genes. However, the transcriptional activity of these regulators needs to be verified to confirm their role in the regulation of adipogenesis or lipogenesis in bovine

  17. Localization of PPAR isotypes in the adult mouse and human brain

    PubMed Central

    Warden, Anna; Truitt, Jay; Merriman, Morgan; Ponomareva, Olga; Jameson, Kelly; Ferguson, Laura B.; Mayfield, R. Dayne; Harris, R. Adron

    2016-01-01

    Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that act as ligand-activated transcription factors. PPAR agonists have well-documented anti-inflammatory and neuroprotective roles in the central nervous system. Recent evidence suggests that PPAR agonists are attractive therapeutic agents for treating neurodegenerative diseases as well as addiction. However, the distribution of PPAR mRNA and protein in brain regions associated with these conditions (i.e. prefrontal cortex, nucleus accumbens, amygdala, ventral tegmental area) is not well defined. Moreover, the cell type specificity of PPARs in mouse and human brain tissue has yet to be investigated. We utilized quantitative PCR and double immunofluorescence microscopy to determine that both PPAR mRNA and protein are expressed ubiquitously throughout the adult mouse brain. We found that PPARs have unique cell type specificities that are consistent between species. PPARα was the only isotype to colocalize with all cell types in both adult mouse and adult human brain tissue. Overall, we observed a strong neuronal signature, which raises the possibility that PPAR agonists may be targeting neurons rather than glia to produce neuroprotection. Our results fill critical gaps in PPAR distribution and define novel cell type specificity profiles in the adult mouse and human brain. PMID:27283430

  18. Peroxisome proliferator-activated receptors, metabolic syndrome and cardiovascular disease

    PubMed Central

    Azhar, Salman

    2011-01-01

    Metabolic syndrome (MetS) is a constellation of risk factors including insulin resistance, central obesity, dyslipidemia and hypertension that markedly increase the risk of Type 2 diabetes (T2DM) and cardiovascular disease (CVD). The peroxisome proliferators-activated receptor (PPAR) isotypes, PPARα, PPARδ/β and PPARγ are ligand-activated nuclear transcription factors, which modulate the expression of an array of genes that play a central role in regulating glucose, lipid and cholesterol metabolism, where imbalance can lead to obesity, T2DM and CVD. They are also drug targets, and currently, PPARα (fibrates) and PPARγ (thiazolodinediones) agonists are in clinical use for treating dyslipidemia and T2DM, respectively. These metabolic characteristics of the PPARs, coupled with their involvement in metabolic diseases, mean extensive efforts are underway worldwide to develop new and efficacious PPAR-based therapies for the treatment of additional maladies associated with the MetS. This article presents an overview of the functional characteristics of three PPAR isotypes, discusses recent advances in our understanding of the diverse biological actions of PPARs, particularly in the vascular system, and summarizes the developmental status of new single, dual, pan (multiple) and partial PPAR agonists for the clinical management of key components of MetS, T2DM and CVD. It also summarizes the clinical outcomes from various clinical trials aimed at evaluating the atheroprotective actions of currently used fibrates and thiazolodinediones. PMID:20932114

  19. Peroxisome proliferator-activated receptors, metabolic syndrome and cardiovascular disease.

    PubMed

    Azhar, Salman

    2010-09-01

    Metabolic syndrome (MetS) is a constellation of risk factors including insulin resistance, central obesity, dyslipidemia and hypertension that markedly increase the risk of Type 2 diabetes (T2DM) and cardiovascular disease (CVD). The peroxisome proliferators-activated receptor (PPAR) isotypes, PPARα, PPARδ/ß and PPARγ are ligand-activated nuclear transcription factors, which modulate the expression of an array of genes that play a central role in regulating glucose, lipid and cholesterol metabolism, where imbalance can lead to obesity, T2DM and CVD. They are also drug targets, and currently, PPARα (fibrates) and PPARγ (thiazolodinediones) agonists are in clinical use for treating dyslipidemia and T2DM, respectively. These metabolic characteristics of the PPARs, coupled with their involvement in metabolic diseases, mean extensive efforts are underway worldwide to develop new and efficacious PPAR-based therapies for the treatment of additional maladies associated with the MetS. This article presents an overview of the functional characteristics of three PPAR isotypes, discusses recent advances in our understanding of the diverse biological actions of PPARs, particularly in the vascular system, and summarizes the developmental status of new single, dual, pan (multiple) and partial PPAR agonists for the clinical management of key components of MetS, T2DM and CVD. It also summarizes the clinical outcomes from various clinical trials aimed at evaluating the atheroprotective actions of currently used fibrates and thiazolodinediones. PMID:20932114

  20. PPAR Ligands Function as Suppressors That Target Biological Actions of HMGB1

    PubMed Central

    Chen, Tianhui

    2016-01-01

    High mobility group box 1 (HMGB1), which has become one of the most intriguing molecules in inflammatory disorders and cancers and with which ligand-activated peroxisome proliferator-activated receptors (PPARs) are highly associated, is considered as a therapeutic target. Of particular interest is the fact that certain PPAR ligands have demonstrated their potent anti-inflammatory activities and potential anticancer effects. In this review article we summarize recent experimental evidence that PPAR ligands function as suppressors that target biological actions of HMGB1, including intracellular expression, receptor signaling cascades, and extracellular secretion of HMGB1 in cell lines and/or animal models. We also propose the possible mechanisms underlying PPAR involvement in inflammatory disorders and discuss the future therapeutic value of PPAR ligands targeting HMGB1 molecule for cancer prevention and treatment. PMID:27563308

  1. Peroxisome proliferator-activated receptor-alpha control of lipid and glucose metabolism in human white adipocytes.

    PubMed

    Ribet, Carole; Montastier, Emilie; Valle, Carine; Bezaire, Véronic; Mazzucotelli, Anne; Mairal, Aline; Viguerie, Nathalie; Langin, Dominique

    2010-01-01

    This work aimed at characterizing the role of peroxisome proliferator-activated receptors (PPAR)alpha in human white adipocyte metabolism and at comparing PPAR alpha and PPAR gamma actions in these cells. Primary cultures of human fat cells were treated with the PPAR alpha agonist GW7647 or the PPAR gamma agonist rosiglitazone. Changes in gene expression were determined using DNA microarrays and quantitative RT-PCR. Western blot and metabolic studies were performed to identify the biological effects elicited by PPAR agonist treatments. GW7647 induced an up-regulation of beta-oxidation gene expression and increased palmitate oxidation. Unexpectedly, glycolysis was strongly reduced at transcriptional and functional levels by GW7647 leading to a decrease in pyruvate and lactate production. Glucose oxidation was decreased. Triglyceride esterification and de novo lipogenesis were inhibited by the PPAR alpha agonist. GW7647-induced alterations were abolished by a treatment with a PPAR alpha antagonist. Small interfering RNA-mediated extinction of PPAR alpha gene expression in hMADS adipocytes attenuated GW7647 induction of palmitate oxidation. Rosiglitazone had no major impact on glycolysis and beta-oxidation. Altogether these results show that PPAR alpha can selectively up-regulate beta-oxidation and decrease glucose utilization in human white adipocytes. PMID:19887568

  2. Pulmonary phthalate exposure and asthma - is PPAR a plausible mechanistic link?

    PubMed Central

    Kocbach Bølling, Anette; Holme, Jørn A; Bornehag, Carl Gustaf; Nygaard, Unni C; Bertelsen, Randi J; Nånberg, Eewa; Bodin, Johanna; Sakhi, Amrit Kaur; Thomsen, Cathrine; Becher, Rune

    2013-01-01

    Due to their extensive use as plasticisers in numerous consumer products, phthalates have become ubiquitous environmental contaminants. An increasing number of epidemiological studies suggest that exposure to phthalates may be associated with worsening or development of airway diseases. Peroxisome Proliferation Activated Receptors (PPAR)s, identified as important targets for phthalates in early studies in rodent liver, have been suggested as a possible mechanistic link. In this review we discuss the likelihood of an involvement of PPARs in asthma development and exacerbation due to pulmonary phthalate exposure. First, we go through the literature on indoor air levels of phthalates and pulmonary phthalate kinetics. These data are then used to estimate the pulmonary phthalate levels due to inhalation exposure. Secondly, the literature on phthalate-induced activation or modulation of PPARs is summarized. Based on these data, we discuss whether pulmonary phthalate exposure is likely to cause PPAR activation, and if this is a plausible mechanism for adverse effects of phthalates in the lung. It is concluded that the pulmonary concentrations of some phthalates may be sufficient to cause a direct activation of PPARs. Since PPARs mainly mediate anti-inflammatory effects in the lungs, a direct activation is not a likely molecular mechanism for adverse effects of phthalates. However, possible modulatory effects of phthalates on PPARs deserve further investigation, including partial antagonist effects and/or cross talk with other signalling pathways. Moreover other mechanisms, including interactions between phthalates and other receptors, could also contribute to possible adverse pulmonary effects of phthalates. PMID:26622216

  3. HDAC Inhibition Modulates Cardiac PPARs and Fatty Acid Metabolism in Diabetic Cardiomyopathy.

    PubMed

    Lee, Ting-I; Kao, Yu-Hsun; Tsai, Wen-Chin; Chung, Cheng-Chih; Chen, Yao-Chang; Chen, Yi-Jen

    2016-01-01

    Peroxisome proliferator-activated receptors (PPARs) regulate cardiac glucose and lipid homeostasis. Histone deacetylase (HDAC) inhibitor has anti-inflammatory effects which may play a key role in modulating PPARs and fatty acid metabolism. The aim of this study was to investigate whether HDAC inhibitor, MPT0E014, can modulate myocardial PPARs, inflammation, and fatty acid metabolism in diabetes mellitus (DM) cardiomyopathy. Electrocardiography, echocardiography, and western blotting were used to evaluate the electrophysiological activity, cardiac structure, fatty acid metabolism, inflammation, and PPAR isoform expressions in the control and streptozotocin-nicotinamide-induced DM rats with or without MPT0E014. Compared to control, DM and MPT0E014-treated DM rats had elevated blood glucose levels and lower body weights. However, MPT0E014-treated DM and control rats had smaller left ventricular end-diastolic diameter and shorter QT interval than DM rats. The control and MPT0E014-treated DM rats had greater cardiac PPAR-α and PPAR-δ protein expressions, but less cardiac PPAR-γ than DM rats. Moreover, control and MPT0E014-treated DM rats had lower concentrations of 5' adenosine monophosphate-activated protein kinase 2α, PPAR-γ coactivator 1α, phosphorylated acetyl CoA carboxylase, cluster of differentiation 36, diacylglycerol acyltransferase 1 (DGAT1), DGAT2, tumor necrosis factor-α, and interleukin-6 protein than DM rats. HDAC inhibition significantly attenuated DM cardiomyopathy through modulation of cardiac PPARS, fatty acid metabolism, and proinflammatory cytokines. PMID:27446205

  4. The PPAR-Platelet Connection: Modulators of Inflammation and Potential Cardiovascular Effects

    PubMed Central

    Spinelli, S. L.; O'Brien, J. J.; Bancos, S.; Lehmann, G. M.; Springer, D. L.; Blumberg, N.; Francis, C. W.; Taubman, M. B.; Phipps, R. P.

    2008-01-01

    Historically, platelets were viewed as simple anucleate cells responsible for initiating thrombosis and maintaining hemostasis, but clearly they are also key mediators of inflammation and immune cell activation. An emerging body of evidence links platelet function and thrombosis to vascular inflammation. peroxisome proliferator-activated receptors (PPARs) play a major role in modulating inflammation and, interestingly, PPARs (PPARβ/δ and PPARγ) were recently identified in platelets. Additionally, PPAR agonists attenuate platelet activation; an important discovery for two reasons. First, activated platelets are formidable antagonists that initiate and prolong a cascade of events that contribute to cardiovascular disease (CVD) progression. Dampening platelet release of proinflammatory mediators, including CD40 ligand (CD40L, CD154), is essential to hinder this cascade. Second, understanding the biologic importance of platelet PPARs and the mechanism(s) by which PPARs regulate platelet activation will be imperative in designing therapeutic strategies lacking the deleterious or unwanted side effects of current treatment options. PMID:18288284

  5. Discovery of an Oxybenzylglycine Based Peroxisome Proliferator Activated Receptor Alpha Selective

    SciTech Connect

    Li, J.; Kennedy, L; Shi, Y; Tao, S; Ye, X; Chen, S; Wang, Y; Hernandez, A; Wang, W; et al.

    2010-01-01

    An 1,3-oxybenzylglycine based compound 2 (BMS-687453) was discovered to be a potent and selective peroxisome proliferator activated receptor (PPAR) {alpha} agonist, with an EC{sub 50} of 10 nM for human PPAR{alpha} and {approx}410-fold selectivity vs human PPAR{gamma} in PPAR-GAL4 transactivation assays. Similar potencies and selectivity were also observed in the full length receptor co-transfection assays. Compound 2 has negligible cross-reactivity against a panel of human nuclear hormone receptors including PPAR{delta}. Compound 2 demonstrated an excellent pharmacological and safety profile in preclinical studies and thus was chosen as a development candidate for the treatment of atherosclerosis and dyslipidemia. The X-ray cocrystal structures of the early lead compound 12 and compound 2 in complex with PPAR{alpha} ligand binding domain (LBD) were determined. The role of the crystal structure of compound 12 with PPAR{alpha} in the development of the SAR that ultimately resulted in the discovery of compound 2 is discussed.

  6. 'Sum of activities' as dependent parameter: a new CoMFA-based approach for the design of pan PPAR agonists.

    PubMed

    Sundriyal, Sandeep; Bharatam, Prasad V

    2009-01-01

    A 'sum-model' (3D QSAR - CoMFA) has been developed to design PPAR(alpha/gamma/delta) (peroxisome proliferator activated receptor) pan agonists by using the sum of activities (EC(50)) of compounds against individual subtypes as a dependent parameter. In addition, the three subtype specific CoMFA models were also generated using the identical training set molecules (N=28). All four models were validated using the popular 'leave-one-out' (LOO) method and with a test set of 9 molecules. The generated models were found to be statistically significant with r(cv)(2)>0.5 and r(ncv)(2)>0.9 and the lower values of standard error of estimation (SEE) ranging from 0.097 to 0.160. From the contour map analyses the 'sum-model' was found to represent the three subtype specific models and also predicted the sum of activities of the training set molecules with reasonable accuracy. The new molecules were designed based on the 'sum-model' and were found to dock well in the PPARgamma active site. This approach may find wider applications in the research related to other classes of 'designed multiple ligands'. PMID:18448203

  7. Peroxisome proliferator-activated receptor {gamma} is expressed in hippocampal neurons and its activation prevents {beta}-amyloid neurodegeneration: role of Wnt signaling

    SciTech Connect

    Inestrosa, Nibaldo C. . E-mail: ninestr@genes.bio.puc.cl; Godoy, Juan A.; Quintanilla, Rodrigo A.; Koenig, Cecilia S.; Bronfman, Miguel

    2005-03-10

    The molecular pathogenesis of Alzheimer's disease (AD) involves the participation of the amyloid-{beta}-peptide (A{beta}), which plays a critical role in the neurodegeneration that triggers the disease. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors, which are members of the nuclear receptor family. We report here that (1) PPAR{gamma} is present in rat hippocampal neurons in culture. (2) Activation of PPAR{gamma} by troglitazone and rosiglitazone protects rat hippocampal neurons against A{beta}-induced neurodegeneration, as shown by the 3-[4,5 -2yl]-2,5-diphenyltetrazolium bromide (MTT) reduction assay, immunofluorescence using an anti-heavy neurofilament antibody, and quantitative electron microscopy. (3) Hippocampal neurons treated with several PPAR{gamma} agonists, including troglitazone, rosiglitazone, and ciglitazone, prevent the excitotoxic A{beta}-induced rise in bulk-free Ca{sup 2+}. (4) PPAR{gamma} activation results in the modulation of Wnt signaling components, including the inhibition of glycogen synthase kinase-3{beta} (GSK-3{beta}) and an increase of the cytoplasmic and nuclear {beta}-catenin levels. We conclude that the activation of PPAR{gamma} prevents A{beta}-induced neurodegeneration by a mechanism that may involve a cross talk between neuronal PPAR{gamma} and the Wnt signaling pathway. More important, the fact that the activation of PPAR{gamma} attenuated A{beta}-dependent neurodegeneration opens the possibility to fight AD from a new therapeutic perspective.

  8. Synthesis and evaluation of fatty acid amides on the N-oleoylethanolamide-like activation of peroxisome proliferator activated receptor α.

    PubMed

    Takao, Koichi; Noguchi, Kaori; Hashimoto, Yosuke; Shirahata, Akira; Sugita, Yoshiaki

    2015-01-01

    A series of fatty acid amides were synthesized and their peroxisome proliferator-activated receptor α (PPAR-α) agonistic activities were evaluated in a normal rat liver cell line, clone 9. The mRNAs of the PPAR-α downstream genes, carnitine-palmitoyltransferase-1 and mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase, were determined by real-time reverse transcription-polymerase chain reaction (RT-PCR) as PPAR-α agonistic activities. We prepared nine oleic acid amides. Their PPAR-α agonistic activities were, in decreasing order, N-oleoylhistamine (OLHA), N-oleoylglycine, Oleamide, N-oleoyltyramine, N-oleoylsertonin, and Olvanil. The highest activity was found with OLHA. We prepared and evaluated nine N-acylhistamines (N-acyl-HAs). Of these, OLHA, C16:0-HA, and C18:1Δ(9)-trans-HA showed similar activity. Activity due to the different chain length of the saturated fatty acid peaked at C16:0-HA. The PPAR-α antagonist, GW6471, inhibited the induction of the PPAR-α downstream genes by OLHA and N-oleoylethanolamide (OEA). These data suggest that N-acyl-HAs could be considered new PPAR-α agonists. PMID:25832022

  9. Contrasting effects of peroxisome-proliferator-activated receptor (PPAR)γ agonists on membrane-associated prostaglandin E2 synthase-1 in IL-1β-stimulated rat chondrocytes: evidence for PPARγ-independent inhibition by 15-deoxy-Δ12,14prostaglandin J2

    PubMed Central

    Bianchi, Arnaud; Moulin, David; Sebillaud, Sylvie; Koufany, Meriem; Galteau, Marie-Madeleine; Netter, Patrick; Terlain, Bernard; Jouzeau, Jean-Yves

    2005-01-01

    Microsomal prostaglandin E synthase (mPGES)-1 is a newly identified inducible enzyme of the arachidonic acid cascade with a key function in prostaglandin (PG)E2 synthesis. We investigated the kinetics of inducible cyclo-oxygenase (COX)-2 and mPGES-1 expression with respect to the production of 6-keto-PGF1α and PGE2 in rat chondrocytes stimulated with 10 ng/ml IL-1β, and compared their modulation by peroxisome-proliferator-activated receptor (PPAR)γ agonists. Real-time PCR analysis showed that IL-1β induced COX-2 expression maximally (37-fold) at 12 hours and mPGES-1 expression maximally (68-fold) at 24 hours. Levels of 6-keto-PGF1α and PGE2 peaked 24 hours after stimulation with IL-1β; the induction of PGE2 was greater (11-fold versus 70-fold, respectively). The cyclopentenone 15-deoxy-Δ12,14prostaglandin J2 (15d-PGJ2) decreased prostaglandin synthesis in a dose-dependent manner (0.1 to 10 μM), with more potency on PGE2 level than on 6-keto-PGF1α level (-90% versus -66% at 10 μM). A high dose of 15d-PGJ2 partly decreased COX-2 expression but decreased mPGES-1 expression almost completely at both the mRNA and protein levels. Rosiglitazone was poorly effective on these parameters even at 10 μM. Inhibitory effects of 10 μM 15d-PGJ2 were neither reduced by PPARγ blockade with GW-9662 nor enhanced by PPARγ overexpression, supporting a PPARγ-independent mechanism. EMSA and TransAM® analyses demonstrated that mutated IκBα almost completely suppressed the stimulating effect of IL-1β on mPGES-1 expression and PGE2 production, whereas 15d-PGJ2 inhibited NF-κB transactivation. These data demonstrate the following in IL-1-stimulated rat chondrocytes: first, mPGES-1 is rate limiting for PGE2 synthesis; second, activation of the prostaglandin cascade requires NF-κB activation; third, 15d-PGJ2 strongly inhibits the synthesis of prostaglandins, in contrast with rosiglitazone; fourth, inhibition by 15d-PGJ2 occurs independently of PPARγ through inhibition of

  10. Isorhamnetin Inhibits Proliferation and Invasion and Induces Apoptosis through the Modulation of Peroxisome Proliferator-activated Receptor γ Activation Pathway in Gastric Cancer*

    PubMed Central

    Ramachandran, Lalitha; Manu, Kanjoormana Aryan; Shanmugam, Muthu K.; Li, Feng; Siveen, Kodappully Sivaraman; Vali, Shireen; Kapoor, Shweta; Abbasi, Taher; Surana, Rohit; Smoot, Duane T.; Ashktorab, Hassan; Tan, Patrick; Ahn, Kwang Seok; Yap, Chun Wei; Kumar, Alan Prem; Sethi, Gautam

    2012-01-01

    Gastric cancer (GC) is a lethal malignancy and the second most common cause of cancer-related deaths. Although treatment options such as chemotherapy, radiotherapy, and surgery have led to a decline in the mortality rate due to GC, chemoresistance remains as one of the major causes for poor prognosis and high recurrence rate. In this study, we investigated the potential effects of isorhamnetin (IH), a 3′-O-methylated metabolite of quercetin on the peroxisome proliferator-activated receptor γ (PPAR-γ) signaling cascade using proteomics technology platform, GC cell lines, and xenograft mice model. We observed that IH exerted a strong antiproliferative effect and increased cytotoxicity in combination with chemotherapeutic drugs. IH also inhibited the migratory/invasive properties of GC cells, which could be reversed in the presence of PPAR-γ inhibitor. We found that IH increased PPARactivity and modulated the expression of PPAR-γ regulated genes in GC cells. Also, the increase in PPARactivity was reversed in the presence of PPAR-γ-specific inhibitor and a mutated PPAR-γ dominant negative plasmid, supporting our hypothesis that IH can act as a ligand of PPAR-γ. Using molecular docking analysis, we demonstrate that IH formed interactions with seven polar residues and six nonpolar residues within the ligand-binding pocket of PPAR-γ that are reported to be critical for its activity and could competitively bind to PPAR-γ. IH significantly increased the expression of PPAR-γ in tumor tissues obtained from xenograft model of GC. Overall, our findings clearly indicate that antitumor effects of IH may be mediated through modulation of the PPARactivation pathway in GC. PMID:22992727

  11. Peroxisome Proliferator-Activated Receptors in Female Reproduction and Fertility

    PubMed Central

    Carta, Gaspare; Artini, Paolo Giovanni

    2016-01-01

    Reproductive functions may be altered by the exposure to a multitude of endogenous and exogenous agents, drug or environmental pollutants, which are known to affect gene transcription through the peroxisome proliferator-activated receptors (PPARs) activation. PPARs act as ligand activated transcription factors and regulate metabolic processes such as lipid and glucose metabolism, energy homeostasis, inflammation, and cell proliferation and differentiation. All PPARs isotypes are expressed along the hypothalamic-pituitary-gonadal axis and are strictly involved in reproductive functions. Since female fertility and energy metabolism are tightly interconnected, the research on female infertility points towards the exploration of potential PPARs activating/antagonizing compounds, mainly belonging to the class of thiazolidinediones (TZDs) and fibrates, as useful agents for the maintenance of metabolic homeostasis in women with ovarian dysfunctions. In the present review, we discuss the recent evidence about PPARs expression in the hypothalamic-pituitary-gonadal axis and their involvement in female reproduction. Finally, the therapeutic potential of their manipulation through several drugs is also discussed. PMID:27559343

  12. Peroxisome Proliferator-Activated Receptors in Female Reproduction and Fertility.

    PubMed

    Vitti, Maurizio; Di Emidio, Giovanna; Di Carlo, Michela; Carta, Gaspare; Antonosante, Andrea; Artini, Paolo Giovanni; Cimini, Annamaria; Tatone, Carla; Benedetti, Elisabetta

    2016-01-01

    Reproductive functions may be altered by the exposure to a multitude of endogenous and exogenous agents, drug or environmental pollutants, which are known to affect gene transcription through the peroxisome proliferator-activated receptors (PPARs) activation. PPARs act as ligand activated transcription factors and regulate metabolic processes such as lipid and glucose metabolism, energy homeostasis, inflammation, and cell proliferation and differentiation. All PPARs isotypes are expressed along the hypothalamic-pituitary-gonadal axis and are strictly involved in reproductive functions. Since female fertility and energy metabolism are tightly interconnected, the research on female infertility points towards the exploration of potential PPARs activating/antagonizing compounds, mainly belonging to the class of thiazolidinediones (TZDs) and fibrates, as useful agents for the maintenance of metabolic homeostasis in women with ovarian dysfunctions. In the present review, we discuss the recent evidence about PPARs expression in the hypothalamic-pituitary-gonadal axis and their involvement in female reproduction. Finally, the therapeutic potential of their manipulation through several drugs is also discussed. PMID:27559343

  13. Isoform specific changes in PPAR{alpha} and {beta} in colon and breast cancer with differentiation

    SciTech Connect

    Aung, Cho S.; Faddy, Helen M.; Lister, Erin J.; Monteith, Gregory R.; Roberts-Thomson, Sarah J. . E-mail: S.Roberts-Thomson@pharmacy.uq.edu.au

    2006-02-10

    To investigate the role of peroxisome proliferator-activated receptors (PPARs) {alpha} and {beta} in the differentiation of colon cancer cells, we differentiated HT-29 cells using sodium butyrate (NaB) and culturing post-confluence and assessed differentiation using the marker intestinal alkaline phosphatase. While PPAR{alpha} levels only changed with culturing post confluence, PPAR{beta} levels increased independent of the method of differentiation. To explore further the differences induced by NaB, we assessed changes in both PPAR isoforms in MCF-7 breast cancer cells cultured in the presence of NaB over 48 h. Again a very different expression pattern was observed with PPAR{alpha} increasing after 4 h and remaining elevated, while PPAR{beta} increased transiently. Our studies suggest that the expression of PPARs is dependent upon both the method of differentiation and on time. Moreover, these studies show that changes in PPAR{alpha} levels are not required for the differentiation of colon cancer cell lines, whereas changes in PPAR{beta} are more closely associated with differentiation.

  14. PPARα, PPARβ, and PPARγ expression in prenatal and postnatal mouse tissues and an evaluation of the effects of perfluorooctanoic acid (PFOA) on peroxisome proliferator-activated receptor (PPAR) expression.

    EPA Science Inventory

    PFOA is developmentally toxic, reducing in utero and neonatal survival, and altering development and growth in mice. PFOA activates PPARα and studies in PPARα knockout mice showed that PPARα signaling is required to produce these effects. This study examines the expression of PPA...

  15. Telmisartan protects against diabetic vascular complications in a mouse model of obesity and type 2 diabetes, partially through peroxisome proliferator activated receptor-{gamma}-dependent activity

    SciTech Connect

    Toyama, Kensuke; Nakamura, Taishi; Kataoka, Keiichiro; Yasuda, Osamu; Fukuda, Masaya; Tokutomi, Yoshiko; Dong, Yi-Fei; Ogawa, Hisao; Kim-Mitsuyama, Shokei

    2011-07-08

    Highlights: {yields} Telmisartan, an angiotensin receptor blocker, acts as a partial PPAR{gamma} agonist. {yields} The protective effects of telmisartan against diabetic vascular injury were associated with attenuation of vascular NF{kappa}B activation and TNF {alpha}. {yields} PPAR{gamma} activity of telmisartan was involved in the normalization of vascular PPAR{gamma} downregulation in diabetic mice. {yields} We provided the first evidence indicating that PPAR{gamma} activity of telmisartan contributed to the protective effects of telmisartan against diabetic vascular complication. -- Abstract: Experimental and clinical data support the notion that peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) activation is associated with anti-atherosclerosis as well as anti-diabetic effect. Telmisartan, an angiotensin receptor blocker (ARB), acts as a partial PPAR{gamma} agonist. We hypothesized that telmisartan protects against diabetic vascular complications, through PPAR{gamma} activation. We compared the effects of telmisartan, telmisartan combined with GW9662 (a PPAR{gamma} antagonist), and losartan with no PPAR{gamma} activity on vascular injury in obese type 2 diabetic db/db mice. Compared to losartan, telmisartan significantly ameliorated vascular endothelial dysfunction, downregulation of phospho-eNOS, and coronary arterial remodeling in db/db mice. More vascular protective effects of telmisartan than losartan were associated with greater anti-inflammatory effects of telmisartan, as shown by attenuation of vascular nuclear factor kappa B (NF{kappa}B) activation and tumor necrosis factor {alpha}. Coadministration of GW9662 with telmisartan abolished the above mentioned greater protective effects of telmisartan against vascular injury than losartan in db/db mice. Thus, PPAR{gamma} activity appears to be involved in the vascular protective effects of telmisartan in db/db mice. Moreover, telmisartan, but not losartan, prevented the downregulation of

  16. Betulinic acid inhibits IL-1β-induced inflammation by activating PPAR-γ in human osteoarthritis chondrocytes.

    PubMed

    Jingbo, Wang; Aimin, Chen; Qi, Wu; Xin, Li; Huaining, Li

    2015-12-01

    Betulinic acid (BA), a triterpenoid isolated from birch bark, has been reported to have anti-inflammatory effects. In this study, we investigated the anti-osteoarthritic effects of BA in IL-1β-stimulated human osteoarthritis chondrocytes. Human osteoarthritis chondrocytes were pre-incubated with BA (6, 12, 24μM) for 12h and then treated with IL-1β (10ng/ml). The production of PGE2 and NO were detected by ELISA and Griess reagent. The expression of NF-κB, IκB, and PPAR-γ were detected by Western blotting. The results showed that BA dose-dependently inhibited IL-1β-induced MMP-1, MMP-3, MMP-13, PGE2 and NO productions. BA also inhibited IL-1β-induced NF-κB activation. Furthermore, BA was found to activate PPAR-γ and the inhibition of PGE2 and NO by BA can be reversed by PPAR-γ antagonist GW9662. In conclusion, these results suggested that BA inhibited IL-1β-induced inflammation in osteoarthritis chondrocytes by activating PPAR-γ. PMID:26391061

  17. Peroxisome Proliferator-Activated Receptor-α Inhibition Protects Against Doxorubicin-Induced Cardiotoxicity in Mice.

    PubMed

    Rahmatollahi, Mahdieh; Baram, Somayeh Mahmoodi; Rahimian, Reza; Saeedi Saravi, Seyed Soheil; Dehpour, Ahmad Reza

    2016-07-01

    Doxorubicin is an effective chemotherapeutic drug against a considerable number of malignancies. However, its toxic effects on myocardium are confirmed as major limit of utilization. PPAR-α is highly expressed in the heart, and its activation leads to an increased cardiac fatty acid oxidation and cardiomyocyte necrosis. This study was performed to adjust the hypothesis that PPARreceptor inhibition protects against doxorubicin-induced cardiac dysfunction in mice. Male Balb/c mice were used in this study. Left atria were isolated, and their contractility was measured in response to electrical field stimulation in a standard organ bath. PPARactivity was measured using specific PPAR-α antibody in an ELISA-based system coated with double-strand DNA containing PPAR-α response element sequence. Moreover, cardiac MDA and TNF-α levels were measured by ELISA method. Following incubation with doxorubicin (35 µM), a significant reduction in atrial contractility was observed (P < 0.001). Pretreatment of animals with a selective PPAR-α antagonist, GW6471, significantly improved doxorubicin-induced atrial dysfunction (P < 0.001). Furthermore, pretreatment of the mice with a non-selective cannabinoid agonist, WIN55212-2, significantly decreased PPARactivity in cardiac tissue, subsequently leading to significant improvement in doxorubicin-induced atrial dysfunction (P < 0.001). Also, GW6471 and WIN significantly reduced cardiac MDA and TNF-α levels compared with animals receiving doxorubicin (P < 0.001). The study showed that inhibition of PPAR-α is associated with protection against doxorubicin-induced cardiotoxicity in mice, and cannabinoids can potentiate the protection by PPAR-α blockade. Moreover, PPAR-α may be considered as a target to prevent cardiotoxicity induced by doxorubicin in patients undergoing chemotherapy. PMID:26082188

  18. Constitutive Smad signaling and Smad-dependent collagen gene expression in mouse embryonic fibroblasts lacking peroxisome proliferator-activated receptor-{gamma}

    SciTech Connect

    Ghosh, Asish K Wei, Jun; Wu, Minghua; Varga, John

    2008-09-19

    Transforming growth factor-{beta} (TGF-{beta}), a potent inducer of collagen synthesis, is implicated in pathological fibrosis. Peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}) is a nuclear hormone receptor that regulates adipogenesis and numerous other biological processes. Here, we demonstrate that collagen gene expression was markedly elevated in mouse embryonic fibroblasts (MEFs) lacking PPAR-{gamma} compared to heterozygous control MEFs. Treatment with the PPAR-{gamma} ligand 15d-PGJ{sub 2} failed to down-regulate collagen gene expression in PPAR-{gamma} null MEFs, whereas reconstitution of these cells with ectopic PPAR-{gamma} resulted in their normalization. Compared to control MEFs, PPAR-{gamma} null MEFs displayed elevated levels of the Type I TGF-{beta} receptor (T{beta}RI), and secreted more TGF-{beta}1 into the media. Furthermore, PPAR-{gamma} null MEFs showed constitutive phosphorylation of cellular Smad2 and Smad3, even in the absence of exogenous TGF-{beta}, which was abrogated by the ALK5 inhibitor SB431542. Constitutive Smad2/3 phosphorylation in PPAR-{gamma} null MEFs was associated with Smad3 binding to its cognate DNA recognition sequences, and interaction with coactivator p300 previously implicated in TGF-{beta} responses. Taken together, these results indicate that loss of PPAR-{gamma} in MEFs is associated with upregulation of collagen synthesis, and activation of intracellular Smad signal transduction, due, at least in part, to autocrine TGF-{beta} stimulation.

  19. Transcriptional activation of peroxisome proliferator-activated receptor-{gamma} requires activation of both protein kinase A and Akt during adipocyte differentiation

    SciTech Connect

    Kim, Sang-pil; Ha, Jung Min; Yun, Sung Ji; Kim, Eun Kyoung; Chung, Sung Woon; Hong, Ki Whan; Kim, Chi Dae; Bae, Sun Sik

    2010-08-13

    Research highlights: {yields} Elevated cAMP activates both PKA and Epac. {yields} PKA activates CREB transcriptional factor and Epac activates PI3K/Akt pathway via Rap1. {yields} Akt modulates PPAR-{gamma} transcriptional activity in concert with CREB. -- Abstract: Peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}) is required for the conversion of pre-adipocytes. However, the mechanism underlying activation of PPAR-{gamma} is unclear. Here we showed that cAMP-induced activation of protein kinase A (PKA) and Akt is essential for the transcriptional activation of PPAR-{gamma}. Hormonal induction of adipogenesis was blocked by a phosphatidylinositol 3-kinase (PI3K) inhibitor (LY294002), by a protein kinase A (PKA) inhibitor (H89), and by a Rap1 inhibitor (GGTI-298). Transcriptional activity of PPAR-{gamma} was markedly enhanced by 3-isobutyl-1-methylxanthine (IBMX), but not insulin and dexamethasone. In addition, IBMX-induced PPAR-{gamma} transcriptional activity was blocked by PI3K/Akt, PKA, or Rap1 inhibitors. 8-(4-Chlorophenylthio)-2'-O-methyl-cAMP (8-pCPT-2'-O-Me-cAMP) which is a specific agonist for exchanger protein directly activated by cAMP (Epac) significantly induced the activation of Akt. Furthermore, knock-down of Akt1 markedly attenuated PPAR-{gamma} transcriptional activity. These results indicate that both PKA and Akt signaling pathways are required for transcriptional activation of PPAR-{gamma}, suggesting post-translational activation of PPAR-{gamma} might be critical step for adipogenic gene expression.

  20. Constituents from Cistus salvifolius (Cistaceae) activate peroxisome proliferator-activated receptor-γ but not -δ and stimulate glucose uptake by adipocytes.

    PubMed

    Kühn, Claudia; Arapogianni, Niki Eliza; Halabalaki, Maria; Hempel, Jana; Hunger, Nicole; Wober, Jannette; Skaltsounis, Alexios Leandros; Vollmer, Günter

    2011-03-01

    A number of medicinal/culinary herbs have been reported to improve glucose metabolism and to yield hypoglycemic effects in patients with diabetes. Since stimulation of insulin sensitivity appears to be a potential mechanism, peroxisome proliferator-activated receptor (PPAR) γ is a likely target molecule for small lipophilic compounds derived from endogenous metabolism and nutrition. Functionally, PPAR γ integrates the control of energy, lipid, and glucose homeostasis. In addition, PPAR δ activity is involved in energy expenditure. Therefore the aim of this study was to investigate whether PPAR γ and PPAR δ as well as the stimulation of glucose uptake is activated by botanical products. CISTUS SALVIFOLIUS (Cistaceae) has been identified as a candidate botanical in a preliminary screening of extracts from medicinal plants of Greek flora. In a bioguided approach, crude extracts, fractions and in the end purified compounds have been evaluated for PPAR γ and PPAR δ specific activities using cell-based transactivation assays. Glucose uptake was measured by nonradioactive 2-[ N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose (2-NBDG) uptake. Concerning PPAR γ several extracts induced reporter gene activity, and clear dose-response patterns (0.1-100 µg/mL) could be established in the case of the cyclohexane and dichloromethane extracts. Isolation of individual compounds from the cyclohexane extract revealed that at least 6 out of 7 compounds isolated were active with TRANS-cinnamic acid showing a clear dose-response pattern. In contrast, they were found to be inactive on PPAR δ. The same compounds, however, were also active in stimulating glucose uptake into 3T3-L1 adipocytes. In summary, the bioguided fractionation of CISTUS SALVIFOLIUS yields PPAR γ stimulating metabolites with differing chemical natures. In conclusion, PPAR γ represents a candidate molecule for the mediation of improvement of glucose metabolism by botanical/nutritional products

  1. PPAR Regulation of Inflammatory Signaling in CNS Diseases

    PubMed Central

    Bright, John J.; Kanakasabai, Saravanan; Chearwae, Wanida; Chakraborty, Sharmistha

    2008-01-01

    Central nervous system (CNS) is an immune privileged site, nevertheless inflammation associates with many CNS diseases. Peroxisome proliferator-activated receptors (PPARs) are a family of nuclear hormone receptors that regulate immune and inflammatory responses. Specific ligands for PPARα, γ, and δ isoforms have proven effective in the animal models of multiple sclerosis (MS), Alzheimer's disease, Parkinson's disease, and trauma/stroke, suggesting their use in the treatment of neuroinflammatory diseases. The activation of NF-κB and Jak-Stat signaling pathways and secretion of inflammatory cytokines are critical in the pathogenesis of CNS diseases. Interestingly, PPAR agonists mitigate CNS disease by modulating inflammatory signaling network in immune cells. In this manuscript, we review the current knowledge on how PPARs regulate neuroinflammatory signaling networks in CNS diseases. PMID:18670616

  2. Restoration of Endothelial Function in Pparα−/− Mice by Tempol

    PubMed Central

    Silswal, Neerupma; Parelkar, Nikhil; Andresen, Jon; Wacker, Michael J.

    2015-01-01

    Peroxisome proliferator activated receptor alpha (PPARα) is one of the PPAR isoforms belonging to the nuclear hormone receptor superfamily that regulates genes involved in lipid and lipoprotein metabolism. PPARα is present in the vascular wall and is thought to be involved in protection against vascular disease. To determine if PPARα contributes to endothelial function, conduit and cerebral resistance arteries were studied in Pparα−/− mice using isometric and isobaric tension myography, respectively. Aortic contractions to PGF2α and constriction of middle cerebral arteries to phenylephrine were not different between wild type (WT) and Pparα−/−; however, relaxation/dilation to acetylcholine (ACh) was impaired. There was no difference in relaxation between WT and Pparα−/− aorta to treatment with a nitric oxide (NO) surrogate indicating impairment in endothelial function. Endothelial NO levels as well as NO synthase expression were reduced in Pparα−/− aortas, while superoxide levels were elevated. Two-week feeding with the reactive oxygen species (ROS) scavenger, tempol, normalized ROS levels and rescued the impaired endothelium-mediated relaxation in Pparα−/− mice. These results suggest that Pparα−/− mice have impaired endothelial function caused by decreased NO bioavailability. Therefore, activation of PPARα receptors may be a therapeutic target for maintaining endothelial function and protection against cardiovascular disease. PMID:26649033

  3. Exercise reduces adipose tissue via cannabinoid receptor type 1 which is regulated by peroxisome proliferator-activated receptor-delta.

    PubMed

    Yan, Zhen Cheng; Liu, Dao Yan; Zhang, Li Li; Shen, Chen Yi; Ma, Qun Li; Cao, Ting Bing; Wang, Li Juan; Nie, Hai; Zidek, Walter; Tepel, Martin; Zhu, Zhi Ming

    2007-03-01

    Obesity is one major cardiovascular risk factor. We tested effects of endurance exercise on cannabinoid receptor type 1 (CB1) and peroxisome proliferator-activated receptor-delta (PPAR-delta)-dependent pathways in adipose tissue. Male Wistar rats were randomly assigned to standard laboratory chow or a high-fat diet without and with regular endurance exercise. Exercise in rats on high-fat diet significantly reduced visceral fat mass, blood pressure, and adipocyte size (each p<0.05). Adipocyte hypertrophy induced by high-fat diet was accompanied by increased CB1 expression in adipose tissue, whereas exercise significantly reduced CB1 expression (each p<0.05). CB1 receptor expression and adipocyte differentiation were directly regulated by PPAR-delta. Adipocyte hypertrophy induced by high-fat diet was accompanied by reduced PPAR-delta. Furthermore, selective silencing of PPAR-delta by RNA interference in 3T3-L1-preadipocyte cells significantly increased CB1 expression from 1.00+/-0.06 (n=3) to 1.91+/-0.06 (n=3; p<0.01) and increased adipocyte differentiation, whereas adenovirus-mediated overexpression of PPAR-delta significantly reduced CB1 expression to 0.39+/-0.03 (n=3; p<0.01) and reduced adipocyte differentiation. In the presence of the CB1 antagonist rimonabant adipocyte differentiation in stimulated 3T3 L1 preadipocyte cells was significantly reduced. The study indicates that high-fat diet-induced hypertrophy of adipocytes is associated with increased CB1 receptor expression which is directly regulated by PPAR-delta. Both CB1 and PPAR-delta are intimately involved in therapeutic interventions against a most important cardiovascular risk factor. PMID:17223076

  4. Exercise reduces adipose tissue via cannabinoid receptor type 1 which is regulated by peroxisome proliferator-activated receptor-{delta}

    SciTech Connect

    Yan Zhencheng; Liu Daoyan; Zhang Lili; Shen Chenyi; Ma Qunli; Cao Tingbing; Wang Lijuan; Nie Hai; Zidek, Walter; Tepel, Martin; Zhu Zhiming . E-mail: zhuzm@yahoo.com

    2007-03-09

    Obesity is one major cardiovascular risk factor. We tested effects of endurance exercise on cannabinoid receptor type 1 (CB1) and peroxisome proliferator-activated receptor-{delta} (PPAR-{delta})-dependent pathways in adipose tissue. Male Wistar rats were randomly assigned to standard laboratory chow or a high-fat diet without and with regular endurance exercise. Exercise in rats on high-fat diet significantly reduced visceral fat mass, blood pressure, and adipocyte size (each p < 0.05). Adipocyte hypertrophy induced by high-fat diet was accompanied by increased CB1 expression in adipose tissue, whereas exercise significantly reduced CB1 expression (each p < 0.05). CB1 receptor expression and adipocyte differentiation were directly regulated by PPAR-{delta}. Adipocyte hypertrophy induced by high-fat diet was accompanied by reduced PPAR-{delta}. Furthermore, selective silencing of PPAR-{delta} by RNA interference in 3T3-L1-preadipocyte cells significantly increased CB1 expression from 1.00 {+-} 0.06 (n = 3) to 1.91 {+-} 0.06 (n = 3; p < 0.01) and increased adipocyte differentiation, whereas adenovirus-mediated overexpression of PPAR-{delta} significantly reduced CB1 expression to 0.39 {+-} 0.03 (n = 3; p < 0.01) and reduced adipocyte differentiation. In the presence of the CB1 antagonist rimonabant adipocyte differentiation in stimulated 3T3 L1 preadipocyte cells was significantly reduced. The study indicates that high-fat diet-induced hypertrophy of adipocytes is associated with increased CB1 receptor expression which is directly regulated by PPAR-{delta}. Both CB1 and PPAR-{delta} are intimately involved in therapeutic interventions against a most important cardiovascular risk factor.

  5. Maternal nutrition influences angiogenesis in the placenta through peroxisome proliferator activated receptors: A novel hypothesis.

    PubMed

    Meher, Akshaya; Sundrani, Deepali; Joshi, Sadhana

    2015-10-01

    Placental angiogenesis is critical to maintain adequate blood flow during gestation, and any alterations in this process can result in an adverse pregnancy. Growing evidence indicates that suboptimal maternal nutrition can alter placental development. Although the underlying mechanisms are not clear, maternal nutrition likely influences the expression of genes involved in placental development through regulation of various transcription factors such as peroxisome proliferator-activated receptors (PPARs), which can be activated by ligands including long-chain polyunsaturated fatty acids. Indeed, several studies demonstrated a role for PPAR in implantation, trophoblast differentiation, and angiogenesis. Alterations in maternal nutrition during pregnancy can affect the expression of PPARs via epigenetic mechanisms or through homocysteine, which is known to compete for PPARs. This review discusses the role of maternal nutrition-particularly micronutrients like folate, vitamin B12 , and omega-3 fatty acids-in modulating the activity of PPARs during placentation and angiogenesis, which affects placental and fetal growth. Additional animal and human studies need to be undertaken to elucidate the molecular mechanisms through which maternal nutrition regulates PPARs, specifically to determine whether PPARs affect placental angiogenesis directly through angiogenic factors or indirectly by modulating trophoblast differentiation. PMID:26099847

  6. A role for central nervous system PPAR-γ in the regulation of energy balance.

    PubMed

    Ryan, Karen K; Li, Bailing; Grayson, Bernadette E; Matter, Emily K; Woods, Stephen C; Seeley, Randy J

    2011-05-01

    The peroxisome proliferator-activated receptor-γ (PPAR-γ) is a nuclear receptor that is activated by lipids to induce the expression of genes involved in lipid and glucose metabolism, thereby converting nutritional signals into metabolic consequences. PPAR-γ is the target of the thiazolidinedione (TZD) class of insulin-sensitizing drugs, which have been widely prescribed to treat type 2 diabetes mellitus. A common side effect of treatment with TZDs is weight gain. Here we report a previously unknown role for central nervous system (CNS) PPAR-γ in the regulation of energy balance. We found that both acute and chronic activation of CNS PPAR-γ, by either TZDs or hypothalamic overexpression of a fusion protein consisting of PPAR-γ and the viral transcriptional activator VP16 (VP16-PPAR-γ), led to positive energy balance in rats. Blocking the endogenous activation of CNS PPAR-γ with pharmacological antagonists or reducing its expression with shRNA led to negative energy balance, restored leptin sensitivity in high-fat-diet (HFD)-fed rats and blocked the hyperphagic response to oral TZD treatment. These findings have implications for the widespread clinical use of TZD drugs and for understanding the etiology of diet-induced obesity. PMID:21532595

  7. PPAR{alpha} agonist fenofibrate protects the kidney from hypertensive injury in spontaneously hypertensive rats via inhibition of oxidative stress and MAPK activity

    SciTech Connect

    Hou, Xiaoyang; Shen, Ying H.; Li, Chuanbao; Wang, Fei; Zhang, Cheng; Bu, Peili; Zhang, Yun

    2010-04-09

    Oxidative stress has been shown to play an important role in the development of hypertensive renal injury. Peroxisome proliferator-activated receptors {alpha} (PPAR{alpha}) has antioxidant effect. In this study, we demonstrated that fenofibrate significantly reduced proteinuria, inflammatory cell recruitment and extracellular matrix (ECM) proteins deposition in the kidney of SHRs without apparent effect on blood pressure. To investigate the mechanisms involved, we found that fenofibrate treatment markedly reduced oxidative stress accompanied by reduced activity of renal NAD(P)H oxidase, increased activity of Cu/Zn SOD, and decreased phosphorylation of p38MAPK and JNK in the kidney of SHRs. Taken together, fenofibrate treatment can protect against hypertensive renal injury without affecting blood pressure by inhibiting inflammation and fibrosis via suppression of oxidative stress and MAPK activity.

  8. Diabetes or peroxisome proliferator-activated receptor alpha agonist increases mitochondrial thioesterase I activity in heart

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peroxisome proliferator-activated receptor alpha (PPAR alpha) is a transcriptional regulator of the expression of mitochondrial thioesterase I (MTE-I) and uncoupling protein 3 (UCP3), which are induced in the heart at the mRNA level in response to diabetes. Little is known about the regulation of pr...

  9. Structural and Biochemical Basis for the Binding Selectivity of Peroxisome Proliferator-activated Receptor [gamma] to PGC-1[alpha

    SciTech Connect

    Li, Yong; Kovach, Amanda; Suino-Powell, Kelly; Martynowski, Dariusz; Xu, H. Eric

    2008-07-23

    The functional interaction between the peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) and its coactivator PGC-1{alpha} is crucial for the normal physiology of PPAR{gamma} and its pharmacological response to antidiabetic treatment with rosiglitazone. Here we report the crystal structure of the PPAR{gamma} ligand-binding domain bound to rosiglitazone and to a large PGC-1{alpha} fragment that contains two LXXLL-related motifs. The structure reveals critical contacts mediated through the first LXXLL motif of PGC-1{alpha} and the PPAR{gamma} coactivator binding site. Through a combination of biochemical and structural studies, we demonstrate that the first LXXLL motif is the most potent among all nuclear receptor coactivator motifs tested, and only this motif of the two LXXLL-related motifs in PGC-1{alpha} is capable of binding to PPAR{gamma}. Our studies reveal that the strong interaction of PGC-1{alpha} and PPAR{gamma} is mediated through both hydrophobic and specific polar interactions. Mutations within the context of the full-length PGC-1{alpha} indicate that the first PGC-1{alpha} motif is necessary and sufficient for PGC-1{alpha} to coactivate PPAR{gamma} in the presence or absence of rosiglitazone. These results provide a molecular basis for specific recruitment and functional interplay between PPAR{gamma} and PGC-1{alpha} in glucose homeostasis and adipocyte differentiation.

