Science.gov

Sample records for activated receptor tyrosine

  1. A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation.

    PubMed

    Macho, Alberto P; Schwessinger, Benjamin; Ntoukakis, Vardis; Brutus, Alexandre; Segonzac, Cécile; Roy, Sonali; Kadota, Yasuhiro; Oh, Man-Ho; Sklenar, Jan; Derbyshire, Paul; Lozano-Durán, Rosa; Malinovsky, Frederikke Gro; Monaghan, Jacqueline; Menke, Frank L; Huber, Steven C; He, Sheng Yang; Zipfel, Cyril

    2014-03-28

    Innate immunity relies on the perception of pathogen-associated molecular patterns (PAMPs) by pattern-recognition receptors (PRRs) located on the host cell's surface. Many plant PRRs are kinases. Here, we report that the Arabidopsis receptor kinase EF-TU RECEPTOR (EFR), which perceives the elf18 peptide derived from bacterial elongation factor Tu, is activated upon ligand binding by phosphorylation on its tyrosine residues. Phosphorylation of a single tyrosine residue, Y836, is required for activation of EFR and downstream immunity to the phytopathogenic bacterium Pseudomonas syringae. A tyrosine phosphatase, HopAO1, secreted by P. syringae, reduces EFR phosphorylation and prevents subsequent immune responses. Thus, host and pathogen compete to take control of PRR tyrosine phosphorylation used to initiate antibacterial immunity.

  2. Tie2 and Eph Receptor Tyrosine Kinase Activation and Signaling

    PubMed Central

    Barton, William A.; Dalton, Annamarie C.; Seegar, Tom C.M.; Himanen, Juha P.

    2014-01-01

    The Eph and Tie cell surface receptors mediate a variety of signaling events during development and in the adult organism. As other receptor tyrosine kinases, they are activated on binding of extracellular ligands and their catalytic activity is tightly regulated on multiple levels. The Eph and Tie receptors display some unique characteristics, including the requirement of ligand-induced receptor clustering for efficient signaling. Interestingly, both Ephs and Ties can mediate different, even opposite, biological effects depending on the specific ligand eliciting the response and on the cellular context. Here we discuss the structural features of these receptors, their interactions with various ligands, as well as functional implications for downstream signaling initiation. The Eph/ephrin structures are already well reviewed and we only provide a brief overview on the initial binding events. We go into more detail discussing the Tie-angiopoietin structures and recognition. PMID:24478383

  3. Tyrosine kinase BMX phosphorylates phosphotyrosine-primed motif mediating the activation of multiple receptor tyrosine kinases.

    PubMed

    Chen, Sen; Jiang, Xinnong; Gewinner, Christina A; Asara, John M; Simon, Nicholas I; Cai, Changmeng; Cantley, Lewis C; Balk, Steven P

    2013-05-28

    The nonreceptor tyrosine kinase BMX (bone marrow tyrosine kinase gene on chromosome X) is abundant in various cell types and activated downstream of phosphatidylinositol-3 kinase (PI3K) and the kinase Src, but its substrates are unknown. Positional scanning peptide library screening revealed a marked preference for a priming phosphorylated tyrosine (pY) in the -1 position, indicating that BMX substrates may include multiple tyrosine kinases that are fully activated by pYpY sites in the kinase domain. BMX phosphorylated focal adhesion kinase (FAK) at Tyr⁵⁷⁷ subsequent to its Src-mediated phosphorylation at Tyr⁵⁷⁶. Loss of BMX by RNA interference or by genetic deletion in mouse embryonic fibroblasts (MEFs) markedly impaired FAK activity. Phosphorylation of the insulin receptor in the kinase domain at Tyr¹¹⁸⁹ and Tyr¹¹⁹⁰, as well as Tyr¹¹⁸⁵, and downstream phosphorylation of the kinase AKT at Thr³⁰⁸ were similarly impaired by BMX deficiency. However, insulin-induced phosphorylation of AKT at Ser⁴⁷³ was not impaired in Bmx knockout MEFs or liver tissue from Bmx knockout mice, which also showed increased insulin-stimulated glucose uptake, possibly because of decreased abundance of the phosphatase PHLPP (PH domain leucine-rich repeat protein phosphatase). Thus, by identifying the pYpY motif as a substrate for BMX, our findings suggest that BMX functions as a central regulator among multiple signaling pathways mediated by tyrosine kinases. PMID:23716717

  4. Mechanisms of Activation of Receptor Tyrosine Kinases: Monomers or Dimers

    PubMed Central

    Maruyama, Ichiro N.

    2014-01-01

    Receptor tyrosine kinases (RTKs) play essential roles in cellular processes, including metabolism, cell-cycle control, survival, proliferation, motility and differentiation. RTKs are all synthesized as single-pass transmembrane proteins and bind polypeptide ligands, mainly growth factors. It has long been thought that all RTKs, except for the insulin receptor (IR) family, are activated by ligand-induced dimerization of the receptors. An increasing number of diverse studies, however, indicate that RTKs, previously thought to exist as monomers, are present as pre-formed, yet inactive, dimers prior to ligand binding. The non-covalently associated dimeric structures are reminiscent of those of the IR family, which has a disulfide-linked dimeric structure. Furthermore, recent progress in structural studies has provided insight into the underpinnings of conformational changes during the activation of RTKs. In this review, I discuss two mutually exclusive models for the mechanisms of activation of the epidermal growth factor receptor, the neurotrophin receptor and IR families, based on these new insights. PMID:24758840

  5. Asymmetric Tyrosine Kinase Arrangements in Activation or Autophosphorylation of Receptor Tyrosine Kinases

    SciTech Connect

    J Bae; J Schlessinger

    2011-12-31

    Receptor tyrosine kinases (RTKs) play important roles in the control of many cellular processes including cell proliferation, cell adhesion, angiogenesis, and apoptosis. Ligand-induced dimerization of RTKs leads to autophosphorylation and activation of RTKs. Structural studies have shown that while isolated ectodomains of several RTKs form symmetric dimers the isolated cytoplasmic kinase domains of epidermal growth factor receptor (EGFR) and fibroblast growth factor receptor (FGFR) form asymmetric dimers during their activation. Binding of one kinase molecule of EGFR to a second kinase molecule asymmetrically leads to stimulation of kinase activity and enhanced autophosphorylation. Furthermore, the structures of the kinase domain of FGFR1 and FGFR2 reveal the formation of asymmetric interfaces in the processes of autophosphorylation at their specific phosphotyrosine (pY) sites. Disruption of asymmetric dimer interface of EGFR leads to reduction in enzymatic activity and drastic reduction of autophosphorylation of FGFRs in ligandstimulated live cells. These studies demonstrate that asymmetric dimer formation is as a common phenomenon critical for activation and autophosphorylation of RTKs.

  6. Phosphorylation of two regulatory tyrosine residues in the activation of Bruton’s tyrosine kinase via alternative receptors

    PubMed Central

    Wahl, Matthew I.; Fluckiger, Anne-Catherine; Kato, Roberta M.; Park, Hyunsun; Witte, Owen N.; Rawlings, David J.

    1997-01-01

    Mutation of Bruton’s tyrosine kinase (Btk) impairs B cell maturation and function and results in a clinical phenotype of X-linked agammaglobulinemia. Activation of Btk correlates with an increase in the phosphorylation of two regulatory Btk tyrosine residues. Y551 (site 1) within the Src homology type 1 (SH1) domain is transphosphorylated by the Src family tyrosine kinases. Y223 (site 2) is an autophosphorylation site within the Btk SH3 domain. Polyclonal, phosphopeptide-specific antibodies were developed to evaluate the phosphorylation of Btk sites 1 and 2. Crosslinking of the B cell antigen receptor (BCR) or the mast cell Fcɛ receptor, or interleukin 5 receptor stimulation each induced rapid phosphorylation at Btk sites 1 and 2 in a tightly coupled manner. Btk molecules were singly and doubly tyrosine-phosphorylated. Phosphorylated Btk comprised only a small fraction (≤5%) of the total pool of Btk molecules in the BCR-activated B cells. Increased dosage of Lyn in B cells augmented BCR-induced phosphorylation at both sites. Kinetic analysis supports a sequential activation mechanism in which individual Btk molecules undergo serial transphosphorylation (site 1) then autophosphorylation (site 2), followed by successive dephosphorylation of site 1 then site 2. The phosphorylation of conserved tyrosine residues within structurally related Tec family kinases is likely to regulate their activation. PMID:9326643

  7. Models for the activation pathway of epidermal growth factor receptor protein-tyrosine kinase

    SciTech Connect

    Campion, S.R.; Niyogi, S.K. )

    1991-03-15

    Activation of the epidermal growth factor (EGF) receptor's intrinsic protein-tyrosine kinase activity, which occurs upon formation of the receptor-ligand complex, is the critical regulatory event affecting the subsequent EGF-dependent cellular responses leading to DNA synthesis and cell proliferation. The molecular mechanism by which EGF-dependent activation of receptor kinase activity takes place is not clearly understood. In this study, the growth factor-dependent activation of the EGF receptor tyrosine kinase was examined in vitro using detergent-solubilized, partially purified GEF receptors from A5431 human epidermoid carcinoma cells. Evaluation of the cooperativity observed in the EGF-dependent activation of soluble receptor tyrosine kinase would suggest a mechanism requiring the binding of the EGF peptide to both ligand binding sites on a receptor dimer to induce full receptor kinase activity. Equations describing potential cooperative kinase activation pathways have been examined. The theoretical system which best simulates the allosteric regulation observed in the experimental kinase activation data is that describing multiple essential activation. In addition, studies using mutant analogs of the EGF peptide ligand appear to confirm the requirement for an essential conformational change in the receptor-ligand complex to activate the receptor kinase activity. Several mutant growth factor analogues are able to occupy the ligand binding sites on the receptor without inducing the fully active receptor conformation.

  8. Unlocking Doors without Keys: Activation of Src by Truncated C-terminal Intracellular Receptor Tyrosine Kinases Lacking Tyrosine Kinase Activity

    PubMed Central

    Mezquita, Belén; Mezquita, Pau; Pau, Montserrat; Mezquita, Jovita; Mezquita, Cristóbal

    2014-01-01

    One of the best examples of the renaissance of Src as an open door to cancer has been the demonstration that just five min of Src activation is sufficient for transformation and also for induction and maintenance of cancer stem cells [1]. Many tyrosine kinase receptors, through the binding of their ligands, become the keys that unlock the structure of Src and activate its oncogenic transduction pathways. Furthermore, intracellular isoforms of these receptors, devoid of any tyrosine kinase activity, still retain the ability to unlock Src. This has been shown with a truncated isoform of KIT (tr-KIT) and a truncated isoform of VEGFR-1 (i21-VEGFR-1), which are intracellular and require no ligand binding, but are nonetheless able to activate Src and induce cell migration and invasion of cancer cells. Expression of the i21-VEGFR-1 is upregulated by the Notch signaling pathway and repressed by miR-200c and retinoic acid in breast cancer cells. Both Notch inhibitors and retinoic acid have been proposed as potential therapies for invasive breast cancer. PMID:24709904

  9. Assays to measure the activation of membrane tyrosine kinase receptors: focus on cellular methods.

    PubMed

    Minor, Lisa K

    2003-09-01

    Many methods have been explored as means to measure the activation and inhibition of tyrosine kinase receptors, in vitro using the isolated kinase domain, and in living cells. Kinase activity has been measured in enzyme assays using a peptide substrate, but with different detection systems. These include the radioactive FlashPlate assay, the fluorescent resonance energy transfer (FRET) assay, the dissociation-enhance lanthanide fluorescence immunoassay (DELFIA) and other formats. These methods have successfully identified inhibitors of receptor activity. Cell-based assays have recently emerged to measure receptor activation and inhibition. When membrane tyrosine kinase receptors become activated, they increase their state of phosphorylation. This phosphorylation may lead to an increase in tyrosine kinase-specific activity. Methods have been developed that take advantage of these properties. These include measuring the ligand-stimulated total tyrosine phosphorylation of the receptor using a DELFIA or an ELISA assay, measuring ligand-stimulated enzyme activation of the receptor by quantifying enzyme activity, and dimerization of the activated receptor using bioluminescence resonance energy transfer (BRET). Although cell-based assays are still in their infancy, these techniques may prove a valuable addition to the receptor screening strategy.

  10. A Molecular Brake in the Kinase Hinge Region Regulates the Activity of Receptor Tyrosine Kinases

    SciTech Connect

    Chen,H.; Ma, J.; Li, W.; Eliseenkova, A.; Xu, C.; Neubert, T.; Miller, W.; Mohammadi, M.

    2007-01-01

    Activating mutations in the tyrosine kinase domain of receptor tyrosine kinases (RTKs) cause cancer and skeletal disorders. Comparison of the crystal structures of unphosphorylated and phosphorylated wild-type FGFR2 kinase domains with those of seven unphosphorylated pathogenic mutants reveals an autoinhibitory 'molecular brake' mediated by a triad of residues in the kinase hinge region of all FGFRs. Structural analysis shows that many other RTKs, including PDGFRs, VEGFRs, KIT, CSF1R, FLT3, TEK, and TIE, are also subject to regulation by this brake. Pathogenic mutations activate FGFRs and other RTKs by disengaging the brake either directly or indirectly.

  11. A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perception of pathogen-associated molecular patterns (PAMPs) by surface-localised pattern-recognition receptors (PRRs) is a key component of plant innate immunity. Most known plant PRRs are receptor kinases and initiation of PAMP-triggered immunity (PTI) signalling requires phosphorylation of the PR...

  12. The Fc receptor gamma-chain and the tyrosine kinase Syk are essential for activation of mouse platelets by collagen.

    PubMed Central

    Poole, A; Gibbins, J M; Turner, M; van Vugt, M J; van de Winkel, J G; Saito, T; Tybulewicz, V L; Watson, S P

    1997-01-01

    Activation of mouse platelets by collagen is associated with tyrosine phosphorylation of multiple proteins including the Fc receptor gamma-chain, the tyrosine kinase Syk and phospholipase Cgamma2, suggesting that collagen signals in a manner similar to that of immune receptors. This hypothesis has been tested using platelets from mice lacking the Fc receptor gamma-chain or Syk. Tyrosine phosphorylation of Syk and phospholipase Cgamma2 by collagen stimulation is absent in mice lacking the Fc receptor gamma-chain. Tyrosine phosphorylation of phospholipase Cgamma2 by collagen stimulation is also absent in mice platelets which lack Syk, although phosphorylation of the Fc receptor gamma-chain is maintained. In contrast, tyrosine phosphorylation of platelet proteins by the G protein-coupled receptor agonist thrombin is maintained in mouse platelets deficient in Fc receptor gamma-chain or Syk. The absence of Fc receptor gamma-chain or Syk is accompanied by a loss of secretion and aggregation responses in collagen- but not thrombin-stimulated platelets. These observations provide the first direct evidence of an essential role for the immunoreceptor tyrosine-based activation motif (ITAM) in signalling by a non-immune receptor stimulus. PMID:9171347

  13. Structure and activation of MuSK, a receptor tyrosine kinase central to neuromuscular junction formation.

    PubMed

    Hubbard, Stevan R; Gnanasambandan, Kavitha

    2013-10-01

    MuSK (muscle-specific kinase) is a receptor tyrosine kinase that plays a central signaling role in the formation of neuromuscular junctions (NMJs). MuSK is activated in a complex spatio-temporal manner to cluster acetylcholine receptors on the postsynaptic (muscle) side of the synapse and to induce differentiation of the nerve terminal on the presynaptic side. The ligand for MuSK is LRP4 (low-density lipoprotein receptor-related protein-4), a transmembrane protein in muscle, whose binding affinity for MuSK is potentiated by agrin, a neuronally derived heparan-sulfate proteoglycan. In addition, Dok7, a cytoplasmic adaptor protein, is also required for MuSK activation in vivo. This review focuses on the physical interplay between these proteins and MuSK for activation and downstream signaling, which culminates in NMJ formation. This article is part of a Special Issue entitled: Emerging recognition and activation mechanisms of receptor tyrosine kinases. PMID:23467009

  14. Constitutive tyrosine phosphorylation of the T-cell receptor (TCR) zeta subunit: regulation of TCR-associated protein tyrosine kinase activity by TCR zeta.

    PubMed Central

    van Oers, N S; Tao, W; Watts, J D; Johnson, P; Aebersold, R; Teh, H S

    1993-01-01

    The T-cell receptor (TCR) zeta subunit is an important component of the TCR complex, involved in signal transduction events following TCR engagement. In this study, we showed that the TCR zeta chain is constitutively tyrosine phosphorylated to similar extents in thymocytes and lymph node T cells. Approximately 35% of the tyrosine-phosphorylated TCR zeta (phospho zeta) precipitated from total cell lysates appeared to be surface associated. Furthermore, constitutive phosphorylation of TCR zeta in T cells occurred independently of antigen stimulation and did not require CD4 or CD8 coreceptor expression. In lymph node T cells that constitutively express tyrosine-phosphorylated TCR zeta, there was a direct correlation between surface TCR-associated protein tyrosine kinase (PTK) activity and expression of phospho zeta. TCR stimulation of these cells resulted in an increase in PTK activity that coprecipitated with the surface TCR complex and a corresponding increase in the levels of phospho zeta. TCR ligations also contributed to the detection of several additional phosphoproteins that coprecipitated with surface TCR complexes, including a 72-kDa tyrosine-phosphorylated protein. The presence of TCR-associated PTK activity also correlated with the binding of a 72-kDa protein, which became tyrosine phosphorylated in vitro kinase assays, to tyrosine phosphorylated TCR zeta. The cytoplasmic region of the TCR zeta chain was synthesized, tyrosine phosphorylated, and conjugated to Sepharose beads. Only tyrosine-phosphorylated, not nonphosphorylated, TCR zeta beads were capable of immunoprecipitating the 72-kDa protein from total cell lysates. This 72-kDa protein is likely the murine equivalent of human PTK ZAP-70, which has been shown to associate specifically with phospho zeta. These results suggest that TCR-associated PTK activity is regulated, at least in part, by the tyrosine phosphorylation status of TCR zeta. Images PMID:7689151

  15. Structure and Activation of MuSK, a Receptor Tyrosine Kinase Central to Neuromuscular Junction Formation

    PubMed Central

    Hubbard, Stevan R.; Gnanasambandan, Kavitha

    2014-01-01

    MuSK (muscle-specific kinase) is a receptor tyrosine kinase that plays a central signaling role in formation of neuromuscular junctions (NMJs). MuSK is activated in a complex spatio-temporal manner to cluster acetylcholine receptors on the postsynaptic (muscle) side of the synapse and to induce differentiation of the nerve terminal on the presynaptic side. The ligand for MuSK is LRP4 (low-density lipoprotein receptor-related protein-4), a transmembrane protein in muscle, whose binding affinity for MuSK is potentiated by agrin, a neuronally derived heparan-sulfate proteoglycan. In addition, Dok7, a cytoplasmic adaptor protein, is also required for MuSK activation in vivo. This review focuses on the physical interplay between these proteins and MuSK for activation and downstream signaling, which culminates in NMJ formation. PMID:23467009

  16. Receptor Tyrosine Kinase and Tyrosine Kinase Inhibitors

    PubMed Central

    Mirshafiey, Abbas; Ghalamfarsa, Ghasem; Asghari, Babak

    2014-01-01

    Receptor tyrosine kinases (RTKs) are essential components of signal transduction pathways that mediate cell-to-cell communication and their function as relay points for signaling pathways. They have a key role in numerous processes that control cellular proliferation and differentiation, regulate cell growth and cellular metabolism, and promote cell survival and apoptosis. Recently, the role of RTKs including TCR, FLT-3, c-Kit, c-Fms, PDGFR, ephrin, neurotrophin receptor, and TAM receptor in autoimmune disorder, especially rheumatoid arthritis and multiple sclerosis has been suggested. In multiple sclerosis pathogenesis, RTKs and their tyrosine kinase enzymes are selective important targets for tyrosine kinase inhibitor (TKI) agents. TKIs, compete with the ATP binding site of the catalytic domain of several tyrosine kinases, and act as small molecules that have a favorable safety profile in disease treatment. Up to now, the efficacy of TKIs in numerous animal models of MS has been demonstrated, but application of these drugs in human diseases should be tested in future clinical trials. PMID:25337443

  17. Endocytosis of Receptor Tyrosine Kinases

    PubMed Central

    Goh, Lai Kuan

    2013-01-01

    Endocytosis is the major regulator of signaling from receptor tyrosine kinases (RTKs). The canonical model of RTK endocytosis involves rapid internalization of an RTK activated by ligand binding at the cell surface and subsequent sorting of internalized ligand-RTK complexes to lysosomes for degradation. Activation of the intrinsic tyrosine kinase activity of RTKs results in autophosphorylation, which is mechanistically coupled to the recruitment of adaptor proteins and conjugation of ubiquitin to RTKs. Ubiquitination serves to mediate interactions of RTKs with sorting machineries both at the cell surface and on endosomes. The pathways and kinetics of RTK endocytic trafficking, molecular mechanisms underlying sorting processes, and examples of deviations from the standard trafficking itinerary in the RTK family are discussed in this work. PMID:23637288

  18. Insulin binding and receptor tyrosine kinase activity in skeletal muscle of carnivorous and omnivorous fish.

    PubMed

    Párrizas, M; Planas, J; Plisetskaya, E M; Gutiérrez, J

    1994-06-01

    We characterized the insulin receptors in skeletal muscle from several fish species with different nutritional preferences: brown trout (Salmo trutta fario), gilthead sea bream (Sparus aurata), tilapia (Tilapia mossambica), and carp (Cyprinus carpio), semipurified by affinity chromatography (wheat germ agglutinin-agarose). Total specific binding and number of receptors per unit weight of piscine white skeletal muscle were lower than those values found in mammalian skeletal muscle. The same parameters in carp muscle receptor preparations were severalfold higher than in trout muscle (binding capacity 440 +/- 47 fmol/mg glycoprotein in carp and 82 +/- 23 fmol/mg glycoprotein in trout). Piscine insulin receptors phosphorylated exogenous substrate poly(Glu,Tyr) but less so than mammalian receptors. Tyrosine kinase activity of receptors, calculated as percent of 32P incorporated into substrate in the presence of insulin compared with basal incorporation, was also highest in carp (210 +/- 4%) and lowest in trout (150 +/- 2%). In both trout and carp deprived of food for 15 days, specific binding of insulin decreased. Nevertheless, differences between the two species were retained. Our results demonstrate that particular properties of insulin receptors in fish skeletal muscle may be related to nutritional preferences. This finding coincides with the phenomenon of differential glucose tolerance in fish: carnivorous fish, such as trout, are less tolerant, whereas omnivorous fish, such as carp, readily utilize a carbohydrate-rich diet. PMID:8024051

  19. The Cytoplasmic Adaptor Protein Dok7 Activates the Receptor Tyrosine Kinase MuSK via Dimerization

    SciTech Connect

    Bergamin, E.; Hallock, P; Burden, S; Hubbard, S

    2010-01-01

    Formation of the vertebrate neuromuscular junction requires, among others proteins, Agrin, a neuronally derived ligand, and the following muscle proteins: LRP4, the receptor for Agrin; MuSK, a receptor tyrosine kinase (RTK); and Dok7 (or Dok-7), a cytoplasmic adaptor protein. Dok7 comprises a pleckstrin-homology (PH) domain, a phosphotyrosine-binding (PTB) domain, and C-terminal sites of tyrosine phosphorylation. Unique among adaptor proteins recruited to RTKs, Dok7 is not only a substrate of MuSK, but also an activator of MuSK's kinase activity. Here, we present the crystal structure of the Dok7 PH-PTB domains in complex with a phosphopeptide representing the Dok7-binding site on MuSK. The structure and biochemical data reveal a dimeric arrangement of Dok7 PH-PTB that facilitates trans-autophosphorylation of the kinase activation loop. The structure provides the molecular basis for MuSK activation by Dok7 and for rationalizing several Dok7 loss-of-function mutations found in patients with congenital myasthenic syndromes.

  20. Molecular docking studies of banana flower flavonoids as insulin receptor tyrosine kinase activators as a cure for diabetes mellitus

    PubMed Central

    Ganugapati, Jayasree; Baldwa, Aashish; Lalani, Sarfaraz

    2012-01-01

    Diabetes mellitus is a metabolic disorder caused due to insulin deficiency. Banana flower is a rich source of flavonoids that exhibit anti diabetic activity. Insulin receptor is a tetramer that belongs to a family of receptor tyrosine kinases. It contains two alpha subunits that form the extracellular domain and two beta subunits that constitute the intracellular tyrosine kinase domain. Insulin binds to the extracellular region of the receptor and causes conformational changes that lead to the activation of the tyrosine kinase. This leads to autophosphorylation, a step that is crucial in insulin signaling pathway. Hence, compounds that augment insulin receptor tyrosine kinase activity would be useful in the treatment of diabetes mellitus. The 3D structure of IR tyrosine kinase was obtained from PDB database. The list of flavonoids found in banana flower was obtained from USDA database. The structures of the flavonoids were obtained from NCBI Pubchem. Docking analysis of the flavonoids was performed using Autodock 4.0 and Autodock Vina. The results indicate that few of the flavonoids may be potential activators of IR tyrosine kinase. PMID:22493522

  1. Molecular docking studies of banana flower flavonoids as insulin receptor tyrosine kinase activators as a cure for diabetes mellitus.

    PubMed

    Ganugapati, Jayasree; Baldwa, Aashish; Lalani, Sarfaraz

    2012-01-01

    Diabetes mellitus is a metabolic disorder caused due to insulin deficiency. Banana flower is a rich source of flavonoids that exhibit anti diabetic activity. Insulin receptor is a tetramer that belongs to a family of receptor tyrosine kinases. It contains two alpha subunits that form the extracellular domain and two beta subunits that constitute the intracellular tyrosine kinase domain. Insulin binds to the extracellular region of the receptor and causes conformational changes that lead to the activation of the tyrosine kinase. This leads to autophosphorylation, a step that is crucial in insulin signaling pathway. Hence, compounds that augment insulin receptor tyrosine kinase activity would be useful in the treatment of diabetes mellitus. The 3D structure of IR tyrosine kinase was obtained from PDB database. The list of flavonoids found in banana flower was obtained from USDA database. The structures of the flavonoids were obtained from NCBI Pubchem. Docking analysis of the flavonoids was performed using Autodock 4.0 and Autodock Vina. The results indicate that few of the flavonoids may be potential activators of IR tyrosine kinase.

  2. Epidermal growth factor receptor activation by diesel particles is mediated by tyrosine phosphatase inhibition

    SciTech Connect

    Tal, Tamara L.; Bromberg, Philip A.; Kim, Yumee; Samet, James M.

    2008-12-15

    Exposure to particulate matter (PM) is associated with increased cardiopulmonary morbidity and mortality. Diesel exhaust particles (DEP) are a major component of ambient PM and may contribute to PM-induced pulmonary inflammation. Proinflammatory signaling is mediated by phosphorylation-dependent signaling pathways whose activation is opposed by the activity of protein tyrosine phosphatases (PTPases) which thereby function to maintain signaling quiescence. PTPases contain an invariant catalytic cysteine that is susceptible to electrophilic attack. DEP contain electrophilic oxy-organic compounds that may contribute to the oxidant effects of PM. Therefore, we hypothesized that exposure to DEP impairs PTPase activity allowing for unopposed basal kinase activity. Here we report that exposure to 30 {mu}g/cm{sup 2} DEP for 4 h induces differential activation of signaling in primary cultures of human airway epithelial cells (HAEC), a primary target cell in PM inhalation. In-gel kinase activity assay of HAEC exposed to DEPs of low (L-DEP), intermediate (I-DEP) or high (H-DEP) organic content showed differential activation of intracellular kinases. Exposure to these DEP also induced varying levels of phosphorylation of the receptor tyrosine kinase EGFR in a manner that requires EGFR kinase activity but does not involve receptor dimerization. We demonstrate that treatment with DEP results in an impairment of total and EGFR-directed PTPase activity in HAEC with a potency that is independent of the organic content of these particles. These data show that DEP-induced EGFR phosphorylation in HAEC is the result of a loss of PTPase activities which normally function to dephosphorylate EGFR in opposition to baseline EGFR kinase activity.

  3. Novel Small Molecule Activators of the Trk Family of Receptor Tyrosine Kinases

    PubMed Central

    Obianyo, Obiamaka; Ye, Keqiang

    2012-01-01

    The Tropomyosin-related kinase (Trk) receptors are a subset of the receptor tyrosine kinase family with an important functionality in the regulation of neurotrophic signaling in the peripheral and central nervous system. As the receptors are able to mediate neuronal survival by associating with their respective neurotrophin ligands, many studies have focused on the therapeutic potential of generating small-molecule mimetic compounds that elicit agonistic effects similar to those of the natural protein ligands. To this end, various structure-based studies have led to the generation of bivalent peptide-based agonists and antibodies that selectively initiate Trk receptor signaling; however, these compounds do not possess the ideal characteristics of a potential drug. Additionally, the reliance of structure-based data to generate the compound libraries, limits the potential identification of novel chemical structures with desirable activity. Therefore, subsequent investigations utilized a cell-based apoptotic screen to facilitate the analysis of large, diverse chemical libraries of small molecules and quickly identify compounds with Trk-dependent antiapoptotic activity. Herein, we describe the Trk agonists that have been identified by this screening methodology and summarize their in vitro and in vivo neurotrophic activity as well as their efficacy in various neurological disease models, implicating their future utility as therapeutic compounds. PMID:22982231

  4. Leptin receptor activation increases Sam68 tyrosine phosphorylation and expression in human trophoblastic cells.

    PubMed

    Sánchez-Jiménez, Flora; Pérez-Pérez, Antonio; González-Yanes, Carmen; Najib, Souad; Varone, Cecilia L; Sánchez-Margalet, Víctor

    2011-01-30

    Leptin is produced in placenta where it has been found to be an important autocrine signal for trophoblastic growth during pregnancy, promoting antiapoptotic and trophic effects. Leptin receptor is present in trophoblastic cells and leptin may fully activate signaling. We have previously implicated the RNA-binding protein Sam68 in leptin signal transduction in immune cells. In the present work, we have studied the possible role of Sam68 in leptin receptor signaling in trophoblastic cells (JEG-3 cells). Leptin dose-dependently stimulated Sam68 phosphorylation in JEG-3 cells, as assessed by immunoprecipitation and immunoblot with anti-phosphotyrosine antibodies. As previously observed in other systems, tyrosine phosphorylation of Sam68 in response to leptin inhibits its RNA binding capacity. Besides, leptin stimulation dose-dependently increases Sam68 expression in JEG-3 cells, as assessed by quantitative PCR. Consistently, the amount of Sam68 protein is increased after 24h of leptin stimulation of trophoblastic cells. In order to study the possible role of Sam68 on leptin receptor synthesis, we employed antisense strategy to knockdown the expression of Sam68. We have found that a decrease in Sam68 expression leads to a decrease in leptin receptor amount in JEG-3 cells, as assessed both by quantitative PCR and immunoblot. These results strongly suggest the participation of Sam68 in leptin receptor signaling in human trophoblastic cells, and therefore, Sam68 may mediate some of the leptin effects in placenta. PMID:21035519

  5. PREX1 Protein Function Is Negatively Regulated Downstream of Receptor Tyrosine Kinase Activation by p21-activated Kinases (PAKs).

    PubMed

    Barrows, Douglas; He, John Z; Parsons, Ramon

    2016-09-16

    Downstream of receptor tyrosine kinase and G protein-coupled receptor (GPCR) stimulation, the phosphatidylinositol 3,4,5-trisphosphate (PIP3)-dependent Rac exchange factor (PREX) family of guanine nucleotide exchange factors (GEFs) activates Rho GTPases, leading to important roles for PREX proteins in numerous cellular processes and diseases, including cancer. PREX1 and PREX2 GEF activity is activated by the second messengers PIP3 and Gβγ, and further regulation of PREX GEF activity occurs by phosphorylation. Stimulation of receptor tyrosine kinases by neuregulin and insulin-like growth factor 1 (IGF1) leads to the phosphorylation of PREX1; however, the kinases that phosphorylate PREX1 downstream of these ligands are not known. We recently reported that the p21-activated kinases (PAKs), which are activated by GTP-bound Ras-related C3 botulinum toxin substrate 1 (Rac1), mediate the phosphorylation of PREX2 after insulin receptor activation. Here we show that certain phosphorylation events on PREX1 after insulin, neuregulin, and IGF1 treatment are PAK-dependent and lead to a reduction in PREX1 binding to PIP3 Like PREX2, PAK-mediated phosphorylation also negatively regulates PREX1 GEF activity. Furthermore, the onset of PREX1 phosphorylation was delayed compared with the phosphorylation of AKT, supporting a model of negative feedback downstream of PREX1 activation. We also found that the phosphorylation of PREX1 after isoproterenol and prostaglandin E2-mediated GPCR activation is partially PAK-dependent and likely also involves protein kinase A, which is known to reduce PREX1 function. Our data point to multiple mechanisms of PREX1 negative regulation by PAKs within receptor tyrosine kinase and GPCR-stimulated signaling pathways that have important roles in diseases such as diabetes and cancer. PMID:27481946

  6. A high-content EMT screen identifies multiple receptor tyrosine kinase inhibitors with activity on TGFβ receptor.

    PubMed

    Lotz-Jenne, Carina; Lüthi, Urs; Ackerknecht, Sabine; Lehembre, François; Fink, Tobias; Stritt, Manuel; Wirth, Matthias; Pavan, Simona; Bill, Ruben; Regenass, Urs; Christofori, Gerhard; Meyer-Schaller, Nathalie

    2016-05-01

    An epithelial to mesenchymal transition (EMT) enables epithelial tumor cells to break out of the primary tumor mass and to metastasize. Understanding the molecular mechanisms driving EMT in more detail will provide important tools to interfere with the metastatic process. To identify pharmacological modulators and druggable targets of EMT, we have established a novel multi-parameter, high-content, microscopy-based assay and screened chemical compounds with activities against known targets. Out of 3423 compounds, we have identified 19 drugs that block transforming growth factor beta (TGFβ)-induced EMT in normal murine mammary gland epithelial cells (NMuMG). The active compounds include inhibitors against TGFβ receptors (TGFBR), Rho-associated protein kinases (ROCK), myosin II, SRC kinase and uridine analogues. Among the EMT-repressing compounds, we identified a group of inhibitors targeting multiple receptor tyrosine kinases, and biochemical profiling of these multi-kinase inhibitors reveals TGFBR as a thus far unknown target of their inhibitory spectrum. These findings demonstrate the feasibility of a multi-parameter, high-content microscopy screen to identify modulators and druggable targets of EMT. Moreover, the newly discovered "off-target" effects of several receptor tyrosine kinase inhibitors have important consequences for in vitro and in vivo studies and might beneficially contribute to the therapeutic effects observed in vivo. PMID:27036020

  7. A high-content EMT screen identifies multiple receptor tyrosine kinase inhibitors with activity on TGFβ receptor

    PubMed Central

    Ackerknecht, Sabine; Lehembre, François; Fink, Tobias; Stritt, Manuel; Wirth, Matthias; Pavan, Simona; Bill, Ruben; Regenass, Urs; Christofori, Gerhard; Meyer-Schaller, Nathalie

    2016-01-01

    An epithelial to mesenchymal transition (EMT) enables epithelial tumor cells to break out of the primary tumor mass and to metastasize. Understanding the molecular mechanisms driving EMT in more detail will provide important tools to interfere with the metastatic process. To identify pharmacological modulators and druggable targets of EMT, we have established a novel multi-parameter, high-content, microscopy-based assay and screened chemical compounds with activities against known targets. Out of 3423 compounds, we have identified 19 drugs that block transforming growth factor beta (TGFβ)-induced EMT in normal murine mammary gland epithelial cells (NMuMG). The active compounds include inhibitors against TGFβ receptors (TGFBR), Rho-associated protein kinases (ROCK), myosin II, SRC kinase and uridine analogues. Among the EMT-repressing compounds, we identified a group of inhibitors targeting multiple receptor tyrosine kinases, and biochemical profiling of these multi-kinase inhibitors reveals TGFBR as a thus far unknown target of their inhibitory spectrum. These findings demonstrate the feasibility of a multi-parameter, high-content microscopy screen to identify modulators and druggable targets of EMT. Moreover, the newly discovered “off-target” effects of several receptor tyrosine kinase inhibitors have important consequences for in vitro and in vivo studies and might beneficially contribute to the therapeutic effects observed in vivo. PMID:27036020

  8. Effects of metformin on insulin receptor tyrosine kinase activity in rat adipocytes.

    PubMed

    Jacobs, D B; Hayes, G R; Truglia, J A; Lockwood, D H

    1986-11-01

    The cellular mechanism(s) by which the biguanide, metformin, exerts its antihyperglycaemic effect was investigated. Rat adipocytes were either treated acutely (2 h) or maintained in a biochemically defined medium (20 h) in the presence or absence of metformin (1 X 10(-4) mol/l). Exposure to the drug resulted in a significant enhancement (p less than 0.01) of hexose transport in both the absence (basal) and presence of insulin. Stimulation of transport was not explained by the increase in the basal state alone, since the incremental response to maximally effective concentrations of insulin was significantly enhanced p less than 0.025. Insulin-receptor tyrosine kinase activity was examined under the same experimental conditions. Activity of the kinase was unaltered as evaluated by phosphorylation of an artificial substrate and by phosphorylation of the receptor in situ. Furthermore, in this investigation neither insulin receptor number nor affinity was changed in adipose tissue treated with metformin. These studies indicate that metformin potentiates the effect of insulin on glucose transport at a site(s) beyond insulin receptor binding and phosphorylation.

  9. A single tyrosine of the interleukin-9 (IL-9) receptor is required for STAT activation, antiapoptotic activity, and growth regulation by IL-9.

    PubMed

    Demoulin, J B; Uyttenhove, C; Van Roost, E; DeLestré, B; Donckers, D; Van Snick, J; Renauld, J C

    1996-09-01

    Interleukin-9 (IL-9), a T-cell-derived cytokine, interacts with a specific receptor associated with the IL-2 receptor gamma chain. In this report, we analyze the functional domains of the human IL-9 receptor transfected into mouse lymphoid cell lines. Three different functions were examined: growth stimulation in factor-dependent pro-B Ba/F3 cells, protection against dexamethasone-induced apoptosis, and Ly-6A2 induction in BW5147 lymphoma cells. The results indicated that a single tyrosine, at position 116 in the cytoplasmic domain, was required for all three activities. In addition, we observed that human IL-9 reduced the proliferation rate of transfected BW5147 cells, an effect also dependent on the same tyrosine. This amino acid was necessary for IL-9-mediated tyrosine phosphorylation of the receptor and for STAT activation but not for IRS-2/4PS activation or for JAK1 phosphorylation, which depended on a domain closer to the plasma membrane. We also showed that JAK1 was constitutively associated with the IL-9 receptor. Activated STAT complexes induced by IL-9 were found to contain STAT1, STAT3, and STAT5 transcription factors. Moreover, sequence homologies between human IL-9 receptor tyrosine 116 and tyrosines (of other receptors activating STAT3 and STAT5 were observed. Taken together, these data indicate that a single tyrosine of the IL-9 receptor, required for activation of three different STAT proteins, is necessary for distinct activities of this cytokine, including proliferative responses.

  10. A role for Bruton's tyrosine kinase in B cell antigen receptor-mediated activation of phospholipase C-gamma 2

    PubMed Central

    1996-01-01

    Defects in the gene encoding Bruton's tyrosine kinase (Btk) result in a disease called X-linked agammaglobulinemia, in which there is a profound decrease of mature B cells due to a block in B cell development. Recent studies have shown that Btk is tyrosine phosphorylated and activated upon B cell antigen receptor (BCR) stimulation. To elucidate the functions of this kinase, we examined BCR signaling of DT40 B cells deficient in Btk. Tyrosine phosphorylation of phospholipase C (PLC)-gamma 2 upon receptor stimulation was significantly reduced in the mutant cells, leading to the loss of both BCR-coupled phosphatidylinositol hydrolysis and calcium mobilization. Pleckstrin homology and Src-homology 2 domains of Btk were required for PLC-gamma 2 activation. Since Syk is also required for the BCR-induced PLC-gamma 2 activation, our findings indicate that PLC-gamma 2 activation is regulated by Btk and Syk through their concerted actions. PMID:8691147

  11. Protein kinase C directly phosphorylates the insulin receptor in vitro and reduces its protein-tyrosine kinase activity.

    PubMed Central

    Bollag, G E; Roth, R A; Beaudoin, J; Mochly-Rosen, D; Koshland, D E

    1986-01-01

    The beta subunit of purified insulin receptor is phosphorylated on a serine residue by purified preparations of protein kinase C (ATP: protein phosphotransferase, EC 2.7.1.37). This phosphorylation is inhibited by antibodies to protein kinase C and stimulated by phospholipids, diacylglycerol, and Ca2+. The phosphorylation of the receptor by protein kinase C does not affect its insulin-binding activity but does inhibit by 65% the receptor's intrinsic tyrosine-specific protein kinase activity (ATP: protein-tyrosine O-phosphotransferase, EC 2.7.1.112). These results indicate that activators of protein kinase C, such as phorbol esters, desensitize cells to insulin by direct protein kinase C action on the insulin receptor. Images PMID:3526339

  12. PROLACTIN-INDUCED TYROSINE PHOSPHORYLATION, ACTIVATION AND RECEPTOR ASSOCIATION OF FOCAL ADHESION KINASE (FAK) IN MAMMARY EPITHELIAL CELLS

    EPA Science Inventory

    Prolactin-Induced Tyrosine Phosphorylation, Activation and Receptor
    Association of Focal Adhesion Kinase (FAK) in Mammary Epithelial Cells.
    Suzanne E. Fenton1 and Lewis G. Sheffield2. 1U.S. Environmental Protection
    Agency, MD-72, Research Triangle Park, NC 27711, and

  13. Hyaluronan and the hyaluronan receptor RHAMM promote focal adhesion turnover and transient tyrosine kinase activity

    PubMed Central

    1994-01-01

    The molecular mechanisms whereby hyaluronan (HA) stimulates cell motility was investigated in a C-H-ras transformed 10T 1/2 fibroblast cell line (C3). A significant (p < 0.001) stimulation of C3 cell motility with HA (10 ng/ml) was accompanied by an increase in protein tyrosine phosphorylation as detected by anti-phosphotyrosine antibodies using immunoblot analysis and immunofluorescence staining of cells. Tyrosine phosphorylation of several proteins was found to be both rapid and transient with phosphorylation occurring within 1 min of HA addition and dissipating below control levels 10-15 min later. These responses were also elicited by an antibody generated against a peptide sequence within the HA receptor RHAMM. Treatment of cells with tyrosine kinase inhibitors (genistein, 10 micrograms/ml or herbimycin A, 0.5 micrograms/ml) or microinjection of anti-phosphotyrosine antibodies inhibited the transient protein tyrosine phosphorylation in response to HA as well as prevented HA stimulation of cell motility. To determine a link between HA-stimulated tyrosine phosphorylation and the resulting cell locomotion, cytoskeletal reorganization was examined in C3 cells plated on fibronectin and treated with HA or anti-RHAMM antibody. These agents caused a rapid assembly and disassembly of focal adhesions as revealed by immunofluorescent localization of vinculin. The time course with which HA and antibody induced focal adhesion turnover exactly paralleled the induction of transient protein tyrosine phosphorylation. In addition, phosphotyrosine staining colocalized with vinculin within structures in the lamellapodia of these cells. Notably, the focal adhesion kinase, pp125FAK, was rapidly phosphorylated and dephosphorylated after HA stimulation. These results suggest that HA stimulates locomotion via a rapid and transient protein tyrosine kinase signaling event mediated by RHAMM. They also provide a possible molecular basis for focal adhesion turnover, a process that is

  14. Activation and inhibition of anaplastic lymphoma kinase receptor tyrosine kinase by monoclonal antibodies and absence of agonist activity of pleiotrophin.

    PubMed

    Moog-Lutz, Christel; Degoutin, Joffrey; Gouzi, Jean Y; Frobert, Yvelyne; Brunet-de Carvalho, Nicole; Bureau, Jocelyne; Créminon, Christophe; Vigny, Marc

    2005-07-15

    Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase that is transiently expressed in specific regions of the central and peripheral nervous systems, suggesting a role in its normal development and function. The nature of the cognate ligands of ALK in vertebrate is still a matter of debate. We produced a panel of monoclonal antibodies (mAbs) directed against the extracellular domain of the human receptor. Two major species of ALK (220 and 140 kDa) were identified in transfected cells, and the use of our mAbs established that the 140-kDa species results from a cleavage of the 220-kDa form. Two mAbs, in the nm range, induced the differentiation of PC12 cells transiently transfected with ALK. In human embryonic kidney 293 cells stably expressing ALK, these two mAbs strongly activated the receptor and subsequently the mitogen-activated protein kinase pathway. We further showed for the first time that activation of ALK also resulted in a specific activation of STAT3. In contrast, other mAbs presented the characteristics of blocking antibodies. Finally, in these cell systems, a mitogenic form of pleiotrophin, a proposed ligand of ALK, failed to activate this receptor. Thus, in the absence of clearly established ligand(s) in vertebrates, the availability of mAbs allowing the activation or the inhibition of the receptor will be essential for a better understanding of the biological roles of ALK.

  15. Activation of the protein-tyrosine kinase associated with the bombesin receptor complex in small cell lung carcinomas.

    PubMed Central

    Gaudino, G; Cirillo, D; Naldini, L; Rossino, P; Comoglio, P M

    1988-01-01

    It has been hypothesized that bombesin-like peptides produced by small cell lung carcinomas may sustain deregulated proliferation through an autocrine mechanism. We have shown that the neuropeptide bombesin leads to the activation of a protein-tyrosine kinase that phosphorylates a 115-kDa protein (p115) associated with the bombesin receptor complex in mouse Swiss 3T3 fibroblasts. We now report that phosphotyrosine antibodies recognize a 115-kDa protein, phosphorylated on tyrosine, in four human small cell lung carcinoma cell lines producing bombesin but not in a nonproducer "variant" line. p115 from detergent-treated small cell lung carcinoma cells binds to bombesin-Sepharose and can be phosphorylated on tyrosine in the presence of radiolabeled ATP and Mn2+. As for the p115 immunoprecipitated from mouse fibroblast, the small cell lung carcinoma p115 can be phosphorylated in an immunocomplex kinase assay. However, the latter does not require the presence of exogenous bombesin for activity. Binding data, obtained by using radiolabeled ligand, suggest receptor occupancy in the cell lines producing bombesin. These observations are consistent with the hypothesis that proliferation in some human small cell lung carcinoma lines is under autocrine control, regulated through activation of bombesin receptors. Images PMID:2451242

  16. Cell signaling by receptor-tyrosine kinases

    PubMed Central

    Lemmon, Mark A.; Schlessinger, Joseph

    2010-01-01

    Recent structural studies of receptor tyrosine kinases (RTKs) have revealed unexpected diversity in the mechanisms of their activation by growth factor ligands. Strategies for inducing dimerization by ligand binding are surprisingly diverse, as are mechanisms that couple this event to activation of the intracellular tyrosine kinase domains. As our understanding of these details becomes increasingly sophisticated, it provides an important context for therapeutically countering the effects of pathogenic RTK mutations in cancer and other diseases. Much remains to be learned, however, about the complex signaling networks downstream from RTKs and how alterations in these networks are translated into cellular responses. PMID:20602996

  17. Tyrosine dephosphorylation enhances the therapeutic target activity of epidermal growth factor receptor (EGFR) by disrupting its interaction with estrogen receptor (ER).

    PubMed

    Ma, Shao; Yin, Ning; Qi, Xiaomei; Pfister, Sandra L; Zhang, Mei-Jie; Ma, Rong; Chen, Guan

    2015-05-30

    Protein-protein interactions can increase or decrease its therapeutic target activity and the determining factors involved, however, are largely unknown. Here, we report that tyrosine-dephosphorylation of epidermal growth factor receptor (EGFR) increases its therapeutic target activity by disrupting its interaction with estrogen receptor (ER). Protein tyrosine phosphatase H1 (PTPH1) dephosphorylates the tyrosine kinase EGFR, disrupts its interaction with the nuclear receptor ER, and increases breast cancer sensitivity to small molecule tyrosine kinase inhibitors (TKIs). These effects require PTPH1 catalytic activity and its interaction with EGFR, suggesting that the phosphatase may increase the sensitivity by dephosphorylating EGFR leading to its dissociation with ER. Consistent with this notion, a nuclear-localization defective ER has a higher EGFR-binding activity and confers the resistance to TKI-induced growth inhibition. Additional analysis show that PTPH1 stabilizes EGFR, stimulates the membranous EGFR accumulation, and enhances the growth-inhibitory activity of a combination therapy of TKIs with an anti-estrogen. Since EGFR and ER both are substrates for PTPH1 in vitro and in intact cells, these results indicate that an inhibitory EGFR-ER protein complex can be switched off through a competitive enzyme-substrate binding. Our results would have important implications for the treatment of breast cancer with targeted therapeutics.

  18. Tyrosine dephosphorylation enhances the therapeutic target activity of epidermal growth factor receptor (EGFR) by disrupting its interaction with estrogen receptor (ER)

    PubMed Central

    Ma, Shao; Yin, Ning; Qi, Xiaomei; Pfister, Sandra L.; Zhang, Mei-Jie; Ma, Rong; Chen, Guan

    2015-01-01

    Protein-protein interactions can increase or decrease its therapeutic target activity and the determining factors involved, however, are largely unknown. Here, we report that tyrosine-dephosphorylation of epidermal growth factor receptor (EGFR) increases its therapeutic target activity by disrupting its interaction with estrogen receptor (ER). Protein tyrosine phosphatase H1 (PTPH1) dephosphorylates the tyrosine kinase EGFR, disrupts its interaction with the nuclear receptor ER, and increases breast cancer sensitivity to small molecule tyrosine kinase inhibitors (TKIs). These effects require PTPH1 catalytic activity and its interaction with EGFR, suggesting that the phosphatase may increase the sensitivity by dephosphorylating EGFR leading to its dissociation with ER. Consistent with this notion, a nuclear-localization defective ER has a higher EGFR-binding activity and confers the resistance to TKI-induced growth inhibition. Additional analysis show that PTPH1 stabilizes EGFR, stimulates the membranous EGFR accumulation, and enhances the growth-inhibitory activity of a combination therapy of TKIs with an anti-estrogen. Since EGFR and ER both are substrates for PTPH1 in vitro and in intact cells, these results indicate that an inhibitory EGFR-ER protein complex can be switched off through a competitive enzyme-substrate binding. Our results would have important implications for the treatment of breast cancer with targeted therapeutics. PMID:26079946

  19. Receptor Tyrosine Kinases in Drosophila Development

    PubMed Central

    Sopko, Richelle; Perrimon, Norbert

    2013-01-01

    Tyrosine phosphorylation plays a significant role in a wide range of cellular processes. The Drosophila genome encodes more than 20 receptor tyrosine kinases and extensive studies in the past 20 years have illustrated their diverse roles and complex signaling mechanisms. Although some receptor tyrosine kinases have highly specific functions, others strikingly are used in rather ubiquitous manners. Receptor tyrosine kinases regulate a broad expanse of processes, ranging from cell survival and proliferation to differentiation and patterning. Remarkably, different receptor tyrosine kinases share many of the same effectors and their hierarchical organization is retained in disparate biological contexts. In this comprehensive review, we summarize what is known regarding each receptor tyrosine kinase during Drosophila development. Astonishingly, very little is known for approximately half of all Drosophila receptor tyrosine kinases. PMID:23732470

  20. The Kaposi's Sarcoma-Associated Herpesvirus G Protein-Coupled Receptor Contains an Immunoreceptor Tyrosine-Based Inhibitory Motif That Activates Shp2 ▿

    PubMed Central

    Philpott, Nicola; Bakken, Thomas; Pennell, Christopher; Chen, Liwei; Wu, Jie; Cannon, Mark

    2011-01-01

    The Kaposi's sarcoma-associated herpesvirus (KSHV) G protein-coupled receptor (vGPCR) is a constitutively active, highly angiogenic homologue of the interleukin-8 (IL-8) receptors that signals in part via the cytoplasmic protein tyrosine phosphatase Shp2. We show that vGPCR contains a bona fide immunoreceptor tyrosine-based inhibitory motif (ITIM) that binds and constitutively activates Shp2. PMID:21047965

  1. Phosphorylation in vitro of the 85 kDa subunit of phosphatidylinositol 3-kinase and its possible activation by insulin receptor tyrosine kinase.

    PubMed Central

    Hayashi, H; Miyake, N; Kanai, F; Shibasaki, F; Takenawa, T; Ebina, Y

    1991-01-01

    Insulin causes a dramatic and rapid increase in phosphatidylinositol 3-kinase activity in the anti-phosphotyrosine immunoprecipitates of cells overexpressing the human insulin receptor. This enzyme may therefore be a mediator of insulin signal transduction [Endemann, Yonezawa & Roth (1990) J. Biol. Chem. 265, 396-400; Ruderman, Kapeller, White & Cantley (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 1411-1415]. At least two questions remain to be elucidated. Firstly, does the insulin receptor tyrosine kinase phosphorylate phosphatidylinositol 3-kinase directly, or does it phosphorylate a protein associated with the 3-kinase? Second, if the enzyme is a direct substrate for the insulin receptor tyrosine kinase, does tyrosine phosphorylation of phosphatidylinositol 3-kinase by the kinase alter the specific enzyme activity, or does the amount of the tyrosine-phosphorylated form of the phosphatidylinositol 3-kinase increase, with no change in the specific activity? We report here evidence that the 85 kDa subunit of highly purified phosphatidylinositol 3-kinase is phosphorylated on the tyrosine residue by the activated normal insulin receptor in vitro, but not by a mutant insulin receptor which lacks tyrosine kinase activity. We found that an increase in enzyme activity was detected in response to insulin not only in the anti-phosphotyrosine immunoprecipitates of the cytosol, but also in the cytosolic fraction before immunoprecipitation. In addition, we partially separated the tyrosine-phosphorylated form from the unphosphorylated form of the enzyme, by using a f.p.l.c. Mono Q column. The insulin-stimulated phosphatidylinositol 3-kinase activity was mainly detected in the fraction containing almost all of the tyrosine-phosphorylated form. This result suggests that tyrosine phosphorylation of phosphatidylinositol 3-kinase by the insulin receptor kinase may increase the specific activity of the former enzyme in vivo. Images Fig. 1. Fig. 2. Fig. 4. PMID:1722393

  2. Protease activated receptor 1 (PAR1) enhances Src-mediated tyrosine phosphorylation of NMDA receptor in intracerebral hemorrhage (ICH)

    PubMed Central

    Duan, Zhen-Zhen; Zhang, Feng; Li, Feng-Ying; Luan, Yi-Fei; Guo, Peng; Li, Yi-Hang; Liu, Yong; Qi, Su-Hua

    2016-01-01

    It has been demonstrated that Src could modulate NMDA receptor, and PAR1 could also affect NMDAR signaling. However, whether PAR1 could regulate NMDAR through Src under ICH has not yet been investigated. In this study, we demonstrated the role of Src-PSD95-GluN2A signaling cascades in rat ICH model and in vitro thrombin challenged model. Using the PAR1 agonist SFLLR, antagonist RLLFS and Src inhibitor PP2, electrophysiological analysis showed that PAR1 regulated NMDA-induced whole-cell currents (INMDA) though Src in primary cultured neurons. Both in vivo and in vitro results showed the elevated phosphorylation of tyrosine in Src and GluN2A and enhanced interaction of the Src-PSD95-GluN2A under model conditions. Treatment with the PAR1 antagonist RLLFS, AS-PSD95 (Antisense oligonucleotide against PSD95) and Src inhibitor PP2 inhibited the interaction among Src-PSD95-GluN2A, and p-Src, p-GluN2A. Co-application of SFLLR and AS-PSD95, PP2, or MK801 (NMDAR inhibitor) abolished the effect of SF. In conclusion, our results demonstrated that activated thrombin receptor PAR1 induced Src activation, enhanced the interaction among Src-PSD95-GluN2A signaling modules, and up-regulated GluN2A phosphorylation after ICH injury. Elucidation of such signaling cascades would possibly provide novel targets for ICH treatment. PMID:27385592

  3. Tyrosine kinase/p21ras/MAP-kinase pathway activation by estradiol-receptor complex in MCF-7 cells.

    PubMed Central

    Migliaccio, A; Di Domenico, M; Castoria, G; de Falco, A; Bontempo, P; Nola, E; Auricchio, F

    1996-01-01

    The mechanism by which estradiol acts on cell multiplication is still unclear. Under conditions of estradiol-dependent growth, estradiol treatment of human mammary cancer MCF-7 cells triggers rapid and transient activation of the mitogen-activated (MAP) kinases, erk-1 and erk-2, increases the active form of p21ras, tyrosine phosphorylation of Shc and p190 protein and induces association of p190 to p21ras-GAP. Both Shc and p190 are substrates of activated src and once phosphorylated, they interact with other proteins and upregulate p21ras. Estradiol activates the tyrosine kinase/p21ras/MAP-kinase pathway in MCF-7 cells with kinetics which are similar to those of peptide mitogens. It is only after introduction of the human wild-type 67 kDa estradiol receptor cDNA that Cos cells become estradiol-responsive in terms of erk-2 activity. This finding, together with the inhibition by the pure anti-estrogen ICI 182 780 of the stimulatory effect of estradiol on each step of the pathway in MCF-7 cells proves that the classic estradiol receptor is responsible for the transduction pathway activation. Transfection experiments of Cos cells with the estradiol receptor cDNA and in vitro experiments with c-src show that the estradiol receptor activates c-src and this activation requires occupancy of the receptor by hormone. Our experiments suggest that c-src is an initial and integral part of the signaling events mediated by the estradiol receptor. Images PMID:8635462

  4. Receptor Tyrosine Kinases, TYRO3, AXL, and MER, Demonstrate Distinct Patterns and Complex Regulation of Ligand-induced Activation*

    PubMed Central

    Tsou, Wen-I; Nguyen, Khanh-Quynh N.; Calarese, Daniel A.; Garforth, Scott J.; Antes, Anita L.; Smirnov, Sergey V.; Almo, Steve C.; Birge, Raymond B.; Kotenko, Sergei V.

    2014-01-01

    TYRO3, AXL, and MER receptors (TAMs) are three homologous type I receptor-tyrosine kinases that are activated by endogenous ligands, protein S (PROS1) and growth arrest-specific gene 6 (GAS6). These ligands can either activate TAMs as soluble factors, or, in turn, opsonize phosphatidylserine (PS) on apoptotic cells (ACs) and serve as bridging molecules between ACs and TAMs. Abnormal expression and activation of TAMs have been implicated in promoting proliferation and survival of cancer cells, as well as in suppressing anti-tumor immunity. Despite the fact that TAM receptors share significant similarity, little is known about the specificity of interaction between TAM receptors and their ligands, particularly in the context of ACs, and about the functional diversity of TAM receptors. To study ligand-mediated activation of TAMs, we generated a series of reporter cell lines expressing chimeric TAM receptors. Using this system, we found that each TAM receptor has a unique pattern of interaction with and activation by GAS6 and PROS1, which is also differentially affected by the presence of ACs, PS-containing lipid vesicles and enveloped virus. We also demonstrated that γ-carboxylation of ligands is essential for the full activation of TAMs and that soluble immunoglobulin-like TAM domains act as specific ligand antagonists. These studies demonstrate that, despite their similarity, TYRO3, AXL, and MER are likely to perform distinct functions in both immunoregulation and the recognition and removal of ACs. PMID:25074926

  5. Temporal differences in the activation of three classes of non-transmembrane protein tyrosine kinases following B-cell antigen receptor surface engagement.

    PubMed

    Saouaf, S J; Mahajan, S; Rowley, R B; Kut, S A; Fargnoli, J; Burkhardt, A L; Tsukada, S; Witte, O N; Bolen, J B

    1994-09-27

    We evaluated in WEHI 231 B cells the time-dependent responses of Lyn, Blk, Btk, Syk, and three members of the Jak family of protein tyrosine kinases following antibody-mediated surface engagement of the B-cell antigen receptor. Our results show that the enzyme activities of Lyn and Blk were stimulated within seconds of antigen receptor engagement and correlated with the initial tyrosine phosphorylation of the Ig alpha and Ig beta subunits of the B-cell antigen receptor. Btk enzyme activity was also transiently stimulated and was maximal at approximately 5 min after B-cell receptor surface binding. Syk activity gradually increased to a maximum at 10-30 min following receptor ligation and was found to parallel the association of Syk with the tyrosine phosphorylated Ig alpha and Ig beta subunits of the receptor. While the specific activities of the Jak1, Jak2, and Tyk2 protein tyrosine kinases were unaltered following B-cell receptor ligation, the abundance of Jak1 and Jak2 were increased 3- to 4-fold within 10 min of receptor engagement. These results demonstrate that multiple families of non-transmembrane protein tyrosine kinases are temporally regulated during the process of B-cell antigen receptor-initiated intracellular signal transduction. PMID:7524079

  6. Temporal differences in the activation of three classes of non-transmembrane protein tyrosine kinases following B-cell antigen receptor surface engagement.

    PubMed Central

    Saouaf, S J; Mahajan, S; Rowley, R B; Kut, S A; Fargnoli, J; Burkhardt, A L; Tsukada, S; Witte, O N; Bolen, J B

    1994-01-01

    We evaluated in WEHI 231 B cells the time-dependent responses of Lyn, Blk, Btk, Syk, and three members of the Jak family of protein tyrosine kinases following antibody-mediated surface engagement of the B-cell antigen receptor. Our results show that the enzyme activities of Lyn and Blk were stimulated within seconds of antigen receptor engagement and correlated with the initial tyrosine phosphorylation of the Ig alpha and Ig beta subunits of the B-cell antigen receptor. Btk enzyme activity was also transiently stimulated and was maximal at approximately 5 min after B-cell receptor surface binding. Syk activity gradually increased to a maximum at 10-30 min following receptor ligation and was found to parallel the association of Syk with the tyrosine phosphorylated Ig alpha and Ig beta subunits of the receptor. While the specific activities of the Jak1, Jak2, and Tyk2 protein tyrosine kinases were unaltered following B-cell receptor ligation, the abundance of Jak1 and Jak2 were increased 3- to 4-fold within 10 min of receptor engagement. These results demonstrate that multiple families of non-transmembrane protein tyrosine kinases are temporally regulated during the process of B-cell antigen receptor-initiated intracellular signal transduction. Images PMID:7524079

  7. Identification of canonical tyrosine-dependent and non-canonical tyrosine-independent STAT3 activation sites in the intracellular domain of the interleukin 23 receptor.

    PubMed

    Floss, Doreen M; Mrotzek, Simone; Klöcker, Tobias; Schröder, Jutta; Grötzinger, Joachim; Rose-John, Stefan; Scheller, Jürgen

    2013-07-01

    Signaling of interleukin 23 (IL-23) via the IL-23 receptor (IL-23R) and the shared IL-12 receptor β1 (IL-12Rβ1) controls innate and adaptive immune responses and is involved in the differentiation and expansion of IL-17-producing CD4(+) T helper (TH17) cells. Activation of signal transducer and activator of transcription 3 (STAT3) appears to be the major signaling pathway of IL-23, and STAT binding sites were predicted in the IL-23R but not in the IL-12Rβ1 chain. Using site-directed mutagenesis and deletion variants of the murine and human IL-23R, we showed that the predicted STAT binding sites (pYXXQ; including Tyr-504 and Tyr-626 in murine IL-23R and Tyr-484 and Tyr-611 in human IL-23R) mediated STAT3 activation. Furthermore, we identified two uncommon STAT3 binding/activation sites within the murine IL-23R. First, the murine IL-23R carried the Y(542)PNFQ sequence, which acts as an unusual Src homology 2 (SH2) domain-binding protein activation site of STAT3. Second, we identified a non-canonical, phosphotyrosine-independent STAT3 activation motif within the IL-23R. A third predicted site, Tyr-416 in murine and Tyr-397 in human IL-23R, is involved in the activation of PI3K/Akt and the MAPK pathway leading to STAT3-independent proliferation of Ba/F3 cells upon stimulation with IL-23. In contrast to IL-6-induced short term STAT3 phosphorylation, cellular activation by IL-23 resulted in a slower but long term STAT3 phosphorylation, indicating that the IL-23R might not be a major target of negative feedback inhibition by suppressor of cytokine signaling (SOCS) proteins. In summary, we characterized IL-23-dependent signal transduction with a focus on STAT3 phosphorylation and identified canonical tyrosine-dependent and non-canonical tyrosine-independent STAT3 activation sites in the IL-23R.

  8. Sensitivity and kinase activity of epidermal growth factor receptor (EGFR) exon 19 and others to EGFR-tyrosine kinase inhibitors.

    PubMed

    Furuyama, Kazuto; Harada, Taishi; Iwama, Eiji; Shiraishi, Yoshimasa; Okamura, Kyoko; Ijichi, Kayo; Fujii, Akiko; Ota, Keiichi; Wang, Shuo; Li, Heyan; Takayama, Koichi; Giaccone, Giuseppe; Nakanishi, Yoichi

    2013-05-01

    The presence of epidermal growth factor receptor (EGFR) somatic mutations in non-small-cell lung cancer patients is associated with response to treatment with EGFR-tyrosine kinase inhibitors, such as gefitinib and erlotinib. More than 100 mutations in the kinase domain of EGFR have been identified. In particular there are many variations of deletion mutations in exon 19. In this study, using yellow fluorescent protein-tagged fragments of the EGFR intracellular domain, we examined the differences in sensitivity to gefitinib, erlotinib and afatinib between several exon 19 mutants and other common EGFR mutations. We also used serum of patients undergoing treatment with EGFR-tyrosine kinase inhibitors in this system. In addition, we examined the relative kinase activity of these mutants by measuring relative fluorescent intensity after immunofluorescence staining. We found that both sensitivity to EGFR-tyrosine kinase inhibitors and relative kinase activity differed among several EGFR mutations found in the same region of the kinase domain. This study underscores the importance of reporting the clinical outcome of treatment in relation to different EGFR mutations.

  9. Tyrosine phosphorylation of the BRI1 receptor kinase occurs via a posttranslational modification and is activated by the juxtamembrane domain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In metazoans, receptor kinases control many essential processes related to growth and development and response to the environment. The receptor kinases in plants and animals are structurally similar but evolutionarily distinct from one another, and thus while most animal receptor kinases are tyrosin...

  10. Ovary ecdysteroidogenic hormone requires a receptor tyrosine kinase to activate egg formation in the mosquito Aedes aegypti

    PubMed Central

    Vogel, Kevin J.; Brown, Mark R.; Strand, Michael R.

    2015-01-01

    Mosquitoes are major disease vectors because most species must feed on blood from a vertebrate host to produce eggs. Blood feeding by the vector mosquito Aedes aegypti triggers the release of two neurohormones, ovary ecdysteroidogenic hormone (OEH) and insulin-like peptides (ILPs), which activate multiple processes required for egg formation. ILPs function by binding to the insulin receptor, which activates downstream components in the canonical insulin signaling pathway. OEH in contrast belongs to a neuropeptide family called neuroparsins, whose receptor is unknown. Here we demonstrate that a previously orphanized receptor tyrosine kinase (RTK) from A. aegypti encoded by the gene AAEL001915 is an OEH receptor. Phylogenetic studies indicated that the protein encoded by this gene, designated AAEL001915, belongs to a clade of RTKs related to the insulin receptor, which are distinguished by an extracellular Venus flytrap module. Knockdown of AAEL001915 by RNAi disabled OEH-mediated egg formation in A. aegypti. AAEL001915 was primarily detected in the mosquito ovary in association with follicular epithelial cells. Both monomeric and dimeric AAEL001915 were detected in mosquito ovaries and transfected Drosophila S2 cells. Functional assays further indicated that OEH bound to dimeric AAEL001915, which resulted in downstream phosphorylation of Ak strain transforming factor (Akt). We hypothesize that orthologs of AAEL001915 in other insects are neuroparsin receptors. PMID:25848040

  11. Oxidative inhibition of receptor-type protein-tyrosine phosphatase kappa by ultraviolet irradiation activates epidermal growth factor receptor in human keratinocytes.

    PubMed

    Xu, Yiru; Shao, Yuan; Voorhees, John J; Fisher, Gary J

    2006-09-15

    Ultraviolet (UV) irradiation rapidly increases tyrosine phosphorylation (i.e. activates) of epidermal growth factor receptors (EGFR) in human skin. EGFR-dependent signaling pathways drive increased expression of matrix metalloproteinases, whose actions fragment collagen and elastin fibers, the primary structural protein components in skin connective tissue. Connective tissue fragmentation, which results from chronic exposure to solar UV irradiation, is a major determinant of premature skin aging (photoaging). UV irradiation generates reactive oxygen species, which readily react with conserved cysteine residues in the active site of protein-tyrosine phosphatases (PTP). We report here that EGFR activation by UV irradiation results from oxidative inhibition of receptor type PTP-kappa (RPTP-kappa). RPTP-kappa directly counters intrinsic EGFR tyrosine kinase activity, thereby maintaining EGFR in an inactive state. Reversible, oxidative inactivation of RPTP-kappa activity by UV irradiation shifts the kinase-phosphatase balance in favor of EGFR activation. These data delineate a novel mechanism of EGFR regulation and identify RPTP-kappa as a key molecular target for antioxidant protection against skin aging.

  12. Targeting receptor tyrosine kinases in gastric cancer

    PubMed Central

    Morishita, Asahiro; Gong, Jian; Masaki, Tsutomu

    2014-01-01

    Molecularly targeted therapeutic agents are constantly being developed and have been shown to be effective in various clinical trials. One group of representative targeted oncogenic kinases, the receptor tyrosine kinases (RTKs), has been associated with gastric cancer development. Trastuzumab, an inhibitor of ERBB2, has been approved for the treatment of gastric cancer, although other receptor tyrosine kinases, such as epidermal growth factor receptor, vascular endothelial growth factor, platelet-derived growth factor receptor, c-Met, IGF-1R and fibroblast growth factor receptor 2, are also activated in gastric cancer. The promising results of the trastuzumab clinical trial for gastric cancer resulted in the approval of trastuzumab-based therapy as a first-line treatment for human epidermal growth factor receptor 2-positive patients. On the other hand, the trial examining bevacizumab in combination with conventional chemotherapy did not meet its primary goal of increasing the overall survival time of gastric cancer patients; however, a significantly higher response rate and a longer progression-free survival were observed in the bevacizumab arm of the trial. Other clinical trials, especially phase III trials that have tested drugs targeting RTKs, such as cetuximab, panitumumab, gefitinib, erlotinib, figitumumab, sorafenib, sunitinib and lapatinib, have shown that these drugs have modest effects against gastric cancer. This review summarizes the recent results from the clinical trials of molecularly targeted drugs and suggests that further improvements in the treatment of advanced gastric cancer can be achieved through the combination of conventional drugs with the new molecularly targeted therapies. PMID:24782606

  13. The heterotrimeric G q protein-coupled angiotensin II receptor activates p21 ras via the tyrosine kinase-Shc-Grb2-Sos pathway in cardiac myocytes.

    PubMed Central

    Sadoshima, J; Izumo, S

    1996-01-01

    p21 ras plays as important role in cell proliferation, transformation and differentiation. Recently, the requirement of p21 ras has been suggested for cellular responses induced by stimulation of heterotrimeric G protein-coupled receptors. However, it remains to be determined how agonists for G protein-coupled receptors activate p21 ras in metazoans. We show here that stimulation of the G q protein-coupled angiotensin II (Ang II) receptor causes activation of p21 ras in cardiac myocytes. The p21 ras activation by Ang II is mediated by an increase in the guanine nucleotide exchange activity, but not by an inhibition of the GTPase-activating protein. Ang II causes rapid tyrosine phosphorylation of Shc and its association with Grb2 and mSos-1, a guanine nucleotide exchange factor of p21 ras. This leads to translocation of mSos-1 to the membrane fraction. Shc associates with the SH3 domain of Fyn whose tyrosine kinase activity is activated by Ang II with a similar time course as that of tyrosine phosphorylation of Shc. Ang II-induced increase in the guanine nucleotide exchange activity was inhibited by a peptide ligand specific to the SH3 domain of the Src family tyrosine kinases. These results suggest that an agonist for a pertussis toxin-insensitive G protein-coupled receptor may initiate the cross-talk with non-receptor-type tyrosine kinases, thereby activating p21 ras using a similar mechanism as receptor tyrosine kinase-induced p21 ras activation. Images PMID:8631299

  14. Transcriptional regulation through glutamate receptors: Involvement of tyrosine kinases.

    PubMed

    López-Bayghen, Esther; Aguirre, Adán; Ortega, Arturo

    2003-12-01

    Glutamate receptors play a key role in neuronal plasticity, learning and memory, and in several neuropathologies. Short-term and long-term changes in synaptic efficacy are triggered by glutamate. Although an enhanced glutamate-dependent tyrosine phosphorylation has been described in several systems, its role in membrane-to-nuclei signaling is unclear. Taking advantage of the fact that the gene encoding the chick kainate-binding protein undergoes a glutamate-dependent transcriptional regulation via an activator protein-1 (AP-1) site, we evaluated the involvement of tyrosine kinases in this process. We describe here the participation of receptor and non-receptor tyrosine kinases in the signaling cascade triggered by glutamate. Our results suggest that in Bergmann glia cells, glutamate receptors transactivate receptor tyrosine kinases, favoring the idea of a complex network of signals activated by this excitatory neurotransmitter that results in regulation of gene expression.

  15. Structural basis for stem cell factor–KIT signaling and activation of class III receptor tyrosine kinases

    PubMed Central

    Liu, Heli; Chen, Xiaoyan; Focia, Pamela J; He, Xiaolin

    2007-01-01

    Stem cell factor (SCF) binds to and activates the KIT receptor, a class III receptor tyrosine kinase (RTK), to stimulate diverse processes including melanogenesis, gametogenesis and hematopoeisis. Dysregulation of KIT activation is associated with many cancers. We report a 2.5 Å crystal structure of the functional core of SCF bound to the extracellular ligand-binding domains of KIT. The structure reveals a ‘wrapping' SCF-recognition mode by KIT, in which KIT adopts a bent conformation to facilitate each of its first three immunoglobulin (Ig)-like domains to interact with SCF. Three surface epitopes on SCF, an extended loop, the B and C helices, and the N-terminal segment, contact distinct KIT domains, with two of the epitopes undergoing large conformational changes upon receptor binding. The SCF/KIT complex reveals a unique RTK dimerization assembly, and a novel recognition mode between four-helix bundle cytokines and Ig-family receptors. It serves as a framework for understanding the activation mechanisms of class III RTKs. PMID:17255936

  16. Vascular endothelial growth factor-related protein: a ligand and specific activator of the tyrosine kinase receptor Flt4.

    PubMed Central

    Lee, J; Gray, A; Yuan, J; Luoh, S M; Avraham, H; Wood, W I

    1996-01-01

    The tyrosine kinases Flt4, Flt1, and Flk1 (or KDR) constitute a family of endothelial cell-specific receptors with seven immunoglobulin-like domains and a split kinase domain. Flt1 and Flk1 have been shown to play key roles in vascular development; these two receptors bind and are activated by vascular endothelial growth factor (VEGF). No ligand has been identified for Flt4, whose expression becomes restricted during development to the lymphatic endothelium. We have identified cDNA clones from a human glioma cell line that encode a secreted protein with 32% amino acid identity to VEGF. This protein, designated VEGF-related protein (VRP), specifically binds to the extracellular domain of Flt4, stimulates the tyrosine phosphorylation of Flt4 expressed in mammalian cells, and promotes the mitogenesis of human lung endothelial cells. VRP fails to bind appreciably to the extracellular domain of Flt1 or Flk1. The protein contains a C-terminal, cysteine-rich region of about 180 amino acids that is not found in VEGF. A 2.4-kb VRP mRNA is found in several human tissues including adult heart, placenta, ovary, and small intestine and in fetal lung and kidney. Images Fig. 1 Fig. 2 Fig. 3 Fig. 6 PMID:8700872

  17. Motor activity affects adult skeletal muscle re-innervation acting via tyrosine kinase receptors.

    PubMed

    Sartini, Stefano; Bartolini, Fanny; Ambrogini, Patrizia; Betti, Michele; Ciuffoli, Stefano; Lattanzi, Davide; Di Palma, Michael; Cuppini, Riccardo

    2013-05-01

    Recently, muscle expression of brain-derived neurotrophic factor (BDNF) mRNA and protein under activity control has been reported. BDNF is a neurotrophin known to be involved in axon sprouting in the CNS. Hence, we set out to study the effect of chronic treadmill mid-intensity running on adult rat muscle re-innervation, and to explore the involvement of BDNF and tropomyosin-related kinase (Trk) receptors. After nerve crush, muscle re-innervation was evaluated using intracellular recordings, tension recordings, immunostaining and Western blot analyses. An enhanced muscle multiple innervation was found in running rats that was fully reversed to control values blocking Trk receptors or interrupting the running activity. An increase in muscle multiple innervation was also found in sedentary rats treated with a selective TrkB receptor agonist. The expression of TrkB receptors by intramuscular axons was demonstrated, and increased muscle expression of BDNF was found in running animals. The increase in muscle multiple innervation was consistent with the faster muscle re-innervation that we found in running animals. We conclude that, when regenerating axons contact muscle cells, muscle activity progressively increases modulating BDNF and possibly other growth factors, which in turn, acting via Trk receptors, induce axon sprouting to re-innervate skeletal muscle.

  18. Oncogenic activation of the Met receptor tyrosine kinase fusion protein, Tpr-Met, involves exclusion from the endocytic degradative pathway.

    PubMed

    Mak, H H L; Peschard, P; Lin, T; Naujokas, M A; Zuo, D; Park, M

    2007-11-01

    Multiple mechanisms of dysregulation of receptor tyrosine kinases (RTKs) are observed in human cancers. In addition to gain-of-function, loss of negative regulation also contributes to oncogenic activation of RTKs. Negative regulation of many RTKs involves their internalization and degradation in the lysosome, a process regulated through ubiquitination. RTK oncoproteins activated following chromosomal translocation, are no longer transmembrane proteins, and are predicted to escape lysosomal degradation. To test this, we used the Tpr-Met oncogene, generated following chromosomal translocation of the hepatocyte growth factor receptor (Met). Unlike Met, Tpr-Met is localized in the cytoplasm and also lacks the binding site for Cbl ubiquitin ligases. We determined whether subcellular localization of Tpr-Met, and/or loss of its Cbl-binding site, is important for oncogenic activity. Presence of a Cbl-binding site and ubiquitination of cytosolic Tpr-Met oncoproteins does not alter their transforming activity. In contrast, plasma membrane targeting allows Tpr-Met to enter the endocytic pathway, and Tpr-Met transforming activity as well as protein stability are decreased in a Cbl-dependent manner. We show that transformation by Tpr-Met is in part dependent on its ability to escape normal downregulatory mechanisms. This provides a paradigm for many RTK oncoproteins activated following chromosomal translocation.

  19. {delta}-Opioid receptor-stimulated Akt signaling in neuroblastoma x glioma (NG108-15) hybrid cells involves receptor tyrosine kinase-mediated PI3K activation

    SciTech Connect

    Heiss, Anika; Ammer, Hermann; Eisinger, Daniela A.

    2009-07-15

    {delta}-Opioid receptor (DOR) agonists possess cytoprotective properties, an effect associated with activation of the 'pro-survival' kinase Akt. Here we delineate the signal transduction pathway by which opioids induce Akt activation in neuroblastoma x glioma (NG108-15) hybrid cells. Exposure of the cells to both [D-Pen{sup 2,5}]enkephalin and etorphine resulted in a time- and dose-dependent increase in Akt activity, as measured by means of an activation-specific antibody recognizing phosphoserine-473. DOR-mediated Akt signaling is blocked by the opioid antagonist naloxone and involves inhibitory G{sub i/o} proteins, because pre-treatment with pertussis toxin, but not over-expression of the G{sub q/11} scavengers EBP50 and GRK2-K220R, prevented this effect. Further studies with Wortmannin and LY294002 revealed that phophoinositol-3-kinase (PI3K) plays a central role in opioid-induced Akt activation. Opioids stimulate Akt activity through transactivation of receptor tyrosine kinases (RTK), because pre-treatment of the cells with inhibitors for neurotrophin receptor tyrosine kinases (AG879) and the insulin-like growth factor receptor IGF-1 (AG1024), but not over-expression of the G{beta}{gamma} scavenger phosducin, abolished this effect. Activated Akt translocates to the nuclear membrane, where it promotes GSK3 phosphorylation and prevents caspase-3 cleavage, two key events mediating inhibition of cell apoptosis and enhancement of cell survival. Taken together, these results demonstrate that in NG108-15 hybrid cells DOR agonists possess cytoprotective properties mediated by activation of the RTK/PI3K/Akt signaling pathway.

  20. Rapid evaluation of tyrosine kinase activity of membrane-integrated human epidermal growth factor receptor using the yeast Gγ recruitment system.

    PubMed

    Fukuda, Nobuo; Honda, Shinya

    2015-04-17

    Epidermal growth factor receptor (EGFR) is a member of the receptor tyrosine kinase family and plays key roles in the regulation of fundamental cellular processes, including cell proliferation, migration, differentiation, and survival. Deregulation of EGFR tyrosine kinase activity is involved in the development and progression of human cancers. In the present study, we attempted to develop a method to evaluate the tyrosine kinase activity of human EGFR using the yeast Gγ recruitment system. Autophosphorylation of tyrosine residues on the cytoplasmic tail of EGFR induces recruitment of Grb2-fused Gγ subunits to the inner leaflet of the plasma membrane in yeast cells, which leads to G-protein signal transduction and activation of downstream signaling events, including mating and diploid cell growth. We demonstrate that our system is applicable for the evaluation of tyrosine kinase inhibitors, which are regarded as promising drug candidates to prevent the growth of tumor cells. This approach provides a rapid and easy-to-use tool to select EGFR-targeting tyrosine kinase inhibitors that are able to permeate eukaryotic membranes and function in intracellular environments.

  1. In situ autoradiography and ligand-dependent tyrosine kinase activity reveal insulin receptors and insulin-like growth factor I receptors in prepancreatic chicken embryos.

