Science.gov

Sample records for activated receptors pars

  1. Protease-activated receptor-2 (PAR2) in cardiovascular system.

    PubMed

    Bucci, Mariarosaria; Roviezzo, Fiorentina; Cirino, Giuseppe

    2005-10-01

    Vascular system is constituted by a complex and articulate network, e.g. arteries, arterioles, venules and veins, that requires a high degree of coordination between different elemental cell types. Proteinase-activated receptors (PARs) constitute a recent described family of 7-transmembrane G protein-coupled receptors that are activated by proteolysis. In recent years several evidence have been accumulated for an involvement of this receptor in the response to endothelial injury in vitro and in vivo experimental settings suggesting a role for PAR2 in the pathophysiology of cardiovascular system. This review will deal with the role of PAR2 receptor in the cardiovascular system analyzing both in vivo and in vitro published data. In particular this review will deal with the role of this receptor in vascular reactivity, ischemia/reperfusion injury, coronary atherosclerotic lesions and angiogenesis.

  2. Protease-activated receptor (PAR) 1 and PAR4 differentially regulate factor V expression from human platelets.

    PubMed

    Duvernay, Matthew; Young, Summer; Gailani, David; Schoenecker, Jonathan; Hamm, Heidi E; Hamm, Heidi

    2013-04-01

    With the recent interest of protease-activated receptors (PAR) 1 and PAR4 as possible targets for the treatment of thrombotic disorders, we compared the efficacy of protease-activated receptor (PAR)1 and PAR4 in the generation of procoagulant phenotypes on platelet membranes. PAR4-activating peptide (AP)-stimulated platelets promoted thrombin generation in plasma up to 5 minutes earlier than PAR1-AP-stimulated platelets. PAR4-AP-mediated factor V (FV) association with the platelet surface was 1.6-fold greater than for PAR1-AP. Moreover, PAR4 stimulation resulted in a 3-fold greater release of microparticles, compared with PAR1 stimulation. More robust FV secretion and microparticle generation with PAR4-AP was attributable to stronger and more sustained phosphorylation of myosin light chain at serine 19 and threonine 18. Inhibition of Rho-kinase reduced PAR4-AP-mediated FV secretion and microparticle generation to PAR1-AP-mediated levels. Thrombin generation assays measuring prothrombinase complex activity demonstrated 1.5-fold higher peak thrombin levels on PAR4-AP-stimulated platelets, compared with PAR1-AP-stimulated platelets. Rho-kinase inhibition reduced PAR4-AP-mediated peak thrombin generation by 25% but had no significant effect on PAR1-AP-mediated thrombin generation. In conclusion, stimulation of PAR4 on platelets leads to faster and more robust thrombin generation, compared with PAR1 stimulation. The greater procoagulant potential is related to more efficient FV release from intracellular stores and microparticle production driven by stronger and more sustained myosin light chain phosphorylation. These data have implications about the role of PAR4 during hemostasis and are clinically relevant in light of recent efforts to develop PAR antagonists to treat thrombotic disorders.

  3. Urokinase type plasminogen activator receptor (uPAR) as a new therapeutic target in cancer

    PubMed Central

    Montuori, Nunzia; Pesapane, Ada; Rossi, Francesca W; Giudice, Valentina; De Paulis, Amato; Selleri, Carmine; Ragno, Pia

    2016-01-01

    The urokinase (uPA)-type plasminogen activator receptor (uPAR) is a GPI-anchored receptor that focuses urokinase (uPA) proteolytic activity on the cell surface. uPAR also regulates cell adhesion, migration and proliferation, protects from apoptosis and contributes to epithelial mesenchymal transition (EMT), independently of uPA enzymatic activity. Indeed, uPAR interacts with beta1, beta2 and beta3 integrins, thus regulating their activities. uPAR cross-talks with receptor tyrosine kinases through integrins and regulates cancer cell dormancy, proliferation and angiogenesis. Moreover, uPAR mediates uPA-dependent cell migration and chemotaxis induced by fMet-Leu-Phe (fMLF), through its association with fMLF-receptors (fMLF-Rs). Further, uPAR is an adhesion receptor because it binds vitronectin (VN), a component of provisional extracellular matrix. High uPAR expression predicts for more aggressive disease in several cancer types for its ability to increase invasion and metastasis. In fact, uPAR has been hypothesized to be the link between tumor cell dormancy and proliferation that usually precedes the onset of metastasis. Thus, inhibiting uPAR could be a feasible approach to affect tumor growth and metastasis. Here, we review the more recent advances in the development of uPAR-targeted anti-cancer therapeutic agents suitable for further optimization or ready for the evaluation in early clinical trials. PMID:27896223

  4. Targeting a Proteinase-Activated Receptor 4 (PAR4) Carboxyl Terminal Motif to Regulate Platelet Function.

    PubMed

    Ramachandran, Rithwik; Mihara, Koichiro; Thibeault, Pierre; Vanderboor, Christina M; Petri, Björn; Saifeddine, Mahmoud; Bouvier, Michel; Hollenberg, Morley D

    2017-04-01

    Thrombin initiates human platelet aggregation by coordinately activating proteinase-activated receptors (PARs) 1 and 4. However, targeting PAR1 with an orthosteric-tethered ligand binding-site antagonist results in bleeding, possibly owing to the important role of PAR1 activation on cells other than platelets. Because of its more restricted tissue expression profile, we have therefore turned to PAR4 as an antiplatelet target. We have identified an intracellular PAR4 C-terminal motif that regulates calcium signaling and β-arrestin interactions. By disrupting this PAR4 calcium/β-arrestin signaling process with a novel cell-penetrating peptide, we were able to inhibit both thrombin-triggered platelet aggregation in vitro and clot consolidation in vivo. We suggest that targeting PAR4 represents an attractive alternative to blocking PAR1 for antiplatelet therapy in humans.

  5. Humanizing the Protease-Activated Receptor (PAR) Expression Profile in Mouse Platelets by Knocking PAR1 into the Par3 Locus Reveals PAR1 Expression Is Not Tolerated in Mouse Platelets

    PubMed Central

    French, Shauna L.; Paramitha, Antonia C.; Moon, Mitchell J.; Dickins, Ross A.; Hamilton, Justin R.

    2016-01-01

    Anti-platelet drugs are the mainstay of pharmacotherapy for heart attack and stroke prevention, yet improvements are continually sought. Thrombin is the most potent activator of platelets and targeting platelet thrombin receptors (protease-activated receptors; PARs) is an emerging anti-thrombotic approach. Humans express two PARs on their platelets–PAR1 and PAR4. The first PAR1 antagonist was recently approved for clinical use and PAR4 antagonists are in early clinical development. However, pre-clinical studies examining platelet PAR function are challenging because the platelets of non-primates do not accurately reflect the PAR expression profile of human platelets. Mice, for example, express Par3 and Par4. To address this limitation, we aimed to develop a genetically modified mouse that would express the same repertoire of platelet PARs as humans. Here, human PAR1 preceded by a lox-stop-lox was knocked into the mouse Par3 locus, and then expressed in a platelet-specific manner (hPAR1-KI mice). Despite correct targeting and the predicted loss of Par3 expression and function in platelets from hPAR1-KI mice, no PAR1 expression or function was detected. Specifically, PAR1 was not detected on the platelet surface nor internally by flow cytometry nor in whole cell lysates by Western blot, while a PAR1-activating peptide failed to induce platelet activation assessed by either aggregation or surface P-selectin expression. Platelets from hPAR1-KI mice did display significantly diminished responsiveness to thrombin stimulation in both assays, consistent with a Par3-/- phenotype. In contrast to the observations in hPAR1-KI mouse platelets, the PAR1 construct used here was successfully expressed in HEK293T cells. Together, these data suggest ectopic PAR1 expression is not tolerated in mouse platelets and indicate a different approach is required to develop a small animal model for the purpose of any future preclinical testing of PAR antagonists as anti-platelet drugs. PMID

  6. Role of protease-activated receptors 2 (PAR2) in ocular infections and inflammation

    PubMed Central

    Tripathi, Trivendra; Alizadeh, Hassan

    2015-01-01

    Protease-activated receptors (PARs) belong to a unique family of G protein-coupled receptors (GPCRs) that are cleaved at an activation site within the N-terminal exodomain by a variety of proteinases, essentially of the serine (Ser) proteinase family. After cleavage, the new N-terminal sequence functions as a tethered ligand, which binds intramolecularly to activate the receptor and initiate signaling. Cell signals induced through the activation of PARs appear to play a significant role in innate and adoptive immune responses of the cornea, which is constantly exposed to proteinases under physiological or pathophysiological conditions. Activation of PARs interferes with all aspects of the corneal physiology such as barrier function, transports, innate and adoptive immune responses, and functions of corneal nerves. It is not known whether the proteinase released from the microorganism can activate PARs and triggers the inflammatory responses. The role of PAR2 expressed by the corneal epithelial cells and activation by serine protease released from microorganism is discussed here. Recent evidences suggest that activation of PAR2, by the serine proteinases, play an important role in innate and inflammatory responses of the corneal infection. PMID:26078987

  7. Hypersensitivity Induced by Activation of Spinal Cord PAR2 Receptors Is Partially Mediated by TRPV1 Receptors

    PubMed Central

    Mrozkova, Petra; Spicarova, Diana; Palecek, Jiri

    2016-01-01

    Protease-activated receptors 2 (PAR2) and transient receptor potential vanilloid 1 (TRPV1) receptors in the peripheral nerve endings are implicated in the development of increased sensitivity to mechanical and thermal stimuli, especially during inflammatory states. Both PAR2 and TRPV1 receptors are co-expressed in nociceptive dorsal root ganglion (DRG) neurons on their peripheral endings and also on presynaptic endings in the spinal cord dorsal horn. However, the modulation of nociceptive synaptic transmission in the superficial dorsal horn after activation of PAR2 and their functional coupling with TRPV1 is not clear. To investigate the role of spinal PAR2 activation on nociceptive modulation, intrathecal drug application was used in behavioural experiments and patch-clamp recordings of spontaneous, miniature and dorsal root stimulation-evoked excitatory postsynaptic currents (sEPSCs, mEPSCs, eEPSCs) were performed on superficial dorsal horn neurons in acute rat spinal cord slices. Intrathecal application of PAR2 activating peptide SLIGKV-NH2 induced thermal hyperalgesia, which was prevented by pretreatment with TRPV1 antagonist SB 366791 and was reduced by protein kinases inhibitor staurosporine. Patch-clamp experiments revealed robust decrease of mEPSC frequency (62.8 ± 4.9%), increase of sEPSC frequency (127.0 ± 5.9%) and eEPSC amplitude (126.9 ± 12.0%) in dorsal horn neurons after acute SLIGKV-NH2 application. All these EPSC changes, induced by PAR2 activation, were prevented by SB 366791 and staurosporine pretreatment. Our results demonstrate an important role of spinal PAR2 receptors in modulation of nociceptive transmission in the spinal cord dorsal horn at least partially mediated by activation of presynaptic TRPV1 receptors. The functional coupling between the PAR2 and TRPV1 receptors on the central branches of DRG neurons may be important especially during different pathological states when it may enhance pain perception. PMID:27755539

  8. Participation of the urokinase-type plasminogen activator receptor (uPAR) in neutrophil transendothelial migration.

    PubMed

    Pliyev, Boris K; Antonova, Olga A; Menshikov, Mikhail

    2011-05-01

    The mechanisms underlying migration of neutrophils across endothelium are not completely understood. The urokinase-type plasminogen activator receptor (uPAR) plays a key role in neutrophil adhesion and migration. In the present study, we addressed whether uPAR regulates neutrophil transendothelial migration. We first showed that siRNA-mediated knockdown of uPAR in human umbilical vein endothelial cells (HUVECs) did not affect neutrophil migration across HUVEC monolayers indicating that endothelial uPAR does not regulate neutrophil transmigration. In contrast, the transmigration was significantly inhibited by Fab' fragment of anti-uPAR monoclonal antibody and proteolytically inactive urokinase (uPA), whereas inhibition of proteolytical activity of endogenous uPA (with amiloride or plasminogen activator inhibitor-1) did not affect the transmigration. Both the anti-uPAR Fab' fragment and proteolytically inactive uPA did not exert significant effects upon the transmigration conducted in the presence of F(ab')(2) fragment of blocking antibody to integrin Mac-1 indicating that uPAR regulates Mac-1-dependent transmigration. Mac-1-dependent, but not Mac-1-independent, transmigration was significantly reduced in the presence of N-acetyl-d-glucosamine and d-mannose, the saccharides that disrupt uPAR/Mac-1 association, but was unaffected in the presence of control saccharides (d-sorbitol and sucrose). We conclude that physical association of uPAR with Mac-1 mediates the regulatory effect of uPAR over the transmigration. Finally, we provide evidence that the functional cooperation between uPAR and Mac-1 is essential at both adhesion and diapedesis steps of neutrophil migration across endothelium. Thus, uPAR expressed on neutrophil plasma membrane regulates transendothelial migration independently of uPA proteolytical activity and acting as a cofactor for integrin Mac-1.

  9. Protease-activated receptors (PARs)--biology and role in cancer invasion and metastasis.

    PubMed

    Wojtukiewicz, Marek Z; Hempel, Dominika; Sierko, Ewa; Tucker, Stephanie C; Honn, Kenneth V

    2015-12-01

    Although many studies have demonstrated that components of the hemostatic system may be involved in signaling leading to cancer progression, the potential mechanisms by which they contribute to cancer dissemination are not yet precisely understood. Among known coagulant factors, tissue factor (TF) and thrombin play a pivotal role in cancer invasion. They may be generated in the tumor microenvironment independently of blood coagulation and can induce cell signaling through activation of protease-activated receptors (PARs). PARs are transmembrane G-protein-coupled receptors (GPCRs) that are activated by a unique proteolytic mechanism. They play important roles in vascular physiology, neural tube closure, hemostasis, and inflammation. All of these agents (TF, thrombin, PARs-mainly PAR-1 and PAR-2) are thought to promote cancer invasion and metastasis at least in part by facilitating tumor cell migration, angiogenesis, and interactions with host vascular cells, including platelets, fibroblasts, and endothelial cells lining blood vessels. Here, we discuss the role of PARs and their activators in cancer progression, focusing on TF- and thrombin-mediated actions. Therapeutic options tailored specifically to inhibit PAR-induced signaling in cancer patients are presented as well.

  10. Mapping transmembrane residues of proteinase activated receptor 2 (PAR2) that influence ligand-modulated calcium signaling.

    PubMed

    Suen, J Y; Adams, M N; Lim, J; Madala, P K; Xu, W; Cotterell, A J; He, Y; Yau, M K; Hooper, J D; Fairlie, D P

    2017-03-01

    Proteinase-activated receptor 2 (PAR2) is a G protein-coupled receptor involved in metabolism, inflammation, and cancers. It is activated by proteolysis, which exposes a nascent N-terminal sequence that becomes a tethered agonist. Short synthetic peptides corresponding to this sequence also activate PAR2, while small organic molecules show promising PAR2 antagonism. Developing PAR2 ligands into pharmaceuticals is hindered by a lack of knowledge of how synthetic ligands interact with and differentially modulate PAR2. Guided by PAR2 homology modeling and ligand docking based on bovine rhodopsin, followed by cross-checking with newer PAR2 models based on ORL-1 and PAR1, site-directed mutagenesis of PAR2 was used to investigate the pharmacology of three agonists (two synthetic agonists and trypsin-exposed tethered ligand) and one antagonist for modulation of PAR2 signaling. Effects of 28 PAR2 mutations were examined for PAR2-mediated calcium mobilization and key mutants were selected for measuring ligand binding. Nineteen of twenty-eight PAR2 mutations reduced the potency of at least one ligand by >10-fold. Key residues mapped predominantly to a cluster in the transmembrane (TM) domains of PAR2, differentially influence intracellular Ca(2+) induced by synthetic agonists versus a native agonist, and highlight subtly different TM residues involved in receptor activation. This is the first evidence highlighting the importance of the PAR2 TM regions for receptor activation by synthetic PAR2 agonists and antagonists. The trypsin-cleaved N-terminus that activates PAR2 was unaffected by residues that affected synthetic peptides, challenging the widespread practice of substituting peptides for proteases to characterize PAR2 physiology.

  11. Targeting of peptide conjugated magnetic nanoparticles to urokinase plasminogen activator receptor (uPAR) expressing cells

    NASA Astrophysics Data System (ADS)

    Hansen, Line; Unmack Larsen, Esben Kjær; Nielsen, Erik Holm; Iversen, Frank; Liu, Zhuo; Thomsen, Karen; Pedersen, Michael; Skrydstrup, Troels; Nielsen, Niels Chr.; Ploug, Michael; Kjems, Jørgen

    2013-08-01

    Ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles are currently being used as a magnetic resonance imaging (MRI) contrast agent in vivo, mainly by their passive accumulation in tissues of interest. However, a higher specificity can ideally be achieved when the nanoparticles are targeted towards cell specific receptors and this may also facilitate specific drug delivery by an enhanced target-mediated endocytosis. We report efficient peptide-mediated targeting of magnetic nanoparticles to cells expressing the urokinase plasminogen activator receptor (uPAR), a surface biomarker for poor patient prognosis shared by several cancers including breast, colorectal, and gastric cancers. Conjugation of a uPAR specific targeting peptide onto polyethylene glycol (PEG) coated USPIO nanoparticles by click chemistry resulted in a five times higher uptake in vitro in a uPAR positive cell line compared to nanoparticles carrying a non-binding control peptide. In accordance with specific receptor-mediated recognition, a low uptake was observed in the presence of an excess of ATF, a natural ligand for uPAR. The uPAR specific magnetic nanoparticles can potentially provide a useful supplement for tumor patient management when combined with MRI and drug delivery.Ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles are currently being used as a magnetic resonance imaging (MRI) contrast agent in vivo, mainly by their passive accumulation in tissues of interest. However, a higher specificity can ideally be achieved when the nanoparticles are targeted towards cell specific receptors and this may also facilitate specific drug delivery by an enhanced target-mediated endocytosis. We report efficient peptide-mediated targeting of magnetic nanoparticles to cells expressing the urokinase plasminogen activator receptor (uPAR), a surface biomarker for poor patient prognosis shared by several cancers including breast, colorectal, and gastric cancers. Conjugation of a uPAR specific

  12. Transient Activation of GABAB Receptors Suppresses SK Channel Currents in Substantia Nigra Pars Compacta Dopaminergic Neurons

    PubMed Central

    Estep, Chad M.; Galtieri, Daniel J.; Zampese, Enrico; Goldberg, Joshua A.; Brichta, Lars; Greengard, Paul; Surmeier, D. James

    2016-01-01

    Dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc) are richly innervated by GABAergic neurons. The postsynaptic effects of GABA on SNc DA neurons are mediated by a mixture of GABAA and GABAB receptors. Although activation of GABAA receptors inhibits spike generation, the consequences of GABAB receptor activation are less well characterized. To help fill this gap, perforated patch recordings were made from young adult mouse SNc DA neurons. Sustained stimulation of GABAB receptors hyperpolarized SNc DA neurons, as previously described. However, transient stimulation of GABAB receptors by optical uncaging of GABA did not; rather, it reduced the opening of small-conductance, calcium-activated K+ (SK) channels and increased the irregularity of spiking. This modulation was attributable to inhibition of adenylyl cyclase and protein kinase A. Thus, because suppression of SK channel activity increases the probability of burst spiking, transient co-activation of GABAA and GABAB receptors could promote a pause-burst pattern of spiking. PMID:28036359

  13. [Development of agonists/antagonists for protease-activated receptors (PARs) and the possible therapeutic application to gastrointestinal diseases].

    PubMed

    Sekiguchi, Fumiko

    2005-06-01

    Protease-activated receptors (PARs), a family of G-protein-coupled seven-transmembrane-domain receptors, are activated by proteolytic unmasking of the N-terminal cryptic tethered ligand by certain serine proteases. Among four PAR family members cloned to date, PAR-1, PAR-2, and PAR-4 can also be activated through a non-enzymatic mechanism, which is achieved by direct binding of exogenously applied synthetic peptides based on the tethered ligand sequence, known as PARs-activating peptides, to the body of the receptor. Various peptide mimetics have been synthesized as agonists for PARs with improved potency, selectivity, and stability. Some peptide mimetics and/or nonpeptide compounds have also been developed as antagonists for PAR-1 and PAR-4. PARs are widely distributed in the mammalian body, especially throughout the alimentary systems, and play various roles in physiological/pathophysiological conditions, i.e., modulation of salivary, gastric, or pancreatic glandular exocrine secretion, gastrointestinal smooth muscle motility, gastric mucosal cytoprotection, suppression/facilitation of visceral pain and inflammation, etc. Thus PARs are now considered novel therapeutic targets, and development of selective agonists and/or antagonists for PARs might provide a novel strategy for the treatment of various diseases that are resistant to current therapeutics.

  14. Protease activated receptor 1 (PAR1) enhances Src-mediated tyrosine phosphorylation of NMDA receptor in intracerebral hemorrhage (ICH)

    PubMed Central

    Duan, Zhen-Zhen; Zhang, Feng; Li, Feng-Ying; Luan, Yi-Fei; Guo, Peng; Li, Yi-Hang; Liu, Yong; Qi, Su-Hua

    2016-01-01

    It has been demonstrated that Src could modulate NMDA receptor, and PAR1 could also affect NMDAR signaling. However, whether PAR1 could regulate NMDAR through Src under ICH has not yet been investigated. In this study, we demonstrated the role of Src-PSD95-GluN2A signaling cascades in rat ICH model and in vitro thrombin challenged model. Using the PAR1 agonist SFLLR, antagonist RLLFS and Src inhibitor PP2, electrophysiological analysis showed that PAR1 regulated NMDA-induced whole-cell currents (INMDA) though Src in primary cultured neurons. Both in vivo and in vitro results showed the elevated phosphorylation of tyrosine in Src and GluN2A and enhanced interaction of the Src-PSD95-GluN2A under model conditions. Treatment with the PAR1 antagonist RLLFS, AS-PSD95 (Antisense oligonucleotide against PSD95) and Src inhibitor PP2 inhibited the interaction among Src-PSD95-GluN2A, and p-Src, p-GluN2A. Co-application of SFLLR and AS-PSD95, PP2, or MK801 (NMDAR inhibitor) abolished the effect of SF. In conclusion, our results demonstrated that activated thrombin receptor PAR1 induced Src activation, enhanced the interaction among Src-PSD95-GluN2A signaling modules, and up-regulated GluN2A phosphorylation after ICH injury. Elucidation of such signaling cascades would possibly provide novel targets for ICH treatment. PMID:27385592

  15. Protease Activated Receptor 2 (PAR2) Induces Long-Term Depression in the Hippocampus through Transient Receptor Potential Vanilloid 4 (TRPV4)

    PubMed Central

    Shavit-Stein, Efrat; Artan-Furman, Avital; Feingold, Ekaterina; Ben Shimon, Marina; Itzekson-Hayosh, Zeev; Chapman, Joab; Vlachos, Andreas; Maggio, Nicola

    2017-01-01

    Protease activated receptors (PARs) are involved in regulating synaptic transmission and plasticity in the brain. While it is well-accepted that PAR1 mediates long-term potentiation (LTP) of excitatory synaptic strength, the role of PAR2 in synaptic plasticity remains not well-understood. In this study, we assessed the role of PAR2-signaling in plasticity at hippocampal Schaffer collateral-CA1 synapses. Using field potential recordings, we report that PAR2-activation leads to long-term depression (LTD) of synaptic transmission through a protein kinase A -dependent, Transient Receptor Potential Vanilloid 4 -mediated mechanism, which requires the activation of N-methyl-D-aspartate receptors. These results demonstrate that the effects of PAR2 on synaptic plasticity are distinct from what is observed upon PAR1-activation. Thus, we propose that the activation of different classes of PARs, i.e., PAR1 and PAR2, may set the threshold of synaptic plasticity in the hippocampal network by balancing LTP and LTD. PMID:28303089

  16. Activation of PAR2 receptors sensitizes primary afferents and causes leukocyte rolling and adherence in the rat knee joint

    PubMed Central

    Russell, FA; Schuelert, N; Veldhoen, VE; Hollenberg, MD; McDougall, JJ

    2012-01-01

    Background and Purpose The PAR2 receptors are involved in chronic arthritis by mechanisms that are as yet unclear. Here, we examined PAR2 activation in the rat knee joint. Experimental Approach PAR2 in rat knee joint dorsal root ganglia (DRG) cells at L3-L5, retrogradely labelled with Fluoro-gold (FG) were demonstrated immunohistochemically. Electrophysiological recordings from knee joint nerve fibres in urethane anaesthetized Wistar rats assessed the effects of stimulating joint PAR2 with its activating peptide, 2-furoyl-LIGRLO-NH2 (1–100 nmol·100 μL−1, via close intra-arterial injection). Fibre firing rate was recorded during joint rotations before and 15 min after administration of PAR2 activating peptide or control peptide. Leukocyte kinetics in the synovial vasculature upon PAR2 activation were followed by intravital microscopy for 60 min after perfusion of 2-furoyl-LIGRLO-NH2 or control peptide. Roles for transient receptor potential vanilloid-1 (TRPV1) or neurokinin-1 (NK1) receptors in the PAR2 responses were assessed using the selective antagonists, SB366791 and RP67580 respectively. Key Results PAR2 were expressed in 59 ± 5% of FG-positive DRG cells; 100 nmol 2-furoyl-LIGRLO-NH2 increased joint fibre firing rate during normal and noxious rotation, maximal at 3 min (normal; 110 ± 43%, noxious; 90 ± 31%). 2-Furoyl-LIGRLO-NH2 also significantly increased leukocyte rolling and adhesion over 60 min. All these effects were blocked by pre-treatment with SB366791 and RP67580 (P < 0.05 compared with 2-furoyl-LIGRLO-NH2 alone). Conclusions and Implications PAR2 receptors play an acute inflammatory role in the knee joint via TRPV1- and NK1-dependent mechanisms involving both PAR2-mediated neuronal sensitization and leukocyte trafficking. PMID:22849826

  17. Proteinase-activated receptor 2 (PAR(2)) in cholangiocarcinoma (CCA) cells: effects on signaling and cellular level.

    PubMed

    Kaufmann, Roland; Hascher, Alexander; Mussbach, Franziska; Henklein, Petra; Katenkamp, Kathrin; Westermann, Martin; Settmacher, Utz

    2012-12-01

    In this study, we demonstrate functional expression of the proteinase-activated receptor 2 (PAR(2)), a member of a G-protein receptor subfamily in primary cholangiocarcinoma (PCCA) cell cultures. Treatment of PCCA cells with the serine proteinase trypsin and the PAR(2)-selective activating peptide, furoyl-LIGRLO-NH(2), increased migration across a collagen membrane barrier. This effect was inhibited by a PAR(2)-selective pepducin antagonist peptide (P2pal-18S) and it was also blocked with the Met receptor tyrosine kinase (Met) inhibitors SU 11274 and PHA 665752, the MAPKinase inhibitors PD 98059 and SL 327, and the Stat3 inhibitor Stattic. The involvement of Met, p42/p44 MAPKinases and Stat3 in PAR(2)-mediated PCCA cell signaling was further supported by the findings that trypsin and the PAR(2)-selective agonist peptide, 2-furoyl-LIGRLO-NH(2), stimulated activating phosphorylation of these signaling molecules in cholangiocarcinoma cells. With our results, we provide a novel signal transduction module in cholangiocarcinoma cell migration involving PAR(2)-driven activation of Met, p42/p44 MAPKinases and Stat3.

  18. Urokinase-type plasminogen activator receptor (uPAR) as a promising new imaging target: potential clinical applications

    PubMed Central

    Persson, Morten; Kjaer, Andreas

    2013-01-01

    Urokinase-type plasminogen activator receptor (uPAR) has been shown to be of special importance during cancer invasion and metastasis. However, currently, tissue samples are needed for measurement of uPAR expression limiting the potential as a clinical routine. Therefore, non-invasive methods are needed. In line with this, uPAR has recently been identified as a very promising imaging target candidate. uPAR consists of three domains attached to the cell membrane via a glycosylphosphatidylinositol (GPI) anchor and binds it natural ligand uPA with high affinity to localize plasminogen activation at the cell surface. Due to the importance of uPAR in cancer invasion and metastasis, a number of high-affinity ligands have been identified during the last decades. These ligands have recently been used as starting point for the development of a number of ligands for imaging of uPAR using various imaging modalities such as optical imaging, magnetic resonance imaging, single photon emission computer tomography (SPECT) and positron emission topography (PET). In this review, we will discuss recent advances in the development of uPAR-targeted imaging ligands according to imaging modality. In addition, we will discuss the potential future clinical application for uPAR imaging as a new imaging biomarker. PMID:23701192

  19. The Clinical Value of Soluble Urokinase Plasminogen Activator Receptor (suPAR) Levels in Autoimmune Connective Tissue Disorders

    PubMed Central

    Toldi, Gergely; Balog, Attila

    2016-01-01

    The assessment of the general inflammatory condition of patients with autoimmune connective tissue disorders (ACTD) is a major challenge. The use of traditional inflammatory markers including CRP-levels and erythrocyte sedimentation rate (ESR) is limited by several preanalytical factors and their low specificities. Soluble urokinase plasminogen activator receptor (suPAR) is one of the novel candidate markers that is increasingly used in immune mediated disorders. In our studies we compared suPAR levels of patients with rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), systemic sclerosis (SSc) and ankylosing spondylitis with those of healthy controls. suPAR provided valuable clinical information on disease activity in RA, SLE and SSc. We identified a subgroup of remitted RA patients, who presented still clinical symptoms of inflammatory activity which correlated to high plasma suPAR (while ESR and CRP were normal). In SLE we established specific suPAR cut-off values that support the discrimination between patients with high and those with moderate SLE activity. In patients with SSc suPAR correlated with objective measures of lung and other complications. In the majority of ACTDs including SLE, SSc or RA, suPAR is seemingly a good biomarker that would provide valuable clinical information. However, before the introduction of this novel parameter in laboratory repertoire important issues should be elucidated. These include the establishment of appropriate and disease specific cutoff values, clarification of interfering preanalytical values and underlying conditions and declaration of age- and gender-specific reference ranges. PMID:27683525

  20. Protease-Activated Receptor 2 (PAR2) Is Upregulated by Acanthamoeba Plasminogen Activator (aPA) and Induces Proinflammatory Cytokine in Human Corneal Epithelial Cells

    PubMed Central

    Tripathi, Trivendra; Abdi, Mahshid; Alizadeh, Hassan

    2014-01-01

    Purpose. Acanthamoeba plasminogen activator (aPA) is a serine protease elaborated by Acanthamoeba trophozoites that facilitates the invasion of trophozoites to the host and contributes to the pathogenesis of Acanthamoeba keratitis (AK). The aim of this study was to explore if aPA stimulates proinflammatory cytokine in human corneal epithelial (HCE) cells via the protease-activated receptors (PARs) pathway. Methods. Acanthamoeba castellanii trophozoites were grown in peptone-yeast extract glucose for 7 days, and the supernatants were collected and centrifuged. The aPA was purified using the fast protein liquid chromatography system, and aPA activity was determined by zymography assays. Human corneal epithelial cells were incubated with or without aPA (100 μg/mL), PAR1 agonists (thrombin, 10 μM; TRAP-6, 10 μM), and PAR2 agonists (SLIGRL-NH2, 100 μM; AC 55541, 10 μM) for 24 and 48 hours. Inhibition of PAR1 and PAR2 involved preincubating the HCE cells for 1 hour with the antagonist of PAR1 (SCH 79797, 60 μM) and PAR2 (FSLLRY-NH2, 100 μM) with or without aPA. Human corneal epithelial cells also were preincubated with PAR1 and PAR2 antagonists and then incubated with or without PAR1 agonists (thrombin and TRAP-6) and PAR2 agonists (SLIGRL-NH2 and AC 55541). Expression of PAR1 and PAR2 was examined by quantitative RT-PCR (qRT-PCR), flow cytometry, and immunocytochemistry. Interleukin-8 expression was quantified by qRT-PCR and ELISA. Results. Human corneal epithelial cells constitutively expressed PAR1 and PAR2 mRNA. Acanthamoeba plasminogen activator and PAR2 agonists significantly upregulated PAR2 mRNA expression (1- and 2-fold, respectively) (P < 0.05). Protease-activated receptor 2 antagonist significantly inhibited aPA, and PAR2 agonists induced PAR2 mRNA expression in HCE cells (P < 0.05). Protease-activated receptor 1 agonists, but not aPA, significantly upregulated PAR1 mRNA expression, which was significantly inhibited by PAR1 antagonist in HCE cells

  1. PET imaging of urokinase-type plasminogen activator receptor (uPAR) in prostate cancer: current status and future perspectives.

    PubMed

    Skovgaard, Dorthe; Persson, Morten; Kjaer, Andreas

    2016-01-01

    Overexpression of urokinase-type plasminogen activator receptors (uPAR) represents an important biomarker for aggressiveness in most common malignant diseases, including prostate cancer (PC). Accordingly, uPAR expression either assessed directly in malignant PC tissue or assessed directly in plasma (intact/cleaved forms)-provides independent additional clinical information to that contributed by PSA, Gleason score, and other relevant pathological and clinical parameters. In this respect, non-invasive molecular imaging by positron emission tomography (PET) offers a very attractive technology platform, which can provide the required quantitative information on the uPAR expression profile, without the need for invasive procedures and the risk of missing the target due to tumor heterogeneity. These observations support non-invasive PET imaging of uPAR in PC as a clinically relevant diagnostic and prognostic imaging method. In this review, we will focus on the recent development of uPAR PET and the relevance within prostate cancer imaging. Novel antibody and small-molecule radiotracers-targeting uPAR, including a series of uPAR-targeting PET ligands, based on the high affinity peptide ligand AE105, have been synthesized and tested in vitro and in vivo in preclinical murine xenograft models and, recently, in a first-ever clinical uPAR PET study in cancer patients, including patients with PC. In this phase I study, a high and specific uptake of the tracer (64)Cu-DOTA-AE105 was found in both primary tumors and lymph node metastases. The results are encouraging and support large-scale clinical trials to determine the utility of uPAR PET in the management of patients with PC with the goal of improving outcome.

  2. [Peptide-agonist of protease-activated receptor (PAR 1), similar to activated protein C, promotes proliferation in keratinocytes and wound healing of epithelial layer].

    PubMed

    Kiseleva, E V; Sidorova, M V; Gorbacheva, L R; Strukova, S M

    2014-01-01

    Activated protein C (APC) is serine protease hemostasis, independent of its anticoagulant activity, exhibits anti-inflammatory and anti-apoptotic properties that determine the possibility of the protective effects of APC in different diseases, including sepsis and chronic wound healing. APC, binding of endothelial protein C receptor (EPCR) and specifically cleaving PAR1 receptor and releasing peptide agonist PAR1 stabilizes not only endothelial cells, but also many others, including epidermal keratinocytes of the skin. We develop the hypothesis that the cytoprotective effect of APC on the cells, involved in wound healing, seem to imitate peptide - analogous of PAR1 "tethered ligand" that activate PAR1. In our work, we synthesized a peptide (AP9) - analogue of PAR1 tethered ligand, released by APC, and firstly showed that peptide AP9 (0.1-10 мM), like to APC (0.01-100 nM), stimulates the proliferative activity of human primary keratinocytes. Using a model of the formation of epithelial wounds in vitro we found that peptide AP9, as well as protease APC, accelerates wound healing. Using specific antibodies to the receptor PAR1 and EPCR was studied the receptor mechanism of AP9 action in wound healing compared with the action of APС. The necessity of both receptors - PAR1 and EPСR, for proliferative activity of agonists was revealed. Identified in our work imitation by peptide AP9 - PAR1 ligand, APC acts on keratinocytes suggests the possibility of using a peptide AP9 to stimulate tissue repair.

  3. Protease-activated Receptor-2 (PAR-2)-mediated Nf-κB Activation Suppresses Inflammation-associated Tumor Suppressor MicroRNAs in Oral Squamous Cell Carcinoma.

    PubMed

    Johnson, Jeff J; Miller, Daniel L; Jiang, Rong; Liu, Yueying; Shi, Zonggao; Tarwater, Laura; Williams, Russell; Balsara, Rashna; Sauter, Edward R; Stack, M Sharon

    2016-03-25

    Oral cancer is the sixth most common cause of death from cancer with an estimated 400,000 deaths worldwide and a low (50%) 5-year survival rate. The most common form of oral cancer is oral squamous cell carcinoma (OSCC). OSCC is highly inflammatory and invasive, and the degree of inflammation correlates with tumor aggressiveness. The G protein-coupled receptor protease-activated receptor-2 (PAR-2) plays a key role in inflammation. PAR-2 is activated via proteolytic cleavage by trypsin-like serine proteases, including kallikrein-5 (KLK5), or by treatment with activating peptides. PAR-2 activation induces G protein-α-mediated signaling, mobilizing intracellular calcium and Nf-κB signaling, leading to the increased expression of pro-inflammatory mRNAs. Little is known, however, about PAR-2 regulation of inflammation-related microRNAs. Here, we assess PAR-2 expression and function in OSCC cell lines and tissues. Stimulation of PAR-2 activates Nf-κB signaling, resulting in RelA nuclear translocation and enhanced expression of pro-inflammatory mRNAs. Concomitantly, suppression of the anti-inflammatory tumor suppressor microRNAs let-7d, miR-23b, and miR-200c was observed following PAR-2 stimulation. Analysis of orthotopic oral tumors generated by cells with reduced KLK5 expression showed smaller, less aggressive lesions with reduced inflammatory infiltrate relative to tumors generated by KLK5-expressing control cells. Together, these data support a model wherein KLK5-mediated PAR-2 activation regulates the expression of inflammation-associated mRNAs and microRNAs, thereby modulating progression of oral tumors.