  10. A peroxisome proliferator-activated receptor-gamma agonist and other constituents from Chromolaena odorata.

    PubMed

    Dat, Nguyen Tien; Lee, Kyeong; Hong, Young-Soo; Kim, Young Ho; Minh, Chau Van; Lee, Jung Joon

    2009-06-01

    Peroxisome proliferator-activated receptors (PPARs) are key regulators of lipid and glucose metabolism and have become important therapeutic targets for various diseases. The phytochemical investigation of the chloroform-soluble extract of Chromolaena odorata led to the isolation of a PPAR-gamma agonist, (9 S,13 R)-12-oxo-phytodienoic acid (1), together with 12 other compounds. The structures of chromomoric acid G (2), a new dehydrogenated derivative of 1, and chromolanone (3) were elucidated based on spectroscopic methods. Compound 1 showed a significant effect on PPAR-gamma activation in comparison with rosiglitazone. However, compound 2 was inactive, suggesting that the dehydrogenation of the prostaglandin-like structure in 1 abrogates its PPAR-gamma agonistic activity. PMID:19242902

  11. Peroxisome proliferator-activated receptor {alpha} agonist-induced down-regulation of hepatic glucocorticoid receptor expression in SD rats

    SciTech Connect

    Chen Xiang; Li Ming; Sun Weiping; Bi Yan; Cai Mengyin; Liang Hua; Yu Qiuqiong; He Xiaoying; Weng Jianping

    2008-04-18

    It was reported that glucocorticoid production was inhibited by fenofibrate through suppression of type-1 11{beta}-hydroxysteroid dehydrogenase gene expression in liver. The inhibition might be a negative-feedback regulation of glucocorticoid receptor (GR) activity by peroxisome proliferator-activated receptor alpha (PPAR{alpha}), which is quickly induced by glucocorticoid in the liver. However, it is not clear if GR expression is changed by fenofibrate-induced PPAR{alpha} activation. In this study, we tested this possibility in the liver of Sprague-Dawley rats. GR expression was reduced by fenofibrate in a time- and does-dependent manner. The inhibition was observed in liver, but not in fat and muscle. The corticosterone level in the blood was increased significantly by fenofibrate. These effects of fenofibrate were abolished by PPAR{alpha} inhibitor MK886, suggesting that fenofibrate activated through PPAR{alpha}. In conclusion, inhibition of GR expression may represent a new molecular mechanism for the negative feedback regulation of GR activity by PPAR{alpha}.

  12. Metabolomics of the interaction between PPAR-α and age in the PPAR-α-null mouse

    PubMed Central

    Atherton, Helen J; Gulston, Melanie K; Bailey, Nigel J; Cheng, Kian-Kai; Zhang, Wen; Clarke, Kieran; Griffin, Julian L

    2009-01-01

    Regulation between the fed and fasted states in mammals is partially controlled by peroxisome proliferator-activated receptor-α (PPAR-α). Expression of the receptor is high in the liver, heart and skeletal muscle, but decreases with age. A combined 1H nuclear magnetic resonance (NMR) spectroscopy and gas chromatography-mass spectrometry metabolomic approach has been used to examine metabolism in the liver, heart, skeletal muscle and adipose tissue in PPAR-α-null mice and wild-type controls during ageing between 3 and 13 months. For the PPAR-α-null mouse, multivariate statistics highlighted hepatic steatosis, reductions in the concentrations of glucose and glycogen in both the liver and muscle tissue, and profound changes in lipid metabolism in each tissue, reflecting known expression targets of the PPARreceptor. Hepatic glycogen and glucose also decreased with age for both genotypes. These findings indicate the development of age-related hepatic steatosis in the PPAR-α-null mouse, with the normal metabolic changes associated with ageing exacerbating changes associated with genotype. Furthermore, the combined metabolomic and multivariate statistics approach provides a robust method for examining the interaction between age and genotype. PMID:19357638

  13. Wnt Pathway Stabilizes MeCP2 Protein to Repress PPAR-γ in Activation of Hepatic Stellate Cells.

    PubMed

    Kweon, Soo-Mi; Chi, Feng; Higashiyama, Reiichi; Lai, Keane; Tsukamoto, Hidekazu

    2016-01-01

    PPAR-γ is essential for differentiation of hepatic stellate cells (HSC), and its loss due to epigenetic repression by methyl-CpG binding protein 2 (MeCP2) causes HSC myofibroblastic activation mediated in part via Wnt pathway, the key cellular event in liver fibrosis. Decreased miR-132 was previously proposed to promote MeCP2 protein translation for Ppar-γ repression in activated HSC (aHSC). The present study aimed to test this notion and to better understand the mechanisms of MeCP2 upregulation in aHSC. MeCP2 protein is increased on day 3 to 7 as HSC become activated in primary culture on plastic, but this is accompanied by increased but not reduced miR-132 or miR-212 which is also expected to target MeCP2 due to its similar sequence with miR-132. The levels of these mRNAs are decreased 40~50% in aHSCs isolated from experimental cholestatic liver fibrosis but increased 6-8 fold in aHSC from hepatotoxic liver fibrosis in rats. Suppression of either or both of miR132 and miR212 with specific anti-miRNA oligonucleotides (anti-oligo), does not affect MeCP2 protein levels in aHSCs. The Wnt antagonist FJ9 which inhibits HSC activation, increases miR-132/miR-212, reduces MeCP2 and its enrichment at 5' Ppar-γ promoter, and restores Ppar-γ expression but the anti-oligo do not prevent Ppar-γ upregulation. The pan-NADPH oxidase (NOX) inhibitor diphenyleneiodonium (DPI) also reduces both MeCP2 and stabilized non-(S33/S37/Thr41)-phospho β-catenin and reverts aHSC to quiescent cells but do not affect miR-132/miR-212 levels. Wnt antagonism with FJ9 increases MeCP2 protein degradation in cultured HSC, and FJ9-mediated loss of MeCP2 is rescued by leupeptin but not by proteasome and lysozome inhibitors. In conclusion, canonical Wnt pathway increases MeCP2 protein due to protein stability which in turn represses Ppar-γ and activates HSC. PMID:27214381

  14. Wnt Pathway Stabilizes MeCP2 Protein to Repress PPAR-γ in Activation of Hepatic Stellate Cells

    PubMed Central

    Kweon, Soo-Mi; Chi, Feng; Higashiyama, Reiichi; Lai, Keane; Tsukamoto, Hidekazu

    2016-01-01

    PPAR-γ is essential for differentiation of hepatic stellate cells (HSC), and its loss due to epigenetic repression by methyl-CpG binding protein 2 (MeCP2) causes HSC myofibroblastic activation mediated in part via Wnt pathway, the key cellular event in liver fibrosis. Decreased miR-132 was previously proposed to promote MeCP2 protein translation for Ppar-γ repression in activated HSC (aHSC). The present study aimed to test this notion and to better understand the mechanisms of MeCP2 upregulation in aHSC. MeCP2 protein is increased on day 3 to 7 as HSC become activated in primary culture on plastic, but this is accompanied by increased but not reduced miR-132 or miR-212 which is also expected to target MeCP2 due to its similar sequence with miR-132. The levels of these mRNAs are decreased 40~50% in aHSCs isolated from experimental cholestatic liver fibrosis but increased 6–8 fold in aHSC from hepatotoxic liver fibrosis in rats. Suppression of either or both of miR132 and miR212 with specific anti-miRNA oligonucleotides (anti-oligo), does not affect MeCP2 protein levels in aHSCs. The Wnt antagonist FJ9 which inhibits HSC activation, increases miR-132/miR-212, reduces MeCP2 and its enrichment at 5’ Ppar-γ promoter, and restores Ppar-γ expression but the anti-oligo do not prevent Ppar-γ upregulation. The pan-NADPH oxidase (NOX) inhibitor diphenyleneiodonium (DPI) also reduces both MeCP2 and stabilized non-(S33/S37/Thr41)-phospho β-catenin and reverts aHSC to quiescent cells but do not affect miR-132/miR-212 levels. Wnt antagonism with FJ9 increases MeCP2 protein degradation in cultured HSC, and FJ9-mediated loss of MeCP2 is rescued by leupeptin but not by proteasome and lysozome inhibitors. In conclusion, canonical Wnt pathway increases MeCP2 protein due to protein stability which in turn represses Ppar-γ and activates HSC. PMID:27214381

  15. New Insights into the PPAR γ Agonists for the Treatment of Diabetic Nephropathy.

    PubMed

    Jia, Zhanjun; Sun, Ying; Yang, Guangrui; Zhang, Aihua; Huang, Songming; Heiney, Kristina Marie; Zhang, Yue

    2014-01-01

    Diabetic nephropathy (DN) is a severe complication of diabetes and serves as the leading cause of chronic renal failure. In the past decades, angiotensin-converting enzyme inhibitors (ACEIs)/angiotensin II receptor blockers (ARBs) based first-line therapy can slow but cannot stop the progression of DN, which urgently requests the innovation of therapeutic strategies. Thiazolidinediones (TZDs), the synthetic exogenous ligands of nuclear receptor peroxisome proliferator-activated receptor- γ (PPAR γ ), had been thought to be a promising candidate for strengthening the therapy of DN. However, the severe adverse effects including fluid retention, cardiovascular complications, and bone loss greatly limited their use in clinic. Recently, numerous novel PPAR γ agonists involving the endogenous PPAR γ ligands and selective PPAR γ modulators (SPPARMs) are emerging as the promising candidates of the next generation of antidiabetic drugs instead of TZDs. Due to the higher selectivity of these novel PPAR γ agonists on the regulation of the antidiabetes-associated genes than that of the side effect-associated genes, they present fewer adverse effects than TZDs. The present review was undertaken to address the advancements and the therapeutic potential of these newly developed PPAR γ agonists in dealing with diabetic kidney disease. At the same time, the new insights into the therapeutic strategies of DN based on the PPAR γ agonists were fully addressed. PMID:24624137

  16. The role of peroxisome proliferator-activated receptor-{beta}/{delta} in epidermal growth factor-induced HaCaT cell proliferation

    SciTech Connect

    Liang Pengfei; Jiang Bimei; Yang Xinghua; Xiao Xianzhong Huang Xu; Long Jianhong; Zhang Pihong; Zhang Minghua; Xiao Muzhang; Xie Tinghong; Huang Xiaoyuan

    2008-10-15

    Epidermal growth factor (EGF) has been shown to be a potent mitogen for epidermal cells both in vitro and in vivo, thus contributing to the development of an organism. It has recently become clear that peroxisome proliferator-activated receptor-{beta}/{delta} (PPAR{beta}/{delta}) expression and activation is involved in the cell proliferation. However, little is known about the role of PPAR{beta}/{delta} in EGF-induced proliferation of HaCaT keratinocytes. In this study, HaCaT cells were cultured in the presence and absence of EGF and we identified that EGF induced an increase of PPAR{beta}/{delta} mRNA and protein level expression in time-dependent and dose-dependent manner, and AG1487, an EGF receptor (EGFR) special inhibitor, caused attenuation of PPAR{beta}/{delta} protein expression. Electrophoretic mobility shift assay (EMSA) revealed that EGF significantly increased PPAR{beta}/{delta} binding activity in HaCaT keratinocytes. Antisense phosphorothioate oligonucleotides (asODNs) against PPAR{beta}/{delta} caused selectively inhibition of PPAR{beta}/{delta} protein content induced by EGF and significantly attenuated EGF-mediated cell proliferation. Treatment of the cells with L165041, a specific synthetic ligand for PPAR{beta}/{delta}, significantly enhanced EGF-mediated cell proliferation. Finally, c-Jun ablation inhibited PPAR{beta}/{delta} up-regulation induced by EGF, and chromatin immunoprecipitation (ChIP) showed that c-Jun bound to the PPAR{beta}/{delta} promoter and the binding increased in EGF-stimulated cells. These results demonstrate that EGF induces PPAR{beta}/{delta} expression in a c-Jun-dependent manner and PPAR{beta}/{delta} plays a vital role in EGF-stimulated proliferation of HaCaT cells.

  17. PPAR agonists as therapeutics for CNS trauma and neurological diseases

    PubMed Central

    Mandrekar-Colucci, Shweta; Sauerbeck, Andrew; Popovich, Phillip G.; McTigue, Dana M.

    2013-01-01

    Traumatic injury or disease of the spinal cord and brain elicits multiple cellular and biochemical reactions that together cause or are associated with neuropathology. Specifically, injury or disease elicits acute infiltration and activation of immune cells, death of neurons and glia, mitochondrial dysfunction, and the secretion of substrates that inhibit axon regeneration. In some diseases, inflammation is chronic or non-resolving. Ligands that target PPARs (peroxisome proliferator-activated receptors), a group of ligand-activated transcription factors, are promising therapeutics for neurologic disease and CNS injury because their activation affects many, if not all, of these interrelated pathologic mechanisms. PPAR activation can simultaneously weaken or reprogram the immune response, stimulate metabolic and mitochondrial function, promote axon growth and induce progenitor cells to differentiate into myelinating oligodendrocytes. PPAR activation has beneficial effects in many pre-clinical models of neurodegenerative diseases and CNS injury; however, the mechanisms through which PPARs exert these effects have yet to be fully elucidated. In this review we discuss current literature supporting the role of PPAR activation as a therapeutic target for treating traumatic injury and degenerative diseases of the CNS. PMID:24215544

  18. Impact of targeted PPAR gamma disruption on bone remodeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peroxisome proliferator-activated receptor gamma (PPAR gamma), known as the master regulator of adipogenesis, has been regarded as a promising target for new anti-osteoporosis therapy due to its role in regulating bone marrow mesenchymal stem/progenitor cell (BMSC) lineage commitment. However, the p...

  19. Effects of Diisodecyl Phthalate on PPAR:RXR-Dependent Gene Expression Pathways in Sea Bream Hepatocytes.

    PubMed

    Cocci, Paolo; Mosconi, Gilberto; Arukwe, Augustine; Mozzicafreddo, Matteo; Angeletti, Mauro; Aretusi, Graziano; Palermo, Francesco Alessandro

    2015-05-18

    Evidence that endocrine-disrupting chemicals (EDCs) may target metabolic disturbances, beyond interference with the functions of the endocrine systems has recently accumulated. Among EDCs, phthalate plasticizers like the diisodecyl phthalate (DiDP) are commonly found contaminants of aquatic environments and have been suggested to function as obesogens by activating peroxisome proliferator activated receptors (PPARs), a subset of nuclear receptors (NRs) that act as metabolic sensors, playing pivotal roles in lipid homeostasis. However, little is known about the modulation of PPAR signaling pathways by DiDP in fish. In this study, we have first investigated the ligand binding efficiency of DiDP to the ligand binding domains of PPARs and retinoid-X-receptor-α (RXRα) proteins in fish using a molecular docking approach. Furthermore, in silico predictions were integrated by in vitro experiments to show possible dose-relationship effects of DiDP on PPAR:RXR-dependent gene expression pathways using sea bream hepatocytes. We observed that DiDP shows high binding efficiency with piscine PPARs demonstrating a greater preference for RXRα. Our studies also demonstrated the coordinate increased expression of PPARs and RXRα, as well as their downstream target genes in vitro. Principal component analysis (PCA) showed the strength of relationship between transcription of most genes involved in fatty acid metabolism and PPAR mRNA levels. In particular, fatty acid binding protein (FABP) was highly correlated to all PPARs. The results of this study suggest that DiDP can be considered an environmental stressor that activates PPAR:RXR signaling to promote long-term changes in lipid homeostasis leading to potential deleterious physiological consequences in teleost fish. PMID:25825955

  20. A novel PPAR{gamma} agonist, KR62776, suppresses RANKL-induced osteoclast differentiation and activity by inhibiting MAP kinase pathways

    SciTech Connect

    Park, Ju-Young; Bae, Myung-Ae; Cheon, Hyae Gyeong; Kim, Sung Soo; Hong, Jung-Min; Kim, Tae-Ho; Choi, Je-Yong; Kim, Sang-Hyun; Lim, Jiwon; Choi, Chang-Hyuk; Shin, Hong-In; Kim, Shin-Yoon Park, Eui Kyun

    2009-01-16

    We investigated the effects of a novel peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) agonist, KR62776, on osteoclast differentiation and function, and on the underlying signaling pathways. KR62776 markedly suppressed differentiation into osteoclasts in various osteoclast model systems, including bone marrow mononuclear (BMM) cells and a co-culture of calvarial osteoblasts and BMM cells. KR62776 suppressed the activation of tartrate-resistant acid phosphatase (TRAP) and the expression of genes associated with osteoclast differentiation, such as TRAP, dendritic cell-specific transmembrane protein (DC-STAMP), and osteoclast-associated receptor (OSCAR). Furthermore, KR62776 reduced resorption pit formation in osteoclasts, and down-regulated genes essential for osteoclast activity, such as Src and {alpha}v{beta}3 integrin. An analysis of a signaling pathway showed that KR62776 inhibited the receptor activator of nuclear factor-{kappa}B ligand (RANKL)-induced activation of p38 mitogen-activated protein kinase (p38MAPK), extracellular regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and nuclear factor-{kappa}B (NF-{kappa}B). Together, these results demonstrate that KR62776 negatively affects osteoclast differentiation and activity by inhibiting the RANKL-induced activation of MAP kinases and NF-{kappa}B.

  1. Peroxisome proliferator-activated receptors and retinoic acid receptors differentially control the interactions of retinoid X receptor heterodimers with ligands, coactivators, and corepressors.

    PubMed Central

    DiRenzo, J; Söderstrom, M; Kurokawa, R; Ogliastro, M H; Ricote, M; Ingrey, S; Hörlein, A; Rosenfeld, M G; Glass, C K

    1997-01-01

    As the obligate member of most nuclear receptor heterodimers, retinoid X receptors (RXRs) can potentially perform two functions: cooperative binding to hormone response elements and coordinate regulation of target genes by RXR ligands. In this paper we describe allosteric interactions between RXR and two heterodimeric partners, retinoic acid receptors (RARs) and peroxisome proliferator-activated receptors (PPARs); RARs and PPARs prevent and permit activation by RXR-specific ligands, respectively. By competing for dimerization with RXR on response elements consisting of direct-repeat half-sites spaced by 1 bp (DR1 elements), the relative abundance of RAR and PPAR determines whether the RXR signaling pathway will be functional. In contrast to RAR, which prevents the binding of RXR ligands and recruits the nuclear receptor corepressor N-CoR, PPAR permits the binding of SRC-1 in response to both RXR and PPAR ligands. Overexpression of SRC-1 markedly potentiates ligand-dependent transcription by PPARgamma, suggesting that SRC-1 serves as a coactivator in vivo. Remarkably, the ability of RAR to both block the binding of ligands to RXR and interact with corepressors requires the CoR box, a structural motif residing in the N-terminal region of the RAR ligand binding domain. Mutations in the CoR box convert RAR from a nonpermissive to a permissive partner of RXR signaling on DR1 elements. We suggest that the differential recruitment of coactivators and corepressors by RAR-RXR and PPAR-RXR heterodimers provides the basis for a transcriptional switch that may be important in controlling complex programs of gene expression, such as adipocyte differentiation. PMID:9121466

  2. Meta-analysis of primary target genes of peroxisome proliferator-activated receptors

    PubMed Central

    Heinäniemi, Merja; Uski, J Oskari; Degenhardt, Tatjana; Carlberg, Carsten

    2007-01-01

    Background Peroxisome proliferator-activated receptors (PPARs) are known for their critical role in the development of diseases, such as obesity, cardiovascular disease, type 2 diabetes and cancer. Here, an in silico screening method is presented, which incorporates experiment- and informatics-derived evidence, such as DNA-binding data of PPAR subtypes to a panel of PPAR response elements (PPREs), PPRE location relative to the transcription start site (TSS) and PPRE conservation across multiple species, for more reliable prediction of PPREs. Results In vitro binding and in vivo functionality evidence agrees with in silico predictions, validating the approach. The experimental analysis of 30 putative PPREs in eight validated PPAR target genes indicates that each gene contains at least one functional, strong PPRE that occurs without positional bias relative to the TSS. An extended analysis of the cross-species conservation of PPREs reveals limited conservation of PPRE patterns, although PPAR target genes typically contain strong or multiple medium strength PPREs. Human chromosome 19 was screened using this method, with validation of six novel PPAR target genes. Conclusion An in silico screening approach is presented, which allows increased sensitivity of PPAR binding site and target gene detection. PMID:17650321

  3. Ginsenoside Rf, a component of ginseng, regulates lipoprotein metabolism through peroxisome proliferator-activated receptor {alpha}

    SciTech Connect

    Lee, Hyunghee; Gonzalez, Frank J.; Yoon, Michung . E-mail: yoon60@mokwon.ac.kr

    2006-01-06

    We investigated whether ginseng regulates lipoprotein metabolism by altering peroxisome proliferator-activated receptor {alpha} (PPAR{alpha})-mediated pathways, using a PPAR{alpha}-null mouse model. Administration of ginseng extract, ginsenosides, and ginsenoside Rf (Rf) to wild-type mice not only significantly increased basal levels of hepatic apolipoprotein (apo) A-I and C-III mRNA compared with wild-type controls, but also substantially reversed the reductions in mRNA levels of apo A-I and C-III expected following treatment with the potent PPAR{alpha} ligand Wy14,643. In contrast, no effect was detected in the PPAR{alpha}-null mice. Testing of eight main ginsenosides on PPAR{alpha} reporter gene expression indicated that Rf was responsible for the effects of ginseng on lipoprotein metabolism. Furthermore, the inhibition of PPAR{alpha}-dependent transactivation by Rf seems to occur at the level of DNA binding. These results demonstrate that ginseng component Rf regulates apo A-I and C-III mRNA and the actions of Rf on lipoprotein metabolism are mediated via interactions with PPAR{alpha}.

  4. The Effect of Baicalin as A PPAR Activator on Erythroid Differentiation of CD133+Hematopoietic Stem Cells in Umbilical Cord Blood

    PubMed Central

    Abbasi, Parvaneh; Shamsasenjan, Karim; Movassaghpour Akbari, Ali Akbar; Akbarzadehlaleh, Parvin; Dehdilani, Nima; Ejtehadifar, Mostafa

    2015-01-01

    Objective The peroxisome proliferator-activated receptors (PPARs) are a group of nu- clear receptor proteins whose functions as transcription factors regulate gene expres- sions. PPARs play essential roles in the regulation of cellular differentiation, development, and metabolism (carbohydrate, lipid, protein), and tumorigenesis of higher organisms. This study attempts to determine the effect of baicalin, a PPARγ activator, on erythroid differentiation of cluster of differentiation 133+(CD133+) cord blood hematopoietic stem cells (HSCs). Materials and Methods In this experimental study, in order to investigate the effects of the PPARγ agonists baicalin and troglitazone on erythropoiesis, we isolated CD133+ cells from human umbilical cord blood using the MACS method. Isolated cells were cultured in erythroid-inducing medium with or without various amounts of the two PPARγ activa- tors (baicalin and troglitazone). Erythroid differentiation of CD133+cord blood HSCs were assessed using microscopic morphology analysis, flow cytometric analysis of erythroid surface markers transferrin receptor (TfR) and glycophorin A (GPA) and bycolony forming assay. Results Microscopic and flow cytometric analysis revealed the erythroid differentiation of CD133+cord blood HSCs under applied erythroid inducing conditions. Our flow cytometric data showed that the TfR and GPA positive cell population diminished significantly in the presence of either troglitazone or baicalin. The suppression of erythroid differentiation in response to PPARγ agonists was dose-dependent. Erythroid colony-forming ability of HSC decreased significantly after treatment with both PPARγ agonists but troglitazone had a markedly greater effect. Conclusion Our results have demonstrated that PPARγ agonists modulate erythroid dif- ferentiation of CD133+HSCs, and therefore play an important role in regulation of normal erythropoiesis under physiologic conditions. Thus, considering the availability and applica

  5. Regulation of Matrix Remodeling by Peroxisome Proliferator-Activated Receptor-γ: A Novel Link Between Metabolism and Fibrogenesis

    PubMed Central

    Wei, Jun; Bhattacharyya, Swati; Jain, Manu; Varga, John

    2012-01-01

    The intractable process of fibrosis underlies the pathogenesis of systemic sclerosis (SSc) and other diseases, and in aggregate contributes to 45% of deaths worldwide. Because currently there is no effective anti-fibrotic therapy, a better understanding of the pathways and cellular differentiation programs underlying fibrosis are needed. Emerging evidence points to a fundamental role of the nuclear hormone receptor peroxisome proliferator activated receptor-γ (PPAR-γ) in modulating fibrogenesis. While PPAR-γ has long been known to be important in lipid metabolism and in glucose homeostasis, its role in regulating mesenchymal cell biology and its association with pathological fibrosis had not been appreciated until recently. This article highlights recent studies revealing a consistent association of fibrosis with aberrant PPAR-γ expression and activity in various forms of human fibrosis and in rodent models, and reviews studies linking genetic manipulation of the PPAR-γ pathway in rodents and fibrosis. We survey the broad range of anti-fibrotic activities associated with PPAR-γ and the underlying mechanisms. We also summarize the emerging data linking PPAR-γ dysfunction and pulmonary arterial hypertension (PAH), which together with fibrosis is responsible for the mortality in patients in SSc. Finally, we consider current and potential future strategies for targeting PPARactivity or expression as a therapy for controlling fibrosis. PMID:22802908

  6. Proteasome inhibitors induce peroxisome proliferator-activated receptor transactivation through RXR accumulation and a protein kinase C-dependent pathway

    SciTech Connect

    Tsao, W.-C.; Wu, H.-M.; Chi, K.-H.; Chang, Y.-H.; Lin, W.-W. . E-mail: wwl@ha.mc.ntu.edu.tw

    2005-03-10

    Peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}), a member of nuclear hormone receptors, forms a heterodimeric DNA binding complex with retinoid X receptor (RXR) and serves as a transcriptional regulator of gene expression. In this study, using luciferase assay of a reporter gene containing PPAR response element (PPRE), we found PPRE transactivity was additively induced by PPAR{gamma} activator (15dPGJ{sub 2}) and RXR activator (9-cis retinoic acid, 9-cis RA). Proteasome inhibitors MG132 and MG262 also stimulate PPRE transactivity in a concentration-dependent manner, and this effect is synergistic to 15dPGJ{sub 2} and 9-cis RA. PKC activation by 12-myristate 13-acetate (PMA) and ingenol 3,20-dibenzoate (IDB) also led to an increased PPRE activation, and this action was additive to PPAR{gamma} activators and 9-cis RA, but not to proteasome inhibitors. Results indicate that the PPAR{gamma} enhancing effect of proteasome inhibitors was attributed to redox-sensitive PKC activation. Western blot analysis showed that the protein level of RXR{alpha}, but not PPAR{gamma}, RXR{beta}, or PKC isoforms, was accumulated in the presence of proteasome inhibitors. Taken together, we conclude that proteasome inhibitors can upregulate PPRE activity through RXR{alpha} accumulation and a PKC-dependent pathway. The former is due to inhibition of RXR{alpha} degradation through ubiquitin-dependent proteasome system, while the latter is mediated by reactive oxygen species (ROS) production.

  7. Impaired Peroxisome Proliferator-activated Receptor-γ Contributes to Phenotypic Modulation of Vascular Smooth Muscle Cells during Hypertension*

    PubMed Central

    Zhang, Lili; Xie, Peng; Wang, Jingzhou; Yang, Qingwu; Fang, Chuanqin; Zhou, Shuang; Li, Jingcheng

    2010-01-01

    The phenotypic modulation of vascular smooth muscle cells (VSMCs) plays a pivotal role in hypertension-induced vascular changes including vascular remodeling. The precise mechanisms underlying VSMC phenotypic modulation remain elusive. Here we test the role of peroxisome proliferator-activated receptor (PPAR)-γ in the VSMC phenotypic modulation during hypertension. Both spontaneously hypertensive rat (SHR) aortas and SHR-derived VSMCs exhibited reduced PPAR-γ expression and excessive VSMC phenotypic modulation identified by reduced contractile proteins, α-smooth muscle actin (α-SMA) and smooth muscle 22α (SM22α), and enhanced proliferation and migration. PPAR-γ overexpression rescued the expression of α-SMA and SM22α, and inhibited the proliferation and migration in SHR-derived VSMCs. In contrast, PPAR-γ silencing exerted the opposite effect. Activating PPAR-γ using rosiglitazone in vivo up-regulated aortic α-SMA and SM22α expression and attenuated aortic remodeling in SHRs. Increased activation of phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling was observed in SHR-derived VSMCs. PI3K inhibitor LY294002 rescued the impaired expression of contractile proteins, and inhibited proliferation and migration in VSMCs from SHRs, whereas constitutively active PI3K mutant had the opposite effect. Overexpression or silencing of PPAR-γ inhibited or excited PI3K/Akt activity, respectively. LY294002 counteracted the PPAR-γ silencing induced proliferation and migration in SHR-derived VSMCs, whereas active PI3K mutant had the opposite effect. In contrast, reduced proliferation and migration by PPAR-γ overexpression were reversed by the active PI3K mutant, and further inhibited by LY294002. We conclude that PPAR-γ inhibits VSMC phenotypic modulation through inhibiting PI3K/Akt signaling. Impaired PPAR-γ expression is responsible for VSMC phenotypic modulation during hypertension. These findings highlight an attractive therapeutic target for

  8. Fermented Ginseng Contains an Agonist of Peroxisome Proliferator Activated Receptors α and γ.

    PubMed

    Igami, Kentaro; Shimojo, Yosuke; Ito, Hisatomi; Miyazaki, Toshitsugu; Nakano, Fusako; Kashiwada, Yoshiki

    2016-09-01

    Peroxisome proliferator activated receptor (PPAR) is a nuclear receptor that is one of the transcription factors regulating lipid and glucose metabolism. Fermented ginseng (FG) is a ginseng fermented by Lactobacillus paracasei A221 containing minor ginsenosides and metabolites of fermentation. DNA microarray analysis of rat liver treated with FG indicated that FG affects on lipid metabolism are mediated by PPAR-α. To identify a PPAR-α agonist in FG, PPAR-α transcription reporter assay-guided fractionation was performed. The fraction obtained from the MeOH extract of FG, which showed potent transcription activity of PPAR-α, was fractionated by silica gel column chromatography into 16 subfractions, and further separation and crystallization gave compound 1 together with four known constituents of ginseng, including 20(R)- and 20(S)-protopanaxadiol, and 20(R)- and 20(S)-ginsenoside Rh1. The structure of compound 1 was identified as 10-hydroxy-octadecanoic acid by (1)H- and (13)C-NMR spectra and by EI-MS analysis of the methyl ester of 1. Compound 1 demonstrated much higher transcription activity of PPAR-α than the other isolated compounds. In addition, compound 1 also showed 5.5-fold higher transcription activity of PPAR-γ than vehicle at the dose of 20 μg/mL. In the present study, we identified 10-hydroxy-octadecanoic acid as a dual PPAR-α/γ agonist in FG. Our study suggested that metabolites of fermentation, in addition to ginsenosides, contribute to the health benefits of FG. PMID:27627700

  9. The biology of the peroxisome proliferator-activated receptor system in the female reproductive tract.

    PubMed

    Vélez, Leandro Martín; Abruzzese, Giselle Adriana; Motta, Alicia Beatriz

    2013-01-01

    Fuel sensors such as glucose, insulin or leptin, are known to be directly involved in the regulation of fertility at each level of the hypothalamic-pituitary-gonadal axis. The discovery of the peroxisome proliferator-activated receptor (PPAR) family of transcription factors has revealed the link between lipid/glucose availability and long-term metabolic adaptation. By binding to specific regions of DNA in heterodimers with the retinoid X receptors (RXRs), the members of the PPAR family (α, β/δ, γ) are able to regulate the gene expressions of several key regulators of energy homeostasis including several glucose regulators (glucose transporters, insulin receptor, substrate insulin receptor, etc), and also metabolic and endocrine pathways like lipogenesis, steroidogenesis, ovulation, oocyte maturation, maintenance of the corpus luteum, nitric oxide system, several proteases and plasminogen activator among others. All the three PPAR isoforms are expressed in different tissues of the female reproductive tract and regulate gametogenesis, ovulation, corpus luteum regression and the implantation process among others. The present review discusses the mechanisms involved in PPAR activation focusing on endogenous and synthetic ligands of PPAR not only in physiological but also in pathological conditions (such as polycystic ovary syndrome, pathologies of implantation process, chronic anovulation, etc). PMID:23565653

  10. The peroxisome proliferator-activated receptors under epigenetic control in placental metabolism and fetal development.

    PubMed

    Lendvai, Ágnes; Deutsch, Manuel J; Plösch, Torsten; Ensenauer, Regina

    2016-05-15

    The placental metabolism can adapt to the environment throughout pregnancy to both the demands of the fetus and the signals from the mother. Such adaption processes include epigenetic mechanisms, which alter gene expression and may influence the offspring's health. These mechanisms are linked to the diversity of prenatal environmental exposures, including maternal under- or overnutrition or gestational diabetes. The peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that contribute to the developmental plasticity of the placenta by regulating lipid and glucose metabolism pathways, including lipogenesis, steroidogenesis, glucose transporters, and placental signaling pathways, thus representing a link between energy metabolism and reproduction. Among the PPAR isoforms, PPARγ appears to be the main modulator of mammalian placentation. Certain fatty acids and lipid-derived moieties are the natural activating PPAR ligands. By controlling the amounts of maternal nutrients that go across to the fetus, the PPARs play an important regulatory role in placenta metabolism, thereby adapting to the maternal nutritional status. As demonstrated in animal studies, maternal nutrition during gestation can exert long-term influences on the PPAR methylation pattern in offspring organs. This review underlines the current state of knowledge on the relationship between environmental factors and the epigenetic regulation of the PPARs in placenta metabolism and offspring development. PMID:26860983

  11. Peroxisome proliferator-activated receptor alpha plays a crucial role in behavioral repetition and cognitive flexibility in mice

    PubMed Central

    D'Agostino, Giuseppe; Cristiano, Claudia; Lyons, David J.; Citraro, Rita; Russo, Emilio; Avagliano, Carmen; Russo, Roberto; Raso, Giuseppina Mattace; Meli, Rosaria; De Sarro, Giovambattista; Heisler, Lora K.; Calignano, Antonio

    2015-01-01

    Background/objectives Nuclear peroxisome proliferator activated receptor-α (PPAR-α) plays a fundamental role in the regulation of lipid homeostasis and is the target of medications used to treat dyslipidemia. However, little is known about the role of PPAR-α in mouse behavior. Methods To investigate the function of Ppar-α in cognitive functions, a behavioral phenotype analysis of mice with a targeted genetic disruption of Ppar-α was performed in combination with neuroanatomical, biochemical and pharmacological manipulations. The therapeutic exploitability of PPAR-α was probed in mice using a pharmacological model of psychosis and a genetic model (BTBR T + tf/J) exhibiting a high rate of repetitive behavior. Results An unexpected role for brain Ppar-α in the regulation of cognitive behavior in mice was revealed. Specifically, we observed that Ppar-α genetic perturbation promotes rewiring of cortical and hippocampal regions and a behavioral phenotype of cognitive inflexibility, perseveration and blunted responses to psychomimetic drugs. Furthermore, we demonstrate that the antipsychotic and autism spectrum disorder (ASD) medication risperidone ameliorates the behavioral profile of Ppar-α deficient mice. Importantly, we reveal that pharmacological PPAR-α agonist treatment in mice improves behavior in a pharmacological model of ketamine-induced behavioral dysinhibition and repetitive behavior in BTBR T + tf/J mice. Conclusion Our data indicate that Ppar-α is required for normal cognitive function and that pharmacological stimulation of PPAR-α improves cognitive function in pharmacological and genetic models of impaired cognitive function in mice. These results thereby reveal an unforeseen therapeutic application for a class of drugs currently in human use. PMID:26137440

  12. Using Nuclear Receptor Activity to Stratify Hepatocarcinogens

    PubMed Central

    Shah, Imran; Houck, Keith; Judson, Richard S.; Kavlock, Robert J.; Martin, Matthew T.; Reif, David M.; Wambaugh, John; Dix, David J.

    2011-01-01

    Background Nuclear receptors (NR) are a superfamily of ligand-activated transcription factors that control a range of cellular processes. Persistent stimulation of some NR is a non-genotoxic mechanism of rodent liver cancer with unclear relevance to humans. Here we report on a systematic analysis of new in vitro human NR activity data on 309 environmental chemicals in relationship to their liver cancer-related chronic outcomes in rodents. Results The effects of 309 environmental chemicals on human constitutive androstane receptors (CAR/NR1I3), pregnane X receptor (PXR/NR1I2), aryl hydrocarbon receptor (AhR), peroxisome proliferator-activated receptors (PPAR/NR1C), liver X receptors (LXR/NR1H), retinoic X receptors (RXR/NR2B) and steroid receptors (SR/NR3) were determined using in vitro data. Hepatic histopathology, observed in rodents after two years of chronic treatment for 171 of the 309 chemicals, was summarized by a cancer lesion progression grade. Chemicals that caused proliferative liver lesions in both rat and mouse were generally more active for the human receptors, relative to the compounds that only affected one rodent species, and these changes were significant for PPAR (p0.001), PXR (p0.01) and CAR (p0.05). Though most chemicals exhibited receptor promiscuity, multivariate analysis clustered them into relatively few NR activity combinations. The human NR activity pattern of chemicals weakly associated with the severity of rodent liver cancer lesion progression (p0.05). Conclusions The rodent carcinogens had higher in vitro potency for human NR relative to non-carcinogens. Structurally diverse chemicals with similar NR promiscuity patterns weakly associated with the severity of rodent liver cancer progression. While these results do not prove the role of NR activation in human liver cancer, they do have implications for nuclear receptor chemical biology and provide insights into putative toxicity pathways. More importantly, these findings suggest the

  13. Zebrafish as a Model to Study the Role of Peroxisome Proliferating-Activated Receptors in Adipogenesis and Obesity

    PubMed Central

    Den Broeder, Marjo J.; Kopylova, Victoria A.; Kamminga, Leonie M.; Legler, Juliette

    2015-01-01

    The Peroxisome Proliferator-Activated Receptors (PPARs) PPARA and PPARD are regulators of lipid metabolism with important roles in energy release through lipid breakdown, while PPARG plays a key role in lipid storage and adipogenesis. The aim of this review is to describe the role of PPARs in lipid metabolism, adipogenesis, and obesity and evaluate the zebrafish as an emerging vertebrate model to study the function of PPARs. Zebrafish are an appropriate model to study human diseases, including obesity and related metabolic diseases, as pathways important for adipogenesis and lipid metabolism which are conserved between mammals and fish. This review synthesizes knowledge on the role of PPARs in zebrafish and focuses on the putative function of PPARs in zebrafish adipogenesis. Using in silico analysis, we confirm the presence of five PPARs (pparaa, pparab, pparda, ppardb, and pparg) in the zebrafish genome with 67–74% identity to human and mouse PPARs. During development, pparda/b paralogs and pparg show mRNA expression around the swim bladder and pancreas, the region where adipocytes first develop, whereas pparg is detectable in adipocytes at 15 days post fertilization (dpf). This review indicates that the zebrafish is a promising model to investigate the specific functions of PPARs in adipogenesis and obesity. PMID:26697060

  14. Oleoylethanolamide, an endogenous PPAR-alpha agonist, lowers body weight and hyperlipidemia in obese rats.

    PubMed

    Fu, Jin; Oveisi, Fariba; Gaetani, Silvana; Lin, Edward; Piomelli, Daniele

    2005-06-01

    The fatty-acid ethanolamide, oleoylethanolamide (OEA), is a naturally occurring lipid that regulates feeding and body weight [Rodriguez de Fonseca, F., Navarro, M., Gomez, R., Escuredo, L., Nava, F., Fu, J., Murillo-Rodriguez, E., Giuffrida, A., LoVerme, J., Gaetani, S., Kathuria, S., Gall, C., Piomelli, D., 2001. An anorexic lipid mediator regulated by feeding. Nature 414, 209-212], and serves as an endogenous agonist of peroxisome proliferator-activated receptor-alpha (PPAR-alpha) [Fu, J., Gaetani, S., Oveisi, F., Lo Verme, J., Serrano, A., Rodriguez De Fonseca, F., Rosengarth., A., Luecke, H., Di Giacomo, B., Tarzia, G., Piomelli, D., 2003. Oleoylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-alpha. Nature 425, 90-93], a ligand-activated transcription factor that regulates several aspects of lipid metabolism [. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr. Rev. 20, 649-688]). OEA reduces food intake in wild-type mice, but not in mice deficient in PPAR-alpha (PPAR-alpha(-/-)), an effect that is also observed with the PPAR-alpha agonists Wy-14643 and GW7647 [Brown, P.J., Chapman, J.M., Oplinger, J.A., Stuart, L.W., Willson, T.M. and Wu, Z., 2000. Chemical compounds as selective activators of PPAR-alpha. PCT Int. Appl., 32; . The PPARs: from orphan receptors to drug discovery. J. Med. Chem. 43, 527-550]. By contrast, specific agonists of PPAR-delta/beta (GW501516) or PPAR-gamma (ciglitazone) have no such effect. In obese Zucker rats, which lack functional leptin receptors, OEA reduces food intake and lowers body-weight gain along with plasma lipid levels. Similar effects are seen in diet-induced obese rats and mice. In the present study, we report that subchronic OEA treatment (5mgkg(-1), intraperitoneally, i.p., once daily for two weeks) in Zucker rats initiates transcription of PPAR-alpha and other PPAR-alpha target genes, including fatty-acid translocase (FAT/CD36), liver fatty

  15. Fine tuning of PPAR ligands for type 2 diabetes and metabolic syndrome.

    PubMed

    Ramachandran, Uma; Kumar, Rakesh; Mittal, Amit

    2006-05-01

    Type 2 diabetes mellitus (T2DM) is highly prevalent chronic disease. Recently, many biological targets are discovered for treatment of this disease. The identification of the nuclear hormone receptor peroxisome proliferator activated receptors (PPAR) and their subtypes alpha, gamma and delta or beta as targets for controlling lipid, glucose and energy homeostasis has proved to be exciting. As hyperlipidaemia, obesity and insulin resistance are independent risk factors for coronary heart disease and macrovascular complications of diabetes; new agents that increase insulin sensitivity as well as decrease hyperlipidaemia by distinct yet complementary mechanism are being studied as they may provide improved therapy for T2DM and related disorders. In this article, we review highly potent PPARgamma agonists, PPARalpha/gamma dual agonists, PPAR pan agonists, alternative PPAR ligands like partial agonists or selective PPAR modulators (SPPARMs) and antagonists from a chemist point of view. PMID:16719831

  16. Gender and genetic differences in bladder smooth muscle PPAR mRNA in a porcine model of the metabolic syndrome.

    PubMed

    Mattern, Heather M; Lloyd, Pamela G; Sturek, Michael; Hardin, Christopher D

    2007-08-01

    The metabolic syndrome and diabetes are associated with bladder dysfunction in many people. Peroxisome proliferator-activated receptors (PPARs) may play a role in the effects of the metabolic syndrome on bladder smooth muscle (BSM). The purpose of this study was to determine if there are gender and genetic differences in PPAR levels in BSM. We measured PPAR levels using quantitative PCR in BSM from male Yucatan swine and male and female Ossabaw Island swine, which is a model for the metabolic syndrome. Male Ossabaw swine had 0.732 +/- 0.111 the amount of PPAR-alpha mRNA as male Yucatan swine (P < 0.05), suggesting a genetic difference in PPAR-alpha levels. This difference may possibly contribute to the incidence of metabolic syndrome in the Ossabaw model compared to the Yucatan model. PPAR-delta mRNA was 2-fold higher in male Ossabaw swine than in female Ossabaw swine, with no significant differences in PPAR-alpha levels. However, PPAR-gamma mRNA was 4.067 +/- 0.134 times higher in female Ossabaw swine than in their male counterparts (P < 0.001). Changing the percentage of calories derived from fat did not alter any PPAR mRNA levels. Thus, PPAR-delta and PPAR-gamma mRNA levels in male and female Ossabaw swine BSM are not only different, but may also result in gender differences in lipid metabolism in bladder smooth muscle. We conclude that PPAR profiles in BSM may contribute to the susceptibility of BSM to lipotoxicity in the metabolic syndrome. PMID:17318406

  17. Liver X Receptor (LXR) activation negatively regulates visfatin expression in macrophages

    SciTech Connect

    Mayi, Therese Hervee; Rigamonti, Elena; Pattou, Francois; Staels, Bart; Chinetti-Gbaguidi, Giulia

    2011-01-07

    Research highlights: {yields} Synthetic LXR ligands decreased visfatin expression in human macrophages. {yields} LXR activation leads to a modest and transient decrease of NAD{sup +} concentration. {yields} LXR activation decreased PPAR{gamma}-induced visfatin in human macrophages. -- Abstract: Adipose tissue macrophages (ATM) are the major source of visfatin, a visceral fat adipokine upregulated during obesity. Also known to play a role in B cell differentiation (pre-B cell colony-enhancing factor (PBEF)) and NAD biosynthesis (nicotinamide phosphoribosyl transferase (NAMPT)), visfatin has been suggested to play a role in inflammation. Liver X Receptor (LXR) and Peroxisome Proliferator-Activated Receptor (PPAR){gamma} are nuclear receptors expressed in macrophages controlling the inflammatory response. Recently, we reported visfatin as a PPAR{gamma} target gene in human macrophages. In this study, we examined whether LXR regulates macrophage visfatin expression. Synthetic LXR ligands decreased visfatin gene expression in a LXR-dependent manner in human and murine macrophages. The decrease of visfatin mRNA was paralleled by a decrease of protein secretion. Consequently, a modest and transient decrease of NAD{sup +} concentration was observed. Interestingly, LXR activation decreased the PPAR{gamma}-induced visfatin gene and protein secretion in human macrophages. Our results identify visfatin as a gene oppositely regulated by the LXR and PPAR{gamma} pathways in human macrophages.

  18. PPARs in alveolar macrophage biology.

    PubMed

    Smith, Monica R; Standiford, Theodore J; Reddy, Raju C

    2007-01-01

    PPARs, most notably PPAR-gamma, play a crucial role in regulating the activation of alveolar macrophages, which in turn occupy a pivotal place in the immune response to pathogens and particulates drawn in with inspired air. In this review, we describe the dual role of the alveolar macrophage as both a first-line defender through its phagocytotic activity and a regulator of the immune response. Depending on its state of activation, the alveolar macrophage may either enhance or suppress different aspects of immune function in the lung. We then review the role of PPAR-gamma and its ligands in deactivating alveolar macrophages-thus limiting the inflammatory response that, if unchecked, could threaten the essential respiratory function of the alveolus-while upregulating the cell's phagocytotic activity. Finally, we examine the role that inadequate or inappropriate PPAR-gamma responses play in specific lung diseases. PMID:18000531

  19. Down syndrome critical region 2 protein inhibits the transcriptional activity of peroxisome proliferator-activated receptor {beta} in HEK293 cells

    SciTech Connect

    Song, Hae Jin; Park, Joongkyu; Seo, Su Ryeon; Kim, Jongsun; Paik, Seung R.; Chung, Kwang Chul

    2008-11-21

    Down syndrome is mainly caused by a trisomy of chromosome 21. The Down syndrome critical region 2 (DSCR2) gene is located within a part of chromosome 21, the Down syndrome critical region (DSCR). To investigate the function of DSCR2, we sought to identify DSCR2-interacting proteins using yeast two-hybrid assays. A human fetal brain cDNA library was screened, and DSCR2 was found to interact with a member of the nuclear receptor superfamily, peroxisome proliferator-activated receptor {beta}, (PPAR{beta}). A co-immunoprecipitation assay demonstrated that DSCR2 physically interacts with PPAR{beta} in mammalian HEK293 cells. DSCR2 also inhibited the ligand-induced transcriptional activity of PPAR{beta}. Furthermore, PPAR{beta} also decreased the solubility of DSCR2, which increased levels of insoluble DSCR2.

  20. Functional Role of PPARs in Ruminants: Potential Targets for Fine-Tuning Metabolism during Growth and Lactation

    PubMed Central

    Chen, Shuowen; Khan, Muhammad J.; Loor, Juan J.

    2013-01-01

    Characterization and biological roles of the peroxisome proliferator-activated receptor (PPAR) isotypes are well known in monogastrics, but not in ruminants. However, a wealth of information has accumulated in little more than a decade on ruminant PPARs including isotype tissue distribution, response to synthetic and natural agonists, gene targets, and factors affecting their expression. Functional characterization demonstrated that, as in monogastrics, the PPAR isotypes control expression of genes involved in lipid metabolism, anti-inflammatory response, development, and growth. Contrary to mouse, however, the PPARγ gene network appears to controls milk fat synthesis in lactating ruminants. As in monogastrics, PPAR isotypes in ruminants are activated by long-chain fatty acids, therefore, making them ideal candidates for fine-tuning metabolism in this species via nutrients. In this regard, using information accumulated in ruminants and monogastrics, we propose a model of PPAR isotype-driven biological functions encompassing key tissues during the peripartal period in dairy cattle. PMID:23737762

  1. The Differential Interactions of Peroxisome Proliferator-Activated Receptor [gamma] Ligands with Tyr473 Is a Physical Basis for Their Unique Biological Activities

    SciTech Connect

    Einstein, Monica; Akiyama, Taro E.; Castriota, Gino A.; Wang, Chuanlin F.; McKeever, Brian; Mosley, Ralph T.; Becker, Joseph W.; Moller, David E.; Meinke, Peter T.; Wood, Harold B.; Berger, Joel P.