    PubMed Central

    Girbau, M; Bassas, L; Alemany, J; de Pablo, F

    1989-01-01

    We previously reported specific cross-linking of 125I-labeled insulin and 125I-labeled insulin-like growth factor I (IGF-I) to the alpha subunit of their respective receptors in chicken embryos of 20 somites and older. To achieve adequate sensitivity and localize spatially the receptors in younger embryos, we adapted an autoradiographic technique using whole-mounted chicken blastoderms. Insulin receptors and IGF-I receptors were expressed and could be localized as early as gastrulation, before the first somite is formed. Relative density was analyzed by a computer-assisted image system, revealing overall slightly higher binding of IGF-I than of insulin. Structures rich in both types of receptors were predominantly of ectodermal origin: Hensen's node in gastrulating embryos and neural folds, neural tube and optic vesicles during neurulation. The signal transduction capability of the receptors in early organogenesis was assessed by their ability to phosphorylate the exogenous substrate poly(Glu80Tyr20). Ligand-dependent tyrosine phosphorylation was demonstrable with both insulin and IGF-I in glycoprotein-enriched preparations from embryos at days 2 through 6 of embryogenesis. There was a developmentally regulated change in ligand-dependent tyrosine kinase activity, with a sharp increase from day 2 to day 4, in contrast with a small increase in the ligand binding. Binding of 125I-labeled IGF-I was, with the solubilized receptors, severalfold higher than binding of 125I-labeled insulin. However, the insulin-dependent phosphorylation was as high as the IGF-I-dependent phosphorylation at each developmental stage. Images PMID:2548191

  2. SRC-DEPENDENT PHOSPHORYLATION OF THE EPIDERMAL GROWTH FACTOR RECEPTOR ON TYROSINE 845 IS REQUIRED FOR ZINC-INDUCED RAS ACTIVATION

    EPA Science Inventory

    Src-dependent Phosphorylation of the Epidermal Growth Factor Receptor on Tyrosine 845 Is Required for Zinc-induced Ras Activation
    Weidong Wu 1 , Lee M. Graves 2 , Gordon N. Gill 3 , Sarah J. Parsons 4 , and James M. Samet 5
    1 Center for Environmental Medicine and Lung Biolo...

  3. Multiple receptor tyrosine kinase activation attenuates therapeutic efficacy of the fibroblast growth factor receptor 2 inhibitor AZD4547 in FGFR2 amplified gastric cancer

    PubMed Central

    Zhang, Zhe; Liu, Xinyang; Wu, Zheng; Geng, Ruixuan; Ge, Xiaoxiao; Dai, Congqi; Liu, Rujiao; Zhang, Qunling; Li, Wenhua; Li, Jin

    2015-01-01

    Fibroblast growth factor receptor 2 (FGFR2)-targeted therapy has attracted considerable attention as novel anticancer agents in gastric cancer (GC). However, intrinsic or acquired drug resistance has emerged as a major challenge to their clinical use. In this study, we demonstrated that several receptor tyrosine kinase (RTK), including EGFR, HER3 and MET, activations contributed to AZD4547 (a selective FGFR2 inhibitor) hyposensitivity in FGFR2 amplified GC cells. The rescue effect was abrogated by inhibiting these RTKs with their targeted tyrosine kinase inhibitors (TKIs). In addition, synergy in growth inhibition was observed when the GC cells were treated with a combination of AZD4547 and cetuximab (an EGFR monoclonal antibody) both in vitro and in vivo. More importantly, tissue microarray analysis revealed that these resistance-conferring RTKs were highly expressed in FGFR2 positive GC patients. Taken together, these observations demonstrated RTKs including EGFR, HER3 and MET activations as novel mechanisms of hyposensitivity to AZD4547. It will be clinically valuable to investigate the involvement of RTK-mediated signaling in intrinsicor acquired resistance to FGFR2 TKIs in GC. A combination targeted therapeutic strategy may be recommended for treating FGFR2 amplified GC patients with these RTK activations. PMID:25576915

  4. Palmitoylation of protease-activated receptor-1 regulates adaptor protein complex-2 and -3 interaction with tyrosine-based motifs and endocytic sorting.

    PubMed

    Canto, Isabel; Trejo, JoAnn

    2013-05-31

    Protease-activated receptor-1 (PAR1) is a G protein-coupled receptor for the coagulant protease thrombin. Thrombin binds to and cleaves the N terminus of PAR1, generating a new N terminus that functions as a tethered ligand that cannot diffuse away. In addition to rapid desensitization, PAR1 trafficking is critical for the regulation of cellular responses. PAR1 displays constitutive and agonist-induced internalization. Constitutive internalization of unactivated PAR1 is mediated by the clathrin adaptor protein complex-2 (AP-2), which binds to a distal tyrosine-based motif localized within the C-terminal tail (C-tail) domain. Once internalized, PAR1 is sorted from endosomes to lysosomes via AP-3 interaction with a second C-tail tyrosine motif proximal to the transmembrane domain. However, the regulatory processes that control adaptor protein recognition of PAR1 C-tail tyrosine-based motifs are not known. Here, we report that palmitoylation of PAR1 is critical for regulating proper utilization of tyrosine-based motifs and endocytic sorting. We show that PAR1 is basally palmitoylated at highly conserved C-tail cysteines. A palmitoylation-deficient PAR1 mutant is competent to signal and exhibits a marked increase in constitutive internalization and lysosomal degradation compared with wild type receptor. Intriguingly, enhanced constitutive internalization of PAR1 is mediated by AP-2 and requires the proximal tyrosine-based motif rather than the distal tyrosine motif used by wild type receptor. Moreover, palmitoylation-deficient PAR1 displays increased degradation that is mediated by AP-3. These findings suggest that palmitoylation of PAR1 regulates appropriate utilization of tyrosine-based motifs by adaptor proteins and endocytic trafficking, processes that are critical for maintaining appropriate expression of PAR1 at the cell surface. PMID:23580642

  5. Palmitoylation of protease-activated receptor-1 regulates adaptor protein complex-2 and -3 interaction with tyrosine-based motifs and endocytic sorting.

    PubMed

    Canto, Isabel; Trejo, JoAnn

    2013-05-31

    Protease-activated receptor-1 (PAR1) is a G protein-coupled receptor for the coagulant protease thrombin. Thrombin binds to and cleaves the N terminus of PAR1, generating a new N terminus that functions as a tethered ligand that cannot diffuse away. In addition to rapid desensitization, PAR1 trafficking is critical for the regulation of cellular responses. PAR1 displays constitutive and agonist-induced internalization. Constitutive internalization of unactivated PAR1 is mediated by the clathrin adaptor protein complex-2 (AP-2), which binds to a distal tyrosine-based motif localized within the C-terminal tail (C-tail) domain. Once internalized, PAR1 is sorted from endosomes to lysosomes via AP-3 interaction with a second C-tail tyrosine motif proximal to the transmembrane domain. However, the regulatory processes that control adaptor protein recognition of PAR1 C-tail tyrosine-based motifs are not known. Here, we report that palmitoylation of PAR1 is critical for regulating proper utilization of tyrosine-based motifs and endocytic sorting. We show that PAR1 is basally palmitoylated at highly conserved C-tail cysteines. A palmitoylation-deficient PAR1 mutant is competent to signal and exhibits a marked increase in constitutive internalization and lysosomal degradation compared with wild type receptor. Intriguingly, enhanced constitutive internalization of PAR1 is mediated by AP-2 and requires the proximal tyrosine-based motif rather than the distal tyrosine motif used by wild type receptor. Moreover, palmitoylation-deficient PAR1 displays increased degradation that is mediated by AP-3. These findings suggest that palmitoylation of PAR1 regulates appropriate utilization of tyrosine-based motifs by adaptor proteins and endocytic trafficking, processes that are critical for maintaining appropriate expression of PAR1 at the cell surface.

  6. INHIBITION OF PROTEIN TYROSINE PHOSPHATASE ACTIVITY MEDIATES EPIDERMAL GROWTH FACTOR RECEPTOR SIGNALING IN HUMAN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    Epidemiological studies have implicated zinc in the toxicity of ambient particulate matter (PM) inhalation. We previously showed that exposure to metal-laden PM inhibits protein tyrosine phosphatase (PTP) activity in human primary bronchial epithelial cells (HAEC) and leads t...

  7. 1,2-Naphthoquinone activates vanilloid receptor 1 through increased protein tyrosine phosphorylation, leading to contraction of guinea pig trachea

    SciTech Connect

    Kikuno, Shota; Taguchi, Keiko; Iwamoto, Noriko; Yamano, Shigeru; Cho, Arthur K.; Froines, John R.; Kumagai, Yoshito . E-mail: yk-em-tu@md.tsukuba.ac.jp

    2006-01-15

    1,2-Naphthoquinone (1,2-NQ) has recently been identified as an environmental quinone in diesel exhaust particles (DEP) and atmospheric PM{sub 2.5}. We have found that this quinone is capable of causing a concentration-dependent contraction of tracheal smooth muscle in guinea pigs with EC{sub 5} value of 18.7 {mu}M. The contraction required extracellular calcium and was suppressed by L-type calcium channel blockers nifedipine and diltiazem. It was found that 1,2-NQ activated phospholipase A2 (PLA2)/lipoxygenase (LO)/vanilloid receptor (VR1) signaling. Additionally, 1,2-NQ was capable of transactivating protein tyrosine kinases (PTKs) such as epidermal growth factor receptor (EGFR) in guinea pig trachea, suggesting that phosphorylation of PTKs contributes to 1,2-NQ-induced tracheal contraction. Consistent with this notion, this action was blocked by the PTKs inhibitor genistein and the EGFR antagonist PD153035, indicating that contraction was, at least in part, attributable to PTKs phosphorylation that activates VR1, resulting in increased intracellular calcium content in the smooth muscle cells.

  8. A New Family of Receptor Tyrosine Kinases with a Venus Flytrap Binding Domain in Insects and Other Invertebrates Activated by Aminoacids

    PubMed Central

    Ahier, Arnaud; Rondard, Philippe; Gouignard, Nadège; Khayath, Naji; Huang, Siluo; Trolet, Jacques; Donoghue, Daniel J.; Gauthier, Monique; Pin, Jean-Philippe; Dissous, Colette

    2009-01-01

    Background Tyrosine kinase receptors (RTKs) comprise a large family of membrane receptors that regulate various cellular processes in cell biology of diverse organisms. We previously described an atypical RTK in the platyhelminth parasite Schistosoma mansoni, composed of an extracellular Venus flytrap module (VFT) linked through a single transmembrane domain to an intracellular tyrosine kinase domain similar to that of the insulin receptor. Methods and Findings Here we show that this receptor is a member of a new family of RTKs found in invertebrates, and particularly in insects. Sixteen new members of this family, named Venus Kinase Receptor (VKR), were identified in many insects. Structural and phylogenetic studies performed on VFT and TK domains showed that VKR sequences formed monophyletic groups, the VFT group being close to that of GABAB receptors and the TK one being close to that of insulin receptors. We show that a recombinant VKR is able to autophosphorylate on tyrosine residues, and report that it can be activated by L-arginine. This is in agreement with the high degree of conservation of the alpha amino acid binding residues found in many amino acid binding VFTs. The presence of high levels of vkr transcripts in larval forms and in female gonads indicates a putative function of VKR in reproduction and/or development. Conclusion The identification of RTKs specific for parasites and insect vectors raises new perspectives for the control of human parasitic and infectious diseases. PMID:19461966

  9. B-type receptor for platelet-derived growth factor mediates a chemotactic response by means of ligand-induced activation of the receptor protein-tyrosine kinase.

    PubMed Central

    Westermark, B; Siegbahn, A; Heldin, C H; Claesson-Welsh, L

    1990-01-01

    Porcine aorta endothelial cells are devoid of receptors for platelet-derived growth factor (PDGF). We have transfected such cells with cDNA for the PDGF B-type receptor, both the wild-type receptor and a mutant form of the receptor (K634A), in which the putative nucleotide-binding lysine of the protein-tyrosine domain has been changed to alanine. Immunoprecipitation studies of metabolically labeled cells showed that both types of receptors were synthesized and processed to the mature form of Mr 190,000. In cells expressing the wild-type receptor, PDGF-BB, the natural ligand for the B-type receptor, induced membrane ruffling and reorganization of actin. Such a response has previously been seen in cells expressing the natural PDGF B-type receptor in response to PDGF-BB. No such effect was induced in nontransfected cells or in cells expressing the K634A mutant receptor. PDGF was also shown to be chemotactic for cells expressing the wild-type receptor, whereas no chemotactic response was elicited in control cells or in cells expressing the K634A mutant receptor. Our study thus provides formal evidence that the PDGF B-type receptor mediates a motility response including actin reorganization and chemotaxis. Furthermore, the results establish a role for the receptor-associated protein-tyrosine kinase in the transduction of the chemotactic signal. Images PMID:2153283

  10. Complexity of Receptor Tyrosine Kinase Signal Processing

    PubMed Central

    Volinsky, Natalia; Kholodenko, Boris N.

    2013-01-01

    Our knowledge of molecular mechanisms of receptor tyrosine kinase (RTK) signaling advances with ever-increasing pace. Yet our understanding of how the spatiotemporal dynamics of RTK signaling control specific cellular outcomes has lagged behind. Systems-centered experimental and computational approaches can help reveal how overlapping networks of signal transducers downstream of RTKs orchestrate specific cell-fate decisions. We discuss how RTK network regulatory structures, which involve the immediate posttranslational and delayed transcriptional controls by multiple feed forward and feedback loops together with pathway cross talk, adapt cells to the combinatorial variety of external cues and conditions. This intricate network circuitry endows cells with emerging capabilities for RTK signal processing and decoding. We illustrate how mathematical modeling facilitates our understanding of RTK network behaviors by unraveling specific systems properties, including bistability, oscillations, excitable responses, and generation of intricate landscapes of signaling activities. PMID:23906711

  11. Downregulation of the Ras–Mitogen-Activated Protein Kinase Pathway by the EphB2 Receptor Tyrosine Kinase Is Required for Ephrin-Induced Neurite Retraction

    PubMed Central

    Elowe, Sabine; Holland, Sacha J.; Kulkarni, Sarang; Pawson, Tony

    2001-01-01

    Activation of the EphB2 receptor tyrosine kinase by clustered ephrin-B1 induces growth cone collapse and neurite retraction in differentiated NG108 neuronal cells. We have investigated the cytoplasmic signaling events associated with EphB2-induced cytoskeletal reorganization in these neuronal cells. We find that unlike other receptor tyrosine kinases, EphB2 induces a pronounced downregulation of GTP-bound Ras and consequently of the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) pathway. A similar inhibition of the Ras-MAPK pathway was observed on stimulation of endogenous EphB2 in COS-1 cells. Inactivation of Ras, induced by ephrin B1 stimulation of NG108 neuronal cells, requires EphB2 tyrosine kinase activity and is blocked by a truncated form of p120-Ras GTPase-activating protein (p120-RasGAP), suggesting that EphB2 signals through the SH2 domain protein p120-RasGAP to inhibit the Ras-MAPK pathway. Suppression of Ras activity appears functionally important, since expression of a constitutively active variant of Ras impaired the ability of EphB2 to induce neurite retraction. In addition, EphB2 attenuated the elevation in ERK activation induced by attachment of NG108 cells to fibronectin, indicating that the EphB2 receptor can modulate integrin signaling to the Ras GTPase. These results suggest that a primary function of EphB2, a member of the most populous family of receptor tyrosine kinases, is to inactivate the Ras-MAPK pathway in a fashion that contributes to cytoskeletal reorganization and adhesion responses in neuronal growth cones. PMID:11585923

  12. Oligomerization of epidermal growth factor receptors on A431 cells studied by time-resolved fluorescence imaging microscopy. A stereochemical model for tyrosine kinase receptor activation

    PubMed Central

    1995-01-01

    The aggregation states of the epidermal growth factor receptor (EGFR) on single A431 human epidermoid carcinoma cells were assessed with two new techniques for determining fluorescence resonance energy transfer: donor photobleaching fluorescence resonance energy transfer (pbFRET) microscopy and fluorescence lifetime imaging microscopy (FLIM). Fluorescein-(donor) and rhodamine-(acceptor) labeled EGF were bound to the cells and the extent of oligomerization was monitored by the spatially resolved FRET efficiency as a function of the donor/acceptor ratio and treatment conditions. An average FRET efficiency of 5% was determined after a low temperature (4 degrees C) incubation with the fluorescent EGF analogs for 40 min. A subsequent elevation of the temperature for 5 min caused a substantial increase of the average FRET efficiency to 14% at 20 degrees C and 31% at 37 degrees C. In the context of a two-state (monomer/dimer) model for the EGFR, these FRET efficiencies were consistent with minimal average receptor dimerizations of 13, 36, and 69% at 4, 20, and 37 degrees C, respectively. A431 cells were pretreated with the monoclonal antibody mAb 2E9 that specifically blocks EGF binding to the predominant population of low affinity EGFR (15). The average FRET efficiency increased dramatically to 28% at 4 degrees C, indicative of a minimal receptor dimerization of 65% for the subpopulation of high affinity receptors. These results are in accordance with prior studies indicating that binding of EGF leads to a fast and temperature- dependent microclustering of EGFR, but suggest in addition that the high affinity functional subclass of receptors on quiescent A431 cells are present in a predimerized or oligomerized state. We propose that the transmission of the external ligand-binding signal to the cytoplasmic domain is effected by a concerted relative rotational rearrangement of the monomeric units comprising the dimeric receptor, thereby potentiating a mutual activation of

  13. Enhanced insulin-receptor tyrosine kinase activity associated with chromosomal translocation (1;19) in a pre-B-cell leukemia line.

    PubMed

    Newman, J D; Harrison, L C; Eckardt, G S; Jack, I

    1992-02-01

    The gene for the insulin receptor has been assigned to chromosome 19 near the breakpoint of the translocation t(1;19) which occurs in 25% of pre-B-cell leukemias. Insulin receptors in a pre-B-cell leukemia cell line (ACV) with t(1;19) were found to have 2-fold higher affinity for insulin, 5-fold higher basal and insulin-stimulated beta sub-unit autophosphorylation, and 2-fold higher basal and 4-fold higher insulin-stimulated beta sub-unit kinase activity on the synthetic peptide poly(Glu,Tyr), compared to receptors in a B-cell line (ADD) with normal karyotype from the same patient. ACV cells had a novel 13-kb receptor mRNA species and expressed a DNA polymorphism localized to the tyrosine kinase domain of the receptor gene. These findings suggest that t(1;19) in the ACV cell may result in rearrangement of the insulin receptor gene and translation of a receptor with enhanced tyrosine kinase activity. PMID:1310491

  14. RTKdb: database of Receptor Tyrosine Kinase.

    PubMed

    Grassot, Julien; Mouchiroud, Guy; Perrière, Guy

    2003-01-01

    Receptor Tyrosine Kinases (RTK) are transmembrane receptors specifically found in metazoans. They represent an excellent model for studying evolution of cellular processes in metazoans because they encompass large families of modular proteins and belong to a major family of contingency generating molecules in eukaryotic cells: the protein kinases. Because tyrosine kinases have been under close scrutiny for many years in various species, they are associated with a wealth of information, mainly in mammals. Presently, most categories of RTK were identified in mammals, but in a near future other model species will be sequenced, and will bring us RTKs from other metazoan clades. Thus, collecting RTK sequences would provide a good starting point as a new model for comparative and evolutionary studies applying to multigene families. In this context, we are developing the Receptor Tyrosine Kinase database (RTKdb), which is the only database on tyrosine kinase receptors presently available. In this database, protein sequences from eight model metazoan species are organized under the format previously used for the HOVERGEN, HOBACGEN and NUREBASE systems. RTKdb can be accessed through the PBIL (Pôle Bioinformatique Lyonnais) World Wide Web server at http://pbil.univ-lyon1.fr/RTKdb/, or through the FamFetch graphical user interface available at the same address.

  15. Syk interacts with tyrosine-phosphorylated proteins in human platelets activated by collagen and cross-linking of the Fc gamma-IIA receptor.

    PubMed Central

    Yanaga, F; Poole, A; Asselin, J; Blake, R; Schieven, G L; Clark, E A; Law, C L; Watson, S P

    1995-01-01

    Activation of human platelets by cross-linking of the platelet low-affinity IgG receptor, the Fc gamma receptor IIA (Fc gamma-RIIA), or by collagen is associated with rapid phosphorylation on tyrosine of the non-receptor tyrosine kinase syk. Phosphorylation is still observed, albeit sometimes reduced, in the presence of a combination of a protein kinase C inhibitor, Ro 31-8220, and the intracellular calcium chelator, BAPTA-AM, demonstrating independence from phosphoinositide-specific phospholipase C (PLC) activity. In contrast, the combination of Ro 31-8220 and BAPTA-AM completely inhibits phosphorylation of syk in thrombin-stimulated platelets. Phosphorylation of syk increases its autophosphorylation activity measured in a kinase assay performed on syk immunoprecipitates. Fc gamma-RIIA also undergoes phosphorylation in syk immunoprecipitates from platelets activated by cross-linking of Fc gamma-RIIA but not by collagen, suggesting that it associates with the kinase. Consistent with this, tyrosine-phosphorylated Fc gamma-RIIA is precipitated by a glutathione S-transferase (GST) fusion protein containing the tandem src homology (SH2) domains of syk from Fc gamma-RIIA- but not collagen-activated cells. Two uncharacterized tyrosine-phosphorylated proteins of 40 and 65 kDa are uniquely precipitated by a GST fusion protein containing the tandem syk-SH2 domains in collagen-stimulated platelets. A peptide based on the antigen recognition activation motif (ARAM) of Fc gamma-RIIA, and phosphorylated on the two tyrosine residues found within this region, selectively binds syk from lysates of resting platelets; this interaction is not seen with a non-phosphorylated peptide. Kinase assays on Fc gamma-RIIA immunoprecipitates reveal the constitutive association of an unidentified kinase activity in resting cells which phosphorylates a 67 kDa protein. Syk is not detected in Fc gamma-RIIA immunoprecipitates from resting cells but associates with the receptor following activation

  16. Validation of in vivo pharmacodynamic activity of a novel PDGF receptor tyrosine kinase inhibitor using immunohistochemistry and quantitative image analysis.

    PubMed

    D'Andrea, Michael R; Mei, Jay M; Tuman, Robert W; Galemmo, Robert A; Johnson, Dana L

    2005-08-01

    With the advent of agents directed against specific molecular targets in drug discovery, it has become imperative to show a compound's cellular impact on the intended biomolecule in vivo. The objective of the present study was to determine if we could develop an assay to validate the in vivo effects of a compound. Hence, we investigated the in vivo pharmacodynamic activity of JNJ-10198409, a relatively selective inhibitor of platelet-derived growth factor receptor tyrosine kinase (PDGF-RTK), in tumor tissues after administering the compound orally in a nude mouse xenograft model of human LoVo colon cancer. We developed a novel assay to quantify the in vivo anti-PDGF-RTK activity of the inhibitor in tumor tissue by determining the phosphorylation status of phospholipase Cgamma1 (PLCgamma1), a key downstream cellular molecule in the PDGF-RTK signaling cascade. We used two antibodies, one specific for the total (phosphorylated and unphosphorylated forms) PLCgamma1 (pan-PLCgamma1) and the other, specific for phosphorylated form of PLCgamma1 (ph-PLCgamma1) to immunohistochemically detect their expression in tumor tissues. Computer-assisted image analysis was then used to directly compare the ratio of ph-PLCgamma1 to pan-PLCgamma1 immunolabeling intensities in serial sections (5 mum) of tumors obtained from vehicle- and JNJ-10198409-treated tumor-bearing mice. Our data showed statistically significant, dose-dependent differences in the ph-PLC/pan-PLC ratio among the four treatment groups (vehicle, 25, 50, and 100 mg/kg b.i.d.). These results confirmed this compound's ability to suppress PDGF-RTK downstream signaling in tumor tissues in vivo. In addition to this specific application of this in vivo validation approach to those targets that use PLCgamma as a downstream signaling partner, these methods may also benefit other drug discovery targets. PMID:16093435

  17. Mutation of tyrosine-141 inhibits insulin-promoted tyrosine phosphorylation and increased responsiveness of the human beta 2-adrenergic receptor.

    PubMed Central

    Valiquette, M; Parent, S; Loisel, T P; Bouvier, M

    1995-01-01

    The ability of insulin to promote phosphorylation of the human beta 2-adrenergic receptor (beta 2AR) was assessed in Chinese hamster fibroblasts transfected with beta 2AR cDNA. Phosphotyrosine residues were detected in purified beta 2AR using a polyclonal anti-phosphotyrosine antibody and by phosphoamino acid analysis following metabolic labelling with inorganic 32P. Treatment of the cells with insulin induced a 2.4-fold increase in the phosphotyrosine content of the receptor. The insulin-promoted phosphorylation of the beta 2AR was accompanied by an increase in the beta-adrenergic-stimulated adenyl cyclase activity. Substitution of a phenylalanine residue for tyrosine-141 completely prevented both the increased tyrosine phosphorylation and the enhanced responsiveness of the beta 2AR promoted by insulin treatment. Mutation of three other tyrosines located in the cytoplasmic domain of the receptor, tyrosine-366, tyrosine-350 and tyrosine-354, did not abolish the insulin-promoted tyrosine phosphorylation. Taken together, these results suggest that insulin promotes phosphorylation of the beta 2AR on tyrosine-141 and that such phosphorylation leads to a supersensitization of the receptor. Images PMID:8521811

  18. Immunoreceptor tyrosine-based activation motif phosphorylation during engulfment of Neisseria gonorrhoeae by the neutrophil-restricted CEACAM3 (CD66d) receptor.

    PubMed

    McCaw, Shannon E; Schneider, Jutta; Liao, Edward H; Zimmermann, Wolfgang; Gray-Owen, Scott D

    2003-08-01

    Gonorrhea is characterized by a purulent urethral or cervical discharge consisting primarily of neutrophils associated with Neisseria gonorrhoeae. These interactions are facilitated by gonococcal colony opacity-associated (Opa) protein binding to host cellular CEACAM receptors. Of these, CEACAM3 is restricted to neutrophils and contains an immunoreceptor tyrosine-based activation motif (ITAM) reminiscent of that found within certain phagocytic Fc receptors. CEACAM3 was tyrosine phosphorylated by a Src family kinase-dependent process upon infection by gonococci expressing CEACAM-specific Opa proteins. This phosphorylation was necessary for efficient bacterial uptake; however, a less efficient uptake process became evident when kinase inhibitors or mutagenesis of the ITAM were used to prevent phosphorylation. Ligated CEACAM3 was recruited to a cytoskeleton-containing fraction, intense foci of polymerized actin were evident where bacteria attached to HeLa-CEACAM3, and disruption of polymerized actin by cytochalasin D blocked all bacterial uptake by these cells. These data support a model whereby CEACAM3 can mediate the Opa-dependent uptake of N. gonorrhoeae via either an efficient, ITAM phosphorylation-dependent process that resembles phagocytosis or a less efficient, tyrosine phosphorylation-independent mechanism. PMID:12864848

  19. The activity and stability of the intrinsically disordered Cip/Kip protein family are regulated by non-receptor tyrosine kinases

    PubMed Central

    Otieno, Steve; Lelli, Moreno; Kriwacki, Richard W.

    2014-01-01

    The Cip/Kip family of cyclin-dependent kinase (Cdk) inhibitors includes p21Cip1, p27Kip1 and p57Kip2. Their kinase inhibitory activities are mediated by a homologous N-terminal kinase-inhibitory domain (KID). The Cdk inhibitory activity and stability of p27 have been shown to be regulated by a two-step phosphorylation mechanism involving a tyrosine residue within the KID and a threonine residue within the flexible C-terminus. We show that these residues are conserved in p21 and p57, suggesting that a similar phosphorylation cascade regulates these Cdk inhibitors. However, the presence of a cyclin binding motif within its C-terminus alters the regulatory interplay between p21 and Cdk2/cyclin A, and its responses to tyrosine phosphorylation and altered p21:Cdk2/cyclin A stoichiometry. We also show that the Cip/Kip proteins can be phosphorylated in vitro by representatives of many non-receptor tyrosine kinase (NRTK) sub-families, suggesting that NRTKs may generally regulate the activity and stability of these Cdk inhibitors. Our results further suggest that the Cip/Kip proteins integrate signals from various NRTK pathways and cell cycle regulation. PMID:25463440

  20. Activation of platelet-activating factor receptor and pleiotropic effects on tyrosine phospho-EGFR/Src/FAK/paxillin in ovarian cancer.

    PubMed

    Aponte, Margarita; Jiang, Wei; Lakkis, Montaha; Li, Ming-Jiang; Edwards, Dale; Albitar, Lina; Vitonis, Allison; Mok, Samuel C; Cramer, Daniel W; Ye, Bin

    2008-07-15

    Among the proinflammatory mediators, platelet-activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphorylcholine) is a major primary and secondary messenger involved in intracellular and extracellular communication. Evidence suggests that PAF plays a significant role in oncogenic transformation, tumor growth, angiogenesis, and metastasis. However, PAF, with its receptor (PAFR) and their downstream signaling targets, has not been thoroughly studied in cancer. Here, we characterized the PAFR expression pattern in 4 normal human ovarian surface epithelial (HOSE) cell lines, 13 ovarian cancer cell lines, paraffin blocks (n = 84), and tissue microarrays (n = 230) from patients with ovarian cancer. Overexpression of PAFR was found in most nonmucinous types of ovarian cancer but not in HOSE and mucinous cancer cells. Correspondingly, PAF significantly induced cell proliferation and invasion only in PAFR-positive cells (i.e., OVCA429 and OVCA432), but not in PAFR-negative ovarian cells (HOSE and mucinous RMUG-L). The dependency of cell proliferation and invasion on PAFR was further confirmed using PAFR-specific small interfering RNA gene silencing probes, antibodies against PAFR and PAFR antagonist, ginkgolide B. Using quantitative multiplex phospho-antibody array technology, we found that tyrosine phosphorylation of EGFR/Src/FAK/paxillin was coordinately activated by PAF treatment, which was correlated with the activation of phosphatidylinositol 3-kinase and cyclin D1 as markers for cell proliferation, as well as matrix metalloproteinase 2 and 9 for invasion. Specific tyrosine Src inhibitor (PP2) reversibly blocked PAF-activated cancer cell proliferation and invasion. We suggest that PAFR is an essential upstream target of Src and other signal pathways to control the PAF-mediated cancer progression.

  1. Tyrosine kinase inhibitors. 13. Structure-activity relationships for soluble 7-substituted 4-[(3-bromophenyl)amino]pyrido[4,3-d]pyrimidines designed as inhibitors of the tyrosine kinase activity of the epidermal growth factor receptor.

    PubMed

    Thompson, A M; Murray, D K; Elliott, W L; Fry, D W; Nelson, J A; Showalter, H D; Roberts, B J; Vincent, P W; Denny, W A

    1997-11-21

    The general class of 4-(phenylamino)quinazolines are potent (some members with IC50 values < 1 nM) and selective inhibitors of the tyrosine kinase activity of the epidermal growth factor receptor (EGFR), via competitive binding at the ATP site of the enzyme, but many of the early analogues had poor aqueous solubility (< 1 mM). A series of 7-substituted 4-[(3-bromophenyl)-amino]pyrido[4,3-d]pyrimidines, together with selected (3-methylphenyl)amino analogues, were prepared by reaction of the analogous 7-fluoro derivatives with appropriate amine nucleophiles in 2-BuOH or aqueous 1-PrOH. All of the compounds were evaluated for their ability to inhibit the tyrosine-phosphorylating action of EGF-stimulated full-length EGFR enzyme. Selected analogues were also evaluated for their inhibition of autophosphorylation of the EGF receptor in A431 human epidermoid carcinoma cells in culture and against A431 tumor xenografts in mice. Analogues bearing a wide variety of polyol, cationic, and anionic solubilizing substituents retained activity, but the most effective in terms of both increased aqueous solubility (> 40 mM) and retention of overall inhibitory activity (IC50's of 0.5-10 nM against isolated enzyme and 8-40 nM for inhibition of EGFR autophosphorylation in A431 cells) were weakly basic amine derivatives. These results are broadly consistent with a proposed model for the binding of these compounds to EGFR, in which the 6- and 7-positions of the pyridopyrimidine ring are in a largely hydrophobic binding region of considerable steric freedom, at the entrance of the adenine binding cleft. The most active cationic analogues have a weakly basic side chain where the amine moiety is three or more carbon atoms away from the nucleus. Two of the compounds (bearing weakly basic morpholinopropyl and strongly basic (dimethylamino)butyl solubilizing groups) produced in vivo tumor growth delays of 13-21 days against advanced stage A431 epidermoid xenografts in nude mice, when

  2. Asymmetric Receptor Contact is Required for Tyrosine Autophosphorylation of Fibroblast Growth Factor Receptor in Living Cells

    SciTech Connect

    Bae, J.; Boggon, T; Tomé, F; Mandiyan, V; Lax, I; Schlessinge, J

    2010-01-01

    Tyrosine autophosphorylation of receptor tyrosine kinases plays a critical role in regulation of kinase activity and in recruitment and activation of intracellular signaling pathways. Autophosphorylation is mediated by a sequential and precisely ordered intermolecular (trans) reaction. In this report we present structural and biochemical experiments demonstrating that formation of an asymmetric dimer between activated FGFR1 kinase domains is required for transphosphorylation of FGFR1 in FGF-stimulated cells. Transphosphorylation is mediated by specific asymmetric contacts between the N-lobe of one kinase molecule, which serves as an active enzyme, and specific docking sites on the C-lobe of a second kinase molecule, which serves a substrate. Pathological loss-of-function mutations or oncogenic activating mutations in this interface may hinder or facilitate asymmetric dimer formation and transphosphorylation, respectively. The experiments presented in this report provide the molecular basis underlying the control of transphosphorylation of FGF receptors and other receptor tyrosine kinases.

  3. Pleiotrophin stimulates tyrosine phosphorylation of beta-adducin through inactivation of the transmembrane receptor protein tyrosine phosphatase beta/zeta.

    PubMed

    Pariser, Harold; Perez-Pinera, Pablo; Ezquerra, Laura; Herradon, Gonzalo; Deuel, Thomas F

    2005-09-16

    Pleiotrophin (PTN the protein, Ptn the gene) signals through a unique mechanism; it inactivates the tyrosine phosphatase activity of its receptor, the transmembrane receptor protein tyrosine phosphatase (RPTP)beta/zeta, and increases tyrosine phosphorylation of the substrates of RPTPbeta/zeta through the continued activity of a yet to be described protein tyrosine kinase(s) in PTN-stimulated cells. We have now found that the cytoskeletal protein beta-adducin interacts with the intracellular domain of RPTPbeta/zeta in a yeast two-hybrid system, that beta-adducin is a substrate of RPTPbeta/zeta, that beta-adducin is phosphorylated in tyrosine in cells not stimulated by PTN, and that tyrosine phosphorylation of beta-adducin is sharply increased in PTN-stimulated cells, suggesting that beta-adducin is a downstream target of and regulated by the PTN/RPTPbeta/zeta signaling pathway. beta-Catenin was the first downstream target of the PTN/RPTPbeta/zeta signaling pathway to be identified; these data thus also suggest that PTN coordinately regulates steady state levels of tyrosine phosphorylation of the important cytoskeletal proteins beta-adducin and beta-catenin and, through PTN-stimulated tyrosine phosphorylation, beta-adducin may contribute to the disruption of cytoskeletal structure, increased plasticity, and loss of homophilic cell-cell adhesion that are the consequences of PTN stimulation of cells and a characteristic feature of different malignant cells with mutations that activate constitutive expression of the endogenous Ptn gene.

  4. Small Molecule Receptor Protein Tyrosine Phosphatase γ (RPTPγ) Ligands That Inhibit Phosphatase Activity via Perturbation of the Tryptophan-Proline-Aspartate (WPD) Loop

    SciTech Connect

    Sheriff, Steven; Beno, Brett R; Zhai, Weixu; Kostich, Walter A; McDonnell, Patricia A; Kish, Kevin; Goldfarb, Valentina; Gao, Mian; Kiefer, Susan E; Yanchunas, Joseph; Huang, Yanling; Shi, Shuhao; Zhu, Shirong; Dzierba, Carolyn; Bronson, Joanne; Macor, John E; Appiah, Kingsley K; Westphal, Ryan S; O’Connell, Jonathan; Gerritz, Samuel W

    2012-11-09

    Protein tyrosine phosphatases (PTPs) catalyze the dephosphorylation of tyrosine residues, a process that involves a conserved tryptophan-proline-aspartate (WPD) loop in catalysis. In previously determined structures of PTPs, the WPD-loop has been observed in either an 'open' conformation or a 'closed' conformation. In the current work, X-ray structures of the catalytic domain of receptor-like protein tyrosine phosphatase γ (RPTPγ) revealed a ligand-induced 'superopen' conformation not previously reported for PTPs. In the superopen conformation, the ligand acts as an apparent competitive inhibitor and binds in a small hydrophobic pocket adjacent to, but distinct from, the active site. In the open and closed WPD-loop conformations of RPTPγ, the side chain of Trp1026 partially occupies this pocket. In the superopen conformation, Trp1026 is displaced allowing a 3,4-dichlorobenzyl substituent to occupy this site. The bound ligand prevents closure of the WPD-loop over the active site and disrupts the catalytic cycle of the enzyme.

  5. The EphA8 Receptor Regulates Integrin Activity through p110γ Phosphatidylinositol-3 Kinase in a Tyrosine Kinase Activity-Independent Manner

    PubMed Central

    Gu, Changkyu; Park, Soochul

    2001-01-01

    Recent genetic studies suggest that ephrins may function in a kinase-independent Eph receptor pathway. Here we report that expression of EphA8 in either NIH 3T3 or HEK293 cells enhanced cell adhesion to fibronectin via α5β1- or β3 integrins. Interestingly, a kinase-inactive EphA8 mutant also markedly promoted cell attachment to fibronectin in these cell lines. Using a panel of EphA8 point mutants, we have demonstrated that EphA8 kinase activity does not correlate with its ability to promote cell attachment to fibronectin. Analysis using EphA8 extracellular and intracellular domain mutants has revealed that enhanced cell adhesion is dependent on ephrin A binding to the extracellular domain and the juxtamembrane segment of the cytoplasmic domain of the receptor. EphA8-promoted adhesion was efficiently inhibited by wortmannin, a phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor. Additionally, we found that EphA8 had associated PI 3-kinase activity and that the p110γ isoform of PI 3-kinase is associated with EphA8. In vitro binding experiments revealed that the EphA8 juxtamembrane segment was sufficient for the formation of a stable complex with p110γ. Similar results were obtained in assay using cells stripped of endogenous ephrin A ligands by treatment with preclustered ephrin A5-Fc proteins. In addition, a membrane-targeted lipid kinase-inactive p110γ mutant was demonstrated to stably associate with EphA8 and suppress EphA8-promoted cell adhesion to fibronectin. Taken together, these results suggest the presence of a novel mechanism by which the EphA8 receptor localizes p110γ PI 3-kinase to the plasma membrane in a tyrosine kinase-independent fashion, thereby allowing access to lipid substrates to enable the signals required for integrin-mediated cell adhesion. PMID:11416136

  6. Reconstitution of interactions between tyrosine kinases and the high affinity IgE receptor which are controlled by receptor clustering.

    PubMed Central

    Scharenberg, A M; Lin, S; Cuenod, B; Yamamura, H; Kinet, J P

    1995-01-01

    High affinity IgE receptor (Fc epsilon RI) signaling after contact with antigen occurs in response to receptor clustering. This paper describes methodology, based on vaccinia virus driven protein expression, for probing signaling pathways and its application to Fc epsilon RI interactions with the lyn and syk tyrosine kinases. Reconstitution of the complete tetrameric Fc epsilon RI receptor, lyn and syk in a non-hematopoietic 'null' cell line is sufficient to reconstruct clustering-controlled receptor tyrosine phosphorylation and activation of syk, without apparent requirement for hematopoietic specific phosphatases. The src family kinase lyn phosphorylates Fc epsilon RI in response to receptor clustering, resulting in syk binding to the phosphorylated Fc epsilon RI. Lyn also participates in the tyrosine phosphorylation and activation of syk in a manner which is dependent on phosphorylated Fc epsilon RI. Using overexpression of active and dominant negative syk proteins in a mast cell line which naturally expresses Fc epsilon RI, we corroborate syk's role downstream of receptor phosphorylation, and demonstrate that syk SH2 domains protect receptor ITAMs from ongoing dephosphorylation. Based on these results, we propose that receptor clustering controls lyn-mediated Fc epsilon RI tyrosine phosphorylation by shifting a balance between phosphorylation and dephosphorylation towards accumulation of tyrosine phosphorylated Fc epsilon RI. Fc epsilon RI tyrosine phosphorylation functions to bring syk into a microenvironment where it becomes tyrosine phosphorylated and activated, thereby allowing clustering to indirectly control syk activity. Images PMID:7628439

  7. Antibodies directed against receptor tyrosine kinases

    PubMed Central

    FAUVEL, Bénédicte; Yasri, Aziz

    2014-01-01

    Approximately 30 therapeutic monoclonal antibodies have already been approved for cancers and inflammatory diseases, and monoclonal antibodies continue to be one of the fastest growing classes of therapeutic molecules. Because aberrant signaling by receptor tyrosine kinases (RTKs) is a commonly observed factor in cancer, most of the subclasses of RTKs are being extensively studied as potential targets for treating malignancies. The first two RTKs that have been targeted by antibody therapy, with five currently marketed antibodies, are the growth factor receptors EGFR and HER2. However, due to systemic side effects, refractory patients and the development of drug resistance, these treatments are being challenged by emerging therapeutics. This review examines current monoclonal antibody therapies against RTKs. After an analysis of agents that have already been approved, we present an analysis of antibodies in clinical development that target RTKs. Finally, we highlight promising RTKs that are emerging as new oncological targets for antibody-based therapy. PMID:24859229

  8. Analysis of receptor tyrosine kinase internalization using flow cytometry.

    PubMed

    Li, Ning; Hill, Kristen S; Elferink, Lisa A

    2008-01-01

    The internalization of activated receptor tyrosine kinases (RTKs) by endocytosis and their subsequent down regulation in lysosomes plays a critical role in regulating the duration and intensity of downstream signaling events. Uncoupling of the RTK cMet from ligand-induced degradation was recently shown to correlate with sustained receptor signaling and increased cell tumorigenicity, suggesting that the corruption of these endocytic mechanisms could contribute to increased cMet signaling in metastatic cancers. To understand how cMet signaling for normal cell growth is controlled by endocytosis and how these mechanisms are dysregulated in metastatic cancers, we developed flow cytometry-based assays to examine cMet internalization.

  9. Receptor tyrosine kinase targeting in multicellular spheroids.

    PubMed

    Breslin, Susan; O'Driscoll, Lorraine

    2015-01-01

    While growing cells as a monolayer is the traditional method for cell culture, the incorporation of multicellular spheroids into experimental design is becoming increasingly popular. This is due to the understanding that cells grown as spheroids tend to replicate the in vivo situation more reliably than monolayer cells. Thus, the use of multicellular spheroids may be more clinically relevant than monolayer cell cultures. Here, we describe methods for multicellular 3D spheroid generation that may be used to provide samples for receptor tyrosine kinase (and other protein) detection. Methods described include the forced-floating poly-HEMA method, the hanging-drop method, and the use of ECM to form multicellular 3D spheroids. PMID:25319898

  10. Insights into Eph receptor tyrosine kinase activation from crystal structures of the EphA4 ectodomain and its complex with ephrin-A5

    PubMed Central

    Xu, Kai; Tzvetkova-Robev, Dorothea; Xu, Yan; Goldgur, Yehuda; Chan, Yee-Peng; Himanen, Juha P.; Nikolov, Dimitar B.

    2013-01-01

    Eph receptor tyrosine kinases and their ephrin ligands mediate cell signaling during normal and oncogenic development. Eph signaling is initiated in a multistep process leading to the assembly of higher-order Eph/ephrin clusters that set off bidirectional signaling in interacting cells. Eph and ephrins are divided in two subclasses based on their abilities to bind and activate each other and on sequence conservation. EphA4 is an exception to the general rule because it can be activated by both A- and B-class ephrin ligands. Here we present high-resolution structures of the complete EphA4 ectodomain and its complexes with ephrin-A5. The structures reveal how ligand binding promotes conformational changes in the EphA4 ligand-binding domain allowing the formation of signaling clusters at the sites of cell–cell contact. In addition, the structural data, combined with structure-based mutagenesis, reveal a previously undescribed receptor–receptor interaction between the EphA4 ligand-binding and membrane-proximal fibronectin domains, which is functionally important for efficient receptor activation. PMID:23959867

  11. Spatial coupling of JNK activation to the B cell antigen receptor by tyrosine-phosphorylated ezrin1

    PubMed Central

    Parameswaran, Neetha; Enyindah-Asonye, Gospel; Bagheri, Nayer; Shah, Neilay B.; Gupta, Neetu

    2013-01-01

    The Ezrin-Radixin-Moesin (ERM) proteins regulate B lymphocyte activation via their effect on BCR diffusion and microclustering. This relies on their ability to dynamically tether the plasma membrane with actin filaments that is in turn facilitated by phosphorylation of the conserved threonine residue in the actin-binding domain. Here, we describe a novel function of ezrin in regulating JNK activation that is mediated by phosphorylation of a tyrosine (Y353) residue that is unconserved with moesin and radixin. BCR, but not CD40, TLR4 or CXCR5 stimulation, induced phosphorylation of ezrin at Y353 in mouse splenic B cells. Ezrin existed in a preformed complex with Syk in unstimulated B cells and underwent Syk-dependent phosphorylation upon anti-IgM stimulation. Y353-phosphorylated ezrin co-localized with the BCR within minutes of stimulation and co-trafficked with the endocytosed BCRs through the early and late endosomes. The T567 residue of ezrin was rephosphorylated in late endosomes and at the plasma membrane at later times of BCR stimulation. Expression of a non-phosphorylatable Y353F mutant of ezrin specifically impaired JNK activation. BCR crosslinking induced the association of Y353-phosphorylated ezrin with JNK and its kinase MKK7, and spatial co-localization with phosphorylated JNK in the endosomes. The YFP-tagged Y353F mutant displayed reduced co-localization with the endocytosed BCR as compared to wild type Ezrin-YFP. Taken together, our data identify a novel role for ezrin as a spatial adaptor that couples JNK signaling components to the BCR signalosome, thus facilitating JNK activation. PMID:23338238

  12. Flavonoids with epidermal growth factor-receptor tyrosine kinase inhibitory activity stimulate PEPT1-mediated cefixime uptake into human intestinal epithelial cells.

    PubMed

    Wenzel, U; Kuntz, S; Daniel, H

    2001-10-01

    We have tested 33 flavonoids, occurring ubiquitously in foods of plant origin, for their ability to alter the transport of the beta-lactam antibiotic cefixime via the H+-coupled intestinal peptide transporter PEPT1 in the human intestinal epithelial cell line Caco-2. Of the flavonoids tested, quercetin, genistein, naringin, diosmin, acacetin, and chrysin increased uptake of [14C]cefixime dose dependently by up to 60%. All other flavonoids were either without effect or decreased the absorption of cefixime. Quercetin was shown to increase the Vmax of cefixime influx without changing the apparent Km for transport. However, the expected concomitant increase in intracellular acidification due to PEPT1-mediated cefixime/H+-cotransport was less pronounced in the presence of quercetin. This suggested that pH regulatory systems such as apical Na+/H+-exchange could be activated by quercetin and maintain the proton-motive driving force for cefixime uptake. Since quercetin and genistein have been shown to inhibit epidermal growth factor (EGF)-receptor tyrosine kinases, we applied tyrphostin 25 to prove whether such an inhibition could explain the stimulatory effects seen on cefixime uptake. It was found that tyrphostin 25 simulated the effects of quercetin by increasing cefixime absorption due to maintenance of the transmembrane pH gradient. In conclusion, our studies show that flavonoids with EGF-receptor tyrosine kinase inhibitory activities enhance the intestinal absorption of the beta-lactam antibiotic cefixime in Caco-2 cells by activation of apical Na+/H+-exchange and a concomitant increase of the driving force for PEPT1.

  13. Cancer Cell-derived Exosomes Induce Mitogen-activated Protein Kinase-dependent Monocyte Survival by Transport of Functional Receptor Tyrosine Kinases.

    PubMed

    Song, Xiao; Ding, Yanping; Liu, Gang; Yang, Xiao; Zhao, Ruifang; Zhang, Yinlong; Zhao, Xiao; Anderson, Gregory J; Nie, Guangjun

    2016-04-15

    Tumor-associated macrophages (TAM) play pivotal roles in cancer initiation and progression. Monocytes, the precursors of TAMs, normally undergo spontaneous apoptosis within 2 days, but can subsist in the inflammatory tumor microenvironment for continuous survival and generation of sufficient TAMs. The mechanisms underlying tumor-driving monocyte survival remain obscure. Here we report that cancer cell-derived exosomes were crucial mediators for monocyte survival in the inflammatory niche. Analysis of the survival-promoting molecules in monocytes revealed that cancer cell-derived exosomes activated Ras and extracellular signal-regulated kinases in the mitogen-activated protein kinase (MAPK) pathway, resulting in the prevention of caspase cleavage. Phosphorylated receptor tyrosine kinases (RTKs), such as phosphorylated epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER-2), were abundantly expressed in cancer cell-derived exosomes. Knock-out of EGFR or/and HER-2, or alternatively, inhibitors against their phosphorylation significantly disturbed the exosome-mediated activation of the MAPK pathway, inhibition of caspase cleavage, and increase in survival rate in monocytes. Moreover, the deprived survival-stimulating activity of exosomes due to null expression of EGFR and HER-2 could be restored by activation of another RTK, insulin receptor. Overall, our study uncovered a mechanism of tumor-associated monocyte survival and demonstrated that cancer cell-derived exosomes can stimulate the MAPK pathway in monocytes through transport of functional RTKs, leading to inactivation of apoptosis-related caspases. This work provides insights into the long sought question on monocyte survival prior to formation of plentiful TAMs in the tumor microenvironment.

  14. Proteinase-activated receptors 1 and 2 and the regulation of porcine coronary artery contractility: a role for distinct tyrosine kinase pathways

    PubMed Central

    El-Daly, Mahmoud; Saifeddine, Mahmoud; Mihara, Koichiro; Ramachandran, Rithwik; Triggle, Christopher R; Hollenberg, Morley D

    2014-01-01

    Background and Purpose Because angiotensin-II-mediated porcine coronary artery (PCA) vasoconstriction is blocked by protein tyrosine kinase (PYK) inhibitors, we hypothesized that proteinase-activated receptors (PARs), known to regulate vascular tension, like angiotensin-II, would also cause PCA contractions via PYK-dependent signalling pathways. Experimental Approach Contractions of intact and endothelium-free isolated PCA rings, stimulated by PAR1/PAR2-activating peptides, angiotensin-II, PGF2α, EGF, PDGF and KCl, were monitored with/without multiple signalling pathway inhibitors, including AG-tyrphostins AG18 (non-specific PYKs), AG1478 (EGF-receptor kinase), AG1296 (PDGF receptor kinase), PP1 (Src kinase), U0126 and PD98059 (MEK/MAPKinase kinase), indomethacin/SC-560/NS-398 (COX-1/2) and L-NAME (NOS). Key Results AG18 inhibited the contractions induced by all the agonists except KCl, whereas U0126 attenuated contractions induced by PAR1/PAR2 agonists, EGF and angiotensin-II, but not by PGF2α, the COX-produced metabolites of arachidonate and KCl. PP1 only affected the responses to PAR1/PAR2-activating peptides and angiotensin-II. The EGF-kinase inhibitor, AG1478, attenuated contractions initiated by the PARs (PAR2 >> PAR1) and EGF itself, but not by angiotensin-II, PGF2α or KCl. COX-1/2 inhibitors blocked the contractions induced by all the agonists, except KCl and PGF2α. Conclusion and Implications PAR1/2-mediated contractions of the PCA are dependent on Src and MAPKinase and, in part, involve EGF-receptor-kinase transactivation and the generation of a COX-derived contractile agonist. However, the PYK signalling pathways used by PARs are distinct from each other and from those triggered by angiotensin-II and EGF. These signalling pathways may be therapeutic targets for managing coagulation-proteinase-induced coronary vasospasm. PMID:24506284

  15. Regulation of receptor protein-tyrosine phosphatase dimerization.

    PubMed

    van der Wijk, Thea; Blanchetot, Christophe; den Hertog, Jeroen

    2005-01-01

    Receptor protein-tyrosine phosphatases (RPTPs) are single membrane spanning proteins belonging to the family of PTPs that, together with the antagonistically acting protein-tyrosine kinases (PTKs), regulate the protein phosphotyrosine levels in cells. Protein-tyrosine phosphorylation is an important post-translational modification that has a major role in cell signaling by affecting protein-protein interactions and enzymatic activities. Increasing evidence indicates that RPTPs, like RPTKs, are regulated by dimerization. For RPTPalpha, we have shown that rotational coupling of the constitutive dimers in the cell membrane determines enzyme activity. Furthermore, oxidative stress, identified as an important second messenger during the past decade, is a regulator of rotational coupling of RPTPalpha dimers. In this review, we discuss the biochemical and cell biological techniques that we use to study the regulation of RPTPs by dimerization. These techniques include (co-) immunoprecipitation, RPTP activity assays, chemical and genetic cross-linking, detection of cell surface proteins by biotinylation, and analysis of RPTPalpha dimers, using conformation-sensitive antibody binding.

  16. The non-receptor tyrosine kinase Ack1 regulates the fate of activated EGFR by inducing trafficking to the p62/NBR1 pre-autophagosome.

    PubMed

    Jones, Sylwia; Cunningham, Debbie L; Rappoport, Joshua Z; Heath, John K

    2014-03-01

    Growth factor signalling regulates multiple cellular functions and its misregulation has been linked to the development and progression of cancer. Ack1 (activated Cdc42-associated kinase 1, also known as TNK2) is a non-receptor tyrosine kinase that has been implicated in trafficking and degradation of epidermal growth factor receptor (EGFR), yet its precise functions remain elusive. In this report, we investigate the role of Ack1 in EGFR trafficking and show that Ack1 partially colocalises to Atg16L-positive structures upon stimulation with EGF. These structures are proposed to be the isolation membranes that arise during formation of autophagosomes. In addition, we find that Ack1 colocalises and interacts with sequestosome 1 (p62/SQSTM1), a receptor for selective autophagy, through a ubiquitin-associated domain, and this interaction decreases upon treatment with EGF, thus suggesting that Ack1 moves away from p62/SQSTM1 compartments. Furthermore, Ack1 interacts and colocalises with NBR1, another autophagic receptor, and this colocalisation is enhanced in the presence of ectopically expressed p62/SQSTM1. Finally, knockdown of Ack1 results in accelerated localisation of EGFR to lysosomes upon treatment with EGF. Structure-function analyses of a panel of Ack1 deletion mutants revealed key mechanistic aspects of these relationships. The Mig6-homology domain and clathrin-binding domain both contribute to colocalisation with EGFR, whereas the UBA domain is essential for colocalisation with p62/SQSTM1, but not NBR1. Taken together, our studies demonstrate a novel role for Ack1 in diverting activated EGFR into a non-canonical degradative pathway, marked by association with p62/SQSTM1, NBR1 and Atg16L.

  17. Molecular Basis of the Interaction of the Human Protein Tyrosine Phosphatase Non-receptor Type 4 (PTPN4) with the Mitogen-activated Protein Kinase p38γ.

    PubMed

    Maisonneuve, Pierre; Caillet-Saguy, Célia; Vaney, Marie-Christine; Bibi-Zainab, Edoo; Sawyer, Kristi; Raynal, Bertrand; Haouz, Ahmed; Delepierre, Muriel; Lafon, Monique; Cordier, Florence; Wolff, Nicolas

    2016-08-01

    The human protein tyrosine phosphatase non-receptor type 4 (PTPN4) prevents cell death induction in neuroblastoma and glioblastoma cell lines in a PDZ·PDZ binding motifs-dependent manner, but the cellular partners of PTPN4 involved in cell protection are unknown. Here, we described the mitogen-activated protein kinase p38γ as a cellular partner of PTPN4. The main contribution to the p38γ·PTPN4 complex formation is the tight interaction between the C terminus of p38γ and the PDZ domain of PTPN4. We solved the crystal structure of the PDZ domain of PTPN4 bound to the p38γ C terminus. We identified the molecular basis of recognition of the C-terminal sequence of p38γ that displays the highest affinity among all endogenous partners of PTPN4. We showed that the p38γ C terminus is also an efficient inducer of cell death after its intracellular delivery. In addition to recruiting the kinase, the binding of the C-terminal sequence of p38γ to PTPN4 abolishes the catalytic autoinhibition of PTPN4 and thus activates the phosphatase, which can efficiently dephosphorylate the activation loop of p38γ. We presume that the p38γ·PTPN4 interaction promotes cellular signaling, preventing cell death induction.

  18. Effects of Membrane Trafficking on Signaling by Receptor Tyrosine Kinases

    PubMed Central

    Miaczynska, Marta

    2013-01-01

    The intracellular trafficking machinery contributes to the spatial and temporal control of signaling by receptor tyrosine kinases (RTKs). The primary role in this process is played by endocytic trafficking, which regulates the localization of RTKs and their downstream effectors, as well as the duration and the extent of their activity. The key regulatory points along the endocytic pathway are internalization of RTKs from the plasma membrane, their sorting to degradation or recycling, and their residence in various endosomal compartments. Here I will review factors and mechanisms that modulate RTK signaling by (1) affecting receptor internalization, (2) regulating the balance between degradation and recycling of RTK, and (3) compartmentalization of signals in endosomes and other organelles. Cumulatively, these mechanisms illustrate a multilayered control of RTK signaling exerted by the trafficking machinery. PMID:24186066

  19. Regorafenib (BAY 73-4506): a new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity.

    PubMed

    Wilhelm, Scott M; Dumas, Jacques; Adnane, Lila; Lynch, Mark; Carter, Christopher A; Schütz, Gunnar; Thierauch, Karl-Heinz; Zopf, Dieter

    2011-07-01

    Angiogenesis, a critical driver of tumor development, is controlled by interconnected signaling pathways. Vascular endothelial growth factor receptor (VEGFR) 2 and tyrosine kinase with immunoglobulin and epidermal growth factor homology domain 2 play crucial roles in the biology of normal and tumor vasculature. Regorafenib (BAY 73-4506), a novel oral multikinase inhibitor, potently inhibits these endothelial cell kinases in biochemical and cellular kinase phosphorylation assays. Furthermore, regorafenib inhibits additional angiogenic kinases (VEGFR1/3, platelet-derived growth factor receptor-β and fibroblast growth factor receptor 1) and the mutant oncogenic kinases KIT, RET and B-RAF. The antiangiogenic effect of regorafenib was demonstrated in vivo by dynamic contrast-enhanced magnetic resonance imaging. Regorafenib administered once orally at 10 mg/kg significantly decreased the extravasation of Gadomer in the vasculature of rat GS9L glioblastoma tumor xenografts. In a daily (qd)×4 dosing study, the pharmacodynamic effects persisted for 48 hr after the last dosing and correlated with tumor growth inhibition (TGI). A significant reduction in tumor microvessel area was observed in a human colorectal xenograft after qd×5 dosing at 10 and 30 mg/kg. Regorafenib exhibited potent dose-dependent TGI in various preclinical human xenograft models in mice, with tumor shrinkages observed in breast MDA-MB-231 and renal 786-O carcinoma models. Pharmacodynamic analyses of the breast model revealed strong reduction in staining of proliferation marker Ki-67 and phosphorylated extracellular regulated kinases 1/2. These data demonstrate that regorafenib is a well-tolerated, orally active multikinase inhibitor with a distinct target profile that may have therapeutic benefit in human malignancies.

  20. Acquired resistance mechanisms to tyrosine kinase inhibitors in lung cancer with activating epidermal growth factor receptor mutation--diversity, ductility, and destiny.

    PubMed

    Suda, Kenichi; Mizuuchi, Hiroshi; Maehara, Yoshihiko; Mitsudomi, Tetsuya

    2012-12-01

    Lung cancers that harbor somatic activating mutations in the gene for the epidermal growth factor receptor (EGFR) depend on mutant EGFR for their proliferation and survival; therefore, lung cancer patients with EGFR mutations often dramatically respond to orally available EGFR tyrosine kinase inhibitors (TKIs). However, emergence of acquired resistance is virtually inevitable, thus limiting improvement in patient outcomes. To elucidate and overcome this acquired resistance, multidisciplinary basic and clinical investigational approaches have been applied, using in vitro cell line models or samples obtained from lung cancer patients treated with EGFR-TKIs. These efforts have revealed several acquired resistance mechanisms and candidates, including EGFR secondary mutations (T790M and other rare mutations), MET amplification, PTEN downregulation, CRKL amplification, high-level HGF expression, FAS-NFκB pathway activation, epithelial-mesenchymal transition, and conversion to small cell lung cancer. Interestingly, cancer cells harbor potential destiny and ductility together in acquiring resistance to EGFR-TKIs, as shown in in vitro acquired resistance models. Molecular mechanisms of "reversible EGFR-TKI tolerance" that occur in early phase EGFR-TKI exposure have been identified in cell line models. Furthermore, others have reported molecular markers that can predict response to EGFR-TKIs in clinical settings. Deeper understanding of acquired resistance mechanisms to EGFR-TKIs, followed by the development of molecular target drugs that can overcome the resistance, might turn this fatal disease into a chronic disorder.

  1. Co-active receptor tyrosine kinases mitigate the effect of FGFR inhibitors in FGFR1-amplified lung cancers with low FGFR1 protein expression.

    PubMed

    Kotani, H; Ebi, H; Kitai, H; Nanjo, S; Kita, K; Huynh, T G; Ooi, A; Faber, A C; Mino-Kenudson, M; Yano, S

    2016-07-01

    Targeted therapies are effective in subsets of lung cancers with EGFR mutations and anaplastic lymphoma kinase (ALK) translocations. Large-scale genomics have recently expanded the lung cancer landscape with FGFR1 amplification found in 10-20% of squamous cell carcinomas (SCCs). However, the response rates have been low for biomarker-directed fibroblast growth factor receptor (FGFR) inhibitor therapy in SCC, which contrasts to the relatively high rates of response seen in EGFR mutant and ALK-translocated lung cancers treated with epidermal growth factor receptor (EGFR) inhibitors and ALK inhibitors, respectively. In order to better understand the low response rates of FGFR1-amplified lung cancers to FGFR inhibitors, relationships between gene copy number, mRNA expression and protein expression of FGFR1 were assessed in cell lines, tumor specimens and data from The Cancer Genome Atlas. The importance of these factors for the sensitivity to FGFR inhibitors was determined by analyzing drug screen data and conducting in vitro and in vivo experiments. We report that there was a discrepancy between FGFR1 amplification level and FGFR1 protein expression in a number of these cell lines, and the cancers with unexpectedly low FGFR1 expression were uniformly resistant to the different FGFR inhibitors. Further interrogation of the receptor tyrosine kinase activity in these discordant cell lines revealed co-activation of HER2 and platelet-derived growth factor receptor-α (PDGFRα) caused by gene amplification or ligand overexpression maintained phosphoinositide 3-kinase (PI3K) and MEK/ERK signaling even in the presence of FGFR inhibitor. Accordingly, co-inhibition of FGFR1 and HER2 or PDGFRα led to enhanced drug responses. In contrast, FGFR1-amplified high FGFR1 protein-expressing lung cancers are sensitive to FGFR inhibitor monotherapy by downregulating ERK signaling. Addition of a PI3K inhibitor to these high FGFR1 protein-expressing cancers further sensitized them to FGFR

  2. Recent inventions on receptor tyrosine kinase RET modulation.

    PubMed

    Jurvansuu, Jaana M; Goldman, Adrian

    2008-01-01

    Rearranged during transfection, RET, is a receptor tyrosine kinase expressed in neural crest derived cell lineages. RET is activated by dimerisation facilitated by its binding to the heterodimeric complex formed by Glial cell-derived neurotrophic factor (GDNF) -family ligand (GFL) and GNDF-family receptor (GFR). Both GDNFs and their co-receptors are a small protein family of four members. RET kinase mediated signaling can lead to survival, cell growth, differentiation, and migration. Pharmaceutically RET is of interest due to its involvement in several disease conditions. Oncogenic RET activation by mutations or rearragements predisposes to cancers like multiple endocrine neoplasia type 2 (A and B) and medullary thyroid carcinoma. Loss-of-function mutations in RET are a strong susceptibility factor for Hirschsprung disease, which is characterized by lack of ganglion cells in gastrointestinal tract. All the GFLs promote neuronal survival and GDNF is one of the most potent neurotrophic factors for dopaminergic neurons. Therefore, the neuroprotective capacity of RET activation to override the apoptotic program in neurodegenerative diseases, like in dying midbrain dopaminergic neurons in Parkinson's disease, is of great interest. This article reviews the recent international patents on modulation of RET kinase activity by small-molecule and peptide-based agonists and antagonists.

  3. SGX523 is an exquisitely selective, ATP-competitive inhibitor of the MET receptor tyrosine kinase with antitumor activity in vivo

    SciTech Connect

    Buchanan, Sean G.; Hendle, Jorg; Lee, Patrick S.; Smith, Christopher R.; Bounaud, Pierre-Yves; Jessen, Katti A.; Tang, Crystal M.; Huser, Nanni H.; Felce, Jeremy D.; Froning, Karen J.; Peterman, Marshall C.; Aubol, Brandon E.; Gessert, Steve F.; Sauder, J. Michael; Schwinn, Kenneth D.; Russell, Marijane; Rooney, Isabelle A.; Adams, Jason; Leon, Barbara C.; Do, Tuan H.; Blaney, Jeff M.; Sprengeler, Paul A.; Thompson, Devon A.; Smyth, Lydia; Pelletier, Laura A.; Atwell, Shane; Holme, Kevin; Wasserman, Stephen R.; Emtage, Spencer; Burley, Stephen K.; Reich, Siegfried H.

    2010-01-12

    The MET receptor tyrosine kinase has emerged as an important target for the development of novel cancer therapeutics. Activation of MET by mutation or gene amplification has been linked to kidney, gastric, and lung cancers. In other cancers, such as glioblastoma, autocrine activation of MET has been demonstrated. Several classes of ATP-competitive inhibitor have been described, which inhibit MET but also other kinases. Here, we describe SGX523, a novel, ATP-competitive kinase inhibitor remarkable for its exquisite selectivity for MET. SGX523 potently inhibited MET with an IC{sub 50} of 4 nmol/L and is >1,000-fold selective versus the >200-fold selectivity of other protein kinases tested in biochemical assays. Crystallographic study revealed that SGX523 stabilizes MET in a unique inactive conformation that is inaccessible to other protein kinases, suggesting an explanation for the selectivity. SGX523 inhibited MET-mediated signaling, cell proliferation, and cell migration at nanomolar concentrations but had no effect on signaling dependent on other protein kinases, including the closely related RON, even at micromolar concentrations. SGX523 inhibition of MET in vivo was associated with the dose-dependent inhibition of growth of tumor xenografts derived from human glioblastoma and lung and gastric cancers, confirming the dependence of these tumors on MET catalytic activity. Our results show that SGX523 is the most selective inhibitor of MET catalytic activity described to date and is thus a useful tool to investigate the role of MET kinase in cancer without the confounding effects of promiscuous protein kinase inhibition.

  4. Receptor tyrosine kinases and schistosome reproduction: new targets for chemotherapy

    PubMed Central

    Morel, Marion; Vanderstraete, Mathieu; Hahnel, Steffen; Grevelding, Christoph G.; Dissous, Colette

    2014-01-01

    Schistosome parasites still represent a serious public health concern and a major economic problem in developing countries. Pathology of schistosomiasis is mainly due to massive egg production by these parasites and to inflammatory responses raised against the eggs which are trapped in host tissues. Tyrosine kinases (TKs) are key molecules that control cell differentiation and proliferation and they already represent important targets in cancer therapy. During recent years, it has been shown that receptor tyrosine kinases (RTK) signaling was active in reproductive organs and that it could regulate sexual maturation of schistosomes and egg production. This opens interesting perspectives for the control of transmission and pathogenesis of schistosomiasis based on new therapies targeting schistosome RTKs. This review relates the numerous data showing the major roles of kinase signaling in schistosome reproduction. It describes the conserved and particular features of schistosome RTKs, their implication in gametogenesis and reproduction processes and summarizes recent works indicating that RTKs and their signaling partners are interesting chemotherapeutical targets in new programs of control. PMID:25101117

  5. Role of Receptor Tyrosine Kinase Signaling in Renal Fibrosis

    PubMed Central

    Liu, Feng; Zhuang, Shougang

    2016-01-01

    Renal fibrosis can be induced in different renal diseases, but ultimately progresses to end stage renal disease. Although the pathophysiologic process of renal fibrosis have not been fully elucidated, it is characterized by glomerulosclerosis and/or tubular interstitial fibrosis, and is believed to be caused by the proliferation of renal inherent cells, including glomerular epithelial cells, mesangial cells, and endothelial cells, along with defective kidney repair, renal interstitial fibroblasts activation, and extracellular matrix deposition. Receptor tyrosine kinases (RTKs) regulate a variety of cell physiological processes, including metabolism, growth, differentiation, and survival. Many studies from in vitro and animal models have provided evidence that RTKs play important roles in the pathogenic process of renal fibrosis. It is also showed that tyrosine kinases inhibitors (TKIs) have anti-fibrotic effects in basic research and clinical trials. In this review, we summarize the evidence for involvement of specific RTKs in renal fibrosis process and the employment of TKIs as a therapeutic approach for renal fibrosis. PMID:27331812

  6. Receptor Tyrosine Kinase and Tyrosine Kinase Inhibitors: New Hope for Success in Multiple Sclerosis Therapy.

    PubMed

    Mirshafiey, Abbas; Ghalamfarsa, Ghasem; Asghari, Babak; Azizi, Gholamreza

    2014-07-01

    Receptor tyrosine kinases (RTKs) are essential components of signal transduction pathways that mediate cell-to-cell communication and their function as relay points for signaling pathways. They have a key role in numerous processes that control cellular proliferation and differentiation, regulate cell growth and cellular metabolism, and promote cell survival and apoptosis. Recently, the role of RTKs including TCR, FLT-3, c-Kit, c-Fms, PDGFR, ephrin, neurotrophin receptor, and TAM receptor in autoimmune disorder, especially rheumatoid arthritis and multiple sclerosis has been suggested. In multiple sclerosis pathogenesis, RTKs and their tyrosine kinase enzymes are selective important targets for tyrosine kinase inhibitor (TKI) agents. TKIs, compete with the ATP binding site of the catalytic domain of several tyrosine kinases, and act as small molecules that have a favorable safety profile in disease treatment. Up to now, the efficacy of TKIs in numerous animal models of MS has been demonstrated, but application of these drugs in human diseases should be tested in future clinical trials.

  7. Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors from the natural origin: a recent perspective.

    PubMed

    Patel, Harun M; Rane, Rajesh; Thapliyal, Neeta; Palkar, Mahesh; Shaikh, Mahamadhanif; Karpoormath, Rajshekhar

    2015-01-01

    Overexpression of epidermal growth factor receptor (EGFR) is seen in a number of human tumors like prostate, colon, breast and ovarian. Their expression is correlated with vascularity and often difficult to diagnose. Though a number of active inhibitors and anticancer drugs against EGFR-tyrosine kinase are known, increase in resistance together with many side effects designate the need for new and improved treatments. Natural products and their analoges have significant contribution in the cancer drug discovery and development process. Therefore in the current review we mainly discuss design, synthesis and structural activity relationship of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors from the natural origin.

  8. Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors from the natural origin: a recent perspective.

    PubMed

    Patel, Harun M; Rane, Rajesh; Thapliyal, Neeta; Palkar, Mahesh; Shaikh, Mahamadhanif; Karpoormath, Rajshekhar

    2015-01-01

    Overexpression of epidermal growth factor receptor (EGFR) is seen in a number of human tumors like prostate, colon, breast and ovarian. Their expression is correlated with vascularity and often difficult to diagnose. Though a number of active inhibitors and anticancer drugs against EGFR-tyrosine kinase are known, increase in resistance together with many side effects designate the need for new and improved treatments. Natural products and their analoges have significant contribution in the cancer drug discovery and development process. Therefore in the current review we mainly discuss design, synthesis and structural activity relationship of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors from the natural origin. PMID:25763933

  9. Role of Receptor Tyrosine Kinases and Their Ligands in Glioblastoma

    PubMed Central

    Carrasco-García, Estefanía; Saceda, Miguel; Martínez-Lacaci, Isabel

    2014-01-01

    Glioblastoma multiforme is the most frequent, aggressive and fatal type of brain tumor. Glioblastomas are characterized by their infiltrating nature, high proliferation rate and resistance to chemotherapy and radiation. Recently, oncologic therapy experienced a rapid evolution towards “targeted therapy,” which is the employment of drugs directed against particular targets that play essential roles in proliferation, survival and invasiveness of cancer cells. A number of molecules involved in signal transduction pathways are used as molecular targets for the treatment of various tumors. In fact, inhibitors of these molecules have already entered the clinic or are undergoing clinical trials. Cellular receptors are clear examples of such targets and in the case of glioblastoma multiforme, some of these receptors and their ligands have become relevant. In this review, the importance of glioblastoma multiforme in signaling pathways initiated by extracellular tyrosine kinase receptors such as EGFR, PDGFR and IGF-1R will be discussed. We will describe their ligands, family members, structure, activation mechanism, downstream molecules, as well as the interaction among these pathways. Lastly, we will provide an up-to-date review of the current targeted therapies in cancer, in particular glioblastoma that employ inhibitors of these pathways and their benefits. PMID:24709958

  10. Increasing the Receptor Tyrosine Kinase EphB2 Prevents Amyloid-β-induced Depletion of Cell Surface Glutamate Receptors by a Mechanism That Requires the PDZ-binding Motif of EphB2 and Neuronal Activity*

    PubMed Central

    Miyamoto, Takashi; Kim, Daniel; Knox, Joseph A.; Johnson, Erik; Mucke, Lennart

    2016-01-01

    Diverse lines of evidence suggest that amyloid-β (Aβ) peptides causally contribute to the pathogenesis of Alzheimer disease (AD), the most frequent neurodegenerative disorder. However, the mechanisms by which Aβ impairs neuronal functions remain to be fully elucidated. Previous studies showed that soluble Aβ oligomers interfere with synaptic functions by depleting NMDA-type glutamate receptors (NMDARs) from the neuronal surface and that overexpression of the receptor tyrosine kinase EphB2 can counteract this process. Through pharmacological treatments and biochemical analyses of primary neuronal cultures expressing wild-type or mutant forms of EphB2, we demonstrate that this protective effect of EphB2 depends on its PDZ-binding motif and the presence of neuronal activity but not on its kinase activity. We further present evidence that the protective effect of EphB2 may be mediated by the AMPA-type glutamate receptor subunit GluA2, which can become associated with the PDZ-binding motif of EphB2 through PDZ domain-containing proteins and can promote the retention of NMDARs in the membrane. In addition, we show that the Aβ-induced depletion of surface NMDARs does not depend on several factors that have been implicated in the pathogenesis of Aβ-induced neuronal dysfunction, including aberrant neuronal activity, tau, prion protein (PrPC), and EphB2 itself. Thus, although EphB2 does not appear to be directly involved in the Aβ-induced depletion of NMDARs, increasing its expression may counteract this pathogenic process through a neuronal activity- and PDZ-dependent regulation of AMPA-type glutamate receptors. PMID:26589795

  11. Dynamics of circulating tumor DNA represented by the activating and resistant mutations in epidermal growth factor receptor tyrosine kinase inhibitor treatment.

    PubMed

    Uchida, Junji; Imamura, Fumio; Kukita, Yoji; Oba, Shigeyuki; Kumagai, Toru; Nishino, Kazumi; Inoue, Takako; Kimura, Madoka; Kato, Kikuya

    2016-03-01

    Circulating tumor DNA (ctDNA) is an emerging field of cancer research. For lung cancer, non-invasive genotyping of EGFR is the foremost application. The activating mutations represent the ctDNA from all cancer cells, and the T790M-resistant mutation represents that from resistant cells. We examined the ctDNA dynamics of EGFR mutations by using deep sequencing with a massively parallel DNA sequencer. We obtained 190 plasma samples from 57 patients at various times during the treatment course and classified them according to treatment status. The mutation detection rate of exon 19 deletion/L858R in plasma was high at the initiation of treatment with epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI; P = 0.001), suppressed during EGFR-TKI treatment before disease progression, and elevated after the onset of disease progression (P = 0.023). The mutation detection rate of T790M was low until the onset of disease progression and elevated thereafter (P = 0.01). Samples across the development of disease progression were obtained from 10 patients and showed a correlation between increased ctDNA level and disease progression. Decreased ctDNA level in response to the initiation of EGFR-TKI was observed in 4 of 6 eligible patients. In two patients, the ctDNA dynamics suggested the presence of cancer cell populations only with the T790M mutation. In another patient, the T790M ctDNA represented cell subpopulations that respond to cytotoxic agents differently from the major population. Considering the high incidence, ctDNA could be a clinical parameter to complement information from image analyses.

  12. Recent developments in receptor tyrosine kinases targeted anticancer therapy

    PubMed Central

    Raval, Samir H.; Singh, Ratn D.; Joshi, Dilip V.; Patel, Hitesh B.; Mody, Shailesh K.

    2016-01-01

    Novel concepts and understanding of receptors lead to discoveries and optimization of many small molecules and antibodies as anti-cancerous drugs. Receptor tyrosine kinases (RTKs) are such a promising class of receptors under the investigation in past three decades. RTKs are one of the essential mediators of cell signaling mechanism for various cellular processes. Transformations such as overexpression, dysregulation, or mutations of RTKs may result into malignancy, and thus are an important target for anticancer therapy. Numerous subfamilies of RTKs, such as epidermal growth factor receptor, vascular endothelial growth factor receptor, fibroblast growth factor receptors, insulin-like growth factor receptor, and hepatocyte growth factor receptor, have been being investigated in recent years as target for anticancer therapy. The present review focuses several small molecules drugs as well as monoclonal antibodies targeting aforesaid subfamilies either approved or under investigation to treat the various cancers. PMID:27051190

  13. Increased activity of the Vesicular Soluble N-Ethylmaleimide-sensitive Factor Attachment Protein Receptor TI-VAMP/VAMP7 by Tyrosine Phosphorylation in the Longin Domain*

    PubMed Central

    Burgo, Andrea; Casano, Alessandra M.; Kuster, Aurelia; Arold, Stefan T.; Wang, Guan; Nola, Sébastien; Verraes, Agathe; Dingli, Florent; Loew, Damarys; Galli, Thierry

    2013-01-01

    Vesicular (v)- and target (t)-SNAREs play essential roles in intracellular membrane fusion through the formation of cytoplasmic α-helical bundles. Several v-SNAREs have a Longin N-terminal extension that, by promoting a closed conformation, plays an autoinhibitory function and decreases SNARE complex formation and membrane fusion efficiency. The molecular mechanism leading to Longin v-SNARE activation is largely unknown. Here we find that exocytosis mediated by the Longin v-SNARE TI-VAMP/VAMP7 is activated by tonic treatment with insulin and insulin-like growth factor-1 but not by depolarization and intracellular calcium rise. In search of a potential downstream mechanism, we found that TI-VAMP is phosphorylated in vitro by c-Src kinase on tyrosine 45 of the Longin domain. Accordingly, a mutation of tyrosine 45 into glutamate, but not phenylalanine, activates both t-SNARE binding and exocytosis. Activation of TI-VAMP-mediated exocytosis thus relies on tyrosine phosphorylation. PMID:23471971

  14. Increased activity of the vesicular soluble N-ethylmaleimide-sensitive factor attachment protein receptor TI-VAMP/VAMP7 by tyrosine phosphorylation in the Longin domain.

    PubMed

    Burgo, Andrea; Casano, Alessandra M; Kuster, Aurelia; Arold, Stefan T; Wang, Guan; Nola, Sébastien; Verraes, Agathe; Dingli, Florent; Loew, Damarys; Galli, Thierry

    2013-04-26

    Vesicular (v)- and target (t)-SNAREs play essential roles in intracellular membrane fusion through the formation of cytoplasmic α-helical bundles. Several v-SNAREs have a Longin N-terminal extension that, by promoting a closed conformation, plays an autoinhibitory function and decreases SNARE complex formation and membrane fusion efficiency. The molecular mechanism leading to Longin v-SNARE activation is largely unknown. Here we find that exocytosis mediated by the Longin v-SNARE TI-VAMP/VAMP7 is activated by tonic treatment with insulin and insulin-like growth factor-1 but not by depolarization and intracellular calcium rise. In search of a potential downstream mechanism, we found that TI-VAMP is phosphorylated in vitro by c-Src kinase on tyrosine 45 of the Longin domain. Accordingly, a mutation of tyrosine 45 into glutamate, but not phenylalanine, activates both t-SNARE binding and exocytosis. Activation of TI-VAMP-mediated exocytosis thus relies on tyrosine phosphorylation.

  15. Expression of human tyrosine kinase-negative epidermal growth factor receptor amplifies signaling through endogenous murine epidermal growth factor receptor.

    PubMed

    Hack, N; Sue-A-Quan, A; Mills, G B; Skorecki, K L

    1993-12-15

    Recent findings have suggested that certain ligand-dependent responses to EGF may be propagated in a manner that is not dependent on the intrinsic tyrosine kinase activity of the epidermal growth factor receptor (EGF-R, Campos-Gonzalez, R., and Glenney, J. R., Jr. (1992) J. Biol. Chem. 267, 14535-14538) or, alternatively, that these responses may occur through the interaction of the human tyrosine kinase-deficient EGF-R with an as yet unidentified kinase (Selva, E., Raden, D. L., and Davis, R. J. (1993) J. Biol. Chem. 268, 2250-2254). These conclusions represent a significant departure from our current understanding of signal transduction by receptor tyrosine kinases. Therefore we examined the effect of expression of tyrosine kinase-negative human EGF receptor in murine NIH-3T3-2.2 cells on the EGF-dependent phosphorylation of mitogen-activated protein (MAP-2) kinase. In parental cells (NIH-3T3-2.2) that express low levels of endogenous murine EGF-R, there was no demonstrable EGF-dependent coupling to MAP-2 kinase. In NIH-3T3-2.2 cells transfected with tyrosine kinase-negative human EGF-R, there was unexpected EGF-dependent phosphorylation of MAP-2 kinase. Analysis of the tyrosine kinase-negative human EGF-R in these cells revealed significant tyrosine phosphorylation of the EGF-R. A low level of endogenous murine EGF-R present in these cells were also phosphorylated on tyrosine residues and displayed autokinase activity. Similar results were obtained using an unrelated cell line (B82L cells), in which EGF-dependent phosphorylation of MAP-2 kinase was previously attributed to signal propagation through a tyrosine kinase-negative human EGF-R (Campos-Gonzalez, R., and Glenney, J. R., Jr. (1992) J. Biol. Chem. 267, 14535-14538). Taken together, these results suggest that the tyrosine kinase-negative human EGF-R are able to amplify the response to activation of low levels of endogenous murine EGF-R, thus leading to EGF-dependent phosphorylation of MAP-2 kinase in cells

  16. Effects of inhibitors of vascular endothelial growth factor receptor 2 and downstream pathways of receptor tyrosine kinases involving phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin or mitogen-activated protein kinase in canine hemangiosarcoma cell lines.