  4. Development and Evaluation of Small Peptidomimetic Ligands to Protease-Activated Receptor-2 (PAR2) through the Use of Lipid Tethering

    PubMed Central

    Boitano, Scott; Hoffman, Justin; Tillu, Dipti V.; Asiedu, Marina N.; Zhang, Zhenyu; Sherwood, Cara L.; Wang, Yan; Dong, Xinzhong; Price, Theodore J.; Vagner, Josef

    2014-01-01

    Protease-activated receptor-2 (PAR2) is a G-Protein Coupled Receptor (GPCR) activated by proteolytic cleavage to expose an attached, tethered ligand (SLIGRL). We evaluated the ability for lipid-tethered-peptidomimetics to activate PAR2 with in vitro physiological and Ca2+ signaling assays to determine minimal components necessary for potent, specific and full PAR2 activation. A known PAR2 activating compound containing a hexadecyl (Hdc) lipid via three polyethylene glycol (PEG) linkers (2at-LIGRL-PEG3-Hdc) provided a potent agonist starting point (physiological EC50 = 1.4 nM; 95% CI: 1.2–2.3 nM). In a set of truncated analogs, 2at-LIGR-PEG3-Hdc retained potency (EC50 = 2.1 nM; 1.3–3.4 nM) with improved selectivity for PAR2 over Mas1 related G-protein coupled receptor type C11, a GPCR that can be activated by the PAR2 peptide agonist, SLIGRL-NH2. 2at-LIG-PEG3-Hdc was the smallest full PAR2 agonist, albeit with a reduced EC50 (46 nM; 20–100 nM). 2at-LI-PEG3-Hdc retained specific activity for PAR2 with reduced EC50 (310 nM; 260–360 nM) but displayed partial PAR2 activation in both physiological and Ca2+ signaling assays. Further truncation (2at-L-PEG3-Hdc and 2at-PEG3-Hdc) eliminated in vitro activity. When used in vivo, full and partial PAR2 in vitro agonists evoked mechanical hypersensitivity at a 15 pmole dose while 2at-L-PEG3-Hdc lacked efficacy. Minimum peptidomimetic PAR2 agonists were developed with known heterocycle substitutes for Ser1 (isoxazole or aminothiazoyl) and cyclohexylalanine (Cha) as a substitute for Leu2. Both heterocycle-tetrapeptide and heterocycle-dipeptides displayed PAR2 specificity, however, only the heterocycle-tetrapeptides displayed full PAR2 agonism. Using the lipid-tethered-peptidomimetic approach we have developed novel structure activity relationships for PAR2 that allows for selective probing of PAR2 function across a broad range of physiological systems. PMID:24927179

  5. Galectin-3 Facilitates Cell Motility in Gastric Cancer by Up-Regulating Protease-Activated Receptor-1(PAR-1) and Matrix Metalloproteinase-1(MMP-1)

    PubMed Central

    Kim, Seok-Jun; Shin, Ji-Young; Lee, Kang-Duck; Bae, Young-Ki; Choi, Il-Ju; Park, Seok Hee; Chun, Kyung-Hee

    2011-01-01

    Background Galectin-3 is known to regulate cancer metastasis. However, the underlying mechanism has not been defined. Through the DNA microarray studies after galectin-3 silencing, we demonstrated here that galectin-3 plays a key role in up-regulating the expressions of protease-activated receptor-1(PAR-1) and matrix metalloproteinase-1(MMP-1) PAR-1 thereby promoting gastric cancer metastasis. Methodology/Principal Findings We examined the expression levels of Galectin-3, PAR-1, and MMP-1 in gastric cancer patient tissues and also the effects of silencing these proteins with specific siRNAs and of over-expressing them using specific lenti-viral constructs. We also employed zebrafish embryo model for analysis of in vivo gastric cancer cell invasion. These studies demonstrated that: a) galectin-3 silencing decreases the expression of PAR-1. b) galectin-3 over-expression increases cell migration and invasion and this increase can be reversed by PAR-1 silencing, indicating that galectin-3 increases cell migration and invasion via PAR-1 up-regulation. c) galectin-3 directly interacts with AP-1 transcriptional factor, and this complex binds to PAR-1 promoter and drives PAR-1 transcription. d) galectin-3 also amplifies phospho-paxillin, a PAR-1 downstream target, by increasing MMP-1 expression. MMP-1 silencing blocks phospho-paxillin amplification and cell invasion caused by galectin-3 over-expression. e) Silencing of either galectin-3, PAR-1 or MMP-1 significantly reduced cell migration into the vessels in zebrafish embryo model. f) Galectin-3, PAR-1, and MMP-1 are highly expressed and co-localized in malignant tissues from gastric cancer patients. Conclusions/Significance Galectin-3 plays the key role of activating cell surface receptor through production of protease and boosts gastric cancer metastasis. Galectin-3 has the potential to serve as a useful pharmacological target for prevention of gastric cancer metastasis. PMID:21966428

  6. Trefoil factor 3 (TFF3) from human breast milk activates PAR-2 receptors, of the intestinal epithelial cells HT-29, regulating cytokines and defensins.

    PubMed

    Barrera, G J; Tortolero, G Sanchez

    2016-01-01

    Trefoil factors are effector molecules in gastrointestinal tract physiology. Each one improves healing of the gastrointestinal tract. Trefoil factors may be grouped into three classes: the gastric peptides (TFF1), spasmolytic peptide (TFF2) and intestinal trefoil factor (TFF3). Significant amounts of TFF3 are present in human breast milk. Previously, we have reported that trefoil factor 3 isolated from human breast milk produces down regulation of cytokines and promotes human beta defensins expression in intestinal epithelial cells. This study aimed to determine the molecular mechanism involved. Here we showed that the presence of TFF3 strongly correlated with protease activated receptors 2 (PAR-2) activation in human intestinal cells. Intracellular calcium ((Ca2+)i)mobilization was induced by the treatment with: 1) TFF3, 2) synthetic PAR-2 agonist peptide. The co-treatment with a synthetic PAR-2 antagonist peptide and TFF3 eliminates the latter's effect. Additionally, we demonstrated the existence of interactions among TFF3 and PAR-2 receptors through far Western blot and co-precipitation. Finally, down regulation of PAR-2 by siRNA resulted in a decrease of TFF3 induced intracellular (Ca2+)i mobilization, cytokine regulation and defensins expression. These findings suggest that TFF3 activates intestinal cells through PAR-2 (Fig. 4, Ref. 19).

  7. The anticoagulant activated protein C (aPC) promotes metaplasticity in the hippocampus through an EPCR-PAR1-S1P1 receptors dependent mechanism.

    PubMed

    Maggio, Nicola; Itsekson, Zeev; Ikenberg, Benno; Strehl, Andreas; Vlachos, Andreas; Blatt, Ilan; Tanne, David; Chapman, Joab

    2014-08-01

    Thrombin and other clotting factors regulate long-term potentiation (LTP) in the hippocampus through the activation of the protease activated receptor 1 (PAR1) and consequent potentiation of N-methyl-d-aspartate receptor (NMDAR) functions. We have recently shown that the activation of PAR1 either by thrombin or the anticoagulant factor activated protein C (aPC) has differential effects on LTP. While thrombin activation of PAR1 induces an NMDAR-mediated slow onset LTP, which saturates the ability to induce further LTP in the exposed network, aPC stimulation of PAR1 enhances tetanus induced LTP through a voltage-gated calcium channels mediated mechanism. In this study, we addressed the mechanisms by which aPC enhances LTP in hippocampal slices. Using extracellular recordings, we show that a short tetanic stimulation, which does not induce LTP, is able to enhance plasticity in the presence of aPC through a mechanism that requires the activation of sphingosine-1 phosphate receptor 1 and intracellular Ca(2+) stores. These data identify aPC as a "metaplastic molecule", capable of shifting the threshold of LTP towards further potentiation. Our findings propose novel strategies to enhance plasticity in neurological diseases associated with the breakdown of the blood brain barrier and alterations in synaptic plasticity.

  8. Soluble urokinase plasminogen activator receptor (suPAR) in acute care: a strong marker of disease presence and severity, readmission and mortality. A retrospective cohort study

    PubMed Central

    Rasmussen, Line Jee Hartmann; Ladelund, Steen; Haupt, Thomas Huneck; Ellekilde, Gertrude; Poulsen, Jørgen Hjelm; Iversen, Kasper; Eugen-Olsen, Jesper; Andersen, Ove

    2016-01-01

    Objective Soluble urokinase plasminogen activator receptor (suPAR) is an inflammatory biomarker associated with presence and progression of disease and with increased risk of mortality. We aimed to evaluate the unspecific biomarker suPAR as a prognostic marker in patients admitted to acute care. Methods This registry-based retrospective cohort study included 4343 consecutively admitted patients from the Acute Medical Unit at a large Danish university hospital. Time to readmission and death were analysed by multiple Cox regression. Results were reported as HRs for 30-day and 90-day follow-up. Results During 30-day follow-up, 782 patients (18.0%) were readmitted and 224 patients (5.2%) died. Comparing 30-day readmission and mortality between patients in the highest and lowest suPAR quartiles yielded HRs of 2.11 (95% CI 1.70 to 2.62) and 4.11 (95% CI 2.46 to 6.85), respectively, when adjusting for age, sex, Charlson score and C reactive protein. Area under the curve for receiver operating characteristics curve analysis of suPAR for 30-day mortality was 0.84 (95% CI 0.81 to 0.86). Furthermore, in the entire cohort, women had slightly higher suPAR compared with men, and suPAR was associated with age, admission time, admission to intensive care unit and Charlson score. Conclusions In this large unselected population of acute medical patients, suPAR is strongly associated with disease severity, readmission and mortality after adjusting for all other risk factors, indicating that suPAR adds information to established prognostic indicators. While patients with low suPAR levels have low risk of readmission and mortality, patients with high suPAR levels have a high risk of adverse events. PMID:27590986

  9. The receptor for urokinase-plasminogen activator (uPAR) controls plasticity of cancer cell movement in mesenchymal and amoeboid migration style

    PubMed Central

    Taddei, Maria Letizia; Giannoni, Elisa; Laurenzana, Anna; Biagioni, Alessio; Chillà, Anastasia; Chiarugi, Paola; Fibbi, Gabriella; Rosso1, Mario Del

    2014-01-01

    The receptor for the urokinase plasminogen activator (uPAR) is up-regulated in malignant tumors. Historically the function of uPAR in cancer cell invasion is strictly related to its property to promote uPA-dependent proteolysis of extracellular matrix and to open a path to malignant cells. These features are typical of mesenchymal motility. Here we show that the full-length form of uPAR is required when prostate and melanoma cancer cells convert their migration style from the “path generating” mesenchymal to the “path finding” amoeboid one, thus conferring a plasticity to tumor cell invasiveness across three-dimensional matrices. Indeed, in response to a protease inhibitors-rich milieu, prostate and melanoma cells activated an amoeboid invasion program connoted by retraction of cell protrusions, RhoA-mediated rounding of the cell body, formation of a cortical ring of actin and a reduction of Rac-1 activation. While the mesenchymal movement was reduced upon silencing of uPAR expression, the amoeboid one was almost completely abolished, in parallel with a deregulation of small Rho-GTPases activity. In melanoma and prostate cancer cells we have shown uPAR colocalization with β1/β3 integrins and actin cytoskeleton, as well integrins-actin co-localization under both mesenchymal and amoeboid conditions. Such co-localizations were lost upon treatment of cells with a peptide that inhibits uPAR-integrin interactions. Similarly to uPAR silencing, the peptide reduced mesenchymal invasion and almost abolished the amoeboid one. These results indicate that full-length uPAR bridges the mesenchymal and amoeboid style of movement by an inward-oriented activity based on its property to promote integrin-actin interactions and the following cytoskeleton assembly. PMID:24681666

  10. The C-terminus of murine S100A9 protein inhibits hyperalgesia induced by the agonist peptide of protease-activated receptor 2 (PAR2)

    PubMed Central

    Dale, C S; Cenac, N; Britto, L R G; Juliano, M A; Juliano, L; Vergnolle, N; Giorgi, R

    2006-01-01

    Background and purpose: S100A9 protein induces anti-nociception in rodents, in different experimental models of inflammatory pain. Herein, we investigated the effects of a fragment of the C-terminus of S100A9 (mS100A9p), on the hyperalgesia induced by serine proteases, through the activation of protease-activated receptor-2 (PAR2). Experimental approach: Mechanical and thermal hyperalgesia induced by PAR2 agonists (SLIGRL-NH2 and trypsin) was measured in rats submitted to the paw pressure or plantar tests, and Egr-1 expression was determined by immunohistochemistry in rat spinal cord dorsal horn. Calcium flux in human embryonic kidney cells (HEK), which naturally express PAR2, in Kirsten virus-transformed kidney cells, transfected (KNRK-PAR2) or not (KNRK) with PAR2, and in mouse dorsal root ganglia neurons (DRG) was measured by fluorimetric methods. Key results: mS100A9p inhibited mechanical hyperalgesia induced by trypsin, without modifying its enzymatic activity. Mechanical and thermal hyperalgesia induced by SLIGRL-NH2 were inhibited by mS100A9p. SLIGRL-NH2 enhanced Egr-1 expression, a marker of nociceptor activation, and this effect was inhibited by concomitant treatment with mS100A9p. mS100A9p inhibited calcium mobilization in DRG neurons in response to the PAR2 agonists trypsin and SLIGRL-NH2, but also in response to capsaicin and bradykinin, suggesting a direct effect of mS100A9 on sensory neurons. No effect on the calcium flux induced by trypsin or SLIGRL in HEK cells or KNRK-PAR2 cells was observed. Conclusions and implications: These data demonstrate that mS100A9p interferes with mechanisms involved in nociception and hyperalgesia and modulates, possibly directly on sensory neurons, the PAR2-induced nociceptive signal. PMID:16967049

  11. Urinary-type plasminogen activator (uPA) and its receptor (uPAR) in squamous cell carcinoma of the oral cavity.

    PubMed

    Shi, Zonggao; Stack, M Sharon

    2007-10-15

    OSCC (oral squamous cell carcinoma) is the most common oral malignancy and is estimated to affect approx. 350000 new patients worldwide this year. OSCC is characterized by a high degree of morbidity and mortality, as most patients exhibit local, regional and distant metastasis at the time of diagnosis. Recent genome-wide screening efforts have identified the serine proteinase uPA (urinary-type plasminogen activator, also known as urokinase) as a strong biomarker for prediction of poor disease outcome and a key candidate for molecular classification of oral neoplasms using a 'gene signature' approach. The proteinase uPA binds a surface-anchored receptor designated uPAR (uPA receptor), focalizing proteolytic activity to the pericellular milieu. Furthermore, uPA-uPAR can interact with transmembrane proteins to modify multiple signal transduction pathways and influence a wide variety of cellular behaviours. Correlative clinical data show elevated uPA-uPAR in oral tumour tissues, with tumours exhibiting high levels of both uPA and uPAR as the most invasive. Combined in vitro, pre-clinical and clinical data support the need for further analysis of uPA-uPAR as a prognostic indicator as well as a potential therapeutic target in OSCC.

  12. Expression of the urokinase plasminogen activator receptor (uPAR) and its ligand (uPA) in brain tissues of human immunodeficiency virus patients with opportunistic cerebral diseases.

    PubMed

    Nebuloni, Manuela; Cinque, Paola; Sidenius, Nicolai; Ferri, Angelita; Lauri, Eleonora; Omodeo-Zorini, Elisabetta; Zerbi, Pietro; Vago, Luca

    2009-01-01

    The urokinase plasminogen activator receptor (uPAR) and its ligand (uPA) play an important role in cell migration and extracellular proteolysis. We previously described uPAR/uPA overexpression in the cerebrospinal fluid (CSF) and brain tissues of patients with human immunodeficiency virus (HIV)-related cerebral diseases. In this study, we examined uPAR/uPA expression by immunohistochemistry (IHC) in brains of HIV patients with opportunistic cerebral lesions and in HIV-positive/negative controls. uPAR was found in macrophages/microglia with the highest levels in cytomegalovirus (CMV) encephalitis, toxoplasmosis, and lymphomas; in cryptococcosis and progressive multifocal leukoencephalopathy (PML) cases, only a few positive cells were found and no positivity was observed in controls. uPA expression was demonstrated only in a few macrophages/microglia and lymphocytes in all the cases and HIV-positive controls without different pattern of distribution; no uPA immunostaining was found in cryptococcosis and HIV-negative controls. The higher expression of uPAR/uPA in most of the opportunistic cerebral lesions supports their role in these diseases, suggesting their contribution to tissue injury.

  13. PAR-2 receptor-induced effects on human eccrine sweat gland cells.

    PubMed

    L Bovell, Douglas; Kofler, Barbara; Lang, Roland

    2009-01-01

    Serine proteases can induce cell signaling by stimulating G-protein-coupled receptors, called proteinase-activated receptors (PAR's) on a variety of epithelial cells. While PAR-2, one such receptor, activates cell signaling in a secretory cell line derived from human sweat glands, there was no information on their presence and effects on intact sweat glands. PAR-2 presence and activation of eccrine sweat glands isolated from human skin samples was investigated using Western blot analysis, immunohistochemistry, electron microscopy (EM) and Ca(2+) imaging. Anti-human PAR-2 antibody demonstrated the presence of these receptors in eccrine sweat glands. EM showed that PAR-2 activation resulted in degranulation of secretory cells. Ca(2+) imaging using PAR-2 activators demonstrated a two phase increase in [Ca(2+)](i) which was dependent on extracellular Ca(2+) for the second phase, and that the response could be blocked by prior incubation with xestospongin, the IP(3) receptor blocker. The results demonstrated that PAR-2 receptors are present in human sweat gland secretory cells and that these receptors are functionally active and can induce changes associated with secretory events in eccrine glands.

  14. Dopaminergic D2 receptor is a key player in the substantia nigra pars compacta neuronal activation mediated by REM sleep deprivation.

    PubMed

    Proença, Mariana B; Dombrowski, Patrícia A; Da Cunha, Claudio; Fischer, Luana; Ferraz, Anete C; Lima, Marcelo M S

    2014-01-01

    Currently, several studies addresses the novel link between sleep and dopaminergic neurotransmission, focusing most closely on the mechanisms by which Parkinson's disease (PD) and sleep may be intertwined. Therefore, variations in the activity of afferents during the sleep cycles, either at the level of DA cell bodies in the ventral tegmental area (VTA) and/or substantia nigra pars compacta (SNpc) or at the level of dopamine (DA) terminals in limbic areas may impact functions such as memory. Accordingly, we performed striatal and hippocampal neurochemical quantifications of DA, serotonin (5-HT) and metabolites of rats intraperitoneally treated with haloperidol (1.5 mg/kg) or piribedil (8 mg/kg) and submitted to REM sleep deprivation (REMSD) and sleep rebound (REB). Also, we evaluated the effects of REMSD on motor and cognitive parameters and SNpc c-Fos neuronal immunoreactivity. The results indicated that DA release was strongly enhanced by piribedil in the REMSD group. In opposite, haloperidol prevented that alteration. A c-Fos activation characteristic of REMSD was affected in a synergic manner by piribedil, indicating a strong positive correlation between striatal DA levels and nigral c-Fos activation. Hence, we suggest that memory process is severely impacted by both D2 blockade and REMSD and was even more by its combination. Conversely, the activation of D2 receptor counteracted such memory impairment. Therefore, the present evidence reinforce that the D2 receptor is a key player in the SNpc neuronal activation mediated by REMSD, as a consequence these changes may have direct impact for cognitive and sleep abnormalities found in patients with PD. This article is part of the Special Issue entitled 'The Synaptic Basis of Neurodegenerative Disorders'.

  15. Specific activation, signalling and secretion profiles of human platelets following PAR-1 and PAR-4 stimulation.

    PubMed

    Nguyen, Kim Anh; Hamzeh-Cognasse, Hind; Laradi, Sandrine; Pozzetto, Bruno; Garraud, Olivier; Cognasse, Fabrice

    2015-01-01

    Blood platelets play a central haemostatic function; however, they also play a role in inflammation and are capable of secreting various cytokines, chemokines and related products. The purpose of this study was to identify subtle variations in platelet physiology using proteomics. We compared the levels of membrane proteins (n = 3), α and δ granule proteins (n = 18), and signalling proteins (n = 30) from unstimulated platelets with those of protease-activated receptor (PAR)-1- and PAR-4-stimulated platelets (n = 10). The vast majority of these proteins responded similarly to PAR-1 or PAR-4 engagement. However, differences were observed within membrane CD40L expressed, and α granule GRO-α and MDC secreted proteins.

  16. Common variants in the human platelet PAR4 thrombin receptor alter platelet function and differ by race

    PubMed Central

    Edelstein, Leonard C.; Simon, Lukas M.; Lindsay, Cory R.; Kong, Xianguo; Teruel-Montoya, Raúl; Tourdot, Benjamin E.; Chen, Edward S.; Ma, Lin; Coughlin, Shaun; Nieman, Marvin; Holinstat, Michael; Shaw, Chad A.

    2014-01-01

    Human platelets express 2 thrombin receptors: protease-activated receptor (PAR)-1 and PAR4. Recently, we reported 3.7-fold increased PAR4-mediated aggregation kinetics in platelets from black subjects compared with white subjects. We now show that platelets from blacks (n = 70) express 14% more PAR4 protein than those from whites (n = 84), but this difference is not associated with platelet PAR4 function. Quantitative trait locus analysis identified 3 common single nucleotide polymorphisms in the PAR4 gene (F2RL3) associated with PAR4-induced platelet aggregation. Among these single nucleotide polymorphisms, rs773902 determines whether residue 120 in transmembrane domain 2 is an alanine (Ala) or threonine (Thr). Compared with the Ala120 variant, Thr120 was more common in black subjects than in white subjects (63% vs 19%), was associated with higher PAR4-induced human platelet aggregation and Ca2+ flux, and generated greater inositol 1,4,5-triphosphate in transfected cells. A second, less frequent F2RL3 variant, Phe296Val, was only observed in blacks and abolished the enhanced PAR4-induced platelet aggregation and 1,4,5-triphosphate generation associated with PAR4-Thr120. PAR4 genotype did not affect vorapaxar inhibition of platelet PAR1 function, but a strong pharmacogenetic effect was observed with the PAR4-specific antagonist YD-3 [1-benzyl-3(ethoxycarbonylphenyl)-indazole]. These findings may have an important pharmacogenetic effect on the development of new PAR antagonists. PMID:25293779

  17. The soluble form of LR11 protein is a regulator of hypoxia-induced, urokinase-type plasminogen activator receptor (uPAR)-mediated adhesion of immature hematological cells.

    PubMed

    Nishii, Keigo; Nakaseko, Chiaki; Jiang, Meizi; Shimizu, Naomi; Takeuchi, Masahiro; Schneider, Wolfgang J; Bujo, Hideaki

    2013-04-26

    A key property of hematopoietic stem and progenitor cells (HSPCs) regarding differentiation from the self-renewing quiescent to the proliferating stage is their adhesion to the bone marrow (BM) niche. An important molecule involved in proliferation and pool size of HSPCs in the BM is the hypoxia-induced urokinase-type plasminogen activator receptor (uPAR). Here, we show that the soluble form (sLR11) of LR11 (also called SorLA or SORL1) modulates the uPAR-mediated attachment of HSPCs under hypoxic conditions. Immunohistochemical and mRNA expression analyses revealed that hypoxia increased LR11 expression in hematological c-Kit(+) Lin(-) cells. In U937 cells, hypoxia induced a transient rise in LR11 transcription, production of cellular protein, and release of sLR11. Attachment to stromal cells of c-Kit(+) Lin(-) cells of lr11(-/-) mice was reduced by hypoxia much more than of lr11(+/+) animals. sLR11 induced the adhesion of U937 and c-Kit(+) Lin(-) cells to stromal cells. Cell attachment was increased by sLR11 and reduced in the presence of anti-uPAR antibodies. Furthermore, the fraction of uPAR co-immunoprecipitated with LR11 in membrane extracts of U937 cells was increased by hypoxia. CoCl2, a chemical inducer of HIF-1α, enhanced the levels of LR11 and sLR11 in U937 cells. The decrease in hypoxia-induced attachment of HIF-1α-knockdown cells was largely prevented by exogenously added sLR11. Finally, hypoxia induced HIF-1α binding to a consensus binding site in the LR11 promoter. Thus, we conclude that sLR11 regulates the hypoxia-enhanced adhesion of HSPCs via an uPAR-mediated pathway that stabilizes the hematological pool size by controlling cell attachment to the BM niche.

  18. Activity of Protease-Activated Receptors in Primary Cultured Human Myenteric Neurons

    PubMed Central

    Kugler, Eva M.; Mazzuoli, Gemma; Demir, Ihsan E.; Ceyhan, Güralp O.; Zeller, Florian; Schemann, Michael

    2012-01-01

    Activity of the four known protease-activated receptors (PARs) has been well studied in rodent enteric nervous system and results in animal models established an important role for neuronal PAR2. We recently demonstrated that, unlike in rodents, PAR1 is the dominant neuronal protease receptor in the human submucous plexus. With this study we investigated whether this also applies to the human myenteric plexus. We used voltage sensitive dye recordings to detect action potential discharge in primary cultures of human myenteric neurons in response to PAR activating peptides (APs). Application of the PAR1-AP (TFLLR) or PAR4-AP (GYPGQV) evoked spike discharge in 79 or 23% of myenteric neurons, respectively. The PAR1-AP response was mimicked by the endogenous PAR1 activator thrombin and blocked by the PAR1 antagonists SCH79797. Human myenteric neurons did not respond to PAR2-AP. This was not due to culture conditions because all three PAR-APs evoked action potentials in cultured guinea pig myenteric neurons. Consecutive application of PAR-APs revealed coexpression (relative to the population responding to PAR-APs) of PAR1/PAR2 in 51%, PAR1/PAR4 in 43%, and of PAR2/PAR4 in 29% of guinea pig myenteric neurons. Our study provided further evidence for the prominent role of neuronal PAR1 in the human enteric nervous system. PMID:22988431

  19. The Soluble Form of LR11 Protein Is a Regulator of Hypoxia-induced, Urokinase-type Plasminogen Activator Receptor (uPAR)-mediated Adhesion of Immature Hematological Cells*

    PubMed Central

    Nishii, Keigo; Nakaseko, Chiaki; Jiang, Meizi; Shimizu, Naomi; Takeuchi, Masahiro; Schneider, Wolfgang J.; Bujo, Hideaki

    2013-01-01

    A key property of hematopoietic stem and progenitor cells (HSPCs) regarding differentiation from the self-renewing quiescent to the proliferating stage is their adhesion to the bone marrow (BM) niche. An important molecule involved in proliferation and pool size of HSPCs in the BM is the hypoxia-induced urokinase-type plasminogen activator receptor (uPAR). Here, we show that the soluble form (sLR11) of LR11 (also called SorLA or SORL1) modulates the uPAR-mediated attachment of HSPCs under hypoxic conditions. Immunohistochemical and mRNA expression analyses revealed that hypoxia increased LR11 expression in hematological c-Kit+ Lin− cells. In U937 cells, hypoxia induced a transient rise in LR11 transcription, production of cellular protein, and release of sLR11. Attachment to stromal cells of c-Kit+ Lin− cells of lr11−/− mice was reduced by hypoxia much more than of lr11+/+ animals. sLR11 induced the adhesion of U937 and c-Kit+ Lin− cells to stromal cells. Cell attachment was increased by sLR11 and reduced in the presence of anti-uPAR antibodies. Furthermore, the fraction of uPAR co-immunoprecipitated with LR11 in membrane extracts of U937 cells was increased by hypoxia. CoCl2, a chemical inducer of HIF-1α, enhanced the levels of LR11 and sLR11 in U937 cells. The decrease in hypoxia-induced attachment of HIF-1α-knockdown cells was largely prevented by exogenously added sLR11. Finally, hypoxia induced HIF-1α binding to a consensus binding site in the LR11 promoter. Thus, we conclude that sLR11 regulates the hypoxia-enhanced adhesion of HSPCs via an uPAR-mediated pathway that stabilizes the hematological pool size by controlling cell attachment to the BM niche. PMID:23486467

  20. Artificial neural networks from MATLAB in medicinal chemistry. Bayesian-regularized genetic neural networks (BRGNN): application to the prediction of the antagonistic activity against human platelet thrombin receptor (PAR-1).

    PubMed

    Caballero, Julio; Fernández, Michael

    2008-01-01

    Artificial neural networks (ANNs) have been widely used for medicinal chemistry modeling. In the last two decades, too many reports used MATLAB environment as an adequate platform for programming ANNs. Some of these reports comprise a variety of applications intended to quantitatively or qualitatively describe structure-activity relationships. A powerful tool is obtained when there are combined Bayesian-regularized neural networks (BRANNs) and genetic algorithm (GA): Bayesian-regularized genetic neural networks (BRGNNs). BRGNNs can model complicated relationships between explanatory variables and dependent variables. Thus, this methodology is regarded as useful tool for QSAR analysis. In order to demonstrate the use of BRGNNs, we developed a reliable method for predicting the antagonistic activity of 5-amino-3-arylisoxazole derivatives against Human Platelet Thrombin Receptor (PAR-1), using classical 3D-QSAR methodologies: Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA). In addition, 3D vectors generated from the molecular structures were correlated with antagonistic activities by multivariate linear regression (MLR) and Bayesian-regularized neural networks (BRGNNs). All models were trained with 34 compounds, after which they were evaluated for predictive ability with additional 6 compounds. CoMFA and CoMSIA were unable to describe this structure-activity relationship, while BRGNN methodology brings the best results according to validation statistics.

  1. The Par3 polarity protein is an exocyst receptor essential for mammary cell survival

    PubMed Central

    Ahmed, Syed Mukhtar; Macara, Ian G.

    2017-01-01

    The exocyst is an essential component of the secretory pathway required for delivery of basolateral proteins to the plasma membranes of epithelial cells. Delivery occurs adjacent to tight junctions (TJ), suggesting that it recognizes a receptor at this location. However, no such receptor has been identified. The Par3 polarity protein associates with TJs but has no known function in membrane traffic. We now show that, unexpectedly, Par3 is essential for mammary cell survival. Par3 silencing causes apoptosis, triggered by phosphoinositide trisphosphate depletion and decreased Akt phosphorylation, resulting from failure of the exocyst to deliver basolateral proteins to the cortex. A small region of PAR3 binds directly to Exo70 and is sufficient for exocyst docking, membrane-protein delivery and cell survival. PAR3 lacking this domain can associate with the cortex but cannot support exocyst function. We conclude that Par3 is the long-sought exocyst receptor required for targeted membrane-protein delivery. PMID:28358000

  2. PAR1 activation induces rapid changes in glutamate uptake and astrocyte morphology

    PubMed Central

    Sweeney, Amanda M.; Fleming, Kelsey E.; McCauley, John P.; Rodriguez, Marvin F.; Martin, Elliot T.; Sousa, Alioscka A.; Leapman, Richard D.; Scimemi, Annalisa

    2017-01-01

    The G-protein coupled, protease-activated receptor 1 (PAR1) is a membrane protein expressed in astrocytes. Fine astrocytic processes are in tight contact with neurons and blood vessels and shape excitatory synaptic transmission due to their abundant expression of glutamate transporters. PAR1 is proteolytically-activated by bloodstream serine proteases also involved in the formation of blood clots. PAR1 activation has been suggested to play a key role in pathological states like thrombosis, hemostasis and inflammation. What remains unclear is whether PAR1 activation also regulates glutamate uptake in astrocytes and how this shapes excitatory synaptic transmission among neurons. Here we show that, in the mouse hippocampus, PAR1 activation induces a rapid structural re-organization of the neuropil surrounding glutamatergic synapses, which is associated with faster clearance of synaptically-released glutamate from the extracellular space. This effect can be recapitulated using realistic 3D Monte Carlo reaction-diffusion simulations, based on axial scanning transmission electron microscopy (STEM) tomography reconstructions of excitatory synapses. The faster glutamate clearance induced by PAR1 activation leads to short- and long-term changes in excitatory synaptic transmission. Together, these findings identify PAR1 as an important regulator of glutamatergic signaling in the hippocampus and a possible target molecule to limit brain damage during hemorrhagic stroke. PMID:28256580

  3. Pathway-selective antagonism of proteinase activated receptor 2

    PubMed Central

    Suen, J Y; Cotterell, A; Lohman, R J; Lim, J; Han, A; Yau, M K; Liu, L; Cooper, M A; Vesey, D A; Fairlie, D P

    2014-01-01

    Background and Purpose Proteinase activated receptor 2 (PAR2) is a GPCR associated with inflammation, metabolism and disease. Clues to understanding how to block PAR2 signalling associated with disease without inhibiting PAR2 activation in normal physiology could be provided by studies of biased signalling. Experimental Approach PAR2 ligand GB88 was profiled for PAR2 agonist and antagonist properties by several functional assays associated with intracellular G-protein-coupled signalling in vitro in three cell types and with PAR2-induced rat paw oedema in vivo. Key Results In HT29 cells, GB88 was a PAR2 antagonist in terms of Ca2+ mobilization and PKC phosphorylation, but a PAR2 agonist in attenuating forskolin-induced cAMP accumulation, increasing ERK1/2 phosphorylation, RhoA activation, myosin phosphatase phosphorylation and actin filament rearrangement. In CHO-hPAR2 cells, GB88 inhibited Ca2+ release, but activated Gi/o and increased ERK1/2 phosphorylation. In human kidney tubule cells, GB88 inhibited cytokine secretion (IL6, IL8, GM-CSF, TNF-α) mediated by PAR2. A rat paw oedema induced by PAR2 agonists was also inhibited by orally administered GB88 and compared with effects of locally administered inhibitors of G-protein coupled pathways. Conclusions and Implications GB88 is a biased antagonist of PAR2 that selectively inhibits PAR2/Gq/11/Ca2+/PKC signalling, leading to anti-inflammatory activity in vivo, while being an agonist in activating three other PAR2-activated pathways (cAMP, ERK, Rho) in human cells. These findings highlight opportunities to design drugs to block specific PAR2-linked signalling pathways in disease, without blocking beneficial PAR2 signalling in normal physiology, and to dissect PAR2-associated mechanisms of disease in vivo. PMID:24821440

  4. A cleavage-resistant urokinase plasminogen activator receptor exhibits dysregulated cell-surface clearance.

    PubMed

    Nieves, Evelyn C; Manchanda, Naveen

    2010-04-23

    Urokinase plasminogen activator receptor (u-PAR) binds urokinase plasminogen activator (u-PA) and participates in plasminogen activation in addition to modulating several cellular processes such as adhesion, proliferation, and migration. u-PAR is susceptible to proteolysis by its cognate ligand and several other proteases. To elucidate the biological significance of receptor cleavage by u-PA, we engineered and expressed a two-chain urokinase plasminogen activator (tcu-PA) cleavage-resistant u-PAR (cr-u-PAR). This mutated receptor was similar to wild-type u-PAR in binding u-PA and initiating plasminogen activation. However, cr-u-PAR exhibited accelerated internalization and resurfacing due to direct association with the endocytic receptor alpha(2)-macroglobulin receptor/low density lipoprotein receptor-related protein in the absence of the enzyme x inhibitor complex of tcu-PA and plasminogen activator inhibitor-1 (tcu-PA.PAI-1). cr-u-PAR-expressing cells had enhanced migration compared with wild-type u-PAR-expressing cells, and cr-u-PAR was less sensitive to chymotrypsin cleavage as compared with wt u-PAR. Our studies suggest that these mutations in the linker region result in a rearrangement within the cr-u-PAR structure that makes it resemble its ligand-bound form. This constitutively active variant may mimic highly glycosylated cleavage-resistant u-PAR expressed in certain highly malignant cancer-cells.

  5. Activation of protease activated receptor 1 increases the excitability of the dentate granule neurons of hippocampus

    PubMed Central

    2011-01-01

    Protease activated receptor-1 (PAR1) is expressed in multiple cell types in the CNS, with the most prominent expression in glial cells. PAR1 activation enhances excitatory synaptic transmission secondary to the release of glutamate from astrocytes following activation of astrocytically-expressed PAR1. In addition, PAR1 activation exacerbates neuronal damage in multiple in vivo models of brain injury in a manner that is dependent on NMDA receptors. In the hippocampal formation, PAR1 mRNA appears to be expressed by a subset of neurons, including granule cells in the dentate gyrus. In this study we investigate the role of PAR activation in controlling neuronal excitability of dentate granule cells. We confirm that PAR1 protein is expressed in neurons of the dentate cell body layer as well as in astrocytes throughout the dentate. Activation of PAR1 receptors by the selective peptide agonist TFLLR increased the intracellular Ca2+ concentration in a subset of acutely dissociated dentate neurons as well as non-neuronal cells. Bath application of TFLLR in acute hippocampal slices depolarized the dentate gyrus, including the hilar region in wild type but not in the PAR1-/- mice. PAR1 activation increased the frequency of action potential generation in a subset of dentate granule neurons; cells in which PAR1 activation triggered action potentials showed a significant depolarization. The activation of PAR1 by thrombin increased the amplitude of NMDA receptor-mediated component of EPSPs. These data suggest that activation of PAR1 during normal function or pathological conditions, such as during ischemia or hemorrhage, can increase the excitability of dentate granule cells. PMID:21827709

  6. Factor Xa stimulates fibroblast procollagen production, proliferation, and calcium signaling via PAR{sub 1} activation

    SciTech Connect

    Blanc-Brude, Olivier P. . E-mail: olivier.blanc-brude@larib.inserm.fr; Archer, Fabienne; Leoni, Patricia; Derian, Claudia; Bolsover, Steven; Laurent, Geoffrey J.; Chambers, Rachel C.