    2008-08-01

    Despite their proven antidiabetic efficacy, widespread use of peroxisome proliferator-activated receptor (PPAR){gamma} agonists has been limited by adverse cardiovascular effects. To overcome this shortcoming, selective PPAR{gamma} modulators (SPPAR{gamma}Ms) have been identified that have antidiabetic efficacy comparable with full agonists with improved tolerability in preclinical species. The results of structural studies support the proposition that SPPAR{gamma}Ms interact with PPAR{gamma} differently from full agonists, thereby providing a physical basis for their novel activities. Herein, we describe a novel PPAR{gamma} ligand, SPPAR{gamma}M2. This compound was a partial agonist in a cell-based transcriptional activity assay, with diminished adipogenic activity and an attenuated gene signature in cultured human adipocytes. X-ray cocrystallography studies demonstrated that, unlike rosiglitazone, SPPAR{gamma}M2 did not interact with the Tyr473 residue located within helix 12 of the ligand binding domain (LBD). Instead, SPPAR{gamma}M2 was found to bind to and activate human PPAR{gamma} in which the Tyr473 residue had been mutated to alanine (hPPAR{gamma}Y473A), with potencies similar to those observed with the wild-type receptor (hPPAR{gamma}WT). In additional studies, we found that the intrinsic binding and functional potencies of structurally distinct SPPAR{gamma}Ms were not diminished by the Y473A mutation, whereas those of various thiazolidinedione (TZD) and non-TZD PPAR{gamma} full agonists were reduced in a correlative manner. These results directly demonstrate the important role of Tyr473 in mediating the interaction of full agonists but not SPPAR{gamma}Ms with the PPAR{gamma} LBD, thereby providing a precise molecular determinant for their differing pharmacologies.

  2. PPAR-δ is repressed in Huntington's disease, is required for normal neuronal function and can be targeted therapeutically.

    PubMed

    Dickey, Audrey S; Pineda, Victor V; Tsunemi, Taiji; Liu, Patrick P; Miranda, Helen C; Gilmore-Hall, Stephen K; Lomas, Nicole; Sampat, Kunal R; Buttgereit, Anne; Torres, Mark-Joseph Manalang; Flores, April L; Arreola, Martin; Arbez, Nicolas; Akimov, Sergey S; Gaasterland, Terry; Lazarowski, Eduardo R; Ross, Christopher A; Yeo, Gene W; Sopher, Bryce L; Magnuson, Gavin K; Pinkerton, Anthony B; Masliah, Eliezer; La Spada, Albert R

    2016-01-01

    Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the huntingtin (HTT) gene, which encodes a polyglutamine tract in the HTT protein. We found that peroxisome proliferator-activated receptor delta (PPAR-δ) interacts with HTT and that mutant HTT represses PPAR-δ-mediated transactivation. Increased PPAR-δ transactivation ameliorated mitochondrial dysfunction and improved cell survival of neurons from mouse models of HD. Expression of dominant-negative PPAR-δ in the central nervous system of mice was sufficient to induce motor dysfunction, neurodegeneration, mitochondrial abnormalities and transcriptional alterations that recapitulated HD-like phenotypes. Expression of dominant-negative PPAR-δ specifically in the striatum of medium spiny neurons in mice yielded HD-like motor phenotypes, accompanied by striatal neuron loss. In mouse models of HD, pharmacologic activation of PPAR-δ using the agonist KD3010 improved motor function, reduced neurodegeneration and increased survival. PPARactivation also reduced HTT-induced neurotoxicity in vitro and in medium spiny-like neurons generated from stem cells derived from individuals with HD, indicating that PPARactivation may be beneficial in HD and related disorders. PMID:26642438

  3. Beneficial health effects of Chios Gum Mastic and peroxisome proliferator-activated receptors: indications of common mechanisms.

    PubMed

    Georgiadis, Ioannis; Karatzas, Theodore; Korou, Laskarina-Maria; Katsilambros, Nikolaos; Perrea, Despina

    2015-01-01

    For thousands of years, Chios Gum Mastic (CGM), the resin produced by the trunk of Pistachia lentiscus var Chia, has been used for culinary and medicinal purposes and several therapeutic properties have been attributed to it. CGM has been used in traditional medicine of various nations in the eastern Mediterranean area. This survey was carried out to identify biological mechanisms that could explain traditional usage and recent pharmacological findings. We reviewed the related scientific literature available from the NCBI PUBMED database on CGM studies and on natural products showing peroxisome proliferator-activated receptor (PPAR) agonist effects. We investigated whether CGM qualifies as a PPAR modulator. A large number of studies demonstrate that CGM has antioxidant, anti-inflammatory, hypolipidemic, and anticancer properties. Recently, the first evidence of CGM antidiabetic effect became known. CGM chemical composition has been extensively analyzed and the presence of several compounds, especially triterpenoids is well documented. Some of them, oleanonic acid, oleanolic acid, and gallic acid are considered to act as PPAR modulators. PPARs are nuclear receptors functioning as transcription factors and thereby controlling cellular functions at the level of gene expression. PPARs are involved in the pathways of significant diseases, such as metabolic syndrome, diabetes mellitus, dyslipidemia, inflammation, atheromatosis, and neoplasias, constituting a key target for pharmacological interventions. This article proposes that the synergistic action of some constituents of CGM on PPARs and more precisely on both PPARs isotypes-α and -γ, may be one of the major biological mechanisms via which CGM exerts its multiple effects. PMID:25133901

  4. Pretreatment by low-dose fibrates protects against acute free fatty acid-induced renal tubule toxicity by counteracting PPAR{alpha} deterioration

    SciTech Connect

    Takahashi, Kyoko; Kamijo, Yuji; Hora, Kazuhiko; Hashimoto, Koji; Higuchi, Makoto; Nakajima, Takero; Ehara, Takashi; Shigematsu, Hidekazu; Gonzalez, Frank J.; Aoyama, Toshifumi

    2011-05-01

    Development of a preventive strategy against tubular damage associated with proteinuria is of great importance. Recently, free fatty acid (FFA) toxicities accompanying proteinuria were found to be a main cause of tubular damage, which was aggravated by insufficiency of peroxisome proliferator-activated receptor alpha (PPAR{alpha}), suggesting the benefit of PPAR{alpha} activation. However, an earlier study using a murine acute tubular injury model, FFA-overload nephropathy, demonstrated that high-dose treatment of PPAR{alpha} agonist (0.5% clofibrate diet) aggravated the tubular damage as a consequence of excess serum accumulation of clofibrate metabolites due to decreased kidney elimination. To induce the renoprotective effects of PPAR{alpha} agonists without drug accumulation, we tried a pretreatment study using low-dose clofibrate (0.1% clofibrate diet) using the same murine model. Low-dose clofibrate pretreatment prevented acute tubular injuries without accumulation of its metabolites. The tubular protective effects appeared to be associated with the counteraction of PPAR{alpha} deterioration, resulting in the decrease of FFAs influx to the kidney, maintenance of fatty acid oxidation, diminution of intracellular accumulation of undigested FFAs, and attenuation of disease developmental factors including oxidative stress, apoptosis, and NF{kappa}B activation. These effects are common to other fibrates and dependent on PPAR{alpha} function. Interestingly, however, clofibrate pretreatment also exerted PPAR{alpha}-independent tubular toxicities in PPAR{alpha}-null mice with FFA-overload nephropathy. The favorable properties of fibrates are evident when PPAR{alpha}-dependent tubular protective effects outweigh their PPAR{alpha}-independent tubular toxicities. This delicate balance seems to be easily affected by the drug dose. It will be important to establish the appropriate dosage of fibrates for treatment against kidney disease and to develop a novel PPAR

  5. 15-Deoxy-{Delta}{sup 12,14}-prostaglandin J{sub 2} enhanced the anti-tumor activity of camptothecin against renal cell carcinoma independently of topoisomerase-II and PPAR{gamma} pathways

    SciTech Connect

    Yamamoto, Yasuhiro; Fujita, Megumi; Koma, Hiromi; Yamamori, Motohiro; Nakamura, Tsutomu; Okamura, Noboru; Yagami, Tatsurou

    2011-07-08

    Highlights: {yields} A topoisomerase-I inhibitor, camptothecin, exhibited synergistically toxicity with 15d-PGJ{sub 2}. {yields} The combination of 15d-PGJ{sub 2} and a topoisomerase-II inhibitor, doxorubicine, did not cause synergistic cell growth inhibition. {yields} A PPAR{gamma} antagonist did not prevent Caki-2 from undergoing 15d-PGJ{sub 2}-induced cytotoxicity. {yields} The treatment of camptothecin combined with 15d-PGJ{sub 2} activated caspase-3 more than the separate treatment. -- Abstract: Renal cell carcinoma (RCC) is chemoresistant cancer. Although several clinical trials were conducted to explore effective medications, the chemoresistance of RCC has not yet been conquered. An endogenous ligand for peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}), 15-deoxy-{Delta}{sup 12,14}-prostaglandin J{sub 2} (15d-PGJ{sub 2}), induces apoptosis in RCC. Here, we examined synergistic effects of several carcinostatics on the anti-tumor activity of 15d-PGJ{sub 2} in Caki-2 cell line by MTT assay. A topoisomerase-I inhibitor, camptothecin (CPT), exhibited synergistically toxicity with 15d-PGJ{sub 2}, but neither 5-fluorouracil nor cisplatin did. The combination of 15d-PGJ{sub 2} and a topoisomerase-II inhibitor, doxorubicine, did not cause synergistic cell growth inhibition. The synergistic effect of topoisomerase-I and II inhibitors was not also detected. A PPAR{gamma} antagonist, GW9662, did not prevent Caki-2 from undergoing 15d-PGJ{sub 2}-induced cytotoxicity. The treatment of CPT combined with 15d-PGJ{sub 2} activated caspase-3 more than the separate treatment. These results suggest that 15d-PGJ{sub 2} exhibited the anti-tumor activity synergistically with CPT independent of topoisomerase-II and PPAR{gamma}.

  6. Pioglitazone reverses down-regulation of cardiac PPAR{gamma} expression in Zucker diabetic fatty rats

    SciTech Connect

    Pelzer, Theo . E-mail: pelzer_t@klinik.uni-wuerzburg.de; Jazbutyte, Virginija; Arias-Loza, Paula Anahi; Segerer, Stephan; Lichtenwald, Margit; Law, Marilyn P.; Schaefers, Michael; Ertl, Georg; Neyses, Ludwig

    2005-04-08

    Peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) plays a critical role in peripheral glucose homeostasis and energy metabolism, and inhibits cardiac hypertrophy in non-diabetic animal models. The functional role of PPAR{gamma} in the diabetic heart, however, is not fully understood. Therefore, we analyzed cardiac gene expression, metabolic control, and cardiac glucose uptake in male Zucker diabetic fatty rats (ZDF fa/fa) and lean ZDF rats (+/+) treated with the high affinity PPAR{gamma} agonist pioglitazone or placebo from 12 to 24 weeks of age. Hyperglycemia, hyperinsulinemia, and hypertriglyceridemia as well as lower cardiac PPAR{gamma}, glucose transporter-4 and {alpha}-myosin heavy chain expression levels were detected in diabetic ZDF rats compared to lean animals. Pioglitazone increased body weight and improved metabolic control, cardiac PPAR{gamma}, glut-4, and {alpha}-MHC expression levels in diabetic ZDF rats. Cardiac [{sup 18}F]fluorodeoxyglucose uptake was not detectable by micro-PET studies in untreated and pioglitazone treated ZDF fa/fa rats but was observed after administration of insulin to pioglitazone treated ZDF fa/fa rats. PPAR{gamma} agonists favorably affect cardiac gene expression in type-2 diabetic rats via activation and up-regulation of cardiac PPAR{gamma} expression whereas improvement of impaired cardiac glucose uptake in advanced type-2 diabetes requires co-administration of insulin.

  7. Dynamic correlation networks in human peroxisome proliferator-activated receptor-γ nuclear receptor protein.

    PubMed

    Fidelak, Jeremy; Ferrer, Silvia; Oberlin, Michael; Moras, Dino; Dejaegere, Annick; Stote, Roland H

    2010-10-01

    Peroxisome proliferator-activated receptor-γ nuclear receptor (PPAR-γ) belongs to the superfamily of nuclear receptor proteins that function as ligand-dependent transcription factors and plays a specific physiological role as a regulator of lipid metabolism. A number of experimental studies have suggested that allostery plays an important role in the functioning of PPAR-γ. Here we use normal-mode analysis of PPAR-γ to characterize a network of dynamically coupled amino acids that link physiologically relevant binding surfaces such as the ligand-dependent activation domain AF-2 with the ligand binding site and the heterodimer interface. Multiple calculations were done in both the presence and absence of the agonist rosiglitazone, and the differences in dynamics were characterized. The global dynamics of the ligand binding domain were affected by the ligand, and in particular, changes to the network of dynamically correlated amino acids were observed with only small changes in conformation. These results suggest that changes in dynamic couplings can be functionally significant with respect to the transmission of allosteric signals. PMID:20496064

  8. Peroxisome proliferator-activated receptor-delta agonist ameliorated inflammasome activation in nonalcoholic fatty liver disease

    PubMed Central

    Lee, Hyun Jung; Yeon, Jong Eun; Ko, Eun Jung; Yoon, Eileen L; Suh, Sang Jun; Kang, Keunhee; Kim, Hae Rim; Kang, Seoung Hee; Yoo, Yang Jae; Je, Jihye; Lee, Beom Jae; Kim, Ji Hoon; Seo, Yeon Seok; Yim, Hyung Joon; Byun, Kwan Soo

    2015-01-01

    AIM: To evaluate the inflammasome activation and the effect of peroxisome proliferator-activated receptors (PPAR)-δ agonist treatment in nonalcoholic fatty liver disease (NAFLD) models. METHODS: Male C57BL/6J mice were classified according to control or high fat diet (HFD) with or without PPAR-δ agonist (GW) over period of 12 wk [control, HFD, HFD + lipopolysaccharide (LPS), HFD + LPS + GW group]. HepG2 cells were exposed to palmitic acid (PA) and/or LPS in the absence or presence of GW. RESULTS: HFD caused glucose intolerance and hepatic steatosis. In mice fed an HFD with LPS, caspase-1 and interleukin (IL)-1β in the liver were significantly increased. Treatment with GW ameliorated the steatosis and inhibited overexpression of pro-inflammatory cytokines. In HepG2 cells, PA and LPS treatment markedly increased mRNA of several nucleotide-binding and oligomerization domain-like receptor family members (NLRP3, NLRP6, and NLRP10), caspase-1 and IL-1β. PA and LPS also exaggerated reactive oxygen species production. All of the above effects of PA and LPS were reduced by GW. GW also enhanced the phosphorylation of AMPK-α. CONCLUSION: PPAR-δ agonist reduces fatty acid-induced inflammation and steatosis by suppressing inflammasome activation. Targeting the inflammasome by the PPAR-δ agonist may have therapeutic implication for NAFLD. PMID:26668503

  9. Nuclear Control of the Inflammatory Response in Mammals by Peroxisome Proliferator-Activated Receptors

    PubMed Central

    Mandard, Stéphane; Patsouris, David

    2013-01-01

    Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that play pivotal roles in the regulation of a very large number of biological processes including inflammation. Using specific examples, this paper focuses on the interplay between PPARs and innate immunity/inflammation and, when possible, compares it among species. We focus on recent discoveries establishing how inflammation and PPARs interact in the context of obesity-induced inflammation and type 2 diabetes, mostly in mouse and humans. We illustrate that PPARγ ability to alleviate obesity-associated inflammation raises an interesting pharmacologic potential. In the light of recent findings, the protective role of PPARα and PPARβ/δ against the hepatic inflammatory response is also addressed. While PPARs agonists are well-established agents that can treat numerous inflammatory issues in rodents and humans, surprisingly very little has been described in other species. We therefore also review the implication of PPARs in inflammatory bowel disease; acute-phase response; and central, cardiac, and endothelial inflammation and compare it along different species (mainly mouse, rat, human, and pig). In the light of the data available in the literature, there is no doubt that more studies concerning the impact of PPAR ligands in livestock should be undertaken because it may finally raise unconsidered health and sanitary benefits. PMID:23577023

  10. PPAR-{gamma} agonist protects against intestinal injury during necrotizing enterocolitis

    SciTech Connect

    Baregamian, Naira; Mourot, Joshua M.; Ballard, Amie R.; Evers, B. Mark; Chung, Dai H.

    2009-02-06

    Necrotizing enterocolitis (NEC) remains a lethal condition for many premature infants. Peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}), a member of the nuclear hormone receptor family, has been shown to play a protective role in cellular inflammatory responses; however, its role in NEC is not clearly defined. We sought to examine the expression of PPAR-{gamma} in the intestine using an ischemia-reperfusion (I/R) model of NEC, and to assess whether PPAR-{gamma} agonist treatment would ameliorate I/R-induced gut injury. Swiss-Webster mice were randomized to receive sham (control) or I/R injury to the gut induced by transient occlusion of superior mesenteric artery for 45 min with variable periods of reperfusion. I/R injury resulted in early induction of PPAR-{gamma} expression and activation of NF-{kappa}B in small intestine. Pretreatment with PPAR-{gamma} agonist, 15d-PGJ{sub 2}, attenuated intestinal NF-{kappa}B response and I/R-induced gut injury. Activation of PPAR-{gamma} demonstrated a protective effect on small bowel during I/R-induced gut injury.

  11. PPAR{alpha} is a key regulator of hepatic FGF21

    SciTech Connect

    Lundasen, Thomas; Hunt, Mary C.; Nilsson, Lisa-Mari; Sanyal, Sabyasachi; Angelin, Bo; Alexson, Stefan E.H.; Rudling, Mats . E-mail: mats.rudling@cnt.ki.se

    2007-08-24

    The metabolic regulator fibroblast growth factor 21 (FGF21) has antidiabetic properties in animal models of diabetes and obesity. Using quantitative RT-PCR, we here show that the hepatic gene expression of FGF21 is regulated by the peroxisome proliferator-activated receptor alpha (PPAR{alpha}). Fasting or treatment of mice with the PPAR{alpha} agonist Wy-14,643 induced FGF21 mRNA by 10-fold and 8-fold, respectively. In contrast, FGF21 mRNA was low in PPAR{alpha} deficient mice, and fasting or treatment with Wy-14,643 did not induce FGF21. Obese ob/ob mice, known to have increased PPAR{alpha} levels, displayed 12-fold increased hepatic FGF21 mRNA levels. The potential importance of PPAR{alpha} for FGF21 expression also in human liver was shown by Wy-14,643 induction of FGF21 mRNA in human primary hepatocytes, and PPAR{alpha} response elements were identified in both the human and mouse FGF21 promoters. Further studies on the mechanisms of regulation of FGF21 by PPAR{alpha} in humans will be of great interest.

  12. PPARs Link Early Life Nutritional Insults to Later Programmed Hypertension and Metabolic Syndrome

    PubMed Central

    Tain, You-Lin; Hsu, Chien-Ning; Chan, Julie Y. H.

    2015-01-01

    Hypertension is an important component of metabolic syndrome. Adulthood hypertension and metabolic syndrome can be programmed in response to nutritional insults in early life. Peroxisome proliferator-activated receptors (PPARs) serve as a nutrient-sensing signaling linking nutritional programming to hypertension and metabolic syndrome. All three members of PPARs, PPARα, PPARβ/δ, and PPARγ, are expressed in the kidney and involved in blood pressure control. This review provides an overview of potential clinical applications of targeting on the PPARs in the kidney to prevent programmed hypertension and metabolic syndrome, with an emphasis on the following areas: mechanistic insights to interpret programmed hypertension; the link between the PPARs, nutritional insults, and programmed hypertension and metabolic syndrome; the impact of PPAR signaling pathway in a maternal high-fructose model; and current experimental studies on early intervention by PPAR modulators to prevent programmed hypertension and metabolic syndrome. Animal studies employing a reprogramming strategy via targeting PPARs to prevent hypertension have demonstrated interesting results. It is critical that the observed effects on developmental reprogramming in animal models are replicated in human studies, to halt the globally-growing epidemic of metabolic syndrome-related diseases. PMID:26712739

  13. HDAC Inhibition Modulates Cardiac PPARs and Fatty Acid Metabolism in Diabetic Cardiomyopathy

    PubMed Central

    Lee, Ting-I; Tsai, Wen-Chin; Chung, Cheng-Chih; Chen, Yao-Chang; Chen, Yi-Jen

    2016-01-01

    Peroxisome proliferator-activated receptors (PPARs) regulate cardiac glucose and lipid homeostasis. Histone deacetylase (HDAC) inhibitor has anti-inflammatory effects which may play a key role in modulating PPARs and fatty acid metabolism. The aim of this study was to investigate whether HDAC inhibitor, MPT0E014, can modulate myocardial PPARs, inflammation, and fatty acid metabolism in diabetes mellitus (DM) cardiomyopathy. Electrocardiography, echocardiography, and western blotting were used to evaluate the electrophysiological activity, cardiac structure, fatty acid metabolism, inflammation, and PPAR isoform expressions in the control and streptozotocin-nicotinamide-induced DM rats with or without MPT0E014. Compared to control, DM and MPT0E014-treated DM rats had elevated blood glucose levels and lower body weights. However, MPT0E014-treated DM and control rats had smaller left ventricular end-diastolic diameter and shorter QT interval than DM rats. The control and MPT0E014-treated DM rats had greater cardiac PPAR-α and PPAR-δ protein expressions, but less cardiac PPAR-γ than DM rats. Moreover, control and MPT0E014-treated DM rats had lower concentrations of 5′ adenosine monophosphate-activated protein kinase 2α, PPAR-γ coactivator 1α, phosphorylated acetyl CoA carboxylase, cluster of differentiation 36, diacylglycerol acyltransferase 1 (DGAT1), DGAT2, tumor necrosis factor-α, and interleukin-6 protein than DM rats. HDAC inhibition significantly attenuated DM cardiomyopathy through modulation of cardiac PPARS, fatty acid metabolism, and proinflammatory cytokines. PMID:27446205

  14. Synthesis of Phthalimide Derivatives as Potential PPAR-γ Ligands

    PubMed Central

    Eom, So Hyeon; Liu, Sen; Su, Mingzhi; Noh, Tae Hwan; Hong, Jongki; Kim, Nam Deuk; Chung, Hae Young; Yang, Min Hye; Jung, Jee H.

    2016-01-01

    Paecilocin A, a phthalide derivative isolated from the jellyfish-derived fungus Paecilomyces variotii, activates PPAR-γ (Peroxisome proliferator-activated receptor gamma) in rat liver Ac2F cells. Based on a SAR (Structure-activity relationships) study and in silico analysis of paecilocin A-mimetic derivatives, additional N-substituted phthalimide derivatives were synthesized and evaluated for PPAR-γ agonistic activity in both murine liver Ac2F cells and in human liver HepG2 cells by luciferase assay, and for adipogenic activity in 3T3-L1 cells. Docking simulation indicated PD6 was likely to bind most strongly to the ligand binding domain of PPAR-γ by establishing crucial H-bonds with key amino acid residues. However, in in vitro assays, PD1 and PD2 consistently displayed significant PPARactivation in Ac2F and HepG2 cells, and adipogenic activity in 3T3-L1 preadipocytes. PMID:27338418

  15. Activation of PPAR-γ and PTEN Cascade Participates in Lovastatin-mediated Accelerated Differentiation of Oligodendrocyte Progenitor Cells

    PubMed Central

    Paintlia, Ajaib S; Paintlia, Manjeet K; Singh, Avtar K; Singh, Inderjit

    2010-01-01

    Previously, we and others documented that statins including—lovastatin (LOV) promote the differentiation of oligodendrocyte progenitor cells (OPCs) and remyelination in experimental autoimmune encephalomyelitis (EAE), an multiple sclerosis (MS) model. Conversely, some recent studies demonstrated that statins negatively influence oligodendrocyte (OL) differentiation in vitro and remyelination in a cuprizone-CNS demyelinating model. Therefore, herein, we first investigated the cause of impaired differentiation of OLs by statins in vitro settings. Our observations indicated that the depletion of cholesterol was detrimental to LOV treated OPCs under cholesterol/serum-deprived culture conditions similar to that were used in conflicting studies. However, the depletion of geranylgeranyl-pp under normal cholesterol homeostasis conditions enhanced the phenotypic commitment and differentiation of LOV-treated OPCs ascribed to inhibition of RhoA-Rho kinase. Interestingly, this effect of LOV was associated with increased activation and expression of both PPAR-γ and PTEN in OPCs as confirmed by various pharmacological and molecular based approaches. Furthermore, PTEN was involved in an inhibition of OPCs proliferation via PI3K-Akt inhibition and induction of cell cycle arrest at G1 phase, but without affecting their cell survival. These effects of LOV on OPCs in vitro were absent in the CNS of normal rats chronically treated with LOV concentrations used in EAE indicating that PPAR-γ induction in normal brain may be tightly regulated — providing evidences that statins are therapeutically safe for humans. Collectively, these data provide initial evidence that statin-mediated activation of the PPAR-γ — PTEN cascade participates in OL differentiation, thus suggesting new therapeutic-interventions for MS or related CNS-demyelinating diseases. PMID:20578043

  16. Regulation of the human SLC25A20 expression by peroxisome proliferator-activated receptor alpha in human hepatoblastoma cells

    SciTech Connect

    Tachibana, Keisuke; Takeuchi, Kentaro; Inada, Hirohiko; Yamasaki, Daisuke; The Center for Advanced Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 ; Ishimoto, Kenji; Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 ; Tanaka, Toshiya; Hamakubo, Takao; Sakai, Juro; Kodama, Tatsuhiko; Doi, Takefumi; The Center for Advanced Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871; Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871

    2009-11-20

    Solute carrier family 25, member 20 (SLC25A20) is a key molecule that transfers acylcarnitine esters in exchange for free carnitine across the mitochondrial membrane in the mitochondrial {beta}-oxidation. The peroxisome proliferator-activated receptor alpha (PPAR{alpha}) is a ligand-activated transcription factor that plays an important role in the regulation of {beta}-oxidation. We previously established tetracycline-regulated human cell line that can be induced to express PPAR{alpha} and found that PPAR{alpha} induces the SLC25A20 expression. In this study, we analyzed the promoter region of the human slc25a20 gene and showed that PPAR{alpha} regulates the expression of human SLC25A20 via the peroxisome proliferator responsive element.

  17. Citrus auraptene acts as an agonist for PPARs and enhances adiponectin production and MCP-1 reduction in 3T3-L1 adipocytes

    SciTech Connect

    Kuroyanagi, Kayo; Kang, Min-Sook; Goto, Tsuyoshi; Hirai, Shizuka; Ohyama, Kana; Kusudo, Tatsuya; Yu, Rina; Yano, Masamichi; Sasaki, Takao; Takahashi, Nobuyuki; Kawada, Teruo

    2008-02-01

    Citrus fruit compounds have many health-enhancing effects. In this study, using a luciferase ligand assay system, we showed that citrus auraptene activates peroxisome proliferator-activated receptor (PPAR)-{alpha} and PPAR{gamma}. Auraptene induced up-regulation of adiponectin expression and increased the ratio of the amount of high-molecular-weight multimers of adiponectin to the total adiponectin. In contrast, auraptene suppressed monocyte chemoattractant protein (MCP)-1 expression in 3T3-L1 adipocytes. Experiments using PPAR{gamma} antagonist demonstrated that these effects on regulation of adiponectin and MCP-1 expression were caused by PPAR{gamma} activations. The results indicate that auraptene activates PPAR{gamma} in adipocytes to control adipocytekines such as adiponectin and MCP-1 and suggest that the consumption of citrus fruits, which contain auraptene can lead to a partial prevention of lipid and glucose metabolism abnormalities.

  18. EFFECTS OF CHRONIC ACTIVATION OF PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR-ALPHA OR HIGH-FAT FEEDING IN A RAT INFARCT MODEL OF HEART FAILURE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intracardiac accumulation of lipid and related intermediates (e.g., ceramide) is associated with cardiac dysfunction and may contribute to the progression of heart failure (HF). Overexpression of nuclear receptor peroxisome proliferator-activated receptor-alpha (PPAR-alpha) increases intramyocellula...

  19. Peroxisome Proliferator Activated Receptor A Ligands as Anticancer Drugs Targeting Mitochondrial Metabolism

    PubMed Central

    Grabacka, Maja; Pierzchalska, Malgorzata; Reiss, Krzysztof

    2011-01-01

    Tumor cells show metabolic features distinctive from normal tissues, with characteristically enhanced aerobic glycolysis, glutaminolysis and lipid synthesis. Peroxisome proliferator activated receptor α (PPAR α) is activated by nutrients (fatty acids and their derivatives) and influences these metabolic pathways acting antagonistically to oncogenic Akt and c-Myc. Therefore PPAR α can be regarded as a candidate target molecule in supplementary anticancer pharmacotherapy as well as dietary therapeutic approach. This idea is based on hitting the cancer cell metabolic weak points through PPAR α mediated stimulation of mitochondrial fatty acid oxidation and ketogenesis with simultaneous reduction of glucose and glutamine consumption. PPAR α activity is induced by fasting and its molecular consequences overlap with the effects of calorie restriction and ketogenic diet (CRKD). CRKD induces increase of NAD+/NADH ratio and drop in ATP/AMP ratio. The first one is the main stimulus for enhanced protein deacetylase SIRT1 activity; the second one activates AMP-dependent protein kinase (AMPK). Both SIRT1 and AMPK exert their major metabolic activities such as fatty acid oxidation and block of glycolysis and protein, nucleotide and fatty acid synthesis through the effector protein peroxisome proliferator activated receptor gamma 1 α coactivator (PGC-1α). PGC-1α cooperates with PPAR α and their activities might contribute to potential anticancer effects of CRKD, which were reported for various brain tumors. Therefore, PPAR α activation can engage molecular interplay among SIRT1, AMPK, and PGC-1α that provides a new, low toxicity dietary approach supplementing traditional anticancer regimen. PMID:21133850

  20. Telmisartan increases lipoprotein lipase expression via peroxisome proliferator-activated receptor-alpha in HepG2 cells.

    PubMed

    Yin, Shi Nan; Liu, Min; Jing, Dan Qing; Mu, Yi Ming; Lu, Ju Ming; Pan, Chang Yu

    2014-01-01

    In addition to their hypotensive properties, angiotensin receptor blockers (ARBs) have been shown to exert clinical antidyslipidemic effects. The mechanism underlying these ARB lipid metabolic effects remains unclear. Some ARBs, for example, telmisartan, activate peroxisome proliferator-activated activated receptor-gamma (PPAR-gamma). We hypothesized that PPAR-gamma-activating ARBs might exert antidyslipidemic effects via PPAR-alpha. In this study, we assessed the effect of telmisartan on the expression of PPAR-alpha and lipoprotein lipase (LPL). PPAR-alpha expression was detected by reverse-transcription polymerase chain reaction and Western blot in HepG2 hepatocytes as well as differentiated C2C12 myocytes treated with increasing concentrations of telmisartan (0.1-10 μmol/L) for 48 h. Results showed that 1 μmol/L and 10 μmol/L telmisartan significantly increased the expression of PPAR-alpha mRNA and protein in HepG2 cells (p < 0.01). No effect was shown in differentiated C2C12 cells. Similarly, 1 µmol/L and 10 μmol/L telmisartan significantly increased the expression of LPL mRNA and protein in HepG2 cells (p < 0.01), and this increase was significantly (p < 0.01) inhibited by the PPAR-alpha-specific antagonist MK886. These results indicate that certain of the antidyslipidemic effects of telmisartan might be mediated via increased PPAR-alpha-dependent induction of LPL expression. PMID:24067162

  1. PPAR agonists regulate brain gene expression: relationship to their effects on ethanol consumption.

    PubMed

    Ferguson, Laura B; Most, Dana; Blednov, Yuri A; Harris, R Adron

    2014-11-01

    Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that act as ligand-activated transcription factors. Although prescribed for dyslipidemia and type-II diabetes, PPAR agonists also possess anti-addictive characteristics. PPAR agonists decrease ethanol consumption and reduce withdrawal severity and susceptibility to stress-induced relapse in rodents. However, the cellular and molecular mechanisms facilitating these properties have yet to be investigated. We tested three PPAR agonists in a continuous access two-bottle choice (2BC) drinking paradigm and found that tesaglitazar (PPARα/γ; 1.5 mg/kg) and fenofibrate (PPARα; 150 mg/kg) decreased ethanol consumption in male C57BL/6J mice while bezafibrate (PPARα/γ/β; 75 mg/kg) did not. We hypothesized that changes in brain gene expression following fenofibrate and tesaglitazar treatment lead to reduced ethanol drinking. We studied unbiased genomic profiles in areas of the brain known to be important for ethanol dependence, the prefrontal cortex (PFC) and amygdala, and also profiled gene expression in liver. Genomic profiles from the non-effective bezafibrate treatment were used to filter out genes not associated with ethanol consumption. Because PPAR agonists are anti-inflammatory, they would be expected to target microglia and astrocytes. Surprisingly, PPAR agonists produced a strong neuronal signature in mouse brain, and fenofibrate and tesaglitazar (but not bezafibrate) targeted a subset of GABAergic interneurons in the amygdala. Weighted gene co-expression network analysis (WGCNA) revealed co-expression of treatment-significant genes. Functional annotation of these gene networks suggested that PPAR agonists might act via neuropeptide and dopaminergic signaling pathways in the amygdala. Our results reveal gene targets through which PPAR agonists can affect alcohol consumption behavior. PMID:25036611

  2. Peroxisome proliferator-activated receptors: potential therapeutic targets in lung disease?

    PubMed

    Denning, Gerene M; Stoll, Lynn L

    2006-01-01

    The peroxisome proliferator-activated receptors (PPARs) are a family of nuclear hormone receptors that play central roles in lipid and glucose homeostasis, cellular differentiation, and the immune/inflammatory response. Growing evidence indicates that changes in expression and activation of PPARs likely modulate conditions as diverse as diabetes, atherosclerosis, cancer, asthma, Parkinson's disease, and Alzheimer's disease. Activation of these receptors by natural or pharmacologic ligands leads to both gene-dependent and gene-independent effects that alter the expression of a wide array of proteins. In the lung, PPARs are expressed by alveolar macrophages, as well as by epithelial, endothelial, and smooth muscle cells. Studies both in vitro and in vivo suggest that PPAR ligands may have anti-inflammatory effects in asthma, pulmonary sarcoidosis, and pulmonary alveolar proteinosis, as well as antiproliferative and antiangiogenic effects in epithelial lung cancers. Further studies to understand the contribution of these receptors to health and disease will be important for determining whether they represent a promising target for therapeutic intervention. PMID:16267824

  3. PPAR{alpha} does not suppress muscle-associated gene expression in brown adipocytes but does influence expression of factors that fingerprint the brown adipocyte

    SciTech Connect

    Walden, Tomas B.; Petrovic, Natasa; Nedergaard, Jan

    2010-06-25

    Brown adipocytes and myocytes develop from a common adipomyocyte precursor. PPAR{alpha} is a nuclear receptor important for lipid and glucose metabolism. It has been suggested that in brown adipose tissue, PPAR{alpha} represses the expression of muscle-associated genes, in this way potentially acting to determine cell fate in brown adipocytes. To further understand the possible role of PPAR{alpha} in these processes, we measured expression of muscle-associated genes in brown adipose tissue and brown adipocytes from PPAR{alpha}-ablated mice, including structural genes (Mylpf, Tpm2, Myl3 and MyHC), regulatory genes (myogenin, Myf5 and MyoD) and a myomir (miR-206). However, in our hands, the expression of these genes was not influenced by the presence or absence of PPAR{alpha}, nor by the PPAR{alpha} activator Wy-14,643. Similarly, the expression of genes common for mature brown adipocyte and myocytes (Tbx15, Meox2) were not affected. However, the brown adipocyte-specific regulatory genes Zic1, Lhx8 and Prdm16 were affected by PPAR{alpha}. Thus, it would not seem that PPAR{alpha} represses muscle-associated genes, but PPAR{alpha} may still play a role in the regulation of the bifurcation of the adipomyocyte precursor into a brown adipocyte or myocyte phenotype.

  4. Letter: Iatrogenic lipomatosis: a rare manifestation of treatment with a peroxisome proliferator-activated receptor gamma agonist.

    PubMed

    Femia, Alisa; Klein, Peter A

    2010-01-01

    Lipomas are common benign neoplasms of adipose tissue. Lipomatosis, the progressive appearance of multiple lipomas, is most often associated with specific congenital, familial, or idiopathic syndromes. In one reported case, the development of multiple lipomas occurred as a result of treatment with rosiglitazone, a peroxisome proliferator-activated receptor (PPAR) gamma agonist. We report a second case of lipomatosis occurring as a result of treatment with a PPAR gamma agonist. This case occurred in a 77-year-old woman who developed multiple lipomas two years after beginning treatment with pioglitazone, a PPAR gamma agonist. Histopathologic examination confirmed these lesions to be lipomas. Within four weeks of discontinuation of pioglitazone, regression of the lipomas began. We describe a case of PPAR agonist-induced lipoma formation, review relevant literature, and provide a molecular mechanism for this side effect. PMID:20409422

  5. Cholesteryl ester hydroperoxides increase macrophage CD36 gene expression via PPAR{alpha}

    SciTech Connect

    Jedidi, Iness; Couturier, Martine; Therond, Patrice; Gardes-Albert, Monique; Legrand, Alain; Barouki, Robert; Bonnefont-Rousselot, Dominique; Aggerbeck, Martine . E-mail: Martine.Aggerbeck@univ-paris5.fr

    2006-12-22

    The uptake of oxidized LDL by macrophages is a key event in the development of atherosclerosis. The scavenger receptor CD36 is one major receptor that internalizes oxidized LDL. In differentiated human macrophages, we compared the regulation of CD36 expression by copper-oxidized LDL or their products. Only oxidized derivatives of cholesteryl ester (CEOOH) increased the amount of CD36 mRNA (2.5-fold). Both oxidized LDL and CEOOH treatment increased two to fourfold the transcription of promoters containing peroxisome-proliferator-activated-receptor responsive elements (PPRE) in the presence of PPAR{alpha} or {gamma}. Electrophoretic-mobility-shift-assays with nuclear extracts prepared from macrophages treated by either oxidized LDL or CEOOH showed increased binding of PPAR{alpha} to the CD36 gene promoter PPRE. In conclusion, CEOOH present in oxidized LDL increase CD36 gene expression in a pathway involving PPAR{alpha}.

  6. Peroxisome proliferator-activated receptors: Targets for the treatment of metabolic illnesses (Review).

    PubMed

    Moore-Carrasco, Rodrigo; Poblete Bustamante, Mauricio; González Guerra, Oscar; Leiva Madariaga, Elba; Mujica Escudero, Veronica; Aranguez Arellano, Claudio; Palomo, Iván

    2008-01-01

    Peroxisome proliferator-activated receptors (PPARs) belong to a family of transcription factors of which three isotypes, PPARα, PPARδ (β) and PPARγ, are known. These play a central role in regulating intermediate metabolism and in incidences of inflammation. In recent years, a greater understanding of their mechanisms of action and their effects, principally in the management of cardiovascular disease, has been achieved. PPAR agonists, catalysts and agents have been used since the 1990s, when it was confirmed that fibrates possess lipid modifying properties when selectively activating PPARα. In addition, thiazolidinediones, structures analogous to fibrates, showed PPARγ activity with an insulin-sensitizing effect, leading to their use in the control and even prevention of diabetes mellitus type 2. Currently, studies are oriented to the development of agents that activate multiple PPAR isoforms - not only dual (PPARα/γ), but also PPAR panagonists (α/γ/δ). The purpose of this review is to explain the mechanisms of the molecular action and the effects of PPAR agonists, and also to analyze existing and current studies concerning their use in cardiovascular and metabolic illnesses. PMID:21479412

  7. The PPAR{gamma} coding region and its role in visceral obesity

    SciTech Connect

    Boon Yin, Khoo Najimudin, Nazalan; Muhammad, Tengku Sifzizul Tengku

    2008-06-27

    Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) is a ligand activated transcription factor, plays many essential roles of biological function in higher organisms. The PPAR{gamma} is mainly expressed in adipose tissue. It regulates the transcriptional activity of genes by binding with other transcription factor. The PPAR{gamma} coding region has been found to be closest to that of monkey in ours and other research groups. Thus, monkey is a more suitable animal model for future PPAR{gamma} studying, although mice and rat are frequently being used. The PPAR{gamma} is involved in regulating alterations of adipose tissue masses result from changes in mature adipocyte size and/or number through a complex interplay process called adipogenesis. However, the role of PPAR{gamma} in negatively regulating the process of adipogenesis remains unclear. This review may help we investigate the differential expression of key transcription factor in adipose tissue in response to visceral obesity-induced diet in vivo. The study may also provide valuable information to define a more appropriate physiological condition in adipogenesis which may help to prevent diseases cause by negative regulation of the transcription factors in adipose tissue.

  8. PPAR{alpha} regulates the hepatotoxic biomarker alanine aminotransferase (ALT1) gene expression in human hepatocytes

    SciTech Connect

    Thulin, Petra; Rafter, Ingalill; Stockling, Kenneth; Tomkiewicz, Celine; Norjavaara, Ensio; Aggerbeck, Martine; Hellmold, Heike; Ehrenborg, Ewa; Andersson, Ulf; Cotgreave, Ian; Glinghammar, Bjoern

    2008-08-15

    In this work, we investigated a potential mechanism behind the observation of increased aminotransferase levels in a phase I clinical trial using a lipid-lowering drug, the peroxisome proliferator-activated receptor (PPAR) {alpha} agonist, AZD4619. In healthy volunteers treated with AZD4619, serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities were elevated without an increase in other markers for liver injury. These increases in serum aminotransferases have previously been reported in some patients receiving another PPAR{alpha} agonist, fenofibrate. In subsequent in vitro studies, we observed increased expression of ALT1 protein and mRNA in human hepatocytes after treatment with fenofibric acid. The PPAR effect on ALT1 expression was shown to act through a direct transcriptional mechanism involving at least one PPAR response element (PPRE) in the proximal ALT1 promoter, while no effect of fenofibrate and AZD4619 was observed on the ALT2 promoter. Binding of PPARs to the PPRE located at - 574 bp from the transcriptional start site was confirmed on both synthetic oligonucleotides and DNA in hepatocytes. These data show that intracellular ALT expression is regulated by PPAR agonists and that this mechanism might contribute to increased ALT activity in serum.

  9. Inhibitory effects of harpagoside on TNF-α-induced pro-inflammatory adipokine expression through PPARactivation in 3T3-L1 adipocytes.

    PubMed

    Kim, Tae Kon; Park, Kyoung Sik

    2015-12-01

    Obesity is closely associated with increased production of pro-inflammatory adipokines, including interleukin (IL)-6, plasminogen activator inhibitor (PAI)-1, and adipose-tissue-derived monocyte chemoattractant protein (MCP)-1, which contribute to chronic and low-grade inflammation in adipose tissue. Harpagoside, a major iridoid glycoside present in devil's claw, has been reported to show anti-inflammatory activities by suppression of lipopolysaccharide (LPS)-induced production of inflammatory cytokines in murine macrophages. The present study is aimed to investigate the effects of harpagoside on both tumor necrosis factor (TNF)-α-induced inflammatory adipokine expression and its underlying signaling pathways in differentiated 3T3-L1 cells. Harpagoside significantly inhibited TNF-α-induced mRNA synthesis and protein production of the atherogenic adipokines including IL-6, PAI-1, and MCP-1. Further investigation of the molecular mechanism revealed that pretreatment with harpagoside activated peroxisome proliferator-activated receptor (PPAR)-γ. These findings suggest that the clinical application of medicinal plants which contain harpagoside may lead to a partial prevention of obesity-induced atherosclerosis by attenuating inflammatory responses. PMID:26049170

  10. Liver X Receptor and Peroxisome Proliferator-Activated Receptor Agonist from Cornus alternifolia

    PubMed Central

    He, Yang-Qing; Ma, Guo-Yi; Peng, Jiang-nan; Ma, Zhan-Ying; Hamann, Mark T.

    2012-01-01

    Background Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear receptors superfamily and are transcription factors activated by specific ligands. Liver X receptors (LXR) belong to the nuclear hormone receptors and have been shown to play an important role in cholesterol homeostasis. From the previous screening of several medicinal plants for potential partial PPARγ agonists, the extracts of Cornus alternifolia were found to exhibit promising bioactivity. In this paper, we report the isolation and structural elucidation of four new compounds and their potential as ligands for PPAR. Methods The new compounds were extracted from the leaves of Cornus alternifolia and fractionated by high-performance liquid chromatography. Their structures were elucidated on the basis of spectroscopic evidence and analysis of their hydrolysis products. Results Three new iridoid glycosides including an iridolactone, alternosides A-C (1–3), a new megastigmane glycoside, cornalternoside (4) and 10 known compounds, were obtained from the leaves of Cornus alternifolia. Kaempferol-3-O-β-glucopyranoside (5) exhibited potent agonistic activities for PPARα, PPARγ and LXR with EC50 values of 0.62, 3.0 and 1.8 μ M, respectively. Conclusions We isolated four new and ten known compounds from Cornus alternifolia, and one known compound showed agonistic activities for PPARα, PPARγ and LXR. General significance Compound 1 is the first example of a naturally occurring iridoid glycoside containing a β-glucopyranoside moiety at C-6. PMID:22353334

  11. Effects of Lonicera japonica Thunb. on Type 2 Diabetes via PPARActivation in Rats.

    PubMed

    Han, Jae Min; Kim, Mi Hye; Choi, You Yeon; Lee, Haesu; Hong, Jongki; Yang, Woong Mo

    2015-10-01

    Lonicera japonica Thunb. (Caprifoliaceae) is a traditional herbal medicine and has been used to treat diabetic symptoms. Notwithstanding its use, the scientific basis on anti-diabetic properties of L. japonica is not yet established. This study is designed to investigate anti-diabetic effects of L. japonica in type 2 diabetic rats. L. japonica was orally administered at the dose of 100 mg/kg in high-fat diet-fed and low-dose streptozotocin-induced rats. After the treatment of 4 weeks, L. japonica reduced high blood glucose level and homeostatic model assessment of insulin resistance in diabetic rats. In addition, body weight and food intake were restored by the L. japonica treatment. In the histopathologic examination, the amelioration of damaged β-islet in pancreas was observed in L. japonica-treated diabetic rats. The administration of L. japonica elevated peroxisome proliferator-activated receptor gamma and insulin receptor subunit-1 protein expressions. The results demonstrated that L. japonica had anti-diabetic effects in type 2 diabetic rats via the peroxisome proliferator-activated receptor gamma regulatory action of L. japonica as a potential mechanism. PMID:26174209

  12. Angiopoietin-Like 4 Mediates PPAR Delta Effect on Lipoprotein Lipase-Dependent Fatty Acid Uptake but Not on Beta-Oxidation in Myotubes

    PubMed Central

    Robciuc, Marius R.; Skrobuk, Paulina; Anisimov, Andrey; Olkkonen, Vesa M.; Alitalo, Kari; Eckel, Robert H.; Koistinen, Heikki A.; Jauhiainen, Matti; Ehnholm, Christian

    2012-01-01

    Peroxisome proliferator-activated receptor (PPAR) delta is an important regulator of fatty acid (FA) metabolism. Angiopoietin-like 4 (Angptl4), a multifunctional protein, is one of the major targets of PPAR delta in skeletal muscle cells. Here we investigated the regulation of Angptl4 and its role in mediating PPAR delta functions using human, rat and mouse myotubes. Expression of Angptl4 was upregulated during myotubes differentiation and by oleic acid, insulin and PPAR delta agonist GW501516. Treatment with GW501516 or Angptl4 overexpression inhibited both lipoprotein lipase (LPL) activity and LPL-dependent uptake of FAs whereas uptake of BSA-bound FAs was not affected by either treatment. Activation of retinoic X receptor (RXR), PPAR delta functional partner, using bexarotene upregulated Angptl4 expression and inhibited LPL activity in a PPAR delta dependent fashion. Silencing of Angptl4 blocked the effect of GW501516 and bexarotene on LPL activity. Treatment with GW501516 but not Angptl4 overexpression significantly increased palmitate oxidation. Furthermore, Angptl4 overexpression did not affect the capacity of GW501516 to increase palmitate oxidation. Basal and insulin stimulated glucose uptake, glycogen synthesis and glucose oxidation were not significantly modulated by Angptl4 overexpression. Our findings suggest that FAs-PPARdelta/RXR-Angptl4 axis controls the LPL-dependent uptake of FAs in myotubes, whereas the effect of PPAR delta activation on beta-oxidation is independent of Angptl4. PMID:23056264

  13. Prenatal fat exposure and hypothalamic PPAR β/δ: Possible relationship to increased neurogenesis of orexigenic peptide neurons.

    PubMed

    Chang, G-Q; Karatayev, O; Lukatskaya, O; Leibowitz, S F

    2016-05-01

    Gestational exposure to a fat-rich diet, while elevating maternal circulating fatty acids, increases in the offspring's hypothalamus and amygdala the proliferation and density of neurons that express neuropeptides known to stimulate consummatory behavior. To understand the relationship between these phenomena, this study examined in the brain of postnatal offspring (day 15) the effect of prenatal fat exposure on the transcription factor, peroxisome proliferator-activated receptor (PPAR) β/δ, which is sensitive to fatty acids, and the relationship of PPAR β/δ to the orexigenic neuropeptides, orexin, melanin-concentrating hormone, and enkephalin. Prenatal exposure to a fat-rich diet compared to low-fat chow increased the density of cells immunoreactive for PPAR β/δ in the hypothalamic paraventricular nucleus (PVN), perifornical lateral hypothalamus (PFLH), and central nucleus of the amygdala (CeA), but not the hypothalamic arcuate nucleus or basolateral amygdaloid nucleus. It also increased co-labeling of PPAR β/δ with the cell proliferation marker, BrdU, or neuronal marker, NeuN, and the triple labeling of PPAR β/δ with BrdU plus NeuN, indicating an increase in proliferation and density of new PPAR β/δ neurons. Prenatal fat exposure stimulated the double-labeling of PPAR β/δ with orexin or melanin-concentrating hormone in the PFLH and enkephalin in the PVN and CeA and also triple-labeling of PPAR β/δ with BrdU and these neuropeptides, indicating that dietary fat increases the genesis of PPAR β/δ neurons that produce these peptides. These findings demonstrate a close anatomical relationship between PPAR β/δ and the increased proliferation and density of peptide-expressing neurons in the hypothalamus and amygdala of fat-exposed offspring. PMID:27002387

  14. Cucurbitane Triterpenoid from Momordica charantia Induces Apoptosis and Autophagy in Breast Cancer Cells, in Part, through Peroxisome Proliferator-Activated Receptor γ Activation.