    PubMed

    Adachi, Mami; Hoshino, Yuki; Izumi, Yusuke; Sakai, Hiroki; Takagi, Satoshi

    2016-07-01

    Canine hemangiosarcoma (HSA) is a progressive malignant neoplasm with no current effective treatment. Previous studies showed that receptor tyrosine kinases and molecules within their downstream pathways involving phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (m-TOR) or mitogen-activated protein kinase (MAPK) were overexpressed in canine, human, and murine tumors, including HSA. The present study investigated the effects of inhibitors of these pathways in canine splenic and hepatic HSA cell lines using assays of cell viability and apoptosis. Inhibitors of the MAPK pathway did not affect canine HSA cell viability. However, cell viability was significantly reduced by exposure to inhibitors of vascular endothelial growth factor receptor 2 and the PI3K/Akt/m-TOR pathway; these inhibitors also induced apoptosis in these cell lines. These results suggest that these inhibitors reduce the proliferation of canine HSA cells by inducing apoptosis. Further study of these inhibitors, using xenograft mouse models of canine HSA, are warranted to explore their potential for clinical application. PMID:27408334

  17. Ligand-independent activation of the arylhydrocarbon receptor by ETK (Bmx) tyrosine kinase helps MCF10AT1 breast cancer cells to survive in an apoptosis-inducing environment.

    PubMed

    Fujisawa, Yasuko; Li, Wen; Wu, Dalei; Wong, Patrick; Vogel, Christoph; Dong, Bin; Kung, Hsing-Jien; Matsumura, Fumio

    2011-10-01

    It has been reported that the arylhydrocarbon receptor (AHR) is overexpressed in certain types of breast tumors. However, so far no concrete evidence has been provided yet as to why and how the overexpressed AHR in those cancer cells is functionally activated without exogenous ligands. Here we show that the AHR was functionally activated when estrogen receptor-negative, AHR overexpressing MCF10AT1 human breast cancer cells (designated P20E) were subjected to serum starvation. Transfection of cells with ETK-KQ, a plasmid for kinase-dead epithelial and endothelial tyrosine kinase (ETK), attenuated this AHR activation. Artificial over-expression of ETK in P20E cells through transfection with wild-type ETK plasmid (ETK-wt) caused up-regulation of cytochrome P4501a1 (CYP1A1; a marker of functional activation of AHR). Furthermore, ablation of ETK expression by a specific antisense oligonucleotide or AG879, a specific inhibitor of ETK kinase suppressed activation of AHR induced by omeprazole, a strong ligand-independent activator of AHR. Activation of ETK in those cells conferred them resistance to UVB- as well as doxorubicin-induced apoptosis, both of which were reversed by ETK-KQ. Together, these findings support our conclusion that ETK is the tyrosine kinase responsible for the functional activation of the AHR in these mammary epithelial cells. PMID:21861773

  18. Peroxisome proliferator-activated receptor γ agonist efatutazone impairs transforming growth factor β2-induced motility of epidermal growth factor receptor tyrosine kinase inhibitor-resistant lung cancer cells.

    PubMed

    Serizawa, Masakuni; Murakami, Haruyasu; Watanabe, Masaru; Takahashi, Toshiaki; Yamamoto, Nobuyuki; Koh, Yasuhiro

    2014-06-01

    Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKI) are effective for non-small cell lung cancers (NSCLC) with EGFR-activating mutations. However, most responders develop resistance. Efatutazone, a novel peroxisome proliferator-activated receptor gamma (PPARγ) agonist, is currently under clinical evaluation; it has antiproliferative effects and induces cellular morphological changes and differentiation. The present study investigated the effects of efatutazone in EGFR-TKI-resistant NSCLC cells, while focusing on cell motility. The PC-9-derived NSCLC cell lines PC-9ER and PC-9ZD, resistant to EGFR-TKI due to v-crk avian sarcoma virus CT10 oncogene homolog-like (CRKL) amplification-induced phosphatidylinositol 3-kinase (PI3K)/v-akt murine thymoma viral oncogene homolog (AKT) activation and an EGFR T790M mutation, respectively, were used. These cells exhibit enhanced cell motility due to transforming growth factor β (TGF-β)/Smad2 family member 2 (Smad2) pathway activation. Efatutazone had no growth-inhibitory effect on the tested cells but inhibited the motility of EGFR-TKI-resistant cells in wound closure and transwell assays. Efatutazone plus erlotinib treatment provided greater inhibition of PC-9ER cell migration than efatutazone or erlotinib alone. Efatutazone suppressed increased TGF-β2 secretion from both cell lines (shown by ELISA) and downregulation of TGF-β2 transcription (observed by quantitative RT-PCR). Immunoblot analysis and luciferase assays revealed that efatutazone suppressed Smad2 phosphorylation and its transcriptional activity. These results suggest that efatutazone inhibits cell motility by antagonizing the TGF-β/Smad2 pathway and effectively prevents metastasis in NSCLC patients with acquired resistance to EGFR-TKI regardless of the resistance mechanism.

  19. Protein tyrosine kinase and mitogen-activated protein kinase signalling pathways contribute to differences in heterophil-mediated innate immune responsiveness between two lines of broilers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protein tyrosine phosphorylation mediates signal transduction of cellular processes, with protein tyrosine kinases (PTKs) regulating virtually all signaling events. The mitogen-activated protein kinase (MAPK) super-family consists of three conserved pathways that convert receptor activation into ce...

  20. Activation of the lutropin/choriogonadotropin receptor (LHR) in MA-10 cells leads to the tyrosine phosphorylation of the focal adhesion kinase (FAK) by a pathway that involves Src family kinases*

    PubMed Central

    Mizutani, Tetsuya; Shiraishi, Koji; Welsh, Toni; Ascoli, Mario

    2006-01-01

    We show that activation of the endogenous or recombinant LHR in mouse Leydig tumor cells (MA-10 cells) leads to the tyrosine phosphorylation of the focal adhesion kinase (FAK) and one of its substrates (paxillin). Using specific antibodies to the five tyrosine residues of FAK that become phosphorylated we show that activation of the LHR increases the phosphorylation of Tyr576 and Tyr577 but it does not affect the phosphorylation of Tyr397, Tyr861 or Tyr925. Because FAK is a prominent substrate for the Src family of tyrosine kinases (SFKs) we tested for their involvement in the LHR-mediated phosphorylation of FAK-Tyr576. Src is not detectable in MA-10 cells, but two other prominent members of this family (Fyn and Yes) are present. The LHR-mediated phosphorylation of FAK-Tyr576 is readily inhibited by PP2 (a pharmacological inhibitor of SFKs) and by dominant-negative mutants of SKFs. Moreover, activation of the LHR in MA-10 cells results in the stimulation of the activity of Fyn and Yes and overexpression of either of these two tyrosine kinases enhances the LHR-mediate phosphorylation of FAK-Tyr576. Studies involving activation of other G protein-coupled receptors, overexpression of the different Gα subunits, and the use of second messenger analogs suggest that the LHR-induced phosphorylation of FAK-Tyr576 in MA-10 cells is mediated by SFKs, and that this family of kinases is, in turn, independently or cooperatively activated by the LHR-induced stimulation of Gs and Gq/11-mediated pathways. PMID:16293639

  1. Potent quinoxaline-based inhibitors of PDGF receptor tyrosine kinase activity. Part 2: the synthesis and biological activities of RPR127963 an orally bioavailable inhibitor.

    PubMed

    He, Wei; Myers, Michael R; Hanney, Barbara; Spada, Alfred P; Bilder, Glenda; Galzcinski, Helen; Amin, Dilip; Needle, Saul; Page, Ken; Jayyosi, Zaid; Perrone, Mark H

    2003-09-15

    RPR127963 demonstrates an excellent pharmacokinetic profile in several species and was found to be efficacious in the prevention of restenosis in a Yucatan mini-pig model upon oral administration of 1-5 mg/kg. The in vitro selectivity profile and SAR of the highly optimized PDGF-R tyrosine kinase inhibitor are highlighted.

  2. A novel putative tyrosine kinase receptor with oncogenic potential.

    PubMed

    Janssen, J W; Schulz, A S; Steenvoorden, A C; Schmidberger, M; Strehl, S; Ambros, P F; Bartram, C R

    1991-11-01

    We have detected transforming activity by a tumorigenicity assay using NIH3T3 cells transfected with DNA from a chronic myeloproliferative disorder patient. Here, we report the cDNA cloning of the corresponding oncogene, designated UFO, in allusion to the as yet unidentified function of its protein. Nucleotide sequence analysis of a 3116bp cDNA clone revealed a 2682-bp-long open reading frame capable of directing the synthesis of a 894 amino acid polypeptide. The predicted UFO protein exhibits characteristic features of a transmembrane receptor with associated tyrosine kinase activity. The UFO proto-oncogene maps to human chromosome 19q13.1 and is transcribed into two 5.0 kb and 3.2 kb mRNAs in human bone marrow and human tumor cell lines. The UFO locus is evolutionarily conserved between vertebrate species. A 4.0 kb mRNA of the murine UFO homolog is expressed in a variety of different mouse tissues. We thus have identified a novel element of the complex signaling network involved in the control of cell proliferation and differentiation.

  3. Regulation of therapeutic resistance in cancers by receptor tyrosine kinases

    PubMed Central

    Chen, Mei-Kuang; Hung, Mien-Chie

    2016-01-01

    In response to DNA damage lesions due to cellular stress, DNA damage response (DDR) pathways are activated to promote cell survival and genetic stability or unrepaired lesion-induced cell death. Current cancer treatments predominantly utilize DNA damaging agents, such as irradiation and chemotherapy drugs, to inhibit cancer cell proliferation and induce cell death through the activation of DDR. However, a portion of cancer patients is reported to develop therapeutic resistance to these DDR-inducing agents. One significant resistance mechanism in cancer cells is oncogenic kinase overexpression, which promotes cell survival by enhancing DNA damage repair pathways and evading cell cycle arrest. Among the oncogenic kinases, overexpression of receptor tyrosine kinases (RTKs) is reported in many of solid tumors, and numerous clinical trials targeting RTKs are currently in progress. As the emerging trend in cancer treatment combines DNA damaging agents and RTK inhibitors, it is important to understand the substrates of RTKs relative to the DDR pathways. In addition, alteration of RTK expression and their phosphorylated substrates can serve as biomarkers to stratify patients for combination therapies. In this review, we summarize the deleterious effects of RTKs on the DDR pathways and the emerging biomarkers for personalized therapy. PMID:27186434

  4. Perspective: Dynamics of receptor tyrosine kinase signaling complexes.

    PubMed

    Mayer, Bruce J

    2012-08-14

    Textbook descriptions of signal transduction complexes provide a static snapshot view of highly dynamic events. Despite enormous strides in identifying the key components of signaling complexes and the underlying mechanisms of signal transduction, our understanding of the dynamic behavior of these complexes has lagged behind. Using the example of receptor tyrosine kinases, this perspective takes a fresh look at the dynamics of the system and their potential impact on signal processing. PMID:22584051

  5. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases.

    PubMed

    Chen, Ying-Nan P; LaMarche, Matthew J; Chan, Ho Man; Fekkes, Peter; Garcia-Fortanet, Jorge; Acker, Michael G; Antonakos, Brandon; Chen, Christine Hiu-Tung; Chen, Zhouliang; Cooke, Vesselina G; Dobson, Jason R; Deng, Zhan; Fei, Feng; Firestone, Brant; Fodor, Michelle; Fridrich, Cary; Gao, Hui; Grunenfelder, Denise; Hao, Huai-Xiang; Jacob, Jaison; Ho, Samuel; Hsiao, Kathy; Kang, Zhao B; Karki, Rajesh; Kato, Mitsunori; Larrow, Jay; La Bonte, Laura R; Lenoir, Francois; Liu, Gang; Liu, Shumei; Majumdar, Dyuti; Meyer, Matthew J; Palermo, Mark; Perez, Lawrence; Pu, Minying; Price, Edmund; Quinn, Christopher; Shakya, Subarna; Shultz, Michael D; Slisz, Joanna; Venkatesan, Kavitha; Wang, Ping; Warmuth, Markus; Williams, Sarah; Yang, Guizhi; Yuan, Jing; Zhang, Ji-Hu; Zhu, Ping; Ramsey, Timothy; Keen, Nicholas J; Sellers, William R; Stams, Travis; Fortin, Pascal D

    2016-07-01

    The non-receptor protein tyrosine phosphatase SHP2, encoded by PTPN11, has an important role in signal transduction downstream of growth factor receptor signalling and was the first reported oncogenic tyrosine phosphatase. Activating mutations of SHP2 have been associated with developmental pathologies such as Noonan syndrome and are found in multiple cancer types, including leukaemia, lung and breast cancer and neuroblastoma. SHP2 is ubiquitously expressed and regulates cell survival and proliferation primarily through activation of the RAS–ERK signalling pathway. It is also a key mediator of the programmed cell death 1 (PD-1) and B- and T-lymphocyte attenuator (BTLA) immune checkpoint pathways. Reduction of SHP2 activity suppresses tumour cell growth and is a potential target of cancer therapy. Here we report the discovery of a highly potent (IC50 = 0.071 μM), selective and orally bioavailable small-molecule SHP2 inhibitor, SHP099, that stabilizes SHP2 in an auto-inhibited conformation. SHP099 concurrently binds to the interface of the N-terminal SH2, C-terminal SH2, and protein tyrosine phosphatase domains, thus inhibiting SHP2 activity through an allosteric mechanism. SHP099 suppresses RAS–ERK signalling to inhibit the proliferation of receptor-tyrosine-kinase-driven human cancer cells in vitro and is efficacious in mouse tumour xenograft models. Together, these data demonstrate that pharmacological inhibition of SHP2 is a valid therapeutic approach for the treatment of cancers. PMID:27362227

  6. Cholecystokinin receptors regulate sperm protein tyrosine phosphorylation via uptake of HCO3-.

    PubMed

    Zhou, Yuchuan; Ru, Yanfei; Shi, Huijuan; Wang, Yanjiao; Wu, Bin; Upur, Halmurat; Zhang, Yonglian

    2015-10-01

    Cholecystokinin (CCK), a peptide hormone and a neurotransmitter, was detected in mature sperm two decades ago. However, the exact role of CCK and the types of CCK receptors (now termed CCK1 and CCK2) in sperm have not been identified. Here, we find that CCK1 and CCK2 receptors are immunolocalized to the acrosomal region of mature sperm. The antagonist of CCK1 or CCK2 receptor strongly activated the soluble adenylyl cyclase/cAMP/protein kinase A signaling pathway that drives sperm capacitation-associated protein tyrosine phosphorylation in dose- and time-dependent manners. But these actions of stimulation were abolished when sperm were incubated in the medium in the absence of HCO3-. Further investigation demonstrated that the inhibitor of CCK1 or CCK2 receptor could accelerate the uptake of HCO3- and significantly elevate the intracellular pH of sperm. Interestingly, the synthetic octapeptide of CCK (CCK8) showed the same action and mechanism as antagonists of CCK receptors. Moreover, CCK8 and the antagonist of CCK1 or CCK2 receptor were also able to accelerate human sperm capacitation-associated protein tyrosine phosphorylation by stimulating the influx of HCO3-. Thus, the present results suggest that CCK and its receptors may regulate sperm capacitation-associated protein tyrosine phosphorylation by modulating the uptake of HCO3-.

  7. Role of Protein Kinase C, PI3-kinase and Tyrosine Kinase in Activation of MAP Kinase by Glucose and Agonists of G-protein Coupled Receptors in INS-1 Cells

    PubMed Central

    Böcker, Dietmar

    2001-01-01

    MAP (mitogen-activated protein) kinase (also called Erk 1/2) plays a crucial role in cell proliferation and differentiation. Its impact on secretory events is less well established. The interplay of protein kinase C (PKC), PI3-kinase nd cellular tyrosine kinase with MAP kinase activity using inhibitors and compounds such as glucose, phorbol 12-myristate 13-acetate (PMA) and agonists of G-protein coupled receptors like gastrin releasing peptide (GRP), oxytocin (OT) and glucose-dependent insulinotropic peptide (GIP) was investigated in INS-1 cells, an insulin secreting cell line. MAP kinase activity was determined by using a peptide derived from the EGF receptor as a MAP kinase substrate and [ P 32 ]ATP. Glucose as well as GRP, OT and GIP exhibited a time-dependent increase in MAP kinase activity with a maximum at time point 2.5 min. All further experiments were performed using 2.5 min incubations. The flavone PD 098059 is known to bind to the inactive forms of MEK1 (MAPK/ERK-Kinase) thus preventing activation by upstream activators. 20 μM PD 098059 ( IC 50 =51 μM) inhibited MAP kinase stimulated by either glucose, GRP, OT, GIP or PMA. Inhibiton (“downregulation”) of PKC by a long term (22h) pretreatment with 1 μM PMA did not influence MAP kinase activity when augmented by either of the above mentioned compound. To investigate whether PI3-kinase and cellular tyrosine kinase are involved in G-protein mediated effects on MAP kinase, inhibitors were used: 100 nM wortmannin (PI3-kinase inhibitor) reduced the effects of GRP, OT and GIP but not that of PMA; 100 μM genistein (tyrosine kinase inhibitor) inhibited the stimulatory effect of either above mentioned compound on MAP kinase activation. Inhibition of MAP kinase by 20 μM PD 098059 did not influence insulin secretion modulated by either compound (glucose, GRP, OT or GIP). [ H 3 ]Thymidine incorporation, however, was severely inhibited by PD 098059. Thus MAP kinase is important for INS-1 cell proliferation but

  8. Platelet immunoreceptor tyrosine-based activation motif (ITAM) signaling and vascular integrity.

    PubMed

    Boulaftali, Yacine; Hess, Paul R; Kahn, Mark L; Bergmeier, Wolfgang

    2014-03-28

    Platelets are well-known for their critical role in hemostasis, that is, the prevention of blood loss at sites of mechanical vessel injury. Inappropriate platelet activation and adhesion, however, can lead to thrombotic complications, such as myocardial infarction and stroke. To fulfill its role in hemostasis, the platelet is equipped with various G protein-coupled receptors that mediate the response to soluble agonists such as thrombin, ADP, and thromboxane A2. In addition to G protein-coupled receptors, platelets express 3 glycoproteins that belong to the family of immunoreceptor tyrosine-based activation motif receptors: Fc receptor γ chain, which is noncovalently associated with the glycoprotein VI collagen receptor, C-type lectin 2, the receptor for podoplanin, and Fc receptor γII A, a low-affinity receptor for immune complexes. Although both genetic and chemical approaches have documented a critical role for platelet G protein-coupled receptors in hemostasis, the contribution of immunoreceptor tyrosine-based activation motif receptors to this process is less defined. Studies performed during the past decade, however, have identified new roles for platelet immunoreceptor tyrosine-based activation motif signaling in vascular integrity in utero and at sites of inflammation. The purpose of this review is to summarize recent findings on how platelet immunoreceptor tyrosine-based activation motif signaling controls vascular integrity, both in the presence and absence of mechanical injury. PMID:24677237

  9. Platelet immunoreceptor tyrosine-based activation motif (ITAM) signaling and vascular integrity.

    PubMed

    Boulaftali, Yacine; Hess, Paul R; Kahn, Mark L; Bergmeier, Wolfgang

    2014-03-28

    Platelets are well-known for their critical role in hemostasis, that is, the prevention of blood loss at sites of mechanical vessel injury. Inappropriate platelet activation and adhesion, however, can lead to thrombotic complications, such as myocardial infarction and stroke. To fulfill its role in hemostasis, the platelet is equipped with various G protein-coupled receptors that mediate the response to soluble agonists such as thrombin, ADP, and thromboxane A2. In addition to G protein-coupled receptors, platelets express 3 glycoproteins that belong to the family of immunoreceptor tyrosine-based activation motif receptors: Fc receptor γ chain, which is noncovalently associated with the glycoprotein VI collagen receptor, C-type lectin 2, the receptor for podoplanin, and Fc receptor γII A, a low-affinity receptor for immune complexes. Although both genetic and chemical approaches have documented a critical role for platelet G protein-coupled receptors in hemostasis, the contribution of immunoreceptor tyrosine-based activation motif receptors to this process is less defined. Studies performed during the past decade, however, have identified new roles for platelet immunoreceptor tyrosine-based activation motif signaling in vascular integrity in utero and at sites of inflammation. The purpose of this review is to summarize recent findings on how platelet immunoreceptor tyrosine-based activation motif signaling controls vascular integrity, both in the presence and absence of mechanical injury.

  10. Differential phosphorylation of the progesterone receptor by insulin, epidermal growth factor, and platelet-derived growth factor receptor tyrosine protein kinases.

    PubMed

    Woo, D D; Fay, S P; Griest, R; Coty, W; Goldfine, I; Fox, C F

    1986-01-01

    Purified preparations of insulin, epidermal growth factor (EGF), and platelet-derived growth factor (PDGF) receptors were compared for their abilities to phosphorylate purified hen oviduct progesterone receptors. The specific activities of all three peptide hormone-induced receptor kinases were first defined using a synthetic tridecapeptide tyrosine protein kinase substrate. Next, equivalent ligand-activated activities of the three receptor kinases were tested for their abilities to phosphorylate hen oviduct progesterone receptor. Both the insulin and EGF receptors phosphorylated progesterone receptor at high affinity, exclusively at tyrosine residues and with maximal stoichiometries that were near unity. In contrast, the PDGF receptor did not recognize progesterone receptor as a substrate. Insulin decreased the Km of the insulin receptor for progesterone receptor subunits as substrates, but had no significant effect on Vmax values. On the other hand, EGF increased the Vmax of the EGF receptor for progesterone receptor subunits as substrates. Phosphorylation of progesterone receptor by the insulin and EGF receptor kinases differed in two additional ways. 1) EGF-activated receptor phosphorylated the 80- and 105-kDa progesterone receptor subunits to an equal extent, whereas insulin-activated receptor preferentially phosphorylated the 80-kDa subunit. 2) Phosphopeptide fingerprinting analyses revealed that while insulin and EGF receptors phosphorylated one identical major site on both progesterone receptor subunits, they differed in their specificities for other sites. PMID:3001059

  11. Type 1 receptor tyrosine kinases are differentially phosphorylated in mammary carcinoma and differentially associated with steroid receptors.

    PubMed Central

    Bacus, S. S.; Chin, D.; Yarden, Y.; Zelnick, C. R.; Stern, D. F.

    1996-01-01

    The neu/erbB-2/HER-2 proto-oncogene is amplified and/or overexpressed in up to 30% of mammary carcinomas and has been variably correlated with poor prognosis. The signaling activity of the encoded receptor tyrosine kinase is regulated by interactions with other type 1 receptors and their ligands. We have used a novel approach, phosphorylation-sensitive anti-Neu antibodies, to quantify signaling by Neu and epidermal growth factor receptor in a panel of frozen sections of mammary carcinoma specimens. We also determined the relationship of Neu, phosphorylated Neu (and epidermal growth factor receptor), and phosphotyrosine to the expression of Neu-related receptors (epidermal growth factor receptor, HER-3, and HER-4) and to prognostic factors (estrogen and progesterone receptor). We found that tyrosine phosphorylation of Neu (and hence signaling activity) is highly variable among mammary carcinomas. Neu and HER-4 were associated with divergent correlates, suggesting that they have profoundly different biological activities. These results have implications for etiology of mammary carcinoma for clinical evaluation of mammary carcinoma patients, and for development of Neu-targeted therapeutic strategies. Images Figure 1 Figure 2 PMID:8579117

  12. Inhibition of protein tyrosine phosphatase activity mediates epidermal growth factor receptor signaling in human airway epithelial cells exposed to Zn{sup 2+}

    SciTech Connect

    Tal, T.L.; Graves, L.M.; Silbajoris, R.; Bromberg, P.A.; Wu, W.; Samet, J.M. . E-mail: samet.james@epa.gov

    2006-07-01

    Epidemiological studies have implicated zinc (Zn{sup 2+}) in the toxicity of ambient particulate matter (PM) inhalation. We previously showed that exposure to metal-laden PM inhibits protein tyrosine phosphatase (PTP) activity in human primary bronchial epithelial cells (HAEC) and leads to Src-dependent activation of EGFR signaling in B82 and A431 cells. In order to elucidate the mechanism of Zn{sup 2+}-induced EGFR activation in HAEC, we treated HAEC with 500 {mu}M ZnSO{sub 4} for 5-20 min and measured the state of activation of EGFR, c-Src and PTPs. Western blots revealed that exposure to Zn{sup 2+} results in increased phosphorylation at both trans- and autophosphorylation sites in the EGFR. Zn{sup 2+}-mediated EGFR phosphorylation did not require ligand binding and was ablated by the EGFR kinase inhibitor PD153035, but not by the Src kinase inhibitor PP2. Src activity was inhibited by Zn{sup 2+} treatment of HAEC, consistent with Src-independent EGFR transactivation in HAEC exposed to Zn{sup 2+}. The rate of exogenous EGFR dephosphorylation in lysates of HAEC exposed to Zn{sup 2+} or V{sup 4+} was significantly diminished. Moreover, exposure of HAEC to Zn{sup 2+} also resulted in a significant impairment of dephosphorylation of endogenous EGFR. These data show that Zn{sup 2+}-induced activation of EGFR in HAEC involves a loss of PTP activities whose function is to dephosphorylate EGFR in opposition to baseline EGFR kinase activity. These findings also suggest that there are marked cell-type-specific differences in the mechanism of EGFR activation induced by Zn{sup 2+} exposure.

  13. Targeting tyrosine-kinases and estrogen receptor abrogates resistance to endocrine therapy in breast cancer

    PubMed Central

    Liu, Shuying; Meng, Xiaolong; Chen, Huiqin; Liu, Wenbin; Miller, Todd; Murph, Mandi; Lu, Yiling; Zhang, Fan; Gagea, Mihai; Arteaga, Carlos L.; Mills, Gordon B.; Meric-Bernstam, Funda; González-Angulo, Ana M.

    2014-01-01

    Despite numerous therapies that effectively inhibit estrogen signaling in breast cancer, a significant proportion of patients with estrogen receptor (ER)-positive malignancy will succumb to their disease. Herein we demonstrate that long-term estrogen deprivation (LTED) therapy among ER-positive breast cancer cells results in the adaptive increase in ER expression and subsequent activation of multiple tyrosine kinases. Combination therapy with the ER down-regulator fulvestrant and dasatinib, a broad kinase inhibitor, exhibits synergistic activity against LTED cells, by reduction of cell proliferation, cell survival, cell invasion and mammary acinar formation. Screening kinase phosphorylation using protein arrays and functional proteomic analysis demonstrates that the combination of fulvestrant and dasatinib inhibits multiple tyrosine kinases and cancer-related pathways that are constitutively activated in LTED cells. Because LTED cells display increased insulin receptor (InsR)/insulin-like growth factor 1 receptor (IGF-1R) signaling, we added an ant-IGF-1 antibody to the combination with fulvestrant and dasatinib in an effort to further increase the inhibition. However, adding MK0646 only modestly increased the inhibition of cell growth in monolayer culture, but neither suppressed acinar formation nor inhibited cell migration in vitro and invasion in vivo. Therefore, combinations of fulvestrant and dasatinib, but not MK0646, may benefit patients with tyrosine-kinase-activated, endocrine therapy-resistant breast cancer. PMID:24979294

  14. Targeting of DNA molecules, BSA/c-Met tyrosine kinase receptors and anti-proliferative activity of bis(terpyridine)copper(ii) complexes.

    PubMed

    Mahendiran, Dharmasivam; Kumar, Raju Senthil; Viswanathan, Vijayan; Velmurugan, Devadasan; Rahiman, Aziz Kalilur

    2016-05-01

    A series of homoleptic bis(terpyridine)copper(ii) complexes of the type [Cu(L(1-5))2]Cl2 (), where L(1-5) = 4'-(4-substituted)-2,2':6',2''-terpyridines, have been synthesized and characterized. The molecular structure of complex was confirmed by the single crystal XRD technique, and the geometry of the complexes is best described as distorted octahedral. Structural parameters from the crystallographic and DFT studies are in good agreement with each other. The small HOMO-LUMO energy gap supports bioefficacy of the complexes. DNA binding studies show high intrinsic binding constant values 1.53 ± 0.15, 1.62 ± 0.08 and 3.09 ± 0.12 × 10(5) M(-1) for complexes , and , respectively, with intercalative mode of binding to CT-DNA. The binding results were further supported by molecular docking studies. The experimental results indicate that the interaction between the complexes and BSA protein involves a static quenching mechanism. The molecular docking studies with c-Met tyrosine kinase receptors show hydrophobic and π-π interactions. All the complexes bring about hydroxyl radical mediated DNA cleavage in the presence of H2O2. In vitro cytotoxicities of the complexes () were tested against three cancerous cell lines, namely human breast adenocarcinoma (MCF-7), epithelioma (Hep-2) and cervical (HeLa) cell lines, and one non-tumorigenic human dermal fibroblast (NHDF) cell line by MTT reduction assay. The morphological assessment data obtained using Hoechst 33258 staining revealed that complex induces apoptosis much more effectively than the other complexes. PMID:27063595

  15. Nitric oxide reversibly inhibits the epidermal growth factor receptor tyrosine kinase.

    PubMed Central

    Estrada, C; Gómez, C; Martín-Nieto, J; De Frutos, T; Jiménez, A; Villalobo, A

    1997-01-01

    Although it has been demonstrated that NO inhibits the proliferation of different cell types, the mechanisms of its anti-mitotic action are not well understood. In this work we have studied the possible interaction of NO with the epidermal growth factor receptor (EGFR), using transfected fibroblasts which overexpress the human EGFR. The NO donors S-nitroso-N-acetylpenicillamine (SNAP), 1,1-diethyl-2-hydroxy-2-nitrosohydrazine (DEA-NO) and N-¿4-[1-(3-aminopropyl)-2-hydroxy-2-nitrosohydrazino]butyl¿propane -1, 3-diamine (DETA-NO) inhibited DNA synthesis of fibroblasts growing in the presence of fetal calf serum, epidermal growth factor (EGF) or EGF plus insulin, as assessed by [methyl-3H]thymidine incorporation. Neither 8-bromo-cGMP nor the cGMP-phosphodiesterase inhibitor zaprinast mimicked this effect, suggesting that NO is unlikely to inhibit cell proliferation via a cGMP-dependent pathway. SNAP, DEA-NO and DETA-NO also inhibited the transphosphorylation of the EGFR and its tyrosine kinase activity toward the exogenous substrate poly-l-(Glu-Tyr), as measured in permeabilized cells using [gamma-32P]ATP as phosphate donor. In contrast, 3-[morpholinosydnonimine hydrochloride] (SIN-1), a peroxynitrite-forming compound, did not significantly inhibit either DNA synthesis or the EGFR tyrosine kinase activity. The inhibitory action of DEA-NO on the EGFR tyrosine kinase was prevented by haemoglobin, an NO scavenger, but not by superoxide dismutase, and was reversed by dithiothreitol. The binding of EGF to its receptor was unaffected by DEA-NO. The inhibitory action of DEA-NO on the EGF-dependent transphosphorylation of the receptor was also demonstrated in intact cells by immunoblot analysis using an anti-phosphotyrosine antibody. Taken together, these results suggest that NO, but not peroxynitrite, inhibits in a reversible manner the EGFR tyrosine kinase activity by S-nitrosylation of the receptor. PMID:9291107

  16. Developmental expression and function analysis of protein tyrosine phosphatase receptor type D in oligodendrocyte myelination.

    PubMed

    Zhu, Q; Tan, Z; Zhao, S; Huang, H; Zhao, X; Hu, X; Zhang, Y; Shields, C B; Uetani, N; Qiu, M

    2015-11-12

    Receptor protein tyrosine phosphatases (RPTPs) are extensively expressed in the central nervous system (CNS), and have distinct spatial and temporal patterns in different cell types during development. Previous studies have demonstrated possible roles for RPTPs in axon outgrowth, guidance, and synaptogenesis. In the present study, our results revealed that protein tyrosine phosphatase, receptor type D (PTPRD) was initially expressed in mature neurons in embryonic CNS, and later in oligodendroglial cells at postnatal stages when oligodendrocytes undergo active axonal myelination process. In PTPRD mutants, oligodendrocyte differentiation was normal and a transient myelination delay occurred at early postnatal stages, indicating the contribution of PTPRD to the initiation of axonal myelination. Our results also showed that the remyelination process was not affected in the absence of PTPRD function after a cuprizone-induced demyelination in adult animals.

  17. Identification of beta-endorphin-6(16-17) as the principal metabolite of des-tyrosin-gamma-endorphin (DTgammaE) in vitro and assessment of its activity in neurotransmitter receptor binding assays.

    PubMed

    Schoemaker, H; Davis, T P; Pedigo, N W; Chen, A; Berens, E S; Ragan, P; Ling, N C; Yamamura, H I

    1982-07-16

    Des-tyrosine-gamma-endorphin (beta-endorphin-(2-17); DTgamma E) lacks direct in vitro activity at dopaminergic receptors, but does inhibit in vivo [3H]spiperone binding in various rat brain areas. The principal objective of these studies was to test the hypothesis that DTgammaE may exert its selective, neuroleptic-like activity through an active metabolite. Accordingly, DTgammaE was incubated at 37 degrees C in a whole rat brain homogenate of neutral pH after which samples were prepared for HPLC analysis. The major, heat-stable metabolite of DTgammaE was identified as the clinically active, beta-endorphin related fragment, beta-endorphine-(6-17). The beta-endorphin sequences 4-17, 5-17, l0-17, 12-17 and 2-16 were also present but in minor amounts. Identical results were obtained studying DTgammaE metabolism using rat striatal tissue slices. Neurotransmitter receptor binding experiments showed that beta-endorphin-(6-17) was inactive at central dopaminergic, serotonergic, muscarinic, benzodiazepine and opiate receptors measured in vitro. Thus, like DTgammaE, beta-endorphin-(6-17) differs from classical neuroleptics in that it does not inhibit in vitro [3H]spiperone binding in the corpus striatum, frontal cortex or mesolimbic areas of the rat brain. It may be that DTgammaE and beta-endorphine-(66-17) exert their selective neuroleptic-like activity through an indirect inhibition of central dopaminergic activity, possibly in combination with an in vivo antagonism of the postsynaptic dopamine receptor.

  18. Fyn is a downstream target of the pleiotrophin/receptor protein tyrosine phosphatase beta/zeta-signaling pathway: regulation of tyrosine phosphorylation of Fyn by pleiotrophin.

    PubMed

    Pariser, Harold; Ezquerra, Laura; Herradon, Gonzalo; Perez-Pinera, Pablo; Deuel, Thomas F

    2005-07-01

    Pleiotrophin (PTN the protein, Ptn the gene) signals downstream targets through inactivation of its receptor, the transmembrane receptor protein tyrosine phosphatase (RPTP)beta/zeta, disrupting the balanced activity of RPTPbeta/zeta and the activity of a constitutively active tyrosine kinase. As a consequence of the inactivation of RPTPbeta/zeta, PTN stimulates a sharp increase in the levels of tyrosine phosphorylation of the substrates of RPTPbeta/zeta in PTN-stimulated cells. We now report that the Src family member Fyn interacts with the intracellular domain of RPTPbeta/zeta in a yeast two-hybrid system. We further demonstrate that Fyn is a substrate of RPTPbeta/zeta, and that tyrosine phosphorylation of Fyn is sharply increased in PTN-stimulated cells. In previous studies, we demonstrated that beta-catenin and beta-adducin are targets of the PTN/RPTPbeta/zeta-signaling pathway and defined the mechanisms through which tyrosine phosphorylation of beta-catenin and beta-adducin disrupts cytoskeletal protein complexes. We conclude that Fyn is a downstream target of the PTN/RPTPbeta/zeta-signaling pathway and suggest that PTN coordinately regulates tyrosine phosphorylation of beta-catenin, beta-adducin, and Fyn through the PTN/RPTPbeta/zeta-signaling pathway and that together Fyn, beta-adducin, and beta-catenin may be effectors of the previously described PTN-stimulated disruption of cytoskeletal stability, increased cell plasticity, and loss of cell-cell adhesion that are characteristic of PTN-stimulated cells and a feature of many human malignant cells in which mutations have established constitutive expression of the Ptn gene.

  19. The transcription factor RUNX2 regulates receptor tyrosine kinase expression in melanoma

    PubMed Central

    Boregowda, Rajeev K.; Medina, Daniel J.; Markert, Elke; Bryan, Michael A.; Chen, Wenjin; Chen, Suzie; Rabkin, Anna; Vido, Michael J.; Gunderson, Samuel I.; Chekmareva, Marina; Foran, David J.; Lasfar, Ahmed; Goydos, James S.; Cohen-Solal, Karine A.

    2016-01-01

    Receptor tyrosine kinases-based autocrine loops largely contribute to activate the MAPK and PI3K/AKT pathways in melanoma. However, the molecular mechanisms involved in generating these autocrine loops are still largely unknown. In the present study, we examine the role of the transcription factor RUNX2 in the regulation of receptor tyrosine kinase (RTK) expression in melanoma. We have demonstrated that RUNX2-deficient melanoma cells display a significant decrease in three receptor tyrosine kinases, EGFR, IGF-1R and PDGFRβ. In addition, we found co-expression of RUNX2 and another RTK, AXL, in both melanoma cells and melanoma patient samples. We observed a decrease in phosphoAKT2 (S474) and phosphoAKT (T308) levels when RUNX2 knock down resulted in significant RTK down regulation. Finally, we showed a dramatic up regulation of RUNX2 expression with concomitant up-regulation of EGFR, IGF-1R and AXL in melanoma cells resistant to the BRAF V600E inhibitor PLX4720. Taken together, our results strongly suggest that RUNX2 might be a key player in RTK-based autocrine loops and a mediator of resistance to BRAF V600E inhibitors involving RTK up regulation in melanoma. PMID:27102439

  20. Tyrosine Kinase Receptor Landscape in Lung Cancer: Therapeutical Implications.

    PubMed

    Quintanal-Villalonga, A; Paz-Ares, Luis; Ferrer, Irene; Molina-Pinelo, S

    2016-01-01

    Lung cancer is a heterogeneous disease responsible for the most cases of cancer-related deaths. The majority of patients are clinically diagnosed at advanced stages, with a poor survival rate. For this reason, the identification of oncodrivers and novel biomarkers is decisive for the future clinical management of this pathology. The rise of high throughput technologies popularly referred to as "omics" has accelerated the discovery of new biomarkers and drivers for this pathology. Within them, tyrosine kinase receptors (TKRs) have proven to be of importance as diagnostic, prognostic, and predictive tools and, due to their molecular nature, as therapeutic targets. Along this review, the role of TKRs in the different lung cancer histologies, research on improvement of anti-TKR therapy, and the current approaches to manage anti-TKR resistance will be discussed. PMID:27528792

  1. MET Receptor Tyrosine Kinase as an Autism Genetic Risk Factor

    PubMed Central

    Peng, Yun; Huentelman, Matthew; Smith, Christopher; Qiu, Shenfeng

    2014-01-01

    In this chapter, we will briefly discuss recent literature on the role of MET receptor tyrosine kinase (RTK) in brain development and how perturbation of MET signaling may alter normal neurodevelopmental outcomes. Recent human genetic studies have established MET as a risk factor for autism, and the molecular and cellular underpinnings of this genetic risk are only beginning to emerge from obscurity. Unlike many autism risk genes that encode synaptic proteins, the spatial and temporal expression pattern of MET RTK indicates this signaling system is ideally situated to regulate neuronal growth, functional maturation, and establishment of functional brain circuits, particularly in those brain structures involved in higher levels of cognition, social skills, and executive functions. PMID:24290385

  2. Receptor Tyrosine Kinases: Molecular Switches Regulating CNS Axon Regeneration

    PubMed Central

    Vigneswara, Vasanthy; Kundi, Sarina; Ahmed, Zubair

    2012-01-01

    The poor or lack of injured adult central nervous system (CNS) axon regeneration results in devastating consequences and poor functional recovery. The interplay between the intrinsic and extrinsic factors contributes to robust inhibition of axon regeneration of injured CNS neurons. The insufficient or lack of trophic support for injured neurons is considered as one of the major obstacles contributing to their failure to survive and regrow their axons after injury. In the CNS, many of the signalling pathways associated with neuronal survival and axon regeneration are regulated by several classes of receptor tyrosine kinases (RTK) that respond to a variety of ligands. This paper highlights and summarises the most relevant recent findings pertinent to different classes of the RTK family of molecules, with a particular focus on elucidating their role in CNS axon regeneration. PMID:22848811

  3. Tyrosine Kinase Receptor Landscape in Lung Cancer: Therapeutical Implications

    PubMed Central

    Quintanal-Villalonga, A.; Paz-Ares, Luis

    2016-01-01

    Lung cancer is a heterogeneous disease responsible for the most cases of cancer-related deaths. The majority of patients are clinically diagnosed at advanced stages, with a poor survival rate. For this reason, the identification of oncodrivers and novel biomarkers is decisive for the future clinical management of this pathology. The rise of high throughput technologies popularly referred to as “omics” has accelerated the discovery of new biomarkers and drivers for this pathology. Within them, tyrosine kinase receptors (TKRs) have proven to be of importance as diagnostic, prognostic, and predictive tools and, due to their molecular nature, as therapeutic targets. Along this review, the role of TKRs in the different lung cancer histologies, research on improvement of anti-TKR therapy, and the current approaches to manage anti-TKR resistance will be discussed. PMID:27528792

  4. Receptor Tyrosine Kinase Signaling: Regulating Neural Crest Development One Phosphate at a Time

    PubMed Central

    Fantauzzo, Katherine A.; Soriano, Philippe

    2015-01-01

    Receptor tyrosine kinases (RTKs) bind to a subset of growth factors on the surface of cells and elicit responses with broad roles in developmental and postnatal cellular processes. Receptors in this subclass consist of an extracellular ligand-binding domain, a single transmembrane domain, and an intracellular domain harboring a catalytic tyrosine kinase and regulatory sequences that are phosphorylated either by the receptor itself or various interacting proteins. Once activated, RTKs bind signaling molecules and recruit effector proteins to mediate downstream cellular responses through various intracellular signaling pathways. In this chapter, we will highlight the role of a subset of RTK families in regulating the activity of neural crest cells (NCCs) and the development of their derivatives in mammalian systems. NCCs are migratory, multipotent cells that can be subdivided into four axial populations, cranial, cardiac, vagal and trunk. These cells migrate throughout the vertebrate embryo along defined pathways and give rise to unique cell types and structures. Interestingly, individual RTK families often have specific functions in a subpopulation of NCCs that contribute to the diversity of these cells and their derivatives in the mammalian embryo. We will additionally discuss current methods used to investigate RTK signaling, including genetic, biochemical, large-scale proteomic and biosensor approaches, which can be applied to study intracellular signaling pathways active downstream of this receptor subclass during NCC development. PMID:25662260

  5. The coreceptor CD4 is expressed in distinct nanoclusters and does not colocalize with T-cell receptor and active protein tyrosine kinase p56lck.

    PubMed

    Roh, Kyung-Ho; Lillemeier, Björn F; Wang, Feng; Davis, Mark M

    2015-03-31

    CD4 molecules on the surface of T lymphocytes greatly augment the sensitivity and activation process of these cells, but how it functions is not fully understood. Here we studied the spatial organization of CD4, and its relationship to T-cell antigen receptor (TCR) and the active form of Src kinase p56lck (Lck) using single and dual-color photoactivated localization microscopy (PALM) and direct stochastic optical reconstruction microscopy (dSTORM). In nonactivated T cells, CD4 molecules are clustered in small protein islands, as are TCR and Lck. By dual-color imaging, we find that CD4, TCR, and Lck are localized in their separate clusters with limited interactions in the interfaces between them. Upon T-cell activation, the TCR and CD4 begin clustering together, developing into microclusters, and undergo a larger scale redistribution to form supramolecluar activation clusters (SMACs). CD4 and Lck localize in the inner TCR region of the SMAC, but this redistribution of disparate cluster structures results in enhanced segregation from each other. In nonactivated cells these preclustered structures and the limited interactions between them may serve to limit spontaneous and random activation events. However, the small sizes of these island structures also ensure large interfacial surfaces for potential interactions and signal amplification when activation is initiated. In the later activation stages, the increasingly larger clusters and their segregation from each other reduce the interfacial surfaces and could have a dampening effect. These highly differentiated spatial distributions of TCR, CD4, and Lck and their changes during activation suggest that there is a more complex hierarchy than previously thought. PMID:25829544

  6. Discovery and Evaluation of Clinical Candidate AZD3759, a Potent, Oral Active, Central Nervous System-Penetrant, Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor.

    PubMed

    Zeng, Qingbei; Wang, Jiabing; Cheng, Ziqiang; Chen, Kan; Johnström, Peter; Varnäs, Katarina; Li, David Yunzhi; Yang, Zhen Fan; Zhang, Xiaolin

    2015-10-22

    Recent reports suggest that an increasing number of patients with lung cancer, especially those with activating mutations of the epidermal growth factor receptor (EGFR), also present with brain metastases and leptomeningeal metastases. These patients have poor prognosis as there are no approved drugs for these indications. Available agents have poor efficacy for these patients even at well above their standard dose. Herein, we report the discovery of (4-[(3-chloro-2-fluorophenyl)amino]-7-methoxyquinazolin-6-yl (2R)-2,4-dimethylpiperazine-1-carboxylate 1m (AZD3759), an investigational drug currently in Phase 1 clinical trial, which has excellent central nervous system penetration and which induces profound regression of brain metastases in a mouse model. PMID:26313252

  7. The P21-activated kinase expression pattern is different in non-small cell lung cancer and affects lung cancer cell sensitivity to epidermal growth factor receptor tyrosine kinase inhibitors.

    PubMed

    Liu, Yang; Wang, Si; Dong, Qian-Ze; Jiang, Gui-Yang; Han, Yong; Wang, Liang; Wang, En-Hua

    2016-03-01

    Exploring methods for increasing epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) sensitivity has become a major focus in non-small cell lung cancer (NSCLC). Major downstream effectors of the Rho family small guanosine triphosphatases, P21-activated kinases (PAKs) activate the main signaling pathways downstream of EGFR and thus promote tumor cell proliferation. In this study, we explored the expression pattern of phosphorylated PAKs in NSCLC and their potential value as drug targets for treating cancer. The expression and prognostic significance of phosphorylated group I and II PAKs were evaluated in 182 patients with NSCLC. Immunohistochemical analysis revealed low group I PAK expression in normal lung tissues and increased expressed in the cytoplasm, particularly in lung squamous cell carcinoma. Abnormal group I PAK expression was associated with lymph node metastases and high tumor-node-metastases (TNM) stage in NSCLC patients and correlated with poor prognosis. We used group I PAK inhibitor (IPA3) to specifically decrease group I PAK activity in human lung cancer cell lines. Decreased group I PAK activity inhibited cell proliferation and combined IPA3 and EGFR-TKI (gefitinib) treatment inhibited cell proliferation in an obvious manner. Together, our results revealed the PAK expression pattern in NSCLC, and a role for group I PAK in cell proliferation, which provides evidence that decreased PAK activity may have a potential application as a molecular targeted therapy in advanced NSCLC.

  8. Src-Like adaptor protein (SLAP) binds to the receptor tyrosine kinase Flt3 and modulates receptor stability and downstream signaling.

    PubMed

    Kazi, Julhash U; Rönnstrand, Lars

    2012-01-01

    Fms-like tyrosine kinase 3 (Flt3) is an important growth factor receptor in hematopoiesis. Gain-of-function mutations of the receptor contribute to the transformation of acute myeloid leukemia (AML). Src-like adaptor protein (SLAP) is an interaction partner of the E3 ubiquitin ligase Cbl that can regulate receptor tyrosine kinases-mediated signal transduction. In this study, we analyzed the role of SLAP in signal transduction downstream of the type III receptor tyrosine kinase Flt3. The results show that upon ligand stimulation SLAP stably associates with Flt3 through multiple phosphotyrosine residues in Flt3. SLAP constitutively interacts with oncogenic Flt3-ITD and co-localizes with Flt3 near the cell membrane. This association initiates Cbl-dependent receptor ubiquitination and degradation. Depletion of SLAP expression by shRNA in Flt3-transfected Ba/F3 cells resulted in a weaker activation of FL-induced PI3K-Akt and MAPK signaling. Meta-analysis of microarray data from patient samples suggests that SLAP mRNA is differentially expressed in different cancers and its expression was significantly increased in patients carrying the Flt3-ITD mutation. Thus, our data suggest a novel role of SLAP in different cancers and in modulation of receptor tyrosine kinase signaling apart from its conventional role in regulation of receptor stability.

  9. Endocytosis and the Src family of non-receptor tyrosine kinases.

    PubMed

    Reinecke, James; Caplan, Steve

    2014-05-01

    The regulated intracellular transport of nutrient, adhesion, and growth factor receptors is crucial for maintaining cell and tissue homeostasis. Endocytosis, or endocytic membrane trafficking, involves the steps of intracellular transport that include, but are not limited to, internalization from the plasma membrane, sorting in early endosomes, transport to late endosomes/lysosomes followed by degradation, and/or recycling back to the plasma membrane through tubular recycling endosomes. In addition to regulating the localization of transmembrane receptor proteins, the endocytic pathway also controls the localization of non-receptor molecules. The non-receptor tyrosine kinase c-Src (Src) and its closely related family members Yes and Fyn represent three proteins whose localization and signaling activities are tightly regulated by endocytic trafficking. Here, we provide a brief overview of endocytosis, Src function and its biochemical regulation. We will then concentrate on recent advances in understanding how Src intracellular localization is regulated and how its subcellular localization ultimately dictates downstream functioning. As Src kinases are hyperactive in many cancers, it is essential to decipher the spatiotemporal regulation of this important family of tyrosine kinases. PMID:25372749

  10. Role of Chondroitin Sulfate (CS) Modification in the Regulation of Protein-tyrosine Phosphatase Receptor Type Z (PTPRZ) Activity: PLEIOTROPHIN-PTPRZ-A SIGNALING IS INVOLVED IN OLIGODENDROCYTE DIFFERENTIATION.

    PubMed

    Kuboyama, Kazuya; Fujikawa, Akihiro; Suzuki, Ryoko; Tanga, Naomi; Noda, Masaharu

    2016-08-26

    Protein-tyrosine phosphatase receptor type Z (PTPRZ) is predominantly expressed in the developing brain as a CS proteoglycan. PTPRZ has long (PTPRZ-A) and short type (PTPRZ-B) receptor forms by alternative splicing. The extracellular CS moiety of PTPRZ is required for high-affinity binding to inhibitory ligands, such as pleiotrophin (PTN), midkine, and interleukin-34; however, its functional significance in regulating PTPRZ activity remains obscure. We herein found that protein expression of CS-modified PTPRZ-A began earlier, peaking at approximately postnatal days 5-10 (P5-P10), and then that of PTN peaked at P10 at the developmental stage corresponding to myelination onset in the mouse brain. Ptn-deficient mice consistently showed a later onset of the expression of myelin basic protein, a major component of the myelin sheath, than wild-type mice. Upon ligand application, PTPRZ-A/B in cultured oligodendrocyte precursor cells exhibited punctate localization on the cell surface instead of diffuse distribution, causing the inactivation of PTPRZ and oligodendrocyte differentiation. The same effect was observed with the removal of CS chains with chondroitinase ABC but not polyclonal antibodies against the extracellular domain of PTPRZ. These results indicate that the negatively charged CS moiety prevents PTPRZ from spontaneously clustering and that the positively charged ligand PTN induces PTPRZ clustering, potentially by neutralizing electrostatic repulsion between CS chains. Taken altogether, these data indicate that PTN-PTPRZ-A signaling controls the timing of oligodendrocyte precursor cell differentiation in vivo, in which the CS moiety of PTPRZ receptors maintains them in a monomeric active state until its ligand binding. PMID:27445335

  11. Production of recombinant insulin-like androgenic gland hormones from three decapod species: In vitro testicular phosphorylation and activation of a newly identified tyrosine kinase receptor from the Eastern spiny lobster, Sagmariasus verreauxi.

    PubMed

    Aizen, Joseph; Chandler, Jennifer C; Fitzgibbon, Quinn P; Sagi, Amir; Battaglene, Stephen C; Elizur, Abigail; Ventura, Tomer

    2016-04-01

    In crustaceans the insulin-like androgenic gland hormone (IAG) is responsible for male sexual differentiation. To date, the biochemical pathways through which IAG exerts its effects are poorly understood and could be elucidated through the production of a functional recombinant IAG (rIAG). We have successfully expressed glycosylated, biologically active IAG using the Pichia pastoris yeast expression system. We co-expressed recombinant single-chain precursor molecules consisting of the B and A chains (the mature hormone) tethered by a flexible linker, producing rIAGs of the following commercially important species: Eastern spiny lobster Sagmariasus verreauxi (Sv), redclaw crayfish Cherax quadricarinatus (Cq) and giant freshwater prawn Macrobrachium rosenbergii (Mr). We then tested the biological activity of each, through the ability to increase phosphorylation in the testis; both Sv and Cq rIAGs significantly elevated phosphorylation specific to their species, and in a dose-dependent manner. Mr rIAG was tested on Macrobrachium australiense (Ma), eliciting a similar response. Moreover, using bioinformatics analyses of the de novo assembled spiny lobster transcriptome, we identified a spiny lobster tyrosine kinase insulin receptor (Sv-TKIR). We validated this discovery with a receptor activation assay in COS-7 cells expressing Sv-TKIR, using a reporter SRE-LUC system designed for RTKs, with each of the rIAG proteins acting as the activation ligand. Using recombinant proteins, we aim to develop specific tools to control sexual development through the administration of IAG within the critical sexual differentiation time window. The biologically active rIAGs generated might facilitate commercially feasible solutions for the long sought techniques for sex-change induction and monosex population culture in crustaceans and shed new light on the physiological mode of action of IAG in crustaceans.

  12. Production of recombinant insulin-like androgenic gland hormones from three decapod species: In vitro testicular phosphorylation and activation of a newly identified tyrosine kinase receptor from the Eastern spiny lobster, Sagmariasus verreauxi.

    PubMed

    Aizen, Joseph; Chandler, Jennifer C; Fitzgibbon, Quinn P; Sagi, Amir; Battaglene, Stephen C; Elizur, Abigail; Ventura, Tomer

    2016-04-01

    In crustaceans the insulin-like androgenic gland hormone (IAG) is responsible for male sexual differentiation. To date, the biochemical pathways through which IAG exerts its effects are poorly understood and could be elucidated through the production of a functional recombinant IAG (rIAG). We have successfully expressed glycosylated, biologically active IAG using the Pichia pastoris yeast expression system. We co-expressed recombinant single-chain precursor molecules consisting of the B and A chains (the mature hormone) tethered by a flexible linker, producing rIAGs of the following commercially important species: Eastern spiny lobster Sagmariasus verreauxi (Sv), redclaw crayfish Cherax quadricarinatus (Cq) and giant freshwater prawn Macrobrachium rosenbergii (Mr). We then tested the biological activity of each, through the ability to increase phosphorylation in the testis; both Sv and Cq rIAGs significantly elevated phosphorylation specific to their species, and in a dose-dependent manner. Mr rIAG was tested on Macrobrachium australiense (Ma), eliciting a similar response. Moreover, using bioinformatics analyses of the de novo assembled spiny lobster transcriptome, we identified a spiny lobster tyrosine kinase insulin receptor (Sv-TKIR). We validated this discovery with a receptor activation assay in COS-7 cells expressing Sv-TKIR, using a reporter SRE-LUC system designed for RTKs, with each of the rIAG proteins acting as the activation ligand. Using recombinant proteins, we aim to develop specific tools to control sexual development through the administration of IAG within the critical sexual differentiation time window. The biologically active rIAGs generated might facilitate commercially feasible solutions for the long sought techniques for sex-change induction and monosex population culture in crustaceans and shed new light on the physiological mode of action of IAG in crustaceans. PMID:26883686

  13. Structural mimicry of a-loop tyrosine phosphorylation by a pathogenic FGF receptor 3 mutation.

    PubMed

    Huang, Zhifeng; Chen, Huaibin; Blais, Steven; Neubert, Thomas A; Li, Xiaokun; Mohammadi, Moosa

    2013-10-01

    The K650E gain-of-function mutation in the tyrosine kinase domain of FGF receptor 3 (FGFR3) causes Thanatophoric Dysplasia type II, a neonatal lethal congenital dwarfism syndrome, and when acquired somatically, it contributes to carcinogenesis. In this report, we determine the crystal structure of the FGFR3 kinase domain harboring this pathogenic mutation and show that the mutation introduces a network of intramolecular hydrogen bonds to stabilize the active-state conformation. In the crystal, the mutant FGFR3 kinases are caught in the act of trans-phosphorylation on a kinase insert autophosphorylation site, emphasizing the fact that the K650E mutation circumvents the requirement for A-loop tyrosine phosphorylation in kinase activation. Analysis of this trans-phosphorylation complex sheds light onto the determinants of tyrosine trans-phosphorylation specificity. We propose that the targeted inhibition of this pathogenic FGFR3 kinase may be achievable by small molecule kinase inhibitors that selectively bind the active-state conformation of FGFR3 kinase.

  14. Ligand-based receptor tyrosine kinase partial agonists: New paradigm for cancer drug discovery?

    PubMed Central

    Riese, David J.

    2010-01-01

    Introduction Receptor tyrosine kinases (RTKs) are validated targets for oncology drug discovery and several RTK antagonists have been approved for the treatment of human malignancies. Nonetheless, the discovery and development of RTK antagonists has lagged behind the discovery and development of agents that target G-protein coupled receptors. In part, this is because it has been difficult to discover analogs of naturally-occurring RTK agonists that function as antagonists. Areas covered Here we describe ligands of ErbB receptors that function as partial agonists for these receptors, thereby enabling these ligands to antagonize the activity of full agonists for these receptors. We provide insights into the mechanisms by which these ligands function as antagonists. We discuss how information concerning these mechanisms can be translated into screens for novel small molecule- and antibody-based antagonists of ErbB receptors and how such antagonists hold great potential as targeted cancer chemotherapeutics. Expert opinion While there have been a number of important key findings into this field, the identification of the structural basis of ligand functional specificity is still of the greatest importance. While it is true that, with some notable exceptions, peptide hormones and growth factors have not proven to be good platforms for oncology drug discovery; addressing the fundamental issues of antagonistic partial agonists for receptor tyrosine kinases has the potential to steer oncology drug discovery in new directions. Mechanism based approaches are now emerging to enable the discovery of RTK partial agonists that may antagonize both agonist-dependent and –independent RTK signaling and may hold tremendous promise as targeted cancer chemotherapeutics. PMID:21532939

  15. Acquired resistance of non-small cell lung cancer to epidermal growth factor receptor tyrosine kinase inhibitors.

    PubMed

    Nurwidya, Fariz; Takahashi, Fumiyuki; Murakami, Akiko; Kobayashi, Isao; Kato, Motoyasu; Shukuya, Takehito; Tajima, Ken; Shimada, Naoko; Takahashi, Kazuhisa

    2014-03-01

    Activation of epidermal growth factor receptor (EGFR) triggers anti-apoptotic signaling, proliferation, angiogenesis, invasion, metastasis, and drug resistance, which leads to development and progression of human epithelial cancers, including non-small cell lung cancer (NSCLC). Inhibition of EGFR by tyrosine kinase inhibitors such as gefitinib and erlotinib has provided a new hope for the cure of NSCLC patients. However, acquired resistance to gefitinib and erlotinib via EGFR-mutant NSCLC has occurred through various molecular mechanisms such as T790M secondary mutation, MET amplification, hepatocyte growth factor (HGF) overexpression, PTEN downregulation, epithelial-mesenchymal transition (EMT), and other mechanisms. This review will discuss the biology of receptor tyrosine kinase inhibition and focus on the molecular mechanisms of acquired resistance to tyrosine kinase inhibitors of EGFR-mutant NSCLC.

  16. Targeting FMS-related tyrosine kinase receptor 3 with the human immunoglobulin G1 monoclonal antibody IMC-EB10.

    PubMed

    Youssoufian, Hagop; Rowinsky, Eric K; Tonra, James; Li, Yiwen

    2010-02-15

    FMS-related tyrosine kinase receptor 3 (FLT3) is a class III receptor tyrosine kinase that holds considerable promise as a therapeutic target in hematologic malignancies. Current efforts directed toward the development of small-molecule tyrosine kinase inhibitors of FLT3 may be limited by off-target toxicities and the development of drug resistance. Target-specific antibodies could overcome these hurdles and provide additional mechanisms to enhance the antitumor efficacy of FLT3 inhibitors. IMC-EB10 is a novel antibody directed against FLT3. The binding of IMC-EB10 to FLT3 results in antiproliferative effects in vitro and in mouse models engrafted with human leukemia cells that harbor wild-type or constitutively activated FLT3. Future clinical trials will test these notions formally and will identify the most appropriate opportunities for this member of a new generation of antileukemic therapies.

  17. Serotonin derivatives as a new class of non-ATP-competitive receptor tyrosine kinase inhibitors.

    PubMed

    Büttner, Anita; Cottin, Thomas; Xu, Jing; Tzagkaroulaki, Lito; Giannis, Athanassios

    2010-05-15

    The discovery of new templates and their subsequent elaboration to clinically useful receptor tyrosine kinase (RTK) inhibitors continues to be an important issue. RTKs are a class of enzymes responsible for the activation of different cellular signal transduction cascades. The majority of the known small molecules RTK inhibitors are ATP-competitive and they are multiple targeted inhibitors. We describe here serotonin derivatives as a new class of multiple targeted RTK inhibitors. In contrast to most other RTK inhibitors they act via a non-ATP-competitive (allosteric) mechanism. Furthermore, they are able to inhibit the proliferation of HUVE cells, fibroblasts and two cancer cell lines.

  18. Redundant kinase activation and resistance of EGFR-tyrosine kinase inhibitors

    PubMed Central

    Luo, Min; Fu, Li-Wu

    2014-01-01

    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have shown dramatic effects against that tumors harboring EGFR activating mutations in the EGFR intracytoplasmic tyrosine kinase domain and resulted in cell apoptosis. Unfortunately, a number of patients ultimately developed resistance by multiple mechanisms. Thus, elucidation of the mechanism of resistance to EGFR-TKIs can provide strategies for blocking or reversing the situation. Recent studies suggested that redundant kinase activation plays pivotal roles in escaping from the effects of EGFR-TKIs. Herein, we aimed to characterize several molecular events involved in the resistance to EGFR-TKIs mediated by redundant kinase activation. PMID:25520855

  19. Studying N-linked glycosylation of receptor tyrosine kinases.

    PubMed

    Itkonen, Harri M; Mills, Ian G

    2015-01-01

    Metabolic alterations have been identified as a frequent event in cancer. This is often associated with increased flux through glycolysis, and also a secondary pathway to glycolysis, hexosamine biosynthetic pathway (HBP). HBP provides substrate for N-linked glycosylation, which occurs in the endoplasmic reticulum and the Golgi apparatus. N-linked glycosylation supports protein folding and correct sorting of proteins to plasma membrane and secretion. This process generates complex glycoforms, which can be recognized by other proteins and glycosylation of receptor tyrosine kinases (RTK) can also regulate their plasma-membrane retention time. Of special interest for experimental biologists, plants produce proteins, termed lectins, which bind with high specificity to glyco-conjugates. For the purposes of molecular biology, plant lectins can be conjugated to different moieties, such as agarose beads, which enable precipitation of specifically glycosylated proteins. In this chapter, we describe in detail how to perform pull-down experiments with commercially available lectins to identify changes in the glycosylation of RTKs. PMID:25319893

  20. Pancreatitis with vascular endothelial growth factor receptor tyrosine kinase inhibitors.

    PubMed

    Ghatalia, Pooja; Morgan, Charity J; Choueiri, Toni K; Rocha, Pedro; Naik, Gurudatta; Sonpavde, Guru

    2015-04-01

    A trial-level meta-analysis was conducted to determine the relative risk (RR) of pancreatitis associated with multi-targeted vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitors (TKI). Eligible studies included randomized phase 2 and 3 trials comparing arms with and without an FDA-approved VEGFR TKI (sunitinib, sorafenib, pazopanib, axitinib, vandetanib, cabozantinib, ponatinib, regorafenib). Statistical analyses calculated the RR and 95% confidence intervals (CI). A total of 10,578 patients from 16 phase III trials and 6 phase II trials were selected. The RR for all grade and high-grade pancreatitis for the TKI vs. no TKI- arms was 1.95 (p=0.042, 95% CI: 1.02 to 3.70) and 1.89 (p=0.069, 95% CI: 0.95 to 373), respectively. No differential impact of malignancy type or specific TKI agent was seen on RR of all grade of high grade pancreatitis. Better patient selection and monitoring may mitigate the risk of severe pancreatitis.

  1. Activation of the IGF1R pathway potentially mediates acquired resistance to mutant-selective 3rd-generation EGF receptor tyrosine kinase inhibitors in advanced non-small cell lung cancer

    PubMed Central

    Park, Ji Hyun; Choi, Yun Jung; Kim, Seon Ye; Lee, Jung-Eun; Sung, Ki Jung; Park, Sojung; Kim, Woo Sung; Song, Joon Seon; Choi, Chang-Min; Sung, Young Hoon; Rho, Jin Kyung; Lee, Jae Cheol

    2016-01-01

    Mutant-selective, 3rd-generation EGFR-TKIs were recently developed to control lung cancer cells harboring T790M-mediated resistance. However, the development of resistance to these novel drugs seems inevitable. Thus, we investigated the mechanism of acquired resistance to the mutant-selective EGFR-TKI WZ4002. We established five WZ4002-resistant cells, derived from cells harboring both EGFR and T790M mutations by long-term exposure to increasing doses of WZ4002. Compared with the parental cells, all resistant cells showed 10–100-folds higher resistance to WZ4002, as well as cross-resistance to other mutant-selective inhibitors. Among them, three resistant cells (HCC827/WR, PC-9/WR and H1975/WR) showed dependency on EGFR signaling, but two other cells (PC-9/GR/WR and PC-9/ER/WR) were not. Notably, insulin-like growth factor-1 receptor (IGF1R) was aberrantly activated in PC-9/GR/WR cells in phospho-receptor tyrosine kinase array, consistently accompanied by loss of IGF binding protein-3 (IGFBP3). Down-regulation of IGF1R by shRNA, as well as inhibition of IGF1R activity either by AG-1024 (a small molecule IGF1R inhibitor) or BI 836845 (a monoclonal anti-IGF1/2 blocking antibody), restored the sensitivity to WZ4002 both in vitro and xenograft. Taken together, these results suggest that activation of the IGF1R pathway associated with IGFBP3 loss can induce an acquired resistance to the mutant-selective EGFR-TKI, WZ4002. Therefore, a combined therapy of IGF1R inhibitors and mutant-selective EGFR-TKIs might be a viable treatment strategy for overcoming acquired resistance. PMID:26980747

  2. CD14 Mediates Toll-like Receptor 4 (TLR4) Endocytosis and Spleen Tyrosine Kinase (Syk) and Interferon Regulatory Transcription Factor 3 (IRF3) Activation in Epithelial Cells and Impairs Neutrophil Infiltration and Pseudomonas aeruginosa Killing in Vivo*

    PubMed Central

    Roy, Sanhita; Karmakar, Mausita; Pearlman, Eric

    2014-01-01

    In the current study, we examined the role of CD14 in regulating LPS activation of corneal epithelial cells and Pseudomonas aeruginosa corneal infection. Our findings demonstrate that LPS induces Toll-like receptor 4 (TLR4) internalization in corneal epithelial cells and that blocking with anti-CD14 selectively inhibits TLR4 endocytosis, spleen tyrosine kinase (Syk) and IRF3 phosphorylation, and production of CCL5/RANTES and IFN-β, but not IL-8. Using a murine model of P. aeruginosa corneal infection, we show that although infected CD14−/− corneas produce less CCL5, they exhibit significantly increased CXC chemokine production, neutrophil recruitment to the corneal stroma, and bacterial clearance than C57BL/6 mice. We conclude that CD14 has a critical role in mediating TLR4 signaling through IRF3 in resident corneal epithelial cells and macrophages and thereby modulates TLR4 cell surface activation of the MyD88/NF-κB/AP-1 pathway and production of CXC chemokines and neutrophil infiltration to infected tissues. PMID:24275652

  3. Influence of biotransformation of luteolin, luteolin 7-O-glucoside, 3',4'-dihydroxyflavone and apigenin by cultured rat hepatocytes on antioxidative capacity and inhibition of EGF receptor tyrosine kinase activity.

    PubMed

    Schlupper, Doreen; Giesa, Sabine; Gebhardt, Rolf

    2006-06-01

    Flavonoids are known as biologically active compounds. Although this has been shown by several in vivo studies, it is still elusive whether their metabolites exert similar activities. Herein we investigated the biotransformation of four different flavonoids, 3',4'-dihydroxyflavone, apigenin, luteolin and luteolin 7-O-glucoside, by cultured rat hepatocytes using a combination of enzymatic deconjugation, HPLC separation and high-resolution mass spectrometry. These flavonoids were chosen because they are active components of many plants, e. g., artichokes. All flavonoids showed rather complex metabolite patterns dominated by phase II metabolites, mainly sulfates, methyl sulfates and methyl glucuronides, but also of combined glucuronide and sulfate conjugates. Phase I metabolism by hydroxylation was rendered likely only for apigenin to form luteolin. When culture media containing the flavonoids and their metabolites were assayed for antioxidative capacity by the DPPH assay, only compounds with hydroxy groups in position 3' and 4' of the B ring were active. Thus, during metabolism of (inactive) apigenin a strong increase in the antioxidative effect was observed while that of the other three flavonoids decreased with time. Determination of EGF receptor tyrosine kinase activity likewise revealed strong inhibition in the presence of a catechol group at ring B. However, in this case the situation was much more complex resulting in a significant increase of the inhibitory activity of 3',4'-dihydroxyflavone and apigenin, but not of luteolin and luteolin 7-O-glucoside during 22 h of incubation. These results show that the biotransformation of flavonoids is very complex and may result not only in a loss but also in a gain of biological activity depending on the individual structural features. PMID:16732514

  4. Bioluminescence resonance energy transfer methods to study G protein-coupled receptor-receptor tyrosine kinase heteroreceptor complexes.

    PubMed

    Borroto-Escuela, Dasiel O; Flajolet, Marc; Agnati, Luigi F; Greengard, Paul; Fuxe, Kjell

    2013-01-01

    A large body of evidence indicates that G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs) can form heteroreceptor complexes. In these complexes, the signaling from each interacting protomer is modulated to produce an integrated and therefore novel response upon agonist(s) activation. In the GPCR-RTK heteroreceptor complexes, GPCRs can activate RTK in the absence of added growth factor through the use of RTK signaling molecules. This integrative phenomenon is reciprocal and can place also RTK signaling downstream of GPCR. Formation of either stable or transient complexes by these two important classes of membrane receptors is involved in regulating all aspects of receptor function, from ligand binding to signal transduction, trafficking, desensitization, and downregulation among others. Functional phenomena can be modulated with conformation-specific inhibitors that stabilize defined GPCR states to abrogate both GPCR agonist- and growth factor-stimulated cell responses or by means of small interfering heteroreceptor complex interface peptides. The bioluminescence resonance energy transfer (BRET) technology has emerged as a powerful method to study the structure of heteroreceptor complexes closely associated with the study of receptor-receptor interactions in such complexes. In this chapter, we provide an overview of different BRET(2) assays that can be used to study the structure of GPCR-RTK heteroreceptor complexes and their functions. Various experimental designs for optimization of these experiments are also described.

  5. BIOLUMINISCENCE RESONANCE ENERGY TRANSFER (BRET) METHODS TO STUDY G PROTEIN-COUPLED RECEPTOR - RECEPTOR TYROSINE KINASE HETERORECEPTOR COMPLEXES

    PubMed Central

    Borroto-Escuela, Dasiel O.; Flajolet, Marc; Agnati, Luigi F.; Greengard, Paul; Fuxe, Kjell

    2014-01-01

    A large body of evidence indicates that G protein-coupled receptors (GPCRs) and Receptor tyrosine kinases (RTKs) can form heteroreceptor complexes. In these complexes, the signalling from each interacting protomer is modulated to produce an integrated and therefore novel response upon agonist(s) activation. In the GPCR-RTK heteroreceptor complexes, GPCRs can activate RTK in the absence of added growth factor through the use of RTK signalling molecules. This integrative phenomenon is reciprocal, and can place also RTK signalling downstream of GPCR. Formation of either stable or transient complexes by these two important classes of membrane receptors is involved in regulating all aspects of receptor function, from ligand binding to signal transduction, trafficking, desensitization and down regulation among others. Functional phenomena can be modulated with conformation-specific inhibitors that stabilize defined GPCR states to abrogate both GPCR agonist- and growth factor-stimulated cell responses or by means of small interfering heteroreceptor complex interface peptides. The bioluminescence resonance energy transfer (BRET) technology has emerged as a powerful method to study the structure of heteroreceptor complexes closely associated with the study of receptor-receptor interactions in such complexes. In this work we provide an overview of different BRET2 assays that can be used to study the structure of GPCR-RTK heteroreceptor complexes and their functions. Various experimental designs for optimization of these experiments are also described. PMID:24143976

  6. Regulation of the neuronal nicotinic acetylcholine receptor by SRC family tyrosine kinases.

    PubMed

    Wang, Kan; Hackett, John T; Cox, Michael E; Van Hoek, Monique; Lindstrom, Jon M; Parsons, Sarah J

    2004-03-01

    Src family kinases (SFKs) are abundant in chromaffin cells that reside in the adrenal medulla and respond to cholinergic stimulation by secreting catecholamines. Our previous work indicated that SFKs regulate acetylcholine- or nicotine-induced secretion, but the site of modulatory action was unclear. Using whole cell recordings, we found that inhibition of SFK tyrosine kinase activity by PP2 (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo(3,4-d)pyrimidine) treatment or expression of a kinase-defective c-Src reduced the peak amplitude of nicotine-induced currents in chromaffin cells or in human embryonic kidney cells ectopically expressing functional neuronal alpha3beta4alpha5 acetylcholine receptors (AChRs). Conversely, the phosphotyrosine phosphatase inhibitor, sodium vanadate, or expression of mutationally activated c-Src resulted in enhanced current amplitudes. These results suggest that SFKs and putative phosphotyrosine phosphatases regulate the activity of AChRs by opposing actions. This proposed model was supported further by the findings that SFKs physically associate with the receptor and that the AChR is tyrosine-phosphorylated.

  7. The Complex of Ciliary Neurotrophic Factor-Ciliary Neurotrophic Factor Receptor α Up-Regulates Connexin43 and Intercellular Coupling in Astrocytes via the Janus Tyrosine Kinase/Signal Transducer and Activator of Transcription PathwayD⃞

    PubMed Central

    Ozog, Mark A.; Bernier, Suzanne M.; Bates, Dave C.; Chatterjee, Bishwanath; Lo, Cecilia W.; Naus, Christian C.G.

    2004-01-01

    Cytokines regulate numerous cell processes, including connexin expression and gap junctional coupling. In this study, we examined the effect of ciliary neurotrophic factor (CNTF) on connexin43 (Cx43) expression and intercellular coupling in astrocytes. Murine cortical astrocytes matured in vitro were treated with CNTF (20 ng/ml), soluble ciliary neurotrophic factor receptor α (CNTFRα) (200 ng/ml), or CNTF-CNTFRα. Although CNTF and CNTFRα alone had no effect on Cx43 expression, the heterodimer CNTF-CNTFRα significantly increased both Cx43 mRNA and protein levels. Cx43 immunostaining correlated with increased intercellular coupling as determined by dye transfer analysis. By using the pharmacological inhibitor α-cyano-(3,4-dihydroxy)-N-benzylcinnamide (AG490), the increase in Cx43 was found to be dependent on the Janus tyrosine kinase/signal transducer and activator of transcription (JAK/STAT) pathway. Immunocytochemical analysis revealed that CNTF-CNTFRα treatment produced nuclear localization of phosphorylated STAT3, whereas CNTF treatment alone did not. Transient transfection of constructs containing various sequences of the Cx43 promoter tagged to a LacZ reporter into ROS 17/2.8 cells confirmed that the promoter region between -838 to -1693 was deemed necessary for CNTF-CNTFRα to induce heightened expression. CNTF-CNTFRα did not alter Cx30 mRNA levels, suggesting selectivity of CNTF-CNTFRα for connexin signaling. Together in the presence of soluble receptor, CNTF activates the JAK/STAT pathway leading to enhanced Cx43 expression and intercellular coupling. PMID:15342787

  8. Angiotensin II AT2 receptors are functionally coupled to protein tyrosine dephosphorylation in N1E-115 neuroblastoma cells.

    PubMed Central

    Nahmias, C; Cazaubon, S M; Briend-Sutren, M M; Lazard, D; Villageois, P; Strosberg, A D

    1995-01-01

    Murine N1E-115 neuroblastoma cells are shown to express a single class of angiotensin II (Ang II) receptors that display all the pharmacological properties defining the Ang II receptor subtype 2 (AT2): high affinity for 125I-labelled AT2-selective agonist CGP 42112 (Kd 91 +/- 19 pM); expected rank order of potency (CGP 42112 = (Sar1,Ile8)Ang II > or = Ang II > PD 123319 >> DUP 753) for several Ang II analogues; increased binding in the presence of the reducing reagent dithiothreitol (DTT); and insensitivity to analogues of GTP. Molecular cloning of cDNA encoding AT2 receptors from N1E-115 cells reveals nucleotide sequence identity with the AT2 subtype expressed in fetal tissue. Murine AT2 receptors transiently expressed in COS cells display the same pharmacological profile as endogenous Ang II receptors of N1E-115 cells. Taken together, these data reveal the exclusive presence of the AT2 receptor subtype in N1E-115 cells. Incubation of N1E-115 cells with Ang II leads to a marked decrease in the level of tyrosine phosphorylation of several proteins with apparent molecular masses of 80, 97, 120, 150 and 180 kDa respectively. Tyrosine dephosphorylation of the same set of proteins is observed after treatment with the AT2-specific agonist CGP 42112. The response to both effectors is rapid and transient, showing a maximum between 5 and 10 min, and returning to basal levels after 20-30 min. In both cases, tyrosine dephosphorylation can be prevented by co-incubation with an excess of the antagonist Sarile. These data thus establish that AT2 receptor activation leads to protein tyrosine dephosphorylation in N1E-115 cells, and support a possible role for AT2 receptors in the negative regulation of cell proliferation. Images Figure 3 Figure 4 Figure 5 PMID:7532401

  9. Autoregulation by the Juxtamembrane Region of the Human Ephrin Receptor Tyrosine Kinase A3 (EphA3)

    SciTech Connect

    Davis, Tara L.; Walker, John R.; Loppnau, Peter; Butler-Cole, Christine; Allali-Hassani, Abdellah; Dhe-Paganon, Sirano

    2008-07-08

    Ephrin receptors (Eph) affect cell shape and movement, unlike other receptor tyrosine kinases that directly affect proliferative pathways. The kinase domain of EphA3 is activated by ephrin binding and receptor oligomerization. This activation is associated with two tyrosines in the juxtamembrane region; these tyrosines are sites of autophosphorylation and interact with the active site of the kinase to modulate activity. This allosteric event has important implications both in terms of understanding signal transduction pathways mediated by Eph kinases as well as discovering specific therapeutic ligands for receptor kinases. In order to provide further details of the molecular mechanism through which the unphosphorylated juxtamemebrane region blocks catalysis, we studied wild-type and site-specific mutants in detail. High-resolution structures of multiple states of EphA3 kinase with and without the juxtamembrane segment allowed us to map the coupled pathway of residues that connect the juxtamembrane segment, the activation loop, and the catalytic residues of the kinase domain. This highly conserved set of residues likely delineates a molecular recognition pathway for most of the Eph RTKs, helping to characterize the dynamic nature of these physiologically important enzymes.

  10. In vivo and in vitro specificity of protein tyrosine kinases for immunoglobulin G receptor (FcgammaRII) phosphorylation.

    PubMed Central

    Bewarder, N; Weinrich, V; Budde, P; Hartmann, D; Flaswinkel, H; Reth, M; Frey, J

    1996-01-01

    Human B cells express four immunoglobulin G receptors, FcgammaRIIa, FcgammaRIIb1, FcgammaRIIb2, and FcgammaRIIc. Coligation of either FcgammaRII isoform with the B-cell antigen receptor (BCR) results in the abrogation of B-cell activation, but only the FcgammaRIIa/c and FcgammaIIb1 isoforms become phosphorylated. To identify the FcgammaRII-phosphorylating protein tyrosine kinase (PTK), we used the combination of an in vitro and an in vivo approach. In an in vitro assay using recombinant cytoplasmic tails of the different FcgammaRII isoforms as well as tyrosine exchange mutants, we show that each of the BCR-associated PTKs (Lyn, Blk, Fyn, and Syk) shows different phosphorylation patterns with regard to the different FcgammaR isoforms and point mutants. While each PTK phosphorylated FcgammaRIIa/c, FcgammaRIIb1 was phosphorylated by Lyn and Blk whereas FcgammaRIIb2 became phosphorylated only by Blk. Mutants lacking both tyrosine residues of the immune receptor tyrosine-based activation motif (ITAM) of FcgammaRIIa/c were not phosphorylated by Blk and Fyn, while Lyn-mediated phosphorylation was dependent on the presence of the C-terminal tyrosine of the ITAM. Results obtained in assays using an FcgammaR- B-cell line transfected with wild-type or mutated FcgammaRIIa demonstrated that exchange of the C-terminal tyrosine of the ITAM of FcgammaRIIa/c was sufficient to abolish FcgammaRIIa/c phosphorylation in B cells. Additionally, we could show that Lyn and Fyn bind to FcgammaRIIa/c, with the ITAM being necessary for association. Comparison of the phosphorylation pattern of each PTK observed in vitro with the phosphorylation pattern observed in vivo suggests that Lyn is the most likely candidate for FcgammaRIIa/c and FcgammaRIIb1 phosphorylation in vivo. PMID:8756631

  11. T Cell Receptor (TCR)-induced Tyrosine Phosphorylation Dynamics Identifies THEMIS as a New TCR Signalosome Component*

    PubMed Central

    Brockmeyer, Claudia; Paster, Wolfgang; Pepper, David; Tan, Choon P.; Trudgian, David C.; McGowan, Simon; Fu, Guo; Gascoigne, Nicholas R. J.; Acuto, Oreste; Salek, Mogjiborahman

    2011-01-01

    Stimulation of the T cell antigen receptor (TCR) induces formation of a phosphorylation-dependent signaling network via multiprotein complexes, whose compositions and dynamics are incompletely understood. Using stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomics, we investigated the kinetics of signal propagation after TCR-induced protein tyrosine phosphorylation. We confidently assigned 77 proteins (of 758 identified) as a direct or indirect consequence of tyrosine phosphorylation that proceeds in successive “signaling waves” revealing the temporal pace at which tyrosine kinases activate cellular functions. The first wave includes thymocyte-expressed molecule involved in selection (THEMIS), a protein recently implicated in thymocyte development but whose signaling role is unclear. We found that tyrosine phosphorylation of THEMIS depends on the presence of the scaffold proteins Linker for activation of T cells (LAT) and SH2 domain-containing lymphocyte protein of 76 kDa (SLP-76). THEMIS associates with LAT, presumably via the adapter growth factor receptor-bound protein 2 (Grb2) and with phospholipase Cγ1 (PLC-γ1). RNAi-mediated THEMIS knock-down inhibited TCR-induced IL-2 gene expression due to reduced ERK and nuclear factor of activated T cells (NFAT)/activator protein 1 (AP-1) signaling, whereas JNK, p38, or nuclear factor κB (NF-κB) activation were unaffected. Our study reveals the dynamics of TCR-dependent signaling networks and suggests a specific role for THEMIS in early TCR signalosome function. PMID:21189249

  12. Protein Tyrosine Phosphatase PTPRS Is an Inhibitory Receptor on Human and Murine Plasmacytoid Dendritic Cells

    PubMed Central

    Bunin, Anna; Sisirak, Vanja; Ghosh, Hiyaa S.; Grajkowska, Lucja T.; Hou, Z. Esther; Miron, Michelle; Yang, Cliff; Ceribelli, Michele; Uetani, Noriko; Chaperot, Laurence; Plumas, Joel; Hendriks, Wiljan; Tremblay, Michel L.; Haecker, Hans; Staudt, Louis M.; Green, Peter H.; Bhagat, Govind; Reizis, Boris

    2015-01-01

    SUMMARY Plasmacytoid dendritic cells (pDCs) are primary producers of type I interferon (IFN) in response to viruses. The IFN-producing capacity of pDCs is regulated by specific inhibitory receptors, yet none of the known receptors are conserved in evolution. We report that within the human immune system, receptor protein tyrosine phosphatase sigma (PTPRS) is expressed specifically on pDCs. Surface PTPRS was rapidly downregulated after pDC activation, and only PTPRS– pDCs produced IFN-α. Antibody-mediated PTPRS crosslinking inhibited pDC activation, whereas PTPRS knockdown enhanced IFN response in a pDC cell line. Similarly, murine Ptprs and the homologous receptor phosphatase Ptprf were specifically co-expressed in murine pDCs. Haplodeficiency or DC-specific deletion of Ptprs on Ptprf-deficient background were associated with enhanced IFN response of pDCs, leukocyte infiltration in the intestine and mild colitis. Thus, PTPRS represents an evolutionarily conserved pDC-specific inhibitory receptor, and is required to prevent spontaneous IFN production and immune-mediated intestinal inflammation. PMID:26231120

  13. TAM receptor tyrosine kinases: Expression, disease and oncogenesis in the central nervous system

    PubMed Central

    Pierce, Angela M.; Keating, Amy K.