    2005-03-10

    Fibroblast proliferation and procollagen production are central features of tissue repair and fibrosis. In addition to its role in blood clotting, the coagulation cascade proteinase thrombin can contribute to tissue repair by stimulating fibroblasts via proteolytic activation of proteinase-activated receptor-1 (PAR{sub 1}). During hemostasis, the coagulation cascade proteinase factor X is converted into factor Xa. We have previously shown that factor Xa upregulates fibroblast proliferation via production of autocrine PDGF. In this study, we further examined the effects of factor Xa on fibroblast function and aimed to identify its signaling receptor. We showed that factor Xa stimulates procollagen promoter activity and protein production by human and mouse fibroblasts. This effect was independent of PDGF and thrombin production, but dependent on factor Xa proteolytic activity. We also showed that PAR{sub 1}-deficient mouse fibroblasts did not upregulate procollagen production, mobilize cytosolic calcium, or proliferate in response to factor Xa. Desensitization techniques and PAR{sub 1}-specific agonists and inhibitors were used to demonstrate that PAR{sub 1} mediates factor Xa signaling in human fibroblasts. This is the first report that factor Xa stimulates extracellular matrix production. In contrast with endothelial cells and vascular smooth muscle cells, fibroblasts appear to be the only cell type in which the effects of factor Xa are mediated mainly via PAR{sub 1} and not PAR{sub 2}. These findings are critical for our understanding of tissue repair and fibrotic mechanisms, and for the design of novel approaches to inhibit the profibrotic effects of the coagulation cascade without compromising blood hemostasis.

  7. Evolution of the protease-activated receptor family in vertebrates

    PubMed Central

    JIN, MIN; YANG, HAI-WEI; TAO, AI-LIN; WEI, JI-FU

    2016-01-01

    Belonging to the G protein-coupled receptor (GPcr) family, the protease-activated receptors (Pars) consist of 4 members, PAR1-4. PARs mediate the activation of cells via thrombin, serine and other proteases. Such protease-triggered signaling events are thought to be critical for hemostasis, thrombosis and other normal pathological processes. In the present study, we examined the evolution of PARs by analyzing phylogenetic trees, chromosome location, selective pressure and functional divergence based on the 169 functional gene alignment sequences from 57 vertebrate gene sequences. We found that the 4 PARs originated from 4 invertebrate ancestors by phylogenetic trees analysis. The selective pressure results revealed that only PAR1 appeared by positive selection during its evolution, while the other PAR members did not. In addition, we noticed that although these PARs evolved separately, the results of functional divergence indicated that their evolutional rates were similar and their functions did not significantly diverge. The findings of our study provide valuable insight into the evolutionary history of the vertebrate PAR family. PMID:26820116

  8. Endosomal deubiquitinating enzymes control ubiquitination and down-regulation of protease-activated receptor 2.

    PubMed

    Hasdemir, Burcu; Murphy, Jane E; Cottrell, Graeme S; Bunnett, Nigel W

    2009-10-09

    The E3 ubiquitin ligase c-Cbl ubiquitinates the G protein-coupled receptor protease-activated receptor 2 (PAR(2)), which is required for postendocytic sorting of activated receptors to lysosomes, where degradation terminates signaling. The mechanisms of PAR(2) deubiquitination and its importance in trafficking and signaling of endocytosed PAR(2) are unknown. We report that receptor deubiquitination occurs between early endosomes and lysosomes and involves the endosomal deubiquitinating proteases AMSH and UBPY. Expression of the catalytically inactive mutants, AMSH(D348A) and UBPY(C786S), caused an increase in PAR(2) ubiquitination and trapped the receptor in early endosomes, thereby preventing lysosomal trafficking and degradation. Small interfering RNA knockdown of AMSH or UBPY also impaired deubiquitination, lysosomal trafficking, and degradation of PAR(2). Trapping PAR(2) in endosomes through expression of AMSH(D348A) or UBPY(C786S) did not prolong the association of PAR(2) with beta-arrestin2 or the duration of PAR(2)-induced ERK2 activation. Thus, AMSH and UBPY are essential for trafficking and down-regulation of PAR(2) but not for regulating PAR(2) dissociation from beta-arrestin2 or PAR(2)-mediated ERK2 activation.

  9. Protease-activated receptors and prostaglandins in inflammatory lung disease

    PubMed Central

    Peters, Terence; Henry, Peter J

    2009-01-01

    Protease-activated receptors (PARs) are a novel family of G protein-coupled receptors. Signalling through PARs typically involves the cleavage of an extracellular region of the receptor by endogenous or exogenous proteases, which reveals a tethered ligand sequence capable of auto-activating the receptor. A considerable body of evidence has emerged over the past 20 years supporting a prominent role for PARs in a variety of human physiological and pathophysiological processes, and thus substantial attention has been directed towards developing drug-like molecules that activate or block PARs via non-proteolytic pathways. PARs are widely expressed within the respiratory tract, and their activation appears to exert significant modulatory influences on the level of bronchomotor tone, as well as on the inflammatory processes associated with a range of respiratory tract disorders. Nevertheless, there is debate as to whether the principal response to PAR activation is an augmentation or attenuation of airways inflammation. In this context, an important action of PAR activators may be to promote the generation and release of prostanoids, such as prostglandin E2, which have well-established anti-inflammatory effects in the lung. In this review, we primarily focus on the relationship between PARs, prostaglandins and inflammatory processes in the lung, and highlight their potential role in selected respiratory tract disorders, including pulmonary fibrosis, asthma and chronic obstructive pulmonary disease. This article is part of a themed issue on Mediators and Receptors in the Resolution of Inflammation. To view this issue visit http://www3.interscience.wiley.com/journal/121548564/issueyear?year=2009 PMID:19845685

  10. Evaluation on Potential Contributions of Protease Activated Receptors Related Mediators in Allergic Inflammation

    PubMed Central

    Zhang, Huiyun; Zeng, Xiaoning; He, Shaoheng

    2014-01-01

    Protease activated receptors (PARs) have been recognized as a distinctive four-member family of seven transmembrane G protein-coupled receptors (GPCRs) that can be cleaved by certain serine proteases. In recent years, there has been considerable interest in the role of PARs in allergic inflammation, the fundamental pathologic changes of allergy, but the potential roles of PARs in allergy remain obscure. Since many of these proteases are produced and actively involved in the pathologic process of inflammation including exudation of plasma components, inflammatory cell infiltration, and tissue damage and repair, PARs appear to make important contribution to allergy. The aim of the present review is to summarize the expression of PARs in inflammatory and structural cells, the influence of agonists or antagonists of PARs on cell behavior, and the involvement of PARs in allergic disorders, which will help us to better understand the roles of serine proteases and PARs in allergy. PMID:24876677

  11. Store-operated CRAC channels regulate PAR2-activated Ca2+ signaling and cytokine production in airway epithelial cells

    PubMed Central

    Jairaman, Amit; Yamashita, Megumi; Schleimer, Robert P.; Prakriya, Murali

    2015-01-01

    The G-protein coupled protease-activated receptor 2 (PAR2) plays an important role in the pathogenesis of various inflammatory and auto-immune disorders. In airway epithelial cells (AECs), stimulation of PAR2 by allergens and proteases triggers the release of a host of inflammatory mediators to regulate bronchomotor tone and immune cell recruitment. Activation of PAR2 turns on several cell signaling pathways of which the mobilization of cytosolic Ca2+ is likely a critical but poorly understood event. Here, we show that Ca2+ release-activated Ca2+ (CRAC) channels encoded by STIM1 and Orai1 are a major route of Ca2+ entry in primary human AECs and drive the Ca2+ elevations seen in response to PAR2 activation. Activation of CRAC channels induces the production of several key inflammatory mediators from AECs including TSLP, IL-6 and PGE2, in part through stimulation of gene expression via NFAT (nuclear factor of activated T-cells). Furthermore, PAR2 stimulation induces the production of many key inflammatory mediators including PGE2, IL-6, IL-8 and GM-CSF in a CRAC-channel dependent manner. These findings indicate that CRAC channels are the primary mechanism for Ca2+ influx in AECs and a vital checkpoint for the induction of PAR2-induced proinflammatory cytokines. PMID:26238490

  12. Protease-Activated Receptor 4 Deficiency Offers Cardioprotection after Acute Ischemia Reperfusion Injury

    PubMed Central

    Kolpakov, Mikhail A.; Rafiq, Khadija; Guo, Xinji; Hooshdaran, Bahman; Wang, Tao; Vlasenko, Liudmila; Bashkirova, Yulia V.; Zhang, Xiaoxiao; Chen, Xiongwen; Iftikhar, Sahar; Libonati, Joseph R.; Kunapuli, Satya P.; Sabri, Abdelkarim

    2016-01-01

    Protease-activated receptor (PAR)4 is a low affinity thrombin receptor with less understood function relative to PAR1. PAR4 is involved in platelet activation and hemostasis, but its specific actions on myocyte growth and cardiac function remain unknown. This study examined the role of PAR4 deficiency on cardioprotection after myocardial ischemia-reperfusion (IR) injury in mice. When challenged by in vivo or ex vivo IR, PAR4 knockout (KO) mice exhibited increased tolerance to injury, which was manifest as reduced infarct size and a more robust functional recovery compared to wild-type mice. PAR4 KO mice also showed reduced cardiomyocyte apoptosis and putative signaling shifts in survival pathways in response to IR. Inhibition of PAR4 expression in isolated cardiomyocytes by shRNA offered protection against thrombin and PAR4-agonist peptide-induced apoptosis, while overexpression of wild-type PAR4 significantly enhanced the susceptibility of cardiomyocytes to apoptosis, even under low thrombin concentrations. Further studies implicate Src- and epidermal growth factor receptor-dependent activation of JNK on the proapoptotic effect of PAR4 in cardiomyocytes. These findings reveal a pivotal role for PAR4 as a regulator of cardiomyocyte survival and point to PAR4 inhibition as a therapeutic target offering cardioprotection after acute IR injury. PMID:26643815

  13. Luminal Cathepsin G and Protease-Activated Receptor 4

    PubMed Central

    Dabek, Marta; Ferrier, Laurent; Roka, Richard; Gecse, Krisztina; Annahazi, Anita; Moreau, Jacques; Escourrou, Jean; Cartier, Christel; Chaumaz, Gilles; Leveque, Mathilde; Ait-Belgnaoui, Afifa; Wittmann, Tibor; Theodorou, Vassilia; Bueno, Lionel

    2009-01-01

    Impairment of the colonic epithelial barrier and neutrophil infiltration are common features of inflammatory bowel disease. Luminal proteases affect colonic permeability through protease-activated receptors (PARs). We evaluated: (i) whether fecal supernatants from patients with ulcerative colitis (UC) trigger alterations of colonic paracellular permeability and inflammation, and (ii) the roles of cathepsin G (Cat-G), a neutrophil serine protease, and its selective receptor, PAR4, in these processes. Expression levels of both PAR4 and Cat-G were determined in colonic biopsies from UC and healthy subjects. The effects of UC fecal supernatants on colonic paracellular permeability were measured in murine colonic strips. Involvement of Cat-G and PAR4 was evaluated using pepducin P4pal-10 and specific Cat-G inhibitor (SCGI), respectively. In addition, the effect of PAR4-activating peptide was assessed. UC fecal supernatants, either untreated or pretreated with SCGI, were infused into mice, and myeloperoxidase activity was determined. PAR4 was found to be overexpressed in UC colonic biopsies. Increased colonic paracellular permeability that was triggered by UC fecal supernatants was blocked by both SCGI (77%) and P4pal-10 (85%). Intracolonic infusion of UC fecal supernatants into mice increased myeloperoxidase activity. This effect was abolished by SCGI. These observations support that both Cat-G and PAR4 play key roles in generating and/or amplifying relapses in UC and provide a rationale for the development of new therapeutic agents in the treatment of this disease. PMID:19528350

  14. N-Linked Glycosylation of Protease-activated Receptor-1 Second Extracellular Loop

    PubMed Central

    Soto, Antonio G.; Trejo, JoAnn

    2010-01-01

    Protease-activated receptor-1 (PAR1) contains five N-linked glycosylation consensus sites as follows: three residing in the N terminus and two localized on the surface of the second extracellular loop (ECL2). To study the effect of N-linked glycosylation in the regulation of PAR1 signaling and trafficking, we generated mutants in which the critical asparagines of the consensus sites were mutated. Here, we report that both the PAR1 N terminus and ECL2 serve as sites for N-linked glycosylation but have different functions in the regulation of receptor signaling and trafficking. N-Linked glycosylation of the PAR1 N terminus is important for transport to the cell surface, whereas the PAR1 mutant lacking glycosylation at ECL2 (NA ECL2) trafficked to the cell surface like the wild-type receptor. However, activated PAR1 NA ECL2 mutant internalization was impaired compared with wild-type receptor, whereas constitutive internalization of unactivated receptor remained intact. Remarkably, thrombin-activated PAR1 NA ECL2 mutant displayed an enhanced maximal signaling response compared with wild-type receptor. The increased PAR1 NA ECL2 mutant signaling was not due to defects in the ability of thrombin to cleave the receptor or signal termination mechanisms. Rather, the PAR1 NA ECL2 mutant displayed a greater efficacy in thrombin-stimulated G protein signaling. Thus, N-linked glycosylation of the PAR1 extracellular surface likely influences ligand docking interactions and the stability of the active receptor conformation. Together, these studies strongly suggest that N-linked glycosylation of PAR1 at the N terminus versus the surface of ECL2 serves distinct functions critical for proper regulation of receptor trafficking and the fidelity of thrombin signaling. PMID:20368337

  15. Activated protein C promotes breast cancer cell migration through interactions with EPCR and PAR-1

    SciTech Connect

    Beaulieu, Lea M.; Church, Frank C. . E-mail: fchurch@email.unc.edu

    2007-02-15

    Activated protein C (APC) is a serine protease that regulates thrombin (IIa) production through inactivation of blood coagulation factors Va and VIIIa. APC also has non-hemostatic functions related to inflammation, proliferation, and apoptosis through various mechanisms. Using two breast cancer cell lines, MDA-MB-231 and MDA-MB-435, we investigated the role of APC in cell chemotaxis and invasion. Treatment of cells with increasing APC concentrations (1-50 {mu}g/ml) increased invasion and chemotaxis in a concentration-dependent manner. Only the active form of APC increased invasion and chemotaxis of the MDA-MB-231 cells when compared to 3 inactive APC derivatives. Using a modified 'checkerboard' analysis, APC was shown to only affect migration when plated with the cells; therefore, APC is not a chemoattractant. Blocking antibodies to endothelial protein C receptor (EPCR) and protease-activated receptor-1 (PAR-1) attenuated the effects of APC on chemotaxis in the MDA-MB-231 cells. Finally, treatment of the MDA-MB-231 cells with the proliferation inhibitor, Na butyrate, showed that APC did not increase migration by increasing cell number. Therefore, APC increases invasion and chemotaxis of cells by binding to the cell surface and activating specific signaling pathways through EPCR and PAR-1.

  16. Expression of protease-activated receptor 1 and 2 and anti-tubulogenic activity of protease-activated receptor 1 in human endothelial colony-forming cells.

    PubMed

    Fortunato, Tiago M; Vara, Dina S; Wheeler-Jones, Caroline P; Pula, Giordano

    2014-01-01

    Endothelial colony-forming cells (ECFCs) are obtained from the culture of human peripheral blood mononuclear cell (hPBMNC) fractions and are characterised by high proliferative and pro-vasculogenic potential, which makes them of great interest for cell therapy. Here, we describe the detection of protease-activated receptor (PAR) 1 and 2 amongst the surface proteins expressed in ECFCs. Both receptors are functionally coupled to extracellular signal-regulated kinase (ERK) 1 and 2, which become activated and phosphorylated in response to selective PAR1- or PAR2-activating peptides. Specific stimulation of PAR1, but not PAR2, significantly inhibits capillary-like tube formation by ECFCs in vitro, suggesting that tubulogenesis is negatively regulated by proteases able to stimulate PAR1 (e.g. thrombin). The activation of ERKs is not involved in the regulation of tubulogenesis in vitro, as suggested by use of the MEK inhibitor PD98059 and by the fact that PAR2 stimulation activates ERKs without affecting capillary tube formation. Both qPCR and immunoblotting showed a significant downregulation of vascular endothelial growth factor 2 (VEGFR2) in response to PAR1 stimulation. Moreover, the addition of VEGF (50-100 ng/ml) but not basic Fibroblast Growth Factor (FGF) (25-100 ng/ml) rescued tube formation by ECFCs treated with PAR1-activating peptide. Therefore, we propose that reduction of VEGF responsiveness resulting from down-regulation of VEGFR2 is underlying the anti-tubulogenic effect of PAR1 activation. Although the role of PAR2 remains elusive, this study sheds new light on the regulation of the vasculogenic activity of ECFCs and suggests a potential link between adult vasculogenesis and the coagulation cascade.

  17. Agonist-Biased Signaling via Proteinase Activated Receptor-2: Differential Activation of Calcium and Mitogen-Activated Protein Kinase Pathways

    PubMed Central

    Ramachandran, Rithwik; Mihara, Koichiro; Mathur, Maneesh; Rochdi, Moulay Driss; Bouvier, Michel; DeFea, Kathryn

    2009-01-01

    We evaluated the ability of different trypsin-revealed tethered ligand (TL) sequences of rat proteinase-activated receptor 2 (rPAR2) and the corresponding soluble TL-derived agonist peptides to trigger agonist-biased signaling. To do so, we mutated the proteolytically revealed TL sequence of rPAR2 and examined the impact on stimulating intracellular calcium transients and mitogen-activated protein (MAP) kinase. The TL receptor mutants, rPAR2-Leu37Ser38, rPAR2-Ala37–38, and rPAR2-Ala39–42 were compared with the trypsin-revealed wild-type rPAR2 TL sequence, S37LIGRL42—. Upon trypsin activation, all constructs stimulated MAP kinase signaling, but only the wt-rPAR2 and rPAR2-Ala39–42 triggered calcium signaling. Furthermore, the TL-derived synthetic peptide SLAAAA-NH2 failed to cause PAR2-mediated calcium signaling but did activate MAP kinase, whereas SLIGRL-NH2 triggered both calcium and MAP kinase signaling by all receptors. The peptides AAIGRL-NH2 and LSIGRL-NH2 triggered neither calcium nor MAP kinase signals. Neither rPAR2-Ala37–38 nor rPAR2-Leu37Ser38 constructs recruited β-arrestins-1 or -2 in response to trypsin stimulation, whereas both β-arrestins were recruited to these mutants by SLIGRL-NH2. The lack of trypsin-triggered β-arrestin interactions correlated with impaired trypsin-activated TL-mutant receptor internalization. Trypsin-stimulated MAP kinase activation by the TL-mutated receptors was not blocked by inhibitors of Gαi (pertussis toxin), Gαq [N-cyclohexyl-1-(2,4-dichlorophenyl)-1,4-dihydro-6-methylindeno[1,2-c]pyrazole-3-carboxamide (GP2A)], Src kinase [4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]-pyrimidine (PP1)], or the epidermal growth factor (EGF) receptor [4-(3′-chloroanilino)-6,7-dimethoxy-quinazoline (AG1478)], but was inhibited by the Rho-kinase inhibitor (R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide, 2HCl (Y27362). The data indicate that the proteolytically revealed TL sequence(s) and the mode

  18. Essential role of platelet activation via protease activated receptor 4 in tissue factor-initiated inflammation

    PubMed Central

    Busso, Nathalie; Chobaz-Péclat, Veronique; Hamilton, Justin; Spee, Pieter; Wagtmann, Nicolai; So, Alexander

    2008-01-01

    Introduction Tissue factor (TF) activation of the coagulation proteases enhances inflammation in animal models of arthritis and endotoxemia, but the mechanism of this effect is not yet fully understood – in particular, whether this is primarily due to fibrin formation or through activation of protease activated receptors (PARs). Methods We induced extravascular inflammation by injection of recombinant soluble murine TF (sTF1–219) in the hind paw. The effects of thrombin inhibition, fibrinogen and platelet depletion were evaluated, as well as the effects of PAR deficiency using knockout mice deficient for each of the PARs. Results Injection of soluble TF provoked a rapid onset of paw swelling. Inflammation was confirmed histologically and by increased serum IL-6 levels. Inflammation was significantly reduced by depletion of fibrinogen (P < 0.05) or platelets (P = 0.015), and by treatment with hirudin (P = 0.04) or an inhibitor of activated factor VII (P < 0.001) compared with controls. PAR-4-deficient mice exhibited significantly reduced paw swelling (P = 0.003). In contrast, a deficiency in either PAR-1, PAR-2 or PAR-3 did not affect the inflammatory response to soluble TF injection. Conclusion Our results show that soluble TF induces acute inflammation through a thrombin-dependent pathway and both fibrin deposition and platelet activation are essential steps in this process. The activation of PAR-4 on platelets is crucial and the other PARs do not play a major role in soluble TF-induced inflammation. PMID:18412955

  19. Allosteric Activation of a G Protein-coupled Receptor with Cell-penetrating Receptor Mimetics*

    PubMed Central

    Zhang, Ping; Leger, Andrew J.; Baleja, James D.; Rana, Rajashree; Corlin, Tiffany; Nguyen, Nga; Koukos, Georgios; Bohm, Andrew; Covic, Lidija; Kuliopulos, Athan

    2015-01-01

    G protein-coupled receptors (GPCRs) are remarkably versatile signaling systems that are activated by a large number of different agonists on the outside of the cell. However, the inside surface of the receptors that couple to G proteins has not yet been effectively modulated for activity or treatment of diseases. Pepducins are cell-penetrating lipopeptides that have enabled chemical and physical access to the intracellular face of GPCRs. The structure of a third intracellular (i3) loop agonist, pepducin, based on protease-activated receptor-1 (PAR1) was solved by NMR and found to closely resemble the i3 loop structure predicted for the intact receptor in the on-state. Mechanistic studies revealed that the pepducin directly interacts with the intracellular H8 helix region of PAR1 and allosterically activates the receptor through the adjacent (D/N)PXXYYY motif through a dimer-like mechanism. The i3 pepducin enhances PAR1/Gα subunit interactions and induces a conformational change in fluorescently labeled PAR1 in a very similar manner to that induced by thrombin. As pepducins can potentially be made to target any GPCR, these data provide insight into the identification of allosteric modulators to this major drug target class. PMID:25934391

  20. Signalling pathways induced by protease-activated receptors and integrins in T cells.

    PubMed

    Bar-Shavit, Rachel; Maoz, Miriam; Yongjun, Yin; Groysman, Maya; Dekel, Idit; Katzav, Shulamit

    2002-01-01

    Recent characterization of the thrombin receptor indicates that it plays a role in T-cell signalling pathways. However, little is known regarding the signalling events following stimulation of additional members of the protease-activated receptor (PAR) family, i.e. PAR2 and PAR3. Most of the postligand cascades are largely unknown. Here, we illustrate that in Jurkat T-leukaemic cells, activation of PAR1, PAR2 and PAR3 induce tyrosine phosphorylation of Vav1. This response was impaired in Jurkat T cells deficient in p56lck (JCaM1.6). Activation of PARs also led to an increase in tyrosine phosphorylation of ZAP-70 and SLP-76, two key proteins in T-cell receptor (TCR) signalling. We also demonstrated that p56lck is meaningful for integrin signalling. Thus, JCaM1.6 cells exhibited a marked reduction in their adherence to fibronectin-coated plates, as compared to the level of adherence of Jurkat T cells. While the phosphorylation of Vav1 in T cells is augmented following adhesion, no additional increase was noted following treatment of the adhered cells with PARs. Altogether, we have identified key components in the postligand-signalling cascade of PARs and integrins. Furthermore, we have identified Lck as a critical and possibly upstream component of PAR-induced Vav1 phosphorylation, as well as integrin activation, in Jurkat T cells.

  1. Protease-Activated Receptor-1 Supports Locomotor Recovery by Biased Agonist Activated Protein C after Contusive Spinal Cord Injury

    PubMed Central

    Whetstone, William D.; Walker, Breset; Trivedi, Alpa; Lee, Sangmi; Noble-Haeusslein, Linda J.; Hsu, Jung-Yu C.

    2017-01-01

    Thrombin-induced secondary injury is mediated through its receptor, protease activated receptor-1 (PAR-1), by "biased agonism." Activated protein C (APC) acts through the same PAR-1 receptor but functions as an anti-coagulant and anti-inflammatory protein, which counteracts many of the effects of thrombin. Although the working mechanism of PAR-1 is becoming clear, the functional role of PAR-1 and its correlation with APC in the injured spinal cord remains to be elucidated. Here we investigated if PAR-1 and APC are determinants of long-term functional recovery after a spinal cord contusive injury using PAR-1 null and wild-type mice. We found that neutrophil infiltration and disruption of the blood-spinal cord barrier were significantly reduced in spinal cord injured PAR-1 null mice relative to the wild-type group. Both locomotor recovery and ability to descend an inclined grid were significantly improved in the PAR-1 null group 42 days after injury and this improvement was associated with greater long-term sparing of white matter and a reduction in glial scarring. Wild-type mice treated with APC acutely after injury showed a similar level of improved locomotor recovery to that of PAR-1 null mice. However, improvement of APC-treated PAR-1 null mice was indistinguishable from that of vehicle-treated PAR-1 null mice, suggesting that APC acts through PAR-1. Collectively, our findings define a detrimental role of thrombin-activated PAR-1 in wound healing and further validate APC, also acting through the PAR-1 by biased agonism, as a promising therapeutic target for spinal cord injury. PMID:28122028

  2. Peroxynitrite-induced thymocyte apoptosis: the role of caspases and poly (ADP-ribose) synthetase (PARS) activation.

    PubMed Central

    Virág, L; Scott, G S; Cuzzocrea, S; Marmer, D; Salzman, A L; Szabó, C

    1998-01-01

    The mechanisms by which immature thymocyte apoptosis is induced during negative selection are poorly defined. Reports demonstrated that cross-linking of T-cell receptor leads to stromal cell activation, expression of inducible nitric oxide synthase (iNOS) and, subsequently, to thymocyte apoptosis. Therefore we examined, whether NO directly or indirectly, through peroxynitrite formation, causes thymocyte apoptosis. Immuno-histochemical detection of nitrotyrosine revealed in vivo peroxynitrite formation in the thymi of naive mice. Nitrotyrosine, the footprint of peroxynitrite, was predominantly found in the corticomedullary junction and the medulla of naive mice. In the thymi of mice deficient in the inducible isoform of nitric oxide synthase, considerably less nitrotyrosine was found. Exposure of thymocytes in vitro to low concentrations (10 microM) of peroxynitrite led to apoptosis, whereas higher concentrations (50 microM) resulted in intense cell death with the characteristics of necrosis. We also investigated the effect of poly (ADP-ribose) synthetase (PARS) inhibition on thymocyte apoptosis. Using the PARS inhibitor 3-aminobenzamide (3-AB), or thymocytes from PARS-deficient animals, we established that PARS determines the fate of thymocyte death. Suppression of cellular ATP levels, and the cellular necrosis in response to peroxynitrite were prevented by PARS inhibition. Therefore, in the absence of PARS, cells are diverted towards the pathway of apoptotic cell death. Similar results were obtained with H2O2 treatment, while apoptosis induced by non-oxidative stimuli such as dexamethasone or anti-FAS antibody was unaffected by PARS inhibition. In conclusion, we propose that peroxynitrite-induced apoptosis may play a role in the process of thymocyte negative selection. Furthermore, we propose that the physiological role of PARS cleavage by apopain during apoptosis may serve as an energy-conserving step, enabling the cell to complete the process of apoptosis

  3. PAR2 activation alters colonic paracellular permeability in mice via IFN-γ-dependent and -independent pathways

    PubMed Central

    Cenac, Nicolas; Chin, Alex C; Garcia-Villar, Rafael; Salvador-Cartier, Christel; Ferrier, Laurent; Vergnolle, Nathalie; Buret, André G; Fioramonti, Jean; Bueno, Lionel

    2004-01-01

    Activation of colonic proteinase-activated receptor-2 (PAR2) caused inflammation and increased mucosal permeability in mouse colon. The present study was aimed at characterizing the possible links between these two phenomena. We evaluated the effects of intracolonic infusion of PAR2-activating peptide, SLIGRL, on colonic paracellular permeability and inflammation at two different doses, 5 and 100 μg per mouse, in an attempt to discriminate between both PAR2-mediated effects. We further investigated the possible involvement of interferon γ (IFN-γ) and calmodulin-dependent activation of myosin light chain kinase (MLCK), and alterations of zonula occludens-1 (ZO-1) localization in PAR2-induced responses. Thus, at the lower dose, SLIGRL increased colonic permeability without causing inflammation. Western blotting showed phosphorylation of mucosal myosin light chain (MLC) expression after both doses of SLIGRL. Moreover, while the MLCK inhibitor, ML-7, abolished the permeability effects of the low dose of SLIGRL, it only partially inhibited that of the high dose. In IFN-γ-deficient mice (B6 ifng−/−), the increases in permeability were similar for both doses of SLIGRL and prevented by ML-7. In addition, MLCK immunoprecipitation revealed an increase of calmodulin binding to MLCK in the mucosa of mice treated with either dose of SLIGRL. Finally, we have shown that direct activation of PAR2 on enterocytes is responsible for increased permeability and ZO-1 disruption. Moreover, SLIGRL at a dose that does not produce inflammation increases permeability via calmodulin activation, which binds and activates MLCK. The resulting tight junction opening does not depend upon IFN-γ secretion, while the increased permeability in response to the high dose of PAR2 agonist involves IFN-γ secretion. PMID:15194744

  4. Protease-activated receptor-1 deficiency protects against streptozotocin-induced diabetic nephropathy in mice

    PubMed Central

    Waasdorp, Maaike; Duitman, JanWillem; Florquin, Sandrine; Spek, C. Arnold

    2016-01-01

    Endogenously administered activated protein C ameliorates diabetic nephropathy (DN) in a protease-activated receptor-1 (PAR-1)-dependent manner, suggesting that PAR-1 activation limits the progression of DN. Activation of PAR-1 in fibroblast-like cells, however, induces proliferation and extracellular matrix production, thereby driving fibrotic disease. Considering the key role of mesangial proliferation and extracellular matrix production during DN, PAR-1 may in fact potentiate diabetes-induced kidney injury. To determine the net effect of PAR-1 in DN, streptozotocin-induced DN was studied in wild type and PAR-1 deficient mice. Subsequent mechanistic insight was obtained by assessing profibrotic responses of mesangial and tubular epithelial cells in vitro, following PAR-1 stimulation and inhibition. Despite having similar glucose levels, PAR-1 deficient mice developed less kidney damage after induction of diabetes, as evidenced by diminished proteinuria, plasma cystatin C levels, expansion of the mesangial area, and tubular atrophy. In vitro, PAR-1 signaling in mesangial cells led to increased proliferation and expression of matrix proteins fibronectin and collagen IV. Conversely, a reduction in both proliferation and fibronectin deposition was observed in diabetic PAR-1 deficient mice. Overall, we show that PAR-1 plays an important role in the development of DN and PAR-1 might therefore be an attractive therapeutic target to pursue in DN. PMID:27618774

  5. Synthesis of Arylpiperazine Derivatives As Protease Activated Receptor 1 Antagonists And Their Evaluation As Antiproliferative Agents.

    PubMed

    Zotti, Andrea Ilaria; Di Gennaro, Elena; Corvino, Angela; Frecentese, Francesco; Magli, Elisa; Perissutti, Elisa; Cirino, Giuseppe; Roviezzo, Fiorentina; Terranova-Barberio, Manuela; Iannelli, Federica; Caliendo, Giuseppe; Santagada, Vincenzo; Fiorino, Ferdinando; Budillon, Alfredo; Severino, Beatrice

    2016-09-26

    Protease activated receptor-1 (PAR1) is a G-coupled receptor activated by α-thrombin and other proteases. Several reports demonstrate PAR1 involvement in tumorigenesis and tumor progression. In order to investigate on potential use of PAR1 antagonists as antiproliferative agents, we have identified a series of arylpiperazine derivatives acting as PAR1 antagonists; the selected molecules have been evaluated for their antiproliferative properties. All the compounds inhibited the growth of a panel of cell lines expressing PAR1; two of them, compounds 13 and 15, were able to inhibit, in a dose dependent manner, the growth of the selected cell lines with the lowest IC50 values, and were further characterized to define the mechanism responsible for the observed antiproliferative effect. This study directed us to the identification of two interesting leads that may help to further validate PAR1 as an important therapeutic target for cancer treatment.

  6. MicroRNA-34a Mediates the Autocrine Signaling of PAR2-Activating Proteinase and Its Role in Colonic Cancer Cell Proliferation

    PubMed Central

    Ma, Yiming; Bao-Han, Wuyun; Lv, Xue; Su, Yuntao; Zhao, Xinhua; Yin, Yongmei; Zhang, Xingmao; Zhou, Zhixiang; MacNaughton, Wallace K.; Wang, Hongying

    2013-01-01

    The tumor microenvironment is replete with proteinases. As a sensor of proteinases, proteinase activated receptor 2 (PAR2) plays critical roles in tumorigenesis. We showed that PAR2 and its activating proteinase were coexpressed in different colon cancer cell lines, including HT29. Inactivating proteinase or knockdown of PAR2 significantly not only reduced cell proliferation in vitro but also inhibited tumorigenicity of HT29 in vivo. In addition, activation of PAR2 promoted DNA synthesis and upregulated Cyclin D1 activity at both transcriptional and post-transcriptional levels. Further studies showed that miRNA-34a mediated PAR2-induced Cyclin D1 upregulation. Inhibition of miR-34a partially abolished the suppression of Cyclin D1 induced by PAR2 deficiency. In addition, we showed that TGF-β contributed to the regulation of miR-34a by PAR2. Finally, in colorectal carcinoma samples, upregulation of PAR2 and downregulation of miR-34a were significantly correlated with grade and lymphomatic metastasis. Our findings provide the first evidence that miRNA mediates autocrine proteinase signaling-mediated cancer cell proliferation. PMID:23991105

  7. Biased signaling by peptide agonists of protease activated receptor 2.

    PubMed

    Jiang, Yuhong; Yau, Mei-Kwan; Kok, W Mei; Lim, Junxian; Wu, Kai-Chen; Liu, Ligong; Hill, Timothy A; Suen, Jacky Y; Fairlie, David P

    2017-02-07

    Protease activated receptor 2 (PAR2) is associated with metabolism, obesity, inflammatory, respiratory and gastrointestinal disorders, pain, cancer and other diseases. The extracellular N-terminus of PAR2 is a common target for multiple proteases, which cleave it at different sites to generate different N-termini that activate different PAR2-mediated intracellular signaling pathways. There are no synthetic PAR2 ligands that reproduce the same signaling profiles and potencies as proteases. Structure-activity relationships here for 26 compounds spanned a signaling bias over 3 log units, culminating in three small ligands as biased agonist tools for interrogating PAR2 functions. DF253 (2f-LAAAAI-NH2) triggered PAR2-mediated calcium release (EC50 2 μM) but not ERK1/2 phosphorylation (EC50 > 100 μM) in CHO cells transfected with hPAR2. AY77 (Isox-Cha-Chg-NH2) was a more potent calcium-biased agonist (EC50 40 nM, Ca2+; EC50 2 μM, ERK1/2), while its analogue AY254 (Isox-Cha-Chg-A-R-NH2) was an ERK-biased agonist (EC50 2 nM, ERK1/2; EC50 80 nM, Ca2+). Signaling bias led to different functional responses in human colorectal carcinoma cells (HT29). AY254, but not AY77 or DF253, attenuated cytokine-induced caspase 3/8 activation, promoted scratch-wound healing and induced IL-8 secretion, all via PAR2-ERK1/2 signaling. Different ligand components were responsible for different PAR2 signaling and functions, clues that can potentially lead to drugs that modulate different pathway-selective cellular and physiological responses.

  8. Protease-activated receptor-1 modulates hippocampal memory formation and synaptic plasticity.

    PubMed

    Almonte, Antoine G; Qadri, Laura H; Sultan, Faraz A; Watson, Jennifer A; Mount, Daniel J; Rumbaugh, Gavin; Sweatt, J David

    2013-01-01

    Protease-activated receptor-1 (PAR1) is an unusual G-protein coupled receptor (GPCR) that is activated through proteolytic cleavage by extracellular serine proteases. Although previous work has shown that inhibiting PAR1 activation is neuroprotective in models of ischemia, traumatic injury, and neurotoxicity, surprisingly little is known about PAR1's contribution to normal brain function. Here, we used PAR1-/- mice to investigate the contribution of PAR1 function to memory formation and synaptic function. We demonstrate that PAR1-/- mice have deficits in hippocampus-dependent memory. We also show that while PAR1-/- mice have normal baseline synaptic transmission at Schaffer collateral-CA1 synapses, they exhibit severe deficits in N-methyl-d-aspartate receptor (NMDAR)-dependent long-term potentiation (LTP). Mounting evidence indicates that activation of PAR1 leads to potentiation of NMDAR-mediated responses in CA1 pyramidal cells. Taken together, this evidence and our data suggest an important role for PAR1 function in NMDAR-dependent processes subserving memory formation and synaptic plasticity.

