Science.gov

Sample records for activated receptors pars

  1. [Physiology of protease-activated receptors (PARs): involvement of PARs in digestive functions].

    PubMed

    Kawabata, A; Kuroda, R; Hollenberg, M D

    1999-10-01

    The protease-activated receptor (PAR), a G protein-coupled receptor present on cell surface, mediates cellular actions of extracellular proteases. Proteases cleave the extracellular N-terminal of PAR molecules at a specific site, unmasking and exposing a novel N-terminal, a tethered ligand, that binds to the body of receptor molecules resulting in receptor activation. Amongst four distinct PARs that have been cloned, PARs 1, 3 and 4 are activated by thrombin, but PAR-2 is activated by trypsin or mast cell tryptase. Human platelets express two distinct thrombin receptors, PAR-1 and PAR-4, while murine platelets express PAR-3 and PAR-4. Apart from roles of PARs in platelet activation, PARs are distributed to a number of organs in various species, predicting their physiological importance. We have been evaluating agonists specific for each PAR, using multiple procedures including a HEK cell calcium signal receptor desensitization assay. Using specific agonists that we developed, we found the following: 1) the salivary glands express PAR-2 mRNA and secret saliva in response to PAR-2 activation; 2) pancreatic juice secretion occurs following in vivo PAR-2 activation; 3) PAR-1 and PAR-2 modulate duodenal motility. Collectively, PAR plays various physiological and/or pathophysiological roles, especially in the digestive systems, and could be a novel target for drug development. PMID:10629876

  2. Protease-activated receptor (PAR)1, PAR2 and PAR4 expressions in esophageal squamous cell carcinoma

    PubMed Central

    LI, Si-Man; JIANG, Ping; XIANG, Yang; WANG, Wei-Wei; ZHU, Yue-Chun; FENG, Wei-Yang; LI, Shu-De; YU, Guo-Yu

    2014-01-01

    Here, we used reverse transcription-PCR (RT-PCR) and western blot to detect protease-activated receptor (PAR) 1, PAR 2 and PAR 4 expression in cancer tissues and cell lines of esophageal squamous cell carcinoma, and investigated the co-relationship between PAR expression and clinic-pathological data for esophageal cancer. The methylation of PAR4 gene promoter involved in esophageal carcinoma was also analyzed. By comparing the mRNA expressions of normal esophageal tissue and human esophageal epithelial cells (HEEpiC), we found that among the 28 cases of esophageal squamous cell carcinoma, PAR1 (60%) and PAR2 (71%) were elevated in 17 and 20 cases, respectively, and PAR4 (68%) expression was lowered in 19 cases. Whereas, in human esophageal squamous cells (TE-1 and TE-10), PAR1 and PAR2 expression was increased but PAR4 was decreased. Combined with clinical data, the expression of PAR1 in poorly differentiated (P=0.016) and middle and lower parts of the esophagus (P=0.016) was higher; expression of PAR4 in poorly differentiated carcinoma was lower (P=0.049). Regarding TE-1 and TE-10 protein expression, we found that in randomized esophageal carcinoma, PAR1 (P=0.027) and PAR2 (P=0.039) expressions were increased, but lowered for PAR4 (P=0.0001). In HEEpiC, TE-1, TE-10, esophageal and normal esophagus tissue samples (case No. 7), the frequency of methylation at the 19 CpG loci of PAR4 was 35.4%, 95.2%, 83.8%, 62.6% and 48.2%, respectively. Our results indicate that the expression of PAR1 and PAR2 in esophageal squamous cell carcinoma is increased but PAR4 is decreased. Hypermethylation of the promoter of the PAR4 gene may contribute to reduced expression of PAR4 in esophageal squamous cell carcinoma. PMID:25297082

  3. Proteinase-activated receptors (PARs) – focus on receptor-receptor-interactions and their physiological and pathophysiological impact

    PubMed Central

    2013-01-01

    Proteinase-activated receptors (PARs) are a subfamily of G protein-coupled receptors (GPCRs) with four members, PAR1, PAR2, PAR3 and PAR4, playing critical functions in hemostasis, thrombosis, embryonic development, wound healing, inflammation and cancer progression. PARs are characterized by a unique activation mechanism involving receptor cleavage by different proteinases at specific sites within the extracellular amino-terminus and the exposure of amino-terminal “tethered ligand“ domains that bind to and activate the cleaved receptors. After activation, the PAR family members are able to stimulate complex intracellular signalling networks via classical G protein-mediated pathways and beta-arrestin signalling. In addition, different receptor crosstalk mechanisms critically contribute to a high diversity of PAR signal transduction and receptor-trafficking processes that result in multiple physiological effects. In this review, we summarize current information about PAR-initiated physical and functional receptor interactions and their physiological and pathological roles. We focus especially on PAR homo- and heterodimerization, transactivation of receptor tyrosine kinases (RTKs) and receptor serine/threonine kinases (RSTKs), communication with other GPCRs, toll-like receptors and NOD-like receptors, ion channel receptors, and on PAR association with cargo receptors. In addition, we discuss the suitability of these receptor interaction mechanisms as targets for modulating PAR signalling in disease. PMID:24215724

  4. Novel Role for Proteinase-activated Receptor 2 (PAR2) in Membrane Trafficking of Proteinase-activated Receptor 4 (PAR4)*

    PubMed Central

    Cunningham, Margaret R.; McIntosh, Kathryn A.; Pediani, John D.; Robben, Joris; Cooke, Alexandra E.; Nilsson, Mary; Gould, Gwyn W.; Mundell, Stuart; Milligan, Graeme; Plevin, Robin

    2012-01-01

    Proteinase-activated receptors 4 (PAR4) is a class A G protein-coupled receptor (GPCR) recognized through the ability of serine proteases such as thrombin and trypsin to mediate receptor activation. Due to the irreversible nature of activation, a fresh supply of receptor is required to be mobilized to the cell surface for responsiveness to agonist to be sustained. Unlike other PAR subtypes, the mechanisms regulating receptor trafficking of PAR4 remain unknown. Here, we report novel features of the intracellular trafficking of PAR4 to the plasma membrane. PAR4 was poorly expressed at the plasma membrane and largely retained in the endoplasmic reticulum (ER) in a complex with the COPI protein subunit β-COP1. Analysis of the PAR4 protein sequence identified an arginine-based (RXR) ER retention sequence located within intracellular loop-2 (R183AR → A183AA), mutation of which allowed efficient membrane delivery of PAR4. Interestingly, co-expression with PAR2 facilitated plasma membrane delivery of PAR4, an effect produced through disruption of β-COP1 binding and facilitation of interaction with the chaperone protein 14-3-3ζ. Intermolecular FRET studies confirmed heterodimerization between PAR2 and PAR4. PAR2 also enhanced glycosylation of PAR4 and activation of PAR4 signaling. Our results identify a novel regulatory role for PAR2 in the anterograde traffic of PAR4. PAR2 was shown to both facilitate and abrogate protein interactions with PAR4, impacting upon receptor localization and cell signal transduction. This work is likely to impact markedly upon the understanding of the receptor pharmacology of PAR4 in normal physiology and disease. PMID:22411985

  5. Novel role for proteinase-activated receptor 2 (PAR2) in membrane trafficking of proteinase-activated receptor 4 (PAR4).

    PubMed

    Cunningham, Margaret R; McIntosh, Kathryn A; Pediani, John D; Robben, Joris; Cooke, Alexandra E; Nilsson, Mary; Gould, Gwyn W; Mundell, Stuart; Milligan, Graeme; Plevin, Robin

    2012-05-11

    Proteinase-activated receptors 4 (PAR(4)) is a class A G protein-coupled receptor (GPCR) recognized through the ability of serine proteases such as thrombin and trypsin to mediate receptor activation. Due to the irreversible nature of activation, a fresh supply of receptor is required to be mobilized to the cell surface for responsiveness to agonist to be sustained. Unlike other PAR subtypes, the mechanisms regulating receptor trafficking of PAR(4) remain unknown. Here, we report novel features of the intracellular trafficking of PAR(4) to the plasma membrane. PAR(4) was poorly expressed at the plasma membrane and largely retained in the endoplasmic reticulum (ER) in a complex with the COPI protein subunit β-COP1. Analysis of the PAR(4) protein sequence identified an arginine-based (RXR) ER retention sequence located within intracellular loop-2 (R(183)AR → A(183)AA), mutation of which allowed efficient membrane delivery of PAR(4). Interestingly, co-expression with PAR(2) facilitated plasma membrane delivery of PAR(4), an effect produced through disruption of β-COP1 binding and facilitation of interaction with the chaperone protein 14-3-3ζ. Intermolecular FRET studies confirmed heterodimerization between PAR(2) and PAR(4). PAR(2) also enhanced glycosylation of PAR(4) and activation of PAR(4) signaling. Our results identify a novel regulatory role for PAR(2) in the anterograde traffic of PAR(4). PAR(2) was shown to both facilitate and abrogate protein interactions with PAR(4), impacting upon receptor localization and cell signal transduction. This work is likely to impact markedly upon the understanding of the receptor pharmacology of PAR(4) in normal physiology and disease. PMID:22411985

  6. Profiling Gene Expression Induced by Protease-Activated Receptor 2 (PAR2) Activation in Human Kidney Cells

    PubMed Central

    Suen, Jacky Y.; Gardiner, Brooke; Grimmond, Sean; Fairlie, David P.

    2010-01-01

    Protease-Activated Receptor-2 (PAR2) has been implicated through genetic knockout mice with cytokine regulation and arthritis development. Many studies have associated PAR2 with inflammatory conditions (arthritis, airways inflammation, IBD) and key events in tumor progression (angiogenesis, metastasis), but they have relied heavily on the use of single agonists to identify physiological roles for PAR2. However such probes are now known not to be highly selective for PAR2, and thus precisely what PAR2 does and what mechanisms of downstream regulation are truly affected remain obscure. Effects of PAR2 activation on gene expression in Human Embryonic Kidney cells (HEK293), a commonly studied cell line in PAR2 research, were investigated here by comparing 19,000 human genes for intersecting up- or down-regulation by both trypsin (an endogenous protease that activates PAR2) and a PAR2 activating hexapeptide (2f-LIGRLO-NH2). Among 2,500 human genes regulated similarly by both agonists, there were clear associations between PAR2 activation and cellular metabolism (1,000 genes), the cell cycle, the MAPK pathway, HDAC and sirtuin enzymes, inflammatory cytokines, and anti-complement function. PAR-2 activation up-regulated four genes more than 5 fold (DUSP6, WWOX, AREG, SERPINB2) and down-regulated another six genes more than 3 fold (TXNIP, RARG, ITGB4, CTSD, MSC and TM4SF15). Both PAR2 and PAR1 activation resulted in up-regulated expression of several genes (CD44, FOSL1, TNFRSF12A, RAB3A, COPEB, CORO1C, THBS1, SDC4) known to be important in cancer. This is the first widespread profiling of specific activation of PAR2 and provides a valuable platform for better understanding key mechanistic roles of PAR2 in human physiology. Results clearly support the development of both antagonists and agonists of human PAR2 as potential disease modifying therapeutic agents. PMID:21072196

  7. Protease-Activated Receptor (PAR)2, but Not PAR1, Is Involved in Collateral Formation and Anti-Inflammatory Monocyte Polarization in a Mouse Hind Limb Ischemia Model

    PubMed Central

    Nossent, Anne Yael; van Oeveren-Rietdijk, Annemarie M.; de Vries, Margreet R.; Spek, C. Arnold; van Zonneveld, Anton Jan; Reitsma, Pieter H.; Hamming, Jaap F.; de Boer, Hetty C.; Versteeg, Henri H.; Quax, Paul H. A.

    2013-01-01

    Aims In collateral development (i.e. arteriogenesis), mononuclear cells are important and exist as a heterogeneous population consisting of pro-inflammatory and anti-inflammatory/repair-associated cells. Protease-activated receptor (PAR)1 and PAR2 are G-protein-coupled receptors that are both expressed by mononuclear cells and are involved in pro-inflammatory reactions, while PAR2 also plays a role in repair-associated responses. Here, we investigated the physiological role of PAR1 and PAR2 in arteriogenesis in a murine hind limb ischemia model. Methods and Results PAR1-deficient (PAR1-/-), PAR2-deficient (PAR2-/-) and wild-type (WT) mice underwent femoral artery ligation. Laser Doppler measurements revealed reduced post-ischemic blood flow recovery in PAR2-/- hind limbs when compared to WT, while PAR1-/- mice were not affected. Upon ischemia, reduced numbers of smooth muscle actin (SMA)-positive collaterals and CD31-positive capillaries were found in PAR2-/- mice when compared to WT mice, whereas these parameters in PAR1-/- mice did not differ from WT mice. The pool of circulating repair-associated (Ly6C-low) monocytes and the number of repair-associated (CD206-positive) macrophages surrounding collaterals in the hind limbs were increased in WT and PAR1-/- mice, but unaffected in PAR2-/- mice. The number of repair-associated macrophages in PAR2-/- hind limbs correlated with CD11b- and CD115-expression on the circulating monocytes in these animals, suggesting that monocyte extravasation and M-CSF-dependent differentiation into repair-associated cells are hampered. Conclusion PAR2, but not PAR1, is involved in arteriogenesis and promotes the repair-associated response in ischemic tissues. Therefore, PAR2 potentially forms a new pro-arteriogenic target in coronary artery disease (CAD) patients. PMID:23637930

  8. Targeting of peptide conjugated magnetic nanoparticles to urokinase plasminogen activator receptor (uPAR) expressing cells

    NASA Astrophysics Data System (ADS)

    Hansen, Line; Unmack Larsen, Esben Kjær; Nielsen, Erik Holm; Iversen, Frank; Liu, Zhuo; Thomsen, Karen; Pedersen, Michael; Skrydstrup, Troels; Nielsen, Niels Chr.; Ploug, Michael; Kjems, Jørgen

    2013-08-01

    Ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles are currently being used as a magnetic resonance imaging (MRI) contrast agent in vivo, mainly by their passive accumulation in tissues of interest. However, a higher specificity can ideally be achieved when the nanoparticles are targeted towards cell specific receptors and this may also facilitate specific drug delivery by an enhanced target-mediated endocytosis. We report efficient peptide-mediated targeting of magnetic nanoparticles to cells expressing the urokinase plasminogen activator receptor (uPAR), a surface biomarker for poor patient prognosis shared by several cancers including breast, colorectal, and gastric cancers. Conjugation of a uPAR specific targeting peptide onto polyethylene glycol (PEG) coated USPIO nanoparticles by click chemistry resulted in a five times higher uptake in vitro in a uPAR positive cell line compared to nanoparticles carrying a non-binding control peptide. In accordance with specific receptor-mediated recognition, a low uptake was observed in the presence of an excess of ATF, a natural ligand for uPAR. The uPAR specific magnetic nanoparticles can potentially provide a useful supplement for tumor patient management when combined with MRI and drug delivery.Ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles are currently being used as a magnetic resonance imaging (MRI) contrast agent in vivo, mainly by their passive accumulation in tissues of interest. However, a higher specificity can ideally be achieved when the nanoparticles are targeted towards cell specific receptors and this may also facilitate specific drug delivery by an enhanced target-mediated endocytosis. We report efficient peptide-mediated targeting of magnetic nanoparticles to cells expressing the urokinase plasminogen activator receptor (uPAR), a surface biomarker for poor patient prognosis shared by several cancers including breast, colorectal, and gastric cancers. Conjugation of a uPAR specific

  9. Transcription factor network downstream of protease activated receptors (PARs) modulating mouse bladder inflammation

    PubMed Central

    Saban, Ricardo; Simpson, Cindy; Davis, Carole A; Dozmorov, Igor; Maier, Julie; Fowler, Ben; Ihnat, Michael A; Hurst, Robert E; Wershil, Barry K; Saban, Marcia R

    2007-01-01

    Background All four PARs are present in the urinary bladder, and their expression is altered during inflammation. In order to search for therapeutic targets other than the receptors themselves, we set forth to determine TFs downstream of PAR activation in the C57BL/6 urinary bladders. Methods For this purpose, we used a protein/DNA combo array containing 345 different TF consensus sequences. Next, the TF selected was validated by EMSA and IHC. As mast cells seem to play a fundamental role in bladder inflammation, we determined whether c-kit receptor deficient (Kitw/Kitw-v) mice have an abrogated response to PAR stimulation. Finally, TFEB antibody was used for CHIP/Q-PCR assay and revealed up-regulation of genes known to be downstream of TFEB. Results TFEB, a member of the MiTF family of basic helix-loop-helix leucine zipper, was the only TF commonly up-regulated by all PAR-APs. IHC results confirm a correlation between inflammation and TFEB expression in C57BL/6 mice. In contrast, Kitw/Kitw-v mice did not exhibit inflammation in response to PAR activation. EMSA results confirmed the increased TFEB binding activity in C57BL/6 but not in Kitw/Kitw-v mice. Conclusion This is the first report describing the increased expression of TFEB in bladder inflammation in response to PAR activation. As TFEB belongs to a family of TFs essential for mast cell survival, our findings suggest that this molecule may influence the participation of mast cells in PAR-mediated inflammation and that targeting TFEB/MiTF activity may be a novel approach for the treatment of bladder inflammatory disorders. PMID:17705868

  10. Protease Activated Receptor-1 (PAR-1) Mediated Platelet Aggregation is Dependant on Clopidogrel Response

    PubMed Central

    Kreutz, Rolf P.; Breall, Jeffrey A.; Kreutz, Yvonne; Owens, Janelle; Lu, Deshun; Bolad, Islam; von der Lohe, Elisabeth; Sinha, Anjan; Flockhart, David A.

    2012-01-01

    Introduction Clopidogrel inhibits ADP mediated platelet aggregation through inhibition of the P2Y12 receptor by its active metabolite. Thrombin induces platelet aggregation by binding to protease activated receptor-1 (PAR-1), and inhibition of PAR-1 has been evaluated in patients treated with clopidogrel to reduce ischemic events after acute coronary syndromes. Residual PAR-1 mediated platelet aggregation may be dependent on extent of clopidogrel response. Material and Methods Platelet aggregation was measured in 55 patients undergoing elective PCI at 16-24 hours after 600mg clopidogrel loading dose by light transmittance aggregometry using ADP 20μM and thrombin receptor agonist peptide (TRAP) at 15 μM and 25 μM as agonists. Genomic DNA was genotyped for common CYP2C19 variants. Results Increasing quartiles of 20 μM ADP induced platelet aggregation after clopidogrel loading were associated with increasing levels of TRAP mediated platelet aggregation. Patients in the highest quartile (clopidogrel non-responders) of post treatment ADP aggregation had significantly higher TRAP mediated aggregation than the patients in the lowest quartile (clopidogrel responders) [TRAP 15 μM: 79.6±5% vs. 69.5±8%, p<0.001]. Conclusions Non-responders to clopidogrel show increased residual platelet aggregation induced by TRAP, whereas clopidogrel responders exhibit attenuated response to TRAP. Addition of PAR-1 antiplatelet drugs may be most effective in patients with reduced clopidogrel response and high residual TRAP mediated platelet aggregation. PMID:22459907

  11. Activation of protease-activated receptors (PARs)-1 and -2 promotes alpha-smooth muscle actin expression and release of cytokines from human lung fibroblasts

    PubMed Central

    Asokananthan, Nithiananthan; Lan, Rommel S; Graham, Peter T; Bakker, Anthony J; Tokanović, Ana; Stewart, Geoffrey A

    2015-01-01

    Previous studies have shown that protease-activated receptors (PARs) play an important role in various physiological processes. In the present investigation, we determined the expression of PARs on human lung fibroblasts (HLF-1) and whether they were involved in cellular differentiation and pro-inflammatory cytokine and prostaglandin (PGE2) secretion. PAR-1, PAR-2, PAR-3, and PAR-4 were detected in fibroblasts using RT-PCR, immunocytochemistry, and flow cytometry. Increased expression of PAR-4, but not other PARs, was observed in fibroblasts stimulated with phorbol myristate acetate. The archetypical activators of PARs, namely, thrombin and trypsin, as well as PAR-1 and PAR-2 agonist peptides, stimulated transient increases in intracellular Ca2+, and promoted increased α-smooth muscle actin expression. The proteolytic and peptidic PAR activators also stimulated the release of IL-6 and IL-8, as well as PGE2, with a rank order of potency of PAR-1 > PAR-2. The combined stimulation of PAR-1 and PAR-2 resulted in an additive release of both IL-6 and IL-8. In contrast, PAR-3 and PAR-4 agonist peptides, as well as all the PAR control peptides examined, were inactive. These results suggest an important role for PARs associated with fibroblasts in the modulation of inflammation and remodeling in the airway. PMID:25663523

  12. Protease activated receptor 1 (PAR1) enhances Src-mediated tyrosine phosphorylation of NMDA receptor in intracerebral hemorrhage (ICH)

    PubMed Central

    Duan, Zhen-Zhen; Zhang, Feng; Li, Feng-Ying; Luan, Yi-Fei; Guo, Peng; Li, Yi-Hang; Liu, Yong; Qi, Su-Hua

    2016-01-01

    It has been demonstrated that Src could modulate NMDA receptor, and PAR1 could also affect NMDAR signaling. However, whether PAR1 could regulate NMDAR through Src under ICH has not yet been investigated. In this study, we demonstrated the role of Src-PSD95-GluN2A signaling cascades in rat ICH model and in vitro thrombin challenged model. Using the PAR1 agonist SFLLR, antagonist RLLFS and Src inhibitor PP2, electrophysiological analysis showed that PAR1 regulated NMDA-induced whole-cell currents (INMDA) though Src in primary cultured neurons. Both in vivo and in vitro results showed the elevated phosphorylation of tyrosine in Src and GluN2A and enhanced interaction of the Src-PSD95-GluN2A under model conditions. Treatment with the PAR1 antagonist RLLFS, AS-PSD95 (Antisense oligonucleotide against PSD95) and Src inhibitor PP2 inhibited the interaction among Src-PSD95-GluN2A, and p-Src, p-GluN2A. Co-application of SFLLR and AS-PSD95, PP2, or MK801 (NMDAR inhibitor) abolished the effect of SF. In conclusion, our results demonstrated that activated thrombin receptor PAR1 induced Src activation, enhanced the interaction among Src-PSD95-GluN2A signaling modules, and up-regulated GluN2A phosphorylation after ICH injury. Elucidation of such signaling cascades would possibly provide novel targets for ICH treatment. PMID:27385592

  13. Substituted indoles as selective protease activated receptor 4 (PAR-4) antagonists: Discovery and SAR of ML354.

    PubMed

    Wen, Wandong; Young, Summer E; Duvernay, Matthew T; Schulte, Michael L; Nance, Kellie D; Melancon, Bruce J; Engers, Julie; Locuson, Charles W; Wood, Michael R; Daniels, J Scott; Wu, Wenjun; Lindsley, Craig W; Hamm, Heidi E; Stauffer, Shaun R

    2014-10-01

    Herein we report the discovery and SAR of an indole-based protease activated receptor-4 (PAR-4) antagonist scaffold derived from a similarity search of the Vanderbilt HTS collection, leading to MLPCN probe ML354 (VU0099704). Using a novel PAC-1 fluorescent αIIbβ3 activation assay this probe molecule antagonist was found to have an IC50 of 140nM for PAR-4 with 71-fold selectivity versus PAR-1 (PAR-1IC50=10μM). PMID:25176330

  14. Cross-talk between toll-like receptor 4 (TLR4) and proteinase-activated receptor 2 (PAR2) is involved in vascular function

    PubMed Central

    Bucci, M; Vellecco, V; Harrington, L; Brancaleone, V; Roviezzo, F; Mattace Raso, G; Ianaro, A; Lungarella, G; De Palma, R; Meli, R; Cirino, G

    2013-01-01

    Background and Purpose Proteinase-activated receptors (PARs) and toll-like receptors (TLRs) are involved in innate immune responses. The aim of this study was to evaluate the possible cross-talk between PAR2 and TLR4 in vessels in physiological condition and how it varies following stimulation of TLR4 by using in vivo and ex vivo models. Experimental Approach Thoracic aortas were harvested from both naïve and endotoxaemic rats for in vitro studies. Arterial blood pressure was monitored in anaesthetized rats in vivo. LPS was used as a TLR4 agonist while PAR2 activating peptide (AP) was used as a PAR2 agonist. Aortas harvested from TLR4–/– mice were also used to characterize the PAR2 response. Key Results PAR2, but not TLR4, expression was enhanced in aortas of endotoxaemic rats. PAR2AP-induced vasorelaxation was increased in aortic rings of LPS-treated rats. TLR4 inhibitors, curcumine and resveratrol, reduced PAR2AP-induced vasorelaxation and PAR2AP-induced hypotension in both naïve and endotoxaemic rats. Finally, in aortic rings from TLR4–/– mice, the expression of PAR2 was reduced and the PAR2AP-induced vasodilatation impaired compared with those from wild-type mice and both resveratrol and curcumine were ineffective. Conclusions and Implications Cross-talk between PAR2 and TLR4 contributes to vascular homeostasis. PMID:22957757

  15. Suppression of ischaemia-induced injuries in rat brain by protease-activated receptor-1 (PAR-1) activating peptide.

    PubMed

    Zhen, Xia; Ng, Ethel Sau Kuen; Lam, Francis Fu Yuen

    2016-09-01

    Ischaemic stroke has become one of the leading causes of death and disability worldwide. The role of protease activated receptor-1 (PAR-1) in this disease is uncertain. In the present study, the actions of a protease activated receptor-1 activating peptide (PAR-1 AP) SFLLRN-NH2 were investigated in an in vivo rat model of ischaemic stroke induced by middle cerebral artery occlusion (MCAO) and in an in vitro model induced by oxygen and glucose deprivation (OGD) in primary cultured rat embryonic cortical neurones. Rats subjected to MCAO exhibited increased brain infarct volume, oedema, and neurological deficit. Rat cortical neurones subjected to OGD showed increased lactate dehydrogenase, caspase-3 activity and TUNEL positive cells, whereas, mitochondrial membrane potential and cell viability were decreased. Furthermore, both models had elevated levels of reactive oxygen species, nitrite, and malondialdehyde, while anti-oxidant enzymes and bcl-2/bax ratio were decreased. These detrimental changes were suppressed by SFLLRN-NH2, and its protective actions were inhibited by a PAR-1 antagonist (BMS-200261). In summary, SFLLRN-NH2 was found to possess anti-oxidant and anti-apoptotic properties, and it produced marked inhibition on the detrimental effects of ischaemia in in vivo and in vitro models of ischaemic stroke. The present findings suggest PAR-1 is a promising target for development of novel treatments of ischaemic brain disease. PMID:27238976

  16. Protease-activated receptors (PARs) in cancer: Novel biased signaling and targets for therapy.

    PubMed

    Bar-Shavit, R; Maoz, M; Kancharla, A; Jaber, M; Agranovich, D; Grisaru-Granovsky, S; Uziely, B

    2016-01-01

    Despite the fact that G protein-coupled receptors (GPCRs) mediate numerous physiological processes and represent targets for therapeutics for a vast array of diseases, their role in tumor biology is under appreciated. Protease-activated receptors (PARs) form a family which belongs to GPCR class A. PAR1&2 emerge with a central role in epithelial malignancies. Although the part of PAR1&2 in cancer is on the rise, their underlying signaling events are poorly understood. We review hereby past, present, and future cancer-associated PAR biology. Mainly, their role in physiological (placenta-cytotophobalst) and patho-physiological invasion processes. The identification and characterization of signal pleckstrin homology (PH)-domain-binding motifs established critical sites for breast cancer growth in PAR1&2. Among the proteins found to harbor important PH-domains and are involved in PAR biology are Akt/PKB as also Etk/Bmx and Vav3. A point mutation in PAR2, H349A, but not R352A, abrogated PH-protein association and is sufficient to markedly reduce PAR2-instigated breast tumor growth in vivo as also placental extravillous trophoblast (EVT) invasion in vitro is markedly reduced. Similarly, the PAR1 mutant hPar1-7A, which is unable to bind PH-domain, inhibits mammary tumors and EVT invasion, endowing these motifs with physiological significance and underscoring the importance of these previously unknown PAR1 and PAR2 PH-domain-binding motifs in both pathological and physiological invasion processes. PMID:26928551

  17. Protease-activated receptor 2 (PAR2) protein and transient receptor potential vanilloid 4 (TRPV4) protein coupling is required for sustained inflammatory signaling.

    PubMed

    Poole, Daniel P; Amadesi, Silvia; Veldhuis, Nicholas A; Abogadie, Fe C; Lieu, TinaMarie; Darby, William; Liedtke, Wolfgang; Lew, Michael J; McIntyre, Peter; Bunnett, Nigel W

    2013-02-22

    G protein-coupled receptors of nociceptive neurons can sensitize transient receptor potential (TRP) ion channels, which amplify neurogenic inflammation and pain. Protease-activated receptor 2 (PAR(2)), a receptor for inflammatory proteases, is a major mediator of neurogenic inflammation and pain. We investigated the signaling mechanisms by which PAR(2) regulates TRPV4 and determined the importance of tyrosine phosphorylation in this process. Human TRPV4 was expressed in HEK293 cells under control of a tetracycline-inducible promoter, allowing controlled and graded channel expression. In cells lacking TRPV4, the PAR(2) agonist stimulated a transient increase in [Ca(2+)](i). TRPV4 expression led to a markedly sustained increase in [Ca(2+)](i). Removal of extracellular Ca(2+) and treatment with the TRPV4 antagonists Ruthenium Red or HC067047 prevented the sustained response. Inhibitors of phospholipase A(2) and cytochrome P450 epoxygenase attenuated the sustained response, suggesting that PAR(2) generates arachidonic acid-derived lipid mediators, such as 5',6'-EET, that activate TRPV4. Src inhibitor 1 suppressed PAR(2)-induced activation of TRPV4, indicating the importance of tyrosine phosphorylation. The TRPV4 tyrosine mutants Y110F, Y805F, and Y110F/Y805F were expressed normally at the cell surface. However, PAR(2) was unable to activate TRPV4 with the Y110F mutation. TRPV4 antagonism suppressed PAR(2) signaling to primary nociceptive neurons, and TRPV4 deletion attenuated PAR(2)-stimulated neurogenic inflammation. Thus, PAR(2) activation generates a signal that induces sustained activation of TRPV4, which requires a key tyrosine residue (TRPV4-Tyr-110). This mechanism partly mediates the proinflammatory actions of PAR(2). PMID:23288842

  18. Discovery of 2-aryloxy-4-amino-quinazoline derivatives as novel protease-activated receptor 2 (PAR2) antagonists.

    PubMed

    Cho, Nam-Chul; Cha, Ji Hyoun; Kim, Hyojin; Kwak, Jinsook; Kim, Dohee; Seo, Seung-Hwan; Shin, Ji-Sun; Kim, TaeHun; Park, Ki Duk; Lee, Jiyoun; No, Kyoung Tai; Kim, Yun Kyung; Lee, Kyung-Tae; Pae, Ae Nim

    2015-12-15

    Protease-activated receptor 2 (PAR2) is a member of G protein-coupled receptor and its activation initiates diverse inflammatory responses. Recent studies suggest that antagonists of PAR2 may provide a novel therapeutic strategy for inflammatory diseases. In this study, we have developed a series of 2-aryloxy-4-amino-quinazoline derivatives as PAR2 antagonists and examined their effects against LPS-induced inflammatory responses in RAW 264.7 macrophages. Among these derivatives, compound 2f displayed the greatest antagonistic activity with the IC50 value of 2.8μM. Binding modes of the newly identified PAR2 antagonists were analyzed by molecular docking using IFD/MM-GBSA methods in the putative binding site of PAR2 homology model. Moreover, 2f demonstrated significant inhibitory effects on the LPS-activated pro-inflammatory mediators including nitric oxide (NO), prostaglandin E2 (PGE2), interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) through the regulation of various intracellular signaling pathways involving nuclear factor-κB (NF-κB), activator protein 1 (AP-1) and the mitogen-activated protein kinases (MAPK). Furthermore, administration of 2f significantly reduced the mortality of LPS-induced sepsis in mice. These results provide useful insights into the development of novel PAR2 antagonists with anti-inflammatory activity in vitro and in vivo. PMID:26631441

  19. Relationship between urokinase plasminogen activator receptor (uPAR) and the invasion of human prenatal hair follicle.

    PubMed

    Gao, Qiangguo; Fu, Gang; Huang, Gang; Lian, Xiaohua; Yu, Jin; Yang, Tian

    2010-08-01

    During the morphogenesis of hair follicles, the invasive migration of basal keratinocytes resembles cell's dissemination of tissue remodeling. The urokinase-type plasminogen activator receptor (uPAR) appears to be a key molecule in the metastasis. In order to elucidate the relationship between uPAR and the invasion of the human hair follicle, immunohistochemistry, RT-PCR, plasmids transfection, and western blot were used. The results showed that uPAR was expressed in the outermost epithelial cells of the hair follicle and the basal keratinocytes of epidermis, and that the expression decreased with the development of the hair follicle. The cells of the outer root sheath (ORS) and interfollicle epidermis, which overexpressed uPAR, acquired increased invasiveness; however, they showed decreased invasion with overexpression of the urokinase-type plasminogen activator amino terminal fragment (uPA ATF), which inhibited the combination of uPAR and uPA competitively, and the cell invasive migration with overexpressed uPAR was required activated extracellular signal-regulated kinases (ERK). These results implied that overexpression of uPAR promote the invasive migration of hair follicle into the dermis in uPA-dependent and independent manner during human prenatal development. PMID:20012874

  20. Increased Soluble Urokinase-Type Plasminogen Activator Receptor (suPAR) Levels in Plasma of Suicide Attempters

    PubMed Central

    Ventorp, Filip; Gustafsson, Anna; Träskman-Bendz, Lil; Westrin, Åsa; Ljunggren, Lennart

    2015-01-01

    The soluble form of the urokinase receptor, suPAR, has been suggested as a novel biomarker of low-grade inflammation. Activation of the immune system has been proposed to contribute to the development of depression and suicidal behavior. In order to identify depressed and suicidal individuals who could benefit from an anti-inflammatory treatment, a reliable biomarker of low-grade inflammation is vital. This study evaluates plasma suPAR levels as a biomarker of low-grade inflammation in patients with major depressive disorder and in patients who recently attempted suicide. The plasma suPAR and an established biomarker, C reactive protein (CRP) of suicide attempters (n = 54), depressed patients (n = 19) and healthy controls (n = 19) was analyzed with enzyme-linked immunosorbent assays. The biomarker attributes of sensitivity and sensibility were evaluated using ROC curve analysis. Both the depressed patients and suicide attempters had increased plasma suPAR. The levels of suPAR discriminated better between controls and suicide attempters than did CRP. In the future, plasma suPAR might be a superior prognosticator regarding outcome of treatment applying conventional antidepressants in conjunction with anti-inflammatory drugs. PMID:26451727

  1. Granzyme B-Induced Neurotoxicity Is Mediated via Activation of PAR-1 Receptor and Kv1.3 Channel

    PubMed Central

    Wang, Tongguang; Lee, Myoung-Hwa; Choi, Elliot; Pardo-Villamizar, Carlos A.; Lee, Sung Bin; Yang, In Hong; Calabresi, Peter A.; Nath, Avindra

    2012-01-01

    Increasing evidence supports a critical role of T cells in neurodegeneration associated with acute and subacute brain inflammatory disorders. Granzyme B (GrB), released by activated T cells, is a cytotoxic proteinase which may induce perforin-independent neurotoxicity. Here, we studied the mechanism of perforin-independent GrB toxicity by treating primary cultured human neuronal cells with recombinant GrB. GrBactivated the protease-activated receptor (PAR)-1 receptor on the neuronal cell surface leading to decreased intracellular cyclic AMP levels. This was followed by increased expression and translocation of the voltage gated potassium channel, Kv1.3 to the neuronal cell membrane. Similar expression of Kv1.3 was also seen in neurons of the cerebral cortex adjacent to active inflammatory lesions in patients with multiple sclerosis. Kv1.3 expression was followed by activation of Notch-1 resulting in neurotoxicity. Blocking PAR-1, Kv1.3 or Notch-1 activation using specific pharmacological inhibitors or siRNAs prevented GrB-induced neurotoxicity. Furthermore, clofazimine protected against GrB-induced neurotoxicity in rat hippocampus, in vivo. These observations indicate that GrB released from T cells induced neurotoxicity by interacting with the membrane bound Gi-coupled PAR-1 receptor and subsequently activated Kv1.3 and Notch-1. These pathways provide novel targets to treat T cell-mediated neuroinflammatory disorders. Kv1.3 is of particular interest since it is expressed on the cell surface, only under pathological circumstances, and early in the cascade of events making it an attractive therapeutic target. PMID:22952817

  2. Increased Protease-Activated Receptor-2 (PAR-2) Expression on CD14++CD16+ Peripheral Blood Monocytes of Patients with Severe Asthma

    PubMed Central

    Shrestha Palikhe, Nami; Nahirney, Drew; Laratta, Cheryl; Gandhi, Vivek Dipak; Vethanayagam, Dilini; Bhutani, Mohit; Mayers, Irvin

    2015-01-01

    Background Protease-Activated Receptor-2 (PAR-2), a G protein coupled receptor activated by serine proteases, is widely expressed in humans and is involved in inflammation. PAR-2 activation in the airways plays an important role in the development of allergic airway inflammation. PAR-2 expression is known to be upregulated in the epithelium of asthmatic subjects, but its expression on immune and inflammatory cells in patients with asthma has not been studied. Methods We recruited 12 severe and 24 mild/moderate asthmatics from the University of Alberta Hospital Asthma Clinics and collected baseline demographic information, medication use and parameters of asthma severity. PAR-2 expression on blood inflammatory cells was analyzed by flow cytometry. Results Subjects with severe asthma had higher PAR-2 expression on CD14++CD16+ monocytes (intermediate monocytes) and also higher percentage of CD14++CD16+PAR-2+ monocytes (intermediate monocytes expressing PAR-2) in blood compared to subjects with mild/moderate asthma. Receiver operating characteristics (ROC) curve analysis showed that the percent of CD14++CD16+PAR-2+ in peripheral blood was able to discriminate between patients with severe and those with mild/moderate asthma with high sensitivity and specificity. In addition, among the whole populations, subjects with a history of asthma exacerbations over the last year had higher percent of CD14++CD16+ PAR-2+ cells in peripheral blood compared to subjects without exacerbations. Conclusions PAR-2 expression is increased on CD14++CD16+ monocytes in the peripheral blood of subjects with severe asthma and may be a biomarker of asthma severity. Our data suggest that PAR-2 -mediated activation of CD14++CD16+ monocytes may play a role in the pathogenesis of severe asthma. PMID:26658828

  3. Urokinase-type Plasminogen Activator Receptor (uPAR)-mediated Regulation of WNT/β-Catenin Signaling Is Enhanced in Irradiated Medulloblastoma Cells*

    PubMed Central

    Asuthkar, Swapna; Gondi, Christopher S.; Nalla, Arun Kumar; Velpula, Kiran Kumar; Gorantla, Bharathi; Rao, Jasti S.

    2012-01-01

    Urokinase plasminogen activator receptor (uPAR) is known to promote invasion, migration, and metastasis in cancer cells. In this report, we showed that ionizing radiation (IR)-induced uPAR has a role in WNT-β-catenin signaling and mediates induction of cancer stem cell (CSC)-like properties in medulloblastoma cell lines UW228 and D283. We observed that IR induced the expression of uPAR and CSC markers, such as Musashi-1 and CD44, and activated WNT-7a-β-catenin signaling molecules. Overexpression of uPAR alone or with IR treatment led to increased WNT-7a-β-catenin-TCF/LEF-mediated transactivation, thereby promoting cancer stemness. In contrast, treatment with shRNA specific for uPAR (pU) suppressed WNT-7a-β-catenin-TCF/LEF-mediated transactivation both in vitro and in vivo. Quercetin, a potent WNT/β-catenin inhibitor, suppressed uPAR and uPAR-mediated WNT/β-catenin activation, and furthermore, addition of recombinant human WNT-7a protein induced uPAR, indicating the existence of a mutual regulatory relationship between uPAR and WNT/β-catenin signaling. We showed that uPAR was physically associated with the WNT effector molecule β-catenin on the membrane, cytoplasm, and nucleus of IR-treated cells and CSC. Most interestingly, we demonstrated for the first time that localization of uPAR in the nucleus was associated with transcription factors (TF) and their specific response elements. We observed from uPAR-ChIP, TF protein, and protein/DNA array analyses that uPAR associates with activating enhancer-binding protein 2α (AP2a) and mediates β-catenin gene transcription. Moreover, association of uPAR with the β-catenin·TCF/LEF complex and various other TF involved during embryonic development and cancer indicates that uPAR is a potent activator of stemness, and targeting of uPAR in combination with radiation has significant therapeutic implications. PMID:22511755

  4. Urokinase-type plasminogen activator receptor (uPAR)-mediated regulation of WNT/β-catenin signaling is enhanced in irradiated medulloblastoma cells.

    PubMed

    Asuthkar, Swapna; Gondi, Christopher S; Nalla, Arun Kumar; Velpula, Kiran Kumar; Gorantla, Bharathi; Rao, Jasti S

    2012-06-01

    Urokinase plasminogen activator receptor (uPAR) is known to promote invasion, migration, and metastasis in cancer cells. In this report, we showed that ionizing radiation (IR)-induced uPAR has a role in WNT-β-catenin signaling and mediates induction of cancer stem cell (CSC)-like properties in medulloblastoma cell lines UW228 and D283. We observed that IR induced the expression of uPAR and CSC markers, such as Musashi-1 and CD44, and activated WNT-7a-β-catenin signaling molecules. Overexpression of uPAR alone or with IR treatment led to increased WNT-7a-β-catenin-TCF/LEF-mediated transactivation, thereby promoting cancer stemness. In contrast, treatment with shRNA specific for uPAR (pU) suppressed WNT-7a-β-catenin-TCF/LEF-mediated transactivation both in vitro and in vivo. Quercetin, a potent WNT/β-catenin inhibitor, suppressed uPAR and uPAR-mediated WNT/β-catenin activation, and furthermore, addition of recombinant human WNT-7a protein induced uPAR, indicating the existence of a mutual regulatory relationship between uPAR and WNT/β-catenin signaling. We showed that uPAR was physically associated with the WNT effector molecule β-catenin on the membrane, cytoplasm, and nucleus of IR-treated cells and CSC. Most interestingly, we demonstrated for the first time that localization of uPAR in the nucleus was associated with transcription factors (TF) and their specific response elements. We observed from uPAR-ChIP, TF protein, and protein/DNA array analyses that uPAR associates with activating enhancer-binding protein 2α (AP2a) and mediates β-catenin gene transcription. Moreover, association of uPAR with the β-catenin·TCF/LEF complex and various other TF involved during embryonic development and cancer indicates that uPAR is a potent activator of stemness, and targeting of uPAR in combination with radiation has significant therapeutic implications. PMID:22511755

  5. Protease-activated receptor-1 (PAR1) acts via a novel Galpha13-dishevelled axis to stabilize beta-catenin levels.

    PubMed

    Turm, Hagit; Maoz, Myriam; Katz, Vered; Yin, Yong-Jun; Offermanns, Steffan; Bar-Shavit, Rachel

    2010-05-14

    We have previously shown a novel link between hPar-1 (human protease-activated receptor-1) and beta-catenin stabilization. Although it is well recognized that Wnt signaling leads to beta-catenin accumulation, the role of PAR1 in the process is unknown. We provide here evidence that PAR1 induces beta-catenin stabilization independent of Wnt, Fz (Frizzled), and the co-receptor LRP5/6 (low density lipoprotein-related protein 5/6) and identify selective mediators of the PAR1-beta-catenin axis. Immunohistological analyses of hPar1-transgenic (TG) mouse mammary tissues show the expression of both Galpha(12) and Galpha(13) compared with age-matched control counterparts. However, only Galpha(13) was found to be actively involved in PAR1-induced beta-catenin stabilization. Indeed, a dominant negative form of Galpha(13) inhibited both PAR1-induced Matrigel invasion and Lef/Tcf (lymphoid enhancer factor/T cell factor) transcription activity. PAR1-Galpha(13) association is followed by the recruitment of DVL (Dishevelled), an upstream Wnt signaling protein via the DIX domain. Small interfering RNA-Dvl silencing leads to a reduction in PAR1-induced Matrigel invasion, inhibition of Lef/Tcf transcription activity, and decreased beta-catenin accumulation. It is of note that PAR1 also promotes the binding of beta-arrestin-2 to DVL, suggesting a role for beta-arrestin-2 in PAR1-induced DVL phosphorylation dynamics. Although infection of small interfering RNA-LRP5/6 or the use of the Wnt antagonists, SFRP2 (soluble Frizzled-related protein 2) or SFRP5 potently reduced Wnt3A-mediated beta-catenin accumulation, no effect was observed on PAR1-induced beta-catenin stabilization. Collectively, our data show that PAR1 mediates beta-catenin stabilization independent of Wnt. We propose here a novel cascade of PAR1-induced Galpha(13)-DVL axis in cancer and beta-catenin stabilization. PMID:20223821

  6. Trefoil factor 3 (TFF3) from human breast milk activates PAR-2 receptors, of the intestinal epithelial cells HT-29, regulating cytokines and defensins.

    PubMed

    Barrera, G J; Tortolero, G Sanchez

    2016-01-01

    Trefoil factors are effector molecules in gastrointestinal tract physiology. Each one improves healing of the gastrointestinal tract. Trefoil factors may be grouped into three classes: the gastric peptides (TFF1), spasmolytic peptide (TFF2) and intestinal trefoil factor (TFF3). Significant amounts of TFF3 are present in human breast milk. Previously, we have reported that trefoil factor 3 isolated from human breast milk produces down regulation of cytokines and promotes human beta defensins expression in intestinal epithelial cells. This study aimed to determine the molecular mechanism involved. Here we showed that the presence of TFF3 strongly correlated with protease activated receptors 2 (PAR-2) activation in human intestinal cells. Intracellular calcium ((Ca2+)i)mobilization was induced by the treatment with: 1) TFF3, 2) synthetic PAR-2 agonist peptide. The co-treatment with a synthetic PAR-2 antagonist peptide and TFF3 eliminates the latter's effect. Additionally, we demonstrated the existence of interactions among TFF3 and PAR-2 receptors through far Western blot and co-precipitation. Finally, down regulation of PAR-2 by siRNA resulted in a decrease of TFF3 induced intracellular (Ca2+)i mobilization, cytokine regulation and defensins expression. These findings suggest that TFF3 activates intestinal cells through PAR-2 (Fig. 4, Ref. 19). PMID:27546365

  7. Mapping the topographic epitope landscape on the urokinase plasminogen activator receptor (uPAR) by surface plasmon resonance and X-ray crystallography.

    PubMed

    Zhao, Baoyu; Gandhi, Sonu; Yuan, Cai; Luo, Zhipu; Li, Rui; Gårdsvoll, Henrik; de Lorenzi, Valentina; Sidenius, Nicolai; Huang, Mingdong; Ploug, Michael

    2015-12-01

    The urokinase-type plasminogen activator receptor (uPAR or CD87) is a glycolipid-anchored membrane protein often expressed in the microenvironment of invasive solid cancers and high levels are generally associated with poor patient prognosis (Kriegbaum et al., 2011 [1]). uPAR is organized as a dynamic modular protein structure composed of three homologous Ly6/uPAR domains (LU).This internally flexible protein structure of uPAR enables an allosteric regulation of the interactions with its two principal ligands: the serine protease urokinase-type plasminogen activator (uPA) and the provisional matrix protein vitronectin (Vn) (Mertens et al., 2012; Gårdsvoll et al., 2011; Madsen et al., 2007 [2-4]). The data presented here relates to the non-covalent trapping of one of these biologically relevant uPAR-conformations by a novel class of monoclonal antibodies (Zhao et al., 2015 [5]) and to the general mapping of the topographic epitope landscape on uPAR. The methods required to achieve these data include: (1) recombinant expression and purification of a uPAR-hybrid protein trapped in the desired conformation [patent; WO 2013/020898 A12013]; (2) developing monoclonal antibodies with unique specificities using this protein as antigen; (3) mapping the functional epitope on uPAR for these mAbs by surface plasmon resonance with a complete library of purified single-site uPAR mutants (Zhao et al., 2015; Gårdsvoll et al., 2006 [5,6]); and finally (4) solving the three-dimensional structures for one of these mAbs by X-ray crystallography alone and in complex with uPAR [deposited in the PDB database as 4QTH and 4QTI, respectively]. PMID:26504891

  8. The receptor for urokinase-plasminogen activator (uPAR) controls plasticity of cancer cell movement in mesenchymal and amoeboid migration style.

    PubMed

    Margheri, Francesca; Luciani, Cristina; Taddei, Maria Letizia; Giannoni, Elisa; Laurenzana, Anna; Biagioni, Alessio; Chillà, Anastasia; Chiarugi, Paola; Fibbi, Gabriella; Del Rosso, Mario

    2014-03-30

    The receptor for the urokinase plasminogen activator (uPAR) is up-regulated in malignant tumors. Historically the function of uPAR in cancer cell invasion is strictly related to its property to promote uPA-dependent proteolysis of extracellular matrix and to open a path to malignant cells. These features are typical of mesenchymal motility. Here we show that the full-length form of uPAR is required when prostate and melanoma cancer cells convert their migration style from the "path generating" mesenchymal to the "path finding" amoeboid one, thus conferring a plasticity to tumor cell invasiveness across three-dimensional matrices. Indeed, in response to a protease inhibitors-rich milieu, prostate and melanoma cells activated an amoeboid invasion program connoted by retraction of cell protrusions, RhoA-mediated rounding of the cell body, formation of a cortical ring of actin and a reduction of Rac-1 activation. While the mesenchymal movement was reduced upon silencing of uPAR expression, the amoeboid one was almost completely abolished, in parallel with a deregulation of small Rho-GTPases activity. In melanoma and prostate cancer cells we have shown uPAR colocalization with β1/β3 integrins and actin cytoskeleton, as well integrins-actin co-localization under both mesenchymal and amoeboid conditions. Such co-localizations were lost upon treatment of cells with a peptide that inhibits uPAR-integrin interactions. Similarly to uPAR silencing, the peptide reduced mesenchymal invasion and almost abolished the amoeboid one. These results indicate that full-length uPAR bridges the mesenchymal and amoeboid style of movement by an inward-oriented activity based on its property to promote integrin-actin interactions and the following cytoskeleton assembly. PMID:24681666

  9. The receptor for urokinase-plasminogen activator (uPAR) controls plasticity of cancer cell movement in mesenchymal and amoeboid migration style

    PubMed Central

    Taddei, Maria Letizia; Giannoni, Elisa; Laurenzana, Anna; Biagioni, Alessio; Chillà, Anastasia; Chiarugi, Paola; Fibbi, Gabriella; Rosso1, Mario Del

    2014-01-01

    The receptor for the urokinase plasminogen activator (uPAR) is up-regulated in malignant tumors. Historically the function of uPAR in cancer cell invasion is strictly related to its property to promote uPA-dependent proteolysis of extracellular matrix and to open a path to malignant cells. These features are typical of mesenchymal motility. Here we show that the full-length form of uPAR is required when prostate and melanoma cancer cells convert their migration style from the “path generating” mesenchymal to the “path finding” amoeboid one, thus conferring a plasticity to tumor cell invasiveness across three-dimensional matrices. Indeed, in response to a protease inhibitors-rich milieu, prostate and melanoma cells activated an amoeboid invasion program connoted by retraction of cell protrusions, RhoA-mediated rounding of the cell body, formation of a cortical ring of actin and a reduction of Rac-1 activation. While the mesenchymal movement was reduced upon silencing of uPAR expression, the amoeboid one was almost completely abolished, in parallel with a deregulation of small Rho-GTPases activity. In melanoma and prostate cancer cells we have shown uPAR colocalization with β1/β3 integrins and actin cytoskeleton, as well integrins-actin co-localization under both mesenchymal and amoeboid conditions. Such co-localizations were lost upon treatment of cells with a peptide that inhibits uPAR-integrin interactions. Similarly to uPAR silencing, the peptide reduced mesenchymal invasion and almost abolished the amoeboid one. These results indicate that full-length uPAR bridges the mesenchymal and amoeboid style of movement by an inward-oriented activity based on its property to promote integrin-actin interactions and the following cytoskeleton assembly. PMID:24681666

  10. PAR-1 activation by thrombin is protective in human pulmonary artery endothelial cells if endothelial protein C receptor is occupied by its natural ligand

    PubMed Central

    Bae, Jong-Sup; Rezaie, Alireza R.

    2008-01-01

    Summary We recently demonstrated that the occupancy of endothelial protein C receptor (EPCR) by its natural ligand activated protein C (APC)/protein C switches the protease activated receptor 1 (PAR-1)-dependent signaling specificity of thrombin from a disruptive to a protective effect in cultured human umbilical vein endothelial cells. Given the phenotypic differences between endothelial cells in venular and arterial beds, in this study we evaluated the signaling function of thrombin in human pulmonary artery endothelial cells (HPAECs) before and after treating them with PC-S195A which lacks catalytic activity but exhibits a normal affinity for EPCR. As expected, both thrombin and thrombin receptor agonist peptide (TRAP) enhanced the permeability barrier of HPAECs, however, both PAR-1 agonists exhibited a potent barrier protective effect when the cells were treated with PC-S195A prior to stimulation by the agonists. Interestingly, similar to APC, thrombin exhibited a potent cytoprotective activity in the LPS-induced permeability and TNF-α-induced apoptosis and adhesion assays in the PC-S195A treated HPAECs. Treatment of HPAECs with the cholesterol depleting molecule methyl-β-cyclodextrin eliminated the protective effect of both APC and thrombin. These results suggest that the occupancy of EPCR by its natural ligand recruits PAR-1 to a protective signaling pathway within lipid rafts of HPAECs. Based on these results we conclude that the activation of PAR-1 by thrombin would initiate a protective response in intact arterial vascular cells expressing EPCR. These findings may have important ramifications for understanding the mechanism of the participation of the vascular PAR-1 in pathophysiology of the inflammatory disorders. PMID:18612544

  11. Elevated urinary levels of urokinase-type plasminogen activator receptor (uPAR) in pancreatic ductal adenocarcinoma identify a clinically high-risk group

    PubMed Central

    2011-01-01

    Background The urokinase plasminogen activator receptor is highly expressed and its gene is amplified in about 50% of pancreatic ductal adenocarcinomas; this last feature is associated with worse prognosis. It is unknown whether the level of its soluble form (suPAR) in urine may be a diagnostic-prognostic marker in these patients. Methods The urinary level of suPAR was measured in 146 patients, 94 pancreatic ductal adenocarcinoma and 52 chronic pancreatitis. Urine from 104 healthy subjects with similar age and gender distribution served as controls. suPAR levels were normalized with creatinine levels (suPAR/creatinine, ng/mg) to remove urine dilution effect. Results Urinary suPAR/creatinine values of pancreatic ductal adenocarcinoma patients were significantly higher (median 9.8; 25th-75th percentiles 5.3-20.7) than those of either healthy donors (median 0; 0-0.5) or chronic pancreatitis patients (median 2.7; 0.9-4.7). The distribution of values among cancer patients was widespread and asymmetric, 53% subjects having values beyond the 95th percentile of healthy donors. The values of suPAR/creatinine did not correlate with tumour stage, Ca19-9 or CEA levels. Higher values correlated with poor prognosis among non-resected patients at univariate analysis; multivariate Cox regression identified high urinary suPAR/creatinine as an independent predictor of poor survival among all cancer patients (odds ratio 2.10, p = 0.0023), together with tumour stage (stage III odds ratio 2.65, p = 0.0017; stage IV odds ratio 4.61, p < 0.0001) and female gender (odds ratio 1.85, p = 0.01). Conclusions A high urinary suPAR/creatinine ratio represents a useful marker for the identification of a subset of patients with poorer outcome. PMID:21999221

  12. Is there any diagnostic value of serum protease-activated receptor-1 (PAR1) levels on determination of epithelial ovarian carcinoma?

    PubMed

    Karabulut, S; Akşit, E; Tas, F; Ciftci, R; Aydiner, A; Yildiz, I; Keskin, S; Eralp, Y; Yasasever, C T; Vatansever, S; Disci, R; Saip, P

    2014-05-01

    The role of molecular markers in ovarian cancer is still a matter of debate. Protease-activated receptor-1 (PAR1) might be a good marker in some types of malignant tumors and might provide useful information in diagnosis and prognosis. The objective of this study was to evaluate the serum levels of PAR1 in regard to diagnostic, predictive, and prognostic value in epithelial ovarian cancer (EOC) patients. Forty-four EOC patients were enrolled in this study. Serum PAR1 levels were determined by enzyme-linked immunosorbent assay (ELISA) method. Twenty-five age- and sex-matched healthy controls were included in the analysis. The median age of patients was 58 years old, ranging from 22 to 83 years, where most of them had advanced disease (stage III-IV) (n = 40, 91%). The median serum PAR1 values were significantly elevated in patients compared to healthy controls (1.52 ng/ml vs. 1.13 ng/ml) (p = 0.03), whereas any clinical variables including response to chemotherapy did not associate with serum assay (p > 0.05). Progression-free survival (PFS) and overall survival (OS) of patients who did not respond to chemotherapy nor had platinum resistance in relapsed disease were poorer in the analyses. On the other hand, serum PAR1 levels showed no significant adverse effect on either PFS or OS (p = 0.43 and p = 0.49, respectively). These results proved that baseline serum PAR1 levels of patients with EOC were significantly higher than those of healthy people. However, these assays suggested no predictive or prognostic value in this group of patients. PMID:24390664

  13. Characterization of the interaction between heterodimeric αvβ6 integrin and urokinase plasminogen activator receptor (uPAR) using functional proteomics.

    PubMed

    Ahn, Seong Beom; Mohamedali, Abidali; Anand, Samyuktha; Cheruku, Harish R; Birch, Debra; Sowmya, Gopichandran; Cantor, David; Ranganathan, Shoba; Inglis, David W; Frank, Ronald; Agrez, Michael; Nice, Edouard C; Baker, Mark S

    2014-12-01

    Urokinase plasminogen activator receptor (uPAR) and the epithelial integrin αvβ6 are thought to individually play critical roles in cancer metastasis. These observations have been highlighted by the recent discovery (by proteomics) of an interaction between these two molecules, which are also both implicated in the epithelial-mesenchymal transition (EMT) that facilitates escape of cells from tissue barriers and is a common signature of cancer metastases. In this study, orthogonal in cellulo and in vitro functional proteomic approaches were used to better characterize the uPAR·αvβ6 interaction. Proximity ligation assays (PLA) confirmed the uPAR·αvβ6 interaction on OVCA429 (ovarian cancer line) and four different colon cancer cell lines including positive controls in cells with de novo β6 subunit expression. PLA studies were then validated using peptide arrays, which also identified potential physical sites of uPAR interaction with αvβ6, as well as verifying interactions with other known uPAR ligands (e.g., uPA, vitronectin) and individual integrin subunits (i.e., αv, β1, β3, and β6 alone). Our data suggest that interaction with uPAR requires expression of the complete αβ heterodimer (e.g., αvβ6), not individual subunits (i.e., αv, β1, β3, or β6). Finally, using in silico structural analyses in concert with these functional proteomics studies, we propose and demonstrate that the most likely unique sites of interaction between αvβ6 and uPAR are located in uPAR domains II and III. PMID:25318615

  14. Optimization of Crystals of an Inhibitory Antibody of Urokinase Plasminogen Activator Receptor (uPAR) with Hydrogen Peroxide and Low Protein Concentration

    SciTech Connect

    Li, Yongdong; Shi, Xiaoli; Parry, Graham; Chen, Liqing; Callahan, Jennifer A.; Mazar, Andrew P.; Huang, Mingdong

    2010-07-19

    Optimization of protein crystal formation is often a necessary step leading to diffraction-quality crystals to enable collection of a full X-ray data set. Typical protein crystal optimization involves screening different components, e.g., pH, precipitants, and additives of the precipitant solution. Here we present an example using an inhibitory antibody of urokinase plasminogen activator receptor (uPAR) where such procedures did not yield diffracting crystals. In contrast, it was the treatment of the protein with hydrogen peroxide incubation and the protein concentration reduction that were found to be key factors in obtaining diffracting crystals. Final crystals diffracted to 1.75 {angstrom}, and belong to orthorhombic P212121 space group with unit cell parameters a = 37.162 {angstrom}, b = 84.474 {angstrom}, c = 134.030 {angstrom}, and contain one molecule of Fab fragment of anti-uro kinase receptor antibody in the asymmetric unit.

  15. Distinctive G Protein-Dependent Signaling by Protease-Activated Receptor 2 (PAR2) in Smooth Muscle: Feedback Inhibition of RhoA by cAMP-Independent PKA

    PubMed Central

    Sriwai, Wimolpak; Mahavadi, Sunila; Al-Shboul, Othman; Grider, John R.; Murthy, Karnam S.

    2013-01-01

    We examined expression of protease-activated receptors 2 (PAR2) and characterized their signaling pathways in rabbit gastric muscle cells. The PAR2 activating peptide SLIGRL (PAR2-AP) stimulated Gq, G13, Gi1, PI hydrolysis, and Rho kinase activity, and inhibited cAMP formation. Stimulation of PI hydrolysis was partly inhibited in cells expressing PAR2 siRNA, Gaq or Gai minigene and in cells treated with pertussis toxin, and augmented by expression of dominant negative regulator of G protein signaling (RGS4(N88S)). Stimulation of Rho kinase activity was abolished by PAR-2 or Ga13 siRNA, and by Ga13 minigene. PAR2-AP induced a biphasic contraction; initial contraction was selectively blocked by the inhibitor of PI hydrolysis (U73122) or MLC kinase (ML-9), whereas sustained contraction was selectively blocked by the Rho kinase inhibitor (Y27632). PAR2-AP induced phosphorylation of MLC20, MYPT1 but not CPI-17. PAR2-AP also caused a decrease in the association of NF-kB and PKA catalytic subunit: the effect of PAR2-AP was blocked by PAR2 siRNA or phosphorylation-deficient RhoA (RhoA(S188A)). PAR2-AP-induced degradation of IkBa and activation of NF-kB were abolished by the blockade of RhoA activity by Clostridium botulinum C3 exoenzyme suggesting RhoA-dependent activation of NF-kB. PAR2-AP-stimulated Rho kinase activity was significantly augmented by the inhibitors of PKA (myristoylated PKI), IKK2 (IKKIV) or NF-kB (MG132), and in cells expressing dominant negative mutants of IKK (IKK(K44A), IkBa (IkBa (S32A/S36A)) or RhoA(S188A), suggesting feedback inhibition of Rho kinase activity via PKA derived from NF-kB pathway. PAR2-AP induced phosphorylation of RhoA and the phosphorylation was attenuated in cells expressing phosphorylation-deficient RhoA(S188A). Our results identified signaling pathways activated by PAR2 to mediate smooth muscle contraction and a novel pathway for feedback inhibition of PAR2-stimulated RhoA. The pathway involves activation of the NF-kB to release

  16. Cathepsin S Signals via PAR2 and Generates a Novel Tethered Ligand Receptor Agonist

    PubMed Central

    Lerner, Ethan A.

    2014-01-01

    Protease-activated receptor-2 is widely expressed in mammalian epithelial, immune and neural tissues. Cleavage of PAR2 by serine proteases leads to self-activation of the receptor by the tethered ligand SLIGRL. The contribution of other classes of proteases to PAR activation has not been studied in detail. Cathepsin S is a widely expressed cysteine protease that is upregulated in inflammatory conditions. It has been suggested that cathepsin S activates PAR2. However, cathepsin S activation of PAR2 has not been demonstrated directly nor has the potential mechanism of activation been identified. We show that cathepsin S cleaves near the N-terminus of PAR2 to expose a novel tethered ligand, KVDGTS. The hexapeptide KVDGTS generates downstream signaling events specific to PAR2 but is weaker than SLIGRL. Mutation of the cathepsin S cleavage site prevents receptor activation by the protease while KVDGTS retains activity. In conclusion, the range of actions previously ascribed to cysteine cathepsins in general, and cathepsin S in particular, should be expanded to include molecular signaling. Such signaling may link together observations that had been attributed previously to PAR2 or cathepsin S individually. These interactions may contribute to inflammation. PMID:24964046

  17. Common variants in the human platelet PAR4 thrombin receptor alter platelet function and differ by race

    PubMed Central

    Edelstein, Leonard C.; Simon, Lukas M.; Lindsay, Cory R.; Kong, Xianguo; Teruel-Montoya, Raúl; Tourdot, Benjamin E.; Chen, Edward S.; Ma, Lin; Coughlin, Shaun; Nieman, Marvin; Holinstat, Michael; Shaw, Chad A.

    2014-01-01

    Human platelets express 2 thrombin receptors: protease-activated receptor (PAR)-1 and PAR4. Recently, we reported 3.7-fold increased PAR4-mediated aggregation kinetics in platelets from black subjects compared with white subjects. We now show that platelets from blacks (n = 70) express 14% more PAR4 protein than those from whites (n = 84), but this difference is not associated with platelet PAR4 function. Quantitative trait locus analysis identified 3 common single nucleotide polymorphisms in the PAR4 gene (F2RL3) associated with PAR4-induced platelet aggregation. Among these single nucleotide polymorphisms, rs773902 determines whether residue 120 in transmembrane domain 2 is an alanine (Ala) or threonine (Thr). Compared with the Ala120 variant, Thr120 was more common in black subjects than in white subjects (63% vs 19%), was associated with higher PAR4-induced human platelet aggregation and Ca2+ flux, and generated greater inositol 1,4,5-triphosphate in transfected cells. A second, less frequent F2RL3 variant, Phe296Val, was only observed in blacks and abolished the enhanced PAR4-induced platelet aggregation and 1,4,5-triphosphate generation associated with PAR4-Thr120. PAR4 genotype did not affect vorapaxar inhibition of platelet PAR1 function, but a strong pharmacogenetic effect was observed with the PAR4-specific antagonist YD-3 [1-benzyl-3(ethoxycarbonylphenyl)-indazole]. These findings may have an important pharmacogenetic effect on the development of new PAR antagonists. PMID:25293779

  18. The Emerging Role of the Thrombin Receptor (PAR-1) in Melanoma Metastasis - a Possible Therapeutic Target

    PubMed Central

    Villares, Gabriel J.; Zigler, Maya; Bar-Eli, Menashe

    2011-01-01

    Melanoma remains as the deadliest form of skin cancer with limited and inefficient treatment options available for patients with metastatic disease. Within the last decade, the thrombin receptor, Protease Activated Receptor-1, has been described as an essential gene involved in the progression of human melanoma. PAR-1 is known to activate adhesive, invasive and angiogenic factors to promote melanoma metastasis. It is overexpressed not only in metastatic melanoma cell lines but is also highly expressed in metastatic lesions as compared to primary nevi and normal skin. Recently, PAR-1 has been described to regulate the gap junction protein Connexin 43 and the tumor suppressor gene Maspin to promote the metastatic melanoma phenotype. Herein, we review the role of PAR-1 in the progression of melanoma as well as utilizing PAR-1-regulated genes as potential therapeutic targets for melanoma treatment. PMID:21378407

  19. Proteases in agricultural dust induce lung inflammation through PAR-1 and PAR-2 activation.

    PubMed

    Romberger, Debra J; Heires, Art J; Nordgren, Tara M; Souder, Chelsea P; West, William; Liu, Xiang-de; Poole, Jill A; Toews, Myron L; Wyatt, Todd A

    2015-08-15

    Workers exposed to aerosolized dust present in concentrated animal feeding operations (CAFOs) are susceptible to inflammatory lung diseases, such as chronic obstructive pulmonary disease. Extracts of dust collected from hog CAFOs [hog dust extract (HDE)] are potent stimulators of lung inflammatory responses in several model systems. The observation that HDE contains active proteases prompted the present study, which evaluated the role of CAFO dust proteases in lung inflammatory processes and tested whether protease-activated receptors (PARs) are involved in the signaling pathway for these events. We hypothesized that the damaging proinflammatory effect of HDE is due, in part, to the proteolytic activation of PARs, and inhibiting the proteases in HDE or disrupting PAR activation would attenuate HDE-mediated inflammatory indexes in bronchial epithelial cells (BECs), in mouse lung slices in vitro, and in a murine in vivo exposure model. Human BECs and mouse lung slice cultures stimulated with 5% HDE released significantly more of each of the cytokines measured (IL-6, IL-8, TNF-α, keratinocyte-derived chemokine/CXC chemokine ligand 1, and macrophage inflammatory protein-2/CXC chemokine ligand 2) than controls, and these effects were markedly diminished by protease inhibition. Inhibition of PARs also blunted the HDE-induced cytokine release from BECs. In addition, protease depletion inhibited HDE-induced BEC intracellular PKCα and PKCε activation. C57BL/6J mice administered 12.5% HDE intranasally, either once or daily for 3 wk, exhibited increased total cellular and neutrophil influx, bronchial alveolar fluid inflammatory cytokines, lung histopathology, and inflammatory scores compared with mice receiving protease-depleted HDE. These data suggest that proteases in dust from CAFOs are important mediators of lung inflammation, and these proteases and their receptors may provide novel targets for therapeutic intervention in CAFO dust-induced airways disease. PMID

  20. The soluble form of LR11 protein is a regulator of hypoxia-induced, urokinase-type plasminogen activator receptor (uPAR)-mediated adhesion of immature hematological cells.

    PubMed

    Nishii, Keigo; Nakaseko, Chiaki; Jiang, Meizi; Shimizu, Naomi; Takeuchi, Masahiro; Schneider, Wolfgang J; Bujo, Hideaki

    2013-04-26

    A key property of hematopoietic stem and progenitor cells (HSPCs) regarding differentiation from the self-renewing quiescent to the proliferating stage is their adhesion to the bone marrow (BM) niche. An important molecule involved in proliferation and pool size of HSPCs in the BM is the hypoxia-induced urokinase-type plasminogen activator receptor (uPAR). Here, we show that the soluble form (sLR11) of LR11 (also called SorLA or SORL1) modulates the uPAR-mediated attachment of HSPCs under hypoxic conditions. Immunohistochemical and mRNA expression analyses revealed that hypoxia increased LR11 expression in hematological c-Kit(+) Lin(-) cells. In U937 cells, hypoxia induced a transient rise in LR11 transcription, production of cellular protein, and release of sLR11. Attachment to stromal cells of c-Kit(+) Lin(-) cells of lr11(-/-) mice was reduced by hypoxia much more than of lr11(+/+) animals. sLR11 induced the adhesion of U937 and c-Kit(+) Lin(-) cells to stromal cells. Cell attachment was increased by sLR11 and reduced in the presence of anti-uPAR antibodies. Furthermore, the fraction of uPAR co-immunoprecipitated with LR11 in membrane extracts of U937 cells was increased by hypoxia. CoCl2, a chemical inducer of HIF-1α, enhanced the levels of LR11 and sLR11 in U937 cells. The decrease in hypoxia-induced attachment of HIF-1α-knockdown cells was largely prevented by exogenously added sLR11. Finally, hypoxia induced HIF-1α binding to a consensus binding site in the LR11 promoter. Thus, we conclude that sLR11 regulates the hypoxia-enhanced adhesion of HSPCs via an uPAR-mediated pathway that stabilizes the hematological pool size by controlling cell attachment to the BM niche. PMID:23486467

  1. Protease-activated-receptor-2 affects protease-activated-receptor-1-driven breast cancer.

    PubMed

    Jaber, Mohammad; Maoz, Miriam; Kancharla, Arun; Agranovich, Daniel; Peretz, Tamar; Grisaru-Granovsky, Sorina; Uziely, Beatrice; Bar-Shavit, Rachel

    2014-07-01

    Mammalian protease-activated-receptor-1 and -2 (PAR1 and PAR2) are activated by proteases found in the flexible microenvironment of a tumor and play a central role in breast cancer. We propose in the present study that PAR1 and PAR2 act together as a functional unit during malignant and physiological invasion processes. This notion is supported by assessing pro-tumor functions in the presence of short hairpin; shRNA knocked-down hPar2 or by the use of a truncated PAR2 devoid of the entire cytoplasmic tail. Silencing of hPar2 by shRNA-attenuated thrombin induced PAR1 signaling as recapitulated by inhibiting the assembly of Etk/Bmx or Akt onto PAR1-C-tail, by thrombin-instigated colony formation and invasion. Strikingly, shRNA-hPar2 also inhibited the TFLLRN selective PAR1 pro-tumor functions. In addition, while evaluating the physiological invasion process of placenta extravillous trophoblast (EVT) organ culture, we observed inhibition of both thrombin or the selective PAR1 ligand; TFLLRNPNDK induced EVT invasion by shRNA-hPar2 but not by scrambled shRNA-hPar2. In parallel, when a truncated PAR2 was utilized in a xenograft mouse model, it inhibited PAR1-PAR2-driven tumor growth in vivo. Similarly, it also attenuated the interaction of Etk/Bmx with the PAR1-C-tail in vitro and decreased markedly selective PAR1-induced Matrigel invasion. Confocal images demonstrated co-localization of PAR1 and PAR2 in HEK293T cells over-expressing YFP-hPar2 and HA-hPar1. Co-immuno-precipitation analyses revealed PAR1-PAR2 complex formation but no PAR1-CXCR4 complex was formed. Taken together, our observations show that PAR1 and PAR2 act as a functional unit in tumor development and placenta-uterus interactions. This conclusion may have significant consequences on future breast cancer therapeutic modalities and improved late pregnancy outcome. PMID:24177339

  2. Protease-activated receptors mediate crosstalk between coagulation and fibrinolysis.

    PubMed

    McEachron, Troy A; Pawlinski, Rafal; Richards, Kristy L; Church, Frank C; Mackman, Nigel

    2010-12-01

    The coagulation and fibrinolytic systems contribute to malignancy by increasing angiogenesis, tumor growth, tumor invasion, and tumor metastasis. Oncogenic transformation increases the expression of tissue factor (TF) that results in local generation of coagulation proteases and activation of protease-activated receptor (PAR)-1 and PAR-2. We compared the PAR-dependent expression of urokinase plasminogen activator (uPA) and plasminogen activator inhibitor (PAI)-1 in 2 murine mammary adencocarcinoma cell lines: metastatic 4T1 cells and nonmetastatic 67NR cells. 4T1 cells expressed TF, PAR-1 and PAR-2 whereas 67NR cells expressed TF and PAR-1. We also silenced PAR-1 or PAR-2 expression in the 4T1 cells. We discovered 2 distinct mechanisms for PAR-dependent expression of uPA and PAI-1. First, we found that factor Xa or thrombin activation of PAR-1 led to a rapid release of stored intracellular uPA into the culture supernatant. Second, thrombin transactivation of a PAR-1/PAR-2 complex resulted in increases in PAI-1 mRNA and protein expression. Cells lacking PAR-2 failed to express PAI-1 in response to thrombin and factor Xa did not activate the PAR-1/PAR-2 complex. Our results reveal how PAR-1 and PAR-2 on tumor cells mediate crosstalk between coagulation and fibrinolysis. PMID:20736455

  3. Protease-activated receptors mediate crosstalk between coagulation and fibrinolysis

    PubMed Central

    McEachron, Troy A.; Pawlinski, Rafal; Richards, Kristy L.; Church, Frank C.