    2014-01-01

    Receptor tyrosine kinases (RTKs) are cell surface proteins that tightly regulate a variety of downstream intra-cellular processes; ligand-receptor interactions result in cascades of signaling events leading to growth, proliferation, differentiation and migration. There are 58 described RTKs, which are further categorized into 20 different RTK families. When dysregulated or overexpressed, these RTKs are implicated in disordered growth, development, and oncogenesis. The TAM family of RTKs, consisting of Tyro3, Axl, and MerTK, is prominently expressed during the development and function of the central nervous system (CNS). Aberrant expression and dysregulated activation of TAM family members has been demonstrated in a variety of CNS-related disorders and diseases, including the most common but least treatable brain cancer in children and adults: glioblastoma multiforme. PMID:24184575

  14. Receptor tyrosine phosphatase PTPRO inhibits trigeminal axon growth and branching by repressing TrkB and Ret signaling

    PubMed Central

    Gatto, Graziana; Dudanova, Irina; Suetterlin, Philipp; Davies, Alun M.; Drescher, Uwe; Bixby, John L.; Klein, Rüdiger

    2013-01-01

    Axonal branches of the trigeminal ganglion (TG) display characteristic growth and arborization patterns during development. Subsets of TG neurons express different receptors for growth factors, but these are unlikely to explain the unique patterns of axonal arborizations. Intrinsic modulators may restrict or enhance cellular responses to specific ligands and thereby contribute to the development of axon growth patterns. Protein tyrosine phosphatase receptor type O (PTPRO) which is required for Eph receptor-dependent retinotectal development in chick and for development of subsets of trunk sensory neurons in mouse, may be such an intrinsic modulator of TG neuron development. PTPRO is expressed mainly in TrkB+ and Ret+ mechanoreceptors within the TG during embryogenesis. In PTPRO mutant mice, subsets of TG neurons grow longer and more elaborate axonal branches. Cultured PTPRO−/− TG neurons display enhanced axonal outgrowth and branching in response to BDNF and GDNF compared to control neurons, indicating that PTPRO negatively controls the activity of BDNF/TrkB and GDNF/Ret signaling. Mouse PTPRO fails to regulate Eph signaling in retinocollicular development and in hindlimb motor axon guidance, suggesting that chick and mouse PTPRO have different substrate specificities. PTPRO has evolved to fine tune growth factor signaling in a cell type specific fashion and to thereby increase the diversity of signaling output of a limited number of receptor tyrosine kinases to control the branch morphology of developing sensory neurons. The regulation of Eph receptor-mediated developmental processes by protein tyrosine phosphatases has diverged between chick and mouse. PMID:23516305

  15. Quantitative analysis of receptor tyrosine kinase-effector coupling at functionally relevant stimulus levels.

    PubMed

    Li, Simin; Bhave, Devayani; Chow, Jennifer M; Riera, Thomas V; Schlee, Sandra; Rauch, Simone; Atanasova, Mariya; Cate, Richard L; Whitty, Adrian

    2015-04-17

    A major goal of current signaling research is to develop a quantitative understanding of how receptor activation is coupled to downstream signaling events and to functional cellular responses. Here, we measure how activation of the RET receptor tyrosine kinase on mouse neuroblastoma cells by the neurotrophin artemin (ART) is quantitatively coupled to key downstream effectors. We show that the efficiency of RET coupling to ERK and Akt depends strongly on ART concentration, and it is highest at the low (∼100 pM) ART levels required for neurite outgrowth. Quantitative discrimination between ERK and Akt pathway signaling similarly is highest at this low ART concentration. Stimulation of the cells with 100 pM ART activated RET at the rate of ∼10 molecules/cell/min, leading at 5-10 min to a transient peak of ∼150 phospho-ERK (pERK) molecules and ∼50 pAkt molecules per pRET, after which time the levels of these two signaling effectors fell by 25-50% while the pRET levels continued to slowly rise. Kinetic experiments showed that signaling effectors in different pathways respond to RET activation with different lag times, such that the balance of signal flux among the different pathways evolves over time. Our results illustrate that measurements using high, super-physiological growth factor levels can be misleading about quantitative features of receptor signaling. We propose a quantitative model describing how receptor-effector coupling efficiency links signal amplification to signal sensitization between receptor and effector, thereby providing insight into design principles underlying how receptors and their associated signaling machinery decode an extracellular signal to trigger a functional cellular outcome.

  16. Novel Anthraquinone-based Derivatives as Potent Inhibitors for Receptor Tyrosine Kinases

    PubMed Central

    Stasevych, M.; Zvarych, V.; Lunin, V.; Halenova, T.; Savchuk, O.; Dudchak, O.; Vovk, M.; Novikov, V.

    2015-01-01

    The influence of new derivatives of 9,10-anthraquinone with benzoylthiourea, thiazole, triazole and amino acid fragments on the activity of membrane-associated tyrosine kinases was investigated. Inhibitors of protein tyrosine kinase activity of the membrane fraction, as promising agents to search for new potential anticancer agents among the studied compounds, were discovered. PMID:26798182

  17. ZINC-INDUCED EGF RECEPTOR SIGNALING REQUIRES SRC-MEDIATED PHOSPHORYLATION OF THE EGF RECEPTOR ON TYROSINE 845 (Y845)

    EPA Science Inventory

    ZINC-INDUCED EGF RECEPTOR SIGNALING REQUIRES Src-MEDIATED PHOSPHORYLATION OF THE EGF RECEPTOR ON TYROSINE 845 (Y845)
    Weidong Wu1, Lee M. Graves2, Gordon N. Gill3 and James M. Samet4 1Center for Environmental Medicine and Lung Biology; 2Department of Pharmacology, University o...

  18. Activation of spleen tyrosine kinase (Syk) at fertilization in Rhinella arenarum eggs.

    PubMed

    Mouguelar, Valeria S; Coux, Gabriela

    2014-01-01

    Recently, we have provided evidence for the involvement of a cytosolic tyrosine-phosphorylatable 70 kDa oocyte protein in Rhinella arenarum (Anura: Bufonidae) fertilization. The aim of the present work was to characterize its phosphorylation, determine the identity of this protein and establish its biological role during the fertilization process. Tyrosine phosphorylation of the 70 kDa protein was not observed in eggs activated with the calcium ionophore A23187. Pretreatment of oocytes with the tyrosine kinase inhibitor genistein effectively blocked the fertilization-dependent phosphorylation of the 70 kDa protein. In order to identify this protein, we examined the presence in amphibian oocytes of non-receptor 70 kDa tyrosine kinase members of the Syk/Zap70 and Tec families by RT-PCR using degenerate primers. We found that R. arenarum oocytes contain the transcripts coding for Syk and Tec kinases. Western blot analysis confirmed the presence of Syk protein in unfertilized oocytes and eggs. Studies using phospho-Syk specific antibodies showed that fertilization rapidly (less than 10 minutes) induces phosphorylation on Syk tyrosine residues (352 and 525/526) that are necessary for the activation of the enzyme. Finally, specific inhibition of Syk with the R406 compound provoked a diminished fertilization score, thereby confirming a functional role of the Syk protein during R. arenarum fertilization. To our knowledge this is the first time that Syk is described as a player in the signaling cascade activated after fertilization.

  19. The TAM family: phosphatidylserine sensing receptor tyrosine kinases gone awry in cancer.

    PubMed

    Graham, Douglas K; DeRyckere, Deborah; Davies, Kurtis D; Earp, H Shelton

    2014-12-01

    The TYRO3, AXL (also known as UFO) and MERTK (TAM) family of receptor tyrosine kinases (RTKs) are aberrantly expressed in multiple haematological and epithelial malignancies. Rather than functioning as oncogenic drivers, their induction in tumour cells predominately promotes survival, chemoresistance and motility. The unique mode of maximal activation of this RTK family requires an extracellular lipid–protein complex. For example, the protein ligand, growth arrest-specific protein 6 (GAS6), binds to phosphatidylserine (PtdSer) that is externalized on apoptotic cell membranes, which activates MERTK on macrophages. This triggers engulfment of apoptotic material and subsequent anti-inflammatory macrophage polarization. In tumours, autocrine and paracrine ligands and apoptotic cells are abundant, which provide a survival signal to the tumour cell and favour an anti-inflammatory, immunosuppressive microenvironment. Thus, TAM kinase inhibition could stimulate antitumour immunity, reduce tumour cell survival, enhance chemosensitivity and diminish metastatic potential. PMID:25568918

  20. Viral Interference with Functions of the Cellular Receptor Tyrosine Phosphatase CD45

    PubMed Central

    Thiel, Nadine; Zischke, Jasmin; Elbasani, Endrit; Kay-Fedorov, Penelope; Messerle, Martin

    2015-01-01

    The receptor tyrosine phosphatase CD45 is expressed on the surface of almost all cells of hematopoietic origin. CD45 functions are central to the development of T cells and determine the threshold at which T and B lymphocytes can become activated. Given this pivotal role of CD45 in the immune system, it is probably not surprising that viruses interfere with the activity of CD45 in lymphocytes to dampen the immune response and that they also utilize this molecule to accomplish their replication cycle. Here we report what is known about the interaction of viral proteins with CD45. Moreover, we debate putative interactions of viruses with CD45 in myeloid cells and the resulting consequences—subjects that remain to be investigated. Finally, we summarize the evidence that pathogens were the driving force for the evolution of CD45. PMID:25807057

  1. The TAM family: phosphatidylserine sensing receptor tyrosine kinases gone awry in cancer.

    PubMed

    Graham, Douglas K; DeRyckere, Deborah; Davies, Kurtis D; Earp, H Shelton

    2014-12-01

    The TYRO3, AXL (also known as UFO) and MERTK (TAM) family of receptor tyrosine kinases (RTKs) are aberrantly expressed in multiple haematological and epithelial malignancies. Rather than functioning as oncogenic drivers, their induction in tumour cells predominately promotes survival, chemoresistance and motility. The unique mode of maximal activation of this RTK family requires an extracellular lipid–protein complex. For example, the protein ligand, growth arrest-specific protein 6 (GAS6), binds to phosphatidylserine (PtdSer) that is externalized on apoptotic cell membranes, which activates MERTK on macrophages. This triggers engulfment of apoptotic material and subsequent anti-inflammatory macrophage polarization. In tumours, autocrine and paracrine ligands and apoptotic cells are abundant, which provide a survival signal to the tumour cell and favour an anti-inflammatory, immunosuppressive microenvironment. Thus, TAM kinase inhibition could stimulate antitumour immunity, reduce tumour cell survival, enhance chemosensitivity and diminish metastatic potential.

  2. Analysis of receptor tyrosine kinases (RTKs) and downstream pathways in chordomas†

    PubMed Central

    Tamborini, Elena; Virdis, Emanuela; Negri, Tiziana; Orsenigo, Marta; Brich, Silvia; Conca, Elena; Gronchi, Alessandro; Stacchiotti, Silvia; Manenti, Giacomo; Casali, Paolo G.; Pierotti, Marco A.; Pilotti, Silvana

    2010-01-01

    We have previously demonstrated that chordomas express activated platelet-derived growth factor receptor (PDGFRB) and that treatment with imatinib, which is capable of switching off the activation of various receptor tyrosine kinases (RTKs) including PDGFRB, benefits a number of patients. The aim of this study was to identify the possible presence of other activated RTKs and their downstream signaling effectors. Cryopreserved material from 22 naïve sporadic chordomas was investigated for the presence of activated RTKs and their cognate ligands and downstream signaling effectors by means of human phospho-RTK antibody arrays, Western blotting, and molecular analysis; immunohistochemistry and fluorescence in situ hybridization were used to analyze the corresponding formalin-fixed and paraffin-embedded samples. We detected activated PDGFRB, FLT3, and colony stimulating factor 1 receptor (CSF1R) of the PDGFR family and highly phosphorylated EGFR, HER2/neu, and (to a lesser extent) HER4 of the EGFR family. The detection of PDGFRB/PDGFB confirmed our previous data. The presence of activated EGFR was paralleled by the finding of high levels of epidermal growth factor (EGF) and transforming growth factor α (TGFα) and PDGFB co-expression and PDGFRB co-immunoprecipitation. Of the downstream effectors, the PI3K/AKT and RAS/MAPK pathways were both activated, thus leading to the phosphorylation of mammalian target of rapamycin (mTOR) and 4E-BP1 among the regulators involved in translational control. Taken together, our results (i) provide a rationale for tailored treatments targeting upstream activated receptors, including the PDGFR and EGFR families; (ii) support the idea that a combination of upstream antagonists and mTOR inhibitors enhances the control of tumor growth; and (iii) indicate that the 4E-BP1/eIF4E pathway is a major regulator of protein synthesis in chordoma. PMID:20164240

  3. Tyrosine aminotransferase activity in the benzene intoxicated rat

    SciTech Connect

    Bong, M.; Michalska, A.; Laskowska-Klita, T.; Szymczyk, T.

    1985-01-01

    The toxic effect of hydrocarbon solvents on hepatic metabolism manifests itself by changes in the enzymatic pattern of blood serum. Changes in the activity of phosphatases as well as leucine aminopeptidase, glutamine aminotransferase, sorbitol dehydrogenase and ..gamma..-glutamyltransferase were observed in rats intoxicated with different fractions of benzene. Therefore it seemed reasonable to investigate the effect of benzene fraction of petroleum on cellular metabolism. The results of the present work concern the activity of tyrosine aminotransferase, the enzyme involved in catabolism of aromatic amino acid which is known to be under both hormonal and stress dependent control. Changes in tyrosine aminotransferase activity effect the level of tyrosine oxidation as well as the metabolic conversion of this amino acid into tyramine, tyroxin, adrenaline and noradrenaline.

  4. Brain-derived neurotrophic factor acutely enhances tyrosine phosphorylation of the AMPA receptor subunit GluR1 via NMDA receptor-dependent mechanisms.

    PubMed

    Wu, Kuo; Len, Guo-Wei; McAuliffe, Geoff; Ma, Chia; Tai, Jessica P; Xu, Fei; Black, Ira B

    2004-11-01

    Brain-derived growth factor (BDNF) acutely regulates synaptic transmission and modulates hippocampal long-term potentiation (LTP) and long-term depression (LTD), cellular models of plasticity associated with learning and memory. Our previous studies revealed that BDNF rapidly increases phosphorylation of NMDA receptor subunits NR1 and NR2B in the postsynaptic density (PSD), potentially linking receptor phosphorylation to synaptic plasticity. To further define molecular mechanisms governing BDNF actions, we examined tyrosine phosphorylation of GluR1, the most well-characterized subunit of AMPA receptors. Initially, we investigated synaptoneurosomes that contain intact pre- and postsynaptic elements. Incubation of synaptoneurosomes with BDNF for 5 min increased tyrosine phosphorylation of GluR1 in a dose-dependent manner, with a maximal, 4-fold enhancement at 10 ng/ml BDNF. NGF had no effects, suggesting the specificity of BDNF actions. Subsequently, we found that BDNF elicited a maximal, 2.5-fold increase in GluR1 phosphorylation in the PSD at 250 ng/ml BDNF within 5 min, suggesting that BDNF enhances the phosphorylation through postsynaptic mechanisms. Activation of trkB receptors was critical as k252-a, an inhibitor of trk receptor tyrosine kinase, blocked the BDNF-activated GluR1 phosphorylation. In addition, AP-5 and MK 801, NMDA receptor antagonists, blocked BDNF enhancement of phosphorylation in synaptoneurosomes or PSDs. Conversely, NMDA, the specific receptor agonist, evoked respective 3.8- and 2-fold increases in phosphorylation in synaptoneurosomes and PSDs within 5 min, mimicking the effects of BDNF. These findings raise the possibility that BDNF modulates GluR1 activity via changes in NMDA receptor function. Moreover, incubation of synaptoneurosomes or PSDs with BDNF and ifenprodil, a specific NR2B antagonist, reproduced the results of AP-5 and MK-801. Finally, coexposure of synaptoneurosomes or PSDs to BDNF and NMDA was not additive, suggesting that

  5. JAK tyrosine kinases promote hierarchical activation of Rho and Rap modules of integrin activation.

    PubMed

    Montresor, Alessio; Bolomini-Vittori, Matteo; Toffali, Lara; Rossi, Barbara; Constantin, Gabriela; Laudanna, Carlo

    2013-12-23

    Lymphocyte recruitment is regulated by signaling modules based on the activity of Rho and Rap small guanosine triphosphatases that control integrin activation by chemokines. We show that Janus kinase (JAK) protein tyrosine kinases control chemokine-induced LFA-1- and VLA-4-mediated adhesion as well as human T lymphocyte homing to secondary lymphoid organs. JAK2 and JAK3 isoforms, but not JAK1, mediate CXCL12-induced LFA-1 triggering to a high affinity state. Signal transduction analysis showed that chemokine-induced activation of the Rho module of LFA-1 affinity triggering is dependent on JAK activity, with VAV1 mediating Rho activation by JAKs in a Gαi-independent manner. Furthermore, activation of Rap1A by chemokines is also dependent on JAK2 and JAK3 activity. Importantly, activation of Rap1A by JAKs is mediated by RhoA and PLD1, thus establishing Rap1A as a downstream effector of the Rho module. Thus, JAK tyrosine kinases control integrin activation and dependent lymphocyte trafficking by bridging chemokine receptors to the concurrent and hierarchical activation of the Rho and Rap modules of integrin activation.

  6. The HER-2/neu receptor tyrosine kinase gene encodes a secreted autoinhibitor

    PubMed Central

    Doherty, Joni K.; Bond, Chris; Jardim, Armando; Adelman, John P.; Clinton, Gail M.

    1999-01-01

    HER-2/neu (erbB-2) encodes an 185-kDa orphan receptor tyrosine kinase that is constitutively active as a dimer and displays potent oncogenic activity when overexpressed. Here we describe a secreted protein of ≈68 kDa, designated herstatin, as the product of an alternative HER-2 transcript that retains intron 8. This alternative transcript specifies 340 residues identical to subdomains I and II from the extracellular domain of p185HER-2 followed by a unique C-terminal sequence of 79 aa encoded by intron 8. The recombinant product of the alternative transcript specifically binds to HER-2-transfected cells with a KD of ≈14 nM and was chemically crosslinked to p185HER-2, whereas the intron encoded sequence alone also binds with high affinity to transfected cells and associates with p185 solubilized from cell extracts. The herstatin mRNA is expressed in normal human fetal kidney and liver, but is at reduced levels relative to p185HER-2 mRNA in carcinoma cells that contain an amplified HER-2 gene. Herstatin appears to be an inhibitor of p185HER-2, because it disrupts dimers, reduces tyrosine phosphorylation of p185, and inhibits the anchorage-independent growth of transformed cells that overexpress HER-2. PMID:10485918

  7. Differential expression of receptor protein tyrosine phosphatases accompanies the reorganisation of the retina upon laser lesion.

    PubMed

    Besser, Manuela; Horvat-Bröcker, Andrea; Eysel, Ulf T; Faissner, Andreas

    2009-09-01

    The regulation of protein phosphorylation plays an essential role in virtually all aspects of eukaryotic development. Beginning with the regulation of the cell cycle to cellular proliferation and differentiation, the delicate balance between the phosphorylating activity of kinases and the dephosphorylation by phosphatases controls the outcome of many signal transduction cascades. The generation of cellular diversity occurs in an environment that is structured by the extracellular matrix (ECM) which forms a surrounding niche for stem and progenitor cells. Cell-cell and cell-matrix interactions elicit specific signaling pathways that control cellular behavior. In pathological situations such as neural degenerating diseases, gene expression patterns and finally the composition of the ECM change dramatically. This leads to changes of cell behavior and finally results in the failure of regeneration and functional restoration in the adult central nervous system. In order to study the roles of tyrosine phosphatases and ECM in this context, we analyzed the effects of laser-induced retinal injury on the regulation of the receptor protein tyrosine phosphatases (RPTP) RPTPBr7, Phogrin and RPTPbeta/zeta. The latter occurs in several isoforms, including the soluble released chondroitin sulfate proteoglycan phosphacan that is expressed in the developing retina. The receptor variants RPTPbeta/zeta(long) and RPTPbeta/zeta(short) may serve as receptors of tenascin-proteins and serve as modulators of cell intrinsic signaling in response to the ECM. Using quantitative real-time RT-PCR analysis, we show here a time-dependent pattern of gene expression of these molecules following laser lesions of the retina.

  8. The ROR2 tyrosine kinase receptor regulates dendritic spine morphogenesis in hippocampal neurons.

    PubMed

    Alfaro, Iván E; Varela-Nallar, Lorena; Varas-Godoy, Manuel; Inestrosa, Nibaldo C

    2015-07-01

    Wnt signaling regulates synaptic development and function and contributes to the fine-tuning of the molecular and morphological differentiation of synapses. We have shown previously that Wnt5a activates non-canonical Wnt signaling to stimulate postsynaptic differentiation in excitatory hippocampal neurons promoting the clustering of the postsynaptic scaffold protein PSD-95 and the development of dendritic spines. At least three different kinds of Wnt receptors have been associated with Wnt5a signaling: seven trans-membrane Frizzled receptors and the tyrosine kinase receptors Ryk and ROR2. We report here that ROR2 is distributed in the dendrites of hippocampal neurons in close proximity to synaptic contacts and it is contained in dendritic spine protrusions. We demonstrate that ROR2 is necessary to maintain dendritic spine number and morphological distribution in cultured hippocampal neurons. ROR2 overexpression increased dendritic spine growth without affecting the density of dendritic spine protrusions in a form dependent on its extracellular Wnt binding cysteine rich domain (CRD) and kinase domain. Overexpression of dominant negative ROR2 lacking the extracellular CRD decreased spine density and the proportion of mushroom like spines, while ROR2 lacking the C-terminal and active kinase domains only affected spine morphology. Our results indicate a crucial role of the ROR2 in the formation and maturation of the postsynaptic dendritic spines in hippocampal neurons.

  9. The ROR2 tyrosine kinase receptor regulates dendritic spine morphogenesis in hippocampal neurons.

    PubMed

    Alfaro, Iván E; Varela-Nallar, Lorena; Varas-Godoy, Manuel; Inestrosa, Nibaldo C

    2015-07-01

    Wnt signaling regulates synaptic development and function and contributes to the fine-tuning of the molecular and morphological differentiation of synapses. We have shown previously that Wnt5a activates non-canonical Wnt signaling to stimulate postsynaptic differentiation in excitatory hippocampal neurons promoting the clustering of the postsynaptic scaffold protein PSD-95 and the development of dendritic spines. At least three different kinds of Wnt receptors have been associated with Wnt5a signaling: seven trans-membrane Frizzled receptors and the tyrosine kinase receptors Ryk and ROR2. We report here that ROR2 is distributed in the dendrites of hippocampal neurons in close proximity to synaptic contacts and it is contained in dendritic spine protrusions. We demonstrate that ROR2 is necessary to maintain dendritic spine number and morphological distribution in cultured hippocampal neurons. ROR2 overexpression increased dendritic spine growth without affecting the density of dendritic spine protrusions in a form dependent on its extracellular Wnt binding cysteine rich domain (CRD) and kinase domain. Overexpression of dominant negative ROR2 lacking the extracellular CRD decreased spine density and the proportion of mushroom like spines, while ROR2 lacking the C-terminal and active kinase domains only affected spine morphology. Our results indicate a crucial role of the ROR2 in the formation and maturation of the postsynaptic dendritic spines in hippocampal neurons. PMID:26003414

  10. Receptor tyrosine kinases: Characterisation, mechanism of action and therapeutic interests for bone cancers.

    PubMed

    Ségaliny, Aude I; Tellez-Gabriel, Marta; Heymann, Marie-Françoise; Heymann, Dominique

    2015-03-01

    Bone cancers are characterised by the development of tumour cells in bone sites, associated with a dysregulation of their environment. In the last two decades, numerous therapeutic strategies have been developed to target the cancer cells or tumour niche. As the crosstalk between these two entities is tightly controlled by the release of polypeptide mediators activating signalling pathways through several receptor tyrosine kinases (RTKs), RTK inhibitors have been designed. These inhibitors have shown exciting clinical impacts, such as imatinib mesylate, which has become a reference treatment for chronic myeloid leukaemia and gastrointestinal tumours. The present review gives an overview of the main molecular and functional characteristics of RTKs, and focuses on the clinical applications that are envisaged and already assessed for the treatment of bone sarcomas and bone metastases. PMID:26579483

  11. Receptor tyrosine kinases: Characterisation, mechanism of action and therapeutic interests for bone cancers

    PubMed Central

    Ségaliny, Aude I.; Tellez-Gabriel, Marta; Heymann, Marie-Françoise; Heymann, Dominique

    2015-01-01

    Bone cancers are characterised by the development of tumour cells in bone sites, associated with a dysregulation of their environment. In the last two decades, numerous therapeutic strategies have been developed to target the cancer cells or tumour niche. As the crosstalk between these two entities is tightly controlled by the release of polypeptide mediators activating signalling pathways through several receptor tyrosine kinases (RTKs), RTK inhibitors have been designed. These inhibitors have shown exciting clinical impacts, such as imatinib mesylate, which has become a reference treatment for chronic myeloid leukaemia and gastrointestinal tumours. The present review gives an overview of the main molecular and functional characteristics of RTKs, and focuses on the clinical applications that are envisaged and already assessed for the treatment of bone sarcomas and bone metastases. PMID:26579483

  12. Receptor Tyrosine Kinase EphA5 Is a Functional Molecular Target in Human Lung Cancer*

    PubMed Central

    Staquicini, Fernanda I.; Qian, Ming D.; Salameh, Ahmad; Dobroff, Andrey S.; Edwards, Julianna K.; Cimino, Daniel F.; Moeller, Benjamin J.; Kelly, Patrick; Nunez, Maria I.; Tang, Ximing; Liu, Diane D.; Lee, J. Jack; Hong, Waun Ki; Ferrara, Fortunato; Bradbury, Andrew R. M.; Lobb, Roy R.; Edelman, Martin J.; Sidman, Richard L.; Wistuba, Ignacio I.; Arap, Wadih; Pasqualini, Renata

    2015-01-01

    Lung cancer is often refractory to radiotherapy, but molecular mechanisms of tumor resistance remain poorly defined. Here we show that the receptor tyrosine kinase EphA5 is specifically overexpressed in lung cancer and is involved in regulating cellular responses to genotoxic insult. In the absence of EphA5, lung cancer cells displayed a defective G1/S cell cycle checkpoint, were unable to resolve DNA damage, and became radiosensitive. Upon irradiation, EphA5 was transported into the nucleus where it interacted with activated ATM (ataxia-telangiectasia mutated) at sites of DNA repair. Finally, we demonstrate that a new monoclonal antibody against human EphA5 sensitized lung cancer cells and human lung cancer xenografts to radiotherapy and significantly prolonged survival, thus suggesting the likelihood of translational applications. PMID:25623065

  13. Receptor tyrosine kinase EphA5 is a functional molecular target in human lung cancer

    SciTech Connect

    Staquicini, Fernanda I.; Qian, Ming D.; Salameh, Ahmad; Dobroff, Andrey S.; Edwards, Julianna K.; Cimino, Daniel F.; Moeller, Benjamin J.; Kelly, Patrick; Nunez, Maria I.; Tang, Ximing; Liu, Diane D.; Lee, J. Jack; Hong, Waun Ki; Ferrara, Fortunato; Bradbury, Andrew R. M.; Lobb, Roy R.; Edelman, Martin J.; Sidman, Richard L.; Wistuba, Ignacio I.; Arap, Wadih; Pasqualini, Renata

    2015-03-20

    Lung cancer is often refractory to radiotherapy, but molecular mechanisms of tumor resistance remain poorly defined. Here we show that the receptor tyrosine kinase EphA5 is specifically overexpressed in lung cancer and is involved in regulating cellular responses to genotoxic insult. In the absence of EphA5, lung cancer cells displayed a defective G1/S cell cycle checkpoint, were unable to resolve DNA damage, and became radiosensitive. Upon irradiation, EphA5 was transported into the nucleus where it interacted with activated ATM (ataxia-telangiectasia mutated) at sites of DNA repair. In conclusion, we demonstrate that a new monoclonal antibody against human EphA5 sensitized lung cancer cells and human lung cancer xenografts to radiotherapy and significantly prolonged survival, thus suggesting the likelihood of translational applications.

  14. Receptor tyrosine kinase EphA5 is a functional molecular target in human lung cancer

    DOE PAGES

    Staquicini, Fernanda I.; Qian, Ming D.; Salameh, Ahmad; Dobroff, Andrey S.; Edwards, Julianna K.; Cimino, Daniel F.; Moeller, Benjamin J.; Kelly, Patrick; Nunez, Maria I.; Tang, Ximing; et al

    2015-03-20

    Lung cancer is often refractory to radiotherapy, but molecular mechanisms of tumor resistance remain poorly defined. Here we show that the receptor tyrosine kinase EphA5 is specifically overexpressed in lung cancer and is involved in regulating cellular responses to genotoxic insult. In the absence of EphA5, lung cancer cells displayed a defective G1/S cell cycle checkpoint, were unable to resolve DNA damage, and became radiosensitive. Upon irradiation, EphA5 was transported into the nucleus where it interacted with activated ATM (ataxia-telangiectasia mutated) at sites of DNA repair. In conclusion, we demonstrate that a new monoclonal antibody against human EphA5 sensitized lungmore » cancer cells and human lung cancer xenografts to radiotherapy and significantly prolonged survival, thus suggesting the likelihood of translational applications.« less

  15. Human RON receptor tyrosine kinase induces complete epithelial-to-mesenchymal transition but causes cellular senescence

    SciTech Connect

    Cote, Marceline; Miller, A. Dusty; Liu, Shan-Lu . E-mail: shan-lu.liu@mcgill.ca

    2007-08-17

    The RON receptor tyrosine kinase is a member of the MET proto-oncogene family and is important for cell proliferation, differentiation, and cancer development. Here, we created a series of Madin-Darby canine kidney (MDCK) epithelial cell clones that express different levels of RON, and have investigated their biological properties. While low levels of RON correlated with little morphological change in MDCK cells, high levels of RON expression constitutively led to morphological scattering or complete and stabilized epithelial-to-mesenchymal transition (EMT). Unexpectedly, MDCK clones expressing higher levels of RON exhibited retarded proliferation and senescence, despite increased motility and invasiveness. RON was constitutively tyrosine-phosphorylated in MDCK cells expressing high levels of RON and undergoing EMT, and the MAPK signaling pathway was activated. This study reveals for the first time that RON alone is sufficient to induce complete and stabilized EMT in MDCK cells, and overexpression of RON does not cause cell transformation but rather induces cell cycle arrest and senescence, leading to impaired cell proliferation.

  16. L-tyrosine administration increases acetylcholinesterase activity in rats.

    PubMed

    Ferreira, Gabriela K; Carvalho-Silva, Milena; Gonçalves, Cinara L; Vieira, Júlia S; Scaini, Giselli; Ghedim, Fernando V; Deroza, Pedro F; Zugno, Alexandra I; Pereira, Talita C B; Oliveira, Giovanna M T; Kist, Luiza W; Bogo, Maurício R; Schuck, Patrícia F; Ferreira, Gustavo C; Streck, Emilio L

    2012-12-01

    Tyrosinemia is a rare genetic disease caused by mutations on genes that codify enzymes responsible for tyrosine metabolism. Considering that tyrosinemics patients usually present symptoms associated with central nervous system alterations that ranges from slight decreases in intelligence to severe mental retardation, we decided to investigate whether acute and chronic administration of L-tyrosine in rats would affect acetylcholinesterase mRNA expression and enzymatic activity during their development. In our acute protocol, Wistar rats (10 and 30 days old) were killed one hour after a single intraperitoneal L-tyrosine injection (500 mg/kg) or saline. Chronic administration consisted of L-tyrosine (500 mg/kg) or saline injections 12 h apart for 24 days in Wistar rats (7 days old) and rats were killed 12 h after last injection. Acetylcholinesterase activity was measured by Ellman's method and acetylcholinesterase expression was carried out by a semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) assay. We observed that acute (10 and 30 days old rats) and chronic L-tyrosine administration increased acetylcholinesterase activity in serum and all tested brain areas (hippocampus, striatum and cerebral cortex) when compared to control group. Moreover, there was a significant decrease in mRNA levels of acetylcholinesterase in hippocampus was observed after acute protocol (10 and 30 days old rats) and in striatum after chronic protocol. In case these alterations also occur in the brain of the patients, our results may explain, at least in part, the neurological sequelae associated with high plasma concentrations of tyrosine seen in patients affected by tyrosinemia type II. PMID:23046746

  17. L-tyrosine administration increases acetylcholinesterase activity in rats.

    PubMed

    Ferreira, Gabriela K; Carvalho-Silva, Milena; Gonçalves, Cinara L; Vieira, Júlia S; Scaini, Giselli; Ghedim, Fernando V; Deroza, Pedro F; Zugno, Alexandra I; Pereira, Talita C B; Oliveira, Giovanna M T; Kist, Luiza W; Bogo, Maurício R; Schuck, Patrícia F; Ferreira, Gustavo C; Streck, Emilio L

    2012-12-01

    Tyrosinemia is a rare genetic disease caused by mutations on genes that codify enzymes responsible for tyrosine metabolism. Considering that tyrosinemics patients usually present symptoms associated with central nervous system alterations that ranges from slight decreases in intelligence to severe mental retardation, we decided to investigate whether acute and chronic administration of L-tyrosine in rats would affect acetylcholinesterase mRNA expression and enzymatic activity during their development. In our acute protocol, Wistar rats (10 and 30 days old) were killed one hour after a single intraperitoneal L-tyrosine injection (500 mg/kg) or saline. Chronic administration consisted of L-tyrosine (500 mg/kg) or saline injections 12 h apart for 24 days in Wistar rats (7 days old) and rats were killed 12 h after last injection. Acetylcholinesterase activity was measured by Ellman's method and acetylcholinesterase expression was carried out by a semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) assay. We observed that acute (10 and 30 days old rats) and chronic L-tyrosine administration increased acetylcholinesterase activity in serum and all tested brain areas (hippocampus, striatum and cerebral cortex) when compared to control group. Moreover, there was a significant decrease in mRNA levels of acetylcholinesterase in hippocampus was observed after acute protocol (10 and 30 days old rats) and in striatum after chronic protocol. In case these alterations also occur in the brain of the patients, our results may explain, at least in part, the neurological sequelae associated with high plasma concentrations of tyrosine seen in patients affected by tyrosinemia type II.

  18. Post-translational acquisition of ligand binding- and tyrosine kinase-domain function by the epidermal growth factor and insulin receptors.

    PubMed

    Lane, M D; Slieker, L J; Olson, T S; Martensen, T M

    1987-01-01

    The epidermal growth factor receptor (EGFR) and insulin receptor undergo slow post-translational modification by which they acquire hormone binding and tyrosine kinase (EGFR) function. The half-time for acquisition of EGF or insulin binding activity is 30-40 min and of tyrosine kinase activity (EGFR), is 10-15 min. Tunicamycin, an inhibitor of N-linked oligosaccharide addition, blocks acquisition of both EGF and insulin binding activity. With EGFR, activation precedes acquisition of resistance to endoglucosaminidase H (t1/2 approximately equal to 75 min), a medial Golgi event. Treatment of active high mannose receptor with endo H generates fully active aglyco-receptor; thus, core oligosaccharide addition is a prerequisite for activation, but not for EGF binding per se. EGFR is activated in and translocated from the endoplasmic reticulum (ER) slowly (t1/2 approximately equal to 75 min). Since translocation rate equals the rate for acquisition of endo H resistance, transit from the ER is rate limiting for EGFR maturation. Tunicamycin inhibits exit from the ER parallel to its effect on acquisition of binding activity. Insulin proreceptor, a 210 kDa high-mannose glycopolypeptide, acquires insulin binding function (t1/2 approximately equal to 45 min) then is proteolytically cleaved (t1/2 approximately equal to 3 hr) into subunits of the mature alpha 2 beta 2 receptor. Modification giving rise to insulin binding activity is due to a conformational change in the binding domain, since human autoimmune antibody recognizes only the active species, while rabbit polyclonal antibody recognizes all forms. Newly-translated EGF proreceptor lacks a functional tyrosine domain capable of autophosphorylation; 30-40 min after translation, while still in the ER, tyrosine kinase activity is acquired. Since the kinase domain is cytoplasmic, the receptor may become phosphorylated on tyrosine before reaching the plasma membrane. PMID:3305909

  19. Tyrosine kinase inhibitors. 12. Synthesis and structure-activity relationships for 6-substituted 4-(phenylamino)pyrimido[5,4-d]pyrimidines designed as inhibitors of the epidermal growth factor receptor.

    PubMed

    Rewcastle, G W; Bridges, A J; Fry, D W; Rubin, J R; Denny, W A

    1997-06-01

    A series of 6-substituted 4-anilinopyrimido[5,4-d]pyrimidines has been prepared and shown to be potent inhibitors of the tyrosine kinase activity of the epidermal growth factor receptor (EGFR). These compounds are structurally related to the pyrido[3,2-d]- and pyrido[3,4-d]-pyrimidines previously shown to be EGFR inhibitors. Their structure-activity relationships (SAR) for inhibition of the isolated enzyme more closely resemble those of the [3,2-d] than the [3,4-d] pyridopyrimidine isomers. This suggests the requirement of an aza atom in the 7- but not the 5-position (i.e., a carbon atom in the 5-position) for the enhanced potency shown by 6-N-methylated derivatives in each series. X-ray crystal structures were determined for the three NHMe derivatives 2, 3, and 5c in the pyrido[9,2-d]-, pyrido[3,4-d]-, and pyrimido[5,4-d]-pyrimidine series, respectively. These show that a carbon rather than a nitrogen atom at the 5-position leads to significant conformational changes in the molecule (a longer C5a-C4 bond and a 30 degrees out-of-plane rotation of the phenyl group), due to the requirement to relieve nonbonding interactions between the C5 and N9 protons. Pyrimido[5,4-d]pyrimidine analogues bearing bulky, weakly basic solubilizing side chains linked to the 6-position through a secondary amine generally retained potency both against the isolated enzyme and for inhibition of autophosphorylation of EGFR in intact A431 cells. This agrees with a recent binding model that suggests this general class of compounds binds to EGFR with the 6-position located in an area of comparative bulk tolerance at the entrance to the ATP-binding pocket. While these solubilized pyrimido[5,4-d]pyrimidine analogues were less potent than the NHMe derivative 5c in the isolated enzyme assay, some were considerably superior to 5c (and among the most potent ever reported) as inhibitors of EGFR autophosphorylation in cellular assays.

  20. Activation of the Syk tyrosine kinase is insufficient for downstream signal transduction in B lymphocytes

    PubMed Central

    Hsueh, Robert C; Hammill, Adrienne M; Lee, Jamie A; Uhr, Jonathan W; Scheuermann, Richard H

    2002-01-01

    Background Immature B lymphocytes and certain B cell lymphomas undergo apoptotic cell death following activation of the B cell antigen receptor (BCR) signal transduction pathway. Several biochemical changes occur in response to BCR engagement, including activation of the Syk tyrosine kinase. Although Syk activation appears to be necessary for some downstream biochemical and cellular responses, the signaling events that precede Syk activation remain ill defined. In addition, the requirements for complete activation of the Syk-dependent signaling step remain to be elucidated. Results A mutant form of Syk carrying a combination of a K395A substitution in the kinase domain and substitutions of three phenylalanines (3F) for the three C-terminal tyrosines was expressed in a murine B cell lymphoma cell line, BCL1.3B3 to interfere with normal Syk regulation as a means to examine the Syk activation step in BCR signaling. Introduction of this kinase-inactive mutant led to the constitutive activation of the endogenous wildtype Syk enzyme in the absence of receptor engagement through a 'dominant-positive' effect. Under these conditions, Syk kinase activation occurred in the absence of phosphorylation on Syk tyrosine residues. Although Syk appears to be required for BCR-induced apoptosis in several systems, no increase in spontaneous cell death was observed in these cells. Surprisingly, although the endogenous Syk kinase was enzymatically active, no enhancement in the phosphorylation of cytoplasmic proteins, including phospholipase Cγ2 (PLCγ2), a direct Syk target, was observed. Conclusion These data indicate that activation of Syk kinase enzymatic activity is insufficient for Syk-dependent signal transduction. This observation suggests that other events are required for efficient signaling. We speculate that localization of the active enzyme to a receptor complex specifically assembled for signal transduction may be the missing event. PMID:12470302

  1. Combined therapeutic potential of nuclear receptors with receptor tyrosine kinase inhibitors in lung cancer

    SciTech Connect

    Wairagu, Peninah M.; Park, Kwang Hwa; Kim, Jihye; Choi, Jong-Whan; Kim, Hyun-Won; Yeh, Byung-Il; Jung, Soon-Hee; Yong, Suk-Joong; Jeong, Yangsik

    2014-05-09

    Highlights: • The 48 NR genes and 48 biological anti-cancer targets are profiled in paired-cells. • Growth inhibition by NR ligands or TKIs is target receptor level-dependent. • T0901317 with gefitinib/PHA665752 shows additive growth inhibition in lung cells. - Abstract: Cancer heterogeneity is a big hurdle in achieving complete cancer treatment, which has led to the emergence of combinational therapy. In this study, we investigated the potential use of nuclear receptor (NR) ligands for combinational therapy with other anti-cancer drugs. We first profiled all 48 NRs and 48 biological anti-cancer targets in four pairs of lung cell lines, where each pair was obtained from the same patient. Two sets of cell lines were normal and the corresponding tumor cell lines while the other two sets consisted of primary versus metastatic tumor cell lines. Analysis of the expression profile revealed 11 NRs and 15 cancer targets from the two pairs of normal versus tumor cell lines, and 9 NRs and 9 cancer targets from the primary versus metastatic tumor cell lines had distinct expression patterns in each category. Finally, the evaluation of nuclear receptor ligand T0901317 for liver X receptor (LXR) demonstrated its combined therapeutic potential with tyrosine kinase inhibitors. The combined treatment of cMET inhibitor PHA665752 or EGFR inhibitor gefitinib with T0901317 showed additive growth inhibition in both H2073 and H1993 cells. Mechanistically, the combined treatment suppressed cell cycle progression by inhibiting cyclinD1 and cyclinB expression. Taken together, this study provides insight into the potential use of NR ligands in combined therapeutics with other biological anti-cancer drugs.

  2. RTK SLAP down: the emerging role of Src-like adaptor protein as a key player in receptor tyrosine kinase signaling.

    PubMed

    Wybenga-Groot, Leanne E; McGlade, C Jane

    2015-02-01

    SLAP (Src like adaptor protein) contains adjacent Src homology 3 (SH3) and Src homology 2 (SH2) domains closely related in sequence to that of cytoplasmic Src family tyrosine kinases. Expressed most abundantly in the immune system, SLAP function has been predominantly studied in the context of lymphocyte signaling, where it functions in the Cbl dependent downregulation of antigen receptor signaling. However, accumulating evidence suggests that SLAP plays a role in the regulation of a broad range of membrane receptors including members of the receptor tyrosine kinase (RTK) family. In this review we highlight the role of SLAP in the ubiquitin dependent regulation of type III RTKs PDGFR, CSF-1R, KIT and Flt3, as well as Eph family RTKs. SLAP appears to bind activated type III and Eph RTKs via a conserved autophosphorylated juxtamembrane tyrosine motif in an SH2-dependent manner, suggesting that SLAP is important in regulating RTK signaling.

  3. Distinct cellular properties of oncogenic KIT receptor tyrosine kinase mutants enable alternative courses of cancer cell inhibition.

    PubMed

    Shi, Xiarong; Sousa, Leiliane P; Mandel-Bausch, Elizabeth M; Tome, Francisco; Reshetnyak, Andrey V; Hadari, Yaron; Schlessinger, Joseph; Lax, Irit

    2016-08-16

    Large genomic sequencing analysis as part of precision medicine efforts revealed numerous activating mutations in receptor tyrosine kinases, including KIT. Unfortunately, a single approach is not effective for inhibiting cancer cells or treating cancers driven by all known oncogenic KIT mutants. Here, we show that each of the six major KIT oncogenic mutants exhibits different enzymatic, cellular, and dynamic properties and responds distinctly to different KIT inhibitors. One class of KIT mutants responded well to anti-KIT antibody treatment alone or in combination with a low dose of tyrosine kinase inhibitors (TKIs). A second class of KIT mutants, including a mutant resistant to imatinib treatment, responded well to a combination of TKI with anti-KIT antibodies or to anti-KIT toxin conjugates, respectively. We conclude that the preferred choice of precision medicine treatments for cancers driven by activated KIT and other RTKs may rely on clear understanding of the dynamic properties of oncogenic mutants. PMID:27482095

  4. Beta 2 integrin-dependent protein tyrosine phosphorylation and activation of the FGR protein tyrosine kinase in human neutrophils

    PubMed Central

    1994-01-01

    Stimulation of adherent human neutrophils (PMN) with tumor necrosis factor (TNF) triggers protein tyrosine phosphorylation (Fuortes, M., W. W. Jin, and C. Nathan. 1993. J. Cell Biol. 120:777-784). We investigated the dependence of this response on beta 2 integrins by using PMN isolated from a leukocyte adhesion deficiency (LAD) patient, which do not express beta 2 integrins, and by plating PMN on surface bound anti-beta 2 (CD18) antibodies. Protein tyrosine phosphorylation increased in PMN plated on fibrinogen and this phosphorylation was enhanced by TNF. Triggering of protein tyrosine phosphorylation did not occur in LAD PMN plated on fibrinogen either in the absence or the presence of TNF. Surface bound anti-CD18, but not isotype-matched anti- Class I major histocompatibility complex (MHC) antigens, antibodies triggered tyrosine phosphorylation in normal, but not in LAD PMN. As the major tyrosine phosphorylated proteins we found in our assay conditions migrated with an apparent molecular mass of 56-60 kD, we investigated whether beta 2 integrins are implicated in activation of members of the src family of intracellular protein-tyrosine kinases. We found that the fgr protein-tyrosine kinase (p58fgr) activity, and its extent of phosphorylation in tyrosine, in PMN adherent to fibrinogen, was enhanced by TNF. Activation of p58fgr in response to TNF was evident within 10 min of treatment and increased with times up to 30 min. Also other activators of beta 2 integrins such as phorbol-12- myristate 13-acetate (PMA), and formyl methionyl-leucyl-phenylalanine (FMLP), induced activation of p58fgr kinase activity. Activation of p58fgr kinase activity, and phosphorylation in tyrosine, did not occur in PMN of a LAD patient in response to TNF. Soluble anti-CD18, but not anti-Class I MHC antigens, antibodies inhibited activation of p58fgr kinase activity in PMN adherent to fibrinogen in response to TNF, PMA, and FMLP. These findings demonstrate that, in PMN, beta 2 integrins

  5. Green tea compounds inhibit tyrosine phosphorylation of PDGF beta-receptor and transformation of A172 human glioblastoma.

    PubMed

    Sachinidis, A; Seul, C; Seewald, S; Ahn, H; Ko, Y; Vetter, H

    2000-04-01

    The effect of the green tea compounds 2-(3,4-dihydroxyphenyl)-3, 4-dihydro-2H-1-benzopyran-3,5,7-triol (catechin), epicathechin (EC), epigallocathechin-3 gallate (EGCG), epicathechin-3 gallate (ECG) and catechin-3 gallate (CG) on the tyrosine phosphorylation of PDGF beta-receptor (PDGF-Rbeta) and on the anchorage-independent growth of A172 glioblastoma cells in semisolid agar has been investigated. Treatment of A172 glioblastoma with 50 microM CG, ECG, EGCG and 25 microM Tyrphostin 1296 resulted in an 82+/-17%, 77+/-21%, 75+/-8% and 55+/-11%, respectively (mean+/-S.D., n=3) inhibition of the PDGF-BB-induced tyrosine phosphorylation of PDGF-Rbeta. The PDGF-Rbeta downstream intracellular transduction pathway including tyrosine phosphorylation of phospholipase C-gamma1 (PLC-gamma1) and phosphatidylinositol 3'-kinase (PI 3'-K) was also inhibited. Spheroid formation was completely inhibited by 50 microM ECG, CG, EGCG and by 25 microM Tyrphostin 1296. We conclude that catechins of the green tea possessing the gallate group in their chemical structure act as anticancer agents probably partly via their ability to suppress the tyrosine kinase activity of the PDGF-Rbeta. PMID:10760511

  6. High-throughput analysis of genome-wide receptor tyrosine kinase expression in human cancers identifies potential novel drug targets.

    PubMed

    Müller-Tidow, Carsten; Schwäble, Joachim; Steffen, Björn; Tidow, Nicola; Brandt, Burkhardt; Becker, Kerstin; Schulze-Bahr, Eric; Halfter, Hartmut; Vogt, Ulf; Metzger, Ralf; Schneider, Paul M; Büchner, Thomas; Brandts, Christian; Berdel, Wolfgang E; Serve, Hubert

    2004-02-15

    Novel high-throughput analyses in molecular biology allow sensitive and rapid identification of disease-related genes and drug targets. We have used quantitative real-time reverse transcription-PCR reactions (n = 23000) to analyze expression of all human receptor tyrosine kinases (n = 56) in malignant tumors (n = 313) of different origins and normal control samples (n = 58). The different tumor types expressed very different numbers of receptor tyrosine kinases: whereas brain tumors and testicular cancer expressed 50 receptor tyrosine kinases, acute myeloid leukemia (AML) samples expressed only 20 different ones. Specimens of similar tumor origin exhibited characteristic receptor tyrosine kinase expression patterns and were grouped together in hierarchical cluster analyses. When we focused on specific tumor entities, receptor tyrosine kinases were identified that were disease and/or stage specific. Leukemic blasts from AML bone marrow samples differed significantly in receptor tyrosine kinase expression compared with normal bone marrow and purified CD34+ cells. Among the differentially expressed receptor tyrosine kinases, we found FLT3, c-kit, CSF1 receptor, EPHB6, leukocyte tyrosine kinase, and ptk7 to be highly overexpressed in AML samples. Whereas expression changes of some of these were associated with altered differentiation patterns (e.g., CSF1 receptor), others, such as FLT3, were genuinely overexpressed in leukemic blasts. These data and the associated database (http://medweb.uni-muenster.de/institute/meda/research/) provide a comprehensive view of receptor tyrosine kinase expression in human cancer. This information can assist in the definition of novel drug targets.

  7. rse, a novel receptor-type tyrosine kinase with homology to Axl/Ufo, is expressed at high levels in the brain.

    PubMed

    Mark, M R; Scadden, D T; Wang, Z; Gu, Q; Goddard, A; Godowski, P J

    1994-04-01

    We have isolated cDNA clones that encode the human and murine forms of a novel receptor-type tyrosine kinase termed Rse. Sequence analysis indicates that human Rse contains 890 amino acids, with an extracellular region composed of two immunoglobulin-like domains followed by two fibronectin type III domains. Murine Rse contains 880 amino acids and shares 90% amino acid identity with its human counterpart. Rse is structurally similar to the receptor-type tyrosine kinase Axl/Ufo, and the two proteins have 35 and 63% sequence identity in their extracellular and intracellular domains, respectively. To study the synthesis and activation of this putative receptor-type tyrosine kinase, we constructed a version of Rse (termed gD-Rse, where gD represents glycoprotein D) that contains an NH2-terminal epitope tag. NIH3T3 cells were engineered to express gD-Rse, which could be detected at the cell surface by fluorescence-activated cell sorting. Moreover, gD-Rse was rapidly phosphorylated on tyrosine residues upon incubation of the cells with an antibody directed against the epitope tag, suggesting that rse encodes an active tyrosine kinase. In the human tissues we examined, the highest level of expression of rse mRNA was observed in the brain; rse mRNA was also detected in the premegakaryocytopoietic cell lines CMK11-5 and Dami. The gene for rse was localized to human chromosome 15.

  8. Aberrant Mer receptor tyrosine kinase expression contributes to leukemogenesis in acute myeloid leukemia.

    PubMed

    Lee-Sherick, A B; Eisenman, K M; Sather, S; McGranahan, A; Armistead, P M; McGary, C S; Hunsucker, S A; Schlegel, J; Martinson, H; Cannon, C; Keating, A K; Earp, H S; Liang, X; DeRyckere, D; Graham, D K

    2013-11-14

    Acute myeloid leukemia (AML) continues to be extremely difficult to treat successfully, and the unacceptably low overall survival rates mandate that we assess new potential therapies to ameliorate poor clinical response to conventional therapy. Abnormal tyrosine kinase activation in AML has been associated with poor prognosis and provides strategic targets for novel therapy development. We found that Mer receptor tyrosine kinase was over-expressed in a majority of pediatric (29/36, 80%) and adult (10/10, 100%) primary AML patient blasts at the time of diagnosis, and 100% of patient samples at the time of relapse. Mer was also found to be expressed in 12 of 14 AML cell lines (86%). In contrast, normal bone marrow myeloid precursors expressed little to no Mer. Following AML cell line stimulation with Gas6, a Mer ligand, we observed activation of prosurvival and proliferative signaling pathways, including phosphorylation of ERK1/2, p38, MSK1, CREB, ATF1, AKT and STAT6. To assess the phenotypic role of Mer in AML, two independent short-hairpin RNA (shRNA) constructs were used to decrease Mer expression in the AML cell lines Nomo-1 and Kasumi-1. Reduction of Mer protein levels significantly increased rates of myeloblast apoptosis two to threefold in response to serum starvation. Furthermore, myeloblasts with knocked-down Mer demonstrated decreased colony formation by 67-87%, relative to control cell lines (P<0.01). NOD-SCID-gamma mice transplanted with Nomo-1 myeloblasts with reduced levels of Mer had a significant prolongation in survival compared with mice transplanted with the parental or control cell lines (median survival 17 days in parental and control cell lines, versus 32-36 days in Mer knockdown cell lines, P<0.0001). These data suggest a role for Mer in acute myeloid leukemogenesis and indicate that targeted inhibition of Mer may be an effective therapeutic strategy in pediatric and adult AML. PMID:23474756

  9. Aberrant Mer receptor tyrosine kinase expression contributes to leukemogenesis in acute myeloid leukemia

    PubMed Central

    Lee-Sherick, A B; Eisenman, K M; Sather, S; McGranahan, A; Armistead, P M; McGary, C S; Hunsucker, S A; Schlegel, J; Martinson, H; Cannon, C; Keating, A K; Earp, H S; Liang, X; DeRyckere, D; Graham, D K

    2013-01-01

    Acute myeloid leukemia (AML) continues to be extremely difficult to treat successfully, and the unacceptably low overall survival rates mandate that we assess new potential therapies to ameliorate poor clinical response to conventional therapy. Abnormal tyrosine kinase activation in AML has been associated with poor prognosis and provides strategic targets for novel therapy development. We found that Mer receptor tyrosine kinase was over-expressed in a majority of pediatric (29/36, 80%) and adult (10/10, 100%) primary AML patient blasts at the time of diagnosis, and 100% of patient samples at the time of relapse. Mer was also found to be expressed in 12 of 14 AML cell lines (86%). In contrast, normal bone marrow myeloid precursors expressed little to no Mer. Following AML cell line stimulation with Gas6, a Mer ligand, we observed activation of prosurvival and proliferative signaling pathways, including phosphorylation of ERK1/2, p38, MSK1, CREB, ATF1, AKT and STAT6. To assess the phenotypic role of Mer in AML, two independent short-hairpin RNA (shRNA) constructs were used to decrease Mer expression in the AML cell lines Nomo-1 and Kasumi-1. Reduction of Mer protein levels significantly increased rates of myeloblast apoptosis two to threefold in response to serum starvation. Furthermore, myeloblasts with knocked-down Mer demonstrated decreased colony formation by 67–87%, relative to control cell lines (P<0.01). NOD-SCID-gamma mice transplanted with Nomo-1 myeloblasts with reduced levels of Mer had a significant prolongation in survival compared with mice transplanted with the parental or control cell lines (median survival 17 days in parental and control cell lines, versus 32–36 days in Mer knockdown cell lines, P<0.0001). These data suggest a role for Mer in acute myeloid leukemogenesis and indicate that targeted inhibition of Mer may be an effective therapeutic strategy in pediatric and adult AML. PMID:23474756

  10. Characterization of a Mn sup 2+ -dependent membrane serine kinase that is activated by tyrosine phosphorylation

    SciTech Connect

    Singh, T.J. )

    1991-03-11

    It is hypothesized that the insulin receptor (IR) tyrosine kinase may directly phosphorylate and activate one or more serine kinases. The identities of such serine kinases as well as their modes of activation are unclear. The authors have described a serine kinase from rat liver membranes that copurifies with the IR on wheat germ agglutinin (WGA)-sepharose. The kinase is activated after phosphorylation of the WGA-sepharose-purified fraction by casein kinase-1, casein kinase-2, or casein kinase-3. A tyrosine kinase, possibly IR tyrosine kinase, also participates in the activation process since a phosphotyrosine phosphatase inhibitor such as vanadate, p-nitrophenyl phosphate, or phosphotyrosine is required in reaction mixtures for activation to be observed. By contrast, phosphoserine and phosphothreonine do not support activation. The activated kinase can use IR {beta}-subunit, myelin basic protein (MBP), and histones as substrates. IR {beta}-subunit phosphorylation was stimulated by MBP, histones, and polylysine, and inhibited by heparin and poly(glu, tyr). The kinase prefers Mn{sup 2+} over Mg{sup 2+} as a metal cofactor.

  11. Receptor tyrosine kinase expression of circulating tumor cells in small cell lung cancer

    PubMed Central

    Hamilton, Gerhard; Rath, Barbara; Klameth, Lukas; Hochmair, Maximilian

    2015-01-01

    Small cell lung cancer (SCLC) has a poor prognosis and is found disseminated at first presentation in the majority of cases. The cell biological mechanisms underlying metastasis and drug resistance are not clear. SCLC is characterized by high numbers of circulating tumor cells (CTCs) and we were able to expand several CTC lines ex vivo and to relate chitinase-3-like-1/YKL-40 (CHI3L1) as marker. Availability of expanded SCLC CTC cells allowed for a screening of receptor tyrosine kinases (RTKs) expressed. The metastatic CHI3L1-negative SCLC cell line SCLC26A, established from a pleural effusion was used for comparison. The CTC cell line BHGc10 was found to exhibit increased expression of RYK, AXL, Tie-1, Dtk, ROR1/2, several ephrins (Eph) and FGF/EGF receptors compared to SCLC26A. All of these RTKs have been associated with cell motility, invasion and poor prognosis in diverse cancer entities without knowledge of their association with CTCs. The identification of RYK, AXL and ROR1/2 as pseudokinases, lacking activity, seems to be related to the observed failure of RTK inhibitors in SCLC. These kinases are involved in the noncanonical WNT pathway and their expression in SCLC CTCs represents a cancer stem cell-like phenotype. PMID:26328272

  12. Mer receptor tyrosine kinase mediates both tethering and phagocytosis of apoptotic cells

    PubMed Central

    Dransfield, I; Zagórska, A; Lew, E D; Michail, K; Lemke, G

    2015-01-01

    Billions of inflammatory leukocytes die and are phagocytically cleared each day. This regular renewal facilitates the normal termination of inflammatory responses, suppressing pro-inflammatory mediators and inducing their anti-inflammatory counterparts. Here we investigate the role of the receptor tyrosine kinase (RTK) Mer and its ligands Protein S and Gas6 in the initial recognition and capture of apoptotic cells (ACs) by macrophages. We demonstrate extremely rapid binding kinetics of both ligands to phosphatidylserine (PtdSer)-displaying ACs, and show that ACs can be co-opsonized with multiple PtdSer opsonins. We further show that macrophage phagocytosis of ACs opsonized with Mer ligands can occur independently of a requirement for αV integrins. Finally, we demonstrate a novel role for Mer in the tethering of ACs to the macrophage surface, and show that Mer-mediated tethering and subsequent AC engulfment can be distinguished by their requirement for Mer kinase activity. Our results identify Mer as a receptor uniquely capable of both tethering ACs to the macrophage surface and driving their subsequent internalization. PMID:25695599

  13. 8-THP-DHI analogs as potent Type I dual TIE-2/VEGF-R2 receptor tyrosine kinase inhibitors.

    PubMed

    Hudkins, Robert L; Zulli, Allison L; Underiner, Ted L; Angeles, Thelma S; Aimone, Lisa D; Meyer, Sheryl L; Pauletti, Daniel; Chang, Hong; Fedorov, Elena V; Almo, Steven C; Fedorov, Alexander A; Ruggeri, Bruce A

    2010-06-01

    A novel series of 8-(2-tetrahydropyranyl)-12,13-dihydroindazolo[5,4-a]pyrrolo[3,4-c]carbazoles (THP-DHI) was synthesized and evaluated as dual TIE-2 and VEGF-R2 receptor tyrosine kinase inhibitors. Development of the structure-activity relationships (SAR) with the support of X-ray crystallography led to identification of 7f and 7g as potent, selective dual TIE-2/VEGF-R2 inhibitors with excellent cellular potency and acceptable pharmacokinetic properties. Compounds 7f and 7g were orally active in tumor models with no observed toxicity.

  14. Targeting Receptor Tyrosine Kinases for Chemoprevention by Green Tea Catechin, EGCG

    PubMed Central

    Shimizu, Masahito; Shirakami, Yohei; Moriwaki, Hisataka

    2008-01-01

    Tea is one of the most popular beverages consumed worldwide. Epidemiologic studies show an inverse relationship between consumption of tea, especially green tea, and development of cancers. Numerous in vivo and in vitro studies indicate strong chemopreventive effects for green tea and its constituents against cancers of various organs. (–)-Epigallocatechin-3-gallate (EGCG), the major catechin in green tea, appears to be the most biologically active constituent in tea with respect to inhibiting cell proliferation and inducing apoptosis in cancer cells. Recent studies indicate that the receptor tyrosine kinases (RTKs) are one of the critical targets of EGCG to inhibit cancer cell growth. EGCG inhibits the activation of EGFR (erbB1), HER2 (neu/erbB2) and also HER3 (neu/erbB3), which belong to subclass I of the RTK superfamily, in various types of human cancer cells. The activation of IGF-1 and VEGF receptors, the other members of RTK family, is also inhibited by EGCG. In addition, EGCG alters membrane lipid organization and thus inhibits the dimerization and activation of EGFR. Therefore, EGCG inhibits the Ras/MAPK and PI3K/Akt signaling pathways, which are RTK-related cell signaling pathways, as well as the activation of AP-1 and NF-κB, thereby modulating the expression of target genes which are associated with induction of apoptosis and cell cycle arrest in cancer cells. These findings are significant because abnormalities in the expression and function of RTKs and their downstream effectors play a critical role in the development of several types of human malignancies. In this paper we review evidence indicating that EGCG exerts anticancer effects, at least in part, through inhibition of activation of the specific RTKs and conclude that targeting RTKs and related signaling pathway by tea catechins might be a promising strategy for the prevention of human cancers. PMID:19325845

  15. Inhibition of the Fc receptor-mediated oxidative burst in macrophages by the Yersinia pseudotuberculosis tyrosine phosphatase.

    PubMed Central

    Bliska, J B; Black, D S

    1995-01-01

    Suppression of host-cell-mediated immunity is a hallmark feature of Yersinia pseudotuberculosis infection. To better understand this process, the interaction of Y. pseudotuberculosis with macrophages and the effect of the virulence plasmid-encoded Yersinia tyrosine phosphatase (YopH) on the oxidative burst was analyzed in a chemiluminescence assay. An oxidative burst was generated upon infection of macrophages with a plasmid-cured strain of Y. pseudotuberculosis opsonized with immunoglobulin G antibody. Infection with plasmid-containing Y. pseudotuberculosis inhibited the oxidative burst triggered by secondary infection with opsonized bacteria. The tyrosine phosphatase activity of YopH was necessary for this inhibition. These results indicate that YopH inhibits Fc receptor-mediated signal transduction in macrophages in a global fashion. In addition, bacterial protein synthesis was not required for macrophage inhibition, suggesting that YopH export and translocation are controlled at the posttranslational level. PMID:7822039

  16. The Molecular Crosstalk between the MET Receptor Tyrosine Kinase and the DNA Damage Response — Biological and Clinical Aspects

    PubMed Central

    Medová, Michaela; Aebersold, Daniel M.; Zimmer, Yitzhak

    2013-01-01

    Radiation therapy remains an imperative treatment modality for numerous malignancies. Enduring significant technical achievements both on the levels of treatment planning and radiation delivery have led to improvements in local control of tumor growth and reduction in healthy tissue toxicity. Nevertheless, resistance mechanisms, which presumably also involve activation of DNA damage response signaling pathways that eventually may account for loco-regional relapse and consequent tumor progression, still remain a critical problem. Accumulating data suggest that signaling via growth factor receptor tyrosine kinases, which are aberrantly expressed in many tumors, may interfere with the cytotoxic impact of ionizing radiation via the direct activation of the DNA damage response, leading eventually to so-called tumor radioresistance. The aim of this review is to overview the current known data that support a molecular crosstalk between the hepatocyte growth factor receptor tyrosine kinase MET and the DNA damage response. Apart of extending well established concepts over MET biology beyond its function as a growth factor receptor, these observations directly relate to the role of its aberrant activity in resistance to DNA damaging agents, such as ionizing radiation, which are routinely used in cancer therapy and advocate tumor sensitization towards DNA damaging agents in combination with MET targeting. PMID:24378750

  17. Tyrosine-based signal mediates LRP6 receptor endocytosis and desensitization of Wnt/β-catenin pathway signaling.

    PubMed

    Liu, Chia-Chen; Kanekiyo, Takahisa; Roth, Barbara; Bu, Guojun

    2014-10-01

    Wnt/β-catenin signaling orchestrates a number of critical events including cell growth, differentiation, and cell survival during development. Misregulation of this pathway leads to various human diseases, specifically cancers. Endocytosis and phosphorylation of the LDL receptor-related protein 6 (LRP6), an essential co-receptor for Wnt/β-catenin signaling, play a vital role in mediating Wnt/β-catenin signal transduction. However, its regulatory mechanism is not fully understood. In this study, we define the mechanisms by which LRP6 endocytic trafficking regulates Wnt/β-catenin signaling activation. We show that LRP6 mutant with defective tyrosine-based signal in its cytoplasmic tail has an increased cell surface distribution and decreased endocytosis rate. These changes in LRP6 endocytosis coincide with an increased distribution to caveolae, increased phosphorylation, and enhanced Wnt/β-catenin signaling. We further demonstrate that treatment of Wnt3a ligands or blocking the clathrin-mediated endocytosis of LRP6 leads to a redistribution of wild-type receptor to lipid rafts. The LRP6 tyrosine mutant also exhibited an increase in signaling activation in response to Wnt3a stimulation when compared with wild-type LRP6, and this activation is suppressed when caveolae-mediated endocytosis is blocked. Our results reveal molecular mechanisms by which LRP6 endocytosis routes regulate its phosphorylation and the strength of Wnt/β-catenin signaling, and have implications on how this pathway can be modulated in human diseases.

  18. The receptor tyrosine kinase Pvr promotes tissue closure by coordinating corpse removal and epidermal zippering

    PubMed Central

    Garlena, Rebecca A.; Lennox, Ashley L.; Baker, Lewis R.; Parsons, Trish E.; Weinberg, Seth M.; Stronach, Beth E.

    2015-01-01

    A leading cause of human birth defects is the incomplete fusion of tissues, often manifested in the palate, heart or neural tube. To investigate the molecular control of tissue fusion, embryonic dorsal closure and pupal thorax closure in Drosophila are useful experimental models. We find that Pvr mutants have defects in dorsal midline closure with incomplete amnioserosa internalization and epidermal zippering, as well as cardia bifida. These defects are relatively mild in comparison to those seen with other signaling mutants, such as in the JNK pathway, and we demonstrate that JNK signaling is not perturbed by altering Pvr receptor tyrosine kinase activity. Rather, modulation of Pvr levels in the ectoderm has an impact on PIP3 membrane accumulation, consistent with a link to PI3K signal transduction. Polarized PI3K activity influences protrusive activity from the epidermal leading edge and the protrusion area changes in accord with Pvr signaling intensity, providing a possible mechanism to explain Pvr mutant phenotypes. Tissue-specific rescue experiments indicate a partial requirement in epithelial tissue, but confirm the essential role of Pvr in hemocytes for embryonic survival. Taken together, we argue that inefficient removal of the internalizing amnioserosa tissue by mutant hemocytes coupled with impaired midline zippering of mutant epithelium creates a situation in some embryos whereby dorsal midline closure is incomplete. Based on these observations, we suggest that efferocytosis (corpse clearance) could contribute to proper tissue closure and thus might underlie some congenital birth defects. PMID:26293306

  19. Structural insights into the inhibited states of the Mer receptor tyrosine kinase

    PubMed Central

    Huang, Xudong; Finerty, Patrick; Walker, John R.; Butler-Cole, Christine; Vedadi, Masoud; Schapira, Matthieu; Parker, Sirlester A.; Turk, Benjamin E.; Thompson, Debra A.; Dhe-Paganon, Sirano

    2009-01-01

    The mammalian ortholog of the retroviral oncogene v-Eyk, and a receptor tyrosine kinase upstream of antiapoptotic and transforming signals, Mer (MerTK) is a mediator of the phagocytic process, being involved in retinal and immune cell clearance and platelet aggregation. Mer knockout mice are viable and are protected from epinephrine-induced pulmonary thromboembolism and ferric chloride-induced thrombosis. Mer overexpression, on the other hand, is associated with numerous carcinomas. Although Mer adaptor proteins and signaling pathways have been identified, it remains unclear how Mer initiates phagocytosis. When bound to its nucleotide cofactor, the high-resolution structure of Mer shows an autoinhibited αC-Glu-out conformation with insertion of an activation loop residue into the active site. Mer complexed with compound-52 (C52: 2-(2-hydroxyethylamino)-6-(3-chloroanilino)-9-isopropylpurine), a ligand identified from a focused library, retains its DFG-Asp-in and αC-Glu-out conformation, but acquires other conformational changes. The αC helix and DFGL region is closer to the hinge region and the ethanolamine moiety of C52 binds in the groove formed between Leu593 and Val601 of the P-loop, causing a compression of the active site pocket. These conformational states reveal the mechanisms of autoinhibition, the pathophysiological basis of disease-causing mutations, and a platform for the development of chemical probes. PMID:19028587

  20. The receptor tyrosine kinase Pvr promotes tissue closure by coordinating corpse removal and epidermal zippering.

    PubMed

    Garlena, Rebecca A; Lennox, Ashley L; Baker, Lewis R; Parsons, Trish E; Weinberg, Seth M; Stronach, Beth E

    2015-10-01

    A leading cause of human birth defects is the incomplete fusion of tissues, often manifested in the palate, heart or neural tube. To investigate the molecular control of tissue fusion, embryonic dorsal closure and pupal thorax closure in Drosophila are useful experimental models. We find that Pvr mutants have defects in dorsal midline closure with incomplete amnioserosa internalization and epidermal zippering, as well as cardia bifida. These defects are relatively mild in comparison to those seen with other signaling mutants, such as in the JNK pathway, and we demonstrate that JNK signaling is not perturbed by altering Pvr receptor tyrosine kinase activity. Rather, modulation of Pvr levels in the ectoderm has an impact on PIP3 membrane accumulation, consistent with a link to PI3K signal transduction. Polarized PI3K activity influences protrusive activity from the epidermal leading edge and the protrusion area changes in accord with Pvr signaling intensity, providing a possible mechanism to explain Pvr mutant phenotypes. Tissue-specific rescue experiments indicate a partial requirement in epithelial tissue, but confirm the essential role of Pvr in hemocytes for embryonic survival. Taken together, we argue that inefficient removal of the internalizing amnioserosa tissue by mutant hemocytes coupled with impaired midline zippering of mutant epithelium creates a situation in some embryos whereby dorsal midline closure is incomplete. Based on these observations, we suggest that efferocytosis (corpse clearance) could contribute to proper tissue closure and thus might underlie some congenital birth defects. PMID:26293306

  1. Src inhibits midline axon crossing independent of Frazzled/Deleted in Colorectal Carcinoma (DCC) receptor tyrosine phosphorylation.

    PubMed

    O'Donnell, Michael P; Bashaw, Greg J

    2013-01-01

    The phylogenetically conserved Netrin family of chemoattractants signal outgrowth and attractive turning of commissural axons through the Deleted in Colorectal Carcinoma (DCC) family of receptors. Src family kinases are thought to be major signaling effectors of Netrin/DCC. In vertebrates, Src and the closely related Fyn kinases phosphorylate DCC and form a receptor-bound signaling complex leading to activation of downstream effectors. Here we show that, in the Drosophila embryonic CNS, Src kinases are dispensable for midline attraction of commissural axons. Consistent with this observation, tyrosine phosphorylation of the Netrin receptor DCC or its Drosophila ortholog, Frazzled, is not necessary for attraction to Netrin. Moreover, we uncover an unexpected function of Src kinases: inhibition of midline axon crossing through a novel mechanism. We propose that distinct signaling outputs must exist for midline axon crossing independent of Src kinases in commissural neurons.

  2. The rice immune receptor XA21 recognizes a tyrosine-sulfated protein from a Gram-negative bacterium.

    PubMed

    Pruitt, Rory N; Schwessinger, Benjamin; Joe, Anna; Thomas, Nicholas; Liu, Furong; Albert, Markus; Robinson, Michelle R; Chan, Leanne Jade G; Luu, Dee Dee; Chen, Huamin; Bahar, Ofir; Daudi, Arsalan; De Vleesschauwer, David; Caddell, Daniel; Zhang, Weiguo; Zhao, Xiuxiang; Li, Xiang; Heazlewood, Joshua L; Ruan, Deling; Majumder, Dipali; Chern, Mawsheng; Kalbacher, Hubert; Midha, Samriti; Patil, Prabhu B; Sonti, Ramesh V; Petzold, Christopher J; Liu, Chang C; Brodbelt, Jennifer S; Felix, Georg; Ronald, Pamela C

    2015-07-01

    Surveillance of the extracellular environment by immune receptors is of central importance to eukaryotic survival. The rice receptor kinase XA21, which confers robust resistance to most strains of the Gram-negative bacterium Xanthomonas oryzae pv. oryzae (Xoo), is representative of a large class of cell surface immune receptors in plants and animals. We report the identification of a previously undescribed Xoo protein, called RaxX, which is required for activation of XA21-mediated immunity. Xoo strains that lack RaxX, or carry mutations in the single RaxX tyrosine residue (Y41), are able to evade XA21-mediated immunity. Y41 of RaxX is sulfated by the prokaryotic tyrosine sulfotransferase RaxST. Sulfated, but not nonsulfated, RaxX triggers hallmarks of the plant immune response in an XA21-dependent manner. A sulfated, 21-amino acid synthetic RaxX peptide (RaxX21-sY) is sufficient for this activity. Xoo field isolates that overcome XA21-mediated immunity encode an alternate raxX allele, suggesting that coevolutionary interactions between host and pathogen contribute to RaxX diversification. RaxX is highly conserved in many plant pathogenic Xanthomonas species. The new insights gained from the discovery and characterization of the sulfated protein, RaxX, can be applied to the development of resistant crop varieties and therapeutic reagents that have the potential to block microbial infection of both plants and animals.

  3. The rice immune receptor XA21 recognizes a tyrosine-sulfated protein from a Gram-negative bacterium

    PubMed Central

    Pruitt, Rory N.; Schwessinger, Benjamin; Joe, Anna; Thomas, Nicholas; Liu, Furong; Albert, Markus; Robinson, Michelle R.; Chan, Leanne Jade G.; Luu, Dee Dee; Chen, Huamin; Bahar, Ofir; Daudi, Arsalan; De Vleesschauwer, David; Caddell, Daniel; Zhang, Weiguo; Zhao, Xiuxiang; Li, Xiang; Heazlewood, Joshua L.; Ruan, Deling; Majumder, Dipali; Chern, Mawsheng; Kalbacher, Hubert; Midha, Samriti; Patil, Prabhu B.; Sonti, Ramesh V.; Petzold, Christopher J.; Liu, Chang C.; Brodbelt, Jennifer S.; Felix, Georg; Ronald, Pamela C.

    2015-01-01

    Surveillance of the extracellular environment by immune receptors is of central importance to eukaryotic survival. The rice receptor kinase XA21, which confers robust resistance to most strains of the Gram-negative bacterium Xanthomonas oryzae pv. oryzae (Xoo), is representative of a large class of cell surface immune receptors in plants and animals. We report the identification of a previously undescribed Xoo protein, called RaxX, which is required for activation of XA21-mediated immunity. Xoo strains that lack RaxX, or carry mutations in the single RaxX tyrosine residue (Y41), are able to evade XA21-mediated immunity. Y41 of RaxX is sulfated by the prokaryotic tyrosine sulfotransferase RaxST. Sulfated, but not nonsulfated, RaxX triggers hallmarks of the plant immune response in an XA21-dependent manner. A sulfated, 21–amino acid synthetic RaxX peptide (RaxX21-sY) is sufficient for this activity. Xoo field isolates that overcome XA21-mediated immunity encode an alternate raxX allele, suggesting that coevolutionary interactions between host and pathogen contribute to RaxX diversification. RaxX is highly conserved in many plant pathogenic Xanthomonas species. The new insights gained from the discovery and characterization of the sulfated protein, RaxX, can be applied to the development of resistant crop varieties and therapeutic reagents that have the potential to block microbial infection of both plants and animals. PMID:26601222

  4. Targeting kinases with anilinopyrimidines: discovery of N-phenyl-N’-[4-(pyrimidin-4-ylamino)phenyl]urea derivatives as selective inhibitors of class III receptor tyrosine kinase subfamily

    PubMed Central

    Gandin, Valentina; Ferrarese, Alessandro; Dalla Via, Martina; Marzano, Cristina; Chilin, Adriana; Marzaro, Giovanni

    2015-01-01

    Kinase inhibitors are attractive drugs/drug candidates for the treatment of cancer. The most recent literature has highlighted the importance of multi target kinase inhibitors, although a correct balance between specificity and non-specificity is required. In this view, the discovery of multi-tyrosine kinase inhibitors with subfamily selectivity is a challenging goal. Herein we present the synthesis and the preliminary kinase profiling of a set of novel 4-anilinopyrimidines. Among the synthesized compounds, the N-phenyl-N’-[4-(pyrimidin-4-ylamino)phenyl]urea derivatives selectively targeted some members of class III receptor tyrosine kinase family. Starting from the structure of hit compound 19 we synthesized a further compound with an improved affinity toward the class III receptor tyrosine kinase members and endowed with a promising antitumor activity both in vitro and in vivo in a murine solid tumor model. Molecular modeling simulations were used in order to rationalize the behavior of the title compounds. PMID:26568452

  5. Prognostic value of cytosolic tyrosine kinase activity in 249 node-positive breast cancer patients.

    PubMed Central

    Romain, S.; Chinot, O.; Klijn, J. G.; van Putten, W. L.; Guirou, O.; Look, M.; Martin, P. M.; Foekens, J. A.

    1994-01-01

    Tyrosine-specific protein kinase (TPK) has been associated with the cytoplasmic domain of growth factor receptors as well as oncoproteins. Enzymatic activation appears to be a major initial event in these signal transduction pathways. In this study, TPK was determined in the cytosols of 249 node-positive primary breast tumours. Enzyme activity was measured using [32P]ATP and poly(glutamic acid-tyrosine) (4:1) as an artificial substrate. Levels of TPK varied from 0 to 35.9 pmol ATP min-1 mg-1 protein (median 11.4). No correlation was found with tumour size or number of positive lymph nodes. In contrast, levels of TPK were negatively associated with age (P = 0.01) and menopausal status (P < 0.05) of the patients. Higher concentrations of TPK were in addition found in tumours negative for oestradiol (P < 0.01) and progesterone (P < 0.05) receptors. Finally, a positive correlation was found between TPK and urokinase plasminogen activator (UPA) (P < 0.05). Patients whose tumours contained high levels of TPK had reduced disease-free (P = 0.01) and overall survival (P < 0.05). In Cox multivariate analysis, including patient's age, menopausal status, tumour size, number of positive lymph nodes, steroid receptors and UPA, TPK retained its independent prognostic importance. PMID:8054279

  6. Receptor tyrosine kinase signaling regulates replication of the peste des petits ruminants virus.

    PubMed

    Chaudhary, K; Chaubey, K K; Singh, S V; Kumar, N

    2015-03-01

    In this study, we found out that blocking the receptor tyrosine kinase (RTK) signaling in Vero cells by tryphostin AG879 impairs the in vitro replication of the peste des petits ruminants virus (PPRV). A reduced virus replication in Trk1-knockdown (siRNA) Vero cells confirmed the essential role of RTK in the virus replication, in particular a specific regulation of viral RNA synthesis. These data represent the first evidence that the RTK signaling regulates replication of a morbillivirus. PMID:25790054

  7. Araguspongine C Induces Autophagic Death in Breast Cancer Cells through Suppression of c-Met and HER2 Receptor Tyrosine Kinase Signaling

    PubMed Central

    Akl, Mohamed R.; Ayoub, Nehad M.; Ebrahim, Hassan Y.; Mohyeldin, Mohamed M.; Orabi, Khaled Y.; Foudah, Ahmed I.; El Sayed, Khalid A.