  9. Role of enteric nerves in immune-mediated changes in protease activated receptor 2 effects on gut function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protease activated receptors (PARs) are expressed on structural cells and immune cells. Control of the initiation, duration, and magnitude of the PAR effects are linked to the level of receptor expression, the availability of proteases, and the intracellular signal transduction machinery. We inve...

  10. Soluble urokinase receptor (suPAR) predicts microalbuminuria in patients at risk for type 2 diabetes mellitus

    PubMed Central

    Guthoff, Martina; Wagner, Robert; Randrianarisoa, Elko; Hatziagelaki, Erifili; Peter, Andreas; Häring, Hans-Ulrich; Fritsche, Andreas; Heyne, Nils

    2017-01-01

    Early identification of patients at risk of developing diabetic nephropathy is essential. Elevated serum concentrations of soluble urokinase receptor (suPAR) associate with diabetes mellitus and predict onset and loss of renal function in chronic kidney disease. We hypothesize, that suPAR may be an early risk indicator for diabetic nephropathy, preceding microalbuminuria. The relationship of baseline suPAR and incident microalbuminuria was assessed in a prospective long-term cohort of subjects at increased risk for type 2 diabetes (TULIP, n = 258). Association with albuminuria at later stages of disease was studied in a cross-sectional cohort with manifest type 2 diabetes (ICEPHA, n = 266). A higher baseline suPAR was associated with an increased risk of new-onset microalbuminuria in subjects at risk for type 2 diabetes (hazard ratio 5.3 (95% CI 1.1–25.2, p = 0.03) for the highest vs. lowest suPAR quartile). The proportion of subjects with prediabetes at the end of observation was higher in subjects with new-onset microalbuminuria. suPAR consistently correlated with albuminuria in a separate cohort with manifest type 2 diabetes. Elevated baseline suPAR concentrations independently associate with new-onset microalbuminuria in subjects at increased risk of developing type 2 diabetes. suPAR may hence allow for earlier risk stratification than microalbuminuria. PMID:28091558

  11. Soluble urokinase receptor (suPAR) predicts microalbuminuria in patients at risk for type 2 diabetes mellitus.

    PubMed

    Guthoff, Martina; Wagner, Robert; Randrianarisoa, Elko; Hatziagelaki, Erifili; Peter, Andreas; Häring, Hans-Ulrich; Fritsche, Andreas; Heyne, Nils

    2017-01-16

    Early identification of patients at risk of developing diabetic nephropathy is essential. Elevated serum concentrations of soluble urokinase receptor (suPAR) associate with diabetes mellitus and predict onset and loss of renal function in chronic kidney disease. We hypothesize, that suPAR may be an early risk indicator for diabetic nephropathy, preceding microalbuminuria. The relationship of baseline suPAR and incident microalbuminuria was assessed in a prospective long-term cohort of subjects at increased risk for type 2 diabetes (TULIP, n = 258). Association with albuminuria at later stages of disease was studied in a cross-sectional cohort with manifest type 2 diabetes (ICEPHA, n = 266). A higher baseline suPAR was associated with an increased risk of new-onset microalbuminuria in subjects at risk for type 2 diabetes (hazard ratio 5.3 (95% CI 1.1-25.2, p = 0.03) for the highest vs. lowest suPAR quartile). The proportion of subjects with prediabetes at the end of observation was higher in subjects with new-onset microalbuminuria. suPAR consistently correlated with albuminuria in a separate cohort with manifest type 2 diabetes. Elevated baseline suPAR concentrations independently associate with new-onset microalbuminuria in subjects at increased risk of developing type 2 diabetes. suPAR may hence allow for earlier risk stratification than microalbuminuria.

  12. The Role of Protease-Activated Receptors for the Development of Myocarditis: Possible Therapeutic Implications.

    PubMed

    Weithauser, Alice; Witkowski, Marco; Rauch, Ursula

    2016-01-01

    Protease-activated receptors (PARs) are a unique group of four G-protein coupled receptors. They are widely expressed within the cardiovascular system and the heart. PARs are activated via cleavage by serine proteases. In vitro and in vivo studies showed that the activation of PAR1 and PAR2 plays a crucial role in virus induced inflammatory diseases. The receptors enable cells to recognize pathogen-derived changes in the extracellular environment. An infection with Coxsackie-virus B3 (CVB3) can cause myocarditis. Recent studies have been shown that PAR1 signaling enhanced the antiviral innate immune response via interferon β (IFNβ) and thus limited the virus replication and cardiac damage. In contrast, PAR2 signaling decreased the antiviral innate immune response via IFNβ und thus increased the virus replication, which caused severe myocarditis. Along with CVB3 other viruses such as influenza A virus (IAV) and herpes simplex virus (HSV) can induce myocarditis. The role of PAR signaling in IAV infections is contrarily discussed. During HSV infections PARs facilitate the virus infection of the host cell. These studies show that PARs might be interesting drug targets for the treatment of virus infections and inflammatory heart diseases. First studies with PAR agonists, antagonists, and serine protease inhibitors have been conducted in mice. The inhibition of thrombin the main PAR1 activating protease decreased the IFNβ response and increased the virus replication in CVB3-induced myocarditis. This indicates that further studies with direct PAR agonists and antagonists are needed to determine whether PARs are useful drug targets for the therapy of virus-induced heart diseases.

  13. Protease-activated receptors modulate excitability of murine colonic smooth muscles by differential effects on interstitial cells

    PubMed Central

    Sung, Tae Sik; Kim, Heung Up; Kim, Jeong Hwan; Lu, Hongli; Sanders, Kenton M; Koh, Sang Don

    2015-01-01

    Abstract Protease-activated receptors (PARs) are G protein-coupled receptors activated by proteolytic cleavage at their amino termini by serine proteases. PAR activation contributes to the inflammatory response in the gastrointestinal (GI) tract and alters GI motility, but little is known about the specific cells within the tunica muscularis that express PARs and the mechanisms leading to contractile responses. Using real time PCR, we found PARs to be expressed in smooth muscle cells (SMCs), interstitial cells of Cajal (ICC) and platelet-derived growth factor receptor α positive (PDGFRα+) cells. The latter cell-type showed dominant expression of F2r (encodes PAR1) and F2rl1 (encodes PAR2). Contractile and intracellular electrical activities were measured to characterize the integrated responses to PAR activation in whole muscles. Cells were isolated and ICC and PDGFRα+ cells were identified by constitutive expression of fluorescent reporters. Thrombin (PAR1 agonist) and trypsin (PAR2 agonist) caused biphasic responses in colonic muscles: transient hyperpolarization and relaxation followed by repolarization and excitation. The inhibitory phase was blocked by apamin, revealing a distinct excitatory component. Patch clamp studies showed that the inhibitory response was mediated by activation of small conductance calcium-activated K+ channels in PDGFRα+ cells, and the excitatory response was mediated by activation of a Cl− conductance in ICC. SMCs contributed little to PAR responses in colonic muscles. In summary, PARs regulate the excitability of colonic muscles; different conductances are activated in each cell type of the SMC–ICC–PDGFRα+ cell (SIP) syncytium. Motor responses to PAR agonists are integrated responses of the SIP syncytium. Key points Activation of protease-activated receptors (PAR) regulates gastrointestinal (GI) motility but little is known about the cells and mechanisms in GI muscles responsible for PAR responses. Using mouse cells, we

  14. Characterization and Functions of Protease-Activated Receptor 2 in Obesity, Diabetes, and Metabolic Syndrome: A Systematic Review

    PubMed Central

    Kagota, Satomi; Maruyama, Kana; McGuire, John J.

    2016-01-01

    Proteinase-activated receptor 2 (PAR2) is a cell surface receptor activated by serine proteinases or specific synthetic compounds. Interest in PAR2 as a pharmaceutical target for various diseases is increasing. Here we asked two questions relevant to endothelial dysfunction and diabetes: How is PAR2 function affected in blood vessels? What role does PAR2 have in promoting obesity, diabetes, and/or metabolic syndrome, specifically via the endothelium and adipose tissues? We conducted a systematic review of the published literature in PubMed and Scopus (July 2015; search terms: par2, par-2, f2lr1, adipose, obesity, diabetes, and metabolic syndrome). Seven studies focused on PAR2 and vascular function. The obesity, diabetes, or metabolic syndrome animal models differed amongst studies, but each reported that PAR2-mediated vasodilator actions were preserved in the face of endothelial dysfunction. The remaining studies focused on nonvascular functions and provided evidence supporting the concept that PAR2 activation promoted obesity. Key studies showed that PAR2 activation regulated cellular metabolism, and PAR2 antagonists inhibited adipose gain and metabolic dysfunction in rats. We conclude that PAR2 antagonists for treatment of obesity indeed show early promise as a therapeutic strategy; however, endothelial-specific PAR2 functions, which may offset mechanisms that produce vascular dysfunction in diabetes, warrant additional study. PMID:27006943

  15. Urokinase type plasminogen activator receptor expression in colorectal neoplasms

    PubMed Central

    Suzuki, S; Hayashi, Y; Wang, Y; Nakamura, T; Morita, Y; Kawasaki, K; Ohta, K; Aoyama, N; Kim, S; Itoh, H; Kuroda, Y; Doe, W

    1998-01-01

    Background—The urokinase type plasminogen activator receptor (uPAR) may play a critical role in cancer invasion and metastasis. 
Aims—To study the involvement of uPAR in colorectal carcinogenesis. 
Methods—The cellular expression and localisation of uPAR were investigated in colorectal adenomas and invasive carcinomas by in situ hybridisation, immunohistochemistry, and northern and western blot analyses. 
Results—uPAR mRNA expression was found mainly in the cytoplasm of dysplastic epithelial cells of 30% of adenomas with mild (19%), moderate (21%), and severe (47%) dysplasia, and in that of carcinomatous cells of 85% of invasive carcinomas: Dukes' stages A (72%), B (93%), and C (91%). Some stromal cells in the adjacent neoplastic epithelium were faintly positive. Immunoreactivity for uPAR was detected in dysplastic epithelial cells of 14% of adenomas and in carcinomatous cells of 49% of invasive carcinomas. uPAR mRNA and protein concentrations were significantly higher in severe than in mild or moderate dysplasia (p<0.05); they were notably higher in Dukes' stage A than in severe dysplasia (p<0.05), and significantly higher in Dukes' stage B than in stage A (p<0.05), but those in stage B were not different from those in stage C or in metastatic colorectal carcinomas of the liver. 
Conclusions—Colorectal adenoma uPAR, expressed essentially in dysplastic epithelial cells, was upregulated with increasing severity of atypia, and increased notably during the critical transition from severe dysplasic adenoma to invasive carcinoma. These findings implicate uPAR expression in the invasive and metastatic processes of colorectal cancer. 

 Keywords: urokinase type plasminogen activator receptor; colorectal adenoma; colorectal cancer; adenoma-carcinoma sequence PMID:9824607

  16. Protease-activated receptor 2 modulates proliferation and invasion of oral squamous cell carcinoma cells.

    PubMed

    Al-Eryani, Kamal; Cheng, Jun; Abé, Tatsuya; Maruyama, Satoshi; Yamazaki, Manabu; Babkair, Hamzah; Essa, Ahmed; Saku, Takashi

    2015-07-01

    Based on our previous finding that protease-activated receptor 2 (PAR-2) regulates hemophagocytosis of oral squamous cell carcinoma (SCC) cells, which induces their heme oxygenase 1-dependent keratinization, we have formulated a hypothesis that PAR-2 functions in wider activities of SCC cells. To confirm this hypothesis, we investigated immunohistochemical profiles of PAR-2 in oral SCC tissues and its functional roles in cell proliferation and invasion in SCC cells in culture. The PAR-2 expression modes were determined in 48 surgical tissue specimens of oral SCC. Using oral SCC-derived cell systems, we determined both gene and protein expression levels of PAR-2. SCC cell proliferation and invasive properties were also examined in conditions in which PAR-2 was activated by the synthetic peptide SLIGRL. PAR-2 was immunolocalized in oral SCC and carcinoma in situ cells, especially in those on the periphery of carcinoma cell foci (100% of cases), but not in normal oral epithelia. Its expression at both gene and protein levels was confirmed in 3 oral SCC cell lines including ZK-1. Activation of PAR-2 induced ZK-1 cell proliferation in a dose-dependent manner. PAR-2-activated ZK-1 cells invaded faster than nonactivated ones. The expression of PAR-2 is specific to oral malignancies, and PAR-2 regulates the growth and invasion of oral SCC cells.

  17. Activation of Protease Activated Receptor 2 by Exogenous Agonist Exacerbates Early Radiation Injury in Rat Intestine

    SciTech Connect

    Wang Junru; Boerma, Marjan; Kulkarni, Ashwini; Hollenberg, Morley D.; Hauer-Jensen, Martin

    2010-07-15

    Purpose: Protease-activated receptor-2 (PAR{sub 2}) is highly expressed throughout the gut and regulates the inflammatory, mitogenic, fibroproliferative, and nociceptive responses to injury. PAR{sub 2} is strikingly upregulated and exhibits increased activation in response to intestinal irradiation. We examined the mechanistic significance of radiation enteropathy development by assessing the effect of exogenous PAR{sub 2} activation. Methods and Materials: Rat small bowel was exposed to localized single-dose radiation (16.5 Gy). The PAR{sub 2} agonist (2-furoyl-LIGRLO-NH{sub 2}) or vehicle was injected intraperitoneally daily for 3 days before irradiation (before), for 7 days after irradiation (after), or both 3 days before and 7 days after irradiation (before-after). Early and delayed radiation enteropathy was assessed at 2 and 26 weeks after irradiation using quantitative histologic examination, morphometry, and immunohistochemical analysis. Results: The PAR{sub 2} agonist did not elicit changes in the unirradiated (shielded) intestine. In contrast, in the irradiated intestine procured 2 weeks after irradiation, administration of the PAR{sub 2} agonist was associated with more severe mucosal injury and increased intestinal wall thickness in all three treatment groups (p <.05) compared with the vehicle-treated controls. The PAR{sub 2} agonist also exacerbated the radiation injury score, serosal thickening, and mucosal inflammation (p <.05) in the before and before-after groups. The short-term exogenous activation of PAR{sub 2} did not affect radiation-induced intestinal injury at 26 weeks. Conclusion: The results of the present study support a role for PAR{sub 2} activation in the pathogenesis of early radiation-induced intestinal injury. Pharmacologic PAR{sub 2} antagonists might have the potential to reduce the intestinal side effects of radiotherapy and/or as countermeasures in radiologic accidents or terrorism scenarios.

  18. Structural Basis of Interaction Between Urokinase-type Plasminogen Activator and its Receptor

    SciTech Connect

    Barinka,C.; Parry, G.; Callahan, J.; Shaw, D.; Kuo, A.; Cines, B.; Mazar, A.; Lubkowski, J.

    2006-01-01

    Recent studies indicate that binding of the urokinase-type plasminogen activator (uPA) to its high-affinity receptor (uPAR) orchestrates uPAR interactions with other cellular components that play a pivotal role in diverse (patho-)physiological processes, including wound healing, angiogenesis, inflammation, and cancer metastasis. However, notwithstanding the wealth of biochemical data available describing the activities of uPAR, little is known about the exact mode of uPAR/uPA interactions or the presumed conformational changes that accompany uPA/uPAR engagement. Here, we report the crystal structure of soluble urokinase plasminogen activator receptor (suPAR), which contains the three domains of the wild-type receptor but lacks the cell-surface anchoring sequence, in complex with the amino-terminal fragment of urokinase-type plasminogen activator (ATF), at the resolution of 2.8 {angstrom}. We report the 1.9 {angstrom} crystal structure of free ATF. Our results provide a structural basis, represented by conformational changes induced in uPAR, for several published biochemical observations describing the nature of uPAR/uPA interactions and provide insight into mechanisms that may be responsible for the cellular responses induced by uPA binding.

  19. Solar PAR and UVR modify the community composition and photosynthetic activity of sea ice algae.

    PubMed

    Enberg, Sara; Piiparinen, Jonna; Majaneva, Markus; Vähätalo, Anssi V; Autio, Riitta; Rintala, Janne-Markus

    2015-10-01

    The effects of increased photosynthetically active radiation (PAR) and ultraviolet radiation (UVR) on species diversity, biomass and photosynthetic activity were studied in fast ice algal communities. The experimental set-up consisted of nine 1.44 m(2) squares with three treatments: untreated with natural snow cover (UNT), snow-free (PAR + UVR) and snow-free ice covered with a UV screen (PAR). The total algal biomass, dominated by diatoms and dinoflagellates, increased in all treatments during the experiment. However, the smaller biomass growth in the top 10-cm layer of the PAR + UVR treatment compared with the PAR treatment indicated the negative effect of UVR. Scrippsiella complex (mainly Scrippsiella hangoei, Biecheleria baltica and Gymnodinium corollarium) showed UV sensitivity in the top 5-cm layer, whereas Heterocapsa arctica ssp. frigida and green algae showed sensitivity to both PAR and UVR. The photosynthetic activity was highest in the top 5-cm layer of the PAR treatment, where the biomass of the pennate diatom Nitzschia frigida increased, indicating the UV sensitivity of this species. This study shows that UVR is one of the controlling factors of algal communities in Baltic Sea ice, and that increased availability of PAR together with UVR exclusion can cause changes in algal biomass, photosynthetic activity and community composition.

  20. Recycling and Endosomal Sorting of Protease-activated Receptor-1 Is Distinctly Regulated by Rab11A and Rab11B Proteins*

    PubMed Central

    Grimsey, Neil J.; Coronel, Luisa J.; Cordova, Isabel Canto; Trejo, JoAnn

    2016-01-01

    Protease-activated receptor-1 (PAR1) is a G protein-coupled receptor that undergoes proteolytic irreversible activation by coagulant and anti-coagulant proteases. Given the irreversible activation of PAR1, signaling by the receptor is tightly regulated through desensitization and intracellular trafficking. PAR1 displays both constitutive and agonist-induced internalization. Constitutive internalization of PAR1 is important for generating an internal pool of naïve receptors that replenish the cell surface and facilitate resensitization, whereas agonist-induced internalization of PAR1 is critical for terminating G protein signaling. We showed that PAR1 constitutive internalization is mediated by the adaptor protein complex-2 (AP-2), whereas AP-2 and epsin control agonist-induced PAR1 internalization. However, the mechanisms that regulate PAR1 recycling are not known. In the present study we screened a siRNA library of 140 different membrane trafficking proteins to identify key regulators of PAR1 intracellular trafficking. In addition to known mediators of PAR1 endocytosis, we identified Rab11B as a critical regulator of PAR1 trafficking. We found that siRNA-mediated depletion of Rab11B and not Rab11A blocks PAR1 recycling, which enhanced receptor lysosomal degradation. Although Rab11A is not required for PAR1 recycling, depletion of Rab11A resulted in intracellular accumulation of PAR1 through disruption of basal lysosomal degradation of the receptor. Moreover, enhanced degradation of PAR1 observed in Rab11B-deficient cells is blocked by depletion of Rab11A and the autophagy related-5 protein, suggesting that PAR1 is shuttled to an autophagic degradation pathway in the absence of Rab11B recycling. Together these findings suggest that Rab11A and Rab11B differentially regulate intracellular trafficking of PAR1 through distinct endosomal sorting mechanisms. PMID:26635365

  1. PAR-2 activation enhances weak acid-induced ATP release through TRPV1 and ASIC sensitization in human esophageal epithelial cells.

    PubMed

    Wu, Liping; Oshima, Tadayuki; Shan, Jing; Sei, Hiroo; Tomita, Toshihiko; Ohda, Yoshio; Fukui, Hirokazu; Watari, Jiro; Miwa, Hiroto

    2015-10-15

    Esophageal visceral hypersensitivity has been proposed to be the pathogenesis of heartburn sensation in nonerosive reflux disease. Protease-activated receptor-2 (PAR-2) is expressed in human esophageal epithelial cells and is believed to play a role in inflammation and sensation. PAR-2 activation may modulate these responses through adenosine triphosphate (ATP) release, which is involved in transduction of sensation and pain. The transient receptor potential vanilloid receptor 1 (TRPV1) and acid-sensing ion channels (ASICs) are both acid-sensitive nociceptors. However, the interaction among these molecules and the mechanisms of heartburn sensation are still not clear. We therefore examined whether ATP release in human esophageal epithelial cells in response to acid is modulated by TRPV1 and ASICs and whether PAR-2 activation influences the sensitivity of TRPV1 and ASICs. Weak acid (pH 5) stimulated the release of ATP from primary human esophageal epithelial cells (HEECs). This effect was significantly reduced after pretreatment with 5-iodoresiniferatoxin (IRTX), a TRPV1-specific antagonist, or with amiloride, a nonselective ASIC blocker. TRPV1 and ASIC3 small interfering RNA (siRNA) transfection also decreased weak acid-induced ATP release. Pretreatment of HEECs with trypsin, tryptase, or a PAR-2 agonist enhanced weak acid-induced ATP release. Trypsin treatment led to the phosphorylation of TRPV1. Acid-induced ATP release enhancement by trypsin was partially blocked by IRTX, amiloride, or a PAR-2 antagonist. Conversely, acid-induced ATP release was augmented by PAR-2 activation through TRPV1 and ASICs. These findings suggested that the pathophysiology of heartburn sensation or esophageal hypersensitivity may be associated with the activation of PAR-2, TRPV1, and ASICs.

  2. A murine monoclonal antibody that binds N-terminal extracellular segment of human protease-activated receptor-4.

    PubMed

    Sangawa, Takeshi; Nogi, Terukazu; Takagi, Junichi

    2008-10-01

    Abstract A monoclonal antibody that recognizes native G protein coupled receptors (GPCR) is generally difficult to obtain. Protease-activated receptor-4 (PAR4) is a GPCR that plays an important role in platelet activation as a low-affinity thrombin receptor. By immunizing peptide corresponding to the N-terminal segment of human PAR4, we obtained a monoclonal antibody that recognizes cell surface expressed PAR4. Epitope mapping using a series of artificial fusion proteins that carry PAR4-derived peptide revealed that the recognition motif is fully contained within the 6-residue portion adjacent to the thrombin cleavage site. The antibody blocked PAR4 peptide cleavage by thrombin, suggesting its utility in the functional study of PAR4 signaling.

  3. Protease-Activated Receptor-1 is Upregulated in Reactive Stroma of Primary Prostate Cancer and Bone Metastasis

    PubMed Central

    Zhang, Xiaotun; Wang, Wenbin; True, Lawrence D.; Vessella, Robert L.; Takayama, Thomas K.

    2009-01-01

    BACKGROUND Prostate cancer progression is partly facilitated by tumor-stroma interactions. We recently reported that protease-activated receptors (PAR-1 and PAR-2) are overexpressed in prostate cancer, and PAR-1 expression in peritumoral stroma is associated with biochemical recurrence. However, the nature of PAR expression in prostate tumor microenvironment is not fully understood. We therefore evaluated PAR-1 and PAR-2 expression in primary prostate cancer and bone metastasis. METHODS PAR-1 and PAR-2 expression in normal, primary prostate cancer and the corresponding bone metastatic tissues were examined by immunohistochemistry, and double-label immunohistochemistry with the use of additional markers. RESULTS PAR-1 was expressed in peritumoral stroma in the majority of primary cancer tissues (83%). Serial sections and double-label immunohistochemistry determined that these PAR-1 expressing stromal cells were predominantly myofibroblasts, the primary cell type in reactive stroma. Analysis of cancer glands revealed that PAR-1 expression was significantly increased in the reactive stroma around higher Gleason grade cancers. PAR-2 was predominantly expressed in the primary cancer cells as well as smooth muscle cells but not in reactive stroma. In bone metastasis, PAR-1 expression in cancer cells was elevated compared to the primary site from the same patient. In the bone reactive stroma, PAR-1 was present in vascular endothelial cells and fibroblasts, while both PAR-1 and PAR-2 were expressed in osteoblasts and osteoclasts. CONCLUSIONS In primary prostate cancer and bone metastasis, PAR-1 is upregulated in reactive stroma and PAR-2 is uniformly overexpressed in carcinoma cells, suggesting these receptors may play potentially different roles in prostate cancer development and metastasis. PMID:19170048

  4. Protease-Activated Receptor 2 Promotes Pro-Atherogenic Effects through Transactivation of the VEGF Receptor 2 in Human Vascular Smooth Muscle Cells

    PubMed Central

    Indrakusuma, Ira; Romacho, Tania; Eckel, Jürgen

    2017-01-01

    Background: Obesity is associated with impaired vascular function. In the cardiovascular system, protease-activated receptor 2 (PAR2) exerts multiple functions such as the control of the vascular tone. In pathological conditions, PAR2 is related to vascular inflammation. However, little is known about the impact of obesity on PAR2 in the vasculature. Therefore, we explored the role of PAR2 as a potential link between obesity and cardiovascular diseases. Methods: C57BL/6 mice were fed with either a chow or a 60% high fat diet for 24 weeks prior to isolation of aortas. Furthermore, human coronary artery endothelial cells (HCAEC) and human coronary smooth muscle cells (HCSMC) were treated with conditioned medium obtained from in vitro differentiated primary human adipocytes. To investigate receptor interaction vascular endothelial growth factor receptor 2 (VEGFR2) was blocked by exposure to calcium dobesilate and a VEGFR2 neutralization antibody, before treatment with PAR2 activating peptide. Student's t-test or one-way were used to determine statistical significance. Results: Both, high fat diet and exposure to conditioned medium increased PAR2 expression in aortas and human vascular cells, respectively. In HCSMC, conditioned medium elicited proliferation as well as cyclooxygenase 2 induction, which was suppressed by the PAR2 antagonist GB83. Specific activation of PAR2 by the PAR2 activating peptide induced proliferation and cyclooxygenase 2 expression which were abolished by blocking the VEGFR2. Additionally, treatment of HCSMC with the PAR2 activating peptide triggered VEGFR2 phosphorylation. Conclusion: Under obesogenic conditions, where circulating levels of pro-inflammatory adipokines are elevated, PAR2 arises as an important player linking obesity-related adipose tissue inflammation to atherogenesis. We show for the first time that the underlying mechanisms of these pro-atherogenic effects involve a potential transactivation of the VEGFR2 by PAR2. PMID

  5. Learning and memory deficits in mice lacking protease activated receptor-1.

    PubMed

    Almonte, Antoine G; Hamill, Cecily E; Chhatwal, Jasmeer P; Wingo, Thomas S; Barber, Jeremy A; Lyuboslavsky, Polina N; David Sweatt, J; Ressler, Kerry J; White, David A; Traynelis, Stephen F

    2007-10-01

    The roles of serine proteases and protease activated receptors have been extensively studied in coagulation, wound healing, inflammation, and neurodegeneration. More recently, serine proteases have been suggested to influence synaptic plasticity. In this context, we examined the role of protease activated receptor 1 (PAR1), which is activated following proteolytic cleavage by thrombin and plasmin, in emotionally motivated learning. We were particularly interested in PAR1 because its activation enhances the function of NMDA receptors, which are required for some forms of synaptic plasticity. We examined several baseline behavioral measures, including locomotor activity, expression of anxiety-like behavior, motor task acquisition, nociceptive responses, and startle responses in C57Bl/6 mice in which the PAR1 receptor has been genetically deleted. In addition, we evaluated learning and memory in these mice using two memory tasks, passive avoidance and cued fear-conditioning. Whereas locomotion, pain response, startle, and measures of baseline anxiety were largely unaffected by PAR1 removal, PAR1-/- animals showed significant deficits in a passive avoidance task and in cued fear conditioning. These data suggest that PAR1 may play an important role in emotionally motivated learning.

  6. Down-regulation of PAR1 activity with a pHLIP-based allosteric antagonist induces cancer cell death.

    PubMed

    Burns, Kelly E; Thévenin, Damien

    2015-12-15

    Even though abnormal expression of G protein-coupled receptors (GPCRs) and of their ligands is observed in many cancer cells of various origins, only a few anti-cancer compounds directly act on their signalling. One promising approach to modulate their activity consists of targeting the receptor cytoplasmic surfaces interacting with the associated G-proteins using peptides mimicking the intracellular loops of the receptor. Thus, to be fully effective, the peptide mimics must be selectively targeted to the tumour while sparing healthy tissues, translocated across the cell membrane and stay anchored to the cytoplasmic leaflet of the plasma membrane. In the present study, we introduce a novel way to selectively target and inhibit the activity of a GPCR in cancer cells under acidic conditions, such as those found in solid tumours. We find that the conjugation of a peptide fragment derived from the third intracellular loop (i3) of the protease-activated receptor 1 (PAR1) to a peptide that can selectively target tumours solely based on their acidity [pH(Low) Insertion Peptide (pHLIP)], produces a construct capable of effectively down-regulating PAR1 activity in a concentration- and pH-dependent manner and of inducing a potent cytotoxic effect in a panel of cancer cells that is proportional to the relative level of receptor expression at the cell surface. This strategy not only allows for a more selective targeting and specific intracellular delivery than current approaches, but also offers new possibilities for developing novel anti-cancer drugs targeting GPCRs.

  7. N-linked glycosylation of protease-activated receptor-1 at extracellular loop 2 regulates G-protein signaling bias.

    PubMed

    Soto, Antonio G; Smith, Thomas H; Chen, Buxin; Bhattacharya, Supriyo; Cordova, Isabel Canto; Kenakin, Terry; Vaidehi, Nagarajan; Trejo, JoAnn

    2015-07-07

    Protease-activated receptor-1 (PAR1) is a G-protein-coupled receptor (GPCR) for the coagulant protease thrombin. Similar to other GPCRs, PAR1 is promiscuous and couples to multiple heterotrimeric G-protein subtypes in the same cell and promotes diverse cellular responses. The molecular mechanism by which activation of a given GPCR with the same ligand permits coupling to multiple G-protein subtypes is unclear. Here, we report that N-linked glycosylation of PAR1 at extracellular loop 2 (ECL2) controls G12/13 versus Gq coupling specificity in response to thrombin stimulation. A PAR1 mutant deficient in glycosylation at ECL2 was more effective at stimulating Gq-mediated phosphoinositide signaling compared with glycosylated wildtype receptor. In contrast, wildtype PAR1 displayed a greater efficacy at G12/13-dependent RhoA activation compared with mutant receptor lacking glycosylation at ECL2. Endogenous PAR1 rendered deficient in glycosylation using tunicamycin, a glycoprotein synthesis inhibitor, also exhibited increased PI signaling and diminished RhoA activation opposite to native receptor. Remarkably, PAR1 wildtype and glycosylation-deficient mutant were equally effective at coupling to Gi and β-arrestin-1. Consistent with preferential G12/13 coupling, thrombin-stimulated PAR1 wildtype strongly induced RhoA-mediated stress fiber formation compared with mutant receptor. In striking contrast, glycosylation-deficient PAR1 was more effective at increasing cellular proliferation, associated with Gq signaling, than wildtype receptor. These studies suggest that N-linked glycosylation at ECL2 contributes to the stabilization of an active PAR1 state that preferentially couples to G12/13 versus Gq and defines a previously unidentified function for N-linked glycosylation of GPCRs in regulating G-protein signaling bias.

  8. Urokinase Receptor Promotes Skin Tumor Formation by Preventing Epithelial Cell Activation of Notch1.

    PubMed

    Mazzieri, Roberta; Pietrogrande, Giovanni; Gerasi, Laura; Gandelli, Alessandro; Colombo, Piergiuseppe; Moi, Davide; Brombin, Chiara; Ambrosi, Alessandro; Danese, Silvio; Mignatti, Paolo; Blasi, Francesco; D'Alessio, Silvia

    2015-11-15

    The urokinase-type plasminogen activator receptor (uPAR) has a well-established role in cancer progression, but it has been little studied at earlier stages of cancer initiation. Here, we show that uPAR deficiency in the mouse dramatically reduces susceptibility to the classical two-stage protocol of inflammatory skin carcinogenesis. uPAR genetic deficiency decreased papilloma formation and accelerated keratinocyte differentiation, effects mediated by Notch1 hyperactivation. Notably, Notch1 inhibition in uPAR-deficient mice rescued their susceptibility to skin carcinogenesis. Clinically, we found that human differentiated keratoacanthomas expressed low levels of uPAR and high levels of activated Notch1, with opposite effects in proliferating tumors, confirming the relevance of the observations in mice. Furthermore, we found that TACE-dependent activation of Notch1 in basal kerantinocytes was modulated by uPAR. Mechanistically, uPAR sequestered TACE within lipid rafts to prevent Notch1 activation, thereby promoting cell proliferation and tumor formation. Given that uPAR signaling is nonessential for normal epidermal homeostasis, our results argue that uPAR may present a promising disease-specific target for preventing skin cancer development.

  9. Protease-activated receptors modulate excitability of murine colonic smooth muscles by differential effects on interstitial cells.

    PubMed

    Sung, Tae Sik; Kim, Heung Up; Kim, Jeong Hwan; Lu, Hongli; Sanders, Kenton M; Koh, Sang Don

    2015-03-01

    Protease-activated receptors (PARs) are G protein-coupled receptors activated by proteolytic cleavage at their amino termini by serine proteases. PAR activation contributes to the inflammatory response in the gastrointestinal (GI) tract and alters GI motility, but little is known about the specific cells within the tunica muscularis that express PARs and the mechanisms leading to contractile responses. Using real time PCR, we found PARs to be expressed in smooth muscle cells (SMCs), interstitial cells of Cajal (ICC) and platelet-derived growth factor receptor α positive (PDGFRα(+)) cells. The latter cell-type showed dominant expression of F2r (encodes PAR1) and F2rl1 (encodes PAR2). Contractile and intracellular electrical activities were measured to characterize the integrated responses to PAR activation in whole muscles. Cells were isolated and ICC and PDGFRα(+) cells were identified by constitutive expression of fluorescent reporters. Thrombin (PAR1 agonist) and trypsin (PAR2 agonist) caused biphasic responses in colonic muscles: transient hyperpolarization and relaxation followed by repolarization and excitation. The inhibitory phase was blocked by apamin, revealing a distinct excitatory component. Patch clamp studies showed that the inhibitory response was mediated by activation of small conductance calcium-activated K(+) channels in PDGFRα(+) cells, and the excitatory response was mediated by activation of a Cl(-) conductance in ICC. SMCs contributed little to PAR responses in colonic muscles. In summary, PARs regulate the excitability of colonic muscles; different conductances are activated in each cell type of the SMC-ICC-PDGFRα(+) cell (SIP) syncytium. Motor responses to PAR agonists are integrated responses of the SIP syncytium.

  10. Active zone proteins are transported via distinct mechanisms regulated by Par-1 kinase

    PubMed Central

    Barber, Kara R.; Sherman, Michael

    2017-01-01

    Disruption of synapses underlies a plethora of neurodevelopmental and neurodegenerative disease. Presynaptic specialization called the active zone plays a critical role in the communication with postsynaptic neuron. While the role of many proteins at the active zones in synaptic communication is relatively well studied, very little is known about how these proteins are transported to the synapses. For example, are there distinct mechanisms for the transport of active zone components or are they all transported in the same transport vesicle? Is active zone protein transport regulated? In this report we show that overexpression of Par-1/MARK kinase, a protein whose misregulation has been implicated in Autism spectrum disorders (ASDs) and neurodegenerative disorders, lead to a specific block in the transport of an active zone protein component- Bruchpilot at Drosophila neuromuscular junctions. Consistent with a block in axonal transport, we find a decrease in number of active zones and reduced neurotransmission in flies overexpressing Par-1 kinase. Interestingly, we find that Par-1 acts independently of Tau-one of the most well studied substrates of Par-1, revealing a presynaptic function for Par-1 that is independent of Tau. Thus, our study strongly suggests that there are distinct mechanisms that transport components of active zones and that they are tightly regulated. PMID:28222093

  11. Antiparkinsonian potential of targeting group III metabotropic glutamate receptor subtypes in the rodent substantia nigra pars reticulata

    PubMed Central

    Broadstock, M; Austin, PJ; Betts, MJ; Duty, S

    2012-01-01

    BACKGROUND AND PURPOSE Increased firing of the glutamatergic pathway between the subthalamic nucleus and substantia nigra pars reticulata (SNpr) contributes to the abnormal firing of motor circuits and subsequent motor deficits seen in Parkinson's disease. Broad spectrum agonist-induced activation of presynaptic group III metabotropic glutamate (mGlu) receptors within the SNpr reduced glutamate release and reversed akinesia in the reserpine-treated rat model of Parkinson's disease. Here, we have sought to identify which subtypes of group III mGlu receptor in the SNpr were responsible for these beneficial effects. EXPERIMENTAL APPROACH The ability of the mGlu4 positive allosteric modulator, N-phenyl-7-(hydroxyminocyclopropa[b]chromen-1a-carboxamide) (PHCCC), the mGlu7 allosteric agonist, N,N′-dibenzhydrylethane-1,2-diamine dihydrochloride (AMN082) and the mGlu8-selective agonist (S)-3,4-dicarboxyphenylglycine [(S)-3,4-DCPG] to inhibit KCl-evoked [3H]-D-aspartate release was examined in vitro in rat nigral prisms. Reversal of akinesia in reserpine-treated rats was also assessed following intranigral injection of these agents. KEY RESULTS PHCCC and AMN082 inhibited [3H]-D-aspartate release by 42% and 53%, respectively when given alongside a sub-threshold concentration of the broad spectrum group III agonist, L-2-amino-4-phosphonobutyrate (L-AP4; 1 µM). In contrast (S)-3,4-DCPG failed to inhibit [3H]-D-aspartate release. All three agents also reversed reserpine-induced akinesia although only the effects of PHCCC and AMN082 were inhibited by pre-treatment with the group III antagonist (RS)-α-cyclopropyl-4-phosphonophenylglycine (CPPG). CONCLUSIONS AND IMPLICATIONS These findings reveal that targeting SNpr mGlu4 or mGlu7 receptors, but not mGlu8 receptors, provided relief from akinesia in the reserpine-treated rat model of Parkinson's disease, most likely reflecting inhibition of excess glutamate release in this region. PMID:21627638

  12. Discovery of novel protease activated receptors 1 antagonists with potent antithrombotic activity in vivo.

    PubMed

    Perez, Michel; Lamothe, Marie; Maraval, Catherine; Mirabel, Etienne; Loubat, Chantal; Planty, Bruno; Horn, Clemens; Michaux, Julien; Marrot, Sebastien; Letienne, Robert; Pignier, Christophe; Bocquet, Arnaud; Nadal-Wollbold, Florence; Cussac, Didier; de Vries, Luc; Le Grand, Bruno

    2009-10-08

    Protease activated receptors (PARs) or thrombin receptors constitute a class of G-protein-coupled receptors (GPCRs) implicated in the activation of many physiological mechanisms. Thus, thrombin activates many cell types such as vascular smooth muscle cells, leukocytes, endothelial cells, and platelets via activation of these receptors. In humans, thrombin-induced platelet aggregation is mediated by one subtype of these receptors, termed PAR1. This article describes the discovery of new antagonists of these receptors and more specifically two compounds: 2-[5-oxo-5-(4-pyridin-2-ylpiperazin-1-yl)penta-1,3-dienyl]benzonitrile 36 (F 16618) and 3-(2-chlorophenyl)-1-[4-(4-fluorobenzyl)piperazin-1-yl]propenone 39 (F 16357), obtained after optimization. Both compounds are able to inhibit SFLLR-induced human platelet aggregation and display antithrombotic activity in an arteriovenous shunt model in the rat after iv or oral administration. Furthermore, these compounds are devoid of bleeding side effects often observed with other types of antiplatelet drugs, which constitutes a promising advantage for this new class of antithrombotic agents.