    2010-01-01

    The coagulation and fibrinolytic systems contribute to malignancy by increasing angiogenesis, tumor growth, tumor invasion, and tumor metastasis. Oncogenic transformation increases the expression of tissue factor (TF) that results in local generation of coagulation proteases and activation of protease-activated receptor (PAR)-1 and PAR-2. We compared the PAR-dependent expression of urokinase plasminogen activator (uPA) and plasminogen activator inhibitor (PAI)-1 in 2 murine mammary adencocarcinoma cell lines: metastatic 4T1 cells and nonmetastatic 67NR cells. 4T1 cells expressed TF, PAR-1 and PAR-2 whereas 67NR cells expressed TF and PAR-1. We also silenced PAR-1 or PAR-2 expression in the 4T1 cells. We discovered 2 distinct mechanisms for PAR-dependent expression of uPA and PAI-1. First, we found that factor Xa or thrombin activation of PAR-1 led to a rapid release of stored intracellular uPA into the culture supernatant. Second, thrombin transactivation of a PAR-1/PAR-2 complex resulted in increases in PAI-1 mRNA and protein expression. Cells lacking PAR-2 failed to express PAI-1 in response to thrombin and factor Xa did not activate the PAR-1/PAR-2 complex. Our results reveal how PAR-1 and PAR-2 on tumor cells mediate crosstalk between coagulation and fibrinolysis. PMID:20736455

  4. An ELISA method detecting the active form of suPAR.

    PubMed

    Zhou, Xiaolei; Xu, Mingming; Huang, Hailong; Mazar, Andrew; Iqbal, Zafar; Yuan, Cai; Huang, Mingdong

    2016-11-01

    Urokinase plasminogen activator receptor (uPAR) exists in a number of formats in human plasma, including soluble uPAR (suPAR) and uPAR fragments. We developed an ELISA method to detect specifically the active form suPAR, which binds to its natural ligand uPA. The intra CV and inter CV of this ELISA assay is 8.5% and 9.6% respectively, and the assay can recover 99.74% of added recombinant suPAR from 10% plasma. This assay is quite sensitive, capable of detecting down to 15pg/ml of suPAR, and can measure suPAR concentrations in the range of 0.031-8ng/ml with high linear relationship. Plasma samples from pregnant women were also measured for the active form of suPAR with this assay, giving an averaged level of 1.39ng/ml, slightly higher than the level of pooled plasma from healthy donors (0.96ng/ml). This study demonstrates the feasibility to measure the active form of suPAR, which will likely have value in clinical applications. PMID:27591605

  5. Coagulation, Protease Activated Receptors and Viral Myocarditis

    PubMed Central

    Antoniak, Silvio; Mackman, Nigel

    2013-01-01

    The coagulation protease cascade plays an essential role in hemostasis. In addition, a clot contributes to host defense by limiting the spread of pathogens. Coagulation proteases induce intracellular signaling by cleavage of cell surface receptors called protease-activated receptors (PARs). These receptors allow cells to sense changes in the extracellular environment, such as infection. Viruses activate the coagulation cascade by inducing tissue factor expression and by disrupting the endothelium. Virus infection of the heart can cause myocarditis, cardiac remodeling and heart failure. Recent studies using a mouse model have shown that tissue factor, thrombin and PAR-1 signaling all positively regulate the innate immune during viral myocarditis. In contrast, PAR-2 signaling was found to inhibit interferon-β expression and the innate immune response. These observations suggest that anticoagulants may impair the innate immune response to viral infection and that inhibition of PAR-2 may be a new target to reduce viral myocarditis.. PMID:24203054

  6. Par-4: A New Activator of Myosin Phosphatase

    PubMed Central

    Vetterkind, Susanne; Lee, Eunhee; Sundberg, Eric; Poythress, Ransom H.; Tao, Terence C.; Preuss, Ute

    2010-01-01

    Myosin phosphatase (MP) is a key regulator of myosin light chain (LC20) phosphorylation, a process essential for motility, apoptosis, and smooth muscle contractility. Although MP inhibition is well studied, little is known about MP activation. We have recently demonstrated that prostate apoptosis response (Par)-4 modulates vascular smooth muscle contractility. Here, we test the hypothesis that Par-4 regulates MP activity directly. We show, by proximity ligation assays, surface plasmon resonance and coimmunoprecipitation, that Par-4 interacts with the targeting subunit of MP, MYPT1. Binding is mediated by the leucine zippers of MYPT1 and Par-4 and reduced by Par-4 phosphorylation. Overexpression of Par-4 leads to increased phosphatase activity of immunoprecipitated MP, whereas small interfering RNA knockdown of endogenous Par-4 significantly decreases MP activity and increases MYPT1 phosphorylation. LC20 phosphorylation assays demonstrate that overexpression of Par-4 reduces LC20 phosphorylation. In contrast, a phosphorylation site mutant, but not wild-type Par-4, interferes with zipper-interacting protein kinase (ZIPK)-mediated MP inhibition. We conclude from our results Par-4 operates through a “padlock” model in which binding of Par-4 to MYPT1 activates MP by blocking access to the inhibitory phosphorylation sites, and inhibitory phosphorylation of MYPT1 by ZIPK requires “unlocking” of Par-4 by phosphorylation and displacement of Par-4 from the MP complex. PMID:20130087

  7. PAR2-dependent activation of GSK3β regulates the survival of colon stem/progenitor cells.

    PubMed

    Nasri, Imen; Bonnet, Delphine; Zwarycz, Bailey; d'Aldebert, Emilie; Khou, Sokchea; Mezghani-Jarraya, Raoudha; Quaranta, Muriel; Rolland, Corinne; Bonnart, Chrystelle; Mas, Emmanuel; Ferrand, Audrey; Cenac, Nicolas; Magness, Scott; Van Landeghem, Laurianne; Vergnolle, Nathalie; Racaud-Sultan, Claire

    2016-08-01

    Protease-activated receptors PAR1 and PAR2 play an important role in the control of epithelial cell proliferation and migration. However, the survival of normal and tumor intestinal stem/progenitor cells promoted by proinflammatory mediators may be critical in oncogenesis. The glycogen synthase kinase-3β (GSK3β) pathway is overactivated in colon cancer cells and promotes their survival and drug resistance. We thus aimed to determine PAR1 and PAR2 effects on normal and tumor intestinal stem/progenitor cells and whether they involved GSK3β. First, PAR1 and PAR2 were identified in colon stem/progenitor cells by immunofluorescence. In three-dimensional cultures of murine crypt units or single tumor Caco-2 cells, PAR2 activation decreased numbers and size of normal or cancerous spheroids, and PAR2-deficient spheroids showed increased proliferation, indicating that PAR2 represses proliferation. PAR2-stimulated normal cells were more resistant to stress (serum starvation or spheroid passaging), suggesting prosurvival effects of PAR2 Accordingly, active caspase-3 was strongly increased in PAR2-deficient normal spheroids. PAR2 but not PAR1 triggered GSK3β activation through serine-9 dephosphorylation in normal and tumor cells. The PAR2-triggered GSK3β activation implicates an arrestin/PP2A/GSK3β complex that is dependent on the Rho kinase activity. Loss of PAR2 was associated with high levels of GSK3β nonactive form, strengthening the role of PAR2 in GSK3β activation. GSK3 pharmacological inhibition impaired the survival of PAR2-stimulated spheroids and serum-starved cells. Altogether our data identify PAR2/GSK3β as a novel pathway that plays a critical role in the regulation of stem/progenitor cell survival and proliferation in normal colon crypts and colon cancer. PMID:27313176

  8. The emerging role of the thrombin receptor (PAR-1) in melanoma metastasis--a possible therapeutic target.

    PubMed

    Villares, Gabriel J; Zigler, Maya; Bar-Eli, Menashe

    2011-01-01

    Melanoma remains as the deadliest form of skin cancer with limited and inefficient treatment options available for patients with metastatic disease. Within the last decade, the thrombin receptor, Protease Activated Receptor-1, has been described as an essential gene involved in the progression of human melanoma. PAR-1 is known to activate adhesive, invasive and angiogenic factors to promote melanoma metastasis. It is overexpressed not only in metastatic melanoma cell lines but is also highly expressed in metastatic lesions as compared to primary nevi and normal skin. Recently, PAR-1 has been described to regulate the gap junction protein Connexin 43 and the tumor suppressor gene Maspin to promote the metastatic melanoma phenotype. Herein, we review the role of PAR-1 in the progression of melanoma as well as utilizing PAR-1-regulated genes as potential therapeutic targets for melanoma treatment. PMID:21378407

  9. Novel mechanisms for activated protein C cytoprotective activities involving noncanonical activation of protease-activated receptor 3

    PubMed Central

    Burnier, Laurent

    2013-01-01

    The direct cytoprotective activities of activated protein C (APC) on cells convey therapeutic, relevant, beneficial effects in injury and disease models in vivo and require the endothelial protein C receptor (EPCR) and protease activated receptor 1 (PAR1). Thrombin also activates PAR1, but its effects on cells contrast APC’s cytoprotective effects. To gain insights into mechanisms for these contrasting cellular effects, protease activated receptor 3 (PAR3) activation by APC and thrombin was studied. APC cleaved PAR3 on transfected and endothelial cells in the presence of EPCR. Remarkably, APC cleaved a synthetic PAR3 N-terminal peptide at Arg41, whereas thrombin cleaved at Lys38. On cells, APC failed to cleave R41Q-PAR3, whereas K38Q-PAR3 was still cleaved by APC but not by thrombin. PAR3 tethered-ligand peptides beginning at amino acid 42, but not those beginning at amino acid 39, conveyed endothelial barrier-protective effects. In vivo, the APC-derived PAR3 tethered-ligand peptide, but not the thrombin-derived PAR3 peptide, blunted vascular endothelial growth factor (VEGF)-induced vascular permeability. These data indicate that PAR3 cleavage by APC at Arg41 can initiate distinctive APC-like cytoprotective effects. These novel insights help explain the differentiation of APC’s cytoprotective versus thrombin’s proinflammatory effects on cells and suggest a unique contributory role for PAR3 in the complex mechanisms underlying APC cytoprotective effects. PMID:23788139

  10. The tumor suppressor Par-4 activates an extrinsic pathway for apoptosis.

    PubMed

    Burikhanov, Ravshan; Zhao, Yanming; Goswami, Anindya; Qiu, Shirley; Schwarze, Steven R; Rangnekar, Vivek M

    2009-07-23

    Prostate apoptosis response-4 (Par-4) is a proapoptotic protein with intracellular functions in the cytoplasm and nucleus. Unexpectedly, we noted Par-4 protein is spontaneously secreted by normal and cancer cells in culture, and by Par-4 transgenic mice that are resistant to spontaneous tumors. Short exposure to endoplasmic reticulum (ER) stress-inducing agents further increased cellular secretion of Par-4 by a brefeldin A-sensitive pathway. Secretion occurred independently of caspase activation and apoptosis. Interestingly, extracellular Par-4 induced apoptosis by binding to the stress response protein, glucose-regulated protein-78 (GRP78), expressed at the surface of cancer cells. The interaction of extracellular Par-4 and cell surface GRP78 led to apoptosis via ER stress and activation of the FADD/caspase-8/caspase-3 pathway. Moreover, apoptosis inducible by TRAIL, which also exerts cancer cell-specific effects, is dependent on extracellular Par-4 signaling via cell surface GRP78. Thus, Par-4 activates an extrinsic pathway involving cell surface GRP78 receptor for induction of apoptosis. PMID:19632185

  11. The tyrosine kinase inhibitor bafetinib inhibits PAR2-induced activation of TRPV4 channels in vitro and pain in vivo

    PubMed Central

    Grace, M S; Lieu, T; Darby, B; Abogadie, F C; Veldhuis, N; Bunnett, N W; McIntyre, P

    2014-01-01

    BACKGROUND AND PURPOSE Protease-activated receptor 2 (PAR2) is expressed on nociceptive neurons, and can sensitize transient receptor potential (TRP) ion channels to amplify neurogenic inflammation and pain. The mechanisms by which this occurs are not fully understood. PAR2 causes receptor-operated activation of TRPV4 channels and TRPV4 null mice have attenuated PAR2-stimulated neurogenic inflammation and mechanical hyperalgesia. Here we investigate the intracellular signalling mechanisms underlying PAR2-induced TRPV4 channel activation and pain. EXPERIMENTAL APPROACH Responses of non-transfected and TRPV4-transfected HEK293 cells to agonists of PAR2 (trypsin and SLIGRL) and TRPV4 channels (GSK1016790A) were determined using calcium imaging. Inhibitors of TRPV4 channels (HC067047), sarcoendoplasmic reticulum calcium transport ATPase (thapsigargin), Gαq (UBO-QIC), tyrosine kinases (bafetinib and dasatinib) or PI3 kinases (wortmannin and LY294002) were used to investigate signalling mechanisms. In vivo effects of tyrosine kinase inhibitors on PAR2-induced mechanical hyperalgesia were assessed in mice. KEY RESULTS In non-transfected HEK293 cells, PAR2 activation transiently increased intracellular calcium ([Ca2+]i). Functional expression of TRPV4 channels caused a sustained increase of [Ca2+]i, inhibited by HC067047, bafetinib and wortmannin; but not by thapsigargin, UBO-QIC, dasatinib or LY294002. Bafetinib but not dasatinib inhibited PAR2-induced mechanical hyperalgesia in vivo. CONCLUSIONS AND IMPLICATIONS This study supports a role for tyrosine kinases in PAR2-mediated receptor-operated gating of TRPV4 channels, independent of Gαq stimulation. The ability of a tyrosine kinase inhibitor to diminish PAR2-induced activation of TRPV4 channels and consequent mechanical hyperalgesia identifies bafetinib (which is in development in oncology) as a potential novel analgesic therapy. PMID:24779362

  12. Factor Xa stimulates fibroblast procollagen production, proliferation, and calcium signaling via PAR{sub 1} activation

    SciTech Connect

    Blanc-Brude, Olivier P. . E-mail: olivier.blanc-brude@larib.inserm.fr; Archer, Fabienne; Leoni, Patricia; Derian, Claudia; Bolsover, Steven; Laurent, Geoffrey J.; Chambers, Rachel C.

    2005-03-10

    Fibroblast proliferation and procollagen production are central features of tissue repair and fibrosis. In addition to its role in blood clotting, the coagulation cascade proteinase thrombin can contribute to tissue repair by stimulating fibroblasts via proteolytic activation of proteinase-activated receptor-1 (PAR{sub 1}). During hemostasis, the coagulation cascade proteinase factor X is converted into factor Xa. We have previously shown that factor Xa upregulates fibroblast proliferation via production of autocrine PDGF. In this study, we further examined the effects of factor Xa on fibroblast function and aimed to identify its signaling receptor. We showed that factor Xa stimulates procollagen promoter activity and protein production by human and mouse fibroblasts. This effect was independent of PDGF and thrombin production, but dependent on factor Xa proteolytic activity. We also showed that PAR{sub 1}-deficient mouse fibroblasts did not upregulate procollagen production, mobilize cytosolic calcium, or proliferate in response to factor Xa. Desensitization techniques and PAR{sub 1}-specific agonists and inhibitors were used to demonstrate that PAR{sub 1} mediates factor Xa signaling in human fibroblasts. This is the first report that factor Xa stimulates extracellular matrix production. In contrast with endothelial cells and vascular smooth muscle cells, fibroblasts appear to be the only cell type in which the effects of factor Xa are mediated mainly via PAR{sub 1} and not PAR{sub 2}. These findings are critical for our understanding of tissue repair and fibrotic mechanisms, and for the design of novel approaches to inhibit the profibrotic effects of the coagulation cascade without compromising blood hemostasis.

  13. Evolution of the protease-activated receptor family in vertebrates

    PubMed Central

    JIN, MIN; YANG, HAI-WEI; TAO, AI-LIN; WEI, JI-FU

    2016-01-01

    Belonging to the G protein-coupled receptor (GPcr) family, the protease-activated receptors (Pars) consist of 4 members, PAR1-4. PARs mediate the activation of cells via thrombin, serine and other proteases. Such protease-triggered signaling events are thought to be critical for hemostasis, thrombosis and other normal pathological processes. In the present study, we examined the evolution of PARs by analyzing phylogenetic trees, chromosome location, selective pressure and functional divergence based on the 169 functional gene alignment sequences from 57 vertebrate gene sequences. We found that the 4 PARs originated from 4 invertebrate ancestors by phylogenetic trees analysis. The selective pressure results revealed that only PAR1 appeared by positive selection during its evolution, while the other PAR members did not. In addition, we noticed that although these PARs evolved separately, the results of functional divergence indicated that their evolutional rates were similar and their functions did not significantly diverge. The findings of our study provide valuable insight into the evolutionary history of the vertebrate PAR family. PMID:26820116

  14. Evaluation on Potential Contributions of Protease Activated Receptors Related Mediators in Allergic Inflammation

    PubMed Central

    Zhang, Huiyun; Zeng, Xiaoning; He, Shaoheng

    2014-01-01

    Protease activated receptors (PARs) have been recognized as a distinctive four-member family of seven transmembrane G protein-coupled receptors (GPCRs) that can be cleaved by certain serine proteases. In recent years, there has been considerable interest in the role of PARs in allergic inflammation, the fundamental pathologic changes of allergy, but the potential roles of PARs in allergy remain obscure. Since many of these proteases are produced and actively involved in the pathologic process of inflammation including exudation of plasma components, inflammatory cell infiltration, and tissue damage and repair, PARs appear to make important contribution to allergy. The aim of the present review is to summarize the expression of PARs in inflammatory and structural cells, the influence of agonists or antagonists of PARs on cell behavior, and the involvement of PARs in allergic disorders, which will help us to better understand the roles of serine proteases and PARs in allergy. PMID:24876677

  15. Differential Signaling by Protease-Activated Receptors: Implications for Therapeutic Targeting

    PubMed Central

    Sidhu, Tejminder S.; French, Shauna L.; Hamilton, Justin R.

    2014-01-01

    Protease-activated receptors (PARs) are a family of four G protein-coupled receptors that exhibit increasingly appreciated differences in signaling and regulation both within and between the receptor class. By nature of their proteolytic self-activation mechanism, PARs have unique processes of receptor activation, “ligand” binding, and desensitization/resensitization. These distinctive aspects have presented both challenges and opportunities in the targeting of PARs for therapeutic benefit—the most notable example of which is inhibition of PAR1 on platelets for the prevention of arterial thrombosis. However, more recent studies have uncovered further distinguishing features of PAR-mediated signaling, revealing mechanisms by which identical proteases elicit distinct effects in the same cell, as well as how distinct proteases produce different cellular consequences via the same receptor. Here we review this differential signaling by PARs, highlight how important distinctions between PAR1 and PAR4 are impacting on the progress of a new class of anti-thrombotic drugs, and discuss how these more recent insights into PAR signaling may present further opportunities for manipulating PAR activation and signaling in the development of novel therapies. PMID:24733067

  16. Crosstalk between Protease-activated Receptor 1 and Platelet-activating Factor Receptor Regulates Melanoma Cell Adhesion Molecule (MCAM/MUC18) Expression and Melanoma Metastasis*

    PubMed Central

    Melnikova, Vladislava O.; Balasubramanian, Krishnakumar; Villares, Gabriel J.; Dobroff, Andrey S.; Zigler, Maya; Wang, Hua; Petersson, Frederik; Price, Janet E.; Schroit, Alan; Prieto, Victor G.; Hung, Mien-Chie; Bar-Eli, Menashe

    2009-01-01

    The cellular and molecular pathways that regulate platelet activation, blood coagulation, and inflammation are emerging as critical players in cancer progression and metastasis. Here, we demonstrate a novel signaling mechanism whereby protease-activated receptor 1 (PAR1) mediates expression of melanoma cell adhesion molecule MCAM/MUC18 (MUC18), a critical marker of melanoma metastasis, via activation of platelet-activating factor receptor (PAFR) and cAMP-responsive element-binding protein (CREB). We found that PAR1 silencing with small hairpin RNA inhibits MUC18 expression in metastatic melanoma cells by inhibiting CREB phosphorylation, activity, and binding to the MUC18 promoter. We further demonstrate that the PAF/PAFR pathway mediates MUC18 expression downstream of PAR1. Indeed, PAR1 silencing down-regulates PAFR expression and PAF production, PAFR silencing blocks MUC18 expression, and re-expression of PAFR in PAR1-silenced cells rescues MUC18 expression. We further demonstrate that the PAR1-PAFR-MUC18 pathway mediates melanoma cell adhesion to microvascular endothelial cells, transendothelial migration, and metastatic retention in the lungs. Rescuing PAFR expression in PAR1-silenced cells fully restores metastatic phenotype of melanoma, indicating that PAFR plays critical role in the molecular mechanism of PAR1 action. Our results link the two pro-inflammatory G-protein-coupled receptors, PAR1 and PAFR, with the metastatic dissemination of melanoma and suggest that PAR1, PAFR, and MUC18 are attractive therapeutic targets for preventing melanoma metastasis. PMID:19703903

  17. Crosstalk between protease-activated receptor 1 and platelet-activating factor receptor regulates melanoma cell adhesion molecule (MCAM/MUC18) expression and melanoma metastasis.

    PubMed

    Melnikova, Vladislava O; Balasubramanian, Krishnakumar; Villares, Gabriel J; Dobroff, Andrey S; Zigler, Maya; Wang, Hua; Petersson, Frederik; Price, Janet E; Schroit, Alan; Prieto, Victor G; Hung, Mien-Chie; Bar-Eli, Menashe

    2009-10-16

    The cellular and molecular pathways that regulate platelet activation, blood coagulation, and inflammation are emerging as critical players in cancer progression and metastasis. Here, we demonstrate a novel signaling mechanism whereby protease-activated receptor 1 (PAR1) mediates expression of melanoma cell adhesion molecule MCAM/MUC18 (MUC18), a critical marker of melanoma metastasis, via activation of platelet-activating factor receptor (PAFR) and cAMP-responsive element-binding protein (CREB). We found that PAR1 silencing with small hairpin RNA inhibits MUC18 expression in metastatic melanoma cells by inhibiting CREB phosphorylation, activity, and binding to the MUC18 promoter. We further demonstrate that the PAF/PAFR pathway mediates MUC18 expression downstream of PAR1. Indeed, PAR1 silencing down-regulates PAFR expression and PAF production, PAFR silencing blocks MUC18 expression, and re-expression of PAFR in PAR1-silenced cells rescues MUC18 expression. We further demonstrate that the PAR1-PAFR-MUC18 pathway mediates melanoma cell adhesion to microvascular endothelial cells, transendothelial migration, and metastatic retention in the lungs. Rescuing PAFR expression in PAR1-silenced cells fully restores metastatic phenotype of melanoma, indicating that PAFR plays critical role in the molecular mechanism of PAR1 action. Our results link the two pro-inflammatory G-protein-coupled receptors, PAR1 and PAFR, with the metastatic dissemination of melanoma and suggest that PAR1, PAFR, and MUC18 are attractive therapeutic targets for preventing melanoma metastasis. PMID:19703903

  18. The role of protease-activated receptor type 2 in nociceptive signaling and pain.

    PubMed

    Mrozkova, P; Palecek, J; Spicarova, D

    2016-07-18

    Protease-activated receptors (PARs) belong to the G-protein-coupled receptor family, that are expressed in many body tissues especially in different epithelial cells, mast cells and also in neurons and astrocytes. PARs play different physiological roles according to the location of their expression. Increased evidence supports the importance of PARs activation during nociceptive signaling and in the development of chronic pain states. This short review focuses on the role of PAR2 receptors in nociceptive transmission with the emphasis on the modulation at the spinal cord level. PAR2 are cleaved and subsequently activated by endogenous proteases such as tryptase and trypsin. In vivo, peripheral and intrathecal administration of PAR2 agonists induces thermal and mechanical hypersensitivity that is thought to be mediated by PAR2-induced release of pronociceptive neuropeptides and modulation of different receptors. PAR2 activation leads also to sensitization of transient receptor potential channels (TRP) that are crucial for nociceptive signaling and modulation. PAR2 receptors may play an important modulatory role in the development and maintenance of different pathological pain states and could represent a potential target for new analgesic treatments. PMID:27070742

  19. Protease-activated receptor 4 deficiency offers cardioprotection after acute ischemia reperfusion injury.

    PubMed

    Kolpakov, Mikhail A; Rafiq, Khadija; Guo, Xinji; Hooshdaran, Bahman; Wang, Tao; Vlasenko, Liudmila; Bashkirova, Yulia V; Zhang, Xiaoxiao; Chen, Xiongwen; Iftikhar, Sahar; Libonati, Joseph R; Kunapuli, Satya P; Sabri, Abdelkarim

    2016-01-01

    Protease-activated receptor (PAR)4 is a low affinity thrombin receptor with less understood function relative to PAR1. PAR4 is involved in platelet activation and hemostasis, but its specific actions on myocyte growth and cardiac function remain unknown. This study examined the role of PAR4 deficiency on cardioprotection after myocardial ischemia-reperfusion (IR) injury in mice. When challenged by in vivo or ex vivo IR, PAR4 knockout (KO) mice exhibited increased tolerance to injury, which was manifest as reduced infarct size and a more robust functional recovery compared to wild-type mice. PAR4 KO mice also showed reduced cardiomyocyte apoptosis and putative signaling shifts in survival pathways in response to IR. Inhibition of PAR4 expression in isolated cardiomyocytes by shRNA offered protection against thrombin and PAR4-agonist peptide-induced apoptosis, while overexpression of wild-type PAR4 significantly enhanced the susceptibility of cardiomyocytes to apoptosis, even under low thrombin concentrations. Further studies implicate Src- and epidermal growth factor receptor-dependent activation of JNK on the proapoptotic effect of PAR4 in cardiomyocytes. These findings reveal a pivotal role for PAR4 as a regulator of cardiomyocyte survival and point to PAR4 inhibition as a therapeutic target offering cardioprotection after acute IR injury. PMID:26643815

  20. Allosteric Activation of a G Protein-coupled Receptor with Cell-penetrating Receptor Mimetics*

    PubMed Central

    Zhang, Ping; Leger, Andrew J.; Baleja, James D.; Rana, Rajashree; Corlin, Tiffany; Nguyen, Nga; Koukos, Georgios; Bohm, Andrew; Covic, Lidija; Kuliopulos, Athan

    2015-01-01

    G protein-coupled receptors (GPCRs) are remarkably versatile signaling systems that are activated by a large number of different agonists on the outside of the cell. However, the inside surface of the receptors that couple to G proteins has not yet been effectively modulated for activity or treatment of diseases. Pepducins are cell-penetrating lipopeptides that have enabled chemical and physical access to the intracellular face of GPCRs. The structure of a third intracellular (i3) loop agonist, pepducin, based on protease-activated receptor-1 (PAR1) was solved by NMR and found to closely resemble the i3 loop structure predicted for the intact receptor in the on-state. Mechanistic studies revealed that the pepducin directly interacts with the intracellular H8 helix region of PAR1 and allosterically activates the receptor through the adjacent (D/N)PXXYYY motif through a dimer-like mechanism. The i3 pepducin enhances PAR1/Gα subunit interactions and induces a conformational change in fluorescently labeled PAR1 in a very similar manner to that induced by thrombin. As pepducins can potentially be made to target any GPCR, these data provide insight into the identification of allosteric modulators to this major drug target class. PMID:25934391

  1. Targeting Protease-Activated Receptor-1 with Cell-Penetrating Pepducins in Lung Cancer

    PubMed Central

    Cisowski, Jaroslaw; O'Callaghan, Katie; Kuliopulos, Athan; Yang, John; Nguyen, Nga; Deng, Qing; Yang, Eric; Fogel, Michael; Tressel, Sarah; Foley, Caitlin; Agarwal, Anika; Hunt, Stephen W.; McMurry, Tom; Brinckerhoff, Larry; Covic, Lidija

    2011-01-01

    Protease-activated receptors (PARs) are G-protein–coupled receptors that are activated by proteolytic cleavage and generation of a tethered ligand. High PAR1 expression has been documented in a variety of invasive cancers of epithelial origin. In the present study, we investigated the contribution of the four PAR family members to motility of lung carcinomas and primary tumor samples from patients. We found that of the four PARs, only PAR1 expression was highly increased in the lung cancer cell lines. Primary lung cancer cells isolated from patient lung tumors migrated at a 10- to 40-fold higher rate than epithelial cells isolated from nonmalignant lung tissue. Cell-penetrating pepducin inhibitors were generated against the first (i1) and third (i3) intracellular loops of PAR1 and tested for their ability to inhibit PAR1-driven migration and extracellular regulated kinase (ERK)1/2 activity. The PAR1 pepducins showed significant inhibition of cell migration in both primary and established cell lines similar to silencing of PAR1 expression with short hairpin RNA (shRNA). Unlike i1 pepducins, the i3 loop pepducins were effective inhibitors of PAR1-mediated ERK activation and tumor growth. Comparable in efficacy with Bevacizumab, monotherapy with the PAR1 i3 loop pepducin P1pal-7 provided significant 75% inhibition of lung tumor growth in nude mice. We identify the PAR1–ERK1/2 pathway as a feasible target for therapy in lung cancer. PMID:21703428

  2. Anti-Urokinase Receptor Antisense Oligonucleotide (uPAR-aODN) to Prevent and Cure Long-Term Space Exploration-Related Retinal Pathological Angiogenesis

    NASA Astrophysics Data System (ADS)

    Lazzarano, Stefano; Lulli, Matteo; Fibbi, Gabriella; Margheri, Francesca; Papucci, Laura; Serrati, Simona; Witort, Ewa; Chilla, Anastasia; Lapucci, Andrea; Donnini, Martino; Quaglierini, Paolo; Romiti, Alice; Specogna, Rebecca; Del Rosso, Mario; Capaccioli, Sergio

    2008-06-01

    Angiogenesis underlies a variety of physiological processes and its possible deregulation during long term space exploration needs to be investigated. Angiogenesis is a multistep process of new blood capillary formation, where degradation of the extracellular matrix (ECM) by proteolytic enzymes, including uPA (urokinase plasminogen activator) and opening the way to migration of endothelial cells (EC), is critical. Plasminogen activation system regulates angiogenesis by both uPA-driven ECM degradation and uPA receptor (uPAR). Microgravity and low dose irradiations promote tissue neoangiogeenesis and neovascularization is often common occurence in ophthalmologic pathologies. We have designed and patented the uPAR antisense oligonucleotide (aODN) and evaluated its antiangiogenetic activity by EC cellular migration and capillary morphogenesis assays. The uPAR aODN treatment caused a 75% inhibition of human microvascular EC migration and a complete inhibition of capillary morphogenesis, suggesting its therapeutic application to prevent neoangiogenesis-related ophthalmologic pathologies during space exploration.

  3. Activation of protease-activated receptor 2 reduces glioblastoma cell apoptosis

    PubMed Central

    2014-01-01

    Background The pathogenesis of glioma is unclear. The disturbance of the apoptosis process plays a critical role in glioma growth. Factors regulating the apoptosis process are to be further understood. This study aims to investigate the role of protease activated receptor-2 (PAR2) in regulation the apoptosis process in glioma cells. Results The results showed that U87 cells and human glioma tissue expressed PAR2. Exposure to tryptase, or the PAR2 active peptide, increased STAT3 phosphorylation in the radiated U87 cells, reduced U87 cell apoptosis, suppressed the expression of p53 in U87 cells. Conclusions Activation of PAR2 can reduce the radiated U87 cell apoptosis via modulating the expression of p53. The results implicate that PAR2 may be a novel therapeutic target in the treatment of glioma. PMID:24670244

  4. Activated protein C promotes breast cancer cell migration through interactions with EPCR and PAR-1

    SciTech Connect

    Beaulieu, Lea M.; Church, Frank C. . E-mail: fchurch@email.unc.edu

    2007-02-15

    Activated protein C (APC) is a serine protease that regulates thrombin (IIa) production through inactivation of blood coagulation factors Va and VIIIa. APC also has non-hemostatic functions related to inflammation, proliferation, and apoptosis through various mechanisms. Using two breast cancer cell lines, MDA-MB-231 and MDA-MB-435, we investigated the role of APC in cell chemotaxis and invasion. Treatment of cells with increasing APC concentrations (1-50 {mu}g/ml) increased invasion and chemotaxis in a concentration-dependent manner. Only the active form of APC increased invasion and chemotaxis of the MDA-MB-231 cells when compared to 3 inactive APC derivatives. Using a modified 'checkerboard' analysis, APC was shown to only affect migration when plated with the cells; therefore, APC is not a chemoattractant. Blocking antibodies to endothelial protein C receptor (EPCR) and protease-activated receptor-1 (PAR-1) attenuated the effects of APC on chemotaxis in the MDA-MB-231 cells. Finally, treatment of the MDA-MB-231 cells with the proliferation inhibitor, Na butyrate, showed that APC did not increase migration by increasing cell number. Therefore, APC increases invasion and chemotaxis of cells by binding to the cell surface and activating specific signaling pathways through EPCR and PAR-1.

  5. Differences in PAR-2 activating potential by king crab (Paralithodes camtschaticus), salmon (Salmo salar), and bovine (Bos taurus) trypsin

    PubMed Central

    2013-01-01

    Background Salmon trypsin is shown to increase secretion of the pro-inflammatory cytokine interleukin (IL)-8 from human airway epithelial cells through activation of PAR-2. Secretion of IL-8 induced by king crab trypsin is observed in a different concentration range compared to salmon trypsin, and seems to be only partially related to PAR-2 activation. This report aim to identify differences in the molecular structure of king crab trypsin (Paralithodes camtschaticus) compared to salmon (Salmo salar) and bovine trypsin (Bos taurus) that might influence the ability to activate protease-activated receptor-2 (PAR-2). Results During purification king crab trypsin displayed stronger binding capacity to the anionic column used in fast protein liquid chromatography compared to fish trypsins, and was identified as a slightly bigger molecule. Measurements of enzymatic activity yielded no obvious differences between the trypsins tested. Molecular modelling showed that king crab trypsin has a large area with strong negative electrostatic potential compared to the smaller negative areas in bovine and salmon trypsins. Bovine and salmon trypsins also displayed areas with strong positive electrostatic potential, a feature lacking in the king crab trypsin. Furthermore we have identified 3 divergent positions (Asp196, Arg244, and Tyr247) located near the substrate binding pocket of king crab trypsin that might affect the binding and cleavage of PAR-2. Conclusion These preliminary results indicate that electrostatic interactions could be of importance in binding, cleavage and subsequent activation of PAR-2. PMID:23870109

  6. Signaling-mediated cooperativity between glycoprotein Ib-IX and protease-activated receptors in thrombin-induced platelet activation.

    PubMed

    Estevez, Brian; Kim, Kyungho; Delaney, M Keegan; Stojanovic-Terpo, Aleksandra; Shen, Bo; Ruan, Changgeng; Cho, Jaehyung; Ruggeri, Zaverio M; Du, Xiaoping

    2016-02-01

    Thrombin-induced cellular response in platelets not only requires protease-activated receptors (PARs), but also involves another thrombin receptor, the glycoprotein Ib-IX complex (GPIb-IX). It remains controversial how thrombin binding to GPIb-IX stimulates platelet responses. It was proposed that GPIb-IX serves as a dock that facilitates thrombin cleavage of protease-activated receptors, but there are also reports suggesting that thrombin binding to GPIb-IX induces platelet activation independent of PARs. Here we show that GPIb is neither a passive thrombin dock nor a PAR-independent signaling receptor. We demonstrate a novel signaling-mediated cooperativity between PARs and GPIb-IX. Low-dose thrombin-induced PAR-dependent cell responses require the cooperativity of GPIb-IX signaling, and conversely, thrombin-induced GPIb-IX signaling requires cooperativity of PARs. This mutually dependent cooperativity requires a GPIb-IX-specific 14-3-3-Rac1-LIMK1 signaling pathway, and activation of this pathway also requires PAR signaling. The cooperativity between GPIb-IX signaling and PAR signaling thus drives platelet activation at low concentrations of thrombin, which are important for in vivo thrombosis. PMID:26585954

  7. Pravastatin and C reactive protein modulate protease- activated receptor-1 expression in vitro blood platelets.

    PubMed

    Chu, L-X; Zhou, S-X; Yang, F; Qin, Y-Q; Liang, Z-S; Mo, C-G; Wang, X-D; Xie, J; He, L-P

    2016-01-01

    Protease-activated receptor-1 (PAR-1) plays an important role in mediating activation of human platelets by thrombin. However, mechanism of statin in ADP-induced platelet PAR-1 expression is also unknown. Aggregometry, flow cytometry, immunoblotting and ELISA were used to determine role of pravastatin participating in ADP-induced platelet activation and PAR-1 expression. ADP stimulation significantly increased PAR-1 expression on platelets. PAR-1 antagonist SCH-79797 inhibited platelet aggregation as well as decreased platelet P-selectin expression induced by ADP. CRP inhibited PAR-1 expression induced by ADP in a concentration-dependent manner. Pravastatin treatment reduced PAR-1 expression in a concentration-dependent manner. Combination treatment of CRP and Pravastatin significantly reduced platelet PAR-1 expression induced by ADP. By western-blot analysis, pravastatin treatment did not influence total PAR-1 after ADP treatment. CRP decreased platelet total PAR-1 expression induced by ADP. Pravastatin and CRP reduced TXB2 formation by ADP significantly. CRP decreased thrombin fragment F1+2 level with ADP treatment. Pravastatin, in contrast, did not influence F1+2 level. Upon treatment with Pravastatin reduced platelet LOX-1 expression induced by ADP. In conclusion, PAR-1 served as a critical mechanism to relay platelet activation process induced by ADP. CRP and pravastatin reduce PAR-1 expression in platelet by ADP pathway. PMID:26950455

  8. Protease-activated receptor-1 deficiency protects against streptozotocin-induced diabetic nephropathy in mice.

    PubMed

    Waasdorp, Maaike; Duitman, JanWillem; Florquin, Sandrine; Spek, C Arnold

    2016-01-01

    Endogenously administered activated protein C ameliorates diabetic nephropathy (DN) in a protease-activated receptor-1 (PAR-1)-dependent manner, suggesting that PAR-1 activation limits the progression of DN. Activation of PAR-1 in fibroblast-like cells, however, induces proliferation and extracellular matrix production, thereby driving fibrotic disease. Considering the key role of mesangial proliferation and extracellular matrix production during DN, PAR-1 may in fact potentiate diabetes-induced kidney injury. To determine the net effect of PAR-1 in DN, streptozotocin-induced DN was studied in wild type and PAR-1 deficient mice. Subsequent mechanistic insight was obtained by assessing profibrotic responses of mesangial and tubular epithelial cells in vitro, following PAR-1 stimulation and inhibition. Despite having similar glucose levels, PAR-1 deficient mice developed less kidney damage after induction of diabetes, as evidenced by diminished proteinuria, plasma cystatin C levels, expansion of the mesangial area, and tubular atrophy. In vitro, PAR-1 signaling in mesangial cells led to increased proliferation and expression of matrix proteins fibronectin and collagen IV. Conversely, a reduction in both proliferation and fibronectin deposition was observed in diabetic PAR-1 deficient mice. Overall, we show that PAR-1 plays an important role in the development of DN and PAR-1 might therefore be an attractive therapeutic target to pursue in DN. PMID:27618774

  9. Store-Operated Ca2+ Release-Activated Ca2+ Channels Regulate PAR2-Activated Ca2+ Signaling and Cytokine Production in Airway Epithelial Cells.

    PubMed

    Jairaman, Amit; Yamashita, Megumi; Schleimer, Robert P; Prakriya, Murali

    2015-09-01

    The G-protein-coupled protease-activated receptor 2 (PAR2) plays an important role in the pathogenesis of various inflammatory and auto-immune disorders. In airway epithelial cells (AECs), stimulation of PAR2 by allergens and proteases triggers the release of a host of inflammatory mediators to regulate bronchomotor tone and immune cell recruitment. Activation of PAR2 turns on several cell signaling pathways of which the mobilization of cytosolic Ca(2+) is likely a critical but poorly understood event. In this study, we show that Ca(2+) release-activated Ca(2+) (CRAC) channels encoded by stromal interaction molecule 1 and Orai1 are a major route of Ca(2+) entry in primary human AECs and drive the Ca(2+) elevations seen in response to PAR2 activation. Activation of CRAC channels induces the production of several key inflammatory mediators from AECs including thymic stromal lymphopoietin, IL-6, and PGE2, in part through stimulation of gene expression via nuclear factor of activated T cells (NFAT). Furthermore, PAR2 stimulation induces the production of many key inflammatory mediators including PGE2, IL-6, IL-8, and GM-CSF in a CRAC channel-dependent manner. These findings indicate that CRAC channels are the primary mechanism for Ca(2+) influx in AECs and a vital checkpoint for the induction of PAR2-induced proinflammatory cytokines. PMID:26238490

  10. Role of enteric nerves in immune-mediated changes in protease activated receptor 2 effects on gut function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protease activated receptors (PARs) are expressed on structural cells and immune cells. Control of the initiation, duration, and magnitude of the PAR effects are linked to the level of receptor expression, the availability of proteases, and the intracellular signal transduction machinery. We inve...

  11. The protease-activated receptor-2 agonist induces gastric mucus secretion and mucosal cytoprotection

    PubMed Central

    Kawabata, Atsufumi; Kinoshita, Mitsuhiro; Nishikawa, Hiroyuki; Kuroda, Ryotaro; Nishida, Minoru; Araki, Hiromasa; Arizono, Naoki; Oda, Yasuo; Kakehi, Kazuaki

    2001-01-01

    Protease-activated receptor-2 (PAR-2), a receptor activated by trypsin/tryptase, modulates smooth muscle tone and exocrine secretion in the salivary glands and pancreas. Given that PAR-2 is expressed throughout the gastrointestinal tract, we investigated effects of PAR-2 agonists on mucus secretion and gastric mucosal injury in the rat. PAR-2–activating peptides triggered secretion of mucus in the stomach, but not in the duodenum. This mucus secretion was abolished by pretreatment with capsaicin, which stimulates and ablates specific sensory neurons, but it was resistant to cyclo-oxygenase inhibition. In contrast, capsaicin treatment failed to block PAR-2–mediated secretion from the salivary glands. Intravenous calcitonin gene–related peptide (CGRP) and neurokinin A markedly elicited gastric mucus secretion, as did substance P to a lesser extent. Specific antagonists of the CGRP1 and NK2, but not the NK1, receptors inhibited PAR-2–mediated mucus secretion. Pretreatment with the PAR-2 agonist strongly prevented gastric injury caused by HCl-ethanol or indomethacin. Thus, PAR-2 activation triggers the cytoprotective secretion of gastric mucus by stimulating the release of CGRP and tachykinins from sensory neurons. In contrast, the PAR-2–mediated salivary exocrine secretion appears to be independent of capsaicin-sensitive sensory neurons. PMID:11390426

  12. Control of the subthalamic innervation of substantia nigra pars reticulata by D1 and D2 dopamine receptors.

    PubMed

    Ibañez-Sandoval, Osvaldo; Hernández, Adán; Florán, Benjamin; Galarraga, Elvira; Tapia, Dagoberto; Valdiosera, Rene; Erlij, David; Aceves, Jorge; Bargas, José

    2006-03-01

    The effects of activating dopaminergic D1 and D2 class receptors of the subthalamic projections that innervate the pars reticulata of the subtantia nigra (SNr) were explored in slices of the rat brain using the whole cell patch-clamp technique. Excitatory postsynaptic currents (EPSCs) that could be blocked by 6-cyano-7-nitroquinoxalene-2,3-dione and D-(-)-2-amino-5-phosphonopentanoic acid were evoked onto reticulata GABAergic projection neurons by local field stimulation inside the subthalamic nucleus in the presence of bicuculline. Bath application of (RS)-2,3,4,5-tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine hydrochloride (SKF-38393), a dopaminergic D1-class receptor agonist, increased evoked EPSCs by approximately 30% whereas the D2-class receptor agonist, trans-(-)-4aR-4,4a,5,6,7,8,8a,9-octahydro-5-propyl-1H-pyrazolo(3,4-g)quinoline (quinpirole), reduced EPSCs by approximately 25%. These apparently opposing actions were blocked by the specific D1- and D2-class receptor antagonists: R-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetra-hydro-1H-3-benzazepinehydrochloride (SCH 23390) and S-(-)-5-amino-sulfonyl-N-[(1-ethyl-2-pyrrolidinyl)-methyl]-2-methoxybenzamide (sulpiride), respectively. Both effects were accompanied by changes in the paired-pulse ratio, indicative of a presynaptic site of action. The presynaptic location of dopamine receptors at the subthalamonigral projections was confirmed by mean-variance analysis. The effects of both SKF-38393 and quinpirole could be observed on terminals contacting the same postsynaptic neuron. Sulpiride and SCH 23390 enhanced and reduced the evoked EPSC, respectively, suggesting a constitutive receptor activation probably arising from endogenous dopamine. These data suggest that dopamine presynaptically modulates the subthalamic projection that targets GABAergic neurons of the SNr. Implications of this modulation for basal ganglia function are discussed. PMID:16306171

  13. Soluble urokinase plasminogen activation receptor - An emerging new biomarker of cardiovascular disease and critical illness

    PubMed Central

    Cyrille, Nicole B.; Villablanca, Pedro A.; Ramakrishna, Harish

    2016-01-01

    Soluble urokinase plasminogen activation receptor (suPAR) is an emerging new biomarker, which has been shown to not only correlate with traditional biomarkers but also outperform CRP at prognosticating CVD. More clinical trials on suPAR is in the future research agenda. PMID:27052059

  14. Protease-activated receptors modulate excitability of murine colonic smooth muscles by differential effects on interstitial cells

    PubMed Central

    Sung, Tae Sik; Kim, Heung Up; Kim, Jeong Hwan; Lu, Hongli; Sanders, Kenton M; Koh, Sang Don

    2015-01-01

    Abstract Protease-activated receptors (PARs) are G protein-coupled receptors activated by proteolytic cleavage at their amino termini by serine proteases. PAR activation contributes to the inflammatory response in the gastrointestinal (GI) tract and alters GI motility, but little is known about the specific cells within the tunica muscularis that express PARs and the mechanisms leading to contractile responses. Using real time PCR, we found PARs to be expressed in smooth muscle cells (SMCs), interstitial cells of Cajal (ICC) and platelet-derived growth factor receptor α positive (PDGFRα+) cells. The latter cell-type showed dominant expression of F2r (encodes PAR1) and F2rl1 (encodes PAR2). Contractile and intracellular electrical activities were measured to characterize the integrated responses to PAR activation in whole muscles. Cells were isolated and ICC and PDGFRα+ cells were identified by constitutive expression of fluorescent reporters. Thrombin (PAR1 agonist) and trypsin (PAR2 agonist) caused biphasic responses in colonic muscles: transient hyperpolarization and relaxation followed by repolarization and excitation. The inhibitory phase was blocked by apamin, revealing a distinct excitatory component. Patch clamp studies showed that the inhibitory response was mediated by activation of small conductance calcium-activated K+ channels in PDGFRα+ cells, and the excitatory response was mediated by activation of a Cl− conductance in ICC. SMCs contributed little to PAR responses in colonic muscles. In summary, PARs regulate the excitability of colonic muscles; different conductances are activated in each cell type of the SMC–ICC–PDGFRα+ cell (SIP) syncytium. Motor responses to PAR agonists are integrated responses of the SIP syncytium. Key points Activation of protease-activated receptors (PAR) regulates gastrointestinal (GI) motility but little is known about the cells and mechanisms in GI muscles responsible for PAR responses. Using mouse cells, we

  15. [Downregulation of proteinase activated receptor 4 inhibits migration of SW620 human colorectal cancer cells].

    PubMed

    Chen, Lihong; Li, Chunchun; Xie, Yuqiong; Ye, Jingjia; Cao, Jiang

    2016-05-01

    Objective To establish the human colorectal cancer cell model SW620/PAR4D with inducible suppression of proteinase activated receptor 4 (PAR4) expression, and investigate the role PAR4 plays in the proliferation and migration of cancer cells. Methods A human colorectal cancer cell line with tetracycline-inducible expression regulatory system, namely SW620/Tet-on, was established; inducible expression lentiviral vector with artificial microRNA targeting PAR4, pLVX-Tight-Puro-PAR4-miR, was constructed and transfected into SW620/Tet-on to make an inducible PAR4-suppressed cell model SW620/PAR4D. Western blotting was used to confirm the suppression of PAR4 expression after the doxycycline (DOX) treatment. CCK-8 assay was used to evaluate the impact of suppressed PAR4 expression on cell proliferation, and wound-healing assay was used to analyze the migration of the cells. Results The SW620/PAR4D cell model was established successfully. Suppression of PAR4 expression by DOX treatment had no significant impact on the growth/proliferation of SW620/PAR4D cells, but markedly inhibited the cell migration. Conclusion Suppression of PAR4 expression has no significant effect on the proliferation of SW620 cells, but can inhibit the migration of the cells. PMID:27126938

  16. Characterization and Functions of Protease-Activated Receptor 2 in Obesity, Diabetes, and Metabolic Syndrome: A Systematic Review

    PubMed Central

    Kagota, Satomi; Maruyama, Kana; McGuire, John J.

    2016-01-01

    Proteinase-activated receptor 2 (PAR2) is a cell surface receptor activated by serine proteinases or specific synthetic compounds. Interest in PAR2 as a pharmaceutical target for various diseases is increasing. Here we asked two questions relevant to endothelial dysfunction and diabetes: How is PAR2 function affected in blood vessels? What role does PAR2 have in promoting obesity, diabetes, and/or metabolic syndrome, specifically via the endothelium and adipose tissues? We conducted a systematic review of the published literature in PubMed and Scopus (July 2015; search terms: par2, par-2, f2lr1, adipose, obesity, diabetes, and metabolic syndrome). Seven studies focused on PAR2 and vascular function. The obesity, diabetes, or metabolic syndrome animal models differed amongst studies, but each reported that PAR2-mediated vasodilator actions were preserved in the face of endothelial dysfunction. The remaining studies focused on nonvascular functions and provided evidence supporting the concept that PAR2 activation promoted obesity. Key studies showed that PAR2 activation regulated cellular metabolism, and PAR2 antagonists inhibited adipose gain and metabolic dysfunction in rats. We conclude that PAR2 antagonists for treatment of obesity indeed show early promise as a therapeutic strategy; however, endothelial-specific PAR2 functions, which may offset mechanisms that produce vascular dysfunction in diabetes, warrant additional study. PMID:27006943

  17. EPCR-dependent PAR2 activation by the blood coagulation initiation complex regulates LPS-triggered interferon responses in mice

    PubMed Central

    Liang, Hai Po H.; Kerschen, Edward J.; Hernandez, Irene; Basu, Sreemanti; Zogg, Mark; Botros, Fady; Jia, Shuang; Hessner, Martin J.; Griffin, John H.; Ruf, Wolfram

    2015-01-01

    Infection and inflammation are invariably associated with activation of the blood coagulation mechanism, secondary to the inflammation-induced expression of the coagulation initiator tissue factor (TF) on innate immune cells. By investigating the role of cell-surface receptors for coagulation factors in mouse endotoxemia, we found that the protein C receptor (ProcR; EPCR) was required for the normal in vivo and in vitro induction of lipopolysaccharide (LPS)-regulated gene expression. In cultured bone marrow–derived myeloid cells and in monocytic RAW264.7 cells, the LPS-induced expression of functionally active TF, assembly of the ternary TF-VIIa-Xa initiation complex of blood coagulation, and the EPCR-dependent activation of protease-activated receptor 2 (PAR2) by the ternary TF-VIIa-Xa complex were required for the normal LPS induction of messenger RNAs encoding the TLR3/4 signaling adaptor protein Pellino-1 and the transcription factor interferon regulatory factor 8. In response to in vivo challenge with LPS, mice lacking EPCR or PAR2 failed to fully initiate an interferon-regulated gene expression program that included the Irf8 target genes Lif, Iigp1, Gbp2, Gbp3, and Gbp6. The inflammation-induced expression of TF and crosstalk with EPCR, PAR2, and TLR4 therefore appear necessary for the normal evolution of interferon-regulated host responses. PMID:25733582

  18. Protease activated receptor-1 regulates macrophage-mediated cellular senescence: a risk for idiopathic pulmonary fibrosis

    PubMed Central

    Lin, Cong; Rezaee, Farhad; Waasdorp, Maaike; Shi, Kun; van der Poll, Tom

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is a destructive disease in part resulting from premature or mature cellular aging. Protease-activated receptor-1 (PAR-1) recently emerged as a critical component in the context of fibrotic lung diseases. Therefore, we aimed to study the role of macrophages in PAR-1-mediated idiopathic pulmonary fibrosis. The number of macrophages were significantly reduced in lungs of PAR-1 antagonist (P1pal-12) treated animals upon bleomycin instillation. In line with these data, PAR-1 stimulation increased monocyte/macrophage recruitment in response to epithelium injury in in vitro trans-well assays. Moreover, macrophages induced fibroblasts migration, differentiation and secretion of collagen, which were inhibited in the presence of TGF-β receptor inhibitors. Interestingly, these profibrotic effects were partially inhibited by treatment with the PAR-1 inhibitor P1pal-12. Using shRNA mediated PAR-1 knock down in fibroblasts, we demonstrate that fibroblast PAR-1 contributes to TGF-β activation and production. Finally, we show that the macrophage-dependent induction of PAR-1 driven TGF-β activation was mediated by FXa. Our data identify novel mechanisms by which PAR-1 stimulation on different cell types can contribute to IPF and identify macrophages as key players in PAR-1 dependent development of this devastating disease. IPF may result from cellular senescence mediated by macrophages in the lung. PMID:26474459

  19. Peroxynitrite-induced thymocyte apoptosis: the role of caspases and poly (ADP-ribose) synthetase (PARS) activation.

    PubMed Central

    Virág, L; Scott, G S; Cuzzocrea, S; Marmer, D; Salzman, A L; Szabó, C

    1998-01-01

    The mechanisms by which immature thymocyte apoptosis is induced during negative selection are poorly defined. Reports demonstrated that cross-linking of T-cell receptor leads to stromal cell activation, expression of inducible nitric oxide synthase (iNOS) and, subsequently, to thymocyte apoptosis. Therefore we examined, whether NO directly or indirectly, through peroxynitrite formation, causes thymocyte apoptosis. Immuno-histochemical detection of nitrotyrosine revealed in vivo peroxynitrite formation in the thymi of naive mice. Nitrotyrosine, the footprint of peroxynitrite, was predominantly found in the corticomedullary junction and the medulla of naive mice. In the thymi of mice deficient in the inducible isoform of nitric oxide synthase, considerably less nitrotyrosine was found. Exposure of thymocytes in vitro to low concentrations (10 microM) of peroxynitrite led to apoptosis, whereas higher concentrations (50 microM) resulted in intense cell death with the characteristics of necrosis. We also investigated the effect of poly (ADP-ribose) synthetase (PARS) inhibition on thymocyte apoptosis. Using the PARS inhibitor 3-aminobenzamide (3-AB), or thymocytes from PARS-deficient animals, we established that PARS determines the fate of thymocyte death. Suppression of cellular ATP levels, and the cellular necrosis in response to peroxynitrite were prevented by PARS inhibition. Therefore, in the absence of PARS, cells are diverted towards the pathway of apoptotic cell death. Similar results were obtained with H2O2 treatment, while apoptosis induced by non-oxidative stimuli such as dexamethasone or anti-FAS antibody was unaffected by PARS inhibition. In conclusion, we propose that peroxynitrite-induced apoptosis may play a role in the process of thymocyte negative selection. Furthermore, we propose that the physiological role of PARS cleavage by apopain during apoptosis may serve as an energy-conserving step, enabling the cell to complete the process of apoptosis

  20. Down-Regulation of PAR1 Activity with a pHLIP-based Allosteric Antagonist Induces Cancer Cell Death

    PubMed Central

    Burns, Kelly E.; Thévenin, Damien

    2015-01-01

    Even though abnormal expression of G protein-coupled receptors (GPCRs) and of their ligands is observed in many cancer cells of various origins, only a few anti-cancer compounds directly act on their signaling. One promising approach to modulate their activity consists of targeting the receptor cytoplasmic surfaces interacting with the associated G proteins using peptides mimicking the intracellular loops of the receptor. Thus, to be fully effective, the peptide mimics must be selectively targeted to the tumor while sparing healthy tissues, translocated across the cell membrane and stay anchored to the cytoplasmic leaflet of the plasma membrane. Here, we introduce a novel way to selectively target and inhibit the activity of a GPCR in cancer cells under acidic conditions, such as those found in solid tumors. We find that the conjugation of a peptide fragment derived from the third intracellular loop of the Protease Activated Receptor 1 (PAR1) to a peptide that can selectively target tumors solely based on their acidity (pHLIP), produces a construct capable of effectively down-regulating PAR1 activity in a concentration - and pH-dependent manner, and of inducing a potent cytotoxic effect in a panel of cancer cells that is proportional to the relative level of receptor expression at the cell surface. This strategy not only allows for a more selective targeting and specific intracellular delivery than current approaches, but also offers new possibilities for developing novel anti-cancer drugs targeting GPCRs. PMID:26424552

  1. Evidence for the presence of a protease-activated receptor distinct from the thrombin receptor in human keratinocytes.

    PubMed Central

    Santulli, R J; Derian, C K; Darrow, A L; Tomko, K A; Eckardt, A J; Seiberg, M; Scarborough, R M; Andrade-Gordon, P

    1995-01-01

    Thrombin receptor activation was explored in human epidermal keratinocytes and human dermal fibroblasts, cells that are actively involved in skin tissue repair. The effects of thrombin, trypsin, and the receptor agonist peptides SFLLRN and TFRIFD were assessed in inositolphospholipid hydrolysis and calcium mobilization studies. Thrombin and SFLLRN stimulated fibroblasts in both assays to a similar extent, whereas TFRIFD was less potent. Trypsin demonstrated weak efficacy in these assays in comparison with thrombin. Results in fibroblasts were consistent with human platelet thrombin receptor activation. Keratinocytes, however, exhibited a distinct profile, with trypsin being a far better activator of inositolphospholipid hydrolysis and calcium mobilization than thrombin. Furthermore, SFLLRN was more efficacious than thrombin, whereas no response was observed with TFRIFD. Since our data indicated that keratinocytes possess a trypsin-sensitive receptor, we addressed the possibility that these cells express the human homologue of the newly described murine protease-activated receptor, PAR-2 [Nystedt, S., Emilsson, K., Wahlestedt, C. & Sundelin, J. (1994) Proc. Natl. Acad. Sci. USA 91, 9208-9212]. PAR-2 is activated by nanomolar concentrations of trypsin and possesses the tethered ligand sequence SLIGRL. SLIGRL was found to be equipotent with SFLLRN in activating keratinocyte inositolphospholipid hydrolysis and calcium mobilization. Desensitization studies indicated that SFLLRN, SLIGRL, and trypsin activate a common receptor, PAR-2. Northern blot analyses detected a transcript of PAR-2 in total RNA from keratinocytes but not fibroblasts. Levels of thrombin receptor message were equivalent in the two cell types. Our results indicate that human keratinocytes possess PAR-2, suggesting a potential role for this receptor in tissue repair and/or skin-related disorders. Images Fig. 6 PMID:7568091

  2. uPAR

    PubMed Central

    Uhrin, Pavel; Breuss, Johannes M.

    2013-01-01

    Vascular endothelial growth factor (VEGF)-initiated angiogenesis requires both coordinated proteolytic degradation of extracellular matrix provided by the urokinase plasminogen activator/urokinase receptor (uPA/uPAR) system and regulation of cell-migration provided by integrin–matrix interaction. Previously we have shown that stimulation of pericellular proteolysis induced by VEGF occurs via the VEGF receptor-2 leading to redistribution of uPAR to focal adhesions at the leading edge of endothelial cells. In our recent work published in Cardiovascular Research, we investigated the mechanisms underlying the uPAR-dependent modulation of VEGF-induced endothelial migration. By applying a micropatterning technique we described that VEGF stimulation results in complex formation between uPAR and α5β1-integrin on the cell surface. The subsequent internalization of this complex, important for receptor redistribution, was demonstrated by flow-cytometry and immunohistochemistry. Targeting of the interaction site between uPAR and α5β1 impairs receptor internalization and leads to the inhibition of endothelial cell migration in vitro and in an angiogenesis model in vivo. This proof-of-principle that the interface of uPAR and α5β1-integrin may represent a promising site to therapeutically target tumor angiogenesis raises hope for the development of an anti-angiogenic approach that is limited to only the mobilizing effect of VEGF to endothelial cells, and does not interfere with the inarguably positive effect of VEGF as survival factor. PMID:23076213

  3. Suboptimal Activation of Protease-activated Receptors Enhances α2β1 Integrin-mediated Platelet Adhesion to Collagen*

    PubMed Central

    Marjoram, Robin J.; Voss, Bryan; Pan, Yumei; Dickeson, S. Kent; Zutter, Mary M.; Hamm, Heidi E.; Santoro, Samuel A.

    2009-01-01

    Thrombin and fibrillar collagen are potent activators of platelets at sites of vascular injury. Both agonists cause platelet shape change, granule secretion, and aggregation to form the primary hemostatic plug. Human platelets express two thrombin receptors, protease-activated receptors 1 and 4 (PAR1 and PAR4) and two collagen receptors, the α2β1 integrin (α2β1) and the glycoprotein VI (GPVI)/FcRγ chain complex. Although these receptors and their signaling mechanisms have been intensely studied, it is not known whether and how these receptors cooperate in the hemostatic function of platelets. This study examined cooperation between the thrombin and collagen receptors in platelet adhesion by utilizing a collagen-related peptide (α2-CRP) containing the α2β1-specific binding motif, GFOGER, in conjunction with PAR-activating peptides. We demonstrate that platelet adhesion to α2-CRP is substantially enhanced by suboptimal PAR activation (agonist concentrations that do not stimulate platelet aggregation) using the PAR4 agonist peptide and thrombin. The enhanced adhesion induced by suboptimal PAR4 activation was α2β1-dependent and GPVI/FcRγ-independent as revealed in experiments with α2β1- or FcRγ-deficient mouse platelets. We further show that suboptimal activation of other platelet Gq-linked G protein-coupled receptors (GPCRs) produces enhanced platelet adhesion to α2-CRP. The enhanced α2β1-mediated platelet adhesion is controlled by phospholipase C (PLC), but is not dependent on granule secretion, activation of αIIbβ3 integrin, or on phosphoinositol-3 kinase (PI3K) activity. In conclusion, we demonstrate a platelet priming mechanism initiated by suboptimal activation of PAR4 or other platelet Gq-linked GPCRs through a PLC-dependent signaling cascade that promotes enhanced α2β1 binding to collagens containing GFOGER sites. PMID:19815553

  4. Structural Basis of Interaction Between Urokinase-type Plasminogen Activator and its Receptor

    SciTech Connect

    Barinka,C.; Parry, G.; Callahan, J.; Shaw, D.; Kuo, A.; Cines, B.; Mazar, A.; Lubkowski, J.

    2006-01-01

    Recent studies indicate that binding of the urokinase-type plasminogen activator (uPA) to its high-affinity receptor (uPAR) orchestrates uPAR interactions with other cellular components that play a pivotal role in diverse (patho-)physiological processes, including wound healing, angiogenesis, inflammation, and cancer metastasis. However, notwithstanding the wealth of biochemical data available describing the activities of uPAR, little is known about the exact mode of uPAR/uPA interactions or the presumed conformational changes that accompany uPA/uPAR engagement. Here, we report the crystal structure of soluble urokinase plasminogen activator receptor (suPAR), which contains the three domains of the wild-type receptor but lacks the cell-surface anchoring sequence, in complex with the amino-terminal fragment of urokinase-type plasminogen activator (ATF), at the resolution of 2.8 {angstrom}. We report the 1.9 {angstrom} crystal structure of free ATF. Our results provide a structural basis, represented by conformational changes induced in uPAR, for several published biochemical observations describing the nature of uPAR/uPA interactions and provide insight into mechanisms that may be responsible for the cellular responses induced by uPA binding.

  5. Activation of Protease Activated Receptor 2 by Exogenous Agonist Exacerbates Early Radiation Injury in Rat Intestine

    SciTech Connect

    Wang Junru; Boerma, Marjan; Kulkarni, Ashwini; Hollenberg, Morley D.; Hauer-Jensen, Martin

    2010-07-15

    Purpose: Protease-activated receptor-2 (PAR{sub 2}) is highly expressed throughout the gut and regulates the inflammatory, mitogenic, fibroproliferative, and nociceptive responses to injury. PAR{sub 2} is strikingly upregulated and exhibits increased activation in response to intestinal irradiation. We examined the mechanistic significance of radiation enteropathy development by assessing the effect of exogenous PAR{sub 2} activation. Methods and Materials: Rat small bowel was exposed to localized single-dose radiation (16.5 Gy). The PAR{sub 2} agonist (2-furoyl-LIGRLO-NH{sub 2}) or vehicle was injected intraperitoneally daily for 3 days before irradiation (before), for 7 days after irradiation (after), or both 3 days before and 7 days after irradiation (before-after). Early and delayed radiation enteropathy was assessed at 2 and 26 weeks after irradiation using quantitative histologic examination, morphometry, and immunohistochemical analysis. Results: The PAR{sub 2} agonist did not elicit changes in the unirradiated (shielded) intestine. In contrast, in the irradiated intestine procured 2 weeks after irradiation, administration of the PAR{sub 2} agonist was associated with more severe mucosal injury and increased intestinal wall thickness in all three treatment groups (p <.05) compared with the vehicle-treated controls. The PAR{sub 2} agonist also exacerbated the radiation injury score, serosal thickening, and mucosal inflammation (p <.05) in the before and before-after groups. The short-term exogenous activation of PAR{sub 2} did not affect radiation-induced intestinal injury at 26 weeks. Conclusion: The results of the present study support a role for PAR{sub 2} activation in the pathogenesis of early radiation-induced intestinal injury. Pharmacologic PAR{sub 2} antagonists might have the potential to reduce the intestinal side effects of radiotherapy and/or as countermeasures in radiologic accidents or terrorism scenarios.

  6. Increased Expression of Cathelicidin by Direct Activation of Protease-Activated Receptor 2: Possible Implications on the Pathogenesis of Rosacea

    PubMed Central

    Kim, Ji Young; Kim, Yoon Jee; Lim, Beom Jin; Sohn, Hyo Jung; Shin, Dongyun

    2014-01-01

    Purpose Recent findings of increased cathelicidin protein and its proteolytic fragments in rosacea suggest a pathogenic role for cathelicidin in this disease. The relationship between cathelicidin and protease-activated receptor 2 (PAR-2) is therefore of interest, as PAR-2, expressed principally in keratinocytes, regulates pro-inflammatory cytokine expression in the skin. The purpose of this study was to determine the relationship between expression of PAR-2 and cathelicidin in rosacea and to test the effect of direct PAR-2 activation on cathelicidin expression in keratinocytes. Materials and Methods Samples from 40 patients with clinicopathologic diagnosis of rosacea and facial skin tissue samples from 20 patients with no specific findings or milium without inflammation were retrieved. Intensities of immunohistochemical staining for PAR-2 and cathelicidin were compared between normal and rosacea-affected skin tissues. Additionally, correlations between PAR-2 and cathelicidin staining intensities within rosacea patients were analyzed. In cultured keratinocytes, changes in PAR-2, cathelicidin, and vascular endothelial growth factor (VEGF) mRNA and protein were analyzed after treatment with PAR-2 activating peptide (AP). Results Cathelicidin expression was significantly higher in rosacea skin tissues than in normal tissues (p<0.001), while PAR-2 expression was not significantly higher in rosacea tissues than in normal skin tissues. A positive correlation between PAR-2 and cathelicidin within rosacea samples was observed (R=0.330, p=0.037). After treatment of PAR-2 AP, both mRNA and protein levels for PAR-2, cathelicidin, and VEGF significantly increased in cultured keratinocytes, compared with PAR-2 control peptide treatment. Conclusion PAR-2 may participate in the pathogenesis of rosacea through activation of cathelicidin LL-37, a mediator of innate immune responses in the skin. PMID:25323904

  7. Thrombin stimulates insulin secretion via protease-activated receptor-3

    PubMed Central

    Hänzelmann, Sonja; Wang, Jinling; Güney, Emre; Tang, Yunzhao; Zhang, Enming; Axelsson, Annika S; Nenonen, Hannah; Salehi, Albert S; Wollheim, Claes B; Zetterberg, Eva; Berntorp, Erik; Costa, Ivan G; Castelo, Robert; Rosengren, Anders H

    2015-01-01

    The disease mechanisms underlying type 2 diabetes (T2D) remain poorly defined. Here we aimed to explore the pathophysiology of T2D by analyzing gene co-expression networks in human islets. Using partial correlation networks we identified a group of co-expressed genes (‘module’) including F2RL2 that was associated with glycated hemoglobin. F2Rl2 is a G-protein-coupled receptor (GPCR) that encodes protease-activated receptor-3 (PAR3). PAR3 is cleaved by thrombin, which exposes a 6-amino acid sequence that acts as a ‘tethered ligand’ to regulate cellular signaling. We have characterized the effect of PAR3 activation on insulin secretion by static insulin secretion measurements, capacitance measurements, studies of diabetic animal models and patient samples. We demonstrate that thrombin stimulates insulin secretion, an effect that was prevented by an antibody that blocks the thrombin cleavage site of PAR3. Treatment with a peptide corresponding to the PAR3 tethered ligand stimulated islet insulin secretion and single β-cell exocytosis by a mechanism that involves activation of phospholipase C and Ca2+ release from intracellular stores. Moreover, we observed that the expression of tissue factor, which regulates thrombin generation, was increased in human islets from T2D donors and associated with enhanced β-cell exocytosis. Finally, we demonstrate that thrombin generation potential in patients with T2D was associated with increased fasting insulin and insulinogenic index. The findings provide a previously unrecognized link between hypercoagulability and hyperinsulinemia and suggest that reducing thrombin activity or blocking PAR3 cleavage could potentially counteract the exaggerated insulin secretion that drives insulin resistance and β-cell exhaustion in T2D. PMID:26742564

  8. Manual for the Use of the Pupil Activities Record--Revised (PAR-R).

    ERIC Educational Resources Information Center

    Ligon, Glynn; And Others

    A comprehensive guide for observers using the Pupil Activities Record--Revised (PAR-R), this manual covers procedures followed in systematic observation of a student's classroom activities for the period of one instructional day. The manual provides general information about the purpose and design of the PAR and explains the revisions, which were…

  9. Protease-activated receptor-2 modulates myocardial ischemia-reperfusion injury in the rat heart

    PubMed Central

    Napoli, Claudio; Cicala, Carla; Wallace, John L.; de Nigris, Filomena; Santagada, Vincenzo; Caliendo, Giuseppe; Franconi, Flavia; Ignarro, Louis J.; Cirino, Giuseppe

    2000-01-01

    Protease-activated receptor-2 (PAR-2) is a member of seven transmembrane domain G protein-coupled receptors activated by proteolytic cleavage whose better known member is the thrombin receptor. The pathophysiological role of PAR-2 remains poorly understood. Because PAR-2 is involved in inflammatory and injury response events, we investigated the role of PAR-2 in experimental myocardial ischemia-reperfusion injury. We show for the first time that PAR-2 activation protects against reperfusion-injury. After PAR-2-activating peptide (2AP) infusion, we found a significant recovery of myocardial function and decrease in oxidation at reflow. Indeed, the glutathione cycle (glutathione and oxidized glutathione) and lipid peroxidation analysis showed a reduced oxidative reperfusion-injury. Moreover, ischemic risk zone and creatine kinase release were decreased after PAR-2AP treatment. These events were coupled to elevation of PAR-2 and tumor necrosis factor α (TNFα) expression in both nuclear extracts and whole heart homogenates. The recovery of coronary flow was not reverted by L-nitroarginine methylester, indicating a NO-independent pathway for this effect. Genistein, a tyrosine kinase inhibitor, did not revert the PAR-2AP effect. During early reperfusion injury in vivo not only oxygen radicals are produced but also numerous proinflammatory mediators promoting neutrophil and monocyte targeting. In this context, we show that TNFα and PAR-2 are involved in signaling in pathophysiological conditions, such as myocardial ischemia-reperfusion. At the same time, because TNFα may exert pro-inflammatory actions and PAR-2 may constitute one of the first protective mechanisms that signals a primary inflammatory response, our data support the concept that this network may regulate body responses to tissue injury. PMID:10737808

  10. Protease-activated receptor-2 modulates myocardial ischemia-reperfusion injury in the rat heart.

    PubMed

    Napoli, C; Cicala, C; Wallace, J L; de Nigris, F; Santagada, V; Caliendo, G; Franconi, F; Ignarro, L J; Cirino, G

    2000-03-28

    Protease-activated receptor-2 (PAR-2) is a member of seven transmembrane domain G protein-coupled receptors activated by proteolytic cleavage whose better known member is the thrombin receptor. The pathophysiological role of PAR-2 remains poorly understood. Because PAR-2 is involved in inflammatory and injury response events, we investigated the role of PAR-2 in experimental myocardial ischemia-reperfusion injury. We show for the first time that PAR-2 activation protects against reperfusion-injury. After PAR-2-activating peptide (2AP) infusion, we found a significant recovery of myocardial function and decrease in oxidation at reflow. Indeed, the glutathione cycle (glutathione and oxidized glutathione) and lipid peroxidation analysis showed a reduced oxidative reperfusion-injury. Moreover, ischemic risk zone and creatine kinase release were decreased after PAR-2AP treatment. These events were coupled to elevation of PAR-2 and tumor necrosis factor alpha (TNFalpha) expression in both nuclear extracts and whole heart homogenates. The recovery of coronary flow was not reverted by L-nitroarginine methylester, indicating a NO-independent pathway for this effect. Genistein, a tyrosine kinase inhibitor, did not revert the PAR-2AP effect. During early reperfusion injury in vivo not only oxygen radicals are produced but also numerous proinflammatory mediators promoting neutrophil and monocyte targeting. In this context, we show that TNFalpha and PAR-2 are involved in signaling in pathophysiological conditions, such as myocardial ischemia-reperfusion. At the same time, because TNFalpha may exert pro-inflammatory actions and PAR-2 may constitute one of the first protective mechanisms that signals a primary inflammatory response, our data support the concept that this network may regulate body responses to tissue injury. PMID:10737808

  11. Protease-activated Receptor-4 Signaling and Trafficking Is Regulated by the Clathrin Adaptor Protein Complex-2 Independent of β-Arrestins.

    PubMed

    Smith, Thomas H; Coronel, Luisa J; Li, Julia G; Dores, Michael R; Nieman, Marvin T; Trejo, JoAnn

    2016-08-26

    Protease-activated receptor-4 (PAR4) is a G protein-coupled receptor (GPCR) for thrombin and is proteolytically activated, similar to the prototypical PAR1. Due to the irreversible activation of PAR1, receptor trafficking is intimately linked to signal regulation. However, unlike PAR1, the mechanisms that control PAR4 trafficking are not known. Here, we sought to define the mechanisms that control PAR4 trafficking and signaling. In HeLa cells depleted of clathrin by siRNA, activated PAR4 failed to internalize. Consistent with clathrin-mediated endocytosis, expression of a dynamin dominant-negative K44A mutant also blocked activated PAR4 internalization. However, unlike most GPCRs, PAR4 internalization occurred independently of β-arrestins and the receptor's C-tail domain. Rather, we discovered a highly conserved tyrosine-based motif in the third intracellular loop of PAR4 and found that the clathrin adaptor protein complex-2 (AP-2) is important for internalization. Depletion of AP-2 inhibited PAR4 internalization induced by agonist. In addition, mutation of the critical residues of the tyrosine-based motif disrupted agonist-induced PAR4 internalization. Using Dami megakaryocytic cells, we confirmed that AP-2 is required for agonist-induced internalization of endogenous PAR4. Moreover, inhibition of activated PAR4 internalization enhanced ERK1/2 signaling, whereas Akt signaling was markedly diminished. These findings indicate that activated PAR4 internalization requires AP-2 and a tyrosine-based motif and occurs independent of β-arrestins, unlike most classical GPCRs. Moreover, these findings are the first to show that internalization of activated PAR4 is linked to proper ERK1/2 and Akt activation. PMID:27402844

  12. PAR-2 activation enhances weak acid-induced ATP release through TRPV1 and ASIC sensitization in human esophageal epithelial cells.

    PubMed

    Wu, Liping; Oshima, Tadayuki; Shan, Jing; Sei, Hiroo; Tomita, Toshihiko; Ohda, Yoshio; Fukui, Hirokazu; Watari, Jiro; Miwa, Hiroto

    2015-10-15

    Esophageal visceral hypersensitivity has been proposed to be the pathogenesis of heartburn sensation in nonerosive reflux disease. Protease-activated receptor-2 (PAR-2) is expressed in human esophageal epithelial cells and is believed to play a role in inflammation and sensation. PAR-2 activation may modulate these responses through adenosine triphosphate (ATP) release, which is involved in transduction of sensation and pain. The transient receptor potential vanilloid receptor 1 (TRPV1) and acid-sensing ion channels (ASICs) are both acid-sensitive nociceptors. However, the interaction among these molecules and the mechanisms of heartburn sensation are still not clear. We therefore examined whether ATP release in human esophageal epithelial cells in response to acid is modulated by TRPV1 and ASICs and whether PAR-2 activation influences the sensitivity of TRPV1 and ASICs. Weak acid (pH 5) stimulated the release of ATP from primary human esophageal epithelial cells (HEECs). This effect was significantly reduced after pretreatment with 5-iodoresiniferatoxin (IRTX), a TRPV1-specific antagonist, or with amiloride, a nonselective ASIC blocker. TRPV1 and ASIC3 small interfering RNA (siRNA) transfection also decreased weak acid-induced ATP release. Pretreatment of HEECs with trypsin, tryptase, or a PAR-2 agonist enhanced weak acid-induced ATP release. Trypsin treatment led to the phosphorylation of TRPV1. Acid-induced ATP release enhancement by trypsin was partially blocked by IRTX, amiloride, or a PAR-2 antagonist. Conversely, acid-induced ATP release was augmented by PAR-2 activation through TRPV1 and ASICs. These findings suggested that the pathophysiology of heartburn sensation or esophageal hypersensitivity may be associated with the activation of PAR-2, TRPV1, and ASICs. PMID:26294672

  13. Lesion of the substantia nigra pars compacta downregulates striatal glutamate receptor subunit mRNA expression.

    PubMed

    Fan, X D; Li, X M; Ashe, P C; Juorio, A V

    1999-12-11

    This is a study of the effect of the unilateral administration of dopamine (DA) in the pars compacta of the substantia nigra (SN) of the rat on striatal glutamate receptor subunit (GluR1, GluR2 and NMDAR1) gene expression determined by in situ hybridization. The location of the nigral lesion was determined by tyrosine hydroxylase (TH) immunohistochemistry and its extent by the striatal DA and 3,4-dihydroxyphenylacetic acid (DOPAC) concentrations. The DA-induced lesions produce significant bilateral reductions in the expression of GluR1 and NMDAR1 subunit mRNA in the medio-lateral striatum, whereas the expression of striatal GluR2 receptors was not changed. The reduction in GluR1 and NMDAR1 subunit mRNA may be the consequence of glutamatergic hyperactivity developed in the presence of a damaged nigro-striatal system and these may be associated with the genesis of some neurodegenerative diseases. PMID:10629751

  14. Solar PAR and UVR modify the community composition and photosynthetic activity of sea ice algae.

    PubMed

    Enberg, Sara; Piiparinen, Jonna; Majaneva, Markus; Vähätalo, Anssi V; Autio, Riitta; Rintala, Janne-Markus

    2015-10-01

    The effects of increased photosynthetically active radiation (PAR) and ultraviolet radiation (UVR) on species diversity, biomass and photosynthetic activity were studied in fast ice algal communities. The experimental set-up consisted of nine 1.44 m(2) squares with three treatments: untreated with natural snow cover (UNT), snow-free (PAR + UVR) and snow-free ice covered with a UV screen (PAR). The total algal biomass, dominated by diatoms and dinoflagellates, increased in all treatments during the experiment. However, the smaller biomass growth in the top 10-cm layer of the PAR + UVR treatment compared with the PAR treatment indicated the negative effect of UVR. Scrippsiella complex (mainly Scrippsiella hangoei, Biecheleria baltica and Gymnodinium corollarium) showed UV sensitivity in the top 5-cm layer, whereas Heterocapsa arctica ssp. frigida and green algae showed sensitivity to both PAR and UVR. The photosynthetic activity was highest in the top 5-cm layer of the PAR treatment, where the biomass of the pennate diatom Nitzschia frigida increased, indicating the UV sensitivity of this species. This study shows that UVR is one of the controlling factors of algal communities in Baltic Sea ice, and that increased availability of PAR together with UVR exclusion can cause changes in algal biomass, photosynthetic activity and community composition. PMID:26310455

  15. Antagonism of protease-activated receptor 2 protects against experimental colitis.

    PubMed

    Lohman, Rink-Jan; Cotterell, Adam J; Suen, Jacky; Liu, Ligong; Do, Anh T; Vesey, David A; Fairlie, David P

    2012-02-01

    Many trypsin-like serine proteases such as β-tryptase are involved in the pathogenesis of colitis and inflammatory bowel diseases. Inhibitors of individual proteases show limited efficacy in treating such conditions, but also probably disrupt digestive and defensive functions of proteases. Here, we investigate whether masking their common target, protease-activated receptor 2 (PAR2), is an effective therapeutic strategy for treating acute and chronic experimental colitis in rats. A novel PAR2 antagonist (5-isoxazoyl-Cha-Ile-spiro[indene-1,4'-piperidine]; GB88) was evaluated for the blockade of intracellular calcium release in colonocytes and anti-inflammatory activity in acute (PAR2 agonist-induced) versus chronic [2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced] models of colitis in Wistar rats. Disease progression (disease activity index, weight loss, and mortality) and postmortem colonic histopathology (inflammation, bowel wall thickness, and myeloperoxidase) were measured. PAR2 and tryptase colocalization were investigated by using immunohistochemistry. GB88 was a more potent antagonist of PAR2 activation in colonocytes than another reported compound, N¹-3-methylbutyryl-N⁴-6-aminohexanoyl-piperazine (ENMD-1068) (IC₅₀ 8 μM versus 5 mM). Acute colonic inflammation induced in rats by the PAR2 agonist SLIGRL-NH₂ was inhibited by oral administration of GB88 (10 mg/kg) with markedly reduced edema, mucin depletion, PAR2 receptor internalization, and mastocytosis. Chronic TNBS-induced colitis in rats was ameliorated by GB88 (10 mg/kg/day p.o.), which reduced mortality and pathology (including colon obstruction, ulceration, wall thickness, and myeloperoxidase release) more effectively than the clinically used drug sulfasalazine (100 mg/kg/day p.o.). These disease-modifying properties for the PAR2 antagonist in both acute and chronic experimental colitis strongly support a pathogenic role for PAR2 and PAR2-activating proteases and therapeutic potential for

  16. Immunohistochemical Detection of Urokinase Plasminogen Activator and Urokinase Plasminogen Activator Receptor in Canine Vascular Endothelial Tumours.

    PubMed

    Anwar, Sh; Yanai, T; Sakai, H

    2015-11-01

    Immunohistochemistry was used to assess the expression of urokinase plasminogen activator (uPA) and uPA receptor (uPAR) in 57 canine primary haemangiosarcomas (HSAs), 26 canine cutaneous haemangiomas (HAs) and in control sections of canine cutaneous granulation tissue. The correlation between uPA/uPAR expression and the Ki67 labelling index (LI) was estimated in the HSA and HA tissues. uPA was expressed by 73.2% and 75.0% of splenic HSAs and non-splenic HSAs, respectively. All HSA tissues tested expressed uPAR. Expression of both molecules was significantly higher in HSAs than in cutaneous HAs (3.8% for uPA and 30.7% for uPAR). The average Ki67 LI of the uPA(+)/uPAR(+) HSAs was significantly higher than that of uPA(-)/uPAR(+) HSAs and HA tissues (mean ± SDs 32.8 ± 15.3, 15.2 ± 7.2 and 2.1 ± 0.7, respectively; P <0.05). These results suggest that uPA and uPAR play a significant role in the malignant proliferation of canine HSA, regardless of the primary origin of the tumour. PMID:26286429

  17. Calcium-activated non-selective cation currents are involved in generation of tonic and bursting activity in dopamine neurons of the substantia nigra pars compacta.