    2015-01-01

    Receptor tyrosine kinases are key regulators of cellular growth and proliferation. Dysregulations of receptor tyrosine kinases in cancer cells may promote tumorigenesis by multiple mechanisms including enhanced cell survival and inhibition of cell death. Araguspongines represent a group of macrocyclic oxaquinolizidine alkaloids isolated from the marine sponge Xestospongia species. This study evaluated the anticancer activity of the known oxaquinolizidine alkaloids araguspongines A, C, K and L, and xestospongin B against breast cancer cells. Araguspongine C inhibited the proliferation of multiple breast cancer cell lines in vitro in a dose-dependent manner. Interestingly, araguspongine C-induced autophagic cell death in HER2-overexpressing BT-474 breast cancer cells was characterized by vacuole formation and upregulation of autophagy markers including LC3A/B, Atg3, Atg7, and Atg16L. Araguspongine C-induced autophagy was associated with suppression of c-Met and HER2 receptor tyrosine kinase activation. Further in-silico docking studies and cell-free Z-LYTE assays indicated the potential of direct interaction between araguspongine C and the receptor tyrosine kinases c-Met and HER2 at their kinase domains. Remarkably, araguspongine C treatment resulted in the suppression of PI3K/Akt/mTOR signaling cascade in breast cancer cells undergoing autophagy. Induction of autophagic death in BT-474 cells was also associated with decreased levels of inositol 1,4,5-trisphosphate receptor upon treatment with effective concentration of araguspongine C. In conclusion, results of this study are the first to reveal the potential of araguspongine C as an inhibitor to receptor tyrosine kinases resulting in the induction of autophagic cell death in breast cancer cells. PMID:25580621

  8. In vivo Regulation of the Allergic Response by the Interleukin 4 Receptor Alpha Chain Immunoreceptor Tyrosine-based Inhibitory Motif

    PubMed Central

    Tachdjian, Raffi; Khatib, Shadi Al; Schwinglshackl, Andreas; Kim, Hong Sook; Chen, Andrew; Blasioli, Julie; Mathias, Clinton; Kim, Hye-Young; Umetsu, Dale T.; Oettgen, Hans C.; Chatila, Talal A.

    2010-01-01

    Background Signaling by IL-4 and IL-13 via the IL-4 receptor alpha chain (IL-4Rα) plays a critical role in the pathology of allergic diseases. The IL-4Rα is endowed with an immunoreceptor tyrosine-based inhibitory motif (ITIM), centered on tyrosine 709 (Y709) in the cytoplasmic domain, that binds a number of regulatory phosphatases. The function of the ITIM in the in vivo regulation of IL-4R signaling remains unknown. Objective To determine the in vivo function of the IL-4Rα ITIM using mice in which the ITIM was inactivated by mutagenesis of the tyrosine Y709 residue into phenylalanine (F709). Methods F709 ITIM mutant mice were derived by knockin mutagenesis. Activation of intracellular signaling cascades by IL-4 and IL-13 was assessed by intracellular staining of phosphorylated signaling intermediates and by gene expression analysis. In vivo responses to allergic sensitization were assessed using models of allergic airway inflammation. Results The F709 mutation increased STAT6 phosphorylation by IL-4 and, disproportionately, by IL-13. This was associated with exaggerated Th2 polarization, enhanced alternative macrophage activation by IL-13, augmented basal and antigen-induced IgE responses and intensified allergen-induced eosinophilic airway inflammation and hyperreactivity. Conclusions These results point to a physiologic negative regulatory role for the Y709 ITIM in signaling via IL-4Rα, especially by IL-13. PMID:20392476

  9. Receptor tyrosine kinase (c-Kit) inhibitors: a potential therapeutic target in cancer cells.

    PubMed

    Abbaspour Babaei, Maryam; Kamalidehghan, Behnam; Saleem, Mohammad; Huri, Hasniza Zaman; Ahmadipour, Fatemeh

    2016-01-01

    c-Kit, a receptor tyrosine kinase, is involved in intracellular signaling, and the mutated form of c-Kit plays a crucial role in occurrence of some cancers. The function of c-Kit has led to the concept that inhibiting c-Kit kinase activity can be a target for cancer therapy. The promising results of inhibition of c-Kit for treatment of cancers have been observed in some cancers such as gastrointestinal stromal tumor, acute myeloid leukemia, melanoma, and other tumors, and these results have encouraged attempts toward improvement of using c-Kit as a capable target for cancer therapy. This paper presents the findings of previous studies regarding c-Kit as a receptor tyrosine kinase and an oncogene, as well as its gene targets and signaling pathways in normal and cancer cells. The c-Kit gene location, protein structure, and the role of c-Kit in normal cell have been discussed. Comprehending the molecular mechanism underlying c-Kit-mediated tumorogenesis is consequently essential and may lead to the identification of future novel drug targets. The potential mechanisms by which c-Kit induces cellular transformation have been described. This study aims to elucidate the function of c-Kit for future cancer therapy. In addition, it has c-Kit inhibitor drug properties and their functions have been listed in tables and demonstrated in schematic pictures. This review also has collected previous studies that targeted c-Kit as a novel strategy for cancer therapy. This paper further emphasizes the advantages of this approach, as well as the limitations that must be addressed in the future. Finally, although c-Kit is an attractive target for cancer therapy, based on the outcomes of treatment of patients with c-Kit inhibitors, it is unlikely that Kit inhibitors alone can lead to cure. It seems that c-Kit mutations alone are not sufficient for tumorogenesis, but do play a crucial role in cancer occurrence. PMID:27536065

  10. Receptor tyrosine kinase (c-Kit) inhibitors: a potential therapeutic target in cancer cells

    PubMed Central

    Abbaspour Babaei, Maryam; Kamalidehghan, Behnam; Saleem, Mohammad; Huri, Hasniza Zaman; Ahmadipour, Fatemeh

    2016-01-01

    c-Kit, a receptor tyrosine kinase, is involved in intracellular signaling, and the mutated form of c-Kit plays a crucial role in occurrence of some cancers. The function of c-Kit has led to the concept that inhibiting c-Kit kinase activity can be a target for cancer therapy. The promising results of inhibition of c-Kit for treatment of cancers have been observed in some cancers such as gastrointestinal stromal tumor, acute myeloid leukemia, melanoma, and other tumors, and these results have encouraged attempts toward improvement of using c-Kit as a capable target for cancer therapy. This paper presents the findings of previous studies regarding c-Kit as a receptor tyrosine kinase and an oncogene, as well as its gene targets and signaling pathways in normal and cancer cells. The c-Kit gene location, protein structure, and the role of c-Kit in normal cell have been discussed. Comprehending the molecular mechanism underlying c-Kit-mediated tumorogenesis is consequently essential and may lead to the identification of future novel drug targets. The potential mechanisms by which c-Kit induces cellular transformation have been described. This study aims to elucidate the function of c-Kit for future cancer therapy. In addition, it has c-Kit inhibitor drug properties and their functions have been listed in tables and demonstrated in schematic pictures. This review also has collected previous studies that targeted c-Kit as a novel strategy for cancer therapy. This paper further emphasizes the advantages of this approach, as well as the limitations that must be addressed in the future. Finally, although c-Kit is an attractive target for cancer therapy, based on the outcomes of treatment of patients with c-Kit inhibitors, it is unlikely that Kit inhibitors alone can lead to cure. It seems that c-Kit mutations alone are not sufficient for tumorogenesis, but do play a crucial role in cancer occurrence. PMID:27536065

  11. Identification of therapeutic targets in ovarian cancer through active tyrosine kinase profiling

    PubMed Central

    Ocaña, Alberto; Pandiella, Atanasio

    2015-01-01

    The activation status of a set of pro-oncogenic tyrosine kinases in ovarian cancer patient samples was analyzed to define potential therapeutic targets. Frequent activation of HER family receptor tyrosine kinases, especially HER2, was observed. Studies in ovarian cancer cell lines confirmed the activation of HER2. Moreover, knockdown of HER2 caused a strong inhibition of their proliferation. Analyses of the action of agents that target HER2 indicated that the antibody drug conjugate trastuzumab-emtansine (T-DM1) caused a substantial antitumoral effect in vivo and in vitro, and potentiated the action of drugs used in the therapy of ovarian cancer. T-DM1 provoked cell cycle arrest in mitosis, and caused the appearance of aberrant mitotic spindles in cells treated with the drug. Biochemical experiments confirmed accumulation of the mitotic markers phospho-Histone H3 and phospho-BUBR1 in cells treated with the drug. Prolonged treatment of ovarian cancer cells with T-DM1 provoked the appearance of multinucleated cells which later led to cell death. Together, these data indicate that HER2 represents an important oncogene in ovarian cancer, and suggest that targeting this tyrosine kinase with T-DM1 may be therapeutically effective, especially in ovarian tumors with high content of HER2. PMID:26336133

  12. A systematic scan of interactions with tyrosine motifs in the erythropoietin receptor using a mammalian 2-hybrid approach.

    PubMed

    Montoye, Tony; Lemmens, Irma; Catteeuw, Dominiek; Eyckerman, Sven; Tavernier, Jan

    2005-06-01

    Signaling via the erythropoietin receptor (EpoR) depends on the interaction of several proteins with phosphorylated tyrosine-containing motifs in its cytosolic domain. Detailed mapping of these interactions is required for an accurate insight into Epo signaling. We recently developed a mammalian protein-protein interaction trap (MAPPIT), a cytokine receptor-based 2-hybrid method that operates in intact Hek293-T mammalian cells. As baits, we used intracellular segments of the EpoR containing 1 or 2 tyrosines. Several known signaling molecules, including cytokine-inducible SH2-containing protein (CIS), suppressor of cytokine signaling-2 (SOCS2), phosphatidylinositol 3'-kinase (PI3-K), phospholipase C-gamma (PLC-gamma), and signal transducer and activator of transcription 5 (STAT5) were used as prey. We also extended the MAPPIT method to enable interaction analysis with wild-type EpoR. In this relay MAPPIT approach, instead of using isolated EpoR fragments as bait, we used the full-length EpoR itself as a "receptor bait." Finally, we introduced MAPPIT in the erythroleukemic TF-1 cell line, which is a more natural setting of the EpoR. With these strategies several known interactions with the EpoR were analyzed and evidence for new interactions was obtained. PMID:15644415

  13. The viral G protein-coupled receptor ORF74 unmasks phospholipase C signaling of the receptor tyrosine kinase IGF-1R.

    PubMed

    de Munnik, Sabrina M; van der Lee, Rosan; Velders, Daniëlle M; van Offenbeek, Jody; Smits-de Vries, Laura; Leurs, Rob; Smit, Martine J; Vischer, Henry F

    2016-06-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) encodes the constitutively active G protein-coupled receptor ORF74, which is expressed on the surface of infected host cells and has been linked to the development of the angioproliferative tumor Kaposi's sarcoma. Furthermore, the insulin-like growth factor (IGF)-1 receptor, a receptor tyrosine kinase, also plays an essential role in Kaposi's sarcoma growth and survival. In this study we examined the effect of the constitutively active viral receptor ORF74 on human IGF-1R signaling. Constitutive and CXCL1-induced ORF74 signaling did not transactivate IGF-1R. In contrast, IGF-1 stimulated phospholipase C (PLC) activation in an ORF74-dependent manner without affecting chemokine binding to ORF74. Inhibition of constitutive ORF74 activity by mutagenesis or the inverse agonist CXCL10, or neutralizing IGF-1R with an antibody or silencing IGF-1R expression using siRNA inhibited PLC activation by IGF-1. Transactivation of ORF74 in response to IGF-1 occurred independently of Src, PI3K, and secreted ORF74 ligands. Furthermore, tyrosine residues in the carboxyl-terminus and intracellular loop 2 of ORF74 are not essential for IGF-1-induced PLC activation. Interestingly, PLC activation in response to IGF-1 is specific for ORF74 as IGF-1 was unable to activate PLC in cells expressing the constitutively active human cytomegalovirus (HCMV)-encoded GPCR US28. Interestingly, IGF-1 does not induce β-arrestin recruitment to ORF74. The proximity ligation assay revealed close proximity between ORF74 and IGF-1R on the cell surface, but a physical interaction was not confirmed by co-immunoprecipitation. Unmasking IGF-1R signaling to PLC in response to IGF-1 is a previously unrecognized action of ORF74. PMID:26931381

  14. Inhibition of Mer and Axl receptor tyrosine kinases leads to increased apoptosis and improved chemosensitivity in human neuroblastoma.

    PubMed

    Li, Yixin; Wang, Xiqian; Bi, Shaojie; Zhao, Kun; Yu, Chao

    2015-02-13

    Ectopic expression of Mer and Axl receptor tyrosine kinases (RTKs) are frequently found in various cancers as known to promote oncogenesis by activating antiapoptotic signaling pathways. However, the roles of these receptors in neuroblastoma remain unclear. We found Mer and Axl was co-expressed in neuroblastoma patient samples and cell lines. Ligand-dependent Mer or Axl activation led to an increase in phosphorylated ERK1/2, AKT and FAK indicating roles for these RTKs in multiple oncogenic processes. Furthermore, Mer and Axl knockdown led to apoptosis and inhibition of migration as well as a significant increase in chemosensitivity in response to cisplatin and vincristine treatment. Taken together, our results demonstrated that inhibition of Mer and Axl improved apoptotic response and chemosensitivity in neuroblastoma, providing new insights into development of novel therapeutic strategies by targeting these oncogenes.

  15. Apatinib: A novel receptor tyrosine kinase inhibitor for the treatment of gastric cancer.

    PubMed

    Roviello, Giandomenico; Ravelli, Andrea; Polom, Karol; Petrioli, Roberto; Marano, Luigi; Marrelli, Daniele; Roviello, Franco; Generali, Daniele

    2016-03-28

    Metastatic gastric cancer is a lethal disease characterized by a very short overall survival, underlining a critical need of new therapeutic options. Unfortunately, although several molecular targets have been investigated, only very few recently approved agents, such as trastuzumab in the HER2-positive setting and ramucirumab, led to a clinical improvement in the outcome of metastatic gastric cancer patients. VEGF (vascular endothelial growth factor) is one of the most potent angiogenic factors and is a signalling molecule secreted by many solid tumours. Since high VEGF expression is one of the characteristic features of gastric carcinomas, targeting VEGF is therefore considered as a promising therapeutic strategy for gastric cancer. In the scenario of possible new target therapies with particular regard to angiogenesis, apatinib is a novel receptor tyrosine kinase inhibitor selectively targeting VEGFR-2. It is an orally-bioavailable agent currently being studied in several solid tumour types showing a promising activity in gastric cancer. Due to the recent positive results as a third line of treatment for metastatic gastric cancer patients, apatinib may be an interesting and novel type of targeted treatment for metastatic gastric cancer in several lines of therapy. In this review, we summarize the available data of apatinib, mainly focused on the clinical aspect, in advanced/metastatic gastric cancer. PMID:26797419

  16. Inhibition of epidermal growth factor receptor tyrosine kinase ameliorates collagen-induced arthritis.

    PubMed

    Swanson, Christina D; Akama-Garren, Elliot H; Stein, Emily A; Petralia, Jacob D; Ruiz, Pedro J; Edalati, Abdolhossein; Lindstrom, Tamsin M; Robinson, William H

    2012-04-01

    Rheumatoid arthritis (RA) is an autoimmune synovitis characterized by the formation of pannus and the destruction of cartilage and bone in the synovial joints. Although immune cells, which infiltrate the pannus and promote inflammation, play a prominent role in the pathogenesis of RA, other cell types also contribute. Proliferation of synovial fibroblasts, for example, underlies the formation of the pannus, while proliferation of endothelial cells results in neovascularization, which supports the growth of the pannus by supplying it with nutrients and oxygen. The synovial fibroblasts also promote inflammation in the synovium by producing cytokines and chemokines. Finally, osteoclasts cause the destruction of bone. In this study, we show that erlotinib, an inhibitor of the tyrosine kinase epidermal growth factor receptor (EGFR), reduces the severity of established collagen-induced arthritis, a mouse model of RA, and that it does so by targeting synovial fibroblasts, endothelial cells, and osteoclasts. Erlotinib-induced attenuation of autoimmune arthritis was associated with a reduction in number of osteoclasts and blood vessels, and erlotinib inhibited the formation of murine osteoclasts and the proliferation of human endothelial cells in vitro. Erlotinib also inhibited the proliferation and cytokine production of human synovial fibroblasts in vitro. Moreover, EGFR was highly expressed and activated in the synovium of mice with collagen-induced arthritis and patients with RA. Taken together, these findings suggest that EGFR plays a central role in the pathogenesis of RA and that EGFR inhibition may provide benefits in the treatment of RA.

  17. Regulation of tooth number by fine-tuning levels of receptor-tyrosine kinase signaling.

    PubMed

    Charles, Cyril; Hovorakova, Maria; Ahn, Youngwook; Lyons, David B; Marangoni, Pauline; Churava, Svatava; Biehs, Brian; Jheon, Andrew; Lesot, Hervé; Balooch, Guive; Krumlauf, Robb; Viriot, Laurent; Peterkova, Renata; Klein, Ophir D

    2011-09-01

    Much of our knowledge about mammalian evolution comes from examination of dental fossils, because the highly calcified enamel that covers teeth causes them to be among the best-preserved organs. As mammals entered new ecological niches, many changes in tooth number occurred, presumably as adaptations to new diets. For example, in contrast to humans, who have two incisors in each dental quadrant, rodents only have one incisor per quadrant. The rodent incisor, because of its unusual morphogenesis and remarkable stem cell-based continuous growth, presents a quandary for evolutionary biologists, as its origin in the fossil record is difficult to trace, and the genetic regulation of incisor number remains a largely open question. Here, we studied a series of mice carrying mutations in sprouty genes, the protein products of which are antagonists of receptor-tyrosine kinase signaling. In sprouty loss-of-function mutants, splitting of gene expression domains and reduced apoptosis was associated with subdivision of the incisor primordium and a multiplication of its stem cell-containing regions. Interestingly, changes in sprouty gene dosage led to a graded change in incisor number, with progressive decreases in sprouty dosage leading to increasing numbers of teeth. Moreover, the independent development of two incisors in mutants with large decreases in sprouty dosage mimicked the likely condition of rodent ancestors. Together, our findings indicate that altering genetic dosage of an antagonist can recapitulate ancestral dental characters, and that tooth number can be progressively regulated by changing levels of activity of a single signal transduction pathway.

  18. Protein-tyrosine phosphatase activity of CD45 is activated by sequential phosphorylation by two kinases.

    PubMed Central

    Stover, D R; Walsh, K A

    1994-01-01

    We describe a potential regulatory mechanism for the transmembrane protein-tyrosine phosphatase CD45. Phosphorylation on both tyrosine and serine residues in vitro results in an activation of CD45 specifically toward one artificial substrate but not another. The activation of these kinases appears to be order dependent, as it is enhanced when phosphorylation of tyrosine precedes that of serine but phosphorylation in the reverse order yields no activation. Any of four protein-tyrosine kinases tested, in combination with the protein-serine/threonine kinase, casein kinase II, was capable of mediating this activation in vitro. The time course of phosphorylation of CD45 in response to T-cell activation is consistent with the possibility that this regulatory mechanism is utilized in vivo. Images PMID:7518565

  19. Toll-like receptor 4 signaling is coupled to src family kinase activation, tyrosine phosphorylation of zonula adherens proteins, and opening of the paracellular pathway in human lung microvascular endothelia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial lipopolysaccharide (LPS) is a key mediator in the vascular leak syndromes associated with Gram-negative bacterial infections. LPS opens the paracellular pathway in pulmonary vascular endothelia through protein tyrosine phosphorylation. We now have identified the protein tyrosine kinase (PT...

  20. Tyrosines 559 and 807 in the cytoplasmic tail of the macrophage colony-stimulating factor receptor play distinct roles in osteoclast differentiation and function.

    PubMed

    Feng, Xu; Takeshita, Sunao; Namba, Noriyuki; Wei, Shi; Teitelbaum, Steven L; Ross, F Patrick

    2002-12-01

    Osteoclast (OC) differentiation requires that precursors, such as macrophage colony-stimulating factor (M-CSF)-dependent bone marrow macrophages, receive signals transduced by receptor activator of nuclear factor kappaB (RANK) and c-Fms, receptors for RANK ligand (RANKL) and M-CSF, respectively. Activated c-Fms autophosphorylates cytoplasmic tail tyrosine residues, which, by recruiting adaptor molecules, initiate specific signaling pathways. To identify which tyrosine residues are involved in c-Fms signaling in primary cells, we retrovirally transduced M-CSF-dependent bone marrow macrophages with a chimera comprising the external domain of the erythropoietin (Epo) receptor linked to the transmembrane and cytoplasmic domains of c-Fms. Transduced cells differentiate into bone-resorbing osteoclasts when treated with RANKL and either M-CSF or Epo, confirming that both endogenous and chimeric receptors transmit osteoclastogenic signals. Cells expressing chimeric receptors with Y(697)F, Y(706)F, Y(721)F, and Y(921)F single point mutations generate normal numbers of bone-resorbing OCs, with normal bone-resorbing activity when treated with RANKL and Epo. In contrast, those expressing Y(559)F generate fewer OCs, whereas theY807F mutant is incapable of osteoclastogenesis. Finally, although mature OCs expressing Y(559)F exhibit impaired bone resorption, those bearing Y807F do not. Thus, we have identified specific tyrosine residues in the cytoplasmic tail of c-Fms that are critical for transmitting M-CSF-initiated signals individually required for OC formation or function, respectively.

  1. Rational Design of a Dephosphorylation-Resistant Reporter Enables Single-Cell Measurement of Tyrosine Kinase Activity.

    PubMed

    Turner, Abigail H; Lebhar, Michael S; Proctor, Angela; Wang, Qunzhao; Lawrence, David S; Allbritton, Nancy L

    2016-02-19

    Although peptide-based reporters of protein tyrosine kinase (PTK) activity have been used to study PTK enzymology in vitro, the application of these reporters to intracellular conditions is compromised by their dephosphorylation, preventing PTK activity measurements. Nonproteinogenic amino acids may be utilized to rationally design selective peptidic ligands by accessing greater chemical and structural diversity than is available using the native amino acids. We describe a peptidic reporter that, upon phosphorylation by the epidermal growth factor receptor (EGFR), is resistant to dephosphorylation both in vitro and in cellulo. The reporter contains a conformationally constrained phosphorylatable moiety (7-(S)-hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) in the place of L-tyrosine and is efficiently phosphorylated in A431 epidermoid carcinoma cells. Dephosphorylation of the reporter occurs 3 orders of magnitude more slowly compared with that of the conventional tyrosine-containing reporter.

  2. The discovery of novel vascular endothelial growth factor receptor tyrosine kinases inhibitors: pharmacophore modeling, virtual screening and docking studies.

    PubMed

    Yu, Hui; Wang, Zhanli; Zhang, Liangren; Zhang, Jufeng; Huang, Qian

    2007-03-01

    We have applied pharmacophore generation, database searching and docking methodologies to discover new structures for the design of vascular endothelial growth factor receptors, the tyrosine kinase insert domain-containing receptor kinase inhibitors. The chemical function based pharmacophore models were built for kinase insert domain-containing receptor kinase inhibitors from a set of 10 known inhibitors using the algorithm HipHop, which is implemented in the CATALYST software. The highest scoring HipHop model consists of four features: one hydrophobic, one hydrogen bond acceptor, one hydrogen bond donor and one ring aromatic function. Using the algorithm CatShape within CATALYST, the bound conformation of 4-amino-furo [2, 3-d] pyrimidine binding to kinase insert domain-containing receptor kinase was used to generate a shape query. A merged shape and hypothesis query that is in an appropriate alignment was then built. The combined shape and hypothesis model was used as a query to search Maybridge database for other potential lead compounds. A total of 39 compounds were retrieved as hits. The hits obtained were docked into kinase insert domain-containing receptor kinase active site. One novel potential lead was proposed based on CATALYST fit value, LigandFit docking scores, and examination of how the hit retain key interactions known to be required for kinase binding. This compound inhibited vascular endothelial growth factor stimulated kinase insert domain-containing receptor phosphorylation in human umbilical vein endothelial cells. PMID:17441906

  3. The discovery of novel vascular endothelial growth factor receptor tyrosine kinases inhibitors: pharmacophore modeling, virtual screening and docking studies.

    PubMed

    Yu, Hui; Wang, Zhanli; Zhang, Liangren; Zhang, Jufeng; Huang, Qian

    2007-03-01

    We have applied pharmacophore generation, database searching and docking methodologies to discover new structures for the design of vascular endothelial growth factor receptors, the tyrosine kinase insert domain-containing receptor kinase inhibitors. The chemical function based pharmacophore models were built for kinase insert domain-containing receptor kinase inhibitors from a set of 10 known inhibitors using the algorithm HipHop, which is implemented in the CATALYST software. The highest scoring HipHop model consists of four features: one hydrophobic, one hydrogen bond acceptor, one hydrogen bond donor and one ring aromatic function. Using the algorithm CatShape within CATALYST, the bound conformation of 4-amino-furo [2, 3-d] pyrimidine binding to kinase insert domain-containing receptor kinase was used to generate a shape query. A merged shape and hypothesis query that is in an appropriate alignment was then built. The combined shape and hypothesis model was used as a query to search Maybridge database for other potential lead compounds. A total of 39 compounds were retrieved as hits. The hits obtained were docked into kinase insert domain-containing receptor kinase active site. One novel potential lead was proposed based on CATALYST fit value, LigandFit docking scores, and examination of how the hit retain key interactions known to be required for kinase binding. This compound inhibited vascular endothelial growth factor stimulated kinase insert domain-containing receptor phosphorylation in human umbilical vein endothelial cells.

  4. Crystal Structure of the Frizzled-Like Cysteine-Rich Domain of the Receptor Tyrosine Kinase MuSK

    SciTech Connect

    Stiegler, A.; Burden, S; Hubbard, S

    2009-01-01

    Muscle-specific kinase (MuSK) is an essential receptor tyrosine kinase for the establishment and maintenance of the neuromuscular junction (NMJ). Activation of MuSK by agrin, a neuronally derived heparan-sulfate proteoglycan, and LRP4 (low-density lipoprotein receptor-related protein-4), the agrin receptor, leads to clustering of acetylcholine receptors on the postsynaptic side of the NMJ. The ectodomain of MuSK comprises three immunoglobulin-like domains and a cysteine-rich domain (Fz-CRD) related to those in Frizzled proteins, the receptors for Wnts. Here, we report the crystal structure of the MuSK Fz-CRD at 2.1 {angstrom} resolution. The structure reveals a five-disulfide-bridged domain similar to CRDs of Frizzled proteins but with a divergent C-terminal region. An asymmetric dimer present in the crystal structure implicates surface hydrophobic residues that may function in homotypic or heterotypic interactions to mediate co-clustering of MuSK, rapsyn, and acetylcholine receptors at the NMJ.

  5. Crystal structure of the frizzled-like cysteine-rich domain of the receptor tyrosine kinase MuSK.

    PubMed

    Stiegler, Amy L; Burden, Steven J; Hubbard, Stevan R

    2009-10-16

    Muscle-specific kinase (MuSK) is an essential receptor tyrosine kinase for the establishment and maintenance of the neuromuscular junction (NMJ). Activation of MuSK by agrin, a neuronally derived heparan-sulfate proteoglycan, and LRP4 (low-density lipoprotein receptor-related protein-4), the agrin receptor, leads to clustering of acetylcholine receptors on the postsynaptic side of the NMJ. The ectodomain of MuSK comprises three immunoglobulin-like domains and a cysteine-rich domain (Fz-CRD) related to those in Frizzled proteins, the receptors for Wnts. Here, we report the crystal structure of the MuSK Fz-CRD at 2.1 A resolution. The structure reveals a five-disulfide-bridged domain similar to CRDs of Frizzled proteins but with a divergent C-terminal region. An asymmetric dimer present in the crystal structure implicates surface hydrophobic residues that may function in homotypic or heterotypic interactions to mediate co-clustering of MuSK, rapsyn, and acetylcholine receptors at the NMJ. PMID:19664639

  6. A PKC-SHP1 signaling axis desensitizes Fcγ receptor signaling by reducing the tyrosine phosphorylation of CBL and regulates FcγR mediated phagocytosis

    PubMed Central

    2014-01-01

    Background Fcγ receptors mediate important biological signals in myeloid cells including the ingestion of microorganisms through a process of phagocytosis. It is well-known that Fcγ receptor (FcγR) crosslinking induces the tyrosine phosphorylation of CBL which is associated with FcγR mediated phagocytosis, however how signaling molecules coordinate to desensitize these receptors is unclear. An investigation of the mechanisms involved in receptor desensitization will provide new insight into potential mechanisms by which signaling molecules may downregulate tyrosine phosphorylation dependent signaling events to terminate important signaling processes. Results Using the U937IF cell line, we observed that FcγR1 crosslinking induces the tyrosine phosphorylation of CBL, which is maximal at 5 min. followed by a kinetic pattern of dephosphorylation. An investigation of the mechanisms involved in receptor desensitization revealed that pretreatment of U937IF or J774 cells with PMA followed by Fcγ receptor crosslinking results in the reduced tyrosine phosphorylation of CBL and the abrogation of downstream signals, such as CBL-CRKL binding, Rac-GTP activation and the phagocytic response. Pretreatment of J774 cells with GF109203X, a PKC inhibitor was observed to block dephosphorylation of CBL and rescued the phagocytic response. We demonstrate that the PKC induced desensitization of FcγR/ phagocytosis is associated with the inactivation of Rac-GTP, which is deactivated in a hematopoietic specific phosphatase SHP1 dependent manner following ITAM stimulation. The effect of PKC on FcγR signaling is augmented by the transfection of catalytically active SHP1 and not by the transfection of catalytic dead SHP1 (C124S). Conclusions Our results suggest a functional model by which PKC interacts with SHP1 to affect the phosphorylation state of CBL, the activation state of Rac and the negative regulation of ITAM signaling i.e. Fcγ receptor mediated phagocytosis. These findings

  7. Quantitative Phosphoproteomics Analysis Reveals a Key Role of Insulin Growth Factor 1 Receptor (IGF1R) Tyrosine Kinase in Human Sperm Capacitation*

    PubMed Central

    Wang, Jing; Qi, Lin; Huang, Shaoping; Zhou, Tao; Guo, Yueshuai; Wang, Gaigai; Guo, Xuejiang; Zhou, Zuomin; Sha, Jiahao

    2015-01-01

    One of the most important changes during sperm capacitation is the enhancement of tyrosine phosphorylation. However, the mechanisms of protein tyrosine phosphorylation during sperm capacitation are not well studied. We used label-free quantitative phosphoproteomics to investigate the overall phosphorylation events during sperm capacitation in humans and identified 231 sites with increased phosphorylation levels. Motif analysis using the NetworKIN algorithm revealed that the activity of tyrosine phosphorylation kinases insulin growth factor 1 receptor (IGF1R)/insulin receptor is significantly enriched among the up-regulated phosphorylation substrates during capacitation. Western blotting further confirmed inhibition of IGF1R with inhibitors GSK1904529A and NVP-AEW541, which inhibited the increase in tyrosine phosphorylation levels during sperm capacitation. Additionally, sperm hyperactivated motility was also inhibited by GSK1904529A and NVP-AEW541 but could be up-regulated by insulin growth factor 1, the ligand of IGF1R. Thus, the IGF1R-mediated tyrosine phosphorylation pathway may play important roles in the regulation of sperm capacitation in humans and could be a target for improvement in sperm functions in infertile men. PMID:25693802

  8. Quantitative phosphoproteomics analysis reveals a key role of insulin growth factor 1 receptor (IGF1R) tyrosine kinase in human sperm capacitation.

    PubMed

    Wang, Jing; Qi, Lin; Huang, Shaoping; Zhou, Tao; Guo, Yueshuai; Wang, Gaigai; Guo, Xuejiang; Zhou, Zuomin; Sha, Jiahao

    2015-04-01

    One of the most important changes during sperm capacitation is the enhancement of tyrosine phosphorylation. However, the mechanisms of protein tyrosine phosphorylation during sperm capacitation are not well studied. We used label-free quantitative phosphoproteomics to investigate the overall phosphorylation events during sperm capacitation in humans and identified 231 sites with increased phosphorylation levels. Motif analysis using the NetworKIN algorithm revealed that the activity of tyrosine phosphorylation kinases insulin growth factor 1 receptor (IGF1R)/insulin receptor is significantly enriched among the up-regulated phosphorylation substrates during capacitation. Western blotting further confirmed inhibition of IGF1R with inhibitors GSK1904529A and NVP-AEW541, which inhibited the increase in tyrosine phosphorylation levels during sperm capacitation. Additionally, sperm hyperactivated motility was also inhibited by GSK1904529A and NVP-AEW541 but could be up-regulated by insulin growth factor 1, the ligand of IGF1R. Thus, the IGF1R-mediated tyrosine phosphorylation pathway may play important roles in the regulation of sperm capacitation in humans and could be a target for improvement in sperm functions in infertile men.

  9. Activation of protein tyrosine kinase p72syk by Fc epsilon RI aggregation in rat basophilic leukemia cells. p72syk is a minor component but the major protein tyrosine kinase of pp72.

    PubMed

    Minoguchi, K; Benhamou, M; Swaim, W D; Kawakami, Y; Kawakami, T; Siraganian, R P

    1994-06-17

    Aggregation of the high affinity IgE receptors (Fc epsilon RI) on rat basophilic leukemia RBL-2H3 cells results in protein tyrosine phosphorylations. Previously we reported that there is prominent tyrosine phosphorylation of approximately 72-kDa proteins (pp72) and that the tyrosine kinase p72syk is one component of pp72. Here we studied further the relationship of p72syk to pp72. The aggregation of Fc epsilon RI induced the activation of p72syk which was parallel to its tyrosine phosphorylation. By in vitro kinase assay of immune complexes purified with anti-phosphotyrosine antibodies, p72syk was the major pp72 tyrosine kinase. However, by immunoblotting with anti-phosphotyrosine antibodies, p72syk was a minor component of pp72. The heterogeneous nature of pp72 was indicated by different studies. Under optimum conditions of one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis, pp72 consisted of a heterogeneous group of 69-, 71-, and 72-kDa tyrosine-phosphorylated proteins. There were differences in the tyrosine phosphorylation of these proteins in cells activated in the absence of extracellular calcium or when stimulation was with the calcium ionophore A23187 or with phorbol myristate acetate. One of the proteins migrating at 69 kDa was p72syk. By two-dimensional gel electrophoresis pp72 was found to consist of multiple tyrosine-phosphorylated protens including 71-80-kDa proteins that associate with p53/56lyn. A 75-kDa tyrosine-phosphorylated protein, different from pp72, was identified as p75HS1 (SPY75). These results demonstrate the heterogeneous nature of the pp72 and that p72syk is activated after Fc epsilon RI aggregation. PMID:7515887

  10. Tryptophan prenyltransferases showing higher catalytic activities for Friedel-Crafts alkylation of o- and m-tyrosines than tyrosine prenyltransferases.

    PubMed

    Fan, Aili; Xie, Xiulan; Li, Shu-Ming

    2015-07-21

    Tryptophan prenyltransferases FgaPT2, 5-DMATS, 6-DMATSSv and 7-DMATS catalyse regiospecific C-prenylations on the indole ring, while tyrosine prenyltransferases SirD and TyrPT catalyse the O-prenylation of the phenolic hydroxyl group. In this study, we report the Friedel-Crafts alkylation of L-o-tyrosine by these enzymes. Surprisingly, no conversion was detected with SirD and three tryptophan prenyltransferases showed significantly higher activity than another tyrosine prenyltransferase TyrPT. C5-prenylated L-o-tyrosine was identified as a unique product of these enzymes. Using L-m-tyrosine as the prenylation substrate, product formation was only observed with the tryptophan prenyltransferases FgaPT2 and 7-DMATS. C4- and C6-prenylated derivatives were identified in the reaction mixture of FgaPT2. These results provided additional evidence for the similarities and differences between these two subgroups within the DMATS superfamily in their catalytic behaviours.

  11. Tryptophan prenyltransferases showing higher catalytic activities for Friedel-Crafts alkylation of o- and m-tyrosines than tyrosine prenyltransferases.

    PubMed

    Fan, Aili; Xie, Xiulan; Li, Shu-Ming

    2015-07-21

    Tryptophan prenyltransferases FgaPT2, 5-DMATS, 6-DMATSSv and 7-DMATS catalyse regiospecific C-prenylations on the indole ring, while tyrosine prenyltransferases SirD and TyrPT catalyse the O-prenylation of the phenolic hydroxyl group. In this study, we report the Friedel-Crafts alkylation of L-o-tyrosine by these enzymes. Surprisingly, no conversion was detected with SirD and three tryptophan prenyltransferases showed significantly higher activity than another tyrosine prenyltransferase TyrPT. C5-prenylated L-o-tyrosine was identified as a unique product of these enzymes. Using L-m-tyrosine as the prenylation substrate, product formation was only observed with the tryptophan prenyltransferases FgaPT2 and 7-DMATS. C4- and C6-prenylated derivatives were identified in the reaction mixture of FgaPT2. These results provided additional evidence for the similarities and differences between these two subgroups within the DMATS superfamily in their catalytic behaviours. PMID:26077893

  12. IL-4 function can be transferred to the IL-2 receptor by tyrosine containing sequences found in the IL-4 receptor alpha chain.

    PubMed

    Wang, H Y; Paul, W E; Keegan, A D

    1996-02-01

    IL-4 binds to a cell surface receptor complex that consists of the IL-4 binding protein (IL-4R alpha) and the gamma chain of the IL-2 receptor complex (gamma c). The receptors for IL-4 and IL-2 have several features in common; both use the gamma c as a receptor component, and both activate the Janus kinases JAK-1 and JAK-3. In spite of these similarities, IL-4 evokes specific responses, including the tyrosine phosphorylation of 4PS/IRS-2 and the induction of CD23. To determine whether sequences within the cytoplasmic domain of the IL-4R alpha specify these IL-4-specific responses, we transplanted the insulin IL-4 receptor motif (I4R motif) of the huIL-4R alpha to the cytoplasmic domain of a truncated IL-2R beta. In addition, we transplanted a region that contains peptide sequences shown to block Stat6 binding to DNA. We analyzed the ability of cells expressing these IL-2R-IL-4R chimeric constructs to respond to IL-2. We found that IL-4 function could be transplanted to the IL-2 receptor by these regions and that proliferative and differentiative functions can be induced by different receptor sequences.

  13. A peripherally administered, centrally acting angiotensin II AT2 antagonist selectively increases brain AT1 receptors and decreases brain tyrosine hydroxylase transcription, pituitary vasopressin and ACTH.

    PubMed

    Macova, Miroslava; Pavel, Jaroslav; Saavedra, Juan M

    2009-01-23

    The physiological actions of brain Angiotensin II AT(2) receptors and their relationship to Angiotensin II AT(1) receptors remain controversial. To further clarify their role, we determined to what extent systemic administration of an AT(2) receptor antagonist affected AT(2) receptor binding within the brain and the expression of AT(1) receptors. For this purpose, we subcutaneously administered the AT(2) receptor antagonist PD123319 (1 mg/kg/day) to adult male rats for two weeks via osmotic minipumps. We also studied the content of pituitary adrenocorticotropic hormone and vasopressin, representative of hypothalamic-pituitary-adrenal axis activation, and the tyrosine hydroxylase gene expression in the locus coeruleus as a measure of central norepinephrine function. We found significant decreases in AT(2) receptor binding in brain areas inside the blood brain barrier, the inferior olive and the locus coeruleus. AT(2) receptor blockade increased AT(1) receptor binding and mRNA expression not only in the subfornical organ and the median eminence, situated outside the blood brain barrier, but also in the hypothalamic paraventricular nucleus, located inside the blood brain barrier. These changes paralleled decreased expression of tyrosine hydroxylase mRNA in the locus coeruleus and decreased pituitary adrenocorticotropic and vasopressin content. Our results demonstrate that sustained peripheral administration of an AT(2) antagonist decreases binding to brain AT(2) receptors, indicating that this drug is a useful tool for the study of their central role. AT(2) receptor activity inhibition up-regulates AT(1) receptor expression in specific brain areas. Blockade of brain AT(2) receptors is compatible with enhanced hypothalamic-pituitary-adrenal axis and decreased central sympathetic system activity.

  14. Sequential phosphorylation of SLP-76 at tyrosine 173 is required for activation of T and mast cells

    PubMed Central

    Sela, Meirav; Bogin, Yaron; Beach, Dvora; Oellerich, Thomas; Lehne, Johanna; Smith-Garvin, Jennifer E; Okumura, Mariko; Starosvetsky, Elina; Kosoff, Rachelle; Libman, Evgeny; Koretzky, Gary; Kambayashi, Taku; Urlaub, Henning; Wienands, Jürgen; Chernoff, Jonathan; Yablonski, Deborah

    2011-01-01

    Cooperatively assembled signalling complexes, nucleated by adaptor proteins, integrate information from surface receptors to determine cellular outcomes. In T and mast cells, antigen receptor signalling is nucleated by three adaptors: SLP-76, Gads and LAT. Three well-characterized SLP-76 tyrosine phosphorylation sites recruit key components, including a Tec-family tyrosine kinase, Itk. We identified a fourth, evolutionarily conserved SLP-76 phosphorylation site, Y173, which was phosphorylated upon T-cell receptor stimulation in primary murine and Jurkat T cells. Y173 was required for antigen receptor-induced phosphorylation of phospholipase C-γ1 (PLC-γ1) in both T and mast cells, and for consequent downstream events, including activation of the IL-2 promoter in T cells, and degranulation and IL-6 production in mast cells. In intact cells, Y173 phosphorylation depended on three, ZAP-70-targeted tyrosines at the N-terminus of SLP-76 that recruit and activate Itk, a kinase that selectively phosphorylated Y173 in vitro. These data suggest a sequential mechanism whereby ZAP-70-dependent priming of SLP-76 at three N-terminal sites triggers reciprocal regulatory interactions between Itk and SLP-76, which are ultimately required to couple active Itk to its substrate, PLC-γ1. PMID:21725281

  15. Diurnal variations in response of rat liver tyrosine aminotransferase activity to food intake.

    PubMed

    Kato, H; Saito, M

    1980-01-01

    Effects of fasting and refeeding on the hepatic tyrosine aminotransferase activity were examined in rats that had been fed during the night. The tyrosine aminotransferase activity showed clear diurnal variations, with a maximal activity after the feeding time. The tyrosine aminotransferase rhythm persisted even under starvation, though the amplitude decreased remarkably. When the starved rats were refed at night, the tyrosine aminotransferase activity increased rapidly to a high level, but it increased slowly to a rather lower level when they were refed in daytime.

  16. The growth hormone receptor: mechanism of activation and clinical implications.

    PubMed

    Brooks, Andrew J; Waters, Michael J

    2010-09-01

    Growth hormone is widely used clinically to promote growth and anabolism and for other purposes. Its actions are mediated via the growth hormone receptor, both directly by tyrosine kinase activation and indirectly by induction of insulin-like growth factor 1 (IGF-1). Insensitivity to growth hormone (Laron syndrome) can result from mutations in the growth hormone receptor and can be treated with IGF-1. This treatment is, however, not fully effective owing to the loss of the direct actions of growth hormone and altered availability of exogenous IGF-1. Excessive activation of the growth hormone receptor by circulating growth hormone results in gigantism and acromegaly, whereas cell transformation and cancer can occur in response to autocrine activation of the receptor. Advances in understanding the mechanism of receptor activation have led to a model in which the growth hormone receptor exists as a constitutive dimer. Binding of the hormone realigns the subunits by rotation and closer apposition, resulting in juxtaposition of the catalytic domains of the associated tyrosine-protein kinase JAK2 below the cell membrane. This change results in activation of JAK2 by transphosphorylation, then phosphorylation of receptor tyrosines in the cytoplasmic domain, which enables binding of adaptor proteins, as well as direct phosphorylation of target proteins. This model is discussed in the light of salient information from closely related class 1 cytokine receptors, such as the erythropoietin, prolactin and thrombopoietin receptors. PMID:20664532

  17. Crystal Structure of the Frizzled-like Cysteine-rich Domain of the Receptor Tyrosine Kinase MuSK

    PubMed Central

    Stiegler, Amy L.; Burden, Steven J.; Hubbard, Stevan R.

    2009-01-01

    Muscle-specific kinase (MuSK) is an essential receptor tyrosine kinase for establishment and maintenance of the neuromuscular junction (NMJ). Activation of MuSK by agrin, a neuronally derived heparan-sulfate proteoglycan, and LRP4, the agrin receptor, leads to clustering of acetylcholine receptors on the postsynaptic side of the NMJ. The ectodomain of MuSK comprises three immunoglobulin-like domains and a cysteine-rich domain (Fz-CRD) related to those in Frizzled proteins, the receptors for Wnts. Here, we report the crystal structure of the MuSK Fz-CRD at 2.1 Å resolution. The structure reveals a five disulfide-bridged domain similar to CRDs of Frizzled proteins, but with a divergent C-terminal region. An asymmetric dimer present in the crystal structure implicates surface hydrophobic residues that may function in homotypic or heterotypic interactions to mediate co-clustering of MuSK, rapsyn, and acetylcholine receptors at the NMJ. PMID:19664639

  18. Long-term potentiation increases tyrosine phosphorylation of the N-methyl-D-aspartate receptor subunit 2B in rat dentate gyrus in vivo.

    PubMed Central

    Rosenblum, K; Dudai, Y; Richter-Levin, G

    1996-01-01

    Long-term potentiation (LTP) is a form of synaptic memory that may subserve developmental and behavioral plasticity. An intensively investigated form of LTP is dependent upon N-methyl-D-aspartate (NMDA) receptors and can be elicited in the dentate gyrus and hippocampal CA1. Induction of this type of LTP is triggered by influx of Ca2+ through activated NMDA receptors, but the downstream mechanisms of induction, and even more so of LTP maintenance, remain controversial. It has been reported that the function of NMDA receptor channel can be regulated by protein tyrosine kinases and protein phosphatases and that inhibition of protein tyrosine kinases impairs induction of LTP. Herein we report that LTP in the dentate gyrus is specifically correlated with tyrosine phosphorylation of the NMDA receptor subunit 2B in an NMDA receptor-dependent manner. The effect is observed with a delay of several minutes after LTP induction and persists in vivo for several hours. The potential relevance of this post-translational modification to mechanisms of LTP and circuit plasticity is discussed. Images Fig. 1 Fig. 2 PMID:8816822

  19. A novel endothelial cell surface receptor tyrosine kinase with extracellular epidermal growth factor homology domains.

    PubMed Central

    Partanen, J; Armstrong, E; Mäkelä, T P; Korhonen, J; Sandberg, M; Renkonen, R; Knuutila, S; Huebner, K; Alitalo, K

    1992-01-01

    Endothelial cell surfaces play key roles in several important physiological and pathological processes such as blood clotting, angiogenic responses, and inflammation. Here we describe the cloning and characterization of tie, a novel type of human endothelial cell surface receptor tyrosine kinase. The extracellular domain of the predicted tie protein product has an exceptional multidomain structure consisting of a cluster of three epidermal growth factor homology motifs embedded between two immunoglobulinlike loops, which are followed by three fibronectin type III repeats next to the transmembrane region. Additionally, a cDNA form lacking the first of the three epidermal growth factor homology domains was isolated, suggesting that alternative splicing creates different tie-type receptors. Cells transfected with tie cDNA expression vector produce glycosylated polypeptides of 117 kDa which are reactive to antisera raised against the tie carboxy terminus. The tie gene was located in chromosomal region 1p33 to 1p34. Expression of the tie gene appeared to be restricted in some cell lines; large amounts of tie mRNA were detected in endothelial cell lines and in some myeloid leukemia cell lines with erythroid and megakaryoblastoid characteristics. In addition, mRNA in situ studies further indicated the endothelial expression of the tie gene. The tie receptor tyrosine kinase may have evolved for multiple protein-protein interactions, possibly including cell adhesion to the vascular endothelium. Images PMID:1312667

  20. The ER structural protein Rtn4A stabilizes and enhances signaling through the receptor tyrosine kinase ErbB3.

    PubMed

    Hatakeyama, Jason; Wald, Jessica H; Rafidi, Hanine; Cuevas, Antonio; Sweeney, Colleen; Carraway, Kermit L

    2016-01-01

    ErbB3 and ErbB4 are receptor tyrosine kinases that are activated by the neuregulin (NRG) family of growth factors. These receptors govern various developmental processes, and their dysregulation contributes to several human disease states. The abundance of ErbB3 and ErbB4, and thus signaling through these receptors, is limited by the E3 ubiquitin ligase Nrdp1, which targets ErbB3 and ErbB4 for degradation. Reticulons are proteins that influence the morphology of the endoplasmic reticulum (ER) by promoting the formation of tubules, a response of cells to some stressors. We found that the ER structural protein reticulon 4A (Rtn4A, also known as Nogo-A) increased ErbB3 abundance and proliferative signaling by suppressing Nrdp1 function. Rtn4A interacted with Nrdp1 and stabilized ErbB3 in an Nrdp1-dependent manner. Rtn4A overexpression induced the redistribution of Nrdp1 from a cytosolic or perinuclear localization to ER tubules. Rtn4A knockdown in human breast tumor cells decreased ErbB3 abundance, NRG-stimulated signaling, and cellular proliferation and migration. Because proteins destined for the plasma membrane are primarily synthesized in the sheet portions of the ER, our observations suggest that Rtn4A counteracts the Nrdp1-mediated degradation of ErbB3 by sequestering the ubiquitin ligase into ER tubules. The involvement of a reticulon suggests a molecular link between ER structure and the sensitivity of cells to receptor tyrosine kinase-mediated survival signals at the cell surface. PMID:27353365

  1. Tyrosine phosphorylation regulates the endocytosis and surface expression of GluN3A-containing NMDA receptors.

    PubMed

    Chowdhury, Dhrubajyoti; Marco, Sonia; Brooks, Ian M; Zandueta, Aitor; Rao, Yijian; Haucke, Volker; Wesseling, John F; Tavalin, Steven J; Pérez-Otaño, Isabel

    2013-02-27

    Selective control of receptor trafficking provides a mechanism for remodeling the receptor composition of excitatory synapses, and thus supports synaptic transmission, plasticity, and development. GluN3A (formerly NR3A) is a nonconventional member of the NMDA receptor (NMDAR) subunit family, which endows NMDAR channels with low calcium permeability and reduced magnesium sensitivity compared with NMDARs comprising only GluN1 and GluN2 subunits. Because of these special properties, GluN3A subunits act as a molecular brake to limit the plasticity and maturation of excitatory synapses, pointing toward GluN3A removal as a critical step in the development of neuronal circuitry. However, the molecular signals mediating GluN3A endocytic removal remain unclear. Here we define a novel endocytic motif (YWL), which is located within the cytoplasmic C-terminal tail of GluN3A and mediates its binding to the clathrin adaptor AP2. Alanine mutations within the GluN3A endocytic motif inhibited clathrin-dependent internalization and led to accumulation of GluN3A-containing NMDARs at the cell surface, whereas mimicking phosphorylation of the tyrosine residue promoted internalization and reduced cell-surface expression as shown by immunocytochemical and electrophysiological approaches in recombinant systems and rat neurons in primary culture. We further demonstrate that the tyrosine residue is phosphorylated by Src family kinases, and that Src-activation limits surface GluN3A expression in neurons. Together, our results identify a new molecular signal for GluN3A internalization that couples the functional surface expression of GluN3A-containing receptors to the phosphorylation state of GluN3A subunits, and provides a molecular framework for the regulation of NMDAR subunit composition with implications for synaptic plasticity and neurodevelopment. PMID:23447623

  2. Platelet-derived growth factor (PDGF)-induced tyrosine phosphorylation of the low density lipoprotein receptor-related protein (LRP). Evidence for integrated co-receptor function betwenn LRP and the PDGF.

    PubMed

    Loukinova, Elena; Ranganathan, Sripriya; Kuznetsov, Sergey; Gorlatova, Natalia; Migliorini, Mary M; Loukinov, Dmitri; Ulery, Paula G; Mikhailenko, Irina; Lawrence, Daniel A; Strickland, Dudley K

    2002-05-01

    The low density lipoprotein receptor-related protein (LRP) functions in the catabolism of numerous ligands including proteinases, proteinase inhibitor complexes, and lipoproteins. In the current study we provide evidence indicating an expanded role for LRP in modulating cellular signaling events. Our results show that platelet-derived growth factor (PDGF) BB induces a transient tyrosine phosphorylation of the LRP cytoplasmic domain in a process dependent on PDGF receptor activation and c-Src family kinase activity. Other growth factors, including basic fibroblast growth factor, epidermal growth factor, insulin-like growth factor-1, were unable to mediate tyrosine phosphorylation of LRP. The basis for this selectivity may result from the ability of LRP to bind PDGFBB, because surface plasmon resonance experiments demonstrated that only PDGF, and not basic fibroblast growth factor, epidermal growth factor, or insulin-like growth factor-1, bound to purified LRP immobilized on a sensor chip. The use of LRP mini-receptor mutants as well as in vitro phosphorylation studies demonstrated that the tyrosine located within the second NPXY motif found in the LRP cytoplasmic domain is the primary site of tyrosine phosphorylation by Src and Src family kinases. Co-immunoprecipitation experiments revealed that PDGF-mediated tyrosine phosphorylation of LRPs cytoplasmic domain results in increased association of the adaptor protein Shc with LRP and that Shc recognizes the second NPXY motif within LRPs cytoplasmic domain. In the accompanying paper, Boucher et al. (Boucher, P., Liu, P. V., Gotthardt, M., Hiesberger, T., Anderson, R. G. W., and Herz, J. (2002) J. Biol. Chem. 275, 15507-15513) reveal that LRP is found in caveolae along with the PDGF receptor. Together, these studies suggest that LRP functions as a co-receptor that modulates signal transduction pathways initiated by the PDGF receptor. PMID:11854294

  3. Centrosomal targeting of tyrosine kinase activity does not enhance oncogenicity in chronic myeloproliferative disorders.

    PubMed

    Bochtler, T; Kirsch, M; Maier, B; Bachmann, J; Klingmüller, U; Anderhub, S; Ho, A D; Krämer, A

    2012-04-01

    Constitutive tyrosine kinase activation by reciprocal chromosomal translocation is a common pathogenetic mechanism in chronic myeloproliferative disorders. Since centrosomal proteins have been recurrently identified as translocation partners of tyrosine kinases FGFR1, JAK2, PDGFRα and PDGFRβ in these diseases, a role for the centrosome in oncogenic transformation has been hypothesized. In this study, we addressed the functional role of centrosomally targeted tyrosine kinase activity. First, centrosomal localization was not routinely found for all chimeric fusion proteins tested. Second, targeting of tyrosine kinases to the centrosome by creating artificial chimeric fusion kinases with the centrosomal targeting domain of AKAP450 failed to enhance the oncogenic transforming potential in both Ba/F3 and U2OS cells, although phospho-tyrosine-mediated signal transduction pathways were initiated at the centrosome. We conclude that the centrosomal localization of constitutively activated tyrosine kinases does not contribute to disease pathogenesis in chronic myeloproliferative disorders. PMID:22015771

  4. No obvious abnormality in mice deficient in receptor protein tyrosine phosphatase beta.

    PubMed

    Harroch, S; Palmeri, M; Rosenbluth, J; Custer, A; Okigaki, M; Shrager, P; Blum, M; Buxbaum, J D; Schlessinger, J

    2000-10-01

    The development of neurons and glia is governed by a multitude of extracellular signals that control protein tyrosine phosphorylation, a process regulated by the action of protein tyrosine kinases and protein tyrosine phosphatases (PTPs). Receptor PTPbeta (RPTPbeta; also known as PTPzeta) is expressed predominantly in the nervous system and exhibits structural features common to cell adhesion proteins, suggesting that this phosphatase participates in cell-cell communication. It has been proposed that the three isoforms of RPTPbeta play a role in regulation of neuronal migration, neurite outgrowth, and gliogenesis. To investigate the biological functions of this PTP, we have generated mice deficient in RPTPbeta. RPTPbeta-deficient mice are viable, are fertile, and showed no gross anatomical alterations in the nervous system or other organs. In contrast to results of in vitro experiments, our study demonstrates that RPTPbeta is not essential for neurite outgrowth and node formation in mice. The ultrastructure of nerves of the central nervous system in RPTPbeta-deficient mice suggests a fragility of myelin. However, conduction velocity was not altered in RPTPbeta-deficient mice. The normal development of neurons and glia in RPTPbeta-deficient mice demonstrates that RPTPbeta function is not necessary for these processes in vivo or that loss of RPTPbeta can be compensated for by other PTPs expressed in the nervous system. PMID:11003666

  5. Sleeping Beauty Transposition of Chimeric Antigen Receptors Targeting Receptor Tyrosine Kinase-Like Orphan Receptor-1 (ROR1) into Diverse Memory T-Cell Populations

    PubMed Central

    Deniger, Drew C.; Yu, Jianqiang; Huls, M. Helen; Figliola, Matthew J.; Mi, Tiejuan; Maiti, Sourindra N.; Widhopf, George F.; Hurton, Lenka V.; Thokala, Radhika; Singh, Harjeet; Olivares, Simon; Champlin, Richard E.; Wierda, William G.; Kipps, Thomas J.; Cooper, Laurence J. N.

    2015-01-01

    T cells modified with chimeric antigen receptors (CARs) targeting CD19 demonstrated clinical activity against some B-cell malignancies. However, this is often accompanied by a loss of normal CD19+ B cells and humoral immunity. Receptor tyrosine kinase-like orphan receptor-1 (ROR1) is expressed on sub-populations of B-cell malignancies and solid tumors, but not by healthy B cells or normal post-partum tissues. Thus, adoptive transfer of T cells specific for ROR1 has potential to eliminate tumor cells and spare healthy tissues. To test this hypothesis, we developed CARs targeting ROR1 in order to generate T cells specific for malignant cells. Two Sleeping Beauty transposons were constructed with 2nd generation ROR1-specific CARs signaling through CD3ζ and either CD28 (designated ROR1RCD28) or CD137 (designated ROR1RCD137) and were introduced into T cells. We selected for T cells expressing CAR through co-culture with γ-irradiated activating and propagating cells (AaPC), which co-expressed ROR1 and co-stimulatory molecules. Numeric expansion over one month of co-culture on AaPC in presence of soluble interleukin (IL)-2 and IL-21 occurred and resulted in a diverse memory phenotype of CAR+ T cells as measured by non-enzymatic digital array (NanoString) and multi-panel flow cytometry. Such T cells produced interferon-γ and had specific cytotoxic activity against ROR1+ tumors. Moreover, such cells could eliminate ROR1+ tumor xenografts, especially T cells expressing ROR1RCD137. Clinical trials will investigate the ability of ROR1-specific CAR+ T cells to specifically eliminate tumor cells while maintaining normal B-cell repertoire. PMID:26030772

  6. Sleeping Beauty Transposition of Chimeric Antigen Receptors Targeting Receptor Tyrosine Kinase-Like Orphan Receptor-1 (ROR1) into Diverse Memory T-Cell Populations.

    PubMed

    Deniger, Drew C; Yu, Jianqiang; Huls, M Helen; Figliola, Matthew J; Mi, Tiejuan; Maiti, Sourindra N; Widhopf, George F; Hurton, Lenka V; Thokala, Radhika; Singh, Harjeet; Olivares, Simon; Champlin, Richard E; Wierda, William G; Kipps, Thomas J; Cooper, Laurence J N

    2015-01-01

    T cells modified with chimeric antigen receptors (CARs) targeting CD19 demonstrated clinical activity against some B-cell malignancies. However, this is often accompanied by a loss of normal CD19+ B cells and humoral immunity. Receptor tyrosine kinase-like orphan receptor-1 (ROR1) is expressed on sub-populations of B-cell malignancies and solid tumors, but not by healthy B cells or normal post-partum tissues. Thus, adoptive transfer of T cells specific for ROR1 has potential to eliminate tumor cells and spare healthy tissues. To test this hypothesis, we developed CARs targeting ROR1 in order to generate T cells specific for malignant cells. Two Sleeping Beauty transposons were constructed with 2nd generation ROR1-specific CARs signaling through CD3ζ and either CD28 (designated ROR1RCD28) or CD137 (designated ROR1RCD137) and were introduced into T cells. We selected for T cells expressing CAR through co-culture with γ-irradiated activating and propagating cells (AaPC), which co-expressed ROR1 and co-stimulatory molecules. Numeric expansion over one month of co-culture on AaPC in presence of soluble interleukin (IL)-2 and IL-21 occurred and resulted in a diverse memory phenotype of CAR+ T cells as measured by non-enzymatic digital array (NanoString) and multi-panel flow cytometry. Such T cells produced interferon-γ and had specific cytotoxic activity against ROR1+ tumors. Moreover, such cells could eliminate ROR1+ tumor xenografts, especially T cells expressing ROR1RCD137. Clinical trials will investigate the ability of ROR1-specific CAR+ T cells to specifically eliminate tumor cells while maintaining normal B-cell repertoire. PMID:26030772

  7. Glucocorticoid regulation of insulin receptor and substrate IRS-1 tyrosine phosphorylation in rat skeletal muscle in vivo.

    PubMed Central

    Giorgino, F; Almahfouz, A; Goodyear, L J; Smith, R J

    1993-01-01

    To test the hypothesis that glucocorticoid-induced insulin resistance might originate from abnormalities in insulin receptor signaling, we investigated the effects of glucocorticoids on in vivo tyrosine phosphorylation of the insulin receptor and the insulin receptor substrate IRS-1 in rat skeletal muscle. Male Sprague-Dawley rats were treated with cortisone (100 mg/kg for 5 d) and compared to pair-fed controls. Cortisone treatment of rats resulted in both hyperglycemia and hyperinsulinemia. Anesthetized animals were injected with 10 U/kg insulin via cardiac puncture and, after 2 min, hindlimb muscles were removed, snap-frozen, and homogenized in SDS. Protein tyrosine phosphorylation was studied by immunoblotting with phosphotyrosine antibody. Insulin receptors and substrate IRS-1 were identified and quantified with specific antibodies. Cortisone treatment increased the amount of insulin receptor protein by 36%, but decreased the total level of receptor tyrosine phosphorylation (69 +/- 4% of control, P < 0.05). The decreased level of receptor phosphorylation was explained by a reduced number of receptors containing phosphorylated tyrosine residues (64.6 +/- 5% of control, P < 0.05). Glucocorticoid excess decreased skeletal muscle IRS-1 content by 50%, but did not significantly alter the total level of IRS-1 tyrosine phosphorylation. The apparent M(r) of IRS-1 was reduced by approximately 10 kD. Treatment with protein phosphatase-2A reduced IRS-1 M(r) in control but not in glucocorticoid-treated muscle indicating that the lower M(r) likely results from lower phosphoserine and/or phosphothreonine content. To investigate the role of hyperinsulinemia in the glucocorticoid response, rats were made insulin-deficient with streptozotocin (100 mg/kg, i.p.). Subsequent treatment with cortisone for 5 d had no effects on insulin levels, tyrosine phosphorylation of insulin receptors or IRS-1, or the M(r) of IRS-1. In conclusion, glucocorticoid-treated skeletal muscle is

  8. The type 1 insulin-like growth factor receptor signalling system and targeted tyrosine kinase inhibition in cancer.

    PubMed

    Haisa, Minoru

    2013-04-01

    Type 1 insulin-like growth factor receptor (IGF1R) signalling plays a critical role in normal cell growth, and in cancer development and progression. IGF1R and the insulin-like growth factors 1 and 2 (IGF1 and IGF2) are involved in various aspects of the malignant phenotype, suggesting that IGF1R is a potential target for cancer therapy. IGF1R is particularly important in the establishment and maintenance of the transformed phenotype, in mediating proliferation, and for the survival of tumour cells with anchorage-independent growth. IGF1R also exerts antiapoptotic activity and has a substantial influence on the control of the cell and body size. This property enables transformed cells to form macroscopic tumours and to survive the process of detachment required for metastasis. Pharmaceutical companies are investigating molecules that target IGF1R, including specific low molecular weight tyrosine kinase inhibitors and monoclonal antibodies, both of which possess various advantages and display different activity profiles. This review article focuses on the preclinical and clinical development of low molecular weight IGF1R tyrosine kinase inhibitors. It is critical to pursue a thorough molecular analysis of the metabolic activity of IGF1R to avoid possible side-effects of its inhibition.

  9. Axl receptor tyrosine kinase is up-regulated in metformin resistant prostate cancer cells

    PubMed Central

    Bansal, Nitu; Mishra, Prasun J.; Stein, Mark; DiPaola, Robert S.; Bertino, Joseph R.

    2015-01-01

    Recent epidemiological studies showed that metformin, a widely used anti-diabetic drug might prevent certain cancers. Metformin also has an anti-proliferative effect in preclinical studies of both hematologic malignancies as well as solid cancers and clinical studies testing metformin as an anti-cancer drug are in progress. However, all cancer types do not respond to metformin with the same effectiveness or acquire resistance. To understand the mechanism of acquired resistance and possibly its mechanism of action as an anti-proliferative agent, we developed metformin resistant LNCaP prostate cancer cells. Metformin resistant LNCaP cells had an increased proliferation rate, increased migration and invasion ability as compared to the parental cells, and expressed markers of epithelial-mesenchymal transition (EMT). A detailed gene expression microarray comparing the resistant cells to the wild type cells revealed that Edil2, Ereg, Axl, Anax2, CD44 and Anax3 were the top up-regulated genes and calbindin 2 and TPTE (transmembrane phosphatase with tensin homology) and IGF1R were down regulated. We focused on Axl, a receptor tyrosine kinase that has been shown to be up regulated in several drug resistance cancers. Here, we show that the metformin resistant cell line as well as castrate resistant cell lines that over express Axl were more resistant to metformin, as well as to taxotere compared to androgen sensitive LNCaP and CWR22 cells that do not overexpress Axl. Forced overexpression of Axl in LNCaP cells decreased metformin and taxotere sensitivity and knockdown of Axl in resistant cells increased sensitivity to these drugs. Inhibition of Axl activity by R428, a small molecule Axl kinase inhibitor, sensitized metformin resistant cells that overexpressed Axl to metformin. Inhibitors of Axl may enhance tumor responses to metformin and other chemotherapy in cancers that over express Axl. PMID:26036314

  10. Catalytic and substrate promiscuity: distinct multiple chemistries catalysed by the phosphatase domain of receptor protein tyrosine phosphatase.

    PubMed

    Srinivasan, Bharath; Marks, Hanna; Mitra, Sreyoshi; Smalley, David M; Skolnick, Jeffrey

    2016-07-15

    The presence of latent activities in enzymes is posited to underlie the natural evolution of new catalytic functions. However, the prevalence and extent of such substrate and catalytic ambiguity in evolved enzymes is difficult to address experimentally given the order-of-magnitude difference in the activities for native and, sometimes, promiscuous substrate/s. Further, such latent functions are of special interest when the activities concerned do not fall into the domain of substrate promiscuity. In the present study, we show a special case of such latent enzyme activity by demonstrating the presence of two mechanistically distinct reactions catalysed by the catalytic domain of receptor protein tyrosine phosphatase isoform δ (PTPRδ). The primary catalytic activity involves the hydrolysis of a phosphomonoester bond (C─O─P) with high catalytic efficiency, whereas the secondary activity is the hydrolysis of a glycosidic bond (C─O─C) with poorer catalytic efficiency. This enzyme also displays substrate promiscuity by hydrolysing diester bonds while being highly discriminative for its monoester substrates. To confirm these activities, we also demonstrated their presence on the catalytic domain of protein tyrosine phosphatase Ω (PTPRΩ), a homologue of PTPRδ. Studies on the rate, metal-ion dependence, pH dependence and inhibition of the respective activities showed that they are markedly different. This is the first study that demonstrates a novel sugar hydrolase and diesterase activity for the phosphatase domain (PD) of PTPRδ and PTPRΩ. This work has significant implications for both understanding the evolution of enzymatic activity and the possible physiological role of this new chemistry. Our findings suggest that the genome might harbour a wealth of such alternative latent enzyme activities in the same protein domain that renders our knowledge of metabolic networks incomplete.

  11. Receptor tyrosine phosphatase psi is required for Delta/Notch signalling and cyclic gene expression in the presomitic mesoderm.

    PubMed

    Aerne, Birgit; Ish-Horowicz, David

    2004-07-01

    Segmentation in vertebrate embryos is controlled by a biochemical oscillator ('segmentation clock') intrinsic to the cells in the unsegmented presomitic mesoderm, and is manifested in cyclic transcription of genes involved in establishing somite polarity and boundaries. We show that the receptor protein tyrosine phosphatase psi (RPTPpsi) gene is essential for normal functioning of the somitogenesis clock in zebrafish. We show that reduction of RPTPpsi activity using morpholino antisense oligonucleotides results in severe disruption of the segmental pattern of the embryo, and loss of cyclic gene expression in the presomitic mesoderm. Analysis of cyclic genes in RPTPpsi morphant embryos indicates an important requirement for RPTPpsi in the control of the somitogenesis clock upstream of or in parallel with Delta/Notch signalling. Impairing RPTPpsi activity also interferes with convergent extension during gastrulation. We discuss this dual requirement for RPTPpsi in terms of potential functions in Notch and Wnt signalling. PMID:15226256

  12. Epidermal growth factor receptor tyrosine kinase as a target for anticancer therapy.

    PubMed

    Raymond, E; Faivre, S; Armand, J P

    2000-01-01

    Increasing knowledge of the structure and function of the epidermal growth factor receptor (EGFR) subfamily of tyrosine kinases and of their role in the initiation and progression of various cancers has, in recent years, provided the impetus for a substantial research effort aimed at developing new anticancer therapies that target specific components of the EGFR signal transduction pathway. Selective compounds have been developed that target either the extracellular ligand-binding region of the EGFR or the intracellular tyrosine kinase region, resulting in interference with the signalling pathways that modulate mitogenic and other cancer-promoting responses (e.g. cell motility, cell adhesion, invasion and angiogenesis). Potential new anticancer agents that target the extracellular ligand-binding region of the receptor include a number of monoclonal antibodies, immunotoxins and ligand-binding cytotoxic agents. Agents that target the intracellular tyrosine kinase region include small molecule tyrosine kinase inhibitors (TKIs), which act by interfering with ATP binding to the receptor, and various other compounds that act at substrate-binding regions or downstream components of the signalling pathway. Currently, the most advanced of the newer therapies undergoing clinical development are antireceptor monoclonal antibodies (e.g. trastuzumab and cetuximab) and a number of small molecule EGFR-TKIs principally of the quinazoline and pyrazolo-pyrrolo-pyridopyrimidine inhibitor structural classes. The latter group of compounds offers several advantages in cancer chemotherapy, including the possibility of inhibiting specific deregulated pathways in cancer cells while having minimal effects on normal cell function. They also have favourable pharmacokinetic and pharmacodynamic properties and low toxicity, and some TKIs such as the reversible inhibitor ZD1839 ('Iressa') are now undergoing phase II to III clinical trials. In addition, the accumulation of evidence from laboratory

  13. The Syk protein tyrosine kinase can function independently of CD45 or Lck in T cell antigen receptor signaling.

    PubMed Central

    Chu, D H; Spits, H; Peyron, J F; Rowley, R B; Bolen, J B; Weiss, A

    1996-01-01

    The protein tyrosine phosphatase CD45 is a critical component of the T cell antigen receptor (TCR) signaling pathway, acting as a positive regulator of Src family protein tyrosine kinases (PTKs) such as Lck. Most CD45-deficient human and murine T cell lines are unable to signal through their TCRs. However, there is a CD45-deficient cell line that can signal through its TCR. We have studied this cell line to identify a TCR signaling pathway that is independent of CD45 regulation. In the course of these experiments, we found that the Syk PTK, but not the ZAP-70 PTK, is able to mediate TCR signaling independently of CD45 and of Lck. For this function, Syk requires functional kinase and SH2 domains, as well as intact phosphorylation sites in the regulatory loop of its kinase domain. Thus, differential expression of Syk is likely to explain the paradoxical phenotypes of different CD45-deficient T cells. Finally, these results suggest differences in activation requirements between two closely related PTK family members, Syk and ZAP-70. The differential activities of these two kinases suggest that they may play distinct, rather than completely redundant, roles in lymphocyte signaling. Images PMID:8947048

  14. Comparative Analysis of Protein Tyrosine Phosphatases Regulating Microglial Activation

    PubMed Central

    Song, Gyun Jee; Kim, Jaehong; Kim, Jong-Heon; Song, Seungeun; Park, Hana; Zhang, Zhong-Yin

    2016-01-01

    Protein tyrosine phosphatases (PTPs) are key regulatory factors in inflammatory signaling pathways. Although PTPs have been extensively studied, little is known about their role in neuroinflammation. In the present study, we examined the expression of 6 different PTPs (PTP1B, TC-PTP, SHP2, MEG2, LYP, and RPTPβ) and their role in glial activation and neuroinflammation. All PTPs were expressed in brain and glia. The expression of PTP1B, SHP2, and LYP was enhanced in the inflamed brain. The expression of PTP1B, TC-PTP, and LYP was increased after treating microglia cells with lipopolysaccharide (LPS). To examine the role of PTPs in microglial activation and neuroinflammation, we used specific pharmacological inhibitors of PTPs. Inhibition of PTP1B, TC-PTP, SHP2, LYP, and RPTPβ suppressed nitric oxide production in LPS-treated microglial cells in a dose-dependent manner. Furthermore, intracerebroventricular injection of PTP1B, TC-PTP, SHP2, and RPTPβ inhibitors downregulated microglial activation in an LPS-induced neuroinflammation model. Our results indicate that multiple PTPs are involved in regulating microglial activation and neuroinflammation, with different expression patterns and specific functions. Thus, PTP inhibitors can be exploited for therapeutic modulation of microglial activation in neuroinflammatory diseases. PMID:27790059

  15. Role of Receptor Protein Tyrosine Phosphatase γ in Sensing Extracellular CO2 and HCO3.

    PubMed

    Zhou, Yuehan; Skelton, Lara A; Xu, Lumei; Chandler, Margaret P; Berthiaume, Jessica M; Boron, Walter F

    2016-09-01

    Regulation of blood pH-critical for virtually every facet of life-requires that the renal proximal tubule (PT) adjust its rate of H(+) secretion (nearly the same as the rate of HCO3 (-) reabsorption, JHCO3 ) in response to changes in blood [CO2] and [HCO3 (-)]. Yet CO2/HCO3 (-) sensing mechanisms remain poorly characterized. Because receptor tyrosine kinase inhibitors render JHCO3 in the PT insensitive to changes in CO2 concentration, we hypothesized that the structural features of receptor protein tyrosine phosphatase-γ (RPTPγ) that are consistent with binding of extracellular CO2 or HCO3 (-) facilitate monitoring of blood CO2/HCO3 (-) concentrations. We now report that PTs express RPTPγ on blood-facing membranes. Moreover, RPTPγ deletion in mice eliminated the CO2 and HCO3 (-) sensitivities of JHCO3 as well as the normal defense of blood pH during whole-body acidosis. Thus, RPTPγ appears to be a novel extracellular CO2/HCO3 (-) sensor critical for pH homeostasis. PMID:26839367

  16. Multiple Functions of Let-23, a Caenorhabditis Elegans Receptor Tyrosine Kinase Gene Required for Vulval Induction

    PubMed Central

    Aroian, R. V.; Sternberg, P. W.

    1991-01-01

    The let-23 gene, which encodes a putative tyrosine kinase of the epidermal growth factor (EGF) receptor subfamily, has multiple functions during Caenorhabditis elegans development. We show that let-23 function is required for vulval precursor cells (VPCs) to respond to the signal that induces vulval differentiation: a complete loss of let-23 function results in no induction. However, some let-23 mutations that genetically reduce but do not eliminate let-23 function result in VPCs apparently hypersensitive to inductive signal: as many as five of six VPCs can adopt vulval fates, in contrast to the three that normally do. These results suggest that the let-23 receptor tyrosine kinase controls two opposing pathways, one that stimulates vulval differentiation and another that negatively regulates vulval differentiation. Furthermore, analysis of 16 new let-23 mutations indicates that the let-23 kinase functions in at least five tissues. Since various let-23 mutant phenotypes can be obtained independently, the let-23 gene is likely to have tissue-specific functions. PMID:2071015

  17. Role of Receptor Protein Tyrosine Phosphatase γ in Sensing Extracellular CO2 and HCO3.

    PubMed

    Zhou, Yuehan; Skelton, Lara A; Xu, Lumei; Chandler, Margaret P; Berthiaume, Jessica M; Boron, Walter F

    2016-09-01

    Regulation of blood pH-critical for virtually every facet of life-requires that the renal proximal tubule (PT) adjust its rate of H(+) secretion (nearly the same as the rate of HCO3 (-) reabsorption, JHCO3 ) in response to changes in blood [CO2] and [HCO3 (-)]. Yet CO2/HCO3 (-) sensing mechanisms remain poorly characterized. Because receptor tyrosine kinase inhibitors render JHCO3 in the PT insensitive to changes in CO2 concentration, we hypothesized that the structural features of receptor protein tyrosine phosphatase-γ (RPTPγ) that are consistent with binding of extracellular CO2 or HCO3 (-) facilitate monitoring of blood CO2/HCO3 (-) concentrations. We now report that PTs express RPTPγ on blood-facing membranes. Moreover, RPTPγ deletion in mice eliminated the CO2 and HCO3 (-) sensitivities of JHCO3 as well as the normal defense of blood pH during whole-body acidosis. Thus, RPTPγ appears to be a novel extracellular CO2/HCO3 (-) sensor critical for pH homeostasis.

  18. [Receptor tyrosine kinase KIT may regulate expression of genes involved in spontaneous regression of neuroblastoma].

    PubMed

    Lebedev, T D; Spirin, P V; Suntsova, M V; Ivanova, A V; Buzdin, A A; Prokofjeva, M M; Rubtsov, P M; Prassolov, V S

    2015-01-01

    Hallmark of neuroblastoma is an ability of this malignant tumor to undergo spontaneous regression or differentiation into benign tumor during any stage of the disease, but it is little known about mechanisms of these phenomena. We studied effect of receptor tyrosine kinase receptor KIT on expression of genes, which may be involved in tumor spontaneous regression. Downregulation of KIT expression by RNA interference in SH-SY5Y cells causes suppression of neurotrophin receptor NGFR expression that may promote the loss of sensibility of cells to nerve growth factors, also it causes upregulation of TrkA receptor expression which can stimulate cell differentiation or apoptosis in NGF dependent manner. Furthermore there is an upregulation of genes which stimulate malignant cell detection by immune system, such as genes of major histocompatibility complex HLA class I HLA-B and HLA-C, and interferon-γ receptors IFNGR1 and IFNGR2 genes. Thus KIT can mediate neuroblastoma cell sensibility to neurotrophins and immune system components--two factors directly contributing to spontaneous regression of neuroblastoma.

  19. Involvement of the protein tyrosine phosphatase SHP-1 in Ras-mediated activation of the mitogen-activated protein kinase pathway.

    PubMed

    Krautwald, S; Büscher, D; Kummer, V; Buder, S; Baccarini, M

    1996-11-01

    Ubiquitously expressed SH2-containing tyrosine phosphatases interact physically with tyrosine kinase receptors or their substrates and relay positive mitogenic signals via the activation of the Ras-mitogen-activated protein kinase (MAPK) pathway. Conversely, the structurally related phosphatase SHP-1 is predominantly expressed in hemopoietic cells and becomes tyrosine phosphorylated upon colony-stimulating factor 1 treatment of macrophages without associating with the colony-stimulating factor 1 receptor tyrosine kinase. Mice lacking functional SHP-1 (me/me and me(v)/me(v)) develop systemic autoimmune disease with accumulation of macrophages, suggesting that SHP-1 may be a negative regulator of hemopoietic cell growth. By using macrophages expressing dominant negative Ras and the me(v)/me(v) mouse mutant, we show that SHP-1 is activated in the course of mitogenic signal transduction in a Ras-dependent manner and that its activity is necessary for the Ras-dependent activation of the MAPK pathway but not of the Raf-1 kinase. Consistent with a role for SHP-1 as an intermediate between Ras and the MEK-MAPK pathway, Ras-independent activation of the latter kinases by bacterial lipopolysaccharide occurred normally in me(v)/me(v) cells. Our results sharply accentuate the diversity of signal transduction in mammalian cells, in which the same signaling intermediates can be rearranged to form different pathways. PMID:8887625

  20. Involvement of the protein tyrosine phosphatase SHP-1 in Ras-mediated activation of the mitogen-activated protein kinase pathway.

    PubMed Central

    Krautwald, S; Büscher, D; Kummer, V; Buder, S; Baccarini, M

    1996-01-01

    Ubiquitously expressed SH2-containing tyrosine phosphatases interact physically with tyrosine kinase receptors or their substrates and relay positive mitogenic signals via the activation of the Ras-mitogen-activated protein kinase (MAPK) pathway. Conversely, the structurally related phosphatase SHP-1 is predominantly expressed in hemopoietic cells and becomes tyrosine phosphorylated upon colony-stimulating factor 1 treatment of macrophages without associating with the colony-stimulating factor 1 receptor tyrosine kinase. Mice lacking functional SHP-1 (me/me and me(v)/me(v)) develop systemic autoimmune disease with accumulation of macrophages, suggesting that SHP-1 may be a negative regulator of hemopoietic cell growth. By using macrophages expressing dominant negative Ras and the me(v)/me(v) mouse mutant, we show that SHP-1 is activated in the course of mitogenic signal transduction in a Ras-dependent manner and that its activity is necessary for the Ras-dependent activation of the MAPK pathway but not of the Raf-1 kinase. Consistent with a role for SHP-1 as an intermediate between Ras and the MEK-MAPK pathway, Ras-independent activation of the latter kinases by bacterial lipopolysaccharide occurred normally in me(v)/me(v) cells. Our results sharply accentuate the diversity of signal transduction in mammalian cells, in which the same signaling intermediates can be rearranged to form different pathways. PMID:8887625

  1. Preclinical and first-in-human phase I studies of KW-2450, an oral tyrosine kinase inhibitor with insulin-like growth factor receptor-1/insulin receptor selectivity.