  13. suPAR: The Molecular Crystal Ball

    PubMed Central

    Thunø, Maria; Macho, Betina; Eugen-Olsen, Jesper

    2009-01-01

    soluble urokinase Plasminogen Activator Receptor (suPAR) levels reflect inflammation and elevated suPAR levels are found in several infectious diseases and cancer. suPAR exists in three forms; suPARI-III, suPARII-III and suPARI which show different properties due to structural differences. Studies suggest that full-length suPAR is a regulator of uPAR/uPA by acting as uPA-scavenger, whereas the cleaved suPARII-III act as a chemotactic agent promoting the immune response via the SRSRY sequence in the linker-region. This review focus on the various suPAR fragments and their involvement in inflammation and pathogenic processes. We focus on the molecular mechanisms of the suPAR fragments and the link to the inflammatory process, as this could lead to medical applications in infectious and pathological conditions. PMID:19893210

  14. Shear stress reduces protease activated receptor-1 expression in human endothelial cells

    NASA Technical Reports Server (NTRS)

    Nguyen, K. T.; Eskin, S. G.; Patterson, C.; Runge, M. S.; McIntire, L. V.

    2001-01-01

    Shear stress has been shown to regulate several genes involved in the thrombotic and proliferative functions of endothelial cells. Thrombin receptor (protease-activated receptor-1: PAR-1) increases at sites of vascular injury, which suggests an important role for PAR-1 in vascular diseases. However, the effect of shear stress on PAR-1 expression has not been previously studied. This work investigates effects of shear stress on PAR-1 gene expression in both human umbilical vein endothelial cells (HUVECs) and microvascular endothelial cells (HMECs). Cells were exposed to different shear stresses using a parallel plate flow system. Northern blot and flow cytometry analysis showed that shear stress down-regulated PAR-1 messenger RNA (mRNA) and protein levels in both HUVECs and HMECs but with different thresholds. Furthermore, shear-reduced PAR-1 mRNA was due to a decrease of transcription rate, not increased mRNA degradation. Postshear stress release of endothelin-1 in response to thrombin was reduced in HUVECs and HMECs. Moreover, inhibitors of potential signaling pathways applied during shear stress indicated mediation of the shear-decreased PAR-1 expression by protein kinases. In conclusion, shear stress exposure reduces PAR-1 gene expression in HMECs and HUVECs through a mechanism dependent in part on protein kinases, leading to altered endothelial cell functional responses to thrombin.

  15. Cyclic strain increases protease-activated receptor-1 expression in vascular smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Nguyen, K. T.; Frye, S. R.; Eskin, S. G.; Patterson, C.; Runge, M. S.; McIntire, L. V.

    2001-01-01

    Cyclic strain regulates many vascular smooth muscle cell (VSMC) functions through changing gene expression. This study investigated the effects of cyclic strain on protease-activated receptor-1 (PAR-1) expression in VSMCs and the possible signaling pathways involved, on the basis of the hypothesis that cyclic strain would enhance PAR-1 expression, reflecting increased thrombin activity. Uniaxial cyclic strain (1 Hz, 20%) of cells cultured on elastic membranes induced a 2-fold increase in both PAR-1 mRNA and protein levels. Functional activity of PAR-1, as assessed by cell proliferation in response to thrombin, was also increased by cyclic strain. In addition, treatment of cells with antioxidants or an NADPH oxidase inhibitor blocked strain-induced PAR-1 expression. Preincubation of cells with protein kinase inhibitors (staurosporine or Ro 31-8220) enhanced strain-increased PAR-1 expression, whereas inhibitors of NO synthase, tyrosine kinase, and mitogen-activated protein kinases had no effect. Cyclic strain in the presence of basic fibroblast growth factor induced PAR-1 mRNA levels beyond the effect of cyclic strain alone, whereas no additive effect was observed between cyclic strain and platelet-derived growth factor-AB. Our findings that cyclic strain upregulates PAR-1 mRNA expression but that shear stress downregulates this gene in VSMCs provide an opportunity to elucidate signaling differences by which VSMCs respond to different mechanical forces.

  16. EBV LMP-1 negatively regulates expression and pro-apoptotic activity of Par-4 in nasopharyngeal carcinoma cells.

    PubMed

    Lee, Jeng-Woei; Liu, Po-Fan; Hsu, Lee-Ping; Chen, Peir-Rong; Chang, Chung-Hsing; Shih, Wen-Ling

    2009-07-08

    Latent membrane protein-1 (LMP-1) of the Epstein-Barr virus (EBV) is closely associated with nasopharyngeal carcinoma (NPC), and in this study we sought to determine whether the pro-apoptotic activity of prostate apoptosis response-4 (Par-4) is modulated by LMP-1 in NPC cells. We found that LMP-1 diminished the pro-apoptotic activity of Par-4 and negatively regulated Par-4 protein by de novo synthesis; moreover, although LMP-1 accelerated a Par-4 activator, PKA, we demonstrated that LMP-1 also activated the PI3K/Akt pathway and increased Bcl-2 expression to suppress the activity of Par-4. Consequently, our results revealed a novel negative action of LMP-1 on the pro-apoptosis protein Par-4 by the coordination of multiple signaling pathways.

  17. Elevation of serum urokinase plasminogen activator receptor and liver stiffness in postoperative biliary atresia

    PubMed Central

    Udomsinprasert, Wanvisa; Honsawek, Sittisak; Jirathanathornnukul, Napaphat; Chongsrisawat, Voranush; Poovorawan, Yong

    2016-01-01

    AIM To investigate serum urokinase-type plasminogen activator receptor (uPAR) and liver stiffness in biliary atresia (BA) and examine the correlation of circulating uPAR, liver stiffness, and clinical outcomes in postoperative BA children. METHODS Eighty-five postKasai BA children and 24 control subjects were registered. Circulating uPAR was measured using enzyme-linked immunosorbent essay. Liver stiffness was analyzed using transient elastography. RESULTS BA children had significantly greater circulating uPAR and liver stiffness scores than control subjects (P < 0.001). Circulating uPAR and liver stiffness were substantially higher in jaundiced BA children than non-jaundiced BA children (P < 0.001). In addition, circulating uPAR was positively associated with serum aspartate aminotransferase (r = 0.507, P < 0.001), alanine aminotransferase (r = 0.364, P < 0.001), total bilirubin (r = 0.559, P < 0.001), alkaline phosphatase (r = 0.325, P < 0.001), and liver stiffness scores (r = 0.508, P < 0.001). CONCLUSION Circulating uPAR and liver stiffness values were greater in BA children than healthy controls. The increased circulating uPAR was associated with liver dysfunction in BA. As a consequence, serum uPAR and liver stiffness may be used as noninvasive biomarkers indicating the progression of liver fibrosis in postKasai BA. PMID:27957246

  18. Roles of platelets and proteinase-activated receptors in gastric ulcer healing.

    PubMed

    Perini, Rafael; Wallace, John L; Ma, Li

    2005-10-01

    Proteinase-activated receptors (PARs) are expressed on the surface of many cells, but those on the platelet have been among the most thoroughly characterized. PARs act as key receptors mediating the proaggregatory and pro-secretory effects of thrombin. In addition to contributing to hemostasis, platelets are increasingly being viewed as important contributors to healing and to tumor growth. This is attributable to the many pro- and anti-angiogenic factors that are stored within platelets, which can be released at the sites of injury and new vessel growth. In this paper, we review the importance of the platelet in gastric ulcer healing, the contribution of platelet-contained angiogenic factors to the healing of gastric ulcers, and the role of PARs in regulating the release of angiogenic factors from platelets. Taken together, our results suggest that PARs, including those expressed on platelets, are a rational therapeutic target for modulating healing processes and tumor growth.

  19. Downregulation of protease-activated receptor-1 in human lung fibroblasts is specifically mediated by the prostaglandin E receptor EP2 through cAMP elevation and protein kinase A.

    PubMed

    Sokolova, Elena; Hartig, Roland; Reiser, Georg

    2008-07-01

    Many cellular functions of lung fibroblasts are controlled by protease-activated receptors (PARs). In fibrotic diseases, PAR-1 plays a major role in controlling fibroproliferative and inflammatory responses. Therefore, in these diseases, regulation of PAR-1 expression plays an important role. Using the selective prostaglandin EP2 receptor agonist butaprost and cAMP-elevating agents, we show here that prostaglandin (PG)E(2), via the prostanoid receptor EP2 and subsequent cAMP elevation, downregulates mRNA and protein levels of PAR-1 in human lung fibroblasts. Under these conditions, the functional response of PAR-1 in fibroblasts is reduced. These effects are specific for PGE(2). Activation of other receptors coupled to cAMP elevation, such as beta-adrenergic and adenosine receptors, does not reproduce the effects of PGE(2). PGE(2)-mediated downregulation of PAR-1 depends mainly on protein kinase A activity, but does not depend on another cAMP effector, the exchange protein activated by cAMP. PGE(2)-induced reduction of PAR-1 level is not due to a decrease of PAR-1 mRNA stability, but rather to transcriptional regulation. The present results provide further insights into the therapeutic potential of PGE(2) to specifically control fibroblast function in fibrotic diseases.

  20. Mechanisms of protease-activated receptor 2-evoked hyperexcitability of nociceptive neurons innervating the mouse colon

    PubMed Central

    Kayssi, Ahmed; Amadesi, Silvia; Bautista, Francisco; Bunnett, Nigel W; Vanner, Stephen

    2007-01-01

    Agonists of protease-activated receptor 2 (PAR2) evoke hyperexcitability of dorsal root ganglia (DRG) neurons by unknown mechanisms. We examined the cellular mechanisms underlying PAR2-evoked hyperexcitability of mouse colonic DRG neurons to determine their potential role in pain syndromes such as visceral hyperalgesia. Colonic DRG neurons were identified by injecting Fast Blue and DiI retrograde tracers into the mouse colon. Using immunofluorescence, we found that DiI-labelled neurons contained PAR2 immunoreactivity, confirming the presence of receptors on colonic neurons. Whole-cell current-clamp recordings of acutely dissociated neurons demonstrated that PAR2 activation with a brief application (3 min) of PAR2 agonists, SLIGRL-NH2 and trypsin, evoked sustained depolarizations (up to 60 min) which were associated with increased input resistance and a marked reduction in rheobase (50% at 30 min). In voltage clamp, SLIGRL-NH2 markedly suppressed delayed rectifier IK currents (55% at 10 min), but had no effect on the transient IA current or TTX-resistant Na+ currents. In whole-cell current-clamp recordings, the sustained excitability evoked by PAR2 activation was blocked by the PKC inhibitor, calphostin, and the ERK1/2 inhibitor PD98059. Studies of ERK1/2 phosphorylation using confocal microscopy demonstrated that SLIGRL-NH2 increased levels of immunoreactive pERK1/2 in DRG neurons, particularly in proximity to the plasma membrane. Thus, activation of PAR2 receptors on colonic nociceptive neurons causes sustained hyperexcitability that is related, at least in part, to suppression of delayed rectifier IK currents. Both PKC and ERK1/2 mediate the PAR2-induced hyperexcitability. These studies describe a novel mechanism of sensitization of colonic nociceptive neurons that may be implicated in conditions of visceral hyperalgesia such as irritable bowel syndrome. PMID:17289784

  1. Enzyme specificity and effects of gyroxin, a serine protease from the venom of the South American rattlesnake Crotalus durissus terrificus, on protease-activated receptors.

    PubMed

    Yonamine, Camila M; Kondo, Marcia Y; Nering, Marcela B; Gouvêa, Iuri E; Okamoto, Débora; Andrade, Douglas; da Silva, José Alberto A; Prieto da Silva, Alvaro R B; Yamane, Tetsuo; Juliano, Maria A; Juliano, Luiz; Lapa, Antônio J; Hayashi, Mirian A F; Lima-Landman, Maria Teresa R

    2014-03-01

    Gyroxin is a serine protease displaying a thrombin-like activity found in the venom of the South American rattlesnake Crotalus durissus terrificus. Typically, intravenous injection of purified gyroxin induces a barrel rotation syndrome in mice. The serine protease thrombin activates platelets aggregation by cleaving and releasing a tethered N-terminus peptide from the G-protein-coupled receptors, known as protease-activated receptors (PARs). Gyroxin also presents pro-coagulant activity suggested to be dependent of PARs activation. In the present work, the effects of these serine proteases, namely gyroxin and thrombin, on PARs were comparatively studied by characterizing the hydrolytic specificity and kinetics using PARs-mimetic FRET peptides. We show for the first time that the short (sh) and long (lg) peptides mimetizing the PAR-1, -2, -3, and -4 activation sites are all hydrolyzed by gyroxin exclusively after the Arg residues. Thrombin also hydrolyzes PAR-1 and -4 after the Arg residue, but hydrolyzes sh and lg PAR-3 after the Lys residue. The kcat/KM values determined for gyroxin using sh and lg PAR-4 mimetic peptides were at least 2150 and 400 times smaller than those determined for thrombin, respectively. For the sh and lg PAR-2 mimetic peptides the kcat/KM values determined for gyroxin were at least 6500 and 2919 times smaller than those determined for trypsin, respectively. The kcat/KM values for gyroxin using the PAR-1 and -3 mimetic peptides could not be determined due to the extreme low hydrolysis velocity. Moreover, the functional studies of the effects of gyroxin on PARs were conducted in living cells using cultured astrocytes, which express all PARs. Despite the ability to cleavage the PAR-1, -2, -3, and -4 peptides, gyroxin was unable to activate the PARs expressed in astrocytes as determined by evaluating the cytosolic calcium mobilization. On the other hand, we also showed that gyroxin is able to interfere with the activation of PAR-1 by thrombin or

  2. Human retinal pigment epithelial lysis of extracellular matrix: functional urokinase plasminogen activator receptor, collagenase, and elastase.

    PubMed Central

    Elner, Susan G

    2002-01-01

    PURPOSE: To show (1) human retinal pigment epithelial (HRPE) expression of functional urokinase plasminogen activator receptor (uPAR; CD87), (2) HRPE secretion of collagenase and elastase, (3) uPAR-dependent HRPE migration, and (4) uPAR expression in diseased human retinal tissue. METHODS: Immunohistochemistry for uPAR was performed on cultured HRPE cells and in sections of human retina. Double-immunofluorescent staining of live human RPE cells with anti-CR3 antibody (CD11b) was performed to demonstrate the physical proximity of this beta 2 integrin with uPAR and determine whether associations were dependent on RPE confluence and polarity. Extracellular proteolysis by HRPE uPAR was evaluated using fluorescent bodipy-BSA and assessed for specificity by plasminogen activator inhibitor-1 (PAI-1) inhibition. The effect of interleukin-1 beta (IL-1 beta) on uPAR expression was assessed. Collagenase and elastase secretion by unstimulated and IL-1-stimulated HRPE cells was measured by 3H-labelled collagen and elastin cleavage. HRPE-associated collagenase was also assessed by cleavage of fluorescent DQ-collagen and inhibited by phenanthroline. Using an extracellular matrix assay, the roles of uPAR and collagenase in HRPE migration were assessed. RESULTS: Immunoreactive uPAR was detected on cultured HRPE cells and increased by IL-1. On elongated, live HRPE cells, uPAR dissociated from CD11b (CR3) and translocated to anterior poles of migrating cells. Extracellular proteolysis was concentrated at sites of uPAR expression and specifically inhibited by PAI-1. Cultured HRPE cells secreted substantial, functional collagenase and elastase. IL-1 upregulated uPAR, collagenase, and elastase activities. Specific inhibition of uPAR, and to a lesser degree collagenase, reduced HRPE migration in matrix/gel assays. Immunoreactive uPAR was present along the HRPE basolateral membrane in retinal sections and in sections of diseased retinal tissue. CONCLUSIONS: HRPE cells express functional uPAR

  3. Polarity protein Par3 controls B-cell receptor dynamics and antigen extraction at the immune synapse

    PubMed Central

    Reversat, Anne; Yuseff, Maria-Isabel; Lankar, Danielle; Malbec, Odile; Obino, Dorian; Maurin, Mathieu; Penmatcha, Naga Venkata Gayathri; Amoroso, Alejandro; Sengmanivong, Lucie; Gundersen, Gregg G.; Mellman, Ira; Darchen, François; Desnos, Claire; Pierobon, Paolo; Lennon-Duménil, Ana-Maria

    2015-01-01

    B-cell receptor (BCR) engagement with surface-tethered antigens leads to the formation of an immune synapse, which facilitates antigen uptake for presentation to T-lymphocytes. Antigen internalization and processing rely on the early dynein-dependent transport of BCR–antigen microclusters to the synapse center, as well as on the later polarization of the microtubule-organizing center (MTOC). MTOC repositioning allows the release of proteases and the delivery of MHC class II molecules at the synapse. Whether and how these events are coordinated have not been addressed. Here we show that the ancestral polarity protein Par3 promotes BCR–antigen microcluster gathering, as well as MTOC polarization and lysosome exocytosis, at the synapse by facilitating local dynein recruitment. Par3 is also required for antigen presentation to T-lymphocytes. Par3 therefore emerges as a key molecule in the coupling of the early and late events needed for efficient extraction and processing of immobilized antigen by B-cells. PMID:25631815

  4. Pharmacophore-based virtual screening, biological evaluation and binding mode analysis of a novel protease-activated receptor 2 antagonist

    NASA Astrophysics Data System (ADS)

    Cho, Nam-Chul; Seo, Seoung-Hwan; Kim, Dohee; Shin, Ji-Sun; Ju, Jeongmin; Seong, Jihye; Seo, Seon Hee; Lee, Iiyoun; Lee, Kyung-Tae; Kim, Yun Kyung; No, Kyoung Tai; Pae, Ae Nim

    2016-08-01

    Protease-activated receptor 2 (PAR2) is a G protein-coupled receptor, mediating inflammation and pain signaling in neurons, thus it is considered to be a potential therapeutic target for inflammatory diseases. In this study, we performed a ligand-based virtual screening of 1.6 million compounds by employing a common-feature pharmacophore model and two-dimensional similarity search to identify a new PAR2 antagonist. The common-feature pharmacophore model was established based on the biological screening results of our in-house library. The initial virtual screening yielded a total number of 47 hits, and additional biological activity tests including PAR2 antagonism and anti-inflammatory effects resulted in a promising candidate, compound 43, which demonstrated an IC50 value of 8.22 µM against PAR2. In next step, a PAR2 homology model was constructed using the crystal structure of the PAR1 as a template to explore the binding mode of the identified ligands. A molecular docking method was optimized by comparing the binding modes of a known PAR2 agonist GB110 and antagonist GB83, and applied to predict the binding mode of our hit compound 43. In-depth docking analyses revealed that the hydrophobic interaction with Phe2435.39 is crucial for PAR2 ligands to exert antagonistic activity. MD simulation results supported the predicted docking poses that PAR2 antagonist blocked a conformational rearrangement of Na+ allosteric site in contrast to PAR2 agonist that showed Na+ relocation upon GPCR activation. In conclusion, we identified new a PAR2 antagonist together with its binding mode, which provides useful insights for the design and development of PAR2 ligands.

  5. Expression and localization of urokinase-type plasminogen activator receptor in bovine cumulus-oocyte complexes.

    PubMed

    García, Daniela C; Miceli, Dora C; Rizo, Gabriela; García, Elina V; Valdecantos, Pablo A; Roldán-Olarte, Mariela

    2016-04-01

    Urokinase-type plasminogen activator (uPA) is a serine protease involved in extracellular matrix remodeling through plasmin generation. uPA usually binds to its receptor, uPAR, which is anchored to the plasma membrane through a glycosylphosphatidylinositol anchor. uPA/uPAR binding increases proteolytic activity in the neighborhood of the cells containing uPAR and activates intracellular signaling pathways involved in extracellular matrix remodeling, cell migration and proliferation. The aim of this work was to study the expression of uPA, uPAR and plasminogen activator inhibitor-1 (PAI-1) in immature and in vitro matured bovine cumulus-oocyte complexes (COCs). uPA is only expressed in the cumulus cells of immature and in vitro matured COCs, while uPAR and PAI-1 are expressed in both the cumulus cells and the immature and in vitro matured oocytes. In addition, uPAR protein was localized by confocal microscopy in the plasma membrane of oocytes and cumulus cells of immature COCs. Results from this research led us to hypothesize that the uPA/uPAR interaction could cause the local production of uPA-mediated plasmin over oocyte and cumulus cell surface; plasmin formation could also be regulated by PAI-1.

  6. Protein Kinase D and Gβγ Subunits Mediate Agonist-evoked Translocation of Protease-activated Receptor-2 from the Golgi Apparatus to the Plasma Membrane.

    PubMed

    Jensen, Dane D; Zhao, Peishen; Jimenez-Vargas, Nestor N; Lieu, TinaMarie; Gerges, Marina; Yeatman, Holly R; Canals, Meritxell; Vanner, Stephen J; Poole, Daniel P; Bunnett, Nigel W

    2016-05-20

    Agonist-evoked endocytosis of G protein-coupled receptors has been extensively studied. The mechanisms by which agonists stimulate mobilization and plasma membrane translocation of G protein-coupled receptors from intracellular stores are unexplored. Protease-activated receptor-2 (PAR2) traffics to lysosomes, and sustained protease signaling requires mobilization and plasma membrane trafficking of PAR2 from Golgi stores. We evaluated the contribution of protein kinase D (PKD) and Gβγ to this process. In HEK293 and KNRK cells, the PAR2 agonists trypsin and 2-furoyl-LIGRLO-NH2 activated PKD in the Golgi apparatus, where PKD regulates protein trafficking. PAR2 activation induced translocation of Gβγ, a PKD activator, to the Golgi apparatus, determined by bioluminescence resonance energy transfer between Gγ-Venus and giantin-Rluc8. Inhibitors of PKD (CRT0066101) and Gβγ (gallein) prevented PAR2-stimulated activation of PKD. CRT0066101, PKD1 siRNA, and gallein all inhibited recovery of PAR2-evoked Ca(2+) signaling. PAR2 with a photoconvertible Kaede tag was expressed in KNRK cells to examine receptor translocation from the Golgi apparatus to the plasma membrane. Irradiation of the Golgi region (405 nm) induced green-red photo-conversion of PAR2-Kaede. Trypsin depleted PAR2-Kaede from the Golgi apparatus and repleted PAR2-Kaede at the plasma membrane. CRT0066101 inhibited PAR2-Kaede translocation to the plasma membrane. CRT0066101 also inhibited sustained protease signaling to colonocytes and nociceptive neurons that naturally express PAR2 and mediate protease-evoked inflammation and nociception. Our results reveal a major role for PKD and Gβγ in agonist-evoked mobilization of intracellular PAR2 stores that is required for sustained signaling by extracellular proteases.

  7. German cockroach frass proteases modulate the innate immune response via activation of protease-activated receptor-2.

    PubMed

    Day, Scottie B; Zhou, Ping; Ledford, John R; Page, Kristen

    2010-01-01

    Allergen exposure can induce an early innate immune response; however, the mechanism by which this occurs has not been addressed. In this report, we demonstrate a role for the active serine proteases in German cockroach (GC) feces (frass) and protease-activated receptor (PAR)-2 in modulating the innate immune response. A single exposure of GC frass induced inflammatory cytokine production and cellular infiltration in the airways of mice. In comparison, exposure to protease-depleted GC frass resulted in diminution of inflammatory cytokine production and airway neutrophilia, but had no effect on macrophage infiltration. Selective activation of PAR-2 confirmed that PAR-2 was sufficient to induce airway inflammation. Exposure of GC frass to PAR-2-deficient mice led to decreased immune responses to GC frass compared to wild-type mice. Using the macrophage as an early marker of the innate immune response, we found that GC frass induced significant release of tumor necrosis factor-alpha from primary alveolar macrophages. This effect was dependent on the intrinsic proteases in GC frass. We confirmed GC frass-induced cytokine expression was mediated by activation of NF-kappaB and ERK in a macrophage cell line. Collectively, these data suggest a central role for GC frass protease-PAR-2 activation in regulating the innate immune response through the activation of alveolar macrophages. Understanding the potential role of protease-PAR-2 activation as a danger signal or adjuvant could yield attractive therapeutic targets.

  8. Soluble urokinase plasminogen activator receptor levels reflect organ damage in systemic lupus erythematosus.

    PubMed

    Enocsson, Helena; Wetterö, Jonas; Skogh, Thomas; Sjöwall, Christopher

    2013-11-01

    Assessments of disease activity and organ damage in systemic lupus erythematosus (SLE) remain challenging because of the lack of reliable biomarkers and disease heterogeneity. Ongoing inflammation can be difficult to distinguish from permanent organ damage caused by previous flare-ups or medication side effects. Circulating soluble urokinase plasminogen activator receptor (suPAR) has emerged as a potential marker of inflammation and disease severity, and an outcome predictor in several disparate conditions. This study was done to evaluate suPAR as a marker of disease activity and organ damage in SLE. Sera from 100 healthy donors and 198 patients with SLE fulfilling the 1982 American College of Rheumatology classification criteria and/or the Fries criteria were analyzed for suPAR by enzyme immunoassay. Eighteen patients with varying degree of disease activity were monitored longitudinally. Disease activity was assessed by the SLE disease activity index 2000 and the physician's global assessment. Organ damage was evaluated by the Systemic Lupus International Collaborating Clinics/American College of Rheumatology damage index (SDI). Compared with healthy control subjects, serum suPAR levels were elevated significantly in patients with SLE. No association was recorded regarding suPAR levels and SLE disease activity in cross-sectional or consecutive samples. However, a strong association was observed between suPAR and SDI (P < 0.0005). Considering distinct SDI domains, renal, neuropsychiatric, ocular, skin, and peripheral vascular damage had a significant effect on suPAR levels. This study is the first to demonstrate an association between serum suPAR and irreversible organ damage in SLE. Further studies are warranted to evaluate suPAR and other biomarkers as predictors of evolving organ damage.

  9. Protease-activated receptor-2 stimulates intestinal epithelial chloride transport through activation of PLC and selective PKC isoforms.

    PubMed

    van der Merwe, Jacques Q; Moreau, France; MacNaughton, Wallace K

    2009-06-01

    Serine proteases play important physiological roles through their activity at G protein-coupled protease-activated receptors (PARs). We examined the roles that specific phospholipase (PL) C and protein kinase (PK) C (PKC) isoforms play in the regulation of PAR(2)-stimulated chloride secretion in intestinal epithelial cells. Confluent SCBN epithelial monolayers were grown on Snapwell supports and mounted in modified Ussing chambers. Short-circuit current (I(sc)) responses to basolateral application of the selective PAR(2) activating peptide, SLIGRL-NH(2), were monitored as a measure of net electrogenic ion transport caused by PAR(2) activation. SLIGRL-NH(2) induced a transient I(sc) response that was significantly reduced by inhibitors of PLC (U73122), phosphoinositol-PLC (ET-18), phosphatidylcholine-PLC (D609), and phosphatidylinositol 3-kinase (PI3K; LY294002). Immunoblot analysis revealed the phosphorylation of both PLCbeta and PLCgamma following PAR(2) activation. Pretreatment of the cells with inhibitors of PKC (GF 109203X), PKCalpha/betaI (Gö6976), and PKCdelta (rottlerin), but not PKCzeta (selective pseudosubstrate inhibitor), also attenuated this response. Cellular fractionation and immunoblot analysis, as well as confocal immunocytochemistry, revealed increases of PKCbetaI, PKCdelta, and PKCepsilon, but not PKCalpha or PKCzeta, in membrane fractions following PAR(2) activation. Pretreatment of the cells with U73122, ET-18, or D609 inhibited PKC activation. Inhibition of PI3K activity only prevented PKCdelta translocation. Immunoblots revealed that PAR(2) activation induced phosphorylation of both cRaf and ERK1/2 via PKCdelta. Inhibition of PKCbetaI and PI3K had only a partial effect on this response. We conclude that basolateral PAR(2)-induced chloride secretion involves activation of PKCbetaI and PKCdelta via a PLC-dependent mechanism resulting in the stimulation of cRaf and ERK1/2 signaling.

  10. Role of Fibrinogen and Protease-Activated Receptors in Acute Xenobiotic-Induced Cholestatic Liver Injury

    PubMed Central

    Luyendyk, James P.; Mackman, Nigel; Sullivan, Bradley P.

    2011-01-01

    Alpha-naphthylisothiocyanate (ANIT)–induced cholestatic liver injury causes tissue factor (TF)–dependent coagulation in mice, and TF deficiency reduces ANIT-induced liver injury. However, the mechanism whereby TF contributes to hepatotoxicity in this model is not known. Utilizing pharmacological and genetic strategies, we evaluated the contribution of fibrinogen and two distinct receptors for thrombin, protease-activated receptor-1 (PAR-1) and PAR-4, in a model of acute ANIT hepatotoxicity. ANIT administration (60 mg/kg, po) caused a marked induction of the genes encoding the three fibrinogen chains (α, β, and γ) in liver, an increase in plasma fibrinogen, and concurrent deposition of thrombin-cleaved fibrin in liver. Partial depletion of circulating fibrinogen with ancrod did not impact ANIT hepatotoxicity. However, complete fibrin(ogen) deficiency significantly reduced serum alanine aminotransferase activity and hepatocellular necrosis in ANIT-treated mice. ANIT-induced hepatocellular necrosis was similar in PAR-1−/− mice compared with PAR-1+/+ mice. Interestingly, the progression of ANIT-induced hepatocellular necrosis was significantly reduced in PAR-4−/− mice and by administration of an inhibitory PAR-4 pepducin (P4Pal-10, 0.5 mg/kg, sc) to wild-type mice 8 h after ANIT treatment. Interestingly, a distinct lesion, parenchymal-type peliosis, was also observed in PAR-4−/− mice treated with ANIT and in mice that were given P4Pal-10 prior to ANIT administration. The results suggest that fibrin(ogen), but not PAR-1, contributes to the progression of ANIT hepatotoxicity in mice. Moreover, the data suggest a dual role for PAR-4 in ANIT hepatotoxicity, both mediating an early protection against peliosis and contributing to the progression of hepatocellular necrosis. PMID:20974703

  11. Risk Factors Associated with Serum Levels of the Inflammatory Biomarker Soluble Urokinase Plasminogen Activator Receptor in a General Population

    PubMed Central

    Haupt, Thomas H; Kallemose, Thomas; Ladelund, Steen; Rasmussen, Line JH; Thorball, Christian W; Andersen, Ove; Pisinger, Charlotta; Eugen-Olsen, Jesper

    2014-01-01

    The soluble urokinase plasminogen activator receptor (suPAR) is a biomarker of mortality risk in various patient populations. However, little is known about the implications of lifestyle for suPAR levels in the general population. Lifestyle, demographic, and cardiovascular disease (CVD) risk factor data were collected from 5,538 participants in the Danish population-based Inter99 study. Their suPAR levels were measured using a sandwich enzyme-linked immunosorbent assay. In the final adjusted model, smoking and morbid obesity were strongly associated with higher suPAR levels (P < 0.001). An unhealthy diet and alcohol abstinence in men were also associated with higher suPAR levels. Physical activity in leisure time had a modest impact on suPAR levels in univariate analysis, but not in the final adjusted model. In conclusion, smoking and morbid obesity were strongly associated with higher serum suPAR levels in this general population. Diet and alcohol consumption also seemed to impact suPAR levels. Lifestyle changes are likely to affect suPAR since ex-smokers had suPAR levels comparable to those of never-smokers. PMID:25574132

  12. Mechanism for the activation of glutamate receptors

    Cancer.gov

    Scientists at the NIH have used a technique called cryo-electron microscopy to determine a molecular mechanism for the activation and desensitization of ionotropic glutamate receptors, a prominent class of neurotransmitter receptors in the brain and spina

  13. Kallikrein 6 Signals through PAR1 and PAR2 to Promote Neuron Injury and Exacerbate Glutamate Neurotoxicity

    PubMed Central

    Yoon, Hyesook; Radulovic, Maja; Wu, Jianmin; Blaber, Sachiko I.; Blaber, Michael; Fehlings, Michael G.; Scarisbrick, Isobel A.

    2014-01-01

    CNS trauma generates a proteolytic imbalance contributing to secondary injury, including axonopathy and neuron degeneration. Kallikrein 6 (Klk6) is a serine protease implicated in neurodegeneration and here we investigate the role of protease activated receptors 1 (PAR1) and PAR2 in mediating these effects. First we demonstrate Klk6 and the prototypical activator of PAR1, thrombin, as well as PAR1 and PAR2, are each elevated in murine experimental traumatic spinal cord injury (SCI) at acute or subacute time points. Recombinant Klk6 triggered ERK1/2 signaling in cerebellar granule neurons and in the NSC34 spinal cord motoneuron cell line, in a PI3K and MEK-dependent fashion. Importantly, lipopeptide inhibitors of PAR1 or PAR2, and PAR1 genetic deletion, each reduced Klk6-ERK1/2 activation. In addition, Klk6 and thrombin promoted degeneration of cerebellar neurons and exacerbated glutamate neurotoxicity. Moreover, genetic deletion of PAR1 blocked thrombin-mediated cerebellar neurotoxicity and reduced the neurotoxic effects of Klk6. Klk6 also increased glutamate-mediated Bim signaling, PARP cleavage and lactate dehydrogenase (LDH) release in NSC34 motoneurons and these effects were blocked by PAR1 and PAR2 lipopeptide inhibitors. Taken together these data point to a novel Klk6-signaling axis in CNS neurons that is mediated by PAR1 and PAR2 and is positioned to contribute to neurodegeneration. PMID:23647384

  14. Impacts of active urea secretion into pars recta on urine concentration and urea excretion rate

    PubMed Central

    Layton, Anita T; Bankir, Lise

    2013-01-01

    It has been observed experimentally that early distal tubular urea flow exceeds urea delivery by the proximal convoluted tubule to the pars recta and loop of Henle. Moreover, the fractional excretion of urea in the urine may exceed values compatible with the reabsorption known to occur in the proximal convoluted tubule in the cortex. A likely explanation for these observations is that urea may be actively secreted into the pars recta, as proposed in a few studies. However, this hypothesis has yet to be demonstrated experimentally. In this study, we used a mathematical model of the renal medulla of the rat kidney to investigate the impacts of active urea secretion in the intrarenal handling of urea and in the urine concentrating ability. The model represents only the outer and inner medullary zones, with the actions taking place in the cortex incorporated via boundary conditions. Blood flow in the model vasculature is divided into plasma and red blood cell compartments. We compared urea flow rates and other related model variables without and with the hypothetical active urea secretion in the pars recta. The simulation suggests that active urea secretion induces a “urea-selective” improvement in urine concentrating ability by enhancing the efficiency of urea excretion without requiring a higher urine flow rate, and with only modest changes in the excretion of other solutes. These results should encourage experimental studies in order to assess the existence of an active urea secretion in the rodent kidney. PMID:24058732

  15. Palmitoylation of protease-activated receptor-1 regulates adaptor protein complex-2 and -3 interaction with tyrosine-based motifs and endocytic sorting.