    PubMed

    Mrejeru, Ana; Wei, Aguan; Ramirez, Jan Marino

    2011-05-15

    Nigral dopamine neurons are transiently activated by high frequency glutamatergic inputs relaying reward-predicting sensory information. The tonic firing pattern of dopamine cells responds to these inputs with a transient burst of spikes that requires NMDA receptors. Here, we show that NMDA receptor activation further excites the cell by recruiting a calcium-activated non-selective cation current (ICAN) capable of generating a plateau potential. Burst firing in vitro is eliminated after blockade of ICAN with flufenamic acid, 9-phenanthrol, or intracellular BAPTA. ICAN is likely to be mediated by a transient receptor potential (TRP) channel, and RT-PCR was used to confirm expression of TRPM2 and TRPM4mRNA in substantia nigra pars compacta.We propose that ICAN is selectively activated during burst firing to boost NMDA currents and allow plateau potentials. This boost mechanism may render DA cells vulnerable to excitotoxicity. PMID:21486760

  18. Down-regulation of PAR1 activity with a pHLIP-based allosteric antagonist induces cancer cell death.

    PubMed

    Burns, Kelly E; Thévenin, Damien

    2015-12-15

    Even though abnormal expression of G protein-coupled receptors (GPCRs) and of their ligands is observed in many cancer cells of various origins, only a few anti-cancer compounds directly act on their signalling. One promising approach to modulate their activity consists of targeting the receptor cytoplasmic surfaces interacting with the associated G-proteins using peptides mimicking the intracellular loops of the receptor. Thus, to be fully effective, the peptide mimics must be selectively targeted to the tumour while sparing healthy tissues, translocated across the cell membrane and stay anchored to the cytoplasmic leaflet of the plasma membrane. In the present study, we introduce a novel way to selectively target and inhibit the activity of a GPCR in cancer cells under acidic conditions, such as those found in solid tumours. We find that the conjugation of a peptide fragment derived from the third intracellular loop (i3) of the protease-activated receptor 1 (PAR1) to a peptide that can selectively target tumours solely based on their acidity [pH(Low) Insertion Peptide (pHLIP)], produces a construct capable of effectively down-regulating PAR1 activity in a concentration- and pH-dependent manner and of inducing a potent cytotoxic effect in a panel of cancer cells that is proportional to the relative level of receptor expression at the cell surface. This strategy not only allows for a more selective targeting and specific intracellular delivery than current approaches, but also offers new possibilities for developing novel anti-cancer drugs targeting GPCRs. PMID:26424552

  19. Proteasome inhibitors exacerbate interleukin-8 production induced by protease-activated receptor 2 in intestinal epithelial cells.

    PubMed

    Ghouzali, Ibtissem; Azhar, Saïda; Bôle-Feysot, Christine; Ducrotté, Philippe; Déchelotte, Pierre; Coëffier, Moïse

    2016-10-01

    Protease activated receptors (PARs) and the ubiquitin-proteasome system (UPS) regulate inflammatory response in intestinal cells. We aimed to elucidate putative connections between PARs and UPS pathways in intestinal epithelial cells. Caco-2 cells were treated by agonist peptides of PARs and/or IL-1β and/or proteasome inhibitors, bortezomib or MG132. Inflammatory response was evaluated by measuring IL-8 production. Proteasome activities were also evaluated. We showed that PAR-1 and -2 activation increased release of IL-8 compared with vehicle and independently of IL-1β. In contrast, PAR-4 agonist peptide had no effect. Caspase-like and chymotrypsin-like proteasomal activities were increased by PAR-2 activation only in the presence of IL-1β. Interestingly, in polarized Caco-2 cells, the release of IL-8 was predominantly upregulated in the side where PAR-2 agonist peptide was added, apical or basalolateral. In contrast, proteasome activities were only affected when PAR-2 agonist peptide was added in the apical side. Proteasome inhibitors, bortezomib and MG132, enhanced IL-8 production in both sides, apical and basolateral. In conclusion, PAR-2 activation alone did not affect proteasome but needed inflammatory stimulus IL-1β to synergistically increase chymotrypsin-like activity in intestinal epithelial cells. However, proteasome inhibition led to exacerbate inflammatory response induced by PAR-2 activation. PMID:27455449

  20. Prognostic Value of Protease Activated Receptor-1 in Children with Acute Lymphoblastic Leukemia

    PubMed Central

    Hagag, Adel A.; Nosair, Nahla A.; Ghaith, Fatma M.; Elshenawy, Eman H.

    2014-01-01

    Background Acute Lymphoblastic leukemia (ALL) is a malignant disorder of lymphoid progenitor cells that proliferate and replace the normal hematopoietic cells of the bone marrow. Protease-activated receptors (PARs) comprise a family of trans-membrane G-protein coupled receptors. Protease-activated receptor 1 (PAR-1) is a typical member of this family of receptors that mediate cellular responses to thrombin and related proteases. PAR1 is expressed by a wide range of tumor cells and can promote tumor growth, invasion and metastasis. The aim of this work was to study the role of PAR-1 expression in newly diagnosed ALL patients. Patients and methods This study was conducted on 44 children with newly diagnosed ALL who were admitted to Hematology Unit, Pediatric department, Tanta University Hospital including 24 males and 20 females with their age ranged from 4–17 years and their mean age value of 9.06±3.26. All patients were subjected to complete history taking, thorough clinical examination, bone marrow aspiration and flow cytometric analysis for detection of PAR-1 expression by malignant cells. Results PAR-1 was positive in 18 cases (41%) and negative in 26 cases (59%) of studied patients. This study showed no significant relation between PAR-1 expression and age, sex and most of the clinical data including hepatomegaly, splenomegaly and purpura while generalized lymphadenopathy was significantly higher in PAR-1 positive group. PAR-1 positive expression was associated with some bad prognostic laboratory parameters including higher hemoglobin, higher white blood cells, higher peripheral blood and bone marrow blast cells, higher serum LDH and lower platelets count. No significant association was detected between PAR-1 expression and immunophenotyping. There were significantly higher remission rates in PAR-1 negative group and significantly higher relapse and death rates in PAR-1 positive group. Conclusion From this study, it could be concluded that PAR-1 expression

  1. Identification of two distinct structural regions in a human porcine endogenous retrovirus receptor, HuPAR2, contributing to function for viral entry

    PubMed Central

    Marcucci, Katherine T; Argaw, Takele; Wilson, Carolyn A; Salomon, Daniel R

    2009-01-01

    Background Of the three subclasses of Porcine Endogenous Retrovirus (PERV), PERV-A is able to infect human cells via one of two receptors, HuPAR1 or HuPAR2. Characterizing the structure-function relationships of the two HuPAR receptors in PERV-A binding and entry is important in understanding receptor-mediated gammaretroviral entry and contributes to evaluating the risk of zoonosis in xenotransplantation. Results Chimeras of the non-permissive murine PAR and the permissive HuPAR2, which scanned the entire molecule, revealed that the first 135 amino acids of HuPAR2 are critical for PERV-A entry. Within this critical region, eighteen single residue differences exist. Site-directed mutagenesis used to map single residues confirmed the previously identified L109 as a binding and infectivity determinant. In addition, we identified seven residues contributing to the efficiency of PERV-A entry without affecting envelope binding, located in multiple predicted structural motifs (intracellular, extracellular and transmembrane). We also show that expression of HuPAR2 in a non-permissive cell line results in an average 11-fold higher infectivity titer for PERV-A compared to equal expression of HuPAR1, although PERV-A envelope binding is similar. Chimeras between HuPAR-1 and -2 revealed that the region spanning amino acids 152–285 is responsible for the increase of HuPAR2. Fine mapping of this region revealed that the increased receptor function required the full sequence rather than one or more specific residues. Conclusion HuPAR2 has two distinct structural regions. In one region, a single residue determines binding; however, in both regions, multiple residues influence receptor function for PERV-A entry. PMID:19144196

  2. Shear stress reduces protease activated receptor-1 expression in human endothelial cells

    NASA Technical Reports Server (NTRS)

    Nguyen, K. T.; Eskin, S. G.; Patterson, C.; Runge, M. S.; McIntire, L. V.

    2001-01-01

    Shear stress has been shown to regulate several genes involved in the thrombotic and proliferative functions of endothelial cells. Thrombin receptor (protease-activated receptor-1: PAR-1) increases at sites of vascular injury, which suggests an important role for PAR-1 in vascular diseases. However, the effect of shear stress on PAR-1 expression has not been previously studied. This work investigates effects of shear stress on PAR-1 gene expression in both human umbilical vein endothelial cells (HUVECs) and microvascular endothelial cells (HMECs). Cells were exposed to different shear stresses using a parallel plate flow system. Northern blot and flow cytometry analysis showed that shear stress down-regulated PAR-1 messenger RNA (mRNA) and protein levels in both HUVECs and HMECs but with different thresholds. Furthermore, shear-reduced PAR-1 mRNA was due to a decrease of transcription rate, not increased mRNA degradation. Postshear stress release of endothelin-1 in response to thrombin was reduced in HUVECs and HMECs. Moreover, inhibitors of potential signaling pathways applied during shear stress indicated mediation of the shear-decreased PAR-1 expression by protein kinases. In conclusion, shear stress exposure reduces PAR-1 gene expression in HMECs and HUVECs through a mechanism dependent in part on protein kinases, leading to altered endothelial cell functional responses to thrombin.

  3. Cyclic strain increases protease-activated receptor-1 expression in vascular smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Nguyen, K. T.; Frye, S. R.; Eskin, S. G.; Patterson, C.; Runge, M. S.; McIntire, L. V.

    2001-01-01

    Cyclic strain regulates many vascular smooth muscle cell (VSMC) functions through changing gene expression. This study investigated the effects of cyclic strain on protease-activated receptor-1 (PAR-1) expression in VSMCs and the possible signaling pathways involved, on the basis of the hypothesis that cyclic strain would enhance PAR-1 expression, reflecting increased thrombin activity. Uniaxial cyclic strain (1 Hz, 20%) of cells cultured on elastic membranes induced a 2-fold increase in both PAR-1 mRNA and protein levels. Functional activity of PAR-1, as assessed by cell proliferation in response to thrombin, was also increased by cyclic strain. In addition, treatment of cells with antioxidants or an NADPH oxidase inhibitor blocked strain-induced PAR-1 expression. Preincubation of cells with protein kinase inhibitors (staurosporine or Ro 31-8220) enhanced strain-increased PAR-1 expression, whereas inhibitors of NO synthase, tyrosine kinase, and mitogen-activated protein kinases had no effect. Cyclic strain in the presence of basic fibroblast growth factor induced PAR-1 mRNA levels beyond the effect of cyclic strain alone, whereas no additive effect was observed between cyclic strain and platelet-derived growth factor-AB. Our findings that cyclic strain upregulates PAR-1 mRNA expression but that shear stress downregulates this gene in VSMCs provide an opportunity to elucidate signaling differences by which VSMCs respond to different mechanical forces.

  4. Periodontal Treatment Downregulates Protease-Activated Receptor 2 in Human Gingival Crevicular Fluid Cells

    PubMed Central

    Euzebio Alves, Vanessa Tubero; Bueno da Silva, Henrique Aparecido; de França, Bruno Nunes; Eichler, Rosangela Santos; Saraiva, Luciana; de Carvalho, Maria Helena Catelli

    2013-01-01

    Protease-activated receptor 2 (PAR2) is implicated in the pathogenesis of chronic inflammatory diseases, including periodontitis; it can be activated by gingipain and produced by Porphyromonas gingivalis and by neutrophil protease 3 (P3). PAR2 activation plays a relevant role in inflammatory processes by inducing the release of important inflammatory mediators associated with periodontal breakdown. The effects of periodontal treatment on PAR2 expression and its association with levels of proinflammatory mediators and activating proteases were investigated in chronic periodontitis patients. Positive staining for PAR2 was observed in gingival crevicular fluid cells and was reflective of tissue destruction. Overexpression of PAR2 was positively associated with inflammatory clinical parameters and with the levels of interleukin-6 (IL-6), IL-8, tumor necrosis factor alpha, matrix metalloprotease 2 (MMP-2), MMP-8, hepatocyte growth factor, and vascular endothelial growth factor. Elevated levels of gingipain and P3 and decreased levels of dentilisin and the protease inhibitors secretory leukocyte protease inhibitor and elafin were also associated with PAR2 overexpression. Healthy periodontal sites from individuals with chronic periodontitis showed diminished expression of PAR2 mRNA and the PAR2 protein (P < 0.05). Furthermore, periodontal treatment resulted in decreased PAR2 expression and correlated with decreased expression of inflammatory mediators and activating proteases. We concluded that periodontal treatment resulted in decreased levels of proteases and that proinflammatory mediators are associated with decreased PAR2 expression, suggesting that PAR2 expression is influenced by the presence of periodontal infection and is not a constitutive characteristic favoring periodontal inflammation. PMID:24042113

  5. Metabotropic glutamate receptor 1 mediates the electrophysiological and toxic actions of the cycad derivative beta-N-Methylamino-L-alanine on substantia nigra pars compacta DAergic neurons.

    PubMed

    Cucchiaroni, Maria Letizia; Viscomi, Maria Teresa; Bernardi, Giorgio; Molinari, Marco; Guatteo, Ezia; Mercuri, Nicola B

    2010-04-14

    Amyotrophic lateral sclerosis-Parkinson dementia complex (ALS-PDC) is a neurodegenerative disease with ALS, parkinsonism, and Alzheimer's symptoms that is prevalent in the Guam population. beta-N-Methylamino alanine (BMAA) has been proposed as the toxic agent damaging several neuronal types in ALS-PDC, including substantia nigra pars compacta dopaminergic (SNpc DAergic) neurons. BMAA is a mixed glutamate receptor agonist, but the specific pathways activated in DAergic neurons are not yet known. We combined electrophysiology, microfluorometry, and confocal microscopy analysis to monitor membrane potential/current, cytosolic calcium concentration ([Ca(2+)](i)) changes, cytochrome-c (cyt-c) immunoreactivity, and reactive oxygen species (ROS) production induced by BMAA. Rapid toxin applications caused reversible membrane depolarization/inward current and increase of firing rate and [Ca(2+)](i) in DAergic neurons. The inward current (I(BMAA)) was mainly mediated by activation of metabotropic glutamate receptor 1 (mGluR1), coupled to transient receptor potential (TRP) channels, and to a lesser extent, AMPA receptors. Indeed, mGluR1 (CPCCOEt) and TRP channels (SKF 96365; Ruthenium Red) antagonists reduced I(BMAA), and a small component of I(BMAA) was reduced by the AMPA receptor antagonist CNQX. Calcium accumulation was mediated by mGluR1 but not by AMPA receptors. Application of a low concentration of NMDA potentiated the BMAA-mediated calcium increase. Prolonged exposure to BMAA caused significant modifications of membrane properties, calcium overload, cell shrinkage, massive cyt-c release into the cytosol and ROS production. In SNpc GABAergic neurons, BMAA activated only AMPA receptors. Our study identifies the mGluR1-activated mechanism induced by BMAA that may cause the neuronal degeneration and parkinsonian symptoms seen in ALS-PDC. Moreover, environmental exposure to BMAA might possibly also contribute to idiopathic PD. PMID:20392940

  6. Expression of Protease-Activated Receptor-2 in SZ95 Sebocytes and its Role in Sebaceous Lipogenesis, Inflammation, and Innate Immunity.

    PubMed

    Lee, Sang E; Kim, Ji-Min; Jeong, Se K; Choi, Eung H; Zouboulis, Christos C; Lee, Seung H

    2015-09-01

    Protease-activated receptor-2 (PAR-2) functions as innate biosensor for proteases and regulates numerous functions of the skin. However, the expression and physiological role of PAR-2 in sebocytes remain to be elucidated. Here, we identified PAR-2 expression in SZ95 sebocytes at both mRNA and protein levels. Intracellular Ca(2+) mobilization by PAR-2 agonist peptide (PAR-2 AP) or Propionibacterium acnes (P. acnes) culture supernatant was detected, indicating that P. acnes is a potent activator of PAR-2 on sebocytes. The small interfering RNA (siRNA)-mediated PAR-2 knockdown in sebocytes resulted in defective differentiation and lipogenesis. PAR-2 AP treatment enhanced lipogenesis and sterol response element-binding protein-1 (SREBP-1) expression, suggesting a role of PAR-2 in the differentiation and lipogenesis of sebocytes. Moreover, PAR-2 AP induced cytokines and human β-defensin-2 (hBD-2) transcription in sebocytes. PAR-2 expression was increased in sebaceous glands of acne lesions. PAR-2 silencing by siRNA abrogated the increase in sebaceous lipogenesis and SREBP-1 expression by P. acnes supernatant. PAR-2 knockdown also inhibited the P. acnes supernatant-induced expression of cytokines and hBD-2. In conclusion, PAR-2 is expressed in SZ95 sebocytes and mediates differentiation, lipogenesis, inflammation, and innate immunity in response to P. acnes. Therefore, PAR-2 might be a therapeutic target for sebaceous gland disorders such as acne. PMID:25880702

  7. Full-length soluble urokinase plasminogen activator receptor down-modulates nephrin expression in podocytes.

    PubMed

    Alfano, Massimo; Cinque, Paola; Giusti, Guido; Proietti, Silvia; Nebuloni, Manuela; Danese, Silvio; D'Alessio, Silvia; Genua, Marco; Portale, Federica; Lo Porto, Manuela; Singhal, Pravin C; Rastaldi, Maria Pia; Saleem, Moin A; Mavilio, Domenico; Mikulak, Joanna

    2015-01-01

    Increased plasma level of soluble urokinase-type plasminogen activator receptor (suPAR) was associated recently with focal segmental glomerulosclerosis (FSGS). In addition, different clinical studies observed increased concentration of suPAR in various glomerular diseases and in other human pathologies with nephrotic syndromes such as HIV and Hantavirus infection, diabetes and cardiovascular disorders. Here, we show that suPAR induces nephrin down-modulation in human podocytes. This phenomenon is mediated only by full-length suPAR, is time-and dose-dependent and is associated with the suppression of Wilms' tumor 1 (WT-1) transcription factor expression. Moreover, an antagonist of αvβ3 integrin RGDfv blocked suPAR-induced suppression of nephrin. These in vitro data were confirmed in an in vivo uPAR knock out Plaur(-/-) mice model by demonstrating that the infusion of suPAR inhibits expression of nephrin and WT-1 in podocytes and induces proteinuria. This study unveiled that interaction of full-length suPAR with αvβ3 integrin expressed on podocytes results in down-modulation of nephrin that may affect kidney functionality in different human pathologies characterized by increased concentration of suPAR. PMID:26380915

  8. Urokinase-type plasminogen activator receptor signaling is critical in nasopharyngeal carcinoma cell growth and metastasis.

    PubMed

    Bao, Ying-Na; Cao, Xue; Luo, Dong-Hua; Sun, Rui; Peng, Li-Xia; Wang, Lin; Yan, Yong-Pan; Zheng, Li-Sheng; Xie, Ping; Cao, Yun; Liang, Ying-Ying; Zheng, Fang-Jing; Huang, Bi-Jun; Xiang, Yan-Qun; Lv, Xing; Chen, Qiu-Yan; Chen, Ming-Yuan; Huang, Pei-Yu; Guo, Ling; Mai, Hai-Qiang; Guo, Xiang; Zeng, Yi-Xin; Qian, Chao-Nan

    2014-01-01

    Nasopharyngeal carcinoma (NPC) is one of the most common malignancies in southern China and Southeast Asia, with the highest metastasis rate among head and neck cancers. The mechanisms underlying NPC progression remain poorly understood. Genome-wide expression profiling on 18 NPC vs. 18 noncancerous nasopharyngeal tissues together with GeneGo pathway analysis and expression verification in NPC cells and tissues revealed a potential role of urokinase-type plasminogen activator receptor (uPAR) in NPC progression, which has not been investigated in NPC. We then observed that uPAR expression is increased in poorly differentiated, highly metastatic NPC cells compared with lowly metastatic cells or differentiated NPC cells. In vitro studies demonstrated that uPAR regulates NPC cell growth, colony formation, migration, and invasion and promotes the epithelial-mesenchymal transition (EMT). Additional tumor xenograft and spontaneous metastasis experiments revealed that uPAR promotes NPC cell growth and metastasis in vivo. The JAK-STAT pathway is involved in uPAR-regulated signaling in NPC cells as determined by immunoblotting. Moreover, uPAR-mediated growth and motility is partially abolished upon treatment with the Jak1/Jak2 inhibitor INCB018424. We suppressed uPA expression in uPAR-overexpressing NPC cells and found that uPAR-mediated cellular growth and motility is not exclusively dependent on uPA. In summary, uPAR is a significant regulator of NPC progression and could serve as a promising therapeutic target. PMID:24763226

  9. Overexpression of protease-activated receptor-1 contributes to melanoma metastasis via regulation of connexin 43.

    PubMed

    Villares, Gabriel J; Dobroff, Andrey S; Wang, Hua; Zigler, Maya; Melnikova, Vladislava O; Huang, Li; Bar-Eli, Menashe

    2009-08-15

    Protease-activated receptor-1 (PAR-1) is a key player in melanoma metastasis with higher expression seen in metastatic melanoma cell lines and tissue specimens. cDNA microarray and Western blot analyses reveal that the gap junctional intracellular communication molecule connexin 43 (Cx-43), known to be involved in tumor cell diapedesis and attachment to endothelial cells, is significantly decreased after PAR-1 silencing in metastatic melanoma cell lines. Furthermore, Cx-43 promoter activity was significantly inhibited in PAR-1-silenced cells, suggesting that PAR-1 regulates Cx-43 at the transcriptional level. Chromatin immunoprecipitation studies showed a reduction in the binding of SP-1 and AP-1 transcription factors to the promoter of Cx-43. Both transcription factors have been shown previously to be required for maximal Cx-43 promoter activity. These results were corroborated by mutating the AP-1 and SP-1 binding sites resulting in decreased Cx-43 promoter activity in PAR-1-positive cells. Moreover, as Cx-43 has been shown to facilitate arrest of circulating tumor cells at the vascular endothelium, melanoma cell attachment to endothelial cells was significantly decreased in PAR-1-silenced cells, with this effect being abrogated after PAR-1 rescue. Herein, we report that up-regulation of PAR-1 expression, seen in melanoma progression, mediates high levels of Cx-43 expression. As both SP-1 and AP-1 transcription factors act as positive regulators of Cx-43, our data provide a novel mechanism for the regulation of Cx-43 expression by PAR-1. Indeed, Cx-43 expression was restored following PAR-1 rescue in PAR-1-silenced cells. Taken together, our data support the tumor promoting function of Cx-43 in melanoma. PMID:19679555

  10. Overexpression of Protease Activated Receptor-1 Contributes to Melanoma Metastasis via Regulation of Connexin 43

    PubMed Central

    Villares, Gabriel J.; Dobroff, Andrey S.; Wang, Hua; Zigler, Maya; Melnikova, Vladislava O.; Huang, Li; Bar-Eli, Menashe

    2009-01-01

    Protease Activated Receptor-1 (PAR-1) is a key player in melanoma metastasis with higher expression seen in metastatic melanoma cell lines and tissue specimens. cDNA microarray and Western blot analyses reveal that the gap junctional intracellular communication molecule, Connexin 43 (Cx-43), known to be involved in tumor cell diapedesis and attachment to endothelial cells, is significantly decreased after PAR-1 silencing in metastatic melanoma cell lines. Furthermore, Cx-43 promoter activity was significantly inhibited in PAR-1 silenced cells suggesting that PAR-1 regulates Cx-43 at the transcriptional level. Chromatin Immunoprecipitation studies found a reduction in the binding of SP-1 and AP-1 transcription factors to the promoter of Cx-43. Both transcription factors have previously been shown to be required for maximal Cx-43 promoter activity. These results were corroborated by mutating the AP-1 and SP-1 binding sites resulting in decreased Cx-43 promoter activity in PAR-1 positive cells. Moreover, as Cx-43 has been shown to facilitate arrest of circulating tumor cells at the vascular endothelium, melanoma cell attachment to endothelial cells was significantly decreased in PAR-1 silenced cells with this effect being abrogated after PAR-1 rescue. Herein, we report that upregulation of PAR-1 expression seen in melanoma progression, mediates high levels of Cx-43 expression. As both SP-1 and AP-1 transcription factors act as positive regulators of Cx-43, our data provide a novel mechanism for the regulation of Cx-43 expression by PAR-1. Indeed, Cx-43 expression was restored following PAR-1 rescue in PAR-1 silenced cells. Taken together, our data support the tumor promoting function of Connexin 43 in melanoma. PMID:19679555

  11. Protease-Activated Receptor 4 Induces Bladder Pain through High Mobility Group Box-1

    PubMed Central

    Kouzoukas, Dimitrios E.; Ma, Fei; Meyer-Siegler, Katherine L.; Westlund, Karin N.; Hunt, David E.; Vera, Pedro L.

    2016-01-01

    Pain is the significant presenting symptom in Interstitial Cystitis/Painful Bladder Syndrome (IC/PBS). Activation of urothelial protease activated receptor 4 (PAR4) causes pain through release of urothelial macrophage migration inhibitory factor (MIF). High Mobility Group Box-1 (HMGB1), a chromatin-binding protein, mediates bladder pain (but not inflammation) in an experimental model (cyclophosphamide) of cystitis. To determine if PAR4-induced bladder hypersensitivity depends on HMGB1 downstream, we tested whether: 1) bladder PAR4 stimulation affected urothelial HMGB1 release; 2) blocking MIF inhibited urothelial HMGB1 release; and 3) blocking HMGB1 prevented PAR4-induced bladder hypersensitivity. HMGB1 release was examined in immortalized human urothelial cultures (UROtsa) exposed to PAR4-activating peptide (PAR4-AP; 100 μM; 2 hours) or scrambled control peptide. Female C57BL/6 mice, pretreated with a HMGB1 inhibitor (glycyrrhizin: 50 mg/kg; ip) or vehicle, received intravesical PAR4-AP or a control peptide (100 μM; 1 hour) to determine 1) HMGB1 levels at 1 hour in the intravesical fluid (released HMGB1) and urothelium, and 2) abdominal hypersensitivity to von Frey filament stimulation 24 hours later. We also tested mice pretreated with a MIF blocker (ISO-1: 20 mg/kg; ip) to determine whether MIF mediated PAR4-induced urothelial HMGB1 release. PAR4-AP triggered HMGB1 release from human (in vitro) and mice (in vivo) urothelial cells. Intravesical PAR4 activation elicited abdominal hypersensitivity in mice that was prevented by blocking HMGB1. MIF inhibition prevented PAR4-mediated HMGB1 release from mouse urothelium. Urothelial MIF and HGMB1 represent novel targets for therapeutic intervention in bladder pain conditions. PMID:27010488

  12. Improved Satellite-based Photosysnthetically Active Radiation (PAR) for Air Quality Studies

    NASA Astrophysics Data System (ADS)

    Pour Biazar, A.; McNider, R. T.; Cohan, D. S.; White, A.; Zhang, R.; Dornblaser, B.; Doty, K.; Wu, Y.; Estes, M. J.

    2015-12-01

    One of the challenges in understanding the air quality over forested regions has been the uncertainties in estimating the biogenic hydrocarbon emissions. Biogenic volatile organic compounds, BVOCs, play a critical role in atmospheric chemistry, particularly in ozone and particulate matter (PM) formation. In southeastern United States, BVOCs (mostly as isoprene) are the dominant summertime source of reactive hydrocarbon. Despite significant efforts in improving BVOC estimates, the errors in emission inventories remain a concern. Since BVOC emissions are particularly sensitive to the available photosynthetically active radiation (PAR), model errors in PAR result in large errors in emission estimates. Thus, utilization of satellite observations to estimate PAR can help in reducing emission uncertainties. Satellite-based PAR estimates rely on the technique used to derive insolation from satellite visible brightness measurements. In this study we evaluate several insolation products against surface pyranometer observations and offer a bias correction to generate a more accurate PAR product. The improved PAR product is then used in biogenic emission estimates. The improved biogenic emission estimates are compared to the emission inventories over Texas and used in air quality simulation over the period of August-September 2013 (NASA's Discover-AQ field campaign). A series of sensitivity simulations will be performed and evaluated against Discover-AQ observations to test the impact of satellite-derived PAR on air quality simulations.

  13. Development of highly potent protease-activated receptor 2 agonists via synthetic lipid tethering

    PubMed Central

    Flynn, Andrea N.; Hoffman, Justin; Tillu, Dipti V.; Sherwood, Cara L.; Zhang, Zhenyu; Patek, Renata; Asiedu, Marina N. K.; Vagner, Josef; Price, Theodore J.; Boitano, Scott

    2013-01-01

    Protease-activated receptor-2 (PAR2) is a G-protein coupled receptor (GPCR) associated with a variety of pathologies. However, the therapeutic potential of PAR2 is limited by a lack of potent and specific ligands. Following proteolytic cleavage, PAR2 is activated through a tethered ligand. Hence, we reasoned that lipidation of peptidomimetic ligands could promote membrane targeting and thus significantly improve potency and constructed a series of synthetic tethered ligands (STLs). STLs contained a peptidomimetic PAR2 agonist (2-aminothiazol-4-yl-LIGRL-NH2) bound to a palmitoyl group (Pam) via polyethylene glycol (PEG) linkers. In a high-throughput physiological assay, these STL agonists displayed EC50 values as low as 1.47 nM, representing a ∼200 fold improvement over the untethered parent ligand. Similarly, these STL agonists were potent activators of signaling pathways associated with PAR2: EC50 for Ca2+ response as low as 3.95 nM; EC50 for MAPK response as low as 9.49 nM. Moreover, STLs demonstrated significant improvement in potency in vivo, evoking mechanical allodynia with an EC50 of 14.4 pmol. STLs failed to elicit responses in PAR2−/− cells at agonist concentrations of >300-fold their EC50 values. Our results demonstrate that the STL approach is a powerful tool for increasing ligand potency at PAR2 and represent opportunities for drug development at other protease activated receptors and across GPCRs.—Flynn, A. N., Hoffman, J., Tillu, D. V., Sherwood, C. L., Zhang, Z., Patek, R., Asiedu, M. N. K., Vagner, J., Price, T. J., Boitano, S. Development of highly potent protease-activated receptor 2 agonists via synthetic lipid tethering. PMID:23292071

  14. The low density lipoprotein receptor-related protein/alpha2-macroglobulin receptor regulates cell surface plasminogen activator activity on human trophoblast cells.

    PubMed

    Zhang, J C; Sakthivel, R; Kniss, D; Graham, C H; Strickland, D K; McCrae, K R

    1998-11-27

    The low density lipoprotein receptor-related protein/alpha2-macroglobulin receptor (LRP/alpha2MR) mediates the internalization of numerous ligands, including prourokinase (pro-UK) and complexes between two-chain urokinase (tc-u-PA) and plasminogen activator inhibitor type-1 (PAI-1). It has been suggested that through its ability to internalize these ligands, LRP/alpha2MR may regulate the expression of plasminogen activator activity on cell surfaces; this hypothesis, however, has not been experimentally confirmed. To address this issue, we assessed the ability of LRP/alpha2MR to regulate plasminogen activator activity on human trophoblast cells, which express both LRP/alpha2MR and the urokinase receptor (uPAR). Trophoblasts internalized and degraded exogenous 125I-pro-UK (primarily following its conversion to tc-u-PA and incorporation into tc-u-PA.PAI complexes) in an LRP/alpha2MR-dependent manner, which was inhibited by the LRP/alpha2MR receptor-associated protein. Receptor-associated protein also caused a approximately 50% reduction in cell surface plasminogen activator activity and delayed the regeneration of unoccupied uPAR by cells on which uPAR were initially saturated with pro-UK. Identical effects were caused by anti-LRP/alpha2MR antibodies. These results demonstrate that LRP/alpha2MR promotes the expression of cell surface plasminogen activator activity on trophoblasts by facilitating the clearance of tc-u-PA.PAI complexes and regeneration of unoccupied cell surface uPAR. PMID:9822706

  15. Imaging the urokinase plasminongen activator receptor in preclinical breast cancer models of acquired drug resistance.

    PubMed

    LeBeau, Aaron M; Sevillano, Natalia; King, Mandy L; Duriseti, Sai; Murphy, Stephanie T; Craik, Charles S; Murphy, Laura L; VanBrocklin, Henry F

    2014-01-01

    Subtype-targeted therapies can have a dramatic impact on improving the quality and quantity of life for women suffering from breast cancer. Despite an initial therapeutic response, cancer recurrence and acquired drug-resistance are commonplace. Non-invasive imaging probes that identify drug-resistant lesions are urgently needed to aid in the development of novel drugs and the effective utilization of established therapies for breast cancer. The protease receptor urokinase plasminogen activator receptor (uPAR) is a target that can be exploited for non-invasive imaging. The expression of uPAR has been associated with phenotypically aggressive breast cancer and acquired drug-resistance. Acquired drug-resistance was modeled in cell lines from two different breast cancer subtypes, the uPAR negative luminal A subtype and the uPAR positive triple negative subtype cell line MDA-MB-231. MCF-7 cells, cultured to be resistant to tamoxifen (MCF-7 TamR), were found to significantly over-express uPAR compared to the parental cell line. uPAR expression was maintained when resistance was modeled in triple-negative breast cancer by generating doxorubicin and paclitaxel resistant MDA-MB-231 cells (MDA-MB-231 DoxR and MDA-MB-231 TaxR). Using the antagonistic uPAR antibody 2G10, uPAR was imaged in vivo by near-infrared (NIR) optical imaging and (111)In-single photon emission computed tomography (SPECT). Tumor uptake of the (111)In-SPECT probe was high in the three drug-resistant xenografts (> 46 %ID/g) and minimal in uPAR negative xenografts at 72 hours post-injection. This preclinical study demonstrates that uPAR can be targeted for imaging breast cancer models of acquired resistance leading to potential clinical applications. PMID:24505235

  16. Protein Kinase D and Gβγ Subunits Mediate Agonist-evoked Translocation of Protease-activated Receptor-2 from the Golgi Apparatus to the Plasma Membrane.

    PubMed

    Jensen, Dane D; Zhao, Peishen; Jimenez-Vargas, Nestor N; Lieu, TinaMarie; Gerges, Marina; Yeatman, Holly R; Canals, Meritxell; Vanner, Stephen J; Poole, Daniel P; Bunnett, Nigel W

    2016-05-20

    Agonist-evoked endocytosis of G protein-coupled receptors has been extensively studied. The mechanisms by which agonists stimulate mobilization and plasma membrane translocation of G protein-coupled receptors from intracellular stores are unexplored. Protease-activated receptor-2 (PAR2) traffics to lysosomes, and sustained protease signaling requires mobilization and plasma membrane trafficking of PAR2 from Golgi stores. We evaluated the contribution of protein kinase D (PKD) and Gβγ to this process. In HEK293 and KNRK cells, the PAR2 agonists trypsin and 2-furoyl-LIGRLO-NH2 activated PKD in the Golgi apparatus, where PKD regulates protein trafficking. PAR2 activation induced translocation of Gβγ, a PKD activator, to the Golgi apparatus, determined by bioluminescence resonance energy transfer between Gγ-Venus and giantin-Rluc8. Inhibitors of PKD (CRT0066101) and Gβγ (gallein) prevented PAR2-stimulated activation of PKD. CRT0066101, PKD1 siRNA, and gallein all inhibited recovery of PAR2-evoked Ca(2+) signaling. PAR2 with a photoconvertible Kaede tag was expressed in KNRK cells to examine receptor translocation from the Golgi apparatus to the plasma membrane. Irradiation of the Golgi region (405 nm) induced green-red photo-conversion of PAR2-Kaede. Trypsin depleted PAR2-Kaede from the Golgi apparatus and repleted PAR2-Kaede at the plasma membrane. CRT0066101 inhibited PAR2-Kaede translocation to the plasma membrane. CRT0066101 also inhibited sustained protease signaling to colonocytes and nociceptive neurons that naturally express PAR2 and mediate protease-evoked inflammation and nociception. Our results reveal a major role for PKD and Gβγ in agonist-evoked mobilization of intracellular PAR2 stores that is required for sustained signaling by extracellular proteases. PMID:27030010

  17. Protease activated receptor-1 inhibits the Maspin tumor-suppressor gene to determine the melanoma metastatic phenotype

    PubMed Central

    Villares, Gabriel J.; Zigler, Maya; Dobroff, Andrey S.; Wang, Hua; Song, Renduo; Melnikova, Vladislava O.; Huang, Li; Braeuer, Russell R.; Bar-Eli, Menashe

    2011-01-01

    The thrombin receptor protease activated receptor-1 (PAR-1) is overexpressed in metastatic melanoma cell lines and tumor specimens. Previously, we demonstrated a significant reduction in tumor growth and experimental lung metastasis after PAR-1 silencing via systemic delivery of siRNA encapsulated into nanoliposomes. Gene expression profiling identified a 40-fold increase in expression of Maspin in PAR-1–silenced metastatic melanoma cell lines. Maspin promoter activity was significantly increased after PAR-1 silencing, suggesting that PAR1 negatively regulates Maspin at the transcriptional level. ChIP analyses revealed that PAR-1 decreases binding of Ets-1 and c-Jun transcription factors to the Maspin promoter, both known to activate Maspin transcription. PAR-1 silencing did not affect Ets-1 or c-Jun expression; rather it resulted in increased expression of the chromatin remodeling complex CBP/p300, as well as decreased activity of the CBP/p300 inhibitor p38, resulting in increased binding of Ets-1 and c-Jun to the Maspin promoter and higher Maspin expression. Functionally, Maspin expression reduced the invasive capability of melanoma cells after PAR-1 silencing, which was abrogated after rescuing with PAR-1. Furthermore, tumor growth and experimental lung metastasis was significantly decreased after expressing Maspin in a metastatic melanoma cell line. Moreover, silencing Maspin in PAR-1–silenced cells reverted the inhibition of tumor growth and experimental lung metastasis. Herein, we demonstrate a mechanism by which PAR-1 negatively regulates the expression of the Maspin tumor-suppressor gene in the acquisition of the metastatic melanoma phenotype, thus attributing an alternative function to PAR-1 other than coagulation. PMID:21187389

  18. Protease activated receptor-1 inhibits the Maspin tumor-suppressor gene to determine the melanoma metastatic phenotype.

    PubMed

    Villares, Gabriel J; Zigler, Maya; Dobroff, Andrey S; Wang, Hua; Song, Renduo; Melnikova, Vladislava O; Huang, Li; Braeuer, Russell R; Bar-Eli, Menashe

    2011-01-11

    The thrombin receptor protease activated receptor-1 (PAR-1) is overexpressed in metastatic melanoma cell lines and tumor specimens. Previously, we demonstrated a significant reduction in tumor growth and experimental lung metastasis after PAR-1 silencing via systemic delivery of siRNA encapsulated into nanoliposomes. Gene expression profiling identified a 40-fold increase in expression of Maspin in PAR-1-silenced metastatic melanoma cell lines. Maspin promoter activity was significantly increased after PAR-1 silencing, suggesting that PAR1 negatively regulates Maspin at the transcriptional level. ChIP analyses revealed that PAR-1 decreases binding of Ets-1 and c-Jun transcription factors to the Maspin promoter, both known to activate Maspin transcription. PAR-1 silencing did not affect Ets-1 or c-Jun expression; rather it resulted in increased expression of the chromatin remodeling complex CBP/p300, as well as decreased activity of the CBP/p300 inhibitor p38, resulting in increased binding of Ets-1 and c-Jun to the Maspin promoter and higher Maspin expression. Functionally, Maspin expression reduced the invasive capability of melanoma cells after PAR-1 silencing, which was abrogated after rescuing with PAR-1. Furthermore, tumor growth and experimental lung metastasis was significantly decreased after expressing Maspin in a metastatic melanoma cell line. Moreover, silencing Maspin in PAR-1-silenced cells reverted the inhibition of tumor growth and experimental lung metastasis. Herein, we demonstrate a mechanism by which PAR-1 negatively regulates the expression of the Maspin tumor-suppressor gene in the acquisition of the metastatic melanoma phenotype, thus attributing an alternative function to PAR-1 other than coagulation. PMID:21187389

  19. Urine soluble urokinase-type plasminogen activator receptor levels correlate with proteinuria in Puumala hantavirus infection

    PubMed Central

    Outinen, Tuula K.; Mäkelä, Satu; Huttunen, Reetta; Mäenpää, Niina; Libraty, Daniel; Vaheri, Antti; Mustonen, Jukka; Aittoniemi, Janne

    2014-01-01

    Objectives Urokinase-type plasminogen activator receptor (uPAR) is upregulated during inflammation and known to bind to β3-integrins, receptors used by pathogenic hantaviruses to enter endothelial cells. It has been proposed that soluble uPAR (suPAR) is a circulating factor that causes focal segmental glomerulosclerosis and proteinuria by activating β3-integrin in kidney podocytes. Proteinuria is also a characteristic feature of hantavirus infections. The aim of this study was to evaluate the relation between urine suPAR levels and disease severity in acute Puumala hantavirus (PUUV) infection. Design A single-centre, prospective cohort study. Subjects and methods Urinary suPAR levels were measured twice during the acute phase and once during convalescence in 36 patients with serologically confirmed PUUV infection. Fractional excretion of suPAR (FE suPAR) and of albumin (FE alb) were calculated. Results The FE suPAR was significantly elevated during the acute phase of PUUV infection compared to the convalescent phase (median 3.2%, range 0.8–52.0%, vs. median 1.9%, range 1.0–5.8%, P = 0.005). Maximum FE suPAR was correlated markedly with maximum FE alb (r = 0.812, P < 0.001), and with several other variables that reflect disease severity. There was a positive correlation with the length of hospitalization (r = 0.455, P = 0.009) and maximum plasma creatinine level (r = 0.780, P < 0.001), and an inverse correlation with minimum urinary output (r = −0.411, P = 0.030). There was no correlation between FE suPAR and plasma suPAR (r = 0.180, P = 0.324). Conclusion Urinary suPAR is markedly increased during acute PUUV infection and is correlated with proteinuria. High urine suPAR level may reflect local production of suPAR in the kidney during the acute infection. PMID:24717117

  20. Mechanism for the activation of glutamate receptors

    Cancer.gov

    Scientists at the NIH have used a technique called cryo-electron microscopy to determine a molecular mechanism for the activation and desensitization of ionotropic glutamate receptors, a prominent class of neurotransmitter receptors in the brain and spina

  1. Clinical significance of serum protease-activated receptor-1 levels in gastric cancer patients

    PubMed Central

    TAS, FARUK; KARABULUT, SENEM; TASTEKIN, DIDEM; DURANYILDIZ, DERYA

    2016-01-01

    Protease-activated receptor-1 (PAR-1) has a significant role in the pathogenesis of various malignancies and its expression mainly affects the survivals of cancer patients. The aim of the present study was to determine the clinical significance of the serum concentrations of PAR-1 in patients with gastric carcinoma. A total of 63 pathologically confirmed gastric cancer patients were enrolled in this study, with a median age of 62 years. Serum PAR-1 concentrations were determined by the enzyme-linked immunosorbent assay method and no significant difference in the baseline serum PAR-1 concentrations was found between patients and normal controls (P=0.5). The investigated clinical variables, including patient age, gender, localization of lesion, histology, grade of pathology, disease stage and serum tumor markers (lactate dehydrogenase, carcinoembryonic antigen and carbohydrate antigen 19-9) were not correlated with serum PAR-1 levels (P>0.05). Furthermore, no association was identified between the serum PAR-1 level and chemotherapy responsiveness (P=0.43). Serum PAR-1 level also had no prognostic role for survival (P=0.27). In conclusion, the serum PAR-1 concentration has no diagnostic, predictive and prognostic values in gastric cancer patients. PMID:27073639

  2. Protease Activated Receptors 1 and 2 Correlate Differently with Breast Cancer Aggressiveness Depending on Tumor ER Status

    PubMed Central

    Lidfeldt, Jon; Bendahl, Pär-Ola; Forsare, Carina; Malmström, Per; Fernö, Mårten; Belting, Mattias

    2015-01-01

    Experimental models implicate protease activated receptors (PARs) as important sensors of the proteolytic tumor microenvironment during breast cancer development. However, the role of the major PARs, PAR-1 and PAR-2, in human breast tumors remains to be elucidated. Here, we have investigated how PAR-1 and PAR-2 protein expression correlate with established clinicopathological variables and patient outcome in a well-characterized cohort of 221 breast cancer patients. Univariable and multivariable hazard ratios (HR) were estimated by the Cox proportional hazards model, distant disease-free survival (DDFS) and overall survival by the Kaplan–Meier method, and survival in different strata was determined by the log-rank test. Associations between PARs and clinicopathological variables were analyzed using Pearson’s χ2-test. We find that PAR-2 associates with DDFS (HR = 3.1, P = 0.003), whereas no such association was found with PAR-1 (HR = 1.2, P = 0.6). Interestingly, the effect of PAR-2 was confined to the ER-positive sub-group (HR = 5.5, P = 0.003 vs. HR = 1.2 in ER-negative; P = 0.045 for differential effect), and PAR-2 was an independent prognostic factor specifically in ER-positive tumors (HR = 3.9, P = 0.045). On the contrary, PAR-1 correlated with worse prognosis specifically in the ER-negative group (HR = 2.6, P = 0.069 vs. HR = 0.5, P = 0.19 in ER-positive; P = 0.026 for differential effect). This study provides novel insight into the respective roles of PAR-1 and PAR-2 in human breast cancer and suggests a hitherto unknown association between PARs and ER signaling that warrants further investigation. PMID:26244666

  3. Protease-activated receptor 1 and 4 signal inhibition reduces preterm neonatal hemorrhagic brain injury

    PubMed Central

    Lekic, Tim; Klebe, Damon; McBride, Devin W; Manaenko, Anatol; Rolland, William B.; Flores, Jerry J.; Altay, Orhan; Tang, Jiping; Zhang, John H.

    2015-01-01

    Background and Purpose This study examines the role of thrombin’s protease-activated receptors (PAR)-1,-4 in mediating cyclooxygenase (COX)-2 and mammalian target of rapamycin (mTOR) following germinal matrix hemorrhage (GMH). Methods GMH was induced by intraparenchymal infusion of bacterial collagenase into the right ganglionic eminence of P7 rat pups. Animals were treated with either PAR-1, -4, COX-2, or mTOR inhibitors by 1 hour, and up to five days. Results We found increased thrombin activity 6–24 hrs after GMH, and PAR-1, -4, inhibition normalized COX-2 and mTOR by 72 hrs. Early treatment with NS398 or rapamycin substantially improved long-term outcomes in juvenile animals. Conclusions Suppressing early PAR signal transduction, and postnatal NS398 or rapamycin treatment, may help reduce GMH severity in susceptible preterm infants. PMID:25931468

  4. Gonadotrophin subunit and GnRH receptor gene expression in the pars distalis of the equine pituitary.

    PubMed

    Townsend, Julie; Westcott, Karen; Tortonese, Domingo J

    2009-02-01

    In the horse, pronounced changes in fertility occur annually in response to photoperiod. However, the mechanisms regulating gonadotrophin synthesis and release in this species remain unclear. Here, we investigated the expression of gonadotrophin subunits and GnRH receptor (GnRH-R) mRNA in the pituitary glands of Thoroughbred horses during the breeding (BS) and non-breeding (NBS) season. Seasonal effects on the prevalence of gonadotrophs in the pars distalis were also examined. GnRH-R and common alpha-, LHbeta- and FSHbeta-subunit mRNA contents were determined by Northern analysis and the prevalence of LH-gonadotrophs assessed by immunohistochemistry in pituitaries from sexually active females (mares) in the BS, and sexually inactive mares in the NBS. These variables were then measured in castrated male horses (geldings). In mares, pituitary content of FSHbeta mRNA was significantly higher in the NBS (P<0.01). Conversely, the content of common alpha-subunit mRNA was significantly higher during the BS (P<0.05). In contrast, GnRH-R and LHbeta mRNA abundance were unaffected by season. Interestingly, whereas no seasonal effects were apparent on the number of LH-gonadotrophs/field, the proportion of LH cells (in relation to all other cells) was higher in BS than NBS animals (P<0.05); this resulted from an increased number of non-gonadotroph cells during the NBS (P<0.05). In geldings, no significant seasonal effects were detected for any of the variables investigated (P>0.05). These results reveal robust seasonal effects on common alpha-subunit and FSHbeta gene expression in the pituitary of the mare, in the absence of detectable changes in the content of LHbeta or GnRH-R mRNA. PMID:19114046

  5. Microglia and the urokinase plasminogen activator receptor/uPA system in innate brain inflammation.

    PubMed

    Cunningham, Orla; Campion, Suzanne; Perry, V Hugh; Murray, Carol; Sidenius, Nicolai; Docagne, Fabian; Cunningham, Colm

    2009-12-01

    The urokinase plasminogen activator (uPA) receptor (uPAR) is a GPI-linked cell surface protein that facilitates focused plasmin proteolytic activity at the cell surface. uPAR has been detected in macrophages infiltrating the central nervous system (CNS) and soluble uPAR has been detected in the cerebrospinal fluid during a number of CNS pathologies. However, its expression by resident microglial cells in vivo remains uncertain. In this work, we aimed to elucidate the murine CNS expression of uPAR and uPA as well as that of tissue plasminogen activator and plasminogen activator inhibitor 1 (PAI-1) during insults generating distinct and well-characterized inflammatory responses; acute intracerebral lipopolysaccharide (LPS), acute kainate-induced neurodegeneration, and chronic neurodegeneration induced by prion disease inoculation. All three insults induced marked expression of uPAR at both mRNA and protein level compared to controls (naïve, saline, or control inoculum-injected). uPAR expression was microglial in all cases. Conversely, uPA transcription and activity was only markedly increased during chronic neurodegeneration. Dissociation of uPA and uPAR levels in acute challenges is suggestive of additional proteolysis-independent roles for uPAR. PAI-1 was most highly expressed upon LPS challenge, whereas tissue plasminogen activator mRNA was constitutively present and less responsive to all insults studied. These data are novel and suggest much wider involvement of the uPAR/uPA system in CNS function and pathology than previously supposed. PMID:19459212

  6. Urokinase-type plasminogen activator receptor modulates epileptogenesis in mouse model of temporal lobe epilepsy.

    PubMed

    Ndode-Ekane, Xavier Ekolle; Pitkänen, Asla

    2013-06-01

    Mutation in Plaur gene encoding urokinase-type plasminogen activator receptor (uPAR) results in epilepsy and autistic phenotype in mice. In humans, a single nucleotide polymorphism in PLAUR gene represents a risk for autism spectrum disorders. Importantly, the expression of uPAR is elevated in the brain after various epileptogenic insults like traumatic brain injury and status epilepticus. So far, the consequences of altered uPAR expression on brain networks are poorly known. We tested a hypothesis that uPAR regulates post-injury neuronal reorganization and consequent functional outcome, particularly epileptogenesis. Epileptogenesis was induced by intrahippocampal injection of kainate in adult male wild type (Wt) or uPAR knockout (uPAR-/-) mice, and animals were monitored with continuous (24/7) video-electroencephalogram for 30 days. The severity of status epilepticus did not differ between the genotypes. The spontaneous electrographic seizures which developed were, however, longer and their behavioral manifestations were more severe in uPAR-/- than Wt mice. The more severe epilepsy phenotype in uPAR-/- mice was associated with delayed but augmented inflammatory response and more severe neurodegeneration in the hippocampus. Also, the distribution of newly born cells in the dentate gyrus was more scattered, and the recovery of hippocampal blood vessel length from status epilepticus-induced damage was compromised in uPAR-/- mice as compared to Wt mice. Our data demonstrate that a deficiency in uPAR represents a mechanisms which results in the development of a more severe epilepsy phenotype and progressive brain pathology after status epilepticus. We suggest that uPAR represents a rational target for disease-modifying treatments after epileptogenic brain insults. PMID:23263886

  7. Risk factors associated with serum levels of the inflammatory biomarker soluble urokinase plasminogen activator receptor in a general population.

    PubMed

    Haupt, Thomas H; Kallemose, Thomas; Ladelund, Steen; Rasmussen, Line Jh; Thorball, Christian W; Andersen, Ove; Pisinger, Charlotta; Eugen-Olsen, Jesper

    2014-01-01

    The soluble urokinase plasminogen activator receptor (suPAR) is a biomarker of mortality risk in various patient populations. However, little is known about the implications of lifestyle for suPAR levels in the general population. Lifestyle, demographic, and cardiovascular disease (CVD) risk factor data were collected from 5,538 participants in the Danish population-based Inter99 study. Their suPAR levels were measured using a sandwich enzyme-linked immunosorbent assay. In the final adjusted model, smoking and morbid obesity were strongly associated with higher suPAR levels (P < 0.001). An unhealthy diet and alcohol abstinence in men were also associated with higher suPAR levels. Physical activity in leisure time had a modest impact on suPAR levels in univariate analysis, but not in the final adjusted model. In conclusion, smoking and morbid obesity were strongly associated with higher serum suPAR levels in this general population. Diet and alcohol consumption also seemed to impact suPAR levels. Lifestyle changes are likely to affect suPAR since ex-smokers had suPAR levels comparable to those of never-smokers. PMID:25574132

  8. Risk Factors Associated with Serum Levels of the Inflammatory Biomarker Soluble Urokinase Plasminogen Activator Receptor in a General Population

    PubMed Central

    Haupt, Thomas H; Kallemose, Thomas; Ladelund, Steen; Rasmussen, Line JH; Thorball, Christian W; Andersen, Ove; Pisinger, Charlotta; Eugen-Olsen, Jesper

    2014-01-01

    The soluble urokinase plasminogen activator receptor (suPAR) is a biomarker of mortality risk in various patient populations. However, little is known about the implications of lifestyle for suPAR levels in the general population. Lifestyle, demographic, and cardiovascular disease (CVD) risk factor data were collected from 5,538 participants in the Danish population-based Inter99 study. Their suPAR levels were measured using a sandwich enzyme-linked immunosorbent assay. In the final adjusted model, smoking and morbid obesity were strongly associated with higher suPAR levels (P < 0.001). An unhealthy diet and alcohol abstinence in men were also associated with higher suPAR levels. Physical activity in leisure time had a modest impact on suPAR levels in univariate analysis, but not in the final adjusted model. In conclusion, smoking and morbid obesity were strongly associated with higher serum suPAR levels in this general population. Diet and alcohol consumption also seemed to impact suPAR levels. Lifestyle changes are likely to affect suPAR since ex-smokers had suPAR levels comparable to those of never-smokers. PMID:25574132

  9. Polarity protein Par3 controls B-cell receptor dynamics and antigen extraction at the immune synapse.

    PubMed

    Reversat, Anne; Yuseff, Maria-Isabel; Lankar, Danielle; Malbec, Odile; Obino, Dorian; Maurin, Mathieu; Penmatcha, Naga Venkata Gayathri; Amoroso, Alejandro; Sengmanivong, Lucie; Gundersen, Gregg G; Mellman, Ira; Darchen, François; Desnos, Claire; Pierobon, Paolo; Lennon-Duménil, Ana-Maria

    2015-04-01

    B-cell receptor (BCR) engagement with surface-tethered antigens leads to the formation of an immune synapse, which facilitates antigen uptake for presentation to T-lymphocytes. Antigen internalization and processing rely on the early dynein-dependent transport of BCR-antigen microclusters to the synapse center, as well as on the later polarization of the microtubule-organizing center (MTOC). MTOC repositioning allows the release of proteases and the delivery of MHC class II molecules at the synapse. Whether and how these events are coordinated have not been addressed. Here we show that the ancestral polarity protein Par3 promotes BCR-antigen microcluster gathering, as well as MTOC polarization and lysosome exocytosis, at the synapse by facilitating local dynein recruitment. Par3 is also required for antigen presentation to T-lymphocytes. Par3 therefore emerges as a key molecule in the coupling of the early and late events needed for efficient extraction and processing of immobilized antigen by B-cells. PMID:25631815

  10. Polarity protein Par3 controls B-cell receptor dynamics and antigen extraction at the immune synapse

    PubMed Central

    Reversat, Anne; Yuseff, Maria-Isabel; Lankar, Danielle; Malbec, Odile; Obino, Dorian; Maurin, Mathieu; Penmatcha, Naga Venkata Gayathri; Amoroso, Alejandro; Sengmanivong, Lucie; Gundersen, Gregg G.; Mellman, Ira; Darchen, François; Desnos, Claire; Pierobon, Paolo; Lennon-Duménil, Ana-Maria

    2015-01-01

    B-cell receptor (BCR) engagement with surface-tethered antigens leads to the formation of an immune synapse, which facilitates antigen uptake for presentation to T-lymphocytes. Antigen internalization and processing rely on the early dynein-dependent transport of BCR–antigen microclusters to the synapse center, as well as on the later polarization of the microtubule-organizing center (MTOC). MTOC repositioning allows the release of proteases and the delivery of MHC class II molecules at the synapse. Whether and how these events are coordinated have not been addressed. Here we show that the ancestral polarity protein Par3 promotes BCR–antigen microcluster gathering, as well as MTOC polarization and lysosome exocytosis, at the synapse by facilitating local dynein recruitment. Par3 is also required for antigen presentation to T-lymphocytes. Par3 therefore emerges as a key molecule in the coupling of the early and late events needed for efficient extraction and processing of immobilized antigen by B-cells. PMID:25631815

  11. CONTRIBUTION OF PROTEASE-ACTIVATED RECEPTOR 1 IN STATUS EPILEPTICUS-INDUCED EPILEPTOGENESIS

    PubMed Central

    Isaev, D.; Lushnikova, I.; Lunko, O.; Zapukhliak, O.; Maximyuk, O.; Romanov, A.; Skibo, G.G.; Tian, C.; Holmes, G.L.; Isaeva, E.

    2015-01-01

    Clinical observations and studies on different animal models of acquired epilepsy consistently demonstrate that blood-brain barrier (BBB) leakage can be an important risk factor for developing recurrent seizures. However, the involved signaling pathways remain largely unclear. Given the important role of thrombin and its major receptor in the brain, protease-activated receptor 1 (PAR1), in the pathophysiology of neurological injury, we hypothesized that PAR1 may contribute to status epilepticus (SE)-induced epileptogenesis and that its inhibition shortly after SE will have neuroprotective and antiepileptogenic effects. Adult rats subjected to lithium-pilocarpine SE were administrated SCH79797 (a PAR1 selective antagonist) after SE termination. Thrombin and PAR1 levels and neuronal cell survival were evaluated 48 hr following SE. The effect of PAR1 inhibition on animal survival, interictal spikes (IIS) and electrographic seizures during the first two weeks after SE and behavioral seizures during the chronic period were evaluated. SE resulted in a high mortality rate and incidence of IIS and seizures in the surviving animals. There was a marked increase in thrombin, decrease in PAR1 immunoreactivity and hippocampal cell loss in the SE-treated rats. Inhibition of PAR1 following SE resulted in a decrease in mortality and morbidity, increase in neuronal cell survival in the hippocampus and suppression of IIS, electrographic and behavioral seizures following SE. These data suggest that the PAR1 signaling pathway contributes to epileptogenesis following SE. Because breakdown of the BBB occurs frequently in brain injuries, PAR1 inhibition may have beneficial effects in a variety of acquired injuries leading to epilepsy. PMID:25843668

  12. Paired inhibitory and activating receptor signals.

    PubMed

    Taylor, L S; Paul, S P; McVicar, D W

    2000-01-01

    The immunological literature has become inundated with reports regarding paired inhibitory receptors. Paired inhibitory receptor systems are highly conserved families that contain receptors involved in either cellular inhibition or activation. In most cases the paired putative biochemical antagonists are co-expressed on a given cell and thought to bind similar, if not identical, ligands making their biological role difficult to understand. Examples of these systems include immunoglobulin (Ig)-like receptors (Killer Ig Receptors, Immunoglobulin-like Transcripts/Leukocyte Ig-like Receptors/Monocyte Macrophage Ig Receptors, and Paired Ig-like Receptors), and type II lectin-like receptor systems (NKG2 and Ly49). General characteristics of these inhibitory receptors include a cytoplasmic immunoreceptor tyrosine-based inhibitory motif (ITIM). The ITIM is phosphorylated upon engagement and recruits protein tyrosine phosphatases that dephosphorylate cellular substrates that would otherwise mediate activation. In contrast, the activating receptors of these pairs use charged residues within their transmembrane domains to associate with various signal transduction chains including the gamma chain of the receptor for the Fc portion of IgE, DAP12 or DAP10. Once phosphorylated, these chains direct the signal transduction cascade resulting in cellular activation. Here we review the signaling of several paired systems and present the current models for their signal transduction cascades. PMID:11258418

  13. Using Photosynthetically Active Radiation (PAR) Observations to Estimate Potential Evaporation with Combination Equations

    NASA Astrophysics Data System (ADS)

    Kim, J.; Freyberg, D. L.

    2011-12-01

    Estimating potential evaporation with combination equations typically depends on observations of solar radiation. In situations where only photosynthetically active radiation (PAR) observations are available, a conversion model is required. We use coincident observations of solar radiation and PAR to build a conversion model for the Santa Cruz Mountains region of California, USA. The model takes advantage of the strong seasonality in cloud cover and albedo, using two seasonal sub-models to improve performance. We examine the uncertainty induced by model error in predictions of potential evaporation and reference crop evaporation using locally calibrated combination equations, and compare with direct observations of pan evaporation and inferred estimates of lake evaporation.

  14. Contributions of protein kinases and β-arrestin to termination of protease-activated receptor 2 signaling

    PubMed Central

    Jung, Seung-Ryoung; Seo, Jong Bae; Deng, Yi; Asbury, Charles L.; Hille, Bertil

    2016-01-01

    Activated Gq protein–coupled receptors (GqPCRs) can be desensitized by phosphorylation and β-arrestin binding. The kinetics and individual contributions of these two mechanisms to receptor desensitization have not been fully distinguished. Here, we describe the shut off of protease-activated receptor 2 (PAR2). PAR2 activates Gq and phospholipase C (PLC) to hydrolyze phosphatidylinositol 4,5-bisphosphate (PIP2) into diacylglycerol and inositol trisphosphate (IP3). We used fluorescent protein–tagged optical probes to monitor several consequences of PAR2 signaling, including PIP2 depletion and β-arrestin translocation in real time. During continuous activation of PAR2, PIP2 was depleted transiently and then restored within a few minutes, indicating fast receptor activation followed by desensitization. Knockdown of β-arrestin 1 and 2 using siRNA diminished the desensitization, slowing PIP2 restoration significantly and even adding a delayed secondary phase of further PIP2 depletion. These effects of β-arrestin knockdown on PIP2 recovery were prevented when serine/threonine phosphatases that dephosphorylate GPCRs were inhibited. Thus, PAR2 may continuously regain its activity via dephosphorylation when there is insufficient β-arrestin to trap phosphorylated receptors. Similarly, blockers of protein kinase C (PKC) and G protein–coupled receptor kinase potentiated the PIP2 depletion. In contrast, an activator of PKC inhibited receptor activation, presumably by augmenting phosphorylation of PAR2. Our interpretations were strengthened by modeling. Simulations supported the conclusions that phosphorylation of PAR2 by protein kinases initiates receptor desensitization and that recruited β-arrestin traps the phosphorylated state of the receptor, protecting it from phosphatases. Speculative thinking suggested a sequestration of phosphatidylinositol 4-phosphate 5 kinase (PIP5K) to the plasma membrane by β-arrestin to explain why knockdown of β-arrestin led to

  15. Targeting the urokinase plasminogen activator receptor enhances gene transfer to human airway epithelia

    PubMed Central

    Drapkin, Paola T.; O’Riordan, Catherine R.; Yi, Su Min; Chiorini, John A.; Cardella, Jonathan; Zabner, Joseph; Welsh, Michael J.

    2000-01-01

    Developing gene therapy for cystic fibrosis has been hindered by limited binding and endocytosis of vectors by human airway epithelia. Here we show that the apical membrane of airway epithelia express the urokinase plasminogen activator receptor (uPAR). Urokinase plasminogen activator (uPA), or a 7-residue peptide derived from this protein (u7-peptide), bound the receptor and stimulated apical endocytosis. Both ligands enhanced gene transfer by nonspecifically bound adenovirus and adeno-associated virus vectors and by a modified adenovirus vector that had been coupled to the u7-peptide. These data provide the first evidence that targeting an apical receptor can circumvent the two most important barriers to gene transfer in airway epithelia. Thus, the uPA/uPAR system may offer significant advantages for delivering genes and other pharmaceuticals to airway epithelia. PMID:10712430

  16. Targeting the urokinase plasminogen activator receptor enhances gene transfer to human airway epithelia.

    PubMed

    Drapkin, P T; O'Riordan, C R; Yi, S M; Chiorini, J A; Cardella, J; Zabner, J; Welsh, M J

    2000-03-01

    Developing gene therapy for cystic fibrosis has been hindered by limited binding and endocytosis of vectors by human airway epithelia. Here we show that the apical membrane of airway epithelia express the urokinase plasminogen activator receptor (uPAR). Urokinase plasminogen activator (uPA), or a 7-residue peptide derived from this protein (u7-peptide), bound the receptor and stimulated apical endocytosis. Both ligands enhanced gene transfer by nonspecifically bound adenovirus and adeno-associated virus vectors and by a modified adenovirus vector that had been coupled to the u7-peptide. These data provide the first evidence that targeting an apical receptor can circumvent the two most important barriers to gene transfer in airway epithelia. Thus, the uPA/uPAR system may offer significant advantages for delivering genes and other pharmaceuticals to airway epithelia. PMID:10712430

  17. Molecular cloning, expression and potential functions of the human proteinase-activated receptor-2.

    PubMed Central

    Bohm, S K; Kong, W; Bromme, D; Smeekens, S P; Anderson, D C; Connolly, A; Kahn, M; Nelken, N A; Coughlin, S R; Payan, D G; Bunnett, N W

    1996-01-01

    We used PCR to amplify proteinase activated receptor-2 (PAR-2) from human kidney cDNA. The open reading frame comprised 1191 bp and encoded a protein of 397 residues with 83% identity with mouse PAR-2. In KNRK cells (a line of kirsten murine sarcoma virus-transformed rat kidney epithelial cells) transfected with this cDNA, trypsin and activating peptide (AP) corresponding to the tethered ligand exposed by trypsin cleavage (SLIGKV-NH2) induced a prompt increase in cytosolic calcium ion concentration ([Ca2+]i). Human PAR-2 (hPAR-2) resided both on the plasma membrane and in the Golgi apparatus. hPAR-2 mRNA was highly expressed in human pancreas, kidney, colon, liver and small intestine, and by A549 lung and SW480 colon adenocarcinoma cells. Hybridization in situ revealed high expression in intestinal epithelial cells throughout the gut. Trypsin and AP stimulated an increase in [Ca2+]i in a rat intestinal epithelial cell line (hBRIE 380) and stimulated amylase secretion in isolated pancreatic acini. In A549 cells, which also responded to trypsin and AP with mobilization of cytosolic Ca2+, AP inhibited colony formation. Thus PAR-2 may serve as a trypsin sensor in the gut. Its expression by cells and tissues not normally exposed to pancreatic trypsin suggests that other proteases could serve as physiological activators. PMID:8615752

  18. The expression and the functional roles of tissue factor and protease-activated receptor-2 on SW620 cells.

    PubMed

    Zhou, Hong; Hu, Hongxin; Shi, Wenxia; Ling, Shucai; Wang, Ting; Wang, Haibo

    2008-11-01

    Tissue factor (TF) is believed to play an important role in tissue repair, inflammation, angiogenesis, and tumor metastasis. Protease-activated receptors (PARs) are widely expressed on various cells including tumor cells and associated with many pathological mechanisms. In the present study, the expression of TF and PAR1, PAR2 on human colon cancer cells (SW620 and SW480) was investigated and their functional roles on the behavior of tumor cells were evaluated. It was demonstrated that SW620 and SW480 cells expressed TF at antigen, activity and mRNA levels. However, the highly metastatic cell line SW620 showed slightly higher TF expression than the low metastatic cell line SW480. The PAR2 antigen was strongly expressed on the membrane of SW620 cells, but not on SW480 cells. The PAR1 antigen was not observed in SW620 or SW480 cells, while PAR1 and PAR2 mRNA was detected in SW620 and SW480 cells. The migratory potential of SW620 was stronger than that of SW480 seen in Boyden chambers. PAR2 agonist (SLIGKV-NH2) and factor VIIa significantly stimulated SW620 cell proliferation, migratory activity, and interleukin 8 (IL-8) secretion compared to control. The stimulating effects of factor VIIa could be inhibited by anti-TF and anti-PAR2 but not anti-PAR1 antibodies. In summary, this study demonstrates that TF and PAR2 are strongly expressed on highly metastatic colonic tumor cells and are closely associated with the proliferation and migration of the cells. TF may elucidate its roles in colonic cancer invasion and metastasis via PAR2 pathway. PMID:18949403

  19. Hormone activation of baculovirus expressed progesterone receptors.

    PubMed

    Elliston, J F; Beekman, J M; Tsai, S Y; O'Malley, B W; Tsai, M J

    1992-03-15

    Human and chicken progesterone receptors (A form) were overproduced in a baculovirus expression system. These recombinant progesterone receptors were full-length bound progesterone specifically and were recognized by monoclonal antibodies, AB52 and PR22, specific for human and chicken progesterone receptor, respectively. In gel retardation studies, binding of recombinant human and chicken progesterone receptors to their progesterone response element (PRE) was specific and was enhanced in the presence of progesterone. Binding of human progesterone receptor to the PRE was also enhanced in the presence of the antiprogestin, RU486, but very little effect was observed in the presence of estradiol, dexamethasone, testosterone, and vitamin D. In our cell-free transcription system, human progesterone receptor induced transcription in a receptor-dependent and hormone-activable manner. Receptor-stimulated transcription required the presence of the PRE in the test template and could be specifically inhibited by excess PRE oligonucleotides. Furthermore, chicken progesterone receptor also induced in vitro transcription in a hormone-activable manner. These results demonstrate that steroid receptors overexpressed in a baculovirus expression system are functional and exhibit steroid-responsive binding and transcription. These observations support our present understanding of the mechanism of steroid receptor-regulated gene expression and provide a technological format for studies of the role of hormone and antihormone in altering gene expression. PMID:1544902

  20. High expression of pulmonary proteinase-activated receptor 2 in acute and chronic lung injury in preterm infants.

    PubMed

    Cederqvist, Katariina; Haglund, Caj; Heikkilä, Päivi; Hollenberg, Morley D; Karikoski, Riitta; Andersson, Sture

    2005-06-01

    Proteinase-activated receptor 2 (PAR(2)), a G-protein-coupled receptor activated by serine proteinases such as trypsin, has been suggested to play an important role in inflammatory and fibroproliferative processes. In preterm infants, the development of bronchopulmonary dysplasia (BPD) is characterized by early pulmonary inflammation and subsequent interstitial fibrosis. High pulmonary trypsin-2 has been shown to be associated with the development of BPD. We studied the expression and distribution of PAR(2) and trypsin-2 by immunohistochemistry in autopsy lung specimens of fetuses (n = 10), of preterm infants who died of acute or prolonged respiratory distress syndrome (RDS) (n = 8 and n = 7, respectively) or BPD (n = 6), and of newborn infants without lung disease (n = 5) who served as controls. In prolonged RDS and BPD, PAR(2) immunoreactivity was significantly higher in bronchial epithelium when compared with infants without pulmonary pathology (p < 0.05 and p < 0.005, respectively). In alveolar epithelium, expression of PAR(2) was elevated in prolonged RDS when compared with newborn infants without pulmonary pathology (p < 0.05). Moreover, strong expression of PAR(2) was detected in myofibroblasts of thickened and fibrotic alveolar walls in prolonged RDS or BPD. Trypsin-2 was co-localized with PAR(2) in bronchoalveolar epithelium. These findings suggest that PAR(2), possibly activated by trypsin-2, may participate in inflammation and fibroproliferation associated with progression of RDS toward BPD in preterm infants. PMID:15879299

  1. Inhibition of Protease-activated Receptor 1 Ameliorates Intestinal Radiation Mucositis in a Preclinical Rat Model

    SciTech Connect

    Wang, Junru; Kulkarni, Ashwini; Chintala, Madhu; Fink, Louis M.; Hauer-Jensen, Martin

    2013-01-01

    Purpose: To determine, using a specific small-molecule inhibitor of protease-activated receptor 1 (PAR1) signaling, whether the beneficial effect of thrombin inhibition on radiation enteropathy development is due to inhibition of blood clotting or to cellular (PAR1-mediated) thrombin effects. Methods and Materials: Rats underwent fractionated X-irradiation (5 Gy Multiplication-Sign 9) of a 4-cm small-bowel segment. Early radiation toxicity was evaluated in rats receiving PAR1 inhibitor (SCH602539, 0, 10, or 15 mg/kg/d) from 1 day before to 2 weeks after the end of irradiation. The effect of PAR1 inhibition on development of chronic intestinal radiation fibrosis was evaluated in animals receiving SCH602539 (0, 15, or 30 mg/kg/d) until 2 weeks after irradiation, or continuously until termination of the experiment 26 weeks after irradiation. Results: Blockade of PAR1 ameliorated early intestinal toxicity, with reduced overall intestinal radiation injury (P=.002), number of myeloperoxidase-positive (P=.03) and proliferating cell nuclear antigen-positive (P=.04) cells, and collagen III accumulation (P=.005). In contrast, there was no difference in delayed radiation enteropathy in either the 2- or 26-week administration groups. Conclusion: Pharmacological blockade of PAR1 seems to reduce early radiation mucositis but does not affect the level of delayed intestinal radiation fibrosis. Early radiation enteropathy is related to activation of cellular thrombin receptors, whereas platelet activation or fibrin formation may play a greater role in the development of delayed toxicity. Because of the favorable side-effect profile, PAR1 blockade should be further explored as a method to ameliorate acute intestinal radiation toxicity in patients undergoing radiotherapy for cancer and to protect first responders and rescue personnel in radiologic/nuclear emergencies.

  2. Biased signaling: potential agonist and antagonist of PAR2.

    PubMed

    Kakarala, Kavita Kumari; Jamil, Kaiser

    2016-06-01

    Protease activated receptor 2 (PAR2) has emerged as one of the promising therapeutic targets to inhibit rapidly metastasizing breast cancer cells. However, its elusive molecular mechanism of activation and signaling has made it a difficult target for drug development. In this study, in silico methods were used to unfold PAR2 molecular mechanism of signaling based on the concept of GPCR receptor plasticity. Although, there are no conclusive evidences of the presence of specific endogenous ligands for PAR2, the efficacy of synthetic agonist and antagonist in PAR2 signaling has opened up the possibilities of ligand-mediated signaling. Furthermore, it has been proved that ligands specific for one GPCR can induce signaling in GPCRs belonging to other subfamilies. Therefore, the aim of this study was to identify potential agonists and antagonists from the GPCR ligand library (GLL), which may induce biased signaling in PAR2 using the concept of existence of multiple ligand-stabilized receptor conformations. The results of our in silico study suggest that PAR2 may show biased signaling mainly with agonists of serotonin type 1, β-adrenergic type 1,3 and antagonists of substance K (NK1), serotonin type 2, dopamine type 4, and thromboxane receptors. Further, this study also throws light on the putative ligand-specific conformations of PAR2. Thus, the results of this study provide structural insights to putative conformations of PAR2 and also gives initial clues to medicinal chemists for rational drug design targeting this challenging receptor. PMID:26295578

  3. The ligand occupancy of endothelial protein C receptor switches the protease-activated receptor 1-dependent signaling specificity of thrombin from a permeability-enhancing to a barrier-protective response in endothelial cells

    PubMed Central

    Bae, Jong-Sup; Yang, Likui; Manithody, Chandrashekhara

    2007-01-01

    Recent studies have indicated that activated protein C (APC) may exert its cytoprotective and anti-inflammatory activities through the endothelial protein C receptor (EPCR)-dependent cleavage of protease-activated receptor 1 (PAR-1) on vascular endothelial cells. Noting that (1) the activation of protein C on endothelial cells requires thrombin, (2) relative to APC, thrombin cleaves PAR-1 with approximately 3 to 4 orders of magnitude higher catalytic efficiency, and (3) PAR-1 is a target for the proinflammatory activity of thrombin, it is not understood how APC can elicit a protective signaling response through the cleavage of PAR-1 when thrombin is present. In this study, we demonstrate that EPCR is associated with caveolin-1 in lipid rafts of endothelial cells and that its occupancy by the γ-carboxyglutamic acid (Gla) domain of protein C/APC leads to its dissociation from caveolin-1 and recruitment of PAR-1 to a protective signaling pathway through coupling of PAR-1 to the pertussis toxin–sensitive Gi-protein. Thus, when EPCR is bound by protein C, the PAR-1 cleavage-dependent protective signaling responses in endothelial cells can be mediated by either thrombin or APC. These results provide a new paradigm for understanding how PAR-1 and EPCR participate in protective signaling events in endothelial cells. PMID:17823308

  4. Inhibition of Protease-Activated Receptor 1 Does not Affect Dendritic Homeostasis of Cultured Mouse Dentate Granule Cells

    PubMed Central

    Schuldt, Gerlind; Galanis, Christos; Strehl, Andreas; Hick, Meike; Schiener, Sabine; Lenz, Maximilian; Deller, Thomas; Maggio, Nicola; Vlachos, Andreas

    2016-01-01

    Protease-activated receptors (PARs) are widely expressed in the central nervous system (CNS). While a firm link between PAR1-activation and functional synaptic and intrinsic neuronal properties exists, studies on the role of PAR1 in neural structural plasticity are scarce. The physiological function of PAR1 in the brain remains not well understood. We here sought to determine whether prolonged pharmacologic PAR1-inhibition affects dendritic morphologies of hippocampal neurons. To address this question we employed live-cell microscopy of mouse dentate granule cell dendrites in 3-week old entorhino-hippocampal slice cultures prepared from Thy1-GFP mice. A subset of cultures were treated with the PAR1-inhibitor SCH79797 (1 μM; up to 3 weeks). No major effects of PAR1-inhibition on static and dynamic parameters of dentate granule cell dendrites were detected under control conditions. Granule cells of PAR1-deficient slice cultures showed unaltered dendritic morphologies, dendritic spine densities and excitatory synaptic strength. Furthermore, we report that PAR1-inhibition does not prevent dendritic retraction following partial deafferentation in vitro. Consistent with this finding, no major changes in PAR1-mRNA levels were detected in the denervated dentate gyrus (DG). We conclude that neural PAR1 is not involved in regulating the steady-state dynamics or deafferentation-induced adaptive changes of cultured dentate granule cell dendrites. These results indicate that drugs targeting neural PAR1-signals may not affect the stability and structural integrity of neuronal networks in healthy brain regions. PMID:27378862

  5. Inhibition of Protease-Activated Receptor 1 Does not Affect Dendritic Homeostasis of Cultured Mouse Dentate Granule Cells.

    PubMed

    Schuldt, Gerlind; Galanis, Christos; Strehl, Andreas; Hick, Meike; Schiener, Sabine; Lenz, Maximilian; Deller, Thomas; Maggio, Nicola; Vlachos, Andreas

    2016-01-01

    Protease-activated receptors (PARs) are widely expressed in the central nervous system (CNS). While a firm link between PAR1-activation and functional synaptic and intrinsic neuronal properties exists, studies on the role of PAR1 in neural structural plasticity are scarce. The physiological function of PAR1 in the brain remains not well understood. We here sought to determine whether prolonged pharmacologic PAR1-inhibition affects dendritic morphologies of hippocampal neurons. To address this question we employed live-cell microscopy of mouse dentate granule cell dendrites in 3-week old entorhino-hippocampal slice cultures prepared from Thy1-GFP mice. A subset of cultures were treated with the PAR1-inhibitor SCH79797 (1 μM; up to 3 weeks). No major effects of PAR1-inhibition on static and dynamic parameters of dentate granule cell dendrites were detected under control conditions. Granule cells of PAR1-deficient slice cultures showed unaltered dendritic morphologies, dendritic spine densities and excitatory synaptic strength. Furthermore, we report that PAR1-inhibition does not prevent dendritic retraction following partial deafferentation in vitro. Consistent with this finding, no major changes in PAR1-mRNA levels were detected in the denervated dentate gyrus (DG). We conclude that neural PAR1 is not involved in regulating the steady-state dynamics or deafferentation-induced adaptive changes of cultured dentate granule cell dendrites. These results indicate that drugs targeting neural PAR1-signals may not affect the stability and structural integrity of neuronal networks in healthy brain regions. PMID:27378862

  6. Trypsin stimulates proteinase-activated receptor-2-dependent and -independent activation of mitogen-activated protein kinases.