    PubMed

    Weng, Jing-Ru; Bai, Li-Yuan; Chiu, Chang-Fang; Hu, Jing-Lan; Chiu, Shih-Jiuan; Wu, Chia-Yung

    2013-01-01

    Although the antitumor activity of the crude extract of wild bitter gourd (Momordica charantia L.) has been reported, its bioactive constituents and the underlying mechanism remain undefined. Here, we report that 3 β ,7 β -dihydroxy-25-methoxycucurbita-5,23-diene-19-al (DMC), a cucurbitane-type triterpene isolated from wild bitter gourd, induced apoptotic death in breast cancer cells through peroxisome proliferator-activated receptor (PPAR) γ activation. Luciferase reporter assays indicated the ability of DMC to activate PPAR γ , and pharmacological inhibition of PPAR γ protected cells from DMC's antiproliferative effect. Western blot analysis indicated that DMC suppressed the expression of many PPAR γ -targeted signaling effectors, including cyclin D1, CDK6, Bcl-2, XIAP, cyclooxygenase-2, NF- κ B, and estrogen receptor α , and induced endoplasmic reticulum stress, as manifested by the induction of GADD153 and GRP78 expression. Moreover, DMC inhibited mTOR-p70S6K signaling through Akt downregulation and AMPK activation. The ability of DMC to activate AMPK in liver kinase (LK) B1-deficient MDA-MB-231 cells suggests that this activation was independent of LKB1-regulated cellular metabolic status. However, DMC induced a cytoprotective autophagy presumably through mTOR inhibition, which could be overcome by the cotreatment with the autophagy inhibitor chloroquine. Together, the ability of DMC to modulate multiple PPAR γ -targeted signaling pathways provides a mechanistic basis to account for the antitumor activity of wild bitter gourd. PMID:23843889

  15. Matrix metalloproteinase-12 gene regulation by a PPAR alpha agonist in human monocyte-derived macrophages

    SciTech Connect

    Souissi, Imen Jguirim; Billiet, Ludivine; Cuaz-Perolin, Clarisse; Rouis, Mustapha

    2008-11-01

    MMP-12, a macrophage-specific matrix metalloproteinase with large substrate specificity, has been reported to be highly expressed in mice, rabbits and human atherosclerotic lesions. Increased MMP-12 from inflammatory macrophages is associated with several degenerative diseases such as atherosclerosis. In this manuscript, we show that IL-1{beta}, a proinflammatory cytokine found in atherosclerotic plaques, increases both mRNA and protein levels of MMP-12 in human monocyte-derived macrophages (HMDM). Since peroxisome proliferator-activated receptors (PPARs), such as PPAR{alpha} and PPAR{gamma}, are expressed in macrophages and because PPAR activation exerts an anti-inflammatory effect on vascular cells, we have investigated the effect of PPAR{alpha} and {gamma} isoforms on MMP-12 regulation in HMDM. Our results show that MMP-12 expression (mRNA and protein) is down regulated in IL-1{beta}-treated macrophages only in the presence of a specific PPAR{alpha} agonist, GW647, in a dose-dependent manner. In contrast, this inhibitory effect was abolished in IL-1{beta}-stimulated peritoneal macrophages isolated from PPAR{alpha}{sup -/-} mice and treated with the PPAR{alpha} agonist, GW647. Moreover, reporter gene transfection experiments using different MMP-12 promoter constructs showed a reduction of the promoter activities by {approx} 50% in IL-1{beta}-stimulated PPAR{alpha}-pre-treated cells. However, MMP-12 promoter analysis did not reveal the presence of a PPRE response element. The IL-1{beta} effect is known to be mediated through the AP-1 binding site. Mutation of the AP-1 site, located at - 81 in the MMP-12 promoter region relative to the transcription start site, followed by transfection analysis, gel shift and ChIP experiments revealed that the inhibitory effect was the consequence of the protein-protein interaction between GW 647-activated PPAR{alpha} and c-Fos or c-Jun transcription factors, leading to inhibition of their binding to the AP-1 motif. These studies

  16. Novel time-dependent vascular actions of {delta}{sup 9}-tetrahydrocannabinol mediated by peroxisome proliferator-activated receptor gamma

    SciTech Connect

    O'Sullivan, Saoirse E. . E-mail: Saoirse.o'sullivan@nottingham.ac.uk; Tarling, Elizabeth J.; Bennett, Andrew J.; Kendall, David A.; Randall, Michael D.

    2005-11-25

    Cannabinoids have widespread effects on the cardiovascular system, only some of which are mediated via G-protein-coupled cell surface receptors. The active ingredient of cannabis, {delta}{sup 9}-tetrahydrocannabinol (THC), causes acute vasorelaxation in various arteries. Here we show for the first time that THC also causes slowly developing vasorelaxation through activation of peroxisome proliferator-activated receptors gamma (PPAR{gamma}). In vitro, THC (10 {mu}M) caused time-dependent vasorelaxation of rat isolated arteries. Time-dependent vasorelaxation to THC was similar to that produced by the PPAR{gamma} agonist rosiglitazone and was inhibited by the PPAR{gamma} antagonist GW9662 (1 {mu}M), but not the cannabinoid CB{sub 1} receptor antagonist AM251 (1 {mu}M). Time-dependent vasorelaxation to THC requires an intact endothelium, nitric oxide, production of hydrogen peroxide, and de novo protein synthesis. In transactivation assays in cultured HEK293 cells, THC-activated PPAR{gamma}, transiently expressed in combination with retinoid X receptor {alpha} and a luciferase reporter gene, in a concentration-dependent manner (100 nM-10 {mu}M). In vitro incubation with THC (1 or 10 {mu}M, 8 days) stimulated adipocyte differentiation in cultured 3T3L1 cells, a well-accepted property of PPAR{gamma} ligands. The present results provide strong evidence that THC is a PPAR{gamma} ligand, stimulation of which causes time-dependent vasorelaxation, implying some of the pleiotropic effects of cannabis may be mediated by nuclear receptors.

  17. Role of peroxisome proliferators-activated receptors in the pathogenesis and treatment of nonalcoholic fatty liver disease

    PubMed Central

    Kallwitz, Eric R; McLachlan, Alan; Cotler, Scott J

    2008-01-01

    Nonalcoholic fatty liver disease (NAFLD) is highly prevalent and can result in nonalcoholic steatohepatitis (NASH) and progressive liver disease including cirrhosis and hepatocellular carcinoma. A growing body of literature implicates the peroxisome proliferators-activated receptors (PPARs) in the pathogenesis and treatment of NAFLD. These nuclear hormone receptors impact on hepatic triglyceride accumulation and insulin resistance. The aim of this review is to describe the data linking PPARα and PPARγ to NAFLD/NASH and to discuss the use of PPAR ligands for the treatment of NASH. PMID:18176957

  18. Antagonist of peroxisome proliferator-activated receptor {gamma} induces cerebellar amyloid-{beta} levels and motor dysfunction in APP/PS1 transgenic mice

    SciTech Connect

    Du, Jing; Sun, Bing; Chen, Kui; Fan, Li; Wang, Zhao

    2009-07-03

    Recent evidences show that peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) is involved in the modulation of the amyloid-{beta} (A{beta}) cascade causing Alzheimer's disease (AD) and treatment with PPAR{gamma} agonists protects against AD pathology. However, the function of PPAR{gamma} steady-state activity in A{beta} cascade and AD pathology remains unclear. In this study, an antagonist of PPAR{gamma}, GW9662, was injected into the fourth ventricle of APP/PS1 transgenic mice to inhibit PPAR{gamma} activity in cerebellum. The results show that inhibition of PPAR{gamma} significantly induced A{beta} levels in cerebellum and caused cerebellar motor dysfunction in APP/PS1 transgenic mice. Moreover, GW9662 treatment markedly decreased the cerebellar levels of insulin-degrading enzyme (IDE), which is responsible for the cellular degradation of A{beta}. Since cerebellum is spared from significant A{beta} accumulation and neurotoxicity in AD patients and animal models, these findings suggest a crucial role of PPAR{gamma} steady-state activity in protection of cerebellum against AD pathology.

  19. Peroxisome proliferator-activated receptors in cardiac energy metabolism and cardiovascular disease.

    PubMed

    Ajith, Thekkuttuparambil Ananthanarayanan; Jayakumar, Thankamani Gopinathan

    2016-07-01

    Cardiomyocytes mainly depend on energy produced from the oxidation of fatty acids and mitochondrial oxidative phosphorylation. Shortage of energy or excessive fat accumulation can lead to cardiac disorders. High saturated fat intake and a sedentary life style have a major influence in the development of cardiovascular disease (CVD). Peroxisome proliferator-activated receptors (PPARs), one of the nuclear receptor super family members, play critical role in the metabolism of lipids by regulating their oxidation and storage. Furthermore, they are involved in glucose homeostasis as well. PPARs, mainly alpha (α) and beta/delta (β/δ), have a significant effect on the lipid metabolism and anti-inflammation in endothelial cells (ECs), vascular smooth muscle cells, and also in cardiomyocytes. Pro-inflammatory cytokines, mainly tumour necrosis factor-α, released at the site of inflammation in the sub-ECs of coronary arteries can inactivate the PPARs which can eventually lead to decreased energy production in the myocardium. Various synthetic ligands of PPAR-α and β/δ have many favourable effects in modulating the vascular diseases and heart failure. Despite the adverse effects from therapy using PPAR- gamma ligands, several laboratories are now focused on synthesizing partial activators which may combine their beneficial effects with lowering of undesirable side effects. This review discusses the role of isoforms of PPAR in the cardiomyocytes energy balance and CVD. The knowledge will help in the synthesis of ligands for their partial activation in order to render energy balance and protection from CVD. PMID:27115677

  20. Catalposide is a natural agonistic ligand of peroxisome proliferator-activated receptor-{alpha}

    SciTech Connect

    Lee, Ji Hae; Jun, Hee-jin; Hoang, Minh-Hien; Jia, Yaoyao; Han, Xiang Hua; Lee, Dong-Ho; Lee, Hak-Ju; Hwang, Bang Yeon; Lee, Sung-Joon

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Catalposide is a novel ligand for PPAR{alpha}. Black-Right-Pointing-Pointer Cell stimulated with catalposide improved fatty acid uptake, regulated target genes in fatty acid {beta}-oxidation and synthesis. Black-Right-Pointing-Pointer Catalposdie reduces hepatic triacylglycerides. Black-Right-Pointing-Pointer Theses demonstrate catalposide could ameliorate hyperlipidemia and hepatic steatosis. -- Abstract: Peroxisome proliferator-activated receptor-alpha (PPAR{alpha}) is a nuclear receptor that regulates the expression of genes related to cellular lipid uptake and oxidation. Thus, PPAR{alpha} agonists may be important in the treatment of hypertriglyceridemia and hepatic steatosis. In this study, we demonstrated that catalposide is a novel natural PPAR{alpha} agonist, identified from reporter gene assay-based activity screening with approximately 900 natural plant and seaweed extracts. Results of time-resolved fluorescence resonance energy transfer analyses suggested that the compound interacted directly with the ligand-binding domain of PPAR{alpha}. Cultured hepatocytes stimulated with catalposide exhibited significantly reduced cellular triglyceride concentrations, by 21%, while cellular uptake of fatty acids was increased, by 70% (P < 0.05). Quantitative PCR analysis revealed that the increase in cellular fatty acid uptake was due to upregulation of fatty acid transporter protein-4 (+19% vs. the control) in cells stimulated with catalposide. Additionally, expression of genes related to fatty acid oxidation and high-density lipoprotein metabolism were upregulated, while that of genes related to fatty acid synthesis were suppressed. In conclusion, catalposide is hypolipidemic by activation of PPAR{alpha} via a ligand-mediated mechanism that modulates the expression of in lipid metabolism genes in hepatocytes.

  1. Activation of peroxisome proliferator-activated receptor gamma leads to upregulation of ESE-3 expression in human monocyte-derived dendritic cells.

    PubMed

    Sprater, F; Azeem, W; Appel, S

    2014-01-01

    The transcription factor ESE-3 has been suggested to be involved in regulating the immunogenicity of human monocyte-derived dendritic cells (moDCs). While ESE-3 is not expressed in monocytes, it is upregulated during the differentiation of monocytes into dendritic cells (DCs) and highly expressed in immunogenic DCs while downregulated in tolerogenic DCs. Activation of peroxisome proliferator-activated receptor gamma (PPAR-γ) during DC development has been shown to result in a rather tolerogenic cell population. In this study, we identified eight PPAR-γ binding sites upstream of the ESE-3 gene. Activation of the PPAR-γ pathway with synthetic PPAR-γ ligands during moDC generation resulted in upregulation of ESE-3b expression on mRNA and protein level, phenotypic alterations and reduced capacity of the cells to stimulate allogeneic T cells. This could be inhibited by blocking the PPAR-γ pathway with specific antagonists. Our results suggest PPAR-γ to be involved in the regulation of ESE-3b expression during moDC development and that ESE-3 expression is not correlated with the immunogenicity of DCs. PMID:24219556

  2. Rosemary (Rosmarinus officinalis L.) extract regulates glucose and lipid metabolism by activating AMPK and PPAR pathways in HepG2 cells.

    PubMed

    Tu, Zheng; Moss-Pierce, Tijuana; Ford, Paul; Jiang, T Alan

    2013-03-20

    An epidemic of metabolic disorders such as obesity and diabetes is rising dramatically. Using natural products as potential preventive and therapeutic interventions for these disorders has drawn worldwide attention. Rosemary has been shown to lower blood glucose and cholesterol levels and mitigate weight gain in several in vivo studies. However, the mechanisms are essentially unknown. We investigated the effects of rosemary extract on metabolism and demonstrated that rosemary extract significantly increased glucose consumption in HepG2 cells. The phosphorylation of AMP-activated protein kinase (AMPK) and its substrate, acetyl-CoA carboxylase (ACC), was increased by rosemary extract. Rosemary extract also transcriptionally regulated the genes involved in metabolism, including SIRT1, PPARγ coactivator 1α (PGC1α), glucose-6-phosphatase (G6Pase), ACC, and low-density lipoprotein receptor (LDLR). Furthermore, the PPARγ-specific antagonist GW9662 diminished rosemary's effects on glucose consumption. Overall, our study suggested that rosemary potentially increases liver glycolysis and fatty acid oxidation by activating AMPK and PPAR pathways. PMID:23432097

  3. Discovery of a Series of Imidazo[4,5-b]pyridines with Dual Activity at Angiotensin II Type 1 Receptor and Peroxisome Proliferator-Activated Receptor-[gamma

    SciTech Connect

    Casimiro-Garcia, Agustin; Filzen, Gary F.; Flynn, Declan; Bigge, Christopher F.; Chen, Jing; Davis, Jo Ann; Dudley, Danette A.; Edmunds, Jeremy J.; Esmaeil, Nadia; Geyer, Andrew; Heemstra, Ronald J.; Jalaie, Mehran; Ohren, Jeffrey F.; Ostroski, Robert; Ellis, Teresa; Schaum, Robert P.; Stoner, Chad

    2013-03-07

    Mining of an in-house collection of angiotensin II type 1 receptor antagonists to identify compounds with activity at the peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) revealed a new series of imidazo[4,5-b]pyridines 2 possessing activity at these two receptors. Early availability of the crystal structure of the lead compound 2a bound to the ligand binding domain of human PPAR{gamma} confirmed the mode of interaction of this scaffold to the nuclear receptor and assisted in the optimization of PPAR{gamma} activity. Among the new compounds, (S)-3-(5-(2-(1H-tetrazol-5-yl)phenyl)-2,3-dihydro-1H-inden-1-yl)-2-ethyl-5-isobutyl-7-methyl-3H-imidazo[4,5-b]pyridine (2l) was identified as a potent angiotensin II type I receptor blocker (IC{sub 50} = 1.6 nM) with partial PPAR{gamma} agonism (EC{sub 50} = 212 nM, 31% max) and oral bioavailability in rat. The dual pharmacology of 2l was demonstrated in animal models of hypertension (SHR) and insulin resistance (ZDF rat). In the SHR, 2l was highly efficacious in lowering blood pressure, while robust lowering of glucose and triglycerides was observed in the male ZDF rat.

  4. n-3 Fatty acids preserve insulin sensitivity in vivo in a peroxisome proliferator-activated receptor-alpha-dependent manner.

    PubMed

    Neschen, Susanne; Morino, Katsutaro; Dong, Jianying; Wang-Fischer, Yanlin; Cline, Gary W; Romanelli, Anthony J; Rossbacher, Jörg C; Moore, Irene K; Regittnig, Werner; Munoz, David S; Kim, Jung H; Shulman, Gerald I

    2007-04-01

    Recent studies have suggested that n-3 fatty acids, abundant in fish oil, protect against high-fat diet-induced insulin resistance through peroxisome proliferator-activated receptor (PPAR)-alpha activation and a subsequent decrease in intracellular lipid abundance. To directly test this hypothesis, we fed PPAR-alpha null and wild-type mice for 2 weeks with isocaloric high-fat diets containing 27% fat from either safflower oil or safflower oil with an 8% fish oil replacement (fish oil diet). In both genotypes the safflower oil diet blunted insulin-mediated suppression of hepatic glucose production (P < 0.02 vs. genotype control) and PEPCK gene expression. Feeding wild-type mice a fish oil diet restored hepatic insulin sensitivity (hepatic glucose production [HGP], P < 0.002 vs. wild-type mice fed safflower oil), whereas in contrast, in PPAR-alpha null mice failed to counteract hepatic insulin resistance (HGP, P = NS vs. PPAR-alpha null safflower oil-fed mice). In PPAR-alpha null mice fed the fish oil diet, safflower oil plus fish oil, hepatic insulin resistance was dissociated from increases in hepatic triacylglycerol and acyl-CoA but accompanied by a more than threefold increase in hepatic diacylglycerol concentration (P < 0.0001 vs. genotype control). These data support the hypothesis that n-3 fatty acids protect from high-fat diet-induced hepatic insulin resistance in a PPAR-alpha-and diacylglycerol-dependent manner. PMID:17251275

  5. Neuroprotective properties of peroxisome proliferator-activated receptor alpha (PPARα) and its lipid ligands.

    PubMed

    Fidaleo, Marco; Fanelli, Francesca; Ceru, Maria Paola; Moreno, Sandra

    2014-01-01

    Signalling lipids are known to control a wide array of cellular processes, including cell proliferation, apoptosis, migration, and energy metabolism. Fatty acids and their derivatives, eicosanoids, phosphoinositides, sphingolipids, some cannabinoid-like molecules bind and activate nuclear receptors, including peroxisome proliferator-activated receptors (PPARs). This subfamily of transcription factors comprises three isotypes - PPARα (NR1C1), PPAR β/δ (NR1C2), PPARγ (NR1C3) - which bind to specific DNA response elements, as heterodimers with retinoid X receptors. PPAR activity is modulated by post-translational modifications and cofactors, towards which they show differential affinity. The three PPARs mutually interact, being integrated in a complex system, leading to the concept of a "PPAR triad". Nevertheless, the isotypes also show distinct actions on cellular physiology and partially different tissue, ligand and target gene specificities. In the brain, while the functions of PPARγ and its ligands are being thoroughly investigated, the actual and potential roles of PPARα and β/δ are far from being clarified. PPARα appears especially intriguing, since it is selectively expressed in certain brain areas and neuronal/glial populations, and modulates antioxidant responses, neurotransmission, neuroinflammation, neurogenesis, and glial cell proliferation/differentiation. This receptor and its endogenous ligands, including oleoylethanoloamide (OEA) and palmitoylethanolamide (PEA), are involved in physiological and pathological responses, such as satiety, memory consolidation, and modulation of pain perception. The protective role of PPARα agonists in neurodegenerative diseases and in neuropsychiatric disorders makes manipulation of this pathway highly attractive as therapeutic strategy for neuropathological conditions. In this review, we focus on the pleiotropic functions of PPARα and its lipid ligands in the nervous tissue, devoting special attention to

  6. PEDF inhibits AGE-induced podocyte apoptosis via PPAR-gamma activation.

    PubMed

    Ishibashi, Yuji; Matsui, Takanori; Ohta, Keisuke; Tanoue, Ryuichiro; Takeuchi, Masayoshi; Asanuma, Katsuhiko; Fukami, Kei; Okuda, Seiya; Nakamura, Kei-ichiro; Yamagishi, Sho-ichi

    2013-01-01

    Advanced glycation end products (AGEs) formed at an accelerated rate under diabetes, elicit oxidative and pro-apoptotic reactions in various types of cells, including podocytes, thus being involved in the development and progression of diabetic nephropathy. Recently, we, along with others, have found that pigment epithelium-derived factor (PEDF), a glycoprotein with potent neuronal differentiating activity, inhibits AGE-elicited mesangial and tubular cell damage through its anti-oxidative properties. However, the effects of PEDF on podocyte loss, one of the characteristic features of diabetic nephropathy remain unknown. In this study, we investigated whether and how PEDF could protect against AGE-elicited podocyte apoptosis in vitro. AGEs decreased PEDF mRNA level in podocytes, which was blocked by neutralizing antibody raised against receptor for AGEs (RAGE-Ab). PEDF or RAGE-Ab was found to inhibit the AGE-induced up-regulation of RAGE mRNA level, oxidative stress generation and resultant apoptosis in podocytes. All of the beneficial effects of PEDF on AGE-exposed podocytes were blocked by the treatment of GW9662, an inhibitor of peroxisome proliferator-activated receptor-γ (PPARγ). Further, although PEDF did not affect protein expression levels of PPARγ, it significantly restored the PPARγ transcriptional activity in AGE-exposed podocytes. The present results demonstrated for the first time that PEDF could block the AGE-induced apoptotic cell death of podocytes by suppressing RAGE expression and subsequent ROS generation partly via PPARγ activation. Our present study suggests that substitution of PEDF proteins may be a promising strategy for preventing the podocyte loss in diabetic nephropathy. PMID:23108227

  7. Telmisartan inhibits advanced glycation end products (AGEs)-elicited endothelial cell injury by suppressing AGE receptor (RAGE) expression via peroxisome proliferator-activated receptor-gammaactivation.

    PubMed

    Yamagishi, Sho-ichi; Matsui, Takanori; Nakamura, Kazuo; Takeuchi, Masayoshi; Inoue, Hiroyoshi

    2008-01-01

    Advanced glycation end products (AGEs)-their receptor (RAGE) axis plays a central role in the pathogenesis of diabetic microangiopathy. Since the pathophysiological crosstalk between the AGEs-RAGE system and angiotensin II has also been associated with diabetic microangiopathy, we examined here whether and how telmisartan, a unique angiotensin II type 1 receptor blocker (ARB) with peroxisome proliferator-activated receptor-gamma (PPAR-gamma)-modulating activity, could inhibit the AGEs-elicited endothelial cell injury by suppressing RAGE expression in vitro. Telmisartan suppressed RAGE expression at both mRNA and protein levels in human cultured microvascular endothelial cells (ECs), which were prevented by GW9662, an inhibitor of PPAR-gamma. Further, telmisartan was found to inhibit up-regulation of mRNA levels for monocyte chemoattractant protein-1, intercellular adhesion molecule-1 and vascular endothelial growth factor in AGEs-exposed ECs. These results suggest that telmisartan inhibits the AGEs-elicited EC injury by down-regulating RAGE expression via PPAR-gamma activation. Our present study provides a unique beneficial aspect of telmisartan. Specifically, it could work as an anti-inflammatory agent against AGEs via PPAR-gamma activation and may play a protective role against diabetic microangiopathy. PMID:18855759

  8. The difference of mutation in the peroxisome proliferator activated receptor gamma2 gene among people at high altitudes and low altitudes in Bolivia.

    PubMed

    Karasaki, Yuji; Kashiwazaki, Hiroshi

    2005-09-01

    Peroxisome proliferator activated receptor (PPAR) gamma is present in two isoforms generated by alternative splicing, PPAR gamma 1 and PPAR gamma 2. A Pro12Ala polymorphism in human PPAR gamma 2 moderately reduces its transcriptional activity, and thus PPAR gamma 2 is thought to be a promising candidate gene for several human disorders, including obesity and type 2 diabetes mellitus. In this report, we examined the polymorphism of the PPAR gamma 2 gene in people at high and low altitudes in Bolivia, and found a significant difference in the frequency of Ala carriers (Pro/Ala and Ala/Ala) between 153 native high-altitude Bolivian subjects (64.1%) and 288 low-altitude Bolivian subjects (37.9%). The frequency of this Ala allele in Bolivian subjects was fairly higher than that in other ethnic groups. As body mass index, however, was not associated with Pro12Ala polymorphism of the PPAR gamma 2 gene among either the high altitude Bolivians or low altitude Bolivians, Pro12Ala polymorphism of the gene has little relationship to obesity in Bolivians. PMID:16180511

  9. TNF-α promotes early atherosclerosis by increasing transcytosis of LDL across endothelial cells: crosstalk between NF-κB and PPAR-γ.

    PubMed

    Zhang, Youzhi; Yang, Xiaoyan; Bian, Fang; Wu, Pinhui; Xing, Shasha; Xu, Gao; Li, Wenjing; Chi, Jiangyang; Ouyang, Changhan; Zheng, Tao; Wu, Dan; Zhang, Yonghui; Li, Yongsheng; Jin, Si

    2014-07-01

    Tumor necrosis factor-α (TNF-α) is an established pro-atherosclerotic factor, but the mechanism is not completely understood. We explored whether TNF-α could promote atherosclerosis by increasing the transcytosis of lipoproteins (e.g., LDL) across endothelial cells and how NF-κB and PPAR-γ were involved in this process. TNF-α significantly increased the transcytosis of LDL across human umbilical vein endothelial cells (HUVECs) and stimulated an increase of subendothelial retention of LDL in vascular walls. These effects of TNF-α were substantially blocked not only by transcytosis inhibitors, but also by NF-κB inhibitors and PPAR-γ inhibitors. In ApoE(-/-) mice, both NF-κB and PPAR-γ inhibitors alleviated the early atherosclerotic changes promoted by TNF-α. NF-κB and PPAR-γ inhibitors down-regulated the transcriptional activities of NF-κB and PPAR-γ induced by TNF-α. Furthermore, cross-binding activity assay revealed that NF-κB and PPAR-γ could form an active transcription factor complex containing both the NF-κB P65 subunit and PPAR-γ. The increased expressions of LDL transcytosis-related proteins (LDL receptor and caveolin-1, -2) stimulated by TNF-α were also blocked by both NF-κB inhibitors and PPAR-γ inhibitors. TNF-α promotes atherosclerosis by increasing the LDL transcytosis across endothelial cells and thereby facilitating LDL retention in vascular walls. In this process, NF-κB and PPAR-γ are activated coordinately to up-regulate the expression of transcytosis-related proteins. These observations suggest that inhibitors of either NF-κB or PPAR-γ can be used to target atherosclerosis. PMID:24594319

  10. PPAR dual agonists: are they opening Pandora's Box?

    PubMed

    Balakumar, Pitchai; Rose, Madhankumar; Ganti, Subrahmanya S; Krishan, Pawan; Singh, Manjeet

    2007-08-01

    Cardiovascular disorders are the major cause of mortality in patients of diabetes mellitus. Peroxisome proliferator activated receptors (PPARs) are ligand-activated transcription factors of nuclear hormone receptor superfamily comprising of three subtypes such as PPARalpha, PPARgamma and PPARdelta/beta. Activation of PPARalpha reduces triglycerides and involves in regulation of energy homeostasis. Activation of PPARgamma causes insulin sensitization and enhances glucose metabolism, whereas activation of PPARdelta enhances fatty acid metabolism. Current therapeutic strategies available for the treatment of diabetes do not inhibit the associated secondary cardiovascular complications. Hence, the development of multimodal drugs which can reduce hyperglycemia and concomitantly inhibit the progression of secondary cardiovascular complications may offer valuable therapeutic option. Several basic and clinical studies have exemplified the beneficial effects of PPARalpha and PPARgamma ligands in preventing the cardiovascular risks. The PPARalpha/gamma dual agonists are developed to increase insulin sensitivity and simultaneously prevent diabetic cardiovascular complications. Such compounds are under clinical trials and proposed for treatment of Type II diabetes with secondary cardiovascular complications. However, PPARalpha/gamma dual agonists such as muraglitazar, tesaglitazar and ragaglitazar have been noted to produce several cardiovascular risks and carcinogenicity, which raised number of questions about the clinical applications of dual agonists in diabetes and its associated complications. The ongoing basic studies have elucidated the cardio protective role of PPARdelta. Therefore, further studies are on the track to develop PPARalpha/delta and PPAR gamma/delta dual agonists and PPARalpha/gamma/delta pan agonists for the treatment of diabetic cardiovascular complications. The present review critically analyzes the protective and detrimental effect of PPAR agonists in

  11. Peroxisome-proliferator-activated receptor-{gamma} agonists inhibit the release of proinflammatory cytokines from RSV-infected epithelial cells

    SciTech Connect

    Arnold, Ralf . E-mail: ralf.arnold@medizin.uni-magdeburg.de; Koenig, Wolfgang

    2006-03-15

    The epithelial cells of the airways are the target cells for respiratory syncytial virus (RSV) infection and the site of the majority of the inflammation associated with the disease. Recently, peroxisome-proliferator-activated receptor {gamma} (PPAR{gamma}), a member of the nuclear hormone receptor superfamily, has been shown to possess anti-inflammatory properties. Therefore, we investigated the role of PPAR{gamma} agonists (15d-PGJ{sub 2}, ciglitazone and troglitazone) on the synthesis of RSV-induced cytokine release from RSV-infected human lung epithelial cells (A549). We observed that all PPAR{gamma} ligands inhibited dose-dependently the release of TNF-{alpha}, GM-CSF, IL-1{alpha}, IL-6 and the chemokines CXCL8 (IL-8) and CCL5 (RANTES) from RSV-infected A549 cells. Concomitantly, the PPAR{gamma} ligands diminished the cellular amount of mRNA encoding for IL-6, CXCL8 and CCL5 and the RSV-induced binding activity of the transcription factors NF-{kappa}B (p65/p50) and AP-1 (c-fos), respectively. Our data presented herein suggest a potential application of PPAR{gamma} ligands in the anti-inflammatory treatment of RSV infection.

  12. Circadian rhythms, Wnt/beta-catenin pathway and PPAR alpha/gamma profiles in diseases with primary or secondary cardiac dysfunction

    PubMed Central

    Lecarpentier, Yves; Claes, Victor; Duthoit, Guillaume; Hébert, Jean-Louis

    2014-01-01

    Circadian clock mechanisms are far-from-equilibrium dissipative structures. Peroxisome proliferator-activated receptors (PPAR alpha, beta/delta, and gamma) play a key role in metabolic regulatory processes, particularly in heart muscle. Links between circadian rhythms (CRs) and PPARs have been established. Mammalian CRs involve at least two critical transcription factors, CLOCK and BMAL1 (Gekakis et al., 1998; Hogenesch et al., 1998). PPAR gamma plays a major role in both glucose and lipid metabolisms and presents circadian properties which coordinate the interplay between metabolism and CRs. PPAR gamma is a major component of the vascular clock. Vascular PPAR gamma is a peripheral regulator of cardiovascular rhythms controlling circadian variations in blood pressure and heart rate through BMAL1. We focused our review on diseases with abnormalities of CRs and with primary or secondary cardiac dysfunction. Moreover, these diseases presented changes in the Wnt/beta-catenin pathway and PPARs, according to two opposed profiles. Profile 1 was defined as follows: inactivation of the Wnt/beta-catenin pathway with increased expression of PPAR gamma. Profile 2 was defined as follows: activation of the Wnt/beta-catenin pathway with decreased expression of PPAR gamma. A typical profile 1 disease is arrhythmogenic right ventricular cardiomyopathy, a genetic cardiac disease which presents mutations of the desmosomal proteins and is mainly characterized by fatty acid accumulation in adult cardiomyocytes mainly in the right ventricle. The link between PPAR gamma dysfunction and desmosomal genetic mutations occurs via inactivation of the Wnt/beta-catenin pathway presenting oscillatory properties. A typical profile 2 disease is type 2 diabetes, with activation of the Wnt/beta-catenin pathway and decreased expression of PPAR gamma. CRs abnormalities are present in numerous pathologies such as cardiovascular diseases, sympathetic/parasympathetic dysfunction, hypertension, diabetes

  13. Modulation of PPAR-γ by Nutraceutics as Complementary Treatment for Obesity-Related Disorders and Inflammatory Diseases

    PubMed Central

    Ortuño Sahagún, D.; Márquez-Aguirre, A. L.; Quintero-Fabián, S.; López-Roa, R. I.; Rojas-Mayorquín, A. E.

    2012-01-01

    A direct correlation between adequate nutrition and health is a universally accepted truth. The Western lifestyle, with a high intake of simple sugars, saturated fat, and physical inactivity, promotes pathologic conditions. The main adverse consequences range from cardiovascular disease, type 2 diabetes, and metabolic syndrome to several cancers. Dietary components influence tissue homeostasis in multiple ways and many different functional foods have been associated with various health benefits when consumed. Natural products are an important and promising source for drug discovery. Many anti-inflammatory natural products activate peroxisome proliferator-activated receptors (PPAR); therefore, compounds that activate or modulate PPAR-gamma (PPAR-γ) may help to fight all of these pathological conditions. Consequently, the discovery and optimization of novel PPAR-γ agonists and modulators that would display reduced side effects is of great interest. In this paper, we present some of the main naturally derived products studied that exert an influence on metabolism through the activation or modulation of PPAR-γ, and we also present PPAR-γ-related diseases that can be complementarily treated with nutraceutics from functional foods. PMID:23251142

  14. Discovery of an Oxybenzylglycine Based Peroxisome Proliferator Activated Receptor [alpha] Selective Agonist 2-((3-((2-(4-Chlorophenyl)-5-methyloxazol-4-yl)methoxy)benzyl)(methoxycarbonyl)amino)acetic Acid (BMS-687453)

    SciTech Connect

    Li, Jun; Kennedy, Lawrence J.; Shi, Yan; Tao, Shiwei; Ye, Xiang-Yang; Chen, Stephanie Y.; Wang, Ying; Hernndez, Andrs S.; Wang, Wei; Devasthale, Pratik V.; Chen, Sean; Lai, Zhi; Zhang, Hao; Wu, Shung; Smirk, Rebecca A.; Bolton, Scott A.; Ryono, Denis E.; Zhang, Huiping; Lim, Ngiap-Kie; Chen, Bang-Chi; Locke, Kenneth T.; O’Malley, Kevin M.; Zhang, Litao; Srivastava, Rai Ajit; Miao, Bowman; Meyers, Daniel S.; Monshizadegan, Hossain; Search, Debra; Grimm, Denise; Zhang, Rongan; Harrity, Thomas; Kunselman, Lori K.; Cap, Michael; Kadiyala, Pathanjali; Hosagrahara, Vinayak; Zhang, Lisa; Xu, Carrie; Li, Yi-Xin; Muckelbauer, Jodi K.; Chang, Chiehying; An, Yongmi; Krystek, Stanley R.; Blanar, Michael A.; Zahler, Robert; Mukherjee, Ranjan; Cheng, Peter T.W.; Tino, Joseph A.

    2010-04-12

    An 1,3-oxybenzylglycine based compound 2 (BMS-687453) was discovered to be a potent and selective peroxisome proliferator activated receptor (PPAR) {alpha} agonist, with an EC{sub 50} of 10 nM for human PPAR{alpha} and 410-fold selectivity vs human PPAR{gamma} in PPAR-GAL4 transactivation assays. Similar potencies and selectivity were also observed in the full length receptor co-transfection assays. Compound 2 has negligible cross-reactivity against a panel of human nuclear hormone receptors including PPAR{delta}. Compound 2 demonstrated an excellent pharmacological and safety profile in preclinical studies and thus was chosen as a development candidate for the treatment of atherosclerosis and dyslipidemia. The X-ray cocrystal structures of the early lead compound 12 and compound 2 in complex with PPAR{alpha} ligand binding domain (LBD) were determined. The role of the crystal structure of compound 12 with PPAR{alpha} in the development of the SAR that ultimately resulted in the discovery of compound 2 is discussed.

  15. The integration of lipid-sensing and anti-inflammatory effects: how the PPARs play a role in metabolic balance.

    PubMed

    Nunn, Alistair V W; Bell, Jimmy; Barter, Philip

    2007-01-01

    The peroxisomal proliferating-activated receptors (PPARs) are lipid-sensing transcription factors that have a role in embryonic development, but are primarily known for modulating energy metabolism, lipid storage, and transport, as well as inflammation and wound healing. Currently, there is no consensus as to the overall combined function of PPARs and why they evolved. We hypothesize that the PPARs had to evolve to integrate lipid storage and burning with the ability to reduce oxidative stress, as energy storage is essential for survival and resistance to injury/infection, but the latter increases oxidative stress and may reduce median survival (functional longevity). In a sense, PPARs may be an evolutionary solution to something we call the 'hypoxia-lipid' conundrum, where the ability to store and burn fat is essential for survival, but is a 'double-edged sword', as fats are potentially highly toxic. Ways in which PPARs may reduce oxidative stress involve modulation of mitochondrial uncoupling protein (UCP) expression (thus reducing reactive oxygen species, ROS), optimising forkhead box class O factor (FOXO) activity (by improving whole body insulin sensitivity) and suppressing NFkB (at the transcriptional level). In light of this, we therefore postulate that inflammation-induced PPAR downregulation engenders many of the signs and symptoms of the metabolic syndrome, which shares many features with the acute phase response (APR) and is the opposite of the phenotype associated with calorie restriction and high FOXO activity. In genetically susceptible individuals (displaying the naturally mildly insulin resistant 'thrifty genotype'), suboptimal PPAR activity may follow an exaggerated but natural adipose tissue-related inflammatory signal induced by excessive calories and reduced physical activity, which normally couples energy storage with the ability to mount an immune response. This is further worsened when pancreatic decompensation occurs, resulting in gluco

  16. Recent progress in research on peroxisome proliferator-activated receptor alpha-selective ligands.

    PubMed

    Miyachi, Hiroyuki

    2004-08-01

    The understanding of the functions of the nuclear receptor peroxisome proliferator-activated receptor a (PPARalpha) as a regulator of lipid and lipoprotein homeostasis, and the rapid development of parallel high-throughput screening assays to evaluate the activity toward other PPAR subtypes (PPARdelta and PPARgamma), have provided an opportunity to develop novel PPARalpha-selective, PPARalpha/gamma dual and PPAR pan agonists for the treatment of various metabolic diseases. This review focuses on the molecular pharmacology of PPARalpha, and summarizes recent literature and patent applications disclosing medicinal chemistry strategies to identify new PPARalpha-selective agonists. The species selectivity of some classes of PPARalpha-selective agonists in response to in vitro PPARalpha transactivation activity is also reported. PMID:15334308

  17. Carbonic anhydrase III regulates peroxisome proliferator-activated receptor-{gamma}2

    SciTech Connect

    Mitterberger, Maria C.; Kim, Geumsoo; Rostek, Ursula; Levine, Rodney L.; Zwerschke, Werner

    2012-05-01

    Carbonic anhydrase III (CAIII) is an isoenzyme of the CA family. Because of its low specific anhydrase activity, physiological functions in addition to hydrating CO{sub 2} have been proposed. CAIII expression is highly induced in adipogenesis and CAIII is the most abundant protein in adipose tissues. The function of CAIII in both preadipocytes and adipocytes is however unknown. In the present study we demonstrate that adipogenesis is greatly increased in mouse embryonic fibroblasts (MEFs) from CAIII knockout (KO) mice, as demonstrated by a greater than 10-fold increase in the induction of fatty acid-binding protein-4 (FABP4) and increased triglyceride formation in CAIII{sup -/-} MEFs compared with CAIII{sup +/+} cells. To address the underlying mechanism, we investigated the expression of the two adipogenic key regulators, peroxisome proliferator-activated receptor-{gamma}2 (PPAR{gamma}2) and CCAAT/enhancer binding protein-{alpha}. We found a considerable (approximately 1000-fold) increase in the PPAR{gamma}2 expression in the CAIII{sup -/-} MEFs. Furthermore, RNAi-mediated knockdown of endogenous CAIII in NIH 3T3-L1 preadipocytes resulted in a significant increase in the induction of PPAR{gamma}2 and FABP4. When both CAIII and PPAR{gamma}2 were knocked down, FABP4 was not induced. We conclude that down-regulation of CAIII in preadipocytes enhances adipogenesis and that CAIII is a regulator of adipogenic differentiation which acts at the level of PPAR{gamma}2 gene expression. -- Highlights: Black-Right-Pointing-Pointer We discover a novel function of Carbonic anhydrase III (CAIII). Black-Right-Pointing-Pointer We show that CAIII is a regulator of adipogenesis. Black-Right-Pointing-Pointer We demonstrate that CAIII acts at the level of PPAR{gamma}2 gene expression. Black-Right-Pointing-Pointer Our data contribute to a better understanding of the role of CAIII in fat tissue.

  18. Peroxisome proliferator-activated receptor-γ is downregulated in ulcerative colitis and is involved in experimental colitis-associated neoplasia

    PubMed Central

    DOU, XIAOTAN; XIAO, JUNHUA; JIN, ZILIANG; ZHENG, PING

    2015-01-01

    The aim of the present study was to evaluate the expression of peroxisome proliferator-activated receptor (PPAR)-γ in inflammatory bowel disease (IBD), and to also identify the association between PPAR-γ and the clinical features of patients with IBD. An azoxymethane (AOM)/dextran sodium sulfate (DSS) animal model of colitis-associated neoplasia was established to investigate the protective effect of 5-aminosalicylic acid (5-ASA) and to explore the changes in the expression of PPAR-γ during this process. A total of 66 specimens of colorectal tissue obtained from biopsy performed on IBD patients and 30 healthy control individuals were immunohistochemically stained for PPAR-γ. An AOM/DSS animal model of colitis-associated neoplasia was then established. Reverse transcription quantitative polymerase chain reaction was conducted and it was found that, compared with the control group and patients with Crohn's disease (CD), the expression of PPAR-γ in the intestinal tissue of patients with ulcerative colitis (UC) was significantly decreased (P=0.027 and 0.046, respectively). The expression of PPAR-γ was found to be negatively associated with the disease activity of UC and was not associated with the severity of disease, site of lesions or CD characteristics. Administration of 5-ASA decreased the colitis and tumor burden of colons. The expression level of PPAR-γ in the intestinal tissue was also increased in the AOM/DSS/5-ASA group compared with AOM/DSS group (P<0.001). PPAR-γ is an important factor in the pathogenesis of UC and colitis-associated cancer. The present study found that 5-ASA significantly alleviates the colitis and tumor burden in a mouse model of AOM/DSS-induced colitis-associated neoplasia, and promotes the expression of PPAR-γ in the intestinal tract. PMID:26622660

  19. Transcriptional cofactors exhibit differential preference toward peroxisome proliferator-activated receptors alpha and delta in uterine cells.

    PubMed

    Lim, Hyunjung J; Moon, Irene; Han, Kyuyong

    2004-06-01

    We previously showed that peroxisome proliferator-activated receptor delta (PPARdelta) is crucial for embryo implantation as a receptor for cyclooxygenase-2-derived prostacyclin in mice. PPARs belong to the nuclear receptor superfamily. They form heterodimer with a retinoid X receptor, recruit transcriptional cofactors, and bind to a specific recognition element for regulation of target genes. Although cofactors are generally shared by various nuclear receptors, some are involved in cell-specific events. The objective of this investigation was to examine interactions of transcriptional cofactors with PPARdelta in uterine cells for its effectiveness in regulating gene expression. We chose two uterine cellular systems: periimplantation mouse uterus and AN(3)CA human uterine cell line. As examined by in situ hybridization, steroid receptor coactivator (SRC)-2, SRC-3, PPAR-interacting protein, receptor-interacting protein 140 (RIP140), nuclear receptor corepressor (N-CoR), and silencing mediator for retinoid and thyroid hormone receptor (SMRT) exhibit overlapping expression with that of PPARdelta in the periimplantation mouse uterus. Glutathione-S-transferase (GST) pull-down assays show that PPARdelta physically interacts with SRC 1-3, RIP140, PPAR-binding protein, N-CoR, and SMRT in the absence of ligands, suggesting their potent interactions with PPARdelta. Transient transfection assays in AN(3)CA cells show that among members of the SRC family, only SRC-2 serves as a true coactivator for PPARdelta, whereas all SRC members could enhance PPARalpha-induced transcriptional activation. Interestingly, N-CoR and SMRT potently repress PPARdelta-induced transcriptional activation but fail to repress PPARalpha activity. RIP140 is effective in repressing basal and PPAR-induced transcriptional activation. Collectively, the results suggest that gene regulation by PPARdelta in the uterine cells uniquely responds to SRC-2, N-CoR, SMRT, or RIP140, and these interactions may be

  20. PPAR{gamma} agonists prevent TGF{beta}1/Smad3-signaling in human hepatic stellate cells

    SciTech Connect

    Zhao Caiyan; Chen, Wei; Yang Liu; Chen Lihong; Stimpson, Stephen A.; Diehl, Anna Mae . E-mail: annamae.diehl@duke.edu

    2006-11-17

    PPAR{gamma} agonists inhibit liver fibrosis, but the mechanisms involved are uncertain. We hypothesized that PPAR{gamma} agonists inhibit transforming growth factor (TGF){beta}1-activation of TGF{beta} receptor (TGF{beta}R)-1 signaling in quiescent stellate cells, thereby abrogating Smad3-dependent induction of extracellular matrix (ECM) genes, such as PAI-1 and collagen-1{alpha}I. To test this, human HSC were cultured to induce a quiescent phenotype, characterized by lipid accumulation and PPAR{gamma} expression and transcriptional activity. These adipocytic HSC were then treated with TGF{beta}1 {+-} a TGF{beta}R-1 kinase inhibitor (SB431542) or a PPAR{gamma} agonist (GW7845). TGF{beta}1 caused dose- and time-dependent increases in Smad3 phosphorylation, followed by induction of collagen and PAI-1 expression. Like the TGF{beta}R-1 kinase inhibitor, the PPAR{gamma} agonist caused dose-dependent inhibition of all of these responses without effecting HSC proliferation or viability. Thus, the anti-fibrotic actions of PPAR{gamma} agonists reflect their ability to inhibit TGF{beta}1-TGF{beta}R1 signaling that initiates ECM gene expression in quiescent HSC.

  1. The mitochondrial fatty acid synthesis (mtFASII) pathway is capable of mediating nuclear-mitochondrial cross talk through the PPAR system of transcriptional activation

    SciTech Connect

    Parl, Angelika; Mitchell, Sabrina L.; Clay, Hayley B.; Reiss, Sara; Li, Zhen; Murdock, Deborah G.

    2013-11-15

    Highlights: •The function of the mitochondria fatty acid synthesis pathway is partially unknown. •Overexpression of the pathway causes transcriptional activation through PPARs. •Knock down of the pathway attenuates that activation. •The last enzyme in the pathway regulates its own transcription. •Products of the mtFASII pathway are able to drive nuclear transcription. -- Abstract: Mammalian cells contain two fatty acid synthesis pathways, the cytosolic FASI pathway, and the mitochondrial FASII pathway. The selection behind the conservation of the mitochondrial pathway is not completely understood, given the presence of the cytosolic FAS pathway. In this study, we show through heterologous gene reporter systems and PCR-based arrays that overexpression of MECR, the last step in the mtFASII pathway, causes modulation of gene expression through the PPAR pathway. Electromobility shift assays (EMSAs) demonstrate that overexpression of MECR causes increased binding of PPARs to DNA, while cell fractionation and imaging studies show that MECR remains localized to the mitochondria. Interestingly, knock down of the mtFASII pathway lessens the effect of MECR on this transcriptional modulation. Our data are most consistent with MECR-mediated transcriptional activation through products of the mtFASII pathway, although we cannot rule out MECR acting as a coactivator. Further investigation into the physiological relevance of this communication will be necessary to better understand some of the phenotypic consequences of deficits in this pathway observed in animal models and human disease.

  2. Potential effects of curcumin on peroxisome proliferator-activated receptor-γ in vitro and in vivo.

    PubMed

    Mazidi, Mohsen; Karimi, Ehsan; Meydani, Mohsen; Ghayour-Mobarhan, Majid; Ferns, Gordon A

    2016-03-26

    Natural peroxisome proliferator-activated receptor-γ (PPAR-γ) agonists are found in food and may be important for health through their anti-inflammatory properties. Curcumin (Cur) is a bright yellow spice, derived from the rhizome of Curcuma longa Linn. It has been shown to have many biological properties that appear to operate through diverse mechanisms. Some of these potentially beneficial effects of Cur are due to activation of the nuclear transcription factor PPAR-γ. It is reported (using in vitro and in vivo models) that Cur plays a potential role against several diseases. In this review article, we present the current literature on the effects of Cur on the modulation of inflammatory processes that are mediated through PPAR-γ. PMID:27019802

  3. Effect of peroxisome proliferator-activated receptor-alpha agonist (bezafibrate) on gastric secretion and gastric cytoprotection in rats.