    PubMed

    Canto, Isabel; Trejo, JoAnn

    2013-05-31

    Protease-activated receptor-1 (PAR1) is a G protein-coupled receptor for the coagulant protease thrombin. Thrombin binds to and cleaves the N terminus of PAR1, generating a new N terminus that functions as a tethered ligand that cannot diffuse away. In addition to rapid desensitization, PAR1 trafficking is critical for the regulation of cellular responses. PAR1 displays constitutive and agonist-induced internalization. Constitutive internalization of unactivated PAR1 is mediated by the clathrin adaptor protein complex-2 (AP-2), which binds to a distal tyrosine-based motif localized within the C-terminal tail (C-tail) domain. Once internalized, PAR1 is sorted from endosomes to lysosomes via AP-3 interaction with a second C-tail tyrosine motif proximal to the transmembrane domain. However, the regulatory processes that control adaptor protein recognition of PAR1 C-tail tyrosine-based motifs are not known. Here, we report that palmitoylation of PAR1 is critical for regulating proper utilization of tyrosine-based motifs and endocytic sorting. We show that PAR1 is basally palmitoylated at highly conserved C-tail cysteines. A palmitoylation-deficient PAR1 mutant is competent to signal and exhibits a marked increase in constitutive internalization and lysosomal degradation compared with wild type receptor. Intriguingly, enhanced constitutive internalization of PAR1 is mediated by AP-2 and requires the proximal tyrosine-based motif rather than the distal tyrosine motif used by wild type receptor. Moreover, palmitoylation-deficient PAR1 displays increased degradation that is mediated by AP-3. These findings suggest that palmitoylation of PAR1 regulates appropriate utilization of tyrosine-based motifs by adaptor proteins and endocytic trafficking, processes that are critical for maintaining appropriate expression of PAR1 at the cell surface.

  16. Protease and Protease-Activated Receptor-2 Signaling in the Pathogenesis of Atopic Dermatitis

    PubMed Central

    Lee, Sang Eun; Jeong, Se Kyoo

    2010-01-01

    Proteases in the skin are essential to epidermal permeability barrier homeostasis. In addition to their direct proteolytic effects, certain proteases signal to cells by activating protease-activated receptors (PARs), the G-protein-coupled receptors. The expression of functional PAR-2 on human skin and its role in inflammation, pruritus, and skin barrier homeostasis have been demonstrated. Atopic dermatitis (AD) is a multifactorial inflammatory skin disease characterized by genetic barrier defects and allergic inflammation, which is sustained by gene-environmental interactions. Recent studies have revealed aberrant expression and activation of serine proteases and PAR-2 in the lesional skin of AD patients. The imbalance between proteases and protease inhibitors associated with genetic defects in the protease/protease inhibitor encoding genes, increase in skin surface pH, and exposure to proteolytically active allergens contribute to this aberrant protease/PAR-2 signaling in AD. The increased protease activity in AD leads to abnormal desquamation, degradation of lipid-processing enzymes and antimicrobial peptides, and activation of primary cytokines, thereby leading to permeability barrier dysfunction, inflammation, and defects in the antimicrobial barrier. Moreover, up-regulated proteases stimulate PAR-2 in lesional skin of AD and lead to the production of cytokines and chemokines involved in inflammation and immune responses, itching sensation, and sustained epidermal barrier perturbation with easier allergen penetration. In addition, PAR-2 is an important sensor for exogenous danger molecules, such as exogenous proteases from various allergens, and plays an important role in AD pathogenesis. Together, these findings suggest that protease activity or PAR-2 may be a future target for therapeutic intervention for the treatment of AD. PMID:20879045

  17. Protease and protease-activated receptor-2 signaling in the pathogenesis of atopic dermatitis.

    PubMed

    Lee, Sang Eun; Jeong, Se Kyoo; Lee, Seung Hun

    2010-11-01

    Proteases in the skin are essential to epidermal permeability barrier homeostasis. In addition to their direct proteolytic effects, certain proteases signal to cells by activating protease-activated receptors (PARs), the G-protein-coupled receptors. The expression of functional PAR-2 on human skin and its role in inflammation, pruritus, and skin barrier homeostasis have been demonstrated. Atopic dermatitis (AD) is a multifactorial inflammatory skin disease characterized by genetic barrier defects and allergic inflammation, which is sustained by gene-environmental interactions. Recent studies have revealed aberrant expression and activation of serine proteases and PAR-2 in the lesional skin of AD patients. The imbalance between proteases and protease inhibitors associated with genetic defects in the protease/protease inhibitor encoding genes, increase in skin surface pH, and exposure to proteolytically active allergens contribute to this aberrant protease/ PAR-2 signaling in AD. The increased protease activity in AD leads to abnormal desquamation, degradation of lipid-processing enzymes and antimicrobial peptides, and activation of primary cytokines, thereby leading to permeability barrier dysfunction, inflammation, and defects in the antimicrobial barrier. Moreover, up-regulated proteases stimulate PAR-2 in lesional skin of AD and lead to the production of cytokines and chemokines involved in inflammation and immune responses, itching sensation, and sustained epidermal barrier perturbation with easier allergen penetration. In addition, PAR-2 is an important sensor for exogenous danger molecules, such as exogenous proteases from various allergens, and plays an important role in AD pathogenesis. Together, these findings suggest that protease activity or PAR-2 may be a future target for therapeutic intervention for the treatment of AD.

  18. Protease activated receptor 4 limits bacterial growth and lung pathology during late stage Streptococcus pneumoniae induced pneumonia in mice.

    PubMed

    de Stoppelaar, S F; Van't Veer, C; van den Boogaard, F E; Nieuwland, R; Hoogendijk, A J; de Boer, O J; Roelofs, J J T H; van der Poll, T

    2013-09-01

    Streptococcus pneumoniae is a common causative pathogen of pneumonia and sepsis. Pneumonia and sepsis are associated with enhanced activation of coagulation, resulting in the production of several host-derived proteases at the primary site of infection and in the circulation. Serine proteases cleave protease activated receptors (PARs), which form a molecular link between coagulation and inflammation. PAR4 is one of four subtypes of PARs and is widely expressed by multiple cell types in the respiratory tract implicated in pulmonary inflammation, by immune cells and by platelets. In mice, mouse (m)PAR4 is the only thrombin receptor expressed by platelets. We here sought to determine the contribution of mPAR4 to the host response during pneumococcal pneumonia. Pneumonia was induced by intranasal inoculation with S. pneumoniae in mPAR4-deficient (par4-/-) and wild-type mice. Mice were sacrificed after 6, 24 or 48 hours (h). Blood, lungs, liver and spleen were collected for analyses. Ex vivo stimulation assays were performed with S. pneumoniae and mPAR4 activating peptides. At 48 h after infection, higher bacterial loads were found in the lungs and blood of par4-/- mice (p < 0.05), accompanied by higher histopathology scores and increased cytokine levels (p < 0.05) in the lungs. Ex vivo, co-stimulation with mPAR4 activating peptide enhanced the whole blood cytokine response to S. pneumoniae. Thrombin inhibition resulted in decreased cytokine release after S. pneumoniae stimulation in human whole blood. Our findings suggest that mPAR4 contributes to antibacterial defence during murine pneumococcal pneumonia.

  19. CONTRIBUTION OF PROTEASE-ACTIVATED RECEPTOR 1 IN STATUS EPILEPTICUS-INDUCED EPILEPTOGENESIS

    PubMed Central

    Isaev, D.; Lushnikova, I.; Lunko, O.; Zapukhliak, O.; Maximyuk, O.; Romanov, A.; Skibo, G.G.; Tian, C.; Holmes, G.L.; Isaeva, E.

    2015-01-01

    Clinical observations and studies on different animal models of acquired epilepsy consistently demonstrate that blood-brain barrier (BBB) leakage can be an important risk factor for developing recurrent seizures. However, the involved signaling pathways remain largely unclear. Given the important role of thrombin and its major receptor in the brain, protease-activated receptor 1 (PAR1), in the pathophysiology of neurological injury, we hypothesized that PAR1 may contribute to status epilepticus (SE)-induced epileptogenesis and that its inhibition shortly after SE will have neuroprotective and antiepileptogenic effects. Adult rats subjected to lithium-pilocarpine SE were administrated SCH79797 (a PAR1 selective antagonist) after SE termination. Thrombin and PAR1 levels and neuronal cell survival were evaluated 48 hr following SE. The effect of PAR1 inhibition on animal survival, interictal spikes (IIS) and electrographic seizures during the first two weeks after SE and behavioral seizures during the chronic period were evaluated. SE resulted in a high mortality rate and incidence of IIS and seizures in the surviving animals. There was a marked increase in thrombin, decrease in PAR1 immunoreactivity and hippocampal cell loss in the SE-treated rats. Inhibition of PAR1 following SE resulted in a decrease in mortality and morbidity, increase in neuronal cell survival in the hippocampus and suppression of IIS, electrographic and behavioral seizures following SE. These data suggest that the PAR1 signaling pathway contributes to epileptogenesis following SE. Because breakdown of the BBB occurs frequently in brain injuries, PAR1 inhibition may have beneficial effects in a variety of acquired injuries leading to epilepsy. PMID:25843668

  20. Protease-Activated Receptor 2 Mediates Mucus Secretion in the Airway Submucosal Gland

    PubMed Central

    Lee, Hyun Jae; Yang, Yu-Mi; Kim, Kyubo; Shin, Dong Min; Yoon, Joo-Heon; Cho, Hyung-Ju; Choi, Jae Young

    2012-01-01

    Protease-activated receptor 2 (PAR2), a G protein-coupled receptor expressed in airway epithelia and smooth muscle, plays an important role in airway inflammation. In this study, we demonstrated that activation of PAR2 induces mucus secretion from the human airway gland and examined the underlying mechanism using the porcine and murine airway glands. The mucosa with underlying submucosal glands were dissected from the cartilage of tissues, pinned with the mucosal side up at the gas/bath solution interface of a physiological chamber, and covered with oil so that secretions from individual glands could be visualized as spherical bubbles in the oil. Secretion rates were determined by optical monitoring of the bubble diameter. The Ca2+-sensitive dye Fura2-AM was used to determine intracellular Ca2+ concentration ([Ca2+]i) by means of spectrofluorometry. Stimulation of human tracheal mucosa with PAR2-activating peptide (PAR2-AP) elevated intracellular Ca2+ and induced glandular secretion equal to approximately 30% of the carbachol response in the human airway. Porcine gland tissue was more sensitive to PAR2-AP, and this response was dependent on Ca2+ and anion secretion. When the mouse trachea were exposed to PAR2-AP, large amounts of secretion were observed in both wild type and ΔF508 cystic fibrosis transmembrane conductance regulator mutant mice but there is no secretion from PAR-2 knock out mice. In conclusion, PAR2-AP is an agonist for mucus secretion from the airway gland that is Ca2+-dependent and cystic fibrosis transmembrane conductance regulator-independent. PMID:22916223

  1. Plasma Kallikrein Promotes Epidermal Growth Factor Receptor Transactivation and Signaling in Vascular Smooth Muscle through Direct Activation of Protease-activated Receptors*

    PubMed Central

    Abdallah, Rany T.; Keum, Joo-Seob; Lee, Mi-Hye; Wang, Bing; Gooz, Monika; Luttrell, Deirdre K.; Luttrell, Louis M.; Jaffa, Ayad A.

    2010-01-01

    The kallikrein-kinin system, along with the interlocking renin-angiotensin system, is a key regulator of vascular contractility and injury response. The principal effectors of the kallikrein-kinin system are plasma and tissue kallikreins, proteases that cleave high molecular weight kininogen to produce bradykinin. Most of the cellular actions of kallikrein (KK) are thought to be mediated by bradykinin, which acts via G protein-coupled B1 and B2 bradykinin receptors on VSMCs and endothelial cells. Here, we find that primary aortic vascular smooth muscle but not endothelial cells possess the ability to activate plasma prekallikrein. Surprisingly, exposing VSMCs to prekallikrein leads to activation of the ERK1/2 mitogen-activated protein kinase cascade via a mechanism that requires kallikrein activity but does not involve bradykinin receptors. In transfected HEK293 cells, we find that plasma kallikrein directly activates G protein-coupled protease-activated receptors (PARs) 1 and 2, which possess consensus kallikrein cleavage sites, but not PAR4. In vascular smooth muscles, KK stimulates ADAM (a disintegrin and metalloprotease) 17 activity via a PAR1/2 receptor-dependent mechanism, leading sequentially to release of the endogenous ADAM17 substrates, amphiregulin and tumor necrosis factor-α, metalloprotease-dependent transactivation of epidermal growth factor receptors, and metalloprotease and epidermal growth factor receptor-dependent ERK1/2 activation. These results suggest a novel mechanism of bradykinin-independent kallikrein action that may contribute to the regulation of vascular responses in pathophysiologic states, such as diabetes mellitus. PMID:20826789

  2. Imaging of Prostate Cancer Using Urokinase-Type Plasminogen Activator Receptor PET.

    PubMed

    Skovgaard, Dorthe; Persson, Morten; Kjaer, Andreas

    2017-04-01

    Urokinase-type plasminogen activator receptor (uPAR) overexpression is an important biomarker for aggressiveness in cancer including prostate cancer (PC) and provides independent clinical information in addition to prostate-specific antigen and Gleason score. This article focuses on uPAR PET as a new diagnostic and prognostic imaging biomarker in PC. Many preclinical uPAR-targeted PET imaging studies using AE105 in cancer models have been undertaken with promising results. A major breakthrough was obtained with the recent human translation of uPAR PET in using (64)Cu- and (68)Ga-labelled versions of AE105, respectively. Clinical results from patients with PC included in these studies are encouraging and support continuation with large-scale clinical trials.

  3. Physical activity on prescription schemes (PARS): do programme characteristics influence effectiveness? Results of a systematic review and meta-analyses

    PubMed Central

    Arsenijevic, Jelena; Groot, Wim

    2017-01-01

    Background Physical activity on prescription schemes (PARS) are health promotion programmes that have been implemented in various countries. The aim of this study was to outline the differences in the design of PARS in different countries. This study also explored the differences in the adherence rate to PARS and the self-reported level of physical activity between PARS users in different countries. Method A systematic literature review and meta-analyses were conducted. We searched PubMed and EBASCO in July 2015 and updated our search in September 2015. Studies that reported adherence to the programme and self-reported level of physical activity, published in the English language in a peer-reviewed journal since 2000, were included. The difference in the pooled adherence rate after finishing the PARS programme and the adherence rate before or during the PARS programme was 17% (95% CI 9% to 24%). The difference in the pooled physical activity was 0.93 unit score (95 CI −3.57 to 1.71). For the adherence rate, a meta-regression was conducted. Results In total, 37 studies conducted in 11 different countries met the inclusion criteria. Among them, 31 reported the adherence rate, while the level of physical activity was reported in 17 studies. Results from meta-analyses show that PARS had an effect on the adherence rate of physical activity, while the results from the meta-regressions show that programme characteristics such as type of chronic disease and the follow-up period influenced the adherence rate. Conclusions The effects of PARS on adherence and self-reported physical activity were influenced by programme characteristics and also by the design of the study. Future studies on the effectiveness of PARS should use a prospective longitudinal design and combine quantitative and qualitative data. Furthermore, future evaluation studies should distinguish between evaluating the adherence rate and the self-reported physical activity among participants with different

  4. L'analyse par activation de neutrons de réacteur

    NASA Astrophysics Data System (ADS)

    Meyer, G.

    2003-02-01

    Quand les neutrons traversent la matière, certains sont transmis sans interaction, les autres interagissent avec le milieu traversé par diffusion et par absorption. Ce phénomène d'absorption est utilisé pour se protéger des neutrons, mais aussi pour les détecter; il peut également être utilisé pour identifier les noyaux “absorbants" et ainsi analyser le milieu traversé. En effet par différentes réactions nucléaires (n,γ), (n,p), (n,α), (n,fission), on obtient des noyaux résiduels qui sont souvent radioactifs; on dit que l'échantillon est “activé". Si l'on connaît le rendement d'activation et donc le pourcentage de noyaux ainsi “transmutés", les mesures de radioactivité induite vont permettre de déterminer la composition de l'échantillon irradié. Cette méthode dite d'analyse par activation neutronique est pratiquée depuis la découverte du neutron. Elle a permis grâce à sa sélectivité et à sa sensibilité d'avoir accès au domaine des traces et des ultra-traces dans des champs d'application très divers comme la métallurgie, l'archéologie, la biologie, la géochimie etc...

  5. The active analog approach applied to the pharmacophore identification of benzodiazepine receptor ligands

    NASA Astrophysics Data System (ADS)

    Tebib, Souhail; Bourguignon, Jean-Jacques; Wermuth, Camille-Georges

    1987-07-01

    Applied to seven potent benzodiazepine-receptor ligands belonging to chemically different classes, the active analog approach allowed the stepwise identification of the pharmacophoric pattern associated with the recognition by the benzodiazepine receptor. A unique pharmacophore model was derived which involves six critical zones: (a) a π-electron rich aromatic (PAR) zone; (b) two electron-rich zones δ1 and δ2 placed at 5.0 and 4.5 Å respectively from the reference centroid in the PAR zone; (c) a freely rotating aromatic ring (FRA) region; (d) an out-of-plane region (OPR), strongly associated with agonist properties; and (e) an additional hydrophobic region (AHR). The model accommodates all presently known ligands of the benzodiazepine receptor, identifies sensitivity to steric hindrance close to the δ1 zone, accounts for R and S differential affinities and distinguishes requirements for agonist versus non-agonist activity profiles.

  6. Protection of protease-activated receptor 2 mediated vasodilatation against angiotensin II-induced vascular dysfunction in mice

    PubMed Central

    2011-01-01

    Background Under conditions of cardiovascular dysfunction, protease-activated receptor 2 (PAR2) agonists maintain vasodilatation activity, which has been attributed to increased cyclooxygenase-2, nitric oxide synthase and calcium-activated potassium channel (SK3.1) activities. Protease-activated receptor 2 agonist mediated vasodilatation is unknown under conditions of dysfunction caused by angiotensin II. The main purpose of our study was to determine whether PAR2-induced vasodilatation of resistance arteries was attenuated by prolonged angiotensin II treatment in mice. We compared the vasodilatation of resistance-type arteries (mesenteric) from angiotensin II-treated PAR2 wild-type mice (WT) induced by PAR2 agonist 2-furoyl-LIGRLO-amide (2fly) to the responses obtained in controls (saline treatment). We also investigated arterial vasodilatation in angiotensin II-treated PAR2 deficient (PAR2-/-) mice. Results 2fly-induced relaxations of untreated arteries from angiotensin II-treated WT were not different than saline-treated WT. Treatment of arteries with nitric oxide synthase inhibitor and SK3.1 inhibitor (L-NAME + TRAM-34) blocked 2fly in angiotensin II-treated WT. Protein and mRNA expression of cyclooxygenase-1 and -2 were increased, and cyclooxygenase activity increased the sensitivity of arteries to 2fly in only angiotensin II-treated WT. These protective vasodilatation mechanisms were selective for 2fly compared with acetylcholine- and nitroprusside-induced relaxations which were attenuated by angiotensin II; PAR2-/- were protected against this attenuation of nitroprusside. Conclusions PAR2-mediated vasodilatation of resistance type arteries is protected against the negative effects of angiotensin II-induced vascular dysfunction in mice. In conditions of endothelial dysfunction, angiotensin II induction of cyclooxygenases increases sensitivity to PAR2 agonist and the preserved vasodilatation mechanism involves activation of SK3.1. PMID:21955547

  7. Progesterone promotes focal adhesion formation and migration in breast cancer cells through induction of protease-activated receptor-1.

    PubMed

    Diaz, Jorge; Aranda, Evelyn; Henriquez, Soledad; Quezada, Marisol; Espinoza, Estefanía; Bravo, Maria Loreto; Oliva, Bárbara; Lange, Soledad; Villalon, Manuel; Jones, Marius; Brosens, Jan J; Kato, Sumie; Cuello, Mauricio A; Knutson, Todd P; Lange, Carol A; Leyton, Lisette; Owen, Gareth I

    2012-08-01

    Progesterone and progestins have been demonstrated to enhance breast cancer cell migration, although the mechanisms are still not fully understood. The protease-activated receptors (PARs) are a family of membrane receptors that are activated by serine proteases in the blood coagulation cascade. PAR1 (F2R) has been reported to be involved in cancer cell migration and overexpressed in breast cancer. We herein demonstrate that PAR1 mRNA and protein are upregulated by progesterone treatment of the breast cancer cell lines ZR-75 and T47D. This regulation is dependent on the progesterone receptor (PR) but does not require PR phosphorylation at serine 294 or the PR proline-rich region mPRO. The increase in PAR1 mRNA was transient, being present at 3  h and returning to basal levels at 18  h. The addition of a PAR1-activating peptide (aPAR1) to cells treated with progesterone resulted in an increase in focal adhesion (FA) formation as measured by the cellular levels of phosphorylated FA kinase. The combined but not individual treatment of progesterone and aPAR1 also markedly increased stress fiber formation and the migratory capacity of breast cancer cells. In agreement with in vitro findings, data mining from the Oncomine platform revealed that PAR1 expression was significantly upregulated in PR-positive breast tumors. Our observation that PAR1 expression and signal transduction are modulated by progesterone provides new insight into how the progestin component in hormone therapies increases the risk of breast cancer in postmenopausal women.

  8. Inhibition of Protease-activated Receptor 1 Ameliorates Intestinal Radiation Mucositis in a Preclinical Rat Model

    SciTech Connect

    Wang, Junru; Kulkarni, Ashwini; Chintala, Madhu; Fink, Louis M.; Hauer-Jensen, Martin

    2013-01-01

    Purpose: To determine, using a specific small-molecule inhibitor of protease-activated receptor 1 (PAR1) signaling, whether the beneficial effect of thrombin inhibition on radiation enteropathy development is due to inhibition of blood clotting or to cellular (PAR1-mediated) thrombin effects. Methods and Materials: Rats underwent fractionated X-irradiation (5 Gy Multiplication-Sign 9) of a 4-cm small-bowel segment. Early radiation toxicity was evaluated in rats receiving PAR1 inhibitor (SCH602539, 0, 10, or 15 mg/kg/d) from 1 day before to 2 weeks after the end of irradiation. The effect of PAR1 inhibition on development of chronic intestinal radiation fibrosis was evaluated in animals receiving SCH602539 (0, 15, or 30 mg/kg/d) until 2 weeks after irradiation, or continuously until termination of the experiment 26 weeks after irradiation. Results: Blockade of PAR1 ameliorated early intestinal toxicity, with reduced overall intestinal radiation injury (P=.002), number of myeloperoxidase-positive (P=.03) and proliferating cell nuclear antigen-positive (P=.04) cells, and collagen III accumulation (P=.005). In contrast, there was no difference in delayed radiation enteropathy in either the 2- or 26-week administration groups. Conclusion: Pharmacological blockade of PAR1 seems to reduce early radiation mucositis but does not affect the level of delayed intestinal radiation fibrosis. Early radiation enteropathy is related to activation of cellular thrombin receptors, whereas platelet activation or fibrin formation may play a greater role in the development of delayed toxicity. Because of the favorable side-effect profile, PAR1 blockade should be further explored as a method to ameliorate acute intestinal radiation toxicity in patients undergoing radiotherapy for cancer and to protect first responders and rescue personnel in radiologic/nuclear emergencies.

  9. Protease-activated receptor 2 activation is sufficient to induce the transition to a chronic pain state.

    PubMed

    Tillu, Dipti V; Hassler, Shayne N; Burgos-Vega, Carolina C; Quinn, Tammie L; Sorge, Robert E; Dussor, Gregory; Boitano, Scott; Vagner, Josef; Price, Theodore J

    2015-05-01

    Protease-activated receptor type 2 (PAR2) is known to play an important role in inflammatory, visceral, and cancer-evoked pain based on studies using PAR2 knockout (PAR2(-/-)) mice. We have tested the hypothesis that specific activation of PAR2 is sufficient to induce a chronic pain state through extracellular signal-regulated kinase (ERK) signaling to protein synthesis machinery. We have further tested whether the maintenance of this chronic pain state involves a brain-derived neurotrophic factor (BDNF)/tropomyosin-related kinase B (trkB)/atypical protein kinase C (aPKC) signaling axis. We observed that intraplantar injection of the novel highly specific PAR2 agonist, 2-aminothiazol-4-yl-LIGRL-NH2 (2-at), evokes a long-lasting acute mechanical hypersensitivity (median effective dose ∼12 pmoles), facial grimacing, and causes robust hyperalgesic priming as revealed by a subsequent mechanical hypersensitivity and facial grimacing to prostaglandin E2 (PGE2) injection. The promechanical hypersensitivity effect of 2-at is completely absent in PAR2(-/-) mice as is hyperalgesic priming. Intraplantar injection of the upstream ERK inhibitor, U0126, and the eukaryotic initiation factor (eIF) 4F complex inhibitor, 4EGI-1, prevented the development of acute mechanical hypersensitivity and hyperalgesic priming after 2-at injection. Systemic injection of the trkB antagonist ANA-12 similarly inhibited PAR2-mediated mechanical hypersensitivity, grimacing, and hyperalgesic priming. Inhibition of aPKC (intrathecal delivery of ZIP) or trkB (systemic administration of ANA-12) after the resolution of 2-at-induced mechanical hypersensitivity reversed the maintenance of hyperalgesic priming. Hence, PAR2 activation is sufficient to induce neuronal plasticity leading to a chronic pain state, the maintenance of which is dependent on a BDNF/trkB/aPKC signaling axis.

  10. Inhibition of Protease-Activated Receptor 1 Does not Affect Dendritic Homeostasis of Cultured Mouse Dentate Granule Cells

    PubMed Central

    Schuldt, Gerlind; Galanis, Christos; Strehl, Andreas; Hick, Meike; Schiener, Sabine; Lenz, Maximilian; Deller, Thomas; Maggio, Nicola; Vlachos, Andreas

    2016-01-01

    Protease-activated receptors (PARs) are widely expressed in the central nervous system (CNS). While a firm link between PAR1-activation and functional synaptic and intrinsic neuronal properties exists, studies on the role of PAR1 in neural structural plasticity are scarce. The physiological function of PAR1 in the brain remains not well understood. We here sought to determine whether prolonged pharmacologic PAR1-inhibition affects dendritic morphologies of hippocampal neurons. To address this question we employed live-cell microscopy of mouse dentate granule cell dendrites in 3-week old entorhino-hippocampal slice cultures prepared from Thy1-GFP mice. A subset of cultures were treated with the PAR1-inhibitor SCH79797 (1 μM; up to 3 weeks). No major effects of PAR1-inhibition on static and dynamic parameters of dentate granule cell dendrites were detected under control conditions. Granule cells of PAR1-deficient slice cultures showed unaltered dendritic morphologies, dendritic spine densities and excitatory synaptic strength. Furthermore, we report that PAR1-inhibition does not prevent dendritic retraction following partial deafferentation in vitro. Consistent with this finding, no major changes in PAR1-mRNA levels were detected in the denervated dentate gyrus (DG). We conclude that neural PAR1 is not involved in regulating the steady-state dynamics or deafferentation-induced adaptive changes of cultured dentate granule cell dendrites. These results indicate that drugs targeting neural PAR1-signals may not affect the stability and structural integrity of neuronal networks in healthy brain regions. PMID:27378862

  11. Four different types of protease-activated receptors are widely expressed in the brain and are up-regulated in hippocampus by severe ischemia.

    PubMed

    Striggow, F; Riek-Burchardt, M; Kiesel, A; Schmidt, W; Henrich-Noack, P; Breder, J; Krug, M; Reymann, K G; Reiser, G

    2001-08-01

    A variety of extracellular serine proteases are expressed in the central nervous system or might permeate the blood-brain barrier under pathological conditions. However, their intracerebral targets and physiological functions are largely unknown. Here, we show that four distinct subtypes of protease-activated receptors (PARs) are abundantly expressed in the adult rat brain and in organotypic hippocampal slice cultures. PAR-1 expression was significant in the hippocampus, cortex and amygdala. Highest densities of PAR-2 and PAR-3 were observed in hippocampus, cortex, amygdala, thalamus, hypothalamus and striatum. Apart from the striatum, a similar localization was found for PAR-4. Within the hippocampal formation, each PAR subtype was predominantly localized in the pyramidal cell layers. Additionally, we identified PAR-2 in mossy fibers between dentate gyrus and CA3, PAR-3 in the subiculum and PAR-4 in CA3 and in mossy fibres as well as in the stratum lacunosum moleculare. After exposing hippocampal slice cultures to a severe experimental ischemia (oxygen-glucose deprivation), the expression of PARs 1-3 was up-regulated with subtype-specific kinetics. The localization of PARs in brain regions particularly vulnerable to ischemic insults as well as distinct alterations in the expression pattern after experimental ischemia support the notion of an important role of extracellular serine proteases and PARs in cerebral ischemia.

  12. A highly potent agonist to protease-activated receptor-2 reveals apical activation of the airway epithelium resulting in Ca2+-regulated ion conductance

    PubMed Central

    Sherwood, Cara L.; Daines, Michael O.; Price, Theodore J.; Vagner, Josef

    2014-01-01

    The airway epithelium provides a barrier that separates inhaled air and its various particulates from the underlying tissues. It provides key physiological functions in both sensing the environment and initiating appropriate innate immune defenses to protect the lung. Protease-activated receptor-2 (PAR2) is expressed both apically and basolaterally throughout the airway epithelium. One consequence of basolateral PAR2 activation is the rapid, Ca2+-dependent ion flux that favors secretion in the normally absorptive airway epithelium. However, roles for apically expressed PAR2 activation have not been demonstrated, in part due to the lack of specific, high-potency PAR2 ligands. In the present study, we used the newly developed PAR2 ligand 2at-LIGRLO(PEG3-Pam)-NH2 in combination with well-differentiated, primary cultured airway epithelial cells from wild-type and PAR2−/− mice to examine the physiological role of PAR2 in the conducting airway after apical activation. Using digital imaging microscopy of intracellular Ca2+ concentration changes, we verified ligand potency on PAR2 in primary cultured airway cells. Examination of airway epithelial tissue in an Ussing chamber showed that apical activation of PAR2 by 2at-LIGRLO(PEG3-Pam)-NH2 resulted in a transient decrease in transepithelial resistance that was due to increased apical ion efflux. We determined pharmacologically that this increase in ion conductance was through Ca2+-activated Cl− and large-conductance K+ channels that were blocked with a Ca2+-activated Cl− channel inhibitor and clotrimazole, respectively. Stimulation of Cl− efflux via PAR2 activation at the airway epithelial surface can increase airway surface liquid that would aid in clearing the airway of noxious inhaled agents. PMID:25143347

  13. Engagement of signaling pathways of protease-activated receptor 2 and μ-opioid receptor in bone cancer pain and morphine tolerance.

    PubMed

    Bao, Yanju; Gao, Yebo; Hou, Wei; Yang, Liping; Kong, Xiangying; Zheng, Honggang; Li, Conghuang; Hua, Baojin

    2015-09-15

    Pain is one of the most common and distressing symptoms suffered by patients with progression of cancer. Using a rat model of bone cancer, recent findings suggest that proteinase-activated receptor 2 (PAR2) signaling pathways contribute to neuropathic pain and blocking PAR2 amplifies antinociceptive effects of systemic morphine. The purpose of our study was to examine the underlying mechanisms responsible for the role of PAR2 in regulating bone cancer-evoked pain and the tolerance of systemic morphine. Breast sarcocarcinoma Walker 256 cells were implanted into the tibia bone cavity of rats and this evoked significant mechanical and thermal hyperalgesia. Our results showed that the protein expression of PAR2 and its downstream pathways (protein kinases namely, PKCε and PKA) and transient receptor potential vanilloid 1 (TRPV1) were amplified in the dorsal horn of the spinal cord of bone cancer rats compared to control rats. Blocking spinal PAR2 by using FSLLRY-NH2 significantly attenuated the activities of PKCε/PKA signaling pathways and TRPV1 expression as well as mechanical and thermal hyperalgesia. Also, inhibition of PKCε/PKA and TRPV1 significantly diminished the hyperalgesia observed in bone cancer rats. Additionally, blocking PAR2 enhanced the attenuations of PKCε/PKA and cyclic adenosine monophosphate induced by morphine and further extended analgesia of morphine via μ-opioid receptor (MOR). Our data revealed specific signaling pathways, leading to bone cancer pain, including the activation of PAR2, downstream PKCε/PKA, TRPV1 and resultant sensitization of MOR. Targeting one or more of these signaling molecules may present new opportunities for treatment and management of bone cancer pain often observed in clinics.

  14. Human Secreted Ly-6/uPAR Related Protein-1 (SLURP-1) Is a Selective Allosteric Antagonist of α7 Nicotinic Acetylcholine Receptor

    PubMed Central

    Kudryavtsev, Denis; Bychkov, Maxim L.; Kulbatskii, Dmitrii S.; Kasheverov, Igor E.; Astapova, Maria V.; Feofanov, Alexey V.; Thomsen, Morten S.; Mikkelsen, Jens D.; Shenkarev, Zakhar O.; Tsetlin, Victor I.; Dolgikh, Dmitry A.; Kirpichnikov, Mikhail P.

    2016-01-01

    SLURP-1 is a secreted toxin-like Ly-6/uPAR protein found in epithelium, sensory neurons and immune cells. Point mutations in the slurp-1 gene cause the autosomal inflammation skin disease Mal de Meleda. SLURP-1 is considered an autocrine/paracrine hormone that regulates growth and differentiation of keratinocytes and controls inflammation and malignant cell transformation. The majority of previous studies of SLURP-1 have been made using fusion constructs containing, in addition to the native protein, extra polypeptide sequences. Here we describe the activity and pharmacological profile of a recombinant analogue of human SLURP-1 (rSLURP-1) differing from the native protein only by one additional N-terminal Met residue. rSLURP-1 significantly inhibited proliferation (up to ~ 40%, EC50 ~ 4 nM) of human oral keratinocytes (Het-1A cells). Application of mecamylamine and atropine,—non-selective inhibitors of nicotinic acetylcholine receptors (nAChRs) and muscarinic acetylcholine receptors, respectively, and anti-α7-nAChRs antibodies revealed α7 type nAChRs as an rSLURP-1 target in keratinocytes. Using affinity purification from human cortical extracts, we confirmed that rSLURP-1 binds selectively to the α7-nAChRs. Exposure of Xenopus oocytes expressing α7-nAChRs to rSLURP-1 caused a significant non-competitive inhibition of the response to acetylcholine (up to ~ 70%, IC50 ~ 1 μM). It was shown that rSLURP-1 binds to α7-nAChRs overexpressed in GH4Cl cells, but does not compete with 125I-α-bungarotoxin for binding to the receptor. These findings imply an allosteric antagonist-like mode of SLURP-1 interaction with α7-nAChRs outside the classical ligand-binding site. Contrary to rSLURP-1, other inhibitors of α7-nAChRs (mecamylamine, α-bungarotoxin and Lynx1) did not suppress the proliferation of keratinocytes. Moreover, the co-application of α-bungarotoxin with rSLURP-1 did not influence antiproliferative activity of the latter. This supports the hypothesis that

  15. Featured Article: Differential regulation of endothelial nitric oxide synthase phosphorylation by protease-activated receptors in adult human endothelial cells.

    PubMed

    Tillery, Lakeisha C; Epperson, Tenille A; Eguchi, Satoru; Motley, Evangeline D

    2016-03-01

    Protease-activated receptors have been shown to regulate endothelial nitric oxide synthase through the phosphorylation of specific sites on the enzyme. It has been established that PAR-2 activation phosphorylates eNOS-Ser-1177 and leads to the production of the potent vasodilator nitric oxide, while PAR-1 activation phosphorylates eNOS-Thr-495 and decreases nitric oxide production in human umbilical vein endothelial cells. In this study, we hypothesize a differential coupling of protease-activated receptors to the signaling pathways that regulates endothelial nitric oxide synthase and nitric oxide production in primary adult human coronary artery endothelial cells. Using Western Blot analysis, we showed that thrombin and the PAR-1 activating peptide, TFLLR, lead to the phosphorylation of eNOS-Ser-1177 in human coronary artery endothelial cells, which was blocked by SCH-79797 (SCH), a PAR-1 inhibitor. Using the nitrate/nitrite assay, we also demonstrated that the thrombin- and TFLLR-induced production of nitric oxide was inhibited by SCH and L-NAME, a NOS inhibitor. In addition, we observed that TFLLR, unlike thrombin, significantly phosphorylated eNOS-Thr-495, which may explain the observed delay in nitric oxide production in comparison to that of thrombin. Activation of PAR-2 by SLIGRL, a PAR-2 specific ligand, leads to dual phosphorylation of both catalytic sites but primarily regulated eNOS-Thr-495 phosphorylation with no change in nitric oxide production in human coronary artery endothelial cells. PAR-3, known as the non-signaling receptor, was activated by TFRGAP, a PAR-3 mimicking peptide, and significantly induced the phosphorylation of eNOS-Thr-495 with minimal phosphorylation of eNOS-Ser-1177 with no change in nitric oxide production. In addition, we confirmed that PAR-mediated eNOS-Ser-1177 phosphorylation was Ca(2+)-dependent using the Ca(2+) chelator, BAPTA, while eNOS-Thr-495 phosphorylation was mediated via Rho kinase using the ROCK inhibitor, Y-27632

  16. Critical Role for PAR1 in Kallikrein 6-Mediated Oligodendrogliopathy

    PubMed Central

    Burda, Joshua E.; Radulovic, Maja; Yoon, Hyesook; Scarisbrick, Isobel A.