    PubMed Central

    Belham, C M; Tate, R J; Scott, P H; Pemberton, A D; Miller, H R; Wadsworth, R M; Gould, G W; Plevin, R

    1996-01-01

    We have examined protease-mediated activation of the mitogen-activated protein (MAP) kinase cascade in rat aortic smooth-muscle cells and bovine pulmonary arterial fibroblasts. Exposure of smooth-muscle cells to trypsin evoked rapid and transient activation of c-Raf-1, MAP kinase kinase 1 and 2 and MAP kinase that was sensitive to inhibition by soybean trypsin inhibitor. The actions of trypsin were closely mimicked by the proteinase-activated receptor 2 (PAR-2)-activating peptide sequence SLIGRL but not LSIGRL. Peak MAP kinase activation in response to both trypsin and SLIGRL was also dependent on concentration, with EC50 values of 12.1 +/- 3.4 nM and 62.5 +/- 4.5 microM respectively. Under conditions where MAP kinase activation by SLIGRL was completely desensitized by prior exposure of smooth-muscle cells to the peptide, trypsin-stimulated MAP kinase activity was markedly attenuated (78.9 +/- 15.1% desensitization), whereas the response to thrombin was only marginally affected (16.6 +/- 12.1% desensitization). Trypsin and SLIGRL also weakly stimulated the activation of the MAP kinase homologue p38 in smooth-muscle cells without any detectable activation of c-Jun N-terminal kinase. Strong activation of the MAP kinase cascade and modest activation of p38 by trypsin were also observed in fibroblasts, although in this cell type these effects were not mimicked by SLIGRL nor by the thrombin receptor-activating peptide SFLLRNPNDKYEPF. Reverse transcriptase-PCR analysis confirmed the presence of PAR-2 mRNA in smooth-muscle cells but not fibroblasts. Our results suggest that in vascular smooth-muscle cells, trypsin stimulates the activation of the MAP kinase cascade relatively selectively, in a manner consistent with an interaction with the recently described PAR-2. Activation of MAP kinase by trypsin in vascular fibroblasts, however, seems to be independent of PAR-2 and occurs by an undefined mechanism possibly involving novel receptor species. PMID:9003384

  7. Regulator of G protein signaling 8 inhibits protease-activated receptor 1/Gi/o signaling by forming a distinct G protein-dependent complex in live cells.

    PubMed

    Lee, Jinyong; Ghil, Sungho

    2016-05-01

    Activation of seven-transmembrane-domain-possessing G protein-coupled receptors (GPCRs) by extracellular stimuli elicits intracellular responses. One class of GPCRs-protease-activated receptors (PARs)-is activated by endogenous proteases, such as thrombin and trypsin. Members of the regulator of G protein signaling (RGS) family stimulate GTP hydrolysis of G protein alpha (Gα) subunits, thereby inhibiting GPCR/Gα-mediated signaling. We previously reported that RGS2 and RGS4 inhibit PAR1/Gα-mediated signaling by interacting with PAR1 in a Gα-dependent manner. Here, employing the bioluminescence resonance energy transfer (BRET) technique, we identified RGS8 as a novel PAR1-interacting protein. Very little BRET activity was observed between PAR1-Venus (PAR1-Ven) and RGS8-Luciferase (RGS8-Luc) in the absence of Gα. However, in the presence of Gαo, BRET activity was specifically and significantly increased. This interaction was confirmed by biochemical and immunofluorescence assays. Notably, RGS8 inhibited PAR1/Gαi/o-mediated adenylyl cyclase and ERK activation, and prevented Gαo-induced neurite outgrowth and activation of Necdin protein, a downstream target of Gαo. Our findings suggest a novel function of RGS8 and reveal cellular mechanisms by which RGS8 mediates PAR1 inhibition. PMID:26829215

  8. Proteinase-activated receptor-2 is required for normal osteoblast and osteoclast differentiation during skeletal growth and repair.

    PubMed

    Georgy, S R; Pagel, C N; Ghasem-Zadeh, A; Zebaze, R M D; Pike, R N; Sims, N A; Mackie, E J

    2012-03-01

    Proteinase-activated receptor-2 (PAR(2)) is a G-protein coupled receptor expressed by osteoblasts and monocytes. PAR(2) is activated by a number of proteinases including coagulation factors and proteinases released by inflammatory cells. The aim of the current study was to investigate the role of PAR(2) in skeletal growth and repair using wild type (WT) and PAR(2) knockout (KO) mice. Micro computed tomography and histomorphometry were used to examine the structure of tibias isolated from uninjured mice at 50 and 90 days of age, and from 98-day-old mice in a bone repair model in which a hole had been drilled through the tibias. Bone marrow was cultured and investigated for the presence of osteoblast precursors (alkaline phosphatase-positive fibroblastic colonies), and osteoclasts were counted in cultures treated with M-CSF and RANKL. Polymerase chain reaction (PCR) was used to determine which proteinases that activate PAR(2) are expressed in bone marrow. Regulation of PAR(2) expression in primary calvarial osteoblasts from WT mice was investigated by quantitative PCR. Cortical and trabecular bone volumes were significantly greater in the tibias of PAR(2) KO mice than in those of WT mice at 50 days of age. In trabecular bone, osteoclast surface, osteoblast surface and osteoid volume were significantly lower in KO than in WT mice. Bone marrow cultures from KO mice showed significantly fewer alkaline phosphatase-positive colony-forming units and osteoclasts compared to cultures from WT mice. Significantly less new bone and significantly fewer osteoclasts were observed in the drill sites of PAR(2) KO mice compared to WT mice 7 days post-surgery. A number of activators of PAR(2), including matriptase and kallikrein 4, were found to be expressed by normal bone marrow. Parathyroid hormone, 1,25 dihydroxyvitamin D(3), or interleukin-6 in combination with its soluble receptor down-regulated PAR(2) mRNA expression, and fibroblast growth factor-2 or thrombin stimulated PAR(2

  9. Cathepsin S Cleavage of Protease-Activated Receptor-2 on Endothelial Cells Promotes Microvascular Diabetes Complications.

    PubMed

    Kumar Vr, Santhosh; Darisipudi, Murthy N; Steiger, Stefanie; Devarapu, Satish Kumar; Tato, Maia; Kukarni, Onkar P; Mulay, Shrikant R; Thomasova, Dana; Popper, Bastian; Demleitner, Jana; Zuchtriegel, Gabriele; Reichel, Christoph; Cohen, Clemens D; Lindenmeyer, Maja T; Liapis, Helen; Moll, Solange; Reid, Emma; Stitt, Alan W; Schott, Brigitte; Gruner, Sabine; Haap, Wolfgang; Ebeling, Martin; Hartmann, Guido; Anders, Hans-Joachim

    2016-06-01

    Endothelial dysfunction is a central pathomechanism in diabetes-associated complications. We hypothesized a pathogenic role in this dysfunction of cathepsin S (Cat-S), a cysteine protease that degrades elastic fibers and activates the protease-activated receptor-2 (PAR2) on endothelial cells. We found that injection of mice with recombinant Cat-S induced albuminuria and glomerular endothelial cell injury in a PAR2-dependent manner. In vivo microscopy confirmed a role for intrinsic Cat-S/PAR2 in ischemia-induced microvascular permeability. In vitro transcriptome analysis and experiments using siRNA or specific Cat-S and PAR2 antagonists revealed that Cat-S specifically impaired the integrity and barrier function of glomerular endothelial cells selectively through PAR2. In human and mouse type 2 diabetic nephropathy, only CD68(+) intrarenal monocytes expressed Cat-S mRNA, whereas Cat-S protein was present along endothelial cells and inside proximal tubular epithelial cells also. In contrast, the cysteine protease inhibitor cystatin C was expressed only in tubules. Delayed treatment of type 2 diabetic db/db mice with Cat-S or PAR2 inhibitors attenuated albuminuria and glomerulosclerosis (indicators of diabetic nephropathy) and attenuated albumin leakage into the retina and other structural markers of diabetic retinopathy. These data identify Cat-S as a monocyte/macrophage-derived circulating PAR2 agonist and mediator of endothelial dysfunction-related microvascular diabetes complications. Thus, Cat-S or PAR2 inhibition might be a novel strategy to prevent microvascular disease in diabetes and other diseases. PMID:26567242

  10. Proteinase-activated receptor-2 mediated inhibition of TNFα-stimulated JNK activation — A novel paradigm for Gq/11 linked GPCRs

    PubMed Central

    McIntosh, Kathryn; Cunningham, Margaret R.; Cadalbert, Laurence; Lockhart, John; Boyd, Gary; Ferrell, W.R.; Plevin, Robin

    2010-01-01

    In this study we examined the potential for PAR2 and TNFα to synergise at the level of MAP kinase signalling in PAR2 expressing NCTC2544 cells. However, to our surprise we found that activation of PAR2 by trypsin or the specific activating peptide SLIGKV-OH strongly inhibited both the phosphorylation and activity of JNK. In contrast neither p38 MAP kinase nor ERK activation was affected although TNFα stimulated IκBα loss was partially reversed. The inhibitory effect was not observed in parental cells nor in cells expressing PAR4, however inhibition was reversed by pre-incubation with the novel PAR2 antagonist K14585, suggesting that the effect is specific for PAR2 activation. SLIGKV-OH was found to be more potent in inhibiting TNFα-induced JNK activation than in stimulating JNK alone, suggesting agonist-directed signalling. The PKC activator PMA, also mimicked the inhibitory effect of SLIGKV-OH, and the effects of both agents were reversed by pre-treatment with the PKC inhibitor, GF109203X. Furthermore, incubation with the novel Gq/11 inhibitor YM25480 also reversed PAR2 mediated inhibition. Activation of PAR2 was found to disrupt TNFR1 binding to RIP and TRADD and this was reversed by both GF109203X and YM25480. A similar mode of inhibition observed in HUVECs through PAR2 or P2Y2 receptors demonstrates the potential of a novel paradigm for GPCRs linked to Gq/11, in mediating inhibition of TNFα-stimulated JNK activation. This has important implications in assessing the role of GPCRs in inflammation and other conditions. PMID:19781631

  11. Thrombin stimulates fibroblast procollagen production via proteolytic activation of protease-activated receptor 1.

    PubMed Central

    Chambers, R C; Dabbagh, K; McAnulty, R J; Gray, A J; Blanc-Brude, O P; Laurent, G J

    1998-01-01

    Thrombin is a multifunctional serine protease that has a crucial role in blood coagulation. It is also a potent mesenchymal cell mitogen and chemoattractant and might therefore have an important role in the recruitment and local proliferation of mesenchymal cells at sites of tissue injury. We hypothesized that thrombin might also affect the deposition of connective tissue proteins at these sites by directly stimulating fibroblast procollagen production. To address this hypothesis, the effect of thrombin on procollagen production and gene expression by human foetal lung fibroblasts was assessed over 48 h. Thrombin stimulated procollagen production at concentrations of 1 nM and above, with maximal increases of between 60% and 117% at 10 nM thrombin. These effects of thrombin were, at least in part, due to increased steady-state levels of alpha1(I) procollagen mRNA. They could furthermore be reproduced with thrombin receptor-activating peptides for the protease-activated receptor 1 (PAR-1) and were completely abolished when thrombin was rendered proteolytically inactive with the specific inhibitors d-Phe-Pro-ArgCH2Cl and hirudin, indicating that thrombin is mediating these effects via the proteolytic activation of PAR-1. These results suggest that thrombin might influence the deposition of connective tissue proteins during normal wound healing and the development of tissue fibrosis by stimulating fibroblast procollagen production. PMID:9639571

  12. Protease-activated receptor-1 negatively regulates proliferation of neural stem/progenitor cells derived from the hippocampal dentate gyrus of the adult mouse.

    PubMed

    Tanaka, Masayuki; Yoneyama, Masanori; Shiba, Tatsuo; Yamaguchi, Taro; Ogita, Kiyokazu

    2016-07-01

    Thrombin-activated protease-activated receptor (PAR)-1 regulates the proliferation of neural cells following brain injury. To elucidate the involvement of PAR-1 in the neurogenesis that occurs in the adult hippocampus, we examined whether PAR-1 regulated the proliferation of neural stem/progenitor cells (NPCs) derived from the murine hippocampal dentate gyrus. NPC cultures expressed PAR-1 protein and mRNA encoding all subtypes of PAR. Direct exposure of the cells to thrombin dramatically attenuated the cell proliferation without causing cell damage. This thrombin-induced attenuation was almost completely abolished by the PAR antagonist RWJ 56110, as well as by dabigatran and 4-(2-aminoethyl)benzenesulfonyl fluoride (AEBSF), which are selective and non-selective thrombin inhibitors, respectively. Expectedly, the PAR-1 agonist peptide (AP) SFLLR-NH2 also attenuated the cell proliferation. The cell proliferation was not affected by the PAR-1 negative control peptide RLLFT-NH2, which is an inactive peptide for PAR-1. Independently, we determined the effect of in vivo treatment with AEBSF or AP on hippocampal neurogenesis in the adult mouse. The administration of AEBSF, but not that of AP, significantly increased the number of newly-generated cells in the hippocampal subgranular zone. These data suggest that PAR-1 negatively regulated adult neurogenesis in the hippocampus by inhibiting the proliferative activity of the NPCs. PMID:27426918

  13. Allosteric activation of the Par-6 PDZ via a partial unfolding transition

    PubMed Central

    Whitney, Dustin S.; Peterson, Francis C.; Kovrigin, Evgenii L.; Volkman, Brian F.

    2013-01-01

    Proteins exist in a delicate balance between the native and unfolded states, where thermodynamic stability may be sacrificed to attain the flexibility required for efficient catalysis, binding or allosteric control. Par-6 regulates the Par polarity complex by transmitting a GTPase signal through the CRIB-PDZ module that alters PDZ lig-and binding. Allosteric activation of the PDZ is achieved by local rearrangement of the L164 and K165 side chains to stabilize the interdomain CRIB-PDZ interface and reposition a conserved element of the ligand binding pocket. However, microsecond to millisecond dynamics measurements revealed that L164/K165 exchange requires a larger rearrangement than expected. The margin of thermodynamic stability for the PDZ domain is modest (~3 kcal/mol) and further reduced by transient interactions with the disordered CRIB domain. Measurements of local structural stability revealed that tertiary contacts within the PDZ are disrupted by a partial unfolding transition that enables interconversion of the L/K switch. The unexpected participation of partial PDZ unfolding in the allosteric mechanism of Par-6 suggests that native-state unfolding may be essential for the function of other marginally stable proteins. PMID:23705660

  14. Human Secreted Ly-6/uPAR Related Protein-1 (SLURP-1) Is a Selective Allosteric Antagonist of α7 Nicotinic Acetylcholine Receptor

    PubMed Central

    Kudryavtsev, Denis; Bychkov, Maxim L.; Kulbatskii, Dmitrii S.; Kasheverov, Igor E.; Astapova, Maria V.; Feofanov, Alexey V.; Thomsen, Morten S.; Mikkelsen, Jens D.; Shenkarev, Zakhar O.; Tsetlin, Victor I.; Dolgikh, Dmitry A.; Kirpichnikov, Mikhail P.

    2016-01-01

    SLURP-1 is a secreted toxin-like Ly-6/uPAR protein found in epithelium, sensory neurons and immune cells. Point mutations in the slurp-1 gene cause the autosomal inflammation skin disease Mal de Meleda. SLURP-1 is considered an autocrine/paracrine hormone that regulates growth and differentiation of keratinocytes and controls inflammation and malignant cell transformation. The majority of previous studies of SLURP-1 have been made using fusion constructs containing, in addition to the native protein, extra polypeptide sequences. Here we describe the activity and pharmacological profile of a recombinant analogue of human SLURP-1 (rSLURP-1) differing from the native protein only by one additional N-terminal Met residue. rSLURP-1 significantly inhibited proliferation (up to ~ 40%, EC50 ~ 4 nM) of human oral keratinocytes (Het-1A cells). Application of mecamylamine and atropine,—non-selective inhibitors of nicotinic acetylcholine receptors (nAChRs) and muscarinic acetylcholine receptors, respectively, and anti-α7-nAChRs antibodies revealed α7 type nAChRs as an rSLURP-1 target in keratinocytes. Using affinity purification from human cortical extracts, we confirmed that rSLURP-1 binds selectively to the α7-nAChRs. Exposure of Xenopus oocytes expressing α7-nAChRs to rSLURP-1 caused a significant non-competitive inhibition of the response to acetylcholine (up to ~ 70%, IC50 ~ 1 μM). It was shown that rSLURP-1 binds to α7-nAChRs overexpressed in GH4Cl cells, but does not compete with 125I-α-bungarotoxin for binding to the receptor. These findings imply an allosteric antagonist-like mode of SLURP-1 interaction with α7-nAChRs outside the classical ligand-binding site. Contrary to rSLURP-1, other inhibitors of α7-nAChRs (mecamylamine, α-bungarotoxin and Lynx1) did not suppress the proliferation of keratinocytes. Moreover, the co-application of α-bungarotoxin with rSLURP-1 did not influence antiproliferative activity of the latter. This supports the hypothesis that

  15. Human Secreted Ly-6/uPAR Related Protein-1 (SLURP-1) Is a Selective Allosteric Antagonist of α7 Nicotinic Acetylcholine Receptor.

    PubMed

    Lyukmanova, Ekaterina N; Shulepko, Mikhail A; Kudryavtsev, Denis; Bychkov, Maxim L; Kulbatskii, Dmitrii S; Kasheverov, Igor E; Astapova, Maria V; Feofanov, Alexey V; Thomsen, Morten S; Mikkelsen, Jens D; Shenkarev, Zakhar O; Tsetlin, Victor I; Dolgikh, Dmitry A; Kirpichnikov, Mikhail P

    2016-01-01

    SLURP-1 is a secreted toxin-like Ly-6/uPAR protein found in epithelium, sensory neurons and immune cells. Point mutations in the slurp-1 gene cause the autosomal inflammation skin disease Mal de Meleda. SLURP-1 is considered an autocrine/paracrine hormone that regulates growth and differentiation of keratinocytes and controls inflammation and malignant cell transformation. The majority of previous studies of SLURP-1 have been made using fusion constructs containing, in addition to the native protein, extra polypeptide sequences. Here we describe the activity and pharmacological profile of a recombinant analogue of human SLURP-1 (rSLURP-1) differing from the native protein only by one additional N-terminal Met residue. rSLURP-1 significantly inhibited proliferation (up to ~ 40%, EC50 ~ 4 nM) of human oral keratinocytes (Het-1A cells). Application of mecamylamine and atropine,--non-selective inhibitors of nicotinic acetylcholine receptors (nAChRs) and muscarinic acetylcholine receptors, respectively, and anti-α7-nAChRs antibodies revealed α7 type nAChRs as an rSLURP-1 target in keratinocytes. Using affinity purification from human cortical extracts, we confirmed that rSLURP-1 binds selectively to the α7-nAChRs. Exposure of Xenopus oocytes expressing α7-nAChRs to rSLURP-1 caused a significant non-competitive inhibition of the response to acetylcholine (up to ~ 70%, IC50 ~ 1 μM). It was shown that rSLURP-1 binds to α7-nAChRs overexpressed in GH4Cl cells, but does not compete with 125I-α-bungarotoxin for binding to the receptor. These findings imply an allosteric antagonist-like mode of SLURP-1 interaction with α7-nAChRs outside the classical ligand-binding site. Contrary to rSLURP-1, other inhibitors of α7-nAChRs (mecamylamine, α-bungarotoxin and Lynx1) did not suppress the proliferation of keratinocytes. Moreover, the co-application of α-bungarotoxin with rSLURP-1 did not influence antiproliferative activity of the latter. This supports the hypothesis that

  16. A novel signaling pathway of tissue kallikrein in promoting keratinocyte migration: Activation of proteinase-activated receptor 1 and epidermal growth factor receptor

    SciTech Connect

    Gao, Lin; Chao, Lee; Chao, Julie

    2010-02-01

    Biological functions of tissue kallikrein (TK, KLK1) are mainly mediated by kinin generation and subsequent kinin B2 receptor activation. In this study, we investigated the potential role of TK and its signaling pathways in cultured human keratinocyte migration and in a rat skin wound healing model. Herein, we show that TK promoted cell migration and proliferation in a concentration- and time-dependent manner. Inactive TK or kinin had no significant effect on cell migration. Interestingly, cell migration induced by active TK was not blocked by icatibant or L-NAME, indicating an event independent of kinin B2 receptor and nitric oxide formation. TK's stimulatory effect on cell migration was inhibited by small interfering RNA for proteinase-activated receptor 1 (PAR{sub 1}), and by PAR{sub 1} inhibitor. TK-induced migration was associated with increased phosphorylation of epidermal growth factor receptor (EGFR) and extracellular signal-regulated kinase (ERK), which was blocked by inhibition of protein kinase C (PKC), Src, EGFR and ERK. TK-induced cell migration and EGFR phosphorylation were blocked by metalloproteinase (MMP) inhibitor, heparin, and antibodies against EGFR external domain, heparin-binding EGF-like growth factor (HB-EGF) and amphiregulin (AR). Local application of TK promoted skin wound healing in rats, whereas icatibant and EGFR inhibitor blocked TK's effect. Skin wound healing was further delayed by aprotinin and neutralizing TK antibody. This study demonstrates a novel role of TK in skin wound healing and uncovers new signaling pathways mediated by TK in promoting keratinocyte migration through activation of the PAR{sub 1}-PKC-Src-MMP pathway and HB-EGF/AR shedding-dependent EGFR transactivation.

  17. Stability validation of paraformaldehyde-fixed samples for the assessment of the platelet PECAM-1, P-selectin, and PAR-1 thrombin receptor by flow cytometry.

    PubMed

    Atar, Oliver D; Eisert, Christian; Pokov, Ilya; Serebruany, Victor L

    2010-07-01

    Sample fixation for storage and/or transportation represents an unsolved challenge for multicenter clinical trials assessing serial changes in platelet activity, or monitoring various antiplatelet regimens. Whole blood flow cytometry represents a major advance in defining platelet function, although special training and expensive equipment is required. We sought to determine how fixation with 2% paraformaldehyde (PFA), and storage of blood samples over 1 week affects the flow cytometry readings for both intact and thrombin-activating four major surface platelet receptors. Whole blood platelet expression of PECAM-1, P-selectin, PAR-1 inactive receptor (SPAN-12), and cleaved (WEDE-15) epitope was assessed immediately after blood draw, after staining with 2% PFA, and at day 1, 3, 5, and 7. The study was performed in 6 volunteers with multiple risk factors for vascular disease, not receiving any antiplatelet agents. Staining with PFA resulted in a slight decrease of fluorescence intensity, especially for PECAM-1, while antigen expression at day 1, 3 and 5 remains consistent, and highly reproducible. At day 7 there was a small but inconsistent trend towards diminished fluorescence intensity. The platelet data were consistent while validated with the isotype-matched irrelevant antibody. These data suggest that there is a 5 day window to perform final flow cytometry readings of whole blood PFA-fixed inactivated platelet samples. In contrast, thrombin activation cause gradual loss of flow cytometry signal, and cannot be recommended for long-term storage. This is critical logistic information for conducting multicenter platelet substudies within the framework of major clinical trials. PMID:19866345

  18. Using Nuclear Receptor Activity to Stratify Hepatocarcinogens

    PubMed Central

    Shah, Imran; Houck, Keith; Judson, Richard S.; Kavlock, Robert J.; Martin, Matthew T.; Reif, David M.; Wambaugh, John; Dix, David J.

    2011-01-01

    Background Nuclear receptors (NR) are a superfamily of ligand-activated transcription factors that control a range of cellular processes. Persistent stimulation of some NR is a non-genotoxic mechanism of rodent liver cancer with unclear relevance to humans. Here we report on a systematic analysis of new in vitro human NR activity data on 309 environmental chemicals in relationship to their liver cancer-related chronic outcomes in rodents. Results The effects of 309 environmental chemicals on human constitutive androstane receptors (CAR/NR1I3), pregnane X receptor (PXR/NR1I2), aryl hydrocarbon receptor (AhR), peroxisome proliferator-activated receptors (PPAR/NR1C), liver X receptors (LXR/NR1H), retinoic X receptors (RXR/NR2B) and steroid receptors (SR/NR3) were determined using in vitro data. Hepatic histopathology, observed in rodents after two years of chronic treatment for 171 of the 309 chemicals, was summarized by a cancer lesion progression grade. Chemicals that caused proliferative liver lesions in both rat and mouse were generally more active for the human receptors, relative to the compounds that only affected one rodent species, and these changes were significant for PPAR (p0.001), PXR (p0.01) and CAR (p0.05). Though most chemicals exhibited receptor promiscuity, multivariate analysis clustered them into relatively few NR activity combinations. The human NR activity pattern of chemicals weakly associated with the severity of rodent liver cancer lesion progression (p0.05). Conclusions The rodent carcinogens had higher in vitro potency for human NR relative to non-carcinogens. Structurally diverse chemicals with similar NR promiscuity patterns weakly associated with the severity of rodent liver cancer progression. While these results do not prove the role of NR activation in human liver cancer, they do have implications for nuclear receptor chemical biology and provide insights into putative toxicity pathways. More importantly, these findings suggest the

  19. Differential regulation of protease activated receptor-1 and tissue plasminogen activator expression by shear stress in vascular smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Papadaki, M.; Ruef, J.; Nguyen, K. T.; Li, F.; Patterson, C.; Eskin, S. G.; McIntire, L. V.; Runge, M. S.

    1998-01-01

    Recent studies have demonstrated that vascular smooth muscle cells are responsive to changes in their local hemodynamic environment. The effects of shear stress on the expression of human protease activated receptor-1 (PAR-1) and tissue plasminogen activator (tPA) mRNA and protein were investigated in human aortic smooth muscle cells (HASMCs). Under conditions of low shear stress (5 dyn/cm2), PAR-1 mRNA expression was increased transiently at 2 hours compared with stationary control values, whereas at high shear stress (25 dyn/cm2), mRNA expression was decreased (to 29% of stationary control; P<0.05) at all examined time points (2 to 24 hours). mRNA half-life studies showed that this response was not due to increased mRNA instability. tPA mRNA expression was decreased (to 10% of stationary control; P<0.05) by low shear stress after 12 hours of exposure and was increased (to 250% of stationary control; P<0.05) after 24 hours at high shear stress. The same trends in PAR-1 mRNA levels were observed in rat smooth muscle cells, indicating that the effects of shear stress on human PAR-1 were not species-specific. Flow cytometry and ELISA techniques using rat smooth muscle cells and HASMCs, respectively, provided evidence that shear stress exerted similar effects on cell surface-associated PAR-1 and tPA protein released into the conditioned media. The decrease in PAR-1 mRNA and protein had functional consequences for HASMCs, such as inhibition of [Ca2+] mobilization in response to thrombin stimulation. These data indicate that human PAR-1 and tPA gene expression are regulated differentially by shear stress, in a pattern consistent with their putative roles in several arterial vascular pathologies.

  20. Inferring total canopy APAR from PAR bidirectional reflectances and vegetation indices in tallgrass prairie. [Absorbed Photosynthetically Active Radiation

    NASA Technical Reports Server (NTRS)

    Middleton, Elizabeth M.

    1992-01-01

    The fraction of photosynthetically active radiation (PAR) absorbed by a vegetated canopy (APARc) or landscape (APARs) is a critical parameter in climate processes. A grassland study examined: 1) whether APARs can be estimated from PAR bidirectional exitance fractions; and 2) whether APARs is correlated with spectral vegetation indices (SVIs). Data were acquired with a high resolution continuous spectroradiometer at 4 sun angles on grassland sites. APARs was computed from the scattered surface PAR exitance fractions. The nadir APARs value was the most variable diurnally; it provided a good estimate of the average surface APARs at 95 percent. APARc was best represented by exitance factors between 30-60* forward.

  1. Skin Barrier Recovery by Protease-Activated Receptor-2 Antagonist Lobaric Acid

    PubMed Central

    Joo, Yeon Ah; Chung, Hyunjin; Yoon, Sohyun; Park, Jong Il; Lee, Ji Eun; Myung, Cheol Hwan; Hwang, Jae Sung

    2016-01-01

    Atopic dermatitis (AD) results from gene and environment interactions that lead to a range of immunological abnormalities and breakdown of the skin barrier. Protease-activated receptor 2 (PAR2) belongs to a family of G-protein coupled receptors and is expressed in suprabasal layers of the epidermis. PAR2 is activated by both trypsin and a specific agonist peptide, SLIGKV-NH2 and is involved in both epidermal permeability barrier homeostasis and epithelial inflammation. In this study, we investigated the effect of lobaric acid on inflammation, keratinocyte differentiation, and recovery of the skin barrier in hairless mice. Lobaric acid blocked trypsin-induced and SLIGKV-NH2-induced PAR2 activation resulting in decreased mobilization of intracellular Ca2+ in HaCaT keratinocytes. Lobaric acid reduced expression of interleukin-8 induced by SLIGKV-NH2 and thymus and activation regulated chemokine (TARC) induced by tumor necrosis factor-a (TNF-α) and IFN-γ in HaCaT keratinocytes. Lobaric acid also blocked SLIGKV-NH2-induced activation of ERK, which is a downstream signal of PAR2 in normal human keratinocytes (NHEKs). Treatment with SLIGKV-NH2 downregulated expression of involucrin, a differentiation marker protein in HaCaT keratinocytes, and upregulated expression of involucrin, transglutamase1 and filaggrin in NHEKs. However, lobaric acid antagonized the effect of SLIGKV-NH2 in HaCaT keratinocytes and NHEKs. Topical application of lobaric acid accelerated barrier recovery kinetics in a SKH-1 hairless mouse model. These results suggested that lobaric acid is a PAR2 antagonist and could be a possible therapeutic agent for atopic dermatitis. PMID:27169822

  2. Intestinal Protease-Activated Receptor-2 and Fecal Serine Protease Activity are Increased in Canine Inflammatory Bowel Disease and May Contribute to Intestinal Cytokine Expression

    PubMed Central

    MAEDA, Shingo; OHNO, Koichi; UCHIDA, Kazuyuki; IGARASHI, Hirotaka; GOTO-KOSHINO, Yuko; FUJINO, Yasuhito; TSUJIMOTO, Hajime

    2014-01-01

    ABSTRACT Serine proteases elicit cellular responses via protease-activated receptor-2 (PAR-2) which is known to regulate inflammation and the immune response. Although the gastrointestinal tract is exposed to large amounts of proteolytic enzymes, the role of PAR-2 in canine inflammatory bowel disease (IBD) remains unclear. The objective of this study was to investigate the effects of PAR-2 activation on inflammatory cytokine/chemokine gene expression in canine intestine and the expression of intestinal PAR-2 and fecal serine protease activity in dogs with IBD. Duodenal biopsies from healthy dogs were cultured and treated ex vivo with trypsin or PAR-2 agonist peptide, and inflammatory cytokine/chemokine gene expression in the tissues was then quantified by real-time PCR. PAR-2 mRNA and protein expression levels in the duodenal mucosa were examined by real-time PCR and immunohistochemistry, respectively. Fecal serine protease activity was determined by azocasein assay. In ex vivo-cultured duodenum, trypsin and PAR-2 agonist peptide induced significant up-regulation of mRNA expression levels of interleukin-1 β (IL-1β), IL-8, mucosae-associated epithelial chemokine (MEC) and fractalkine, and this up-regulation was inhibited by a serine protease inhibitor. Duodenal PAR-2 mRNA and protein expression levels were higher in dogs with IBD than in healthy control dogs. Fecal serine protease activity was significantly elevated in dogs with IBD, and the level of activity correlated positively with the clinical severity score. These results suggest that PAR-2 may contribute to the pathogenesis of canine IBD by inducing expression of inflammatory mediators in response to luminal serine proteases. PMID:24829081

  3. Nicotine stimulates urokinase-type plasminogen activator receptor expression and cell invasiveness through mitogen-activated protein kinase and reactive oxygen species signaling in ECV304 endothelial cells

    SciTech Connect

    Khoi, Pham Ngoc; Park, Jung Sun; Kim, Nam Ho; Jung, Young Do

    2012-03-01

    Urokinase-type plasminogen activator receptor (uPAR) expression is elevated during inflammation, tissue remodeling and in many human cancers. This study investigated the effect of nicotine, a major alkaloid in tobacco, on uPAR expression and cell invasiveness in ECV304 endothelial cells. Nicotine stimulated uPAR expression in a dose-dependent manner and activated extracellular signal-regulated kinases-1/2 (Erk-1/2), c-Jun amino-terminal kinase (JNK) and p38 mitogen activated protein kinase (MAPK). Specific inhibitors of MEK-1 (PD98059) and JNK (SP600125) inhibited the nicotine-induced uPAR expression, while the p38 MAPK inhibitor SB203580 did not. Expression vectors encoding dominant negative MEK-1 (pMCL-K97M) and JNK (TAM67) also prevented nicotine-induced uPAR promoter activity. The intracellular hydrogen peroxide (H{sub 2}O{sub 2}) content was increased by nicotine treatment. The antioxidant N-acetylcysteine prevented nicotine-activated production of reactive oxygen species (ROS) and uPAR expression. Furthermore, exogenous H{sub 2}O{sub 2} increased uPAR mRNA expression. Deleted and site-directed mutagenesis demonstrated the involvement of the binding sites of transcription factor nuclear factor-kappaB (NF-κB) and activator protein (AP)-1 in the nicotine-induced uPAR expression. Studies with expression vectors encoding mutated NF-κB signaling molecules and AP-1 decoy confirmed that NF-κB and AP-1 were essential for the nicotine-stimulated uPAR expression. MAPK (Erk-1/2 and JNK) and ROS functioned as upstream signaling molecules in the activation of AP-1 and NF-κB, respectively. In addition, ECV304 endothelial cells treated with nicotine displayed markedly enhanced invasiveness, which was partially abrogated by uPAR neutralizing antibodies. The data indicate that nicotine induces uPAR expression via the MAPK/AP-1 and ROS/NF-κB signaling pathways and, in turn, stimulates invasiveness in human ECV304 endothelial cells. -- Highlights: ► Endothelial cells

  4. NMDA Receptor Activity in Neuropsychiatric Disorders

    PubMed Central

    Lakhan, Shaheen E.; Caro, Mario; Hadzimichalis, Norell

    2013-01-01

    N-Methyl-d-aspartate (NMDA) receptors play a variety of physiologic roles and their proper signaling is essential for cellular homeostasis. Any disruption in this pathway, leading to either enhanced or decreased activity, may result in the manifestation of neuropsychiatric pathologies such as schizophrenia, mood disorders, substance induced psychosis, Huntington’s disease, Alzheimer’s disease, and neuropsychiatric systemic lupus erythematosus. Here, we explore the notion that the overlap in activity of at least one biochemical pathway, the NMDA receptor pathway, may be the link to understanding the overlap in psychotic symptoms between diseases. This review intends to present a broad overview of those neuropsychiatric disorders for which alternations in NMDA receptor activity is prominent thus suggesting that continued direction of pharmaceutical intervention to this pathway may present a viable option for managing symptoms. PMID:23772215

  5. Mechanism of FGF receptor dimerization and activation

    NASA Astrophysics Data System (ADS)

    Sarabipour, Sarvenaz; Hristova, Kalina

    2016-01-01

    Fibroblast growth factors (fgfs) are widely believed to activate their receptors by mediating receptor dimerization. Here we show, however, that the FGF receptors form dimers in the absence of ligand, and that these unliganded dimers are phosphorylated. We further show that ligand binding triggers structural changes in the FGFR dimers, which increase FGFR phosphorylation. The observed effects due to the ligands fgf1 and fgf2 are very different. The fgf2-bound dimer structure ensures the smallest separation between the transmembrane (TM) domains and the highest possible phosphorylation, a conclusion that is supported by a strong correlation between TM helix separation in the dimer and kinase phosphorylation. The pathogenic A391E mutation in FGFR3 TM domain emulates the action of fgf2, trapping the FGFR3 dimer in its most active state. This study establishes the existence of multiple active ligand-bound states, and uncovers a novel molecular mechanism through which FGFR-linked pathologies can arise.

  6. Mechanism of FGF receptor dimerization and activation.

    PubMed

    Sarabipour, Sarvenaz; Hristova, Kalina

    2016-01-01

    Fibroblast growth factors (fgfs) are widely believed to activate their receptors by mediating receptor dimerization. Here we show, however, that the FGF receptors form dimers in the absence of ligand, and that these unliganded dimers are phosphorylated. We further show that ligand binding triggers structural changes in the FGFR dimers, which increase FGFR phosphorylation. The observed effects due to the ligands fgf1 and fgf2 are very different. The fgf2-bound dimer structure ensures the smallest separation between the transmembrane (TM) domains and the highest possible phosphorylation, a conclusion that is supported by a strong correlation between TM helix separation in the dimer and kinase phosphorylation. The pathogenic A391E mutation in FGFR3 TM domain emulates the action of fgf2, trapping the FGFR3 dimer in its most active state. This study establishes the existence of multiple active ligand-bound states, and uncovers a novel molecular mechanism through which FGFR-linked pathologies can arise. PMID:26725515

  7. Mechanism of FGF receptor dimerization and activation

    PubMed Central

    Sarabipour, Sarvenaz; Hristova, Kalina

    2016-01-01

    Fibroblast growth factors (fgfs) are widely believed to activate their receptors by mediating receptor dimerization. Here we show, however, that the FGF receptors form dimers in the absence of ligand, and that these unliganded dimers are phosphorylated. We further show that ligand binding triggers structural changes in the FGFR dimers, which increase FGFR phosphorylation. The observed effects due to the ligands fgf1 and fgf2 are very different. The fgf2-bound dimer structure ensures the smallest separation between the transmembrane (TM) domains and the highest possible phosphorylation, a conclusion that is supported by a strong correlation between TM helix separation in the dimer and kinase phosphorylation. The pathogenic A391E mutation in FGFR3 TM domain emulates the action of fgf2, trapping the FGFR3 dimer in its most active state. This study establishes the existence of multiple active ligand-bound states, and uncovers a novel molecular mechanism through which FGFR-linked pathologies can arise. PMID:26725515

  8. Protease-Activated Receptor 2 Is Involved in Th2 Responses against Trichinella spiralis Infection

    PubMed Central

    Park, Mi Kyung; Cho, Min Kyoung; Kang, Shin Ae; Park, Hye-Kyung; Kim, Yun Seong; Kim, Ki Uk; Ahn, Soon Cheol; Kim, Dong-Hee

    2011-01-01

    In order to get a better understanding of the role of protease-activated receptor 2 (PAR2) in type 2 helper T (Th2) cell responses against Trichinella spiralis infection, we analyzed Th2 responses in T. spiralis-infected PAR2 knockout (KO) mice. The levels of the Th2 cell-secreted cytokines, IL-4, IL-5, and IL-13 were markedly reduced in the PAR2 KO mice as compared to the wild type mice following infection with T. spiralis. The serum levels of parasite-specific IgE increased significantly in the wild type mice as the result of T. spiralis infection, but this level was not significantly increased in PAR2 KO mice. The expression level of thymic stromal lymphopoietin, IL-25, and eotaxin gene (the genes were recently known as Th2 response initiators) of mouse intestinal epithelial cells were increased as the result of treatment with T. spiralis excretory-secretory proteins. However, the expression of these chemokine genes was inhibited by protease inhibitor treatments. In conclusion, PAR2 might involve in Th2 responses against T. spiralis infection. PMID:22072823

  9. German cockroach proteases and protease-activated receptor-2 regulate chemokine production and dendritic cell recruitment.

    PubMed

    Day, Scottie B; Ledford, John R; Zhou, Ping; Lewkowich, Ian P; Page, Kristen

    2012-01-01

    We recently showed that serine proteases in German cockroach (GC) feces (frass) decreased experimental asthma through the activation of protease-activated receptor (PAR)-2. Since dendritic cells (DCs) play an important role in the initiation of asthma, we queried the role of GC frass proteases in modulating CCL20 (chemokine C-C motif ligand 20) and granulocyte macrophage colony-stimulating factor (GM-CSF) production, factors that regulate pulmonary DCs. A single exposure to GC frass resulted in a rapid, but transient, increase in GM-CSF and a steady increase in CCL20 in the airways of mice. Instillation of protease-depleted GC frass or instillation of GC frass in PAR-2-deficient mice significantly decreased chemokine release. A specific PAR-2-activating peptide was also sufficient to induce CCL20 production. To directly assess the role of the GC frass protease in chemokine release, we enriched the protease from GC frass and confirmed that the protease was sufficient to induce both GM-CSF and CCL20 production in vivo. Primary airway epithelial cells produced both GM-CSF and CCL20 in a protease- and PAR-2-dependent manner. Finally, we show a decreased percentage of myeloid DCs in the lung following allergen exposure in PAR-2-deficient mice compared to wild-type mice. However, there was no difference in GC frass uptake. Our data indicate that, through the activation of PAR-2, allergen-derived proteases are sufficient to induce CCL20 and GM-CSF production in the airways. This leads to increased recruitment and/or differentiation of myeloid DC populations in the lungs and likely plays an important role in the initiation of allergic airway responses. PMID:21876326

  10. Impact of melatonin and molecular clockwork components on the expression of thyrotropin beta-chain (Tshb) and the Tsh receptor in the mouse pars tuberalis.

    PubMed

    Unfried, Claudia; Ansari, Nariman; Yasuo, Shinobu; Korf, Horst-Werner; von Gall, Charlotte

    2009-10-01

    Photoperiodic regulation of reproduction in birds and mammals involves thyrotropin beta-chain (TSHb), which is secreted from the pars tuberalis (PT) and controls the expression of deiodinase type 2 and 3 in the ependymal cell layer of the infundibular recess (EC) via TSH receptors (TSHRs). To analyze the impact of melatonin and the molecular clockwork on the expression of Tshb and Tshr, we investigated melatonin-proficient C3H wild-type (WT), melatonin receptor 1-deficient (MT1-/-) or clockprotein PERIOD1-deficient (mPER1-/-) mice. Expression of Tshb and TSHb immunoreactivity in PT were low during day and high during the night in WT, high during the day and low during the night in mPER1-deficient, and equally high during the day and night in MT1-deficient mice. Melatonin injections into WT acutely suppressed Tshb expression. Transcription assays showed that the 5' upstream region of the Tshb gene could be controlled by clockproteins. Tshr levels in PT were low during the day and high during the night in WT and mPER1-deficient mice and equally low in MT1-deficient mice. Tshr expression in the EC did not show a day/night variation. Melatonin injections into WT acutely induced Tshr expression in PT but not in EC. TSH stimulation of hypothalamic slice cultures of WT induced phosphorylated cAMP response element-binding protein in PT and EC and deiodinase type 2 in the EC. Our data suggest that Tshb expression in PT is controlled by melatonin and the molecular clockwork and that melatonin activates Tshr expression in PT but not in EC. They also confirm the functional importance of TSHR in the PT and EC. PMID:19589858

  11. Targeting melanoma growth and metastasis with systemic delivery of liposome-incorporated protease-activated receptor-1 small interfering RNA.

    PubMed

    Villares, Gabriel J; Zigler, Maya; Wang, Hua; Melnikova, Vladislava O; Wu, Hong; Friedman, Ran; Leslie, Michael C; Vivas-Mejia, Pablo E; Lopez-Berestein, Gabriel; Sood, Anil K; Bar-Eli, Menashe

    2008-11-01

    The thrombin receptor [protease-activated receptor-1 (PAR-1)] is overexpressed in highly metastatic melanoma cell lines and in patients with metastatic lesions. Activation of PAR-1 leads to cell signaling and up-regulation of genes involved in adhesion, invasion, and angiogenesis. Herein, we stably silence PAR-1 through the use of lentiviral short hairpin RNA and found significant decreases in both tumor growth (P < 0.01) and metastasis (P < 0.001) of highly metastatic melanoma cell lines in vivo. The use of viruses for therapy is not ideal as it can induce toxic immune responses and possible gene alterations following viral integration. Therefore, we also used systemic delivery of PAR-1 small interfering RNA (siRNA) incorporated into neutral liposomes [1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC)] to decrease melanoma growth and metastasis in vivo. Significant decreases in tumor growth, weight, and metastatic lung colonies (P < 0.001 for all) were found in mice treated with PAR-1 siRNA-DOPC. The in vivo effects of PAR-1 on invasion and angiogenesis were analyzed via immunohistochemistry. Concomitant decreases in vascular endothelial growth factor, interleukin-8, and matrix metalloproteinase-2 expression levels, as well as decreased blood vessel density (CD31), were found in tumor samples from PAR-1 siRNA-treated mice, suggesting that PAR-1 is a regulator of melanoma cell growth and metastasis by affecting angiogenic and invasive factors. We propose that siRNA incorporated into DOPC nanoparticles could be delivered systemically and used as a new modality for melanoma treatment. PMID:18974154

  12. Anxiolytic activity of adenosine receptor activation in mice.

    PubMed

    Jain, N; Kemp, N; Adeyemo, O; Buchanan, P; Stone, T W

    1995-10-01

    1. Purine analogues have been examined for anxiolytic- and anxiogenic-like activity in mice, by use of the elevated plus-maze. 2. The selective A1 receptor agonist, N6-cyclopentyladenosine (CPA) had marked anxiolytic-like activity at 10 and 50 microg kg(-1), with no effect on locomotor performance at these doses. 3. The A1 selective adenosine receptor antagonist, 1,3-dipropyl-8-cyclopentylxanthine (CPX) had no significant effect on anxiety-related measures or locomotor behaviour, but blocked the anxiolytic-like activity of CPA. The hydrophilic xanthine, 8-(p-sulphophenyl) theophylline did not prevent anxiolysis by CPA. 4. Caffeine had anxiogenic-like activity at 30 mg kg(-1) which was prevented by CPA at 50 micro kg(-1). 5. The A2 receptor agonist, N6-[2-(3,5-dimethoxyphenyl)-2(2-methylphenyl)-ethyl]adenosine (DPMA) had no effect on anxiety behaviour but depressed locomotor activity at the highest dose tested of 1 mg kg(-1). The A2 receptor antagonist, 1,3-dimethyl-l-propargylxanthine (DMPX) had no effect on anxiety-related measures or locomotion and did not modify the anxiolytic-like activity of CPA. 6. Administration of DPMA in combination with anxiolytic doses of CPA prevented the anxiolytic-like activity of the latter. 7. The results suggest that the selective activation of central A1 adenosine receptors induces anxiolytic-like behaviour, while the activation of A2 sites causes locomotor depression and reduces the effects of A1 receptor activation. The absence of any effect of CPX alone suggests that the receptors involved in modulating behaviour in the elevated plus-maze in mice are not activated tonically by endogenous adenosine. PMID:8640355

  13. Anxiolytic activity of adenosine receptor activation in mice.

    PubMed Central

    Jain, N.; Kemp, N.; Adeyemo, O.; Buchanan, P.; Stone, T. W.

    1995-01-01

    1. Purine analogues have been examined for anxiolytic- and anxiogenic-like activity in mice, by use of the elevated plus-maze. 2. The selective A1 receptor agonist, N6-cyclopentyladenosine (CPA) had marked anxiolytic-like activity at 10 and 50 microg kg(-1), with no effect on locomotor performance at these doses. 3. The A1 selective adenosine receptor antagonist, 1,3-dipropyl-8-cyclopentylxanthine (CPX) had no significant effect on anxiety-related measures or locomotor behaviour, but blocked the anxiolytic-like activity of CPA. The hydrophilic xanthine, 8-(p-sulphophenyl) theophylline did not prevent anxiolysis by CPA. 4. Caffeine had anxiogenic-like activity at 30 mg kg(-1) which was prevented by CPA at 50 micro kg(-1). 5. The A2 receptor agonist, N6-[2-(3,5-dimethoxyphenyl)-2(2-methylphenyl)-ethyl]adenosine (DPMA) had no effect on anxiety behaviour but depressed locomotor activity at the highest dose tested of 1 mg kg(-1). The A2 receptor antagonist, 1,3-dimethyl-l-propargylxanthine (DMPX) had no effect on anxiety-related measures or locomotion and did not modify the anxiolytic-like activity of CPA. 6. Administration of DPMA in combination with anxiolytic doses of CPA prevented the anxiolytic-like activity of the latter. 7. The results suggest that the selective activation of central A1 adenosine receptors induces anxiolytic-like behaviour, while the activation of A2 sites causes locomotor depression and reduces the effects of A1 receptor activation. The absence of any effect of CPX alone suggests that the receptors involved in modulating behaviour in the elevated plus-maze in mice are not activated tonically by endogenous adenosine. PMID:8640355

  14. Comparison between the pharmacology of dopamine receptors mediating the inhibition of cell firing in rat brain slices through the substantia nigra pars compacta and ventral tegmental area.

    PubMed Central

    Bowery, B.; Rothwell, L. A.; Seabrook, G. R.

    1994-01-01

    1. Electrophysiological recordings were made from presumed dopaminergic neurons in the substantia nigra pars compacta and ventral tegmental area of rat brain slices. The ability of selective dopamine receptor agonists to hyperpolarize neurones and inhibit cell firing, as well as the ability of dopamine receptor antagonists to block responses to quinpirole were compared. 2. Six dopamine receptor agonists were examined for their ability to hyperpolarize neurones within the substantia nigra pars compacta. Of these, the most potent ligand tested was naxagolide with an EC50 value of 20 nM and estimated maximum of 10 mV. The rank order of agonist potency was naxagolide > quinpirole > apomorphine > dopamine. 3. Quinpirole was more potent at inhibiting cell firing in the substantia nigra pars compacta (pIC50 = 7.65 +/ 0.06, n = 35) than in the ventral tegmental area (pIC50 = 7.24 +/- 0.06, n = 32; P < 0.01, Student's t test). 7-Hydroxy-N,N-di-n-propyl-2-aminotetralin (7-OH-DPAT), a putative D3 selective agonist, had a comparable potency to quinpirole in both the ventral tegmental area (pIC50 = 7.39 +/- 0.26, n = 4), and substantia nigra pars compacta (pIC50 = 7.71 +/- 0.20; n = 4). 4. The inhibition of cell firing by quinpirole was antagonized by haloperidol, S(-)-sulpiride, clozapine, and ritanserin. S(-)-sulpiride and haloperidol had the highest estimated affinities in the substantia nigra, with pA2 values of 8.97 (slope = 0.85) and 8.20 (slope = 2.09) respectively.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7921615

  15. Vitamin D Binding Protein-Macrophage Activating Factor Directly Inhibits Proliferation, Migration, and uPAR Expression of Prostate Cancer Cells

    PubMed Central

    Bielenberg, Diane R.; Dridi, Sami; Wu, Jason; Jiang, Weihua; Huang, Bin; Pirie-Shepherd, Steven; Fannon, Michael

    2010-01-01

    Background Vitamin D binding protein-macrophage activating factor (DBP-maf) is a potent inhibitor of tumor growth. Its activity, however, has been attributed to indirect mechanisms such as boosting the immune response by activating macrophages and inhibiting the blood vessel growth necessary for the growth of tumors. Methods and Findings In this study we show for the first time that DBP-maf exhibits a direct and potent effect on prostate tumor cells in the absence of macrophages. DBP-maf demonstrated inhibitory activity in proliferation studies of both LNCaP and PC3 prostate cancer cell lines as well as metastatic clones of these cells. Flow cytometry studies with annexin V and propidium iodide showed that this inhibitory activity is not due to apoptosis or cell death. DBP-maf also had the ability to inhibit migration of prostate cancer cells in vitro. Finally, DBP-maf was shown to cause a reduction in urokinase plasminogen activator receptor (uPAR) expression in prostate tumor cells. There is evidence that activation of this receptor correlates with tumor metastasis. Conclusions These studies show strong inhibitory activity of DBP-maf on prostate tumor cells independent of its macrophage activation. PMID:20976141

  16. Progesterone receptors activation after acute cocaine administration.

    PubMed

    Wu, Hui-Bing K; Fabian, Sosimo; Jenab, Shirzad; Quiñones-Jenab, Vanya

    2006-12-18

    Cocaine modulates serum levels of progesterone in intact female and male rats, as well as in pregnant dams, and progesterone decreases or attenuates cocaine-induced behavioral and reward responses. It has been postulated that cocaine's modulation of serum progesterone levels may in turn alter progesterone receptor activity, thereby contributing to cocaine-induced alterations of neuronal functions and genomic regulations. To test this hypothesis, intact male rats received acute injections of saline or cocaine (15 or 30 mg/kg, dissolved in 0.9% saline, intraperitoneal). Progesterone serum levels, progesterone receptor (PR) protein levels, and PR-DNA binding complexes were measured in the striatum by radioimmunoassay, Western blot, and gel shift analyses, respectively. After injection of 15 mg/kg of cocaine, induction of progesterone serum levels was closely followed by an increase in receptor protein levels and DNA binding complexes. After injection of 30 mg/kg of cocaine, similar effects were observed along with an attenuation of receptor protein levels and DNA binding complexes at 60 min. Our results suggest that activation of progesterone receptors may be a mechanism by which cocaine mediates behavior through molecular alterations in the central nervous system. PMID:17109827

  17. Using Nuclear Receptor Activity to Stratify Hepatocarcinogens

    EPA Science Inventory

    Nuclear receptors (NR) are a superfamily of ligand-activated transcription factors that control a range of cellular processes. Persistent stimulation of some NR is a non-genotoxic mechanism of rodent liver cancer with unclear relevance to humans. Here we report on a systematic an...

  18. α-enolase Causes Pro-Inflammatory Activation of Pulmonary Microvascular Endothelial Cells and Primes Neutrophils through Plasmin Activation of Protease-Activated Receptor-2

    PubMed Central

    Bock, Ashley; Tucker, Nicole; Kelher, Marguerite R.; Khan, Samina Y.; Gonzalez, Eduardo; Wohlauer, Max; Hansen, Kirk; Dzieciatkowska, Monika; Sauaia, Angels; Banerjee, Anirban; Moore, Ernest E.; Silliman, Christopher C.

    2015-01-01

    Pro-inflammatory activation of vascular endothelium leading to increased surface expression of adhesion molecules and neutrophil (PMN) sequestration and subsequent activation is paramount in the development of acute lung (ALI) and organ injury in injured patients. We hypothesize that α-enolase, which accumulates in injured patients primes PMNs and causes pro-inflammatory activation of endothelial cells leading to PMN-mediated cytotoxicity. Methods Proteomic analyses of field plasma samples from injured vs. healthy patients was used for protein identification. Human pulmonary microvascular endothelial cells (HMVECs) were incubated with α-enolase or thrombin, and ICAM-1 surface expression was measured by flow cytometry. A two-event in vitro model of PMN cytotoxicity HMVECs activated with α-enolase, thrombin, or buffer was used as targets for lysophosphatidylcholine-primed or buffer-treated PMNs. The PMN priming activity of α-enolase was completed, and lysates from both PMNs and HMVECs were immunoblotted for protease activated receptor-1 (PAR-1) and PAR-2 and co-precipitation of α-enolase with PAR-2 and plasminogen/plasmin. Results α-enolase increased 10.8-fold in injured patients (p<0.05). Thrombin and α-enolase significantly increased ICAM-1 surface expression on HMVECs, which was inhibited by anti-proteases, induced PMN adherence, and served as the first event in the two-event model of PMN cytotoxicity. α-enolase co-precipitated with PAR-2 and plasminogen/plasmin on HMVECs and PMNs and induced PMN priming, which was inhibited by tranexamic acid, and enzymatic activity was not required. We conclude that α-enolase increases post-injury and may activate pulmonary endothelial cells and prime PMNs through plasmin activity and PAR-2 activation. Such pro-inflammatory endothelial activation may predispose to PMN-mediated organ injury. PMID:25944790

  19. Common mechanisms activate plant guard receptors and TLR4

    PubMed Central

    Kagan, Jonathan C.

    2014-01-01

    In metazoans, the innate immune system uses Pattern Recognition Receptors to detect conserved microbial products, whereas in plants Guard Receptors detect virulence factors or activities encoded by pathogens. In a recent study, Williams and colleagues report that plant Guard receptors can be activated by a mechanism remarkably similar to that of mammalian Toll-like Receptor 4. PMID:25224694

  20. Phenobarbital and Insulin Reciprocate Activation of the Nuclear Receptor Constitutive Androstane Receptor through the Insulin Receptor.

    PubMed

    Yasujima, Tomoya; Saito, Kosuke; Moore, Rick; Negishi, Masahiko

    2016-05-01

    Phenobarbital (PB) antagonized insulin to inactivate the insulin receptor and attenuated the insulin receptor downstream protein kinase B (AKT)-forkhead box protein O1 and extracellular signal-regulated kinase 1/2 signals in mouse primary hepatocytes and HepG2 cells. Hepatic AKT began dephosphorylation in an early stage of PB treatment, and blood glucose levels transiently increased in both wild-type and constitutive androstane receptor (CAR) knockout (KO) mice. On the other hand, blood glucose levels increased in wild-type mice, but not KO mice, in later stages of PB treatment. As a result, PB, acting as an insulin receptor antagonist, elicited CAR-independent increases and CAR-dependent decreases of blood glucose levels at these different stages of treatment, respectively. Reciprocally, insulin activation of the insulin receptor repressed CAR activation and induction of its target CYP2B6 gene in HepG2 cells. Thus, PB and insulin cross-talk through the insulin receptor to regulate glucose and drug metabolism reciprocally. PMID:26994072

  1. Phenobarbital and Insulin Reciprocate Activation of the Nuclear Receptor Constitutive Androstane Receptor through the Insulin Receptor

    PubMed Central

    Yasujima, Tomoya; Saito, Kosuke; Moore, Rick

    2016-01-01

    Phenobarbital (PB) antagonized insulin to inactivate the insulin receptor and attenuated the insulin receptor downstream protein kinase B (AKT)–forkhead box protein O1 and extracellular signal-regulated kinase 1/2 signals in mouse primary hepatocytes and HepG2 cells. Hepatic AKT began dephosphorylation in an early stage of PB treatment, and blood glucose levels transiently increased in both wild-type and constitutive androstane receptor (CAR) knockout (KO) mice. On the other hand, blood glucose levels increased in wild-type mice, but not KO mice, in later stages of PB treatment. As a result, PB, acting as an insulin receptor antagonist, elicited CAR-independent increases and CAR-dependent decreases of blood glucose levels at these different stages of treatment, respectively. Reciprocally, insulin activation of the insulin receptor repressed CAR activation and induction of its target CYP2B6 gene in HepG2 cells. Thus, PB and insulin cross-talk through the insulin receptor to regulate glucose and drug metabolism reciprocally. PMID:26994072

  2. Activation Requirements for Metabotropic Glutamate Receptors

    PubMed Central

    Viaene, Angela N.; Petrof, Iraklis; Sherman, S. Murray

    2013-01-01

    It has been common experimentally to use high frequency, tetanic, stimulation to activate metabotropic glutamate receptors (mGluRs) in cortex and thalamus. To determine what type of stimulation is actually necessary to activate mGluRs we examined the effects of varying stimulation duration and intensity on activating mGluR responses. We used a thalamocortical and an intracortical slice preparation from mice and performed whole cell recordings from neurons in the ventral posterior medial nucleus or in layer 4 of primary somatosensory cortex (S1) while electrically stimulating in layer 6 of S1. Extracellular ionotropic glutamate receptor antagonists and GABAA receptor antagonists were used to isolate Group I or Group II mGluR responses. We observed that high frequency stimulation is not necessary for the activation of either Group I or Group II mGluRs. Either could be activated with as few as 2-3 pulses at stimulation frequencies around 15-20Hz. Additionally, increasing the number of pulses, intensity of stimulation, or stimulation frequency increased amplitude and duration of the mGluR response. PMID:23416319

  3. Equivalent Activities of Repulsive Axon Guidance Receptors

    PubMed Central

    Long, Hong; Yoshikawa, Shingo

    2016-01-01

    Receptors on the growth cone at the leading edge of elongating axons play critical guidance roles by recognizing cues via their extracellular domains and transducing signals via their intracellular domains, resulting in changes in direction of growth. An important concept to have emerged in the axon guidance field is the importance of repulsion as a major guidance mechanism. Given the number and variety of different repulsive receptors, it is generally thought that there are likely to be qualitative differences in the signals they transduce. However, the nature of these possible differences is unknown. By creating chimeras using the extracellular and intracellular domains of three different Drosophila repulsive receptors, Unc5, Roundabout (Robo), and Derailed (Drl) and expressing them in defined cells within the embryonic nervous system, we examined the responses elicited by their intracellular domains systematically. Surprisingly, we found no qualitative differences in growth cone response or axon growth, suggesting that, despite their highly diverged sequences, each intracellular domain elicits repulsion via a common pathway. In terms of the signaling pathway(s) used by the repulsive receptors, mutations in the guanine nucleotide exchange factor Trio strongly enhance the repulsive activity of all three intracellular domains, suggesting that repulsion by Unc5, Robo, and Drl, and perhaps repulsion in general, involves Trio activity. SIGNIFICANCE STATEMENT A prevailing concept that has emerged in the axon guidance field is the importance of repulsion as a guidance mechanism for steering axons to their appropriate targets. Given the number and variety of different repulsive receptors, it is generally thought that there are differences in the signals that they transduce. However, this has never been tested directly. We have used the advanced genetics of Drosophila to compare directly the outputs of different repulsive receptors. Surprisingly, we found no qualitative

  4. SPRY1 promotes the degradation of uPAR and inhibits uPAR-mediated cell adhesion and proliferation

    PubMed Central

    Liu, Xiufeng; Lan, Yan; Zhang, Di; Wang, Kai; Wang, Yao; Hua, Zi-Chun

    2014-01-01

    Urokinase plasminogen activator receptor (uPAR) is a GPI anchored cell surface protein that is closely associated with invasion, migration, and metastasis of cancer cells. Many functional extracellular proteins and transmembrane receptors interact with uPAR. However, few studies have examined the association of uPAR with cytoplasm proteins. We previously used yeast two-hybrid screening to isolate several novel uPAR-interacting cytoplasmic proteins, including Sprouty1 (SPRY1), an inhibitor of the (Ras-mitogen-activated protein kinase) MAPK pathway. In this study, we show that SPRY1 interacts with uPAR and directs it toward lysosomal-mediated degradation. Overexpression of SPRY1 decreased the cell surface and cytoplasmic uPAR protein level. Moreover, SPRY1 overexpression augmented uPAR-induced cell adhesion to vitronectin as well as proliferation of cancer cells. Our results also further support the critical role of SPRY1 contribution to tumor growth. In a subcutaneous tumor model, overexpression of SPRY1 in HCT116 or A549 xenograft in athymic nude mice led to great suppression of tumor growth. These results show that SPRY1 may affect tumor cell function through direct interaction with uPAR and promote its lysosomal degradation. PMID:25520860

  5. Structural requirements of bitter taste receptor activation

    PubMed Central

    Brockhoff, Anne; Behrens, Maik; Niv, Masha Y.; Meyerhof, Wolfgang

    2010-01-01

    An important question in taste research is how 25 receptors of the human TAS2R family detect thousands of structurally diverse compounds. An answer to this question may arise from the observation that TAS2Rs in general are broadly tuned to interact with numerous substances. Ultimately, interaction with chemically diverse agonists requires architectures of binding pockets tailored to combine flexibility with selectivity. The present study determines the structure of hTAS2R binding pockets. We focused on a subfamily of closely related hTAS2Rs exhibiting pronounced amino acid sequence identities but unique agonist activation spectra. The generation of chimeric and mutant receptors followed by calcium imaging analyses identified receptor regions and amino acid residues critical for activation of hTAS2R46, -R43, and -R31. We found that the carboxyl-terminal regions of the investigated receptors are crucial for agonist selectivity. Intriguingly, exchanging two residues located in transmembrane domain seven between hTAS2R46, activated by strychnine, and hTAS2R31, activated by aristolochic acid, was sufficient to invert agonist selectivity. Further mutagenesis revealed additional positions involved in agonist interaction. The transfer of functionally relevant amino acids identified in hTAS2R46 to the corresponding positions of hTAS2R43 and -R31 resulted in pharmacological properties indistinguishable from the parental hTAS2R46. In silico modeling of hTAS2R46 allowed us to visualize the putative mode of interaction between agonists and hTAS2Rs. Detailed structure-function analyses of hTAS2Rs may ultimately pave the way for the development of specific antagonists urgently needed for more sophisticated analyses of human bitter taste perception. PMID:20534469

  6. Diallylsulfide attenuates excessive collagen production and apoptosis in a rat model of bleomycin induced pulmonary fibrosis through the involvement of protease activated receptor-2

    SciTech Connect

    Kalayarasan, Srinivasan Sriram, Narayanan; Soumyakrishnan, Syamala; Sudhandiran, Ganapasam

    2013-09-01

    Pulmonary fibrosis (PF) can be a devastating lung disease. It is primarily caused by inflammation leading to severe damage of the alveolar epithelial cells. The pathophysiology of PF is not yet been clearly defined, but studying lung parenchymal injury by involving reactive oxygen species (ROS) through the activation of protease activated receptor-2 (PAR-2) may provide promising results. PAR-2 is a G-protein coupled receptor is known to play an important role in the development of PF. In this study, we investigated the inhibitory role of diallylsulfide (DAS) against ROS mediated activation of PAR-2 and collagen production accompanied by epithelial cell apoptosis. Bleomycin induced ROS levels may prompt to induce the expression of PAR-2 as well as extracellular matrix proteins (ECM), such as MMP 2 and 9, collagen specific proteins HSP-47, α-SMA, and cytokines IL-6, and IL-8RA. Importantly DAS treatment effectively decreased the expression of all these proteins. The inhibitory effect of DAS on profibrotic molecules is mediated by blocking the ROS level. To identify apoptotic signaling as a mediator of PF induction, we performed apoptotic protein expression, DNA fragmentation analysis and ultrastructural details of the lung tissue were performed. DAS treatment restored all these changes to near normalcy. In conclusion, treatment of PF bearing rats with DAS results in amelioration of the ROS production, PAR-2 activation, ECM production, collagen synthesis and alveolar epithelial cell apoptosis during bleomycin induction. We attained the first evidence that treatment of DAS decreases the ROS levels and may provide a potential therapeutic effect attenuating bleomycin induced PF. - Highlights: • DAS inhibits PAR-2 activity; bleomycin stimulates PAR-2 activity. • Increase in PAR-2 activity is correlated with pulmonary fibrosis • DAS reduces pro-inflammatory activity linked to facilitating pulmonary fibrosis. • DAS inhibits apoptosis of alveolar epithelial cells.

  7. Epithelial and Stromal Cell Urokinase Plasminogen Activator Receptor Expression Differentially Correlates with Survival in Rectal Cancer Stages B and C Patients

    PubMed Central

    Ahn, Seong Beom; Chan, Charles; Dent, Owen F.; Mohamedali, Abidali; Kwun, Sun Young; Clarke, Candice; Fletcher, Julie; Chapuis, Pierre H.; Nice, Edouard C.; Baker, Mark S.

    2015-01-01

    Urokinase plasminogen activator receptor (uPAR) has been proposed as a potential prognostic factor for colorectal cancer (CRC) patient survival. However, CRC uPAR expression remains controversial, especially regarding cell types where uPAR is overexpressed (e.g., epithelium (uPARE) or stroma-associated cells (uPARS)) and associated prognostic relevance. In this study, two epitope-specific anti-uPAR monoclonal antibodies (MAbs) could discriminate expression of uPARE from uPARS and were used to examine this association with survival of stages B and C rectal cancer (RC) patients. Using immunohistochemistry, MAbs #3937 and R4 were used to discriminate uPARE from uPARS respectively in the central and invasive frontal regions of 170 stage B and 179 stage C RC specimens. Kaplan-Meier and Cox regression analyses were used to determine association with survival. uPAR expression occurred in both epithelial and stromal compartments with differential expression observed in many cases, indicating uPARE and uPARS have different cellular roles. In the central and invasive frontal regions, uPARE was adversely associated with overall stage B survival (HR = 1.9; p = 0.014 and HR = 1.5; p = 0.031, respectively) reproducing results from previous studies. uPARS at the invasive front was associated with longer stage C survival (HR = 0.6; p = 0.007), reflecting studies demonstrating that macrophage peritumoural accumulation is associated with longer survival. This study demonstrates that different uPAR epitopes should be considered as being expressed on different cell types during tumour progression and at different stages in RC. Understanding how uPARE and uPARS expression affects survival is anticipated to be a useful clinical prognostic marker of stages B and C RC. PMID:25692297

  8. PH motifs in PAR1&2 endow breast cancer growth

    PubMed Central

    Kancharla, A.; Maoz, M.; Jaber, M.; Agranovich, D.; Peretz, T.; Grisaru-Granovsky, S.; Uziely, B.; Bar-Shavit, R.

    2015-01-01

    Although emerging roles of protease-activated receptor1&2 (PAR1&2) in cancer are recognized, their underlying signalling events are poorly understood. Here we show signal-binding motifs in PAR1&2 that are critical for breast cancer growth. This occurs via the association of the pleckstrin homology (PH) domain with Akt/PKB as a key signalling event of PARs. Other PH-domain signal-proteins such as Etk/Bmx and Vav3 also associate with PAR1 and PAR2 through their PH domains. PAR1 and PAR2 bind with priority to Etk/Bmx. A point mutation in PAR2, H349A, but not in R352A, abrogates PH-protein association and is sufficient to markedly reduce PAR2-instigated breast tumour growth in vivo and placental extravillous trophoblast (EVT) invasion in vitro. Similarly, the PAR1 mutant hPar1-7A, which is unable to bind the PH domain, reduces mammary tumours and EVT invasion, endowing these motifs with physiological significance and underscoring the importance of these previously unknown PAR1 and PAR2 PH-domain-binding motifs in both pathological and physiological invasion processes. PMID:26600192

  9. PH motifs in PAR1&2 endow breast cancer growth.

    PubMed

    Kancharla, A; Maoz, M; Jaber, M; Agranovich, D; Peretz, T; Grisaru-Granovsky, S; Uziely, B; Bar-Shavit, R

    2015-01-01

    Although emerging roles of protease-activated receptor1&2 (PAR1&2) in cancer are recognized, their underlying signalling events are poorly understood. Here we show signal-binding motifs in PAR1&2 that are critical for breast cancer growth. This occurs via the association of the pleckstrin homology (PH) domain with Akt/PKB as a key signalling event of PARs. Other PH-domain signal-proteins such as Etk/Bmx and Vav3 also associate with PAR1 and PAR2 through their PH domains. PAR1 and PAR2 bind with priority to Etk/Bmx. A point mutation in PAR2, H349A, but not in R352A, abrogates PH-protein association and is sufficient to markedly reduce PAR2-instigated breast tumour growth in vivo and placental extravillous trophoblast (EVT) invasion in vitro. Similarly, the PAR1 mutant hPar1-7A, which is unable to bind the PH domain, reduces mammary tumours and EVT invasion, endowing these motifs with physiological significance and underscoring the importance of these previously unknown PAR1 and PAR2 PH-domain-binding motifs in both pathological and physiological invasion processes. PMID:26600192

  10. Neuroinflammation-Induced Interactions between Protease-Activated Receptor 1 and Proprotein Convertases in HIV-Associated Neurocognitive Disorder.

    PubMed

    Kim, WooJin; Zekas, Erin; Lodge, Robert; Susan-Resiga, Delia; Marcinkiewicz, Edwidge; Essalmani, Rachid; Mihara, Koichiro; Ramachandran, Rithwik; Asahchop, Eugene; Gelman, Benjamin; Cohen, Éric A; Power, Christopher; Hollenberg, Morley D; Seidah, Nabil G

    2015-11-01

    The proprotein convertases (PCs) furin, PC5, PACE4, and PC7 cleave secretory proteins after basic residues, including the HIV envelope glycoprotein (gp160) and Vpr. We evaluated the abundance of PC mRNAs in postmortem brains of individuals exhibiting HIV-associated neurocognitive disorder (HAND), likely driven by neuroinflammation and neurotoxic HIV proteins (e.g., envelope and Vpr). Concomitant with increased inflammation-related gene expression (interleukin-1β [IL-1β]), the mRNA levels of the above PCs are significantly increased, together with those of the proteinase-activated receptor 1 (PAR1), an inflammation-associated receptor that is cleaved by thrombin at ProArg41↓ (where the down arrow indicates the cleavage location), and potentially by PCs at Arg41XXXXArg46↓. The latter motif in PAR1, but not its R46A mutant, drives its interactions with PCs. Indeed, PAR1 upregulation leads to the inhibition of membrane-bound furin, PC5B, and PC7 and inhibits gp160 processing and HIV infectivity. Additionally, a proximity ligation assay revealed that furin and PC7 interact with PAR1. Reciprocally, increased furin expression reduces the plasma membrane abundance of PAR1 by trapping it in the trans-Golgi network. Furthermore, soluble PC5A/PACE4 can target/disarm cell surface PAR1 through cleavage at Arg46↓. PACE4/PC5A decreased calcium mobilization induced by thrombin stimulation. Our data reveal a new PC-PAR1-interaction pathway, which offsets the effects of HIV-induced neuroinflammation, viral infection, and potentially the development of HAND. PMID:26283733

  11. Neuroinflammation-Induced Interactions between Protease-Activated Receptor 1 and Proprotein Convertases in HIV-Associated Neurocognitive Disorder

    PubMed Central

    Kim, WooJin; Zekas, Erin; Lodge, Robert; Susan-Resiga, Delia; Marcinkiewicz, Edwidge; Essalmani, Rachid; Mihara, Koichiro; Ramachandran, Rithwik; Asahchop, Eugene; Gelman, Benjamin; Cohen, Éric A.; Power, Christopher; Hollenberg, Morley D.

    2015-01-01

    The proprotein convertases (PCs) furin, PC5, PACE4, and PC7 cleave secretory proteins after basic residues, including the HIV envelope glycoprotein (gp160) and Vpr. We evaluated the abundance of PC mRNAs in postmortem brains of individuals exhibiting HIV-associated neurocognitive disorder (HAND), likely driven by neuroinflammation and neurotoxic HIV proteins (e.g., envelope and Vpr). Concomitant with increased inflammation-related gene expression (interleukin-1β [IL-1β]), the mRNA levels of the above PCs are significantly increased, together with those of the proteinase-activated receptor 1 (PAR1), an inflammation-associated receptor that is cleaved by thrombin at ProArg41↓ (where the down arrow indicates the cleavage location), and potentially by PCs at Arg41XXXXArg46↓. The latter motif in PAR1, but not its R46A mutant, drives its interactions with PCs. Indeed, PAR1 upregulation leads to the inhibition of membrane-bound furin, PC5B, and PC7 and inhibits gp160 processing and HIV infectivity. Additionally, a proximity ligation assay revealed that furin and PC7 interact with PAR1. Reciprocally, increased furin expression reduces the plasma membrane abundance of PAR1 by trapping it in the trans-Golgi network. Furthermore, soluble PC5A/PACE4 can target/disarm cell surface PAR1 through cleavage at Arg46↓. PACE4/PC5A decreased calcium mobilization induced by thrombin stimulation. Our data reveal a new PC-PAR1-interaction pathway, which offsets the effects of HIV-induced neuroinflammation, viral infection, and potentially the development of HAND. PMID:26283733

  12. Cigarette Smoke and the Induction of Urokinase Plasminogen Activator Receptor In Vivo: Selective Contribution of Isoforms to Bronchial Epithelial Phenotype.

    PubMed

    Portelli, Michael A; Stewart, Ceri E; Hall, Ian P; Brightling, Christopher E; Sayers, Ian

    2015-08-01

    The urokinase plasminogen activator receptor (uPAR) gene (PLAUR) has been identified as an asthma susceptibility gene, with polymorphisms within that gene being associated with baseline lung function, lung function decline, and lung function in a smoking population. Soluble cleaved uPAR (scuPAR), a molecule identified as a marker of increased morbidity and mortality in a number of diseases, has been shown to be elevated in the airways of patients with asthma and in patients with chronic obstructive pulmonary disease. However, the functionality of soluble receptor isoforms and their relationship with an important initiator for obstructive lung disease, cigarette smoke, remains undefined. In this study, we set out to determine the effect of cigarette smoke on soluble uPAR isoforms, its regulatory pathway and the resultant effect on bronchial epithelial cell function. We identified a positive association between cigarette pack-years and uPAR expression in the airway bronchial epithelium of biopsies from patients with asthma (n = 27; P = 0.0485). In vitro, cigarette smoke promoted cleavage of uPAR from the surface of bronchial epithelial cells (1.5× induction; P < 0.0001) and induced the soluble spliced isoform through changes in messenger RNA expression (∼2× change; P < 0.001), driven by loss of endogenous 3' untranslated region suppression. Elevated expression of the soluble isoforms resulted in a proremodeling cell phenotype, characterized by increased proliferation and matrix metalloproteinase-9 expression in primary bronchial epithelial cells. This suggests that cigarette smoke elevates soluble receptor isoforms in bronchial epithelial cells through direct (cleavage) and indirect (messenger RNA expression) means. These findings provide further insight into how cigarette smoke may influence changes in the airways of importance to airway remodeling and obstructive lung disease progression. PMID:25490122

  13. Bursting Activity of Substantia Nigra pars Reticulata Neurons in Mouse Parkinsonism in Awake and Anesthetized States

    PubMed Central

    Lobb, CJ; Jaeger, D

    2015-01-01

    Electrophysiological changes in basal ganglia neurons are hypothesized to underlie motor dysfunction in Parkinson’s disease (PD). Previous results in head-restrained MPTP-treated non-human primates have suggested that increased bursting within the basal ganglia and related thalamic and cortical areas may be a hallmark of pathophysiological activity. In this study, we investigated whether there is increased bursting in substantia nigra pars reticulata (SNpr) output neurons in anesthetized and awake, head-restrained unilaterally lesioned 6-OHDA mice when compared to control mice. Confirming previous studies, we show that there are significant changes in the firing rate and pattern in SNpr neuron activity under urethane anesthesia. The regular firing pattern of control urethane-anesthetized SNpr neurons was not present in the 6-OHDA-lesioned group, as the latter neurons instead became phase locked with cortical slow wave activity (SWA). Next, we examined whether such robust electrophysiological changes between groups carried over to the awake state. SNpr neurons from both groups fired at much higher frequencies in the awake state than in the anesthetized state and surprisingly showed only modest changes between awake control and 6-OHDA groups. While there were no differences in firing rate between groups in the awake state, an increase in the coefficient of variation (CV) was observed in the 6-OHDA group. Contrary to the bursting hypothesis, this increased CV was not due to changes in bursting but was instead due to a mild increase in pausing. Together, these results suggest that differences in SNpr activity between control and 6-OHDA lesioned mice may be strongly influenced by changes in network activity during different arousal and behavioral states. PMID:25576395

  14. Origin of basal activity in mammalian olfactory receptor neurons

    PubMed Central

    2010-01-01

    Mammalian odorant receptors form a large, diverse group of G protein–coupled receptors that determine the sensitivity and response profile of olfactory receptor neurons. But little is known if odorant receptors control basal and also stimulus-induced cellular properties of olfactory receptor neurons other than ligand specificity. This study demonstrates that different odorant receptors have varying degrees of basal activity, which drives concomitant receptor current fluctuations and basal action potential firing. This basal activity can be suppressed by odorants functioning as inverse agonists. Furthermore, odorant-stimulated olfactory receptor neurons expressing different odorant receptors can have strikingly different response patterns in the later phases of prolonged stimulation. Thus, the influence of odorant receptor choice on response characteristics is much more complex than previously thought, which has important consequences on odor coding and odor information transfer to the brain. PMID:20974772

  15. Fatty acid activation of peroxisome proliferator-activated receptor (PPAR).

    PubMed

    Bocos, C; Göttlicher, M; Gearing, K; Banner, C; Enmark, E; Teboul, M; Crickmore, A; Gustafsson, J A

    1995-06-01

    Peroxisome proliferators such as clofibric acid, nafenopin, and WY-14,643 have been shown to activate peroxisome proliferator-activated receptor (PPAR), a member of the steroid nuclear receptor superfamily. We have cloned the cDNA from rat that is homologous to that from mouse, which encodes a 97% similar protein. To search for physiologically occurring activators, we established a transcriptional transactivation assay by stably expressing in CHO cells a chimera of rat PPAR and the human glucocorticoid receptor that activates expression of the placental alkaline phosphatase reporter gene under the control of the mouse mammary tumor virus promoter. 150 microM concentrations of arachidonic or linoleic acid but not of dehydroepiandrosterone, cholesterol, or 25-hydroxy-cholesterol, activated the receptor chimera. In addition, saturated fatty acids induced the reporter gene. Shortening the chain length to n = 6 or introduction of an omega-terminal carboxylic group abolished the activation potential of the fatty acid. To test whether a common PPAR binding metabolite might be formed from free fatty acids we tested the effects of differentially beta-oxidizable fatty acids and inhibitors of fatty acid metabolism. The peroxisomal proliferation-inducing, non-beta-oxidizable, tetradecylthioacetic acid activated PPAR to the same extent as the strong peroxisomal proliferator WY-14,643, whereas the homologous beta-oxidizable tetradecylthiopropionic acid was only as potent as a non-substituted fatty acid. Cyclooxygenase inhibitors, radical scavengers or cytochrome P450 inhibitors did not affect activation of PPAR. In conclusion, beta-oxidation is apparently not required for the formation of the PPAR-activating molecule and this moiety might be a fatty acid, its ester with CoA, or a further derivative of the activated fatty acid prior to beta-oxidation of the acyl-CoA ester. PMID:7626496

  16. Monoclonal Antibodies to the Human Insulin Receptor that Activate Glucose Transport but not Insulin Receptor Kinase Activity

    NASA Astrophysics Data System (ADS)

    Forsayeth, John R.; Caro, Jose F.; Sinha, Madhur K.; Maddux, Betty A.; Goldfine, Ira D.