    PubMed

    Pathak, Rahul; Asad, Mohammed; Hrishikeshavan, H Jagannath; Prasad, Satya

    2007-06-01

    The effect of peroxisome proliferator-activated receptor-alpha (PPAR-alpha) on gastric secretion and gastric cytoprotection was evaluated using five different models of gastric ulcers: acetic acid-induced chronic gastric ulcers, pylorus ligation, ethanol-induced, indomethacin-induced and ischemia-reperfusion-induced gastric ulcers. Bezafibrate, a PPAR-alpha agonist was administered at two different doses of 10 and 100 mg/kg body weight intraperitoneanally. Both doses of bezafibrate showed significant antiulcer effect in ethanol-induced, indomethacin-induced and pylorus ligation-induced gastric ulcers. Bezafibrate increased healing of ulcer in acetic acid-induced chronic gastric ulcer model. Both doses were also effective in preventing gastric lesions induced by ischemia-reperfusion. It was concluded that PPAR-alpha activation increases healing of gastric ulcers and also prevents development of gastric ulcers in rats. PMID:17521298

  4. Potential effects of curcumin on peroxisome proliferator-activated receptor-γ in vitro and in vivo

    PubMed Central

    Mazidi, Mohsen; Karimi, Ehsan; Meydani, Mohsen; Ghayour-Mobarhan, Majid; Ferns, Gordon A

    2016-01-01

    Natural peroxisome proliferator-activated receptor-γ (PPAR-γ) agonists are found in food and may be important for health through their anti-inflammatory properties. Curcumin (Cur) is a bright yellow spice, derived from the rhizome of Curcuma longa Linn. It has been shown to have many biological properties that appear to operate through diverse mechanisms. Some of these potentially beneficial effects of Cur are due to activation of the nuclear transcription factor PPAR-γ. It is reported (using in vitro and in vivo models) that Cur plays a potential role against several diseases. In this review article, we present the current literature on the effects of Cur on the modulation of inflammatory processes that are mediated through PPAR-γ. PMID:27019802

  5. PPAR-gamma in overcoming kinase resistance in chronic myeloid leukemia.

    PubMed

    Yousefi, B; Shafiei-Irannejad, V; Azimi, A; Samadi, N; Zarghami, N

    2016-01-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) plays key roles in regulating cellular differentiation, proliferation and apoptosis pathways. As such, they are considered promising targets for anticancer drug development, especially for breast cancer, multiple myeloma and hematologic malignancies. Chronic myeloid leukemia (CML) is a myeloproliferative disorder arising from an oncogenic Bcr-Abl tyrosine kinase. Inhibitors of this oncogene by small molecules such as imatinib are effective only in 75% of the patient's population. One of the potential strategies to overcome this resistance is to devise combination therapy protocols with other therapeutic agents including PPAR ligands. Since PPAR ligands are potentially interesting in different hematologic malignancies, this article will review the potential of PPAR ligands for use in CML treatment. PMID:27545215

  6. PPAR{alpha} agonists up-regulate organic cation transporters in rat liver cells

    SciTech Connect

    Luci, Sebastian; Geissler, Stefanie; Koenig, Bettina; Koch, Alexander; Stangl, Gabriele I.; Hirche, Frank; Eder, Klaus . E-mail: klaus.eder@landw.uni-halle.de

    2006-11-24

    It has been shown that clofibrate treatment increases the carnitine concentration in the liver of rats. However, the molecular mechanism is still unknown. In this study, we observed for the first time that treatment of rats with the peroxisome proliferator activated receptor (PPAR)-{alpha} agonist clofibrate increases hepatic mRNA concentrations of organic cation transporters (OCTNs)-1 and -2 which act as transporters of carnitine into the cell. In rat hepatoma (Fao) cells, treatment with WY-14,643 also increased the mRNA concentration of OCTN-2. mRNA concentrations of enzymes involved in carnitine biosynthesis were not altered by treatment with the PPAR{alpha} agonists in livers of rats and in Fao cells. We conclude that PPAR{alpha} agonists increase carnitine concentrations in livers of rats and cells by an increased uptake of carnitine into the cell but not by an increased carnitine biosynthesis.

  7. Peroxisome proliferator-activated receptor ɣ activation induces 11β-hydroxysteroid dehydrogenase type 1 activity in human alternative macrophages

    PubMed Central

    Chinetti-Gbaguidi, Giulia; Bouhlel, Mohamed Amine; Copin, Corinne; Duhem, Christian; Derudas, Bruno; Neve, Bernardette; Noel, Benoit; Eeckhoute, Jerome; Lefebvre, Philippe; Seckl, Jonathan R.; Staels, Bart

    2012-01-01

    Objectives 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) catalyses the intracellular reduction of inactive cortisone to active cortisol, the natural ligand activating the glucocorticoid receptor (GR). Peroxisome Proliferator-Activated Receptor gamma (PPARγ) is a nuclear receptor controlling inflammation, lipid metabolism and the macrophage polarization state. In this study, we investigated the impact of macrophage polarization on the expression and activity of 11β-HSD1 and the role of PPAR therein. Methods and Results 11β-HSD1 gene expression is higher in pro-inflammatory M1 and anti-inflammatory M2 macrophages than in resting macrophages (RM), whereas its activity is highest in M2 macrophages. Interestingly, PPARγ activation induces 11β-HSD1 enzyme activity in M2 macrophages, but not in RM or M1 macrophages. Consequently, human M2 macrophages displayed enhanced responsiveness to the 11β-HSD1 substrate cortisone, an effect amplified by PPAR -induction of 11β-HSD1 activity, as illustrated by an increased expression of GR target genes. Conclusions Our data identify a positive cross-talk between PPARγ and GR in human M2 macrophages via the induction of 11β-HSD1 expression and activity. PMID:22207732

  8. PPAR{alpha} is a potential therapeutic target of drugs to treat circadian rhythm sleep disorders

    SciTech Connect

    Shirai, Hidenori; Oishi, Katsutaka; Kudo, Takashi; Shibata, Shigenobu; Ishida, Norio . E-mail: n.ishida@aist.go.jp

    2007-06-08

    Recent progress at the molecular level has revealed that nuclear receptors play an important role in the generation of mammalian circadian rhythms. To examine whether peroxisome proliferator-activated receptor alpha (PPAR{alpha}) is involved in the regulation of circadian behavioral rhythms in mammals, we evaluated the locomotor activity of mice administered with the hypolipidemic PPAR{alpha} ligand, bezafibrate. Circadian locomotor activity was phase-advanced about 3 h in mice given bezafibrate under light-dark (LD) conditions. Transfer from LD to constant darkness did not change the onset of activity in these mice, suggesting that bezafibrate advanced the phase of the endogenous clock. Surprisingly, bezafibrate also advanced the phase in mice with lesions of the suprachiasmatic nucleus (SCN; the central clock in mammals). The circadian expression of clock genes such as period2, BMAL1, and Rev-erb{alpha} was also phase-advanced in various tissues (cortex, liver, and fat) without affecting the SCN. Bezafibrate also phase-advanced the activity phase that is delayed in model mice with delayed sleep phase syndrome (DSPS) due to a Clock gene mutation. Our results indicated that PPAR{alpha} is involved in circadian clock control independently of the SCN and that PPAR{alpha} could be a potent target of drugs to treat circadian rhythm sleep disorders including DSPS.

  9. Arctigenin promotes cholesterol efflux from THP-1 macrophages through PPAR-γ/LXR-α signaling pathway

    SciTech Connect

    Xu, Xiaolin; Li, Qian; Pang, Liewen; Huang, Guoqian; Huang, Jiechun; Shi, Meng; Sun, Xiaotian; Wang, Yiqing

    2013-11-15

    Highlights: •Arctigenin enhanced cholesterol efflux in oxLDL-loaded THP-1 macrophages. •The expression of ABCA1, ABCG1 and apoE was upregulated in arctigenin-treated cells. •Arctigenin promoted the expression of PPAR-γ and LXR-α. •Inhibition of PPAR-γ or LXR-α reversed arctigenin-mediated biological effects. •Arctigenin promotes cholesterol efflux via activation of PPAR-γ/LXR-α/ABCA1 pathway. -- Abstract: Cholesterol efflux from macrophages is a critical mechanism to prevent the development of atherosclerosis. Here, we sought to investigate the effects of arctigenin, a bioactive component of Arctium lappa, on the cholesterol efflux in oxidized low-density lipoprotein (oxLDL)-loaded THP-1 macrophages. Our data showed that arctigenin significantly accelerated apolipoprotein A-I- and high-density lipoprotein-induced cholesterol efflux in both dose- and time-dependent manners. Moreover, arctigenin treatment enhanced the expression of ATP binding cassette transporter A1 (ABCA1), ABCG1, and apoE, all of which are key molecules in the initial step of cholesterol efflux, at both mRNA and protein levels. Arctigenin also caused a concentration-dependent elevation in the expression of peroxisome proliferator-activated receptor-gamma (PPAR-γ) and liver X receptor-alpha (LXR-α). The arctigenin-mediated induction of ABCA1, ABCG1, and apoE was abolished by specific inhibition of PPAR-γ or LXR-α using small interfering RNA technology. Our results collectively indicate that arctigenin promotes cholesterol efflux in oxLDL-loaded THP-1 macrophages through upregulation of ABCA1, ABCG1 and apoE, which is dependent on the enhanced expression of PPAR-γ and LXR-α.

  10. Cannabinoids: A New Group of Agonists of PPARs

    PubMed Central

    Sun, Yan; Bennett, Andy

    2007-01-01

    Cannabinoids have been used medicinally and recreationally for thousands of years and their effects were proposed to occur mainly via activation of the G-protein-coupled receptor CB1/CB2 (cannabinoid receptor 1/2). Discovery of potent synthetic analogs of the natural cannabinoids as clinically useful drugs is the sustained aim of cannabinoid research. This demands that these new compounds be free of the psychotropic effects that connected with the recreational use of cannabinoids. In preclinical studies cannabinoids displayed many of the characteristics of nonsteroidal anti-inflammatory drugs (NSAIDs) and it seems to be free of unwanted side effects. An increasing number of therapeutic actions of cannabinoid are being reported that do not appear to be mediated by either CB1 or CB2, and recently nuclear receptor superfamily PPARs (peroxisome-proliferator-activated receptors) have been suggested as the target of certain cannabinoids. This review summarizes the evidence for cannabinoid activation on PPARs and possible associated remedial potentials. PMID:18288264

  11. PPAR{gamma} transcriptionally regulates the expression of insulin-degrading enzyme in primary neurons

    SciTech Connect

    Du, Jing; Zhang, Lang; Liu, Shubo; Zhang, Chi; Huang, Xiuqing; Li, Jian; Zhao, Nanming; Wang, Zhao

    2009-06-12

    Insulin-degrading enzyme (IDE) is a protease that has been demonstrated to play a key role in degrading both A{beta} and insulin and deficient in IDE function is associated with Alzheimer's disease (AD) and type 2 diabetes mellitus (DM2) pathology. However, little is known about the cellular and molecular regulation of IDE expression. Here we show IDE levels are markedly decreased in DM2 patients and positively correlated with the peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) levels. Further studies show that PPAR{gamma} plays an important role in regulating IDE expression in rat primary neurons through binding to a functional peroxisome proliferator-response element (PPRE) in IDE promoter and promoting IDE gene transcription. Finally, we demonstrate that PPAR{gamma} participates in the insulin-induced IDE expression in neurons. These results suggest that PPAR{gamma} transcriptionally induces IDE expression which provides a novel mechanism for the use of PPAR{gamma} agonists in both DM2 and AD therapies.

  12. Opposite Interplay between PPAR Gamma and Canonical Wnt/Beta-Catenin Pathway in Amyotrophic Lateral Sclerosis.

    PubMed

    Lecarpentier, Yves; Vallée, Alexandre

    2016-01-01

    The opposite interplay between peroxisome proliferator-activated receptor gamma (PPAR gamma) and Wnt/beta-catenin signaling has led to the categorization of neurodegenerative diseases (NDs) as either NDs in which PPAR gamma is downregulated while the canonical Wnt/beta-catenin pathway is upregulated [amyotrophic lateral sclerosis (ALS), Parkinson's disease, Huntington's disease, multiple sclerosis, Friedreich's ataxia] or NDs in which PPAR gamma is upregulated while the canonical Wnt/beta-catenin signaling is downregulated (bipolar disorder, schizophrenia, Alzheimer's disease). ALS, a common adult-onset debilitating ND, is characterized by a chronic and progressive degeneration of upper and lower motor neurons resulting in muscular atrophy, paralysis, and ultimately death. The intent of this review is to provide an analysis of the integration of these two opposed systems, i.e., canonical Wnt/beta-catenin and PPAR gamma, in ALS. Understanding this integration may aid in the development of novel ALS therapies. Although the canonical Wnt/beta-catenin pathway is upregulated in ALS, riluzole, an enhancer of the canonical Wnt signaling, is classically prescribed in this disease in humans. However, studies carried out on ALS transgenic mice have shown beneficial effects after treatment by PPAR gamma agonists partly due to their anti-inflammatory effects. PMID:27445967

  13. PPARs, Cardiovascular Metabolism, and Function: Near- or Far-from-Equilibrium Pathways

    PubMed Central

    Lecarpentier, Yves; Claes, Victor; Hébert, Jean-Louis

    2010-01-01

    Peroxisome proliferator-activated receptors (PPAR α, β/δ and γ) play a key role in metabolic regulatory processes and gene regulation of cellular metabolism, particularly in the cardiovascular system. Moreover, PPARs have various extra metabolic roles, in circadian rhythms, inflammation and oxidative stress. In this review, we focus mainly on the effects of PPARs on some thermodynamic processes, which can behave either near equilibrium, or far-from-equilibrium. New functions of PPARs are reported in the arrhythmogenic right ventricular cardiomyopathy, a human genetic heart disease. It is now possible to link the genetic desmosomal abnormalitiy to the presence of fat in the right ventricle, partly due to an overexpression of PPARγ. Moreover, PPARs are directly or indirectly involved in cellular oscillatory processes such as the Wnt-b-catenin pathway, circadian rhythms of arterial blood pressure and cardiac frequency and glycolysis metabolic pathway. Dysfunction of clock genes and PPARγ may lead to hyperphagia, obesity, metabolic syndrome, myocardial infarction and sudden cardiac death, In pathological conditions, regulatory processes of the cardiovascular system may bifurcate towards new states, such as those encountered in hypertension, type 2 diabetes, and heart failure. Numerous of these oscillatory mechanisms, organized in time and space, behave far from equilibrium and are “dissipative structures”. PMID:20706650

  14. Opposite Interplay between PPAR Gamma and Canonical Wnt/Beta-Catenin Pathway in Amyotrophic Lateral Sclerosis

    PubMed Central

    Lecarpentier, Yves; Vallée, Alexandre

    2016-01-01

    The opposite interplay between peroxisome proliferator-activated receptor gamma (PPAR gamma) and Wnt/beta-catenin signaling has led to the categorization of neurodegenerative diseases (NDs) as either NDs in which PPAR gamma is downregulated while the canonical Wnt/beta-catenin pathway is upregulated [amyotrophic lateral sclerosis (ALS), Parkinson’s disease, Huntington’s disease, multiple sclerosis, Friedreich’s ataxia] or NDs in which PPAR gamma is upregulated while the canonical Wnt/beta-catenin signaling is downregulated (bipolar disorder, schizophrenia, Alzheimer’s disease). ALS, a common adult-onset debilitating ND, is characterized by a chronic and progressive degeneration of upper and lower motor neurons resulting in muscular atrophy, paralysis, and ultimately death. The intent of this review is to provide an analysis of the integration of these two opposed systems, i.e., canonical Wnt/beta-catenin and PPAR gamma, in ALS. Understanding this integration may aid in the development of novel ALS therapies. Although the canonical Wnt/beta-catenin pathway is upregulated in ALS, riluzole, an enhancer of the canonical Wnt signaling, is classically prescribed in this disease in humans. However, studies carried out on ALS transgenic mice have shown beneficial effects after treatment by PPAR gamma agonists partly due to their anti-inflammatory effects. PMID:27445967

  15. PPAR Action in Human Placental Development and Pregnancy and Its Complications

    PubMed Central

    Wieser, Fritz; Waite, Leslie; Depoix, Christophe; Taylor, Robert N.

    2008-01-01

    During pregnancy crucial anatomic, physiologic, and metabolic changes challenge the mother and the fetus. The placenta is a remarkable organ that allows the mother and the fetus to adapt to the new metabolic, immunologic, and angiogenic environment imposed by gestation. One of the physiologic systems that appears to have evolved to sustain this metabolic regulation is mediated by peroxisome proliferator-activated receptors (PPARs). In clinical pregnancy-specific disorders, including preeclampsia, gestational diabetes, and intrauterine growth restriction, aberrant regulation of components of the PPAR system parallels dysregulation of metabolism, inflammation and angiogenesis. This review summarizes current knowledge on the role of PPARs in regulating human trophoblast invasion, early placental development, and also in the physiology of clinical pregnancy and its complications. As increasingly indicated in the literature, pregnancy disorders, such as preeclampsia and gestational diabetes, represent potential targets for treatment with PPAR ligands. With the advent of more specific PPAR agonists that exhibit efficacy in ameliorating metabolic, inflammatory, and angiogenic disturbances, further studies of their application in pregnancy-related diseases are warranted. PMID:18288290

  16. Expression of 15-Hydroxyprostaglandin Dehydrogenase in Human Chorion Is Associated with Peroxisome Proliferator-Activated Receptor Isoform Expression in Term Labor.

    PubMed

    He, Ping; Li, Yuan; Ding, Xiaoying; Sun, Qianqian; Huang, Ying; Gu, Hang; Ni, Xin

    2015-07-01

    Chorionic NAD-dependent 15-hydroxy prostaglandin dehydrogenase (PGDH) plays a pivotal role in controlling the amount of prostaglandins in the uterus. Peroxisome proliferator-activated receptors (PPARs) are implicated to be involved in parturition. In this study, we investigated whether PPARs are involved in control of PGDH expression in chorion. The chorionic tissues were collected from the following groups of the women with singleton pregnancy: term no labor (TNL), term labor (TL) and preterm labor (PTL). Chorionic trophoblasts were isolated and cultured in vitro. Immunocytochemistry analysis showed that PPARα, PPARβ, and PPARγ were localized to trophoblasts in chorion. The protein levels of PGDH, PPARβ, and PPARγ were localized to trophoblasts in chorion. The protein levels of PPARα, PPARβ, and PPARγ were reduced in TL tissues compared to that of TNL group. PPARα, PPARβ, and PPARγ expression correlated to PGDH in TNL tissues, whereas only PPARγ expression correlated to PGDH in TL chorion tissues. PGDH expression was decreased in PTL tissues compared with TL group, whereas the expression of PPARs was not significantly different between TL and PTL groups. The agonists of three PPARs dose-dependently stimulated PGDH activity, mRNA, and protein expression in cultured chorionic cells. PPARs did not affect the stability of PGDH mRNA but stimulated the transcriptional activity of HPGD gene. Our results suggest that PPARs play pivotal roles in maintenance of PGDH expression in chorion during human pregnancy. PMID:26093984

  17. PPAR-γ Ameliorates Neuronal Apoptosis and Ischemic Brain Injury via Suppressing NF-κB-Driven p22phox Transcription.

    PubMed

    Wu, Jui-Sheng; Tsai, Hsin-Da; Cheung, Wai-Mui; Hsu, Chung Y; Lin, Teng-Nan

    2016-08-01

    Peroxisome proliferator-activated receptor-gamma (PPAR-γ), a stress-induced transcription factor, protects neurons against ischemic stroke insult by reducing oxidative stress. NADPH oxidase (NOX) activation, a major driving force in ROS generation in the setting of reoxygenation/reperfusion, constitutes an important pathogenetic mechanism of ischemic brain damage. In the present study, both transient in vitro oxygen-glucose deprivation and in vivo middle cerebral artery (MCA) occlusion-reperfusion experimental paradigms of ischemic neuronal death were used to investigate the interaction between PPAR-γ and NOX. With pharmacological (PPAR-γ antagonist GW9662), loss-of-function (PPAR-γ siRNA), and gain-of-function (Ad-PPAR-γ) approaches, we first demonstrated that 15-deoxy-∆(12,14)-PGJ2 (15d-PGJ2), via selectively attenuating p22phox expression, inhibited NOX activation and the subsequent ROS generation and neuronal death in a PPAR-γ-dependent manner. Secondly, results of promoter analyses and subcellular localization studies further revealed that PPAR-γ, via inhibiting hypoxia-induced NF-κB nuclear translocation, indirectly suppressed NF-κB-driven p22phox transcription. Noteworthily, postischemic p22phox siRNA treatment not only reduced infarct volumes but also improved functional outcome. In summary, we report a novel transrepression mechanism involving PPAR-γ downregulation of p22phox expression to suppress the subsequent NOX activation, ischemic neuronal death, and brain infarct. Identification of a PPAR-γ → NF-κB → p22phox neuroprotective signaling cascade opens a new avenue for protecting the brain against ischemic insult. PMID:26108185

  18. MODULATION OF ENDOTHELIAL CELL THROMBOMODULIN BY PPAR LIGANDS – VARIATION ACCORDING TO ENVIRONMENT

    PubMed Central

    Mangan, Simone; Clancy, Paula; Golledge, Jonathan

    2008-01-01

    Introduction Thrombomodulin (TM) is an important anti-coagulant protein that is down-regulated on endothelial cells overlying atherosclerotic plaques. We investigated the effects of the peroxisome proliferator-activated receptor (PPAR) ligands, fenofibrate and rosiglitazone, on the expression of TM ex vivo by advanced carotid atheromas, and in vitro by endothelial cells. Methods Adjacent carotid atheroma biopsies were incubated in vehicle control or PPAR ligand in explant culture for 4 days. Human aortic endothelial cells were incubated with PPAR ligands in vitro. TM expression was measured by Western blotting and flow cytometry. TM activity was assessed by generation of activated protein C. Results The PPARactivator, fenofibrate, up-regulated total TM expression within carotid explants by 1.7-fold (P<0.001) with no effect on activity. Rosiglitazone treatment had no effect on protein levels but reduced activity by 73% of the control (P<0.05). We noted disparate effects of PPAR ligands in atheroma samples from different patients and postulated that the response of endothelial cells to medication was influenced by the atheromatous environment. Incubation of human aortic endothelial cells with fenofibrate alone led to a dose-dependent increase in TM expression (P<0.05), however, in the presence of oxidized LDL a dose-dependent reduction in TM expression was induced by fenofibrate (P<0.05). Conclusions The ability of fenofibrate to increase endothelial cell and carotid atheroma TM protein expression suggests a potential therapeutic role for this medication. The response to PPAR ligands likely varies depending on the exact constituents of individual atherosclerotic plaques, such as the relative amount of oxidized LDL. PMID:17869327

  19. A Flavonoid Compound Promotes Neuronal Differentiation of Embryonic Stem Cells via PPAR-β Modulating Mitochondrial Energy Metabolism

    PubMed Central

    Mei, Yu-qin; Pan, Zong-fu; Chen, Wen-teng; Xu, Min-hua; Zhu, Dan-yan; Yu, Yong-ping; Lou, Yi-jia

    2016-01-01

    Relatively little is known regarding mitochondrial metabolism in neuronal differentiation of embryonic stem (ES) cells. By using a small molecule, present research has investigated the pattern of cellular energy metabolism in neural progenitor cells derived from mouse ES cells. Flavonoid compound 4a faithfully facilitated ES cells to differentiate into neurons morphologically and functionally. The expression and localization of peroxisome proliferator-activated receptors (PPARs) were examined in neural progenitor cells. PPAR-β expression showed robust upregulation compared to solvent control. Treatment with PPAR-β agonist L165041 alone or together with compound 4a significantly promoted neuronal differentiation, while antagonist GSK0660 blocked the neurogenesis-promoting effect of compound 4a. Consistently, knockdown of PPAR-β in ES cells abolished compound 4a-induced neuronal differentiation. Interestingly, we found that mitochondrial fusion protein Mfn2 was also abolished by sh-PPAR-β, resulting in abnormal mitochondrial Ca2+ ([Ca2+]M) transients as well as impaired mitochondrial bioenergetics. In conclusion, we demonstrated that by modulating mitochondrial energy metabolism through Mfn2 and mitochondrial Ca2+, PPAR-β took an important role in neuronal differentiation induced by flavonoid compound 4a. PMID:27315062

  20. A Flavonoid Compound Promotes Neuronal Differentiation of Embryonic Stem Cells via PPAR-β Modulating Mitochondrial Energy Metabolism.

    PubMed

    Mei, Yu-Qin; Pan, Zong-Fu; Chen, Wen-Teng; Xu, Min-Hua; Zhu, Dan-Yan; Yu, Yong-Ping; Lou, Yi-Jia

    2016-01-01

    Relatively little is known regarding mitochondrial metabolism in neuronal differentiation of embryonic stem (ES) cells. By using a small molecule, present research has investigated the pattern of cellular energy metabolism in neural progenitor cells derived from mouse ES cells. Flavonoid compound 4a faithfully facilitated ES cells to differentiate into neurons morphologically and functionally. The expression and localization of peroxisome proliferator-activated receptors (PPARs) were examined in neural progenitor cells. PPAR-β expression showed robust upregulation compared to solvent control. Treatment with PPAR-β agonist L165041 alone or together with compound 4a significantly promoted neuronal differentiation, while antagonist GSK0660 blocked the neurogenesis-promoting effect of compound 4a. Consistently, knockdown of PPAR-β in ES cells abolished compound 4a-induced neuronal differentiation. Interestingly, we found that mitochondrial fusion protein Mfn2 was also abolished by sh-PPAR-β, resulting in abnormal mitochondrial Ca2+ ([Ca2+]M) transients as well as impaired mitochondrial bioenergetics. In conclusion, we demonstrated that by modulating mitochondrial energy metabolism through Mfn2 and mitochondrial Ca2+, PPAR-β took an important role in neuronal differentiation induced by flavonoid compound 4a. PMID:27315062

  1. Activation of Peroxisome Proliferator-Activated Receptor-γ Reverses Squamous Metaplasia and Induces Transitional Differentiation in Normal Human Urothelial Cells

    PubMed Central

    Varley, Claire Lucy; Stahlschmidt, Jens; Smith, Barbara; Stower, Michael; Southgate, Jennifer

    2004-01-01

    We observed that in urothelium, both cornifying and noncornifying forms of squamous metaplasia are accompanied by changes in the localization of the nuclear hormone receptors, peroxisome proliferator activated receptor γ (PPAR-γ) and retinoid X receptor (RXR-α). To obtain objective evidence for a role for PPAR-γ-mediated signaling in urothelial differentiation, we examined expression of the cytokeratin isotypes CK13, CK20, and CK14 as indicators of transitional, terminal transitional, and squamous differentiation, respectively, in cultures of normal human urothelial cells. In control culture conditions, normal human urothelial cells showed evidence of squamous differentiation (CK14+, CK13−, CK20−). Treatment with the high-affinity PPAR-γ agonist, troglitazone (TZ), resulted in gain of CK13 and loss of CK14 protein expression. The effect of TZ was significantly augmented when the autocrine-stimulated epidermal growth factor receptor pathway was inhibited and this resulted in induction of CK20 expression. The RXR-specific inhibitors PA452, HX531, and HX603 inhibited the TZ-induced CK13 expression, supporting a role for RXR in the induction of CK13 expression. Thus, signaling through PPAR-γ can mediate transitional differentiation of urothelial cells and this is modulated by growth regulatory programs. PMID:15111325

  2. Inhibitory effect on hepatitis B virus in vitro by a peroxisome proliferator-activated receptor-{gamma} ligand, rosiglitazone

    SciTech Connect

    Wakui, Yuta; Inoue, Jun; Ueno, Yoshiyuki; Fukushima, Koji; Kondo, Yasuteru; Kakazu, Eiji; Obara, Noriyuki; Kimura, Osamu; Shimosegawa, Tooru

    2010-05-28

    Although chronic infection of hepatitis B virus (HBV) is currently managed with nucleot(s)ide analogues or interferon-{alpha}, the control of HBV infection still remains a clinical challenge. Peroxisome proliferator-activated receptor (PPAR) is a ligand-activated transcription factor, that plays a role in glucose and lipid metabolism, immune reactions, and inflammation. In this study, the suppressive effect of PPAR ligands on HBV replication was examined in vitro using a PPAR{alpha} ligand, bezafibrate, and a PPAR{gamma} ligand, rosiglitazone. The effects were examined in HepG2 cells transfected with a plasmid containing 1.3-fold HBV genome. Whereas bezafibrate showed no effect against HBV replication, rosiglitazone reduced the amount of HBV DNA, hepatitis B surface antigen, and hepatitis B e antigen in the culture supernatant. Southern blot analysis showed that the replicative intermediates of HBV in the cells were also inhibited. It was confirmed that GW9662, an antagonist of PPAR{gamma}, reduced the suppressive effect of rosiglitazone on HBV. Moreover, rosiglitazone showed a synergistic effect on HBV replication with lamivudine or interferon-{alpha}-2b. In conclusion, this study showed that rosiglitazone inhibited the replication of HBV in vitro, and suggested that the combination therapy of rosiglitazone and nucleot(s)ide analogues or interferon could be a therapeutic option for chronic HBV infection.

  3. Open tubular columns containing the immobilized ligand binding domain of peroxisome proliferator-activated receptors α and γ for dual agonists characterization by frontal affinity chromatography with MS detection

    PubMed Central

    Temporini, C.; Pochetti, G.; Fracchiolla, G.; Piemontese, L.; Montanari, R.; Moaddel, R.; Laghezza, A.; Altieri, F.; Cervoni, L.; Ubiali, D.; Prada, E.; Loiodice, F.; Massolini, G.; Calleri, E.

    2013-01-01

    The peroxisome proliferator-activated receptors (PPARs) belong to the nuclear receptor superfamily. In the last years novel PPARs ligands have been identified and these include PPARα/γ dual agonists. To rapidly identify novel PPARs dual ligands, a robust binding assay amenable to high-throughput screening towards PPAR isoforms would be desirable. In this work we describe a parallel assay based on the principles of Frontal Affinity Chromatography coupled to Mass Spectrometry (FAC-MS) that can be used to characterize dual agonists. For this purpose the ligand binding domain of PPARα receptor was immobilized onto the surface of open tubular capillaries to create new PPAR-alpha-OT columns to be used in parallel with PPAR-gamma-OT columns. The two biochromatographic systems were used in both ranking and Kd experiments towards new ureidofibrate-like dual agonists for subtype selectivity ratio determination. In order to validate the system, the Kd values determined by frontal analysis chromatography were compared to the affinity constants obtained by ITC experiments. The results of this study strongly demonstrate the specific nature of the interaction of the ligands with the two immobilized receptor subtypes. PMID:23466198

  4. Identification of novel PPAR{gamma} target genes by integrated analysis of ChIP-on-chip and microarray expression data during adipocyte differentiation

    SciTech Connect

    Nakachi, Yutaka; Yagi, Ken; Nikaido, Itoshi; Bono, Hidemasa; Tonouchi, Mio; Schoenbach, Christian; Okazaki, Yasushi

    2008-07-25

    PPAR{gamma} (peroxisome proliferator-activated receptor gamma) acts as a key molecule of adipocyte differentiation, and transactivates multiple target genes involved in lipid metabolic pathways. Identification of PPAR{gamma} target genes will facilitate to predict the extent to which the drugs can affect and also to understand the molecular basis of lipid metabolism. Here, we have identified five target genes regulated directly by PPAR{gamma} during adipocyte differentiation in 3T3-L1 cells using integrated analyses of ChIP-on-chip and expression microarray. We have confirmed the direct PPAR{gamma} regulation of five genes by luciferase reporter assay in NIH-3T3 cells. Of these five genes Hp, Tmem143 and 1100001G20Rik are novel PPAR{gamma} targets. We have also detected PPREs (PPAR response elements) sequences in the promoter region of the five genes computationally. Unexpectedly, most of the PPREs detected proved to be atypical, suggesting the existence of more atypical PPREs than previously thought in the promoter region of PPAR{gamma} regulated genes.

  5. Human receptor activation by aroclor 1260, a polychlorinated biphenyl mixture.

    PubMed

    Wahlang, Banrida; Falkner, K Cameron; Clair, Heather B; Al-Eryani, Laila; Prough, Russell A; States, J Christopher; Coslo, Denise M; Omiecinski, Curtis J; Cave, Matthew C

    2014-08-01

    Polychlorinated biphenyls (PCBs) are persistent environmental toxicants, present in 100% of U.S. adults and dose-dependently associated with obesity and non-alcoholic fatty liver disease (NAFLD). PCBs are predicted to interact with receptors previously implicated in xenobiotic/energy metabolism and NAFLD. These receptors include the aryl hydrocarbon receptor (AhR), pregnane xenobiotic receptor (PXR), constitutive androstane receptor (CAR), peroxisome proliferator-activated receptors (PPARs), liver-X-receptor (LXRα), and farnesoid-X-receptor (FXR). This study evaluates Aroclor 1260, a PCB mixture with congener composition mimicking that of human adipose tissue, and selected congeners, as potential ligands for these receptors utilizing human hepatoma-derived (HepG2) and primate-derived (COS-1) cell lines, and primary human hepatocytes. Aroclor 1260 (20 μg/ml) activated AhR, and PCB 126, a minor component, was a potent inducer. Aroclor 1260 activated PXR in a simple concentration-dependent manner at concentrations ≥10 μg/ml. Among the congeners tested, PCBs 138, 149, 151, 174, 183, 187, and 196 activated PXR. Aroclor 1260 activated CAR2 and CAR3 variants at lower concentrations and antagonize CAR2 activation by the CAR agonist, CITCO, at higher concentrations (≥20 μg/ml). Additionally, Aroclor 1260 induced CYP2B6 in primary hepatocytes. At subtoxic doses, Aroclor 1260 did not activate LXR or FXR and had no effect on LXR- or FXR-dependent induction by the agonists T0901317 or GW4064, respectively. Aroclor 1260 (20 μg/ml) suppressed PPARα activation by the agonist nafenopin, although none of the congeners tested demonstrated significant inhibition. The results suggest that Aroclor 1260 is a human AhR, PXR and CAR3 agonist, a mixed agonist/antagonist for CAR2, and an antagonist for human PPARα. PMID:24812009

  6. Human Receptor Activation by Aroclor 1260, a Polychlorinated Biphenyl Mixture

    PubMed Central

    Wahlang, Banrida; Falkner, K. Cameron; Clair, Heather B.; Al-Eryani, Laila; Prough, Russell A.; States, J. Christopher; Coslo, Denise M.; Omiecinski, Curtis J.; Cave, Matthew C.

    2014-01-01

    Polychlorinated biphenyls (PCBs) are persistent environmental toxicants, present in 100% of U.S. adults and dose-dependently associated with obesity and non-alcoholic fatty liver disease (NAFLD). PCBs are predicted to interact with receptors previously implicated in xenobiotic/energy metabolism and NAFLD. These receptors include the aryl hydrocarbon receptor (AhR), pregnane xenobiotic receptor (PXR), constitutive androstane receptor (CAR), peroxisome proliferator-activated receptors (PPARs), liver-X-receptor (LXRα), and farnesoid-X-receptor (FXR). This study evaluates Aroclor 1260, a PCB mixture with congener composition mimicking that of human adipose tissue, and selected congeners, as potential ligands for these receptors utilizing human hepatoma-derived (HepG2) and primate-derived (COS-1) cell lines, and primary human hepatocytes. Aroclor 1260 (20 μg/ml) activated AhR, and PCB 126, a minor component, was a potent inducer. Aroclor 1260 activated PXR in a simple concentration-dependent manner at concentrations ≥10 μg/ml. Among the congeners tested, PCBs 138, 149, 151, 174, 183, 187, and 196 activated PXR. Aroclor 1260 activated CAR2 and CAR3 variants at lower concentrations and antagonize CAR2 activation by the CAR agonist, CITCO, at higher concentrations (≥20 μg/ml). Additionally, Aroclor 1260 induced CYP2B6 in primary hepatocytes. At subtoxic doses, Aroclor 1260 did not activate LXR or FXR and had no effect on LXR- or FXR-dependent induction by the agonists T0901317 or GW4064, respectively. Aroclor 1260 (20 μg/ml) suppressed PPARα activation by the agonist nafenopin, although none of the congeners tested demonstrated significant inhibition. The results suggest that Aroclor 1260 is a human AhR, PXR and CAR3 agonist, a mixed agonist/antagonist for CAR2, and an antagonist for human PPARα. PMID:24812009

  7. Dietary soy protein isolate attenuates metabolic syndrome in rats via effects on PPAR, LXR and SREBP signaling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Male and female rats (age 21 days) were fed AIN-93G diets made with casein, soy protein isolate (SPI+), isoflavone reduced SPI+ (SPI-), or casein plus purified genistein or daidzein. After 2 weeks, peroxisome proliferator activated receptor (PPAR) alpha-regulated genes involved in fatty acid degrada...

  8. Peroxisome Proliferator-Activated Receptor and Retinoic X Receptor in Alcoholic Liver Disease

    PubMed Central

    Mello, Tommaso; Polvani, Simone; Galli, Andrea

    2009-01-01

    A growing number of new studies demonstrate that nuclear receptors are involved in the development of alcoholic liver disease (ALD). Ethanol metabolism and RXR/PPAR functions are tightly interconnected in the liver. Several ethanol metabolizing enzymes are potently regulated by RXR and PPARα after alcohol consumption. The increased ethanol metabolism, in turn, leads to alteration of the redox balance of the cells and impairment of RXR/PPAR functions by direct and indirect effects of acetaldehyde, resulting in deranged lipid metabolism, oxidative stress, and release of proinflammatory cytokines. The use of animal models played a crucial role in understanding the molecular mechanisms of ALD. In this paper we summarize the reciprocal interactions between ethanol metabolism and RXR/PPAR functions. In conclusion, RXR and PPAR play a central role in the onset and perpetuation of the mechanisms underling all steps of the clinical progression in ALD. PMID:19756185

  9. Peroxisome proliferator-activated receptor-γ 34C>G polymorphism and colorectal cancer risk: A meta-analysis

    PubMed Central

    Lu, Yong-Liang; Li, Gai-Ling; Huang, Hui-Lian; Zhong, Jing; Dai, Li-Cheng

    2010-01-01

    AIM: To investigate the association between peroxisome proliferator-activated receptor-γ (PPAR-γ) gene polymorphism 34 C>G and colorectal cancer (CRC), a meta-analysis review was performed in this report. METHODS: A systematic literature search and selection of eligible relevant studies were carried out. Nine independent studies with a total number of 4533 cases and 6483 controls were included in the meta-analysis on the association between polymorphism 34 C>G and CRC. RESULTS: There was no evidence for the association between PPAR-γ 34 C>G and CRC if all of the subjects in the nine studies were included. However, CG + GG showed a marginally significant difference from CC (OR = 0.84, 95% CI: 0.69-1.01, P = 0.07) in random-effect model. Stratified meta-analysis indicated that PPAR-γ 34 C>G was associated with colon cancer (OR = 0.8, 95% CI: 0.65-0.99, P = 0.04) in random-effect model, and the G allele decreased colon cancer risk. No significant association was observed between PPAR-γ 34 C>G and rectal cancer. CONCLUSION: PPAR-γ 34 C>G is associated with colon cancer risk, but not associated with CRC and rectal cancer risk. PMID:20440859

  10. Nifedipine, a calcium channel blocker, inhibits advanced glycation end product (AGE)-elicited mesangial cell damage by suppressing AGE receptor (RAGE) expression via peroxisome proliferator-activated receptor-gamma activation

    SciTech Connect

    Matsui, Takanori; Yamagishi, Sho-ichi; Takeuchi, Masayoshi; Ueda, Seiji; Fukami, Kei; Okuda, Seiya

    2009-07-24

    The interaction between advanced glycation end products (AGE) and their receptor RAGE mediates the progressive alteration in renal architecture and loss of renal function in diabetic nephropathy. Oxidative stress generation and inflammation also play a central role in diabetic nephropathy. This study investigated whether and how nifedipine, a calcium channel blocker (CCB), blocked the AGE-elicited mesangial cell damage in vitro. Nifedipine, but not amlodipine, a control CCB, down-regulated RAGE mRNA levels and subsequently reduced reactive oxygen species (ROS) generation in AGE-exposed mesangial cells. AGE increased mRNA levels of vascular cell adhesion molecule-1 (VCAM-1) and induced monocyte chemoattractant protein-1 (MCP-1) production in mesangial cells, both of which were prevented by the treatment with nifedipine, but not amlodipine. The beneficial effects of nifedipine on AGE-exposed mesangial cells were blocked by the simultaneous treatment of GW9662, an inhibitor of peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}). Although nifedipine did not affect expression levels of PPAR-{gamma}, it increased the PPAR-{gamma} transcriptional activity in mesangial cells. Our present study provides a unique beneficial aspect of nifedipine on diabetic nephropathy; it could work as an anti-inflammatory agent against AGE by suppressing RAGE expression in cultured mesangial cells via PPAR-{gamma} activation.

  11. PPARs: Interference with Warburg' Effect and Clinical Anticancer Trials

    PubMed Central

    Vamecq, Joseph; Colet, Jean-Marie; Vanden Eynde, Jean Jacques; Briand, Gilbert; Porchet, Nicole; Rocchi, Stéphane

    2012-01-01

    The metabolic/cell signaling basis of Warburg's effect (“aerobic glycolysis”) and the general metabolic phenotype adopted by cancer cells are first reviewed. Several bypasses are adopted to provide a panoramic integrated view of tumoral metabolism, by attributing a central signaling role to hypoxia-induced factor (HIF-1) in the expression of aerobic glycolysis. The cancer metabolic phenotype also results from alterations of other routes involving ras, myc, p53, and Akt signaling and the propensity of cancer cells to develop signaling aberrances (notably aberrant surface receptor expression) which, when present, offer unique opportunities for therapeutic interventions. The rationale for various emerging strategies for cancer treatment is presented along with mechanisms by which PPAR ligands might interfere directly with tumoral metabolism and promote anticancer activity. Clinical trials using PPAR ligands are reviewed and followed by concluding remarks and perspectives for future studies. A therapeutic need to associate PPAR ligands with other anticancer agents is perhaps an important lesson to be learned from the results of the clinical trials conducted to date. PMID:22654896

  12. Molecular Implications of the PPARs in the Diabetic Eye

    PubMed Central

    Ciudin, Andreea; Hernández, Cristina; Simó, Rafael

    2013-01-01

    Diabetic retinopathy (DR) remains as the leading cause of blindness among working age individuals in developed countries. Current treatments for DR (laser photocoagulation, intravitreal corticosteroids, intravitreal anti-VEGF agents, and vitreoretinal surgery) are applicable only at advanced stages of the disease and are associated with significant adverse effects. Therefore, new pharmacological treatments for the early stages of the disease are needed. Emerging evidence indicates that peroxisome proliferator-activator receptors (PPARs) agonists (in particular PPARα) are useful for the treatment of DR. However, the underlying molecular mechanisms are far from being elucidated. This paper mainly focuses on PPARs expression in the diabetic eye, its molecular implications, and the effect of PPAR agonists as a new approach for the treatment of DR. The availability of this new strategy will not only be beneficial in treating DR but may also result in a shift towards treating earlier stages of diabetic retinopathy, thus easing the burden of this devastating disease (Cheung et al. (2010)). PMID:23431285

  13. Functional interaction between peroxisome proliferator-activated receptors-α and Mef-2C on human carnitine palmitoyltransferase 1β (CPT1β) gene activation

    PubMed Central

    Baldán, Ángel; Relat, Joana; Marrero, Pedro F.; Haro, Diego

    2004-01-01

    Muscle-type carnitine palmitoyltransferase 1 (CPT1β) is considered to be the gene that controls fatty acid mitochondrial β-oxidation. A functional peroxisome proliferator-activated receptor (PPAR) responsive element (PPRE) and a myocite-specific (MEF2) site that binds MEF2A and MEF2C in the promoter of this gene had been previously identified. We investigated the roles of the PPRE and the MEF2 binding sites and the potential interaction between PPARα and MEF2C regulating the CPT1β gene promoter. Mutation analysis indicated that the MEF2 site contributed to the activation of the CPT1β promoter by PPAR in C2C12 cells. The reporter construct containing the PPRE and the MEF2C site was synergistically activated by co-expression of PPAR, retinoid X receptor (RXR) and MEF2C in non-muscle cells. Moreover, protein-binding assays demonstrated that MEF2C and PPAR specifically bound to one another in vitro. Also for the synergistic activation of the CPT1β gene promoter by MEF2C and PPARα-RXRα, a precise arrangement of its binding sites was essential. PMID:15356291

  14. The dominant negative thyroid hormone receptor beta-mutant delta337T alters PPAR-alpha signaling in heart

    Technology Transfer Automated Retrieval System (TEKTRAN)

    PPARalpha and TR independently regulate cardiac metabolism. Although ligands for both these receptors are currently under evaluation for treatment of congestive heart failure, their interactions or signaling cooperation have not been investigated in heart. We tested the hypothesis that cardiac TRs i...

  15. Mode of action of ethyl tertiary-butyl ether hepatotumorigenicity in the rat: Evidence for a role of oxidative stress via activation of CAR, PXR and PPAR signaling pathways

    SciTech Connect

    Kakehashi, Anna; Hagiwara, Akihiro; Imai, Norio; Nagano, Kasuke; Nishimaki, Fukumi; Banton, Marcy; Fukushima, Shoji; Wanibuchi, Hideki

    2013-12-01

    To elucidate possible mode of action (MOA) and human relevance of hepatotumorigenicity in rats for ethyl tertiary-butyl ether (ETBE), male F344 rats were administered ETBE at doses of 0, 150 and 1000 mg/kg body weight twice a day by gavage for 1 and 2 weeks. For comparison, non-genotoxic carcinogen phenobarbital (PB) was applied at a dose of 500 ppm in diet. Significant increase of P450 total content and hydroxyl radical levels by low, high doses of ETBE and PB treatments at weeks 1 and 2, and 8-OHdG formation at week 2, accompanied accumulation of CYP2B1/2B2, CYP3A1/3A2 and CYP2C6, and downregulation of DNA oxoguanine glycosylase 1, induction of apoptosis and cell cycle arrest in hepatocytes, respectively. Up-regulation of CYP2E1 and CYP1A1 at weeks 1 and 2, and peroxisome proliferation at week 2 were found in high dose ETBE group. Results of proteome analysis predicted activation of upstream regulators of gene expression altered by ETBE including constitutive androstane receptor (CAR), pregnane-X-receptor (PXR) and peroxisome proliferator-activated receptors (PPARs). These results indicate that the MOA of ETBE hepatotumorigenicity in rats may be related to induction of oxidative stress, 8-OHdG formation, subsequent cell cycle arrest, and apoptosis, suggesting regenerative cell proliferation after week 2, predominantly via activation of CAR and PXR nuclear receptors by a mechanism similar to that of PB, and differentially by activation of PPARs. The MOA for ETBE hepatotumorigenicity in rats is unlikely to be relevant to humans. - Highlights: • We focus on MOA and human relevance of hepatotumorigenicity in rats for ETBE. • ETBE was administered to F344 rats for 1 and 2 weeks. • Oxidative stress formation, proliferation and apoptosis in the liver are analyzed. • ETBE-induced changes of gene and protein expression in the liver are examined. • The effects are compared with those induced by non-genotoxic carcinogen PB.

  16. PPARα (Peroxisome Proliferator-activated Receptor α) Activation Reduces Hepatic CEACAM1 Protein Expression to Regulate Fatty Acid Oxidation during Fasting-refeeding Transition.

    PubMed

    Ramakrishnan, Sadeesh K; Khuder, Saja S; Al-Share, Qusai Y; Russo, Lucia; Abdallah, Simon L; Patel, Payal R; Heinrich, Garrett; Muturi, Harrison T; Mopidevi, Brahma R; Oyarce, Ana Maria; Shah, Yatrik M; Sanchez, Edwin R; Najjar, Sonia M

    2016-04-01

    Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is expressed at high levels in the hepatocyte, consistent with its role in promoting insulin clearance in liver. CEACAM1 also mediates a negative acute effect of insulin on fatty acid synthase activity. Western blot analysis reveals lower hepatic CEACAM1 expression during fasting. Treating of rat hepatoma FAO cells with Wy14,643, an agonist of peroxisome proliferator-activated receptor α (PPARα), rapidly reduces Ceacam1 mRNA and CEACAM1 protein levels within 1 and 2 h, respectively. Luciferase reporter assay shows a decrease in the promoter activity of both rat and mouse genes by Pparα activation, and 5'-deletion and block substitution analyses reveal that the Pparα response element between nucleotides -557 and -543 is required for regulation of the mouse promoter activity. Chromatin immunoprecipitation analysis demonstrates binding of liganded Pparα toCeacam1promoter in liver lysates ofPparα(+/+), but notPparα(-/-)mice fed a Wy14,643-supplemented chow diet. Consequently, Wy14,643 feeding reduces hepatic Ceacam1 mRNA and CEACAM1 protein levels, thus decreasing insulin clearance to compensate for compromised insulin secretion and maintain glucose homeostasis and insulin sensitivity in wild-type mice. Together, the data show that the low hepatic CEACAM1 expression at fasting is mediated by Pparα-dependent mechanisms. Changes in CEACAM1 expression contribute to the coordination of fatty acid oxidation and insulin action in the fasting-refeeding transition. PMID:26846848

  17. Effect of triterpenes and triterpene saponins from the stem bark of Kalopanax pictus on the transactivational activities of three PPAR subtypes.