    2014-01-01

    Kallikrein 6 (Klk6) is a secreted serine protease preferentially expressed by oligodendroglia in CNS white matter. Elevated levels of Klk6 occur in actively demyelinating multiple sclerosis (MS) lesions and in cases of spinal cord injury (SCI), stroke and glioblastoma. Taken with recent evidence establishing Klk6 as a CNS-endogenous activator of protease-activated receptors (PARs), we hypothesized that Klk6 activates a subset of PARs to regulate oligodendrocyte physiology and potentially pathophysiology. Here, primary oligodendrocyte cultures derived from wild type or PAR1-deficient mice and the murine oligodendrocyte cell line, Oli-neu, were used to demonstrate that Klk6 mediates loss of oligodendrocyte processes and impedes morphological differentiation of oligodendrocyte progenitor cells (OPCs) in a PAR1-dependent fashion. Comparable gliopathy was also elicited by the canonical PAR1 agonist, thrombin, as well as PAR1-activating peptides (PAR1-APs). Klk6 also exacerbated ATP-mediated oligodendrogliopathy in vitro, pointing to a potential role in augmenting excitotoxicity. In addition, Klk6 suppressed the expression of proteolipid protein (PLP) RNA in cultured oligodendrocytes by a mechanism involving PAR1-mediated Erk1/2 signaling. Microinjection of PAR1 agonists, including Klk6 or PAR1-APs, into the dorsal column white matter of PAR+/+ but not PAR−/− mice promoted vacuolating myelopathy and a loss of immunoreactivity for myelin basic protein (MBP) and CC-1+ oligodendrocytes. These results demonstrate a functional role for Klk6-PAR1 signaling in oligodendroglial pathophysiology and suggest that PAR1 or PAR1-agonists may represent new targets to moderate demyelination and to promote myelin regeneration in cases of CNS white matter injury or disease. PMID:23832758

  17. Proteinase-activated receptor 2 promotes TGF-β-dependent cell motility in pancreatic cancer cells by sustaining expression of the TGF-β type I receptor ALK5.

    PubMed

    Zeeh, Franziska; Witte, David; Gädeken, Thomas; Rauch, Bernhard H; Grage-Griebenow, Evelin; Leinung, Nadja; Fromm, Sofie Joline; Stölting, Stephanie; Mihara, Koichiro; Kaufmann, Roland; Settmacher, Utz; Lehnert, Hendrik; Hollenberg, Morley D; Ungefroren, Hendrik

    2016-07-05

    Pancreatic ductal adenocarcinoma (PDAC) is characterized by high expression of transforming growth factor (TGF)-β and the G protein-coupled receptor proteinase-activated receptor 2 (PAR2), the latter of which functions as a cell-surface sensor for serine proteinases asscociated with the tumour microenvironment. Since TGF-β and PAR2 affect tumourigenesis by regulating migration, invasion and metastasis, we hypothesized that there is signalling crosstalk between them. Depleting PDAC and non-PDAC cells of PAR2 by RNA interference strongly decreased TGF-β1-induced activation of Smad2/3 and p38 mitogen-activated protein kinase, Smad dependent transcriptional activity, expression of invasion associated genes, and cell migration/invasion in vitro. Likewise, the plasminogen activator-inhibitor 1 gene in primary cultures of aortic smooth muscle cells from PAR2-/- mice displayed a greatly attenuated sensitivity to TGF-β1 stimulation. PAR2 depletion in PDAC cells resulted in reduced protein and mRNA levels of the TGF-β type I receptor activin receptor-like kinase 5 (ALK5). Forced expression of wild-type ALK5 or a kinase-active ALK5 mutant, but not a kinase-active but Smad-binding defective ALK5 mutant, was able to rescue TGF-β1-induced Smad3 activation, Smad dependent transcription, and cell migration in PAR2-depleted cells. Together, our data show that PAR2 is crucial for TGF-β1-induced cell motility by its ability to sustain expression of ALK5. Therapeutically targeting PAR2 may thus be a promising approach in preventing TGF-β-dependent driven metastatic dissemination in PDAC and possibly other stroma-rich tumour types.

  18. Proteinase-activated receptor 2 promotes TGF-β-dependent cell motility in pancreatic cancer cells by sustaining expression of the TGF-β type I receptor ALK5

    PubMed Central

    Gädeken, Thomas; Rauch, Bernhard H.; Grage-Griebenow, Evelin; Leinung, Nadja; Fromm, Sofie Joline; Stölting, Stephanie; Mihara, Koichiro; Kaufmann, Roland; Settmacher, Utz; Lehnert, Hendrik; Hollenberg, Morley D.; Ungefroren, Hendrik

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is characterized by high expression of transforming growth factor (TGF)-β and the G protein-coupled receptor proteinase-activated receptor 2 (PAR2), the latter of which functions as a cell-surface sensor for serine proteinases asscociated with the tumour microenvironment. Since TGF-β and PAR2 affect tumourigenesis by regulating migration, invasion and metastasis, we hypothesized that there is signalling crosstalk between them. Depleting PDAC and non-PDAC cells of PAR2 by RNA interference strongly decreased TGF-β1-induced activation of Smad2/3 and p38 mitogen-activated protein kinase, Smad dependent transcriptional activity, expression of invasion associated genes, and cell migration/invasion in vitro. Likewise, the plasminogen activator-inhibitor 1 gene in primary cultures of aortic smooth muscle cells from PAR2−/− mice displayed a greatly attenuated sensitivity to TGF-β1 stimulation. PAR2 depletion in PDAC cells resulted in reduced protein and mRNA levels of the TGF-β type I receptor activin receptor-like kinase 5 (ALK5). Forced expression of wild-type ALK5 or a kinase-active ALK5 mutant, but not a kinase-active but Smad-binding defective ALK5 mutant, was able to rescue TGF-β1-induced Smad3 activation, Smad dependent transcription, and cell migration in PAR2-depleted cells. Together, our data show that PAR2 is crucial for TGF-β1-induced cell motility by its ability to sustain expression of ALK5. Therapeutically targeting PAR2 may thus be a promising approach in preventing TGF-β-dependent driven metastatic dissemination in PDAC and possibly other stroma-rich tumour types. PMID:27248167

  19. High-throughput Analysis of Mammalian Olfactory Receptors: Measurement of Receptor Activation via Luciferase Activity

    PubMed Central

    Trimmer, Casey; Snyder, Lindsey L.; Mainland, Joel D.

    2014-01-01

    Odorants create unique and overlapping patterns of olfactory receptor activation, allowing a family of approximately 1,000 murine and 400 human receptors to recognize thousands of odorants. Odorant ligands have been published for fewer than 6% of human receptors1-11. This lack of data is due in part to difficulties functionally expressing these receptors in heterologous systems. Here, we describe a method for expressing the majority of the olfactory receptor family in Hana3A cells, followed by high-throughput assessment of olfactory receptor activation using a luciferase reporter assay. This assay can be used to (1) screen panels of odorants against panels of olfactory receptors; (2) confirm odorant/receptor interaction via dose response curves; and (3) compare receptor activation levels among receptor variants. In our sample data, 328 olfactory receptors were screened against 26 odorants. Odorant/receptor pairs with varying response scores were selected and tested in dose response. These data indicate that a screen is an effective method to enrich for odorant/receptor pairs that will pass a dose response experiment, i.e. receptors that have a bona fide response to an odorant. Therefore, this high-throughput luciferase assay is an effective method to characterize olfactory receptors—an essential step toward a model of odor coding in the mammalian olfactory system. PMID:24961834

  20. Differential regulation of protease activated receptor-1 and tissue plasminogen activator expression by shear stress in vascular smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Papadaki, M.; Ruef, J.; Nguyen, K. T.; Li, F.; Patterson, C.; Eskin, S. G.; McIntire, L. V.; Runge, M. S.

    1998-01-01

    Recent studies have demonstrated that vascular smooth muscle cells are responsive to changes in their local hemodynamic environment. The effects of shear stress on the expression of human protease activated receptor-1 (PAR-1) and tissue plasminogen activator (tPA) mRNA and protein were investigated in human aortic smooth muscle cells (HASMCs). Under conditions of low shear stress (5 dyn/cm2), PAR-1 mRNA expression was increased transiently at 2 hours compared with stationary control values, whereas at high shear stress (25 dyn/cm2), mRNA expression was decreased (to 29% of stationary control; P<0.05) at all examined time points (2 to 24 hours). mRNA half-life studies showed that this response was not due to increased mRNA instability. tPA mRNA expression was decreased (to 10% of stationary control; P<0.05) by low shear stress after 12 hours of exposure and was increased (to 250% of stationary control; P<0.05) after 24 hours at high shear stress. The same trends in PAR-1 mRNA levels were observed in rat smooth muscle cells, indicating that the effects of shear stress on human PAR-1 were not species-specific. Flow cytometry and ELISA techniques using rat smooth muscle cells and HASMCs, respectively, provided evidence that shear stress exerted similar effects on cell surface-associated PAR-1 and tPA protein released into the conditioned media. The decrease in PAR-1 mRNA and protein had functional consequences for HASMCs, such as inhibition of [Ca2+] mobilization in response to thrombin stimulation. These data indicate that human PAR-1 and tPA gene expression are regulated differentially by shear stress, in a pattern consistent with their putative roles in several arterial vascular pathologies.

  1. A novel signaling pathway of tissue kallikrein in promoting keratinocyte migration: Activation of proteinase-activated receptor 1 and epidermal growth factor receptor

    SciTech Connect

    Gao, Lin; Chao, Lee; Chao, Julie

    2010-02-01

    Biological functions of tissue kallikrein (TK, KLK1) are mainly mediated by kinin generation and subsequent kinin B2 receptor activation. In this study, we investigated the potential role of TK and its signaling pathways in cultured human keratinocyte migration and in a rat skin wound healing model. Herein, we show that TK promoted cell migration and proliferation in a concentration- and time-dependent manner. Inactive TK or kinin had no significant effect on cell migration. Interestingly, cell migration induced by active TK was not blocked by icatibant or L-NAME, indicating an event independent of kinin B2 receptor and nitric oxide formation. TK's stimulatory effect on cell migration was inhibited by small interfering RNA for proteinase-activated receptor 1 (PAR{sub 1}), and by PAR{sub 1} inhibitor. TK-induced migration was associated with increased phosphorylation of epidermal growth factor receptor (EGFR) and extracellular signal-regulated kinase (ERK), which was blocked by inhibition of protein kinase C (PKC), Src, EGFR and ERK. TK-induced cell migration and EGFR phosphorylation were blocked by metalloproteinase (MMP) inhibitor, heparin, and antibodies against EGFR external domain, heparin-binding EGF-like growth factor (HB-EGF) and amphiregulin (AR). Local application of TK promoted skin wound healing in rats, whereas icatibant and EGFR inhibitor blocked TK's effect. Skin wound healing was further delayed by aprotinin and neutralizing TK antibody. This study demonstrates a novel role of TK in skin wound healing and uncovers new signaling pathways mediated by TK in promoting keratinocyte migration through activation of the PAR{sub 1}-PKC-Src-MMP pathway and HB-EGF/AR shedding-dependent EGFR transactivation.

  2. Proteinase-Activated Receptor 2 Is a Novel Regulator of TGF-β Signaling in Pancreatic Cancer

    PubMed Central

    Witte, David; Zeeh, Franziska; Gädeken, Thomas; Gieseler, Frank; Rauch, Bernhard H.; Settmacher, Utz; Kaufmann, Roland; Lehnert, Hendrik; Ungefroren, Hendrik

    2016-01-01

    TGF-β has a dual role in tumorigenesis, acting as a tumor suppressor in normal cells and in the early stages of tumor development while promoting carcinogenesis and metastasis in advanced tumor stages. The final outcome of the TGF-β response is determined by cell-autonomous mechanisms and genetic alterations such as genomic instability and somatic mutations, but also by a plethora of external signals derived from the tumor microenvironment, such as cell-to-cell interactions, growth factors and extracellular matrix proteins and proteolytic enzymes. Serine proteinases mediate their cellular effects via activation of proteinase-activated receptors (PARs), a subclass of G protein-coupled receptors that are activated by proteolytic cleavage. We have recently identified PAR2 as a factor required for TGF-β1-dependent cell motility in ductal pancreatic adenocarcinoma (PDAC) cells. In this article, we review what is known on the TGF-β-PAR2 signaling crosstalk and its relevance for tumor growth and metastasis. Since PAR2 is activated through various serine proteinases, it may couple TGF-β signaling to a diverse range of other physiological processes, such as local inflammation, systemic coagulation or pathogen infection. Moreover, since PAR2 controls expression of the TGF-β type I receptor ALK5, PAR2 may also impact signaling by other TGF-β superfamily members that signal through ALK5, such as myostatin and GDF15/MIC-1. If so, PAR2 could represent a molecular linker between PDAC development and cancer-related cachexia. PMID:27916875

  3. Proteinase-Activated Receptor 2 Is a Novel Regulator of TGF-β Signaling in Pancreatic Cancer.

    PubMed

    Witte, David; Zeeh, Franziska; Gädeken, Thomas; Gieseler, Frank; Rauch, Bernhard H; Settmacher, Utz; Kaufmann, Roland; Lehnert, Hendrik; Ungefroren, Hendrik

    2016-11-30

    TGF-β has a dual role in tumorigenesis, acting as a tumor suppressor in normal cells and in the early stages of tumor development while promoting carcinogenesis and metastasis in advanced tumor stages. The final outcome of the TGF-β response is determined by cell-autonomous mechanisms and genetic alterations such as genomic instability and somatic mutations, but also by a plethora of external signals derived from the tumor microenvironment, such as cell-to-cell interactions, growth factors and extracellular matrix proteins and proteolytic enzymes. Serine proteinases mediate their cellular effects via activation of proteinase-activated receptors (PARs), a subclass of G protein-coupled receptors that are activated by proteolytic cleavage. We have recently identified PAR2 as a factor required for TGF-β1-dependent cell motility in ductal pancreatic adenocarcinoma (PDAC) cells. In this article, we review what is known on the TGF-β-PAR2 signaling crosstalk and its relevance for tumor growth and metastasis. Since PAR2 is activated through various serine proteinases, it may couple TGF-β signaling to a diverse range of other physiological processes, such as local inflammation, systemic coagulation or pathogen infection. Moreover, since PAR2 controls expression of the TGF-β type I receptor ALK5, PAR2 may also impact signaling by other TGF-β superfamily members that signal through ALK5, such as myostatin and GDF15/MIC-1. If so, PAR2 could represent a molecular linker between PDAC development and cancer-related cachexia.

  4. Using Nuclear Receptor Activity to Stratify Hepatocarcinogens

    PubMed Central

    Shah, Imran; Houck, Keith; Judson, Richard S.; Kavlock, Robert J.; Martin, Matthew T.; Reif, David M.; Wambaugh, John; Dix, David J.

    2011-01-01

    Background Nuclear receptors (NR) are a superfamily of ligand-activated transcription factors that control a range of cellular processes. Persistent stimulation of some NR is a non-genotoxic mechanism of rodent liver cancer with unclear relevance to humans. Here we report on a systematic analysis of new in vitro human NR activity data on 309 environmental chemicals in relationship to their liver cancer-related chronic outcomes in rodents. Results The effects of 309 environmental chemicals on human constitutive androstane receptors (CAR/NR1I3), pregnane X receptor (PXR/NR1I2), aryl hydrocarbon receptor (AhR), peroxisome proliferator-activated receptors (PPAR/NR1C), liver X receptors (LXR/NR1H), retinoic X receptors (RXR/NR2B) and steroid receptors (SR/NR3) were determined using in vitro data. Hepatic histopathology, observed in rodents after two years of chronic treatment for 171 of the 309 chemicals, was summarized by a cancer lesion progression grade. Chemicals that caused proliferative liver lesions in both rat and mouse were generally more active for the human receptors, relative to the compounds that only affected one rodent species, and these changes were significant for PPAR (p0.001), PXR (p0.01) and CAR (p0.05). Though most chemicals exhibited receptor promiscuity, multivariate analysis clustered them into relatively few NR activity combinations. The human NR activity pattern of chemicals weakly associated with the severity of rodent liver cancer lesion progression (p0.05). Conclusions The rodent carcinogens had higher in vitro potency for human NR relative to non-carcinogens. Structurally diverse chemicals with similar NR promiscuity patterns weakly associated with the severity of rodent liver cancer progression. While these results do not prove the role of NR activation in human liver cancer, they do have implications for nuclear receptor chemical biology and provide insights into putative toxicity pathways. More importantly, these findings suggest the

  5. Skin Barrier Recovery by Protease-Activated Receptor-2 Antagonist Lobaric Acid

    PubMed Central

    Joo, Yeon Ah; Chung, Hyunjin; Yoon, Sohyun; Park, Jong Il; Lee, Ji Eun; Myung, Cheol Hwan; Hwang, Jae Sung

    2016-01-01

    Atopic dermatitis (AD) results from gene and environment interactions that lead to a range of immunological abnormalities and breakdown of the skin barrier. Protease-activated receptor 2 (PAR2) belongs to a family of G-protein coupled receptors and is expressed in suprabasal layers of the epidermis. PAR2 is activated by both trypsin and a specific agonist peptide, SLIGKV-NH2 and is involved in both epidermal permeability barrier homeostasis and epithelial inflammation. In this study, we investigated the effect of lobaric acid on inflammation, keratinocyte differentiation, and recovery of the skin barrier in hairless mice. Lobaric acid blocked trypsin-induced and SLIGKV-NH2-induced PAR2 activation resulting in decreased mobilization of intracellular Ca2+ in HaCaT keratinocytes. Lobaric acid reduced expression of interleukin-8 induced by SLIGKV-NH2 and thymus and activation regulated chemokine (TARC) induced by tumor necrosis factor-a (TNF-α) and IFN-γ in HaCaT keratinocytes. Lobaric acid also blocked SLIGKV-NH2-induced activation of ERK, which is a downstream signal of PAR2 in normal human keratinocytes (NHEKs). Treatment with SLIGKV-NH2 downregulated expression of involucrin, a differentiation marker protein in HaCaT keratinocytes, and upregulated expression of involucrin, transglutamase1 and filaggrin in NHEKs. However, lobaric acid antagonized the effect of SLIGKV-NH2 in HaCaT keratinocytes and NHEKs. Topical application of lobaric acid accelerated barrier recovery kinetics in a SKH-1 hairless mouse model. These results suggested that lobaric acid is a PAR2 antagonist and could be a possible therapeutic agent for atopic dermatitis. PMID:27169822

  6. Vitamin D Binding Protein-Macrophage Activating Factor Directly Inhibits Proliferation, Migration, and uPAR Expression of Prostate Cancer Cells

    PubMed Central

    Bielenberg, Diane R.; Dridi, Sami; Wu, Jason; Jiang, Weihua; Huang, Bin; Pirie-Shepherd, Steven; Fannon, Michael

    2010-01-01

    Background Vitamin D binding protein-macrophage activating factor (DBP-maf) is a potent inhibitor of tumor growth. Its activity, however, has been attributed to indirect mechanisms such as boosting the immune response by activating macrophages and inhibiting the blood vessel growth necessary for the growth of tumors. Methods and Findings In this study we show for the first time that DBP-maf exhibits a direct and potent effect on prostate tumor cells in the absence of macrophages. DBP-maf demonstrated inhibitory activity in proliferation studies of both LNCaP and PC3 prostate cancer cell lines as well as metastatic clones of these cells. Flow cytometry studies with annexin V and propidium iodide showed that this inhibitory activity is not due to apoptosis or cell death. DBP-maf also had the ability to inhibit migration of prostate cancer cells in vitro. Finally, DBP-maf was shown to cause a reduction in urokinase plasminogen activator receptor (uPAR) expression in prostate tumor cells. There is evidence that activation of this receptor correlates with tumor metastasis. Conclusions These studies show strong inhibitory activity of DBP-maf on prostate tumor cells independent of its macrophage activation. PMID:20976141

  7. Nicotine stimulates urokinase-type plasminogen activator receptor expression and cell invasiveness through mitogen-activated protein kinase and reactive oxygen species signaling in ECV304 endothelial cells

    SciTech Connect

    Khoi, Pham Ngoc; Park, Jung Sun; Kim, Nam Ho; Jung, Young Do

    2012-03-01

    Urokinase-type plasminogen activator receptor (uPAR) expression is elevated during inflammation, tissue remodeling and in many human cancers. This study investigated the effect of nicotine, a major alkaloid in tobacco, on uPAR expression and cell invasiveness in ECV304 endothelial cells. Nicotine stimulated uPAR expression in a dose-dependent manner and activated extracellular signal-regulated kinases-1/2 (Erk-1/2), c-Jun amino-terminal kinase (JNK) and p38 mitogen activated protein kinase (MAPK). Specific inhibitors of MEK-1 (PD98059) and JNK (SP600125) inhibited the nicotine-induced uPAR expression, while the p38 MAPK inhibitor SB203580 did not. Expression vectors encoding dominant negative MEK-1 (pMCL-K97M) and JNK (TAM67) also prevented nicotine-induced uPAR promoter activity. The intracellular hydrogen peroxide (H{sub 2}O{sub 2}) content was increased by nicotine treatment. The antioxidant N-acetylcysteine prevented nicotine-activated production of reactive oxygen species (ROS) and uPAR expression. Furthermore, exogenous H{sub 2}O{sub 2} increased uPAR mRNA expression. Deleted and site-directed mutagenesis demonstrated the involvement of the binding sites of transcription factor nuclear factor-kappaB (NF-κB) and activator protein (AP)-1 in the nicotine-induced uPAR expression. Studies with expression vectors encoding mutated NF-κB signaling molecules and AP-1 decoy confirmed that NF-κB and AP-1 were essential for the nicotine-stimulated uPAR expression. MAPK (Erk-1/2 and JNK) and ROS functioned as upstream signaling molecules in the activation of AP-1 and NF-κB, respectively. In addition, ECV304 endothelial cells treated with nicotine displayed markedly enhanced invasiveness, which was partially abrogated by uPAR neutralizing antibodies. The data indicate that nicotine induces uPAR expression via the MAPK/AP-1 and ROS/NF-κB signaling pathways and, in turn, stimulates invasiveness in human ECV304 endothelial cells. -- Highlights: ► Endothelial cells

  8. Mechanism of FGF receptor dimerization and activation

    NASA Astrophysics Data System (ADS)

    Sarabipour, Sarvenaz; Hristova, Kalina

    2016-01-01

    Fibroblast growth factors (fgfs) are widely believed to activate their receptors by mediating receptor dimerization. Here we show, however, that the FGF receptors form dimers in the absence of ligand, and that these unliganded dimers are phosphorylated. We further show that ligand binding triggers structural changes in the FGFR dimers, which increase FGFR phosphorylation. The observed effects due to the ligands fgf1 and fgf2 are very different. The fgf2-bound dimer structure ensures the smallest separation between the transmembrane (TM) domains and the highest possible phosphorylation, a conclusion that is supported by a strong correlation between TM helix separation in the dimer and kinase phosphorylation. The pathogenic A391E mutation in FGFR3 TM domain emulates the action of fgf2, trapping the FGFR3 dimer in its most active state. This study establishes the existence of multiple active ligand-bound states, and uncovers a novel molecular mechanism through which FGFR-linked pathologies can arise.

  9. Protease-activated receptor-2 deficient mice have reduced house dust mite-evoked allergic lung inflammation.

    PubMed

    de Boer, J Daan; Van't Veer, Cornelis; Stroo, Ingrid; van der Meer, Anne J; de Vos, Alex F; van der Zee, Jaring S; Roelofs, Joris J T H; van der Poll, Tom

    2014-08-01

    Protease-activated receptor-2 (PAR2) is abundantly expressed in the pulmonary compartment. House dust mite (HDM) is a common cause of allergic asthma and contains multiple PAR2 agonistic proteases. The aim of this study was to determine the role of PAR2 in HDM-induced allergic lung inflammation. For this, the extent of allergic lung inflammation was studied in wild type (Wt) and PAR2 knockout (KO) mice after repeated airway exposure to HDM. HDM exposure of Wt mice resulted in a profound influx of eosinophils in bronchoalveolar lavage fluid (BALF) and accumulation of eosinophils in lung tissue, which both were strongly reduced in PAR2 KO mice. PAR2 KO mice demonstrated attenuated lung pathology and protein leak in the bronchoalveolar space, accompanied by lower BALF levels of the anaphylatoxins C3a and C5a. This study reveals, for the first time, an important role for PAR2 in allergic lung inflammation induced by the clinically relevant allergens contained in HDM.

  10. Mast-cell-releasing tryptase triggers acute lung injury induced by small intestinal ischemia-reperfusion by activating PAR-2 in rats.

    PubMed

    Gan, Xiaoliang; Liu, Dezhao; Huang, Pinjie; Gao, Wanling; Chen, Xinzhi; Hei, Ziqing

    2012-06-01

    Mast cell has been demonstrated to be involved in the small intestinal ischemia-reperfusion (IIR) injury, however, the precise role of tryptase released from mast cell on acute lung injury(ALI) induced by IIR remains to be elucidated, our study aimed to observe the roles of tryptase on ALI triggered by IIR and its underlying mechanism. Adult SD rats were randomized into sham-operated group, sole IIR group in which rats were subjected to 75 min superior mesenteric artery occlusion followed by 4 h reperfusion, or IIR being respectively treated with cromolyn sodium, protamine, and compound 48/80. The above agents were, respectively, administrated intravenously 5 min before reperfusion. At the end of experiment, lung tissue was obtained for assays for protein expressions of tryptase and mast cell protease 7 (MCP7) and protease-activated receptor 2 (PAR-2). Pulmonary mast cell number and levels of IL-8 were quantified. Lung histologic injury scores and lung water content were measured. IIR resulted in lung injury evidenced as significant increases in lung histological scores and lung water contents, accompanied with concomitant increases of expressions of tryptase and MCP7, and elevations in PAR-2 expressions and IL-8 levels in lungs. Stabilizing mast cell with cromolyn sodium and inhibiting tryptase with protamine significantly reduced IIR-mediated ALI and the above biochemical changes while activating mast cell with compound 48/80 further aggravated IIR-mediated ALI and the increases of above parameters. Tryptase released from mast cells mediates ALI induced by intestinal ischemia-reperfusion by activating PAR-2 to produce IL-8.

  11. Protease induced plasticity: matrix metalloproteinase-1 promotes neurostructural changes through activation of protease activated receptor 1

    PubMed Central

    Allen, Megan; Ghosh, Suhasini; Ahern, Gerard P.; Villapol, Sonia; Maguire-Zeiss, Kathleen A.; Conant, Katherine

    2016-01-01

    Matrix metalloproteinases (MMPs) are a family of secreted endopeptidases expressed by neurons and glia. Regulated MMP activity contributes to physiological synaptic plasticity, while dysregulated activity can stimulate injury. Disentangling the role individual MMPs play in synaptic plasticity is difficult due to overlapping structure and function as well as cell-type specific expression. Here, we develop a novel system to investigate the selective overexpression of a single MMP driven by GFAP expressing cells in vivo. We show that MMP-1 induces cellular and behavioral phenotypes consistent with enhanced signaling through the G-protein coupled protease activated receptor 1 (PAR1). Application of exogenous MMP-1, in vitro, stimulates PAR1 dependent increases in intracellular Ca2+ concentration and dendritic arborization. Overexpression of MMP-1, in vivo, increases dendritic complexity and induces biochemical and behavioral endpoints consistent with increased GPCR signaling. These data are exciting because we demonstrate that an astrocyte-derived protease can influence neuronal plasticity through an extracellular matrix independent mechanism. PMID:27762280

  12. Bursting Activity of Substantia Nigra pars Reticulata Neurons in Mouse Parkinsonism in Awake and Anesthetized States

    PubMed Central

    Lobb, CJ; Jaeger, D

    2015-01-01

    Electrophysiological changes in basal ganglia neurons are hypothesized to underlie motor dysfunction in Parkinson’s disease (PD). Previous results in head-restrained MPTP-treated non-human primates have suggested that increased bursting within the basal ganglia and related thalamic and cortical areas may be a hallmark of pathophysiological activity. In this study, we investigated whether there is increased bursting in substantia nigra pars reticulata (SNpr) output neurons in anesthetized and awake, head-restrained unilaterally lesioned 6-OHDA mice when compared to control mice. Confirming previous studies, we show that there are significant changes in the firing rate and pattern in SNpr neuron activity under urethane anesthesia. The regular firing pattern of control urethane-anesthetized SNpr neurons was not present in the 6-OHDA-lesioned group, as the latter neurons instead became phase locked with cortical slow wave activity (SWA). Next, we examined whether such robust electrophysiological changes between groups carried over to the awake state. SNpr neurons from both groups fired at much higher frequencies in the awake state than in the anesthetized state and surprisingly showed only modest changes between awake control and 6-OHDA groups. While there were no differences in firing rate between groups in the awake state, an increase in the coefficient of variation (CV) was observed in the 6-OHDA group. Contrary to the bursting hypothesis, this increased CV was not due to changes in bursting but was instead due to a mild increase in pausing. Together, these results suggest that differences in SNpr activity between control and 6-OHDA lesioned mice may be strongly influenced by changes in network activity during different arousal and behavioral states. PMID:25576395

  13. PAR2 regulates regeneration, transdifferentiation, and death

    PubMed Central

    Piran, Ron; Lee, Seung-Hee; Kuss, Pia; Hao, Ergeng; Newlin, Robbin; Millán, José Luis; Levine, Fred

    2016-01-01

    Understanding the mechanisms by which cells sense and respond to injury is central to developing therapies to enhance tissue regeneration. Previously, we showed that pancreatic injury consisting of acinar cell damage+β-cell ablation led to islet cell transdifferentiation. Here, we report that the molecular mechanism for this requires activating protease-activated receptor-2 (PAR2), a G-protein-coupled receptor. PAR2 modulation was sufficient to induce islet cell transdifferentiation in the absence of β-cells. Its expression was modulated in an islet cell type-specific manner in murine and human type 1 diabetes (T1D). In addition to transdifferentiation, PAR2 regulated β-cell apoptosis in pancreatitis. PAR2's role in regeneration is broad, as mice lacking PAR2 had marked phenotypes in response to injury in the liver and in digit regeneration following amputation. These studies provide a pharmacologically relevant target to induce tissue regeneration in a number of diseases, including T1D. PMID:27809303

  14. Derivation of rat embryonic stem cells and generation of protease-activated receptor-2 knockout rats.

    PubMed

    Yamamoto, Satoshi; Nakata, Mitsugu; Sasada, Reiko; Ooshima, Yuki; Yano, Takashi; Shinozawa, Tadahiro; Tsukimi, Yasuhiro; Takeyama, Michiyasu; Matsumoto, Yoshio; Hashimoto, Tadatoshi

    2012-08-01

    One of the remarkable achievements in knockout (KO) rat production reported during the period 2008-2010 is the derivation of authentic embryonic stem (ES) cells from rat blastocysts using a novel culture medium containing glycogen synthase kinase 3 and mitogen-activated protein kinase kinase inhibitors (2i medium). Here, we report gene-targeting technology via homologous recombination in rat ES cells, demonstrating its use through production of a protease-activated receptor-2 gene (Par-2) KO rat. We began by generating germline-competent ES cells from Dark Agouti rats using 2i medium. These ES cells, which differentiate into cardiomyocytes in vitro, can produce chimeras with high ES cell contribution when injected into blastocysts. We then introduced a targeting vector with a neomycin-resistant gene driven by the CAG promoter to disrupt Par-2. After a 7-day drug selection, 489 neomycin-resistant colonies were obtained. Following screening by polymerase chain reaction (PCR) genotyping and quantitative PCR analysis, we confirmed three homologous recombinant clones, resulting in chimeras that transmitted the Par-2 targeted allele to offspring. Par-2 KO rats showed a loss of Par-2 messenger RNA expression in their stomach cells and a lack of PAR-2 mediated smooth muscle relaxation in the aorta as indicated by pharmacological testing. Compared with mice, rats offer many advantages in biomedical research, including a larger body size; consequently, they are widely used in scientific investigation. Thus, the establishment of a gene-targeting technology using rat ES cells will be a valuable tool in human disease model production and drug discovery.

  15. Macelignan inhibits melanosome transfer mediated by protease-activated receptor-2 in keratinocytes.

    PubMed

    Choi, Eun-Jung; Kang, Young-Gyu; Kim, Jaekyung; Hwang, Jae-Kwan

    2011-01-01

    Skin pigmentation is the result of melanosome transfer from melanocytes to keratinocytes. Protease-activated receptor-2 (PAR-2) is a key mediator of melanosome transfer, which occurs as the melanocyte extends its dendrite toward surrounding keratinocytes that take up melanosomes by phagocytosis. We investigated the effects of macelignan isolated from Myristica fragrans HOUTT. (nutmeg) on melanosome transfer and the regulation of PAR-2 in human keratinocytes (HaCaT). HaCaT cells stimulated by the PAR-2-activating peptide Ser-Leu-Ile-Gly-Arg-Leu-NH₂ (SLIGRL) were treated with macelignan; PAR-2 expression was then determined by reverse transcription-polymerase chain reaction (RT-PCR), Western blot, and immunocytochemistry. We evaluated the effects of macelignan on calcium mobilization and keratinocyte phagocytosis. In addition, B16F10 melanoma cells and keratinocytes were co-cultured to assess the effects of macelignan on prostaglandin E₂ (PGE₂) secretion and subsequent dendrite formation. Macelignan decreased HaCaT PAR-2 mRNA and protein levels in a dose-dependent manner. Furthermore, macelignan markedly reduced intracellular calcium mobilization and significantly downregulated keratinocyte phagocytosis, as shown by decreased ingestion of Escherichia coli bioparticles and fluorescent microspheres. In co-culture experiments, macelignan reduced keratinocyte PGE₂ secretion, thereby preventing dendrite formation in B16F10 melanoma cells compared with SLIGRL-treated controls. Macelignan inhibits melanosome transfer by downregulating PAR-2, thereby reducing keratinocyte phagocytosis and PGE₂ secretion, which in turn inhibits dendrite formation in B16F10 melanoma cells. Taken together, our findings suggest that macelignan could be used as a natural depigmenting agent to ameliorate hyperpigmentation.

  16. Using Nuclear Receptor Activity to Stratify Hepatocarcinogens

    EPA Science Inventory

    Nuclear receptors (NR) are a superfamily of ligand-activated transcription factors that control a range of cellular processes. Persistent stimulation of some NR is a non-genotoxic mechanism of rodent liver cancer with unclear relevance to humans. Here we report on a systematic an...

  17. Constitutive Activation of the Aromatic Hydrocarbon Receptor

    PubMed Central

    Chang, Ching-Yi; Puga, Alvaro

    1998-01-01

    The ligand-activated aromatic hydrocarbon receptor (AHR) dimerizes with the AHR nuclear translocator (ARNT) to form a functional complex that transactivates expression of the cytochrome P-450 CYP1A1 gene and other genes in the dioxin-inducible [Ah] gene battery. Previous work from this laboratory has shown that the activity of the CYP1A1 enzyme negatively regulates this process. To study the relationship between CYP1A1 activity and Ah receptor activation we used CYP1A1-deficient mouse hepatoma c37 cells and CYP1A1- and AHR-deficient African green monkey kidney CV-1 cells. Using gel mobility shift and luciferase reporter gene expression assays, we found that c37 cells that had not been exposed to exogenous Ah receptor ligands already contained transcriptionally active AHR-ARNT complexes, a finding that we also observed in wild-type Hepa-1 cells treated with Ellipticine, a CYP1A1 inhibitor. In CV-1 cells, transient expression of AHR and ARNT leads to high levels of AHR–ARNT-dependent luciferase gene expression even in the absence of an agonist. Using a green fluorescent protein-tagged AHR, we showed that elevated reporter gene expression correlates with constitutive nuclear localization of the AHR. Transcriptional activation of the luciferase reporter gene observed in CV-1 cells is significantly decreased by (i) expression of a functional CYP1A1 enzyme, (ii) competition with chimeric or truncated AHR proteins containing the AHR ligand-binding domain, and (iii) treatment with the AHR antagonist α-naphthoflavone. These results suggest that a CYP1A1 substrate, which accumulates in cells lacking CYP1A1 enzymatic activity, is an AHR ligand responsible for endogenous activation of the Ah receptor. PMID:9418899

  18. Receptor Dissociation and B-Cell Activation.

    PubMed

    Yang, Jianying; Reth, Michael

    2016-01-01

    The B-cell antigen receptor (BCR) is one of the most abundant receptors on the surface of B cells with roughly 100,000-200,000 copies per cell. Signaling through the BCR is crucial for the activation and differentiation of B cells. Unlike other receptors, the BCR can be activated by a large set of structurally different ligands, but the molecular mechanism of BCR activation is still a matter of controversy. Although dominant for a long time, the cross-link model (CLM) of BCR activation is not supported by recent studies of the nanoscale organization of the BCR on the surface of resting B cells. In contrast to the prediction of CLM, the numerous BCR complexes on these cells are not randomly distributed monomers but rather form oligomers which reside within membrane confinements. This finding is more in line with the dissociation activation model (DAM), wherein B-cell activation is accompanied by an opening of the auto-inhibited BCR oligomers instead of a cross-linking of the BCR monomers. In this review, we discuss in detail the new findings and their implications for BCR signaling.

  19. Murine monoclonal antibodies against murine uPA receptor produced in gene-deficient mice: inhibitory effects on receptor-mediated uPA activity in vitro and in vivo.

    PubMed

    Pass, Jesper; Jögi, Annika; Lund, Ida K; Rønø, Birgitte; Rasch, Morten G; Gårdsvoll, Henrik; Lund, Leif R; Ploug, Michael; Rømer, John; Danø, Keld; Høyer-Hansen, Gunilla

    2007-06-01

    Binding of urokinase plasminogen activator (uPA) to its cellular receptor, uPAR, potentiates plasminogen activation and localizes it to the cell surface. Focal plasminogen activation is involved in both normal and pathological tissue remodeling processes including cancer invasion. The interaction between uPA and uPAR therefore represents a potential target for anti-invasive cancer therapy. Inhibitors of the human uPA-uPAR interaction have no effect in the murine system. To enable in-vivo studies in murine cancer models we have now generated murine monoclonal antibodies (mAbs) against murine uPAR (muPAR) by immunizing uPAR-deficient mice with recombinant muPAR and screened for antibodies, which inhibit the muPA-muPAR interaction. Two of the twelve mAbs obtained, mR1 and mR2, interfered with the interaction between muPAR and the amino-terminal fragment of muPA (mATF) when analyzed by surface plasmon resonance. The epitope for mR1 is located on domain I of muPAR, while that of mR2 is on domains (II-III). In cell binding experiments using radiolabelled mATF, the maximal inhibition obtained with mR1 was 85% while that obtained with mR2 was 50%. The IC(50) value for mR1 was 0.67 nM compared to 0.14 nM for mATF. In an assay based on modified anthrax toxins, requiring cell-bound muPA activity for its cytotoxity, an approximately 50% rescue of the cells could be obtained by addition of mR1. Importantly, in-vivo efficacy of mR1 was demonstrated by the ability of mR1 to rescue mice treated with a lethal dose of uPA-activatable anthrax toxins.