    1987-05-01

    Three mouse monoclonal antibodies were produced that reacted with the α subunit of the human insulin receptor. All three both immunoprecipitated 125I-labeled insulin receptors from IM-9 lymphocytes and competitively inhibited 125I-labeled insulin binding to its receptor. Unlike insulin, the antibodies failed to stimulate receptor autophosphorylation in both intact IM-9 lymphocytes and purified human placental insulin receptors. Moreover, unlike insulin, the antibodies failed to stimulate receptor-mediated phosphorylation of exogenous substrates. However, like insulin, two of the three antibodies stimulated glucose transport in isolated human adipocytes. One antibody, on a molar basis, was as potent as insulin. These studies indicate, therefore, that monoclonal antibodies to the insulin receptor can mimic a major function of insulin without activating receptor kinase activity. They also raise the possibility that certain actions of insulin such as stimulation of glucose transport may not require the activation of receptor kinase activity.

  17. Tau phosphorylation at Alzheimer's disease-related Ser356 contributes to tau stabilization when PAR-1/MARK activity is elevated.

    PubMed

    Ando, Kanae; Oka, Mikiko; Ohtake, Yosuke; Hayashishita, Motoki; Shimizu, Sawako; Hisanaga, Shin-Ichi; Iijima, Koichi M

    2016-09-16

    Abnormal phosphorylation of the microtubule-associated protein tau is observed in many neurodegenerative diseases, including Alzheimer's disease (AD). AD-related phosphorylation of two tau residues, Ser262 and Ser356, by PAR-1/MARK stabilizes tau in the initial phase of mismetabolism, leading to subsequent phosphorylation events, accumulation, and toxicity. However, the relative contribution of phosphorylation at each of these sites to tau stabilization has not yet been elucidated. In a Drosophila model of human tau toxicity, we found that tau was phosphorylated at Ser262, but not at Ser356, and that blocking Ser262 phosphorylation decreased total tau levels. By contrast, when PAR-1 was co-overexpressed with tau, tau was hyperphosphorylated at both Ser262 and Ser356. Under these conditions, the protein levels of tau were significantly elevated, and prevention of tau phosphorylation at both residues was necessary to completely suppress this elevation. These results suggest that tau phosphorylation at Ser262 plays the predominant role in tau stabilization when PAR-1/MARK activity is normal, whereas Ser356 phosphorylation begins to contribute to this process when PAR-1/MARK activity is abnormally elevated, as in diseased brains. PMID:27520376

  18. Serum Soluble Urokinase-Type Plasminogen Activator Receptor Levels and Idiopathic FSGS in Children: A Single-Center Report

    PubMed Central

    Price, Heather E.; Gallon, Lorenzo; Langman, Craig B.

    2013-01-01

    Summary Background and objectives FSGS is the primary cause of childhood nephrotic syndrome leading to ESRD. Permeability factors, including circulating serum soluble urokinase-type plasminogen activator receptor (suPAR), have been postulated as putative causes in adults with primary FSGS. Similar results have yet to be proven in children. Design, setting, participants, & measurements This cross-sectional single-center study assessed the association of serum suPAR in children with FSGS or other glomerular and nonglomerular kidney diseases. Results This study examined 110 samples retrieved from 99 individuals (between January 2011 and April 2012), aged 1–21 years; of these individuals, 20 had primary FSGS, 24 had non-FSGS glomerular disease, 26 had nonglomerular kidney disease, and 29 were healthy controls. suPAR levels were not significantly different in children with FSGS, non-FSGS glomerular disease, and healthy controls (P>0.05). However, suPAR levels (median [25%–75%]) were higher in children with nonglomerular kidney disease (3385 pg/ml [2695–4392]) versus FSGS (2487 pg/ml [2191–3351]; P<0.05). Female patients with nephrotic-range proteinuria (U-Pr/Cr >2) had lower suPAR levels than those without proteinuria (2380 pg/ml [2116–2571] versus 3125 pg/ml [2516–4198], respectively; P<0.001). This trend was not seen among male participants; suPAR levels in all female participants were lower than in male participants (P=0.03). Thirty-four patients studied were kidney transplant recipients; transplant status was not associated with suPAR levels in patients with FSGS or non-FSGS diagnoses, independent of proteinuria, race, or sex (P>0.05). Conclusions On the basis of these results, circulating suPAR is unlikely the leading cause for childhood idiopathic FSGS. PMID:23620441

  19. Proteinase activated receptor-2-mediated dual oxidase-2 up-regulation is involved in enhanced airway reactivity and inflammation in a mouse model of allergic asthma.

    PubMed

    Nadeem, Ahmed; Alharbi, Naif O; Vliagoftis, Harissios; Tyagi, Manoj; Ahmad, Sheikh F; Sayed-Ahmed, Mohamed M

    2015-07-01

    Airway epithelial cells (AECs) express a variety of receptors, which sense danger signals from various aeroallergens/pathogens being inhaled constantly. Proteinase-activated receptor 2 (PAR-2) is one such receptor and is activated by cockroach allergens, which have intrinsic serine proteinase activity. Recently, dual oxidases (DUOX), especially DUOX-2, have been shown to be involved in airway inflammation in response to Toll-like receptor activation. However, the association between PAR-2 and DUOX-2 has not been explored in airways of allergic mice. Therefore, this study investigated the contribution of DUOX-2/reactive oxygen species (ROS) signalling in airway reactivity and inflammation after PAR-2 activation. Mice were sensitized intraperitoneally with intact cockroach allergen extract (CE) in the presence of aluminium hydroxide followed by intranasal challenge with CE. Mice were then assessed for airway reactivity, inflammation, oxidative stress (DUOX-2, ROS, inducible nitric oxide synthase, nitrite, nitrotyrosine and protein carbonyls) and apoptosis (Bax, Bcl-2, caspase-3). Challenge with CE led to up-regulation of DUOX-2 and ROS in AECs with concomitant increases in airway reactivity/inflammation and parameters of oxidative stress, and apoptosis. All of these changes were significantly inhibited by intranasal administration of ENMD-1068, a small molecule antagonist of PAR-2 in allergic mice. Administration of diphenyliodonium to allergic mice also led to improvement of allergic airway responses via inhibition of the DUOX-2/ROS pathway; however, these effects were less pronounced than PAR-2 antagonism. The current study suggests that PAR-2 activation leads to up-regulation of the DUOX-2/ROS pathway in AECs, which is involved in regulation of airway reactivity and inflammation via oxidative stress and apoptosis. PMID:25684443

  20. Impact of expected value on neural activity in rat substantia nigra pars reticulata

    PubMed Central

    Bryden, Daniel W.; Johnson, Emily E.; Diao, Xiayang; Roesch, Matthew R.

    2012-01-01

    SUMMARY The substantia nigra pars reticulata (SNr) is thought to serve as the output of the basal ganglia, whereby associative information from striatum influences behavior via disinhibition of downstream motor areas to motivate behavior. Unfortunately, few studies have examined activity in SNr in rats making decisions based on the value of predicted reward similar to those conducted in primates. To fill this void, we recorded from single neurons in SNr while rats performed a choice task in which different odor cues indicated what reward was available on the left or on the right. The value of reward associated with a left or rightward movement was manipulated by varying the size of and delay to reward in separate blocks of trials. Rats were faster or slower depending on whether the expected reward value was high or low, respectively. The number of neurons that increased firing during performance of the task outnumbered those that decreased firing. Both increases and decreases were modulated by expected value and response direction. Neurons that fired more or less strongly for larger reward tended to fire more or less strongly for immediate reward, reflecting their common motivational output. Finally, value selectivity was present prior to presentation of cues indicating the nature of the upcoming behavioral response for both increasing- and decreasing-type neurons, reflecting the internal bias or preparatory set of the rat. These results emphasize the importance of increasing-type neurons on behavioral output when animals are making decisions based on predicted reward value. PMID:21645133

  1. CERAPP: Collaborative Estrogen Receptor Activity Prediction Project

    PubMed Central

    Mansouri, Kamel; Abdelaziz, Ahmed; Rybacka, Aleksandra; Roncaglioni, Alessandra; Tropsha, Alexander; Varnek, Alexandre; Zakharov, Alexey; Worth, Andrew; Richard, Ann M.; Grulke, Christopher M.; Trisciuzzi, Daniela; Fourches, Denis; Horvath, Dragos; Benfenati, Emilio; Muratov, Eugene; Wedebye, Eva Bay; Grisoni, Francesca; Mangiatordi, Giuseppe F.; Incisivo, Giuseppina M.; Hong, Huixiao; Ng, Hui W.; Tetko, Igor V.; Balabin, Ilya; Kancherla, Jayaram; Shen, Jie; Burton, Julien; Nicklaus, Marc; Cassotti, Matteo; Nikolov, Nikolai G.; Nicolotti, Orazio; Andersson, Patrik L.; Zang, Qingda; Politi, Regina; Beger, Richard D.; Todeschini, Roberto; Huang, Ruili; Farag, Sherif; Rosenberg, Sine A.; Slavov, Svetoslav; Hu, Xin; Judson, Richard S.

    2016-01-01

    Background: Humans are exposed to thousands of man-made chemicals in the environment. Some chemicals mimic natural endocrine hormones and, thus, have the potential to be endocrine disruptors. Most of these chemicals have never been tested for their ability to interact with the estrogen receptor (ER). Risk assessors need tools to prioritize chemicals for evaluation in costly in vivo tests, for instance, within the U.S. EPA Endocrine Disruptor Screening Program. Objectives: We describe a large-scale modeling project called CERAPP (Collaborative Estrogen Receptor Activity Prediction Project) and demonstrate the efficacy of using predictive computational models trained on high-throughput screening data to evaluate thousands of chemicals for ER-related activity and prioritize them for further testing. Methods: CERAPP combined multiple models developed in collaboration with 17 groups in the United States and Europe to predict ER activity of a common set of 32,464 chemical structures. Quantitative structure–activity relationship models and docking approaches were employed, mostly using a common training set of 1,677 chemical structures provided by the U.S. EPA, to build a total of 40 categorical and 8 continuous models for binding, agonist, and antagonist ER activity. All predictions were evaluated on a set of 7,522 chemicals curated from the literature. To overcome the limitations of single models, a consensus was built by weighting models on scores based on their evaluated accuracies. Results: Individual model scores ranged from 0.69 to 0.85, showing high prediction reliabilities. Out of the 32,464 chemicals, the consensus model predicted 4,001 chemicals (12.3%) as high priority actives and 6,742 potential actives (20.8%) to be considered for further testing. Conclusion: This project demonstrated the possibility to screen large libraries of chemicals using a consensus of different in silico approaches. This concept will be applied in future projects related to other

  2. How IGF-1 activates its receptor

    PubMed Central

    Kavran, Jennifer M; McCabe, Jacqueline M; Byrne, Patrick O; Connacher, Mary Katherine; Wang, Zhihong; Ramek, Alexander; Sarabipour, Sarvenaz; Shan, Yibing; Shaw, David E; Hristova, Kalina; Cole, Philip A; Leahy, Daniel J

    2014-01-01

    The type I insulin-like growth factor receptor (IGF1R) is involved in growth and survival of normal and neoplastic cells. A ligand-dependent conformational change is thought to regulate IGF1R activity, but the nature of this change is unclear. We point out an underappreciated dimer in the crystal structure of the related Insulin Receptor (IR) with Insulin bound that allows direct comparison with unliganded IR and suggests a mechanism by which ligand regulates IR/IGF1R activity. We test this mechanism in a series of biochemical and biophysical assays and find the IGF1R ectodomain maintains an autoinhibited state in which the TMs are held apart. Ligand binding releases this constraint, allowing TM association and unleashing an intrinsic propensity of the intracellular regions to autophosphorylate. Enzymatic studies of full-length and kinase-containing fragments show phosphorylated IGF1R is fully active independent of ligand and the extracellular-TM regions. The key step triggered by ligand binding is thus autophosphorylation. DOI: http://dx.doi.org/10.7554/eLife.03772.001 PMID:25255214

  3. Detection of suPAR in the Saliva of Healthy Young Adults: Comparison with Plasma Levels

    PubMed Central

    Gustafsson, Anna; Ajeti, Vjosa; Ljunggren, Lennart

    2011-01-01

    The soluble urokinase plasminogen activator receptor (suPAR) has been detected in blood, plasma, serum, urine, ovarian cystic fluid, and cerebrospinal fluid. Elevated suPAR levels in plasma have been associated with negative outcomes in various diseases, such as bacteremia, sepsis, SIRS, cardiovascular disease, cancer, and tuberculosis. The primary aim of this study was to investigate whether suPAR can be detected in saliva from healthy individuals and thus, if saliva suPAR can be related to plasma suPAR, CRP, BMI, or gender. Blood and unstimulated whole saliva was collected from 20 healthy individuals (10 female and 10 male, median age of 28 years; range 21–41). CRP and suPAR were measured with ELISA in saliva and serum/plasma. suPAR was detected in all saliva samples in the 5.2–28.1 ng/mL range, with a median value of 17.1 ng/mL. Saliva suPAR was significantly higher (P < 0.001) but not correlated to plasma suPAR in healthy young adults with normal plasma suPAR levels. suPAR and CRP levels were correlated in blood but not in saliva. No correlation was found between BMI, age, or gender and suPAR in saliva. PMID:22084570

  4. Stimulation of urokinase-type plasminogen activator receptor expression by PMA requires JNK1-dependent and -independent signaling modules.

    PubMed

    Gum, R; Juarez, J; Allgayer, H; Mazar, A; Wang, Y; Boyd, D

    1998-07-16

    The urokinase-type plasminogen activator receptor (u-PAR) has been implicated in tumor progression, and previous studies have shown that the expression of this gene is strongly up-regulated by PMA. Although the signaling mechanism by which PMA modulates u-PAR expression is not known, the effect of this phorbol ester on the expression of other genes has been ascribed to activation of the c-Raf-1-ERK signaling pathway. However, in the current study we examined an alternate possibility that the inductive effect of PMA on u-PAR expression also required a JNK1-dependent signaling cascade usually associated with stress-inducing stimuli. PMA treatment of the u-PAR-deficient OVCAR-3 ovarian cancer cells, which contain low JNK activities, resulted in a rapid (5 min) increase in JNK activity. Maximal JNK activity (12-fold induction) occurred after 30 min; this preceding the earliest detected rise in u-PAR protein (2 h). Dose-response studies with PMA also indicated that the increased JNK activity was tightly correlated with elevated u-PAR protein levels. The stimulation of u-PAR promoter activity by PMA required an intact upstream AP-1 motif (-184) and in PMA-treated cells this motif was bound with c-Jun as indicated from mobility shift assays. PMA up-regulated the c-Jun trans acting activity as indicated by the higher activity of a GAL4-regulated luciferase reporter in phorbol-ester-treated cells co-transfected with an expression vector encoding the c-Jun transactivation domain fused to the GAL4 DNA-binding domain. The ability of PMA to stimulate u-PAR promoter activity was effectively titrated out by the co-expression of either a kinase-defective JNK1 or a dominant negative MEKK1 the latter being an upstream activator of JNK1. Conversely, u-PAR promoter activity was stimulated by the co-expression of a constitutively active MEKK1 and this induction was antagonized by the inclusion of the kinase-defective JNK1 plasmid. We also determined the biological significance of the

  5. Himbacine-derived thrombin receptor antagonists: c7-spirocyclic analogues of vorapaxar.

    PubMed

    Chelliah, Mariappan V; Eagen, Keith; Guo, Zhuyan; Chackalamannil, Samuel; Xia, Yan; Tsai, Hsingan; Greenlee, William J; Ahn, Ho-Sam; Kurowski, Stan; Boykow, George; Hsieh, Yunsheng; Chintala, Madhu

    2014-05-01

    We have synthesized several C7-spirocyclic analogues of vorapaxar and evaluated their in vitro activities against PAR-1 receptor. Some of these analogues showed activities and rat plasma levels comparable to vorapaxar. Compound 5c from this series showed excellent PAR-1 activity (K i = 5.1 nM). We also present a model of these spirocyclic compounds docked to the PAR-1 receptor based on the X-ray crystal structure of vorapaxar bound to PAR-1 receptor. This model explains some of the structure-activity relationships in this series. PMID:24900880

  6. Optical engineering application of modeled photosynthetically active radiation (PAR) for high-speed digital camera dynamic range optimization

    NASA Astrophysics Data System (ADS)

    Alves, James; Gueymard, Christian A.

    2009-08-01

    As efforts to create accurate yet computationally efficient estimation models for clear-sky photosynthetically active solar radiation (PAR) have succeeded, the range of practical engineering applications where these models can be successfully applied has increased. This paper describes a novel application of the REST2 radiative model (developed by the second author) in optical engineering. The PAR predictions in this application are used to predict the possible range of instantaneous irradiances that could impinge on the image plane of a stationary video camera designed to image license plates on moving vehicles. The overall spectral response of the camera (including lens and optical filters) is similar to the 400-700 nm PAR range, thereby making PAR irradiance (rather than luminance) predictions most suitable for this application. The accuracy of the REST2 irradiance predictions for horizontal surfaces, coupled with another radiative model to obtain irradiances on vertical surfaces, and to standard optical image formation models, enable setting the dynamic range controls of the camera to ensure that the license plate images are legible (unsaturated with adequate contrast) regardless of the time of day, sky condition, or vehicle speed. A brief description of how these radiative models are utilized as part of the camera control algorithm is provided. Several comparisons of the irradiance predictions derived from the radiative model versus actual PAR measurements under varying sky conditions with three Licor sensors (one horizontal and two vertical) have been made and showed good agreement. Various camera-to-plate geometries and compass headings have been considered in these comparisons. Time-lapse sequences of license plate images taken with the camera under various sky conditions over a 30-day period are also analyzed. They demonstrate the success of the approach at creating legible plate images under highly variable lighting, which is the main goal of this

  7. Identification of Gene Markers for Activation of the Nuclear Receptor Pregnane X Receptor

    EPA Science Inventory

    Many environmentally-relevant chemicals and drugs activate the nuclear receptor pregnane X receptor (PXR). Activation of PXR in the mouse liver can lead to increases in liver weight in part through increased hepatocyte replication similar to chemicals that activate other nuclear ...

  8. A reassessment of soluble urokinase-type plasminogen activator receptor in glomerular disease

    PubMed Central

    Spinale, Joann M.; Mariani, Laura H.; Kapoor, Shiv; Zhang, Jidong; Weyant, Robert; Song, Peter X.; Wong, Hetty N.; Troost, Jonathan P.; Gadegbeku, Crystal A.; Gipson, Debbie S.; Kretzler, Matthias; Nihalani, Deepak; Holzman, Lawrence B.

    2014-01-01

    It has been suggested that soluble urokinase receptor (suPAR) is a causative circulating factor for and a biomarker of focal and segmental glomerulosclerosis (FSGS). Here we undertook validation of these assumptions in both mouse and human models. Injection of recombinant suPAR in wild-type mice did not induce proteinuria within 24 hours. Moreover, a disease phenotype was not seen in an inducible transgenic mouse model that maintained elevated suPAR concentrations for 6 weeks. Plasma and urine suPAR concentrations were evaluated as clinical biomarkers in 241 patients with glomerular disease from the prospective, longitudinal multi-center observational NEPTUNE cohort. The serum suPAR concentration at baseline inversely correlated with estimated glomerular filtration rate (eGFR) and the urine suPAR/creatinine ratio positively correlated with the urine protein/creatinine ratio. After adjusting for eGFR and urine protein, neither the serum nor urine suPAR level was an independent predictor of FSGS histopathology. A multivariable mixed-effects model of longitudinal data evaluated the association between the change in serum suPAR concentration from baseline with eGFR. After adjusting for baseline suPAR concentration, age, gender, proteinuria and time, the change in suPAR from baseline was associated with eGFR, but this association was not different for patients with FSGS as compared to other diagnoses. Thus, these results do not support a pathological role for suPAR in FSGS. PMID:25354239

  9. A reassessment of soluble urokinase-type plasminogen activator receptor in glomerular disease.

    PubMed

    Spinale, Joann M; Mariani, Laura H; Kapoor, Shiv; Zhang, Jidong; Weyant, Robert; Song, Peter X; Wong, Hetty N; Troost, Jonathan P; Gadegbeku, Crystal A; Gipson, Debbie S; Kretzler, Matthias; Nihalani, Deepak; Holzman, Lawrence B

    2015-03-01

    It has been suggested that soluble urokinase receptor (suPAR) is a causative circulating factor for and a biomarker of focal and segmental glomerulosclerosis (FSGS). Here we undertook validation of these assumptions in both mouse and human models. Injection of recombinant suPAR in wild-type mice did not induce proteinuria within 24 h. Moreover, a disease phenotype was not seen in an inducible transgenic mouse model that maintained elevated suPAR concentrations for 6 weeks. Plasma and urine suPAR concentrations were evaluated as clinical biomarkers in 241 patients with glomerular disease from the prospective, longitudinal multicenter observational NEPTUNE cohort. The serum suPAR concentration at baseline inversely correlated with estimated glomerular filtration rate (eGFR) and the urine suPAR/creatinine ratio positively correlated with the urine protein/creatinine ratio. After adjusting for eGFR and urine protein, neither the serum nor urine suPAR level was an independent predictor of FSGS histopathology. A multivariable mixed-effects model of longitudinal data evaluated the association between the change in serum suPAR concentration from baseline with eGFR. After adjusting for baseline suPAR concentration, age, gender, proteinuria, and time, the change in suPAR from baseline was associated with eGFR, but this association was not different for patients with FSGS as compared with other diagnoses. Thus these results do not support a pathological role for suPAR in FSGS. PMID:25354239

  10. Dendritic NMDA receptors activate axonal calcium channels

    PubMed Central

    Christie, Jason M.; Jahr, Craig E.

    2008-01-01

    Summary NMDA receptor (NMDAR) activation can alter synaptic strength by regulating transmitter release from a variety of neurons in the CNS. As NMDARs are permeable to Ca2+ and monovalent cations, they could alter release directly by increasing presynaptic Ca2+ or indirectly by axonal depolarization sufficient to activate voltage-sensitive Ca2+ channels (VSCCs). Using two-photon microscopy to measure Ca2+ excursions, we found that somatic depolarization or focal activation of dendritic NMDARs elicited small Ca2+ transients in axon varicosities of cerebellar stellate cell interneurons. These axonal transients resulted from Ca2+ entry through VSCCs that were opened by the electrotonic spread of the NMDAR-mediated depolarization elicited in the dendrites. In contrast, we were unable to detect direct activation of NMDARs on axons indicating an exclusive somatodendritic expression of functional NMDARs. In cerebellar stellate cells, dendritic NMDAR activation masquerades as a presynaptic phenomenon and may influence Ca2+-dependent forms of presynaptic plasticity and release. PMID:18957221

  11. Model for growth hormone receptor activation based on subunit rotation within a receptor dimer

    SciTech Connect

    Brown, Richard J.; Adams, Julian J.; Pelekanos, Rebecca A.; Wan, Yu; McKinstry, William J.; Palethorpe, Kathryn; Seeber, Ruth M.; Monks, Thea A.; Eidne, Karin A.; Parker, Michael W.; Waters, Michael J.

    2010-07-13

    Growth hormone is believed to activate the growth hormone receptor (GHR) by dimerizing two identical receptor subunits, leading to activation of JAK2 kinase associated with the cytoplasmic domain. However, we have reported previously that dimerization alone is insufficient to activate full-length GHR. By comparing the crystal structure of the liganded and unliganded human GHR extracellular domain, we show here that there is no substantial change in its conformation on ligand binding. However, the receptor can be activated by rotation without ligand by inserting a defined number of alanine residues within the transmembrane domain. Fluorescence resonance energy transfer (FRET), bioluminescence resonance energy transfer (BRET) and coimmunoprecipitation studies suggest that receptor subunits undergo specific transmembrane interactions independent of hormone binding. We propose an activation mechanism involving a relative rotation of subunits within a dimeric receptor as a result of asymmetric placement of the receptor-binding sites on the ligand.

  12. Activation of neurotensin receptor type 1 attenuates locomotor activity.

    PubMed

    Vadnie, Chelsea A; Hinton, David J; Choi, Sun; Choi, YuBin; Ruby, Christina L; Oliveros, Alfredo; Prieto, Miguel L; Park, Jun Hyun; Choi, Doo-Sup

    2014-10-01

    Intracerebroventricular administration of neurotensin (NT) suppresses locomotor activity. However, the brain regions that mediate the locomotor depressant effect of NT and receptor subtype-specific mechanisms involved are unclear. Using a brain-penetrating, selective NT receptor type 1 (NTS1) agonist PD149163, we investigated the effect of systemic and brain region-specific NTS1 activation on locomotor activity. Systemic administration of PD149163 attenuated the locomotor activity of C57BL/6J mice both in a novel environment and in their homecage. However, mice developed tolerance to the hypolocomotor effect of PD149163 (0.1 mg/kg, i.p.). Since NTS1 is known to modulate dopaminergic signaling, we examined whether PD149163 blocks dopamine receptor-mediated hyperactivity. Pretreatment with PD149163 (0.1 or 0.05 mg/kg, i.p.) inhibited D2R agonist bromocriptine (8 mg/kg, i.p.)-mediated hyperactivity. D1R agonist SKF-81297 (8 mg/kg, i.p.)-induced hyperlocomotion was only inhibited by 0.1 mg/kg of PD149163. Since the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC) have been implicated in the behavioral effects of NT, we examined whether microinjection of PD149163 into these regions reduces locomotion. Microinjection of PD149163 (2 pmol) into the NAc, but not the mPFC suppressed locomotor activity. In summary, our results indicate that systemic and intra-NAc activation of NTS1 is sufficient to reduce locomotion and NTS1 activation inhibits D2R-mediated hyperactivity. Our study will be helpful to identify pharmacological factors and a possible therapeutic window for NTS1-targeted therapies for movement disorders. PMID:24929110

  13. Intracolonical administration of protease-activated receptor-2 agonists produced visceral hyperalgesia by up-regulating serotonin in the colon of rats.

    PubMed

    Li, Zhi; Zhang, Xiao-Jun; Xu, Hong-xi; Sung, Joseph J Y; Bian, Zhao-xiang

    2009-03-15

    This study aimed to investigate the underlying mechanism of protease-activated receptor-2 (PAR-2) agonist-induced visceral hyperalgesia. Male Sprague-Dawley rat pups were submitted to colonic injection of PAR-2 agonist for 6 consecutive days. The visceral sensitivity to colorectal distention was evaluated by electromyography. The enterochromaffin (EC) cell number, 5-HT content and tryrptophan hydroxylase (TPH) protein expression were detected with immunohistochemistry, fluorescent measurement and Western blot analysis. PAR-2 agonist induced a significant increase of visceral nociceptive response to colorectal distention and a series of neurochemical changes in rat colon, including proliferation of EC cells, increased 5-HT content and enhanced TPH expression. Expression of PAR-2 in EC cells was reported for the first time. Further, selective 5-HT(3) receptor antagonist alosteron significantly inhibited PAR-2-induced visceral hyperalgesia. The enhanced 5-HT signaling is likely responsible for the visceral hyperalgesia induced by PAR-2 agonist. Interruption of this pathway is a possible target for the treatment of visceral hyperalgesia in gastrointestinal diseases. PMID:19374846

  14. UTILITY OF A WIDE SPECTRUM LIGHT METER AS AN UNDERWATER SENSOR OF PHOTOSYNTHETICALLY ACTIVE RADIATION (PAR)

    EPA Science Inventory

    The strong attenuation of infra red wavelengths (>700 nm) in coastal waters is suggestive that some instruments with broad spectral responses might be useful, inexpensive substitutes for PAR sensors in studies of estuarine plant dynamics. Wide spectrum (350-1100 nm) light intensi...

  15. Blockage of protease-activated receptor 1 ameliorates heat-stress induced intestinal high permeability and bacterial translocation.

    PubMed

    Xu, Qiu-lin; Guo, Xiao-hua; Liu, Jing-xian; Chen, Bin; Liu, Zhi-feng; Su, Lei

    2015-04-01

    Accumulated evidences indicate intestinal lesions play an important role in the pathogenesis of heatstroke. However, the underlying mechanisms by which heat stress causes intestinal barrier dysfunction and bacterial translocation remain unclear. In this study, we investigated the role of protease-activated receptor 1 (PAR1) in heat stress-induced intestinal hyper-permeability and bacterial translocation. Intestinal permeability in heat stressed mouse was evaluated by determining plasma endotoxin concentration and urinal lactulose/mannitol (L/M) ratio with gastric administration of L/M solution. Venous blood, liver, spleen and mesenteric lymph node tissues were collected for bacterial load test. Real time PCR was used to determine ileum PAR1 mRNA expression. In vitro study, permeability was assessed by determining trans-epithelial electrical resistance (TEER) in human intestinal Caco-2 cell line. RWJ-58259, a selective antagonist of PAR1, was used both in vivo and in vitro studies. The results showed that heat stress could increase ileum PAR1 mRNA level, urinal L/M ratio, plasma endotoxin concentration and bacterial load in the blood, spleen and mesenteric lymph nodes. Blocking PAR1 with RWJ-58259 (10 mg/kg) pretreatment could significantly reduce heat stress-induced above changes, but have no role to PAR1 mRNA level. In Caco-2 cells, heat stress-induced high permeability could also be reduced by RWJ-58259 (5-20 µmol/L). In summary, our results demonstrated that PAR1 signaling pathway may play an important role in the heat stress-induced elevation of intestinal permeability, bacterial translocation and the occurrence of endotoxemia. PMID:25492552

  16. Human eosinophil innate response to Alternaria fungus through protease-activated receptor-2.

    PubMed

    Matsuwaki, Yoshinori; Wada, Kota; Moriyama, Hiroshi; Kita, Hirohito

    2011-01-01

    Eosinophils are multifunctional leukocytes implicated in the pathogenesis of allergic diseases. An association between eosinophilic inflammation and infection or colonization by fungi has also been long recognized. However, the mechanisms underlying how eosinophils are activated and how they release proinflammatory and immunomodulatory mediators such as major basic protein (MBP) and eosinophil-derived neurotoxin remain largely unknown. We used a fungus, i.e. Alternaria, as a model microbe relevant to human asthma and chronic rhinosinusitis (CRS) to investigate the molecular mechanisms involved in the immune recognition of ubiquitous environmental allergens. Human eosinophils are activated by live Alternaria alternata organisms, release their granule proteins, and kill the fungi. Eosinophils, but not neutrophils, respond to secreted products from A. alternata. We found that eosinophils are equipped with innate cellular activation machinery that responds to an extracellular aspartate protease secreted by Alternaria. Aspartate protease activation of protease-activated receptor (PAR)-2 probably involves a novel mechanism different from that for serine protease activation of PAR-2. Thus, human eosinophils may recognize certain danger signals or virulence factors produced by fungi and provoke inflammatory responses against these organisms. Dysregulation of such an innate immune mechanism may be involved in the pathophysiology of certain human inflammatory diseases, including asthma and CRS. PMID:21646807

  17. Composition, assembly and activation of the avian progesterone receptor.

    PubMed

    Smith, D F; Toft, D O

    1992-03-01

    When isolated from chick oviduct cytosol by antibody adsorption, the inactive progesterone receptor is associated with the two heat shock proteins, hsp90 and hsp70, plus three additional proteins termed p54, p50, and p23 according to their molecular weights. While their functions remain unknown, all of these receptor associated proteins are dissociated upon receptor activation in intact cells. To better understand the assembly and activation mechanisms of progesterone receptor complexes, we have developed a cell-free system for studying receptor interactions with hsp90 and hsp70 and have used this system to examine requirements for hsp90 binding to the receptor. Purified receptor, free of hsp90 and immobilized on an antibody affinity resin, will rebind hsp90 in rabbit reticulocyte lysate when several conditions are met. These include: (1) absence of progesterone, (2) elevated temperature (30 degrees C), (3) presence of ATP, and (4) presence of Mg2+. We have obtained maximal hsp90 binding to receptor when lysate is supplemented with 3 mM MgCl2 and an ATP regenerating system. ATP depletion of lysate by dialysis or ATPase addition blocks hsp90 binding to the receptor. When progesterone is added to pre-formed receptor complexes in reticulocyte lysate it promotes activation and the dissociation of hsp90. This process is also dependent upon ATP. Thus, both the assembly, and activation of the progesterone receptor can be accomplished in the reticulocyte lysate system. PMID:1562503

  18. Receptor Activity-modifying Proteins 2 and 3 Generate Adrenomedullin Receptor Subtypes with Distinct Molecular Properties.

    PubMed

    Watkins, Harriet A; Chakravarthy, Madhuri; Abhayawardana, Rekhati S; Gingell, Joseph J; Garelja, Michael; Pardamwar, Meenakshi; McElhinney, James M W R; Lathbridge, Alex; Constantine, Arran; Harris, Paul W R; Yuen, Tsz-Ying; Brimble, Margaret A; Barwell, James; Poyner, David R; Woolley, Michael J; Conner, Alex C; Pioszak, Augen A; Reynolds, Christopher A; Hay, Debbie L

    2016-05-27

    Adrenomedullin (AM) is a peptide hormone with numerous effects in the vascular systems. AM signals through the AM1 and AM2 receptors formed by the obligate heterodimerization of a G protein-coupled receptor, the calcitonin receptor-like receptor (CLR), and receptor activity-modifying proteins 2 and 3 (RAMP2 and RAMP3), respectively. These different CLR-RAMP interactions yield discrete receptor pharmacology and physiological effects. The effective design of therapeutics that target the individual AM receptors is dependent on understanding the molecular details of the effects of RAMPs on CLR. To understand the role of RAMP2 and -3 on the activation and conformation of the CLR subunit of AM receptors, we mutated 68 individual amino acids in the juxtamembrane region of CLR, a key region for activation of AM receptors, and determined the effects on cAMP signaling. Sixteen CLR mutations had differential effects between the AM1 and AM2 receptors. Accompanying this, independent molecular modeling of the full-length AM-bound AM1 and AM2 receptors predicted differences in the binding pocket and differences in the electrostatic potential of the two AM receptors. Druggability analysis indicated unique features that could be used to develop selective small molecule ligands for each receptor. The interaction of RAMP2 or RAMP3 with CLR induces conformational variation in the juxtamembrane region, yielding distinct binding pockets, probably via an allosteric mechanism. These subtype-specific differences have implications for the design of therapeutics aimed at specific AM receptors and for understanding the mechanisms by which accessory proteins affect G protein-coupled receptor function. PMID:27013657

  19. Receptor Activity-modifying Proteins 2 and 3 Generate Adrenomedullin Receptor Subtypes with Distinct Molecular Properties*

    PubMed Central

    Watkins, Harriet A.; Chakravarthy, Madhuri; Abhayawardana, Rekhati S.; Gingell, Joseph J.; Garelja, Michael; Pardamwar, Meenakshi; McElhinney, James M. W. R.; Lathbridge, Alex; Constantine, Arran; Harris, Paul W. R.; Yuen, Tsz-Ying; Brimble, Margaret A.; Barwell, James; Poyner, David R.; Woolley, Michael J.; Conner, Alex C.; Pioszak, Augen A.; Reynolds, Christopher A.

    2016-01-01

    Adrenomedullin (AM) is a peptide hormone with numerous effects in the vascular systems. AM signals through the AM1 and AM2 receptors formed by the obligate heterodimerization of a G protein-coupled receptor, the calcitonin receptor-like receptor (CLR), and receptor activity-modifying proteins 2 and 3 (RAMP2 and RAMP3), respectively. These different CLR-RAMP interactions yield discrete receptor pharmacology and physiological effects. The effective design of therapeutics that target the individual AM receptors is dependent on understanding the molecular details of the effects of RAMPs on CLR. To understand the role of RAMP2 and -3 on the activation and conformation of the CLR subunit of AM receptors, we mutated 68 individual amino acids in the juxtamembrane region of CLR, a key region for activation of AM receptors, and determined the effects on cAMP signaling. Sixteen CLR mutations had differential effects between the AM1 and AM2 receptors. Accompanying this, independent molecular modeling of the full-length AM-bound AM1 and AM2 receptors predicted differences in the binding pocket and differences in the electrostatic potential of the two AM receptors. Druggability analysis indicated unique features that could be used to develop selective small molecule ligands for each receptor. The interaction of RAMP2 or RAMP3 with CLR induces conformational variation in the juxtamembrane region, yielding distinct binding pockets, probably via an allosteric mechanism. These subtype-specific differences have implications for the design of therapeutics aimed at specific AM receptors and for understanding the mechanisms by which accessory proteins affect G protein-coupled receptor function. PMID:27013657

  20. Membrane lipid peroxidation in neurodegeneration: Role of thrombin and proteinase-activated receptor-1.

    PubMed

    Citron, Bruce A; Ameenuddin, Syed; Uchida, K; Suo, William Z; SantaCruz, Karen; Festoff, Barry W

    2016-07-15

    Thrombin and membrane lipid peroxidation (MLP) have been implicated in various central nervous system (CNS) disorders from CNS trauma to stroke, Alzheimer's (AD) and Parkinson's (PD) diseases. Because thrombin also induces MLP in platelets and its involvement in neurodegenerative diseases we hypothesized that its deleterious effects might, in part, involve formation of MLP in neuronal cells. We previously showed that thrombin induced caspase-3 mediated apoptosis in motor neurons, via a proteinase-activated receptor (PAR1). We have now investigated thrombin's influence on the oxidative state of neurons leading to induction of MLP-protein adducts. Translational relevance of thrombin-induced MLP is supported by increased levels of 4-hydroxynonenal-protein adducts (HNEPA) in AD and PD brains. We now report for the first time that thrombin dose-dependently induces formation of HNEPA in NSC34 mouse motor neuron cells using anti-HNE and anti-acrolein monoclonal antibodies. The most prominent immunoreactive band, in SDS-PAGE, was at ∼54kDa. Membrane fractions displayed higher amounts of the protein-adduct than cytosolic fractions. Thrombin induced MLP was mediated, at least in part, through PAR1 since a PAR1 active peptide, PAR1AP, also elevated HNEPA levels. Of interest, glutamate and Fe2SO4 also increased the ∼54kDa HNEPA band in these cells but to a lesser extent. Taken together our results implicate the involvement of thrombin and MLP in neuronal cell loss observed in various CNS degenerative and traumatic pathologies. PMID:27138068

  1. Involvement of capsaicin-sensitive afferent nerves in the proteinase-activated receptor 2-mediated vasodilatation in the rat dura mater.

    PubMed

    Dux, M; Rosta, J; Sántha, P; Jancsó, G

    2009-07-01

    Neurogenic inflammation of the dura mater encephali has been suggested to contribute to the mechanisms of meningeal nociception and blood flow regulation. Recent findings demonstrated that the rat dura mater is innervated by trigeminal capsaicin-sensitive peptidergic nociceptive afferent nerves which mediate meningeal vascular responses through activation of the transient receptor potential vanilloid type 1 (TRPV1) receptor. The present work explored the functional significance of the capsaicin-sensitive subpopulation of dural afferent nerves via their contribution to the meningeal vascular responses evoked through activation of the proteinase-activated receptor 2 (PAR-2). The vascular responses of the dura mater were studied by laser Doppler flowmetry in a rat open cranial window preparation. Topical applications of trypsin, a PAR-2-activator, or Ser-Leu-Ile-Gly-Arg-Leu-amide (SLIGRL-NH(2)), a selective PAR-2 agonist peptide, resulted in dose-dependent increases in meningeal blood flow. The SLIGRL-NH(2)-induced vasodilatation was significantly reduced following capsaicin-sensitive afferent nerve defunctionalization by prior systemic capsaicin treatment and by pretreatment of the dura mater with the calcitonin gene-related peptide (CGRP) receptor antagonist CGRP(8-37). Nomega-nitro-L-arginine methyl ester hydrochloride (L-NAME) an unspecific inhibitor of nitric oxide (NO) production, but not 1-(2-trifluoromethylphenyl) imidazole (TRIM), a neuronal NO synthase inhibitor, also inhibited the vasodilator response to SLIGRL-NH(2). The vasodilator responses elicited by very low concentrations of capsaicin (10 nM) were significantly enhanced by prior application of SLIGRL-NH(2). The present findings demonstrate that activation of the PAR-2 localized on capsaicin-sensitive trigeminal nociceptive afferent nerves induces vasodilatation in the dural vascular bed by mechanisms involving NO and CGRP release. The results indicate that the PAR-2-mediated activation and

  2. The insulin receptor C-terminus is involved in regulation of the receptor kinase activity.

    PubMed

    Kaliman, P; Baron, V; Alengrin, F; Takata, Y; Webster, N J; Olefsky, J M; Van Obberghen, E

    1993-09-21

    During the insulin receptor activation process, ligand binding and autophosphorylation induce two distinct conformational changes in the C-terminal domain of the receptor beta-subunit. To analyze the role of this domain and the involvement of the C-terminal autophosphorylation sites (Tyr1316 and Tyr1322) in receptor activation, we used (i) antipeptide antibodies against three different C-terminal sequences (1270-1281, 1294-1317, and 1309-1326) and (ii) an insulin receptor mutant (Y/F2) where Tyr1316 and Tyr1322 have been replaced by Phe. We show that the autophosphorylation-induced C-terminal conformational change is preserved in the Y/F2 receptor, indicating that this change is not induced by phosphorylation of the C-terminal sites but most likely by phosphorylation of the major sites in the kinase domain (Tyr1146, Tyr1150, and Tyr1151). Binding of antipeptide antibodies to the C-terminal domain modulated (activated or inhibited) both mutant and wild-type receptor-mediated phosphorylation of poly(Glu/Tyr). In contrast to the wild-type receptor, Y/F2 exhibited the same C-terminal configuration before and after insulin binding, evidencing that mutation of Tyr1316 and Tyr1322 introduced conformational changes in the C-terminus. Finally, the mutant receptor was 2-fold more active than the wild-type receptor for poly(Glu/Tyr) phosphorylation. In conclusion, the whole C-terminal region of the insulin receptor beta-subunit is likely to exert a regulatory influence on the receptor kinase activity. Perturbations of the C-terminal region, such as binding of antipeptides or mutation of Tyr1316 and Tyr1322, provoke alterations at the receptor kinase level, leading to activation or inhibition of the enzymic activity. PMID:7690586

  3. The diagnostic value of soluble urokinase plasminogen activator receptor compared with C-reactive protein and procalcitonin in children with febrile neutropenia.

    PubMed

    Sirinoglu, Melis; Soysal, Ahmet; Karaaslan, Ayşe; Kepenekli Kadayifci, Eda; Cinel, Ismail; Koç, Ahmet; Tokuç, Gülnur; Yaman, Ali; Haklar, Goncagül; Şirikçi, Önder; Turan, Serap; Altınkanat Gelmez, Gülşen; Söyletir, Güner; Bakır, Mustafa

    2016-04-01

    The aim of the present study was to determine the diagnostic value of soluble urokinase plasminogen activator receptor (suPAR) in pediatric patients with febrile neutropenia. A prospective case-control study was performed. Patients included 29 children with febrile neutropenia (FN) and 27 control subjects without any infection or immunosuppressive condition. Blood samples were obtained on the day of admission and on the 4th to 7th days of the hospital stay. The median (minimum-maximum) serum levels of suPAR obtained on the first day of the admission were 2.08 (0.93-9.42) and 2.22 (1.08-5.13) ng/mL for the FN group and the control group, respectively. The median serum levels of suPAR in the FN and control groups were not significantly different (P = .053). The mean serum suPAR level was significantly higher in nonsurvivors than in survivors in the FN group (P < .05). In the FN group, the area under the receiver operating characteristics curve (AUCROC) for suPAR was 0.546, but no optimum cutoff value, sensitivity, specificity, negative predictive value (NPV), or positive predictive value (PPV) was obtained. We conclude that suPAR is not useful as a diagnostic biomarker in children with febrile neutropenia; however, persistent high serum suPAR level may predict mortality in FN in children. PMID:27057782

  4. Constitutive Activity of the Androgen Receptor

    PubMed Central

    Chan, Siu Chiu; Dehm, Scott M.

    2014-01-01

    Prostate cancer (PCa) is the most frequently diagnosed cancer in the United States. The androgen receptor (AR) signaling axis is central to all stages of PCa pathophysiology and serves as the main target for endocrine-based therapy. The most advanced stage of the disease, castration resistant prostate cancer (CRPC), is presently incurable and accounts for most PCa mortality. In this review, we highlight the mechanisms by which the AR signaling axis can bypass endocrine-targeted therapies and drive progression of CRPC. These mechanisms include alterations in growth factor, cytokine, and inflammatory signaling pathways, altered expression or activity of transcriptional co-regulators, AR point mutations, and AR gene amplification leading to AR protein overexpression. Additionally, we will discuss the mechanisms underlying the synthesis of constitutively active AR splice variants (AR-Vs) lacking the COOH-terminal ligand binding domain, as well as the role and regulation of AR-Vs in supporting therapeutic resistance in CRPC. Finally, we summarize the ongoing development of inhibitors targeting discrete AR functional domains as well as the status of new biomarkers for monitoring the AR signaling axis in patients. PMID:24931201

  5. Thyroid hormone receptors regulate adipogenesis and carcinogenesis via crosstalk signaling with peroxisome proliferator-activated receptors

    PubMed Central

    Lu, Changxue; Cheng, Sheue-Yann

    2012-01-01

    Peroxisome proliferator-activated receptors (PPARs) and thyroid hormone receptors (TRs) are members of the nuclear receptor superfamily. They are ligand-dependent transcription factors that interact with their cognate hormone response elements in the promoters to regulate respective target gene expression to modulate cellular functions. While the transcription activity of each is regulated by their respective ligands, recent studies indicate that via multiple mechanisms PPARs and TRs crosstalk to affect diverse biological functions. Here, we review recent advances in the understanding of the molecular mechanisms and biological impact of crosstalk between these two important nuclear receptors, focusing on their roles in adipogenesis and carcinogenesis. PMID:19741045

  6. Mechanisms of xenobiotic receptor activation: Direct vs. indirect.

    PubMed

    Mackowiak, Bryan; Wang, Hongbing

    2016-09-01

    The so-called xenobiotic receptors (XRs) have functionally evolved into cellular sensors for both endogenous and exogenous stimuli by regulating the transcription of genes encoding drug-metabolizing enzymes and transporters, as well as those involving energy homeostasis, cell proliferation, and/or immune responses. Unlike prototypical steroid hormone receptors, XRs are activated through both direct ligand-binding and ligand-independent (indirect) mechanisms by a plethora of structurally unrelated chemicals. This review covers research literature that discusses direct vs. indirect activation of XRs. A particular focus is centered on the signaling control of the constitutive androstane receptor (CAR), the pregnane X receptor (PXR), and the aryl hydrocarbon receptor (AhR). We expect that this review will shed light on both the common and distinct mechanisms associated with activation of these three XRs. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie. PMID:26877237

  7. Cell death sensitization of leukemia cells by opioid receptor activation

    PubMed Central

    Friesen, Claudia; Roscher, Mareike; Hormann, Inis; Fichtner, Iduna; Alt, Andreas; Hilger, Ralf A.; Debatin, Klaus-Michael; Miltner, Erich

    2013-01-01

    Cyclic AMP (cAMP) regulates a number of cellular processes and modulates cell death induction. cAMP levels are altered upon stimulation of specific G-protein-coupled receptors inhibiting or activating adenylyl cyclases. Opioid receptor stimulation can activate inhibitory Gi-proteins which in turn block adenylyl cyclase activity reducing cAMP. Opioids such as D,L-methadone induce cell death in leukemia cells. However, the mechanism how opioids trigger apoptosis and activate caspases in leukemia cells is not understood. In this study, we demonstrate that downregulation of cAMP induced by opioid receptor activation using the opioid D,L-methadone kills and sensitizes leukemia cells for doxorubicin treatment. Enhancing cAMP levels by blocking opioid-receptor signaling strongly reduced D,L-methadone-induced apoptosis, caspase activation and doxorubicin-sensitivity. Induction of cell death in leukemia cells by activation of opioid receptors using the opioid D,L-methadone depends on critical levels of opioid receptor expression on the cell surface. Doxorubicin increased opioid receptor expression in leukemia cells. In addition, the opioid D,L-methadone increased doxorubicin uptake and decreased doxorubicin efflux in leukemia cells, suggesting that the opioid D,L-methadone as well as doxorubicin mutually increase their cytotoxic potential. Furthermore, we found that opioid receptor activation using D,L-methadone alone or in addition to doxorubicin inhibits tumor growth significantly in vivo. These results demonstrate that opioid receptor activation via triggering the downregulation of cAMP induces apoptosis, activates caspases and sensitizes leukemia cells for doxorubicin treatment. Hence, opioid receptor activation seems to be a promising strategy to improve anticancer therapies. PMID:23633472

  8. Soluble Urokinase-Type Plasminogen Activator Receptor Plasma Concentration May Predict Susceptibility to High Altitude Pulmonary Edema.

    PubMed

    Hilty, Matthias Peter; Zügel, Stefanie; Schoeb, Michele; Auinger, Katja; Dehnert, Christoph; Maggiorini, Marco

    2016-01-01

    Introduction. Acute exposure to high altitude induces inflammation. However, the relationship between inflammation and high altitude related illness such as high altitude pulmonary edema (HAPE) and acute mountain sickness (AMS) is poorly understood. We tested if soluble urokinase-type plasminogen activator receptor (suPAR) plasma concentration, a prognostic factor for cardiovascular disease and marker for low grade activation of leukocytes, will predict susceptibility to HAPE and AMS. Methods. 41 healthy mountaineers were examined at sea level (SL, 446 m) and 24 h after rapid ascent to 4559 m (HA). 24/41 subjects had a history of HAPE and were thus considered HAPE-susceptible (HAPE-s). Out of the latter, 10/24 HAPE-s subjects were randomly chosen to suppress the inflammatory cascade with dexamethasone 8 mg bid 24 h prior to ascent. Results. Acute hypoxic exposure led to an acute inflammatory reaction represented by an increase in suPAR (1.9 ± 0.4 at SL versus 2.3 ± 0.5 at HA, p < 0.01), CRP (0.7 ± 0.5 at SL versus 3.6 ± 4.6 at HA, p < 0.01), and IL-6 (0.8 ± 0.4 at SL versus 3.3 ± 4.9 at HA, p < 0.01) in all subjects except those receiving dexamethasone. The ascent associated decrease in PaO2 correlated with the increase in IL-6 (r = 0.46, p < 0.001), but not suPAR (r = 0.27, p = 0.08); the increase in IL-6 was not correlated with suPAR (r = 0.16, p = 0.24). Baseline suPAR plasma concentration was higher in the HAPE-s group (2.0 ± 0.4 versus 1.8 ± 0.4, p = 0.04); no difference was found for CRP and IL-6 and for subjects developing AMS. Conclusion. High altitude exposure leads to an increase in suPAR plasma concentration, with the missing correlation between suPAR and IL-6 suggesting a cytokine independent, leukocyte mediated mechanism of low grade inflammation. The correlation between IL-6 and PaO2 suggests a direct effect of hypoxia, which is not the case for suPAR. However, suPAR plasma concentration measured before hypoxic exposure may predict

  9. Soluble Urokinase-Type Plasminogen Activator Receptor Plasma Concentration May Predict Susceptibility to High Altitude Pulmonary Edema

    PubMed Central

    Zügel, Stefanie; Schoeb, Michele; Auinger, Katja; Dehnert, Christoph; Maggiorini, Marco

    2016-01-01

    Introduction. Acute exposure to high altitude induces inflammation. However, the relationship between inflammation and high altitude related illness such as high altitude pulmonary edema (HAPE) and acute mountain sickness (AMS) is poorly understood. We tested if soluble urokinase-type plasminogen activator receptor (suPAR) plasma concentration, a prognostic factor for cardiovascular disease and marker for low grade activation of leukocytes, will predict susceptibility to HAPE and AMS. Methods. 41 healthy mountaineers were examined at sea level (SL, 446 m) and 24 h after rapid ascent to 4559 m (HA). 24/41 subjects had a history of HAPE and were thus considered HAPE-susceptible (HAPE-s). Out of the latter, 10/24 HAPE-s subjects were randomly chosen to suppress the inflammatory cascade with dexamethasone 8 mg bid 24 h prior to ascent. Results. Acute hypoxic exposure led to an acute inflammatory reaction represented by an increase in suPAR (1.9 ± 0.4 at SL versus 2.3 ± 0.5 at HA, p < 0.01), CRP (0.7 ± 0.5 at SL versus 3.6 ± 4.6 at HA, p < 0.01), and IL-6 (0.8 ± 0.4 at SL versus 3.3 ± 4.9 at HA, p < 0.01) in all subjects except those receiving dexamethasone. The ascent associated decrease in PaO2 correlated with the increase in IL-6 (r = 0.46, p < 0.001), but not suPAR (r = 0.27, p = 0.08); the increase in IL-6 was not correlated with suPAR (r = 0.16, p = 0.24). Baseline suPAR plasma concentration was higher in the HAPE-s group (2.0 ± 0.4 versus 1.8 ± 0.4, p = 0.04); no difference was found for CRP and IL-6 and for subjects developing AMS. Conclusion. High altitude exposure leads to an increase in suPAR plasma concentration, with the missing correlation between suPAR and IL-6 suggesting a cytokine independent, leukocyte mediated mechanism of low grade inflammation. The correlation between IL-6 and PaO2 suggests a direct effect of hypoxia, which is not the case for suPAR. However, suPAR plasma concentration measured before hypoxic exposure may predict

  10. PAR1 is selectively over expressed in high grade breast cancer patients: a cohort study

    PubMed Central

    Hernández, Norma A; Correa, Elma; Avila, Esther P; Vela, Teresa A; Pérez, Víctor M

    2009-01-01

    Background The protease-activated receptor (PAR1) expression is correlated with the degree of invasiveness in cell lines. Nevertheless it has never been directed involved in breast cancer patients progression. The aim of this study was to determine whether PAR1 expression could be used as predictor of metastases and mortality. Methods In a cohort of patients with infiltrating ductal carcinoma studied longitudinally since 1996 and until 2007, PAR1 over-expression was assessed by immunoblotting, immunohistochemistry, and flow citometry. Chi-square and log rank tests were used to determine whether there was a statistical association between PAR1 overexpression and metastases, mortality, and survival. Multivariate analysis was performed including HER1, stage, ER and nodes status to evaluate PAR1 as an independent prognostic factor. Results Follow up was 95 months (range: 2–130 months). We assayed PAR1 in a cohort of patients composed of 136 patients; we found PAR1 expression assayed by immunoblotting was selectively associated with high grade patients (50 cases of the study cohort; P = 0.001). Twenty-nine of 50 (58%) patients overexpressed PAR1, and 23 of these (46%) developed metastases. HER1, stage, ER and PAR1 overexpression were robustly correlated (Cox regression, P = 0.002, P = 0.024 and P = 0.002 respectively). Twenty-one of the 50 patients (42%) expressed both receptors (PAR1 and HER1 P = 0.0004). We also found a statistically significant correlation between PAR1 overexpression and increased mortality (P = 0.0001) and development of metastases (P = 0.0009). Conclusion Our data suggest PAR1 overexpression may be involved in the development of metastases in breast cancer patient and is associated with undifferentiated cellular progression of the tumor. Further studies are needed to understand PAR1 mechanism of action and in a near future assay its potential use as risk factor for metastasis development in high grade breast cancer patients. PMID:19538737

  11. Comparison of the activation kinetics of the M3 acetylcholine receptor and a constitutively active mutant receptor in living cells.

    PubMed

    Hoffmann, Carsten; Nuber, Susanne; Zabel, Ulrike; Ziegler, Nicole; Winkler, Christiane; Hein, Peter; Berlot, Catherine H; Bünemann, Moritz; Lohse, Martin J

    2012-08-01

    Activation of G-protein-coupled receptors is the first step of the signaling cascade triggered by binding of an agonist. Here we compare the activation kinetics of the G(q)-coupled M(3) acetylcholine receptor (M(3)-AChR) with that of a constitutively active mutant receptor (M(3)-AChR-N514Y) using M(3)-AChR constructs that report receptor activation by changes in the fluorescence resonance energy transfer (FRET) signal. We observed a leftward shift in the concentration-dependent FRET response for acetylcholine and carbachol with M(3)-AChR-N514Y. Consistent with this result, at submaximal agonist concentrations, the activation kinetics of M(3)-AChR-N514Y were significantly faster, whereas at maximal agonist concentrations the kinetics of receptor activation were identical. Receptor deactivation was significantly faster with carbachol than with acetylcholine and was significantly delayed by the N514Y mutation. Receptor-G-protein interaction was measured by FRET between M(3)-AChR-yellow fluorescent protein (YFP) and cyan fluorescent protein (CFP)-Gγ(2). Agonist-induced receptor-G-protein coupling was of a time scale similar to that of receptor activation. As observed for receptor deactivation, receptor-G-protein dissociation was slower for acetylcholine than that for carbachol. Acetylcholine-stimulated increases in receptor-G-protein coupling of M(3)-AChR-N514Y reached only 12% of that of M(3)-AChR and thus cannot be kinetically analyzed. G-protein activation was measured using YFP-tagged Gα(q) and CFP-tagged Gγ(2). Activation of G(q) was significantly slower than receptor activation and indistinguishable for the two agonists. However, G(q) deactivation was significantly prolonged for acetylcholine compared with that for carbachol. Consistent with decreased agonist-stimulated coupling to G(q), agonist-stimulated G(q) activation by M(3)-AChR-N514Y was not detected. Taken together, these results indicate that the N514Y mutation produces constitutive activation of M(3

  12. The Orphan Nuclear Receptor TR4 Is a Vitamin A-activated Nuclear Receptor

    SciTech Connect

    Zhou, X. Edward; Suino-Powell, Kelly M.; Xu, Yong; Chan, Cee-Wah; Tanabe, Osamu; Kruse, Schoen W.; Reynolds, Ross; Engel, James Douglas; Xu, H. Eric

    2015-11-30

    Testicular receptors 2 and 4 (TR2/4) constitute a subgroup of orphan nuclear receptors that play important roles in spermatogenesis, lipid and lipoprotein regulation, and the development of the central nervous system. Currently, little is known about the structural features and the ligand regulation of these receptors. Here we report the crystal structure of the ligand-free TR4 ligand binding domain, which reveals an autorepressed conformation. The ligand binding pocket of TR4 is filled by the C-terminal half of helix 10, and the cofactor binding site is occupied by the AF-2 helix, thus preventing ligand-independent activation of the receptor. However, TR4 exhibits constitutive transcriptional activity on multiple promoters, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, or ligand binding substantially reduce the transcriptional activity of this receptor. Importantly, both retinol and retinoic acid are able to promote TR4 to recruit coactivators and to activate a TR4-regulated reporter. These findings demonstrate that TR4 is a ligand-regulated nuclear receptor and suggest that retinoids might have a much wider regulatory role via activation of orphan receptors such as TR4.

  13. Activity-dependent regulation of NMDA receptors in substantia nigra dopaminergic neurones.

    PubMed

    Wild, Angela R; Jones, Susan; Gibb, Alasdair J

    2014-02-15

    N-Methyl-d-aspartate receptors (NMDARs) are Ca(2+)-permeable glutamate receptors that play a critical role in synaptic plasticity and promoting cell survival. However, overactive NMDARs can trigger cell death signalling pathways and have been implicated in substantia nigra pars compacta (SNc) pathology in Parkinson's disease. Calcium ion influx through NMDARs recruits Ca(2+)-dependent proteins that can regulate NMDAR activity. The surface density of NMDARs can also be regulated dynamically in response to receptor activity via Ca(2+)-independent mechanisms. We have investigated the activity-dependent regulation of NMDARs in SNc dopaminergic neurones. Repeated whole-cell agonist applications resulted in a decline in the amplitude of NMDAR currents (current run-down) that was use dependent and not readily reversible. Run-down was reduced by increasing intracellular Ca(2+) buffering or by reducing Ca(2+) influx but did not appear to be mediated by the same regulatory proteins that cause Ca(2+)-dependent run-down in hippocampal neurones. The NMDAR current run-down may be mediated in part by a Ca(2+)-independent mechanism, because intracellular dialysis with a dynamin-inhibitory peptide reduced run-down, suggesting a role for clathrin-mediated endocytosis in the regulation of the surface density of receptors. Synaptic NMDARs were also subject to current run-down during repeated low-frequency synaptic stimulation in a Ca(2+)-dependent but dynamin-independent manner. Thus, we report, for the first time, regulation of NMDARs in SNc dopaminergic neurones by changes in intracellular Ca(2+) at both synaptic and extrasynaptic sites and provide evidence for activity-dependent changes in receptor trafficking. These mechanisms may contribute to intracellular Ca(2+) homeostasis in dopaminergic neurones by limiting Ca(2+) influx through the NMDAR. PMID:24344168

  14. The insulin receptor activation process involves localized conformational changes.

    PubMed

    Baron, V; Kaliman, P; Gautier, N; Van Obberghen, E

    1992-11-15

    The molecular process by which insulin binding to the receptor alpha-subunit induces activation of the receptor beta-subunit with ensuing substrate phosphorylation remains unclear. In this study, we aimed at approaching this molecular mechanism of signal transduction and at delineating the cytoplasmic domains implied in this process. To do this, we used antipeptide antibodies to the following sequences of the receptor beta-subunit: (i) positions 962-972 in the juxtamembrane domain, (ii) positions 1247-1261 at the end of the kinase domain, and (iii) positions 1294-1317 and (iv) positions 1309-1326, both in the receptor C terminus. We have previously shown that insulin binding to its receptor induces a conformational change in the beta-subunit C terminus. Here, we demonstrate that receptor autophosphorylation induces an additional conformational change. This process appears to be distinct from the one produced by ligand binding and can be detected in at least three different beta-subunit regions: the juxtamembrane domain, the kinase domain, and the C terminus. Hence, the cytoplasmic part of the receptor beta-subunit appears to undergo an extended conformational change upon autophosphorylation. By contrast, the insulin-induced change does not affect the juxtamembrane domain 962-972 nor the kinase domain 1247-1261 and may be limited to the receptor C terminus. Further, we show that the hormone-dependent conformational change is maintained in a kinase-deficient receptor due to a mutation at lysine 1018. Therefore, during receptor activation, the ligand-induced change could precede ATP binding and receptor autophosphorylation. We propose that insulin binding leads to a transient receptor form that may allow ATP binding and, subsequently, autophosphorylation. The second conformational change could unmask substrate-binding sites and stabilize the receptor in an active conformation. PMID:1331080

  15. Steroid receptor RNA activator: Biologic function and role in disease.

    PubMed

    Liu, Chan; Wu, Hong-Tao; Zhu, Neng; Shi, Ya-Ning; Liu, Zheng; Ao, Bao-Xue; Liao, Duan-Fang; Zheng, Xi-Long; Qin, Li

    2016-08-01

    Steroid receptor RNA activator (SRA) is a type of long noncoding RNA (lncRNA) which coordinates the functions of various transcription factors, enhances steroid receptor-dependent gene expression, and also serves as a distinct scaffold. The novel, profound and expanded roles of SRA are emerging in critical aspects of coactivation of nuclear receptors (NRs). As a nuclear receptor coactivator, SRA can coactivate androgen receptor (AR), estrogen receptor α (ERα), ERβ, progesterone receptor (PR), glucocorticoid receptor (GR), thyroid hormone receptor and retinoic acid receptor (RAR). Although SRA is one of the least well-understood molecules, increasing studies have revealed that SRA plays a key role in both biological processes, such as myogenesis and steroidogenesis, and pathological changes, including obesity, cardiomyopathy, and tumorigenesis. Furthermore, the SRA-related signaling pathways, such as the mitogen-activated protein kinase (p38 MAPK), Notch and tumor necrosis factor α (TNFα) pathways, play critical roles in the pathogenesis of estrogen-dependent breast cancers. In addition, the most recent data demonstrates that SRA expression may serve as a new prognostic marker in patients with ER-positive breast cancer. Thus, elucidating the molecular mechanisms underlying SRA-mediated functions is important to develop proper novel strategies to target SRA in the diagnosis and treatment of human diseases. PMID:27282881

  16. Urokinase-type Plasminogen Activator-like Proteases in Teleosts Lack Genuine Receptor-binding Epidermal Growth Factor-like Domains*

    PubMed Central

    Bager, René; Kristensen, Thomas K.; Jensen, Jan K.; Szczur, Agnieszka; Christensen, Anni; Andersen, Lisbeth M.; Johansen, Jesper S.; Larsen, Niels; Baatrup, Erik; Huang, Mingdong; Ploug, Michael; Andreasen, Peter A.

    2012-01-01

    Plasminogen activation catalyzed by urokinase-type plasminogen activator (uPA) plays an important role in normal and pathological tissue remodeling processes. Since its discovery in the mid-1980s, the cell membrane-anchored urokinase-type plasminogen activator receptor (uPAR) has been believed to be central to the functions of uPA, as uPA-catalyzed plasminogen activation activity appeared to be confined to cell surfaces through the binding of uPA to uPAR. However, a functional uPAR has so far only been identified in mammals. We have now cloned, recombinantly produced, and characterized two zebrafish proteases, zfuPA-a and zfuPA-b, which by several criteria are the fish orthologs of mammalian uPA. Thus, both proteases catalyze the activation of fish plasminogen efficiently and both proteases are inhibited rapidly by plasminogen activator inhibitor-1 (PAI-1). But zfuPA-a differs from mammalian uPA by lacking the exon encoding the uPAR-binding epidermal growth factor-like domain; zfuPA-b differs from mammalian uPA by lacking two cysteines of the epidermal growth factor-like domain and a uPAR-binding sequence comparable with that found in mammalian uPA. Accordingly, no zfuPA-b binding activity could be found in fish white blood cells or fish cell lines. We therefore propose that the current consensus of uPA-catalyzed plasminogen activation taking place on cell surfaces, derived from observations with mammals, is too narrow. Fish uPAs appear incapable of receptor binding in the manner known from mammals and uPA-catalyzed plasminogen activation in fish may occur mainly in solution. Studies with nonmammalian vertebrate species are needed to obtain a comprehensive understanding of the mechanism of plasminogen activation. PMID:22733817

  17. The novel platelet activation receptor CLEC-2.

    PubMed

    Suzuki-Inoue, Katsue; Inoue, Osamu; Ozaki, Yukio

    2011-01-01

    The c-type lectin-like receptor 2 (CLEC-2) was first identified from a bio-informatic screen for c-type lectin-like receptors. However, neither its function nor its ligand(s) had been elucidated for several years. In 2006, we reported that the receptor is expressed on the surface of platelets and serves as a receptor for the snake venom rhodocytin, which potently stimulates platelet aggregation. Since then CLEC-2 has been intensively investigated, and its endogenous/exogenous ligands and several physiological/pathological roles have been clarified. In this article and its accompanying poster, we outline the structure, distribution, signal transduction mechanism and functions of CLEC-2. PMID:21714702

  18. PAR-2 elicits afferent arteriolar vasodilation by NO-dependent and NO-independent actions.

    PubMed

    Trottier, Greg; Hollenberg, Morley; Wang, Xuemei; Gui, Yu; Loutzenhiser, Kathy; Loutzenhiser, Rodger

    2002-05-01

    Proteinase-activated receptors (PARs) are a novel class of G protein-coupled receptors that respond to signals through endogenous proteinases. PAR activation involves enzymatic cleavage of the extracellular NH(2)-terminal domain and unmasking of a new NH(2) terminus, which serves as an anchored ligand to activate the receptor. At least four PAR subtypes have been identified. In the present study, we used the in vitro perfused hydronephrotic rat kidney to examine the effects of activating PAR-2 on the afferent arteriole. The synthetic peptide SLIGRL-NH(2), which corresponds to the exposed ligand sequence and selectively activates PAR-2, did not alter basal afferent arteriolar diameter but caused a concentration-dependent vasodilation (3-30 microM) of arterioles preconstricted by angiotensin II (0.1 nM). A modified peptide sequence (LSIGRL-NH(2), inactive at PAR-2) had no effect. This vasodilation was characterized by an initial transient component followed by a smaller sustained response. A similar pattern of vasodilation was seen when SLIGRL-NH(2) was administered to isolated perfused normal rat kidney. The sustained component of the PAR-2-induced afferent arteriolar vasodilation was eliminated by nitric oxide (NO) synthase inhibition (100 microM nitro-L-arginine methyl ester). In contrast, the transient vasodilation persisted under these conditions. This transient response was not observed when afferent arterioles were preconstricted with elevated KCl, suggesting involvement of an endothelium-derived hyperpolarizing factor. Finally, RT-PCR revealed the presence of PAR-2 mRNA in isolated afferent arterioles. These findings indicate that PAR-2 is expressed in the afferent arteriole and that its activation elicits afferent arteriolar vasodilation by NO-dependent and NO-independent mechanisms. PMID:11934700

  19. Interdicting Gq Activation in Airway Disease by Receptor-Dependent and Receptor-Independent Mechanisms.

    PubMed

    Carr, Richard; Koziol-White, Cynthia; Zhang, Jie; Lam, Hong; An, Steven S; Tall, Gregory G; Panettieri, Reynold A; Benovic, Jeffrey L

    2016-01-01

    Gαqβγ heterotrimer (Gq), an important mediator in the pathology of airway disease, plays a central role in bronchoconstriction and airway remodeling, including airway smooth muscle growth and inflammation. Current therapeutic strategies to treat airway disease include the use of muscarinic and leukotriene receptor antagonists; however, these pharmaceuticals demonstrate a limited clinical efficacy as multiple Gq-coupled receptor subtypes contribute to these pathologies. Thus, broadly inhibiting the activation of Gq may be an advantageous therapeutic approach. Here, we investigated the effects of broadly inhibiting Gq activation in vitro and ex vivo using receptor-dependent and receptor-independent strategies. P4pal-10 is a protease activated receptor 4-derived pepducin that exhibits efficacy toward multiple Gq-coupled receptors. Mechanistic studies demonstrated that P4pal-10 selectively inhibits all G protein coupling to several Gq-coupled receptors, including protease activated receptor 1, muscarinic acetylcholine M3, and histamine H1 receptors, while demonstrating no direct effect on Gq. We also evaluated the ability of FR900359, also known as UBO-QIC, to directly inhibit Gq activation. FR900359 inhibited spontaneous Gαq nucleotide exchange, while having little effect on Gαsβγ, Gαiβγ, or Gα12/13βγ heterotrimer activity. Both P4pal-10 and FR900359 inhibited Gq-mediated intracellular signaling and primary human airway smooth muscle growth, whereas only FR900359 effectively interdicted agonist-promoted airway contraction in human precision cut lung slices. These studies serve as a proof of concept that the broad-based inhibition of Gq activation may be a useful therapeutic approach to treat multiple common pathologies of airway disease. PMID:26464325

  20. Prothymosin alpha selectively enhances estrogen receptor transcriptional activity by interacting with a repressor of estrogen receptor activity.

    PubMed

    Martini, P G; Delage-Mourroux, R; Kraichely, D M; Katzenellenbogen, B S

    2000-09-01

    We find that prothymosin alpha (PTalpha) selectively enhances transcriptional activation by the estrogen receptor (ER) but not transcriptional activity of other nuclear hormone receptors. This selectivity for ER is explained by PTalpha interaction not with ER, but with a 37-kDa protein denoted REA, for repressor of estrogen receptor activity, a protein that we have previously shown binds to ER, blocking coactivator binding to ER. We isolated PTalpha, known to be a chromatin-remodeling protein associated with cell proliferation, using REA as bait in a yeast two-hybrid screen with a cDNA library from MCF-7 human breast cancer cells. PTalpha increases the magnitude of ERalpha transcriptional activity three- to fourfold. It shows lesser enhancement of ERbeta transcriptional activity and has no influence on the transcriptional activity of other nuclear hormone receptors (progesterone receptor, glucocorticoid receptor, thyroid hormone receptor, or retinoic acid receptor) or on the basal activity of ERs. In contrast, the steroid receptor coactivator SRC-1 increases transcriptional activity of all of these receptors. Cotransfection of PTalpha or SRC-1 with increasing amounts of REA, as well as competitive glutathione S-transferase pulldown and mammalian two-hybrid studies, show that REA competes with PTalpha (or SRC-1) for regulation of ER transcriptional activity and suppresses the ER stimulation by PTalpha or SRC-1, indicating that REA can function as an anticoactivator in cells. Our data support a model in which PTalpha, which does not interact with ER, selectively enhances the transcriptional activity of the ER but not that of other nuclear receptors by recruiting the repressive REA protein away from ER, thereby allowing effective coactivation of ER with SRC-1 or other coregulators. The ability of PTalpha to directly interact in vitro and in vivo with REA, a selective coregulator of the ER, thereby enabling the interaction of ER with coactivators, appears to explain

  1. Activating Receptor Signals Drive Receptor Diversity in Developing Natural Killer Cells.

    PubMed

    Freund, Jacquelyn; May, Rebecca M; Yang, Enjun; Li, Hongchuan; McCullen, Matthew; Zhang, Bin; Lenvik, Todd; Cichocki, Frank; Anderson, Stephen K; Kambayashi, Taku

    2016-08-01

    It has recently been appreciated that NK cells exhibit many features reminiscent of adaptive immune cells. Considerable heterogeneity exists with respect to the ligand specificity of individual NK cells and as such, a subset of NK cells can respond, expand, and differentiate into memory-like cells in a ligand-specific manner. MHC I-binding inhibitory receptors, including those belonging to the Ly49 and KIR families, are expressed in a variegated manner, which creates ligand-specific diversity within the NK cell pool. However, how NK cells determine which inhibitory receptors to express on their cell surface during a narrow window of development is largely unknown. In this manuscript, we demonstrate that signals from activating receptors are critical for induction of Ly49 and KIR receptors during NK cell development; activating receptor-derived signals increased the probability of the Ly49 bidirectional Pro1 promoter to transcribe in the forward versus the reverse direction, leading to stable expression of Ly49 receptors in mature NK cells. Our data support a model where the balance of activating and inhibitory receptor signaling in NK cells selects for the induction of appropriate inhibitory receptors during development, which NK cells use to create a diverse pool of ligand-specific NK cells. PMID:27500644

  2. Activating Receptor Signals Drive Receptor Diversity in Developing Natural Killer Cells

    PubMed Central

    Freund, Jacquelyn; May, Rebecca M.; Li, Hongchuan; McCullen, Matthew; Zhang, Bin; Lenvik, Todd; Cichocki, Frank; Anderson, Stephen K.; Kambayashi, Taku

    2016-01-01

    It has recently been appreciated that NK cells exhibit many features reminiscent of adaptive immune cells. Considerable heterogeneity exists with respect to the ligand specificity of individual NK cells and as such, a subset of NK cells can respond, expand, and differentiate into memory-like cells in a ligand-specific manner. MHC I-binding inhibitory receptors, including those belonging to the Ly49 and KIR families, are expressed in a variegated manner, which creates ligand-specific diversity within the NK cell pool. However, how NK cells determine which inhibitory receptors to express on their cell surface during a narrow window of development is largely unknown. In this manuscript, we demonstrate that signals from activating receptors are critical for induction of Ly49 and KIR receptors during NK cell development; activating receptor-derived signals increased the probability of the Ly49 bidirectional Pro1 promoter to transcribe in the forward versus the reverse direction, leading to stable expression of Ly49 receptors in mature NK cells. Our data support a model where the balance of activating and inhibitory receptor signaling in NK cells selects for the induction of appropriate inhibitory receptors during development, which NK cells use to create a diverse pool of ligand-specific NK cells. PMID:27500644

  3. Chronic hyperammonemia induces tonic activation of NMDA receptors in cerebellum.

    PubMed

    ElMlili, Nisrin; Boix, Jordi; Ahabrach, Hanan; Rodrigo, Regina; Errami, Mohammed; Felipo, Vicente

    2010-02-01

    Reduced function of the glutamate--nitric oxide (NO)--cGMP pathway is responsible for some cognitive alterations in rats with hyperammonemia and hepatic encephalopathy. Hyperammonemia impairs the pathway in cerebellum by increasing neuronal nitric oxide synthase (nNOS) phosphorylation in Ser847 by calcium-calmodulin-dependent protein kinase II (CaMKII), reducing nNOS activity, and by reducing nNOS amount in synaptic membranes, which reduces its activation following NMDA receptors activation. The reason for increased CaMKII activity in hyperammonemia remains unknown. We hypothesized that it would be as a result of increased tonic activation of NMDA receptors. The aims of this work were to assess: (i) whether tonic NMDA activation receptors is increased in cerebellum in chronic hyperammonemia in vivo; and (ii) whether this tonic activation is responsible for increased CaMKII activity and reduced activity of nNOS and of the glutamate--NO--cGMP pathway. Blocking NMDA receptors with MK-801 increases cGMP and NO metabolites in cerebellum in vivo and in slices from hyperammonemic rats. This is because of reduced phosphorylation and activity of CaMKII, leading to normalization of nNOS phosphorylation and activity. MK-801 also increases nNOS in synaptic membranes and reduces it in cytosol. This indicates that hyperammonemia increases tonic activation of NMDA receptors leading to reduced activity of nNOS and of the glutamate--NO--cGMP pathway. PMID:20002515

  4. The pars intercerebralis affects digestive activities of the American cockroach, Periplaneta Americana, via crustacean cardioactive peptide and allatostatin-A.