    PubMed

    Quang, Tran Hong; Ngan, Nguyen Thi Thanh; Minh, Chau Van; Kiem, Phan Van; Thao, Nguyen Phuong; Tai, Bui Huu; Nhiem, Nguyen Xuan; Song, Seok Bean; Kim, Young Ho

    2011-11-29

    Kalopanax pictus (Araliaceae) is a deciduous tree that grows in East Asian countries. Its stem bark and leaves have been used in traditional medicine to treat rheumatic arthritis, neurotic pain, and diabetes mellitus. A phytochemical study on a methanol extract of the stem bark of K. pictus resulted in the isolation of three new compounds, 6β,16α-dihydroxy-hederagenin 3-O-β-D-glucuronopyranoside (1), 3-O-β-D-glucuronopyranosyl-28-O-β-D-glucopyranosyl-6β,16α-dihydroxy-oleanolic acid (2), and 3-O-β-D-galactopyranosyl(1→3)-α-L-arabinopyranosyl hederagenin 28-O-β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyl ester (3), along with eight known compounds (4-11). Their structures were established on the basis of chemical and spectroscopic methods (IR, 1D and 2D NMR, and HRESITOFMS). Compounds 1-6 and 8-10 upregulated PPARs transcriptional activity in a dose-dependent manner in HepG2 cells, with EC(50) values in the range 0.20-15.5 μM. Moreover, the specific PPAR transactivational effects of compounds 1-6 and 8-10 on separate PPAR subtypes, PPARα, -γ, and -β(δ) were further investigated. Compounds 4, 5, 8, and 10 showed significant PPARα transactivational activity, with EC(50) values of 7.8, 8.0, 10.3, and 17.3 μM, respectively. Compounds 2, 4, 6, and 8-10 exhibited PPARγ dose-dependent transactivational activity, with EC(50) values of 14.7, 15.5, 14.8, 10.9, 17.1, and 16.3 μM, whereas compounds 8 and 10 significantly upregulated PPARβ(δ) transcriptional activity, with EC(50) values of 15.7 and 17.7 μM, respectively. PMID:21996602

  18. Asiatic Acid Isolated From Centella Asiatica Inhibits TGF-β1-induced Collagen Expression in Human Keloid Fibroblasts via PPARActivation

    PubMed Central

    Bian, Difei; Zhang, Jizhou; Wu, Xin; Dou, Yannong; Yang, Yan; Tan, Qian; Xia, Yufeng; Gong, Zhunan; Dai, Yue

    2013-01-01

    Keloids are fibroproliferative disorders characterized by exuberant extracellular matrix deposition and transforming growth factor (TGF)-β/Smad pathway plays a pivotal role in keloid pathogenesis. Centella asiatica extract has been applied in scar management for ages. As one of its major components, asiatic acid (AA) has been recently reported to inhibit liver fibrosis by blocking TGF-β/Smad pathway. However, its effect on keloid remains unknown. In order to investigate the effects of AA on cell proliferation, invasion and collagen synthesis, normal and keloid fibroblasts were exposed to TGF-β1 with or without AA. Relevant experiments including 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, 5-ethynyl-2-deoxyuridine (EdU) incorporation assay, Transwell invasion assay, enzyme-linked immunosorbent assay, Western blot, quantitative polymerase chain reaction and RNA interference assay were conducted. As a result, keloid fibroblasts showed higher responsiveness to TGF-β1 stimulation than normal fibroblasts in terms of invasion and collagen synthesis. AA could suppress TGF-β1-induced expression of collagen type I, inhibit Smad 2/3 phosphorylation and plasminogen activator inhibitor-1 (PAI-1) expression, while elevate Smad 7 protein level. Noteworthy, the effects of AA on keloid fibroblasts could be abrogated by PPAR-γ antagonist GW9662 and by silencing of PPAR-γ. The present study demonstrated that AA inhibited TGF-β1-induced collagen and PAI-1 expression in keloid fibroblasts through PPARactivation, which suggested that AA was one of the active constituents of C. asiatica responsible for keloid management, and could be included in the arsenal for combating against keloid. PMID:24250248

  19. Effects of Peroxisome Proliferator-Activated Receptor-δ Agonist on Cardiac Healing after Myocardial Infarction

    PubMed Central

    Park, Jeong Rang; Ahn, Jong Hwa; Jung, Myeong Hee; Koh, Jin-Sin; Park, Yongwhi; Hwang, Seok-Jae; Jeong, Young-Hoon; Kwak, Choong Hwan; Lee, Young Soo; Seo, Han Geuk; Kim, Jin Hyun; Hwang, Jin-Yong

    2016-01-01

    Peroxisome proliferator-activated receptor-delta (PPAR-δ)-dependent signaling is associated with rapid wound healing in the skin. Here, we investigated the therapeutic effects of PPAR-δ-agonist treatment on cardiac healing in post-myocardial infarction (MI) rats. Animals were assigned to the following groups: sham-operated control group, left anterior descending coronary artery ligation (MI) group, or MI with administration of the PPAR-δ agonist GW610742 group. GW610742 (1 mg/kg) was administrated intraperitoneally after the operation and repeated every 3 days. Echocardiographic data showed no differences between the two groups in terms of cardiac function and remodeling until 4 weeks. However, the degrees of angiogenesis and fibrosis after MI were significantly higher in the GW610742-treated rats than in the untreated MI rats at 1 week following MI, which changes were not different at 2 weeks after MI. Naturally, PPAR-δ expression in infarcted myocardium was highest increased in 3 day after MI and then disappeared in 14 day after MI. GW610742 increased myofibroblast differentiation and transforming growth factor-beta 2 expression in the infarct zone at 7 days after MI. GW610742 also increased bone marrow-derived mesenchymal stem cell (MSC) recruitment in whole myocardium, and increased serum platelet-derived growth factor B, stromal-derived factor-1 alpha, and matrix metallopeptidase 9 levels at day 3 after MI. PPAR-δ agonists treatment have the temporal effect on early fibrosis of infarcted myocardium, which might not sustain the functional and structural beneficial effect. PMID:26862756

  20. Effects of Peroxisome Proliferator-Activated Receptor-δ Agonist on Cardiac Healing after Myocardial Infarction.

    PubMed

    Park, Jeong Rang; Ahn, Jong Hwa; Jung, Myeong Hee; Koh, Jin-Sin; Park, Yongwhi; Hwang, Seok-Jae; Jeong, Young-Hoon; Kwak, Choong Hwan; Lee, Young Soo; Seo, Han Geuk; Kim, Jin Hyun; Hwang, Jin-Yong

    2016-01-01

    Peroxisome proliferator-activated receptor-delta (PPAR-δ)-dependent signaling is associated with rapid wound healing in the skin. Here, we investigated the therapeutic effects of PPAR-δ-agonist treatment on cardiac healing in post-myocardial infarction (MI) rats. Animals were assigned to the following groups: sham-operated control group, left anterior descending coronary artery ligation (MI) group, or MI with administration of the PPAR-δ agonist GW610742 group. GW610742 (1 mg/kg) was administrated intraperitoneally after the operation and repeated every 3 days. Echocardiographic data showed no differences between the two groups in terms of cardiac function and remodeling until 4 weeks. However, the degrees of angiogenesis and fibrosis after MI were significantly higher in the GW610742-treated rats than in the untreated MI rats at 1 week following MI, which changes were not different at 2 weeks after MI. Naturally, PPAR-δ expression in infarcted myocardium was highest increased in 3 day after MI and then disappeared in 14 day after MI. GW610742 increased myofibroblast differentiation and transforming growth factor-beta 2 expression in the infarct zone at 7 days after MI. GW610742 also increased bone marrow-derived mesenchymal stem cell (MSC) recruitment in whole myocardium, and increased serum platelet-derived growth factor B, stromal-derived factor-1 alpha, and matrix metallopeptidase 9 levels at day 3 after MI. PPAR-δ agonists treatment have the temporal effect on early fibrosis of infarcted myocardium, which might not sustain the functional and structural beneficial effect. PMID:26862756

  1. Peroxisome proliferator-activated receptor {alpha} agonists modulate Th1 and Th2 chemokine secretion in normal thyrocytes and Graves' disease

    SciTech Connect

    Antonelli, Alessandro; Ferrari, Silvia Martina; Frascerra, Silvia; Corrado, Alda; Pupilli, Cinzia; Bernini, Giampaolo; Benvenga, Salvatore; Ferrannini, Ele; Fallahi, Poupak

    2011-07-01

    Until now, no data are present about the effect of peroxisome proliferator-activated receptor (PPAR){alpha} activation on the prototype Th1 [chemokine (C-X-C motif) ligand (CXCL)10] (CXCL10) and Th2 [chemokine (C-C motif) ligand 2] (CCL2) chemokines secretion in thyroid cells. The role of PPAR{alpha} and PPAR{gamma} activation on CXCL10 and CCL2 secretion was tested in Graves' disease (GD) and control primary thyrocytes stimulated with interferon (IFN){gamma} and tumor necrosis factor (TNF){alpha}. IFN{gamma} stimulated both CXCL10 and CCL2 secretion in primary GD and control thyrocytes. TNF{alpha} alone stimulated CCL2 secretion, while had no effect on CXCL10. The combination of IFN{gamma} and TNF{alpha} had a synergistic effect both on CXCL10 and CCL2 chemokines in GD thyrocytes at levels comparable to those of controls. PPAR{alpha} activators inhibited the secretion of both chemokines (stimulated with IFN{gamma} and TNF{alpha}) at a level higher (for CXCL10, about 60-72%) than PPAR{gamma} agonists (about 25-35%), which were confirmed to inhibit CXCL10, but not CCL2. Our data show that CCL2 is modulated by IFN{gamma} and TNF{alpha} in GD and normal thyrocytes. Furthermore we first show that PPAR{alpha} activators inhibit the secretion of CXCL10 and CCL2 in thyrocytes, suggesting that PPAR{alpha} may be involved in the modulation of the immune response in the thyroid.

  2. Regulation of Sulfotransferase and UDP-Glucuronosyltransferase Gene Expression by the PPARs

    PubMed Central

    Runge-Morris, Melissa; Kocarek, Thomas A.

    2009-01-01

    During phase II metabolism, a substrate is rendered more hydrophilic through the covalent attachment of an endogenous molecule. The cytosolic sulfotransferase (SULT) and UDP-glucuronosyltransferase (UGT) families of enzymes account for the majority of phase II metabolism in humans and animals. In general, phase II metabolism is considered to be a detoxication process, as sulfate and glucuronide conjugates are more amenable to excretion and elimination than are the parent substrates. However, certain products of phase II metabolism (e.g., unstable sulfate conjugates) are genotoxic. Members of the nuclear receptor superfamily are particularly important regulators of SULT and UGT gene transcription. In metabolically active tissues, increasing evidence supports a major role for lipid-sensing transcription factors, such as peroxisome proliferator-activated receptors (PPARs), in the regulation of rodent and human SULT and UGT gene expression. This review summarizes current information regarding the regulation of these two major classes of phase II metabolizing enzyme by PPARs. PMID:19680455

  3. PPAR{gamma} activation abolishes LDL-induced proliferation of human aortic smooth muscle cells via SOD-mediated down-regulation of superoxide

    SciTech Connect

    Heo, Kyung-Sun; Kim, Dong-Uk; Ryoo, Sungwoo; Nam, Miyoung; Baek, Seung Tae; Kim, Lila; Park, Song-Kyu; Myung, Chang-Seon; Hoe, Kwang-Lae . E-mail: kwanghoe@kribb.re.kr

    2007-08-10

    Native LDL would be a mitogenic and chemotactic stimulus of VSMC proliferation and differentiation in the atherosclerotic lesion where endothelial disruption occurred. In previous studies, our group investigated the molecular mechanisms by which LDL induces IL-8 production and by which PPAR{alpha} activation abolishes LDL effects in human aortic SMCs (hAoSMCs). Herein is the first report of PPAR{gamma} activation by troglitazone (TG) exerting its inhibitory effects on LDL-induced cell proliferation via generation not of H{sub 2}O{sub 2}, but of O2?-, and the subsequent activation of Erk1/2 in hAoSMCs. Moreover, in this study TG abolished the LDL-accelerated G{sub 1}-S progression to control levels via down-regulation of active cyclinD1/CDK4 and cyclinE/CDK2 complexes and up-regulation of p21{sup Cip1} expression. TG exerted its anti-proliferative effects through the up-regulation of basal superoxide dismutase (SOD) expression. This data suggests that the regulation of O2?- is located at the crossroads between LDL signaling and cell proliferation.

  4. Mitochondrial impairment by PPAR agonists and statins identified via immunocaptured OXPHOS complex activities and respiration.

    PubMed

    Nadanaciva, Sashi; Dykens, James A; Bernal, Autumn; Capaldi, Roderick A; Will, Yvonne

    2007-09-15

    Mitochondrial impairment is increasingly implicated in the etiology of toxicity caused by some thiazolidinediones, fibrates, and statins. We examined the effects of members of these drug classes on respiration of isolated rat liver mitochondria using a phosphorescent oxygen sensitive probe and on the activity of individual oxidative phosphorylation (OXPHOS) complexes using a recently developed immunocapture technique. Of the six thiazolidinediones examined, ciglitazone, troglitazone, and darglitazone potently disrupted mitochondrial respiration. In accord with these data, ciglitazone and troglitazone were also potent inhibitors of Complexes II+III, IV, and V, while darglitazone predominantly inhibited Complex IV. Of the six statins evaluated, lovastatin, simvastatin, and cerivastatin impaired mitochondrial respiration the most, with simvastatin and lovastatin impairing multiple OXPHOS Complexes. Within the class of fibrates, gemfibrozil more potently impaired respiration than fenofibrate, clofibrate, or ciprofibrate. Gemfibrozil only modestly inhibited Complex I, fenofibrate inhibited Complexes I, II+III, and V, and clofibrate inhibited Complex V. Our findings with the two complementary methods indicate that (1) some members of each class impair mitochondrial respiration, whereas others have little or no effect, and (2) the rank order of mitochondrial impairment accords with clinical adverse events observed with these drugs. Since the statins are frequently co-prescribed with the fibrates or thiazolidinediones, various combinations of these three drug classes were also analyzed for their mitochondrial effects. In several cases, the combination additively uncoupled or inhibited respiration, suggesting that some combinations are more likely to yield clinically relevant drug-induced mitochondrial side effects than others. PMID:17658574

  5. Mitochondrial impairment by PPAR agonists and statins identified via immunocaptured OXPHOS complex activities and respiration

    SciTech Connect

    Nadanaciva, Sashi; Dykens, James A.; Bernal, Autumn; Capaldi, Roderick A.; Will, Yvonne

    2007-09-15

    Mitochondrial impairment is increasingly implicated in the etiology of toxicity caused by some thiazolidinediones, fibrates, and statins. We examined the effects of members of these drug classes on respiration of isolated rat liver mitochondria using a phosphorescent oxygen sensitive probe and on the activity of individual oxidative phosphorylation (OXPHOS) complexes using a recently developed immunocapture technique. Of the six thiazolidinediones examined, ciglitazone, troglitazone, and darglitazone potently disrupted mitochondrial respiration. In accord with these data, ciglitazone and troglitazone were also potent inhibitors of Complexes II + III, IV, and V, while darglitazone predominantly inhibited Complex IV. Of the six statins evaluated, lovastatin, simvastatin, and cerivastatin impaired mitochondrial respiration the most, with simvastatin and lovastatin impairing multiple OXPHOS Complexes. Within the class of fibrates, gemfibrozil more potently impaired respiration than fenofibrate, clofibrate, or ciprofibrate. Gemfibrozil only modestly inhibited Complex I, fenofibrate inhibited Complexes I, II + III, and V, and clofibrate inhibited Complex V. Our findings with the two complementary methods indicate that (1) some members of each class impair mitochondrial respiration, whereas others have little or no effect, and (2) the rank order of mitochondrial impairment accords with clinical adverse events observed with these drugs. Since the statins are frequently co-prescribed with the fibrates or thiazolidinediones, various combinations of these three drug classes were also analyzed for their mitochondrial effects. In several cases, the combination additively uncoupled or inhibited respiration, suggesting that some combinations are more likely to yield clinically relevant drug-induced mitochondrial side effects than others.

  6. Endothelial PPAR-γ provides vascular protection from IL-1β-induced oxidative stress.

    PubMed

    Mukohda, Masashi; Stump, Madeliene; Ketsawatsomkron, Pimonrat; Hu, Chunyan; Quelle, Frederick W; Sigmund, Curt D

    2016-01-01

    Loss of peroxisome proliferator-activated receptor (PPAR)-γ function in the vascular endothelium enhances atherosclerosis and NF-κB target gene expression in high-fat diet-fed apolipoprotein E-deficient mice. The mechanisms by which endothelial PPAR-γ regulates inflammatory responses and protects against atherosclerosis remain unclear. To assess functional interactions between PPAR-γ and inflammation, we used a model of IL-1β-induced aortic dysfunction in transgenic mice with endothelium-specific overexpression of either wild-type (E-WT) or dominant negative PPAR-γ (E-V290M). IL-1β dose dependently decreased IκB-α, increased phospho-p65, and increased luciferase activity in the aorta of NF-κB-LUC transgenic mice. IL-1β also dose dependently reduced endothelial-dependent relaxation by ACh. The loss of ACh responsiveness was partially improved by pretreatment of the vessels with the PPAR-γ agonist rosiglitazone or in E-WT. Conversely, IL-1β-induced endothelial dysfunction was worsened in the aorta from E-V290M mice. Although IL-1β increased the expression of NF-κB target genes, NF-κB p65 inhibitor did not alleviate endothelial dysfunction induced by IL-1β. Tempol, a SOD mimetic, partially restored ACh responsiveness in the IL-1β-treated aorta. Notably, tempol only modestly improved protection in the E-WT aorta but had an increased protective effect in the E-V290M aorta compared with the aorta from nontransgenic mice, suggesting that PPAR-γ-mediated protection involves antioxidant effects. IL-1β increased ROS and decreased the phospho-endothelial nitric oxide synthase (Ser(1177))-to-endothelial nitric oxide synthase ratio in the nontransgenic aorta. These effects were completely abolished in the aorta with endothelial overexpression of WT PPAR-γ but were worsened in the aorta with E-V290M even in the absence of IL-1β. We conclude that PPAR-γ protects against IL-1β-mediated endothelial dysfunction through a reduction of oxidative stress

  7. Effects of gestational exposure to PFOA on PPAR protein and mRNA expression in vital organs of fetal and postnatal mice

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA) is developmentally toxic, causing in utero and neonatal mortality, and altering development and growth in mice. PFOA activates peroxisome proliferator-activated receptor (PPAR)a and PPARa signaling is required for toxicity. This study examines the ex...

  8. Long-term exercise increases the DNA binding activity of peroxisome proliferator-activated receptor gamma in rat adipose tissue.

    PubMed

    Petridou, Anatoli; Tsalouhidou, Sofia; Tsalis, George; Schulz, Thorsten; Michna, Horst; Mougios, Vassilis

    2007-08-01

    The aim of the present study was to examine the effect of 8 weeks of voluntary wheel running on the gene expression, at the protein level, of 2 enzymes involved in lipogenesis (fatty acid synthase [FAS] and diacylglycerol acyl transferase 1), 2 proteins involved in lipolysis (hormone-sensitive lipase [HSL] and perilipin), and 3 transcription factors mediating the induction of genes involved in lipid metabolism (the alpha, gamma, and delta members of the peroxisome proliferator-activated receptor, or PPAR, family) in rat liver, gastrocnemius muscle, epididymal fat, and subcutaneous fat. Proteins were measured through Western blot analysis in the tissues of 11 trained and 14 untrained rats. The trained rats had lower FAS in the liver; higher FAS, HSL, and perilipin in epididymal fat; and higher HSL in subcutaneous fat. In addition, the trained rats had higher total protein concentrations in both fat depots. No significant differences in the liver, muscle, or adipose tissue PPAR contents were found between groups. However, the DNA binding activity of PPARgamma, measured through an enzyme immunoassay-based method, was higher in both fat depots of the trained rats. Our findings suggest that long-term wheel running had significant effects on the concentrations of proteins playing key roles in lipogenesis and lipolysis in rat liver and adipose tissue. These effects may be due to PPAR activation rather than induction, rendering the transcriptional regulation of target genes more economical and flexible. The activation of PPARgamma with exercise may mediate its beneficial effect on insulin sensitivity. PMID:17618946

  9. Co-crystal structure guided array synthesis of PPAR[gamma] inverse agonists

    SciTech Connect

    Trump, Ryan P.; Cobb, Jeffrey E.; Shearer, Barry G.; Lambert, Millard H.; Nolte, Robert T.; Willson, Timothy M.; Buckholz, Richard G.; Zhao, Sumin M.; Leesnitzer, Lisa M.; Iannone, Marie A.; Pearce, Kenneth H.; Billin, Andrew N.; Hoekstra, William J.

    2008-10-02

    PPAR{gamma}-activating thiazolidinediones and carboxylic acids such as farglitazar exert their anti-diabetic effects in part in PPAR{gamma} rich adipose. Both pro- and anti-adipogenic PPAR{gamma} ligands promote glucose and lipid lowering in animal models of diabetes. Herein, we disclose representatives of an array of 160 farglitazar analogues with atypical inverse agonism of PPAR{gamma} in mature adipocytes.

  10. Synthesis, in vitro evaluation, and molecular modeling investigation of benzenesulfonimide peroxisome proliferator-activated receptors α antagonists.

    PubMed

    Ammazzalorso, Alessandra; Carrieri, Antonio; Verginelli, Fabio; Bruno, Isabella; Carbonara, Giuseppe; D'Angelo, Alessandra; De Filippis, Barbara; Fantacuzzi, Marialuigia; Florio, Rosalba; Fracchiolla, Giuseppe; Giampietro, Letizia; Giancristofaro, Antonella; Maccallini, Cristina; Cama, Alessandro; Amoroso, Rosa

    2016-05-23

    Recent evidences suggest a moderate activation of Peroxisome Proliferator-Activated Receptors (PPARs) could be favorable in metabolic diseases, reducing side effects given from full agonists. PPAR partial agonists and antagonists represent, to date, interesting tools to better elucidate biological processes modulated by these receptors. In this work are reported new benzenesulfonimide compounds able to block PPARα, synthesized and tested by transactivation assays and gene expression analysis. Some of these compounds showed a dose-dependent antagonistic behavior on PPARα, submicromolar potency, different profiles of selectivity versus PPARγ, and a repressive effect on CPT1A expression. Dockings and molecular dynamics on properly selected benzenesulfonimide derivatives furnished fresh insights into the molecular determinant most likely responsible for PPARα antagonism. PMID:26974385

  11. HtrA3 is regulated by 15-deoxy-{Delta}12,14-prostaglandin J2 independently of PPAR{gamma} in clear cell renal cell carcinomas

    SciTech Connect

    Theoleyre, Sandrine; Mottier, Stephanie; Masson, Damien; Denis, Marc G.

    2010-04-09

    Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) ligands have been shown to possess anti-proliferative effects in many types of cancer. In clear cell renal cell carcinoma (CCRCC), the targets involved in these effects are not known. In this study, we demonstrated that, in CCRCC cell lines, the endogenous PPAR{gamma} ligand 15-deoxy-{Delta}12,14-prostaglandin J2 (15dPGJ2) induces the expression, both at the mRNA and the protein levels, of the HtrA3 gene. This gene belongs to the High-Temperature Requirement Factor A family of serine proteases that repress signaling by TGF-{beta} family members and inhibit cell migration. Rosiglitazone or ciglitazone, synthetic PPAR{gamma} agonists, did not induce HtrA3 expression, and the PPAR{gamma} antagonist GW9662 did not prevent 15dPGJ2 induction, suggesting that the up-regulation of HtrA3 by 15dPGJ2 is independent of PPAR{gamma}. The MEK/ERK inhibitor PD98059 dramatically repressed HtrA3 induction. Altogether, these data indicate that 15dPGJ2 is able to stimulate the expression of HtrA3 through an indirect mechanism involving the MEK/ERK pathway but independent of PPAR{gamma}. Our results provide a better understanding of the mechanisms involved in the regulation of HtrA3, a potential tumor suppressor gene.

  12. The PPAR alpha agonist gemfibrozil is an ineffective treatment for spinal cord injured mice.

    PubMed

    Almad, Akshata; Lash, A Todd; Wei, Ping; Lovett-Racke, Amy E; McTigue, Dana M

    2011-12-01

    Peroxisome Proliferator Activated Receptor (PPAR)-α is a key regulator of lipid metabolism and recent studies reveal it also regulates inflammation in several different disease models. Gemfibrozil, an agonist of PPAR-α, is a FDA approved drug for hyperlipidemia and has been shown to inhibit clinical signs in a rodent model of multiple sclerosis. Since many studies have shown improved outcome from spinal cord injury (SCI) by anti-inflammatory and neuroprotective agents, we tested the efficacy of oral gemfibrozil given before or after SCI for promoting tissue preservation and behavioral recovery after spinal contusion injury in mice. Unfortunately, the results were contrary to our hypothesis; in our first attempt, gemfibrozil treatment exacerbated locomotor deficits and increased tissue pathology after SCI. In subsequent experiments, the behavioral effects were not replicated but histological outcomes again were worse. We also tested the efficacy of a different PPAR-α agonist, fenofibrate, which also modulates immune responses and is beneficial in several neurodegenerative disease models. Fenofibrate treatment did not improve recovery, although there was a slight trend for a modest increase in histological tissue sparing. Based on our results, we conclude that PPAR-α agonists yield either no effect or worsen recovery from spinal cord injury, at least at the doses and the time points of drug delivery tested here. Further, patients sustaining spinal cord injury while taking gemfibrozil might be prone to exacerbated tissue damage. PMID:21963672

  13. A synthetic antagonist for the peroxisome proliferator-activated receptor gamma inhibits adipocyte differentiation.

    PubMed

    Wright, H M; Clish, C B; Mikami, T; Hauser, S; Yanagi, K; Hiramatsu, R; Serhan, C N; Spiegelman, B M

    2000-01-21

    While searching for natural ligands for the peroxisome proliferator-activated receptor (PPAR) gamma, we identified a synthetic compound that binds to this receptor. Bisphenol A diglycidyl ether (BADGE) is a ligand for PPARgamma with a K(d(app)) of 100 microM. This compound has no apparent ability to activate the transcriptional activity of PPARgamma; however, BADGE can antagonize the ability of agonist ligands such as rosiglitazone to activate the transcriptional and adipogenic action of this receptor. BADGE also specifically blocks the ability of natural adipogenic cell lines such as 3T3-L1 and 3T3-F442A cells to undergo hormone-mediated cell differentiation. These results provide the first pharmacological evidence that PPARgamma activity is required for the hormonally induced differentiation of adipogenic cells. PMID:10636887

  14. Role of peroxisome proliferator-activated receptor alpha and gamma in antiangiogenic effect of pomegranate peel extract

    PubMed Central

    Dana, Nasim; Javanmard, Shaghayegh Haghjooy; Rafiee, Laleh

    2016-01-01

    Objective(s): Herbal medicines are promising cancer preventive candidates. It has been shown that Punica granatum L. could inhibit angiogenesis and tumor invasion. In this study, we investigated whether the anti-angiogenic effect of pomegranate peel extract (PPE) is partly attributable to Peroxisome proliferator-activated receptors (PPARs) activation in the Human Umbilical Vein Endothelial Cells (HUVECs). Materials and Methods: Ethanol extract from PPE was prepared. HUVECs were treated in four groups (with PPE (10 μg/ml) alone, PPE with or without PPARγ (T0070907) and α (GW6471) antagonists, and control group). The possible effect of PPARs on angiogenic regulation was checked by Matrigel assay. The mRNA expression levels of vascular endothelial growth factor (VEGF) was detected by Quantitative reverse transcription-polymerase chain reaction (QRT-PCR). Results: PPE significantly inhibited both tube formation (size, length, and junction of tubes) and VEGF mRNA expression (P<0.05). Our results showed that the anti-angiogenic effects of PPE were significantly reversed by both PPAR antagonists (P<0.05). There was no difference between PPE plus antagonists groups and the control group. Conclusion: In summary our results showed that the anti-angiogenic effects of PPE could be mediated in part through PPAR dependent pathway. PMID:27096071

  15. Enhanced pan-peroxisome proliferator-activated receptor gene and protein expression in adipose tissue of diet-induced obese mice treated with telmisartan.

    PubMed

    Penna-de-Carvalho, Aline; Graus-Nunes, Francielle; Rabelo-Andrade, Júlia; Mandarim-de-Lacerda, Carlos Alberto; Souza-Mello, Vanessa

    2014-12-01

    Telmisartan has previously been used to target obesity, showing peroxisome proliferator-activated receptor (PPAR) β/δ-related effects in white adipose tissue (WAT). We sought to evaluate whether telmisartan enhances gene and protein expression of all PPAR isoforms in WAT and brown adipose tissue (BAT), as well as their downstream effects upon insulin resistance, adipokine profile and adaptive thermogenesis. Male C57BL/6 mice were fed standard chow (SC; 10% lipids) or high-fat diet (HF; 50% lipids) for 10 weeks. Animals were then randomly allocated into the following four groups: SC, SC-T, HF and HF-T. Telmisartan [10 mg (kg diet)(-1)] was administered for 4 weeks in the diet. Animals in the HF group were overweight and exhibited hypertension, insulin resistance, decreased energy expenditure, a pro-inflammatory adipokine profile and abnormal fat pad mass distribution. Animals in the HF group showed decreased expression of PPARα, β/δ and γ in WAT and BAT, resulting in impaired glucose uptake and insufficient thermogenesis. Due to the improvement in the adipokine profile and enhanced insulin sensitivity with adequate insulin-stimulated glucose uptake after treatment with telmisartan, the activation of all PPAR isoforms in WAT was beneficial. In BAT, telmisartan induced sustained sympathetic activation, because the β3-adrenergic receptor was induced by PPARβ/δ, while uncoupling protein 1 was induced by PPARα to promote thermogenesis. Telmisartan exerted anti-obesity effects through higher pan-PPAR gene and protein expression. Upon PPARα, β/δ and γ (pan-PPAR) agonism in adipose tissue of obese mice, telmisartan ameliorates inflammation and insulin resistance, as well as inducing non-shivering thermogenesis. Our results point to new therapeutic targets for the control of obesity and comorbidities through pan-PPAR-related effects. PMID:25326526

  16. Peroxisome Proliferator-Activated Receptor Activation is Associated with Altered Plasma One-Carbon Metabolites and B-Vitamin Status in Rats

    PubMed Central

    Lysne, Vegard; Strand, Elin; Svingen, Gard F. T.; Bjørndal, Bodil; Pedersen, Eva R.; Midttun, Øivind; Olsen, Thomas; Ueland, Per M.; Berge, Rolf K.; Nygård, Ottar

    2016-01-01

    Plasma concentrations of metabolites along the choline oxidation pathway have been linked to increased risk of major lifestyle diseases, and peroxisome proliferator-activated receptors (PPARs) have been suggested to be involved in the regulation of key enzymes along this pathway. In this study, we investigated the effect of PPAR activation on circulating and urinary one-carbon metabolites as well as markers of B-vitamin status. Male Wistar rats (n = 20) received for 50 weeks either a high-fat control diet or a high-fat diet with tetradecylthioacetic acid (TTA), a modified fatty acid and pan-PPAR agonist with high affinity towards PPARα. Hepatic gene expression of PPARα, PPARβ/δ and the enzymes involved in the choline oxidation pathway were analyzed and concentrations of metabolites were analyzed in plasma and urine. TTA treatment altered most biomarkers, and the largest effect sizes were observed for plasma concentrations of dimethylglycine, nicotinamide, methylnicotinamide, methylmalonic acid and pyridoxal, which were all higher in the TTA group (all p < 0.01). Hepatic Pparα mRNA was increased after TTA treatment, but genes of the choline oxidation pathway were not affected. Long-term TTA treatment was associated with pronounced alterations on the plasma and urinary concentrations of metabolites related to one-carbon metabolism and B-vitamin status in rats. PMID:26742069

  17. Peroxisome Proliferator-Activated Receptor Activation is Associated with Altered Plasma One-Carbon Metabolites and B-Vitamin Status in Rats.

    PubMed

    Lysne, Vegard; Strand, Elin; Svingen, Gard F T; Bjørndal, Bodil; Pedersen, Eva R; Midttun, Øivind; Olsen, Thomas; Ueland, Per M; Berge, Rolf K; Nygård, Ottar

    2016-01-01

    Plasma concentrations of metabolites along the choline oxidation pathway have been linked to increased risk of major lifestyle diseases, and peroxisome proliferator-activated receptors (PPARs) have been suggested to be involved in the regulation of key enzymes along this pathway. In this study, we investigated the effect of PPAR activation on circulating and urinary one-carbon metabolites as well as markers of B-vitamin status. Male Wistar rats (n = 20) received for 50 weeks either a high-fat control diet or a high-fat diet with tetradecylthioacetic acid (TTA), a modified fatty acid and pan-PPAR agonist with high affinity towards PPARα. Hepatic gene expression of PPARα, PPARβ/δ and the enzymes involved in the choline oxidation pathway were analyzed and concentrations of metabolites were analyzed in plasma and urine. TTA treatment altered most biomarkers, and the largest effect sizes were observed for plasma concentrations of dimethylglycine, nicotinamide, methylnicotinamide, methylmalonic acid and pyridoxal, which were all higher in the TTA group (all p < 0.01). Hepatic Pparα mRNA was increased after TTA treatment, but genes of the choline oxidation pathway were not affected. Long-term TTA treatment was associated with pronounced alterations on the plasma and urinary concentrations of metabolites related to one-carbon metabolism and B-vitamin status in rats. PMID:26742069

  18. Association between peroxisome proliferator-activated receptor-alpha, delta, and gamma polymorphisms and risk of coronary heart disease

    PubMed Central

    Qian, Yufeng; Li, Peiwei; Zhang, Jinjie; Shi, Yu; Chen, Kun; Yang, Jun; Wu, Yihua; Ye, Xianhua

    2016-01-01

    Abstract Objectives: Risk of coronary heart disease (CHD) has been suggested to be associated with polymorphisms of peroxisome proliferator-activated receptors (PPARs), while the results were controversial. We aimed to systematically assess the association between PPAR polymorphisms and CHD risk. Methods: A case–control study with 446 subjects was conducted to evaluate the association between CHD risk and C161T polymorphism, which was of our special interest as this polymorphism showed different effects on risks of CHD and acute coronary syndrome (ACS). Meta-analyses were conducted to assess all PPAR polymorphisms. Either a fixed- or a random-effects model was adopted to estimate overall odds ratios (ORs). Results: In the case–control study, T allele carriers of C161T polymorphism were not significantly associated with CHD risk (Odds ratio (OR) = 0.74, 95% confidence interval (CI) 0.47–1.15, P = 0.19), while T allele carriers showed higher risk of ACS (OR = 1.63, 95% CI 1.00–2.65, P = 0.048). The meta-analysis indicated that compared with CC homozygous, T allele carriers had lower CHD risk (OR = 0.69, 95% CI 0.59–0.82, P < 0.001) but higher ACS risk (OR = 1.43, 95% CI 1.09–1.87, P = 0.010). Three other polymorphisms were also found to be significantly associated with CHD risk under dominant model: PPAR-alpha intron 7G/C polymorphism (CC+GC vs GG, OR 1.42, 95% CI 1.13–1.78, P = 0.003), L162V polymorphism (VV+LV vs LL, OR 0.74, 95% CI 0.56–0.97, P = 0.031), and PPAR-delta +294T/C polymorphism (CC+TC vs TT, OR 1.51, 95% CI 1.12–2.05, P = 0.007). Conclusions: The results suggested that PPAR-alpha intron 7G/C and L162V, PPAR-delta +294T/C and PPAR-gamma C161T polymorphisms could affect CHD susceptibility, and C161T polymorphism might have different effects on CHD and ACS. PMID:27512842

  19. Aspects of the regulatory mechanisms of PPAR functions: analysis of a bidirectional response element and regulation by sumoylation.

    PubMed

    Shimizu, Makoto; Yamashita, Daisuke; Yamaguchi, Tomohiro; Hirose, Fumiko; Osumi, Takashi

    2006-06-01

    Peroxisome proliferator-activated receptors (PPARs) constitute a subfamily of nuclear receptor superfamily. A wide variety of compounds including hypolipidemic agents, antidiabetic drugs, and long-chain fatty acids are the potential ligands of PPARs. To approach the regulatory mechanisms of PPARs, we studied on two subjects in this work. First, we identified a functional PPAR-binding site in the spacer region between the PEX11alpha and perilipin genes, which are arranged in tandem on the mouse genome. By gene reporter assays and in vivo as well as in vitro binding assays, we show that these genes are regulated tissue-selectively through this common binding site: The PEX11alpha gene is activated by PPARalpha in the liver, whereas the perilipin gene by PPARgamma in the adipose tissue. As the second subject, we found that PPARgamma2 is conjugated with small ubiquitin-related modifier (SUMO) at a specific lysine residue in the amino-terminal region. By site-directed mutagenesis combined with gene reporter assays and sumoylation analyses, we show that sumoylation represses the ligand-independent transactivating function carried by this region, and hence negatively regulates the whole transactivating competence of PPARgamma2. In addition, phosphorylation at a specific site in the amino-terminal region represses the transactivation by PPARgamma2 possibly through enhancing sumoylation. PMID:16534556

  20. Transcriptional up-regulation of antioxidant genes by PPAR{delta} inhibits angiotensin II-induced premature senescence in vascular smooth muscle cells

    SciTech Connect

    Kim, Hyo Jung; Ham, Sun Ah; Paek, Kyung Shin; Hwang, Jung Seok; Jung, Si Young; Kim, Min Young; Jin, Hanna; Kang, Eun Sil; Woo, Im Sun; Kim, Hye Jung; Lee, Jae Heun; Chang, Ki Churl; Han, Chang Woo; Seo, Han Geuk

    2011-03-25

    Research highlights: {yields} Activation of PPAR{delta} by GW501516 significantly inhibited Ang II-induced premature senescence in hVSMCs. {yields} Agonist-activated PPAR{delta} suppressed generation of Ang II-triggered ROS with a concomitant reduction in DNA damage. {yields} GW501516 up-regulated expression of antioxidant genes, such as GPx1, Trx1, Mn-SOD and HO-1. {yields} Knock-down of these antioxidant genes abolished the effects of GW501516 on ROS production and premature senescence. -- Abstract: This study evaluated peroxisome proliferator-activated receptor (PPAR) {delta} as a potential target for therapeutic intervention in Ang II-induced senescence in human vascular smooth muscle cells (hVSMCs). Activation of PPAR{delta} by GW501516, a specific agonist of PPAR{delta}, significantly inhibited the Ang II-induced premature senescence of hVSMCs. Agonist-activated PPAR{delta} suppressed the generation of Ang II-triggered reactive oxygen species (ROS) with a concomitant reduction in DNA damage. Notably, GW501516 up-regulated the expression of antioxidant genes, such as glutathione peroxidase 1, thioredoxin 1, manganese superoxide dismutase and heme oxygenase 1. siRNA-mediated down-regulation of these antioxidant genes almost completely abolished the effects of GW501516 on ROS production and premature senescence in hVSMCs treated with Ang II. Taken together, the enhanced transcription of antioxidant genes is responsible for the PPAR{delta}-mediated inhibition of premature senescence through sequestration of ROS in hVSMCs treated with Ang II.

  1. Telmisartan mediates anti-inflammatory and not cognitive function through PPAR-γ agonism via SARM and MyD88 signaling.

    PubMed

    Prathab Balaji, S; Vijay Chand, C; Justin, A; Ramanathan, M

    2015-10-01

    Telmisartan (TM), an angiotensin II receptor I (AT1) blocker, has been reported to have agonist property with respect to PPAR-γ. Activation of PPARreceptor by TM attenuated the lipopolysaccharide (LPS) mediated TLR4 central downstream inflammatory responses. However, the missing link between PPAR-γ and TLR4 signaling with TM stimulation has not been clarified. Hence, the present study has been designed to evaluate the molecular mechanism involving PPARγ-TLR4 signaling with TM stimulation in LPS induced inflammatory model. LPS was administered in rats through ICV and the rats were treated with either PPAR-γ antagonist GW9662 (GW) or TM or both. After 14days of LPS administration, the rats were subjected to behavioral tests and their brains were isolated for blotting techniques. The protein study includes NF-κB, PPARreceptors, and their downstream proteins (MyD88 & SARM). The pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) levels were measured by ELISA and cresyl violet staining in the hippocampus region to measure the neuroprotective activity. Results have shown that TM significantly increased the motor co-ordination, cognitive functions, and activated SARM and PPAR-γ protein levels. Also, TM treatment decreased the NF-κB, MyD88 activation, and cytokines release in LPS rats. The co-administration of GW attenuated the TM responses in the parameters studied except cognitive functions. TM (10mg/kg) has significantly reduced the LPS mediated inflammatory responses. This resulted in effective regeneration of hippocampal neurons as observed by cresyl violet staining. It can be concluded that the activation of PPARreceptors may increase the SARM and decrease the MyD88 and NF-κB expression. This negative regulation of SARM dependent inflammation control could be a possible mechanism for TM anti-neuroinflammatory activity. This study of TM in neuro-inflammatory model may further confirm the dual activities of TM that controls hypertension and cognition

  2. Short-Chain Fatty Acids Stimulate Angiopoietin-Like 4 Synthesis in Human Colon Adenocarcinoma Cells by Activating Peroxisome Proliferator-Activated Receptor γ

    PubMed Central

    Alex, Sheril; Lange, Katja; Amolo, Tom; Grinstead, Jeffrey S.; Haakonsson, Anders K.; Szalowska, Ewa; Koppen, Arjen; Mudde, Karin; Haenen, Daniëlle; Al-Lahham, Sa'ad; Roelofsen, Han; Houtman, René; van der Burg, Bart; Mandrup, Susanne; Bonvin, Alexandre M. J. J.; Kalkhoven, Eric; Müller, Michael; Hooiveld, Guido J.

    2013-01-01

    Angiopoietin-like protein 4 (ANGPTL4/FIAF) has been proposed as a circulating mediator between the gut microbiota and fat storage. Here, we show that transcription and secretion of ANGPTL4 in human T84 and HT29 colon adenocarcinoma cells is highly induced by physiological concentrations of short-chain fatty acids (SCFA). SCFA induce ANGPTL4 by activating the nuclear receptor peroxisome proliferator activated receptor γ (PPARγ), as demonstrated using PPARγ antagonist, PPARγ knockdown, and transactivation assays, which show activation of PPARγ but not PPARα and PPARδ by SCFA. At concentrations required for PPARγ activation and ANGPTL4 induction in colon adenocarcinoma cells, SCFA do not stimulate PPARγ in mouse 3T3-L1 and human SGBS adipocytes, suggesting that SCFA act as selective PPARγ modulators (SPPARM), which is supported by coactivator peptide recruitment assay and structural modeling. Consistent with the notion that fermentation leads to PPAR activation in vivo, feeding mice a diet rich in inulin induced PPAR target genes and pathways in the colon. We conclude that (i) SCFA potently stimulate ANGPTL4 synthesis in human colon adenocarcinoma cells and (ii) SCFA transactivate and bind to PPARγ. Our data point to activation of PPARs as a novel mechanism of gene regulation by SCFA in the colon, in addition to other mechanisms of action of SCFA. PMID:23339868

  3. Regulation of hepatic PPAR{gamma}2 and lipogenic gene expression by melanocortin

    SciTech Connect

    Poritsanos, Nicole J.; Wong, Davie; Vrontakis, Maria E.; Mizuno, Tooru M.

    2008-11-14

    The central melanocortin system regulates hepatic lipid metabolism. Hepatic lipogenic gene expression is regulated by transcription factors including sterol regulatory element-binding protein 1c (SREBP-1c), carbohydrate responsive element-binding protein (ChREBP), and peroxisome proliferator-activated receptor {gamma}2 (PPAR{gamma}2). However, it is unclear if central melanocortin signaling regulates hepatic lipogenic gene expression through the activation of these transcription factors. To delineate the molecular mechanisms by which the melanocortin system regulates hepatic lipid metabolism, we examined the effect of intracerebroventricular injection of SHU9119, a melanocortin receptor antagonist, on hepatic expression levels of genes involved in lipid metabolism in mice. SHU9119 treatment increased hepatic triglyceride content and mRNA levels of lipogenic genes, SREBP-1c, and PPAR{gamma}2, whereas it did not cause any changes in hepatic ChREBP mRNA levels. These findings suggest that reduced central melanocortin signaling increases hepatic lipid deposition by stimulating hepatic lipogenic gene expression at least partly through the activation of SREBP-1c and PPAR{gamma}2.

  4. Interaction Between Peroxisome Proliferator Activated Receptor δ and Epithelial Membrane Protein 2 Polymorphisms Influences HDL-C Levels in the Chinese Population.

    PubMed

    Ke, Tingjing; Dorajoo, Rajkumar; Han, Yi; Khor, Chiea-Chuen; van Dam, Rob M; Yuan, Jian-Min; Koh, Woon-Puay; Liu, Jianjun; Teo, Yik Ying; Goh, Daniel Y T; Tai, E Shyong; Wong, Tien Yin; Cheng, Ching-Yu; Friedlander, Yechiel; Heng, Chew-Kiat

    2016-09-01

    Peroxisome proliferator activated receptors (PPARs) are transcription factors involved in the regulation of key metabolic pathways. Numerous in vivo and in vitro studies have established their important roles in lipid metabolism. A few SNPs in PPAR genes have been reported to be associated with lipid levels. In this study, we aimed to investigate the interactive effects between single nucleotide polymorphisms (SNPs) in three PPAR isoforms α/δ/γ and other genetic variants across the genome on plasma high-density lipoprotein-cholesterol (HDL-C) levels. Study subjects (N = 2003) were genotyped using Illumina HumanOmniZhongHua-8 Beadchip. Fifty-three tag SNPs ± 100 kb of PPAR α, δ, and γ (r(2) < 0.2) were selected. The effect of interactions between PPAR SNPs and those across the genome on HDL-C was tested using linear regression models. One statistically significant interaction influencing HDL-C was detected between PPARδ SNP rs2267668 and epithelial membrane protein 2 (EMP2) downstream SNP rs7191411 (N = 1993, β = 0.74, adjusted P = 0.022). This interaction was successfully replicated in the meta-analysis of two additional Chinese cohorts (N = 3948, P = 0.01). The present study showed a novel SNP × SNP interaction between rs2267668 in PPARδ and rs7191411 in EMP2 that has significant impact on circulating HDL-C levels in the Singaporean Chinese population. PMID:27530449

  5. High sugar intake and development of skeletal muscle insulin resistance and inflammation in mice: a protective role for PPAR- δ agonism.

    PubMed

    Benetti, Elisa; Mastrocola, Raffaella; Rogazzo, Mara; Chiazza, Fausto; Aragno, Manuela; Fantozzi, Roberto; Collino, Massimo; Minetto, Marco A

    2013-01-01

    Peroxisome Proliferator Activated Receptor (PPAR)- δ agonists may serve for treating metabolic diseases. However, the effects of PPAR- δ agonism within the skeletal muscle, which plays a key role in whole-body glucose metabolism, remain unclear. This study aimed to investigate the signaling pathways activated in the gastrocnemius muscle by chronic administration of the selective PPAR- δ agonist, GW0742 (1 mg/kg/day for 16 weeks), in male C57Bl6/J mice treated for 30 weeks with high-fructose corn syrup (HFCS), the major sweetener in foods and soft-drinks (15% wt/vol in drinking water). Mice fed with the HFCS diet exhibited hyperlipidemia, hyperinsulinemia, hyperleptinemia, and hypoadiponectinemia. In the gastrocnemius muscle, HFCS impaired insulin and AMP-activated protein kinase signaling pathways and reduced GLUT-4 and GLUT-5 expression and membrane translocation. GW0742 administration induced PPAR- δ upregulation and improvement in glucose and lipid metabolism. Diet-induced activation of nuclear factor-κB and expression of inducible-nitric-oxide-synthase and intercellular-adhesion-molecule-1 were attenuated by drug treatment. These effects were accompanied by reduction in the serum concentration of interleukin-6 and increase in muscular expression of fibroblast growth factor-21. Overall, here we show that PPAR- δ activation protects the skeletal muscle against the metabolic abnormalities caused by chronic HFCS exposure by affecting multiple levels of the insulin and inflammatory cascades. PMID:23861559

  6. Modulating Intrafollicular Hormonal Milieu in Controlled Ovarian Stimulation: Insights From PPAR Expression in Human Granulosa Cells.