    PubMed

    Schwartz, Gary K; Dickson, Mark A; LoRusso, Patricia M; Sausville, Edward A; Maekawa, Yoshimi; Watanabe, Yasuo; Kashima, Naomi; Nakashima, Daisuke; Akinaga, Shiro

    2016-04-01

    Numerous solid tumors overexpress or have excessively activated insulin-like growth factor receptor-1 (IGF-1R). We summarize preclinical studies and the first-in-human study of KW-2450, an oral tyrosine kinase inhibitor with IGF-1R and insulin receptor (IR) inhibitory activity. Preclinical activity of KW-2450 was evaluated in various in vitro and in vivo models. It was then evaluated in a phase I clinical trial in 13 patients with advanced solid tumors (NCT00921336). In vitro, KW-2450 inhibited human IGF-1R and IR kinases (IC50 7.39 and 5.64 nmol/L, respectively) and the growth of various human malignant cell lines. KW-2450 40 mg/kg showed modest growth inhibitory activity and inhibited IGF-1-induced signal transduction in the murine HT-29/GFP colon carcinoma xenograft model. The maximum tolerated dose of KW-2450 was 37.5 mg once daily continuously; dose-limiting toxicity occurred in two of six patients at 50 mg/day (both grade 3 hyperglycemia) and in one of seven patients at 37.5 mg/day (grade 3 rash). Four of 10 evaluable patients showed stable disease. Single-agent KW-2450 was associated with modest antitumor activity in heavily pretreated patients with solid tumors and is being further investigated in combination therapy with lapatinib/letrozole in patients with human epidermal growth factor receptor 2-postive metastatic breast cancer. PMID:26850678

  2. A cytosolic activator of DNA replication is tyrosine phosphorylated in its active form.

    PubMed

    Fresa, K L; Autieri, M V; Coffman, F D; Georgoff, I; Cohen, S

    1993-04-01

    Cytosolic extracts from actively dividing lymphoid cells have been shown to induce DNA synthesis in isolated, quiescent nuclei. An initiating factor in such extracts (activator of DNA replication; ADR) is a > 90-kDa aprotinin-binding protein whose activity is inhibitable not only by aprotinin, but also by several other protease inhibitors as well. Although cytosol from non-proliferating lymphocytes is devoid of ADR activity, we have shown that these preparations can be induced to express ADR activity by brief exposure to a membrane-enriched fraction of spontaneously proliferating MOLT-4 cells via a kinase-dependent mechanism. In the present study, we examine the role of tyrosine kinases in this process. Three inhibitors of tyrosine kinases (genistein, kaempferol, and quercetin) can inhibit the in vitro generation of ADR activity. In vitro generation of ADR activity is associated with the de novo phosphorylation of several proteins, many of which are detectable using anti-phosphotyrosine monoclonal antibodies. ADR itself may be tyrosine phosphorylated in active form as immunoprecipitation using such monoclonal antibodies leads to the depletion of its activity. Moreover, immunoprecipitation results in the removal of several de novo tyrosine-phosphorylated proteins, including species at approximately 122, 105, 93, 86, 79, and 65 kDa. A subset of de novo-phosphorylated proteins, migrating at approximately 105, 93, and 70 kDa, also bound to aprotinin, suggesting that at least one of these proteins may represent ADR itself. PMID:7683270

  3. Tyrosine Phosphorylation of SGEF Regulates RhoG Activity and Cell Migration

    PubMed Central

    Okuyama, Yusuke; Umeda, Kentaro; Negishi, Manabu; Katoh, Hironori

    2016-01-01

    SGEF and Ephexin4 are members of the Ephexin subfamily of RhoGEFs that specifically activate the small GTPase RhoG. It is reported that Ephexin1 and Ephexin5, two well-characterized Ephexin subfamily RhoGEFs, are tyrosine-phosphorylated by Src, and that their phosphorylation affect their activities and functions. In this study, we show that SGEF, but not Ephexin4, is tyrosine-phosphorylated by Src. Tyrosine phosphorylation of SGEF suppresses its interaction with RhoG, the elevation of RhoG activity, and SGEF-mediated promotion of cell migration. We identified tyrosine 530 (Y530), which is located within the Dbl homology domain, as a major phosphorylation site of SGEF by Src, and Y530F mutation blocked the inhibitory effect of Src on SGEF. Taken together, these results suggest that the activity of SGEF is negatively regulated by tyrosine phosphorylation of the DH domain. PMID:27437949

  4. Ethanol and Other Short-Chain Alcohols Inhibit NLRP3 Inflammasome Activation through Protein Tyrosine Phosphatase Stimulation.

    PubMed

    Hoyt, Laura R; Ather, Jennifer L; Randall, Matthew J; DePuccio, Daniel P; Landry, Christopher C; Wewers, Mark D; Gavrilin, Mikhail A; Poynter, Matthew E

    2016-08-15

    Immunosuppression is a major complication of alcoholism that contributes to increased rates of opportunistic infections and sepsis in alcoholics. The NLRP3 inflammasome, a multiprotein intracellular pattern recognition receptor complex that facilitates the cleavage and secretion of the proinflammatory cytokines IL-1β and IL-18, can be inhibited by ethanol, and we sought to better understand the mechanism through which this occurs and whether chemically similar molecules exert comparable effects. We show that ethanol can specifically inhibit activation of the NLRP3 inflammasome, resulting in attenuated IL-1β and caspase-1 cleavage and secretion, as well as diminished apoptosis-associated speck-like protein containing a CARD (ASC) speck formation, without affecting potassium efflux, in a mouse macrophage cell line (J774), mouse bone marrow-derived dendritic cells, mouse neutrophils, and human PBMCs. The inhibitory effects on the Nlrp3 inflammasome were independent of γ-aminobutyric acid A receptor activation or N-methyl-d-asparate receptor inhibition but were associated with decreased oxidant production. Ethanol treatment markedly decreased cellular tyrosine phosphorylation, whereas administration of the tyrosine phosphatase inhibitor sodium orthovanadate prior to ethanol restored tyrosine phosphorylation and IL-1β secretion subsequent to ATP stimulation. Furthermore, sodium orthovanadate-induced phosphorylation of ASC Y144, necessary and sufficient for Nlrp3 inflammasome activation, and secretion of phosphorylated ASC were inhibited by ethanol. Finally, multiple alcohol-containing organic compounds exerted inhibitory effects on the Nlrp3 inflammasome, whereas 2-methylbutane (isopentane), the analogous alkane of the potent inhibitor isoamyl alcohol (isopentanol), did not. Our results demonstrate that ethanol antagonizes the NLRP3 inflammasome at an apical event in its activation through the stimulation of protein tyrosine phosphatases, an effect shared by other

  5. Ethanol and Other Short-Chain Alcohols Inhibit NLRP3 Inflammasome Activation through Protein Tyrosine Phosphatase Stimulation.

    PubMed

    Hoyt, Laura R; Ather, Jennifer L; Randall, Matthew J; DePuccio, Daniel P; Landry, Christopher C; Wewers, Mark D; Gavrilin, Mikhail A; Poynter, Matthew E

    2016-08-15

    Immunosuppression is a major complication of alcoholism that contributes to increased rates of opportunistic infections and sepsis in alcoholics. The NLRP3 inflammasome, a multiprotein intracellular pattern recognition receptor complex that facilitates the cleavage and secretion of the proinflammatory cytokines IL-1β and IL-18, can be inhibited by ethanol, and we sought to better understand the mechanism through which this occurs and whether chemically similar molecules exert comparable effects. We show that ethanol can specifically inhibit activation of the NLRP3 inflammasome, resulting in attenuated IL-1β and caspase-1 cleavage and secretion, as well as diminished apoptosis-associated speck-like protein containing a CARD (ASC) speck formation, without affecting potassium efflux, in a mouse macrophage cell line (J774), mouse bone marrow-derived dendritic cells, mouse neutrophils, and human PBMCs. The inhibitory effects on the Nlrp3 inflammasome were independent of γ-aminobutyric acid A receptor activation or N-methyl-d-asparate receptor inhibition but were associated with decreased oxidant production. Ethanol treatment markedly decreased cellular tyrosine phosphorylation, whereas administration of the tyrosine phosphatase inhibitor sodium orthovanadate prior to ethanol restored tyrosine phosphorylation and IL-1β secretion subsequent to ATP stimulation. Furthermore, sodium orthovanadate-induced phosphorylation of ASC Y144, necessary and sufficient for Nlrp3 inflammasome activation, and secretion of phosphorylated ASC were inhibited by ethanol. Finally, multiple alcohol-containing organic compounds exerted inhibitory effects on the Nlrp3 inflammasome, whereas 2-methylbutane (isopentane), the analogous alkane of the potent inhibitor isoamyl alcohol (isopentanol), did not. Our results demonstrate that ethanol antagonizes the NLRP3 inflammasome at an apical event in its activation through the stimulation of protein tyrosine phosphatases, an effect shared by other

  6. Short-term effects of endothelins on tyrosine hydroxylase activity and expression in the olfactory bulb of normotensive rats.

    PubMed

    Nabhen, Sabrina L; Perfume, Guadalupe; Battistone, María A; Rossi, Andrés; Abramoff, Tamara; Bianciotti, Liliana G; Vatta, Marcelo S

    2009-05-01

    The olfactory system in rats is part of the limbic region with extensive afferent connections with brain areas involved in the regulation of behaviour and autonomic responses. The existence of the endothelin system and catecholaminergic neurons in the olfactory bulb suggests that endothelins may modulate noradrenergic transmission and diverse olfactory mediated processes. In the present work we studied the effect of endothelin-1 and -3 on neuronal norepinephrine release and the short-term regulation of tyrosine hydroxylase in the olfactory bulb. Results showed that both endothelins increased tyrosine hydroxylase activity through the activation of a non-conventional endothelin G-protein coupled receptor, coupled to the stimulation of protein kinase A and C, as well as Ca(2+)/calmodulin-dependent protein kinase II. On the other hand, neither endothelin-1 nor endothelin-3 modified tyrosine hydroxylase total protein levels, but both peptides increased the phosphorylation of serine residues of the enzyme at sites 19 and 40. Furthermore, endothelins enhanced norepinephrine release in olfactory neurons suggesting that this event may contribute to increased tyrosine hydroxylase activity by reducing the feedback inhibition. Taken together present findings show a clear interaction between the endothelin system, and the catecholaminergic transmission in the olfactory bulb. Additional studies are required to evaluate the physiological functions regulated by endothelins at this brain level.

  7. A receptor tyrosine kinase inhibitor, Tyrphostin A9 induces cancer cell death through Drp1 dependent mitochondria fragmentation

    SciTech Connect

    Park, So Jung; Park, Young Jun; Shin, Ji Hyun; Kim, Eun Sung; Hwang, Jung Jin; Jin, Dong-Hoon; Kim, Jin Cheon; Cho, Dong-Hyung

    2011-05-13

    Highlights: {yields} We screened and identified Tyrphostin A9, a receptor tyrosine kinase inhibitor as a strong mitochondria fission inducer. {yields} Tyrphostin A9 treatment promotes mitochondria dysfunction and contributes to cytotoxicity in cancer cells. {yields} Tyrphostin A9 induces apoptotic cell death through a Drp1-mediated pathway. {yields} Our studies suggest that Tyrphostin A9 induces mitochondria fragmentation and apoptotic cell death via Drp1 dependently. -- Abstract: Mitochondria dynamics controls not only their morphology but also functions of mitochondria. Therefore, an imbalance of the dynamics eventually leads to mitochondria disruption and cell death. To identify specific regulators of mitochondria dynamics, we screened a bioactive chemical compound library and selected Tyrphostin A9, a tyrosine kinase inhibitor, as a potent inducer of mitochondrial fission. Tyrphostin A9 treatment resulted in the formation of fragmented mitochondria filament. In addition, cellular ATP level was decreased and the mitochondrial membrane potential was collapsed in Tyr A9-treated cells. Suppression of Drp1 activity by siRNA or over-expression of a dominant negative mutant of Drp1 inhibited both mitochondrial fragmentation and cell death induced by Tyrpohotin A9. Moreover, treatment of Tyrphostin A9 also evoked mitochondrial fragmentation in other cells including the neuroblastomas. Taken together, these results suggest that Tyrphostin A9 induces Drp1-mediated mitochondrial fission and apoptotic cell death.

  8. Tyrosine-599 of the c-Mpl receptor is required for Shc phosphorylation and the induction of cellular differentiation.

    PubMed Central

    Alexander, W S; Maurer, A B; Novak, U; Harrison-Smith, M

    1996-01-01

    Interaction of thrombopoietin (TPO) with its receptor, c-Mpl, triggers cell growth and differentiation responses controlling primitive haemopoietic cell production and megakaryocytopoiesis. To examine the important receptor domains and signal transduction pathways involved in these cellular responses, c-Mpl cytoplasmic domain truncation and tyrosine substitution mutants were generated. In the myelomonocytic leukaemia cell lines WEHI3B-D+ and M1, ectopic expression of the wild-type c-Mpl receptor induced TPO-dependent cellular differentiation characterized by increased cell migration through agar and acquisition of the morphology and molecular markers of macrophages. Consistent with the concept that proliferative and differentiation signals emanate from distinct receptor domains, the C-terminal 33 amino acids of c-Mpl were dispensable for a proliferative response in Ba/F3 cells but proved critical for WEHI3B-D+ and M1 differentiation. Finer mapping revealed that substitution of Tyr599 by phenylalanine within this c-Mpl domain was sufficient to abolish the normal differentiation response. Moreover, in contrast to the normal c-Mpl receptor, this same mplY599F mutant was also incapable of stimulating TPO-dependent Shc phosphorylation, the association of Shc with Grb2 or c-Mpl and of inducing c-fos expression. Thus activation of components of the Ras signalling cascade, initiated by interaction of Shc with c-Mpl Tyr599, may play a decisive role in specific differentiation signals emanating from the c-Mpl receptor. Images PMID:8978680

  9. The receptor tyrosine kinase EphB2 promotes hepatic fibrosis in mice

    PubMed Central

    Mimche, Patrice N.; Brady, Lauren M.; Bray, Christian F.; Mimche, Sylvie M.; Thapa, Manoj; King, Thayer P.; Quicke, Kendra; McDermott, Courtney D.; Lee, Choon M.; Grakoui, Arash; Morgan, Edward T.; Lamb, Tracey J.

    2015-01-01

    Beyond the well-defined role of the Eph receptor tyrosine kinases in developmental processes, cell motility, cell trafficking/adhesion and cancer, nothing is known about their involvement in liver pathologies. During blood-stage rodent malaria infection we have found that EphB2 transcripts and proteins were upregulated in the liver, a result likely driven by elevated surface expression on immune cells including macrophages. This was significant for malaria pathogenesis because EphB2−/− mice were protected from malaria-induced liver fibrosis despite having a similar liver parasite burden compared with littermate control mice. This protection was correlated with a defect in the inflammatory potential of hepatocytes from EphB2−/− mice resulting in a reduction in adhesion molecules, chemokines/chemokines receptors RNA levels and infiltration of leukocytes including macrophages/Kupffer cells which mediate liver fibrosis during rodent malaria infections. These observations are recapitulated in the well-established carbon tetrachloride (CCL4) model of liver fibrosis in which EphB2−/− CCL4-treated mice showed a significant reduction of liver fibrosis compared to CCL4-treated littermate mice. Depletion of macrophages by clodronate-liposome abrogates liver EphB2 mRNA and proteins up-regulation and fibrosis in malaria-infected mice. Conclusion: During rodent malaria, EphB2 expression promotes malaria-associated liver fibrosis. To our knowledge, our data is the first to reveal the implication of the EphB family of receptor tyrosine kinases in liver fibrosis or in the pathogenesis of malaria infection. PMID:25784101

  10. An overview on the role of FLT3-tyrosine kinase receptor in acute myeloid leukemia: biology and treatment

    PubMed Central

    Grafone, Tiziana; Palmisano, Michela; Nicci, Chiara; Storti, Sergio

    2012-01-01

    Hematopoiesis, the process by which the hematopoietic stem cells and progenitors differentiate into blood cells of various lineages, involves complex interactions of transcription factors that modulate the expression of downstream genes and mediate proliferation and differentiation signals. Despite the many controls that regulate hematopoiesis, mutations in the regulatory genes capable of promoting leukemogenesis may occur. The FLT3 gene encodes a tyrosine kinase receptor that plays a key role in controlling survival, proliferation and differentiation of hematopoietic cells. Mutations in this gene are critical in causing a deregulation of the delicate balance between cell proliferation and differentiation. In this review, we provide an update on the structure, synthesis and activation of the FLT3 receptor and the subsequent activation of multiple downstream signaling pathways. We also review activating FLT3 mutations that are frequently identified in acute myeloid leukemia, cause activation of more complex downstream signaling pathways and promote leukemogenesis. Finally, FLT3 has emerged as an important target for molecular therapy. We, therefore, report on some recent therapies directed against it. PMID:25992210

  11. Druggability analysis and classification of protein tyrosine phosphatase active sites

    PubMed Central

    Ghattas, Mohammad A; Raslan, Noor; Sadeq, Asil; Al Sorkhy, Mohammad; Atatreh, Noor

    2016-01-01

    Protein tyrosine phosphatases (PTP) play important roles in the pathogenesis of many diseases. The fact that no PTP inhibitors have reached the market so far has raised many questions about their druggability. In this study, the active sites of 17 PTPs were characterized and assessed for its ability to bind drug-like molecules. Consequently, PTPs were classified according to their druggability scores into four main categories. Only four members showed intermediate to very druggable pocket; interestingly, the rest of them exhibited poor druggability. Particularly focusing on PTP1B, we also demonstrated the influence of several factors on the druggability of PTP active site. For instance, the open conformation showed better druggability than the closed conformation, while the tight-bound water molecules appeared to have minimal effect on the PTP1B druggability. Finally, the allosteric site of PTP1B was found to exhibit superior druggability compared to the catalytic pocket. This analysis can prove useful in the discovery of new PTP inhibitors by assisting researchers in predicting hit rates from high throughput or virtual screening and saving unnecessary cost, time, and efforts via prioritizing PTP targets according to their predicted druggability. PMID:27757011

  12. Tyrosine inhibits creatine kinase activity in cerebral cortex of young rats.

    PubMed

    de Andrade, Rodrigo Binkowski; Gemelli, Tanise; Rojas, Denise Bertin; Funchal, Cláudia; Dutra-Filho, Carlos Severo; Wannmacher, Clovis Milton Duval

    2011-09-01

    Tyrosine accumulates in inborn errors of tyrosine catabolism, especially in tyrosinemia type II, where tyrosine levels are highly elevated in tissues and physiological fluids of affected patients. Tyrosinemia type II is a disorder of autosomal recessive inheritance characterized by neurological symptoms similar to those observed in patients with creatine deficiency syndromes. Considering that the mechanisms of brain damage in these disorders are poorly known, in the present study our main objective was to investigate the in vivo and in vitro effects of different concentrations and preincubation times of tyrosine on cytosolic and mitochondrial creatine kinase activities of the cerebral cortex from 14-day-old Wistar rats. The cytosolic CK was reduced by 15% at 1 mM and 32% at 2 mM tyrosine. Similarly, the mitochondrial CK was inhibited by 15% at 1 mM and 22% at 2 mM tyrosine. We observed that the inhibition caused by tyrosine was concentration-dependent and was prevented by reduced glutathione. Results also indicated that mitochondrial, but not cytosolic creatine kinase activity was inhibited by tyrosine in a time-dependent way. Finally, a single injection of L-Tyrosine methyl ester administered i.p. decreased cytosolic (31%) and mitochondrial (18%) creatine kinase activities of brain cortex from rats. Considering that creatine kinase is an enzyme dependent of thiol residues for its function and tyrosine induces oxidative stress, the results suggest that the inhibition caused by tyrosine might occur by oxidation of essential sulfhydryl groups of the enzyme. In case this also occurs in patients with tyrosinemia, it is possible that creatine kinase inhibition may contribute to the neurological dysfunction characteristic of tyrosinemia.

  13. The Ephrin Receptor Tyrosine Kinase A2 is a Cellular Receptor for Kaposi’s Sarcoma-Associated Herpesvirus

    PubMed Central

    Hahn, Alexander; Kaufmann, Johanna; Wies, Effi; Naschberger, Elisabeth; Panteleev-Ivlev, Julia; Schmidt, Katharina; Holzer, Angela; Schmidt, Martin; Chen, Jin; König, Simone; Ensser, Armin; Myoung, Jinjong; Brockmeyer, Norbert H.; Stürzl, Michael; Fleckenstein, Bernhard; Neipel, Frank

    2013-01-01

    Kaposi’s sarcoma associated herpesvirus (KSHV) is the human oncovirus which causes Kaposi’s sarcoma (KS), a highly vascularised tumour originating from lymphatic endothelial cells. Amongst others, the dimeric complex formed by the KSHV virion envelope glycoproteins H and L (gH/gL) is required for entry of herpesviruses into the host cell. We show that the Ephrin receptor tyrosine kinase A2 (EphA2) is a cellular receptor for KSHV gH/gL. EphA2 co-precipitated with both gH/gL and KSHV virions. KSHV infection rates were increased upon over-expression of EphA2. In contrast, antibodies against EphA2 and siRNAs directed against EphA2 inhibited KSHV infection of lymphatic endothelial cells. Pretreatment of KSHV virions with soluble EphA2 resulted in a dose-dependent inhibition of KSHV infection by up to 90%. Similarly, pretreating cells with the soluble EphA2 ligand EphrinA4 but not with EphA2 itself impaired KSHV infection. Notably, deletion of the EphA2 gene essentially abolished KSHV infection of murine vascular endothelial cells. Binding of gH/gL to EphA2 triggered EphA2 phosphorylation and endocytosis, a major pathway of KSHV entry. Quantitative RT-PCR and situ histochemistry revealed a close correlation between KSHV infection and EphA2 expression both in cultured cells derived from KS or lymphatic endothelium and in KS specimens, respectively. Taken together, these results identify EphA2, a tyrosine kinase with known functions in neo-vascularisation and oncogenesis, as receptor for KSHV gH/gL and implicate an important role for EphA2 in KSHV infection especially of endothelial cells and in KS. PMID:22635007

  14. GM1 ganglioside activates ERK1/2 and Akt downstream of Trk tyrosine kinase and protects PC12 cells against hydrogen peroxide toxicity.

    PubMed

    Zakharova, Irina O; Sokolova, Tatyana V; Vlasova, Yulia A; Furaev, Victor V; Rychkova, Maria P; Avrova, Natalia F

    2014-11-01

    Ganglioside GM1 at micro- and nanomolar concentrations was shown to increase the viability of pheochromocytoma PC12 cells exposed to hydrogen peroxide and diminish the accumulation of reactive oxygen species and oxidative inactivation of Na(+),K(+)-ATPase, the effects of micromolar GM1 being more pronounced than those of nanomolar GM1. These effects of GM1 were abolished by Trk receptor tyrosine kinase inhibitor and diminished by MEK1/2, phosphoinositide 3-kinase and protein kinase C inhibitors. Hydrogen peroxide activates Trk tyrosine kinase; Akt and ERK1/2 are activated downstream of this protein kinase. GM1 was found to activate Trk receptor tyrosine kinase in PC12 cells. GM1 (100 nM and 10 µM) increased the basal activity of Akt, but did not change Akt activity in cells exposed to hydrogen peroxide. Basal ERK1/2 activity in PC12 cells was increased by GM1 at a concentration of 10 µM, but not at nanomolar concentrations. Activation of ERK1/2 by hydrogen peroxide was enhanced by GM1 at a concentration of 10 µM and to a lesser extent at a concentration of 100 nM. Thus, the protective and metabolic effects of GM1 ganglioside on PC12 cells exposed to hydrogen peroxide appear to depend on the activation of Trk receptor tyrosine kinase and downstream activation of Akt and ERK1/2.

  15. Signaling pathways engaged by NK cell receptors: double concerto for activating receptors, inhibitory receptors and NK cells.

    PubMed

    Tomasello, E; Bléry, M; Vély, F; Vivier, E

    2000-04-01

    Despite the absence of antigen-specific receptors at their surface, NK cells can selectively eliminate virus-infected cells, tumor cells and allogenic cells. A dynamic and precisely coordinated balance between activating and inhibitory receptors governs NK cell activation programs. Multiple activating and inhibitory NK cell surface molecules have been described, a group of them acting as receptors for MHC class I molecules. In spite of their heterogeneity, activating NK cell receptors present remarkable structural and functional homologies with T cell- and B cell-antigen receptors. Inhibitory NK cell receptors operate at early stages of activating cascades by recruiting protein tyrosine phosphatases via intra- cytoplasmic motifs (ITIM), a strategy which is widely conserved in hematopoietic and non-hematopoietic cells.

  16. Linifanib (ABT-869) Potentiates the Efficacy of Chemotherapeutic Agents through the Suppression of Receptor Tyrosine Kinase-Mediated AKT/mTOR Signaling Pathways in Gastric Cancer

    PubMed Central

    Chen, Jing; Guo, Jiawei; Chen, Zhi; Wang, Jieqiong; Liu, Mingyao; Pang, Xiufeng

    2016-01-01

    Gastric cancer, highly dependent on tumor angiogenesis, causes uncontrolled lethality, in part due to chemoresistance. Here, we demonstrate that linifanib (ABT-869), a novel multi-targeted receptor tyrosine kinase inhibitor, markedly augments cytotoxicity of chemotherapies in human gastric cancer. ABT-869 and chemotherapeutic agents exhibited a strong synergy to inhibit the viability of several gastric cancer cell lines, with combination index values ranging from 0.017 to 0.589. Additionally, the combination of ABT-869 and chemotherapeutic agents led to remarkable suppression of vascular endothelial growth factor (VEGF)-induced angiogenesis in vitro and in vivo. Importantly, in a preclinical gastric cancer xenograft mouse model, drug co-treatments led to increased mouse survival as well as a synergistic reduction in tumor size and the inhibition of tumor angiogenesis. Mechanistic studies further revealed that all of the co-treatments containing ABT-869 resulted in decreased activation of the VEGF receptor, the epidermal growth factor receptor and the insulin growth factor receptor. Inhibition of these receptor tyrosine kinases consequently attenuated the activation of the downstream AKT/mTOR signaling pathway both in cultured gastric cancer cells and in gastric cancer xenografts. Collectively, our findings suggest that the addition of ABT-869 to traditional chemotherapies may be a promising strategy for the treatment of human gastric cancer. PMID:27387652

  17. The Ron/STK receptor tyrosine kinase is essential for peri-implantation development in the mouse

    PubMed Central

    Muraoka, Rebecca S.; Sun, William Y.; Colbert, Melissa C.; Waltz, Susan E.; Witte, David P.; Degen, Jay L.; Degen, Sandra J. Friezner

    1999-01-01

    The Ron/STK receptor tyrosine kinase is a member of the c-Met family of receptors and is activated by hepatocyte growth factor–like protein (HGFL). Ron activation results in a variety of cellular responses in vitro, such as activation of macrophages, proliferation, migration, and invasion, suggesting a broad biologic role in vivo. Nevertheless, HGFL-deficient mice grow to adulthood with few appreciable phenotypic abnormalities. We report here that in striking contrast to the loss of its only known ligand, complete loss of Ron leads to early embryonic death. Embryos that are devoid of Ron (Ron–/–) are viable through the blastocyst stage of development but fail to survive past the peri-implantation period. In situ hybridization analysis demonstrates that Ron is expressed in the trophectoderm at embryonic day (E) 3.5 and is maintained in extraembryonic tissue through E7.5, compatible with an essential function at this stage of development. Hemizygous mice (Ron+/–) grow to adulthood; however, these mice are highly susceptible to endotoxic shock and appear to be compromised in their ability to downregulate nitric oxide production. These results demonstrate a novel role for Ron in early mouse development and suggest that Ron plays a limiting role in the inflammatory response. PMID:10225971

  18. Tea catechins as inhibitors of receptor tyrosine kinases: Mechanistic insights and human relevance

    PubMed Central

    Larsen, Christine A.; Dashwood, Roderick H.; Bisson, William H.

    2010-01-01

    Receptor tyrosine kinases (RTKs) play important roles in the control of fundamental cellular processes, influencing the balance between cell proliferation and death. RTKs have emerged as molecular targets for the treatment of various cancers. Green tea and its polyphenolic compounds, the catechins, exhibit chemopreventive and chemotherapeutic properties in many human cancer cell types, as well as in various carcinogenicity models in vivo. Epidemiological studies are somewhat less convincing, but some positive correlations have been observed. The tea catechins, including (−)-epigallocatechin-3-gallate (EGCG), have pleiotropic effects on cellular proteins and signaling pathways. This review focuses on the ability of the tea constituents to suppress RTK signaling, and summarizes the mechanisms by which EGCG and other catechins might exert their protective effects towards dysregulated RTKs in cancer cells. The findings are discussed in the context of ongoing clinical trials with RTK inhibitors, and the possibility for drug/nutrient interactions enhancing therapeutic efficacy. PMID:20691268

  19. Receptor tyrosine phosphatase CLR-1 acts in skin cells to promote sensory dendrite outgrowth.

    PubMed

    Liu, Xianzhuang; Wang, Xiangming; Shen, Kang

    2016-05-01

    Sensory dendrite morphogenesis is directed by intrinsic and extrinsic factors. The extracellular environment plays instructive roles in patterning dendrite growth and branching. However, the molecular mechanism is not well understood. In Caenorhabditis elegans, the proprioceptive neuron PVD forms highly branched sensory dendrites adjacent to the hypodermis. We report that receptor tyrosine phosphatase CLR-1 functions in the hypodermis to pattern the PVD dendritic branches. Mutations in clr-1 lead to loss of quaternary branches, reduced secondary branches and increased ectopic branches. CLR-1 is necessary for the dendrite extension but not for the initial filopodia formation. Its role is dependent on the intracellular phosphatase domain but not the extracellular adhesion domain, indicating that it functions through dephosphorylating downstream factors but not through direct adhesion with neurons. Genetic analysis reveals that clr-1 also functions in parallel with SAX-7/DMA-1 pathway to control PVD primary dendrite development. We provide evidence of a new environmental factor for PVD dendrite morphogenesis. PMID:26968353

  20. The TAM family receptor tyrosine kinase TYRO3 is a negative regulator of type 2 immunity.

    PubMed

    Chan, Pamela Y; Carrera Silva, Eugenio A; De Kouchkovsky, Dimitri; Joannas, Leonel D; Hao, Liming; Hu, Donglei; Huntsman, Scott; Eng, Celeste; Licona-Limón, Paula; Weinstein, Jason S; Herbert, De'Broski R; Craft, Joseph E; Flavell, Richard A; Repetto, Silvia; Correale, Jorge; Burchard, Esteban G; Torgerson, Dara G; Ghosh, Sourav; Rothlin, Carla V

    2016-04-01

    Host responses against metazoan parasites or an array of environmental substances elicit type 2 immunity. Despite its protective function, type 2 immunity also drives allergic diseases. The mechanisms that regulate the magnitude of the type 2 response remain largely unknown. Here, we show that genetic ablation of a receptor tyrosine kinase encoded byTyro3in mice or the functional neutralization of its ortholog in human dendritic cells resulted in enhanced type 2 immunity. Furthermore, the TYRO3 agonist PROS1 was induced in T cells by the quintessential type 2 cytokine, interleukin-4. T cell-specificPros1knockouts phenocopied the loss ofTyro3 Thus, a PROS1-mediated feedback from adaptive immunity engages a rheostat, TYRO3, on innate immune cells to limit the intensity of type 2 responses.

  1. The TAM family receptor tyrosine kinase TYRO3 is a negative regulator of type 2 immunity

    PubMed Central

    Chan, Pamela Y.; Carrera Silva, Eugenio A.; De Kouchkovsky, Dimitri; Joannas, Leonel D.; Hao, Liming; Hu, Donglei; Huntsman, Scott; Eng, Celeste; Licona-Limón, Paula; Weinstein, Jason S.; Herbert, De’Broski R.; Craft, Joseph E.; Flavell, Richard A.; Repetto, Silvia; Correale, Jorge; Burchard, Esteban G.; Torgerson, Dara G.; Ghosh, Sourav; Rothlin, Carla V.

    2016-01-01

    Host responses against metazoan parasites or an array of environmental substances elicit type 2 immunity. Despite its protective function, type 2 immunity also drives allergic diseases. The mechanisms that regulate the magnitude of the type 2 response remain largely unknown. Here, we show that genetic ablation of a receptor tyrosine kinase encoded by Tyro3 in mice or the functional neutralization of its ortholog in human dendritic cells resulted in enhanced type 2 immunity. Furthermore, the TYRO3 agonist PROS1 was induced in T cells by the quintessential type 2 cytokine, interleukin-4. T cell–specific Pros1 knockouts phenocopied the loss of Tyro3. Thus, a PROS1-mediated feedback from adaptive immunity engages a rheostat, TYRO3, on innate immune cells to limit the intensity of type 2 responses. PMID:27034374

  2. The TAM family receptor tyrosine kinase TYRO3 is a negative regulator of type 2 immunity.

    PubMed

    Chan, Pamela Y; Carrera Silva, Eugenio A; De Kouchkovsky, Dimitri; Joannas, Leonel D; Hao, Liming; Hu, Donglei; Huntsman, Scott; Eng, Celeste; Licona-Limón, Paula; Weinstein, Jason S; Herbert, De'Broski R; Craft, Joseph E; Flavell, Richard A; Repetto, Silvia; Correale, Jorge; Burchard, Esteban G; Torgerson, Dara G; Ghosh, Sourav; Rothlin, Carla V

    2016-04-01

    Host responses against metazoan parasites or an array of environmental substances elicit type 2 immunity. Despite its protective function, type 2 immunity also drives allergic diseases. The mechanisms that regulate the magnitude of the type 2 response remain largely unknown. Here, we show that genetic ablation of a receptor tyrosine kinase encoded byTyro3in mice or the functional neutralization of its ortholog in human dendritic cells resulted in enhanced type 2 immunity. Furthermore, the TYRO3 agonist PROS1 was induced in T cells by the quintessential type 2 cytokine, interleukin-4. T cell-specificPros1knockouts phenocopied the loss ofTyro3 Thus, a PROS1-mediated feedback from adaptive immunity engages a rheostat, TYRO3, on innate immune cells to limit the intensity of type 2 responses. PMID:27034374

  3. The Axl receptor tyrosine kinase is a discriminator of macrophage function in the inflamed lung

    PubMed Central

    Kaur, Manminder; Bell, Thomas J; Fujino, Naoya; Cook, Peter C; Svedberg, Freya R; MacDonald, Andrew S; Maciewicz, Rose A; Singh, Dave; Hussell, Tracy

    2014-01-01

    Much of the biology surrounding macrophage functional specificity has arisen through examining inflammation-induced polarising signals, but this also occurs in homeostasis, requiring tissue-specific environmental triggers that influence macrophage phenotype and function. The TAM receptor family of receptor tyrosine kinases (Tyro3, Axl and MerTK) mediates the non-inflammatory removal of apoptotic cells by phagocytes through the bridging phosphatidylserine-binding molecules Gas6 or Protein S. We show that one such TAM receptor (Axl) is exclusively expressed on mouse airway macrophages, but not interstitial macrophages and other lung leukocytes, under homeostatic conditions and is constitutively ligated to Gas6. Axl expression is potently induced by GM-CSF expressed in the healthy and inflamed airway, and by type I interferon or TLR3 stimulation on human and mouse macrophages, indicating potential involvement of Axl in apoptotic cell removal under inflammatory conditions. Indeed, an absence of Axl does not cause sterile inflammation in health, but leads to exaggerated lung inflammatory disease upon influenza infection. These data imply that Axl allows specific identification of airway macrophages, and that its expression is critical for macrophage functional compartmentalisation in the airspaces or lung interstitium. We propose that this may be a critical feature to prevent excessive inflammation due to secondary necrosis of apoptotic cells that have not been cleared by efferocytosis. PMID:25603826

  4. Whole Genome Duplications Shaped the Receptor Tyrosine Kinase Repertoire of Jawed Vertebrates

    PubMed Central

    Brunet, Frédéric G.; Volff, Jean-Nicolas; Schartl, Manfred

    2016-01-01

    The receptor tyrosine kinase (RTK) gene family, involved primarily in cell growth and differentiation, comprises proteins with a common enzymatic tyrosine kinase intracellular domain adjacent to a transmembrane region. The amino-terminal portion of RTKs is extracellular and made of different domains, the combination of which characterizes each of the 20 RTK subfamilies among mammals. We analyzed a total of 7,376 RTK sequences among 143 vertebrate species to provide here the first comprehensive census of the jawed vertebrate repertoire. We ascertained the 58 genes previously described in the human and mouse genomes and established their phylogenetic relationships. We also identified five additional RTKs amounting to a total of 63 genes in jawed vertebrates. We found that the vertebrate RTK gene family has been shaped by the two successive rounds of whole genome duplications (WGD) called 1R and 2R (1R/2R) that occurred at the base of the vertebrates. In addition, the Vegfr and Ephrin receptor subfamilies were expanded by single gene duplications. In teleost fish, 23 additional RTK genes have been retained after another expansion through the fish-specific third round (3R) of WGD. Several lineage-specific gene losses were observed. For instance, birds have lost three RTKs, and different genes are missing in several fish sublineages. The RTK gene family presents an unusual high gene retention rate from the vertebrate WGDs (58.75% after 1R/2R, 64.4% after 3R), resulting in an expansion that might be correlated with the evolution of complexity of vertebrate cellular communication and intracellular signaling. PMID:27260203

  5. Proteinase-activated receptors (PARs) – focus on receptor-receptor-interactions and their physiological and pathophysiological impact

    PubMed Central

    2013-01-01

    Proteinase-activated receptors (PARs) are a subfamily of G protein-coupled receptors (GPCRs) with four members, PAR1, PAR2, PAR3 and PAR4, playing critical functions in hemostasis, thrombosis, embryonic development, wound healing, inflammation and cancer progression. PARs are characterized by a unique activation mechanism involving receptor cleavage by different proteinases at specific sites within the extracellular amino-terminus and the exposure of amino-terminal “tethered ligand“ domains that bind to and activate the cleaved receptors. After activation, the PAR family members are able to stimulate complex intracellular signalling networks via classical G protein-mediated pathways and beta-arrestin signalling. In addition, different receptor crosstalk mechanisms critically contribute to a high diversity of PAR signal transduction and receptor-trafficking processes that result in multiple physiological effects. In this review, we summarize current information about PAR-initiated physical and functional receptor interactions and their physiological and pathological roles. We focus especially on PAR homo- and heterodimerization, transactivation of receptor tyrosine kinases (RTKs) and receptor serine/threonine kinases (RSTKs), communication with other GPCRs, toll-like receptors and NOD-like receptors, ion channel receptors, and on PAR association with cargo receptors. In addition, we discuss the suitability of these receptor interaction mechanisms as targets for modulating PAR signalling in disease. PMID:24215724

  6. Lung adenocarcinomas induced in mice by mutant EGF receptors found in human lung cancers respond to a tyrosine kinase inhibitor or to down-regulation of the receptors.

    PubMed

    Politi, Katerina; Zakowski, Maureen F; Fan, Pang-Dian; Schonfeld, Emily A; Pao, William; Varmus, Harold E

    2006-06-01

    Somatic mutations in exons encoding the tyrosine kinase domain of the epidermal growth factor receptor (EGFR) gene are found in human lung adenocarcinomas and are associated with sensitivity to the tyrosine kinase inhibitors gefitinib and erlotinib. Nearly 90% of the EGFR mutations are either short, in-frame deletions in exon 19 or point mutations that result in substitution of arginine for leucine at amino acid 858 (L858R). To study further the role of these mutations in the initiation and maintenance of lung cancer, we have developed transgenic mice that express an exon 19 deletion mutant (EGFR(DeltaL747-S752)) or the L858R mutant (EGFR(L858R)) in type II pneumocytes under the control of doxycycline. Expression of either EGFR mutant leads to the development of lung adenocarcinomas. Two weeks after induction with doxycycline, mice that express the EGFR(L858R) allele show diffuse lung cancer highly reminiscent of human bronchioloalveolar carcinoma and later develop interspersed multifocal adenocarcinomas. In contrast, mice expressing EGFR(DeltaL747-S752) develop multifocal tumors embedded in normal lung parenchyma with a longer latency. With mice carrying either EGFR allele, withdrawal of doxycycline (to reduce expression of the transgene) or treatment with erlotinib (to inhibit kinase activity) causes rapid tumor regression, as assessed by magnetic resonance imaging and histopathology, demonstrating that mutant EGFR is required for tumor maintenance. These models may be useful for developing improved therapies for patients with lung cancers bearing EGFR mutations.

  7. Inhibition of lung tumorigenesis by metformin is associated with decreased plasma IGF-I and diminished receptor tyrosine kinase signaling

    PubMed Central

    Quinn, Brendan J.; Dallos, Matthew; Kitagawa, Hiroshi; Kunnumakkara, Ajaikumar B.; Memmott, Regan M.; Hollander, M. Christine; Gills, Joell J.; Dennis, Phillip A.

    2013-01-01

    Metformin is the most commonly prescribed drug for type II diabetes and is associated with decreased cancer risk. Previously, we showed that metformin prevented tobacco carcinogen (NNK)-induced lung tumorigenesis in a non-diabetic mouse model, which was associated with decreased IGF-I/insulin receptor signaling but not activation of AMPK in lung tissues, as well as decreased circulating levels of IGF-1 and insulin. Here, we used liver-IGF-1-deficient (LID) mice to determine the importance of IGF-1 in NNK-induced lung tumorigenesis and chemoprevention by metformin. LID mice had decreased lung tumor multiplicity and burden compared to WT mice. Metformin further decreased lung tumorigenesis in LID mice without affecting IGF-1 levels, suggesting that metformin can act through IGF-1-independent mechanisms. In lung tissues, metformin decreased phosphorylation of multiple receptor tyrosine kinases (RTKs) as well as levels of GTP-bound Ras independently of AMPK. Metformin also diminished plasma levels of several cognate ligands for these RTKs. Tissue distribution studies using [14C]-metformin showed that uptake of metformin was high in liver but 4 fold lower in lungs, suggesting that the suppression of RTK activation by metformin occurs predominantly via systemic, indirect effects. Systemic inhibition of circulating growth factors and local RTK signaling are new AMPK-independent mechanisms of action of metformin that could underlie its ability to prevent tobacco carcinogen-induced lung tumorigenesis. PMID:23771523

  8. Tyrosine kinase inhibitors for epidermal growth factor receptor gene mutation-positive non-small cell lung cancers: an update for recent advances in therapeutics.

    PubMed

    Chung, Clement

    2016-06-01

    The presence of activating gene mutations in the epidermal growth factor receptor of non-small cell lung cancer patients is predictive (improved progression-free survival and improved response rate) when treated with small molecule tyrosine kinase inhibitors such as gefitinib, erlotinib and afatinib. The two most common mutations that account for greater than 85% of all EGFR gene mutations are in-frame deletions in exon 19 (LREA deletions) and substitution in exon 21 (L858R). Exon 18 mutations occur much less frequently at about 4% of all EGFR gene mutations. Together, exon 19 deletion and exon 21 L858R gene substitution are present in about 10% of Caucasian patients and 20-40% of Asian patients with non-small cell lung cancer. T790M gene mutation at exon 20 is associated with acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors. Early studies showed that activating EGFR gene mutations are most common in patients with adenocarcinoma histology, women, never smokers and those of Asian ethnicity. A recent multi-center phase III trial suggested that frontline epidermal growth factor receptor tyrosine kinase inhibitor therapy with afatinib is associated with improved progression-free survival compared to chemotherapy regardless of race. Moreover, guidelines now suggest EGFR gene mutation testing should be conducted in all patients with lung adenocarcinoma or mixed lung cancers with an adenocarcinoma component, regardless of characteristics such as smoking status, gender or race. The success of targeted therapies in non-small cell lung cancer patients has changed the treatment paradigm in metastatic non-small cell lung cancer. However, despite a durable response of greater than a year, resistance to epidermal growth factor receptor tyrosine kinase inhibitors inevitably occurs. This mini-review describes the clinically relevant EGFR gene mutations and the efficacy/toxicity of small molecule epidermal growth factor receptor tyrosine kinase

  9. Receptor tyrosine and MAP kinase are involved in effects of H(2)O(2) on interstitial cells of Cajal in murine intestine.

    PubMed

    Choi, Seok; Yeum, Cheol Ho; Kim, Young Dae; Park, Chan Guk; Kim, Man Yoo; Park, Jong-Seong; Jeong, Han-Seong; Kim, Byung Joo; So, Insuk; Kim, Ki Whan

    2010-01-01

    Hydrogen peroxide (H(2)O(2)) is involved in intestinal motility through changes of smooth muscle activity. However, there is no report as to the modulatory effects of H(2)O(2) on interstitial cells of Cajal (ICC). We investigated the H(2)O(2) effects and signal transductions to determine whether the intestinal motility can be modulated through ICC. We performed whole-cell patch clamp in cultured ICC from murine intestine and molecular analyses. H(2)O(2) hyperpolarized the membrane and inhibited pacemaker currents. These effects were inhibited by glibenclamide, an inhibitor of ATP-sensitive K+ (K(ATP)) channels. The free-radical scavenger catalase inhibited the H(2)O(2)-induced effects. MAFP and AACOCF3 (a cytosolic phospholipase A2 inhibitors) or SC-560 and NS-398 (a selective COX-1 and 2 inhibitor) or AH6809 (an EP2 receptor antagonist) inhibited the H(2)O(2)-induced effects. PD98059 (a mitogen activated/ERK-activating protein kinase inhibitor) inhibited the H(2)O(2)-induced effects, though SB-203580 (a p38 MAPK inhibitor) or a JNK inhibitor did not affect. H(2)O(2)-induced effects could not be inhibited by LY-294002 (an inhibitor of PI3-kinases), calphostin C (a protein kinase C inhibitor) or SQ-22536 (an adenylate cyclase inhibitor). Adenoviral infection analysis revealed H2O2 stimulated tyrosine kinase activity and AG 1478 (an antagonist of epidermal growth factor receptor tyrosine kinase) inhibited the H(2)O(2)-induced effects. These results suggest H(2)O(2) can modulate ICC pacemaker activity and this occur by the activation of K(ATP) channels through PGE(2) production via receptor tyrosine kinase-dependent MAP kinase activation.

  10. Coarse-grained molecular simulation of epidermal growth factor receptor protein tyrosine kinase multi-site self-phosphorylation.

    PubMed

    Koland, John G

    2014-01-01

    Upon the ligand-dependent dimerization of the epidermal growth factor receptor (EGFR), the intrinsic protein tyrosine kinase (PTK) activity of one receptor monomer is activated, and the dimeric receptor undergoes self-phosphorylation at any of eight candidate phosphorylation sites (P-sites) in either of the two C-terminal (CT) domains. While the structures of the extracellular ligand binding and intracellular PTK domains are known, that of the ∼225-amino acid CT domain is not, presumably because it is disordered. Receptor phosphorylation on CT domain P-sites is critical in signaling because of the binding of specific signaling effector molecules to individual phosphorylated P-sites. To investigate how the combination of conventional substrate recognition and the unique topological factors involved in the CT domain self-phosphorylation reaction lead to selectivity in P-site phosphorylation, we performed coarse-grained molecular simulations of the P-site/catalytic site binding reactions that precede EGFR self-phosphorylation events. Our results indicate that self-phosphorylation of the dimeric EGFR, although generally believed to occur in trans, may well occur with a similar efficiency in cis, with the P-sites of both receptor monomers being phosphorylated to a similar extent. An exception was the case of the most kinase-proximal P-site-992, the catalytic site binding of which occurred exclusively in cis via an intramolecular reaction. We discovered that the in cis interaction of P-site-992 with the catalytic site was facilitated by a cleft between the N-terminal and C-terminal lobes of the PTK domain that allows the short CT domain sequence tethering P-site-992 to the PTK core to reach the catalytic site. Our work provides several new mechanistic insights into the EGFR self-phosphorylation reaction, and demonstrates the potential of coarse-grained molecular simulation approaches for investigating the complexities of self-phosphorylation in molecules such as EGFR

  11. Role of ErbB family receptor tyrosine kinases in intrahepatic cholangiocarcinoma

    PubMed Central

    Sirica, Alphonse E

    2008-01-01

    Aberrant expression and signaling of epidermal growth factor receptor (ErbB) family receptor tyrosine kinases, most notably that of ErbB2 and ErbB1, have been implicated in the molecular pathogenesis of intrahepatic cholangiocarcinoma. Constitutive overexpression of ErbB2 and/or ErbB1 in malignant cholangiocytes has raised interest in the possibility that agents which selectively target these receptors could potentially be effective in cholangiocarcinoma therapy. However, current experience with such ErbB-directed therapies have at best produced only modest responses in patients with biliary tract cancers. This review provides a comprehensive and critical analysis of both preclinical and clinical studies aimed at assessing the role of altered ErbB2 and/or ErbB1 expression, genetic modifications, and dysregulated signaling on cholangiocarcinoma development and progression. Specific limitations in experimental approaches that have been used to assess human cholangiocarcinoma specimens for ErbB2 and/or ErbB1 overexpression and gene amplification are discussed. In addition, current rodent models of intrahepatic cholangiocarcinogenesis associated with constitutive ErbB2 overexpression are reviewed. Select interactive relationships between ErbB2 or ErbB1 with other relevant molecular signaling pathways associated with intrahepatic cholangiocarcinoma development and progression are also detailed, including those linking ErbB receptors to bile acid, cyclooxygenase-2, interleukin-6/gp130, transmembrane mucins, hepatocyte growth factor/Met, and vascular endothelial growth factor signaling. Lastly, various factors that can limit therapeutic efficacy of ErbB-targeted agents against cholangiocarcinoma are considered. PMID:19084911

  12. Overexpression and activation of epidermal growth factor receptor in hemangioblastomas

    PubMed Central

    Chen, Gregory J.; Karajannis, Matthias A.; Newcomb, Elizabeth W.

    2010-01-01

    Hemangioblastomas frequently develop in patients with von Hippel-Lindau (VHL) disease, an autosomal dominant genetic disorder. The tumors are characterized by a dense network of blood capillaries, often in association with cysts. Although activation of receptor tyrosine kinase (RTK) signaling, including epidermal growth factor receptor (EGFR) has been implicated in the development of malignant brain tumors such as high-grade gliomas, little is known about the role of RTK signaling in hemangioblastomas. To address this issue, we examined hemangioblastoma tumor specimens using receptor tyrosine kinase (RTK) activation profiling and immunohistochemistry. Six human hemangioblastomas were analyzed with a phospho-RTK antibody array, revealing EGFR phosphorylation in all tumors. EGFR expression was confirmed by immunohistochemistry in all tumors analyzed and downstream effector pathway activation was demonstrated by positive staining for phospho-AKT. Our findings suggest that, in primary hemangioblastomas, RTK upregulation and signaling predominantly involves EGFR, providing an attractive molecular target for therapeutic intervention. PMID:20730556

  13. Endosomal trafficking of the receptor tyrosine kinase MuSK proceeds via clathrin-dependent pathways, Arf6 and actin

    PubMed Central

    Luiskandl, Susan; Woller, Barbara; Schlauf, Marlies; Schmid, Johannes A; Herbst, Ruth

    2013-01-01

    Muscle-specific kinase (MuSK), a receptor tyrosine kinase, is the key player during the formation of the neuromuscular junction. Signal transduction events downstream of MuSK activation induce both pre-and postsynaptic differentiation, which, most prominently, includes the clustering of acetylcholine receptors at synaptic sites. More recently, regulated MuSK endocytosis and degradation have been implicated as crucial events for MuSK signalling activity, implicating a cross-talk between signalling and endocytosis. In the present study, we use a live imaging approach to study MuSK endocytosis. We find that MuSK is internalized via a clathrin-, dynamin-dependent pathway. MuSK is transported to Rab7-positive endosomes for degradation and recycled via Rab4-and Rab11-positive vesicles. MuSK activation by Dok7 mildly affects the localization of MuSK on the cell surface but has no effect on the rate of MuSK internalization. Interestingly, MuSK colocalizes with actin and Arf6 at the cell surface and during endosomal trafficking. Disruption of the actin cytoskeleton or the proper function of Arf6 concentrates MuSK in cell protrusions. Moreover, inhibition of Arf6 or cytoskeletal rearrangements impairs acetylcholine receptor clustering and phosphorylation. These results suggest that MuSK uses both classical and nonclassical endosomal pathways that involve a variety of different components of the endosomal machinery. Structured digital abstract MuSK and Arf6 colocalize by fluorescence microscopy (View Interaction: 1, 2) MuSK and Rab4 colocalize by fluorescence microscopy (View interaction) MuSK and Rab11 colocalize by fluorescence microscopy (View interaction) MuSK and Rab7 colocalize by fluorescence microscopy (View interaction) PMID:23621612

  14. Insulin-like growth factor-I receptor blockade by a specific tyrosine kinase inhibitor for human gastrointestinal carcinomas.

    PubMed

    Piao, Wenhua; Wang, Yu; Adachi, Yasushi; Yamamoto, Hiroyuki; Li, Rong; Imsumran, Arisa; Li, Hua; Maehata, Tadateru; Ii, Masanori; Arimura, Yoshiaki; Lee, Choon-Taek; Shinomura, Yasuhisa; Carbone, David P; Imai, Kohzoh

    2008-06-01

    Insulin-like growth factor-I receptor (IGF-IR) signaling is required for carcinogenicity and proliferation of gastrointestinal (GI) cancers. In this study, we sought to evaluate the effect of a new tyrosine kinase inhibitor of IGF-IR, NVP-AEW541, on the signal transduction and the progression of GI carcinomas. We assessed the effect of NVP-AEW541 on signal transduction, proliferation, survival, and migration in four GI cancer cells: colorectal adenocarcinoma HT29, pancreatic adenocarcinoma BxPC3, esophageal squamous cell carcinoma TE1, and hepatoma PLC/PRF/5. The effects of NVP-AEW541 alone and with chemotherapy were studied in vitro and in nude mouse xenografts. We also analyzed the effects of NVP-AEW541 on insulin signals and hybrid receptor formation between IGF-IR and insulin receptor. NVP-AEW541 blocked autophosphorylation of IGF-IR and both Akt and extracellular signal-regulated kinase activation by IGF but not by insulin. NVP-AEW541 suppressed proliferation and tumorigenicity in vitro in a dose-dependent manner in all cell lines. The drug inhibited tumor as a single agent and, when combined with stressors, up-regulated apoptosis in a dose-dependent fashion and inhibited mobility. NVP-AEW541 augmented the effects of chemotherapy on in vitro growth and induction of apoptosis. Moreover, the combination of NVP-AEW541 and chemotherapy was highly effective against tumors in mice. This compound did not influence hybrid receptor formation. Thus, NVP-AEW541 may have significant therapeutic utility in human GI carcinomas both alone and in combination with chemotherapy.

  15. Insulin-induced tyrosine dephosphorylation of paxillin and focal adhesion kinase requires active phosphotyrosine phosphatase 1D.

    PubMed Central

    Ouwens, D M; Mikkers, H M; van der Zon, G C; Stein-Gerlach, M; Ullrich, A; Maassen, J A

    1996-01-01

    Insulin stimulation of fibroblasts rapidly induces the tyrosine dephosphorylation of proteins of 68 kDa and 125 kDa, in addition to the tyrosine phosphorylation of the insulin receptor beta-chain, insulin receptor substrates 1 and 2, and Shc. Using specific antibodies, the 68 kDa and 125 kDa proteins were identified as paxillin and focal adhesion kinase (pp125FAK) respectively. We have examined whether dephosphorylation of paxillin and pp125FAK requires interaction of the cells with the extracellular matrix. For this, cells were grown on poly(L-lysine) plates, and the tyrosine phosphorylation of pp125FAK and paxillin was increased by addition of lysophosphatidic acid. Under these conditions, insulin still induced the complete dephosphorylation of pp125FAK and paxillin, indicating that this process can occur independently of the interaction of integrins with extracellular matrix proteins. We also studied whether dephosphorylation of pp125FAK and paxillin results from the action of a phosphotyrosine phosphatase. It was found that phenylarsine oxide, a phosphotyrosine phosphatase inhibitor, prevented the insulin-induced dephosphorylation of pp125FAK and paxillin. Furthermore, this insulin-induced dephosphorylation was also impaired in cells expressing a dominant-negative mutant of phosphotyrosine phosphatase 1D (PTP 1D). Thus we have identified paxillin as a target for dephosphorylation by insulin. In addition, we have obtained evidence that the insulin-mediated dephosphorylation of paxillin and pp125FAK requires active PTP 1D. PMID:8809054

  16. Comparative VEGF receptor tyrosine kinase modeling for the development of highly specific inhibitors of tumor angiogenesis.

    PubMed

    Schmidt, Ulrike; Ahmed, Jessica; Michalsky, Elke; Hoepfner, Michael; Preissner, Robert

    2008-01-01

    The Vascular Endothelial Growth Factor receptors (VEGF-Rs) play a significant role in tumor development and tumor angiogenesis and are therefore interesting targets in cancer therapy. Targeting the VEGF-R is of special importance as the feed of the tumor has to be reduced. In general, this can be carried out by inhibiting the tyrosine kinase function of the VEGF-R. Nevertheless, there arise some problems with the specificity of known kinase inhibitors: they bind to the ATP-binding site and inhibit a number of kinases, moreover the so far most specific inhibitors act at least on these three major types of VEGF-Rs: Flt-1, Flk-1/KDR, Flt-4. The goal is a selective VEGF-R-2 (Flk-1/KDR) inhibitor, because this receptor triggers rather unspecific signals from VEGF-A, -C, -D and -E. Here, we describe a protocol starting from an established inhibitor (Vatalanib) with 2D-/3D-searching and property filtering of the in silico screening hits and the "negative docking approach". With this approach we were able to identify a compound, which shows a fourfold higher reduction of the proliferation rate of endothelial cells compared to the reduction effect of the lead structure.

  17. Biological significance and targeting of c-Met tyrosine kinase receptor in cancer.

    PubMed

    Goetsch, Liliane; Caussanel, Veronique; Corvaia, Nathalie

    2013-01-01

    c-Met is a tyrosine kinase receptor largely described to be involved in cancer progression and metastasis. In such pathologic situation, many alterations of this receptor were noticed that include transcriptional overexpression, gene amplification, somatic or germline mutations and/or ligand dependent autocrine/paracrine loops. More recently it has also been suggested that c-Met would be involved in resistance to targeted therapies directed towards EGFR or angiogenesis. Major efforts from a large number of pharmaceutical companies are invested dedicated to evaluate the efficacy of either small molecule inhibitors or monoclonal antibodies directed against c-Met or its unique ligand HGF. A series of promising results from the first completed clinical trials indicated that compounds targeting c-Met have an acceptable toxicity profile and that efficacy was noticed in some treated patients. Non squamous NSCLC patients that express more often high levels of c-Met seemed to represent a most sensitive subset for and anti-c-Met/erlotinib therapy. Many Phase III trials are currently recruiting and a particular effort was performed in order to discover biomarkers associated with efficacy and patient selection. This review will provide an overview of the current knowledge on the c-Met axis for development of novel therapeutics in Oncology.

  18. AXL receptor tyrosine kinase is required for T cell priming and antiviral immunity

    PubMed Central

    Schmid, Edward T; Pang, Iris K; Carrera Silva, Eugenio A; Bosurgi, Lidia; Miner, Jonathan J; Diamond, Michael S; Iwasaki, Akiko; Rothlin, Carla V

    2016-01-01

    The receptor tyrosine kinase (RTK) AXL is induced in response to type I interferons (IFNs) and limits their production through a negative feedback loop. Enhanced production of type I IFNs in Axl-/-dendritic cells (DCs) in vitro have led to speculation that inhibition of AXL would promote antiviral responses. Notwithstanding, type I IFNs also exert potent immunosuppressive functions. Here we demonstrate that ablation of AXL enhances the susceptibility to infection by influenza A virus and West Nile virus. The increased type I IFN response in Axl-/- mice was associated with diminished DC maturation, reduced production of IL-1β, and defective antiviral T cell immunity. Blockade of type I IFN receptor or administration of IL-1β to Axl-/- mice restored the antiviral adaptive response and control of infection. Our results demonstrate that AXL is essential for limiting the immunosuppressive effects of type I IFNs and enabling the induction of protective antiviral adaptive immunity. DOI: http://dx.doi.org/10.7554/eLife.12414.001 PMID:27350258

  19. The Dtk receptor tyrosine kinase, which binds protein S, is expressed during hematopoiesis.

    PubMed

    Crosier, P S; Freeman, S A; Orlic, D; Bodine, D M; Crosier, K E

    1996-02-01

    Dtk (Tyro 3/Sky/Rse/Brt/Tif) belongs to a recently recognized subfamily of receptor tyrosine kinases that also includes Ufo (Axl/Ark) and Mer (Eyk). Ligands for Dtk and Ufo have been identified as protein S and the related molecule Gas6, respectively. This study examined expression of Dtk during ontogeny of the hematopoietic system and compared the pattern of expression with that of Ufo. Both receptors were abundantly expressed in differentiating embryonic stem cells, yolk sac blood islands, para-aortic splanchnopleural mesoderm, fractionated AA4+ fetal liver cells, and fetal thymus from day 14 until birth. Although Ufo was expressed at moderate levels in adult bone marrow, expression of Dtk in this tissue was barely detectable. In adult bone marrow subpopulations fractionated using counterflow centrifugal elutriation, immunomagnetic bead selection for lineage-depletion and FACS sorting for c-kit expression, very low levels of Dtk and/or Ufo were detected in some cell fractions. These results suggest that Dtk and Ufo are likely to be involved in the regulation of hematopoiesis, particularly during the embryonic stages of blood cell development.

  20. Reduced Proteolytic Shedding of Receptor Tyrosine Kinases is a Post-Translational Mechanism of Kinase Inhibitor Resistance

    PubMed Central

    Miller, Miles A.; Oudin, Madeleine J.; Sullivan, Ryan J.; Wang, Stephanie J.; Meyer, Aaron S.; Im, Hyungsoon; Frederick, Dennie T.; Tadros, Jenny; Griffith, Linda G.; Lee, Hakho; Weissleder, Ralph; Flaherty, Keith T.; Gertler, Frank B.; Lauffenburger, Douglas A.

    2016-01-01

    Kinase inhibitor resistance often involves upregulation of poorly understood “bypass” signaling pathways. Here, we show that extracellular proteomic adaptation is one path to bypass signaling and drug resistance. Proteolytic shedding of surface receptors, which can provide negative feedback on signaling activity, is blocked by kinase inhibitor treatment and enhances bypass signaling. In particular, MEK inhibition broadly decreases shedding of multiple receptor tyrosine kinases (RTKs) including HER4, MET, and most prominently AXL, an ADAM10 and ADAM17 substrate, thus increasing surface RTK levels and mitogenic signaling. Progression-free survival of melanoma patients treated with clinical BRAF/MEK inhibitors inversely correlates with RTK shedding reduction following treatment, as measured non-invasively in blood plasma. Disrupting protease inhibition by neutralizing TIMP1 improves MAPK inhibitor efficacy, and combined MAPK/AXL inhibition synergistically reduces tumor growth and metastasis in xenograft models. Altogether, extracellular proteomic rewiring through reduced RTK shedding represents a surprising mechanism for bypass signaling in cancer drug resistance. PMID:26984351

  1. Systems Analysis of Drug-Induced Receptor Tyrosine Kinase Reprogramming Following Targeted Mono- and Combination Anti-Cancer Therapy

    PubMed Central

    Goltsov, Alexey; Deeni, Yusuf; Khalil, Hilal S.; Soininen, Tero; Kyriakidis, Stylianos; Hu, Huizhong; Langdon, Simon P.; Harrison, David J.; Bown, James

    2014-01-01

    The receptor tyrosine kinases (RTKs) are key drivers of cancer progression and targets for drug therapy. A major challenge in anti-RTK treatment is the dependence of drug effectiveness on co-expression of multiple RTKs which defines resistance to single drug therapy. Reprogramming of the RTK network leading to alteration in RTK co-expression in response to drug intervention is a dynamic mechanism of acquired resistance to single drug therapy in many cancers. One route to overcome this resistance is combination therapy. We describe the results of a joint in silico, in vitro, and in vivo investigations on the efficacy of trastuzumab, pertuzumab and their combination to target the HER2 receptors. Computational modelling revealed that these two drugs alone and in combination differentially suppressed RTK network activation depending on RTK co-expression. Analyses of mRNA expression in SKOV3 ovarian tumour xenograft showed up-regulation of HER3 following treatment. Considering this in a computational model revealed that HER3 up-regulation reprograms RTK kinetics from HER2 homodimerisation to HER3/HER2 heterodimerisation. The results showed synergy of the trastuzumab and pertuzumab combination treatment of the HER2 overexpressing tumour can be due to an independence of the combination effect on HER3/HER2 composition when it changes due to drug-induced RTK reprogramming. PMID:24918976

  2. Dynamic gene and protein expression patterns of the autism-associated Met receptor tyrosine kinase in the developing mouse forebrain

    PubMed Central

    Judson, Matthew C.; Bergman, Mica Y.; Campbell, Daniel B.; Eagleson, Kathie L.; Levitt, Pat

    2009-01-01

    The establishment of appropriate neural circuitry depends upon the coordination of multiple developmental events across space and time. These events include proliferation, migration, differentiation, and survival - all of which can be mediated by hepatocyte growth factor (HGF) signaling through the Met receptor tyrosine kinase. We previously found a functional promoter variant of the MET gene to be associated with autism spectrum disorder, suggesting that forebrain circuits governing social and emotional function may be especially vulnerable to developmental disruptions in HGF/Met signaling. However, little is known about the spatiotemporal distribution of Met expression in the forebrain during the development of such circuits. To advance our understanding of the neurodevelopmental influences of Met activation, we employed complementary Western blotting, in situ hybridization and immunohistochemistry to comprehensively map Met transcript and protein expression throughout perinatal and postnatal development of the mouse forebrain. Our studies reveal complex and dynamic spatiotemporal patterns of expression during this period. Spatially, Met transcript is localized primarily to specific populations of projection neurons within the neocortex and in structures of the limbic system, including the amygdala, hippocampus and septum. Met protein appears to be principally located in axon tracts. Temporally, peak expression of transcript and protein occurs during the second postnatal week. This period is characterized by extensive neurite outgrowth and synaptogenesis, supporting a role for the receptor in these processes. Collectively, these data suggest that Met signaling may be necessary for the appropriate wiring of forebrain circuits with particular relevance to social and emotional dimensions of behavior. PMID:19226509

  3. Partial purification and characterization of an enzyme from pea nuclei with protein tyrosine phosphatase activity.

    PubMed

    Guo, Y L; Roux, S J

    1995-01-01

    A pea (Pisum sativum L.) nuclear enzyme with protein tyrosine phosphatase activity has been partially purified and characterized. The enzyme has a molecular mass of 90 kD as judged by molecular sieve column chromatography and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Like animal protein tyrosine phosphatases it can be inhibited by low concentrations of molybdate and vanadate. It is also inhibited by heparin and spermine but not by either the acid phosphatase inhibitors citrate and tartrate or the protein serine/threonine phosphatase inhibitor okadaic acid. The enzyme does not require Ca2+, Mg2+, or Mn2+ for its activity but is stimulated by ethylenediaminetetraacetate and by ethyleneglycolbis(beta-aminoethyl ether)-N,N'-tetraacetic acid. It dephosphorylates phosphotyrosine residues on the four different 32P-tyrosine-labeled peptides tested but not the phosphoserine/threonine residues on casein and histone. Like some animal protein tyrosine phosphatases, it has a variable pH optimum depending on the substrate used: the optimum is 5.5 when the substrate is [32P]tyrosine-labeled lysozyme, but it is 7.0 when the substrate is [32P]tyrosine-labeled poly(glutamic acid, tyrosine). It has a Km of 4 microM when the lysozyme protein is used as a substrate.

  4. A novel oncogene, v-ryk, encoding a truncated receptor tyrosine kinase is transduced into the RPL30 virus without loss of viral sequences.

    PubMed Central

    Jia, R; Mayer, B J; Hanafusa, T; Hanafusa, H

    1992-01-01

    The RPL viruses are acute oncogenic avian retroviruses isolated from chicken tumors. We carried out a genetic analysis of three of the viruses, RPL25, RPL28, and RPL30. While RPL25 and RPL28 were shown to contain the erbB oncogene, RPL30 appeared to contain a novel protein tyrosine kinase oncogene. This gene, v-ryk, was cloned and sequenced. The v-ryk oncogene contains a 1.39-kb nonretroviral sequence that includes a tyrosine kinase domain which was inserted into the viral envelope protein gp37-coding region and fused in frame with upstream gp37 to generate a P69gp37-ryk fusion oncoprotein. Unlike that of other acutely transforming retroviruses, transduction of the v-ryk gene into RPL30 did not result in deletion of viral sequences. Sequence analysis suggested that v-Ryk is more homologous to receptor-type tyrosine kinases than to nonreceptor-type kinases. By reconstitution of a virus from its cDNA, the v-ryk oncogene has been shown to be fully responsible for the transforming activity of the RPL30 virus. Antibodies specific to v-Ryk immunoprecipitated the v-Ryk oncoprotein from cells transformed by the RPL30 virus. The v-Ryk protein was shown to be first synthesized as a 150-kDa precursor and then cleaved into the mature 69-kDa gp37-Ryk fusion protein, both parts of which were found to be localized to the membrane fraction. As expected from the sequence of v-Ryk, immunoprecipitates of v-Ryk from RPL30-transformed cells were found to display a protein tyrosine kinase activity in vitro, and the levels of tyrosine-phosphorylated proteins are elevated in v-ryk-transformed cells. Images PMID:1527848

  5. Receptor protein tyrosine phosphatases are novel components of a polycystin complex

    PubMed Central

    Boucher, Catherine A.; Ward, Heather H.; Case, Ruth L.; Thurston, Katie S.; Li, Xiaohong; Needham, Andrew; Romero, Elsa; Hyink, Deborah; Qamar, Seema; Roitbak, Tamara; Powell, Samantha; Ward, Christopher; Wilson, Patricia D.; Wandinger-Ness, Angela; Sandford, Richard N.

    2011-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutation of PKD1 and PKD2 that encode polycystin-1 and polycystin-2. Polycystin-1 is tyrosine phosphorylated and modulates multiple signaling pathways including AP-1, but the identity of the phosphatases regulating polycystin-1 are previously uncharacterized. Here we identify members of the LAR protein tyrosine phosphatase (RPTP) superfamily as members of the polycystin-1complex mediated through extra- and intracellular interactions. The first extracellular PKD1 domain of polycystin-1 interacts with the first Ig domain of RPTPσ, while the polycystin-1 C-terminus of polycystin-1 interacts with the regulatory D2 phosphatase domain of RPTPγ. Additional homo- and heterotypic interactions between RPTPs recruit RPTPδ The multimeric polycystin protein complex is found localised in cilia. RPTPσ and RPTPδ are also part of a polycystin-1/E-cadherin complex known to be important for early events in adherens junction stabilisation. The interaction between polycystin-1 and RPTPγ is disrupted in ADPKD cells, while RPTPσ and RPTPδ remain closely associated with E-cadherin, largely in an intracellular location. The polycystin-1 C-terminus is an in vitro substrate of RPTPγ, which dephosphorylates the c-Src phosphorylated Y4237 residue and activates AP1-mediated transcription. The data identify RPTPs as novel interacting partners of the polycystins both in cilia and at adhesion complexes and demonstrate RPTPγ phosphatase activity is central to the molecular mechanisms governing polycystin-dependent signaling. PMID:21126580

  6. Interleukins 2, 4, 7, and 15 stimulate tyrosine phosphorylation of insulin receptor substrates 1 and 2 in T cells. Potential role of JAK kinases.

    PubMed

    Johnston, J A; Wang, L M; Hanson, E P; Sun, X J; White, M F; Oakes, S A; Pierce, J H; O'Shea, J J

    1995-12-01

    The signaling molecules insulin receptor substrate (IRS)-1 and the newly described IRS-2 (4PS) molecule are major insulin and interleukin 4 (IL-4)-dependent phosphoproteins. We report here that IL-2, IL-7, and IL-15, as well as IL-4, rapidly stimulate the tyrosine phosphorylation of IRS-1 and IRS-2 in human peripheral blood T cells, NK cells, and in lymphoid cell lines. In addition, we show that the Janus kinases, JAK1 and JAK3, associate with IRS-1 and IRS-2 in T cells. Coexpression studies demonstrate that these kinases can tyrosine-phosphorylate IRS-2, suggesting a possible mechanism by which cytokine receptors may induce the tyrosine phosphorylation of IRS-1 and IRS-2. We further demonstrate that the p85 subunit of phosphoinositol 3-kinase associates with IRS-1 in response to IL-2 and IL-4 in T cells. Therefore, these data indicate that IRS-1 and IRS-2 may have important roles in T lymphocyte activation not only in response to IL-4, but also in response to IL-2, IL-7, and IL-15.

  7. Expression of receptor protein tyrosine phosphatase δ, PTPδ, in mouse central nervous system.

    PubMed

    Shishikura, Maria; Nakamura, Fumio; Yamashita, Naoya; Uetani, Noriko; Iwakura, Yoichiro; Goshima, Yoshio

    2016-07-01

    Protein tyrosine phosphate δ (PTPδ), one of the receptor type IIa protein tyrosine phosphates, is known for its roles in axon guidance, synapse formation, cell adhesion, and tumor suppression. Alternative splicing of this gene generates at least four (A-D) isoforms; however, the major isoform in vivo is yet to be determined. The protein localization has neither been revealed. We have generated anti-mouse PTPδ-specific monoclonal antibody and analyzed the protein expression in wild-type and Ptpδ knockout mice. Immunoblot analysis of various organs revealed that neuronal tissues express both C-and D-isoforms of PTPδ, whereas non-neuronal tissues express only C-isoform. Immunohistochemistry of wild-type or Ptpδ heterozygous sections showed that olfactory bulb, cerebral cortex, hippocampus, cerebellum, and several nuclei in brain stem exhibit moderate to strong positive signals. These signals were absent in Ptpδ knockout specimens. Higher magnification revealed differences between expression patterns of PTPδ mRNA and its protein product. In hippocampus, weak mRNA expression in CA1 stratum pyramidale but strong immunostaining in the stratum lacunosum moleculare was observed, suggesting the axonal expression of PTPδ in the entorhinal cortical afferents. Olfactory mitral cells exhibited mRNA expression in cell bodies and protein localization in their dendritic fields, glomerular and external plexiform layers. Nissl staining showed that the external plexiform layer was reduced in Ptpδ knockout mice. Golgi-impregnation confirmed the poor dendritic growth of homozygous mitral cells. These results suggest that PTPδ may localize in axons as well as in dendrites to regulate their elaboration in the central nervous system.

  8. Expression of receptor protein tyrosine phosphatase δ, PTPδ, in mouse central nervous system.

    PubMed

    Shishikura, Maria; Nakamura, Fumio; Yamashita, Naoya; Uetani, Noriko; Iwakura, Yoichiro; Goshima, Yoshio

    2016-07-01

    Protein tyrosine phosphate δ (PTPδ), one of the receptor type IIa protein tyrosine phosphates, is known for its roles in axon guidance, synapse formation, cell adhesion, and tumor suppression. Alternative splicing of this gene generates at least four (A-D) isoforms; however, the major isoform in vivo is yet to be determined. The protein localization has neither been revealed. We have generated anti-mouse PTPδ-specific monoclonal antibody and analyzed the protein expression in wild-type and Ptpδ knockout mice. Immunoblot analysis of various organs revealed that neuronal tissues express both C-and D-isoforms of PTPδ, whereas non-neuronal tissues express only C-isoform. Immunohistochemistry of wild-type or Ptpδ heterozygous sections showed that olfactory bulb, cerebral cortex, hippocampus, cerebellum, and several nuclei in brain stem exhibit moderate to strong positive signals. These signals were absent in Ptpδ knockout specimens. Higher magnification revealed differences between expression patterns of PTPδ mRNA and its protein product. In hippocampus, weak mRNA expression in CA1 stratum pyramidale but strong immunostaining in the stratum lacunosum moleculare was observed, suggesting the axonal expression of PTPδ in the entorhinal cortical afferents. Olfactory mitral cells exhibited mRNA expression in cell bodies and protein localization in their dendritic fields, glomerular and external plexiform layers. Nissl staining showed that the external plexiform layer was reduced in Ptpδ knockout mice. Golgi-impregnation confirmed the poor dendritic growth of homozygous mitral cells. These results suggest that PTPδ may localize in axons as well as in dendrites to regulate their elaboration in the central nervous system. PMID:27026654

  9. Mechanisms of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Resistance and Strategies to Overcome Resistance in Lung Adenocarcinoma

    PubMed Central

    Chang, Yoon Soo; Choi, Chang-Min

    2016-01-01

    Somatic mutations that lead to hyperactivation of epidermal growth factor receptor (EGFR) signaling are detected in approximately 50% of lung adenocarcinoma in people from the Far East population and tyrosine kinase inhibitors are now the standard first line treatment for advanced disease. They have led to a doubling of progression-free survival and an increase in overall survival by more than 2 years. However, emergence of resistant clones has become the primary cause for treatment failure, and has created a new challenge in the daily management of patients with EGFR mutations. Identification of mechanisms leading to inhibitor resistance has led to new therapeutic modalities, some of which have now been adapted for patients with unsuccessful tyrosine kinase inhibitor treatment. In this review, we describe mechanisms of tyrosine kinase inhibitor resistance and the available strategies to overcoming resistance. PMID:27790276

  10. Hepatocyte Growth Factor Modulates MET Receptor Tyrosine Kinase and β-Catenin Functional Interactions to Enhance Synapse Formation

    PubMed Central

    Xie, Zhihui; Eagleson, Kathie L.

    2016-01-01

    MET, a pleiotropic receptor tyrosine kinase implicated in autism risk, influences multiple neurodevelopmental processes. There is a knowledge gap, however, in the molecular mechanism through which MET mediates developmental events related to disorder risk. In the neocortex, MET is expressed transiently during periods of peak dendritic outgrowth and synaptogenesis, with expression enriched at developing synapses, consistent with demonstrated roles in dendritic morphogenesis, modulation of spine volume, and excitatory synapse development. In a recent coimmunoprecipitation/mass spectrometry screen, β-catenin was identified as part of the MET interactome in developing neocortical synaptosomes. Here, we investigated the influence of the MET/β-catenin complex in mouse neocortical synaptogenesis. Western blot analysis confirms that MET and β-catenin coimmunoprecipitate, but N-cadherin is not associated with the MET complex. Following stimulation with hepatocyte growth factor (HGF), β-catenin is phosphorylated at tyrosine142 (Y142) and dissociates from MET, accompanied by an increase in β-catenin/N-cadherin and MET/synapsin 1 protein complexes. In neocortical neurons in vitro, proximity ligation assays confirmed the close proximity of these proteins. Moreover, in neurons transfected with synaptophysin-GFP, HGF stimulation increases the density of synaptophysin/bassoon (a presynaptic marker) and synaptophysin/PSD-95 (a postsynaptic marker) clusters. Mutation of β-catenin at Y142 disrupts the dissociation of the MET/β-catenin complex and prevents the increase in clusters in response to HGF. The data demonstrate a new mechanism for the modulation of synapse formation, whereby MET activation induces an alignment of presynaptic and postsynaptic elements that are necessary for assembly and formation of functional synapses by subsets of neocortical neurons that express MET/β-catenin complex.

  11. Hepatocyte Growth Factor Modulates MET Receptor Tyrosine Kinase and β-Catenin Functional Interactions to Enhance Synapse Formation.

    PubMed

    Xie, Zhihui; Eagleson, Kathie L; Wu, Hsiao-Huei; Levitt, Pat

    2016-01-01

    MET, a pleiotropic receptor tyrosine kinase implicated in autism risk, influences multiple neurodevelopmental processes. There is a knowledge gap, however, in the molecular mechanism through which MET mediates developmental events related to disorder risk. In the neocortex, MET is expressed transiently during periods of peak dendritic outgrowth and synaptogenesis, with expression enriched at developing synapses, consistent with demonstrated roles in dendritic morphogenesis, modulation of spine volume, and excitatory synapse development. In a recent coimmunoprecipitation/mass spectrometry screen, β-catenin was identified as part of the MET interactome in developing neocortical synaptosomes. Here, we investigated the influence of the MET/β-catenin complex in mouse neocortical synaptogenesis. Western blot analysis confirms that MET and β-catenin coimmunoprecipitate, but N-cadherin is not associated with the MET complex. Following stimulation with hepatocyte growth factor (HGF), β-catenin is phosphorylated at tyrosine(142) (Y142) and dissociates from MET, accompanied by an increase in β-catenin/N-cadherin and MET/synapsin 1 protein complexes. In neocortical neurons in vitro, proximity ligation assays confirmed the close proximity of these proteins. Moreover, in neurons transfected with synaptophysin-GFP, HGF stimulation increases the density of synaptophysin/bassoon (a presynaptic marker) and synaptophysin/PSD-95 (a postsynaptic marker) clusters. Mutation of β-catenin at Y142 disrupts the dissociation of the MET/β-catenin complex and prevents the increase in clusters in response to HGF. The data demonstrate a new mechanism for the modulation of synapse formation, whereby MET activation induces an alignment of presynaptic and postsynaptic elements that are necessary for assembly and formation of functional synapses by subsets of neocortical neurons that express MET/β-catenin complex. PMID:27595133

  12. Hepatocyte Growth Factor Modulates MET Receptor Tyrosine Kinase and β-Catenin Functional Interactions to Enhance Synapse Formation.

    PubMed

    Xie, Zhihui; Eagleson, Kathie L; Wu, Hsiao-Huei; Levitt, Pat

    2016-01-01

    MET, a pleiotropic receptor tyrosine kinase implicated in autism risk, influences multiple neurodevelopmental processes. There is a knowledge gap, however, in the molecular mechanism through which MET mediates developmental events related to disorder risk. In the neocortex, MET is expressed transiently during periods of peak dendritic outgrowth and synaptogenesis, with expression enriched at developing synapses, consistent with demonstrated roles in dendritic morphogenesis, modulation of spine volume, and excitatory synapse development. In a recent coimmunoprecipitation/mass spectrometry screen, β-catenin was identified as part of the MET interactome in developing neocortical synaptosomes. Here, we investigated the influence of the MET/β-catenin complex in mouse neocortical synaptogenesis. Western blot analysis confirms that MET and β-catenin coimmunoprecipitate, but N-cadherin is not associated with the MET complex. Following stimulation with hepatocyte growth factor (HGF), β-catenin is phosphorylated at tyrosine(142) (Y142) and dissociates from MET, accompanied by an increase in β-catenin/N-cadherin and MET/synapsin 1 protein complexes. In neocortical neurons in vitro, proximity ligation assays confirmed the close proximity of these proteins. Moreover, in neurons transfected with synaptophysin-GFP, HGF stimulation increases the density of synaptophysin/bassoon (a presynaptic marker) and synaptophysin/PSD-95 (a postsynaptic marker) clusters. Mutation of β-catenin at Y142 disrupts the dissociation of the MET/β-catenin complex and prevents the increase in clusters in response to HGF. The data demonstrate a new mechanism for the modulation of synapse formation, whereby MET activation induces an alignment of presynaptic and postsynaptic elements that are necessary for assembly and formation of functional synapses by subsets of neocortical neurons that express MET/β-catenin complex.

  13. Hepatocyte Growth Factor Modulates MET Receptor Tyrosine Kinase and β-Catenin Functional Interactions to Enhance Synapse Formation

    PubMed Central

    Xie, Zhihui; Eagleson, Kathie L.