    PubMed

    Matsui, Takaaki; Sakai, Tsubasa; Satake, Honoo; Takeda, Makio

    2013-01-01

    Our previous report showed that the pars intercerebralis (PI)-ablated cockroach, Periplaneta americana (PIX), exhibited hypertrophy and a significant increase in α-amylase and protease activities in the midgut under constant darkness (DD). Bath-applied crustacean cardioactive peptide (CCAP) and allatostatin (AST) stimulated α-amylase and protease activities in the dissected midgut cultured in medium. However, the functional relationship and regulatory mechanism between the brain, particularly the pars intercerebralis and the midgut digestive activity remain to be investigated. Here, we investigated the immunohistochemical reactivities (IHCr) against CCAP and AST in the midgut of cockroach subjected to the above operation (PIX-DD). Three types of IHCr cells were observed in both the muscle layer and the epithelium: (1) CCAP-ir only, (2) AST-ir only and (3) both reactivities are colocalized. The number of all three types increased intensively after PIX under DD compared with that of sham operated control that was kept under constant condition (CNT-DD), indicating that the PI suppresses the expression of CCAP and AST in the midgut epithelium. We also showed that co-administration of CCAP and AST to the midgut caused increases of 1.5-fold and 1.4-fold for α-amylase and protease activities, respectively, compared with application of either peptide above. On the other hand, CCAP-ir in the muscle layer was more strongly expressed but AST-ir was suppressed in PIX-DD. While these peptides showed opposite effects on spontaneous contraction, when epithelially released, these peptides both activated the digestive enzyme system. Overall, up-regulated AST-6 and down-regulated CCAP in the stomatogastric nerve in the muscle layer produce the same end result, that is, stimulation of digestive activity (hypertrophy) via both enzyme activation and the retarded peristalsis that leads to increased throughput time. PMID:23207159

  5. Biological activity of a polypeptide modulator of TRPV1 receptor.

    PubMed

    Dyachenko, I A; Andreev, Ya A; Logashina, Yu A; Murashev, A N; Grishin, E V

    2015-11-01

    This paper presents data on the activity of a new APHC2 polypeptide modulator of TRPV1 receptors, which was isolated from the sea anemone Heteractis crispa. It has been shown that APHC2 has an analgesic activity, does not impair normal motor activity, and does not change body temperature of experimental animals, which has a great practical value for design of potent analgesics of a new generation. Further study of the characteristics of binding of the polypeptide to the TRPV1 receptor may show approaches to the development of other antagonists of this receptor that do not influence the body temperature. PMID:26725234

  6. Targeting Melanoma Growth and Metastasis with Systemic Delivery of Liposomal Incorporated PAR-1 siRNA

    PubMed Central

    Villares, Gabriel J.; Zigler, Maya; Wang, Hua; Melnikova, Vladislava O.; Wu, Hong; Friedman, Ran; Leslie, Michael C.; Vivas-Mejia, Pablo E.; Lopez-Berestein, Gabriel; Sood, Anil K.; Bar-Eli, Menashe

    2008-01-01

    The thrombin receptor (PAR-1, Protease-Activated-Receptor-1) is over-expressed in highly metastatic melanoma cell lines and in patients with metastatic lesions. Activation of PAR-1 leads to cell signaling and upregulation of genes involved in adhesion, invasion and angiogenesis. Herein, we stably silence PAR-1 through the use of lentiviral shRNA and found significant decreases in both tumor growth (P<.01) and metastasis (P<.001) of highly metastatic melanoma cell lines in vivo. The use of viruses for therapy is not ideal as it can induce toxic immune responses and possible gene alterations following viral integration. Therefore, we also utilized systemic delivery of PAR-1 siRNA incorporated into neutral liposomes (DOPC) to decrease melanoma growth and metastasis in vivo. Significant decreases in tumor growth, weight and metastatic lung colonies (P<.001 for all) were found in mice treated with PAR-1-siRNA-DOPC. The in vivo effects of PAR-1 on invasion and angiogenesis were analyzed via immunohistochemistry. Concomitant decreases in VEGF, IL-8, and MMP-2 expression levels, as well as decreased blood-vessel density (CD31), were found in tumor samples from PAR-1 siRNA-treated mice, suggesting that PAR-1 is a regulator of melanoma cell growth and metastasis by affecting angiogenic and invasive factors. We propose that siRNA incorporated into DOPC nanoparticles could be delivered systemically and used as a new modality for melanoma treatment. PMID:18974154

  7. Human receptor activation by aroclor 1260, a polychlorinated biphenyl mixture.

    PubMed

    Wahlang, Banrida; Falkner, K Cameron; Clair, Heather B; Al-Eryani, Laila; Prough, Russell A; States, J Christopher; Coslo, Denise M; Omiecinski, Curtis J; Cave, Matthew C

    2014-08-01

    Polychlorinated biphenyls (PCBs) are persistent environmental toxicants, present in 100% of U.S. adults and dose-dependently associated with obesity and non-alcoholic fatty liver disease (NAFLD). PCBs are predicted to interact with receptors previously implicated in xenobiotic/energy metabolism and NAFLD. These receptors include the aryl hydrocarbon receptor (AhR), pregnane xenobiotic receptor (PXR), constitutive androstane receptor (CAR), peroxisome proliferator-activated receptors (PPARs), liver-X-receptor (LXRα), and farnesoid-X-receptor (FXR). This study evaluates Aroclor 1260, a PCB mixture with congener composition mimicking that of human adipose tissue, and selected congeners, as potential ligands for these receptors utilizing human hepatoma-derived (HepG2) and primate-derived (COS-1) cell lines, and primary human hepatocytes. Aroclor 1260 (20 μg/ml) activated AhR, and PCB 126, a minor component, was a potent inducer. Aroclor 1260 activated PXR in a simple concentration-dependent manner at concentrations ≥10 μg/ml. Among the congeners tested, PCBs 138, 149, 151, 174, 183, 187, and 196 activated PXR. Aroclor 1260 activated CAR2 and CAR3 variants at lower concentrations and antagonize CAR2 activation by the CAR agonist, CITCO, at higher concentrations (≥20 μg/ml). Additionally, Aroclor 1260 induced CYP2B6 in primary hepatocytes. At subtoxic doses, Aroclor 1260 did not activate LXR or FXR and had no effect on LXR- or FXR-dependent induction by the agonists T0901317 or GW4064, respectively. Aroclor 1260 (20 μg/ml) suppressed PPARα activation by the agonist nafenopin, although none of the congeners tested demonstrated significant inhibition. The results suggest that Aroclor 1260 is a human AhR, PXR and CAR3 agonist, a mixed agonist/antagonist for CAR2, and an antagonist for human PPARα. PMID:24812009

  8. Human Receptor Activation by Aroclor 1260, a Polychlorinated Biphenyl Mixture

    PubMed Central

    Wahlang, Banrida; Falkner, K. Cameron; Clair, Heather B.; Al-Eryani, Laila; Prough, Russell A.; States, J. Christopher; Coslo, Denise M.; Omiecinski, Curtis J.; Cave, Matthew C.

    2014-01-01

    Polychlorinated biphenyls (PCBs) are persistent environmental toxicants, present in 100% of U.S. adults and dose-dependently associated with obesity and non-alcoholic fatty liver disease (NAFLD). PCBs are predicted to interact with receptors previously implicated in xenobiotic/energy metabolism and NAFLD. These receptors include the aryl hydrocarbon receptor (AhR), pregnane xenobiotic receptor (PXR), constitutive androstane receptor (CAR), peroxisome proliferator-activated receptors (PPARs), liver-X-receptor (LXRα), and farnesoid-X-receptor (FXR). This study evaluates Aroclor 1260, a PCB mixture with congener composition mimicking that of human adipose tissue, and selected congeners, as potential ligands for these receptors utilizing human hepatoma-derived (HepG2) and primate-derived (COS-1) cell lines, and primary human hepatocytes. Aroclor 1260 (20 μg/ml) activated AhR, and PCB 126, a minor component, was a potent inducer. Aroclor 1260 activated PXR in a simple concentration-dependent manner at concentrations ≥10 μg/ml. Among the congeners tested, PCBs 138, 149, 151, 174, 183, 187, and 196 activated PXR. Aroclor 1260 activated CAR2 and CAR3 variants at lower concentrations and antagonize CAR2 activation by the CAR agonist, CITCO, at higher concentrations (≥20 μg/ml). Additionally, Aroclor 1260 induced CYP2B6 in primary hepatocytes. At subtoxic doses, Aroclor 1260 did not activate LXR or FXR and had no effect on LXR- or FXR-dependent induction by the agonists T0901317 or GW4064, respectively. Aroclor 1260 (20 μg/ml) suppressed PPARα activation by the agonist nafenopin, although none of the congeners tested demonstrated significant inhibition. The results suggest that Aroclor 1260 is a human AhR, PXR and CAR3 agonist, a mixed agonist/antagonist for CAR2, and an antagonist for human PPARα. PMID:24812009

  9. Par-4 secretion: stoichiometry of 3-arylquinoline binding to vimentin.

    PubMed

    Sviripa, Vitaliy M; Burikhanov, Ravshan; Obiero, Josiah M; Yuan, Yaxia; Nickell, Justin R; Dwoskin, Linda P; Zhan, Chang-Guo; Liu, Chunming; Tsodikov, Oleg V; Rangnekar, Vivek M; Watt, David S

    2016-01-01

    Advanced prostate tumors usually metastasize to the lung, bone, and other vital tissues and are resistant to conventional therapy. Prostate apoptosis response-4 protein (Par-4) is a tumor suppressor that causes apoptosis in therapy-resistant prostate cancer cells by binding specifically to a receptor, Glucose-regulated protein-78 (GRP78), found only on the surface of cancer cells. 3-Arylquinolines or "arylquins" induce normal cells to release Par-4 from the intermediate filament protein, vimentin and promote Par-4 secretion that targets cancer cells in a paracrine manner. A structure-activity study identified arylquins that promote Par-4 secretion, and an evaluation of arylquin binding to the hERG potassium ion channel using a [(3)H]-dofetilide binding assay permitted the identification of structural features that separated this undesired activity from the desired Par-4 secretory activity. A binding study that relied on the natural fluorescence of arylquins and that used the purified rod domain of vimentin (residues 99-411) suggested that the mechanism behind Par-4 release involved arylquin binding to multiple sites in the rod domain. PMID:26548370

  10. Characterization of peroxisome proliferator-activiated receptor alpha (PPARalpha)-independent effects of PPARalpha activators in the rodent liver: Di(2-ethylehexyl) phthalate activates the constitutive activated receptor

    EPA Science Inventory

    Peroxisome proliferator chemicals (PPC) are thought to mediate their effects in rodents on hepatocyte growth and liver cancer through the nuclear receptor peroxisome proliferator-activated receptor alpha (PPARalpha). Recent studies indicate that the plasticizer di-2-ethylhexyl ph...

  11. Protease activated receptor-1 antagonist ameliorates the clinical symptoms of experimental autoimmune encephalomyelitis via inhibiting breakdown of blood-brain barrier.

    PubMed

    Kim, Ha Neui; Kim, Yu Ri; Ahn, Sung Min; Lee, Sun Kyung; Shin, Hwa Kyoung; Choi, Byung Tae

    2015-11-01

    To evaluate the question of whether protease activated receptor-1 (PAR-1) antagonist is a potential therapeutic target in multiple sclerosis, we treated experimental autoimmune encephalomyelitis (EAE) mice with two PAR-1 antagonists, KC-A0590 and SCH-530348. Treatment with both antagonists resulted in a significant decrease in the clinical characteristics of EAE mice by suppressing demyelination and infiltration of inflammatory cells in the spinal cord and brain, as well as a significantly reducing the increased thrombin and tumor necrosis factor-α. Profound leakage of dextran was observed in the brain of EAE mice. However, treatment with PAR-1 antagonists resulted in the stabilization of vascular endothelial cells and reduced blood-brain barrier breakdown with suppression of inflammatory response. Treatment with PAR-1 antagonists also resulted in down-regulated expression of matrix metalloproteinase-9 and preserved expression of occludin and zonula occludens (ZO)-1 in the brain and their significant expression was confirmed in neurons, astrocytes, and vascular endothelial cells. Finally, endothelial cells and primary cultured astrocytes were treated with PAR-1 antagonists; both antagonists suppressed thrombin-induced breakdown of ZO-1 in endothelial cells and secretion of matrix metalloproteinase-9 in astrocytes. Collectively, our results suggest that PAR-1 antagonist is effective in attenuation of the clinical symptoms of EAE mice by stabilizing the blood-brain barrier and may have therapeutic potential for treatment of multiple sclerosis. PMID:26285165

  12. Amyloid β peptide oligomers directly activate NMDA receptors.

    PubMed

    Texidó, Laura; Martín-Satué, Mireia; Alberdi, Elena; Solsona, Carles; Matute, Carlos

    2011-03-01

    Amyloid beta (Aβ) oligomers accumulate in the brain tissue of Alzheimer disease patients and are related to disease pathogenesis. The precise mechanisms by which Aβ oligomers cause neurotoxicity remain unknown. We recently reported that Aβ oligomers cause intracellular Ca(2+) overload and neuronal death that can be prevented by NMDA receptor antagonists. This study investigated whether Aβ oligomers directly activated NMDA receptors (NMDARs) using NR1/NR2A and NR1/NR2B receptors that were heterologously expressed in Xenopus laevis oocytes. Indeed, Aβ oligomers induced inward non-desensitizing currents that were blocked in the presence of the NMDA receptor antagonists memantine, APV, and MK-801. Intriguingly, the amplitude of the responses to Aβ oligomers was greater for NR1/NR2A heteromers than for NR1/NR2B heteromers expressed in oocytes. Consistent with these findings, we observed that the increase in the cytosolic concentration of Ca(2+) induced by Aβ oligomers in cortical neurons is prevented by AP5, a broad spectrum NMDA receptor antagonist, but slightly attenuated by ifenprodil which blocks receptors with the NR2B subunit. Together, these results indicate that Aβ oligomers directly activate NMDA receptors, particularly those with the NR2A subunit, and further suggest that drugs that attenuate the activity of such receptors may prevent Aβ damage to neurons in Alzheimeŕs disease. PMID:21349580

  13. Specific activation of the thyrotropin receptor by trypsin.

    PubMed

    Van Sande, J; Massart, C; Costagliola, S; Allgeier, A; Cetani, F; Vassart, G; Dumont, J E

    1996-05-31

    The identification of 16 different activating mutations in the TSH receptor, found in patients suffering from toxic autonomous adenomas or congenital hyperthyroidism, leads to the concept that this receptor is in a constrained conformation in its wild-type form. We used mild trypsin treatment of CHO-K1 cells or COS-7 cells, stably or transiently transfected with the human TSH receptor, respectively, and measured its consequences on the TSH receptor coupled cascades, i.e. cyclic AMP and inositol-phosphates accumulation. A 2-min, 0.01% trypsin treatment increased stably cyclic AMP but not inositol-phosphates formation. This was not observed after chymotrypsin, thrombin and endoproteinase glu C treatment. The TSH action on cyclic AMP was decreased by only 25%. The effect was also observed in cells expressing the dog TSH receptor. It was not observed in MSH receptor, LH receptor expressing or mock transfected cells (vector alone). It is therefore specific for the TSH receptor, for its action on the Gs/adenylate cyclase cascade, and for the proteolytic cleavage caused by trypsin. Using monoclonal (A. Johnstone and P. Shepherd, personal communication) and polyclonal antibodies directed against the extracellular domain of the TSH receptor, it was shown that treatment by trypsin removes or destroys a VFFEEQ epitope (residues 354-359) from the receptor. The effect mimics the action of TSH as it activates Gs alpha and enhances the action of forskolin. It is not reversible in 1 h. The results support the concept that activation of the receptor (by hormone, autoantibodies, mutations or mild proteolysis) might involve the relief of a built-in negative constrain. They suggest that the C-terminal portion of the large extracellular domain plays a role in the maintenance of this constrain. PMID:8807635

  14. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation

    PubMed Central

    Samarajeewa, Anshula; Goldemann, Lolita; Vasefi, Maryam S.; Ahmed, Nawaz; Gondora, Nyasha; Khanderia, Chandni; Mielke, John G.; Beazely, Michael A.

    2014-01-01

    The serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the cortex and hippocampus. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF) receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA)-induced toxicity. The tropomyosin-related kinase B (TrkB) receptor is one of the receptors for brain-derived neurotrophic factor (BDNF) and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins toward the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands. PMID:25426041

  15. PAR-1 and thrombin: the ties that bind the microenvironment to melanoma metastasis.

    PubMed

    Zigler, Maya; Kamiya, Takafumi; Brantley, Emily C; Villares, Gabriel J; Bar-Eli, Menashe

    2011-11-01

    Progression of melanoma is dependent on cross-talk between tumor cells and the adjacent microenvironment. The thrombin receptor, protease-activated receptor-1 (PAR-1), plays a key role in exerting this function during melanoma progression. PAR-1 and its activating factors, which are expressed on tumor cells and the surrounding stroma, induce not only coagulation but also cell signaling, which promotes the metastatic phenotype. Several adhesion molecules, cytokines, growth factors, and proteases have recently been identified as downstream targets of PAR-1 and have been shown to modulate interactions between tumor cells and the microenvironment in the process of melanoma growth and metastasis. Inhibiting such interactions by targeting PAR-1 could potentially be a useful therapeutic modality for melanoma patients. PMID:22009534

  16. PAR-1 and Thrombin: The Ties that Bind the Microenvironment to Melanoma Metastasis*

    PubMed Central

    Zigler, Maya; Kamiya, Takafumi; Brantley, Emily C.; Villares, Gabriel J.; Bar-Eli, Menashe

    2011-01-01

    Progression of melanoma is dependent on cross-talk between tumor cells and the adjacent microenvironment. The thrombin receptor, Protease Activated Receptor-1 (PAR-1) plays a key role in exerting this function during melanoma progression. PAR-1 and its activating factors, which are expressed on tumor cells and the surrounding stroma, induce not only coagulation, but also cell signaling which promotes the metastatic phenotype. Several adhesion molecules, cytokines, growth factors and proteases have recently been identified as downstream targets of PAR-1 and have been shown to modulate interactions between tumor cells and the microenvironment in the process of melanoma growth and metastasis. Inhibition of these interactions by targeting PAR-1 could be utilized as a potential therapeutic modality for melanoma patients. PMID:22009534

  17. Exploration of locomotion in the ParA/ParB system

    NASA Astrophysics Data System (ADS)

    Jindal, Lavisha; Emberly, Eldon

    2015-03-01

    In many bacteria the ParA/ParB system is responsible for actively segregating DNA during replication. ParB precessively moves by hydrolyzing DNA bound ParA-ATP forming a depleted ParA region in its wake. Recent in-vitro experiments have shown that a ParB covered bead can traverse a ParA bound DNA substrate. It has been suggested that the formation of a gradient in ParA leads to diffusion-ratchet like motion of the ParB bead but its origin and potential consequences requires investigation. We have developed a deterministic model for the in-vitro ParA/ParB system and show that any amount of spatial noise in ParA can lead to the spontaneous formation of its gradient. The velocity of the bead is independent of this noise but depends on the scale over which ParA exerts a force on the bead and the scale over which ParB hydrolyzes ParA from the substrate. There is a particular ratio of these scales at which the velocity is a maximum. We also explore the effects of cooperative vs independent rebinding of ParA to the substrate. Our model shows how the driving force for ParB originates and highlights necessary conditions for directed motion in the in-vitro system that may provide insight into the in-vivo behaviour of the ParA/ParB system.

  18. Receptor tyrosine kinases: mechanisms of activation and signaling

    PubMed Central

    Hubbard, Stevan R.; Miller, W. Todd

    2008-01-01

    Receptor tyrosine kinases (RTKs) are essential components of signal transduction pathways that mediate cell-to-cell communication. These single-pass transmembrane receptors, which bind polypeptide ligands — mainly growth factors — play key roles in processes such as cellular growth, differentiation, metabolism and motility. Recent progress has been achieved towards an understanding of the precise (and varied) mechanisms by which RTKs are activated by ligand binding and by which signals are propagated from the activated receptors to downstream targets in the cell. PMID:17306972

  19. Quantitative structure-activity relationship models with receptor-dependent descriptors for predicting peroxisome proliferator-activated receptor activities of thiazolidinedione and oxazolidinedione derivatives.

    PubMed

    Lather, Viney; Kairys, Visvaldas; Fernandes, Miguel X

    2009-04-01

    A quantitative structure-activity relationship study has been carried out, in which the relationship between the peroxisome proliferator-activated receptor alpha and the peroxisome proliferator-activated receptor gamma agonistic activities of thiazolidinedione and oxazolidinedione derivatives and quantitative descriptors, V(site) calculated in a receptor-dependent manner is modeled. These descriptors quantify the volume occupied by the optimized ligands in regions that are either common or specific to the superimposed binding sites of the targets under consideration. The quantitative structure-activity relationship models were built by forward stepwise linear regression modeling for a training set of 27 compounds and validated for a test set of seven compounds, resulting in a squared correlation coefficient value of 0.90 for peroxisome proliferator-activated receptor alpha and of 0.89 for peroxisome proliferator-activated receptor gamma. The leave-one-out cross-validation and test set predictability squared correlation coefficient values for these models were 0.85 and 0.62 for peroxisome proliferator-activated receptor alpha and 0.89 and 0.50 for peroxisome proliferator-activated receptor gamma respectively. A dual peroxisome proliferator-activated receptor model has also been developed, and it indicates the structural features required for the design of ligands with dual peroxisome proliferator-activated receptor activity. These quantitative structure-activity relationship models show the importance of the descriptors here introduced in the prediction and interpretation of the compounds affinity and selectivity. PMID:19243388

  20. Mincle suppresses Toll-like receptor 4 activation.

    PubMed

    Greco, Stephanie H; Mahmood, Syed Kashif; Vahle, Anne-Kristin; Ochi, Atsuo; Batel, Jennifer; Deutsch, Michael; Barilla, Rocky; Seifert, Lena; Pachter, H Leon; Daley, Donnele; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu R; Miller, George

    2016-07-01

    Regulation of Toll-like receptor responses is critical for limiting tissue injury and autoimmunity in both sepsis and sterile inflammation. We found that Mincle, a C-type lectin receptor, regulates proinflammatory Toll-like receptor 4 signaling. Specifically, Mincle ligation diminishes Toll-like receptor 4-mediated inflammation, whereas Mincle deletion or knockdown results in marked hyperresponsiveness to lipopolysaccharide in vitro, as well as overwhelming lipopolysaccharide-mediated inflammation in vivo. Mechanistically, Mincle deletion does not up-regulate Toll-like receptor 4 expression or reduce interleukin 10 production after Toll-like receptor 4 ligation; however, Mincle deletion decreases production of the p38 mitogen-activated protein kinase-dependent inhibitory intermediate suppressor of cytokine signaling 1, A20, and ABIN3 and increases expression of the Toll-like receptor 4 coreceptor CD14. Blockade of CD14 mitigates the increased sensitivity of Mincle(-/-) leukocytes to Toll-like receptor 4 ligation. Collectively, we describe a major role for Mincle in suppressing Toll-like receptor 4 responses and implicate its importance in nonmycobacterial models of inflammation. PMID:26747838

  1. Receptor activity-modifying proteins; multifunctional G protein-coupled receptor accessory proteins.

    PubMed

    Hay, Debbie L; Walker, Christopher S; Gingell, Joseph J; Ladds, Graham; Reynolds, Christopher A; Poyner, David R

    2016-04-15

    Receptor activity-modifying proteins (RAMPs) are single pass membrane proteins initially identified by their ability to determine the pharmacology of the calcitonin receptor-like receptor (CLR), a family B G protein-coupled receptor (GPCR). It is now known that RAMPs can interact with a much wider range of GPCRs. This review considers recent developments on the structure of the complexes formed between the extracellular domains (ECDs) of CLR and RAMP1 or RAMP2 as these provide insights as to how the RAMPs direct ligand binding. The range of RAMP interactions is also considered; RAMPs can interact with numerous family B GPCRs as well as examples of family A and family C GPCRs. They influence receptor expression at the cell surface, trafficking, ligand binding and G protein coupling. The GPCR-RAMP interface offers opportunities for drug targeting, illustrated by examples of drugs developed for migraine. PMID:27068971

  2. Motor neuron cell death in wobbler mutant mice follows overexpression of the G-protein-coupled, protease-activated receptor for thrombin.

    PubMed Central

    Festoff, B. W.; D'Andrea, M. R.; Citron, B. A.; Salcedo, R. M.; Smirnova, I. V.; Andrade-Gordon, P.

    2000-01-01

    BACKGROUND: Mechanisms underlying neurodegeneration are actively sought for new therapeutic strategies. Transgenic, knockout and genetic mouse models greatly aid our understanding of the mechanisms for neuronal cell death. A naturally occurring, autosomal recessive mutant, known as wobbler, and mice transgenic for familial amyotrophic lateral sclerosis (FALS) superoxide dismutase (SOD)1 mutations are available, but the molecular mechanisms remain equally unknown. Both phenotypes are detectable after birth. Wobbler is detectable in the third week of life, when homozygotes (wr/wr) exhibit prominent gliosis and significant motor neuron loss in the cervical, but not in lumbar, spinal cord segments. To address molecular mechanisms, we evaluated "death signals" associated with the multifunctional serine protease, thrombin, which leads to apoptotic motor neuronal cell death in culture by cleavage of a G-protein coupled, protease-activated receptor 1 (PAR-1). MATERIALS AND METHODS: Thrombin activities were determined with chromogenic substrate assays, Western immunoblots and immunohistochemistry were performed with anti-PAR-1 to observe localizations of the receptor and anti-GFAP staining was used to monitor astrocytosis. PAR-1 mRNA levels and locations were determined by reverse transcription polymerase chain reaction (qRT-PCR) and in situ hybridizations. Cell death was monitored with in situ DNA fragmentation assays. RESULTS: In preliminary studies we found a 5-fold increase in PAR-1 mRNA in cervical spinal cords from wr/wr, compared with wild-type (wt) littermates. Our current studies suggested that reactive astrocytosis and motor neuron cell death were causally linked with alterations in thrombin signaling. PAR-1 protein expression was increased, as demonstrated by immunocytochemistry and confirmed with in situ hybridization, in phenotypic wr/wr motor neurons, compared with wt, but not in astrocytes. This increase was much greater in cervical, compared with lumbar

  3. The active Zot domain (aa 288–293) increases ZO-1 and myosin 1C serine/threonine phosphorylation, alters interaction between ZO-1 and its binding partners, and induces tight junction disassembly through proteinase activated receptor 2 activation

    PubMed Central

    Goldblum, Simeon E.; Rai, Usha; Tripathi, Amit; Thakar, Manjusha; De Leo, Luigina; Di Toro, Nicola; Not, Tarcisio; Ramachandran, Rithwik; Puche, Adam C.; Hollenberg, Morley D.; Fasano, Alessio

    2011-01-01

    Vibrio cholerae-derived zonula occludins toxin (Zot) is a multifunctional protein that reversibly disassembles intestinal tight junctions (tjs). Zot structure-function analysis has mapped this activity to aa 288–293, named AT1002. AT1002 reduced transepithelial electrical resistance across rat small intestine, ex vivo, as did Zot and its processed mature form, ΔG. AT1002 increased in vivo permeability to sugar tracers, whereas scrambled control peptides did not. Binding and barrier assays in proteinase activated receptor (PAR)2-expressing and PAR2-null cells established AT1002 activity to be PAR2 dependent. Coincident with the increased intestinal permeability, confocal microscopy of AT1002-exposed rat intestinal IEC6 cells revealed displacement of ZO-1 and occludin from intercellular boundaries. In coimmunoprecipitation assays, AT1002 decreased ZO-1-occludin and ZO-1-claudin 1 interactions coincident with PKCα-dependent ZO-1 serine/threonine phosphorylation. Further, AT1002 increased serine phosphorylation of myosin 1C and, at the same time, transiently diminished its association with ZO-1. The COOH-terminal domain of ZO-1 was required for its association with myosin 1C. These data indicate that the NH2-terminal portion of active Zot contains a PAR2-activating motif, FCIGRL, that increases PKCα-dependent ZO-1 and myosin 1C serine/threonine phosphorylation. These modifications provoke selective disengagement of ZO-1 from its binding partners, occludin, claudin 1, and myosin 1C, coincident with opening of tjs.—Goldblum, S. E., Rai, U., Tripathi, A., Thakar, M., De Leo, L., Di Toro, N., Not, T., Ramachandran, R., Puche, A. C., Hollenberg, M. D., Fasano, A. The active Zot domain (aa 288–293) increases ZO-1 and myosin 1C serine/threonine phosphorylation, alters interaction between ZO-1 and its binding partners, and induces tight junction disassembly through proteinase activated receptor 2 activation. PMID:20852064

  4. Functions of the extracellular histidine residues of receptor activity-modifying proteins vary within adrenomedullin receptors

    SciTech Connect

    Kuwasako, Kenji Kitamura, Kazuo; Nagata, Sayaka; Kato, Johji

    2008-12-05

    Receptor activity-modifying protein (RAMP)-2 and -3 chaperone calcitonin receptor-like receptor (CRLR) to the plasma membrane, where together they form heterodimeric adrenomedullin (AM) receptors. We investigated the contributions made by His residues situated in the RAMP extracellular domain to AM receptor trafficking and receptor signaling by co-expressing hCRLR and V5-tagged-hRAMP2 or -3 mutants in which a His residue was substituted with Ala in HEK-293 cells. Flow cytometric analysis revealed that hRAMP2-H71A mediated normal hCRLR surface delivery, but the resultant heterodimers showed significantly diminished [{sup 125}I]AM binding and AM-evoked cAMP production. Expression of hRAMP2-H124A and -H127A impaired surface delivery of hCRLR, which impaired or abolishing AM binding and receptor signaling. Although hRAMP3-H97A mediated full surface delivery of hCRLR, the resultant heterodimers showed impaired AM binding and signaling. Other His residues appeared uninvolved in hCRLR-related functions. Thus, the His residues of hRAMP2 and -3 differentially govern AM receptor function.

  5. Activation of G protein by opioid receptors: role of receptor number and G-protein concentration.

    PubMed

    Remmers, A E; Clark, M J; Alt, A; Medzihradsky, F; Woods, J H; Traynor, J R

    2000-05-19

    The collision-coupling model for receptor-G-protein interaction predicts that the rate of G-protein activation is dependent on receptor density, but not G-protein levels. C6 cells expressing mu- or delta-opioid receptors, or SH-SY5Y cells, were treated with beta-funaltrexamine (mu) or naltrindole-5'-isothiocyanate (delta) to decrease receptor number. The time course of full or partial agonist-stimulated ¿35SGTPgammaS binding did not vary in C6 cell membranes containing <1-25 pmol/mg mu-opioid receptor, or 1. 4-4.3 pmol/mg delta-opioid receptor, or in SHSY5Y cells containing 0. 16-0.39 pmol/mg receptor. The association of ¿35SGTPgammaS binding was faster in membranes from C6mu cells than from C6delta cells. A 10-fold reduction in functional G-protein, following pertussis toxin treatment, lowered the maximal level of ¿35SGTPgammaS binding but not the association rate. These data indicate a compartmentalization of opioid receptors and G protein at the cell membrane. PMID:10822058

  6. Retinoic Acid-mediated Nuclear Receptor Activation and Hepatocyte Proliferation

    PubMed Central

    Bushue, Nathan; Wan, Yu-Jui Yvonne

    2016-01-01

    Due to their well-known differentiation and apoptosis-inducing abilities, retinoic acid (RA) and its analogs have strong anti-cancer efficacy in human cancers. However, in vivo RA is a liver mitogen. While speculation has persisted that RA-mediated signaling is likely involved in hepatocyte proliferation during liver regeneration, direct evidence is still required. Findings in support of this proposition include observations that a release of retinyl palmitate (the precursor of RA) occurs in liver stellate cells following liver injury. Nevertheless, the biological action of this released vitamin A is virtually unknown. More likely is that the released vitamin A is converted to RA, the biological form, and then bound to a specific receptor (retinoid x receptor; RXRα), which is most abundantly expressed in the liver. Considering the mitogenic effects of RA, the RA-activated RXRα would likely then influence hepatocyte proliferation and liver tissue repair. At present, the mechanism by which RA stimulates hepatocyte proliferation is largely unknown. This review summarizes the activation of nuclear receptors (peroxisome proliferator activated receptor-α, pregnane x receptor, constitutive androstane receptor, and farnesoid x receptor) in an RXRα dependent manner to induce hepatocyte proliferation, providing a link between RA and its proliferative role.

  7. Cloning, constitutive activity and expression profiling of two receptors related to relaxin receptors in Drosophila melanogaster.

    PubMed

    Van Hiel, Matthias B; Vandersmissen, Hans Peter; Proost, Paul; Vanden Broeck, Jozef

    2015-06-01

    Leucine-rich repeat containing G protein-coupled receptors (LGRs) comprise a cluster of transmembrane proteins, characterized by the presence of a large N-terminal extracellular domain. This receptor group can be classified into three subtypes. Belonging to the subtype C LGRs are the mammalian relaxin receptors LGR7 (RXFP1) and LGR8 (RXFP2), which mediate important reproductive and other processes. We identified two related receptors in the genome of the fruit fly and cloned their open reading frames into an expression vector. Interestingly, dLGR3 demonstrated constitutive activity at very low doses of transfected plasmid, whereas dLGR4 did not show any basal activity. Both receptors exhibited a similar expression pattern during development, with relatively high transcript levels during the first larval stage. In addition, both receptors displayed higher expression in male adult flies as compared to female flies. Analysis of the tissue distribution of both receptor transcripts revealed a high expression of dLGR3 in the female fat body, while the expression of dLGR4 peaked in the midgut of both the wandering and adult stage. PMID:25064813

  8. A dual mechanism for impairment of GABAA receptor activity by NMDA receptor activation in rat cerebellum granule cells.

    PubMed

    Robello, M; Amico, C; Cupello, A

    1997-01-01

    The function of the GABAA receptor has been studied using the whole cell voltage clamp recording technique in rat cerebellum granule cells in culture. Activation of NMDA-type glutamate receptors causes a reduction in the effect of GABA. Full GABAA receptor activity was recovered after washing out NMDA and NMDA action was prevented in a Mg+2 containing medium. The NMDA effect was also absent when extracellular Ca+2 was replaced by Ba+2 and when 10 mM Bapta was present in the intracellular solution. Charge accumulations via voltage activated Ca+2 channels greater than the ones via NMDA receptors do not cause any reduction in GABAA receptor function, suggesting that Ca+2 influx through NMDA receptor channels is critical for the effect. The NMDA effect was reduced by including adenosine-5'-O-3-thiophosphate (ATP-gamma-S) in the internal solution and there was a reduction in the NMDA effect caused by deltamethrin, a calcineurin inhibitor. Part of the NMDA induced GABAA receptor impairment was prevented by prior treatment with L-arginine. Analogously, part of the NMDA effect was prevented by blockage of NO-synthase activity by N omega-nitro-L-arginine. A combination of NO-synthase and calcineurin inhibitors completely eliminated the NMDA action. An analogous result was obtained by combining the NO-synthase inhibitor with the addition of ATP-gamma-S to the pipette medium. The additivity of the prevention of the NMDA impairment of GABAA receptor by blocking the L-arginine/NO pathway and inhibiting calcineurin activity suggests an independent involvement of these two pathways in the interaction between NMDA and the GABAA receptor. On the one hand Ca+2 influx across NMDA channels activates calcineurin and dephosphorylates the GABAA receptor complex directly or dephosphorylates proteins critical for the function of the receptor. On the other hand, Ca+2 influx activates NO-synthase and induces nitric oxide production, which regulates such receptors via protein kinase G

  9. Plasma Levels of Soluble Urokinase-Type Plasminogen Activator Receptor Associate with the Clinical Severity of Acute Puumala Hantavirus Infection

    PubMed Central

    Outinen, Tuula K.; Tervo, Laura; Mäkelä, Satu; Huttunen, Reetta; Mäenpää, Niina; Huhtala, Heini; Vaheri, Antti; Mustonen, Jukka; Aittoniemi, Janne

    2013-01-01

    Objectives Urokinase-type plasminogen activator receptor is a multifunctional glycoprotein, the expression of which is increased during inflammation. It is known to bind to β3-integrins, which are elementary for the cellular entry of hantaviruses. Plasma soluble form of the receptor (suPAR) levels were evaluated as a predictor of severe Puumala hantavirus (PUUV) infection and as a possible factor involved in the pathogenesis of the disease. Design A single-centre prospective cohort study. Subjects and Methods Plasma suPAR levels were measured twice during the acute phase and once during the convalescence in 97 patients with serologically confirmed acute PUUV infection using a commercial enzyme-linked immunosorbent assay (ELISA). Results The plasma suPAR levels were significantly higher during the acute phase compared to the control values after the hospitalization (median 8.7 ng/ml, range 4.0–18.2 ng/ml vs. median 4.7 ng/ml, range 2.4–12.2 ng/ml, P<0.001). The maximum suPAR levels correlated with several variables reflecting the severity of the disease. There was a positive correlation with maximum leukocyte count (r = 0.475, p<0.001), maximum plasma creatinine concentration (r = 0.378, p<0.001), change in weight during the hospitalization (r = 0.406, p<0.001) and the length of hospitalization (r = 0.325, p = 0.001), and an inverse correlation with minimum platelet count (r = −0.325, p = 0.001) and minimum hematocrit (r = −0.369, p<0.001). Conclusion Plasma suPAR values are markedly increased during acute PUUV infection and associate with the severity of the disease. The overexpression of suPAR possibly activates β3-integrin in PUUV infection, and thus might be involved in the pathogenesis of the disease. PMID:23990945

  10. Protease-Activated Receptors and other G-Protein-Coupled Receptors: the Melanoma Connection

    PubMed Central

    Rosero, Rebecca A.; Villares, Gabriel J.; Bar-Eli, Menashe

    2016-01-01

    The vast array of G-protein-coupled receptors (GPCRs) play crucial roles in both physiological and pathological processes, including vision, coagulation, inflammation, autophagy, and cell proliferation. GPCRs also affect processes that augment cell proliferation and metastases in many cancers including melanoma. Melanoma is the deadliest form of skin cancer, yet limited therapeutic modalities are available to patients with metastatic melanoma. Studies have found that both chemokine receptors and protease-activated receptors, both of which are GPCRs, are central to the metastatic melanoma phenotype and may serve as potential targets in novel therapies against melanoma and other cancers. PMID:27379162

  11. Mast cells positive to tryptase, endothelial cells positive to protease-activated receptor-2, and microvascular density correlate among themselves in hepatocellular carcinoma patients who have undergone surgery

    PubMed Central

    Ammendola, Michele; Sacco, Rosario; Sammarco, Giuseppe; Piardi, Tullio; Zuccalà, Valeria; Patruno, Rosa; Zullo, Alessandra; Zizzo, Nicola; Nardo, Bruno; Marech, Ilaria; Crovace, Alberto; Gadaleta, Cosmo Damiano; Pessaux, Patrick; Ranieri, Girolamo

    2016-01-01

    Background Mast cells (MCs) can stimulate angiogenesis, releasing several proangiogenic cytokines stored in their cytoplasm. In particular MCs can release tryptase, a potent in vivo and in vitro proangiogenic factor via proteinase-activated receptor-2 (PAR-2) activation and mitogen-activated protein kinase phosphorylation. Nevertheless, no data are available concerning the relationship between MC density positive to tryptase (MCDPT), endothelial cells positive to PAR-2 forming microvascular density (PAR-2-MVD), and classical MVD (C-MVD) in hepatocellular carcinoma (HCC) angiogenesis. This study analyzed the correlation between MCDPT, PAR-2-MVD, and C-MVD, each correlated to the others and to the main clinicopathological features, in early HCC patients who underwent surgery. Methods A series of 53 HCC patients with early stage (stage 0 according to the Barcelona Clinic Liver Cancer Staging Classification) were selected and then underwent surgery. Tumor tissue samples were evaluated by means of immunohistochemistry and image analysis methods in terms of number of MCDPT, PAR-2-MVD, and C-MVD. Results A significant correlation between MCDPT, PAR-2-MVD, and C-MVD groups, each correlated to the others, was found by Pearson t-test analysis (r ranged from 0.67 to 0.81; P-value ranged from 0.01 to 0.03). No other significant correlation was found. Conclusion Our in vivo pilot data suggest that MCDPT and PAR-2-MVD may play a role in HCC angiogenesis and could be further evaluated as a target of antiangiogenic therapy. PMID:27499640

  12. Hematopoietic Tissue Factor–Protease-Activated Receptor 2 Signaling Promotes Hepatic Inflammation and Contributes to Pathways of Gluconeogenesis and Steatosis in Obese Mice

    PubMed Central

    Wang, Jing; Chakrabarty, Sagarika; Bui, Quyen; Ruf, Wolfram; Samad, Fahumiya

    2016-01-01

    Failure to inhibit hepatic gluconeogenesis is a major mechanism contributing to fasting hyperglycemia in type 2 diabetes and, along with steatosis, is the hallmark of hepatic insulin resistance. Obesity is associated with chronic inflammation in multiple tissues, and hepatic inflammation is mechanistically linked to both steatosis and hepatic insulin resistance. Here, we delineate a role for coagulation signaling via tissue factor (TF) and proteinase-activated receptor 2 (PAR2) in obesity-mediated hepatic inflammation, steatosis, and gluconeogenesis. In diet-induced obese mice, TF tail signaling independent of PAR2 drives CD11b+CD11c+ hepatic macrophage recruitment, and TF–PAR2 signaling contributes to the accumulation of hepatic CD8+ T cells. Transcripts of key pathways of gluconeogenesis, lipogenesis, and inflammatory cytokines were reduced in high-fat diet–fed mice that lack the cytoplasmic domain of TF (F3) (TFΔCT) or that are deficient in PAR2 (F2rl1), as well as by pharmacological inhibition of TF–PAR2 signaling in diet-induced obese mice. These gluconeogenic, lipogenic, and inflammatory pathway transcripts were similarly reduced in response to genetic ablation or pharmacological inhibition of TF–PAR2 signaling in hematopoietic cells and were mechanistically associated with activation of AMP-activated protein kinase (AMPK). These findings indicate that hematopoietic TF–PAR2 signaling plays a pivotal role in the hepatic inflammatory responses, steatosis, and hepatic insulin resistance that lead to systemic insulin resistance and type 2 diabetes in obesity. PMID:25476527

  13. Clinically used selective oestrogen receptor modulators increase LDL receptor activity in primary human lymphocytes

    PubMed Central

    Cerrato, F; Fernández-Suárez, M E; Alonso, R; Alonso, M; Vázquez, C; Pastor, O; Mata, P; Lasunción, M A; Gómez-Coronado, D

    2015-01-01

    Background and Purpose Treatment with selective oestrogen receptor modulators (SERMs) reduces low-density lipoprotein (LDL) cholesterol levels. We assessed the effect of tamoxifen, raloxifene and toremifene and their combinations with lovastatin on LDL receptor activity in lymphocytes from normolipidaemic and familial hypercholesterolaemic (FH) subjects, and human HepG2 hepatocytes and MOLT-4 lymphoblasts. Experimental Approach Lymphocytes were isolated from peripheral blood, treated with different compounds, and 1,1′-dioctadecyl-3,3,3,3′-tetramethylindocarbocyanine perchlorate (DiI)-labelled LDL uptake was analysed by flow cytometry. Key Results Tamoxifen, toremifene and raloxifene, in this order, stimulated DiI-LDL uptake by lymphocytes by inhibiting LDL-derived cholesterol trafficking and subsequent down-regulation of LDL receptor expression. Differently to what occurred in HepG2 and MOLT-4 cells, only tamoxifen consistently displayed a potentiating effect with lovastatin in primary lymphocytes. The SERM-mediated increase in LDL receptor activity was not altered by the anti-oestrogen ICI 182 780 nor was it reproduced by 17β-oestradiol. However, the tamoxifen-active metabolite endoxifen was equally effective as tamoxifen. The SERMs produced similar effects on LDL receptor activity in heterozygous FH lymphocytes as in normal lymphocytes, although none of them had a potentiating effect with lovastatin in heterozygous FH lymphocytes. The SERMs had no effect in homozygous FH lymphocytes. Conclusions and Implications Clinically used SERMs up-regulate LDL receptors in primary human lymphocytes. There is a mild enhancement between SERMs and lovastatin of lymphocyte LDLR activity, the potentiation being greater in HepG2 and MOLT-4 cells. The effect of SERMs is independent of oestrogen receptors but is preserved in the tamoxifen-active metabolite endoxifen. This mechanism may contribute to the cholesterol-lowering action of SERMs. PMID:25395200

  14. Transcriptional activation of nuclear estrogen receptor and progesterone receptor and its regulation.

    PubMed

    Xin, Qi-Liang; Qiu, Jing-Tao; Cui, Sheng; Xia, Guo-Liang; Wang, Hai-Bin

    2016-08-25

    Estrogen receptor (ER) and progesterone receptor (PR) are two important members of steroid receptors family, an evolutionarily conserved family of transcription factors. Upon binding to their ligands, ER and PR enter cell nucleus to interact with specific DNA element in the context of chromatin to initiate the transcription of diverse target genes, which largely depends on the timely recruitment of a wide range of cofactors. Moreover, the interactions between steroid hormones and their respective receptors also trigger post-translational modifications on these receptors to fine-tune their transcriptional activities. Besides the well-known phosphorylation modifications on tyrosine and serine/threonine residues, recent studies have identified several other covalent modifications, such as ubiquitylation and sumoylation. These post-translational modifications of steroid receptors affect its stability, subcellular localization, and/or cofactor recruitment; eventually influence the duration and extent of transcriptional activation. This review is to focus on the recent research progress on the transcriptional activation of nuclear ER and PR as well as their physiological functions in early pregnancy, which may help us to better understand related female reproductive diseases. PMID:27546504

  15. Analyzing the activation of the melanocortin-2 receptor of tetrapods.

    PubMed

    Dores, Robert M; Liang, Liang

    2014-07-01

    Following the biochemical characterization of the pituitary hormone, adrenocorticotropin (ACTH), in the 1950's, a number of structure/function studies were done which identifies two amino acid motifs in ACTH, the HFRW motif and KKRR motif, as critical for the activation of the "ACTH" receptor on adrenal cortex cells. In the 1990's the "ACTH" receptor was identified as a member of the melanocortin receptor gene family, and given the name melanocortin-2 receptor (MC2R). Since that time a number of studies on both tetrapod and teleost MC2R orthologs have established that these orthologs can only be activated by ACTH, but not by any of the MSH-sized melanocortin ligands, and these orthologs require interaction with the melanocortin-2 receptor accessory protein (MRAP) for functional expression. This review summarizes recent structure/function studies on human ACTH, and points out the importance of the GKPVG motif in ACTH for the activation of the receptor. In this regard, a multiple-step model for the activation of tetrapod and teleost MC2R orthologs is presented, and the evolution of gnathostome MC2R ligand selectivity and the requirement for MRAP interaction is discussed in light of a recent study on a cartilaginous fish MC2R ortholog. This review contains excerpts from the Gorbman/Bern Lecture presented at the Second Meeting of the North American Society for Comparative Endocrinology (NASCE). PMID:24713445

  16. Monitoring leptin activity using the chicken leptin receptor.

    PubMed

    Hen, Gideon; Yosefi, Sera; Ronin, Ana; Einat, Paz; Rosenblum, Charles I; Denver, Robert J; Friedman-Einat, Miriam

    2008-05-01

    We report on the construction of a leptin bioassay based on the activation of chicken leptin receptor in cultured cells. A human embryonic kidney (HEK)-293 cell line, stably transfected with the full-length cDNA of chicken leptin receptor together with a STAT3-responsive reporter gene specifically responded to recombinant human and Xenopus leptins. The observed higher sensitivity of chicken leptin receptor to the former is in agreement with the degree of sequence similarity among these species (about 60 and 38% identical amino acids between humans and chickens, and between humans and Xenopus respectively). The specific activation of signal transduction through the chicken leptin receptor, shown here for the first time, suggests that the transition of Gln269 (implicated in the Gln-to-Pro Zucker fatty mutation in rats) to Glu in chickens does not impair its activity. Analysis of leptin-like activity in human serum samples of obese and lean subjects coincided well with leptin levels determined by RIA. Serum samples of pre- and post partum cows showed a tight correlation with the degree of adiposity. However, specific activation of the chicken leptin receptor in this assay was not observed with serum samples from broiler or layer chickens (representing fat and lean phenotypes respectively) or with those from turkey. Similar leptin receptor activation profiles were observed with cells transfected with human leptin receptor. Further work is needed to determine whether the lack of leptin-like activity in the chicken serum samples is due to a lack of leptin in this species or simply to a serum level of leptin that is below the detection threshold. PMID:18434362

  17. Identification of COUP-TFII Orphan Nuclear Receptor as a Retinoic Acid-Activated Receptor

    SciTech Connect

    Kruse, Schoen W; Suino-Powell, Kelly; Zhou, X Edward; Kretschman, Jennifer E; Reynolds, Ross; Vonrhein, Clemens; Xu, Yong; Wang, Liliang; Tsai, Sophia Y; Tsai, Ming-Jer; Xu, H Eric

    2010-01-12

    The chicken ovalbumin upstream promoter-transcription factors (COUP-TFI and II) make up the most conserved subfamily of nuclear receptors that play key roles in angiogenesis, neuronal development, organogenesis, cell fate determination, and metabolic homeostasis. Although the biological functions of COUP-TFs have been studied extensively, little is known of their structural features or aspects of ligand regulation. Here we report the ligand-free 1.48 {angstrom} crystal structure of the human COUP-TFII ligand-binding domain. The structure reveals an autorepressed conformation of the receptor, where helix {alpha}10 is bent into the ligand-binding pocket and the activation function-2 helix is folded into the cofactor binding site, thus preventing the recruitment of coactivators. In contrast, in multiple cell lines, COUP-TFII exhibits constitutive transcriptional activity, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, and ligand binding, substantially reduce the COUP-TFII transcriptional activity. Importantly, retinoid acids are able to promote COUP-TFII to recruit coactivators and activate a COUP-TF reporter construct. Although the concentration needed is higher than the physiological levels of retinoic acids, these findings demonstrate that COUP-TFII is a ligand-regulated nuclear receptor, in which ligands activate the receptor by releasing it from the autorepressed conformation.

  18. The biologically active conformations of ligand CCK B receptor

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Pavel E.; Kuznetsova, Nina B.; Schulgin, Sergey V.; Rogacheva, Svetlana M.; Sinyakov, Valeriy V.; Kovtun, Viktor A.

    2006-07-01

    We analyzed literature data about structures of ligands of CCK B receptor. The structure of the binding site (fragments of the third extracellular loop and the seventh transmembrane helix of CCK B receptor) was determined recently by experiments. We were finding presumable biologically active conformations (BAC) of the ligands by two methods. One of them is based on the fact that the most stable conformations of the biologically active peptide on the phase interface "water-lipophilic medium" are often similar to the BAC. Another method is based on the formation of the stable ligand-receptor complex during the modeling procedure. We used Monte-Carlo method with the fixed geometry of the receptor and the optimized geometry of tetrapeptide cholecystokinin (CCK-4). It has been shown, that the first method should be used to find BAC of antagonists of CCK B receptor. The strategy of the formation of the stable ligand-receptor complex during the modeling procedure can be used for the designing of peptide agonists of CCK B receptor.

  19. Altered Expression of Brain Proteinase-Activated Receptor-2, Trypsin-2 and Serpin Proteinase Inhibitors in Parkinson's Disease.

    PubMed

    Hurley, Michael J; Durrenberger, Pascal F; Gentleman, Steve M; Walls, Andrew F; Dexter, David T

    2015-09-01

    Neuroinflammation is thought to contribute to cell death in neurodegenerative disorders, but the factors involved in the inflammatory process are not completely understood. Proteinase-activated receptor-2 (PAR2) expression in brain is increased in Alzheimer's disease and multiple sclerosis, but the status of PAR2 in Parkinson's disease is unknown. This study examined expression of PAR2 and endogenous proteinase activators (trypsin-2, mast cell tryptase) and proteinase inhibitors (serpin-A5, serpin-A13) in areas vulnerable and resistant to neurodegeneration in Parkinson's disease at different Braak α-synuclein stages of the disease in post-mortem brain. In normal aged brain, expression of PAR-2, trypsin-2, and serpin-A5 and serpin-A13 was found in neurons and microglia, and alterations in the amount of immunoreactivity for these proteins were found in some brain regions. Namely, there was a decrease in neurons positive for serpin-A5 in the dorsal motor nucleus, and serpin-A13 expression was reduced in the locus coeruleus and primary motor cortex, while expression of PAR2, trypsin-2 and both serpins was reduced in neurons within the substantia nigra. There was an increased number of microglia that expressed serpin-A5 in the dorsal motor nucleus of vagus and elevated numbers of microglia that expressed serpin-A13 in the substantia nigra of late Parkinson's disease cases. The number of microglia that expressed trypsin-2 increased in primary motor cortex of incidental Lewy body disease cases. Analysis of Parkinson's disease cases alone indicated that serpin-A5 and serpin-A13, and trypsin-2 expression in midbrain and cerebral cortex was different in cases with a high incidence of L-DOPA-induced dyskinesia and psychosis compared to those with low levels of these treatment-induced side effects. This study showed that there was altered expression in brain of PAR2 and some proteins that can control its function in Parkinson's disease. Given the role of PAR2 in

  20. Opportunistic activation of TRP receptors by endogenous lipids: Exploiting lipidomics to understand TRP receptor cellular communication

    PubMed Central

    Bradshaw, Heather B.; Raboune, Siham; Hollis, Jennifer L.

    2012-01-01

    Transient receptor potential channels (TRPs) form a large family of ubiquitous non-selective cation channels that function as cellular sensors and in many cases regulate intracellular calcium. Identification of the endogenous ligands that activate these TRP receptors is still under intense investigation with the majority of these channels still remaining “orphans”. That these channels respond to a variety of external stimuli (e.g. plant-derived lipids, changes in temperature, and changes in pH) provides a framework for their abilities as cellular sensors, however, the mechanism of direct activation is still under much debate and research. In the cases where endogenous ligands (predominately lipids) have shown direct activation of a channel, multiple ligands have been shown to activate the same channel suggesting that these receptors are “promiscuous” in nature. Lipidomics of a growing class of endogenous lipids, N-acyl amides, the most famous of which is N-arachidonoyl ethanolamine (the endogenous cannabinoid, Anandamide) is providing a novel set of ligands that have been shown to activate some members of the TRP family and have the potential to deorphanize many more. Here it is argued that activation of TRPV receptors, a subset of the larger family of TRPs, by multiple endogenous lipids that are structurally analogous is a model system to drive our understanding that many TRP receptors are not promiscuous, but are more characteristically “opportunistic” in nature; exploiting the structural similarity and biosynthesis of a narrow range of analogous endogenous lipids. In addition, this manuscript will compare the activation properties of TRPC5 to the activity profile of an “orphan” lipid, N-palmitoyl glycine; further demonstrating that lipidomics aimed at expanding our knowledge of the family of N-acyl amides has the potential to provide novel avenues of research for TRP receptors. PMID:23178153

  1. Flavonoids as dietary regulators of nuclear receptor activity

    PubMed Central

    Avior, Yishai; Bomze, David; Ramon, Ory

    2013-01-01

    Metabolic diseases such as obesity, type II diabetes, and dyslipidemia are a rising cause of mortality worldwide. The progression of many metabolic diseases is fundamentally regulated on the transcriptional level by a family of ligand-activated transcription factors, called nuclear receptors, which detect and respond to metabolic changes. Their role in maintaining metabolic homeostasis makes nuclear receptors an important pharmaceutical and dietary target. This review will present the growing evidence that flavonoids, natural secondary plant metabolites, are important regulators of nuclear receptor activity. Structural similarities between flavonoids and cholesterol derivatives combined with the promiscuous nature of most nuclear receptors provide a wealth of possibilities for pharmaceutical and dietary modulation of metabolism. While the challenges of bringing flavonoid-derived therapeutics to the market are significant, we consider this rapidly growing field to be an essential aspect of the functional food initiative and an important mine for pharmaceutical compounds. PMID:23598551

  2. Ligands for the Nuclear Peroxisome Proliferator-Activated Receptor Gamma.

    PubMed

    Sauer, Sascha

    2015-10-01

    Nuclear receptors are ligand-activated transcription factors, which represent a primary class of drug targets. The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) is a key player in various biological processes. PPARγ is widely known as the target protein of the thiazolidinediones for treating type 2 diabetes. Moreover, PPARγ ligands can induce anti-inflammatory and potentially additional beneficial effects. Recent mechanistic insights of PPARγ modulation give hope the next generation of efficient PPARγ-based drugs with fewer side effects can be developed. Furthermore, chemical approaches that make use of synergistic action of combinatorial ligands are promising alternatives for providing tailored medicine. Lessons learned from fine-tuning the action of PPARγ can provide avenues for efficient molecular intervention via many other nuclear receptors to combat common diseases. PMID:26435213

  3. Prolonged activation of NMDA receptors promotes dephosphorylation and alters postendocytic sorting of GABAB receptors

    PubMed Central

    Terunuma, Miho; Vargas, Karina J.; Wilkins, Megan E.; Ramírez, Omar A.; Jaureguiberry-Bravo, Matías; Pangalos, Menelas N.; Smart, Trevor G.; Moss, Stephen J.; Couve, Andrés

    2010-01-01

    Slow and persistent synaptic inhibition is mediated by metabotropic GABAB receptors (GABABRs). GABABRs are responsible for the modulation of neurotransmitter release from presynaptic terminals and for hyperpolarization at postsynaptic sites. Postsynaptic GABABRs are predominantly found on dendritic spines, adjacent to excitatory synapses, but the control of their plasma membrane availability is still controversial. Here, we explore the role of glutamate receptor activation in regulating the function and surface availability of GABABRs in central neurons. We demonstrate that prolonged activation of NMDA receptors (NMDA-Rs) leads to endocytosis, a diversion from a recycling route, and subsequent lysosomal degradation of GABABRs. These sorting events are paralleled by a reduction in GABABR-dependent activation of inwardly rectifying K+ channel currents. Postendocytic sorting is critically dependent on phosphorylation of serine 783 (S783) within the GABABR2 subunit, an established substrate of AMP-dependent protein kinase (AMPK). NMDA-R activation leads to a rapid increase in phosphorylation of S783, followed by a slower dephosphorylation, which results from the activity of AMPK and protein phosphatase 2A, respectively. Agonist activation of GABABRs counters the effects of NMDA. Thus, NMDA-R activation alters the phosphorylation state of S783 and acts as a molecular switch to decrease the abundance of GABABRs at the neuronal plasma membrane. Such a mechanism may be of significance during synaptic plasticity or pathological conditions, such as ischemia or epilepsy, which lead to prolonged activation of glutamate receptors. PMID:20643948

  4. Preclinical evaluation of a urokinase plasminogen activator receptor-targeted nanoprobe in rhesus monkeys

    PubMed Central

    Chen, Yushu; Gong, Li; Gao, Ning; Liao, Jichun; Sun, Jiayu; Wang, Yuqing; Wang, Lei; Zhu, Pengjin; Fan, Qing; Wang, Yongqiang Andrew; Zeng, Wen; Mao, Hui; Yang, Lily; Gao, Fabao

    2015-01-01

    Purpose To translate a recombinant peptide containing the amino-terminal fragment (ATF) of urokinase plasminogen activator receptor-targeted magnetic iron oxide (IO) nanoparticles (uPAR-targeted human ATF-IONPs) into clinical applications, we conducted a pilot study to evaluate the toxicity and pharmacokinetics of this nanoparticle in normal rhesus monkeys. Methods We assessed the changes in the following: magnetic resonance imaging (MRI) signals from pretreatment stage to 14 days posttreatment, serum iron concentrations from 5 minutes posttreatment to 12 weeks posttreatment, routine blood examination and serum chemistry analysis results from pretreatment stage to 12 weeks after administration, and results of staining of the liver with Perls’ Prussian Blue and hematoxylin–eosin at 24 hours and 3 months posttreatment in two rhesus monkeys following an intravenous administration of the targeted nanoparticles either with a polyethylene glycol (ATF-PEG-IONP) or without a PEG (ATF-IONP) coating. Results The levels of alkaline phosphatase, alanine transaminase, and direct bilirubin in the two monkeys increased immediately after the administration of the IONPs but returned to normal within 20 days and stayed within the normal reference range 3 months after the injection. The creatinine levels of the two monkeys stayed within the normal range during the study. In addition, red blood cells, white blood cells, hemoglobin level, and platelets remained normal during the 3 months of the study. Conclusion All of the results suggest that a transient injury in terms of normal organ functions, but no microscopic necrotic lesions, was observed at a systemic delivery dose of 5 mg/kg of iron equivalent concentration in the acute phase, and that no chronic toxicity was found 3 months after the injection. Therefore, we conclude that uPAR-targeted IONPs have the potential to be used as receptor-targeted MRI contrasts as well as theranostic agents for the detection and treatment of

  5. Involvement of mast cells and proteinase-activated receptor 2 in oxaliplatin-induced mechanical allodynia in mice.

    PubMed

    Sakamoto, Ayumi; Andoh, Tsugunobu; Kuraishi, Yasushi

    2016-03-01

    The chemotherapeutic agent oxaliplatin induces neuropathic pain, a dose-limiting side effect, but the underlying mechanisms are not fully understood. Here, we show the potential involvement of cutaneous mast cells in oxaliplatin-induced mechanical allodynia in mice. A single intraperitoneal injection of oxaliplatin induced mechanical allodynia, which peaked on day 10 after injection. Oxaliplatin-induced mechanical allodynia was almost completely prevented by congenital mast cell deficiency. The numbers of total and degranulated mast cells was significantly increased in the skin after oxaliplatin administration. Repetitive topical application of the mast cell stabilizer azelastine hydrochloride inhibited mechanical allodynia and the degranulation of mast cells without affecting the number of mast cells in oxaliplatin-treated mice. The serine protease inhibitor camostat mesilate and the proteinase-activated receptor 2 (PAR2) antagonist FSLLRY-NH2 significantly inhibited oxaliplatin-induced mechanical allodynia. However, it was not inhibited by the H1 histamine receptor antagonist terfenadine. Single oxaliplatin administration increased the activity of cutaneous serine proteases, which was attenuated by camostat and mast cell deficiency. Depletion of the capsaicin-sensitive primary afferents by neonatal capsaicin treatment almost completely prevented oxaliplatin-induced mechanical allodynia, the increase in the number of mast cells, and the activity of cutaneous serine proteases. These results suggest that serine protease(s) released from mast cells and PAR2 are involved in oxaliplatin-induced mechanical allodynia. Therefore, oxaliplatin may indirectly affect the functions of mast cells through its action on capsaicin-sensitive primary afferents. PMID:26804251

  6. Involvement of nitric oxide synthase in matrix metalloproteinase-9- and/or urokinase plasminogen activator receptor-mediated glioma cell migration

    PubMed Central

    2013-01-01

    Background Src tyrosine kinase activates inducible nitric oxide synthase (iNOS) and, in turn, nitric oxide production as a means to transduce cell migration. Src tyrosine kinase plays a key proximal role to control α9β1 signaling. Our recent studies have clearly demonstrated the role of α9β1 integrin in matrix metalloproteinase-9 (MMP-9) and/or urokinase plasminogen activator receptor (uPAR)-mediated glioma cell migration. In the present study, we evaluated the involvement of α9β1 integrin-iNOS pathway in MMP-9- and/or uPAR-mediated glioma cell migration. Methods MMP-9 and uPAR shRNAs and overexpressing plasmids were used to downregulate and upregulate these molecules, respectively in U251 glioma cells and 5310 glioma xenograft cells. The effect of treatments on migration and invasion potential of these glioma cells were assessed by spheroid migration, wound healing, and Matrigel invasion assays. In order to attain the other objectives we also performed immunocytochemical, immunohistochemical, RT-PCR, Western blot and fluorescence-activated cell sorting (FACS) analysis. Results Immunohistochemical analysis revealed the prominent association of iNOS with glioblastoma multiforme (GBM). Immunofluorescence analysis showed prominent expression of iNOS in glioma cells. MMP-9 and/or uPAR knockdown by respective shRNAs reduced iNOS expression in these glioma cells. RT-PCR analysis revealed elevated iNOS mRNA expression in either MMP-9 or uPAR overexpressed glioma cells. The migration potential of MMP-9- and/or uPAR-overexpressed U251 glioma cells was significantly inhibited after treatment with L-NAME, an inhibitor of iNOS. Similarly, a significant inhibition of the invasion potential of the control or MMP-9/uPAR-overexpressed glioma cells was noticed after L-NAME treatment. A prominent reduction of iNOS expression was observed in the tumor regions of nude mice brains, which were injected with 5310 glioma cells, after MMP-9 and/or uPAR knockdown. Protein expressions

  7. Diallylsulfide attenuates excessive collagen production and apoptosis in a rat model of bleomycin induced pulmonary fibrosis through the involvement of protease activated receptor-2.

    PubMed

    Kalayarasan, Srinivasan; Sriram, Narayanan; Soumyakrishnan, Syamala; Sudhandiran, Ganapasam

    2013-09-01

    Pulmonary fibrosis (PF) can be a devastating lung disease. It is primarily caused by inflammation leading to severe damage of the alveolar epithelial cells. The pathophysiology of PF is not yet been clearly defined, but studying lung parenchymal injury by involving reactive oxygen species (ROS) through the activation of protease activated receptor-2 (PAR-2) may provide promising results. PAR-2 is a G-protein coupled receptor is known to play an important role in the development of PF. In this study, we investigated the inhibitory role of diallylsulfide (DAS) against ROS mediated activation of PAR-2 and collagen production accompanied by epithelial cell apoptosis. Bleomycin induced ROS levels may prompt to induce the expression of PAR-2 as well as extracellular matrix proteins (ECM), such as MMP 2 and 9, collagen specific proteins HSP-47, α-SMA, and cytokines IL-6, and IL-8RA. Importantly DAS treatment effectively decreased the expression of all these proteins. The inhibitory effect of DAS on profibrotic molecules is mediated by blocking the ROS level. To identify apoptotic signaling as a mediator of PF induction, we performed apoptotic protein expression, DNA fragmentation analysis and ultrastructural details of the lung tissue were performed. DAS treatment restored all these changes to near normalcy. In conclusion, treatment of PF bearing rats with DAS results in amelioration of the ROS production, PAR-2 activation, ECM production, collagen synthesis and alveolar epithelial cell apoptosis during bleomycin induction. We attained the first evidence that treatment of DAS decreases the ROS levels and may provide a potential therapeutic effect attenuating bleomycin induced PF. PMID:23656969

  8. Structural mechanism of glutamate receptor activation and desensitization.

    PubMed

    Meyerson, Joel R; Kumar, Janesh; Chittori, Sagar; Rao, Prashant; Pierson, Jason; Bartesaghi, Alberto; Mayer, Mark L; Subramaniam, Sriram

    2014-10-16

    Ionotropic glutamate receptors are ligand-gated ion channels that mediate excitatory synaptic transmission in the vertebrate brain. To gain a better understanding of how structural changes gate ion flux across the membrane, we trapped rat AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) and kainate receptor subtypes in their major functional states and analysed the resulting structures using cryo-electron microscopy. We show that transition to the active state involves a 'corkscrew' motion of the receptor assembly, driven by closure of the ligand-binding domain. Desensitization is accompanied by disruption of the amino-terminal domain tetramer in AMPA, but not kainate, receptors with a two-fold to four-fold symmetry transition in the ligand-binding domains in both subtypes. The 7.6 Å structure of a desensitized kainate receptor shows how these changes accommodate channel closing. These findings integrate previous physiological, biochemical and structural analyses of glutamate receptors and provide a molecular explanation for key steps in receptor gating. PMID:25119039

  9. Redefining the concept of protease-activated receptors: cathepsin S evokes itch via activation of Mrgprs

    PubMed Central

    Reddy, Vemuri B.; Sun, Shuohao; Azimi, Ehsan; Elmariah, Sarina B.; Dong, Xinzhong; Lerner, Ethan A.

    2015-01-01

    Sensory neurons expressing Mas-related G protein coupled receptors (Mrgprs) mediate histamine-independent itch. We show that the cysteine protease cathepsin S activates MrgprC11 and evokes receptor-dependent scratching in mice. In contrast to its activation of conventional protease-activated receptors, cathepsin S mediated activation of MrgprC11 did not involve the generation of a tethered ligand. We demonstrate further that different cysteine proteases selectively activate specific mouse and human Mrgpr family members. This expansion of our understanding by which proteases interact with GPCRs redefines the concept of what constitutes a protease-activated receptor. The findings also implicate proteases as ligands to members of this orphan receptor family while providing new insights into how cysteine proteases contribute to itch. PMID:26216096

  10. Dissecting Mannose 6-Phosphate-Insulin-like Growth Factor 2 Receptor Complexes That Control Activation and Uptake of Plasminogen in Cells*

    PubMed Central

    Leksa, Vladimir; Pfisterer, Karin; Ondrovičová, Gabriela; Binder, Brigitte; Lakatošová, Silvia; Donner, Clemens; Schiller, Herbert B.; Zwirzitz, Alexander; Mrvová, Katarína; Pevala, Vladimir; Kutejová, Eva; Stockinger, Hannes

    2012-01-01

    The plasminogen (Plg) activation cascade on the cell surface plays a central role in cell migration and is involved in a plethora of physiological and pathological processes. Its regulation is coordinated by many receptors, in particular the urokinase-type plasminogen activator receptor (uPAR, CD87), receptors that physically interact and functionally cooperate with uPAR, and Plg binding molecules. Here we studied the impact of one of the Plg binding molecules, the mannose 6-phosphate/insulin-like growth factor 2 receptor (M6P-IGF2R, CD222), on cellular Plg activation. By developing both in vitro and in vivo Plg activation assays on size-fractionated lysates of M6P-IGF2R-silenced cells, we identified Plg-associated complexes with M6P-IGF2R as the regulatory factor. Using lipid raft preserving versus dissolving detergents, we found lipid dependence of the Plg regulatory function of these complexes. Furthermore, M6P-IGF2R-silencing in uPAR-positive human cell lines reduced internalization of Plg, resulting in elevated Plg activation. In contrast, the expression of human M6P-IGF2R in mouse embryonic fibroblasts derived from M6P-IGF2R knock-out mice enhanced Plg internalization. Finally, peptide 18–36 derived from the Plg-binding site within M6P-IGF2R enhanced Plg uptake. Thus, by targeting Plg to endocytic pathways, M6P-IGF2R appears to control Plg activation within cells that might be important to restrict plasmin activity to specific sites and substrates. PMID:22613725

  11. Interfering with mineralocorticoid receptor activation: the past, present, and future

    PubMed Central

    2014-01-01

    Aldosterone is a potent mineralocorticoid produced by the adrenal gland. Aldosterone binds to and activates the mineralocorticoid receptor (MR) in a plethora of tissues, but the cardiovascular actions of aldosterone are of primary interest clinically. Although MR antagonists were developed as antihypertensive agents, they are now considered to be important therapeutic options for patients with heart failure. Specifically, blocking only the MR has proven to be a difficult task because of its similarity to other steroid receptors, including the androgen and progesterone receptors. This lack of specificity caused the use of the first-generation mineralocorticoid receptor antagonists to be fraught with difficulty because of the side effects produced by drug administration. However, in recent years, several advances have been made that could potentially increase the clinical use of agents that inhibit the actions of aldosterone. These will be discussed here along with some examples of the beneficial effects of these new therapeutic agents. PMID:25165560

  12. Regulation of Proteome Maintenance Gene Expression by Activators of Peroxisome Proliferator-Activated Receptor a (PPARa)

    EPA Science Inventory

    The nuclear receptor peroxisome proliferator-activated receptor alpha (PPARa) is activated by a large number of xenobiotic and hypolipidemic compounds called peroxisome proliferator chemicals (PPC). One agonist of PPARa (WY-14,643) regulates responses in the mouse liver to chemic...

  13. Influence of resting tension on protease-activated receptor-mediated relaxation in guinea-pig tracheas.

    PubMed

    Franchi-Micheli, Sergio; Mazzetti, Luca; Cantore, Mirian; Ciuffi, Mario; Zilletti, Lucilla; Failli, Paola

    2005-01-01

    We investigate the role of resting tension on thrombin (THR) induced relaxation of guinea-pig tracheas precontracted with acetylcholine (ACh). Isometric contractions of isolated guinea-pig tracheas were recorded at 4 and 6 g resting tension; and ACh dose-response curves were performed. THR relaxed ACh-precontracted tracheas and this effect was mimicked by the type 2 protease activating receptor agonist peptide (PAR-2 AP) and trypsin. The relaxant effect of 3 U ml(-1) THR and 100 nmol ml(-1) PAR-2 AP was prevented at 4 g by preincubation with the nitric oxide synthase (NOS) inhibitor l-NAME and at 6g resting tension by ibuprofen and diclofenac. However, adenosine trisphospahate (ATP) relaxation was totally prevented by cyclooxygenase (COX) inhibitors but not by NOS inhibitors at both resting tensions. Resting tension influenced the effect of PGE2 on contractile tone of isolated guinea-pig tracheas, the maximal relaxation being -11.1+/-2.97 and -2.0+/-0.4 6 mg mg(-1) tissue wet weight at 6 and 4 g, respectively. Moreover, 30 nmol ml(-1) PGE2 can relax ACh-precontracted tracheas, being the effect up to 91 and 30% at 6 and 4 g, respectively. These data demonstrate that trachea responsiveness is highly dependent on the smooth muscle length, revealing new aspects of stretch-activated receptors that can influence trachea responsiveness in vivo. PMID:15649856

  14. Mechanisms of Activation of Receptor Tyrosine Kinases: Monomers or Dimers

    PubMed Central

    Maruyama, Ichiro N.

    2014-01-01

    Receptor tyrosine kinases (RTKs) play essential roles in cellular processes, including metabolism, cell-cycle control, survival, proliferation, motility and differentiation. RTKs are all synthesized as single-pass transmembrane proteins and bind polypeptide ligands, mainly growth factors. It has long been thought that all RTKs, except for the insulin receptor (IR) family, are activated by ligand-induced dimerization of the receptors. An increasing number of diverse studies, however, indicate that RTKs, previously thought to exist as monomers, are present as pre-formed, yet inactive, dimers prior to ligand binding. The non-covalently associated dimeric structures are reminiscent of those of the IR family, which has a disulfide-linked dimeric structure. Furthermore, recent progress in structural studies has provided insight into the underpinnings of conformational changes during the activation of RTKs. In this review, I discuss two mutually exclusive models for the mechanisms of activation of the epidermal growth factor receptor, the neurotrophin receptor and IR families, based on these new insights. PMID:24758840

  15. Biologic activity of antigen receptors artificially incorporated onto B lymphocytes.

    PubMed

    Peacock, J S; Londo, T R; Roess, D A; Barisas, B G

    1986-09-15

    We describe a method for incorporating monoclonal antibody molecules onto viable murine lymphocytes and summarize the biologic activity of these artificial receptors on B cells. Mouse spleen cells incubated overnight with palmitate conjugates of a monoclonal anti-DNP IgA (protein 315) in the presence of deoxycholic acid incorporate about 50,000 antibody molecules per cell. When concentrations of deoxycholate and palmitoyl-protein 315 are carefully controlled, this labeling procedure does not affect the viability or the normal functions of the receptor-decorated cells. The incorporated antibody specifically binds DNP-antigens, although it appears to be unable to communicate directly with internal cellular components. Yet when these receptor-decorated, unprimed cells are challenged with any one of several DNP-antigens, up to 42,000 per 10(6) B cells differentiate into Ig-secreting cells. This response is about 23-fold greater than that induced in normal cell cultures and is of the same magnitude as that induced by the polyclonal B cell activator LPS. This, in addition to the observation that only about 3.6% of receptor-decorated B cells responding to DNP-conjugated polymerized flagellin (DNP-POL) produce hapten-specific antibody, demonstrates that these antigens cause polyclonal B cell differentiation. Normal spleen cells in the presence of DNP-POL and irradiated spleen cells bearing the artificial receptors do not exhibit the polyclonal antibody response. Also, the response of receptor-decorated B cell is blocked by high but nontoxic concentrations of the nonimmunogenic hapten DNP-lysine. These observations demonstrate that the polyclonal B cell response in this system requires the binding of antigen to artificial receptors on functionally viable cells. The polyclonal B cell response to a thymus-dependent antigen DNP-conjugated bovine gamma-globulin (DNP-BGG) requires the presence of the carrier-primed T cells. On the other hand, T cell depletion by anti-Thy-1

  16. Directed and persistent movement arises from mechanochemistry of the ParA/ParB system

    NASA Astrophysics Data System (ADS)

    Hu, Longhua; Vecchiarelli, Anthony G.; Mizuuchi, Kiyoshi; Neuman, Keir C.; Liu, Jian

    The segregation of DNA prior to cell division is essential for faithful genetic inheritance. In many bacteria, segregation of the low-copy-number plasmids involves an active partition system composed of ParA ATPase and its stimulator protein ParB. Recent experiments suggest that ParA/ParB system motility is driven by a diffusion-ratchet mechanism in which ParB-coated plasmid both creates and follows a ParA gradient on the nucleoid surface. However, the detailed mechanism of ParA/ParB-mediated directed and persistent movement remains unknown. We develop a theoretical model describing ParA/ParB-mediated motility. We show that the ParA/ParB system can work as a Brownian ratchet, which effectively couples the ATPase-dependent cycling of ParA-nucleoid affinity to the motion of the ParB bound cargo. Paradoxically, the resulting processive motion relies on quenching diffusive plasmid motion through a large number of transient ParA/ParB-mediated tethers to the nucleoid surface. Our work sheds light on a new emergent phenomenon in which non-motor proteins work collectively via mechanochemical coupling to propel cargos -- an ingenious solution shaped by evolution to cope with the lack of processive motor proteins in bacteria.

  17. Liver X Receptor and Peroxisome Proliferator-Activated Receptor Agonist from Cornus alternifolia

    PubMed Central

    He, Yang-Qing; Ma, Guo-Yi; Peng, Jiang-nan; Ma, Zhan-Ying; Hamann, Mark T.