    PubMed

    Tatone, Carla; Benedetti, Elisabetta; Vitti, Maurizio; Di Emidio, Giovanna; Ciriminna, Rosanna; Vento, Maria Elena; Cela, Vito; Borzì, Placido; Carta, Gaspare; Lispi, Monica; Cimini, Anna Maria; Artini, Paolo Giovanni

    2016-04-01

    Controlled ovarian stimulation (COS) leading to ovulation of multiple follicles is a crucial aspect of biomedical infertility care. Nevertheless, biomarkers useful for COS management are still lacking. Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors relevant to steroid metabolism in granulosa cells (GCs). We investigated whether PPARs and their steroidogenic targets were differentially expressed in GCs differentiated under different recombinant or urinary gonadotropin preparations. GCs from women subjected to COS with r-hFSH, r-hFSH/r-hLH, or hMG-HP were processed to assess expression of PPARα, PPARβ/δ, PPARγ, and steroidogenic enzymes under PPAR modulation. As an evidence of their activation, all PPAR isotypes with their coactivators, the retinoic-X-receptors (RXRs), localized in the nucleus. When GCs from r-hFSH/r-hLH group were compared with r-hFSH, a significant reduction of PPARα protein was observed. By contrast, an increase of PPARβ/δ at both protein and mRNA levels along with that of PPARγ protein were detected. The steroidogenic enzymes 17βHSD IV, 3βHSD II, and HMG-CoA red were downregulated in the r-hFSH/r-hLH group in comparison to r-hFSH unlike CYP19A1 that remained unchanged. In GCs from urinary FSH-LH stimulation (hMG-HP), PPARα was more expressed in comparison with r-hFSH/r-hLH group. Likewise, 3βHSD II and 17βHSD IV were increased suggesting that hMG-HP partially mimicked r-hFSH/r-hLH effects. In summary, transcript analysis associated to protein investigation revealed differential effects of COS protocols on PPARs and their steroidogenic targets in relation to LH and gonadotropin source. These observations candidate PPARs as new biomarkers of follicle competence opening new hypotheses on COS effects on ovarian physiology. J. Cell. Physiol. 231: 908-914, 2016. © 2015 Wiley Periodicals, Inc. PMID:26332656

  7. PPAR agonists reduce steatosis in oleic acid-overloaded HepaRG cells

    SciTech Connect

    Rogue, Alexandra; Anthérieu, Sébastien; Vluggens, Aurore; Umbdenstock, Thierry; Claude, Nancy; Moureyre-Spire, Catherine de la; Weaver, Richard J.; Guillouzo, André

    2014-04-01

    Although non-alcoholic fatty liver disease (NAFLD) is currently the most common form of chronic liver disease there is no pharmacological agent approved for its treatment. Since peroxisome proliferator-activated receptors (PPARs) are closely associated with hepatic lipid metabolism, they seem to play important roles in NAFLD. However, the effects of PPAR agonists on steatosis that is a common pathology associated with NAFLD, remain largely controversial. In this study, the effects of various PPAR agonists, i.e. fenofibrate, bezafibrate, troglitazone, rosiglitazone, muraglitazar and tesaglitazar on oleic acid-induced steatotic HepaRG cells were investigated after a single 24-hour or 2-week repeat treatment. Lipid vesicles stained by Oil-Red O and triglycerides accumulation caused by oleic acid overload, were decreased, by up to 50%, while fatty acid oxidation was induced after 2-week co-treatment with PPAR agonists. The greatest effects on reduction of steatosis were obtained with the dual PPARα/γ agonist muraglitazar. Such improvement of steatosis was associated with up-regulation of genes related to fatty acid oxidation activity and down-regulation of many genes involved in lipogenesis. Moreover, modulation of expression of some nuclear receptor genes, such as FXR, LXRα and CAR, which are potent actors in the control of lipogenesis, was observed and might explain repression of de novo lipogenesis. Conclusion: Altogether, our in vitro data on steatotic HepaRG cells treated with PPAR agonists correlated well with clinical investigations, bringing a proof of concept that drug-induced reversal of steatosis in human can be evaluated in in vitro before conducting long-term and costly in vivo studies in animals and patients. - Highlights: • There is no pharmacological agent approved for the treatment of NAFLD. • This study demonstrates that PPAR agonists can reduce fatty acid-induced steatosis. • Some nuclear receptors appear to be potent actors in the control

  8. Hypoxia-inducible factor 1 mediates hypoxia-induced cardiomyocyte lipid accumulation by reducing the DNA binding activity of peroxisome proliferator-activated receptor {alpha}/retinoid X receptor

    SciTech Connect

    Belanger, Adam J.; Luo Zhengyu; Vincent, Karen A.; Akita, Geoffrey Y.; Cheng, Seng H.; Gregory, Richard J.; Jiang Canwen

    2007-12-21

    In response to cellular hypoxia, cardiomyocytes adapt to consume less oxygen by shifting ATP production from mitochondrial fatty acid {beta}-oxidation to glycolysis. The transcriptional activation of glucose transporters and glycolytic enzymes by hypoxia is mediated by hypoxia-inducible factor 1 (HIF-1). In this study, we examined whether HIF-1 was involved in the suppression of mitochondrial fatty acid {beta}-oxidation in hypoxic cardiomyocytes. We showed that either hypoxia or adenovirus-mediated expression of a constitutively stable hybrid form (HIF-1{alpha}/VP16) suppressed mitochondrial fatty acid metabolism, as indicated by an accumulation of intracellular neutral lipid. Both treatments also reduced the mRNA levels of muscle carnitine palmitoyltransferase I which catalyzes the rate-limiting step in the mitochondrial import of fatty acids for {beta}-oxidation. Furthermore, adenovirus-mediated expression of HIF-1{alpha}/VP16 in cardiomyocytes under normoxic conditions also mimicked the reduction in the DNA binding activity of peroxisome proliferator-activated receptor {alpha} (PPAR{alpha})/retinoid X receptor (RXR), in the presence or absence of a PPAR{alpha} ligand. These results suggest that HIF-1 may be involved in hypoxia-induced suppression of fatty acid metabolism in cardiomyocytes by reducing the DNA binding activity of PPAR{alpha}/RXR.

  9. Modulation of the Nitrergic Pathway via Activation of PPAR-γ Contributes to the Neuroprotective Effect of Pioglitazone Against Streptozotocin-Induced Memory Dysfunction.

    PubMed

    Prakash, Atish; Kumar, Anil; Ming, Long Chiau; Mani, Vasudevan; Majeed, Abu Bakar Abdul

    2015-07-01

    Alzheimer's disease (AD) is a neurodegenerative disease characterized by impaired memory function and oxidative damage. NO is a major signaling molecule produced in the central nervous system to modulate neurological activity through modulating nitric oxide synthase. Recently, PPAR-γ agonists have shown neuroprotective effects in neurodegenerative disorders. However, there have been only a few studies identifying mechanisms through which cognitive benefits may be exerted. The present study was designed to investigate the possible nitric oxide mechanism in the protective effect of pioglitazone against streptozotocin (STZ)-induced memory dysfunction. Wistar rats were intracerebroventricularly (ICV) injected with STZ. Then rats were treated with pioglitazone, NO modulators [L-arginine and nitro-L-arginine methyl ester (L-NAME)] for 21 days. Behavioral alterations were assessed in between the study period. Animals were sacrificed immediately after behavioral session, and mito-oxidative parameters, TNF-α, IL-6, and caspase-3 activity were measured. STZ-treated rats showed a memory deficit and significantly increased in mito-oxidative damage and inflammatory mediators and apoptosis in the hippocampus. Chronic treatment of pioglitazone significantly improved memory retention and attenuated mito-oxidative damage parameters, inflammatory markers, and apoptosis in STZ-treated rats. However, L-arginine pretreatment with lower dose of pioglitazone has not produced any protective effect as compared to per se. Furthermore, pretreatment of L-NAME significantly potentiated its protective effect, which indicates the involvement of nitric oxide for activation of PPAR-γ action. These results demonstrate that pioglitazone offers protection against STZ-induced memory dysfunction possibly due to its antioxidant, anti-inflammatory, and anti-apoptotic action mediating nitric oxide pathways and, therefore, could have a therapeutic potential in AD. PMID:25854775

  10. Peroxisome proliferator-activated receptors (PPARα, PPARγ and PPARβ/δ) gene expression profile on ram spermatozoa and their relation to the sperm motility

    PubMed Central

    Kadivar, Ali; Heidari Khoei, Heidar; Hassanpour, Hossein; Ghanaei, Hamid; Golestanfar, Arefeh; Mehraban, Hossein; Davoodian, Najmeh; Dehghani Tafti, Roohollah

    2016-01-01

    Peroxisome proliferator-activated receptors (PPARs) are a member of nuclear receptors superfamily, which mainly regulate the expression of target genes involved in lipid and energy metabolism. These receptors are divided to three isotypes: PPARα, PPARγ and PPARβ/δ. Each isotype has a distinct tissue distribution relating to the distinct functions. In this study, the mRNA abundance for PPARα, PPARγ and PPARβ/δ was evaluated and compared with high and low motile ram spermatozoa. Semen samples from 6 adult rams were fractionated on a two layer discontinuous Percoll gradient to high and low motile sperm and quantitative parameters of sperm motility were determined by CASA. Total RNA was extracted and the mRNA abundance for each gene was measured by relative quantification technique with Real time PCR. The levels of three isotypes of PPAR transcripts were significantly higher in high motile semen samples using quantitative RT-PCR. Some of sperm motility indices were also significantly correlated with PPARα and PPARγ relative expression. This study revealed the novel association of PPAR gene isotypes with sperm motility. Data from our study suggested PPARs are one of the possible factors that can be studied in male infertility. PMID:27226884

  11. Modulation Effect of Peroxisome Proliferator-Activated Receptor Agonists on Lipid Droplet Proteins in Liver.

    PubMed

    Zhu, Yun-Xia; Zhang, Ming-Liang; Zhong, Yuan; Wang, Chen; Jia, Wei-Ping

    2016-01-01

    Peroxisome proliferator-activated receptor (PPAR) agonists are used for treating hyperglycemia and type 2 diabetes. However, the mechanism of action of these agonists is still under investigation. The lipid droplet-associated proteins FSP27/CIDEC and LSDP5, regulated directly by PPARγ and PPARα, are associated with hepatic steatosis and insulin sensitivity. Here, we evaluated the expression levels of FSP27/CIDEC and LSDP5 and the regulation of these proteins by consumption of a high-fat diet (HFD) or administration of PPAR agonists. Mice with diet-induced obesity were treated with the PPARγ or PPARα agonist, pioglitazone or fenofibrate, respectively. Liver tissues from db/db diabetic mice and human were also collected. Interestingly, FSP27/CIEDC was expressed in mouse and human livers and was upregulated in obese C57BL/6J mice. Fenofibrate treatment decreased hepatic triglyceride (TG) content and FSP27/CIDEC protein expression in mice fed an HFD diet. In mice, LSDP5 was not detected, even in the context of insulin resistance or treatment with PPAR agonists. However, LSDP5 was highly expressed in humans, with elevated expression observed in the fatty liver. We concluded that fenofibrate greatly decreased hepatic TG content and FSP27/CIDEC protein expression in mice fed an HFD, suggesting a potential regulatory role for fenofibrate in the amelioration of hepatic steatosis. PMID:26770990

  12. White tea extract induces apoptosis in non-small cell lung cancer cells: the role of peroxisome proliferator-activated receptor-{gamma} and 15-lipoxygenases.

    PubMed

    Mao, Jenny T; Nie, Wen-Xian; Tsu, I-Hsien; Jin, Yu-Sheng; Rao, Jian Yu; Lu, Qing-Yi; Zhang, Zuo-Feng; Go, Vay Liang W; Serio, Kenneth J

    2010-09-01

    Emerging preclinical data suggests that tea possess anticarcinogenic and antimutagenic properties. We therefore hypothesize that white tea extract (WTE) is capable of favorably modulating apoptosis, a mechanism associated with lung tumorigenesis. We examined the effects of physiologically relevant doses of WTE on the induction of apoptosis in non-small cell lung cancer cell lines A549 (adenocarcinoma) and H520 (squamous cell carcinoma) cells. We further characterized the molecular mechanisms responsible for WTE-induced apoptosis, including the induction of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) and the 15-lipoxygenase (15-LOX) signaling pathways. We found that WTE was effective in inducing apoptosis in both A549 and H520 cells, and inhibition of PPAR-gamma with GW9662 partially reversed WTE-induced apoptosis. We further show that WTE increased PPAR-gamma activation and mRNA expression, concomitantly increased 15(S)-hydroxy-eicosatetraenoic acid release, and upregulated 15-LOX-1 and 15-LOX-2 mRNA expression by A549 cells. Inhibition of 15-LOX with nordihydroguaiaretic acid (NGDA), as well as caffeic acid, abrogated WTE-induced PPAR-gamma activation and upregulation of PPAR-gamma mRNA expression in A549 cells. WTE also induced cyclin-dependent kinase inhibitor 1A mRNA expression and activated caspase-3. Inhibition of caspase-3 abrogated WTE-induced apoptosis. Our findings indicate that WTE is capable of inducing apoptosis in non-small cell lung cancer cell lines. The induction of apoptosis seems to be mediated, in part, through the upregulation of the PPAR-gamma and 15-LOX signaling pathways, with enhanced activation of caspase-3. Our findings support the future investigation of WTE as an antineoplastic and chemopreventive agent for lung cancer. PMID:20668019

  13. Quercetin metabolites inhibit MMP-2 expression in A549 lung cancer cells by PPAR-γ associated mechanisms.

    PubMed

    Chuang, Cheng-Hung; Yeh, Chiao-Lin; Yeh, Shu-Lan; Lin, En-Shyh; Wang, Li-Yu; Wang, Ying-Hsuna

    2016-07-01

    Our previous study demonstrated that quercetin-metabolite-enriched plasma (QP) but not quercetin itself upregulates peroxisome proliferator-activated receptor gamma (PPAR-γ) expression to induce G2/M arrest in A549 cells. In the present study, we incubated A549 cells with QP as well as quercetin-3-glucuronide (Q3G) and quercetin-3'-sulfate (Q3'S), two major metabolites of quercetin, to investigate the effects of quercetin metabolites on cell invasion and migration, the possible mechanisms and the role of PPAR-γ. We also compared the effects of QP with those of quercetin and troglitazone (TGZ), a PPAR-γ ligand. The results showed that QP significantly suppressed cell invasion and migration, as well as matrix metalloproteinases (MMPs)-2 activity and expression in a dose-dependent manner. The effects of 10% QP on those parameters were similar to those of 10μM quercetin and 20μM TGZ. However, QP and TGZ rather than quercetin itself increased the expressions of nm23-H1 and tissue inhibitor of metalloproteinase (TIMP-2). Furthermore, we demonstrated that Q3G and Q3'S also inhibited the protein expression of MMP-2. GW9662, a PPAR-γ antagonist, significantly diminished such an effect of Q3G and Q3'S. Silencing PPAR-γ expression in A549 cells also significantly diminished the suppression effect of Q3G and Q3'S on MMP-2 expression. Taken together, our study demonstrated that QP inhibited cell invasion and migration through nm23-H1/TIMP-2/MMP-2 associated mechanisms. The upregulation of PPAR-γ by quercetin metabolites such as Q3G and Q3'S could play an important role in the effects of QP. PMID:27260467

  14. Expression of the mRNA encoding truncated PPAR alpha does not correlate with hepatic insensitivity to peroxisome proliferators.

    PubMed

    Hanselman, J C; Vartanian, M A; Koester, B P; Gray, S A; Essenburg, A D; Rea, T J; Bisgaier, C L; Pape, M E

    2001-01-01

    Two alternatively spliced forms of human PPAR alpha mRNA, PPAR alpha1 and PPAR alpha2, have been identified. PPAR alpha1 mRNA gives rise to an active PPAR alpha protein while PPAR alpha2 mRNA gives rise to a form of PPAR which lacks the ligand-binding domain. PPAR alpha2 is unable to activate a peroxisome proliferator response element (PPRE) reporter gene construct in transient transfection assays. Both PPAR alpha1 and PPAR alpha2 mRNA are present in human liver, kidney, testes, heart, small intestine, and smooth muscle. In human liver, PPAR alpha2 mRNA abundance is approximately half that of PPAR alpha1 mRNA; a correlation analysis of PPAR alpha1 and PPAR alpha2 mRNA mass revealed an r-value of 0.75 (n = 18). Additional studies with intact liver from various species, showed that the PPAR alpha2/PPAR alpha1 mRNA ratios in rat, rabbit, and mouse liver were less than 0.10; significantly lower than the 0.3 and 0.5 ratios observed in monkey and human livers, respectively. To determine if a high PPAR alpha2/PPAR alpha1 mRNA ratio was associated with insensitivity to peroxisome proliferators, we treated human, rat, and rabbit hepatocytes with WY14643, a potent PPAR alpha activator, and measured acyl CoA oxidase (ACO) mRNA levels. Rat ACO mRNA levels increased markedly in response to WY14643 while human and rabbit hepatocytes were unresponsive. Thus, although the PPAR alpha2/PPAR alpha1 mRNA ratio is low in rabbits, this species is not responsive to peroxisome proliferators. Further studies with male and female rats, which vary significantly in their response to peroxisome proliferators, showed little difference in the ratio of PPAR alpha2/PPAR alpha1 mRNA. These data suggest that selective PPAR alpha2 mRNA expression is not the basis for differential species or gender responses to peroxisome proliferators. PMID:11269670

  15. Mechanisms of perfluoroalkyl acid (PFAA) toxicity: Involvement of peroxisome proliferator activator receptor alpha (PPAR) molecular signals.

    EPA Science Inventory

    Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are members of a family of environmentally persistent perfluorinated compounds and are found in the serum of wildlife and humans. PFOS and PFOA are developmentally toxic in rats and mice. Exposure in utero reduces...

  16. Relationship between Platelet PPARs, cAMP Levels, and P-Selectin Expression: Antiplatelet Activity of Natural Products

    PubMed Central

    Fuentes, Eduardo; Palomo, Iván

    2013-01-01

    Platelets are no longer considered simply as cells participating in thrombosis. In atherosclerosis, platelets are regulators of multiple processes, with the recruitment of inflammatory cells towards the lesion sites, inflammatory mediators release, and regulation of endothelial function. The antiplatelet therapy has been used for a long time in an effort to prevent and treat cardiovascular diseases. However, limited efficacy in some patients, drug resistance, and side effects are limitations of current antiplatelet therapy. In this context, a large number of natural products (polyphenols, terpenoids, alkaloids, and fatty acids) have been reported with antiplatelet activity. In this sense, the present paper describes mechanisms of antiplatelet action of natural products on platelet P-selectin expression through cAMP levels and its role as peroxisome proliferator-activated receptors agonists. PMID:24324520

  17. Ketone Body Therapy Protects From Lipotoxicity and Acute Liver Failure Upon Pparα Deficiency.

    PubMed

    Pawlak, Michal; Baugé, Eric; Lalloyer, Fanny; Lefebvre, Philippe; Staels, Bart

    2015-08-01

    Acute liver failure (ALF) is a severe and rapid liver injury, often occurring without any preexisting liver disease, which may precipitate multiorgan failure and death. ALF is often associated with impaired β-oxidation and increased oxidative stress (OS), characterized by elevated levels of hepatic reactive oxygen species (ROS) and lipid peroxidation (LPO) products. Peroxisome proliferator-activated receptor (PPAR)α has been shown to confer hepatoprotection in acute and chronic liver injury, at least in part, related to its ability to control peroxisomal and mitochondrial β-oxidation. To study the pathophysiological role of PPARα in hepatic response to high OS, we induced a pronounced LPO by treating wild-type and Pparα-deficient mice with high doses of fish oil (FO), containing n-3 polyunsaturated fatty acids. FO feeding of Pparα-deficient mice, in contrast to control sunflower oil, surprisingly induced coma and death due to ALF as indicated by elevated serum alanine aminotransferase, aspartate aminotransferase, ammonia, and a liver-specific increase of ROS and LPO-derived malondialdehyde. Reconstitution of PPARα specifically in the liver using adeno-associated serotype 8 virus-PPARα in Pparα-deficient mice restored β-oxidation and ketogenesis and protected mice from FO-induced lipotoxicity and death. Interestingly, administration of the ketone body β-hydroxybutyrate prevented FO-induced ALF in Pparα-deficient mice, and normalized liver ROS and malondialdehyde levels. Therefore, PPARα protects the liver from FO-induced OS through its regulatory actions on ketone body levels. β-Hydroxybutyrate treatment could thus be an option to prevent LPO-induced liver damage. PMID:26087172

  18. Oleoylethanolamide, an endogenous PPAR-α ligand, attenuates liver fibrosis targeting hepatic stellate cells

    PubMed Central

    Chen, Junde; Li, Lei; Zheng, Zihan; Ren, Jie; Qiu, Yan

    2015-01-01

    Oleoylethanolamide (OEA), an endocannabinoid-like molecule, was revealed to modulate lipid metabolism through a peroxisome proliferator-activated receptor-α (PPAR-α) mediated mechanism. In present study, we further investigated the activities and mechanisms of OEA in ameliorating hepatic fibrosis in Sv/129 mice induced by a methionine choline-deficient (MCD) diet or thioacetamide (TAA) treatment. Liver fibrosis development was assessed by Hematoxylin-eosin and Sirius red staining. Treatment with OEA (5 mg/kg/day, intraperitoneal injection, i.p.) significantly attenuated the progress of liver fibrosis in both two experimental animal models by blocking the activation of hepatic stellate cells (HSCs). Gene expression analysis of hepatic tissues indicated that OEA inhibited the expression of α-smooth muscle action (α-SMA) and collagen matrix, fibrosis markers, and genes involved in inflammation and extracellular matrix remodeling. In vitro studies showed that OEA inhibited transforming growth factor β1-stimulated HSCs activation through suppressing Smad2/3 phosphorylation, α-SMA expression and myofibroblast transformation. These improvements could not be observed in PPAR-α knockout mice models with OEA administration, which suggested all the anti-fibrotic effects of OEA in vivo and in vitro were mediated by PPARactivation. Collectively, our results suggested that OEA exerted a pharmacological effect on modulating hepatic fibrosis development through the inhibition of HSCs activation in liver and therefore may be a potential therapeutic agent for liver fibrosis. PMID:26729705

  19. Oleoylethanolamide, an endogenous PPAR-α ligand, attenuates liver fibrosis targeting hepatic stellate cells.

    PubMed

    Chen, Ling; Li, Long; Chen, Junde; Li, Lei; Zheng, Zihan; Ren, Jie; Qiu, Yan

    2015-12-15

    Oleoylethanolamide (OEA), an endocannabinoid-like molecule, was revealed to modulate lipid metabolism through a peroxisome proliferator-activated receptor-α (PPAR-α) mediated mechanism. In present study, we further investigated the activities and mechanisms of OEA in ameliorating hepatic fibrosis in Sv/129 mice induced by a methionine choline-deficient (MCD) diet or thioacetamide (TAA) treatment. Liver fibrosis development was assessed by Hematoxylin-eosin and Sirius red staining. Treatment with OEA (5 mg/kg/day, intraperitoneal injection, i.p.) significantly attenuated the progress of liver fibrosis in both two experimental animal models by blocking the activation of hepatic stellate cells (HSCs). Gene expression analysis of hepatic tissues indicated that OEA inhibited the expression of α-smooth muscle action (α-SMA) and collagen matrix, fibrosis markers, and genes involved in inflammation and extracellular matrix remodeling. In vitro studies showed that OEA inhibited transforming growth factor β1-stimulated HSCs activation through suppressing Smad2/3 phosphorylation, α-SMA expression and myofibroblast transformation. These improvements could not be observed in PPAR-α knockout mice models with OEA administration, which suggested all the anti-fibrotic effects of OEA in vivo and in vitro were mediated by PPARactivation. Collectively, our results suggested that OEA exerted a pharmacological effect on modulating hepatic fibrosis development through the inhibition of HSCs activation in liver and therefore may be a potential therapeutic agent for liver fibrosis. PMID:26729705

  20. 15-lipoxygenase-1 exerts its tumor suppressive role by inhibiting nuclear factor-kappa B via activation of PPAR gamma.

    PubMed

    Cimen, I; Astarci, E; Banerjee, S

    2011-09-01

    15-Lipoxygenase-1 (15-LOX-1) is an enzyme of the inflammatory eicosanoid pathway whose expression is known to be lost in colorectal cancer (CRC). We have previously shown that reintroduction of the gene in CRC cell lines slows proliferation and induces apoptosis (Cimen et al. [2009] Cancer Sci 100: 2283-2291). We have hypothesized that 15-LOX-1 may be anti-tumorigenic by the inhibition of the anti-apoptotic inflammatory transcription factor nuclear factor kappa B. We show here that ectopic expression of 15-LOX-1 gene in HCT-116 and HT-29 CRC cell lines inhibited the degradation of inhibitor of kappa B (IκBα), decreased nuclear translocation of p65 and p50, decreased DNA binding in the nucleus and decreased transcriptional activity of Nuclear factor kappa B (NF-κB). As the 15-LOX-1 enzymatic product 13(S)-HODE is known to be a peroxisome proliferator-activated receptor gamma (PPARγ) agonist, and NF-κB can be inhibited by PPARγ, we examined whether activation of PPARγ was necessary for the abrogation of NF-κB activity. Our data show that the inhibition of both early and late stages of NF-κB activation could rescued by the PPARγ antagonist GW9662 indicating that the inhibition was most likely mediated via PPARγ. PMID:21544861

  1. Septin4_i1 regulates apoptosis in hepatic stellate cells through peroxisome proliferator-activated receptor-γ/Akt/B-cell lymphoma 2 pathway.

    PubMed

    Zhu, Dandan; Wang, Jianxin; Sun, Xiaolei; Chen, Jinling; Duan, Yinong; Pan, Jing; Xu, Tianhua; Qin, Yongwei; He, Xingxin; Huang, Caiqun

    2015-03-01

    Apoptosis of activated hepatic stellate cells (HSCs) has been verified as a potential mechanism to aid in hepatic fibrosis remission. Earlier research suggests that Septin4_i1 may sensitize hepatocellular carcinoma cells to serum starvation-induced apoptosis. Here, we aimed to investigate the effect of Septin4_i1 on HSC apoptosis and explore the associated signaling pathways. We found that Septin4_i1 can induce apoptosis in LX-2 cells and that this is accompanied by an up-regulation in cleaved-caspase-3 and peroxisome proliferator-activated receptor-γ (PPAR-γ) expression and a down-regulation in α-SMA expression. Over-expression of Septin4_i1 reduced phosphorylated Akt and B-cell lymphoma 2 (Bcl-2) expression but had no effect on the expression of p53 and death receptor (DR)-5. The decreased expression of Bcl-2 and the increased expression of cleaved-caspase-3 induced by Sept4_i1 could be reversed by GW501516, a PPAR-β/δ agonist that has been reported by others to enhance Akt signaling. In addition, GW9662, an antagonist of PPAR-γ, could also inhibit apoptosis in LX-2 cells induced by Sept4_i1. In conclusion, our data suggest that Sept4_i1 induces HSC apoptosis by inhibiting Akt and Bcl-2 expression and up-regulating PPAR-γ expression. PMID:25527525

  2. Nonalcoholic steatohepatitic (NASH) mice are protected from higher hepatotoxicity of acetaminophen upon induction of PPAR{alpha} with clofibrate

    SciTech Connect

    Donthamsetty, Shashikiran; Bhave, Vishakha S.; Mitra, Mayurranjan S.; Latendresse, John R.; Mehendale, Harihara M.

    2008-08-01

    The objective was to investigate if the hepatotoxic sensitivity in nonalcoholic steatohepatitic mice to acetaminophen (APAP) is due to downregulation of nuclear receptor PPAR{alpha} via lower cell division and tissue repair. Male Swiss Webster mice fed methionine and choline deficient diet for 31 days exhibited NASH. On the 32nd day, a marginally toxic dose of APAP (360 mg/kg, ip) yielded 70% mortality in steatohepatitic mice, while all non steatohepatitic mice receiving the same dose survived. {sup 14}C-APAP covalent binding, CYP2E1 protein, and enzyme activity did not differ from the controls, obviating increased APAP bioactivation as the cause of amplified APAP hepatotoxicity. Liver injury progressed only in steatohepatitic livers between 6 and 24 h. Cell division and tissue repair assessed by {sup 3}H-thymidine incorporation and PCNA were inhibited only in the steatohepatitic mice given APAP suggesting that higher sensitivity of NASH liver to APAP-induced hepatotoxicity was due to lower tissue repair. The hypothesis that impeded liver tissue repair in steatohepatitic mice was due to downregulation of PPAR{alpha} was tested. PPAR{alpha} was downregulated in NASH. To investigate whether downregulation of PPAR{alpha} in NASH is the critical mechanism of compromised liver tissue repair, PPAR{alpha} was induced in steatohepatitic mice with clofibrate (250 mg/kg for 3 days, ip) before injecting APAP. All clofibrate pretreated steatohepatitic mice receiving APAP exhibited lower liver injury, which did not progress and the mice survived. The protection was not due to lower bioactivation of APAP but due to higher liver tissue repair. These findings suggest that inadequate PPAR{alpha} expression in steatohepatitic mice sensitizes them to APAP hepatotoxicity.

  3. Adiponectin promotes hyaluronan synthesis along with increases in hyaluronan synthase 2 transcripts through an AMP-activated protein kinase/peroxisome proliferator-activated receptor-{alpha}-dependent pathway in human dermal fibroblasts

    SciTech Connect

    Yamane, Takumi; Kobayashi-Hattori, Kazuo; Oishi, Yuichi

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Adiponectin promotes hyaluronan synthesis along with an increase in HAS2 transcripts. Black-Right-Pointing-Pointer Adiponectin also increases the phosphorylation of AMPK. Black-Right-Pointing-Pointer A pharmacological activator of AMPK increases mRNA levels of PPAR{alpha} and HAS2. Black-Right-Pointing-Pointer Adiponectin-induced HAS2 mRNA expression is blocked by a PPAR{alpha} antagonist. Black-Right-Pointing-Pointer Adiponectin promotes hyaluronan synthesis via an AMPK/PPAR{alpha}-dependent pathway. -- Abstract: Although adipocytokines affect the functions of skin, little information is available on the effect of adiponectin on the skin. In this study, we investigated the effect of adiponectin on hyaluronan synthesis and its regulatory mechanisms in human dermal fibroblasts. Adiponectin promoted hyaluronan synthesis along with an increase in the mRNA levels of hyaluronan synthase 2 (HAS2), which plays a primary role in hyaluronan synthesis. Adiponectin also increased the phosphorylation of AMP-activated protein kinase (AMPK). A pharmacological activator of AMPK, 5-aminoimidazole-4-carboxamide-1{beta}-ribofuranoside (AICAR), increased mRNA levels of peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}), which enhances the expression of HAS2 mRNA. In addition, AICAR increased the mRNA levels of HAS2. Adiponectin-induced HAS2 mRNA expression was blocked by GW6471, a PPAR{alpha} antagonist, in a concentration-dependent manner. These results show that adiponectin promotes hyaluronan synthesis along with increases in HAS2 transcripts through an AMPK/PPAR{alpha}-dependent pathway in human dermal fibroblasts. Thus, our study suggests that adiponectin may be beneficial for retaining moisture in the skin, anti-inflammatory activity, and the treatment of a variety of cutaneous diseases.

  4. Effects of the environmental contaminants DEHP and TCDD on estradiol synthesis and aryl hydrocarbon receptor and peroxisome proliferator-activated receptor signalling in the human granulosa cell line KGN.

    PubMed

    Ernst, Jana; Jann, Johann-Christoph; Biemann, Ronald; Koch, Holger M; Fischer, Bernd

    2014-09-01

    Environmental contaminants binding to transcription factors, such as the aryl hydrocarbon receptor (AhR) and the alpha and gamma peroxisome proliferator-activated receptors (PPARs), contribute to adverse effects on the reproductive system. Expressing both the AhR and PPARs, the human granulosa cell line KGN offers the opportunity to investigate the regulatory mechanisms involved in receptor crosstalk, independent of overriding hormonal control. The aim of the present study was to investigate the impact of two environmental contaminants, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, an AhR ligand) and di-(2-ethylhexyl) phthalate (DEHP, a PPAR ligand), on gonadotrophin sensitivity and estrogen synthesis in KGN cells. Accumulation of the DEHP metabolite mono-(2-ethylhexyl) phthalate (MEHP) in DEHP-exposed cells was measured by high-performance liquid chromatography mass spectrometry, thereby demonstrating DEHP metabolism to MEHP by KGN cells. By employing TCDD ( an AhR agonist), rosiglitazone (a PPARgamma agonist) or bezafibrate (a PPARalpha agonist), the presence of a functional AhR and PPAR cascade was confirmed in KGN cells. Cytotoxicity testing revealed no effect on KGN cell proliferation for the concentrations of TCDD and DEHP used in the current study. FSH-stimulated cells were exposed to TCDD, DEHP or a mix of both and estradiol synthesis was measured by enzyme-linked immunosorbent assay and gene expression by quantitative RT-PCR. Exposure decreased estradiol synthesis (TCDD, DEHP, mix) and reduced the mRNA expression of CYP19 aromatase (DEHP, mix) and FSHR (DEHP). DEHP induced the expression of the alpha and gamma PPARs and AhR, an effect which was inhibited by selective PPAR antagonists. Studies in the human granulosa cell line KGN show that the action of endocrine-disrupting chemicals may be due to a direct activation of AhR, for example by TCDD, and by a transactivation via PPARs, for example by DEHP, inducing subsequent transcriptional changes with a broad

  5. Arctigenin promotes cholesterol efflux from THP-1 macrophages through PPAR-γ/LXR-α signaling pathway.

    PubMed

    Xu, Xiaolin; Li, Qian; Pang, Liewen; Huang, Guoqian; Huang, Jiechun; Shi, Meng; Sun, Xiaotian; Wang, Yiqing

    2013-11-15

    Cholesterol efflux from macrophages is a critical mechanism to prevent the development of atherosclerosis. Here, we sought to investigate the effects of arctigenin, a bioactive component of Arctium lappa, on the cholesterol efflux in oxidized low-density lipoprotein (oxLDL)-loaded THP-1 macrophages. Our data showed that arctigenin significantly accelerated apolipoprotein A-I- and high-density lipoprotein-induced cholesterol efflux in both dose- and time-dependent manners. Moreover, arctigenin treatment enhanced the expression of ATP binding cassette transporter A1 (ABCA1), ABCG1, and apoE, all of which are key molecules in the initial step of cholesterol efflux, at both mRNA and protein levels. Arctigenin also caused a concentration-dependent elevation in the expression of peroxisome proliferator-activated receptor-gamma (PPAR-γ) and liver X receptor-alpha (LXR-α). The arctigenin-mediated induction of ABCA1, ABCG1, and apoE was abolished by specific inhibition of PPAR-γ or LXR-α using small interfering RNA technology. Our results collectively indicate that arctigenin promotes cholesterol efflux in oxLDL-loaded THP-1 macrophages through upregulation of ABCA1, ABCG1 and apoE, which is dependent on the enhanced expression of PPAR-γ and LXR-α. PMID:24140409

  6. Important pharmacophoric features of pan PPAR agonists: common chemical feature analysis and virtual screening.

    PubMed

    Sundriyal, Sandeep; Bharatam, Prasad V

    2009-09-01

    HipHop program was used to generate a common chemical feature hypothesis for pan Peroxisome Proliferator-Activated Receptor (PPAR) agonists. The top scoring hypothesis (hypo-1) was found to differentiate the pan agonists (actives) from subtype-specific and dual PPAR agonists (inactives). The importance of individual features in hypo-1 was assessed by deleting a particular feature to generate a new hypothesis and observing its discriminating ability between 'actives' and 'inactives'. Deletion of aromatic features AR-1 (hypo-1b), AR-2 (hypo-1e) and a Hydrophobic feature HYD-1 (hypo-1c) individually did not affect the discriminating power of the hypo-1 significantly. However, deletion of a Hydrogen Bond Acceptor (HBA) feature (hypo-1f) in the hydrophobic tail group was found to be highly detrimental for the specificity of hypo-1 leading to high hit rate of 'inactives'. Since hypo-1 did not produce any useful hits from the database search, hypo-1b, hypo-1c and hypo-1e were used for virtual screening leading to the identification of new potential pan PPAR ligands. The docking studies were used to predict the binding pose of the proposed molecules in PPARgamma active site. PMID:19268404

  7. Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone attenuates postincisional pain by regulating macrophage polarization

    SciTech Connect

    Hasegawa-Moriyama, Maiko; Ohnou, Tetsuya; Godai, Kohei; Kurimoto, Tae; Nakama, Mayo; Kanmura, Yuichi

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Rosiglitazone attenuated postincisional pain. Black-Right-Pointing-Pointer Rosiglitazone alters macrophage polarization to F4/80{sup +}CD206{sup +} M2 macrophages at the incisional sites. Black-Right-Pointing-Pointer Transplantation of rosiglitazone-treated macrophages produced analgesic effects. -- Abstract: Acute inflammation triggered by macrophage infiltration to injured tissue promotes wound repair and may induce pain hypersensitivity. Peroxisome proliferator-activated receptor {gamma} (PPAR){gamma} signaling is known to regulate heterogeneity of macrophages, which are often referred to as classically activated (M1) and alternatively activated (M2) macrophages. M1 macrophages have considerable antimicrobial activity and produce a wide variety of proinflammatory cytokines. In contrast, M2 macrophages are involved in anti-inflammatory and homeostatic functions linked to wound healing and tissue repair. Although it has been suggested that PPAR{gamma} agonists attenuate pain hypersensitivity, the molecular mechanism of macrophage-mediated effects of PPAR{gamma} signaling on pain development has not been explored. In this study, we investigated the link between the phenotype switching of macrophage polarization induced by PPAR{gamma} signaling and the development of acute pain hypersensitivity. Local administration of rosiglitazone significantly ameliorated hypersensitivity to heat and mechanical stimuli, and paw swelling. Consistent with the down-regulation of nuclear factor {kappa}B (NF{kappa}B) phosphorylation by rosiglitazone at the incisional sites, the number of F4/80{sup +}iNOS{sup +} M1 macrophages was decreased whereas numbers of F4/80{sup +}CD206{sup +} M2 macrophages were increased in rosiglitazone-treated incisional sites 24 h after the procedure. In addition, gene induction of anti-inflammatory M2-macrophage-associated markers such as arginase1, FIZZ1 and interleukin (IL)-10 were significantly increased, whereas

  8. Pharmacological Activation of Peroxisome Proliferator-Activated Receptor {Delta} Increases Sphingomyelin Synthase Activity in THP-1 Macrophage-Derived Foam Cell.

    PubMed

    Mou, Dongsheng; Yang, Hua; Qu, Changhua; Chen, Juan; Zhang, Chaogui

    2016-08-01

    Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors, which mediate glucose and lipid homeostasis by regulating the expression of a large number of transcription factors. Sphingomyelin synthase (SMS) is a key enzyme in the synthesis of sphingomyelin (SM), and its expression and activity have been reported to be associated with atherosclerosis (AS). Although there have been many functional PPAR and SMS studies on atherosclerosis in recent years, few have investigated the correlation between the activation of PPARδ and the activity of SMS. In his study, macrophage-induced foam cells were utilized to model important pathological changes that occur in AS. The influence of PPARδ agonism by GW501516 on SMS and its product molecule SM were measured. Results indicated that the activation of PPARδ was correlated in a positive manner with the activity of SMS2, and the content of SM was dose dependently increased by GW501516. Together, this study represents the first to suggest that PPARδ activation may be a potential risk of AS through enhancing activity of SMS2. PMID:27278004

  9. Relationship between lipoprotein lipase and peroxisome proliferator-activated receptor-alpha expression in rat liver during development.

    PubMed

    Panadero, M; Bocos, C; Herrera, E

    2006-09-01

    The present study was addressed to determine whether the high expression of peroxisome proliferator-activated receptor-alpha (PPAR-alpha) in rat liver during the perinatal stage plays a role in the induction of liver lipoprotein lipase (LPL) expression and activity. Parallel increases in liver mRNA PPAR-alpha and LPL activity were found in newborn rats, and after a slight decline, values remained elevated until weaning. Anticipated weaning for 3 days caused a decline in those two variables as well as in the mRNA LPL level, and a similar change was also found in liver triacylglycerol concentration. Force-feeding with Intralipid in 10-day-old rats or animals kept fasted for 5 h showed high mRNA-PPARalpha and -LPL levels as well as LPL activity with low plasma insulin and high FFA levels, whereas glucose and a combination of glucose and Intralipid produced low mRNA-PPARalpha and -LPL levels as well as LPL activity. Under these latter conditions, plasma insulin and FFA levels were high in those rats receiving the combination of glucose and Intralipid, whereas plasma FFA levels were low in those force-fed with glucose. It is proposed that the hormonal and nutritional induction of liver PPAR-alpha expression around birth and its maintained elevated level throughout suckling is responsible for the induction of liver LPL-expression and activity during suckling. PMID:17451160

  10. Stimulation of proximal tubular cell apoptosis by albumin-bound fatty acids mediated by peroxisome proliferator activated receptor-gamma.

    PubMed

    Arici, Mustafa; Chana, Ravinder; Lewington, Andrew; Brown, Jez; Brunskill, Nigel John

    2003-01-01

    In nephrotic syndrome, large quantities of albumin enter the kidney tubule. This albumin carries with it a heavy load of fatty acids to which the proximal tubule cells are exposed at high concentration. It is postulated that exposure to fatty acids in this way is injurious to proximal tubule cells. This study has examined the ability of fatty acids to interact with peroxisome proliferator-activated receptors (PPAR) in primary cultures of human proximal tubule cells. Luciferase reporter assays in transiently transfected human proximal tubule cells were used to show that albumin bound fatty acids and other agonists activate PPARgamma in a dose-dependent manner. One of the consequences of this activation is apoptosis of the cells as determined by changes in cell morphology, evidence of PARP cleavage, and appearance of DNA laddering. Overexpression of PPARgamma in these cells also results in enhanced apoptosis. Both fatty acid-induced PPAR activation and apoptosis in these cells can be blocked by PPAR response element decoy oligonucleotides. Activation of PPARgamma by the specific agonist PGJ(2) is associated with inhibition of cell proliferation, whereas activation by albumin bound fatty acids is accompanied by increased proliferation. However, the net balance of apoptosis/proliferation favors deletion of cells. These results implicate albumin-bound fatty acids as important mediators of tubular injury in nephrosis and provide fresh impetus for pursuit of lipid-lowering strategies in proteinuric renal disease. PMID:12506134

  11. Mechanisms of peroxisome proliferator activated receptor γ regulation by non-steroidal anti-inflammatory drugs

    PubMed Central

    Puhl, Ana C.; Milton, Flora A.; Cvoro, Aleksandra; Sieglaff, Douglas H.; Campos, Jéssica C.L.; Bernardes, Amanda; Filgueira, Carly S.; Lindemann, Jan Lammel; Deng, Tuo; Neves, Francisco A.R.; Polikarpov, Igor; Webb, Paul

    2015-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) display anti-inflammatory, antipyretic and analgesic properties by inhibiting cyclooxygenases and blocking prostaglandin production. Previous studies, however, suggested that some NSAIDs also modulate peroxisome proliferator activated receptors (PPARs), raising the possibility that such off target effects contribute to the spectrum of clinically relevant NSAID actions. In this study, we set out to understand how peroxisome proliferator activated receptor-γ (PPARγ/PPARG) interacts with NSAIDs using X-ray crystallography and to relate ligand binding modes to effects on receptor activity. We find that several NSAIDs (sulindac sulfide, diclofenac, indomethacin and ibuprofen) bind PPARγ and modulate PPARγ activity at pharmacologically relevant concentrations. Diclofenac acts as a partial agonist and binds to the PPARγ ligand binding pocket (LBP) in typical partial agonist mode, near the β-sheets and helix 3. By contrast, two copies of indomethacin and sulindac sulfide bind the LBP and, in aggregate, these ligands engage in LBP contacts that resemble agonists. Accordingly, both compounds, and ibuprofen, act as strong partial agonists. Assessment of NSAID activities in PPARγ-dependent 3T3-L1 cells reveals that NSAIDs display adipogenic activities and exclusively regulate PPARγ-dependent target genes in a manner that is consistent with their observed binding modes. Further, PPARγ knockdown eliminates indomethacin activities at selected endogenous genes, confirming receptor-dependence of observed effects. We propose that it is important to consider how individual NSAIDs interact with PPARγ to understand their activities, and that it will be interesting to determine whether high dose NSAID therapies result in PPAR activation. PMID:26445566

  12. Chemical synthesis, docking studies and biological effects of a pan peroxisome proliferator-activated receptor agonist and cyclooxygenase inhibitor.

    PubMed

    Santin, José Roberto; Uchôa, Flávia D T; Lima, Maria do Carmo A; Rabello, Marcelo M; Machado, Isabel Daufenback; Hernandes, Marcelo Z; Amato, Angelica A; Milton, Flora Aparecida; Webb, Paul; Neves, Francisco de Assis Rocha; Galdino, Suely L; Pitta, Ivan Rocha; Farsky, Sandra H P

    2013-03-12

    The compound (5Z)-5-[(5-bromo-1H-indol-3-yl)methylene]-3-(4-chlorobenzyl)-thiazolidine-2,4-dione (LYSO-7) was synthesised in order to obtain a new type of anti-inflammatory drug, designed with hybrid features to inhibit cyclooxygenase (COX) and also to activate peroxisome proliferator-activated receptor (PPAR). Results obtained from docking (in silico) studies corroborated with experimental data, showing the potential affinity between the studied ligand and targets. The specificity of LYSO-7 for COX-enzymes was detected by the inhibition of COX-1 and COX-2 activities by 30% and 20%, respectively. In transactivation reporter gene assays LYSO-07 showed a pan partial agonist effect on the three PPAR subtypes (PPARγ, PPARα and PPARβ/δ). The agonist action on PPARγ was also observed by a pharmacological approach, as the reduction in the Escherichia coli lipopolysaccharide (LPS)-induced interleukin 1 beta (IL-1β) secretion and nitric oxide (NO) production by mouse neutrophils was blocked by GW9962, a specific PPARγ antagonist. Additionally, the in vivo effect was measured by reduced carrageenan-induced neutrophil influx into the subcutaneous tissue of mice. Taken together, these data show that LYSO-7 displays a potent in vivo anti-inflammatory effect during the innate acute response, which is dependent on its associated COX inhibitory activities and PPAR activation. PMID:23305993

  13. Differential Roles of Peroxisome Proliferator-Activated Receptor-α and Receptor-γ on Renal Crystal Formation in Hyperoxaluric Rodents

    PubMed Central

    Taguchi, Kazumi; Hamamoto, Shuzo; Unno, Rei; Kobayashi, Takahiro; Ando, Ryosuke; Tozawa, Keiichi; Gao, Bing; Kohri, Kenjiro; Yasui, Takahiro

    2016-01-01

    Peroxisome proliferator-activated receptors (PPARs) and related inflammatory and oxidative molecule expression were investigated in a hyperoxaluric rodent model to evaluate the in vivo efficacy of PPAR agonists in preventing renal crystal formation. PPAR expression was examined in a mouse hyperoxaluria kidney stone model induced by daily intra-abdominal glyoxylate injection. Therapeutic effects of the PPARα agonist fenofibrate and PPARγ agonist pioglitazone were also assessed in a 1% ethylene glycol-induced rat model of hyperoxaluria. Crystal formation, inflammation, cell injury, apoptosis, and oxidative stress were compared to those of vehicle-treated controls. Quantitative reverse transcription-polymerase chain reaction revealed that PPARα and PPARγ expression decrease and increase, respectively, during crystal formation in hyperoxaluric kidneys. In addition, PPARα localized to the cytoplasm of both proximal and distal tubular cells, whereas PPARγ accumulated in the nucleus of proximal tubular cells. Furthermore, renal crystal formation was significantly less prevalent in pioglitazone-treated rats but higher in the fenofibrate-treated and fenofibrate/pioglitazone-cotreated groups compared to controls, thus indicating that pioglitazone, but not fenofibrate, markedly decreased cell inflammation, oxidative stress, and apoptosis. Collectively, the results demonstrated that PPARγ suppressed renal crystal formation via its antioxidative and anti-inflammatory effects; however, the renotoxicity of PPARα may elicit the opposite effect. PMID:27022389

  14. Nifedipine inhibits advanced glycation end products (AGEs) and their receptor (RAGE) interaction-mediated proximal tubular cell injury via peroxisome proliferator-activated receptor-gamma activation

    SciTech Connect

    Matsui, Takanori; Yamagishi, Sho-ichi; Takeuchi, Masayoshi; Ueda, Seiji; Fukami, Kei; Okuda, Seiya

    2010-07-23

    Research highlights: {yields} Nifedipine inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by GW9662, an inhibitor of peroxisome proliferator-activated receptor-{gamma}. {yields} GW9662 treatment alone increased RAGE mRNA levels in tubular cells. {yields} Nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-{kappa}B activation and increases in intercellular adhesion molecule-1 and transforming growth factor-{beta} gene expression in tubular cells, all of which were blocked by GW9662. -- Abstract: There is a growing body of evidence that advanced glycation end products (AGEs) and their receptor (RAGE) interaction evokes oxidative stress generation and subsequently elicits inflammatory and fibrogenic reactions, thereby contributing to the development and progression of diabetic nephropathy. We have previously found that nifedipine, a calcium-channel blocker (CCB), inhibits the AGE-induced mesangial cell damage in vitro. However, effects of nifedipine on proximal tubular cell injury remain unknown. We examined here whether and how nifedipine blocked the AGE-induced tubular cell damage. Nifedipine, but not amlodipine, a control CCB, inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by the simultaneous treatment of GW9662, an inhibitor of peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}). GW9662 treatment alone was found to increase RAGE mRNA levels in tubular cells. Further, nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-{kappa}B activation and increases in intercellular adhesion molecule-1 and transforming growth factor-beta gene expression in tubular cells, all of which were blocked by GW9662. Our present study provides a unique beneficial aspect of nifedipine on diabetic nephropathy; it could work as an anti-oxidative and anti-inflammatory agent against AGEs in tubular cells by suppressing RAGE expression

  15. Adiponectin, a downstream target gene of peroxisome proliferator-activated receptor {gamma}, controls hepatitis B virus replication

    SciTech Connect

    Yoon, Sarah; Jung, Jaesung; Kim, Taeyeung; Park, Sun; Chwae, Yong-Joon; Shin, Ho-Joon; Kim, Kyongmin

    2011-01-20

    In this study, HepG2-hepatitis B virus (HBV)-stable cells that did not overexpress HBx and HBx-deficient mutant-transfected cells were analyzed for their expression of HBV-induced, upregulated adipogenic and lipogenic genes. The mRNAs of CCAAT enhancer binding protein {alpha} (C/EBP{alpha}), peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}), adiponectin, liver X receptor {alpha} (LXR{alpha}), sterol regulatory element binding protein 1c (SREBP1c), and fatty acid synthase (FAS) were expressed at higher levels in HepG2-HBV and lamivudine-treated stable cells and HBx-deficient mutant-transfected cells than in the HepG2 cells. Lamivudine treatment reduced the mRNA levels of PPAR{gamma} and C/EBP{alpha}. Conversely, HBV replication was upregulated by adiponectin and PPAR{gamma} agonist rosiglitazone treatments and was downregulated by adiponectin siRNAs. Collectively, our results demonstrate that HBV replication and/or protein expression, even in the absence of HBx, upregulated adipogenic or lipogenic genes, and that the control of adiponectin might prove useful as a therapeutic modality for the treatment of chronic hepatitis B.

  16. The Effect of Resveratrol and Quercetin Treatment on PPAR Mediated Uncoupling Protein (UCP-) 1, 2, and 3 Expression in Visceral White Adipose Tissue from Metabolic Syndrome Rats.