    2016-01-01

    MET, a pleiotropic receptor tyrosine kinase implicated in autism risk, influences multiple neurodevelopmental processes. There is a knowledge gap, however, in the molecular mechanism through which MET mediates developmental events related to disorder risk. In the neocortex, MET is expressed transiently during periods of peak dendritic outgrowth and synaptogenesis, with expression enriched at developing synapses, consistent with demonstrated roles in dendritic morphogenesis, modulation of spine volume, and excitatory synapse development. In a recent coimmunoprecipitation/mass spectrometry screen, β-catenin was identified as part of the MET interactome in developing neocortical synaptosomes. Here, we investigated the influence of the MET/β-catenin complex in mouse neocortical synaptogenesis. Western blot analysis confirms that MET and β-catenin coimmunoprecipitate, but N-cadherin is not associated with the MET complex. Following stimulation with hepatocyte growth factor (HGF), β-catenin is phosphorylated at tyrosine142 (Y142) and dissociates from MET, accompanied by an increase in β-catenin/N-cadherin and MET/synapsin 1 protein complexes. In neocortical neurons in vitro, proximity ligation assays confirmed the close proximity of these proteins. Moreover, in neurons transfected with synaptophysin-GFP, HGF stimulation increases the density of synaptophysin/bassoon (a presynaptic marker) and synaptophysin/PSD-95 (a postsynaptic marker) clusters. Mutation of β-catenin at Y142 disrupts the dissociation of the MET/β-catenin complex and prevents the increase in clusters in response to HGF. The data demonstrate a new mechanism for the modulation of synapse formation, whereby MET activation induces an alignment of presynaptic and postsynaptic elements that are necessary for assembly and formation of functional synapses by subsets of neocortical neurons that express MET/β-catenin complex. PMID:27595133

  14. Insulin Resistance Induced by Hyperinsulinemia Coincides with a Persistent Alteration at the Insulin Receptor Tyrosine Kinase Domain

    PubMed Central

    Catalano, Karyn J.; Maddux, Betty A.; Szary, Jaroslaw; Youngren, Jack F.; Goldfine, Ira D.; Schaufele, Fred

    2014-01-01

    Insulin resistance, the diminished response of target tissues to insulin, is associated with the metabolic syndrome and a predisposition towards diabetes in a growing proportion of the worldwide population. Under insulin resistant states, the cellular response of the insulin signaling pathway is diminished and the body typically responds by increasing serum insulin concentrations to maintain insulin signaling. Some evidence indicates that the increased insulin concentration may itself further dampen insulin response. If so, insulin resistance would worsen as the level of circulating insulin increases during compensation, which could contribute to the transition of insulin resistance to more severe disease. Here, we investigated the consequences of excess insulin exposure to insulin receptor (IR) activity. Cells chronically exposed to insulin show a diminished the level of IR tyrosine and serine autophosphorylation below that observed after short-term insulin exposure. The diminished IR response did not originate with IR internalization since IR amounts at the cell membrane were similar after short- and long-term insulin incubation. Förster resonance energy transfer between fluorophores attached to the IR tyrosine kinase (TK) domain showed that a change in the TK domain occurred upon prolonged, but not short-term, insulin exposure. Even though the altered ‘insulin refractory’ IR TK FRET and IR autophosphorylation levels returned to baseline (non-stimulated) levels after wash-out of the original insulin stimulus, subsequent short-term exposure to insulin caused immediate re-establishment of the insulin-refractory levels. This suggests that some cell-based ‘memory’ of chronic hyperinsulinemic exposure acts directly at the IR. An improved understanding of that memory may help define interventions to reset the IR to full insulin responsiveness and impede the progression of insulin resistance to more severe disease states. PMID:25259572

  15. Differential Utilization and Localization of ErbB Receptor Tyrosine Kinases in Skin Compared to Normal and Malignant Keratinocytes1

    PubMed Central

    Stoll, Stefan W; Kansra, Sanjay; Peshick, Scott; Fry, David W; Leopold, Wilbur R; Wiesen, Jane F; Sibilia, Maria; Zhang, Tong; Werb, Zena; Derynck, Rik; Wagner, Erwin F; Elder, James T

    2001-01-01

    Abstract Induction of heparin-binding epidermal growth factor-like growth factor (HB-EGF) mRNA in mouse skin organ culture was blocked by two pan-ErbB receptor tyrosine kinase (RTK) inhibitors but not by genetic ablation of ErbB1, suggesting involvement of multiple ErbB species in skin physiology. Human skin, cultured normal keratinocytes, and A431 skin carcinoma cells expressed ErbB1, ErbB2, and ErbB3, but not ErbB4. Skin and A431 cells expressed more ErbB3 than did keratinocytes. Despite strong expression of ErbB2 and ErbB3, heregulin was inactive in stimulating tyrosine phosphorylation in A431 cells. In contrast, it was highly active in MDA-MB-453 breast carcinoma cells. ErbB2 displayed punctate cytoplasmic staining in A431 and keratinocytes, compared to strong cell surface staining in MDA-MB-453. In skin, ErbB2 was cytoplasmic in basal keratinocytes, assuming a cell surface pattern in the upper suprabasal layers. In contrast, ErbB1 retained a cell surface distribution in all epidermal layers. Keratinocyte proliferation in culture was found to be ErbB1-RTK-dependent, using a selective inhibitor. These results suggest that in skin keratinocytes, ErbB2 transduces ligand-dependent differentiation signals, whereas ErbB1 transduces ligand-dependent proliferation/survival signals. Intracellular sequestration of ErbB2 may contribute to the malignant phenotype of A431 cells, by allowing them to respond to ErbB1-dependent growth/survival signals, while evading ErbB2-dependent differentiation signals. PMID:11571634

  16. RhoA/phosphatidylinositol 3-kinase/protein kinase B/mitogen-activated protein kinase signaling after growth arrest-specific protein 6/mer receptor tyrosine kinase engagement promotes epithelial cell growth and wound repair via upregulation of hepatocyte growth factor in macrophages.

    PubMed

    Lee, Ye-Ji; Park, Hyun-Jung; Woo, So-Youn; Park, Eun-Mi; Kang, Jihee Lee

    2014-09-01

    Growth arrest-specific protein 6 (Gas6)/Mer receptor tyrosine kinase (Mer) signaling modulates cytokine secretion and helps to regulate the immune response and apoptotic cell clearance. Signaling pathways that activate an epithelial growth program in macrophages are still poorly defined. We report that Gas6/Mer/RhoA signaling can induce the production of epithelial growth factor hepatic growth factor (HGF) in macrophages, which ultimately promotes epithelial cell proliferation and wound repair. The RhoA/protein kinase B (Akt)/mitogen-activated protein (MAP) kinases, including p38 MAP kinase, extracellular signal-regulated protein kinase, and Jun NH2-terminal kinase axis in RAW 264.7 cells, was identified as Gas6/Mer downstream signaling pathway for the upregulation of HGF mRNA and protein. Conditioned medium from RAW 264.7 cells that had been exposed to Gas6 or apoptotic cells enhanced epithelial cell proliferation of the epithelial cell line LA-4 and wound closure. Cotreatment with an HGF receptor-blocking antibody or c-Met antagonist downregulated this enhancement. Inhibition of Mer with small interfering RNA (siRNA) or the RhoA/Rho kinase pathway by RhoA siRNA or Rho kinase pharmacologic inhibitor suppressed Gas6-induced HGF mRNA and protein expression in macrophages and blocked epithelial cell proliferation and wound closure induced by the conditioned medium. Our data provide evidence that macrophages can be reprogrammed by Gas6 to promote epithelial proliferation and wound repair via HGF, which is induced by the Mer/RhoA/Akt/MAP kinase pathway. Thus, defects in Gas6/Mer/RhoA signaling in macrophages may delay tissue repair after injury to the alveolar epithelium.

  17. Novel post-translational incorporation of tyrosine in PMA-activated polymorphonuclear leukocytes (PMN)

    SciTech Connect

    Nath, J.; Oliver, C.; Ohno, Y.; Gallin, J.I.

    1986-03-05

    During studies undertaken to determine whether stimulation of tubulin tyrosinolation occurs in PMA-activated PMN, a distinctly different and novel post-translational incorporation of tyrosine into multiple PMN proteins was observed. The reaction also occurred in organelle-depleted neutrophil cytoplasts and was highly exaggerated in organelle-enriched karyogranuloplasts. The incorporation was specific for tyrosine, did not require extracellular Ca/sup 2 +/ and was inhibited in the presence of a variety of reducing agents, intracellular scavengers of oxygen radicals and inhibitors of peroxidase-mediated reactions. The PMA-induced incorporation of tyrosine was completely absent in PMN from patients with chronic granulomatous disease, but occurred normally in PMN of a patient with myeloperoxidase deficiency. Moreover, the incorporation of tyrosine was blocked by N-acetyl-L-tyrosine but not by phenylalanine suggesting a requirement for the phenolic group. A two-fold increase in stable protein carbonyl derivatives was demonstrated suggesting an increased oxidative modification of the proteins. SDS urea PAGE and reversed phase HPLC did not reveal any detectable changes in the extent of protein cross-linking. The PMN tyrosine pool was approximately 900 ..mu..M and yet only 1 ..mu..M tyrosine was added in these experiments. The functional significance of this reaction is not yet clear.

  18. CCAAT/enhancer-binding protein β: its role in breast cancer and associations with receptor tyrosine kinases

    PubMed Central

    Zahnow, Cynthia A.

    2011-01-01

    The CCAAT/enhancer-binding proteins (C/EBPs) are a family of leucine-zipper transcription factors that regulate gene expression to control cellular proliferation, differentiation, inflammation and metabolism. Encoded by an intronless gene, C/EBPβ is expressed as several distinct protein isoforms (LAP1, LAP2, LIP) whose expression is regulated by the differential use of several in-frame translation start sites. LAP1 and LAP2 are transcriptional activators and are associated with differentiation, whereas LIP is frequently elevated in proliferative tissue and acts as a dominant-negative inhibitor of transcription. However, emerging evidence suggests that LIP can serve as a transcriptional activator in some cellular contexts, and that LAP1 and LAP2 might also have unique actions. The LIP:LAP ratio is crucial for the maintenance of normal growth and development, and increases in this ratio lead to aggressive forms of breast cancer. This review discusses the regulation of C/EBPβ activity by post-translational modification, the individual actions of LAP1, LAP2 and LIP, and the functions and downstream targets that are unique to each isoform. The role of the C/EBPβ isoforms in breast cancer is discussed and emphasis is placed on their interactions with receptor tyrosine kinases. PMID:19351437

  19. CEP-701 and CEP-751 inhibit constitutively activated RET tyrosine kinase activity and block medullary thyroid carcinoma cell growth.

    PubMed

    Strock, Christopher J; Park, Jong-In; Rosen, Mark; Dionne, Craig; Ruggeri, Bruce; Jones-Bolin, Susan; Denmeade, Samuel R; Ball, Douglas W; Nelkin, Barry D

    2003-09-01

    All of the cases of medullary thyroid carcinoma (MTC) express the RET receptor tyrosine kinase. In essentially all of the hereditary cases and approximately 40% of the sporadic cases of MTC, the RET kinase is constitutively activated by mutation. This suggests that RET may be an effective therapeutic target for treatment of MTC. We show that the indolocarbazole derivatives, CEP-701 and CEP-751, inhibit RET in MTC cells. These compounds effectively inhibit RET phosphorylation in a dose-dependent manner at concentrations <100 nM in 0.5% serum and at somewhat higher concentrations in the presence of 16% serum. They also blocked the growth of these MTC cells in culture. CEP-751 and its prodrug, CEP-2563, also inhibited tumor growth in MTC cell xenografts. These results show that inhibiting RET can block the growth of MTC cells and may have a therapeutic benefit in MTC.

  20. IRBIT regulates CaMKIIα activity and contributes to catecholamine homeostasis through tyrosine hydroxylase phosphorylation

    PubMed Central

    Kawaai, Katsuhiro; Mizutani, Akihiro; Shoji, Hirotaka; Ogawa, Naoko; Ebisui, Etsuko; Kuroda, Yukiko; Wakana, Shigeharu; Hisatsune, Chihiro; Mikoshiba, Katsuhiko

    2015-01-01

    Inositol 1,4,5-trisphosphate receptor (IP3R) binding protein released with IP3 (IRBIT) contributes to various physiological events (electrolyte transport and fluid secretion, mRNA polyadenylation, and the maintenance of genomic integrity) through its interaction with multiple targets. However, little is known about the physiological role of IRBIT in the brain. Here we identified calcium calmodulin-dependent kinase II alpha (CaMKIIα) as an IRBIT-interacting molecule in the central nervous system. IRBIT binds to and suppresses CaMKIIα kinase activity by inhibiting the binding of calmodulin to CaMKIIα. In addition, we show that mice lacking IRBIT present with elevated catecholamine levels, increased locomotor activity, and social abnormalities. The level of tyrosine hydroxylase (TH) phosphorylation by CaMKIIα, which affects TH activity, was significantly increased in the ventral tegmental area of IRBIT-deficient mice. We concluded that IRBIT suppresses CaMKIIα activity and contributes to catecholamine homeostasis through TH phosphorylation. PMID:25922519

  1. Coincident signals from GPCRs and receptor tyrosine kinases are uniquely transduced by PI3Kβ in myeloid cells.

    PubMed

    Houslay, Daniel M; Anderson, Karen E; Chessa, Tamara; Kulkarni, Suhasini; Fritsch, Ralph; Downward, Julian; Backer, Jonathan M; Stephens, Len R; Hawkins, Phillip T

    2016-01-01

    Class I phosphoinositide 3-kinases (PI3Ks) catalyze production of the lipid messenger phosphatidylinositol 3,4,5-trisphosphate (PIP3), which plays a central role in a complex signaling network regulating cell growth, survival, and movement. This network is overactivated in cancer and inflammation, and there is interest in determining the PI3K catalytic subunit (p110α, p110β, p110γ, or p110δ) that should be targeted in different therapeutic contexts. Previous studies have defined unique regulatory inputs for p110β, including direct interaction with Gβγ subunits, Rac, and Rab5. We generated mice with knock-in mutations of p110β that selectively blocked the interaction with Gβγ and investigated its contribution to the PI3K isoform dependency of receptor tyrosine kinase (RTK) and G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor (GPCR) responses in primary macrophages and neutrophils. We discovered a unique role for p110β in supporting synergistic PIP3 formation in response to the coactivation of macrophages by macrophage colony-stimulating factor (M-CSF) and the complement protein C5a. In contrast, we found partially redundant roles for p110α, p110β, and p110δ downstream of M-CSF alone and a nonredundant role for p110γ downstream of C5a alone. This role for p110β completely depended on direct interaction with Gβγ, suggesting that p110β transduces GPCR signals in the context of coincident activation by an RTK. The p110β-Gβγ interaction was also required for neutrophils to generate reactive oxygen species in response to the Fcγ receptor-dependent recognition of immune complexes and for their β2 integrin-mediated adhesion to fibrinogen or poly-RGD+, directly implicating heterotrimeric G proteins in these two responses. PMID:27531651

  2. Transactivation of the Receptor-tyrosine Kinase Ephrin Receptor A2 Is Required for the Low Molecular Weight Hyaluronan-mediated Angiogenesis That Is implicated in Tumor Progression*

    PubMed Central

    Lennon, Frances E; Mirzapoiazova, Tamara; Mambetsariev, Nurbek; Mambetsariev, Bolot; Salgia, Ravi; Singleton, Patrick A.

    2014-01-01

    Angiogenesis or the formation of new blood vessels is important in the growth and metastatic potential of various cancers. Therefore, understanding the mechanism(s) by which angiogenesis occurs can have important therapeutic implications in numerous malignancies. We and others have demonstrated that low molecular weight hyaluronan (LMW-HA, ∼2500 Da) promotes endothelial cell (EC) barrier disruption and angiogenesis. However, the mechanism(s) by which this occurs is poorly defined. Our data indicate that treatment of human EC with LMW-HA induced CD44v10 association with the receptor-tyrosine kinase, EphA2, transactivation (tyrosine phosphorylation) of EphA2, and recruitment of the PDZ domain scaffolding protein, PATJ, to the cell periphery. Silencing (siRNA) CD44, EphA2, PATJ, or Dbs (RhoGEF) expression blocked LMW-HA-mediated angiogenesis (EC proliferation, migration, and tubule formation). In addition, silencing EphA2, PATJ, Src, or Dbs expression blocked LMW-HA-mediated RhoA activation. To translate our in vitro findings, we utilized a novel anginex/liposomal targeting of murine angiogenic endothelium with either CD44 or EphA2 siRNA and observed inhibition of LMW-HA-induced angiogenesis in implanted Matrigel plugs. Taken together, these results indicate LMW-HA-mediated transactivation of EphA2 is required for PATJ and Dbs membrane recruitment and subsequent RhoA activation required for angiogenesis. These results suggest that targeting downstream effectors of LMW-HA could be a useful therapeutic intervention for angiogenesis-associated diseases including tumor progression. PMID:25023279

  3. The tyrosine phosphatase PTPRO sensitizes colon cancer cells to anti-EGFR therapy through activation of SRC-mediated EGFR signaling.

    PubMed

    Asbagh, Layka Abbasi; Vazquez, Iria; Vecchione, Loredana; Budinska, Eva; De Vriendt, Veerle; Baietti, Maria Francesca; Steklov, Mikhail; Jacobs, Bart; Hoe, Nicholas; Singh, Sharat; Imjeti, Naga-Sailaja; Zimmermann, Pascale; Sablina, Anna; Tejpar, Sabine

    2014-10-30

    Inappropriate activation of epidermal growth factor receptor (EGFR) plays a causal role in many cancers including colon cancer. The activation of EGFR by phosphorylation is balanced by receptor kinase and protein tyrosine phosphatase activities. However, the mechanisms of negative EGFR regulation by tyrosine phosphatases remain largely unexplored. Our previous results indicate that protein tyrosine phosphatase receptor type O (PTPRO) is down-regulated in a subset of colorectal cancer (CRC) patients with a poor prognosis. Here we identified PTPRO as a phosphatase that negatively regulates SRC by directly dephosphorylating Y416 phosphorylation site. SRC activation triggered by PTPRO down-regulation induces phosphorylation of both EGFR at Y845 and the c-CBL ubiquitin ligase at Y731. Increased EGFR phosphorylation at Y845 promotes its receptor activity, whereas enhanced phosphorylation of c-CBL triggers its degradation promoting EGFR stability. Importantly, hyperactivation of SRC/EGFR signaling triggered by loss of PTPRO leads to high resistance of colon cancer to EGFR inhibitors. Our results not only highlight the PTPRO contribution in negative regulation of SRC/EGFR signaling but also suggest that tumors with low PTPRO expression may be therapeutically targetable by anti-SRC therapies. PMID:25301722

  4. The insulin and IGF1 receptor kinase domains are functional dimers in the activated state

    NASA Astrophysics Data System (ADS)

    Cabail, M. Zulema; Li, Shiqing; Lemmon, Eric; Bowen, Mark E.; Hubbard, Stevan R.; Miller, W. Todd

    2015-03-01

    The insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R) are highly related receptor tyrosine kinases with a disulfide-linked homodimeric architecture. Ligand binding to the receptor ectodomain triggers tyrosine autophosphorylation of the cytoplasmic domains, which stimulates catalytic activity and creates recruitment sites for downstream signalling proteins. Whether the two phosphorylated tyrosine kinase domains within the receptor dimer function independently or cooperatively to phosphorylate protein substrates is not known. Here we provide crystallographic, biophysical and biochemical evidence demonstrating that the phosphorylated kinase domains of IR and IGF1R form a specific dimeric arrangement involving an exchange of the juxtamembrane region proximal to the kinase domain. In this dimer, the active position of α-helix C in the kinase N lobe is stabilized, which promotes downstream substrate phosphorylation. These studies afford a novel strategy for the design of small-molecule IR agonists as potential therapeutic agents for type 2 diabetes.

  5. The next generation of epidermal growth factor receptor tyrosine kinase inhibitors in the treatment of lung cancer.

    PubMed

    Steuer, Conor E; Khuri, Fadlo R; Ramalingam, Suresh S

    2015-04-15

    The discovery of "driver" genomic alterations in patients with non-small cell lung cancer (NSCLC) has dramatically changed the field of thoracic oncology in recent years. The best understood of these molecular drivers are those involving the epidermal growth factor receptor (EGFR), which when aberrantly activated are integral to the development of a subset of NSCLC tumors. First-generation and second-generation tyrosine kinase inhibitors (TKIs) specific to the activated EGFR have shown significant efficacy and have brought about the era of targeted therapy for NSCLC. The most common resistance mechanism is a threonine-to-methionine substitution (T790M) in exon 20 of the EGFR gene. Although the previous standard of care in patients with EGFR-mutated NSCLC that progressed on initial TKI therapy was chemotherapy, third-generation EGFR TKIs have now been developed and have yielded promising results for this population of patients with NSCLC. This article reviews the emerging data regarding third-generation agents in the treatment of patients with advanced NSCLC.

  6. DNA sequence, structure, and tyrosine kinase activity of the Drosophila melanogaster abelson proto-oncogene homolog

    SciTech Connect

    Henkemeyer, M.J.; Bennett, R.L.; Gertler, F.B.; Hoffmann, F.M.

    1988-02-01

    The authors report their molecular characterization of the Drosophila melanogaster Abelson gene (abl), a gene in which recessive loss-of-function mutations result in lethality at the pupal stage of development. This essential gene consists of 10 exons extending over 26 kilobase pairs of genomic DNA. The DNA sequence encodes a protein of 1,520 amino acids with strong sequence similarity to the human c-abl proto-oncogene beginning in the type 1b 5' exon and extending through the region essential for tyrosine kinase activity. When the tyrosine kinase homologous region was expressed in Escherichia coli, phosphorylation of proteins on tyrosine residues was observed with an antiphosphotyrosine antibody. These results show that the abl gene is highly conserved through evolution and encodes a functional tyrosine protein kinase required for Drosophila development.

  7. Congenital central hypoventilation syndrome: Mutation analysis of the receptor tyrosine kinase RET

    SciTech Connect

    Bolk, S.; Angrist, M.; Schwartz, S.; Chakravarti, A. |

    1996-06-28

    Congenital central hypoventilation syndrome (CCHS) usually occurs as an isolated phenotype. However, 16% of the index cases are also affected with Hirschsprung disease (HSCR). Complex segregation analysis suggests that CCHS is familial and has the same inheritance pattern with or without HSCR. We postulate that alteration of normal function of the receptor tyrosine kinase, RET, may contribute to CCHS based on RET`s expression pattern and the identification of RET mutations in HSCR patients. To further explore the nature of the inheritance of CCHS, we have undertaken two main routes of investigation: cytogenetic analysis and mutation detection. Cytogenetic analysis of metaphase chromosomes showed normal karyotypes in 13 of the 14 evaluated index cases; one index case carried a familial pericentric inversion on chromosome 2. Mutation analysis showed no sequence changes unique to index cases, as compared to control individuals, and as studied by single strand conformational polymorphism (SSCP) analysis of the coding region of RET. We conclude that point mutations in the RET coding region cannot account for a substantial fraction of CCHS in this patient population, and that other candidate genes involved in neural crest cell differentiation and development must be considered. 54 refs.

  8. NADPH Oxidase Biology and the Regulation of Tyrosine Kinase Receptor Signaling and Cancer Drug Cytotoxicity

    PubMed Central

    Paletta-Silva, Rafael; Rocco-Machado, Nathália; Meyer-Fernandes, José Roberto

    2013-01-01

    The outdated idea that reactive oxygen species (ROS) are only dangerous products of cellular metabolism, causing toxic and mutagenic effects on cellular components, is being replaced by the view that ROS have several important functions in cell signaling. In aerobic organisms, ROS can be generated from different sources, including the mitochondrial electron transport chain, xanthine oxidase, myeloperoxidase, and lipoxygenase, but the only enzyme family that produces ROS as its main product is the NADPH oxidase family (NOX enzymes). These transfer electrons from NADPH (converting it to NADP−) to oxygen to make O2•−. Due to their stability, the products of NADPH oxidase, hydrogen peroxide, and superoxide are considered the most favorable ROS to act as signaling molecules. Transcription factors that regulate gene expression involved in carcinogenesis are modulated by NADPH oxidase, and it has emerged as a promising target for cancer therapies. The present review discusses the mechanisms by which NADPH oxidase regulates signal transduction pathways in view of tyrosine kinase receptors, which are pivotal to regulating the hallmarks of cancer, and how ROS mediate the cytotoxicity of several cancer drugs employed in clinical practice. PMID:23434665

  9. Energetics of Src homology domain interactions in receptor tyrosine kinase-mediated signaling.

    PubMed

    Ladbury, John E; Arold, Stefan T

    2011-01-01

    Intracellular signaling from receptor tyrosine kinases (RTK) on extracellular stimulation is fundamental to all cellular processes. The protein-protein interactions which form the basis of this signaling are mediated through a limited number of polypeptide domains. For signal transduction without corruption, based on a model where signaling pathways are considered as linear bimolecular relays, these interactions have to be highly specific. This is particularly the case when one considers that any cell may have copies of similar binding domains found in numerous proteins. In this work, an overview of the thermodynamics of binding of two of the most common of these domains (SH2 and SH3 domains) is given. This, coupled with insight from high-resolution structural detail, provides a comprehensive survey of how recognition of cognate binding sites for these domains occurs. Based on the data presented, we conclude that specificity offered by these interactions of SH2 and SH3 domains is limited and not sufficient to enforce mutual exclusivity in RTK-mediated signaling. This may explain the current lack of success in pharmaceutical intervention to inhibit the interactions of these domains when they are responsible for aberrant signaling and the resulting disease states such as cancer.

  10. Anks1a regulates COPII-mediated anterograde transport of receptor tyrosine kinases critical for tumorigenesis.

    PubMed

    Lee, Haeryung; Noh, Hyuna; Mun, Jiyoung; Gu, Changkyu; Sever, Sanja; Park, Soochul

    2016-01-01

    ErbB2 signalling, which is amplified by EphA2 binding, is an important therapeutic target for breast cancer. Despite the importance of the EphA2/ErbB2 complex in promoting breast tumorigenesis, the mechanism by which these receptor tyrosine kinases (RTKs) are exported from the endoplasmic reticulum (ER) remains poorly understood. Here we report that the PTB adaptor Anks1a is specifically localized to the ER on its own serine phosphorylation. Once there, Anks1a acts as an important regulator of COPII-mediated EphA2 ER export. The Anks1a ankyrin repeat domain binds EphA2 and causes it to accumulate at sites of ER exit. Simultaneously, the Anks1a PTB domain binds Sec23. This induces internalization of EphA2 via COPII vesicles, while Anks1a remains behind on the ER membrane. EphA2 also binds ErbB2 in the ER and seems to load ErbB2 into growing COPII carriers. Together, our study reveals a novel mechanism that regulates the loading of RTKs into COPII vesicles. PMID:27619642

  11. Dialkoxyquinazolines: Screening Epidermal Growth Factor ReceptorTyrosine Kinase Inhibitors for Potential Tumor Imaging Probes

    SciTech Connect

    VanBrocklin, Henry F.; Lim, John K.; Coffing, Stephanie L.; Hom,Darren L.; Negash, Kitaw; Ono, Michele Y.; Hanrahan, Stephen M.; Taylor,Scott E.; Vanderpoel, Jennifer L.; Slavik, Sarah M.; Morris, Andrew B.; Riese II, David J.

    2005-09-01

    The epidermal growth factor receptor (EGFR), a long-standingdrug development target, is also a desirable target for imaging. Sixteendialkoxyquinazoline analogs, suitable for labeling with positron-emittingisotopes, have been synthesized and evaluated in a battery of in vitroassays to ascertain their chemical and biological properties. Thesecharacteristics provided the basis for the adoption of a selection schemato identify lead molecules for labeling and in vivo evaluation. A newEGFR tyrosine kinase radiometric binding assay revealed that all of thecompounds possessed suitable affinity (IC50 = 0.4 - 51 nM) for the EGFRtyrosine kinase. All of the analogs inhibited ligand-induced EGFRtyrosine phosphorylation (IC50 = 0.8 - 20 nM). The HPLC-estimatedoctanol/water partition coefficients ranged from 2.0-5.5. Four compounds,4-(2'-fluoroanilino)- and 4-(3'-fluoroanilino)-6,7-diethoxyquinazoline aswell as 4-(3'-chloroanilino)- and4-(3'-bromoanilino)-6,7-dimethoxyquinazoline, possess the bestcombination of characteristics that warrant radioisotope labeling andfurther evaluation in tumor-bearing mice.

  12. Anks1a regulates COPII-mediated anterograde transport of receptor tyrosine kinases critical for tumorigenesis

    PubMed Central

    Lee, Haeryung; Noh, Hyuna; Mun, Jiyoung; Gu, Changkyu; Sever, Sanja; Park, Soochul

    2016-01-01

    ErbB2 signalling, which is amplified by EphA2 binding, is an important therapeutic target for breast cancer. Despite the importance of the EphA2/ErbB2 complex in promoting breast tumorigenesis, the mechanism by which these receptor tyrosine kinases (RTKs) are exported from the endoplasmic reticulum (ER) remains poorly understood. Here we report that the PTB adaptor Anks1a is specifically localized to the ER on its own serine phosphorylation. Once there, Anks1a acts as an important regulator of COPII-mediated EphA2 ER export. The Anks1a ankyrin repeat domain binds EphA2 and causes it to accumulate at sites of ER exit. Simultaneously, the Anks1a PTB domain binds Sec23. This induces internalization of EphA2 via COPII vesicles, while Anks1a remains behind on the ER membrane. EphA2 also binds ErbB2 in the ER and seems to load ErbB2 into growing COPII carriers. Together, our study reveals a novel mechanism that regulates the loading of RTKs into COPII vesicles. PMID:27619642

  13. Activation of the neu tyrosine kinase induces the fos/jun transcription factor complex, the glucose transporter and ornithine decarboxylase

    PubMed Central

    1989-01-01

    We have studied the ability of the neu tyrosine kinase to induce a signal for the activation of cell growth-regulated genes. Serum-starved NIH 3T3 cells expressing an epidermal growth factor receptor (EGF- R)/neu construct encoding a hybrid receptor protein were stimulated with EGF and the activation of the neu tyrosine kinase and stimulation of growth factor inducible genes were followed at the mRNA, protein, and activity levels, and compared to the corresponding responses in the neu proto-oncogene and oncogene expressing cells. Induction of the expression of jun mRNAs was an immediate early effect of EGF stimulation, followed by a marked increase in the biosynthesis of the fos/jun transcription factor complex and an increased transcription factor activity as measured by a recombinant transcription unit using chloramphenicol acetyltransferase assays. In distinction, elevated AP- 1/PEA-1 activity in the absence of a significant increase in jun and fos expression was characteristic of the neu oncogene-expressing cells. The glucose transporter mRNA increased at 2 h of EGF stimulation and was associated with enhanced glucose transport of the EGF-treated cells. An increase of ornithine decarboxylase (ODC) mRNA and activity followed these changes. In contrast, serum-starved, EGF-treated neu proto-oncogene- and oncogene-expressing cells showed constitutively low and high glucose transporter and ODC activities, respectively. These findings demonstrate that the chimeric EGF-R/neu receptor is capable of activating the expression of both immediate early genes and biochemical activities associated with cell growth stimulation. PMID:2572601

  14. Tetrodotoxin-insensitive Na+ channel activator palytoxin inhibits tyrosine uptake into cultured bovine adrenal chromaffin cells

    SciTech Connect

    Morita, K.; Teraoka, K.; Azuma, M.; Oka, M.; Hamano, S. )

    1991-07-01

    The effects of the tetrodotoxin-insensitive Na+ channel activator palytoxin on both the secretion of endogenous catecholamines and the formation of 14C-catecholamines from (14C)tyrosine were examined using cultured bovine adrenal chromaffin cells. Palytoxin was shown to cause the stimulation of catecholamine secretion in a concentration-dependent manner. However, this toxin caused the reduction rather than the stimulation of 14C-catecholamine formation at the same concentrations. Palytoxin failed to cause any alteration in the activity of tyrosine hydroxylase prepared from bovine adrenal medulla. Furthermore, the uptake of (14C)tyrosine into the cells was shown to be inhibited by this toxin under the conditions in which the suppression of 14C-catecholamine formation was observed, and this inhibitory action on tyrosine uptake was closely correlated with that on catecholamine formation. The inhibitory action of palytoxin on tyrosine uptake into the cells was observed to be noncompetitive, and this effect was not altered by the removal of Na+ from the incubation mixture. These results suggest that palytoxin may be able to inhibit the uptake of (14C)tyrosine into the cells, resulting in the suppression of 14C-catecholamine formation, probably through its direct action on the plasma membranes of bovine adrenal chromaffin cells.

  15. An Inducible TGF-β2-TGFβR Pathway Modulates the Sensitivity of HNSCC Cells to Tyrosine Kinase Inhibitors Targeting Dominant Receptor Tyrosine Kinases.

    PubMed

    Kleczko, Emily K; Kim, Jihye; Keysar, Stephen B; Heasley, Lydia R; Eagles, Justin R; Simon, Matthew; Marshall, Marianne E; Singleton, Katherine R; Jimeno, Antonio; Tan, Aik-Choon; Heasley, Lynn E

    2015-01-01

    The epidermal growth factor receptor (EGFR) is overexpressed in approximately 90% of head and neck squamous cell carcinomas (HNSCC), and molecularly targeted therapy against the EGFR with the monoclonal antibody cetuximab modestly increases overall survival in head and neck cancer patients. We hypothesize that co-signaling through additional pathways limits the efficacy of cetuximab and EGFR-specific tyrosine kinase inhibitors (TKIs) in the clinical treatment of HNSCC. Analysis of gene expression changes in HNSCC cell lines treated 4 days with TKIs targeting EGFR and/or fibroblast growth factor receptors (FGFRs) identified transforming growth factor beta 2 (TGF-β2) induction in the three cell lines tested. Measurement of TGF-β2 mRNA validated this observation and extended it to additional cell lines. Moreover, TGF-β2 mRNA was increased in primary patient HNSCC xenografts treated for 4 weeks with cetuximab, demonstrating in vivo relevance of these findings. Functional genomics analyses with shRNA libraries identified TGF-β2 and TGF-β receptors (TGFβRs) as synthetic lethal genes in the context of TKI treatment. Further, direct RNAi-mediated silencing of TGF-β2 inhibited cell growth, both alone and in combination with TKIs. Also, a pharmacological TGFβRI inhibitor similarly inhibited basal growth and enhanced TKI efficacy. In summary, the studies support a TGF-β2-TGFβR pathway as a TKI-inducible growth pathway in HNSCC that limits efficacy of EGFR-specific inhibitors.

  16. Pervanadate activation of intracellular kinases leads to tyrosine phosphorylation and shedding of syndecan-1.

    PubMed Central

    Reiland, J; Ott, V L; Lebakken, C S; Yeaman, C; McCarthy, J; Rapraeger, A C

    1996-01-01

    Syndecan-1 is a transmembrane haparan sulphate proteoglycan that binds extracellular matrices and growth factors, making it a candidate to act between these regulatory molecules and intracellular signalling pathways. It has a highly conserved transmembrane/cytoplasmic domain that contains four conserved tyrosines. One of these is in a consensus sequence for tyrosine kinase phosphorylation. As an initial step to investigating whether or not phosphorylation of these tyrosines is part of a signal-transduction pathway, we have monitored the tyrosine phosphorylation of syndecan-1 by cytoplasmic tyrosine kinases in intact cells. Tyrosine phosphorylation of syndecan-1 is observed when NMuMG cells are treated with sodium orthovanadate or pervanadate, which have been shown to activate intracellular tyrosine kinases. Initial studies with sodium orthovanadate demonstrate a slow accumulation of phosphotyrosine on syndecan-1 over the course of several hours. Pervanadate, a more effective inhibitor of phosphatases, allows detection of phosphotyrosine on syndecan-1 within 5 min, with peak phosphorylation seen by 15 min. Concurrently, in a second process activated by pervanadate, syndecan-1 ectodomain is cleaved and released into the culture medium. Two phosphorylated fragments of syndecan-1 of apparent sizes 6 and 8 kDa remain with the cell after shedding of the ectodomain. The 8 kDa size class appears to be a highly phosphorylated form of the 6 kDa product, as it disappears if samples are dephosphorylated. These fragments contain the C-terminus of syndecan-1 and also retain at least a portion of the transmembrane domain, suggesting that they are produced by a cell surface cleavage event. Thus pervanadate treatment of cells results in two effects of syndecan-1: (i) phosphorylation of one or more of its tyrosines via the action of a cytoplasmic kinase(s) and (ii) cleavage and release of the ectodomain into the medium, producing a C-terminal fragment containing the transmembrane

  17. Receptor tyrosine kinase inhibition causes simultaneous bone loss and excess bone formation within growing bone in rats

    SciTech Connect

    Nurmio, Mirja; Joki, Henna; Kallio, Jenny; Maeaettae, Jorma A.; Vaeaenaenen, H. Kalervo; Toppari, Jorma; Jahnukainen, Kirsi; Laitala-Leinonen, Tiina

    2011-08-01

    During postnatal skeletal growth, adaptation to mechanical loading leads to cellular activities at the growth plate. It has recently become evident that bone forming and bone resorbing cells are affected by the receptor tyrosine kinase (RTK) inhibitor imatinib mesylate (STI571, Gleevec (registered)) . Imatinib targets PDGF, ABL-related gene, c-Abl, c-Kit and c-Fms receptors, many of which have multiple functions in the bone microenvironment. We therefore studied the effects of imatinib in growing bone. Young rats were exposed to imatinib (150 mg/kg on postnatal days 5-7, or 100 mg/kg on postnatal days 5-13), and the effects of RTK inhibition on bone physiology were studied after 8 and 70 days (3-day treatment), or after 14 days (9-day treatment). X-ray imaging, computer tomography, histomorphometry, RNA analysis and immunohistochemistry were used to evaluate bone modeling and remodeling in vivo. Imatinib treatment eliminated osteoclasts from the metaphyseal osteochondral junction at 8 and 14 days. This led to a resorption arrest at the growth plate, but also increased bone apposition by osteoblasts, thus resulting in local osteopetrosis at the osteochondral junction. The impaired bone remodelation observed on day 8 remained significant until adulthood. Within the same bone, increased osteoclast activity, leading to bone loss, was observed at distal bone trabeculae on days 8 and 14. Peripheral quantitative computer tomography (pQCT) and micro-CT analysis confirmed that, at the osteochondral junction, imatinib shifted the balance from bone resorption towards bone formation, thereby altering bone modeling. At distal trabecular bone, in turn, the balance was turned towards bone resorption, leading to bone loss. - Research Highlights: > 3-Day imatinib treatment. > Causes growth plate anomalies in young rats. > Causes biomechanical changes and significant bone loss at distal trabecular bone. > Results in loss of osteoclasts at osteochondral junction.

  18. Antifibrotic and anti-inflammatory activity of the tyrosine kinase inhibitor nintedanib in experimental models of lung fibrosis.

    PubMed

    Wollin, Lutz; Maillet, Isabelle; Quesniaux, Valérie; Holweg, Alexander; Ryffel, Bernhard

    2014-05-01

    The tyrosine kinase inhibitor nintedanib (BIBF 1120) is in clinical development for the treatment of idiopathic pulmonary fibrosis. To explore its mode of action, nintedanib was tested in human lung fibroblasts and mouse models of lung fibrosis. Human lung fibroblasts expressing platelet-derived growth factor (PDGF) receptor-α and -β were stimulated with platelet-derived growth factor BB (homodimer) (PDGF-BB). Receptor activation was assessed by autophosphorylation and cell proliferation by bromodeoxyuridine incorporation. Transforming growth factor β (TGFβ)-induced fibroblast to myofibroblast transformation was determined by α-smooth muscle actin (αSMA) mRNA analysis. Lung fibrosis was induced in mice by intratracheal bleomycin or silica particle administration. Nintedanib was administered every day by gavage at 30, 60, or 100 mg/kg. Preventive nintedanib treatment regimen started on the day that bleomycin was administered. Therapeutic treatment regimen started at various times after the induction of lung fibrosis. Bleomycin caused increased macrophages and lymphocytes in the bronchoalveolar lavage (BAL) and elevated interleukin-1β (IL-1β), tissue inhibitor of metalloproteinase-1 (TIMP-1), and collagen in lung tissue. Histology revealed chronic inflammation and fibrosis. Silica-induced lung pathology additionally showed elevated BAL neutrophils, keratinocyte chemoattractant (KC) levels, and granuloma formation. Nintedanib inhibited PDGF receptor activation, fibroblast proliferation, and fibroblast to myofibroblast transformation. Nintedanib significantly reduced BAL lymphocytes and neutrophils but not macrophages. Furthermore, interleukin-1β, KC, TIMP-1, and lung collagen were significantly reduced. Histologic analysis showed significantly diminished lung inflammation, granuloma formation, and fibrosis. The therapeutic effect was dependent on treatment start and duration. Nintedanib inhibited receptor tyrosine kinase activation and the proliferation and

  19. DMBA induces tyrosine phosphorylation of PLC-[gamma]1 and activates the tyrosine kinases lck and fyn in the HPB-ALL human T-cell line

    SciTech Connect

    Archuleta, M.M.; Schieven, G.L.; Ledbetter, J.A.; Burchiel, S.W. . Coll. of Pharmacy)

    1993-01-01

    Previous studies in this laboratory have demonstrated that DMBA alters biochemical events associated with lymphocyte activation including formation of the second messenger IP[sub 3] and the release of intracellular Ca[sup 2+]. The purpose of the present studies was to evaluate the mechanisms by which DMBA induces IP[sub 3] formation and Ca[sup 2+] release by examining phosphorylation of membrane associated proteins and activation of protein tyrosine kinases lck and fyn. These studies demonstrated that exposure of HPB-ALL cells to 10[mu]M DMBA resulted in a time- and dose-dependent increase in tyrosine phosphorylation of PLC-[gamma]1 that correlated with our earlier findings of IP[sub 3] formation and Ca[sup 2+] release. These results indicate that the effects of DMBA on the PI-PLC signaling pathway are in part, the result of DMBA-induced tyrosine phosphorylation of the PLC-[gamma]1 enzyme. The mechanism of DMBA- induced tyrosine phosphorylation of PLC-[gamma]1 may be due to activation of fyn or lck kinase activity, since it was found that DMBA increased the activity of these PTKs by more than 2-fold. Therefore, these studies demonstrate that DMBA may disrupt T cell activation by stimulating PTK activation with concomitant tyrosine phosphorylation of PLC-[gamma]1, release of IP[sub 3], and mobilization of intracellular Ca[sup 2+].

  20. DMBA induces tyrosine phosphorylation of PLC-{gamma}1 and activates the tyrosine kinases lck and fyn in the HPB-ALL human T-cell line

    SciTech Connect

    Archuleta, M.M.; Schieven, G.L.; Ledbetter, J.A.; Burchiel, S.W.

    1993-02-01

    Previous studies in this laboratory have demonstrated that DMBA alters biochemical events associated with lymphocyte activation including formation of the second messenger IP{sub 3} and the release of intracellular Ca{sup 2+}. The purpose of the present studies was to evaluate the mechanisms by which DMBA induces IP{sub 3} formation and Ca{sup 2+} release by examining phosphorylation of membrane associated proteins and activation of protein tyrosine kinases lck and fyn. These studies demonstrated that exposure of HPB-ALL cells to 10{mu}M DMBA resulted in a time- and dose-dependent increase in tyrosine phosphorylation of PLC-{gamma}1 that correlated with our earlier findings of IP{sub 3} formation and Ca{sup 2+} release. These results indicate that the effects of DMBA on the PI-PLC signaling pathway are in part, the result of DMBA-induced tyrosine phosphorylation of the PLC-{gamma}1 enzyme. The mechanism of DMBA- induced tyrosine phosphorylation of PLC-{gamma}1 may be due to activation of fyn or lck kinase activity, since it was found that DMBA increased the activity of these PTKs by more than 2-fold. Therefore, these studies demonstrate that DMBA may disrupt T cell activation by stimulating PTK activation with concomitant tyrosine phosphorylation of PLC-{gamma}1, release of IP{sub 3}, and mobilization of intracellular Ca{sup 2+}.

  1. Tyrosine phosphorylation of transcriptional coactivator WW-domain binding protein 2 regulates estrogen receptor α function in breast cancer via the Wnt pathway.

    PubMed

    Lim, Shen Kiat; Orhant-Prioux, Magali; Toy, Weiyi; Tan, Kah Yap; Lim, Yoon Pin

    2011-09-01

    WW-binding protein 2 (WBP2) has been demonstrated in different studies to be a tyrosine kinase substrate, to activate estrogen receptor α (ERα)/progesterone receptor (PR) transcription, and to play a role in breast cancer. However, the role of WBP2 tyrosine phosphorylation in regulating ERα function and breast cancer biology is unknown. Here, we established WBP2 as a tyrosine phosphorylation target of estrogen signaling via EGFR crosstalk. Using dominant-negative, constitutively active mutants, RNAi, and pharmacological studies, we demonstrated that phosphorylation of WBP2 at Tyr192 and Tyr231 could be regulated by c-Src and c-Yes kinases. We further showed that abrogating WBP2 phosphorylation impaired >60% of ERα reporter activity, putatively by blocking nuclear entry of WBP2 and its interaction with ERα. Compared to vector control, overexpression of WBP2 and its phospho-mimic mutant in MCF7 cells resulted in larger tumors in mice, induced loss of cell-cell adhesion, and enhanced cell proliferation, anchorage-independent growth, migration, and invasion in both estrogen-dependent and -independent manners, events of which could be substantially abolished by overexpression of the phosphorylation-defective mutant. Hormone independence of cells expressing WBP2 phospho-mimic mutant was associated with heightened ERα and Wnt reporter activities. Wnt/β-catenin inhibitor FH535 blocked phospho-WBP2-mediated cancer cell growth more pronouncedly than tamoxifen and fulvestrant, in part by reducing the expression of ERα. Wnt pathway is likely to be a critical component in WBP2-mediated breast cancer biology.

  2. Ca2+/Calmodulin and Apo-Calmodulin Both Bind to and Enhance the Tyrosine Kinase Activity of c-Src

    PubMed Central

    Anguita, Estefanía; Benaim, Gustavo; Villalobo, Antonio

    2015-01-01

    Src family non-receptor tyrosine kinases play a prominent role in multiple cellular processes, including: cell proliferation, differentiation, cell survival, stress response, and cell adhesion and migration, among others. And when deregulated by mutations, overexpression, and/or the arrival of faulty incoming signals, its hyperactivity contributes to the development of hematological and solid tumors. c-Src is a prototypical member of this family of kinases, which is highly regulated by a set of phosphorylation events. Other factor contributing to the regulation of Src activity appears to be mediated by the Ca2+ signal generated in cells by different effectors, where the Ca2+-receptor protein calmodulin (CaM) plays a key role. In this report we demonstrate that CaM directly interacts with Src in both Ca2+-dependent and Ca2+-independent manners in vitro and in living cells, and that the CaM antagonist N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) inhibits the activation of this kinase induced by the upstream activation of the epidermal growth factor receptor (EGFR), in human carcinoma epidermoide A431 cells, and by hydrogen peroxide-induced oxidative stress, in both A431 cells and human breast adenocarcinoma SK-BR-3 cells. Furthermore, we show that the Ca2+/CaM complex strongly activates the auto-phosphorylation and tyrosine kinase activity of c-Src toward exogenous substrates, but most relevantly and for the first time, we demonstrate that Ca2+-free CaM (apo-CaM) exerts a far higher activatory action on Src auto-phosphorylation and kinase activity toward exogenous substrates than the one exerted by the Ca2+/CaM complex. This suggests that a transient increase in the cytosolic concentration of free Ca2+ is not an absolute requirement for CaM-mediated activation of Src in living cells, and that a direct regulation of Src by apo-CaM could be inferred. PMID:26058065

  3. Loss of the tyrosine phosphatase PTPRD leads to aberrant STAT3 activation and promotes gliomagenesis.

    PubMed

    Ortiz, Berenice; Fabius, Armida W M; Wu, Wei H; Pedraza, Alicia; Brennan, Cameron W; Schultz, Nikolaus; Pitter, Kenneth L; Bromberg, Jacqueline F; Huse, Jason T; Holland, Eric C; Chan, Timothy A

    2014-06-01

    PTPRD, which encodes the protein tyrosine phosphatase receptor-δ, is one of the most frequently inactivated genes across human cancers, including glioblastoma multiforme (GBM). PTPRD undergoes both deletion and mutation in cancers, with copy number loss comprising the primary mode of inactivation in GBM. However, it is unknown whether loss of PTPRD promotes tumorigenesis in vivo, and the mechanistic basis of PTPRD function in tumors is unclear. Here, using genomic analysis and a glioma mouse model, we demonstrate that loss of Ptprd accelerates tumor formation and define the oncogenic context in which Ptprd loss acts. Specifically, we show that in human GBMs, heterozygous loss of PTPRD is the predominant type of lesion and that loss of PTPRD and the CDKN2A/p16(INK4A) tumor suppressor frequently co-occur. Accordingly, heterozygous loss of Ptprd cooperates with p16 deletion to drive gliomagenesis in mice. Moreover, loss of the Ptprd phosphatase resulted in phospho-Stat3 accumulation and constitutive activation of Stat3-driven genetic programs. Surprisingly, the consequences of Ptprd loss are maximal in the heterozygous state, demonstrating a tight dependence on gene dosage. Ptprd loss did not increase cell proliferation but rather altered pathways governing the macrophage response. In total, we reveal that PTPRD is a bona fide tumor suppressor, pinpoint PTPRD loss as a cause of aberrant STAT3 activation in gliomas, and establish PTPRD loss, in the setting of CDKN2A/p16(INK4A) deletion, as a driver of glioma progression.

  4. Apical accumulation of the Sevenless receptor tyrosine kinase during Drosophila eye development is promoted by the small GTPase Rap1.

    PubMed

    Baril, Caroline; Lefrançois, Martin; Sahmi, Malha; Knævelsrud, Helene; Therrien, Marc

    2014-08-01

    The Ras/MAPK-signaling pathway plays pivotal roles during development of metazoans by controlling cell proliferation and cell differentiation elicited, in several instances, by receptor tyrosine kinases (RTKs). While the internal mechanism of RTK-driven Ras/MAPK signaling is well understood, far less is known regarding its interplay with other co-required signaling events involved in developmental decisions. In a genetic screen designed to identify new regulators of RTK/Ras/MAPK signaling during Drosophila eye development, we identified the small GTPase Rap1, PDZ-GEF, and Canoe as components contributing to Ras/MAPK-mediated R7 cell differentiation. Rap1 signaling has recently been found to participate in assembling cadherin-based adherens junctions in various fly epithelial tissues. Here, we show that Rap1 activity is required for the integrity of the apical domains of developing photoreceptor cells and that reduced Rap1 signaling hampers the apical accumulation of the Sevenless RTK in presumptive R7 cells. It thus appears that, in addition to its role in cell-cell adhesion, Rap1 signaling controls the partitioning of the epithelial cell membrane, which in turn influences signaling events that rely on apico-basal cell polarity.

  5. Receptor tyrosine kinase EphA7 is required for interneuron connectivity at specific subcellular compartments of granule cells

    PubMed Central

    Beuter, Simone; Ardi, Ziv; Horovitz, Omer; Wuchter, Jennifer; Keller, Stefanie; Saha, Rinki; Tripathi, Kuldeep; Anunu, Rachel; Kehat, Orli; Kriebel, Martin; Richter-Levin, Gal; Volkmer, Hansjürgen

    2016-01-01

    Neuronal transmission is regulated by the local circuitry which is composed of principal neurons targeted at different subcellular compartments by a variety of interneurons. However, mechanisms that contribute to the subcellular localisation and maintenance of GABAergic interneuron terminals are poorly understood. Stabilization of GABAergic synapses depends on clustering of the postsynaptic scaffolding protein gephyrin and its interaction with the guanine nucleotide exchange factor collybistin. Lentiviral knockdown experiments in adult rats indicated that the receptor tyrosine kinase EphA7 is required for the stabilisation of basket cell terminals on proximal dendritic and somatic compartments of granular cells of the dentate gyrus. EphA7 deficiency and concomitant destabilisation of GABAergic synapses correlated with impaired long-term potentiation and reduced hippocampal learning. Reduced GABAergic innervation may be explained by an impact of EphA7 on gephyrin clustering. Overexpression or ephrin stimulation of EphA7 induced gephyrin clustering dependent on the mechanistic target of rapamycin (mTOR) which is an interaction partner of gephyrin. Gephyrin interactions with mTOR become released after mTOR activation while enhanced interaction with the guanine nucleotide exchange factor collybistin was observed in parallel. In conclusion, EphA7 regulates gephyrin clustering and the maintenance of inhibitory synaptic connectivity via mTOR signalling. PMID:27405707

  6. Protein tyrosine kinase regulates α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor trafficking induced by acute hypoxia in cultured brainstem neurons.

    PubMed

    Wang, H; Yu, L C; Li, Y C

    2016-01-01

    This study was performed to investigate the modulation effect of protein tyrosine kinase on postsynaptic a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor trafficking induced by acute hypoxia in cultured brainstem neurons. The cultured neurons were exposed to 1% O2 and the expression of AMPA receptor subunit GluR2 on the cell surface was significantly increased, while total GluR2 was not markedly changed. Furthermore, the hypoxia-induced increase in GluR2 expression on the cell surface was partially blocked by the protein tyrosine kinase membrane-permeable inhibitor genistein. In contrast, both the protein tyrosine kinase agonist nerve growth factor and protein tyrosine phosphatase inhibitor vanadate promoted the hypoxia-induced increase of GluR2 expression on cell surface. Moreover, GluR2 could be phosphorylated by tyrosine under normoxia and hypoxia conditions in vitro on brainstem neurons, and tyrosine phosphorylation of GluR2 was significantly stronger under hypoxia conditions. Our results indicate that acute hypoxia induces the AMPA receptor subunit GluR2 to rapidly migrate to the cell membrane to modify the strength of the synapse. This study indicates that tyrosine phosphorylation of the receptor is an important pathway regulating the rapid migration of GluR2 in the postsynaptic domain induced by hypoxia. PMID:27525851

  7. Fulvestrant-Induced Cell Death and Proteasomal Degradation of Estrogen Receptor α Protein in MCF-7 Cells Require the CSK c-Src Tyrosine Kinase

    PubMed Central

    Yeh, Wei-Lan; Shioda, Keiko; Coser, Kathryn R.; Rivizzigno, Danielle; McSweeney, Kristen R.; Shioda, Toshi

    2013-01-01

    Fulvestrant is a representative pure antiestrogen and a Selective Estrogen Receptor Down-regulator (SERD). In contrast to the Selective Estrogen Receptor Modulators (SERMs) such as 4-hydroxytamoxifen that bind to estrogen receptor α (ERα) as antagonists or partial agonists, fulvestrant causes proteasomal degradation of ERα protein, shutting down the estrogen signaling to induce proliferation arrest and apoptosis of estrogen-dependent breast cancer cells. We performed genome-wide RNAi knockdown screenings for protein kinases required for fulvestrant-induced apoptosis of the MCF-7 estrogen-dependent human breast caner cells and identified the c-Src tyrosine kinase (CSK), a negative regulator of the oncoprotein c-Src and related protein tyrosine kinases, as one of the necessary molecules. Whereas RNAi knockdown of CSK in MCF-7 cells by shRNA-expressing lentiviruses strongly suppressed fulvestrant-induced cell death, CSK knockdown did not affect cytocidal actions of 4-hydroxytamoxifen or paclitaxel, a chemotherapeutic agent. In the absence of CSK, fulvestrant-induced proteasomal degradation of ERα protein was suppressed in both MCF-7 and T47D estrogen-dependent breast cancer cells whereas the TP53-mutated T47D cells were resistant to the cytocidal action of fulvestrant in the presence or absence of CSK. MCF-7 cell sensitivities to fulvestrant-induced cell death or ERα protein degradation was not affected by small-molecular-weight inhibitors of the tyrosine kinase activity of c-Src, suggesting possible involvement of other signaling molecules in CSK-dependent MCF-7 cell death induced by fulvestrant. Our observations suggest the importance of CSK in the determination of cellular sensitivity to the cytocidal action of fulvestrant. PMID:23593342

  8. Two Dictyostelium tyrosine kinase–like kinases function in parallel, stress-induced STAT activation pathways

    PubMed Central

    Araki, Tsuyoshi; Vu, Linh Hai; Sasaki, Norimitsu; Kawata, Takefumi; Eichinger, Ludwig; Williams, Jeffrey G.

    2014-01-01

    When Dictyostelium cells are hyperosmotically stressed, STATc is activated by tyrosine phosphorylation. Unusually, activation is regulated by serine phosphorylation and consequent inhibition of a tyrosine phosphatase: PTP3. The identity of the cognate tyrosine kinase is unknown, and we show that two tyrosine kinase–like (TKL) enzymes, Pyk2 and Pyk3, share this function; thus, for stress-induced STATc activation, single null mutants are only marginally impaired, but the double mutant is nonactivatable. When cells are stressed, Pyk2 and Pyk3 undergo increased autocatalytic tyrosine phosphorylation. The site(s) that are generated bind the SH2 domain of STATc, and then STATc becomes the target of further kinase action. The signaling pathways that activate Pyk2 and Pyk3 are only partially overlapping, and there may be a structural basis for this difference because Pyk3 contains both a TKL domain and a pseudokinase domain. The latter functions, like the JH2 domain of metazoan JAKs, as a negative regulator of the kinase domain. The fact that two differently regulated kinases catalyze the same phosphorylation event may facilitate specific targeting because under stress, Pyk3 and Pyk2 accumulate in different parts of the cell; Pyk3 moves from the cytosol to the cortex, whereas Pyk2 accumulates in cytosolic granules that colocalize with PTP3. PMID:25143406

  9. Src-protein tyrosine kinases are required for cocaine-induced increase in the expression and function of the NMDA receptor in the ventral tegmental area.

    PubMed

    Schumann, Johanna; Michaeli, Avner; Yaka, Rami

    2009-02-01

    Cocaine-induced long-term potentiation of glutamatergic synapses in the ventral tegmental area (VTA) has been proposed as a key process that contributes to the development of addictive behaviors. In particular, the activation of ionotrophic glutamate NMDA receptor (NMDAR) in the VTA is critical for the initiation of cocaine sensitization. Here we show that application of cocaine both in slices and in vivo induced an increase in tyrosine phosphorylation of the NR2A, but not the NR2B subunit of the NMDAR in juvenile rats. Cocaine induced an increase in the activity of both Fyn and Src kinases, and the Src-protein tyrosine kinase (Src-PTKs) inhibitor, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2), abolished both cocaine-induced increase in tyrosine phosphorylation of the NR2A subunit and the increase in the expression of NR1, NR2A, and NR2B in the VTA. Moreover, cocaine-induced enhancement in NMDAR-mediated excitatory post-synaptic currents was completely abolished by PP2. Taken together, these results suggest that acute cocaine induced an increase in the expression of NMDAR subunits and enhanced tyrosine phosphorylation of NR2A-containing NMDAR through members of the Src-PTKs. This in turn, increased NMDAR-mediated currents in VTA dopamine neurons. These results provide a potential cellular mechanism by which cocaine triggers NMDAR-dependent synaptic plasticity of VTA neurons that may underlie the development of behavioral sensitization. PMID:19046409

  10. TetraMabs: simultaneous targeting of four oncogenic receptor tyrosine kinases for tumor growth inhibition in heterogeneous tumor cell populations

    PubMed Central

    Castoldi, Raffaella; Schanzer, Jürgen; Panke, Christian; Jucknischke, Ute; Neubert, Natalie J.; Croasdale, Rebecca; Scheuer, Werner; Auer, Johannes; Klein, Christian; Niederfellner, Gerhard; Kobold, Sebastian; Sustmann, Claudio

    2016-01-01

    Monoclonal antibody-based targeted tumor therapy has greatly improved treatment options for patients. Antibodies against oncogenic receptor tyrosine kinases (RTKs), especially the ErbB receptor family, are prominent examples. However, long-term efficacy of such antibodies is limited by resistance mechanisms. Tumor evasion by a priori or acquired activation of other kinases is often causative for this phenomenon. These findings led to an increasing number of combination approaches either within a protein family, e.g. the ErbB family or by targeting RTKs of different phylogenetic origin like HER1 and cMet or HER1 and IGF1R. Progress in antibody engineering technology enabled generation of clinical grade bispecific antibodies (BsAbs) to design drugs inherently addressing such resistance mechanisms. Limited data are available on multi-specific antibodies targeting three or more RTKs. In the present study, we have evaluated the cloning, eukaryotic expression and purification of tetraspecific, tetravalent Fc-containing antibodies targeting HER3, cMet, HER1 and IGF1R. The antibodies are based on the combination of single-chain Fab and Fv fragments in an IgG1 antibody format enhanced by the knob-into-hole technology. They are non-agonistic and inhibit tumor cell growth comparable to the combination of four parental antibodies. Importantly, TetraMabs show improved apoptosis induction and tumor growth inhibition over individual monospecific or BsAbs in cellular assays. In addition, a mimicry assay to reflect heterogeneous expression of antigens in a tumor mass was established. With this novel in vitro assay, we can demonstrate the superiority of a tetraspecific antibody to bispecific tumor antigen-binding antibodies in early pre-clinical development. PMID:27578890

  11. Alterations in skeletal muscle protein-tyrosine phosphatase activity and expression in insulin-resistant human obesity and diabetes.

    PubMed Central

    Ahmad, F; Azevedo, J L; Cortright, R; Dohm, G L; Goldstein, B J

    1997-01-01

    Obese human subjects have increased protein-tyrosine phosphatase (PTPase) activity in adipose tissue that can dephosphorylate and inactivate the insulin receptor kinase. To extend these findings to skeletal muscle, we measured PTPase activity in the skeletal muscle particulate fraction and cytosol from a series of lean controls, insulin-resistant obese (body mass index > 30) nondiabetic subjects, and obese individuals with non-insulin-dependent diabetes. PTPase activities in subcellular fractions from the nondiabetic obese subjects were increased to 140-170% of the level in lean controls (P < 0.05). In contrast, PTPase activity in both fractions from the obese subjects with non-insulin-dependent diabetes was significantly decreased to 39% of the level in controls (P < 0.05). By immunoblot analysis, leukocyte antigen related (LAR) and protein-tyrosine phosphatase 1B had the greatest increase (threefold) in the particulate fraction from obese, nondiabetic subjects, and immunodepletion of this fraction using an affinity-purified antibody directed at the cytoplasmic domain of leukocyte antigen related normalized the PTPase activity when compared to the activity from control subjects. These findings provide further support for negative regulation of insulin action by specific PTPases in the pathogenesis of insulin resistance in human obesity, while other regulatory mechanisms may be operative in the diabetic state. PMID:9218523

  12. Spontaneous Immunity Against the Receptor Tyrosine Kinase ROR1 in Patients with Chronic Lymphocytic Leukemia

    PubMed Central

    Hojjat-Farsangi, Mohammad; Jeddi-Tehrani, Mahmood; Daneshmanesh, Amir Hossein; Mozaffari, Fariba; Moshfegh, Ali; Hansson, Lotta; Razavi, Seyed Mohsen; Sharifian, Ramazan Ali; Rabbani, Hodjattallah; Österborg, Anders; Mellstedt, Håkan; Shokri, Fazel

    2015-01-01

    Background ROR1 is a receptor tyrosine kinase expressed in chronic lymphocytic leukemia (CLL) and several other malignancies but absent in most adult normal tissues. ROR1 is considered an onco-fetal antigen. In the present study we analysed spontaneous humoral and cellular immunity against ROR1 in CLL patients. Materials and Methods Antibodies against ROR1 were analysed in 23 patients and 20 healthy donors by ELISA and Western blot. Purified serum IgG from patients was tested for cytotoxicity against CLL cells using the MTT viability assay. A cellular immune response against ROR1 derived HLA-A2 restricted 9 aa and 16 aa long peptides were analysed using peptide loaded dendritic cells co-cultured with autologous T cells from CLL patients (n = 9) and healthy donors (n = 6). IFN-γ, IL-5 and IL-17A-secreting T cells were assessed by ELISPOT and a proliferative response using a H3-thymidine incorporation assay. Results The majority of CLL patients had antibodies against ROR1. Significantly higher titers of anti-ROR1 antibodies were noted in patients with non-progressive as compared to progressive disease. The extracellular membrane-close ROR1 KNG domain seemed to be an immunodominant epitope. Ten patients with high titers of anti-ROR1 binding antibodies were tested for cytotoxicity. Five of those had cytotoxic anti-ROR1 antibodies against CLL cells. ROR1-specific IFN-γ and IL-17A producing T cells could be detected in CLL patients, preferentially in non-progressive as compared to patients with progressive disease (p<0.05). Conclusion ROR1 seemed to spontaneously induce a humoral as well as a T cell response in CLL patients. The data support the notion that ROR1 might be a specific neo-antigen and may serve as a target for immunotherapy. PMID:26562161

  13. Skin problems and EGFR-tyrosine kinase inhibitor.

    PubMed

    Kozuki, Toshiyuki

    2016-04-01

    Epidermal growth factor receptor inhibition is a good target for the treatment of lung, colon, pancreatic and head and neck cancers. Epidermal growth factor receptor-tyrosine kinase inhibitor was first approved for the treatment of advanced lung cancer in 2002. Epidermal growth factor receptor-tyrosine kinase inhibitor plays an essential role in the treatment of cancer, especially for patients harbouring epidermal growth factor receptor activating mutation. Hence, skin toxicity is the most concerning issue for the epidermal growth factor receptor-tyrosine kinase inhibitor treatment. Skin toxicity is bothersome and sometimes affects the quality of life and treatment compliance. Thus, it is important for physicians to understand the background and how to manage epidermal growth factor receptor-tyrosine kinase inhibitor-associated skin toxicity. Here, the author reviewed the mechanism and upfront preventive and reactive treatments for epidermal growth factor receptor inhibitor-associated skin toxicities.

  14. Inactivation of tyrosine hydroxylase activity by ascorbate in vitro and in rat PC12 cells.

    PubMed

    Wilgus, H; Roskoski, R

    1988-10-01

    Tyrosine hydroxylase activity is reversibly modulated by the actions of a number of protein kinases and phosphoprotein phosphatases. A previous report from this laboratory showed that low-molecular-weight substances present in striatal extracts lead to an irreversible loss of tyrosine hydroxylase activity under cyclic AMP-dependent phosphorylation conditions. We report here that ascorbate is one agent that inactivates striatal tyrosine hydroxylase activity with an EC50 of 5.9 microM under phosphorylating conditions. Much higher concentrations (100 mM) fail to inactivate the enzyme under nonphosphorylating conditions. Isoascorbate (EC50, 11 microM) and dehydroascorbate (EC50, 970 microM) also inactivated tyrosine hydroxylase under phosphorylating but not under nonphosphorylating conditions. In contrast, ascorbate sulfate was inactive under phosphorylating conditions at concentrations up to 100 mM. Since the reduced compounds generate several reactive species in the presence of oxygen, the possible protecting effects of catalase, peroxidase, and superoxide dismutase were examined. None of these three enzymes, however, afforded any protection against inactivation. We also examined the effects of ascorbate and its congeners on the activity of tyrosine hydroxylase purified to near homogeneity from a rat pheochromocytoma. This purified enzyme was also inactivated by the same agents that inactivated the impure corpus striatal enzyme. Under conditions in which ascorbate almost completely abolished enzyme activity, we found no indication for significant proteolysis of the purified enzyme as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. We also found that pretreatment of PC12 cells in culture for 4 h with 1 mM ascorbate, dehydroascorbate, or isoascorbate (but not ascorbate sulfate) also decreased tyrosine hydroxylase activity 25-50%.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2901463

  15. CD45 cross-linking regulates phospholipase C activation and tyrosine phosphorylation of specific substrates in CD3/Ti-stimulated T cells.

    PubMed

    Ledbetter, J A; Schieven, G L; Uckun, F M; Imboden, J B

    1991-03-01

    In lymphocytes, CD45 regulates the increase in cytoplasmic calcium concentration that occurs after receptor cross-linking. Here we show that T cell receptor complex (CD3/Ti)-mediated inositol phosphate production was inhibited by CD45 ligation in Jurkat cells. CD3/Ti signaling in normal T cells was also inhibited by CD45 ligation, but coupling of CD4 with CD3/Ti gave augmented calcium signals that were entirely resistant to the inhibitory effect of CD45. In contrast, CD3-induced T cell proliferation was suppressed by immobilized CD45 mAb even in the presence of CD4 mAb. The effect of CD45 and CD4 ligation on tyrosine phosphorylation during T cell activation was directly examined by immunoblotting with anti-phosphotyrosine. Using immobilized mAb, CD45 ligation suppressed the tyrosine phosphorylation of specific substrates induced by CD3/Ti stimulation, including almost complete suppression of 150-, 36-, and 35-kDa proteins and partial suppression of 76- and 80-kDa proteins. Other tyrosine-phosphorylated proteins induced by CD3/Ti stimulation, including 135- and 21-kDa proteins, were not suppressed by simultaneous ligation of CD3/Ti and CD45. Simultaneous ligation of CD3 and CD4 enhanced tyrosine phosphorylation of all substrates, but did not overcome the CD45-mediated suppression of tyrosine phosphorylation of the 35- and 36-kDa proteins. The CD45-mediated suppression of phospholipase C activation is therefore modulated by association with CD4 without altering the specific inhibition of tyrosine phosphorylation and T cell proliferation after co-ligation of CD45 and CD3/Ti.

  16. Morin inhibits STAT3 tyrosine 705 phosphorylation in tumor cells through activation of protein tyrosine phosphatase SHP1.

    PubMed

    Gupta, Subash C; Phromnoi, Kanokkarn; Aggarwal, Bharat B

    2013-04-01

    The major goal of cancer drug discovery is to find an agent that is safe and affordable, yet effective against cancer. Here we show that morin (3,5,7,2',4'-pentahydroxyflavone) has potential against cancer cells through suppression of the signal transducer and activator of transcription 3 (STAT3) pathway, which is closely linked to the transformation, survival, proliferation, and metastasis of cancer. We found that morin completely suppressed inducible and constitutively activated STAT3 and blocked the nuclear translocation of STAT3 and its DNA binding in multiple myeloma and head and neck squamous carcinoma cells. Morin inhibited activated Src, JAK-1, and JAK-2, all of which are linked to STAT3 activation, while up-regulating a protein inhibitor of activated STAT3, PIAS3. Pervanadate reversed the effects of morin on STAT3 phosphorylation, indicating the role of a protein tyrosine phosphatase. Furthermore, morin induced SHP1 expression at both the mRNA and protein levels, and silencing of SHP1 abrogated the effect of morin on STAT3 phosphorylation, indicating that morin mediates its effects on STAT3 through SHP1. Suppression of STAT3 correlated with the down-regulation of various gene products linked to tumor survival, proliferation, and angiogenesis and led to sensitization of tumor cells to thalidomide and bortezomib. Comparing the activities of morin with those of four structurally related flavonols demonstrated the importance of hydroxyl groups in the B ring in inhibiting STAT3 activation. These findings suggest that morin suppresses the STAT3 pathway, leading to the down-regulation of STAT3-dependent gene expression and chemosensitization of tumor cells.

  17. Anti-Angiogenic Properties of BDDPM, a Bromophenol from Marine Red Alga Rhodomela confervoides, with Multi Receptor Tyrosine Kinase Inhibition Effects

    PubMed Central

    Wang, Shuaiyu; Wang, Li-Jun; Jiang, Bo; Wu, Ning; Li, Xiangqian; Liu, Shaofang; Luo, Jiao; Shi, Dayong

    2015-01-01

    Bis-(2,3-dibromo-4,5-dihydroxy-phenyl)-methane (BDDPM) is a bromophenol first isolated from Rhodomelaceae confervoides. Our previous studies showed that BDDPM exerts PTP1B-inhibiting activity and anti-cancer activity against a wide range of tumor cells while it also showed lower cytotoxicity against normal cells. In the present study, we found that BDDPM exhibits significant activities toward angiogenesis in vitro. BDDPM inhibits multiple angiogenesis processes, including endothelial cell sprouting, migration, proliferation, and tube formation. Further kinase assays investigations found that BDDPM is a potent selective, but multi-target, receptor tyrosine kinase (RTKs) inhibitor. BDDPM (10 μM) inhibits the activities of fibroblast growth factor receptor 2 and 3 (FGFR2, 3), vascular endothelial growth factor receptor 2 (VEGFR2) and platelet-derived growth factor receptor α (PDGFRα) (inhibition rate: 57.7%, 78.6%, 78.5% and 71.1%, respectively). Moreover, BDDPM also decreases the phosphorylation of protein kinase B (PKB/Akt) and endothelial nitric oxide synthase (eNOS), as well as nitric oxide (NO) production in a dose dependent manner. These results indicate that BDDPM can be exploited as an anti-angiogenic drug, or as a lead compound for the development of novel multi-target RTKs inhibitors. PMID:26075871

  18. Biological and Structural Characterization of Glycosylation on Ephrin-A1, a Preferred Ligand for EphA2 Receptor Tyrosine Kinase*

    PubMed Central

    Ferluga, Sara; Hantgan, Roy; Goldgur, Yehuda; Himanen, Juha P.; Nikolov, Dimitar B.; Debinski, Waldemar

    2013-01-01

    The EphA2 receptor tyrosine kinase is overexpressed in a number of malignancies and is activated by ephrin ligands, most commonly by ephrin-A1. The crystal structure of the ligand-receptor complex revealed a glycosylation on the Asn-26 of ephrin-A1. Here we report for the first time the significance of the glycosylation in the biology of EphA2 and ephrin-A1. Ephrin-A1 was enzymatically deglycosylated, and its activity was evaluated in several assays using glioblastoma (GBM) cells and recombinant EphA2. We found that deglycosylated ephrin-A1 does not efficiently induce EphA2 receptor internalization and degradation, and does not activate the downstream signaling pathways involved in cell migration and proliferation. Data obtained by surface plasmon resonance confirms that deglycosylated ephrin-A1 does not bind EphA2 with high affinity. Mutations in the glycosylation site on ephrin-A1 result in protein aggregation and mislocalization. Analysis of Eph/ephrin crystal structures reveals an interaction between the ligand's carbohydrates and two residues of EphA2: Asp-78 and Lys-136. These findings suggest that the glycosylation on ephrin-A1 plays a critical role in the binding and activation of the EphA2 receptor. PMID:23661698

  19. Mechanism of Oxygen Reduction in Cytochrome c Oxidase and the Role of the Active Site Tyrosine.

    PubMed

    Blomberg, Margareta R A

    2016-01-26

    Cytochrome c oxidase, the terminal enzyme in the respiratory chain, reduces molecular oxygen to water and stores the released energy through electrogenic chemistry and proton pumping across the membrane. Apart from the heme-copper binuclear center, there is a conserved tyrosine residue in the active site (BNC). The tyrosine delivers both an electron and a proton during the O-O bond cleavage step, forming a tyrosyl radical. The catalytic cycle then occurs in four reduction steps, each taking up one proton for the chemistry (water formation) and one proton to be pumped. It is here suggested that in three of the reduction steps the chemical proton enters the center of the BNC, leaving the tyrosine unprotonated with radical character. The reproprotonation of the tyrosine occurs first in the final reduction step before binding the next oxygen molecule. It is also suggested that this reduction mechanism and the presence of the tyrosine are essential for the proton pumping. Density functional theory calculations on large cluster models of the active site show that only the intermediates with the proton in the center of the BNC and with an unprotonated tyrosyl radical have a high electron affinity of similar size as the electron donor, which is essential for the ability to take up two protons per electron and thus for the proton pumping. This type of reduction mechanism is also the only one that gives a free energy profile in accordance with experimental observations for the amount of proton pumping in the working enzyme.

  20. The human p50csk tyrosine kinase phosphorylates p56lck at Tyr-505 and down regulates its catalytic activity.

    PubMed Central

    Bergman, M; Mustelin, T; Oetken, C; Partanen, J; Flint, N A; Amrein, K E; Autero, M; Burn, P; Alitalo, K

    1992-01-01

    Protein tyrosine kinases participate in the transduction and modulation of signals that regulate proliferation and differentiation of cells. Excessive or deregulated protein tyrosine kinase activity can cause malignant transformation. The catalytic activity of the T cell protein tyrosine kinase p56lck is normally suppressed by phosphorylation of a carboxyl-terminal tyrosine, Tyr-505, by another cellular protein tyrosine kinase. Here we characterize a human cytosolic 50 kDa protein tyrosine kinase, p50csk, which specifically phosphorylates Tyr-505 of p56lck and a synthetic peptide containing this site. Phosphorylation of Tyr-505 suppressed the catalytic activity of p56lck. We suggest that p50csk negatively regulates p56lck, and perhaps other cellular src family kinases. Images PMID:1639064

  1. Phosphorylation of Tip60 Tyrosine 327 by Abl Kinase Inhibits HAT Activity through Association with FE65

    PubMed Central

    Shin, Sung Hwa; Kang, Sang Sun

    2013-01-01

    The transfer of acetyl groups from acetyl coenzyme A to the ε amino group of internal lysine residues is catalyzed by Tip60, which is in the MYST family of nuclear histone acetyltransferases (HATs). The tyrosine phosphorylation of Tip60 seems to be a unique modification. We present evidence that Tip60 is modified on tyrosine 327 by Abl kinase. We show that this causes functional changes in HAT activity and the subcellular localization of TIP60, which forms a complex with Abl kinase. The Tip60 mutation Y327F abolished tyrosine phosphorylation, reduced the inhibition of Tip60 HAT activity, and caused G0-G1 arrest and association with FE65. Thus, our findings for the first time suggested a novel regulation mechanism of Tip60. Regulation was through phosphorylation of tyrosine 327 by Abl tyrosine kinase and depended on environmental conditions, suggesting that the tyrosine residue of Tip60 is important for the activation process. PMID:24044023

  2. Vandetanib (ZD6474), a dual inhibitor of vascular endothelial growth factor receptor (VEGFR) and epidermal growth factor receptor (EGFR) tyrosine kinases: current status and future directions.

    PubMed

    Morabito, Alessandro; Piccirillo, Maria Carmela; Falasconi, Fabiano; De Feo, Gianfranco; Del Giudice, Antonia; Bryce, Jane; Di Maio, Massimo; De Maio, Ermelinda; Normanno, Nicola; Perrone, Francesco

    2009-04-01

    Vandetanib is a novel, orally available inhibitor of different intracellular signaling pathways involved in tumor growth, progression, and angiogenesis: vascular endothelial growth factor receptor-2, epidermal growth factor receptor, and REarranged during Transfection tyrosine kinase activity. Phase I clinical trials have shown that vandetanib is well tolerated as a single agent at daily doses < or =300 mg. In the phase II setting, negative results were observed with vandetanib in small cell lung cancer, metastatic breast cancer, and multiple myeloma. In contrast, three randomized phase II studies showed that vandetanib prolonged the progression-free survival (PFS) time of patients with non-small cell lung cancer (NSCLC) as a single agent when compared with gefitinib or when added to chemotherapy. Rash, diarrhea, hypertension, fatigue, and asymptomatic QTc prolongation were the most common adverse events. Antitumor activity was also observed in medullary thyroid cancer. Four randomized phase III clinical trials in NSCLC are exploring the efficacy of vandetanib in combination with docetaxel, the Zactima in cOmbination with Docetaxel In non-small cell lung Cancer (ZODIAC) trial, or with pemetrexed, the Zactima Efficacy with Alimta in Lung cancer (ZEAL) trial, or as a single agent, the Zactima Efficacy when Studied versus Tarceva (ZEST) and the Zactima Efficacy trial for NSCLC Patients with History of EGFR-TKI chemo-Resistance (ZEPHYR) trials. Based on a press release by the sponsor of these trials, the PFS time was longer with vandetanib in the ZODIAC and ZEAL trials; the ZEST trial was negative for its primary superiority analysis, but was successful according to a preplanned noninferiority analysis of PFS. Ongoing phase II and III clinical trials will better define the appropriate schedule, the optimal setting of evaluation, and the safety of long-term use of vandetanib.

  3. Vandetanib (ZD6474), a dual inhibitor of vascular endothelial growth factor receptor (VEGFR) and epidermal growth factor receptor (EGFR) tyrosine kinases: current status and future directions.

    PubMed

    Morabito, Alessandro; Piccirillo, Maria Carmela; Falasconi, Fabiano; De Feo, Gianfranco; Del Giudice, Antonia; Bryce, Jane; Di Maio, Massimo; De Maio, Ermelinda; Normanno, Nicola; Perrone, Francesco

    2009-04-01

    Vandetanib is a novel, orally available inhibitor of different intracellular signaling pathways involved in tumor growth, progression, and angiogenesis: vascular endothelial growth factor receptor-2, epidermal growth factor receptor, and REarranged during Transfection tyrosine kinase activity. Phase I clinical trials have shown that vandetanib is well tolerated as a single agent at daily doses < or =300 mg. In the phase II setting, negative results were observed with vandetanib in small cell lung cancer, metastatic breast cancer, and multiple myeloma. In contrast, three randomized phase II studies showed that vandetanib prolonged the progression-free survival (PFS) time of patients with non-small cell lung cancer (NSCLC) as a single agent when compared with gefitinib or when added to chemotherapy. Rash, diarrhea, hypertension, fatigue, and asymptomatic QTc prolongation were the most common adverse events. Antitumor activity was also observed in medullary thyroid cancer. Four randomized phase III clinical trials in NSCLC are exploring the efficacy of vandetanib in combination with docetaxel, the Zactima in cOmbination with Docetaxel In non-small cell lung Cancer (ZODIAC) trial, or with pemetrexed, the Zactima Efficacy with Alimta in Lung cancer (ZEAL) trial, or as a single agent, the Zactima Efficacy when Studied versus Tarceva (ZEST) and the Zactima Efficacy trial for NSCLC Patients with History of EGFR-TKI chemo-Resistance (ZEPHYR) trials. Based on a press release by the sponsor of these trials, the PFS time was longer with vandetanib in the ZODIAC and ZEAL trials; the ZEST trial was negative for its primary superiority analysis, but was successful according to a preplanned noninferiority analysis of PFS. Ongoing phase II and III clinical trials will better define the appropriate schedule, the optimal setting of evaluation, and the safety of long-term use of vandetanib. PMID:19349511

  4. Synergistic inhibition with a dual epidermal growth factor receptor/HER-2/neu tyrosine kinase inhibitor and a disintegrin and metalloprotease inhibitor.