    2012-01-01

    Background Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear receptors superfamily and are transcription factors activated by specific ligands. Liver X receptors (LXR) belong to the nuclear hormone receptors and have been shown to play an important role in cholesterol homeostasis. From the previous screening of several medicinal plants for potential partial PPARγ agonists, the extracts of Cornus alternifolia were found to exhibit promising bioactivity. In this paper, we report the isolation and structural elucidation of four new compounds and their potential as ligands for PPAR. Methods The new compounds were extracted from the leaves of Cornus alternifolia and fractionated by high-performance liquid chromatography. Their structures were elucidated on the basis of spectroscopic evidence and analysis of their hydrolysis products. Results Three new iridoid glycosides including an iridolactone, alternosides A-C (1–3), a new megastigmane glycoside, cornalternoside (4) and 10 known compounds, were obtained from the leaves of Cornus alternifolia. Kaempferol-3-O-β-glucopyranoside (5) exhibited potent agonistic activities for PPARα, PPARγ and LXR with EC50 values of 0.62, 3.0 and 1.8 μ M, respectively. Conclusions We isolated four new and ten known compounds from Cornus alternifolia, and one known compound showed agonistic activities for PPARα, PPARγ and LXR. General significance Compound 1 is the first example of a naturally occurring iridoid glycoside containing a β-glucopyranoside moiety at C-6. PMID:22353334

  18. Single Amino Acid Substitutions in the Chemotactic Sequence of Urokinase Receptor Modulate Cell Migration and Invasion

    PubMed Central

    Franco, Paola; Pavone, Vincenzo; Mugione, Pietro; Di Carluccio, Gioconda; Masucci, Maria Teresa; Arra, Claudio; Pirozzi, Giuseppe; Stoppelli, Maria Patrizia; Carriero, Maria Vincenza

    2012-01-01

    The receptor for urokinase-type plasminogen activator (uPAR) plays an important role in controlling cell migration. uPAR binds urokinase and vitronectin extracellular ligands, and signals in complex with transmembrane receptors such as Formyl-peptide Receptors (FPR)s and integrins. Previous work from this laboratory has shown that synthetic peptides, corresponding to the uPAR88–92 chemotactic sequence, when carrying the S90P or S90E substitutions, up- or down-regulate cell migration, respectively. To gain mechanistic insights into these opposite cell responses, the functional consequences of S90P and S90E mutations in full-length uPAR were evaluated. First, (HEK)-293 embryonic kidney cells expressing uPARS90P exhibit enhanced FPR activation, increased random and directional cell migration, long-lasting Akt phosphorylation, and increased adhesion to vitronectin, as well as uPAR/vitronectin receptor association. In contrast, the S90E substitution prevents agonist-triggered FPR activation and internalization, decreases binding and adhesion to vitronectin, and inhibits uPAR/vitronectin receptor association. Also, 293/uPARS90P cells appear quite elongated and their cytoskeleton well organized, whereas 293/uPARS90E cells assume a large flattened morphology, with random orientation of actin filaments. Interestingly, when HT1080 cells co-express wild type uPAR with uPAR S90E, the latter behaves as a dominant-negative, impairing uPAR-mediated signaling and reducing cell wound repair as well as lung metastasis in nude mice. In contrast, signaling, wound repair and in vivo lung metastasis of HT1080 cells bearing wild type uPAR are enhanced when they co-express uPARS90P. In conclusion, our findings indicate that Ser90 is a critical residue for uPAR signaling and that the S90P and S90E exert opposite effects on uPAR activities. These findings may be accommodated in a molecular model, in which uPARS90E and uPARS90P are forced into inactive and active forms, respectively

  19. A Phytochrome Sensory Domain Permits Receptor Activation by Red Light.

    PubMed

    Reichhart, Eva; Ingles-Prieto, Alvaro; Tichy, Alexandra-Madelaine; McKenzie, Catherine; Janovjak, Harald

    2016-05-17

    Optogenetics and photopharmacology enable the spatio-temporal control of cell and animal behavior by light. Although red light offers deep-tissue penetration and minimal phototoxicity, very few red-light-sensitive optogenetic methods are currently available. We have now developed a red-light-induced homodimerization domain. We first showed that an optimized sensory domain of the cyanobacterial phytochrome 1 can be expressed robustly and without cytotoxicity in human cells. We then applied this domain to induce the dimerization of two receptor tyrosine kinases-the fibroblast growth factor receptor 1 and the neurotrophin receptor trkB. This new optogenetic method was then used to activate the MAPK/ERK pathway non-invasively in mammalian tissue and in multicolor cell-signaling experiments. The light-controlled dimerizer and red-light-activated receptor tyrosine kinases will prove useful to regulate a variety of cellular processes with light. PMID:27101018

  20. Structural basis for selective activation of ABA receptors

    SciTech Connect

    Peterson, Francis C.; Burgie, E. Sethe; Park, Sang-Youl; Jensen, Davin R.; Weiner, Joshua J.; Bingman, Craig A.; Chang, Chia-En A.; Cutler, Sean R.; Phillips, Jr., George N.; Volkman, Brian F.

    2010-11-01

    Changing environmental conditions and lessening fresh water supplies have sparked intense interest in understanding and manipulating abscisic acid (ABA) signaling, which controls adaptive responses to drought and other abiotic stressors. We recently discovered a selective ABA agonist, pyrabactin, and used it to discover its primary target PYR1, the founding member of the PYR/PYL family of soluble ABA receptors. To understand pyrabactin's selectivity, we have taken a combined structural, chemical and genetic approach. We show that subtle differences between receptor binding pockets control ligand orientation between productive and nonproductive modes. Nonproductive binding occurs without gate closure and prevents receptor activation. Observations in solution show that these orientations are in rapid equilibrium that can be shifted by mutations to control maximal agonist activity. Our results provide a robust framework for the design of new agonists and reveal a new mechanism for agonist selectivity.

  1. Novel positive allosteric modulators of GABAA receptors with anesthetic activity

    PubMed Central

    Maldifassi, Maria C.; Baur, Roland; Pierce, David; Nourmahnad, Anahita; Forman, Stuart A.; Sigel, Erwin

    2016-01-01

    GABAA receptors are the main inhibitory neurotransmitter receptors in the brain and are targets for numerous clinically important drugs such as benzodiazepines, anxiolytics and anesthetics. We previously identified novel ligands of the classical benzodiazepine binding pocket in α1β2γ2 GABAA receptors using an experiment-guided virtual screening (EGVS) method. This screen also identified novel ligands for intramembrane low affinity diazepam site(s). In the current study we have further characterized compounds 31 and 132 identified with EGVS as well as 4-O-methylhonokiol. We investigated the site of action of these compounds in α1β2γ2 GABAA receptors expressed in Xenopus laevis oocytes using voltage-clamp electrophysiology combined with a benzodiazepine site antagonist and transmembrane domain mutations. All three compounds act mainly through the two β+/α− subunit transmembrane interfaces of the GABAA receptors. We then used concatenated receptors to dissect the involvement of individual β+/α− interfaces. We further demonstrated that these compounds have anesthetic activity in a small aquatic animal model, Xenopus laevis tadpoles. The newly identified compounds may serve as scaffolds for the development of novel anesthetics. PMID:27198062

  2. Endocannabinoid tone versus constitutive activity of cannabinoid receptors

    PubMed Central

    Howlett, Allyn C; Reggio, Patricia H; Childers, Steven R; Hampson, Robert E; Ulloa, Nadine M; Deutsch, Dale G

    2011-01-01

    This review evaluates the cellular mechanisms of constitutive activity of the cannabinoid (CB) receptors, its reversal by inverse agonists, and discusses the pitfalls and problems in the interpretation of the research data. The notion is presented that endogenously produced anandamide (AEA) and 2-arachidonoylglycerol (2-AG) serve as autocrine or paracrine stimulators of the CB receptors, giving the appearance of constitutive activity. It is proposed that one cannot interpret inverse agonist studies without inference to the receptors' environment vis-à-vis the endocannabinoid agonists which themselves are highly lipophilic compounds with a preference for membranes. The endocannabinoid tone is governed by a combination of synthetic pathways and inactivation involving transport and degradation. The synthesis and degradation of 2-AG is well characterized, and 2-AG has been strongly implicated in retrograde signalling in neurons. Data implicating endocannabinoids in paracrine regulation have been described. Endocannabinoid ligands can traverse the cell's interior and potentially be stored on fatty acid-binding proteins (FABPs). Molecular modelling predicts that the endocannabinoids derived from membrane phospholipids can laterally diffuse to enter the CB receptor from the lipid bilayer. Considering that endocannabinoid signalling to CB receptors is a much more likely scenario than is receptor activation in the absence of agonist ligands, researchers are advised to refrain from assuming constitutive activity except for experimental models known to be devoid of endocannabinoid ligands. LINKED ARTICLES This article is part of a themed issue on Cannabinoids in Biology and Medicine. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2011.163.issue-7 PMID:21545414

  3. Peroxisome proliferator-activated receptors in the cardiovascular system

    PubMed Central

    Bishop-Bailey, David

    2000-01-01

    Peroxisome proliferator-activated receptor (PPAR)s are a family of three nuclear hormone receptors, PPARα, -δ, and -γ, which are members of the steriod receptor superfamily. The first member of the family (PPARα) was originally discovered as the mediator by which a number of xenobiotic drugs cause peroxisome proliferation in the liver. Defined functions for all these receptors, until recently, mainly concerned their ability to regulate energy balance, with PPARα being involved in β-oxidation pathways, and PPARγ in the differentiation of adipocytes. Little is known about the functions of PPARδ, though it is the most ubiquitously expressed. Since their discovery, PPARs have been shown to be expressed in monocytes/macrophages, the heart, vascular smooth muscle cells, endothelial cells, and in atherosclerotic lesions. Furthermore, PPARs can be activated by a vast number of compounds including synthetic drugs, of the clofibrate, and anti-diabetic thiazoldinedione classes, polyunsaturated fatty acids, and a number of eicosanoids, including prostaglandins, lipoxygenase products, and oxidized low density lipoprotein. This review will aim to introduce the field of PPAR nuclear hormone receptors, and discuss the discovery and actions of PPARs in the cardiovascular system, as well as the source of potential ligands. PMID:10696077

  4. Interaction of the C-terminal acidic domain of the insulin receptor with histone modulates the receptor kinase activity.

    PubMed

    Baron, V; Kaliman, P; Alengrin, F; Van Obberghen, E

    1995-04-01

    In this study, we investigated the role of the insulin receptor domain 1270-1280, an acid-rich sequence located in the receptor C-terminus. Antipeptide IgG raised against this sequence were obtained and used to analyze their effect on receptor function. Antipeptide IgG inhibited receptor autophosphorylation at Tyr1146, Tyr1150 and Tyr1151. These sites are known to be key modulators of the receptor activity. Autophosphorylation at other sites may also have been inhibited. The antipeptide antibody decreased the receptor kinase activity measured with poly(Glu80Tyr20) and a synthetic peptide corresponding to the proreceptor sequence 1142-1158. We provide evidence that the effect of the antibody on substrate phosphorylation may result from the control of the phosphorylation level of the receptor. Concerning the action of the antipeptide IgG on the receptor kinase activity, histone did not behave similarly to poly(Glu80Tyr20). The antibody recognizing sequence 1270-1280 competed with histone for an overlapping binding site. Histone also modulated insulin receptor autophosphorylation, supporting the idea that interference with domain 1270-1280 alters the receptor kinase. Our data suggest that the acidic region including residues 1270-1280 of the insulin receptor C-terminus is involved in the following events: (a) receptor binding with histone, an exogenous substrate of the receptor kinase, and (b) the regulation of receptor autophosphorylation and kinase activity. Based on these observations, we would like to propose that this insulin receptor domain could interact with cellular proteins modulating the receptor kinase. PMID:7744039

  5. OX1 orexin/hypocretin receptor activation of phospholipase D

    PubMed Central

    Jäntti, MH; Putula, J; Somerharju, P; Frohman, MA; Kukkonen, JP

    2012-01-01

    BACKGROUND AND PURPOSE Orexin receptors potently signal to lipid messenger systems, and our previous studies have suggested that PLD would be one of these. We thus wanted to verify this by direct measurements and clarify the molecular mechanism of the coupling. EXPERIMENTAL APPROACH Orexin receptor-mediated PLD activation was investigated in CHO cells stably expressing human OX1 orexin receptors using [14C]-oleic acid-prelabelling and the transphosphatidylation assay. KEY RESULTS Orexin stimulation strongly increased PLD activity – even more so than the phorbol ester TPA (12-O-tetradecanoyl-phorbol-13-acetate), a highly potent activator of PLD. Both orexin and TPA responses were mediated by PLD1. Orexin-A and -B showed approximately 10-fold difference in potency, and the concentration–response curves were biphasic. Using pharmacological inhibitors and activators, both orexin and TPA were shown to signal to PLD1 via the novel PKC isoform, PKCδ. In contrast, pharmacological or molecular biological inhibitors of Rho family proteins RhoA/B/C, cdc42 and Rac did not inhibit the orexin (or the TPA) response, nor did the molecular biological inhibitors of PKD. In addition, neither cAMP elevation, Gαi/o nor Gβγ seemed to play an important role in the orexin response. CONCLUSIONS AND IMPLICATIONS Stimulation of OX1 receptors potently activates PLD (probably PLD1) in CHO cells and this is mediated by PKCδ but not other PKC isoforms, PKDs or Rho family G-proteins. At present, the physiological significance of orexin-induced PLD activation is unknown, but this is not the first time we have identified PKCδ in orexin signalling, and thus some specific signalling cascade may exist between orexin receptors and PKCδ. PMID:21718304

  6. Covalent agonists for studying G protein-coupled receptor activation

    PubMed Central

    Weichert, Dietmar; Kruse, Andrew C.; Manglik, Aashish; Hiller, Christine; Zhang, Cheng; Hübner, Harald; Kobilka, Brian K.; Gmeiner, Peter

    2014-01-01

    Structural studies on G protein-coupled receptors (GPCRs) provide important insights into the architecture and function of these important drug targets. However, the crystallization of GPCRs in active states is particularly challenging, requiring the formation of stable and conformationally homogeneous ligand-receptor complexes. Native hormones, neurotransmitters, and synthetic agonists that bind with low affinity are ineffective at stabilizing an active state for crystallogenesis. To promote structural studies on the pharmacologically highly relevant class of aminergic GPCRs, we here present the development of covalently binding molecular tools activating Gs-, Gi-, and Gq-coupled receptors. The covalent agonists are derived from the monoamine neurotransmitters noradrenaline, dopamine, serotonin, and histamine, and they were accessed using a general and versatile synthetic strategy. We demonstrate that the tool compounds presented herein display an efficient covalent binding mode and that the respective covalent ligand-receptor complexes activate G proteins comparable to the natural neurotransmitters. A crystal structure of the β2-adrenoreceptor in complex with a covalent noradrenaline analog and a conformationally selective antibody (nanobody) verified that these agonists can be used to facilitate crystallogenesis. PMID:25006259

  7. The cardiovascular effects of peroxisome proliferator-activated receptor agonists.

    PubMed

    Friedland, Sayuri N; Leong, Aaron; Filion, Kristian B; Genest, Jacques; Lega, Iliana C; Mottillo, Salvatore; Poirier, Paul; Reoch, Jennifer; Eisenberg, Mark J

    2012-02-01

    Although peroxisome proliferator-activated receptor agonists are prescribed to improve cardiovascular risk factors, their cardiovascular safety is controversial. We therefore reviewed the literature to identify landmark randomized controlled trials evaluating the effect of peroxisome proliferator-activated receptor gamma agonists (pioglitazone and rosiglitazone), alpha agonists (fenofibrate and gemfibrozil), and pan agonists (bezafibrate, muraglitazar, ragaglitazar, tesaglitazar, and aleglitazar) on cardiovascular outcomes. Pioglitazone may modestly reduce cardiovascular events but also may increase the risk of bladder cancer. Rosiglitazone increases the risk of myocardial infarction and has been withdrawn in European and restricted in the United States. Fibrates improve cardiovascular outcomes only in select subgroups: fenofibrate in diabetic patients with metabolic syndrome, gemfibrozil in patients with dyslipidemia, and bezafibrate in patients with diabetes or metabolic syndrome. The cardiovascular safety of the new pan agonist aleglitazar, currently in phase II trials, remains to be determined. The heterogenous effects of peroxisome proliferator-activated receptor agonists to date highlight the importance of postmarketing surveillance. The critical question of why peroxisome proliferator-activated receptor agonists seem to improve cardiovascular risk factors without significantly improving cardiovascular outcomes requires further investigation. PMID:22269613

  8. Nuclear Receptor Activity and Liver Cancer Lesion Progression

    EPA Science Inventory

    Nuclear receptors (NRs) are ligand-activated transcription factors that control diverse cellular processes. Chronic stimulation of some NRs is a non-genotoxic mechanism of rodent liver cancer with unclear relevance to humans. We explored this question using human CAR, PXR, PPARα,...

  9. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A

    SciTech Connect

    Sato, Shoko; Shirakawa, Hitoshi; Tomita, Shuhei; Tohkin, Masahiro; Gonzalez, Frank J.; Komai, Michio

    2013-11-15

    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein–protein interactions with GR. - Highlights: • Aryl hydrocarbon receptor forms a complex with glucocorticoid receptor in cells. • Human metallothionein gene is regulated by the AHR and GR interaction. • AHR–GR complex binds to glucocorticoid response element in metallothionein gene. • We demonstrated a novel transcriptional mechanism via AHR and GR interaction.

  10. Lysophosphatidylserine analogues differentially activate three LysoPS receptors.

    PubMed

    Uwamizu, Akiharu; Inoue, Asuka; Suzuki, Kensuke; Okudaira, Michiyo; Shuto, Akira; Shinjo, Yuji; Ishiguro, Jun; Makide, Kumiko; Ikubo, Masaya; Nakamura, Sho; Jung, Sejin; Sayama, Misa; Otani, Yuko; Ohwada, Tomohiko; Aoki, Junken

    2015-03-01

    Lysophosphatidylserine (1-oleoyl-2 R-lysophosphatidylserine, LysoPS) has been shown to have lipid mediator-like actions such as stimulation of mast cell degranulation and suppression of T lymphocyte proliferation, although the mechanisms of LysoPS actions have been elusive. Recently, three G protein-coupled receptors (LPS1/GPR34, LPS2/P2Y10 and LPS3/GPR174) were found to react specifically with LysoPS, raising the possibility that LysoPS serves as a lipid mediator that exerts its role through these receptors. Previously, we chemically synthesized a number of LysoPS analogues and evaluated them as agonists for mast-cell degranulation. Here, we used a transforming growth factor-α (TGFα) shedding assay to see if these LysoPS analogues activated the three LysoPS receptors. Modification of the serine moiety significantly reduced the ability of the analogues to activate the three LysoPS receptors, whereas modification of other parts resulted in loss of activity in receptor-specific manner. We found that introduction of methyl group to serine moiety (1-oleoyl-lysophosphatidylallothreonine) and removal of sn-2 hydroxyl group (1-oleoyl-2-deoxy-LysoPS) resulted in reduction of reactivity with LPS1 and LPS3, respectively. Accordingly, we synthesized a LysoPS analogue with the two modifications (1-oleoyl-2-deoxy-lysophosphatidylallothreonine) and found it to be an LPS2-selective agonist. These pharmacological tools will definitely help to identify the biological roles of these LysoPS receptors. PMID:25320102

  11. Receptor antagonism/agonism can be uncoupled from pharmacoperone activity.

    PubMed

    Janovick, Jo Ann; Spicer, Timothy P; Smith, Emery; Bannister, Thomas D; Kenakin, Terry; Scampavia, Louis; Conn, P Michael

    2016-10-15

    Pharmacoperones rescue misrouted mutants of the vasopressin receptor type 2 (V2R) and enable them to traffic to the correct biological locus where they function. Previously, a library of nearly 645,000 structures was interrogated with a high throughput screen; pharmacoperones were identified for V2R mutants with a view toward correcting the underlying mutational defects in nephrogenic diabetes insipidus. In the present study, an orthologous assay was used to evaluate hits from the earlier study. We found no consistent relation between antagonism or agonism and pharmacoperone activity. Active pharmacoperones were identified which had minimal antagonistic activity. This increases the therapeutic reach of these drugs, since virtually all pharmacoperone drugs reported to date were selected from peptidomimetic antagonists. Such mixed-activity drugs have a complex pharmacology limiting their therapeutic utility and requiring their removal prior to stimulation of the receptor with agonist. PMID:27389877

  12. Mechanisms of NOD-like receptor-associated inflammasome activation.

    PubMed

    Wen, Haitao; Miao, Edward A; Ting, Jenny P-Y

    2013-09-19

    A major function of a subfamily of NLR (nucleotide-binding domain, leucine-rich repeat containing, or NOD-like receptor) proteins is in inflammasome activation, which has been implicated in a multitude of disease models and human diseases. This work will highlight key progress in understanding the mechanisms that activate the best-studied NLRs (NLRP3, NLRC4, NAIP, and NLRP1) and in uncovering inflammasome NLRs. PMID:24054327

  13. Adenosine kinase inhibitors attenuate opiate withdrawal via adenosine receptor activation.

    PubMed

    Kaplan, G B; Coyle, T S

    1998-11-27

    Previous studies have demonstrated a role for adenosine in mediating opiate effects. This study examines the effects of indirect activation of adenosine receptors, via treatment with adenosine kinase inhibitors, on the expression of opiate withdrawal in mice. Mice receive chronic morphine treatment via implantation of subcutaneous morphine pellets (75 mg) for 72 h. Mice then receive parenteral treatment with adenosine kinase inhibitors, either 5'-amino-5'-deoxyadenosine (2, 5, 20, 40 mg/kg, intraperitoneal or i.p.) or iodotubericidin (1, 2, 5 mg/kg, i.p.), followed by naloxone injection and opiate withdrawal signs are measured over 20 min. Both adenosine kinase inhibitors significantly reduce the following opiate withdrawal signs in a dose-dependent manner compared to vehicle: withdrawal jumps, teeth chattering, forepaw tremors, and forepaw treads. Additionally, 5'-amino-5'-deoxyadenosine significantly reduces withdrawal-induced diarrhea and weight loss. Effects of 5'-amino-5'-deoxyadenosine (40 mg/kg) on opiate withdrawal signs appear to be mediated via adenosine receptor activation as they are reversed by pretreatment by adenosine receptor antagonist caffeine (20 mg, i.p.) but not by selective phosphodiesterase inhibitor Ro 20-1724 (10 mg/kg, i.p.). Adenosine receptor activation via adenosine kinase inhibitor treatment attenuates opiate withdrawal and these agents may be generally useful in the treatment of drug withdrawal syndromes. PMID:9865523

  14. Receptor Activity-Modifying Proteins (RAMPs): New Insights and Roles.

    PubMed

    Hay, Debbie L; Pioszak, Augen A

    2016-01-01

    It is now recognized that G protein-coupled receptors (GPCRs), once considered largely independent functional units, have a far more diverse molecular architecture. Receptor activity-modifying proteins (RAMPs) provide an important example of proteins that interact with GPCRs to modify their function. RAMPs are able to act as pharmacological switches and chaperones, and they can regulate signaling and/or trafficking in a receptor-dependent manner. This review covers recent discoveries in the RAMP field and summarizes the known GPCR partners and functions of RAMPs. We also discuss the first peptide-bound structures of RAMP-GPCR complexes, which give insight into the molecular mechanisms that enable RAMPs to alter the pharmacology and signaling of GPCRs. PMID:26514202

  15. Protein Phosphatase 2A (PP2A) Regulatory Subunits ParA and PabA Orchestrate Septation and Conidiation and Are Essential for PP2A Activity in Aspergillus nidulans

    PubMed Central

    Zhong, Guo-wei; Jiang, Ping; Qiao, Wei-ran; Zhang, Yuan-wei; Wei, Wen-fan

    2014-01-01

    Protein phosphatase 2A (PP2A) is a major intracellular protein phosphatase that regulates multiple aspects of cell growth and metabolism. Different activities of PP2A and subcellular localization are determined by its regulatory subunits. Here we identified and characterized the functions of two protein phosphatase regulatory subunit homologs, ParA and PabA, in Aspergillus nidulans. Our results demonstrate that ParA localizes to the septum site and that deletion of parA causes hyperseptation, while overexpression of parA abolishes septum formation; this suggests that ParA may function as a negative regulator of septation. In comparison, PabA displays a clear colocalization pattern with 4′,6-diamidino-2-phenylindole (DAPI)-stained nuclei, and deletion of pabA induces a remarkable delayed-septation phenotype. Both parA and pabA are required for hyphal growth, conidiation, and self-fertilization, likely to maintain normal levels of PP2A activity. Most interestingly, parA deletion is capable of suppressing septation defects in pabA mutants, suggesting that ParA counteracts PabA during the septation process. In contrast, double mutants of parA and pabA led to synthetic defects in colony growth, indicating that ParA functions synthetically with PabA during hyphal growth. Moreover, unlike the case for PP2A-Par1 and PP2A-Pab1 in yeast (which are negative regulators that inactivate the septation initiation network [SIN]), loss of ParA or PabA fails to suppress defects of temperature-sensitive mutants of the SEPH kinase of the SIN. Thus, our findings support the previously unrealized evidence that the B-family subunits of PP2A have comprehensive functions as partners of heterotrimeric enzyme complexes of PP2A, both spatially and temporally, in A. nidulans. PMID:25280816

  16. Dissociation between the panicolytic effect of cannabidiol microinjected into the substantia nigra, pars reticulata, and fear-induced antinociception elicited by bicuculline administration in deep layers of the superior colliculus: The role of CB1-cannabinoid receptor in the ventral mesencephalon.

    PubMed

    da Silva, Juliana Almeida; Biagioni, Audrey Francisco; Almada, Rafael Carvalho; de Souza Crippa, José Alexandre; Cecílio Hallak, Jaime Eduardo; Zuardi, Antônio Waldo; Coimbra, Norberto Cysne

    2015-07-01

    Many studies suggest that the substantia nigra, pars reticulata (SNpr), a tegmental mesencephalic structure rich in γ-aminobutyric acid (GABA)- and cannabinoid receptor-containing neurons, is involved in the complex control of defensive responses through the neostriatum-nigral disinhibitory and nigro-tectal inhibitory GABAergic pathways during imminently dangerous situations. The aim of the present work was to investigate the role played by CB1-cannabinoid receptor of GABAergic pathways terminal boutons in the SNpr or of SNpr-endocannabinoid receptor-containing interneurons on the effect of intra-nigral microinjections of cannabidiol in the activity of nigro-tectal inhibitory pathways. GABAA receptor blockade in the deep layers of the superior colliculus (dlSC) elicited vigorous defensive behaviour. This explosive escape behaviour was followed by significant antinociception. Cannabidiol microinjection into the SNpr had a clear anti-aversive effect, decreasing the duration of defensive alertness, the frequency and duration of defensive immobility, and the frequency and duration of explosive escape behaviour, expressed by running and jumps, elicited by transitory GABAergic dysfunction in dlSC. However, the innate fear induced-antinociception was not significantly changed. The blockade of CB1 endocannabinoid receptor in the SNpr decreased the anti-aversive effect of canabidiol based on the frequency and duration of defensive immobility, the frequency of escape expressed by running, and both the frequency and duration of escape expressed by jumps. These findings suggest a CB1 mediated endocannabinoid signalling in cannabidiol modulation of panic-like defensive behaviour, but not of innate fear-induced antinociception evoked by GABAA receptor blockade with bicuculline microinjection into the superior colliculus, with a putative activity in nigro-collicular GABAergic pathways. PMID:25841876

  17. Interaction of receptor-activity-modifying protein1 with tubulin.

    PubMed

    Kunz, Thomas H; Mueller-Steiner, Sarah; Schwerdtfeger, Kerstin; Kleinert, Peter; Troxler, Heinz; Kelm, Jens M; Ittner, Lars M; Fischer, Jan A; Born, Walter

    2007-08-01

    Receptor-activity-modifying protein (RAMP) 1 is an accessory protein of the G protein-coupled calcitonin receptor-like receptor (CLR). The CLR/RAMP1 heterodimer defines a receptor for the potent vasodilatory calcitonin gene-related peptide. A wider tissue distribution of RAMP1, as compared to that of the CLR, is consistent with additional biological functions. Here, glutathione S-transferase (GST) pull-down, coimmunoprecipitation and yeast two-hybrid experiments identified beta-tubulin as a novel RAMP1-interacting protein. GST pull-down experiments indicated interactions between the N- and C-terminal domains of RAMP1 and beta-tubulin. Yeast two-hybrid experiments confirmed the interaction between the N-terminal region of RAMP1 and beta-tubulin. Interestingly, alpha-tubulin was co-extracted with beta-tubulin in pull-down experiments and immunoprecipitation of RAMP1 coprecipitated alpha- and beta-tubulin. Confocal microscopy indicated colocalization of RAMP1 and tubulin predominantly in axon-like processes of neuronal differentiated human SH-SY5Y neuroblastoma cells. In conclusion, the findings point to biological roles of RAMP1 beyond its established interaction with G protein-coupled receptors. PMID:17493758

  18. The use of high spectral resolution bands for estimating absorbed photosynthetically active radiation (A par)

    NASA Technical Reports Server (NTRS)

    Kim, Moon S.; Daughtry, C. S. T.; Chappelle, E. W.; Mcmurtrey, J. E.; Walthall, C. L.

    1994-01-01

    Most remote sensing estimations of vegetation variables such as Leaf Area Index (LAI), Absorbed Photosynthetically Active Radiation (APAR), and phytomass are made using broad band sensors with a bandwidth of approximately 100 nm. However, high resolution spectrometers are available and have not been fully exploited for the purpose of improving estimates of vegetation variables. A study directed to investigate the use of high spectral resolution spectroscopy for remote sensing estimates of APAR in vegetation canopies in the presence of nonphotosynthetic background materials such as soil and leaf litter is presented. A high spectral resolution method defined as the Chlorophyll Absorption Ratio Index (CARI) was developed for minimizing the effects of nonphotosynthetic materials in the remote estimates of APAR. CARI utilizes three bands at 550, 670, and 700 nm with bandwidth of 10 nm. Simulated canopy reflectance of a range of LAI were generated with the SAIL model using measurements of 42 different soil types as canopy background. CARI obtained from the simulated canopy reflectance was compared with the broad band vegetation indices (Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI), and Simple Ratio (SR)). CARI reduced the effect of nonphotosynthetic background materials in the assessment of vegetation canopy APAR more effectively than broad band vegetation indices.

  19. NF-κB contributes to MMP1 expression in breast cancer spheroids causing paracrine PAR1 activation and disintegrations in the lymph endothelial barrier in vitro

    PubMed Central

    Nguyen, Chi Huu; Senfter, Daniel; Basilio, Jose; Holzner, Silvio; Stadler, Serena; Krieger, Sigurd; Huttary, Nicole; Milovanovic, Daniela; Viola, Katharina; Simonitsch-Klupp, Ingrid; Jäger, Walter; de Martin, Rainer; Krupitza, Georg

    2015-01-01

    RELA, RELB, CREL, NFKB1 and NFKB2, and the upstream regulators NEMO and NIK were knocked-down in lymph endothelial cells (LECs) and in MDA-MB231 breast cancer spheroids to study the contribution of NF-κB in vascular barrier breaching. Suppression of RELA, NFKB1 and NEMO inhibited “circular chemo-repellent induced defects” (CCIDs), which form when cancer cells cross the lymphatic vasculature, by ~20–30%. Suppression of RELB, NFKB2 and NIK inhibited CCIDs by only ~10–15%. In MDA-MB231 cells RELA and NFKB1 constituted MMP1 expression, which caused the activation of PAR1 in adjacent LECs. The knock-down of MMP1 in MDA-MB231 spheroids and pharmacological inhibition of PAR1 in LECs inhibited CCID formation by ~30%. Intracellular Ca2+ release in LECs, which was induced by recombinant MMP1, was suppressed by the PAR1 inhibitor SCH79797, thereby confirming a functional intercellular axis: RELA/NFKB1 – MMP1 (MDA-MB231) – PAR1 (LEC). Recombinant MMP1 induced PAR1-dependent phosphorylation of MLC2 and FAK in LECs, which is indicative for their activity and for directional cell migration such as observed during CCID formation. The combined knock-down of the NF-κB pathways in LECs and MDA-MB231 spheroids inhibited CCIDs significantly stronger than knock-down in either cell type alone. Also the knock-down of ICAM-1 in LECs (a NF-κB endpoint with relevance for CCID formation) and knock-down of MMP1 in MDA-MB231 augmented CCID inhibition. This evidences that in both cell types NF-κB significantly and independently contributes to tumour-mediated breaching of the lymphatic barrier. Hence, inflamed tumour tissue and/or vasculature pose an additional threat to cancer progression. PMID:26513020

  20. Emerging roles of PAR-1 and PAFR in melanoma metastasis.

    PubMed

    Melnikova, Vladislava O; Villares, Gabriel J; Bar-Eli, Menashe

    2008-12-01

    Melanoma growth, angiogenesis and metastatic progression are strongly promoted by the inflammatory tumor microenvironment due to high levels of cytokine and chemokine secretion by the recruited inflammatory and stromal cells. In addition, platelets and molecular components of procoagulant pathways have been recently emerging as critical players of tumor growth and metastasis. In particular, thrombin, through the activity of its receptor protease-activated receptor-1 (PAR-1), regulates tumor cell adhesion to platelets and endothelial cells, stimulates tumor angiogenesis, and promotes tumor growth and metastasis. Notably, in many tumor types including melanoma, PAR-1 expression directly correlates with their metastatic phenotype and is directly responsible for the expression of interleukin-8, matrix metalloproteinase-2 (MMP-2), vascular endothelial growth factor, platelet-derived growth factor, and integrins. Another proinflammatory receptor-ligand pair, platelet-activating factor (PAF) and its receptor (PAFR), have been shown to act as important modulators of tumor cell adhesion to endothelial cells, angiogenesis, tumor growth and metastasis. PAF is a bioactive lipid produced by a variety of cells from membrane glycerophospholipids in the same reaction that releases arachidonic acid, and can be secreted by platelets, inflammatory cells, keratinocytes and endothelial cells. We have demonstrated that in metastatic melanoma cells, PAF stimulates the phosphorylation of cyclic adenosine monophosphate response element-binding protein (CREB) and activating transcription factor 1 (ATF-1), which results in overexpression of MMP-2 and membrane type 1-MMP (membrane type 1-MMP). Since only metastatic melanoma cells overexpress CREB/ATF-1, we propose that metastatic melanoma cells are better equipped than their non-metastatic counterparts to respond to PAF within the tumor microenvironment. The evidence supporting the hypothesis that the two G-protein coupled receptors, PAR-1

  1. CINPA1 Is an Inhibitor of Constitutive Androstane Receptor That Does Not Activate Pregnane X Receptor

    PubMed Central

    Cherian, Milu T; Lin, Wenwei; Wu, Jing

    2015-01-01

    Constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are xenobiotic sensors that enhance the detoxification and elimination of xenobiotics and endobiotics by modulating the expression of genes encoding drug-metabolizing enzymes and transporters. Elevated levels of drug-metabolizing enzymes and efflux transporters, resulting from CAR activation in various cancers, promote the elimination of chemotherapeutic agents, leading to reduced therapeutic effectiveness and acquired drug resistance. CAR inhibitors, in combination with existing chemotherapeutics, could therefore be used to attenuate multidrug resistance in cancers. Interestingly, all previously reported CAR inverse-agonists are also activators of PXR, rendering them mechanistically counterproductive in tissues where both these xenobiotic receptors are present and active. We used a directed high-throughput screening approach, followed by subsequent mechanistic studies, to identify novel, potent, and specific small-molecule CAR inhibitors that do not activate PXR. We describe here one such inhibitor, CINPA1 (CAR inhibitor not PXR activator 1), capable of reducing CAR-mediated transcription with an IC50 of ∼70 nM. CINPA1 1) is a specific xenobiotic receptor inhibitor and has no cytotoxic effects up to 30 µM; 2) inhibits CAR-mediated gene expression in primary human hepatocytes, where CAR is endogenously expressed; 3) does not alter the protein levels or subcellular localization of CAR; 4) increases corepressor and reduces coactivator interaction with the CAR ligand-binding domain in mammalian two-hybrid assays; and 5) disrupts CAR binding to the promoter regions of target genes in chromatin immunoprecipitation assays. CINPA1 could be used as a novel molecular tool for understanding CAR function. PMID:25762023

  2. Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling.

    PubMed

    Grøntved, Lars; Waterfall, Joshua J; Kim, Dong Wook; Baek, Songjoon; Sung, Myong-Hee; Zhao, Li; Park, Jeong Won; Nielsen, Ronni; Walker, Robert L; Zhu, Yuelin J; Meltzer, Paul S; Hager, Gordon L; Cheng, Sheue-yann

    2015-01-01

    A bimodal switch model is widely used to describe transcriptional regulation by the thyroid hormone receptor (TR). In this model, the unliganded TR forms stable, chromatin-bound complexes with transcriptional co-repressors to repress transcription. Binding of hormone dissociates co-repressors and facilitates recruitment of co-activators to activate transcription. Here we show that in addition to hormone-independent TR occupancy, ChIP-seq against endogenous TR in mouse liver tissue demonstrates considerable hormone-induced TR recruitment to chromatin associated with chromatin remodelling and activated gene transcription. Genome-wide footprinting analysis using DNase-seq provides little evidence for TR footprints both in the absence and presence of hormone, suggesting that unliganded TR engagement with repressive complexes on chromatin is, similar to activating receptor complexes, a highly dynamic process. This dynamic and ligand-dependent interaction with chromatin is likely shared by all steroid hormone receptors regardless of their capacity to repress transcription in the absence of ligand. PMID:25916672

  3. Conserved phosphorylation sites in the activation loop of the Arabidopsis phytosulfokine receptor PSKR1 differentially affect kinase and receptor activity

    PubMed Central

    Hartmann, Jens; Linke, Dennis; Bönniger, Christine; Tholey, Andreas; Sauter, Margret

    2015-01-01

    PSK (phytosulfokine) is a plant peptide hormone perceived by a leucine-rich repeat receptor kinase. Phosphosite mapping of epitope-tagged PSKR1 (phytosulfokine receptor 1) from Arabidopsis thaliana plants identified Ser696 and Ser698 in the JM (juxtamembrane) region and probably Ser886 and/or Ser893 in the AL (activation loop) as in planta phosphorylation sites. In vitro-expressed kinase was autophosphorylated at Ser717 in the JM, and at Ser733, Thr752, Ser783, Ser864, Ser911, Ser958 and Thr998 in the kinase domain. The LC–ESI–MS/MS spectra provided support that up to three sites (Thr890, Ser893 and Thr894) in the AL were likely to be phosphorylated in vitro. These sites are evolutionarily highly conserved in PSK receptors, indicative of a conserved function. Site-directed mutagenesis of the four conserved residues in the activation segment, Thr890, Ser893, Thr894 and Thr899, differentially altered kinase activity in vitro and growth-promoting activity in planta. The T899A and the quadruple-mutated TSTT-A (T890A/S893A/T894A/T899A) mutants were both kinase-inactive, but PSKR1(T899A) retained growth-promoting activity. The T890A and S893A/T894A substitutions diminished kinase activity and growth promotion. We hypothesize that phosphorylation within the AL activates kinase activity and receptor function in a gradual and distinctive manner that may be a means to modulate the PSK response. PMID:26472115

  4. Conserved phosphorylation sites in the activation loop of the Arabidopsis phytosulfokine receptor PSKR1 differentially affect kinase and receptor activity.

    PubMed

    Hartmann, Jens; Linke, Dennis; Bönniger, Christine; Tholey, Andreas; Sauter, Margret

    2015-12-15

    PSK (phytosulfokine) is a plant peptide hormone perceived by a leucine-rich repeat receptor kinase. Phosphosite mapping of epitope-tagged PSKR1 (phytosulfokine receptor 1) from Arabidopsis thaliana plants identified Ser(696) and Ser(698) in the JM (juxtamembrane) region and probably Ser(886) and/or Ser(893) in the AL (activation loop) as in planta phosphorylation sites. In vitro-expressed kinase was autophosphorylated at Ser(717) in the JM, and at Ser(733), Thr(752), Ser(783), Ser(864), Ser(911), Ser(958) and Thr(998) in the kinase domain. The LC-ESI-MS/MS spectra provided support that up to three sites (Thr(890), Ser(893) and Thr(894)) in the AL were likely to be phosphorylated in vitro. These sites are evolutionarily highly conserved in PSK receptors, indicative of a conserved function. Site-directed mutagenesis of the four conserved residues in the activation segment, Thr(890), Ser(893), Thr(894) and Thr(899), differentially altered kinase activity in vitro and growth-promoting activity in planta. The T899A and the quadruple-mutated TSTT-A (T890A/S893A/T894A/T899A) mutants were both kinase-inactive, but PSKR1(T899A) retained growth-promoting activity. The T890A and S893A/T894A substitutions diminished kinase activity and growth promotion. We hypothesize that phosphorylation within the AL activates kinase activity and receptor function in a gradual and distinctive manner that may be a means to modulate the PSK response. PMID:26472115

  5. Salmon and king crab trypsin stimulate interleukin-8 and matrix metalloproteinases via protease-activated receptor-2 in the skin keratinocytic HaCaT cell line.

    PubMed

    Bhagwat, Sampada S; Larsen, Anett K; Winberg, Jan-Olof; Seternes, Ole-Morten; Bang, Berit E

    2014-07-01

    Occupational skin symptoms are prevalent among the workers of the seafood processing industry. In this study we investigate the role of salmon (Salmo salar) and king crab trypsin (Paralithodes camtschaticus) as inducers of inflammation in skin via secretion of inflammatory mediators. Human skin keratinocytes (HaCaT cells) were exposed to purified salmon and king crab trypsin. We observed that salmon trypsin enhanced the secretion of IL-8 and MMP-2 and crab trypsin enhanced the secretion of IL-8, MMP-2 and MMP-9 in a dose dependent manner. As protease activated receptors (PAR)-2 in skin are known to play an important role in physiology and pathology, we explored the involvement of these receptors in mediating the release of interleukin (IL)-8 and matrix metalloproteinase (MMP)-2 and -9 subsequent to exposure of skin keratinocytes to salmon and crab trypsin. In addition we observed that salmon and crab trypsin exhibit individual differences in stimulating the release of these inflammatory mediators. Finally, using specific small interfering RNA (siRNA) against PAR-2, we confirmed that the increase in secretion of IL-8, MMP-2 and MMP-9 in skin keratinocytes following exposure to salmon and crab trypsin was mediated via activation of PAR-2. These results suggest that exposure to proteases from the seafood may lead to inflammatory reactions in skin. PMID:24795235

  6. Allosteric receptor activation by the plant peptide hormone phytosulfokine.

    PubMed

    Wang, Jizong; Li, Hongju; Han, Zhifu; Zhang, Heqiao; Wang, Tong; Lin, Guangzhong; Chang, Junbiao; Yang, Weicai; Chai, Jijie

    2015-09-10

    Phytosulfokine (PSK) is a disulfated pentapeptide that has a ubiquitous role in plant growth and development. PSK is perceived by its receptor PSKR, a leucine-rich repeat receptor kinase (LRR-RK). The mechanisms underlying the recognition of PSK, the activation of PSKR and the identity of the components downstream of the initial binding remain elusive. Here we report the crystal structures of the extracellular LRR domain of PSKR in free, PSK- and co-receptor-bound forms. The structures reveal that PSK interacts mainly with a β-strand from the island domain of PSKR, forming an anti-β-sheet. The two sulfate moieties of PSK interact directly with PSKR, sensitizing PSKR recognition of PSK. Supported by biochemical, structural and genetic evidence, PSK binding enhances PSKR heterodimerization with the somatic embryogenesis receptor-like kinases (SERKs). However, PSK is not directly involved in PSKR-SERK interaction but stabilizes PSKR island domain for recruitment of a SERK. Our data reveal the structural basis for PSKR recognition of PSK and allosteric activation of PSKR by PSK, opening up new avenues for the design of PSKR-specific small molecules. PMID:26308901

  7. The interaction between uPAR and vitronectin triggers ligand-independent adhesion signalling by integrins

    PubMed Central

    Ferraris, Gian Maria Sarra; Schulte, Carsten; Buttiglione, Valentina; De Lorenzi, Valentina; Piontini, Andrea; Galluzzi, Massimiliano; Podestà, Alessandro; Madsen, Chris D; Sidenius, Nicolai

    2014-01-01

    The urokinase-type plasminogen activator receptor (uPAR) is a non-integrin vitronectin (VN) cell adhesion receptor linked to the plasma membrane by a glycolipid anchor. Through structure–function analyses of uPAR, VN and integrins, we document that uPAR-mediated cell adhesion to VN triggers a novel type of integrin signalling that is independent of integrin–matrix engagement. The signalling is fully active on VN mutants deficient in integrin binding site and is also efficiently transduced by integrins deficient in ligand binding. Although integrin ligation is dispensable, signalling is crucially dependent upon an active conformation of the integrin and its association with intracellular adaptors such as talin. This non-canonical integrin signalling is not restricted to uPAR as it poses no structural constraints to the receptor mediating cell attachment. In contrast to canonical integrin signalling, where integrins form direct mechanical links between the ECM and the cytoskeleton, the molecular mechanism enabling the crosstalk between non-integrin adhesion receptors and integrins is dependent upon membrane tension. This suggests that for this type of signalling, the membrane represents a critical component of the molecular clutch. PMID:25168639

  8. Pyrimidinergic Receptor Activation Controls Toxoplasma gondii Infection in Macrophages

    PubMed Central

    Moreira-Souza, Aline Cristina Abreu; Marinho, Ygor; Correa, Gladys; Santoro, Giani França; Coutinho, Claudia Mara Lara Melo; Vommaro, Rossiane Claudia; Coutinho-Silva, Robson

    2015-01-01

    Infection by the protozoan parasite Toxoplasma gondii is highly prevalent worldwide and may have serious clinical manifestations in immunocompromised patients. T. gondii is an obligate intracellular parasite that infects almost any cell type in mammalian hosts, including immune cells. The immune cells express purinergic P2 receptors in their membrane – subdivided into P2Y and P2X subfamilies - whose activation is important for infection control. Here, we examined the effect of treatment with UTP and UDP in mouse peritoneal macrophages infected with T. gondii tachyzoites. Treatment with these nucleotides reduced parasitic load by 90%, but did not increase the levels of the inflammatory mediators NO and ROS, nor did it modulate host cell death by apoptosis or necrosis. On the other hand, UTP and UDP treatments induced early egress of tachyzoites from infected macrophages, in a Ca2+-dependent manner, as shown by scanning electron microscopy analysis, and videomicroscopy. In subsequent infections, prematurely egressed parasites had reduced infectivity, and could neither replicate nor inhibit the fusion of lysosomes to the parasitophorous vacuole. The use of selective agonists and antagonists of the receptor subtypes P2Y2 and P2Y4 and P2Y6 showed that premature parasite egress may be mediated by the activation of these receptor subtypes. Our results suggest that the activity of P2Y host cell receptors controls T. gondii infection in macrophages, highlighting the importance of pyrimidinergic signaling for innate immune system response against infection. Finally the P2Y receptors should be considered as new target for the development of drugs against T. gondii infection. PMID:26192447

  9. A protease-activated receptor 2 agonist (AC-264613) suppresses interferon regulatory factor 5 and decreases interleukin-12p40 production by lipopolysaccharide-stimulated macrophages: Role of p53.

    PubMed

    Yamaguchi, Rui; Yamamoto, Takatoshi; Sakamoto, Arisa; Ishimaru, Yasuji; Narahara, Shinji; Sugiuchi, Hiroyuki; Yamaguchi, Yasuo

    2016-06-01

    The transcription factor interferon regulatory factor 5 (IRF5) has a key role in the production of interleukin (IL)-12 by macrophages. IRF5 is also a central mediator of toll-like receptor signaling and is a direct target of p53. Activation of protease-activated receptor 2 (PAR-2) upregulates p53 and suppresses apoptosis. This study investigated the influence of human neutrophil elastase (HNE) and PAR-2 agonists on expression of IRF5 and IL-12p40 by macrophages stimulated with lipopolysaccharide. Granulocyte-macrophage colony-stimulating factor (GM-CSF)-dependent macrophages showed upregulation of IRF5 expression, while HNE reduced expression of p53 and IRF5 in a concentration-dependent manner. HNE also caused a concentration-dependent decrease of IRF5 in macrophages transfected with small interfering RNA to silence p53, while silencing of β-arrestin 2 blunted the reduction of p53 or IRF5 by HNE. Incubation of macrophages with a PAR-2 agonist, AC-264613, caused a decrease of IRF5 expression and also significantly reduced p53 protein expression. HNE upregulated the expression of tumor necrosis factor receptor-associated factor 6 (TRAF6) and caused transactivation of TLR4, while AC-264613 did not promote TLR4 transactivation. In conclusion, the PAR-2 agonist AC-264613 attenuated IRF5-associated IL-12p40 production by macrophages. PMID:26833899

  10. Streptococcal SpeB Cleaved PAR-1 Suppresses ERK Phosphorylation and Blunts Thrombin-Induced Platelet Aggregation

    PubMed Central

    Ender, Miriam; Andreoni, Federica; Zinkernagel, Annelies Sophie; Schuepbach, Reto Andreas

    2013-01-01

    Background The family of 4 related protease-activated receptors (PAR-1, 2, 3 & 4) expressed by mammalian cells allow to sense for and react to extracellular proteolytic activity. Since major human bacterial pathogens secret a wide array of protease(-s) we investigated whether they interfere with human PAR function. Methodology/Principal Findings Supernatants from cultures of major human bacterial pathogens were assayed for the presence of protease(-s) capable to cleave overexpressed human PAR-1, 2, 3 and 4 reporter constructs. Group A streptococcus (GAS) was found to secret a PAR-1-cleaving protease. Experiments involving genetical and pharmacological gain and loss of function identified streptococcal pyrogenic exotoxin B SpeB as the protease responsible. On the host’s side analysis of overexpressed PAR-1 carrying alanine substitutions and deletions showed the amino acid residue leucine44 on PAR-1’s extracellular N-terminus to be the only cleavage site. Complementary studies on endogenously expressed PAR-1 using PAR-1 blocking antibodies further supported our conclusion. Through PAR-1 cleavage SpeB efficiently blunted thrombin-induced induction of the ERK-pathway in endothelial cells and prevented platelets aggregation in response to thrombin. Conclusions/Significance Our results identify a novel function of the streptococcal virulence factor SpeB. By cleaving human PAR-1 at the N-terminal amino acid residue leucine44 SpeB rendered endothelial cells unresponsive to thrombin and prevented human platelets from thrombin-induced aggregation. These results suggest that by blunting PAR-1 signaling, SpeB modulates various innate host responses directed against invasive GAS potentially helping the invasive bacteria to escape. This may allow to tailor additional treatments in the future since upon invasion of the blood stream endothelial cells as well as platelets and mononuclear cells respond to PAR-1 agonists aiming to prevent further bacterial dissemination. PMID

  11. Directed and persistent movement arises from mechanochemistry of the ParA/ParB system.

    PubMed

    Hu, Longhua; Vecchiarelli, Anthony G; Mizuuchi, Kiyoshi; Neuman, Keir C; Liu, Jian

    2015-12-22

    The segregation of DNA before cell division is essential for faithful genetic inheritance. In many bacteria, segregation of low-copy number plasmids involves an active partition system composed of a nonspecific DNA-binding ATPase, ParA, and its stimulator protein ParB. The ParA/ParB system drives directed and persistent movement of DNA cargo both in vivo and in vitro. Filament-based models akin to actin/microtubule-driven motility were proposed for plasmid segregation mediated by ParA. Recent experiments challenge this view and suggest that ParA/ParB system motility is driven by a diffusion ratchet mechanism in which ParB-coated plasmid both creates and follows a ParA gradient on the nucleoid surface. However, the detailed mechanism of ParA/ParB-mediated directed and persistent movement remains unknown. Here, we develop a theoretical model describing ParA/ParB-mediated motility. We show that the ParA/ParB system can work as a Brownian ratchet, which effectively couples the ATPase-dependent cycling of ParA-nucleoid affinity to the motion of the ParB-bound cargo. Paradoxically, this resulting processive motion relies on quenching diffusive plasmid motion through a large number of transient ParA/ParB-mediated tethers to the nucleoid surface. Our work thus sheds light on an emergent phenomenon in which nonmotor proteins work collectively via mechanochemical coupling to propel cargos-an ingenious solution shaped by evolution to cope with the lack of processive motor proteins in bacteria. PMID:26647183

  12. Directed and persistent movement arises from mechanochemistry of the ParA/ParB system

    PubMed Central

    Hu, Longhua; Vecchiarelli, Anthony G.; Mizuuchi, Kiyoshi; Neuman, Keir C.; Liu, Jian

    2015-01-01

    The segregation of DNA before cell division is essential for faithful genetic inheritance. In many bacteria, segregation of low-copy number plasmids involves an active partition system composed of a nonspecific DNA-binding ATPase, ParA, and its stimulator protein ParB. The ParA/ParB system drives directed and persistent movement of DNA cargo both in vivo and in vitro. Filament-based models akin to actin/microtubule-driven motility were proposed for plasmid segregation mediated by ParA. Recent experiments challenge this view and suggest that ParA/ParB system motility is driven by a diffusion ratchet mechanism in which ParB-coated plasmid both creates and follows a ParA gradient on the nucleoid surface. However, the detailed mechanism of ParA/ParB-mediated directed and persistent movement remains unknown. Here, we develop a theoretical model describing ParA/ParB-mediated motility. We show that the ParA/ParB system can work as a Brownian ratchet, which effectively couples the ATPase-dependent cycling of ParA–nucleoid affinity to the motion of the ParB-bound cargo. Paradoxically, this resulting processive motion relies on quenching diffusive plasmid motion through a large number of transient ParA/ParB-mediated tethers to the nucleoid surface. Our work thus sheds light on an emergent phenomenon in which nonmotor proteins work collectively via mechanochemical coupling to propel cargos—an ingenious solution shaped by evolution to cope with the lack of processive motor proteins in bacteria. PMID:26647183

  13. The Molecular Mechanism of P2Y1 Receptor Activation.

    PubMed

    Yuan, Shuguang; Chan, H C Stephen; Vogel, Horst; Filipek, Slawomir; Stevens, Raymond C; Palczewski, Krzysztof

    2016-08-22

    Human purinergic G protein-coupled receptor P2Y1 (P2Y1 R) is activated by adenosine 5'-diphosphate (ADP) to induce platelet activation and thereby serves as an important antithrombotic drug target. Crystal structures of P2Y1 R revealed that one ligand (MRS2500) binds to the extracellular vestibule of this GPCR, whereas another (BPTU) occupies the surface between transmembrane (TM) helices TM2 and TM3. We introduced a total of 20 μs all-atom long-timescale molecular dynamic (MD) simulations to inquire why two molecules in completely different locations both serve as antagonists while ADP activates the receptor. Our results indicate that BPTU acts as an antagonist by stabilizing extracellular helix bundles leading to an increase of the lipid order, whereas MRS2500 blocks signaling by occupying the ligand binding site. Both antagonists stabilize an ionic lock within the receptor. However, binding of ADP breaks this ionic lock, forming a continuous water channel that leads to P2Y1 R activation. PMID:27460867

  14. The Molecular Mechanism of P2Y1 Receptor Activation

    PubMed Central

    Chan, H. C. Stephen; Vogel, Horst; Filipek, Slawomir

    2016-01-01

    Human purinergic G protein-coupled receptor P2Y1 (P2Y1R) is activated by adenosine 5’-diphosphate (ADP) to induce platelet activation and thereby serves as an important antithrombotic drug target. Crystal structures of P2Y1R revealed that one ligand (MRS2500) binds to the extracellular vestibule of this GPCR, whereas another (BPTU) occupies the surface between transmembrane (TM) helices TM2 and TM3. We introduced a total of 20 µs all-atom long-timescale molecular dynamic (MD) simulations to inquire why two molecules in completely different locations both serve as antagonists while ADP activates the receptor. Our results indicate that BPTU acts as an antagonist by stabilizing extracellular helix bundles leading to an increase of the lipid order, whereas MRS2500 blocks signaling by occupying the ligand binding site. Both antagonists stabilize an ionic lock within the receptor. However, binding of ADP breaks this ionic lock, forming a continuous water channel that leads to P2Y1R activation. PMID:27460867

  15. Neurosteroid Structure-Activity Relationships for Functional Activation of Extrasynaptic δGABA(A) Receptors.

    PubMed

    Carver, Chase Matthew; Reddy, Doodipala Samba

    2016-04-01

    Synaptic GABAA receptors are primary mediators of rapid inhibition in the brain and play a key role in the pathophysiology of epilepsy and other neurologic disorders. The δ-subunit GABAA receptors are expressed extrasynaptically in the dentate gyrus and contribute to tonic inhibition, promoting network shunting as well as reducing seizure susceptibility. However, the neurosteroid structure-function relationship at δGABA(A) receptors within the native hippocampus neurons remains unclear. Here we report a structure-activity relationship for neurosteroid modulation of extrasynaptic GABAA receptor-mediated tonic inhibition in the murine dentate gyrus granule cells. We recorded neurosteroid allosteric potentiation of GABA as well as direct activation of tonic currents using a wide array of natural and synthetic neurosteroids. Our results shows that, for all neurosteroids, the C3α-OH group remains obligatory for extrasynaptic receptor functional activity, as C3β-OH epimers were inactive in activating tonic currents. Allopregnanolone and related pregnane analogs exhibited the highest potency and maximal efficacy in promoting tonic currents. Alterations at the C17 or C20 region of the neurosteroid molecule drastically altered the transduction kinetics of tonic current activation. The androstane analogs had the weakest modulatory response among the analogs tested. Neurosteroid potentiation of tonic currents was completely (approximately 95%) diminished in granule cells from δ-knockout mice, suggesting that δ-subunit receptors are essential for neurosteroid activity. The neurosteroid sensitivity of δGABA(A) receptors was confirmed at the systems level using a 6-Hz seizure test. A consensus neurosteroid pharmacophore model at extrasynaptic δGABA(A) receptors is proposed based on a structure-activity relationship for activation of tonic current and seizure protection. PMID:26857959

  16. An allosteric role for receptor activity-modifying proteins in defining GPCR pharmacology

    PubMed Central

    J Gingell, Joseph; Simms, John; Barwell, James; Poyner, David R; Watkins, Harriet A; Pioszak, Augen A; Sexton, Patrick M; Hay, Debbie L

    2016-01-01

    G protein-coupled receptors are allosteric proteins that control transmission of external signals to regulate cellular response. Although agonist binding promotes canonical G protein signalling transmitted through conformational changes, G protein-coupled receptors also interact with other proteins. These include other G protein-coupled receptors, other receptors and channels, regulatory proteins and receptor-modifying proteins, notably receptor activity-modifying proteins (RAMPs). RAMPs have at least 11 G protein-coupled receptor partners, including many class B G protein-coupled receptors. Prototypic is the calcitonin receptor, with altered ligand specificity when co-expressed with RAMPs. To gain molecular insight into the consequences of this protein–protein interaction, we combined molecular modelling with mutagenesis of the calcitonin receptor extracellular domain, assessed in ligand binding and functional assays. Although some calcitonin receptor residues are universally important for peptide interactions (calcitonin, amylin and calcitonin gene-related peptide) in calcitonin receptor alone or with receptor activity-modifying protein, others have RAMP-dependent effects, whereby mutations decreased amylin/calcitonin gene-related peptide potency substantially only when RAMP was present. Remarkably, the key residues were completely conserved between calcitonin receptor and AMY receptors, and between subtypes of AMY receptor that have different ligand preferences. Mutations at the interface between calcitonin receptor and RAMP affected ligand pharmacology in a RAMP-dependent manner, suggesting that RAMP may allosterically influence the calcitonin receptor conformation. Supporting this, molecular dynamics simulations suggested that the calcitonin receptor extracellular N-terminal domain is more flexible in the presence of receptor activity-modifying protein 1. Thus, RAMPs may act in an allosteric manner to generate a spectrum of unique calcitonin receptor

  17. Human peroxisome proliferator-activated receptor mRNA and protein expression during development

    EPA Science Inventory

    The peroxisome proliferator-activated receptors (PPAR) are nuclear hormone receptors that regulate lipid and glucose homeostasis and are important in reproduction and development. PPARs are targets ofpharmaceuticals and are also activated by environmental contaminants, including ...

  18. Mammalian EGF receptor activation by the rhomboid protease RHBDL2.

    PubMed

    Adrain, Colin; Strisovsky, Kvido; Zettl, Markus; Hu, Landian; Lemberg, Marius K; Freeman, Matthew

    2011-05-01

    The epidermal growth factor receptor (EGFR) has several functions in mammalian development and disease, particularly cancer. Most EGF ligands are synthesized as membrane-tethered precursors, and their proteolytic release activates signalling. In Drosophila, rhomboid intramembrane proteases catalyse the release of EGF-family ligands; however, in mammals this seems to be primarily achieved by ADAM-family metalloproteases. We report here that EGF is an efficient substrate of the mammalian rhomboid RHBDL2. RHBDL2 cleaves EGF just outside its transmembrane domain, thereby facilitating its secretion and triggering activation of the EGFR. We have identified endogenous RHBDL2 activity in several tumour cell lines. PMID:21494248

  19. Mammalian EGF receptor activation by the rhomboid protease RHBDL2

    PubMed Central

    Adrain, Colin; Strisovsky, Kvido; Zettl, Markus; Hu, Landian; Lemberg, Marius K; Freeman, Matthew

    2011-01-01

    The epidermal growth factor receptor (EGFR) has several functions in mammalian development and disease, particularly cancer. Most EGF ligands are synthesized as membrane-tethered precursors, and their proteolytic release activates signalling. In Drosophila, rhomboid intramembrane proteases catalyse the release of EGF-family ligands; however, in mammals this seems to be primarily achieved by ADAM-family metalloproteases. We report here that EGF is an efficient substrate of the mammalian rhomboid RHBDL2. RHBDL2 cleaves EGF just outside its transmembrane domain, thereby facilitating its secretion and triggering activation of the EGFR. We have identified endogenous RHBDL2 activity in several tumour cell lines. PMID:21494248

  20. Bisphenol A and Its Analogues Activate Human Pregnane X Receptor

    PubMed Central

    Sui, Yipeng; Ai, Ni; Park, Se-Hyung; Rios-Pilier, Jennifer; Perkins, Jordan T.; Welsh, William J.

    2012-01-01

    Background: Bisphenol A (BPA) is a base chemical used extensively in many consumer products. BPA and its analogues are present in environmental and human samples. Many endocrine-disrupting chemicals, including BPA, have been shown to activate the pregnane X receptor (PXR), a nuclear receptor that functions as a master regulator of xenobiotic metabolism. However, the detailed mechanism by which these chemicals activate PXR remains unknown. Objective: We investigated the mechanism by which BPA interacts with and activates PXR and examined selected BPA analogues to determine whether they bind to and activate PXR. Methods: Cell-based reporter assays, in silico ligand–PXR docking studies, and site-directed mutagenesis were combined to study the interaction between BPA and PXR. We also investigated the influence of BPA and its analogues on the regulation of PXR target genes in human LS180 cells. Results: We found that BPA and several of its analogues are potent agonists for human PXR (hPXR) but do not affect mouse PXR activity. We identified key residues within hPXR’s ligand-binding pocket that constitute points of interaction with BPA. We also deduced the structural requirements of BPA analogues that activate hPXR. BPA and its analogues can also induce PXR target gene expression in human LS180 cells. Conclusions: The present study advances our understanding of the mechanism by which BPA interacts with and activates human PXR. Activation of PXR by BPA may explain some of the adverse effects of BPA in humans. PMID:22214767

  1. Estrogen receptor- and aryl hydrocarbon receptor-mediated activities of a coal-tar creosote

    SciTech Connect

    Fielden, M.R.; Wu, Z.F.; Sinal, C.J.; Jury, H.H.; Bend, J.R.; Hammond, G.L.; Zacharewski, T.R.

    2000-05-01

    A coal-tar creosote was examined for estrogen receptor (ER)- and aryl hydrocarbon receptor (AhR)-mediated activity using a battery of mechanistically based assays. In vitro, creosote was found to bind to the mouse ER, bind to the human sex hormone-binding globulin, and elicit partial agonist activity in reporter gene assays in transiently transfected MCF-7 cells. Based on competitive binding to the mouse ER, creosote contains approximately 165 mg/L of estradiol-equivalents. Creosote effectively transformed the AhR in vitro and induced a Cyplal-regulated luciferase reporter gene in transiently transfected Hepa 1c1c7 cells. Based on dose-response curves, creosote contains approximately 730 mg/L of dioxin-equivalents. Creosote did not exhibit any AhR-mediated antiestrogenic activity in vitro. In vivo, creosote significantly induced liver pentoxyresorufin O-depentylation and ethoxyresorufin-O-deethylation (EROD) in a dose-dependent manner in ovariectomized (OVX) ICR mice, but did not increase uterine weight wet or vaginal cornification, due possibly to AhR-mediated antiestrogenic activity. In OVX DBA/2 mice, a strain less responsive to AhR ligands, creosote induced liver EROD to a lesser extent, but still did not show an increase in uterine wet weight or vaginal cornification. These results demonstrate that coal-tar creosote exhibits AhR- and ER-mediated activity in vitro, but its dioxinlike activity may suppress estrogenic responses in vivo.

  2. Allosterism and Structure in Thermally Activated Transient Receptor Potential Channels.

    PubMed

    Diaz-Franulic, Ignacio; Poblete, Horacio; Miño-Galaz, Germán; González, Carlos; Latorre, Ramón

    2016-07-01

    The molecular sensors that mediate temperature changes in living organisms are a large family of proteins known as thermosensitive transient receptor potential (TRP) ion channels. These membrane proteins are polymodal receptors that can be activated by cold or hot temperatures, depending on the channel subtype, voltage, and ligands. The stimuli sensors are allosterically coupled to a pore domain, increasing the probability of finding the channel in its ion conductive conformation. In this review we first discuss the allosteric coupling between the temperature and voltage sensor modules and the pore domain, and then discuss the thermodynamic foundations of thermo-TRP channel activation. We provide a structural overview of the molecular determinants of temperature sensing. We also posit an anisotropic thermal diffusion model that may explain the large temperature sensitivity of TRP channels. Additionally, we examine the effect of several ligands on TRP channel function and the evidence regarding their mechanisms of action. PMID:27297398

  3. Manipulation of P2X Receptor Activities by Light Stimulation

    PubMed Central

    Kim, Sang Seong

    2016-01-01

    P2X receptors are involved in amplification of inflammatory responses in peripheral nociceptive fibers and in mediating pain-related signals to the CNS. Control of P2X activation has significant importance in managing unwanted hypersensitive neuron responses. To overcome the limitations of chemical ligand treatment, optical stimulation methods of optogenetics and photoswitching achieve efficient control of P2X activation while allowing specificity at the target site and convenient stimulation by light illumination. There are many potential applications for photosensitive elements, such as improved uncaging methods, photoisomerizable ligands, photoswitches, and gold nanoparticles. Each technique has both advantages and downsides, and techniques are selected according to the purpose of the application. Technical advances not only provide novel approaches to manage inflammation or pain mediated by P2X receptors but also suggest a similar approach for controlling other ion channels. PMID:26884649

  4. Activation of the chicken gonadotropin-inhibitory hormone receptor reduces gonadotropin releasing hormone receptor signaling.

    PubMed

    Shimizu, Mamiko; Bédécarrats, Grégoy Y

    2010-06-01

    Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic peptide from the RFamide peptide family that has been identified in multiple avian species. Although GnIH has clearly been shown to reduce LH release from the anterior pituitary gland, its mechanism of action remains to be determined. The overall objectives of this study were (1) to characterize the GnIH receptor (GnIH-R) signaling pathway, (2) to evaluate potential interactions with gonadotropin releasing hormone type III receptor (GnRH-R-III) signaling, and (3) to determine the molecular mechanisms by which GnIH and GnRH regulate pituitary gonadotrope function during a reproductive cycle in the chicken. Using real-time PCR, we showed that in the chicken pituitary gland, GnIH-R mRNA levels fluctuate in an opposite manner to GnRH-R-III, with higher and lower levels observed during inactive and active reproductive stages, respectively. We demonstrated that the chicken GnIH-R signals by inhibiting adenylyl cyclase cAMP production, most likely by coupling to G(alphai). We also showed that this inhibition is sufficient to significantly reduce GnRH-induced cAMP responsive element (CRE) activation in a dose-dependent manner, and that the ratio of GnRH/GnIH receptors is a significant factor. We propose that in avian species, sexual maturation is characterized by a change in GnIH/GnRH receptor ratio, resulting in a switch in pituitary sensitivity from inhibitory (involving GnIH) to stimulatory (involving GnRH). In turn, decreasing GnIH-R signaling, combined with increasing GnRH-R-III signaling, results in significant increases in CRE activation, possibly initiating gonadotropin synthesis. PMID:20350548

  5. Activation of signalling by the activin receptor complex.

    PubMed Central

    Attisano, L; Wrana, J L; Montalvo, E; Massagué, J

    1996-01-01

    Activin exerts its effects by simultaneously binding to two types of p rotein serine/threonine kinase receptors, each type existing in various isoforms. Using the ActR-IB and ActR-IIB receptor isoforms, we have investigated the mechanism of activin receptor activation. ActR-IIB are phosphoproteins with demonstrable affinity for each other. However, activin addition strongly promotes an interaction between these two proteins. Activin binds directly to ActR-IIB, and this complex associates with ActR-IB, which does not bind ligand on its own. In the resulting complex, ActR-IB becomes hyperphosphorylated, and this requires the kinase activity of ActR-IIB. Mutation of conserved serines and threonines in the GS domain, a region just upstream of the kinase domain in ActR-IB, abrogates both phosphorylation and signal propagation, suggesting that this domain contains phosphorylation sites required for signalling. ActR-IB activation can be mimicked by mutation of Thr-206 to aspartic acid, which yields a construct, ActR-IB(T206D), that signals in the absence of ligand. Furthermore, the signalling activity of this mutant construct is undisturbed by overexpression of a dominant negative kinase-defective ActR-IIB construct, indicating that ActR-IB(T206D) can signal independently of ActR-IIB. The evidence suggests that ActR-IIB acts as a primary activin receptor and ActR-IB acts as a downstream transducer of activin signals. PMID:8622651

  6. Structural insights into μ-opioid receptor activation

    PubMed Central

    Huang, Weijiao; Manglik, Aashish; Venkatakrishnan, A. J.; Laeremans, Toon; Feinberg, Evan N.; Sanborn, Adrian L.; Kato, Hideaki E.; Livingston, Kathryn E.; Thorsen, Thor S.; Kling, Ralf; Granier, Sébastien; Gmeiner, Peter; Husbands, Stephen M.; Traynor, John R.; Weis, William I.; Steyaert, Jan; Dror, Ron O.; Kobilka, Brian K.

    2015-01-01

    Summary Activation of the μ-opioid receptor (μOR) is responsible for the efficacy of the most effective analgesics. To understand the structural basis for μOR activation, we obtained a 2.1 Å X-ray crystal structure of the μOR bound to the morphinan agonist BU72 and stabilized by a G protein-mimetic camelid-antibody fragment. The BU72-stabilized changes in the μOR binding pocket are subtle and differ from those observed for agonist-bound structures of the β2 adrenergic receptor (β2AR) and the M2 muscarinic receptor (M2R). Comparison with active β2AR reveals a common rearrangement in the packing of three conserved amino acids in the core of the μOR, and molecular dynamics simulations illustrate how the ligand-binding pocket is conformationally linked to this conserved triad. Additionally, an extensive polar network between the ligand-binding pocket and the cytoplasmic domains appears to play a similar role in signal propagation for all three GPCRs. PMID:26245379

  7. Pharmacological activation of lysophosphatidic acid receptors regulates erythropoiesis

    PubMed Central

    Lin, Kuan-Hung; Ho, Ya-Hsuan; Chiang, Jui-Chung; Li, Meng-Wei; Lin, Shi-Hung; Chen, Wei-Min; Chiang, Chi-Ling; Lin, Yu-Nung; Yang, Ya-Jan; Chen, Chiung-Nien; Lu, Jenher; Huang, Chang-Jen; Tigyi, Gabor; Yao, Chao-Ling; Lee, Hsinyu

    2016-01-01

    Lysophosphatidic acid (LPA), a growth factor-like phospholipid, regulates numerous physiological functions, including cell proliferation and differentiation. In a previous study, we have demonstrated that LPA activates erythropoiesis by activating the LPA 3 receptor subtype (LPA3) under erythropoietin (EPO) induction. In the present study, we applied a pharmacological approach to further elucidate the functions of LPA receptors during red blood cell (RBC) differentiation. In K562 human erythroleukemia cells, knockdown of LPA2 enhanced erythropoiesis, whereas knockdown of LPA3 inhibited RBC differentiation. In CD34+ human hematopoietic stem cells (hHSC) and K526 cells, the LPA3 agonist 1-oleoyl-2-methyl-sn-glycero-3-phosphothionate (2S-OMPT) promoted erythropoiesis, whereas the LPA2 agonist dodecyl monophosphate (DMP) and the nonlipid specific agonist GRI977143 (GRI) suppressed this process. In zebrafish embryos, hemoglobin expression was significantly increased by 2S-OMPT treatment but was inhibited by GRI. Furthermore, GRI treatment decreased, whereas 2S-OMPT treatment increased RBC counts and amount of hemoglobin level in adult BALB/c mice. These results indicate that LPA2 and LPA3 play opposing roles during RBC differentiation. The pharmacological activation of LPA receptor subtypes represent a novel strategies for augmenting or inhibiting erythropoiesis. PMID:27244685

  8. Pharmacological activation of lysophosphatidic acid receptors regulates erythropoiesis.

    PubMed

    Lin, Kuan-Hung; Ho, Ya-Hsuan; Chiang, Jui-Chung; Li, Meng-Wei; Lin, Shi-Hung; Chen, Wei-Min; Chiang, Chi-Ling; Lin, Yu-Nung; Yang, Ya-Jan; Chen, Chiung-Nien; Lu, Jenher; Huang, Chang-Jen; Tigyi, Gabor; Yao, Chao-Ling; Lee, Hsinyu

    2016-01-01

    Lysophosphatidic acid (LPA), a growth factor-like phospholipid, regulates numerous physiological functions, including cell proliferation and differentiation. In a previous study, we have demonstrated that LPA activates erythropoiesis by activating the LPA 3 receptor subtype (LPA3) under erythropoietin (EPO) induction. In the present study, we applied a pharmacological approach to further elucidate the functions of LPA receptors during red blood cell (RBC) differentiation. In K562 human erythroleukemia cells, knockdown of LPA2 enhanced erythropoiesis, whereas knockdown of LPA3 inhibited RBC differentiation. In CD34(+) human hematopoietic stem cells (hHSC) and K526 cells, the LPA3 agonist 1-oleoyl-2-methyl-sn-glycero-3-phosphothionate (2S-OMPT) promoted erythropoiesis, whereas the LPA2 agonist dodecyl monophosphate (DMP) and the nonlipid specific agonist GRI977143 (GRI) suppressed this process. In zebrafish embryos, hemoglobin expression was significantly increased by 2S-OMPT treatment but was inhibited by GRI. Furthermore, GRI treatment decreased, whereas 2S-OMPT treatment increased RBC counts and amount of hemoglobin level in adult BALB/c mice. These results indicate that LPA2 and LPA3 play opposing roles during RBC differentiation. The pharmacological activation of LPA receptor subtypes represent a novel strategies for augmenting or inhibiting erythropoiesis. PMID:27244685

  9. Ultrastructural and biochemical analysis of fibrinogen receptors on activated thrombocytes

    SciTech Connect

    O'Toole, E.T.

    1989-01-01

    The present studies have been concerned with the role of fibrinogen and its receptor, GP IIb/IIIa, during the activation and early aggregation of pigeon thrombocytes. Thrombocytes were surface labeled with {sup 125}I then separated on SDS-PAGE. Analysis by gel autoradiography revealed major bands at MW 145 kd and 98 kd, which corresponded to human GPIIb and GPIIIa. Immunologic similarity of the pigeon and human receptor components was established by dot blot analysis using polyclonal antibodies directed against human GPIIb and GPIIIa. Pigeon fibrinogen, isolated by plasma precipitation with PEG-1000 and purified over Sepharose 4B, was used to study receptor-ligand interaction. Separation of pigeon fibrinogen on SDS-PAGE resulted in three peptides having apparent MW of 62kd, 55kd, and 47kd which are comparable to human fibrinogen. Further similarity of human and pigeon fibrinogen was verified by immonodiffusion against an antibody specific for the human protein. The role of fibrinogen and its receptor in thrombocyte function was established by turbidimetric aggregation using thrombin as an agonist under conditions requiring Ca++ and fibrinogen.

  10. Dynamic correlation networks in human peroxisome proliferator-activated receptor-γ nuclear receptor protein.

    PubMed

    Fidelak, Jeremy; Ferrer, Silvia; Oberlin, Michael; Moras, Dino; Dejaegere, Annick; Stote, Roland H

    2010-10-01

    Peroxisome proliferator-activated receptor-γ nuclear receptor (PPAR-γ) belongs to the superfamily of nuclear receptor proteins that function as ligand-dependent transcription factors and plays a specific physiological role as a regulator of lipid metabolism. A number of experimental studies have suggested that allostery plays an important role in the functioning of PPAR-γ. Here we use normal-mode analysis of PPAR-γ to characterize a network of dynamically coupled amino acids that link physiologically relevant binding surfaces such as the ligand-dependent activation domain AF-2 with the ligand binding site and the heterodimer interface. Multiple calculations were done in both the presence and absence of the agonist rosiglitazone, and the differences in dynamics were characterized. The global dynamics of the ligand binding domain were affected by the ligand, and in particular, changes to the network of dynamically correlated amino acids were observed with only small changes in conformation. These results suggest that changes in dynamic couplings can be functionally significant with respect to the transmission of allosteric signals. PMID:20496064

  11. Propofol Restores Transient Receptor Potential Vanilloid Receptor Subtype-1 Sensitivity via Activation of Transient Receptor Potential Ankyrin Receptor Subtype-1 in Sensory Neurons

    PubMed Central

    Zhang, Hongyu; Wickley, Peter J.; Sinha, Sayantani; Bratz, Ian N.; Damron, Derek S.

    2011-01-01

    Background Crosstalk between peripheral nociceptors belonging to the transient receptor potential vanilloid receptor subtype-1 (TRPV1) and ankyrin subtype-1 (TRPA1) family has recently been demonstrated. Moreover, the intravenous anesthetic propofol has been shown to directly activate TRPA1 receptors, and indirectly restore sensitivity of TRPV1 receptors in dorsal root ganglion (DRG) sensory neurons. Our objective was to determine the extent to which TRPA1 activation is involved in mediating the propofol-induced restoration of TRPV1 sensitivity. Methods Mouse DRG neurons were isolated by enzymatic dissociation and grown for 24 h. F-11 cells were transfected with complementary DNA for both TRPV1 and TRPA1 or TRPV1 only. Intracellular Ca2+ concentration was measured in individual cells via fluorescence microscopy. Following TRPV1 de-sensitization with capsaicin (100 nM), cells were treated with propofol (1, 5 and 10 μM) alone, propofol in the presence of the TRPA1 antagonist, HC-030031 (0.5 μM) or the TRPA1 agonist, Allyl isothiocyanate (AITC, 100 μM) and capsaicin was then reapplied. Results In DRG neurons that contain both TRPV1 and TRPA1, propofol and AITC restored TRPV1 sensitivity. However, in DRG neurons containing only TRPV1 receptors, exposure to propofol or AITC following de-sensitization did not restore capsaicin-induced TRPV1 sensitivity. Similarly, in F-11 cells transfected with both TRPV1 and TRPA1, propofol and AITC restored TRPV1 sensitivity. However, in F-11 cells transfected with TRPV1 only, neither propofol nor AITC were capable of restoring TRPV1 sensitivity. Conclusions These data demonstrate that propofol restores TRPV1 sensitivity in primary DRG neurons and in cultured F-11 cells transfected with both the TRPV1 and TRPA1 receptors via a TRPA1-dependent process. Propofol’s effects on sensory neurons may be clinically important and contribute to peripheral sensitization to nociceptive stimuli in traumatized tissue. PMID:21364461

  12. Differential effect of meclizine on the activity of human pregnane X receptor and constitutive androstane receptor.

    PubMed

    Lau, Aik Jiang; Yang, Guixiang; Rajaraman, Ganesh; Baucom, Christie C; Chang, Thomas K H

    2011-03-01

    Conflicting data exist as to whether meclizine is an activator of human pregnane X receptor (hPXR). Therefore, we conducted a detailed, systematic investigation to determine whether meclizine affects hPXR activity by performing a cell-based reporter gene assay, a time-resolved fluorescence resonance energy transfer competitive ligand-binding assay, a mammalian two-hybrid assay to assess coactivator recruitment, and a hPXR target gene expression assay. In pregnane X receptor (PXR)-transfected HepG2 cells, meclizine activated hPXR to a greater extent than rat PXR. It bound to hPXR ligand-binding domain and recruited steroid receptor coactivator-1 to the receptor. Consistent with its hPXR agonism, meclizine increased hPXR target gene expression (CYP3A4) in human hepatocytes. However, it did not increase but decreased testosterone 6β-hydroxylation, suggesting inhibition of CYP3A catalytic activity. Meclizine has also been reported to be an inverse agonist and antagonist of human constitutive androstane receptor (hCAR). Therefore, given that certain tissues (e.g., liver) express both hPXR and hCAR and that various genes are cross-regulated by them, we quantified the expression of a hCAR- and hPXR-regulated gene (CYP2B6) in cultured human hepatocytes treated with meclizine. This drug did not decrease constitutive CYP2B6 mRNA expression or attenuate hCAR agonist-mediated increase in CYP2B6 mRNA and CYP2B6-catalyzed bupropion hydroxylation levels. These observations reflect hPXR agonism and the lack of hCAR inverse agonism and antagonism by meclizine, which were assessed by a hCAR reporter gene assay and mammalian two-hybrid assay. In conclusion, meclizine is a hPXR agonist, and it does not act as a hCAR inverse agonist or antagonist in cultured human hepatocytes. PMID:21131266

  13. Transgenic silkworms expressing human insulin receptors for evaluation of therapeutically active insulin receptor agonists.