    PubMed

    Castrejón-Tellez, Vicente; Rodríguez-Pérez, José Manuel; Pérez-Torres, Israel; Pérez-Hernández, Nonanzit; Cruz-Lagunas, Alfredo; Guarner-Lans, Verónica; Vargas-Alarcón, Gilberto; Rubio-Ruiz, María Esther

    2016-01-01

    Uncoupling proteins (UCPs) are members of the mitochondrial anion carrier superfamily involved in the control of body temperature and energy balance regulation. They are currently proposed as therapeutic targets for treating obesity and metabolic syndrome (MetS). We studied the gene expression regulation of UCP1, -2, and -3 in abdominal white adipose tissue (WAT) from control and MetS rats treated with two doses of a commercial mixture of resveratrol (RSV) and quercetin (QRC). We found that UCP2 was the predominantly expressed isoform, UCP3 was present at very low levels, and UCP1 was undetectable. The treatment with RSV + QRC did not modify UCP3 levels; however, it significantly increased UCP2 mRNA in control and MetS rats in association with an increase in oleic and linoleic fatty acids. WAT from MetS rats showed a significantly increased expression of peroxisome proliferator-activated receptor (PPAR)-α and PPAR-γ when compared to the control group. Furthermore, PPAR-α protein levels were increased by the highest dose of RSV + QRC in the control and MetS groups. PPAR-γ expression was only increased in the control group. We conclude that the RSV + QRC treatment leads to overexpression of UCP2, which is associated with an increase in MUFA and PUFA, which might increase PPAR-α expression. PMID:27399675

  17. The Effect of Resveratrol and Quercetin Treatment on PPAR Mediated Uncoupling Protein (UCP-) 1, 2, and 3 Expression in Visceral White Adipose Tissue from Metabolic Syndrome Rats

    PubMed Central

    Castrejón-Tellez, Vicente; Rodríguez-Pérez, José Manuel; Pérez-Torres, Israel; Pérez-Hernández, Nonanzit; Cruz-Lagunas, Alfredo; Guarner-Lans, Verónica; Vargas-Alarcón, Gilberto; Rubio-Ruiz, María Esther

    2016-01-01

    Uncoupling proteins (UCPs) are members of the mitochondrial anion carrier superfamily involved in the control of body temperature and energy balance regulation. They are currently proposed as therapeutic targets for treating obesity and metabolic syndrome (MetS). We studied the gene expression regulation of UCP1, -2, and -3 in abdominal white adipose tissue (WAT) from control and MetS rats treated with two doses of a commercial mixture of resveratrol (RSV) and quercetin (QRC). We found that UCP2 was the predominantly expressed isoform, UCP3 was present at very low levels, and UCP1 was undetectable. The treatment with RSV + QRC did not modify UCP3 levels; however, it significantly increased UCP2 mRNA in control and MetS rats in association with an increase in oleic and linoleic fatty acids. WAT from MetS rats showed a significantly increased expression of peroxisome proliferator-activated receptor (PPAR)-α and PPAR-γ when compared to the control group. Furthermore, PPAR-α protein levels were increased by the highest dose of RSV + QRC in the control and MetS groups. PPAR-γ expression was only increased in the control group. We conclude that the RSV + QRC treatment leads to overexpression of UCP2, which is associated with an increase in MUFA and PUFA, which might increase PPAR-α expression. PMID:27399675

  18. PPAR{gamma} ligands induce growth inhibition and apoptosis through p63 and p73 in human ovarian cancer cells

    SciTech Connect

    Kim, Soyeon; Lee, Jae-Jung; Heo, Dae Seog

    2011-03-18

    Research highlights: {yields} PPAR{gamma} ligands increased the rate of apoptosis and inhibition of proliferation in ovarian cancer cells. {yields} PPAR{gamma} ligands induced p63 and p73 expression, but not p53. {yields} p63 and p73 leads to an increase in p21 expression and apoptosis in ovarian cancer cells with treatment PPAR{gamma} ligands. {yields} These findings suggest that PPAR{gamma} ligands suppressed growth of ovarian cancer cells through upregulation of p63 and p73. -- Abstract: Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) agonists, including thiazolidinediones (TZDs), can induce anti-proliferation, differentiation, and apoptosis in various cancer cell types. This study investigated the mechanism of the anticancer effect of TZDs on human ovarian cancer. Six human ovarian cancer cell lines (NIH:OVCAR3, SKOV3, SNU-251, SNU-8, SNU-840, and 2774) were treated with the TZD, which induced dose-dependent inhibition of cell growth. Additionally, these cell lines exhibited various expression levels of PPAR{gamma} protein as revealed by Western blotting. Flow cytometry showed that the cell cycle was arrested at the G1 phase, as demonstrated by the appearance of a sub-G1 peak. This observation was corroborated by the finding of increased levels of Bax, p21, PARP, and cleaved caspase 3 in TGZ-treated cells. Interestingly, when we determined the effect of p53-induced growth inhibition in these three human ovarian cancer cells, we found that they either lacked p53 or contained a mutant form of p53. Furthermore, TGZ induced the expression of endogenous or exogenous p63 and p73 proteins and p63- or p73-directed short hairpin (si) RNAs inhibited the ability of TGZ to regulate expression of p21 in these cells. Thus, our results suggest that PPAR{gamma} ligands can induce growth suppression of ovarian cancer cells and mediate p63 and p73 expression, leading to enhanced growth inhibition and apoptosis. The tumor suppressive effects of PPAR{gamma} ligands

  19. Activation of peroxisome proliferator-activated receptor α induces lysosomal biogenesis in brain cells: implications for lysosomal storage disorders.

    PubMed

    Ghosh, Arunava; Jana, Malabendu; Modi, Khushbu; Gonzalez, Frank J; Sims, Katherine B; Berry-Kravis, Elizabeth; Pahan, Kalipada

    2015-04-17

    Lysosomes are ubiquitous membrane-enclosed organelles filled with an acidic interior and are central to the autophagic, endocytic, or phagocytic pathway. In contrast to its classical function as the waste management machinery, lysosomes are now considered to be an integral part of various cellular signaling processes. The diverse functionality of this single organelle requires a very complex and coordinated regulation of its activity with transcription factor EB (TFEB), a master regulator of lysosomal biogenesis, at its core. However, mechanisms by which TFEB is regulated are poorly understood. This study demonstrates that gemfibrozil, an agonist of peroxisome proliferator-activated receptor (PPAR) α, alone and in conjunction with all-trans-retinoic acid is capable of enhancing TFEB in brain cells. We also observed that PPARα, but not PPARβ and PPARγ, is involved in gemfibrozil-mediated up-regulation of TFEB. Reporter assay and chromatin immunoprecipitation studies confirmed the recruitment of retinoid X receptor α, PPARα, and PGC1α on the PPAR-binding site on the Tfeb promoter as well. Subsequently, the drug-mediated induction of TFEB caused an increase in lysosomal protein and the lysosomal abundance in cell. Collectively, this study reinforces the link between lysosomal biogenesis and lipid metabolism with TFEB at the crossroads. Furthermore, gemfibrozil may be of therapeutic value in the treatment of lysosomal storage disorders in which autophagy-lysosome pathway plays an important role. PMID:25750174

  20. An aqueous extract of Salacia oblonga root, a herb-derived peroxisome proliferator-activated receptor-alpha activator, by oral gavage over 28 days induces gender-dependent hepatic hypertrophy in rats.

    PubMed

    Rong, Xianglu; Kim, Moon Sun; Su, Ning; Wen, Suping; Matsuo, Yukimi; Yamahara, Johji; Murray, Michael; Li, Yuhao

    2008-06-01

    Activation of peroxisome proliferator-activated receptor (PPAR)-alpha by natural and synthetic chemicals induces hepatic hypertrophy. An aqueous extract of Salacia oblonga root (SOW) is an Ayurvedic medicine with anti-diabetic and anti-obesity properties. In the present study, it was found that SOW (100, 300 and 900mg/kg, once daily by oral gavage over a 28 day period) elicited dose-related increases in liver weight (LW) by 1.6%, 13.4% and 42.5%, respectively, and in the ratio of LW to body weight by 8.8%, 16.7% and 40.2%, respectively, in male rats. These effects were less pronounced in females. SOW selectively increased liver mass in male rats but Sudan red staining was not different, which indicates that hepatic lipid accumulation was similar in both genders. However, SOW even at the highest dosage did not influence serum ALT and AST activities in male or female rats. Moreover, SOW was found to activate PPAR-alpha in human hepatoma-derived HepG2 cells, as evidenced by the upregulation of PPAR-alpha and acyl-CoA oxidase mRNA expression. Thus, SOW-dependent PPAR-alpha activation may precede the development of the gender difference in hepatic hypertrophy; this process may be influenced by sex hormone status. PMID:18397819

  1. Role of peroxisome proliferator-activated receptors alpha and gamma in gastric ulcer: An overview of experimental evidences.

    PubMed

    Saha, Lekha

    2015-11-01

    Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors belonging to the nuclear hormone receptor superfamily. Three subtypes, PPARα, PPARβ/δ, and PPARγ, have been identified so far. PPARα is expressed in the liver, kidney, small intestine, heart, and muscle, where it activates the fatty acid catabolism and control lipoprotein assembly in response to long-chain unsaturated fatty acids, eicosanoids, and hypolipidemic drugs (e.g., fenofibrate). PPARβ/δ is more broadly expressed and is implicated in fatty acid oxidation, keratinocyte differentiation, wound healing, and macrophage response to very low density lipoprotein metabolism. This isoform has been implicated in transcriptional-repression functions and has been shown to repress the activity of PPARα or PPARγ target genes. PPARγ1 and γ2 are generated from a single-gene peroxisome proliferator-activated receptors gamma by differential promoter usage and alternative splicing. PPARγ1 is expressed in colon, immune system (e.g., monocytes and macrophages), and other tissues where it participates in the modulation of inflammation, cell proliferation, and differentiation. PPARs regulate gene expression through distinct mechanisms: Ligand-dependent transactivation, ligand-independent repression, and ligand-dependent transrepression. Studies in animals have demonstrated the gastric antisecretory activity of PPARα agonists like ciprofibrate, bezafibrate and clofibrate. Study by Pathak et al also demonstrated the effect of PPARα agonist, bezafibrate, on gastric secretion and gastric cytoprotection in various gastric ulcer models in rats. The majority of the experimental studies is on pioglitazone and rosiglitazone, which are PPARγ activators. In all the studies, both the PPARγ activators showed protection against the gastric ulcer and also accelerate the ulcer healing in gastric ulcer model in rats. Therefore, PPARα and PPARγ may be a target for gastric ulcer therapy

  2. Role of peroxisome proliferator-activated receptors alpha and gamma in gastric ulcer: An overview of experimental evidences

    PubMed Central

    Saha, Lekha

    2015-01-01

    Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors belonging to the nuclear hormone receptor superfamily. Three subtypes, PPARα, PPARβ/δ, and PPARγ, have been identified so far. PPARα is expressed in the liver, kidney, small intestine, heart, and muscle, where it activates the fatty acid catabolism and control lipoprotein assembly in response to long-chain unsaturated fatty acids, eicosanoids, and hypolipidemic drugs (e.g., fenofibrate). PPARβ/δ is more broadly expressed and is implicated in fatty acid oxidation, keratinocyte differentiation, wound healing, and macrophage response to very low density lipoprotein metabolism. This isoform has been implicated in transcriptional-repression functions and has been shown to repress the activity of PPARα or PPARγ target genes. PPARγ1 and γ2 are generated from a single-gene peroxisome proliferator-activated receptors gamma by differential promoter usage and alternative splicing. PPARγ1 is expressed in colon, immune system (e.g., monocytes and macrophages), and other tissues where it participates in the modulation of inflammation, cell proliferation, and differentiation. PPARs regulate gene expression through distinct mechanisms: Ligand-dependent transactivation, ligand-independent repression, and ligand-dependent transrepression. Studies in animals have demonstrated the gastric antisecretory activity of PPARα agonists like ciprofibrate, bezafibrate and clofibrate. Study by Pathak et al also demonstrated the effect of PPARα agonist, bezafibrate, on gastric secretion and gastric cytoprotection in various gastric ulcer models in rats. The majority of the experimental studies is on pioglitazone and rosiglitazone, which are PPARγ activators. In all the studies, both the PPARγ activators showed protection against the gastric ulcer and also accelerate the ulcer healing in gastric ulcer model in rats. Therefore, PPARα and PPARγ may be a target for gastric ulcer therapy

  3. Potential analgesic effects of a novel N-acylethanolamine acid amidase inhibitor F96 through PPAR-α.

    PubMed

    Yang, Longhe; Li, Long; Chen, Ling; Li, Yanting; Chen, Huixia; Li, Yuhang; Ji, Guangnian; Lin, Donghai; Liu, Zuguo; Qiu, Yan

    2015-01-01

    Pharmacological blockade of N-acylethanolamine acid amidase (NAAA) activity is an available approach for inflammation and pain control through restoring the ability of endogenous PEA. But the recently reported NAAA inhibitors suffer from the chemical and biological unstable properties, which restrict functions of NAAA inhibition in vivo. It is still unrevealed whether systematic inhibition of NAAA could modulate PEA-mediated pain signalings. Here we reported an oxazolidinone imide compound 3-(6-phenylhexanoyl) oxazolidin-2-one (F96), which potently and selectively inhibited NAAA activity (IC50 = 270 nM). Intraperitoneal (i.p.) injection of F96 (3-30 mg/kg) dose-dependently reduced ear edema and restored PEA levels of ear tissues in 12-O-Tetradecanoylphorbol-13-acetate (TPA) induced ear edema models. Furthermore, F96 inhibited acetic acid-induced writhing and increased spared nerve injury induced tactile allodynia thresholds in a dose-dependent manner. Pharmacological effects of F96 (10 mg/kg, i.p.) on various animal models were abolished in PPAR-α(-/-) mice, and were prevented by PPAR-α antagonist MK886 but not by canabinoid receptor type 1 (CB1) antagonist Rimonabant nor canabinoid receptor type 2 (CB2) antagonist SR144528. Zebrafish embryos experiments showed better security and lower toxicity for F96 than ibuprofen. These results revealed that F96 might be useful in treating inflammatory and neuropathic pain by NAAA inhibition depending on PPARreceptors. PMID:26310614

  4. Identification and regulation of novel PPAR-γ splice variants in human THP-1 macrophages

    PubMed Central

    Chen, Ye; Jimenez, Anna R.; Medh, Jheem D.

    2009-01-01

    We have previously identified four novel isoforms of PPAR-γ transcripts in monkey macrophages (J. Zhou, K.M. Wilson, J.D. Medh, Genetic analysis of four novel peroxisome proliferator receptor-γ splice variants in monkey macrophages. Biochem. Biophys. Res. Commun., 293 (2002) 274–283). The purpose of this study was to ascertain that these isoforms are also present in humans. Specific primers were designed to amplify individual isoform transcripts. The presence of PPAR-γ4, PPAR-γ5, and PPAR-γ7 transcripts in human THP-1 macrophages was confirmed by RT-PCR and sequencing. A transcript corresponding to PPAR-γ6 was not detected. The presence of novel full-length transcripts and protein was also ascertained by Northern and Western blot analysis. Treatment of THP-1 cells with 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) resulted in more than 20% induction in the expression of PPAR-γ5 and PPAR-γ7 transcripts by both Northern blot analysis and RT-PCR. Another PPAR-γ ligand, troglitazone, induced expression of only PPAR-γ5. Both ligands inhibited the expression of PPAR-γ1 and PPAR-γ2. Additionally, 15d-PGJ2 and troglitazone increased the level of apolipoprotein E transcript by 60% but decreased lipoprotein lipase expression by 15% in THP-1 cells. The differential regulation of PPAR-γ transcripts suggests that each transcript isoform may contribute to macrophage function. PMID:16542739

  5. Cross-Talking Between PPAR and WNT Signaling and its Regulation in Mesenchymal Stem Cell Differentiation.

    PubMed

    Xu, Chenyuan; Wang, Jing; Zhu, Tianjie; Shen, Yun; Tang, Xiaoshan; Fang, Li; Xu, Yuanzhi

    2016-01-01

    The pluripotent mesenchymal stem cells (MSC) are common precursors to adipocytes and osteoblasts. Large numbers of extracellular and intracellular signals and transcription factors moderate adipogenesis and osteoblastogenesis. Importantly, between adipogenic and osteogenic lineage commitment and differentiation, differentiation of MSCs into one lineage will inhibit their differentiation toward the other lineage. This balance is regulated by numerous signaling pathways. As we know, the peroxisome-proliferator-activated receptor-γ (PPAR-γ) and Wnt/β-catenin pathway are regarded as the master moderators of adipogenesis and osteogenesis. Moreover, governing the differentiation of MSCs to adipogenesis and osteoblastogenesis has significant implications in diverse areas of human health, from obesity to regenerative medicine to osteoporosis. Rivalry roles have been reported of the two pathways since the downstream products activated by Wnt-5a repress PPAR-γ transactivation through the H3K9 histone methyltransferase protein complexes. This review will discuss the inductive and inhibitive role of PPAR-γ in adipogenesis and osteoblastogenesis respectively, as well as the canonical Wnt/β-catenin pathway. PMID:26201865

  6. Sesamol ameliorates hypotension by modulating cytokines and PPAR-gamma in systemic inflammatory response

    PubMed Central

    Periasamy, Srinivasan; Chu, Pei-Yi; Li, Ya-Hui; Hsu, Dur-Zong; Liu, Ming-Yie

    2015-01-01

    Sepsis is one of the major causes of death reported in intensive care units. Acute kidney injury (AKI) and hypotension are important in the pathogenesis and mortality of systemic inflammatory response (SIR). Sesamol delays mortality in sepsis; however, its effects on AKI and hypotension and the role of peroxisome proliferator-activated receptor-ɣ (PPAR-γ) activation have not been established. We investigated the effect of sesamol on SIR in cecal ligation and puncture (CLP)-induced acute kidney injury and lipopolysaccharide (LPS)-induced hypotension in rats. Sesamol was subcutaneously injected 1 h after SIR. Renal function (BUN and CRE) and proinflammatory mediators interleukin (IL)-1β and IL-6 were increased after CLP. Tumor necrosis factor (TNF)-α, IL-1β, IL-10, and nitrite production were significantly increased 6 h after LPS-induced hypotension (mean arterial pressure was significantly decreased). Sesamol significantly inhibited BUN, CRE, IL-1β, IL-6, and nitrite after CLP-induced acute renal injury. In addition, sesamol increased mean arterial pressure and IL-10, inhibited TNF-α and IL-1β, but did not affect nitrite production in LPS-induced hypotension. Sesamol increased PPAR-γ in the leucocytes and peritoneal macrophages in LPS-induced SIR. We conclude that sesamol regulates leucocyte and macrophage PPAR-γ-associated systemic cytokines expression, thereby ameliorates acute kidney injury and hypotension in rats. PMID:26839527

  7. Topical Peroxisome Proliferator Activated Receptor Activators Accelerate Postnatal Stratum Corneum Acidification

    PubMed Central

    Fluhr, Joachim W.; Man, Mao-Qiang; Hachem, Jean-Pierre; Crumrine, Debra; Mauro, Theodora M.; Elias, Peter M.; Feingold, Kenneth R.

    2015-01-01

    Previous studies have shown that pH declines from between 6 and 7 at birth to adult levels (pH 5.0–5.5) over 5–6 days in neonatal rat stratum corneum (SC). As a result, at birth, neonatal epidermis displays decreased permeability barrier homeostasis and SC integrity, improving days 5–6. We determined here whether peroxisome proliferator-activated receptor (PPAR) activators accelerate postnatal SC acidification. Topical treatment with two different PPARα activators, clofibrate and WY14643, accelerated the postnatal decline in SC surface pH, whereas treatment with PPARγ activators did not and a PPARβ/δ activator had only a modest effect. Treatment with clofibrate significantly accelerated normalization of barrier function. The morphological basis for the improvement in barrier function in PPARα-treated animals includes accelerated secretion of lamellar bodies and enhanced, postsecretory processing of secreted lamellar body contents into mature lamellar membranes. Activity of β-glucocerebrosidase increased after PPARα-activator treatment. PPARα activator also improved SC integrity, which correlated with an increase in corneodesmosome density and increased desmoglein-1 content, with a decline in serine protease activity. Topical treatment of newborn animals with a PPARα activator increased secretory phospholipase A2 activity, which likely accounts for accelerated SC acidification. Thus, PPARα activators accelerate neonatal SC acidification, in parallel with improved permeability homeostasis and SC integrity/cohesion. Hence, PPARα activators might be useful to prevent or treat certain common neonatal dermatoses. PMID:18704104

  8. Peroxisome proliferator-activated receptor gamma agonists as insulin sensitizers: from the discovery to recent progress.

    PubMed

    Cho, Nobuo; Momose, Yu

    2008-01-01

    An epidemic of metabolic diseases including type 2 diabetes and obesity is undermining the health of people living in industrialized societies. There is an urgent need to develop innovative therapeutics. The peroxisome proliferator-activated receptor gamma (PPARgamma) is one of the ligand-activated transcription factors in the nuclear hormone receptor superfamily and a pivotal regulator of glucose and lipid homeostasis. The discovery of PPARgamma as a target of multimodal insulin sensitizers, represented by thiazolidinediones (TZDs), has attracted remarkable scientific interest and had a great impact on the pharmaceutical industry. With the clinical success of the PPARgamma agonists, pioglitazone (Actos) and rosiglitazone (Avandia), development of novel and potent insulin-sensitizing agents with diverse clinical profiles has been accelerated. Currently, a number of PPARgamma agonists from different chemical classes and with varying pharmacological profiles are being developed. Despite quite a few obstacles to the development of PPAR-related drugs, PPARgamma-targeted agents still hold promise. There are new concepts and encouraging evidence emerging that suggest this class can yield improved anti-diabetic agents. This review covers the discovery of TZDs, provides an overview of PPARgamma including the significance of PPARgamma as a drug target, describes the current status of a wide variety of novel PPARgamma ligands including PPAR dual and pan agonists and selective PPARgamma modulators (SPPARgammaMs), and highlights new approaches for identifying agents targeting PPARgamma in the treatment of type 2 diabetes. PMID:19075761

  9. Selective PPAR modulators, dual and pan PPAR agonists: multimodal drugs for the treatment of type 2 diabetes and atherosclerosis.

    PubMed

    Pourcet, Benoit; Fruchart, Jean-Charles; Staels, Bart; Glineur, Corine

    2006-09-01

    More than 70% of patients with Type 2 diabetes mellitus (T2DM) die because of cardiovascular diseases. Current therapeutic strategies are based on separate treatment of insulin resistance and dyslipidaemia. Development of drugs with multimodal activities should improve management of the global cardiovascular risk of T2DM patients and result in better patient compliance. New therapeutic strategies are aimed at targeting the entire spectrum of dysfunctioning organs, cells and regulatory pathways implicated in the pathogenesis of T2DM, dyslipidaemia and atherosclerosis. PPAR family members play major roles in the regulation of lipid metabolism, glucose homeostasis and inflammatory processes, making these transcription factors ideal targets for therapeutic strategies against these diseases. This review discusses why PPARs and development of novel selective PPAR modulators, dual and pan PPAR agonists constitute promising approaches for the treatment of diabetes, dyslipidaemia and atherosclerosis. PMID:16939380

  10. Fragmented Lactic Acid Bacterial Cells Activate Peroxisome Proliferator-Activated Receptors and Ameliorate Dyslipidemia in Obese Mice.

    PubMed

    Nakamura, Futoshi; Ishida, Yu; Sawada, Daisuke; Ashida, Nobuhisa; Sugawara, Tomonori; Sakai, Manami; Goto, Tsuyoshi; Kawada, Teruo; Fujiwara, Shigeru

    2016-03-30

    Recent studies suggest that peroxisome proliferator-activated receptor (PPAR) activation ameliorates metabolic disorders, including dyslipidemia. To identify an effective PPAR agonist, we screened the in vitro PPARα/γ activation ability of organic solvent extracts from food-oriented bacterial strains belonging to 5 genera and 32 species, including lactic acid bacteria, and of these, Lactobacillus amylovorus CP1563 demonstrated the highest PPARα/γ agonist activity. We also found that physical fragmentation of the strain could substitute organic solvent extraction for the expression of CP1563 activity in vitro. For functional food manufacturing, we selected the fragmented CP1563 and conducted subsequent animal experiments. In an obese mouse model, we found that treatment with fragmented CP1563 for 12 weeks decreased the levels of low-density lipoprotein (LDL)-cholesterol and triglyceride in plasma, significantly decreased the atherosclerosis index, and increased the plasma high-density lipoprotein (HDL)-cholesterol level. Thus, we conclude that fragmented CP1563 may be a candidate for the prevention and treatment of dyslipidemia. PMID:26927959

  11. Sp1 mediates repression of the resistin gene by PPAR{gamma} agonists in 3T3-L1 adipocytes

    SciTech Connect

    Chung, S.S.; Choi, H.H.; Cho, Y.M.; Lee, H.K.; Park, K.S. . E-mail: kspark@snu.ac.kr

    2006-09-15

    Resistin is an adipokine related to obesity and insulin resistance. Expression of the resistin gene is repressed by the treatment of peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) agonists, thiazolidinediones (TZDs). In this study, we investigated the mechanism by which TZDs inhibit the resistin gene expression. Resistin gene expression was decreased by TZD in fully differentiated 3T3-L1 adipocytes, which was abolished after treatment of cycloheximide (a protein synthesis inhibitor). TZD could not repress the expression of the resistin gene in the presence of mithramycin A (an Sp1 binding inhibitor). Sp1 binding site of the resistin promoter (-122/-114 bp) was necessary for the repression. Further investigation of the effect of TZDs on the modification of Sp1 showed that the level of O-glycosylation of Sp1 was decreased in this process. These results suggest that PPAR{gamma} activation represses the expression of the resistin gene by modulating Sp1 activity.

  12. Peroxisome proliferator-activated receptor gamma signaling in human sperm physiology

    PubMed Central

    Liu, Li-Li; Xian, Hua; Cao, Jing-Chen; Zhang, Chong; Zhang, Yong-Hui; Chen, Miao-Miao; Qian, Yi; Jiang, Ming

    2015-01-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a member of the PPARs, which are transcription factors of the steroid receptor superfamily. PPARγ acts as an important molecule for regulating energy homeostasis, modulates the hypothalamic-pituitary-gonadal (HPG) axis, and is reciprocally regulated by HPG. In the human, PPARγ protein is highly expressed in ejaculated spermatozoa, implying a possible role of PPARγ signaling in regulating sperm energy dissipation. PPARγ protein is also expressed in Sertoli cells and germ cells (spermatocytes). Its activation can be induced during capacitation and the acrosome reaction. This mini-review will focus on how PPARγ signaling may affect fertility and sperm quality and the potential reversibility of these adverse effects. PMID:25851655

  13. Peroxisome proliferator-activated receptors and biotransformation responses in relation to condition factor and contaminant burden in tilapia species from Ogun River, Nigeria.

    PubMed

    Adeogun, Aina O; Ibor, Oju R; Regoli, Francesco; Arukwe, Augustine

    2016-01-01

    A major development in fishery science has been the Fulton's condition factor (CF) as a reliable physiological index of fish growth and health status (Fulton 1902). As a general rule, CF-value greater than 1 (>1) should be regarded as an indicator for good growth and health. Therefore, exposure of fish to contaminants in the environment will be expected to produce a reduction in scope for growth, since energy for growth will be allocated to overcome stressful conditions. In the present study, we hypothesized that tilapia species from Ogun River (Nigeria) are experiencing severe contaminant-induced obesogen effects leading to high CF (≥ 2) in fish with pathological alterations. The environmental obesogen hypothesis has related the interaction between environmental pollutants and PPAR isoform activation In this respect, peroxisome proliferator-activated receptors (PPARs) and biotransformation responses in relation to contaminant burden were investigated in a total of 1074 specimens of Tilapias species (Tilapia guineensis, Sarotherodon galileaus and Oreochromis niloticus) collected from three areas with different degrees of anthropogenic contamination and from a putative control site along the Ogun River. Liver mRNA expression of cytochrome cyp1 isoforms (cyp1a, 1b and 1c) and PPAR isoforms (ppar-α, β and γ) were analyzed using validated real-time PCR. Fish were also analyzed for CF and muscle contaminant burden (aliphatic and polycyclic aromatic hydrocarbons, organochlorine pesticides, and polychlorinated biphenyls). A significant increase in mRNA expression of cyp1- and ppar isoforms was observed in fish from polluted areas, and these results paralleled data on PCBs and PAHs tissue concentrations. Further, cyp1 isoforms showed clear sex-related differences, with higher mRNA expression in male fish than in females. Principal component analysis revealed a relationship between cyp1 isoforms, ppar-α, β, PCBs and PAHs and these interactions may suggest a crosstalk

  14. Influence of peroxisome proliferator-activated receptor alpha agonists on the intracellular turnover and secretion of apolipoprotein (Apo) B-100 and ApoB-48.

    PubMed

    Lindén, Daniel; Lindberg, Karin; Oscarsson, Jan; Claesson, Catharina; Asp, Lennart; Li, Lu; Gustafsson, Maria; Borén, Jan; Olofsson, Sven-Olof

    2002-06-21

    The peroxisome proliferator-activated receptor (PPAR) alpha agonist WY 14,643 increased the secretion of apolipoprotein (apo) B-100, but not that of apoB-48, and decreased triglyceride biosynthesis and secretion from primary rat hepatocytes. These effects resulted in decreased secretion of apoB-100-very low density lipoprotein (VLDL) and an increased secretion of apoB-100 on low density lipoproteins/intermediate density lipoproteins. ApoB-48-VLDL was also replaced by more dense particles. The proteasomal inhibitor lactacystin did not influence the recovery of apoB-100 or apoB-48 in primary rat hepatocytes, indicating that co-translational (proteasomal) degradation is of less importance in these cells. Treatment with WY 14,643 made the recovery of apoB-100 sensitive to lactacystin, most likely reflecting the decreased biosynthesis of triglycerides. The PPAR alpha agonist induced a significant increase in the accumulation of pulse-labeled apoB-100 even after a short pulse (2-5 min). There was also an increase in apoB-100 nascent polypeptides, indicating that the co-translational degradation of apoB-100 was inhibited. However, a minor influence on an early posttranslation degradation cannot be excluded. This decreased co-translational degradation of apoB-100 explained the increased secretion of the protein. The levels of apoB-48 remained unchanged during these pulse-chase experiments, and albumin production was not affected, indicating a specific effect of PPAR alpha agonists on the co-translational degradation of apoB-100. These findings explain the difference in the rate of secretion of the two apoB proteins seen after PPAR alpha activation. PPAR alpha agonists increased the expression and biosynthesis of liver fatty acid-binding protein (LFABP). Increased expression of LFABP by transfection of McA-RH7777 cells increased the secretion of apoB-100, decreased triglyceride biosynthesis and secretion, and increased PPAR alpha mRNA levels. These findings suggest that

  15. Prostacyclin Analogue Beraprost Inhibits Cardiac Fibroblast Proliferation Depending on Prostacyclin Receptor Activation through a TGF β-Smad Signal Pathway

    PubMed Central

    Yao, Wenjuan; Zhu, Hongyan; Xu, Xiaole; Meng, Guoliang; Zhang, Wei

    2014-01-01

    Previous studies showed that prostacyclin inhibited fibrosis. However, both receptors of prostacyclin, prostacyclin receptor (IP) and peroxisome proliferator-activated receptor (PPAR), are abundant in cardiac fibroblasts. Here we investigated which receptor was vital in the anti-fibrosis effect of prostacyclin. In addition, the possible mechanism involved in protective effects of prostacyclin against cardiac fibrosis was also studied. We found that beraprost, a prostacyclin analogue, inhibited angiotensin II (Ang II)-induced neonatal rat cardiac fibroblast proliferation in a concentration-dependent and time-dependent manner. Beraprost also suppressed Ang II-induced collagen I mRNA expression and protein synthesis in cardiac fibroblasts. After IP expression was knocked down by siRNA, Ang II-induced proliferation and collagen I synthesis could no longer be rescued by beraprost. However, treating cells with different specific inhibitors of PPAR subtypes prior to beraprost and Ang II stimulation, all of the above attenuating effects of beraprost were still available. Moreover, beraprost significantly blocked transforming growth factor β (TGF β) expression as well as Smad2 phosphorylation and reduced Smad-DNA binding activity. Beraprost also increased phosphorylation of cAMP response element binding protein (CREB) at Ser133 in the nucleus. Co-immunoprecipitation analysis revealed that beraprost increased CREB but decreased Smad2 binding to CREB-binding protein (CBP) in nucleus. In conclusion, beraprost inhibits cardiac fibroblast proliferation by activating IP and suppressing TGF β-Smad signal pathway. PMID:24852754

  16. Peroxisome proliferator-activated receptor-γ agonist inhibits collagen synthesis in human keloid fibroblasts by suppression of early growth response-1 expression through upregulation of miR-543 expression

    PubMed Central

    Zhu, Hua-Yu; Bai, Wen-Dong; Wang, Hong-Tao; Xie, Song-Tao; Tao, Ke; Su, Lin-Lin; Liu, Jia-Qi; Yang, Xue-Kang; Li, Jun; Wang, Yun-Chuan; He, Ting; Han, Jun-Tao; Hu, Da-Hai

    2016-01-01

    A keloid is a benign skin tumor formed by an overgrowth of granulation tissue in affected patients. Peroxisome proliferator-activated receptor-γ (PPAR-γ) agonists were reported to be able to regulate extracellular matrix production in human dermal fibroblasts. This study explored the underlying molecular mechanism of PPAR-γ agonist troglitazone treatment for fibroblasts obtained from keloid patients. The data revealed that troglitazone treatment of keloid fibroblasts (KFs) downregulated the expression of early growth response-1 (Egr1) and collagen-1 (Col1). Level of Egr1 were closely associated with KF-induced fibrosis. The miRNA profiling data revealed that miR-543 was transcriptionally activated after troglitazone treatment. Bioinformatic analysis and experimental data showed that miR-543 was able to target Egr1. ELISA data confirmed that Col1 protein in the supernatant were modulated by the feedback regulatory axis of PPAR-γ agonist-induced miR-543 to inhibit Egr1 expression, whereas PPAR-γ antagonist treatment abolished such effect on Col1 suppression in KFs. This study demonstrated that the PPAR-γ agonist-mediated miR-543 and Egr1 signaling plays an important role in the suppression of collagen synthesis in KFs. Future in vivo studies are needed to confirm these in vitro data. PMID:27429849

  17. Peroxisome proliferator-activated receptor-γ agonist inhibits collagen synthesis in human keloid fibroblasts by suppression of early growth response-1 expression through upregulation of miR-543 expression.

    PubMed

    Zhu, Hua-Yu; Bai, Wen-Dong; Wang, Hong-Tao; Xie, Song-Tao; Tao, Ke; Su, Lin-Lin; Liu, Jia-Qi; Yang, Xue-Kang; Li, Jun; Wang, Yun-Chuan; He, Ting; Han, Jun-Tao; Hu, Da-Hai

    2016-01-01

    A keloid is a benign skin tumor formed by an overgrowth of granulation tissue in affected patients. Peroxisome proliferator-activated receptor-γ (PPAR-γ) agonists were reported to be able to regulate extracellular matrix production in human dermal fibroblasts. This study explored the underlying molecular mechanism of PPAR-γ agonist troglitazone treatment for fibroblasts obtained from keloid patients. The data revealed that troglitazone treatment of keloid fibroblasts (KFs) downregulated the expression of early growth response-1 (Egr1) and collagen-1 (Col1). Level of Egr1 were closely associated with KF-induced fibrosis. The miRNA profiling data revealed that miR-543 was transcriptionally activated after troglitazone treatment. Bioinformatic analysis and experimental data showed that miR-543 was able to target Egr1. ELISA data confirmed that Col1 protein in the supernatant were modulated by the feedback regulatory axis of PPAR-γ agonist-induced miR-543 to inhibit Egr1 expression, whereas PPAR-γ antagonist treatment abolished such effect on Col1 suppression in KFs. This study demonstrated that the PPAR-γ agonist-mediated miR-543 and Egr1 signaling plays an important role in the suppression of collagen synthesis in KFs. Future in vivo studies are needed to confirm these in vitro data. PMID:27429849

  18. Development of PPAR-agonist GW0742 as antidiabetic drug: study in animals

    PubMed Central

    Niu, Ho-Shan; Ku, Po-Ming; Niu, Chiang-Shan; Cheng, Juei-Tang; Lee, Kung-Shing

    2015-01-01

    Background The development of new drugs for the treatment of diabetes mellitus (DM) is critically important. Insulin resistance (IR) is one of the main problems associated with type-2 DM (T2DM) seen in clinics. GW0742, a selective peroxisome proliferator-activated receptor (PPAR)-δ agonist, has been shown to ameliorate metabolic abnormalities including IR in skeletal muscle in mice fed high-fructose corn syrup. However, the influence of GW0742 on systemic insulin sensitivity has still not been elucidated. Therefore, it is important to investigate the effect of GW0742 on systemic IR in diabetic rats for the development of new drugs. Methods The present study used a T2DM animal model to compare the effect of GW0742 on IR using homeostasis model assessment-IR (HOMA-IR) and hyperinsulinemic euglycemic clamping. Additionally, the insulinotropic action of GW0742 was investigated in type-1 DM (T1DM) rats. Changes in the protein expression of glucose transporter 4 (GLUT4) and phosphoenolpyruvate carboxykinase (PEPCK) in skeletal muscle and in liver, respectively, were also identified by Western blots. Results GW0742 attenuated the increased HOMA-IR in diabetic rats fed a fructose-rich diet. This action was blocked by GSK0660 at the dose sufficient to inhibit PPAR-δ. Improvement of IR by GW0742 was also characterized in diabetic rats using hyperinsulinemic euglycemic clamping. Additionally, an increase of insulin sensitivity due to GW0742 was observed in these diabetic rats. Moreover, GW0742 reduced the hyperglycemia in T1DM rats lacking insulin. Western blotting analysis indicated that GW0742 reversed the decrease in GLUT4 and markedly reduced the increased PEPCK in liver. Conclusion The data showed that GW0742 has the ability to improve glucose homeostasis in diabetic rats through activation of PPAR-δ. Therefore, PPAR-δ is a good target for the development of antidiabetic drugs in the future. PMID:26508837

  19. Macrophage-derived lipid agonists of PPAR-α as intrinsic controllers of inflammation.

    PubMed

    Pontis, Silvia; Ribeiro, Alison; Sasso, Oscar; Piomelli, Daniele

    2016-01-01

    Macrophages are multi-faceted phagocytic effector cells that derive from circulating monocytes and undergo differentiation in target tissues to regulate key aspects of the inflammatory process. Macrophages produce and degrade a variety of lipid mediators that stimulate or suppress pain and inflammation. Among the analgesic and anti-inflammatory lipids released from these cells are the fatty acid ethanolamides (FAEs), which produce their effects by engaging nuclear peroxisome proliferator activated receptor-α (PPAR-α). Two members of this lipid family, palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), have recently emerged as important intrinsic regulators of nociception and inflammation. These substances are released from the membrane precursor, N-acylphosphatidylethanolamine (NAPE), by the action of a NAPE-specific phospholipase D (NAPE-PLD), and in macrophage are primarily deactivated by the lysosomal cysteine amidase, N-acylethanolamine acid amidase (NAAA). NAPE-PLD and NAAA regulate FAE levels, exerting a tight control over the ability of these lipid mediators to recruit PPAR-α and attenuate the inflammatory response. This review summarizes recent findings on the contribution of the FAE-PPAR-α signaling complex in inflammation, and on NAAA inhibition as a novel mechanistic approach to treat chronic inflammatory disorders. PMID:26585314

  20. Troglitazone regulates peroxisome proliferator-activated receptors and inducible nitric oxide synthase in murine ovarian macrophages.

    PubMed

    Minge, Cadence E; Ryan, Natalie K; Van Der Hoek, Kylie H; Robker, Rebecca L; Norman, Robert J

    2006-01-01

    Peroxisome proliferator-activated receptor-gamma (PPARG) and PPAR-alpha (PPARA) control metabolic processes in many cell types and act as anti-inflammatory regulators in macrophages. PPAR-activating ligands include thiazolidinediones (TZDs), such as troglitazone, once frequently used to treat insulin resistance as well as symptoms of polycystic ovary syndrome (PCOS). Since macrophages within the ovary mediate optimal follicle development, TZD actions to improve PCOS symptoms are likely to be partly mediated through these specifically localized immune cells. In mouse ovary, PPARG protein was expressed in granulosa cells and in isolated cells localized to theca, stroma, and corpora lutea, consistent with EMR1+ macrophages. Isolation of immune cells (EMR1+ or H2+) showed that Pparg and Ppara were expressed in ovarian macrophages at much higher levels than in peritoneal macrophages. Ovulatory human chorionic gonadotropin downregulated expression of Pparg and Ppara in EMR1+ ovarian macrophages, but no hormonal responsiveness was observed in H2+ cells. Downstream anti-inflammatory effects of PPARG activation were analyzed by in vitro treatment of isolated macrophages with troglitazone. Interleukin-1 beta (Il1b) expression was not altered, and tumor necrosis factor-alpha (Tnf) expression was affected in peritoneal macrophages only. In ovarian macrophages, inducible nitric oxide synthase (Nos2), an important proinflammatory enzyme that regulates ovulation, was significantly reduced by troglitazone treatment, an effect that was restricted to cells from the preovulatory ovary. Thus, expression of PPARs within ovarian macrophages is hormonally regulated, reflecting the changing roles of these cells during the ovulatory cycle. Additionally, ovarian macrophages respond directly to troglitazone to downregulate expression of proinflammatory Nos2, providing mechanistic information about ovarian effects of TZD treatment. PMID:16192401

  1. Human-Specific SNP in Obesity Genes, Adrenergic Receptor Beta2 (ADRB2), Beta3 (ADRB3), and PPAR γ2 (PPARG), during Primate Evolution

    PubMed Central

    Takenaka, Akiko; Nakamura, Shin; Mitsunaga, Fusako; Inoue-Murayama, Miho; Udono, Toshifumi; Suryobroto, Bambang

    2012-01-01

    Adrenergic-receptor beta2 (ADRB2) and beta3 (ADRB3) are obesity genes that play a key role in the regulation of energy balance by increasing lipolysis and thermogenesis. The Glu27 allele in ADRB2 and the Arg64 allele in ADRB3 are associated with abdominal obesity and early onset of non-insulin-dependent diabetes mellitus (NIDDM) in many ethnic groups. Peroxisome proliferator-activated receptor γ (PPARG) is required for adipocyte differentiation. Pro12Ala mutation decreases PPARG activity and resistance to NIDDM. In humans, energy-expense alleles, Gln27 in ADRB2 and Trp64 in ADRB3, are at higher frequencies than Glu27 and Arg64, respectively, but Ala12 in PPARG is at lower frequency than Pro12. Adaptation of humans for lipolysis, thermogenesis, and reduction of fat accumulation could be considered by examining which alleles in these genes are dominant in non-human primates (NHP). All NHP (P. troglodytes, G. gorilla, P. pygmaeus, H. agilis and macaques) had energy-thrifty alleles, Gly16 and Glu27 in ADRB2, and Arg64 in ADRB3, but did not have energy-expense alleles, Arg16, Gln27 and Trp64 alleles. In PPARG gene, all NHP had large adipocyte accumulating type, the Pro12 allele. Conclusions These results indicate that a tendency to produce much more heat through the energy-expense alleles developed only in humans, who left tropical rainforests for savanna and developed new features in their heat-regulation systems, such as reduction of body hair and increased evaporation of water, and might have helped the protection of entrails from cold at night, especially in glacial periods. PMID:22937051

  2. Various Terpenoids Derived from Herbal and Dietary Plants Function as PPAR Modulators and Regulate Carbohydrate and Lipid Metabolism

    PubMed Central

    Goto, Tsuyoshi; Takahashi, Nobuyuki; Hirai, Shizuka; Kawada, Teruo

    2010-01-01

    Several herbal plants improve medical conditions. Such plants contain many bioactive phytochemicals. Terpenoids (also called “isoprenoids”) constitute one of the largest families of natural products accounting for more than 40,000 individual compounds of both primary and secondary metabolisms. In particular, terpenoids are contained in many herbal plants, and several terpenoids have been shown to be available for pharmaceutical applications, for example, artemisinin and taxol as malaria and cancer medicines, respectively. Various terpenoids are contained in many plants for not only herbal use but also dietary use. In this paper, we describe several bioactive terpenoids contained in herbal or dietary plants, which can modulate the activities of ligand-dependent transcription factors, namely, peroxisome proliferator-activated receptors (PPARs). Because PPARs are dietary lipid sensors that control energy homeostasis, daily eating of these terpenoids might be useful for the management for obesity-induced metabolic disorders, such as type 2 diabetes, hyperlipidemia, insulin resistance, and cardiovascular diseases. PMID:20613991

  3. Colon OCTN2 Gene Expression Is Up-regulated by Peroxisome Proliferator-activated Receptor γ in Humans and Mice and Contributes to Local and Systemic Carnitine Homeostasis

    PubMed Central

    D'Argenio, Giuseppe; Petillo, Orsolina; Margarucci, Sabrina; Torpedine, Angela; Calarco, Anna; Koverech, Angela; Boccia, Angelo; Paolella, Giovanni; Peluso, Gianfranco

    2010-01-01

    In the large intestine organic cation transporter type-2 (OCTN2) is recognized as a transporter of compounds such as carnitine and colony sporulation factor, promoting health of the colon intestinal epithelium. Recent reports suggest that OCTN2 expression in small intestine is under control of peroxisome proliferator-activated receptor-α (PPARα). However, PPARα contribution to colonic OCTN2 expression remains controversial. Here we examined the transcriptional regulation of colon OCTN2 gene by PPARγ. To exclude any additional modulation of other PPAR to OCTN2 expression, we used both in vivo and in vitro PPAR-null models and specific PPAR inhibitors. The PPARγ agonists thiazolidinediones increased both OCTN2 mRNA and protein expression in colonic epithelial cell lines independently by PPARα expression. The induction was blocked only by PPARγ antagonists or by γORF4, a PPARγ isoform with dominant negative activity, suggesting a PPARγ-dependent mechanism. A conserved noncanonical PPAR-responsive element was found by computational analysis in the first intron of human OCTN2 gene and validated by EMSA assay. Promoter-reporter assays further confirmed transcriptional functionality of the putative PPAR response element, whereas selective mutation caused complete loss of responsiveness to PPARγ activation. Finally, adenovirus-mediated overexpression of constitutively active PPARγ mutant increased colon OCTN2 expression in PPARα−/− mice. Interestingly, animals overexpressing colon PPARγ showed a significant increase in plasma carnitine, thus demonstrating the functional contribution of large intestine to systemic carnitine homeostasis. This study reveals a PPARγ-dependent absorption machinery in colon that is likely involved in the health of colon epithelium, in the microbiota-host interactions and in the absorption of nutraceuticals and drugs. PMID:20558736

  4. Peroxisome proliferator-activated receptor-{gamma} agonists inhibit the replication of respiratory syncytial virus (RSV) in human lung epithelial cells

    SciTech Connect

    Arnold, Ralf . E-mail: ralf.arnold@medizin.uni-magdeburg.de; Koenig, Wolfgang

    2006-07-05

    We have previously shown that peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) agonists inhibited the inflammatory response of RSV-infected human lung epithelial cells. In this study, we supply evidence that specific PPAR{gamma} agonists (15d-PGJ{sub 2}, ciglitazone, troglitazone, Fmoc-Leu) efficiently blocked the RSV-induced cytotoxicity and development of syncytia in tissue culture (A549, HEp-2). All PPAR{gamma} agonists under study markedly inhibited the cell surface expression of the viral G and F protein on RSV-infected A549 cells. This was paralleled by a reduced cellular amount of N protein-encoding mRNA determined by real-time RT-PCR. Concomitantly, a reduced release of infectious progeny virus into the cell supernatants of human lung epithelial cells (A549, normal human bronchial epithelial cells (NHBE)) was observed. Similar results were obtained regardless whether PPAR{gamma} agonists were added prior to RSV infection or thereafter, suggesting that the agonists inhibited viral gene expression and not the primary adhesion or fusion process.

  5. The peroxisome proliferators activated receptor-gamma agonists as therapeutics for the treatment of Alzheimer's disease and mild-to-moderate Alzheimer's disease: a meta-analysis.

    PubMed

    Cheng, Huawei; Shang, Yuping; Jiang, Ling; Shi, Tian-lu; Wang, Lin

    2016-01-01

    Alzheimer's disease (AD) is a devastating neurodegenerative disease and there is no effective therapy for it. Peroxisome proliferators activated receptor-gamma (PPAR-γ) agonists is a promising therapeutic approach for AD and has been widely studied recently, but no consensus was available up to now. To clarify this point, a meta-analysis was performed. We searched MEDLINE, EMBASE, Cochrane Central database, PUBMED, Springer Link database, SDOS database, CBM, CNKI and Wan fang database by December 2014. Standardized mean difference (SMD), relative risk (RR) and 95% confidence interval (CI) were calculated to assess the strength of the novel therapeutics for AD and mild-to-moderate AD. A total of nine studies comprising 1314 patients and 1311 controls were included in the final meta-analysis. We found the effect of PPAR-γ agonists on Alzheimer's Disease Assessment Scale - Cognitive Subscale (ADAS-cog) scores by using STATA software. There was no evidence for obvious publication bias in the overall meta-analysis. There is insufficient evidence of statistically incognition of AD and mild-to-moderate AD patients have been improved who were treated with PPAR-γ agonists in our research. However, PPAR-γ agonists may be a promising therapeutic approach in future, especially pioglitazone, with large-scale randomized controlled trials to confirm. PMID:26001206

  6. PPAR-γ agonist rosiglitazone reverses perinatal nicotine exposure-induced asthma in rat offspring

    PubMed Central

    Liu, Jie; Sakurai, Reiko

    2015-01-01

    In a rat model, downregulation of homeostatic mesenchymal peroxisome proliferator-activated receptor-γ (PPAR-γ) signaling following perinatal nicotine exposure contributes to offspring asthma, which can be effectively prevented by concomitant administration of PPAR-γ agonist rosiglitazone (RGZ). However, whether perinatal nicotine exposure-induced asthma can be reversed is not known. We hypothesized that perinatal nicotine exposure-induced asthma would be reversed by PPAR-γ agonist RGZ. Pregnant rat dams received either placebo or nicotine from embryonic day 6 until term. Following spontaneous delivery at term, dams were continued on the assigned treatments, up to postnatal day 21 (PND21). However, at delivery, pups were divided into two groups; one group received placebo, and the other group received RGZ from PND1 to PND21. At PND21, pulmonary function and the expression of mesenchymal markers of airway contra