    PubMed

    Witters, Lois; Scherle, Peggy; Friedman, Steven; Fridman, Jordan; Caulder, Eian; Newton, Robert; Lipton, Allan

    2008-09-01

    The ErbB family of receptors is overexpressed in numerous human tumors. Overexpression correlates with poor prognosis and resistance to therapy. Use of ErbB-specific antibodies to the receptors (Herceptin or Erbitux) or ErbB-specific small-molecule inhibitors of the receptor tyrosine kinase activity (Iressa or Tarceva) has shown clinical efficacy in several solid tumors. An alternative method of affecting ErbB-initiated tumor growth and survival is to block sheddase activity. Sheddase activity is responsible for cleavage of multiple ErbB ligands and receptors, a necessary step in availability of the soluble, active form of the ligand and a constitutively activated ligand-independent receptor. This sheddase activity is attributed to the ADAM (a disintegrin and metalloprotease) family of proteins. ADAM 10 is the main sheddase of epidermal growth factor (EGF) and HER-2/neu cleavage, whereas ADAM17 is required for cleavage of additional EGF receptor (EGFR) ligands (transforming growth factor-alpha, amphiregulin, heregulin, heparin binding EGF-like ligand). This study has shown that addition of INCB3619, a potent inhibitor of ADAM10 and ADAM17, reduces in vitro HER-2/neu and amphiregulin shedding, confirming that it interferes with both HER-2/neu and EGFR ligand cleavage. Combining INCB3619 with a lapatinib-like dual inhibitor of EGFR and HER-2/neu kinases resulted in synergistic growth inhibition in MCF-7 and HER-2/neu-transfected MCF-7 human breast cancer cells. Combining the INCB7839 second-generation sheddase inhibitor with lapatinib prevented the growth of HER-2/neu-positive BT474-SC1 human breast cancer xenografts in vivo. These results suggest that there may be an additional clinical benefit of combining agents that target the ErbB pathways at multiple points.

  5. Oncogenic tyrosine kinase NPM-ALK induces expression of the growth-promoting receptor ICOS.

    PubMed

    Zhang, Qian; Wang, Hongyi; Kantekure, Kanchan; Paterson, Jennifer C; Liu, Xiaobin; Schaffer, Andras; Paulos, Chrystal; Milone, Michael C; Odum, Niels; Turner, Suzanne; Marafioti, Teresa; Wasik, Mariusz A

    2011-09-15

    Here we report that T-cell lymphoma cells carrying the NPM-ALK fusion protein (ALK(+) TCL) frequently express the cell-stimulatory receptor ICOS. ICOS expression in ALK(+) TCL is moderate and strictly dependent on the expression and enzymatic activity of NPM-ALK. NPM-ALK induces ICOS expression via STAT3, which triggers the transcriptional activity of the ICOS gene promoter. In addition, STAT3 suppresses the expression of miR-219 that, in turn, selectively inhibits ICOS expression. ALK(+) TCL cell lines display extensive DNA methylation of the CpG island located within intron 1, the putative enhancer region, of the ICOS gene, whereas cutaneous T-cell lymphoma cell lines, which strongly express ICOS, show no methylation of the island. Treatment of the ALK(+) TCL cell lines with DNA methyltransferase inhibitor reversed the CpG island methylation and augmented the expression of ICOS mRNA and protein. Stimulation of the ICOS receptor with anti-ICOS antibody or ICOS ligand-expressing B cells markedly enhanced proliferation of the ALK(+) TCL cells. These results demonstrate that NPM-ALK, acting through STAT3 as the gene transcriptional activator, induces the expression of ICOS, a cell growth promoting receptor. These data also show that the DNA methylation status of the intronic CpG island affects transcriptional activity of the ICOS gene and, consequently, modulates the concentration of the expressed ICOS protein.

  6. Regulation and function of syk tyrosine kinase in mast cell signaling and beyond.

    PubMed

    de Castro, Rodrigo Orlandini

    2011-01-01

    The protein tyrosine kinase Syk plays a critical role in FcεRI signaling in mast cells. Binding of Syk to phosphorylated immunoreceptor tyrosine-based activation motifs (p-ITAM) of the receptor subunits results in conformational changes and tyrosine phosphorylation at multiple sites that leads to activation of Syk. The phosphorylated tyrosines throughout the molecule play an important role in the regulation of Syk-mediated signaling. Reconstitution of receptor-mediated signaling in Syk(-/-) cells by wild-type Syk or mutants which have substitution of these tyrosines with phenylalanine together with in vitro assays has been useful strategies to understand the regulation and function of Syk.

  7. Analysis of the murine Dtk gene identifies conservation of genomic structure within a new receptor tyrosine kinase subfamily

    SciTech Connect

    Lewis, P.M.; Crosier, K.E.; Crosier, P.S.

    1996-01-01

    The receptor tyrosine kinase Dtk/Tyro 3/Sky/rse/brt/tif is a member of a new subfamily of receptors that also includes Axl/Ufo/Ark and Eyk/Mer. These receptors are characterized by the presence of two immunoglobulin-like loops and two fibronectin type III repeats in their extracellular domains. The structure of the murine Dtk gene has been determined. The gene consists of 21 exons that are distributed over 21 kb of genomic DNA. An isoform of Dtk is generated by differential splicing of exons from the 5{prime} region of the gene. The overall genomic structure of Dtk is virtually identical to that determined for the human UFO gene. This particular genomic organization is likely to have been duplicated and closely maintained throughout evolution. 38 refs., 3 figs., 1 tab.

  8. Ligand-Binding Affinity at the Insulin Receptor Isoform-A and Subsequent IR-A Tyrosine Phosphorylation Kinetics are Important Determinants of Mitogenic Biological Outcomes

    PubMed Central

    Rajapaksha, Harinda; Forbes, Briony E.

    2015-01-01

    The insulin receptor (IR) is a tyrosine kinase receptor that can mediate both metabolic and mitogenic biological actions. The IR isoform-A (IR-A) arises from alternative splicing of exon 11 and has different ligand binding and signaling properties compared to the IR isoform-B. The IR-A not only binds insulin but also insulin-like growth factor-II (IGF-II) with high affinity. IGF-II acting through the IR-A promotes cancer cell proliferation, survival, and migration by activating some unique signaling molecules compared to those activated by insulin. This observation led us to investigate whether the different IR-A signaling outcomes in response to IGF-II and insulin could be attributed to phosphorylation of a different subset of IR-A tyrosine residues or to the phosphorylation kinetics. We correlated IR-A phosphorylation to activation of molecules involved in mitogenic and metabolic signaling (MAPK and Akt) and receptor internalization rates (related to mitogenic signaling). We also extended this study to incorporate two ligands that are known to promote predominantly mitogenic [(His4, Tyr15, Thr49, Ile51) IGF-I, qIGF-I] or metabolic (S597 peptide) biological actions, to see if common mechanisms can be used to define mitogenic or metabolic signaling through the IR-A. The threefold lower mitogenic action of IGF-II compared to insulin was associated with a decreased potency in activation of Y960, Y1146, Y1150, Y1151, Y1316, and Y1322, in MAPK phosphorylation and in IR-A internalization. With the poorly mitogenic S597 peptide, it was a decreased rate of tyrosine phosphorylation rather than potency that was associated with a low mitogenic potential. We conclude that both decreased affinity of IR-A binding and kinetics of IR-A phosphorylation can independently lead to a lower mitogenic activity. None of the studied parameters could account for the lower metabolic activity of qIGF-I. PMID:26217307

  9. Quinoxaline-Based Scaffolds Targeting Tyrosine Kinases and Their Potential Anticancer Activity.

    PubMed

    El Newahie, Aliya M S; Ismail, Nasser S M; Abou El Ella, Dalal A; Abouzid, Khaled A M

    2016-05-01

    Quinoxaline derivatives, also called benzopyrazines, are an important class of heterocyclic compounds. Quinoxalines have drawn great attention due to their wide spectrum of biological activities. They are considered as an important basis for anticancer drugs due to their potential activity as protein kinase inhibitors. In this review, we focus on the chemistry of the quinoxaline derivatives, the strategies for their synthesis, their potential activities against various tyrosine kinases, and on the structure-activity relationship studies reported to date.

  10. Tyrosine Kinase Inhibitors. 20. Optimization of Substituted Quinazoline and Pyrido[3,4-d]pyrimidine Derivatives as Orally Active, Irreversible Inhibitors of the Epidermal Growth Factor Receptor Family.

    PubMed

    Smaill, Jeff B; Gonzales, Andrea J; Spicer, Julie A; Lee, Helen; Reed, Jessica E; Sexton, Karen; Althaus, Irene W; Zhu, Tong; Black, Shannon L; Blaser, Adrian; Denny, William A; Ellis, Paul A; Fakhoury, Stephen; Harvey, Patricia J; Hook, Ken; McCarthy, Florence O J; Palmer, Brian D; Rivault, Freddy; Schlosser, Kevin; Ellis, Teresa; Thompson, Andrew M; Trachet, Erin; Winters, R Thomas; Tecle, Haile; Bridges, Alexander

    2016-09-01

    Structure-activity relationships for inhibition of erbB1, erbB2, and erbB4 were determined for a series of quinazoline- and pyrido[3,4-d]pyrimidine-based analogues of the irreversible pan-erbB inhibitor, canertinib. Cyclic amine bearing crotonamides were determined to provide rapid inhibition of cellular erbB1 autophosphorylation and good metabolic stability in liver microsome and hepatocyte assays. The influence of 4-anilino substitution on pan-erbB inhibitory potency was investigated. Several anilines were identified as providing potent, reversible pan-erbB inhibition. Optimum 4- and 6-substituents with known 7-substituents provided preferred irreversible inhibitors for pharmacodynamic testing in vivo. Quinazoline 54 and pyrido[3,4-d]pyrimidine 71 were identified as clearly superior to canertinib. Both compounds possess a piperidinyl crotonamide Michael acceptor and a 3-chloro-4-fluoroaniline, indicating these as optimized 6- and 4-substituents, respectively. Pharmacokinetic comparison of compounds 54 and 71 across three species selected compound 54 as the preferred candidate. Compound 54 (PF-00299804) has been assigned the nomenclature of dacomitinib and is currently under clinical evaluation.

  11. Engineered epidermal growth factor mutants with faster binding on-rates correlate with enhanced receptor activation

    PubMed Central

    Lahti, Jennifer L.; Lui, Bertrand H.; Beck, Stayce E.; Lee, Stephen S.; Ly, Daphne P.; Longaker, Michael T.; Yang, George P.; Cochran, Jennifer R.

    2011-01-01

    Receptor tyrosine kinases (RTKs) regulate critical cell signaling pathways, yet the properties of their cognate ligands that influence receptor activation are not fully understood. There is great interest in parsing these complex ligand-receptor relationships using engineered proteins with altered binding properties. Here we focus on the interaction between two engineered epidermal growth factor (EGF) mutants and the EGF receptor (EGFR), a model member of the RTK superfamily. We found that EGF mutants with faster kinetic on-rates stimulate increased EGFR activation compared to wild-type EGF. These findings support previous predictions that faster association rates correlate with enhanced receptor activity. PMID:21439278

  12. Activating Mutations in PIK3CA Lead to Widespread Modulation of the Tyrosine Phosphoproteome

    PubMed Central

    Blair, Brian G.; Pinto, Sneha M.; Nirujogi, Raja S.; Jelinek, Christine A.; Malhotra, Radhika; Kim, Min-Sik; Park, Ben Ho; Pandey, Akhilesh

    2015-01-01

    The human oncogene PIK3CA is frequently mutated in human cancers. Two hotspot mutations in PIK3CA, E545K and H1047R, have been shown to regulate widespread signaling events downstream of AKT, leading to increased cell proliferation, growth, survival, and motility. We used quantitative mass spectrometry to profile the global phosphotyrosine proteome of isogenic knock-in cell lines containing these activating mutations, where we identified 824 unique phosphopeptides. Although it is well understood that these mutations result in hyperactivation of the serine/threonine kinase AKT, we found a surprisingly widespread modulation of tyrosine phosphorylation levels of proteins in the mutant cells. In the tyrosine kinome alone, 29 tyrosine kinases were altered in their phosphorylation status. Many of the regulated phosphosites that we identified were located in the kinase domain or the canonical activation sites, indicating that these kinases and their downstream signaling pathways were activated. Our study demonstrates that there is frequent and unexpected cross-talk that occurs between tyrosine signaling pathways and serine/threonine signaling pathways activated by the canonical PI3K-AKT axis. PMID:26267517

  13. Regulation of Nuclear Localization and Transcriptional Activity of TFII-I by Bruton’s Tyrosine Kinase

    PubMed Central

    Novina, Carl D.; Kumar, Sanjay; Bajpai, Urmila; Cheriyath, Venugopalan; Zhang, Keming; Pillai, Shiv; Wortis, Henry H.; Roy, Ananda L.

    1999-01-01

    Bruton’s tyrosine kinase (Btk) is required for normal B-cell development, as defects in Btk lead to X-linked immunodeficiency (xid) in mice and X-linked agammaglobulinemia (XLA) in humans. Here we demonstrate a functional interaction between the multifunctional transcription factor TFII-I and Btk. Ectopic expression of wild-type Btk enhances TFII-I-mediated transcriptional activation and its tyrosine phosphorylation in transient-transfection assays. Mutation of Btk in either the PH domain (R28C, as in the murine xid mutation) or the kinase domain (K430E) compromises its ability to enhance both the tyrosine phosphorylation and the transcriptional activity of TFII-I. TFII-I associates constitutively in vivo with wild-type Btk and kinase-inactive Btk but not xid Btk. However, membrane immunoglobulin M cross-linking in B cells leads to dissociation of TFII-I from Btk. We further show that while TFII-I is found in both the nucleus and cytoplasm of wild-type and xid primary resting B cells, nuclear TFII-I is greater in xid B cells. Most strikingly, receptor cross-linking of wild-type (but not xid) B cells results in increased nuclear import of TFII-I. Taken together, these data suggest that although the PH domain of Btk is primarily responsible for its physical interaction with TFII-I, an intact kinase domain of Btk is required to enhance transcriptional activity of TFII-I in the nucleus. Thus, mutations impairing the physical and/or functional association between TFII-I and Btk may result in diminished TFII-I-dependent transcription and contribute to defective B-cell development and/or function. PMID:10373551

  14. Discovery of Novel Benzimidazoles as Potent Inhibitors of TIE-2 and VEGFR-2 Tyrosine Kinase Receptors

    SciTech Connect

    Hasegawa, Masaichi; Nishigaki, Naohiko; Washio, Yoshiaki; Kano, Kazuya; Harris, Philip A.; Sato, Hideyuki; Mori, Ichiro; West, Rob I.; Shibahara, Megumi; Toyoda, Hiroko; Wang, Liping; Nolte, Robert T.; Veal, James M.; Cheung, Mui

    2008-09-12

    We herein disclose a novel chemical series of benzimidazole-ureas as inhibitors of VEGFR-2 and TIE-2 kinase receptors, both of which are implicated in angiogenesis. Structure-activity relationship (SAR) studies elucidated a critical role for the N1 nitrogen of both the benzimidazole (segment E) and urea (segment B) moieties. The SAR results were also supported by the X-ray crystallographic elucidation of the role of the N1 nitrogen and the urea moiety when the benzimidazole-urea compounds were bound to the VEGFR-2 enzyme. The left side phenyl ring (segment A) occupies the backpocket where a 3-hydrophobic substituent was favored for TIE-2 activity.

  15. Metabolism and bioactivation of famitinib, a novel inhibitor of receptor tyrosine kinase, in cancer patients

    PubMed Central

    Xie, Cen; Zhou, Jialan; Guo, Zitao; Diao, Xingxing; Gao, Zhiwei; Zhong, Dafang; Jiang, Haoyuan; Zhang, Lijia; Chen, Xiaoyan

    2013-01-01

    Background and Purpose Famitinib is a novel multi-targeted receptor tyrosine kinase inhibitor under development for cancer treatment. This study aims to characterize the metabolic and bioactivation pathways of famitinib. Experimental Approach The metabolites in human plasma, urine and feces were identified via ultra-high performance liquid chromatography-quadrupole-time of flight-mass spectrometry and confirmed using synthetic standards. Biotransformation and bioactivation mechanisms were investigated using microsomes, recombinant metabolic enzymes and hepatocytes. Key Results Famitinib was extensively metabolized after repeated oral administrations. Unchanged famitinib was the major circulating material, followed by N-desethylfaminitib (M3), whose steady-state exposure represented 7.2 to 7.5% that of the parent drug. Metabolites in the excreta were mainly from oxidative deamination (M1), N-desethylation (M3), oxidative defluorination (M7), indolylidene hydroxylation (M9-1 and M9-5) and secondary phase-II conjugations. CYP3A4/5 was the major contributor to M3 formation, CYP3A4/5 and aldehyde dehydrogenase to M1 formation and CYP1A1/2 to M7, M9-1 and M9-5 formations. Minor cysteine conjugates were observed in the plasma, urine and feces, implying the formation of reactive intermediate(s). In vitro microsomal studies proved that famitinib was bioactivated through epoxidation at indolylidene by CYP1A1/2 and spontaneously defluorinated rearrangement to afford a quinone-imine species. A correlation between famitinib hepatotoxicity and its bioactivation was observed in the primary human hepatocytes. Conclusion and Implications Famitinib is well absorbed and extensively metabolized in cancer patients. Multiple enzymes, mainly CYP3A4/5 and CYP1A1/2, are involved in famitinib metabolic clearance. The quinone-imine intermediate formed through bioactivation may be associated with famitinib hepatotoxicity. Co-administered CYP1A1/2 inducers or inhibitors may potentiate or

  16. Regulation of branching dynamics by axon-intrinsic asymmetries in Tyrosine Kinase Receptor signaling

    PubMed Central

    Zschätzsch, Marlen; Oliva, Carlos; Langen, Marion; De Geest, Natalie; Özel, Mehmet Neset; Williamson, W Ryan; Lemon, William C; Soldano, Alessia; Munck, Sebastian; Hiesinger, P Robin; Sanchez-Soriano, Natalia; Hassan, Bassem A

    2014-01-01

    Axonal branching allows a neuron to connect to several targets, increasing neuronal circuit complexity. While axonal branching is well described, the mechanisms that control it remain largely unknown. We find that in the Drosophila CNS branches develop through a process of excessive growth followed by pruning. In vivo high-resolution live imaging of developing brains as well as loss and gain of function experiments show that activation of Epidermal Growth Factor Receptor (EGFR) is necessary for branch dynamics and the final branching pattern. Live imaging also reveals that intrinsic asymmetry in EGFR localization regulates the balance between dynamic and static filopodia. Elimination of signaling asymmetry by either loss or gain of EGFR function results in reduced dynamics leading to excessive branch formation. In summary, we propose that the dynamic process of axon branch development is mediated by differential local distribution of signaling receptors. DOI: http://dx.doi.org/10.7554/eLife.01699.001 PMID:24755286

  17. Serotonin contracts the rat mesenteric artery by inhibiting 4-aminopyridine-sensitive Kv channels via the 5-HT2A receptor and Src tyrosine kinase.

    PubMed

    Sung, Dong Jun; Noh, Hyun Ju; Kim, Jae Gon; Park, Sang Woong; Kim, Bokyung; Cho, Hana; Bae, Young Min

    2013-01-01

    Serotonin (5-hydroxytryptamine (5-HT)) is a neurotransmitter that regulates a variety of functions in the nervous, gastrointestinal and cardiovascular systems. Despite such importance, 5-HT signaling pathways are not entirely clear. We demonstrated previously that 4-aminopyridine (4-AP)-sensitive voltage-gated K(+) (Kv) channels determine the resting membrane potential of arterial smooth muscle cells and that the Kv channels are inhibited by 5-HT, which depolarizes the membranes. Therefore, we hypothesized that 5-HT contracts arteries by inhibiting Kv channels. Here we studied 5-HT signaling and the detailed role of Kv currents in rat mesenteric arteries using patch-clamp and isometric tension measurements. Our data showed that inhibiting 4-AP-sensitive Kv channels contracted arterial rings, whereas inhibiting Ca(2+)-activated K(+), inward rectifier K(+) and ATP-sensitive K(+) channels had little effect on arterial contraction, indicating a central role of Kv channels in the regulation of resting arterial tone. 5-HT-induced arterial contraction decreased significantly in the presence of high KCl or the voltage-gated Ca(2+) channel (VGCC) inhibitor nifedipine, indicating that membrane depolarization and the consequent activation of VGCCs mediate the 5-HT-induced vasoconstriction. The effects of 5-HT on Kv currents and arterial contraction were markedly prevented by the 5-HT2A receptor antagonists ketanserin and spiperone. Consistently, α-methyl 5-HT, a 5-HT2 receptor agonist, mimicked the 5-HT action on Kv channels. Pretreatment with a Src tyrosine kinase inhibitor, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine, prevented both the 5-HT-mediated vasoconstriction and Kv current inhibition. Our data suggest that 4-AP-sensitive Kv channels are the primary regulator of the resting tone in rat mesenteric arteries. 5-HT constricts the arteries by inhibiting Kv channels via the 5-HT2A receptor and Src tyrosine kinase pathway. PMID:24336234

  18. Vascular endothelial growth factor receptors: Molecular mechanisms of activation and therapeutic potentials

    PubMed Central

    Rahimi, Nader

    2006-01-01

    Angiogenesis-associated eye diseases are among the most common cause of blindness in the United States and worldwide. Recent advances in the development of angiogenesis-based therapies for treatment of angiogenesis-associated diseases have provided new hope in a wide variety of human diseases ranging from eye diseases to cancer. One group of growth factor receptors critically implicated in angiogenesis is vascular endothelial growth factor receptors (VEGFR), a subfamily of receptor tyrosine kinases (RTKs). VEGFR-1 and VEGFR-2 are closely related receptor tyrosine kinases and have both common and specific ligands. VEGFR-1 is a kinase-impaired RTK and its kinase activity is suppressed by a single amino acid substitution in its kinase domain and by its carboxyl terminus. VEGFR-2 is highly active kinase, stimulates a variety of signaling pathways and broad biological responses in endothelial cells. The mechanisms that govern VEGFR-2 activation, its ability to recruit signaling proteins and to undergo downregulation are highly regulated by phosphorylation activation loop tyrosines and its carboxyl terminus. Despite their differential potentials to undergo tyrosine phosphorylation and kinase activation, both VEGFR-1 and VEGFR-2 are required for normal embryonic development and pathological angiogenesis. VEGFR-1 regulates angiogenesis by mechanisms that involve ligand trapping, receptor homodimerization and heterodimerization. This review highlights recent insights into the mechanism of activation of VEGFR-1 and VEGFR-2, and focuses on the signaling pathways employed by VEGFR-1 and VEGFR-2 that regulate angiogenesis and their therapeutic potentials in angiogenesis-associated diseases. PMID:16713597

  19. Smad2 transduces common signals from receptor serine-threonine and tyrosine kinases.

    PubMed

    de Caestecker, M P; Parks, W T; Frank, C J; Castagnino, P; Bottaro, D P; Roberts, A B; Lechleider, R J

    1998-06-01

    SMAD proteins mediate signals from receptor serine-threonine kinases (RSKs) of the TGF-beta superfamily. We demonstrate here that HGF and EGF, which signal through RTKs, can also mediate SMAD-dependent reporter gene activation and induce rapid phosphorylation of endogenous SMAD proteins by kinase(s) downstream of MEK1. HGF induces phosphorylation and nuclear translocation of epitope-tagged Smad2 and a mutation that blocks TGF-beta signaling also blocks HGF signal transduction. Smad2 may thus act as a common positive effector of TGF-beta- and HGF-induced signals and serve to modulate cross talk between RTK and RSK signaling pathways.

  20. ψ-Bufarenogin, a novel anti-tumor compound, suppresses liver cancer growth by inhibiting receptor tyrosine kinase-mediated signaling.

    PubMed

    Ding, Jin; Wen, Wen; Xiang, Daimin; Yin, Peipei; Liu, Yanfang; Liu, Chang; He, Guoping; Cheng, Zhuo; Yin, Jianpeng; Sheng, Chunquan; Zhang, Wen; Nan, Fajun; Ye, Wencai; Zhang, Xiuli; Wang, Hongyang

    2015-05-10

    Resistance of hepatocellular carcinoma (HCC) to existing chemotherapeutic agents largely contributes to the poor prognosis of patients, and discovery of novel anti-HCC drug is in an urgent need. Herein we report ψ-Bufarenogin, a novel active compound that we isolated from the extract of toad skin, exhibited potent therapeutic effect in xenografted human hepatoma without notable side effects. In vitro, ψ-Bufarenogin suppressed HCC cells proliferation through impeding cell cycle progression, and it facilitated cell apoptosis by downregulating Mcl-1 expression. Moreover, ψ-Bufarenogin decreased the number of hepatoma stem cells through Sox2 depression and exhibited synergistic effect with conventional chemotherapeutics. Mechanistic study revealed that ψ-Bufarenogin impaired the activation of MEK/ERK pathway, which is essential in the proliferation of hepatoma cells. ψ-Bufarenogin notably suppressed PI3-K/Akt cascade, which was required in ψ-Bufarenogin-mediated reduction of Mcl-1 and Sox2. ψ-Bufarenogin inhibited the auto-phosphorylation and activation of epithelial growth factor receptor (EGFR) and hepatocyte growth factor receptor (c-Met), thereafter suppressed their primary downstream cascades Raf/MEK/ERK and PI3-K/Akt signaling. Taken together, ψ-Bufarenogin suppressed HCC growth via inhibiting, at least partially, receptor tyrosine kinases-regulated signaling, suggesting that ψ-Bufarenogin could be a novel lead compound for anti-HCC drug.

  1. Tyrosine nitration provokes inhibition of sunflower carbonic anhydrase (β-CA) activity under high temperature stress.

    PubMed

    Chaki, Mounira; Carreras, Alfonso; López-Jaramillo, Javier; Begara-Morales, Juan C; Sánchez-Calvo, Beatriz; Valderrama, Raquel; Corpas, Francisco J; Barroso, Juan B

    2013-02-28

    Protein tyrosine nitration is a post-translational modification (PTM) mediated by reactive nitrogen species (RNS) and it is a new area of research in higher plants. Previously, it was demonstrated that the exposition of sunflower (Helianthus annuus L.) seedlings to high temperature (HT) caused both oxidative and nitrosative stress. The nitroproteome analysis under this stress condition showed the induction of 13 tyrosine-nitrated proteins being the carbonic anhydrase (CA) one of these proteins. The analysis of CA activity under high temperature showed that this stress inhibited the CA activity by a 43%. To evaluate the effect of nitration on the CA activity in sunflower it was used 3-morpholinosydnonimine (SIN-1) (peroxynitrite donor) as the nitrating agent. Thus the CA activity was inhibited by 41%. In silico analysis of the pea CA protein sequence suggests that Tyr(205) is the most likely potential target for nitration.

  2. PTP1B-dependent regulation of receptor tyrosine kinase signaling by the actin-binding protein Mena

    PubMed Central

    Hughes, Shannon K.; Oudin, Madeleine J.; Tadros, Jenny; Neil, Jason; Del Rosario, Amanda; Joughin, Brian A.; Ritsma, Laila; Wyckoff, Jeff; Vasile, Eliza; Eddy, Robert; Philippar, Ulrike; Lussiez, Alisha; Condeelis, John S.; van Rheenen, Jacco; White, Forest; Lauffenburger, Douglas A.; Gertler, Frank B.

    2015-01-01

    During breast cancer progression, alternative mRNA splicing produces functionally distinct isoforms of Mena, an actin regulator with roles in cell migration and metastasis. Aggressive tumor cell subpopulations express MenaINV, which promotes tumor cell invasion by potentiating EGF responses. However, the mechanism by which this occurs is unknown. Here we report that Mena associates constitutively with the tyrosine phosphatase PTP1B and mediates a novel negative feedback mechanism that attenuates receptor tyrosine kinase signaling. On EGF stimulation, complexes containing Mena and PTP1B are recruited to the EGFR, causing receptor dephosphorylation and leading to decreased motility responses. Mena also interacts with the 5′ inositol phosphatase SHIP2, which is important for the recruitment of the Mena-PTP1B complex to the EGFR. When MenaINV is expressed, PTP1B recruitment to the EGFR is impaired, providing a mechanism for growth factor sensitization to EGF, as well as HGF and IGF, and increased resistance to EGFR and Met inhibitors in signaling and motility assays. In sum, we demonstrate that Mena plays an important role in regulating growth factor–induced signaling. Disruption of this attenuation by MenaINV sensitizes tumor cells to low–growth factor concentrations, thereby increasing the migration and invasion responses that contribute to aggressive, malignant cell phenotypes. PMID:26337385

  3. PTP1B-dependent regulation of receptor tyrosine kinase signaling by the actin-binding protein Mena.

    PubMed

    Hughes, Shannon K; Oudin, Madeleine J; Tadros, Jenny; Neil, Jason; Del Rosario, Amanda; Joughin, Brian A; Ritsma, Laila; Wyckoff, Jeff; Vasile, Eliza; Eddy, Robert; Philippar, Ulrike; Lussiez, Alisha; Condeelis, John S; van Rheenen, Jacco; White, Forest; Lauffenburger, Douglas A; Gertler, Frank B

    2015-11-01

    During breast cancer progression, alternative mRNA splicing produces functionally distinct isoforms of Mena, an actin regulator with roles in cell migration and metastasis. Aggressive tumor cell subpopulations express Mena(INV), which promotes tumor cell invasion by potentiating EGF responses. However, the mechanism by which this occurs is unknown. Here we report that Mena associates constitutively with the tyrosine phosphatase PTP1B and mediates a novel negative feedback mechanism that attenuates receptor tyrosine kinase signaling. On EGF stimulation, complexes containing Mena and PTP1B are recruited to the EGFR, causing receptor dephosphorylation and leading to decreased motility responses. Mena also interacts with the 5' inositol phosphatase SHIP2, which is important for the recruitment of the Mena-PTP1B complex to the EGFR. When Mena(INV) is expressed, PTP1B recruitment to the EGFR is impaired, providing a mechanism for growth factor sensitization to EGF, as well as HGF and IGF, and increased resistance to EGFR and Met inhibitors in signaling and motility assays. In sum, we demonstrate that Mena plays an important role in regulating growth factor-induced signaling. Disruption of this attenuation by Mena(INV) sensitizes tumor cells to low-growth factor concentrations, thereby increasing the migration and invasion responses that contribute to aggressive, malignant cell phenotypes.

  4. CD22 associates with protein tyrosine phosphatase 1C, Syk, and phospholipase C-gamma(1) upon B cell activation

    PubMed Central

    1996-01-01

    Cross-linking B cell antigen receptor (BCR) elicits early signal transduction events, including activation of protein tyrosine kinases, phosphorylation of receptor components, activation of phospholipase C- gamma (PLC-gamma), and increases in intracellular free Ca2+. In this article, we report that cross-linking the BCR led to a rapid translocation of cytosolic protein tyrosine phosphatase (PTP) 1C to the particulate fraction, where it became associated with a 140-150-kD tyrosyl-phosphorylated protein. Western blotting analysis identified this 140-150-kD protein to be CD22. The association of PTP-1C with CD22 was mediated by the NH2-terminal Src homology 2 (SH2) domain of PTP-1C. Complexes of either CD22/PTP-1C/Syk/PLC-gamma(1) could be isolated from B cells stimulated by BCR engagement or a mixture of hydrogen peroxidase and sodium orthovanadate, respectively. The binding of PLC- gamma(1) and Syk to tyrosyl-phosphorylated CD22 was mediated by the NH2- terminal SH2 domain of PLC-gamma(1) and the COOH-terminal SH2 domain of Syk, respectively. These observations suggest that tyrosyl- phosphorylated CD22 may downmodulate the activity of this complex by dephosphorylation of CD22, Syk, and/or PLC-gamma(1). Transient expression of CD22 and a null mutant of PTP-1C (PTP-1CM) in COS cells resulted in an increase in tyrosyl phosphorylation of CD22 and its interaction with PTP-1CM. By contrast, CD22 was not tyrosyl phosphorylated or associated with PTP-1CM in the presence of wild-type PTP-1C. These results suggest that tyrosyl-phosphorylated CD22 may be a substrate for PTP-1C regulates tyrosyl phosphorylation of CD22. PMID:8627166

  5. Trans-activation of EphA4 and FGF receptors mediated by direct interactions between their cytoplasmic domains

    PubMed Central

    Yokote, Hideyuki; Fujita, Koji; Jing, Xuefeng; Sawada, Takahiro; Liang, Sitai; Yao, Li; Yan, Xiaomei; Zhang, Yueqiang; Schlessinger, Joseph; Sakaguchi, Kazushige

    2005-01-01

    A yeast two-hybrid analysis has shown that the juxtamembrane region of FGF receptor 3 (FGFR3) interacts with the cytoplasmic domain of EphA4, which is a member of the largest family of receptor tyrosine kinases. Complex formation between the two receptors was shown to be mediated by direct interactions between the juxtamembrane domain of FGFR1, FGFR2, FGFR3, or FGFR4 and the N-terminal portion of the tyrosine kinase domain of EphA4. Activation of FGFR1 in transfected cells resulted in tyrosine phosphorylation of a kinase-negative EphA4 mutant and activation of EphA4 led to tyrosine phosphorylation of a kinase-negative FGFR1 mutant. Moreover, both receptors stimulate tyrosine phosphorylation of the docking protein FRS2α and induce mitogen-activated protein kinase stimulation with a time course and intensity that depends on the ligand that is applied. We also demonstrate that FGF-receptor-mediated mitogen-activated protein kinase stimulation is potentiated in cells costimulated with ephrin-A1. The direct interaction between EphA4 and FGFRs and the potentiation of FGF response that is induced by ephrin-A1 stimulation may modulate the biological responses that are mediated by these receptor families in cells or tissues in which the two receptors are coexpressed. PMID:16365308

  6. The novel Smad protein Expansion regulates the receptor tyrosine kinase pathway to control Drosophila tracheal tube size.

    PubMed

    Iordanou, Ekaterini; Chandran, Rachana R; Yang, Yonghua; Essak, Mina; Blackstone, Nicholas; Jiang, Lan

    2014-09-01

    Tubes with distinct shapes and sizes are critical for the proper function of many tubular organs. Here we describe a unique phenotype caused by the loss of a novel, evolutionarily-conserved, Drosophila Smad-like protein, Expansion. In expansion mutants, unicellular and intracellular tracheal branches develop bubble-like cysts with enlarged apical membranes. Cysts in unicellular tubes are enlargements of the apical lumen, whereas cysts in intracellular tubes are cytoplasmic vacuole-like compartments. The cyst phenotype in expansion mutants is similar to, but weaker than, that observed in double mutants of Drosophila type III receptor tyrosine phosphatases (RPTPs), Ptp4E and Ptp10D. Ptp4E and Ptp10D negatively regulate the receptor tyrosine kinase (RTK) pathways, especially epithelial growth factor receptor (EGFR) and fibroblast growth factor receptor/breathless (FGFR, Btl) signaling to maintain the proper size of unicellular and intracellular tubes. We show Exp genetically interacts with RTK signaling, the downstream targets of RPTPs. Cyst size and number in expansion mutants is enhanced by increased RTK signaling and suppressed by reduced RTK signaling. Genetic interaction studies strongly suggest that Exp negatively regulates RTK (EGFR, Btl) signaling to ensure proper tube sizes. Smad proteins generally function as intermediate components of the transforming growth factor-β (TGF-β, DPP) signaling pathway. However, no obvious genetic interaction between expansion and TGF-β (DPP) signaling was observed. Therefore, Expansion does not function as a typical Smad protein. The expansion phenotype demonstrates a novel role for Smad-like proteins in epithelial tube formation.

  7. Tyrosine Kinase Inhibition: An Approach to Drug Development

    NASA Astrophysics Data System (ADS)

    Levitzki, Alexander; Gazit, Aviv

    1995-03-01

    Protein tyrosine kinases (PTKs) regulate cell proliferation, cell differentiation, and signaling processes in the cells of the immune system. Uncontrolled signaling from receptor tyrosine kinases and intracellular tyrosine kinases can lead to inflammatory responses and to diseases such as cancer, atherosclerosis, and psoriasis. Thus, inhibitors that block the activity of tyrosine kinases and the signaling pathways they activate may provide a useful basis for drug development. This article summarizes recent progress in the development of PTK inhibitors and demonstrates their potential use in the treatment of disease.

  8. The Eph Tyrosine Kinase Receptors EphB2 and EphA2 Are Novel Proteolytic Substrates of Tissue Factor/Coagulation Factor VIIa*

    PubMed Central

    Eriksson, Oskar; Ramström, Margareta; Hörnaeus, Katarina; Bergquist, Jonas; Mokhtari, Dariush; Siegbahn, Agneta

    2014-01-01

    Tissue factor (TF) binds the serine protease factor VIIa (FVIIa) to form a proteolytically active complex that can trigger coagulation or activate cell signaling. Here we addressed the involvement of tyrosine kinase receptors (RTKs) in TF/FVIIa signaling by antibody array analysis and subsequently found that EphB2 and EphA2 of the Eph RTK family were cleaved in their ectodomains by TF/FVIIa. We used N-terminal Edman sequencing and LC-MS/MS analysis to characterize the cleaved Eph isoforms and identified a key arginine residue at the cleavage site, in agreement with the tryptic serine protease activity of FVIIa. Protease-activated receptor 2 (PAR2) signaling and downstream coagulation activity was non-essential in this context, in further support of a direct cleavage by TF/FVIIa. EphB2 was cleaved by FVIIa concentrations in the subnanomolar range in a number of TF expressing cell types, indicating that the active cellular pool of TF was involved. FVIIa caused potentiation of cell repulsion by the EphB2 ligand ephrin-B1, demonstrating a novel proteolytical event to control Eph-mediated cell segregation. These results define Eph RTKs as novel proteolytical targets of TF/FVIIa and provide new insights into how TF/FVIIa regulates cellular functions independently of PAR2. PMID:25281742

  9. Intracellular signaling of the Ufo/Axl receptor tyrosine kinase is mediated mainly by a multi-substrate docking-site.

    PubMed

    Braunger, J; Schleithoff, L; Schulz, A S; Kessler, H; Lammers, R; Ullrich, A; Bartram, C R; Janssen, J W

    1997-06-01

    Ufo/Axl belongs to a new family of receptor tyrosine kinases with an extracellular structure similar to that of neural cell adhesion molecules. In order to elucidate intracellular signaling, the cytoplasmic moiety of Ufo/Axl was used to screen an expression library according to the CORT (cloning of receptor targets) method. Three putative Ufo substrates were identified: phospholipase Cgamma1 (PLCgamma), as well as p85alpha and p85beta subunits of phosphatidylinositol 3'-kinase (PI3-kinase). Subsequently, chimeric EGFR/Ufo receptors consisting of the extracellular domains of the epidermal growth factor receptor (EGFR) and the transmembrane and intracellular moiety of Ufo were engineered. Using different far-Western blot analyses and coimmunoprecipitation assays, receptor binding of PLCgamma and p85 proteins as well as GRB2, c-src and lck was examined in vitro and in vivo. Competitive inhibition of substrate binding and mutagenesis experiments with EGFR/Ufo constructs revealed C-terminal tyrosine 821 (EILpYVNMDEG) as a docking site for multiple effectors, namely PLCgamma, p85 proteins, GRB2, c-src and lck. Tyrosine 779 (DGLpYALMSRC) demonstrated an additional, but lower binding affinity for the p85 proteins in vitro. In addition, binding of PLCgamma occurred through tyrosine 866 (AGRpYVLCPST). Moreover, our in vivo data indicate that further direct or indirect binding sites for PLCgamma, GRB2, c-src and lck on the human Ufo receptor may exist.

  10. Endothelial Bmx tyrosine kinase activity is essential for myocardial hypertrophy and remodeling.

    PubMed

    Holopainen, Tanja; Räsänen, Markus; Anisimov, Andrey; Tuomainen, Tomi; Zheng, Wei; Tvorogov, Denis; Hulmi, Juha J; Andersson, Leif C; Cenni, Bruno; Tavi, Pasi; Mervaala, Eero; Kivelä, Riikka; Alitalo, Kari

    2015-10-20

    Cardiac hypertrophy accompanies many forms of heart disease, including ischemic disease, hypertension, heart failure, and valvular disease, and it is a strong predictor of increased cardiovascular morbidity and mortality. Deletion of bone marrow kinase in chromosome X (Bmx), an arterial nonreceptor tyrosine kinase, has been shown to inhibit cardiac hypertrophy in mice. This finding raised the possibility of therapeutic use of Bmx tyrosine kinase inhibitors, which we have addressed here by analyzing cardiac hypertrophy in gene-targeted mice deficient in Bmx tyrosine kinase activity. We found that angiotensin II (Ang II)-induced cardiac hypertrophy is significantly reduced in mice deficient in Bmx and in mice with inactivated Bmx tyrosine kinase compared with WT mice. Genome-wide transcriptomic profiling showed that Bmx inactivation suppresses myocardial expression of genes related to Ang II-induced inflammatory and extracellular matrix responses whereas expression of RNAs encoding mitochondrial proteins after Ang II administration was maintained in Bmx-inactivated hearts. Very little or no Bmx mRNA was expressed in human cardiomyocytes whereas human cardiac endothelial cells expressed abundant amounts. Ang II stimulation of endothelial cells increased Bmx phosphorylation, and Bmx gene silencing inhibited downstream STAT3 signaling, which has been implicated in cardiac hypertrophy. Furthermore, activation of the mechanistic target of rapamycin complex 1 pathway by Ang II treatment was decreased in the Bmx-deficient hearts. Our results demonstrate that inhibition of the cross-talk between endothelial cells and cardiomyocytes by Bmx inactivation suppresses Ang II-induced signals for cardiac hypertrophy. These results suggest that the endothelial Bmx tyrosine kinase could provide a target to attenuate the development of cardiac hypertrophy. PMID:26430242

  11. Endothelial Bmx tyrosine kinase activity is essential for myocardial hypertrophy and remodeling

    PubMed Central

    Holopainen, Tanja; Räsänen, Markus; Anisimov, Andrey; Tuomainen, Tomi; Zheng, Wei; Tvorogov, Denis; Hulmi, Juha J.; Andersson, Leif C.; Cenni, Bruno; Tavi, Pasi; Mervaala, Eero; Kivelä, Riikka; Alitalo, Kari

    2015-01-01

    Cardiac hypertrophy accompanies many forms of heart disease, including ischemic disease, hypertension, heart failure, and valvular disease, and it is a strong predictor of increased cardiovascular morbidity and mortality. Deletion of bone marrow kinase in chromosome X (Bmx), an arterial nonreceptor tyrosine kinase, has been shown to inhibit cardiac hypertrophy in mice. This finding raised the possibility of therapeutic use of Bmx tyrosine kinase inhibitors, which we have addressed here by analyzing cardiac hypertrophy in gene-targeted mice deficient in Bmx tyrosine kinase activity. We found that angiotensin II (Ang II)-induced cardiac hypertrophy is significantly reduced in mice deficient in Bmx and in mice with inactivated Bmx tyrosine kinase compared with WT mice. Genome-wide transcriptomic profiling showed that Bmx inactivation suppresses myocardial expression of genes related to Ang II-induced inflammatory and extracellular matrix responses whereas expression of RNAs encoding mitochondrial proteins after Ang II administration was maintained in Bmx-inactivated hearts. Very little or no Bmx mRNA was expressed in human cardiomyocytes whereas human cardiac endothelial cells expressed abundant amounts. Ang II stimulation of endothelial cells increased Bmx phosphorylation, and Bmx gene silencing inhibited downstream STAT3 signaling, which has been implicated in cardiac hypertrophy. Furthermore, activation of the mechanistic target of rapamycin complex 1 pathway by Ang II treatment was decreased in the Bmx-deficient hearts. Our results demonstrate that inhibition of the cross-talk between endothelial cells and cardiomyocytes by Bmx inactivation suppresses Ang II-induced signals for cardiac hypertrophy. These results suggest that the endothelial Bmx tyrosine kinase could provide a target to attenuate the development of cardiac hypertrophy. PMID:26430242

  12. Torso, a Drosophila receptor tyrosine kinase, plays a novel role in the larval fat body in regulating insulin signaling and body growth.

    PubMed

    Jun, Jong Woo; Han, Gangsik; Yun, Hyun Myoung; Lee, Gang Jun; Hyun, Seogang

    2016-08-01

    Torso is a receptor tyrosine kinase whose localized activation at the termini of the Drosophila embryo is mediated by its ligand, Trunk. Recent studies have unveiled a second function of Torso in the larval prothoracic gland (PG) as the receptor for the prothoracicotropic hormone, which triggers pupariation. As such, inhibition of Torso in the PG prolongs the larval growth period, thereby increasing the final pupa size. Here, we report that Torso also acts in the larval fat body, regulating body size in a manner opposite from that of Torso in PG. We confirmed the expression of torso mRNA in the larval fat body and its reduction by RNA interference (RNAi). Fat body-specific knockdown of torso, by either of the two independent RNAi transgenes, significantly decreased the final pupal size. We found that torso knockdown suppresses insulin/target of rapamycin (TOR) signaling in the fat body, as confirmed by repression of Akt and S6K. Notably, the decrease in insulin/TOR signaling and decrease of pupal size induced by the knockdown of torso were rescued by the expression of a constitutively active form of the insulin receptor or by the knockdown of FOXO. Our study revealed a novel role for Torso in the fat body with respect to regulation of insulin/TOR signaling and body size. This finding exemplifies the contrasting effects of the same gene expressed in two different organs on organismal physiology. PMID:27126913

  13. Mutational analysis of Agrobacterium tumefaciens virD2: tyrosine 29 is essential for endonuclease activity.

    PubMed Central

    Vogel, A M; Das, A

    1992-01-01

    Agrobacterium tumefaciens VirD2 polypeptide, in the presence of VirD1, catalyzes a site- and strand-specific nicking reaction at the T-DNA border sequences. VirD2 is found tightly attached to the 5' end of the nicked DNA. The protein-DNA complex is presumably formed via a tyrosine residue of VirD2 (F. Durrenberger, A. Crameri, B. Hohn, and Z. Koukolikova-Nicola, Proc. Natl. Acad. Sci. USA 86:9154-9158, 1989). A mutational approach was used to study whether a tyrosine residue(s) of VirD2 is required for its activity. By site-specific mutagenesis, a tyrosine (Y) residue at position 29, 68, 99, 119, 121, 160, or 195 of the octopine Ti plasmid pTiA6 VirD2 was altered to phenylalanine (F). The Y-29-F or Y-121-F mutation completely abolished nicking activity of VirD2 in vivo in Escherichia coli. Two other substitutions, Y-68-F and Y-160-F, drastically reduced VirD2 activity. A substitution at position 99, 119, or 195 had no effect on VirD2 activity. Additional mutagenesis experiments showed that at position 29, no other amino acid could substitute for tyrosine without destroying VirD2 activity. At position 121, only a tryptophan (W) residue could be substituted. This, however, yielded a mutant protein with significantly reduced VirD2 activity. The nicked DNA from strains bearing a Y-68-F, Y-99-F, Y-119-F, Y-160-F, Y-195-F, or Y-121-W mutation in VirD2 was always found to contain a tightly linked protein. Images PMID:1309520

  14. Radiotherapy of non-small-cell lung cancer in the era of EGFR gene mutations and EGF receptor tyrosine kinase inhibitors.

    PubMed

    Moschini, Ilaria; Dell'Anna, Cristina; Losardo, Pier Luigi; Bordi, Paola; D'Abbiero, Nunziata; Tiseo, Marcello

    2015-01-01

    Non-small-cell lung cancer (NSCLC) occurs, approximately, in 80-85% of all cases of lung cancer. The majority of patients present locally advanced or metastatic disease when diagnosed, with poor prognosis. The discovery of activating mutations in the EGFR gene has started a new era of personalized treatment for NSCLC patients. To improve the treatment outcome in patients with unresectable NSCLC and, in particular, EGFR mutated, a combined strategy of radiotherapy and medical treatment can be undertaken. In this review we will discuss preclinical data regarding EGF receptor (EGFR) tyrosine kinase inhibitors (TKIs) and radiotherapy, available clinical trials investigating efficacy and toxicity of combined treatment (thoracic or whole brain radiotherapy and EGFR-TKIs) and, also, the role of local radiation in mutated EGFR patients who developed EGFR-TKI resistance.

  15. Second-generation irreversible epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs): a better mousetrap? A review of the clinical evidence.

    PubMed

    Ou, Sai-Hong Ignatius

    2012-09-01

    The discovery of activating epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer (NSCLC) in 2004 heralded the era of molecular targeted therapy in NSCLC. First-generation small molecule, reversible tyrosine kinase inhibitors (TKIs) of EGFR, gefitinib and erlotinib, had been approved for second- or third-line treatment of NSCLC prior to the knowledge of these mutations. However, resistance to gefitinib and erlotinib invariably develops after prolonged clinical use. Two second-generation irreversible EGFR TKIs, afatinib (BIBW 2992) and dacomitinib (PF-00299804), that can potentially overcome the majority of these resistances are in late stage clinical development. Here I will review the clinical data of EGFR TKIs and discuss the appropriate future role of afatinib and dacomitinib in NSCLC: whether as replacement of erlotinib or gefitinib or only after erlotinib or gefitinib failure and whether different subgroups would benefit from different approaches.

  16. Overcoming resistance to first/second generation epidermal growth factor receptor tyrosine kinase inhibitors and ALK inhibitors in oncogene-addicted advanced non-small cell lung cancer

    PubMed Central

    Romanidou, Ourania; Landi, Lorenza; Cappuzzo, Federico; Califano, Raffaele

    2016-01-01

    Epidermal growth factor receptor (EGFR) activating mutations and anaplastic lymphoma kinase (ALK) gene rearrangement in advanced non-small cell lung cancer (NSCLC) represent the two oncogenic events with an impact on current clinical practice. EGFR tyrosine kinase inhibitors (TKIs) and crizotinib are the standard of care for the treatment of EGFR mutant and ALK gene rearranged advanced NSCLC patients. Unfortunately, despite initial clinical benefit, acquired resistance to EGFR-TKIs or crizotinib usually develops after an average of 10–12 months of treatment. The aim of this review is to describe the mechanisms of resistance to first/second generation EGFR-TKIs and crizotinib. In particular, we focus on strategies to overcome resistance due to secondary EGFR T790M mutation and mutations of the ALK domain. PMID:27239236

  17. Flavonoids and tyrosine nitration: structure-activity relationship correlation with enthalpy of formation.

    PubMed

    Sadeghipour, Mitra; Terreux, Raphael; Phipps, Jenny

    2005-03-01

    The ability of 11 flavonoids, naturally occurring polyphenols, and their related structure-activity relationships (SAR's) for inhibiting peroxynitrite-induced nitration of tyrosine was investigated. The flavonoids under study could be classified into four groups having very distinct in vitro inhibition effects. We also calculated the heat of formation (DeltaH(f)) of the corresponding flavonoids radicals which supported this finding. The most effective flavonoids included: catechin, taxifolin, luteolin, quercetin, and myricetin which have a common structural feature of ortho-dihydroxyl moiety (3',4'-OH substitution). Naringenin, kaempferol, and morin were 50% less effective inhibitors than the former group of flavonoid while their activities were in the range of trolox (an alpha-tocopherol analogue). The common structural aspect of this group of flavonoids is 4'-OH substitution. Therefore, these two groups of flavonoids may have similar mechanisms for their inhibition activity. No inhibition activity was observed by galangin. Apigenin behaved as a pro-oxidant in our in vitro study. Naringin was as effective as the second group at 4 mM tyrosine concentration while did not illustrate any inhibitory effect at 1 mM concentration of tyrosine. Our study provides further evidence for the importance of the catechol B ring and to a lesser effect the importance of 4'-OH substitution. Moreover, we observed very little or no influence on activity of flavonoids by 3-OH substitution and/or a C2-C3 double bond conjugated with 4-keto group within the subgroup containing the catechol moiety. Theoretical calculation of DeltaDeltaH(f) for tyrosyl radical repair by flavonoids (TyO*+FlOH-->TyOH+FlO*) correlated well with our in vitro results (inhibition% = -10 (DeltaDeltaH(f)), R2=0.906). Furthermore, this correlation was independent of tyrosine concentration. This model can be used to accurately predict the inhibitory effect of flavonoids on nitrotyrosine formation.

  18. Silencing Met receptor tyrosine kinase signaling decreased oral tumor growth and increased survival of nude mice

    PubMed Central

    Tao, X.; Hill, K.S.; Gaziova, I.; Sastry, S.K.; Qui, S.; Szaniszlo, P.; Fennewald, S.; Resto, V.A.; Elferink, L.A.

    2013-01-01

    SUMMARY Objectives The hepatocyte growth factor receptor (Met) is frequently overexpressed in Head and Neck Squamous Cell Carcinoma (HNSCC), correlating positively with high-grade tumors and shortened patient survival. As such, Met may represent an important therapeutic target. The purpose of this study was to explore the role of Met signaling for HNSCC growth and locoregional dissemination. Materials and methods Using a lentiviral system for RNA interference, we knocked down Met in established HNSCC cell lines that express high levels of the endogenous receptor. The effect of Met silencing on in vitro proliferation, cell survival and migration was examined using western analysis, immunohisto-chemistry and live cell imaging. In vivo tumor growth, dissemination and mouse survival was assessed using an orthotopic tongue mouse model for HNSCC. Results We show that Met knockdown (1) impaired activation of downstream MAPK signaling; (2) reduced cell viability and anchorage independent growth; (3) abrogated HGF-induced cell motility on laminin; (4) reduced In vivo tumor growth by increased cell apoptosis; (5) caused reduced incidence of tumor dissemination to regional lymph nodes and (6) increased the survival of nude mice with orthotopic xenografts. Conclusion Met signaling is important for HNSCC growth and locoregional dissemination In vivo and that targeting Met may be an important strategy for therapy. PMID:24268630

  19. Fps/Fes protein-tyrosine kinase regulates mast cell adhesion and migration downstream of Kit and beta1 integrin receptors.

    PubMed

    Smith, Julie A; Samayawardhena, Lionel A; Craig, Andrew W B

    2010-03-01

    Activation of Kit receptor protein-tyrosine kinase (PTK) by its ligand Stem Cell Factor (SCF) is required for the development of mast cells, and for the regulation of mast cell proliferation, migration and modulation of inflammatory mediator release. Recent studies have implicated the non-receptor PTK Fps/Fes (hereafter referred to as Fes) in signaling downstream of oncogenic Kit, however, the potential role of Fes in regulating Kit signaling is not well defined. In this study, we show that SCF induces transient tyrosine phosphorylation of wild-type Fes as well as kinase-dead Fes in bone marrow-derived mast cells (BMMCs). The latter finding implicates an upstream kinase acting on Fes, which we identified as Fyn PTK. SCF treatment of BMMCs promoted recruitment of Fes to Kit, potentially via direct interaction of the Fes SH2 domain with phosphorylated Kit. While Fes was not required for SCF-induced signaling to Akt and Erk kinases, Fes-deficient (fes-/-) BMMCs displayed a defect in sustained p38 kinase activation, compared to control cells. SCF-treated Fes-deficient BMMCs also displayed elevated beta1 integrin-mediated cell adhesion and spreading on fibronectin, compared to control cells, and a reduction in cell polarization at later times of SCF treatment. Restoring Fes expression in fes-/- BMMCs by retroviral transduction was sufficient to rescue cell spreading and polarization defects. Interestingly, SCF-induced chemotaxis of BMMCs was also defective in Fes-deficient BMMCs, and restored in Fes-rescue BMMCs. Overall, these results implicate Fes in regulating cross-talk between Kit and beta1 integrins to promote cytoskeletal reorganization and motility of mast cells.

  20. Inhibition by ajoene of protein tyrosine phosphatase activity in human platelets.

    PubMed

    Villar, R; Alvariño, M T; Flores, R

    1997-02-01

    The effects of ajoene (a potent antithrombotic agent obtained from garlic) on the tyrosine phosphorylation status of human platelet proteins were investigated by immunoblotting-based experiments using an anti-phosphotyrosine antibody. Incubation of platelets with ajoene enhanced the phosphorylation of at least four proteins (estimated MWs 76, 80, 84 and 120 kDa), both in resting platelets and in platelets subsequently stimulated with thrombin (0.1 U/ml). This effect was both dose- and incubation-time-dependent. High concentrations of ajoene (50 microM) or long periods of incubation (10 min) led to nonselective 'hyperphosphorylation' of numerous proteins. The effects of ajoene on protein tyrosine phosphatase (PTP) activity in platelet lysates were also investigated, PTP activity was inhibited when platelets were incubated with ajoene before lysis, but not when ajoene was added to lysates of platelets which had not been pre-exposed to ajoene.

  1. Activation of Tsk and Btk tyrosine kinases by G protein beta gamma subunits.

    PubMed Central

    Langhans-Rajasekaran, S A; Wan, Y; Huang, X Y

    1995-01-01

    Tsk/Itk and Btk are members of the pleckstrin-homology (PH) domain-containing tyrosine kinase family. The PH domain has been demonstrated to be able to interact with beta gamma subunits of heterotrimeric guanine nucleotide-binding proteins (G proteins) (G beta gamma) and phospholipids. Using cotransfection assays, we show here that the kinase activities of Tsk and Btk are stimulated by certain G beta gamma subunits. Furthermore, using an in vitro reconstitution assay with purified bovine brain G beta gamma subunits and the immunoprecipitated Tsk, we find that Tsk kinase activity is increased by G beta gamma subunits and another membrane factor(s). These results indicate that this family of tyrosine kinases could be an effector of heterotrimeric G proteins. Images Fig. 1 Fig. 2 Fig. 3 PMID:7567982

  2. Evidence for new homotypic and heterotypic interactions between transmembrane helices of proteins involved in receptor tyrosine kinase and neuropilin signaling.

    PubMed

    Sawma, Paul; Roth, Lise; Blanchard, Cécile; Bagnard, Dominique; Crémel, Gérard; Bouveret, Emmanuelle; Duneau, Jean-Pierre; Sturgis, James N; Hubert, Pierre

    2014-12-12

    Signaling in eukaryotic cells frequently relies on dynamic interactions of single-pass membrane receptors involving their transmembrane (TM) domains. To search for new such interactions, we have developed a bacterial two-hybrid system to screen for both homotypic and heterotypic interactions between TM helices. We have explored the dimerization of TM domains from 16 proteins involved in both receptor tyrosine kinase and neuropilin signaling. This study has revealed several new interactions. We found that the TM domain of Mucin-4, a putative intramembrane ligand for erbB2, dimerizes not only with erbB2 but also with all four members of the erbB family. In the Neuropilin/Plexin family of receptors, we showed that the TM domains of Neuropilins 1 and 2 dimerize with themselves and also with Plexin-A1, Plexin-B1, and L1CAM, but we were unable to observe interactions with several other TM domains notably those of members of the VEGF receptor family. The potentially important Neuropilin 1/Plexin-A1 interaction was confirmed using a surface plasmon resonance assay. This work shows that TM domain interactions can be highly specific. Exploring further the propensities of TM helix-helix association in cell membrane should have important practical implications related to our understanding of the structure-function of bitopic proteins' assembly and subsequent function, especially in the regulation of signal transduction. PMID:25315821

  3. Protein-Protein Interactions in Crystals of the Human Receptor-Type Protein Tyrosine Phosphatase ICA512 Ectodomain

    SciTech Connect

    Primo M. E.; Jakoncic J.; Noguera M.E.; Risso V.A.; Sosa L.; Sica M.P.; Solimena M.; Poskus E. and Ermacora M.

    2011-09-15

    ICA512 (or IA-2) is a transmembrane protein-tyrosine phosphatase located in secretory granules of neuroendocrine cells. Initially, it was identified as one of the main antigens of autoimmune diabetes. Later, it was found that during insulin secretion, the cytoplasmic domain of ICA512 is cleaved and relocated to the nucleus, where it stimulates the transcription of the insulin gene. The role of the other parts of the receptor in insulin secretion is yet to be unveiled. The structures of the intracellular pseudocatalytic and mature extracellular domains are known, but the transmembrane domain and several intracellular and extracellular parts of the receptor are poorly characterized. Moreover the overall structure of the receptor remains to be established. We started to address this issue studying by X-ray crystallography the structure of the mature ectodomain of ICA512 (ME ICA512) and variants thereof. The variants and crystallization conditions were chosen with the purpose of exploring putative association interfaces, metal binding sites and all other structural details that might help, in subsequent works, to build a model of the entire receptor. Several structural features were clarified and three main different association modes of ME ICA512 were identified. The results provide essential pieces of information for the design of new experiments aimed to assess the structure in vivo.

  4. Neuropeptide Y receptor mediates activation of ERK1/2 via transactivation of the IGF receptor.

    PubMed

    Lecat, Sandra; Belemnaba, Lazare; Galzi, Jean-Luc; Bucher, Bernard

    2015-07-01

    Neuropeptide Y binds to G-protein coupled receptors whose action results in inhibition of adenylyl cyclase activity. Using HEK293 cells stably expressing the native neuropeptide Y Y1 receptors, we found that the NPY agonist elicits a transient phosphorylation of the extracellular signal-regulated kinases (ERK1/2). We first show that ERK1/2 activation following Y1 receptor stimulation is dependent on heterotrimeric Gi/o since it is completely inhibited by pre-treatment with pertussis toxin. In addition, ERK1/2 activation is internalization-independent since mutant Y1 receptors unable to recruit β-arrestins, can still activate ERK signaling to the same extent as wild-type receptors. We next show that this activation of the MAPK pathway is inhibited by the MEK inhibitor U0126, is not dependent on calcium signaling at the Y1 receptor (no effect upon inhibition of phospholipase C, protein kinase C or protein kinase D) but instead dependent on Gβ/γ and associated signaling pathways that activate PI3-kinase. Although inhibition of the epidermal-growth factor receptor tyrosine kinase did not influence NPY-induced ERK1/2 activation, we show that the inhibition of insulin growth factor receptor IGFR by AG1024 completely blocks activation of ERK1/2 by the Y1 receptor. This Gβ/γ-PI3K-AG1024-sensitive pathway does not involve activation of IGFR through the release of a soluble ligand by metalloproteinases since it is not affected by the metalloproteinase inhibitor marimastat. Finally, we found that a similar pathway, sensitive to wortmannin-AG1024 but insensitive to marimastat, is implicated in activation of ERK signaling in HEK293 cells by endogenously expressed GPCRs coupled to Gq-protein (muscarinic M3 receptors) or coupled to Gs-protein (endothelin ETB receptors). Our analysis is the first to show that β-arrestin recruitment to the NPY Y1 receptor is not necessary for MAPK activation by this receptor but that transactivation of the IGFR receptor is required.

  5. Elevated protein tyrosine phosphatase activity provokes Eph/ephrin-facilitated adhesion of pre-B leukemia cells.

    PubMed

    Wimmer-Kleikamp, Sabine H; Nievergall, Eva; Gegenbauer, Kristina; Adikari, Samantha; Mansour, Mariam; Yeadon, Trina; Boyd, Andrew W; Patani, Neill R; Lackmann, Martin

    2008-08-01

    Signaling by Eph receptors and cell-surface ephrin ligands modulates adhesive cell properties and thereby coordinates cell movement and positioning in normal and oncogenic development. While cell contact-dependent Eph activation frequently leads to cell-cell repulsion, also the diametrically opposite response, cell-cell adhesion, is a probable outcome. However, the molecular principles regulating such disparate functions have remained controversial. We have examined cell-biologic mechanisms underlying this switch by analyzing ephrin-A5-induced cell-morphologic changes of EphA3-positive LK63 pre-B acute lymphoblastic leukemia cells. Their exposure to ephrin-A5 surfaces leads to a rapid conversion from a suspended/nonpolarized to an adherent/polarized cell type, a transition that relies on EphA3 functions operating in the absence of Eph-kinase signaling. Cell morphology change and adhesion of LK63 cells are effectively attenuated by endogenous protein tyrosine phosphatase (PTP) activity, whereby PTP inhibition and productive EphA3-phosphotyrosine signaling reverse the phenotype to nonadherent cells with a condensed cytoskeleton. Our findings suggest that Eph-associated PTP activities not only control receptor phosphorylation levels, but as a result switch the response to ephrin contact from repulsion to adhesion, which may play a role in the pathology of hematopoietic tumors. PMID:18385452

  6. A RP-UFLC Assay for Protein Tyrosine Phosphatases: Focus on Protein Tyrosine Phosphatase Non-Receptor Type 2 (PTPN2).

    PubMed

    Duval, Romain; Bui, Linh-Chi; Berthelet, Jérémy; Dairou, Julien; Mathieu, Cécile; Guidez, Fabien; Dupret, Jean-Marie; Cools, Jan; Chomienne, Christine; Rodrigues-Lima, Fernando

    2015-01-01

    Protein tyrosine phosphatases (PTPs) are involved in numerous signaling pathways and dysfunctions of certain of these enzymes have been linked to several human diseases including cancer and autoimmune diseases. PTPN2 is a PTP mainly expressed in hematopoietic cells and involved in growth factor and JAK/STAT signaling pathways. Loss of function analyses in patients with mutation/deletion of the PTPN2 gene and knock-out mouse models indicate that PTPN2 acts as a tumor suppressor in T-cell malignancies and as a regulator of inflammation and immunity. The use of sensitive and quantitative assays is of prime importance to better characterize the biochemical properties of PTPN2 and its biological roles. We report a highly sensitive non-radioactive assay that allows the measurement of the activity of purified PTPN2 and of endogenous PTPN2 immunoprecipitated on agarose beads. The assay relies on separation and quantitation by reverse-phase ultra fast liquid chromatography (RP-UFLC) of a fluorescein-labeled phosphotyrosine peptide substrate derived from the sequence of STAT1. The applicability and reliability of this approach is supported by kinetic and mechanistic studies using PTP inhibitors. More broadly, our PTPN2 assay provides the basis for the design of flexible methods for the measurement of other PTPs. PMID:26040922

  7. Src homology 2 domain-based high throughput assays for profiling downstream molecules in receptor tyrosine kinase pathways.

    PubMed

    Yaoi, Takuro; Chamnongpol, Sangpen; Jiang, Xin; Li, Xianqiang

    2006-05-01

    Src homology 2 (SH2) domains are evolutionary conserved small protein modules that bind specifically to tyrosine-phosphorylated peptides. More than 100 SH2 domains have been identified in proteins encoded by the human genome. The binding specificity of these domains plays a critical role in signaling within the cell, mediating the relocalization and interaction of proteins in response to changes in tyrosine phosphorylation states. Here we developed an SH2 domain profiling method based on a multiplexed fluorescent microsphere assay in which various SH2 domains are used to probe the global state of tyrosine phosphorylation within a cell and to screen synthetic peptides that specifically bind to each SH2 domain. The multiplexed, fluorescent microsphere-based assay is a recently developed technology that can potentially detect a wide variety of interactions between biological molecules. We constructed 25-plex SH2 domain-GST fusion protein-conjugated fluorescent microsphere sets to investigate phosphorylation-mediated cell signaling through the specific binding of SH2 domains to activated target proteins. The response of HeLa, COS-1, A431, and 293 cells and four breast cancer cell lines to epidermal growth factor and insulin were quantitatively profiled using this novel microsphere-based, multiplexed, high throughput assay system. PMID:16477079

  8. Epidermal Growth Factor Receptors with Tyrosine Kinase Domain Mutations Exhibit Reduced Cbl Association, Poor Ubiquitylation, and Down-regulation but Are Efficiently Internalized

    PubMed Central

    Padrón, David; Sato, Mitsuo; Shay, Jerry W.; Gazdar, Adi F.; Minna, John D.; Roth, Michael G.

    2010-01-01

    Some non–small cell lung cancers (NSCLC) with epidermal growth factor receptor (EGFR) tyrosine kinase domain mutations require altered signaling through the EGFR for cell survival and are exquisitely sensitive to tyrosine kinase inhibitors. EGFR down-regulation was impaired in two NSCLCs with EGFR tyrosine kinase domain mutations. The mutant receptors were poorly ubiquitylated and exhibited decreased association with the ubiquitin ligase Cbl. Over-expression of Cbl increased the degradation of EGFR. Treatment with geldanamycin, an inhibitor of the chaperone heat shock protein 90, also increased both wild-type and mutant EGFR degradation without affecting internalization. The down-regulation of the mutant EGFRs was still impaired when they were stably expressed in normal human bronchial epithelial cells. Thus, the mutations that altered signaling also decreased the interaction of EGFRs with the mechanisms responsible for endosomal sorting. PMID:17699773

  9. Expression and function of the receptor protein tyrosine phosphatase zeta and its ligand pleiotrophin in human astrocytomas.

    PubMed

    Ulbricht, Ulrike; Brockmann, Marc A; Aigner, Achim; Eckerich, Carmen; Müller, Sabine; Fillbrandt, Regina; Westphal, Manfred; Lamszus, Katrin

    2003-12-01

    Using subtractive cloning combined with cDNA array analysis, we previously identified the genes encoding for the protein tyrosine phosphatase zeta/receptor-type protein tyrosine phosphatase beta (PTPzeta/RPTPbeta) and its ligand pleiotrophin (PTN) as overexpressed in human glioblastomas compared to normal brain. Both molecules have been implicated in neuronal migration during central nervous system development, and PTN is known to be involved in tumor growth and angiogenesis. We confirm overexpression of both molecules at the protein level in astrocytic gliomas of different malignancy grades. PTPzeta/RPTPbeta immunoreactivity was associated with increasing malignancy grade and localized predominantly to the tumor cells. PTN immunoreactivity as determined by ELISA and immunohistochemistry analysis was increased in low-grade astrocytomas compared to normal brain. Further increase in malignant gliomas was marginal, and thus no correlation with malignancy grade or microvessel density was present. However, PTN levels were significantly associated with those of fibroblast growth factor-2, suggesting co-regulation of both factors. Functionally, PTN induced weak chemotactic and strong haptotactic migration of glioblastoma and cerebral microvascular endothelial cells. Haptotaxis of glioblastoma cells towards PTN was specifically inhibited by an anti-PTPzeta/RPTPbeta antibody. Our findings suggest that upregulated expression of PTN and PTPzeta/RPTPbeta in human astrocytic tumor cells can create an autocrine loop that is important for glioma cell migration. Although PTN is a secreted growth factor, it appears to exert its mitogenic effects mostly in a matrix-immobilized form, serving as a substrate for migrating tumor cells.

  10. Src Tyrosine Kinase Activation by 4-Hydroxynonenal Upregulates p38, ERK/AP-1 Signaling and COX-2 Expression in YPEN-1 Cells

    PubMed Central

    Jang, Eun Ji; Jeong, Hyoung Oh; Park, Daeui; Kim, Dae Hyun; Choi, Yeon Ja; Chung, Ki Wung; Park, Min Hi; Yu, Byung Pal; Chung, Hae Young

    2015-01-01

    4-Hydroxynonenal (4-HNE), a major end product of lipid peroxidation, is highly reactive and involved in various cellular processes, such as inflammatory signaling. However, to date, the mechanistic roles of 4-HNE in inflammatory signaling related to protein tyrosine kinases have not been elucidated. In the present study, we investigated the interaction between 4-HNE and Src (a non-receptor tyrosine kinase) for its involvement in the molecular modulation of the inflammatory signaling pathway utilizing the YPEN-1 cell system. Immunoprecipitation experiments showed that 4-HNE phosphorylates (activates) Src at Tyr416 via adduct formation. In addition, LC-MS/MS and a docking simulation model revealed an addiction site at the Cys248 residue of Src, resulting in the stimulation of downstream p38, ERK/AP-1 and cyclooxygenase-2 (COX-2) signaling in YPEN-1 cells. The role of 4-HNE-activated Src in downstream inflammatory signaling was further investigated using dasatinib (a Src inhibitor) and by siRNA knockdown of Src. p38 and ERK were directly regulated by Src, as revealed by immunoblotting of the phosphorylated forms of mitogen-activated protein kinases (MAPKs), which are key elements in the signaling transduction pathway initiated by Src. The study also shows that Src modulates the HNE-enhanced activation of AP-1 and the expression of COX-2 (a target gene of AP-1). Together, the results of this study show that 4-HNE stimulates Src tyrosine kinase in activation of the inflammation process. PMID:26466383

  11. Modeling receptor/gene-mediated effects of corticosteroids on hepatic tyrosine aminotransferase dynamics in rats: dual regulation by endogenous and exogenous corticosteroids

    PubMed Central

    Hazra, Anasuya; Pyszczynski, Nancy; DuBois, Debra C.; Almon, Richard R.

    2014-01-01

    Receptor/gene-mediated effects of corticosteroids on hepatic tyrosine aminotransferase (TAT) were evaluated in normal rats. A group of normal male Wistar rats were injected with 50 mg/kg methylprednisolone (MPL) intramuscularly at the nadir of their plasma corticosterone (CST) rhythm (early light cycle) and sacrificed at various time points up to 96 h post-treatment. Blood and livers were collected to measure plasma MPL, CST, hepatic glucocorticoid receptor (GR) mRNA, cytosolic GR density, TAT mRNA, and TAT activity. The pharmacokinetics of MPL showed bi-exponential disposition with two first-order absorption components from the injection site and bioavailability was 21%. Plasma CST was reduced after MPL dosing, but resumed its daily circadian pattern within 36 h. Cytosolic receptor density was significantly suppressed (90%) and returned to baseline by 72 h resuming its biphasic pattern. Hepatic GR mRNA follows a circadian pattern which was disrupted by MPL and did not return during the study. MPL caused significant down-regulation (50%) in GR mRNA which was followed by a delayed rebound phase (60–70 h). Hepatic TAT mRNA and activity showed up-regulation as a consequence of MPL, and returned to their circadian baseline within 72 and 24 h of treatment. A mechanistic receptor/gene-mediated pharmacokinetic/pharmacodynamic model was able to satisfactorily describe the complex interplay of exogenous and endogenous corticosteroid effects on hepatic GR mRNA, cytosolic free GR, TAT mRNA, and TAT activity in normal rats. PMID:17593325

  12. LAT-1 activity of meta-substituted phenylalanine and tyrosine analogs.

    PubMed

    Augustyn, Evan; Finke, Karissa; Zur, Arik A; Hansen, Logan; Heeren, Nathan; Chien, Huan-Chieh; Lin, Lawrence; Giacomini, Kathleen M; Colas, Claire; Schlessinger, Avner; Thomas, Allen A

    2016-06-01

    The transporter protein Large-neutral Amino Acid Transporter 1 (LAT-1, SLC7A5) is responsible for transporting amino acids such as tyrosine and phenylalanine as well as thyroid hormones, and it has been exploited as a drug delivery mechanism. Recently its role in cancer has become increasingly appreciated, as it has been found to be up-regulated in many different tumor types, and its expression levels have been correlated with prognosis. Substitution at the meta position of aromatic amino acids has been reported to increase affinity for LAT-1; however, the SAR for this position has not previously been explored. Guided by newly refined computational models of the binding site, we hypothesized that groups capable of filling a hydrophobic pocket would increase binding to LAT-1, resulting in improved substrates relative to parent amino acid. Tyrosine and phenylalanine analogs substituted at the meta position with halogens, alkyl and aryl groups were synthesized and tested in cis-inhibition and trans-stimulation cell assays to determine activity. Contrary to our initial hypothesis we found that lipophilicity was correlated with diminished substrate activity and increased inhibition of the transporter. The synthesis and SAR of meta-substituted phenylalanine and tyrosine analogs is described.

  13. LAT-1 activity of meta-substituted phenylalanine and tyrosine analogs.

    PubMed

    Augustyn, Evan; Finke, Karissa; Zur, Arik A; Hansen, Logan; Heeren, Nathan; Chien, Huan-Chieh; Lin, Lawrence; Giacomini, Kathleen M; Colas, Claire; Schlessinger, Avner; Thomas, Allen A

    2016-06-01

    The transporter protein Large-neutral Amino Acid Transporter 1 (LAT-1, SLC7A5) is responsible for transporting amino acids such as tyrosine and phenylalanine as well as thyroid hormones, and it has been exploited as a drug delivery mechanism. Recently its role in cancer has become increasingly appreciated, as it has been found to be up-regulated in many different tumor types, and its expression levels have been correlated with prognosis. Substitution at the meta position of aromatic amino acids has been reported to increase affinity for LAT-1; however, the SAR for this position has not previously been explored. Guided by newly refined computational models of the binding site, we hypothesized that groups capable of filling a hydrophobic pocket would increase binding to LAT-1, resulting in improved substrates relative to parent amino acid. Tyrosine and phenylalanine analogs substituted at the meta position with halogens, alkyl and aryl groups were synthesized and tested in cis-inhibition and trans-stimulation cell assays to determine activity. Contrary to our initial hypothesis we found that lipophilicity was correlated with diminished substrate activity and increased inhibition of the transporter. The synthesis and SAR of meta-substituted phenylalanine and tyrosine analogs is described. PMID:27106710

  14. Src family protein tyrosine kinases induce autoactivation of Bruton's tyrosine kinase.

    PubMed Central

    Mahajan, S; Fargnoli, J; Burkhardt, A L; Kut, S A; Saouaf, S J; Bolen, J B

    1995-01-01

    Bruton's tyrosine kinase (Btk) is tyrosine phosphorylated and enzymatically activated following ligation of the B-cell antigen receptor. These events are temporally regulated, and Btk activation follows that of various members of the Src family of protein tyrosine kinases, thus raising the possibility that Src kinases participate in the Btk activation process. We have evaluated the mechanism underlying Btk enzyme activation and have explored the potential regulatory relationship between Btk and Src protein kinases. We demonstrate in COS transient-expression assays that Btk can be activated through intramolecular autophosphorylation at tyrosine 551 and that Btk autophosphorylation is required for Btk catalytic functions. Coexpression of Btk with members of the Src family of protein tyrosine kinases, but not Syk, led to Btk tyrosine phosphorylation and activation. Using a series of point mutations in Blk (a representative Src protein kinase) and Btk, we show that Src kinases activate Btk through an indirect mechanism that requires membrane association of the Src enzymes as well as functional Btk SH3 and SH2 domains. Our results are compatible with the idea that Src protein tyrosine kinases contribute to Btk activation by indirectly stimulating Btk intramolecular autophosphorylation. PMID:7565679

  15. Src family protein tyrosine kinases induce autoactivation of Bruton's tyrosine kinase.

    PubMed

    Mahajan, S; Fargnoli, J; Burkhardt, A L; Kut, S A; Saouaf, S J; Bolen, J B

    1995-10-01

    Bruton's tyrosine kinase (Btk) is tyrosine phosphorylated and enzymatically activated following ligation of the B-cell antigen receptor. These events are temporally regulated, and Btk activation follows that of various members of the Src family of protein tyrosine kinases, thus raising the possibility that Src kinases participate in the Btk activation process. We have evaluated the mechanism underlying Btk enzyme activation and have explored the potential regulatory relationship between Btk and Src protein kinases. We demonstrate in COS transient-expression assays that Btk can be activated through intramolecular autophosphorylation at tyrosine 551 and that Btk autophosphorylation is required for Btk catalytic functions. Coexpression of Btk with members of the Src family of protein tyrosine kinases, but not Syk, led to Btk tyrosine phosphorylation and activation. Using a series of point mutations in Blk (a representative Src protein kinase) and Btk, we show that Src kinases activate Btk through an indirect mechanism that requires membrane association of the Src enzymes as well as functional Btk SH3 and SH2 domains. Our results are compatible with the idea that Src protein tyrosine kinases contribute to Btk activation by indirectly stimulating Btk intramolecular autophosphorylation. PMID:7565679

  16. Shp2 protein tyrosine phosphatase inhibitor activity of estramustine phosphate and its triterpenoid analogs

    PubMed Central

    Scott, Latanya M.; Chen, Liwei; Daniel, Kenyon G.; Brooks, Wesley H.; Guida, Wayne C.; Lawrence, Harshani R.; Sebti, Said M.; Lawrence, Nicholas J.; Wu, Jie

    2010-01-01

    Shp2 protein tyrosine phosphate (PTP) is a novel target for anticancer drug discovery. We identified estramustine phosphate as a Shp2 PTP inhibitor from the National Cancer Institute Approved Oncology Drug set. A focused structure-activity relationship study indicated that the 17- phosphate group is required for the Shp2 PTP inhibitor activity of estramustine phosphate. A search for estramustine phosphate analogs led to identification of two triperpenoids, enoxolone and celastrol, having Shp2 PTP inhibitor activity. With the previously reported PTP1B inhibitor trodusquemine, our study reveals steroids and triterpenoids with negatively charged phosphate, carboxylate, or sulfonate groups as novel pharmacophores of selective PTP inhibitors. PMID:21193311

  17. Effects of formaldehyde exposure on anxiety-like and depression-like behavior, cognition, central levels of glucocorticoid receptor and tyrosine hydroxylase in mice.

    PubMed

    Li, Yani; Song, Zhuoyi; Ding, Yujuan; Xin, Ye; Wu, Tong; Su, Tao; He, Rongqiao; Tai, Fadao; Lian, Zhenmin

    2016-02-01

    Formaldehyde exposure is toxic to the brains of mammals, but the mechanism remains unclear. We investigated the effects of inhaled formaldehyde on anxiety, depression, cognitive capacity and central levels of glucocorticoid receptor and tyrosine hydroxylase in mice. After exposure to 0, 1 or 2 ppm gaseous formaldehyde for one week, we measured anxiety-like behavior using open field and elevated plus-maze tests, depression-like behavior using a forced swimming test, learning and memory using novel object recognition tests, levels of glucocorticoid receptors in the hippocampus and tyrosine hydroxylase in the Arc, MPOA, ZI and VTA using immuhistochemistry. We found that inhalation of 1 ppm formaldehyde reduced levels of anxiety-like behavior. Inhalation of 2 ppm formaldehyde reduced body weight, but increased levels of depression-like behavior, impaired novel object recognition, and lowered the numbers of glucocorticoid receptor immonureactive neurons in the hippocampus and tyrosine hydroxylase immonureactive neurons in the ventral tegmental area and the zona incerta, medial preoptic area. Different concentrations of gaseous formaldehyde result in different effects on anxiety, depression-like behavior and cognition ability which may be associated with alterations in hippocampal glucocorticoid receptors and brain tyrosine hydroxylase levels.

  18. The protein product of the c-cbl protooncogene is phosphorylated after B cell receptor stimulation and binds the SH3 domain of Bruton's tyrosine kinase

    PubMed Central

    1995-01-01

    X-linked agammaglobulinemia, a B cell immunodeficiency, is caused by mutations in the Bruton's tyrosine kinase (Btk) gene. The absence of a functional Btk protein leads to a failure of B cell differentiation and antibody production. B cell receptor stimulation leads to the phosphorylation of the Btk protein and it is, therefore, likely that Btk is involved in B cell receptor signaling. As a nonreceptor tyrosine kinase, Btk is likely to interact with several proteins within the context of a signal transduction pathway. To understand such interactions, we have generated glutathione S-transferase fusion proteins corresponding to different domains of the human Btk protein. We have identified a 120-kD protein present in human B cells as being bound by the SH3 domain of Btk and which, after B cell receptor stimulation, is one of the major substrates of tyrosine phosphorylation. We have shown that this 120-kD protein is the protein product of c-cbl, a protooncogene, which is known to be phosphorylated in response to T cell receptor stimulation and to interact with several other tyrosine kinases. Association of the SH3 domain of Btk with p120cbl provides evidence for an analogous role for p120cbl in B cell signaling pathways. The p120cbl protein is the first identified ligand of the Btk SH3 domain. PMID:7629518

  19. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation

    PubMed Central

    Samarajeewa, Anshula; Goldemann, Lolita; Vasefi, Maryam S.; Ahmed, Nawaz; Gondora, Nyasha; Khanderia, Chandni; Mielke, John G.; Beazely, Michael A.

    2014-01-01

    The serotonin (5-HT) type 7 recep