    PubMed

    Matsumoto, Yasuhiko; Ishii, Masaki; Ishii, Kenichi; Miyaguchi, Wataru; Horie, Ryo; Inagaki, Yoshinori; Hamamoto, Hiroshi; Tatematsu, Ken-ichiro; Uchino, Keiro; Tamura, Toshiki; Sezutsu, Hideki; Sekimizu, Kazuhisa

    2014-12-12

    We established a transgenic silkworm strain expressing the human insulin receptor (hIR) using the GAL4/UAS system. Administration of human insulin to transgenic silkworms expressing hIR decreased hemolymph sugar levels and facilitated Akt phosphorylation in the fat body. The decrease in hemolymph sugar levels induced by injection of human insulin in the transgenic silkworms expressing hIR was blocked by co-injection of wortmannin, a phosphoinositide 3-kinase inhibitor. Administration of bovine insulin, an hIR ligand, also effectively decreased sugar levels in the transgenic silkworms. These findings indicate that functional hIRs that respond to human insulin were successfully induced in the transgenic silkworms. We propose that the humanized silkworm expressing hIR is useful for in vivo evaluation of the therapeutic activities of insulin receptor agonists. PMID:25449269

  14. Detecting constitutive activity and protean agonism at cannabinoid-2 receptor.

    PubMed

    Beltramo, Massimiliano; Brusa, Rossella; Mancini, Isabella; Scandroglio, Paola

    2010-01-01

    Since the cannabinoid system is involved in regulating several physiological functions such as locomotor activity, cognition, nociception, food intake, and inflammatory reaction, it has been the subject of intense study. Research on the pharmacology of this system has enormously progressed in the last 20years. One intriguing aspect that emerged from this research is that cannabinoid receptors (CBs) express a high level of constitutive activity. Investigation on this particular aspect of receptor pharmacology has largely focused on CB1, the CB subtype highly expressed in several brain regions. More recently, research on constitutive activity on the other CB subtype, CB2, was stimulated by the increasing interest on its potential as target for the treatment of various pathologies (e.g., pain and inflammation). There are several possible implications of constitutive activity on the therapeutic action of both agonists and antagonists, and consequently, it is important to have valuable methods to study this aspect of CB2 pharmacology. In the present chapter, we describe three methods to study constitutive activity at CB2: two classical methods relying on the detection of changes in cAMP level and GTPγS binding and a new one based on cell impedance measurement. In addition, we also included a section on detection of protean agonism, which is an interesting pharmacological phenomenon strictly linked to constitutive activity. PMID:21036225

  15. Bioluminescence imaging of estrogen receptor activity during breast cancer progression

    PubMed Central

    Vantaggiato, Cristina; Dell’Omo, Giulia; Ramachandran, Balaji; Manni, Isabella; Radaelli, Enrico; Scanziani, Eugenio; Piaggio, Giulia; Maggi, Adriana; Ciana, Paolo

    2016-01-01

    Estrogen receptors (ER) are known to play an important regulatory role in mammary gland development as well as in its neoplastic transformation. Although several studies highlighted the contribution of ER signaling in the breast transformation, little is known about the dynamics of ER state of activity during carcinogenesis due to the lack of appropriate models for measuring the extent of receptor signaling in time, in the same animal. To this aim, we have developed a reporter mouse model for the non-invasive in vivo imaging of ER activity: the ERE-Luc reporter mouse. ERE-Luc is a transgenic mouse generated with a firefly luciferase (Luc) reporter gene driven by a minimal promoter containing an estrogen responsive element (ERE). This model allows to measure receptor signaling in longitudinal studies by bioluminescence imaging (BLI). Here, we have induced sporadic mammary cancers by treating systemically ERE-Luc reporter mice with DMBA (9,10-dimethyl 1,2-benzanthracene) and measured receptor signaling by in vivo imaging in individual animals from early stage until a clinically palpable tumor appeared in the mouse breast. We showed that DMBA administration induces an increase of bioluminescence in the whole abdominal area 6 h after treatment, the signal rapidly disappears. Several weeks later, strong bioluminescence is observed in the area corresponding to the mammary glands. In vivo and ex vivo imaging analysis demonstrated that this bioluminescent signal is localized in the breast area undergoing neoplastic transformation. We conclude that this non-invasive assay is a novel relevant tool to identify the activation of the ER signaling prior the morphological detection of the neoplastic transformation. PMID:27069764

  16. Propagation of conformational changes during μ-opioid receptor activation

    PubMed Central

    Sounier, Rémy; Mas, Camille; Steyaert, Jan; Laeremans, Toon; Manglik, Aashish; Huang, Weijiao; Kobilka, Brian; Déméné, Héléne; Granier, Sébastien

    2016-01-01

    μ-Opioid receptors (μOR) are G protein coupled receptors (GPCRs) that are activated by a structurally diverse spectrum of natural and synthetic agonists including endogenous endorphin peptides, morphine and methadone. The recent structures of the μOR in inactive1 and agonist-induced active states (companion article) provide snapshots of the receptor at the beginning and end of a signaling event, but little is known about the dynamic sequence of events that span these two states. Here we report the use of solution-state NMR to examine the process of μOR activation. We obtained spectra of the μOR in the absence of ligand, and in the presence of the high-affinity agonist BU72 alone, or with BU72 and a G protein mimetic nanobody. Our results show that conformational changes in transmembrane segments (TM) 5 and 6, which are required for the full engagement of a G protein, are almost completely dependent on the presence of both the agonist and the G protein mimetic nanobody revealing a weak allosteric coupling between the agonist binding pocket and the G protein coupling interface (TM5 and TM6) similar to what has been observed for the β2-adrenergic receptor2. Unexpectedly, in the presence of agonist alone, we observe larger spectral changes involving intracellular loop 1 (ICL1) and helix 8 (H8), when compared to changes in TM5 and TM6. These results suggest that one or both of these domains may play a role in the initial interaction with the G protein, and that TM5 and TM6 are only engaged later in the process of complex formation. The initial interactions between the G protein and ICL1 and/or H8 may play a role in G protein coupling specificity as has been suggested for other family A GPCRs. PMID:26245377

  17. Bioluminescence imaging of estrogen receptor activity during breast cancer progression.

    PubMed

    Vantaggiato, Cristina; Dell'Omo, Giulia; Ramachandran, Balaji; Manni, Isabella; Radaelli, Enrico; Scanziani, Eugenio; Piaggio, Giulia; Maggi, Adriana; Ciana, Paolo

    2016-01-01

    Estrogen receptors (ER) are known to play an important regulatory role in mammary gland development as well as in its neoplastic transformation. Although several studies highlighted the contribution of ER signaling in the breast transformation, little is known about the dynamics of ER state of activity during carcinogenesis due to the lack of appropriate models for measuring the extent of receptor signaling in time, in the same animal. To this aim, we have developed a reporter mouse model for the non-invasive in vivo imaging of ER activity: the ERE-Luc reporter mouse. ERE-Luc is a transgenic mouse generated with a firefly luciferase (Luc) reporter gene driven by a minimal promoter containing an estrogen responsive element (ERE). This model allows to measure receptor signaling in longitudinal studies by bioluminescence imaging (BLI). Here, we have induced sporadic mammary cancers by treating systemically ERE-Luc reporter mice with DMBA (9,10-dimethyl 1,2-benzanthracene) and measured receptor signaling by in vivo imaging in individual animals from early stage until a clinically palpable tumor appeared in the mouse breast. We showed that DMBA administration induces an increase of bioluminescence in the whole abdominal area 6 h after treatment, the signal rapidly disappears. Several weeks later, strong bioluminescence is observed in the area corresponding to the mammary glands. In vivo and ex vivo imaging analysis demonstrated that this bioluminescent signal is localized in the breast area undergoing neoplastic transformation. We conclude that this non-invasive assay is a novel relevant tool to identify the activation of the ER signaling prior the morphological detection of the neoplastic transformation. PMID:27069764

  18. PAR3-aPKC regulates Tiam1 by modulating suppressive internal interactions

    PubMed Central

    Matsuzawa, Kenji; Akita, Hiroki; Watanabe, Takashi; Kakeno, Mai; Matsui, Toshinori; Wang, Shujie; Kaibuchi, Kozo

    2016-01-01

    Tiam1 is one of the most extensively analyzed activators of the small GTPase Rac. However, fundamental aspects of its regulation are poorly understood. Here we demonstrate that Tiam1 is functionally suppressed by internal interactions and that the PAR complex participates in its full activation. The N-terminal region of Tiam1 binds to the protein-binding and catalytic domains to inhibit its localization and activation. Atypical PKCs phosphorylate Tiam1 to relieve its intramolecular interactions, and the subsequent stabilization of its interaction with PAR3 allows it to exert localized activity. By analyzing Tiam1 regulation by PAR3-aPKC within the context of PDGF signaling, we also show that PAR3 directly binds PDGF receptor β. Thus we provide the first evidence for the negative regulation of Tiam1 by internal interactions, elucidate the nature of Tiam1 regulation by the PAR complex, and reveal a novel role for the PAR complex in PDGF signaling. PMID:26941335

  19. Cleavage and activation of a Toll-like receptor by microbial proteases

    PubMed Central

    de Zoete, Marcel R.; Bouwman, Lieneke I.; Keestra, A. Marijke; van Putten, Jos P. M.

    2011-01-01

    Toll-like receptors (TLRs) are innate receptors that show high conservation throughout the animal kingdom. Most TLRs can be clustered into phylogenetic groups that respond to similar types of ligands. One exception is avian TLR15. This receptor does not categorize into one of the existing groups of TLRs and its ligand is still unknown. Here we report that TLR15 is a sensor for secreted virulence-associated fungal and bacterial proteases. Activation of TLR15 involves proteolytic cleavage of the receptor ectodomain and stimulation of NF-κB–dependent gene transcription. Receptor activation can be mimicked by the expression of a truncated TLR15 of which the entire ectodomain is removed, suggesting that receptor cleavage alleviates receptor inhibition by the leucine-rich repeat domain. Our results indicate TLR15 as a unique type of innate immune receptor that combines TLR characteristics with an activation mechanism typical for the evolutionary distinct protease-activated receptors. PMID:21383168

  20. Cleavage and activation of a Toll-like receptor by microbial proteases.

    PubMed

    de Zoete, Marcel R; Bouwman, Lieneke I; Keestra, A Marijke; van Putten, Jos P M

    2011-03-22

    Toll-like receptors (TLRs) are innate receptors that show high conservation throughout the animal kingdom. Most TLRs can be clustered into phylogenetic groups that respond to similar types of ligands. One exception is avian TLR15. This receptor does not categorize into one of the existing groups of TLRs and its ligand is still unknown. Here we report that TLR15 is a sensor for secreted virulence-associated fungal and bacterial proteases. Activation of TLR15 involves proteolytic cleavage of the receptor ectodomain and stimulation of NF-κB-dependent gene transcription. Receptor activation can be mimicked by the expression of a truncated TLR15 of which the entire ectodomain is removed, suggesting that receptor cleavage alleviates receptor inhibition by the leucine-rich repeat domain. Our results indicate TLR15 as a unique type of innate immune receptor that combines TLR characteristics with an activation mechanism typical for the evolutionary distinct protease-activated receptors. PMID:21383168

  1. Activation of glycine receptors modulates spontaneous epileptiform activity in the immature rat hippocampus

    PubMed Central

    Chen, Rongqing; Okabe, Akihito; Sun, Haiyan; Sharopov, Salim; Hanganu-Opatz, Ileana L; Kolbaev, Sergei N; Fukuda, Atsuo; Luhmann, Heiko J; Kilb, Werner

    2014-01-01

    While the expression of glycine receptors in the immature hippocampus has been shown, no information about the role of glycine receptors in controlling the excitability in the immature CNS is available. Therefore, we examined the effect of glycinergic agonists and antagonists in the CA3 region of an intact corticohippocampal preparation of the immature (postnatal days 4–7) rat using field potential recordings. Bath application of 100 μm taurine or 10 μm glycine enhanced the occurrence of recurrent epileptiform activity induced by 20 μm 4-aminopyridine in low Mg2+ solution. This proconvulsive effect was prevented by 3 μm strychnine or after incubation with the loop diuretic bumetanide (10 μm), suggesting that it required glycine receptors and an active NKCC1-dependent Cl− accumulation. Application of higher doses of taurine (≥1 mm) or glycine (100 μm) attenuated recurrent epileptiform discharges. The anticonvulsive effect of taurine was also observed in the presence of the GABAA receptor antagonist gabazine and was attenuated by strychnine, suggesting that it was partially mediated by glycine receptors. Bath application of the glycinergic antagonist strychnine (0.3 μm) induced epileptiform discharges. We conclude from these results that in the immature hippocampus, activation of glycine receptors can mediate both pro- and anticonvulsive effects, but that a persistent activation of glycine receptors is required to suppress epileptiform activity. In summary, our study elucidated the important role of glycine receptors in the control of neuronal excitability in the immature hippocampus. PMID:24665103

  2. Emerging Roles of PAR-1 and PAFR in Melanoma Metastasis

    PubMed Central

    Melnikova, Vladislava O.; Villares, Gabriel J.

    2008-01-01

    Melanoma growth, angiogenesis and metastatic progression are strongly promoted by the inflammatory tumor microenvironment due to high levels of cytokine and chemokine secretion by the recruited inflammatory and stromal cells. In addition, platelets and molecular components of procoagulant pathways have been recently emerging as critical players of tumor growth and metastasis. In particular, thrombin, through the activity of its receptor protease-activated receptor-1 (PAR-1), regulates tumor cell adhesion to platelets and endothelial cells, stimulates tumor angiogenesis, and promotes tumor growth and metastasis. Notably, in many tumor types including melanoma, PAR-1 expression directly correlates with their metastatic phenotype and is directly responsible for the expression of interleukin-8, matrix metalloproteinase-2 (MMP-2), vascular endothelial growth factor, platelet-derived growth factor, and integrins. Another proinflammatory receptor–ligand pair, platelet-activating factor (PAF) and its receptor (PAFR), have been shown to act as important modulators of tumor cell adhesion to endothelial cells, angiogenesis, tumor growth and metastasis. PAF is a bioactive lipid produced by a variety of cells from membrane glycerophospholipids in the same reaction that releases arachidonic acid, and can be secreted by platelets, inflammatory cells, keratinocytes and endothelial cells. We have demonstrated that in metastatic melanoma cells, PAF stimulates the phosphorylation of cyclic adenosine monophosphate response element-binding protein (CREB) and activating transcription factor 1 (ATF-1), which results in overexpression of MMP-2 and membrane type 1-MMP (membrane type 1-MMP). Since only metastatic melanoma cells overexpress CREB/ATF-1, we propose that metastatic melanoma cells are better equipped than their non-metastatic counterparts to respond to PAF within the tumor microenvironment. The evidence supporting the hypothesis that the two G-protein coupled receptors, PAR-1

  3. Allergens and Activation of the Toll-Like Receptor Response.

    PubMed

    Monie, Tom P; Bryant, Clare E

    2016-01-01

    Pattern recognition receptors (PRRs) provide a crucial function in the detection of exogenous and endogenous danger signals. The Toll-like receptors (TLRs) were the first family of PRRs to be discovered and have been extensively studied since. Whilst TLRs remain the best characterized family of PRRs there is still much to be learnt about their mode of activation and the mechanisms of signal transduction they employ. Much of our understanding of these processes has been gathered through the use of cell based signaling assays utilizing specific gene-reporters or cytokine secretion based readouts. More recently it has become apparent that the repertoire of ligands recognized by these receptors may be wider than originally assumed and that their activation may be sensitized, or at least modulated by the presence of common household allergens such as the cat dander protein Fel d 1, or the house dust mite allergen Der p 2. In this chapter we provide an overview of the cell culture and stimulation processes required to study TLR signaling in HEK293 based assays and in bone marrow-derived macrophages. PMID:26803639

  4. Structural rearrangement of the intracellular domains during AMPA receptor activation.

    PubMed

    Zachariassen, Linda G; Katchan, Ljudmila; Jensen, Anna G; Pickering, Darryl S; Plested, Andrew J R; Kristensen, Anders S

    2016-07-01

    α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are ligand-gated ion channels that mediate the majority of fast excitatory neurotransmission in the central nervous system. Despite recent advances in structural studies of AMPARs, information about the specific conformational changes that underlie receptor function is lacking. Here, we used single and dual insertion of GFP variants at various positions in AMPAR subunits to enable measurements of conformational changes using fluorescence resonance energy transfer (FRET) in live cells. We produced dual CFP/YFP-tagged GluA2 subunit constructs that had normal activity and displayed intrareceptor FRET. We used fluorescence lifetime imaging microscopy (FLIM) in live HEK293 cells to determine distinct steady-state FRET efficiencies in the presence of different ligands, suggesting a dynamic picture of the resting state. Patch-clamp fluorometry of the double- and single-insert constructs showed that both the intracellular C-terminal domain (CTD) and the loop region between the M1 and M2 helices move during activation and the CTD is detached from the membrane. Our time-resolved measurements revealed unexpectedly complex fluorescence changes within these intracellular domains, providing clues as to how posttranslational modifications and receptor function interact. PMID:27313205

  5. Identification of Modulators of the Nuclear Receptor Peroxisome Proliferator-Activated Receptor α (PPARα) in a Mouse Liver Gene Expression Compendium

    EPA Science Inventory

    The nuclear receptor family member peroxisome proliferator-activated receptor α (PPARα) is activated by therapeutic hypolipidemic drugs and environmentally-relevant chemicals to regulate genes involved in lipid transport and catabolism. Chronic activation of PPARα in rodents inc...

  6. Detection of Neu1 Sialidase Activity in Regulating TOLL-like Receptor Activation

    PubMed Central

    Abdulkhalek, Samar

    2010-01-01

    Mammalian Toll-like receptors (TLRs) are a family of receptors that recognize pathogen-associated molecular patterns. Not only are TLRs crucial sensors of microbial (e.g., viruses, bacteria and parasite) infections, they also play an important role in the pathophysiology of infectious diseases, inflammatory diseases, and possibly in autoimmune diseases. Thus, the intensity and duration of TLR responses against infectious diseases must be tightly controlled. It follows that understanding the structural integrity of sensor receptors, their ligand interactions and signaling components is essential for subsequent immunological protection. It would also provide important opportunities for disease modification through sensor manipulation. Although the signaling pathways of TLR sensors are well characterized, the parameters controlling interactions between the sensors and their ligands still remain poorly defined. We have recently identified a novel mechanism of TLR activation by its natural ligand, which has not been previously observed 1,2. It suggests that ligand-induced TLR activation is tightly controlled by Neu1 sialidase activation. We have also reported that Neu1 tightly regulates neurotrophin receptors like TrkA and TrkB 3, which involve Neu1 and matrix metalloproteinase-9 (MMP-9) cross-talk in complex with the receptors 4. The sialidase assay has been initially use to find a novel ligand, thymoquinone, in the activation of Neu4 sialidase on the cell surface of macrophages, dendritic cells and fibroblast cells via GPCR Gαi proteins and MMP-9 5. For TLR receptors, our data indicate that Neu1 sialidase is already in complex with TLR-2, -3 and -4 receptors, and is induced upon ligand binding to either receptor. Activated Neu1 sialidase hydrolyzes sialyl α-2,3-linked β-galactosyl residues distant from ligand binding to remove steric hinderance to TLR-4 dimerization, MyD88/TLR4 complex recruitment, NFkB activation and pro-inflammatory cell responses. In a

  7. D1 dopamine receptor activity of anti-parkinsonian drugs.

    PubMed

    Fici, G J; Wu, H; VonVoigtlander, P F; Sethy, V H

    1997-01-01

    Clinical and preclinical investigations suggest that stimulation of D1 dopamine receptors may be responsible for dyskinesias induced by dopamine agonist treatment of Parkinson's Disease (PD), and that these dyskinesias may be decreased by treatment with a D1 antagonist (clozapine). Therefore, the effects of dopamine agonists and antagonists have been investigated in a primary cerebellar granule cell model of cAMP formation that seems to be highly responsive to the D1 receptors. SKF 38393, lisuride, apomorphine, pergolide, dopamine, bromocriptine and 7-OH-DPAT showed concentration-dependent increases in cAMP formation, with EC50s (in microM) of 0.013, 0.053, 0.25, 1.04, 2.18, 50.9 and 54.4, respectively. SKF 38393, apomorphine, dopamine and pergolide had similar intrinsic activity (100%), while the intrinsic activities of 7-OH-DPAT, bromocriptine and lisuride were 28.0%, 20.7% and 17.2%, respectively. SCH 23390, a selective D1 dopamine receptor antagonist, blocked an increase in cAMP formation produced by EC50 concentrations of all of the dopamine agonists investigated in this study. Clozapine concentration-dependently blocked pergolide-induced increases in cAMP and was approximately 1700-fold less potent than SCH 23390 (IC50: 0.97 microM and 0.56 nM, respectively). U-95666A (1-1000 microM), selective for the D2 receptors, showed no significant effect on cAMP, while pramipexole (0.1-100 microM), a D3 preferring agonist, did not elevate cAMP. These data suggest that primary cerebellar granule cell cultures are an excellent model for measuring D1 dopamine receptor-mediated changes in cellular cAMP. The results are discussed with reference to the relationship between the D1 receptor-stimulated increase in cAMP formation and the induction of dyskinesia in humans by these anti-parkinsonian drugs. PMID:9126882

  8. Estrogen receptor profiling and activity in cardiac myocytes.

    PubMed

    Pugach, Emily K; Blenck, Christa L; Dragavon, Joseph M; Langer, Stephen J; Leinwand, Leslie A

    2016-08-15

    Estrogen signaling appears critical in the heart. However a mechanistic understanding of the role of estrogen in the cardiac myocyte is lacking. Moreover, there are multiple cell types in the heart and multiple estrogen receptor (ER) isoforms. Therefore, we studied expression, localization, transcriptional and signaling activity of ERs in isolated cardiac myocytes. We found only ERα RNA (but no ERβ RNA) in cardiac myocytes using two independent methods. The vast majority of full-length ERα protein (ERα66) localizes to cardiac myocyte nuclei where it is competent to activate transcription. Alternate isoforms of ERα encoded by the same genomic locus (ERα46 and ERα36) have differential transcriptional activity in cardiac myocytes but also primarily localize to nuclei. In contrast to other reports, no ERα isoform is competent to activate MAPK or PI3K signaling in cardiac myocytes. Together these data support a role for ERα at the level of transcription in cardiac myocytes. PMID:27164442

  9. Behavioral meaningful opioidergic stimulation activates kappa receptor gene expression

    PubMed Central

    Teodorov, E.; Ferrari, M.F.R.; Fior-Chadi, D.R.; Camarini, R.; Felício, L.F.

    2012-01-01

    The periaqueductal gray (PAG) has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc) or 0.9% saline (up to 1 mL/kg) and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05) because a lower percentage of U69593 group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR). A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05) and lactating female rats (P < 0.01), with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in female

  10. The Pharmacochaperone Activity of Quinine on Bitter Taste Receptors.

    PubMed

    Upadhyaya, Jasbir D; Chakraborty, Raja; Shaik, Feroz A; Jaggupilli, Appalaraju; Bhullar, Rajinder P; Chelikani, Prashen

    2016-01-01

    Bitter taste is one of the five basic taste sensations which is mediated by 25 bitter taste receptors (T2Rs) in humans. The mechanism of bitter taste signal transduction is not yet elucidated. The cellular processes underlying T2R desensitization including receptor internalization, trafficking and degradation are yet to be studied. Here, using a combination of molecular and pharmacological techniques we show that T2R4 is not internalized upon agonist treatment. Pretreatment with bitter agonist quinine led to a reduction in subsequent quinine-mediated calcium responses to 35 ± 5% compared to the control untreated cells. Interestingly, treatment with different bitter agonists did not cause internalization of T2R4. Instead, quinine treatment led to a 2-fold increase in T2R4 cell surface expression which was sensitive to Brefeldin A, suggesting a novel pharmacochaperone activity of quinine. This phenomenon of chaperone activity of quinine was also observed for T2R7, T2R10, T2R39 and T2R46. Our results suggest that the observed action of quinine for these T2Rs is independent of its agonist activity. This study provides novel insights into the pharmacochaperone activity of quinine and possible mechanism of T2R desensitization, which is of fundamental importance in understanding the mechanism of bitter taste signal transduction. PMID:27223611

  11. Helix 11 dynamics is critical for constitutive androstane receptor activity.

    PubMed

    Wright, Edward; Busby, Scott A; Wisecarver, Sarah; Vincent, Jeremy; Griffin, Patrick R; Fernandez, Elias J

    2011-01-12

    The constitutive androstane receptor (CAR) transactivation can occur in the absence of exogenous ligand and this activity is enhanced by agonists TCPOBOP and meclizine. We use biophysical and cell-based assays to show that increased activity of CAR(TCPOBOP) relative to CAR(meclizine) corresponds to a higher affinity of CAR(TCPOBOP) for the steroid receptor coactivator-1. Additionally, steady-state fluorescence spectra suggest conformational differences between CAR(TCPOBOP):RXR and CAR(meclizine):RXR. Hydrogen/deuterium exchange (HDX) data indicate that the CAR activation function 2 (AF-2) is more stable in CAR(TCPOBOP):RXR and CAR(meclizine):RXR than in CAR:RXR. HDX kinetics also show significant differences between CAR(TCPOBOP):RXR and CAR(meclizine):RXR. Unlike CAR(meclizine):RXR, CAR(TCPOBOP):RXR shows a higher overall stabilization that extends into RXR. We identify residues 339-345 in CAR as an allosteric regulatory site with a greater magnitude reduction in exchange kinetics in CAR(TCPOBOP):RXR than CAR(meclizine):RXR. Accordingly, assays with mutations on CAR at leucine-340 and leucine-343 confirm this region as an important determinant of CAR activity. PMID:21220114

  12. The Pharmacochaperone Activity of Quinine on Bitter Taste Receptors

    PubMed Central

    Upadhyaya, Jasbir D.; Chakraborty, Raja; Shaik, Feroz A.; Jaggupilli, Appalaraju; Bhullar, Rajinder P.; Chelikani, Prashen

    2016-01-01

    Bitter taste is one of the five basic taste sensations which is mediated by 25 bitter taste receptors (T2Rs) in humans. The mechanism of bitter taste signal transduction is not yet elucidated. The cellular processes underlying T2R desensitization including receptor internalization, trafficking and degradation are yet to be studied. Here, using a combination of molecular and pharmacological techniques we show that T2R4 is not internalized upon agonist treatment. Pretreatment with bitter agonist quinine led to a reduction in subsequent quinine-mediated calcium responses to 35 ± 5% compared to the control untreated cells. Interestingly, treatment with different bitter agonists did not cause internalization of T2R4. Instead, quinine treatment led to a 2-fold increase in T2R4 cell surface expression which was sensitive to Brefeldin A, suggesting a novel pharmacochaperone activity of quinine. This phenomenon of chaperone activity of quinine was also observed for T2R7, T2R10, T2R39 and T2R46. Our results suggest that the observed action of quinine for these T2Rs is independent of its agonist activity. This study provides novel insights into the pharmacochaperone activity of quinine and possible mechanism of T2R desensitization, which is of fundamental importance in understanding the mechanism of bitter taste signal transduction. PMID:27223611

  13. DHEA metabolites activate estrogen receptors alpha and beta

    PubMed Central

    Michael Miller, Kristy K.; Al-Rayyan, Numan; Ivanova, Margarita M.; Mattingly, Kathleen A.; Ripp, Sharon L.; Klinge, Carolyn M.; Prough, Russell A.

    2012-01-01

    Dehydroepiandrosterone (DHEA) levels were reported to associate with increased breast cancer risk in postmenopausal women, but some carcinogen-induced rat mammary tumor studies question this claim. The purpose of this study was to determine how DHEA and its metabolites affect estrogen receptors α or β (ERα or ERβ) -regulated gene transcription and cell proliferation. In transiently transfected HEK-293 cells, androstenediol, DHEA, and DHEA-S activated ERα. In ERβ transfected HepG2 cells, androstenedione, DHEA, androstenediol, and 7-oxo DHEA stimulated reporter activity. ER antagonists ICI 182,780 (fulvestrant) and 4-hydroxytamoxifen, general P450 inhibitor miconazole, and aromatase inhibitor exemestane inhibited activation by DHEA or metabolites in transfected cells. ERβ-selective antagonist R,R-THC (R,R-cis-diethyl tetrahydrochrysene) inhibited DHEA and DHEA metabolite transcriptional activity in ERβ-transfected cells. Expression of endogenous estrogen-regulated genes: pS2, progesterone receptor, cathepsin D1, and nuclear respiratory factor-1 was increased by DHEA and its metabolites in an ER-subtype, gene, and cell-specific manner. DHEA metabolites, but not DHEA, competed with 17β-estradiol for ERα and ERβ binding and stimulated MCF-7 cell proliferation, demonstrating that DHEA metabolites interact directly with ERα and ERβ in vitro, modulating estrogen target genes in vivo. PMID:23123738

  14. Urokinase plasminogen activator receptor induced non-small cell lung cancer invasion and metastasis requires NHE1 transporter expression and transport activity

    PubMed Central

    Provost, J.J.; Rastedt, D.; Canine, J.; Ngyuen, T.; Haak, A.; Kutz, C.; Berthesen, N.; Slusser, A.; Anderson, K.; Dorsam, G; Wallert, M.A.

    2012-01-01

    Background Non-small cell lung cancers (NSLC) are aggressive cancers that are insensitive to chemotherapies and accounts for nearly 33% of all cancer deaths in the United States. Two hallmarks of cancer that allow cells to invade and metastasize are sustained proliferation and enhanced motility. In this study we investigate the relationship between urokinase plasminogen activator (uPA)/uPA receptor (uPAR) signaling and Na+/H+ exchanger isoform 1 (NHE1) expression and activity. Methods and Results The addition of 10nM uPA increased the carcinogenic potential of three NSCLC cell lines, NCI-H358, NCI-H460, and NCI-H1299. This included an increase in the rate of cell proliferation 1.6 to 1.9 fold; an increase in the percentage of cells displaying stress fibers 3.05 to 3.17 fold; and an increase in anchorage-independent growth from 1.64 to 2.0 fold. In each of these cases the increase was blocked when the experiments were performed with NHE1 inhibited by 10 μM EIPA (ethylisopropyl amiloride). To further evaluate the role of uPA/uPAR and NHE1 in tumor progression we assessed signaling events using full-length uPA compared to the uPA amino terminal fragment (ATF). Comparing uPA and ATF signaling in H460 cells, we found that both uPA and ATF increased stress fiber formation approximately 2 fold, while uPA increased matrix metalloproteinase 9 (MMP9) activity 5.44 fold compared to 2.81 fold for ATF. To expand this signaling study, two new cell lines were generated, one with reduced NHE1 expression (H460 NHE1 K/D) and one with reduced uPAR expression (H460 uPAR K/D). Using the K/D cell lines we found that neither uPA nor ATF could stimulate stress fiber formation or MMP9 activity in cells with dramatically decreased NHE1 or uPAR expression. Finally, using in vivo tumor formation studies in athymic mice we found that when mice were injected with H460 cells 80% of mice formed tumors with an average volume of 390 mm3. This was compared to 20% of H460 uPAR K/D injected mice

  15. Activation of type 5 metabotropic glutamate receptors attenuates deficits in cognitive flexibility induced by NMDA receptor blockade

    PubMed Central

    Stefani, Mark R.; Moghaddam, Bita

    2010-01-01

    Metabotropic glutamate (mGlu) receptors provide a mechanism by which the function of NMDA glutamate receptors can be modulated. As NMDA receptor hypofunction is implicated in the etiology of psychiatric disorders, including schizophrenia, the pharmacological regulation of mGlu receptor activity represents a promising therapeutic approach. We examined the effects of the positive allosteric mGlu5 receptor modulator 3- cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB), alone and in combination with the NMDA receptor antagonist MK-801, on a task measuring cognitive set-shifting ability. This task measures NMDA receptor-dependent cognitive abilities analogous to those impaired in schizophrenia. Systemic administration of CDPPB (10 & 30 mg/kg i.p) blocked MK-801 (0.1 mg/kg, i.p.)-induced impairments in set-shifting ability. The effect on learning was dose-dependent, with the 30 mg/kg dose having a greater effect than the 10 mg/kg dose across all trials. This ameliorative effect of CDPPB reflected a reduction in MK-801-induced perseverative responding. These results add to the evidence that mGlu5 receptors interact functionally with NMDA receptors to regulate behavior, and suggest that positive modulators of mGlu5 receptors may have therapeutic potential in the treatment of disorders, like schizophrenia, characterized by impairments in cognitive flexibility and memory. PMID:20371234

  16. Synaptic activity regulates AMPA receptor trafficking through different recycling pathways.

    PubMed

    Zheng, Ning; Jeyifous, Okunola; Munro, Charlotte; Montgomery, Johanna M; Green, William N

    2015-01-01

    Changes in glutamatergic synaptic strength in brain are dependent on AMPA-type glutamate receptor (AMPAR) recycling, which is assumed to occur through a single local pathway. In this study, we present evidence that AMPAR recycling occurs through different pathways regulated by synaptic activity. Without synaptic stimulation, most AMPARs recycled in dynamin-independent endosomes containing the GTPase, Arf6. Few AMPARs recycled in dynamin-dependent endosomes labeled by transferrin receptors (TfRs). AMPAR recycling was blocked by alterations in the GTPase, TC10, which co-localized with Arf6 endosomes. TC10 mutants that reduced AMPAR recycling had no effect on increased AMPAR levels with long-term potentiation (LTP) and little effect on decreased AMPAR levels with long-term depression. However, internalized AMPAR levels in TfR-containing recycling endosomes increased after LTP, indicating increased AMPAR recycling through the dynamin-dependent pathway with synaptic plasticity. LTP-induced AMPAR endocytosis is inconsistent with local recycling as a source of increased surface receptors, suggesting AMPARs are trafficked from other sites. PMID:25970033

  17. Dopamine Receptor Activation Increases HIV Entry into Primary Human Macrophages

    PubMed Central

    Gaskill, Peter J.; Yano, Hideaki H.; Kalpana, Ganjam V.; Javitch, Jonathan A.; Berman, Joan W.

    2014-01-01

    Macrophages are the primary cell type infected with HIV in the central nervous system, and infection of these cells is a major component in the development of neuropathogenesis and HIV-associated neurocognitive disorders. Within the brains of drug abusers, macrophages are exposed to increased levels of dopamine, a neurotransmitter that mediates the addictive and reinforcing effects of drugs of abuse such as cocaine and methamphetamine. In this study we examined the effects of dopamine on HIV entry into primary human macrophages. Exposure to dopamine during infection increased the entry of R5 tropic HIV into macrophages, irrespective of the concentration of the viral inoculum. The entry pathway affected was CCR5 dependent, as antagonizing CCR5 with the small molecule inhibitor TAK779 completely blocked entry. The effect was dose-dependent and had a steep threshold, only occurring above 108 M dopamine. The dopamine-mediated increase in entry required dopamine receptor activation, as it was abrogated by the pan-dopamine receptor antagonist flupenthixol, and could be mediated through both subtypes of dopamine receptors. These findings indicate that the effects of dopamine on macrophages may have a significant impact on HIV pathogenesis. They also suggest that drug-induced increases in CNS dopamine may be a common mechanism by which drugs of abuse with distinct modes of action exacerbate neuroinflammation and contribute to HIV-associated neurocognitive disorders in infected drug abusers. PMID:25268786

  18. Activation of family C G-protein-coupled receptors by the tripeptide glutathione.

    PubMed

    Wang, Minghua; Yao, Yi; Kuang, Donghui; Hampson, David R

    2006-03-31

    The Family C G-protein-coupled receptors include the metabotropic glutamate receptors, the gamma-aminobutyric acid, type B (GABAB) receptor, the calcium-sensing receptor (CaSR), which participates in the regulation of calcium homeostasis in the body, and a diverse group of sensory receptors that encompass the amino acid-activated fish 5.24 chemosensory receptor, the mammalian T1R taste receptors, and the V2R pheromone receptors. A common feature of Family C receptors is the presence of an amino acid binding site. In this study, a preliminary in silico analysis of the size and shape of the amino acid binding pocket in selected Family C receptors suggested that some members of this family could accommodate larger ligands such as peptides. Subsequent screening and docking experiments identified GSH as a potential ligand or co-ligand at the fish 5.24 receptor and the rat CaSR. These in silico predictions were confirmed using an [3H]GSH radioligand binding assay and a fluorescence-based functional assay performed on wild-type and chimeric receptors. Glutathione was shown to act as an orthosteric agonist at the 5.24 receptor and as a potent enhancer of calcium-induced activation of the CaSR. Within the mammalian receptors, this effect was specific to the CaSR because GSH neither directly activated nor potentiated other Family C receptors including GPRC6A (the putative mammalian homolog of the fish 5.24 receptor), the metabotropic glutamate receptors, or the GABAB receptor. Our findings reveal a potential new role for GSH and suggest that this peptide may act as an endogenous modulator of the CaSR in the parathyroid gland where this receptor is known to control the release of parathyroid hormone, and in other tissues such as the brain and gastrointestinal tract where the role of the calcium receptor appears to subserve other, as yet unknown, physiological functions. PMID:16455645

  19. Soluble Urokinase Receptor Is Released Selectively by Glioblastoma Cells That Express Epidermal Growth Factor Receptor Variant III and Promotes Tumor Cell Migration and Invasion*♦

    PubMed Central

    Gilder, Andrew S.; Jones, Karra A.; Hu, Jingjing; Wang, Lei; Chen, Clark C.; Carter, Bob S.; Gonias, Steven L.

    2015-01-01

    Genomic heterogeneity is characteristic of glioblastoma (GBM). In many GBMs, the EGF receptor gene (EGFR) is amplified and may be truncated to generate a constitutively active form of the receptor called EGFRvIII. EGFR gene amplification and EGFRvIII are associated with GBM progression, even when only a small fraction of the tumor cells express EGFRvIII. In this study, we show that EGFRvIII-positive GBM cells express significantly increased levels of cellular urokinase receptor (uPAR) and release increased amounts of soluble uPAR (suPAR). When mice were xenografted with human EGFRvIII-expressing GBM cells, tumor-derived suPAR was detected in the plasma, and the level was significantly increased compared with that detected in plasma samples from control mice xenografted with EGFRvIII-negative GBM cells. suPAR also was increased in plasma from patients with EGFRvIII-positive GBMs. Purified suPAR was biologically active when added to cultures of EGFRvIII-negative GBM cells, activating cell signaling and promoting cell migration and invasion. suPAR did not significantly stimulate cell signaling or migration of EGFRvIII-positive cells, probably because cell signaling was already substantially activated in these cells. The activities of suPAR were replicated by conditioned medium (CM) from EGFRvIII-positive GBM cells. When the CM was preincubated with uPAR-neutralizing antibody or when uPAR gene expression was silenced in cells used to prepare CM, the activity of the CM was significantly attenuated. These results suggest that suPAR may function as an important paracrine signaling factor in EGFRvIII-positive GBMs, inducing an aggressive phenotype in tumor cells that are EGFRvIII-negative. PMID:25837250

  20. Acute modulations in permeability barrier function regulate epidermal cornification: role of caspase-14 and the protease-activated receptor type 2.

    PubMed

    Demerjian, Marianne; Hachem, Jean-Pierre; Tschachler, Erwin; Denecker, Geertrui; Declercq, Wim; Vandenabeele, Peter; Mauro, Theodora; Hupe, Melanie; Crumrine, Debra; Roelandt, Truus; Houben, Evi; Elias, Peter M; Feingold, Kenneth R

    2008-01-01

    Stratum corneum comprises corneocytes, derived from outer stratum granulosum during terminal differentiation, embedded in a lipid-enriched extracellular matrix, secreted from epidermal lamellar bodies. Permeability barrier insults stimulate rapid secretion of preformed lamellar bodies from the outer stratum granulosum, regulated through modulations in ionic gradients and serine protease (SP)/protease-activated receptor type 2 (PAR2) signaling. Because corneocytes are also required for barrier function, we hypothesized that corneocyte formation could also be regulated by barrier function. Barrier abrogation by two unrelated methods initiated a wave of cornification, assessed as TdT-mediated dUTP nick end-labeling-positive cells in stratum granulosum and newly cornified cells by electron microscopy. Because cornification was blocked by occlusion, corneocytes formed specifically in response to barrier, rather than injury or cell replacement, requirements. SP inhibitors and hyperacidification (which decreases SP activity) blocked cornification after barrier disruption. Similarly, cornification was delayed in PAR2(-/-) mice. Although classical markers of apoptosis [poly(ADP-ribose)polymerase and caspase (Casp)-3] remained unchanged, barrier disruption activated Casp-14. Moreover, the pan-Casp inhibitor Z-VAD-FMK delayed cornification, and corneocytes were structurally aberrant in Casp14(-/-) mice. Thus, permeability barrier requirements coordinately drive both the generation of the stratum corneum lipid-enriched extracellular matrix and the transformation of granular cells into corneocytes, in an SP- and Casp-14-dependent manner, signaled by PAR2. PMID:18156206

  1. Aryl hydrocarbon receptor-independent activation of estrogen receptor-dependent transcription by 3-methycholanthrene

    SciTech Connect

    Shipley, Jonathan M.; Waxman, David J. . E-mail: djw@bu.edu

    2006-06-01

    Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that stimulates transcription directed by xenobiotic response elements upstream of target genes. Recently, AhR ligands were reported to induce formation of an AhR-estrogen receptor (ER) complex, which can bind to estrogen response elements (EREs) and stimulate transcription of ER target genes. Presently, we investigate the effect of the AhR ligands 3-methylcholanthrene (3MC), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 3,3',4,4',5-pentachlorobiphenyl (BZ126) on ERE-regulated luciferase reporter activity and endogenous ER target gene expression. In MCF-7 human breast cancer cells, 3MC induced transcription of ER reporter genes containing native promoter sequences of the ER-responsive genes complement 3 and pS2 and heterologous promoters regulated by isolated EREs. Dose-response studies revealed that the concentration of 3MC required to half-maximally activate transcription (EC{sub 5}) was >100-fold higher for an ER reporter (27-57 {mu}M) than for an AhR reporter (86-250 nM) in both MCF-7 cells and in human endometrial cancer Ishikawa cells. 3MC also stimulated expression of the endogenous ER target genes amphiregulin, cathepsin D and progesterone receptor, albeit to a much lower extent than was achieved following stimulation with 17{beta}-estradiol. In Ishikawa cells, 3MC, but not BZ126 or TCDD, stimulated ER{alpha}-dependent reporter activity but did not induce expression of endogenous ER target genes. Finally, studies carried out in the AhR-positive rat hepatoma cell line 5L and the AhR-deficient variant BP8 demonstrated that ER reporter activity could be induced by 3MC in a manner that was independent of AhR and thus distinct from the AhR-ER 'hijacking' mechanism described recently. 3MC may thus elicit estrogenic activity by multiple mechanisms.

  2. Structural activation pathways from dynamic olfactory receptor-odorant interactions.

    PubMed

    Lai, Peter C; Singer, Michael S; Crasto, Chiquito J

    2005-11-01

    We have simulated an odor ligand's dynamic behavior in the binding region of an olfactory receptor (OR). Our short timescale computational studies (up to 200 ps) have helped identify unprecedented postdocking ligand behavior of ligands. From in vacuo molecular dynamics simulations of interactions between models of rat OR I7 and 10 aldehyde ligands, we have identified a dissociative pathway along which the ligand exits and enters the OR-binding pocket--a transit event. The ligand's transit through the receptor's binding region may mark the beginning of a signal transduction cascade leading to odor recognition. We have graphically traced the rotameric changes in key OR amino acid side chains during the transit. Our results have helped substantiate or refute previously held notions of amino acid contribution to ligand stability in the binding pocket. Our observations of ligand activity when compared to those of experimental (electroolfactogram response) OR-activation studies provide a view to predicting the stability of ligands in the binding pocket as a precursor to OR activation by the ligand. PMID:16243965

  3. Peroxisome proliferator-activated receptor {alpha}-independent peroxisome proliferation

    SciTech Connect

    Zhang Xiuguo; Tanaka, Naoki . E-mail: naopi@hsp.md.shinshu-u.ac.jp; Nakajima, Takero; Kamijo, Yuji; Gonzalez, Frank J.; Aoyama, Toshifumi

    2006-08-11

    Hepatic peroxisome proliferation, increases in the numerical and volume density of peroxisomes, is believed to be closely related to peroxisome proliferator-activated receptor {alpha} (PPAR{alpha}) activation; however, it remains unknown whether peroxisome proliferation depends absolutely on this activation. To verify occurrence of PPAR{alpha}-independent peroxisome proliferation, fenofibrate treatment was used, which was expected to significantly enhance PPAR{alpha} dependence in the assay system. Surprisingly, a novel type of PPAR{alpha}-independent peroxisome proliferation and enlargement was uncovered in PPAR{alpha}-null mice. The increased expression of dynamin-like protein 1, but not peroxisome biogenesis factor 11{alpha}, might be associated with the PPAR{alpha}-independent peroxisome proliferation at least in part.

  4. Kainate receptor activation induces glycine receptor endocytosis through PKC deSUMOylation.

    PubMed

    Sun, Hao; Lu, Li; Zuo, Yong; Wang, Yan; Jiao, Yingfu; Zeng, Wei-Zheng; Huang, Chao; Zhu, Michael X; Zamponi, Gerald W; Zhou, Tong; Xu, Tian-Le; Cheng, Jinke; Li, Yong

    2014-01-01

    Surface expression and regulated endocytosis of glycine receptors (GlyRs) play a critical function in balancing neuronal excitability. SUMOylation (SUMO modification) is of critical importance for maintaining neuronal function in the central nervous system. Here we show that activation of kainate receptors (KARs) causes GlyR endocytosis in a calcium- and protein kinase C (PKC)-dependent manner, leading to reduced GlyR-mediated synaptic activity in cultured spinal cord neurons and the superficial dorsal horn of rat spinal cord slices. This effect requires SUMO1/sentrin-specific peptidase 1 (SENP1)-mediated deSUMOylation of PKC, indicating that the crosstalk between KARs and GlyRs relies on the SUMOylation status of PKC. SENP1-mediated deSUMOylation of PKC is involved in the kainate-induced GlyR endocytosis and thus plays an important role in the anti-homeostatic regulation between excitatory and inhibitory ligand-gated ion channels. Altogether, we have identified a SUMOylation-dependent regulatory pathway for GlyR endocytosis, which may have important physiological implications for proper neuronal excitability. PMID:25236484

  5. Artificial masculinization in tilapia involves androgen receptor activation.

    PubMed

    Golan, Matan; Levavi-Sivan, Berta

    2014-10-01

    Estrogens have a pivotal role in natural female sexual differentiation of tilapia while lack of steroids results in testicular development. Despite the fact that androgens do not participate in natural sex differentiation, synthetic androgens, mainly 17-α-methyltestosterone (MT) are effective in the production of all-male fish in aquaculture. The sex inversion potency of synthetic androgens may arise from their androgenic activity or else as inhibitors of aromatase activity. The current study is an attempt to differentiate between the two alleged activities in order to evaluate their contribution to the sex inversion process and aid the search for novel sex inversion agents. In the present study, MT inhibited aromatase activity, when applied in vitro as did the non-aromatizable androgen dihydrotestosterone (DHT). In comparison, exposure to fadrozole, a specific aromatase inhibitor, was considerably more effective. Androgenic activity of MT was evaluated by exposure of Sciaenochromis fryeri fry to the substance and testing for the appearance of blue color. Flutamide, an androgen antagonist, administered concomitantly with MT, reduced the appearance of the blue color and the sex inversion potency of MT in a dose-dependent manner. In tilapia, administration of MT, fadrozole or DHT resulted in efficient sex inversion while flutamide reduced the sex inversion potency of all three compounds. In the case of MT and DHT the decrease in sex inversion efficiency caused by flutamide is most likely due to the direct blocking of the androgen binding to its cognate receptor. The negative effect of flutamide on the efficiency of the fadrozole treatment may indicate that the masculinizing activity of fadrozole may be attributed to excess, un-aromatized, androgens accumulated in the differentiating gonad. The present study shows that when androgen receptors are blocked, there is a reduction in the efficiency of sex inversion treatments. Our results suggest that in contrast to

  6. The glucagon-like peptide 1 receptor agonist enhances intrinsic peroxisome proliferator-activated receptor γ activity in endothelial cells

    SciTech Connect

    Onuma, Hirohisa; Inukai, Kouichi Kitahara, Atsuko; Moriya, Rie; Nishida, Susumu; Tanaka, Toshiaki; Katsuta, Hidenori; Takahashi, Kazuto; Sumitani, Yoshikazu; Hosaka, Toshio; Ishida, Hitoshi

    2014-08-22

    Highlights: • PPARγ activation was involved in the GLP-1-mediated anti-inflammatory action. • Exendin-4 enhanced endogenous PPARγ transcriptional activity in HUVECs. • H89, a PKA inhibitor, abolished GLP-1-induced PPARγ enhancement. • The anti-inflammatory effects of GLP-1 may be explained by PPARγ activation. - Abstract: Recent studies have suggested glucagon-like peptide-1 (GLP-1) signaling to exert anti-inflammatory effects on endothelial cells, although the precise underlying mechanism remains to be elucidated. In the present study, we investigated whether PPARγ activation is involved in the GLP-1-mediated anti-inflammatory action on endothelial cells. When we treated HUVEC cells with 0.2 ng/ml exendin-4, a GLP-1 receptor agonist, endogenous PPARγ transcriptional activity was significantly elevated, by approximately 20%, as compared with control cells. The maximum PPARγ activity enhancing effect of exendin-4 was observed 12 h after the initiation of incubation with exendin-4. As H89, a PKA inhibitor, abolished GLP-1-induced PPARγ enhancement, the signaling downstream from GLP-1 cross-talk must have been involved in PPARγ activation. In conclusion, our results suggest that GLP-1 has the potential to induce PPARγ activity, partially explaining the anti-inflammatory effects of GLP-1 on endothelial cells. Cross-talk between GLP-1 signaling and PPARγ activation would have major impacts on treatments for patients at high risk for cardiovascular disease.

  7. The Role of Hippocampal NMDA Receptors in Long-Term Emotional Responses following Muscarinic Receptor Activation

    PubMed Central

    Hoeller, Alexandre A.; Costa, Ana Paula R.; Bicca, Maíra A.; Matheus, Filipe C.; Lach, Gilliard; Spiga, Francesca; Lightman, Stafford L.; Walz, Roger; Collingridge, Graham L.; Bortolotto, Zuner A.; de Lima, Thereza C. M.

    2016-01-01

    Extensive evidence indicates the influence of the cholinergic system on emotional processing. Previous findings provided new insights into the underlying mechanisms of long-term anxiety, showing that rats injected with a single systemic dose of pilocarpine—a muscarinic receptor (mAChR) agonist—displayed persistent anxiogenic-like responses when evaluated in different behavioral tests and time-points (24 h up to 3 months later). Herein, we investigated whether the pilocarpine-induced long-term anxiogenesis modulates the HPA axis function and the putative involvement of NMDA receptors (NMDARs) following mAChRs activation. Accordingly, adult male Wistar rats presented anxiogenic-like behavior in the elevated plus-maze (EPM) after 24 h or 1 month of pilocarpine injection (150 mg/kg, i.p.). In these animals, mAChR activation disrupted HPA axis function inducing a long-term increase of corticosterone release associated with a reduced expression of hippocampal GRs, as well as consistently decreased NMDAR subunits expression. Furthermore, in another group of rats injected with memantine–an NMDARs antagonist (4 mg/kg, i.p.)–prior to pilocarpine, we found inhibition of anxiogenic-like behaviors in the EPM but no further alterations in the pilocarpine-induced NMDARs downregulation. Our data provide evidence that behavioral anxiogenesis induced by mAChR activation effectively yields short- and long-term alterations in hippocampal NMDARs expression associated with impairment of hippocampal inhibitory regulation of HPA axis activity. This is a novel mechanism associated with anxiety-like responses in rats, which comprise a putative target to future translational studies. PMID:26795565

  8. Techniques for measuring intercepted and absorbed PAR in corn canopies

    NASA Technical Reports Server (NTRS)

    Gallo, K. P.; Daughtry, C. S. T.

    1984-01-01

    The quantity of radiation potentially available for photosynthesis that is captured by the crop is best described as absorbed photosynthetically active radiation (PAR). Absorbed PAR (APAR) is the difference between descending and ascending fluxes. The four components of APAR were measured above and within two planting densities of corn (Zea mays L.) and several methods of measuring and estimating APAR were examined. A line quantum sensor that spatially averages the photosynthetic photon flux density provided a rapid and portable method of measuring APAR. PAR reflectance from the soil (Typic Argiaquoll) surface decreased from 10% to less than 1% of the incoming PAR as the canopy cover increased. PAR reflectance from the canopy decreased to less than 3% at maximum vegetative cover. Intercepted PAR (1 - transmitted PAR) generally overestimated absorbed PAR by less than 4% throughout most of the growing season. Thus intercepted PAR appears to be a reasonable estimate of absorbed PAR.

  9. Mode of action framework analysis for receptor-mediated toxicity: the Peroxisome Proliferator-Activated Receptor alpha (PPARα) as a case study

    EPA Science Inventory

    Therapeutic hypolipidemic agents and industrial chemicals that cause peroxisome proliferation and induce liver tumors in rodents activate the nuclear receptor peroxisome proliferator-activated receptor alpha (PPARα). Research has elucidated the cellular and molecular events by w...

  10. Antitussive activity of Withania somnifera and opioid receptors.

    PubMed

    Nosálová, Gabriela; Sivová, Veronika; Ray, Bimalendu; Fraňová, Soňa; Ondrejka, Igor; Flešková, Dana

    2015-01-01

    Arabinogalactan is a polysaccharide isolated from the roots of the medicinal plant Withania somnifera L. It contains 65% arabinose and 18% galactose. The aim of the present study was to evaluate the antitussive activity of arabinogalactan in conscious, healthy adult guinea pigs and the role of the opioid pathway in the antitussive action. A polysaccharide extract was given orally in a dose of 50 mg/kg. Cough was induced by an aerosol of citric acid in a concentration 0.3 mol/L, generated by a jet nebulizer into a plethysmographic chamber. The intensity of cough response was defined as the number of cough efforts counted during a 3-min exposure to the aerosol. The major finding was that arabinogalactan clearly suppressed the cough reflex; the suppression was comparable with that of codeine that was taken as a reference drug. The involvement of the opioid system was tested with the use of a blood-brain barrier penetrable, naloxone hydrochloride, and non-penetrable, naloxone methiodide, to distinguish between the central and peripheral mu-opioid receptor pathways. Both opioid antagonists acted to reverse the arabinogalactan-induced cough suppression; the reversion was total over time with the latter antagonist. We failed to confirm the presence of a bronchodilating effect of the polysaccharide, which could be involved in its antitussive action. We conclude that the polysaccharide arabinogalactan from Withania somnifera has a distinct antitussive activity consisting of cough suppression and that this action involves the mu-opioid receptor pathways. PMID:25252908

  11. Peroxisome proliferator activated receptor-γ and traumatic brain injury

    PubMed Central

    Qi, Lei; Jacob, Asha; Wang, Ping; Wu, Rongqian

    2010-01-01

    Traumatic brain injury (TBI) represents a major health care problem and a significant socioeconomic challenge worldwide. No specific therapy for TBI is available. The peroxisome proliferator activated receptor-γ (PPAR-γ) belongs to the nuclear receptor superfamily. Although PPAR-γ was originally characterized in adipose tissue as a regulator of lipid and glucose metabolism, recent studies showed that PPAR-γ is present in most cell types and plays a central role in the regulation of adipogenesis, glucose homeostasis, cellular differentiation, apoptosis and inflammation. Here, we reviewed the current literature on the molecular mechanisms of PPAR-γ-related neuroprotection after TBI. Growing evidence has indicated that the beneficial effects of PPAR-γ activation in TBI appear to be mediated through downregulation of inflammatory responses, reduction of oxidative stress, inhibition of apoptosis, and promotion of neurogenesis. A thorough understanding of the PPAR-γ pathway will be critical to the development of therapeutic interventions for the treatment of patients with TBI. PMID:21072262

  12. Potentiation of glucocorticoid receptor transcriptional activity by sumoylation.

    PubMed

    Le Drean, Yves; Mincheneau, Nathalie; Le Goff, Pascale; Michel, Denis

    2002-09-01

    The glucocorticoid receptor (GR) is a transcription factor, subject to several types of posttranslational modifications including phosphorylation and ubiquitination. We showed that the GR is covalently modified by the small ubiquitin-related modifier-1 (SUMO-1) peptide in mammalian cells. We demonstrated that GR sumoylation is not dependent on the presence of the ligand and regulates the stability of the protein as well as its transcriptional activity. SUMO-1 overexpression induces dramatic GR degradation, abolished by proteasome inhibition. We also found that SUMO-1 stimulates the transactivation capacity of GRs to an extent largely exceeding those observed so far for other sumoylated transcription factors. Overexpression of SUMO-1 specifically enhances the ligand-induced transactivation of GR up to 8-fold. However, this hyperactivation occurs only in the context of a synergy between multiple molecules of GRs. It requires more than one receptor DNA-binding site in promoter and becomes more prominent as the number of sites increases. Interestingly, these observations may be related to the transcriptional properties of the synergy control region of GRs, which precisely contains two evolutionary conserved sumoylation sites. We propose a model in which SUMO-1 regulates the synergy control function of GR and serves as a unique signal for activation and destruction. PMID:12193561

  13. In vitro neuronal network activity in NMDA receptor encephalitis

    PubMed Central

    2013-01-01

    Background Anti-NMDA-encephalitis is caused by antibodies against the N-methyl-D-aspartate receptor (NMDAR) and characterized by a severe encephalopathy with psychosis, epileptic seizures and autonomic disturbances. It predominantly occurs in young women and is associated in 59% with an ovarian teratoma. Results We describe effects of cerebrospinal fluid (CSF) from an anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis patient on in vitro neuronal network activity (ivNNA). In vitro NNA of dissociated primary rat cortical populations was recorded by the microelectrode array (MEA) system. The 23-year old patient was severely affected but showed an excellent recovery following multimodal immunomodulatory therapy and removal of an ovarian teratoma. Patient CSF (pCSF) taken during the initial weeks after disease onset suppressed global spike- and burst rates of ivNNA in contrast to pCSF sampled after clinical recovery and decrease of NMDAR antibody titers. The synchrony of pCSF-affected ivNNA remained unaltered during the course of the disease. Conclusion Patient CSF directly suppresses global activity of neuronal networks recorded by the MEA system. In contrast, pCSF did not regulate the synchrony of ivNNA suggesting that NMDAR antibodies selectively regulate distinct parameters of ivNNA while sparing their functional connectivity. Thus, assessing ivNNA could represent a new technique to evaluate functional consequences of autoimmune encephalitis-related CSF changes. PMID:23379293

  14. A restricted population of CB1 cannabinoid receptors with neuroprotective activity

    PubMed Central

    Chiarlone, Anna; Bellocchio, Luigi; Blázquez, Cristina; Resel, Eva; Soria-Gómez, Edgar; Cannich, Astrid; Ferrero, José J.; Sagredo, Onintza; Benito, Cristina; Romero, Julián; Sánchez-Prieto, José; Lutz, Beat; Fernández-Ruiz, Javier; Galve-Roperh, Ismael; Guzmán, Manuel

    2014-01-01

    The CB1 cannabinoid receptor, the main molecular target of endocannabinoids and cannabis active components, is the most abundant G protein-coupled receptor in the mammalian brain. Of note, CB1 receptors are expressed at the synapses of two opposing (i.e., GABAergic/inhibitory and glutamatergic/excitatory) neuronal populations, so the activation of one and/or another receptor population may conceivably evoke different effects. Despite the widely reported neuroprotective activity of the CB1 receptor in animal models, the precise pathophysiological relevance of those two CB1 receptor pools in neurodegenerative processes is unknown. Here, we first induced excitotoxic damage in the mouse brain by (i) administering quinolinic acid to conditional mutant animals lacking CB1 receptors selectively in GABAergic or glutamatergic neurons, and (ii) manipulating corticostriatal glutamatergic projections remotely with a designer receptor exclusively activated by designer drug pharmacogenetic approach. We next examined the alterations that occur in the R6/2 mouse, a well-established model of Huntington disease, upon (i) fully knocking out CB1 receptors, and (ii) deleting CB1 receptors selectively in corticostriatal glutamatergic or striatal GABAergic neurons. The data unequivocally identify the restricted population of CB1 receptors located on glutamatergic terminals as an indispensable player in the neuroprotective activity of (endo)cannabinoids, therefore suggesting that this precise receptor pool constitutes a promising target for neuroprotective therapeutic strategies. PMID:24843137

  15. Regulation of platelet activating factor receptor coupled phosphoinositide-specific phospholipase C activity

    SciTech Connect

    Morrison, W.J.

    1988-01-01

    The major objectives of this study were two-fold. The first was to establish whether binding of platelet activating factor (PAF) to its receptor was integral to the stimulation of polyphosphoinositide-specific phospholipase C (PLC) in rabbit platelets. The second was to determine regulatory features of this receptor-coupled mechanism. ({sup 3}H)PAF binding demonstrated two binding sites, a high affinity site with a inhibitory constant (Ki) of 2.65 nM and a low affinity site with a Ki of 0.80 {mu}M. PAF receptor coupled activation of phosphoinositide-specific PLC was studied in platelets which were made refractory, by short term pretreatments, to either PAF or thrombin. Saponin-permeabilized rabbit platelets continue to regulate the mechanism(s) coupling PAF receptors to PLC stimulation. However, TRP{gamma}S and GDP{beta}S, which affect guanine nucleotide regulatory protein functions, were unable to modulate the PLC activity to any appreciable extent as compared to PAF. The possible involvement of protein kinase C (PKC) activation in regulating PAF-stimulated PLC activity was studied in rabbit platelets pretreated with staurosporine followed by pretreatments with PAF or phorbol 12-myristate 13-acetate (PMA).

  16. Cyclic AMP-receptor protein activates aerobactin receptor IutA expression in Vibrio vulnificus.

    PubMed

    Kim, Choon-Mee; Kim, Seong-Jung; Shin, Sung-Heui

    2012-04-01

    The ferrophilic bacterium Vibrio vulnificus can utilize the siderophore aerobactin of Escherichia coli for iron acquisition via its specific receptor IutA. This siderophore piracy by V. vulnificus may contribute to its survival and proliferation, especially in mixed bacterial environments. In this study, we examined the effects of glucose, cyclic AMP (cAMP), and cAMP-receptor protein (Crp) on iutA expression in V. vulnificus. Glucose dose-dependently repressed iutA expression. A mutation in cya encoding adenylate cyclase required for cAMP synthesis severely repressed iutA expression, and this change was recovered by in trans complementing cya or the addition of exogenous cAMP. Furthermore, a mutation in crp encoding Crp severely repressed iutA expression, and this change was recovered by complementing crp. Accordingly, glucose deprivation under iron-limited conditions is an environmental signal for iutA expression, and Crp functions as an activator that regulates iutA expression in response to glucose availability. PMID:22538662

  17. Identification of key residues involved in the activation and signaling properties of dopamine D3 receptor.

    PubMed

    Kota, Kokila; Kuzhikandathil, Eldo V; Afrasiabi, Milad; Lacy, Brett; Kontoyianni, Maria; Crider, A Michael; Song, Daniel

    2015-09-01

    The dopamine D3 receptor exhibits agonist-dependent tolerance and slow response termination (SRT) signaling properties that distinguish it from the closely-related D2 receptors. While amino acid residues important for D3 receptor ligand binding have been identified, the residues involved in activation of D3 receptor signaling and induction of signaling properties have not been determined. In this paper, we used cis and trans isomers of a novel D3 receptor agonist, 8-OH-PBZI, and site-directed mutagenesis to identify key residues involved in D3 receptor signaling function. Our results show that trans-8-OH-PBZI, but not cis-8-OH-PBZI, elicit the D3 receptor tolerance and SRT properties. We show that while both agonists require a subset of residues in the orthosteric binding site of D3 receptors for activation of the receptor, the ability of the two isomers to differentially induce tolerance and SRT is mediated by interactions with specific residues in the sixth transmembrane helix and third extracellular loop of the D3 receptor. We also show that unlike cis-8-OH-PBZI, which is a partial agonist at the dopamine D2S receptor and full agonist at dopamine D2L receptor, trans-8-OH-PBZI is a full agonist at both D2S and D2L receptors. The different effect of the two isomers on D3 receptor signaling properties and D2S receptor activation correlated with differential effects of the isomers on agonist-induced mouse locomotor activity. The two isomers of 8-OH-PBZI represent novel pharmacological tools for in silico D3 and D2 receptor homology modeling and for determining the role of D3 receptor tolerance and SRT properties in signaling and behavior. PMID:26116441

  18. Serotonin 5-HT2 Receptors Induce a Long-Lasting Facilitation of Spinal Reflexes Independent of Ionotropic Receptor Activity

    PubMed Central

    Shay, Barbara L.; Sawchuk, Michael; Machacek, David W.; Hochman, Shawn

    2009-01-01

    Dorsal root-evoked stimulation of sensory afferents in the hemisected in vitro rat spinal cord produces reflex output, recorded on the ventral roots. Transient spinal 5-HT2C receptor activation induces a long-lasting facilitation of these reflexes (LLFR) by largely unknown mechanisms. Two Sprague-Dawley substrains were used to characterize network properties involved in this serotonin (5-HT) receptor-mediated reflex plasticity. Serotonin more easily produced LLFR in one substrain and a long-lasting depression of reflexes (LLDR) in the other. Interestingly, LLFR and LLDR were bidirectionally interconvertible using 5-HT2A/2C and 5-HT1A receptor agonists, respectively, regardless of substrain. LLFR was predominantly Aβ afferent fiber mediated, consistent with prominent 5-HT2C receptor expression in the Aβ fiber projection territories (deeper spinal laminae). Reflex facilitation involved an unmasking of polysynaptic pathways and an increased receptive field size. LLFR emerged even when reflexes were evoked three to five times/h, indicating an activity independent induction. Both the NMDA and AMPA/kainate receptor-mediated components of the reflex could be facilitated, and facilitation was dependent on 5-HT receptor activation alone, not on coincident reflex activation in the presence of 5-HT. Selective blockade of GABAA and/or glycine receptors also did not prevent reflex amplification and so are not required for LLFR. Indeed, a more robust response was seen after blockade of spinal inhibition, indicating that inhibitory processes serve to limit reflex amplification. Overall we demonstrate that the serotonergic system has the capacity to induce long-lasting bidirectional changes in reflex strength in a manner that is nonassociative and independent of evoked activity or activation of ionotropic excitatory and inhibitory receptors. PMID:16033939

  19. Recombinant human betacellulin. Molecular structure, biological activities, and receptor interaction.

    PubMed

    Watanabe, T; Shintani, A; Nakata, M; Shing, Y; Folkman, J; Igarashi, K; Sasada, R

    1994-04-01

    Soluble forms of human betacellulin (BTC) were purified to homogeneity from the conditioned medium of mouse A9 cells transfected with the BTC precursor cDNA. Three types of soluble BTC, designated BTC-1a, BTC-1b and BTC-2, were resolved by cation-exchange and size-exclusion column chromatography. Physicochemical analysis has revealed that BTC-1a represents the glycosylated, intact molecule composed of 80 amino acid residues (Asp32 to Tyr111 of the precursor molecule). BTC-1b appears to be a truncated molecule lacking 12 amino acid residues from the amino terminus of BTC-1a. BTC-2 was found to be a 50-amino acid molecule (Arg62 to Tyr111) that corresponds to the epidermal growth factor (EGF) structural unit. The biological activities of these BTC molecules were essentially identical as judged by their mitogenicity on Balb/c 3T3 fibroblasts. BTC and EGF were equipotent in stimulating Balb/c 3T3 cell proliferation and rat mesangial cell Ca2+ mobilization as well as in inhibiting the growth of human epidermoid carcinoma A431 cells. BTC and EGF antagonized each other with similar dose dependence for binding to A431 cells, indicating that these factors bind the same receptor molecules with equivalent avidity. The Kd value of EGF receptor (EGFR) and BTC is 0.5 nM as determined on Balb/c 3T3 cells. In addition, human mammary carcinoma MDA-MB-453 cells, which express multiple members of the EGFR family, were found to possess 2.7 x 10(3) BTC binding sites/cell, and the binding was readily quenched by EGF. These results suggest that the primary receptor for BTC is EGFR. PMID:8144591

  20. Activation and Regulation of Purinergic P2X Receptor Channels

    PubMed Central

    Coddou, Claudio; Yan, Zonghe; Obsil, Tomas; Huidobro-Toro, J. Pablo

    2011-01-01

    Mammalian ATP-gated nonselective cation channels (P2XRs) can be composed of seven possible subunits, denoted P2X1 to P2X7. Each subunit contains a large ectodomain, two transmembrane domains, and intracellular N and C termini. Functional P2XRs are organized as homomeric and heteromeric trimers. This review focuses on the binding sites involved in the activation (orthosteric) and regulation (allosteric) of P2XRs. The ectodomains contain three ATP binding sites, presumably located between neighboring subunits and formed by highly conserved residues. The detection and coordination of three ATP phosphate residues by positively charged amino acids are likely to play a dominant role in determining agonist potency, whereas an AsnPheArg motif may contribute to binding by coordinating the adenine ring. Nonconserved ectodomain histidines provide the binding sites for trace metals, divalent cations, and protons. The transmembrane domains account not only for the formation of the channel pore but also for the binding of ivermectin (a specific P2X4R allosteric regulator) and alcohols. The N- and C- domains provide the structures that determine the kinetics of receptor desensitization and/or pore dilation and are critical for the regulation of receptor functions by intracellular messengers, kinases, reactive oxygen species and mercury. The recent publication of the crystal structure of the zebrafish P2X4.1R in a closed state provides a major advance in the understanding of this family of receptor channels. We will discuss data obtained from numerous site-directed mutagenesis experiments accumulated during the last 15 years with reference to the crystal structure, allowing a structural interpretation of the molecular basis of orthosteric and allosteric ligand actions. PMID:21737531

  1. Probing Binding and Cellular Activity of Pyrrolidinone and Piperidinone Small Molecules Targeting the Urokinase Receptor

    PubMed Central

    Mani, Timmy; Liu, Degang; Zhou, Donghui; Li, Liwei; Knabe, William Eric; Wang, Fang; Oh, Kyungsoo; Meroueh, Samy O.

    2014-01-01

    The urokinase receptor (uPAR) is a cell-surface protein that is part of an intricate web of transient and tight protein interactions that promote cancer cell invasion and metastasis. Here we evaluate the binding and biological activity of a new class of pyrrolidinone (3) and piperidinone (4) compounds, along with derivatives of previously-identified pyrazole (1) and propylamine (2) compounds. Competition assays revealed that the compounds displaced a fluorescently-labeled peptide (AE147-FAM) with inhibition constant Ki ranging from 6 to 63 μM. Structure-based computational pharmacophore analysis followed by extensive explicit-solvent molecular dynamics simulations and free energy calculations suggested pyrazole-based 1a and piperidinone-based 4 adopt different binding modes, despite their similar two-dimensional structures. In cells, compounds 1b and 1f showed significant inhibition of breast MDA-MB-231 and pancreatic ductal adenocarcinoma (PDAC) cell proliferation, but 4b exhibited no cytotoxicity even at concentrations of 100 μM. 1f impaired MDA-MB-231 invasion, adhesion, and migration in a concentration-dependent manner, while 4b inhibited only invasion. 1f inhibited gelatinase (MMP-9) activity in a concentration-dependent manner, while 4b showed no effect suggesting different mechanisms for inhibition of cell invasion. Signaling studies further highlighted these differences, showing that pyrazole compounds completely inhibited ERK phosphorylation and impaired HIF1α and NF-κB signaling, while pyrrolidinone and piperidinone (3 and 4b) had no effect. Annexin V staining suggested that the effect of pyrazole-based 1f on proliferation was due to cell killing through an apoptotic mechanism. PMID:24115356

  2. uPAR-induced cell adhesion and migration: vitronectin provides the key

    PubMed Central

    Madsen, Chris D.; Ferraris, Gian Maria Sarra; Andolfo, Annapaola; Cunningham, Orla; Sidenius, Nicolai

    2007-01-01

    Expression of the membrane receptor uPAR induces profound changes in cell morphology and migration, and its expression correlates with the malignant phenotype of cancers. To identify the molecular interactions essential for uPAR function in these processes, we carried out a complete functional alanine scan of uPAR in HEK293 cells. Of the 255 mutant receptors characterized, 34 failed to induce changes in cell morphology. Remarkably, the molecular defect of all of these mutants was a specific reduction in integrin-independent cell binding to vitronectin. A membrane-tethered plasminogen activator inhibitor-1, which has the same binding site in vitronectin as uPAR, replicated uPAR-induced changes. A direct uPAR–vitronectin interaction is thus both required and sufficient to initiate downstream changes in cell morphology, migration, and signal transduction. Collectively these data demonstrate a novel mechanism by which a cell adhesion molecule lacking inherent signaling capability evokes complex cellular responses by modulating the contact between the cell and the matrix without the requirement for direct lateral protein–protein interactions. PMID:17548516

  3. Diabetes or peroxisome proliferator-activated receptor alpha agonist increases mitochondrial thioesterase I activity in heart

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peroxisome proliferator-activated receptor alpha (PPAR alpha) is a transcriptional regulator of the expression of mitochondrial thioesterase I (MTE-I) and uncoupling protein 3 (UCP3), which are induced in the heart at the mRNA level in response to diabetes. Little is known about the regulation of pr...

  4. Modulation of Toll-Like Receptor Activity by Leukocyte Ig-Like Receptors and Their Effects during Bacterial Infection

    PubMed Central

    Pilsbury, Louise E.; Allen, Rachel L.; Vordermeier, Martin

    2010-01-01

    Toll-like receptors (TLRs) are a potent trigger for inflammatory immune responses. Without tight regulation their activation could lead to pathology, so it is imperative to extend our understanding of the regulatory mechanisms that govern TLR expression and function. One family of immunoregulatory proteins which can provide a balancing effect on TLR activity are the Leukocyte Ig-like receptors (LILRs), which act as innate immune receptors for self-proteins. Here we describe the LILR family, their inhibitory effect on TLR activity in cells of the monocytic lineage, their signalling pathway, and their antimicrobial effects during bacterial infection. Agents have already been identified which enhances or inhibits LILR activity raising the future possibility that modulation of LILR function could be used as a means to modulate TLR activity. PMID:20634939

  5. Factor XII stimulates ERK1/2 and Akt through uPAR, integrins, and the EGFR to initiate angiogenesis

    PubMed Central

    LaRusch, Gretchen A.; Mahdi, Fakhri; Shariat-Madar, Zia; Adams, Gregory; Sitrin, Robert G.; Zhang, Wan Ming; McCrae, Keith R.

    2010-01-01

    Factor XII (FXII) and high molecular weight kininogen (HK) mutually block each other's binding to the urokinase plasminogen activator receptor (uPAR). We investigated if FXII stimulates cells by interacting with uPAR. FXII (3-62nM) with 0.05mM Zn2+ induces extracellular signal-related kinase 1/2 (ERK1/2; mitogen-activated protein kinase 44 [MAPK44] andMAPK42) and Akt (Ser473) phosphorylation in endothelial cells. FXII-induced phosphorylation of ERK1/2 or Akt is a zymogen activity, not an enzymatic event. ERK1/2 or Akt phosphorylation is blocked upstream by PD98059 or Wortmannin or LY294002, respectively. An uPAR signaling region for FXII is on domain 2 adjacent to uPAR's integrin binding site. Cleaved HK or peptides from HK's domain 5 blocks FXII-induced ERK1/2 and Akt phosphorylation. A β1 integrin peptide that binds uPAR, antibody 6S6 to β1 integrin, or the epidermal growth factor receptor (EGFR) inhibitor AG1478 blocks FXII-induced phosphorylation of ERK1/2 and Akt. FXII induces endothelial cell proliferation and 5-bromo-2′deoxy-uridine incorporation. FXII stimulates aortic sprouting in normal but not uPAR-deficient mouse aorta. FXII produces angiogenesis in matrigel plugs in normal but not uPAR-deficient mice. FXII knockout mice have reduced constitutive and wound-induced blood vessel number. In sum, FXII initiates signaling mediated by uPAR, β1 integrin, and the EGFR to induce human umbilical vein endothelial cell proliferation, growth, and angiogenesis. PMID:20228268

  6. Activation of endplate nicotinic acetylcholine receptors by agonists.

    PubMed

    Auerbach, Anthony

    2015-10-15

    The interaction of a small molecule made in one cell with a large receptor made in another is the signature event of cell signaling. Understanding the structure and energy changes associated with agonist activation is important for engineering drugs, receptors and synapses. The nicotinic acetylcholine receptor (AChR) is a ∼300kD ion channel that binds the neurotransmitter acetylcholine (ACh) and other cholinergic agonists to elicit electrical responses in the central and peripheral nervous systems. This mini-review is in two sections. First, general concepts of skeletal muscle AChR operation are discussed in terms of energy landscapes for conformational change. Second, adult vs. fetal AChRs are compared with regard to interaction energies between ACh and agonist-site side chains, measured by single-channel electrophysiology and molecular dynamics simulations. The five aromatic residues that form the core of each agonist binding site can be divided into two working groups, a triad (led by αY190) that behaves similarly at all sites and a coupled pair (led by γW55) that has a large influence on affinity only in fetal AChRs. Each endplate AChR has 5 homologous subunits, two of α(1) and one each of β, δ, and either γ (fetal) or ϵ (adult). These nicotinic AChRs have only 2 functional agonist binding sites located in the extracellular domain, at αδ and either αγ or αϵ subunit interfaces. The receptor undergoes a reversible, global isomerization between structures called C and O. The C shape does not conduct ions and has a relatively low affinity for ACh, whereas O conducts cations and has a higher affinity. When both agonist sites are empty (filled only with water) the probability of taking on the O conformation (PO) is low, <10(-6). When ACh molecules occupy the agonist sites the C→O opening rate constant and C↔O gating equilibrium constant increase dramatically. Following a pulse of ACh at the nerve-muscle synapse, the endplate current rises rapidly

  7. Differential uPAR recruitment in caveolar-lipid rafts by GM1 and GM3 gangliosides regulates endothelial progenitor cells angiogenesis.

    PubMed

    Margheri, Francesca; Papucci, Laura; Schiavone, Nicola; D'Agostino, Riccardo; Trigari, Silvana; Serratì, Simona; Laurenzana, Anna; Biagioni, Alessio; Luciani, Cristina; Chillà, Anastasia; Andreucci, Elena; Del Rosso, Tommaso; Margheri, Giancarlo; Del Rosso, Mario; Fibbi, Gabriella

    2015-01-01

    Gangliosides and the urokinase plasminogen activator receptor (uPAR) tipically partition in specialized membrane microdomains called lipid-rafts. uPAR becomes functionally important in fostering angiogenesis in endothelial progenitor cells (EPCs) upon recruitment in caveolar-lipid rafts. Moreover, cell membr