  20. AP-3 regulates PAR1 ubiquitin-independent MVB/lysosomal sorting via an ALIX-mediated pathway

    PubMed Central

    Dores, Michael R.; Paing, May M.; Lin, Huilan; Montagne, William A.; Marchese, Adriano; Trejo, JoAnn

    2012-01-01

    The sorting of signaling receptors within the endocytic system is important for appropriate cellular responses. After activation, receptors are trafficked to early endosomes and either recycled or sorted to lysosomes and degraded. Most receptors trafficked to lysosomes are modified with ubiquitin and recruited into an endosomal subdomain enriched in hepatocyte growth factor–regulated tyrosine kinase substrate (HRS), a ubiquitin-binding component of the endosomal-sorting complex required for transport (ESCRT) machinery, and then sorted into intraluminal vesicles (ILVs) of multivesicular bodies (MVBs)/lysosomes. However, not all receptors use ubiquitin or the canonical ESCRT machinery to sort to MVBs/lysosomes. This is exemplified by protease-activated receptor-1 (PAR1), a G protein–coupled receptor for thrombin, which sorts to lysosomes independent of ubiquitination and HRS. We recently showed that the adaptor protein ALIX binds to PAR1, recruits ESCRT-III, and mediates receptor sorting to ILVs of MVBs. However, the mechanism that initiates PAR1 sorting at the early endosome is not known. We now report that the adaptor protein complex-3 (AP-3) regulates PAR1 ubiquitin-independent sorting to MVBs through an ALIX-dependent pathway. AP-3 binds to a PAR1 cytoplasmic tail–localized tyrosine-based motif and mediates PAR1 lysosomal degradation independent of ubiquitination. Moreover, AP-3 facilitates PAR1 interaction with ALIX, suggesting that AP-3 functions before PAR1 engagement of ALIX and MVB/lysosomal sorting. PMID:22833563

  1. Bone Marrow Urokinase Plasminogen Activator Receptor Levels are Associated with the Progress of Multiple Myeloma(△).

    PubMed

    Shou, Li-Hong; Cao, Dan; Dong, Xiao-Hui; Fang, Qiu; Xu, Bao-Lian; Fei, Ju-Ping

    2016-09-20

    Objective To determine the mRNA and protein levels of urokinase plasminogen activator receptors (uPAR) in bone marrow fluid and bone marrow tissue from multiple myeloma (MM) patients and assess association of uPAR level with prognosis of MM. Methods uPAR levels in bone marrow fluid of 22 MM patients at the stable and progressive stages and 18 iron deficiency anemia patients with normal bone marrow (control) were examined by ELISA. Furthermore, uPAR expression in bone marrow tissue was investigated by RT-PCR and Western blot, respectively. The distribution of uPAR in MM cells was examined using immunofluorescence staining. The pathological changes in different stages of MM patients were studied by HE staining. Results uPAR level in bone marrow fluid of MM patients (1.52±0.32 μg/ml) was found to be higher than that in the control group (0.98±0.15 μg/ml). Interestingly, uPAR protein (0.686±0.075 vs. 0.372±0.043, P<0.05) and mRNA (2.51±0.46 vs. 4.46±1.15, P<0.05) expression levels of MM patients at the progressive stage were significantly higher than those at the stable stage. The expression of uPAR in MM bone marrow was confirmed by immunofluorescence staining. Moreover, HE staining revealed a great increased number of nucleated cells and severe impairment of hematopoietic function in the bone marrow of patients with progressive-stage myeloma. Conclusion Our study reveals that uPAR expression is positively correlated with the development and progress of MM.

  2. Equivalent Activities of Repulsive Axon Guidance Receptors

    PubMed Central

    Long, Hong; Yoshikawa, Shingo

    2016-01-01

    Receptors on the growth cone at the leading edge of elongating axons play critical guidance roles by recognizing cues via their extracellular domains and transducing signals via their intracellular domains, resulting in changes in direction of growth. An important concept to have emerged in the axon guidance field is the importance of repulsion as a major guidance mechanism. Given the number and variety of different repulsive receptors, it is generally thought that there are likely to be qualitative differences in the signals they transduce. However, the nature of these possible differences is unknown. By creating chimeras using the extracellular and intracellular domains of three different Drosophila repulsive receptors, Unc5, Roundabout (Robo), and Derailed (Drl) and expressing them in defined cells within the embryonic nervous system, we examined the responses elicited by their intracellular domains systematically. Surprisingly, we found no qualitative differences in growth cone response or axon growth, suggesting that, despite their highly diverged sequences, each intracellular domain elicits repulsion via a common pathway. In terms of the signaling pathway(s) used by the repulsive receptors, mutations in the guanine nucleotide exchange factor Trio strongly enhance the repulsive activity of all three intracellular domains, suggesting that repulsion by Unc5, Robo, and Drl, and perhaps repulsion in general, involves Trio activity. SIGNIFICANCE STATEMENT A prevailing concept that has emerged in the axon guidance field is the importance of repulsion as a guidance mechanism for steering axons to their appropriate targets. Given the number and variety of different repulsive receptors, it is generally thought that there are differences in the signals that they transduce. However, this has never been tested directly. We have used the advanced genetics of Drosophila to compare directly the outputs of different repulsive receptors. Surprisingly, we found no qualitative

  3. Diallylsulfide attenuates excessive collagen production and apoptosis in a rat model of bleomycin induced pulmonary fibrosis through the involvement of protease activated receptor-2

    SciTech Connect

    Kalayarasan, Srinivasan Sriram, Narayanan; Soumyakrishnan, Syamala; Sudhandiran, Ganapasam

    2013-09-01

    Pulmonary fibrosis (PF) can be a devastating lung disease. It is primarily caused by inflammation leading to severe damage of the alveolar epithelial cells. The pathophysiology of PF is not yet been clearly defined, but studying lung parenchymal injury by involving reactive oxygen species (ROS) through the activation of protease activated receptor-2 (PAR-2) may provide promising results. PAR-2 is a G-protein coupled receptor is known to play an important role in the development of PF. In this study, we investigated the inhibitory role of diallylsulfide (DAS) against ROS mediated activation of PAR-2 and collagen production accompanied by epithelial cell apoptosis. Bleomycin induced ROS levels may prompt to induce the expression of PAR-2 as well as extracellular matrix proteins (ECM), such as MMP 2 and 9, collagen specific proteins HSP-47, α-SMA, and cytokines IL-6, and IL-8RA. Importantly DAS treatment effectively decreased the expression of all these proteins. The inhibitory effect of DAS on profibrotic molecules is mediated by blocking the ROS level. To identify apoptotic signaling as a mediator of PF induction, we performed apoptotic protein expression, DNA fragmentation analysis and ultrastructural details of the lung tissue were performed. DAS treatment restored all these changes to near normalcy. In conclusion, treatment of PF bearing rats with DAS results in amelioration of the ROS production, PAR-2 activation, ECM production, collagen synthesis and alveolar epithelial cell apoptosis during bleomycin induction. We attained the first evidence that treatment of DAS decreases the ROS levels and may provide a potential therapeutic effect attenuating bleomycin induced PF. - Highlights: • DAS inhibits PAR-2 activity; bleomycin stimulates PAR-2 activity. • Increase in PAR-2 activity is correlated with pulmonary fibrosis • DAS reduces pro-inflammatory activity linked to facilitating pulmonary fibrosis. • DAS inhibits apoptosis of alveolar epithelial cells.

  4. Epithelial and Stromal Cell Urokinase Plasminogen Activator Receptor Expression Differentially Correlates with Survival in Rectal Cancer Stages B and C Patients

    PubMed Central

    Ahn, Seong Beom; Chan, Charles; Dent, Owen F.; Mohamedali, Abidali; Kwun, Sun Young; Clarke, Candice; Fletcher, Julie; Chapuis, Pierre H.; Nice, Edouard C.; Baker, Mark S.

    2015-01-01

    Urokinase plasminogen activator receptor (uPAR) has been proposed as a potential prognostic factor for colorectal cancer (CRC) patient survival. However, CRC uPAR expression remains controversial, especially regarding cell types where uPAR is overexpressed (e.g., epithelium (uPARE) or stroma-associated cells (uPARS)) and associated prognostic relevance. In this study, two epitope-specific anti-uPAR monoclonal antibodies (MAbs) could discriminate expression of uPARE from uPARS and were used to examine this association with survival of stages B and C rectal cancer (RC) patients. Using immunohistochemistry, MAbs #3937 and R4 were used to discriminate uPARE from uPARS respectively in the central and invasive frontal regions of 170 stage B and 179 stage C RC specimens. Kaplan-Meier and Cox regression analyses were used to determine association with survival. uPAR expression occurred in both epithelial and stromal compartments with differential expression observed in many cases, indicating uPARE and uPARS have different cellular roles. In the central and invasive frontal regions, uPARE was adversely associated with overall stage B survival (HR = 1.9; p = 0.014 and HR = 1.5; p = 0.031, respectively) reproducing results from previous studies. uPARS at the invasive front was associated with longer stage C survival (HR = 0.6; p = 0.007), reflecting studies demonstrating that macrophage peritumoural accumulation is associated with longer survival. This study demonstrates that different uPAR epitopes should be considered as being expressed on different cell types during tumour progression and at different stages in RC. Understanding how uPARE and uPARS expression affects survival is anticipated to be a useful clinical prognostic marker of stages B and C RC. PMID:25692297

  5. Endogenous GABAA receptor activity suppresses glioma growth.

    PubMed

    Blanchart, A; Fernando, R; Häring, M; Assaife-Lopes, N; Romanov, R A; Andäng, M; Harkany, T; Ernfors, P

    2017-02-09

    Although genome alterations driving glioma by fueling cell malignancy have largely been resolved, less is known of the impact of tumor environment on disease progression. Here, we demonstrate functional GABAA receptor-activated currents in human glioblastoma cells and show the existence of a continuous GABA signaling within the tumor cell mass that significantly affects tumor growth and survival expectancy in mouse models. Endogenous GABA released by tumor cells, attenuates proliferation of the glioma cells with enriched expression of stem/progenitor markers and with competence to seed growth of new tumors. Our results suggest that GABA levels rapidly increase in tumors impeding further growth. Thus, shunting chloride ions by a maintained local GABAA receptor activity within glioma cells has a significant impact on tumor development by attenuating proliferation, reducing tumor growth and prolonging survival, a mechanism that may have important impact on therapy resistance and recurrence following tumor resection.

  6. The induction of the collagen capsule synthesis by Trichinella spiralis is closely related to protease-activated receptor 2.

    PubMed

    Park, Mi Kyung; Cho, Min Kyoung; Kang, Shin Ae; Kim, Bo Young; Yu, Hak Sun

    2016-10-30

    The muscle-stage larvae of the parasite Trichinella spiralis have the ability to survive within host muscle tissue by virtue of the formation a nurse cell-parasite complex, which is surrounded by collagen. The formation of the complex is initiated by excretory-secretory (ES) proteins produced by the parasite. To determine the mechanisms underlying collagen capsule formation, we investigated the expression levels of several types of collagen genes and TGF-βI signaling-related genes (Smad2 and Smad3) in muscle cells. Synthesis of type I, IV, and VI collagen, which are major constituents of the collagen capsule, significantly increased during T. spiralis infection. In addition, we found that expression of the protease-activated receptor 2 (PAR2) gene was significantly increased during this period. Expression levels of the collagen genes and TGF-βI, Smad2, and Smad3 were induced by ES proteins and a PAR2 agonist, whereas their enhanced expression levels were reduced by a PAR2 antagonist and serine protease inhibitors. To evaluate the involvement of PAR2 during T. spiralis infection in vivo, we infected wild-type and PAR2 knockout (KO) mice with T. spiralis. Expression levels of type I, IV, and VI collagen genes and TGF-βI signaling-related genes (Smad2 and Smad3) were also decreased in the PAR2 KO mice. Phosphorylation of Smad2/3, which was increased by T. spiralis infection, was significantly diminished in the PAR2 KO mice. In conclusion, ES proteins containing serine protease most likely activate collagen synthesis via PAR2 and TGF-βI signaling, and this event could influence collagen capsule formation.

  7. Serum soluble urokinase-type plasminogen activator receptor as a biological marker of bacterial infection in adults: a systematic review and meta-analysis

    PubMed Central

    Ni, Wentao; Han, Yuliang; Zhao, Jin; Cui, Junchang; Wang, Kai; Wang, Rui; Liu, Youning

    2016-01-01

    The serum concentration of soluble urokinase-type plasminogen activator receptor (suPAR) reflects immune activation. We performed a meta-analysis to evaluate the usefulness of suPAR for the diagnosis and prognosis of bacterial infections. PubMed, Embase and Cochrane Library databases were searched for studies reporting the detection of suPAR in adult patients with bacterial infections. Seventeen studies were selected from 671 studies. The pooled sensitivity and specificity of suPAR for diagnosing infection were 0.73 and 0.79, respectively, and the area under the summary receiver operating characteristic curve (AUC) was 0.82. Subgroup analyses revealed suPAR showed similar AUC values for diagnosing sepsis and bacteremia, but the AUC for differentiating sepsis from systemic inflammatory response syndrome (SIRS) was only 0.68. Elevated suPAR levels were significantly associated with a high risk of death, with a pooled risk ratio of 3.37 (95% confidence interval, 2.60–4.38). The pooled sensitivity and specificity for predicting mortality were 0.70 and 0.72, respectivfely, with an AUC of 0.77. Serum suPAR could be a biomarker for the diagnosis and prognosis of bacterial infection, but it is relatively ineffective for differentiating sepsis from SIRS. Further investigation is required to evaluate whether using of suPAR in combination with other biomarkers can improve diagnostic efficacy. PMID:27991579

  8. Protease-Activated Receptor-2 Activation Contributes to House Dust Mite-Induced IgE Responses in Mice

    PubMed Central

    Post, Sijranke; Heijink, Irene H.; Petersen, Arjen H.; de Bruin, Harold G.; van Oosterhout, Antoon J. M.; Nawijn, Martijn C.

    2014-01-01

    Aeroallergens such as house dust mite (HDM), cockroach, and grass or tree pollen are innocuous substances that can induce allergic sensitization upon inhalation. The serine proteases present in these allergens are thought to activate the protease-activated receptor (PAR)-2, on the airway epithelium, thereby potentially inducing allergic sensitization at the expense of inhalation tolerance. We hypothesized that the proteolytic activity of allergens may play an important factor in the allergenicity to house dust mite and is essential to overcome airway tolerance. Here, we aimed to investigate the role of PAR-2 activation in allergic sensitization and HDM-induced allergic airway inflammation. In our study, Par-2 deficient mice were treated with two different HDM extracts containing high and low serine protease activities twice a week for a period of 5 weeks. We determined airway inflammation through quantification of percentages of mononuclear cells, eosinophils and neutrophils in the bronchial alveolar lavage fluid and measured total IgE and HDM-specific IgE and IgG1 levels in serum. Furthermore, Th2 and pro-inflammatory cytokines including IL-5, IL-13, Eotaxin-1, IL-17, KC, Chemokine (C-C motif) ligand 17 (CCL17) and thymic stromal lymphopoietin (TSLP), were measured in lung tissue homogenates. We observed that independent of the serine protease content, HDM was able to induce elevated levels of eosinophils and neutrophils in the airways of both wild-type (WT) and Par-2 deficient mice. Furthermore, we show that induction of pro-inflammatory cytokines by HDM exposure is independent of Par-2 activation. In contrast, serine protease activity of HDM does contribute to enhanced levels of total IgE, but not HDM-specific IgE. We conclude that, while Par-2 activation contributes to the development of IgE responses, it is largely dispensable for the HDM-induced induction of pro-inflammatory cytokines and airway inflammation in an experimental mouse model of HDM

  9. Optical engineering application of modeled photosynthetically active radiation (PAR) for high-speed digital camera dynamic range optimization

    NASA Astrophysics Data System (ADS)

    Alves, James; Gueymard, Christian A.

    2009-08-01

    As efforts to create accurate yet computationally efficient estimation models for clear-sky photosynthetically active solar radiation (PAR) have succeeded, the range of practical engineering applications where these models can be successfully applied has increased. This paper describes a novel application of the REST2 radiative model (developed by the second author) in optical engineering. The PAR predictions in this application are used to predict the possible range of instantaneous irradiances that could impinge on the image plane of a stationary video camera designed to image license plates on moving vehicles. The overall spectral response of the camera (including lens and optical filters) is similar to the 400-700 nm PAR range, thereby making PAR irradiance (rather than luminance) predictions most suitable for this application. The accuracy of the REST2 irradiance predictions for horizontal surfaces, coupled with another radiative model to obtain irradiances on vertical surfaces, and to standard optical image formation models, enable setting the dynamic range controls of the camera to ensure that the license plate images are legible (unsaturated with adequate contrast) regardless of the time of day, sky condition, or vehicle speed. A brief description of how these radiative models are utilized as part of the camera control algorithm is provided. Several comparisons of the irradiance predictions derived from the radiative model versus actual PAR measurements under varying sky conditions with three Licor sensors (one horizontal and two vertical) have been made and showed good agreement. Various camera-to-plate geometries and compass headings have been considered in these comparisons. Time-lapse sequences of license plate images taken with the camera under various sky conditions over a 30-day period are also analyzed. They demonstrate the success of the approach at creating legible plate images under highly variable lighting, which is the main goal of this

  10. Human bronchial epithelial cells express PAR-2 with different sensitivity to thermolysin.

    PubMed

    Ubl, Joachim J; Grishina, Zoryana V; Sukhomlin, Tatiana K; Welte, Tobias; Sedehizade, Fariba; Reiser, Georg

    2002-06-01

    Protease-activated receptor-2 (PAR-2) plays a role in inflammatory reactions in airway physiology. Proteases cleaving the extracellular NH(2) terminus of receptors activate or inactivate PAR, thus possessing a therapeutic potential. Using RT-PCR and immunocytochemistry, we show PAR-2 in human airway epithelial cell lines human bronchial epithelial (HBE) and A549. Functional expression of PAR-2 was confirmed by Ca(2+) imaging studies using the receptor agonist protease trypsin. The effect was abolished by soybean trypsin inhibitor and mimicked by the specific PAR-2 peptide agonist SLIGKV. Amplitude and duration of PAR-2-elicited Ca(2+) response in HBE and A549 cells depend on concentration and time of agonist superfusion. The response is partially pertussis toxin (PTX) insensitive, abolished by the phospholipase C inhibitor U-73122, and diminished by the inositol 1,4,5-trisphosphate receptor antagonist 2-aminoethoxydiphenyl borate. Cathepsin G altered neither the resting Ca(2+) level nor PAR-2-elicited Ca(2+) response. Thermolysin, a prototypic bacterial metalloprotease, induced a dose-dependent Ca(2+) response in HBE, but not A549, cells. In both cell lines, thermolysin abolished the response to a subsequent trypsin challenge but not to SLIGKV. Thus different epithelial cell types express different PAR-2 with identical responses to physiological stimuli (trypsin, SLIGKV) but different sensitivity to modifying proteases, such as thermolysin.

  11. PAR-2 expression in the gingival crevicular fluid reflects chronic periodontitis severity.

    PubMed

    Fukushima, Henrique; Alves, Vanessa Tubero Euzebio; Carvalho, Verônica Franco de; Ambrósio, Lucas Macedo Batitucci; Eichler, Rosangela Aparecida Dos Santos; Carvalho, Maria Helena Catelli de; Saraiva, Luciana; Holzhausen, Marinella

    2017-01-26

    Recent studies investigating protease-activated receptor type 2 (PAR-2) suggest an association between the receptor and periodontal inflammation. It is known that gingipain, a bacterial protease secreted by the important periodontopathogen Porphyromonas gingivalis can activate PAR-2. Previous studies by our group found that PAR-2 is overexpressed in the gingival crevicular fluid (GCF) of patients with moderate chronic periodontitis (MP). The present study aimed at evaluating whether PAR-2 expression is associated with chronic periodontitis severity. GCF samples and clinical parameters, including plaque and bleeding on probing indices, probing pocket depth and clinical attachment level, were collected from the control group (n = 19) at baseline, and from MP patients (n = 19) and severe chronic periodontitis (SP) (n = 19) patients before and 6 weeks after periodontal non-surgical treatment. PAR-2 and gingipain messenger RNA (mRNA) in the GCF of 4 periodontal sites per patient were evaluated by Reverse Transcription Polymerase Chain Reaction (RT-qPCR). PAR-2 and gingipain expressions were greater in periodontitis patients than in control group patients. In addition, the SP group presented increased PAR-2 and gingipain mRNA levels, compared with the MP group. Furthermore, periodontal treatment significantly reduced (p <0.05) PAR-2 expression in patients with periodontitis. In conclusion, PAR-2 is associated with chronic periodontitis severity and with gingipain levels in the periodontal pocket, thus suggesting that PAR-2 expression in the GCF reflects the severity of destruction during periodontal infection.

  12. Neuroinflammation-Induced Interactions between Protease-Activated Receptor 1 and Proprotein Convertases in HIV-Associated Neurocognitive Disorder.

    PubMed

    Kim, WooJin; Zekas, Erin; Lodge, Robert; Susan-Resiga, Delia; Marcinkiewicz, Edwidge; Essalmani, Rachid; Mihara, Koichiro; Ramachandran, Rithwik; Asahchop, Eugene; Gelman, Benjamin; Cohen, Éric A; Power, Christopher; Hollenberg, Morley D; Seidah, Nabil G

    2015-11-01

    The proprotein convertases (PCs) furin, PC5, PACE4, and PC7 cleave secretory proteins after basic residues, including the HIV envelope glycoprotein (gp160) and Vpr. We evaluated the abundance of PC mRNAs in postmortem brains of individuals exhibiting HIV-associated neurocognitive disorder (HAND), likely driven by neuroinflammation and neurotoxic HIV proteins (e.g., envelope and Vpr). Concomitant with increased inflammation-related gene expression (interleukin-1β [IL-1β]), the mRNA levels of the above PCs are significantly increased, together with those of the proteinase-activated receptor 1 (PAR1), an inflammation-associated receptor that is cleaved by thrombin at ProArg41↓ (where the down arrow indicates the cleavage location), and potentially by PCs at Arg41XXXXArg46↓. The latter motif in PAR1, but not its R46A mutant, drives its interactions with PCs. Indeed, PAR1 upregulation leads to the inhibition of membrane-bound furin, PC5B, and PC7 and inhibits gp160 processing and HIV infectivity. Additionally, a proximity ligation assay revealed that furin and PC7 interact with PAR1. Reciprocally, increased furin expression reduces the plasma membrane abundance of PAR1 by trapping it in the trans-Golgi network. Furthermore, soluble PC5A/PACE4 can target/disarm cell surface PAR1 through cleavage at Arg46↓. PACE4/PC5A decreased calcium mobilization induced by thrombin stimulation. Our data reveal a new PC-PAR1-interaction pathway, which offsets the effects of HIV-induced neuroinflammation, viral infection, and potentially the development of HAND.

  13. Neuroinflammation-Induced Interactions between Protease-Activated Receptor 1 and Proprotein Convertases in HIV-Associated Neurocognitive Disorder

    PubMed Central

    Kim, WooJin; Zekas, Erin; Lodge, Robert; Susan-Resiga, Delia; Marcinkiewicz, Edwidge; Essalmani, Rachid; Mihara, Koichiro; Ramachandran, Rithwik; Asahchop, Eugene; Gelman, Benjamin; Cohen, Éric A.; Power, Christopher; Hollenberg, Morley D.

    2015-01-01

    The proprotein convertases (PCs) furin, PC5, PACE4, and PC7 cleave secretory proteins after basic residues, including the HIV envelope glycoprotein (gp160) and Vpr. We evaluated the abundance of PC mRNAs in postmortem brains of individuals exhibiting HIV-associated neurocognitive disorder (HAND), likely driven by neuroinflammation and neurotoxic HIV proteins (e.g., envelope and Vpr). Concomitant with increased inflammation-related gene expression (interleukin-1β [IL-1β]), the mRNA levels of the above PCs are significantly increased, together with those of the proteinase-activated receptor 1 (PAR1), an inflammation-associated receptor that is cleaved by thrombin at ProArg41↓ (where the down arrow indicates the cleavage location), and potentially by PCs at Arg41XXXXArg46↓. The latter motif in PAR1, but not its R46A mutant, drives its interactions with PCs. Indeed, PAR1 upregulation leads to the inhibition of membrane-bound furin, PC5B, and PC7 and inhibits gp160 processing and HIV infectivity. Additionally, a proximity ligation assay revealed that furin and PC7 interact with PAR1. Reciprocally, increased furin expression reduces the plasma membrane abundance of PAR1 by trapping it in the trans-Golgi network. Furthermore, soluble PC5A/PACE4 can target/disarm cell surface PAR1 through cleavage at Arg46↓. PACE4/PC5A decreased calcium mobilization induced by thrombin stimulation. Our data reveal a new PC-PAR1-interaction pathway, which offsets the effects of HIV-induced neuroinflammation, viral infection, and potentially the development of HAND. PMID:26283733

  14. Dual actions of (-)-stepholidine on the dopamine receptor-mediated adenylate cyclase activity in rat corpus striatum.

    PubMed

    Dong, Z J; Guo, X; Chen, L J; Han, Y F; Jin, G Z

    1997-01-01

    (-)-Stepholidine (SPD) is an antagonist of normosensitive dopamine (DA) receptors, but it exhibits D1 agonistic action on rotational behaviour in rats with unilateral 6-hydroxydopamine (6-OHDA) lesions of the substantia nigra pars compacta (SNC). In the present study, agonistic and antagonistic effects of SPD on the DA receptor-mediated synaptosomal adenylate cyclase (AC) activity in rat striatum were investigated. After blockade of D2 receptors, SPD augmented AC activity dose-dependently. The EC50 value was 41.1 +/- 8.6 micromol/L. At the concentration of 10 micromol/L, SPD increased cAMP formation from a basal level (50.8 +/- 10.3 pmol/mg protein/min) to 133.7 +/- 31.8 pmol/mg protein/min. The SPD-induced stimulation of AC activity was almost completely reversed by 10 micromol/L Sch23390. These results indicate that SPD possesses an agonistic action on the D1 receptor. Forskolin-stimulated adenylate cyclase (FSAC) activity was used as a model to elucidate the effect of SPD on D2 receptors. The results indicate that DA inhibited FSAC activity dose-dependently, while SPD partially restored FSAC activity. Taken together, these results support the conclusion that SPD has dual actions on DA receptors that mediate AC activity, i.e., an agonistic action on D1 receptors and an antagonistic action on D2 receptors.

  15. UTILITY OF A WIDE SPECTRUM LIGHT METER AS AN UNDERWATER SENSOR OF PHOTOSYNTHETICALLY ACTIVE RADIATION (PAR)

    EPA Science Inventory

    The strong attenuation of infra red wavelengths (>700 nm) in coastal waters is suggestive that some instruments with broad spectral responses might be useful, inexpensive substitutes for PAR sensors in studies of estuarine plant dynamics. Wide spectrum (350-1100 nm) light intensi...

  16. Serum Soluble Urokinase-Type Plasminogen Activator Receptor Levels and Idiopathic FSGS in Children: A Single-Center Report

    PubMed Central

    Price, Heather E.; Gallon, Lorenzo; Langman, Craig B.

    2013-01-01

    Summary Background and objectives FSGS is the primary cause of childhood nephrotic syndrome leading to ESRD. Permeability factors, including circulating serum soluble urokinase-type plasminogen activator receptor (suPAR), have been postulated as putative causes in adults with primary FSGS. Similar results have yet to be proven in children. Design, setting, participants, & measurements This cross-sectional single-center study assessed the association of serum suPAR in children with FSGS or other glomerular and nonglomerular kidney diseases. Results This study examined 110 samples retrieved from 99 individuals (between January 2011 and April 2012), aged 1–21 years; of these individuals, 20 had primary FSGS, 24 had non-FSGS glomerular disease, 26 had nonglomerular kidney disease, and 29 were healthy controls. suPAR levels were not significantly different in children with FSGS, non-FSGS glomerular disease, and healthy controls (P>0.05). However, suPAR levels (median [25%–75%]) were higher in children with nonglomerular kidney disease (3385 pg/ml [2695–4392]) versus FSGS (2487 pg/ml [2191–3351]; P<0.05). Female patients with nephrotic-range proteinuria (U-Pr/Cr >2) had lower suPAR levels than those without proteinuria (2380 pg/ml [2116–2571] versus 3125 pg/ml [2516–4198], respectively; P<0.001). This trend was not seen among male participants; suPAR levels in all female participants were lower than in male participants (P=0.03). Thirty-four patients studied were kidney transplant recipients; transplant status was not associated with suPAR levels in patients with FSGS or non-FSGS diagnoses, independent of proteinuria, race, or sex (P>0.05). Conclusions On the basis of these results, circulating suPAR is unlikely the leading cause for childhood idiopathic FSGS. PMID:23620441

  17. Proteinase activated receptor-2-mediated dual oxidase-2 up-regulation is involved in enhanced airway reactivity and inflammation in a mouse model of allergic asthma.

    PubMed

    Nadeem, Ahmed; Alharbi, Naif O; Vliagoftis, Harissios; Tyagi, Manoj; Ahmad, Sheikh F; Sayed-Ahmed, Mohamed M

    2015-07-01

    Airway epithelial cells (AECs) express a variety of receptors, which sense danger signals from various aeroallergens/pathogens being inhaled constantly. Proteinase-activated receptor 2 (PAR-2) is one such receptor and is activated by cockroach allergens, which have intrinsic serine proteinase activity. Recently, dual oxidases (DUOX), especially DUOX-2, have been shown to be involved in airway inflammation in response to Toll-like receptor activation. However, the association between PAR-2 and DUOX-2 has not been explored in airways of allergic mice. Therefore, this study investigated the contribution of DUOX-2/reactive oxygen species (ROS) signalling in airway reactivity and inflammation after PAR-2 activation. Mice were sensitized intraperitoneally with intact cockroach allergen extract (CE) in the presence of aluminium hydroxide followed by intranasal challenge with CE. Mice were then assessed for airway reactivity, inflammation, oxidative stress (DUOX-2, ROS, inducible nitric oxide synthase, nitrite, nitrotyrosine and protein carbonyls) and apoptosis (Bax, Bcl-2, caspase-3). Challenge with CE led to up-regulation of DUOX-2 and ROS in AECs with concomitant increases in airway reactivity/inflammation and parameters of oxidative stress, and apoptosis. All of these changes were significantly inhibited by intranasal administration of ENMD-1068, a small molecule antagonist of PAR-2 in allergic mice. Administration of diphenyliodonium to allergic mice also led to improvement of allergic airway responses via inhibition of the DUOX-2/ROS pathway; however, these effects were less pronounced than PAR-2 antagonism. The current study suggests that PAR-2 activation leads to up-regulation of the DUOX-2/ROS pathway in AECs, which is involved in regulation of airway reactivity and inflammation via oxidative stress and apoptosis.

  18. Tryptase - PAR2 axis in Experimental Autoimmune Prostatitis, a model for Chronic Pelvic Pain Syndrome

    PubMed Central

    Roman, Kenny; Done, Joseph D.; Schaeffer, Anthony J.; Murphy, Stephen F.; Thumbikat, Praveen

    2014-01-01

    Chronic prostatitis/Chronic pelvic pain syndrome (CP/CPPS) affects up to 15% of the male population and is characterized by pelvic pain. Mast cells are implicated in the murine experimental autoimmune prostatitis (EAP) model as key to chronic pelvic pain development. The mast cell mediator tryptase-β and its cognate receptor protease-activated receptor 2 (PAR2) are involved in mediating pain in other visceral disease models. Prostatic secretions and urines from CP/CPPS patients were examined for the presence of mast cell degranulation products. Tryptase-β and PAR2 expression were examined in murine experimental autoimmune prostatitis (EAP). Pelvic pain and inflammation were assessed in the presence or absence of PAR2 expression and upon PAR2 neutralization. Tryptase-β and carboxypeptidase A3 were elevated in CP/CPPS compared to healthy volunteers. Tryptase-β was capable of inducing pelvic pain and was increased in EAP along with its receptor PAR2. PAR2 was required for the development of chronic pelvic pain in EAP. PAR2 signaling in dorsal root ganglia lead to ERK1/2 phosphorylation and calcium influx. PAR2 neutralization using antibodies attenuated chronic pelvic pain in EAP. The tryptase-PAR2 axis is an important mediator of pelvic pain in EAP and may play a role in the pathogenesis of CP/CPPS. PMID:24726923

  19. Tryptase-PAR2 axis in experimental autoimmune prostatitis, a model for chronic pelvic pain syndrome.

    PubMed

    Roman, Kenny; Done, Joseph D; Schaeffer, Anthony J; Murphy, Stephen F; Thumbikat, Praveen

    2014-07-01

    Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) affects up to 15% of the male population and is characterized by pelvic pain. Mast cells are implicated in the murine experimental autoimmune prostatitis (EAP) model as key to chronic pelvic pain development. The mast cell mediator tryptase-β and its cognate receptor protease-activated receptor 2 (PAR2) are involved in mediating pain in other visceral disease models. Prostatic secretions and urines from CP/CPPS patients were examined for the presence of mast cell degranulation products. Tryptase-β and PAR2 expression were examined in murine EAP. Pelvic pain and inflammation were assessed in the presence or absence of PAR2 expression and upon PAR2 neutralization. Tryptase-β and carboxypeptidase A3 were elevated in CP/CPPS compared to healthy volunteers. Tryptase-β was capable of inducing pelvic pain and was increased in EAP along with its receptor PAR2. PAR2 was required for the development of chronic pelvic pain in EAP. PAR2 signaling in dorsal root ganglia led to extracellular signal-regulated kinase (ERK)1/2 phosphorylation and calcium influx. PAR2 neutralization using antibodies attenuated chronic pelvic pain in EAP. The tryptase-PAR2 axis is an important mediator of pelvic pain in EAP and may play a role in the pathogenesis of CP/CPPS.

  20. Simultaneous inactivation of Par-4 and PTEN in vivo leads to synergistic NF-κB activation and invasive prostate carcinoma

    PubMed Central

    Fernandez-Marcos, Pablo J.; Abu-Baker, Shadi; Joshi, Jayashree; Galvez, Anita; Castilla, Elias A.; Cañamero, Marta; Collado, Manuel; Saez, Carmen; Moreno-Bueno, Gema; Palacios, Jose; Leitges, Michael; Serrano, Manuel; Moscat, Jorge; Diaz-Meco, Maria T.

    2009-01-01

    Prostate cancer is one of the most common neoplasias in men. The tumor suppressor Par-4 is an important negative regulator of the canonical NF-κB pathway and is highly expressed in prostate. Here we show that Par-4 expression is lost in a high percentage of human prostate carcinomas, and this occurs in association with phosphatase and tensin homolog deleted from chromosome 10 (PTEN) loss. Par-4 null mice, similar to PTEN-heterozygous mice, only develop benign prostate lesions, but, importantly, concomitant Par-4 ablation and PTEN-heterozygosity lead to invasive prostate carcinoma in mice. This strong tumorigenic cooperation is anticipated in the preneoplastic prostate epithelium by an additive increase in Akt activation and a synergistic stimulation of NF-κB. These results establish the cooperation between Par-4 and PTEN as relevant for the development of prostate cancer and implicate the NF-κB pathway as a critical event in prostate tumorigenesis. PMID:19470463

  1. CERAPP: Collaborative Estrogen Receptor Activity Prediction Project

    PubMed Central

    Mansouri, Kamel; Abdelaziz, Ahmed; Rybacka, Aleksandra; Roncaglioni, Alessandra; Tropsha, Alexander; Varnek, Alexandre; Zakharov, Alexey; Worth, Andrew; Richard, Ann M.; Grulke, Christopher M.; Trisciuzzi, Daniela; Fourches, Denis; Horvath, Dragos; Benfenati, Emilio; Muratov, Eugene; Wedebye, Eva Bay; Grisoni, Francesca; Mangiatordi, Giuseppe F.; Incisivo, Giuseppina M.; Hong, Huixiao; Ng, Hui W.; Tetko, Igor V.; Balabin, Ilya; Kancherla, Jayaram; Shen, Jie; Burton, Julien; Nicklaus, Marc; Cassotti, Matteo; Nikolov, Nikolai G.; Nicolotti, Orazio; Andersson, Patrik L.; Zang, Qingda; Politi, Regina; Beger, Richard D.; Todeschini, Roberto; Huang, Ruili; Farag, Sherif; Rosenberg, Sine A.; Slavov, Svetoslav; Hu, Xin; Judson, Richard S.

    2016-01-01

    Background: Humans are exposed to thousands of man-made chemicals in the environment. Some chemicals mimic natural endocrine hormones and, thus, have the potential to be endocrine disruptors. Most of these chemicals have never been tested for their ability to interact with the estrogen receptor (ER). Risk assessors need tools to prioritize chemicals for evaluation in costly in vivo tests, for instance, within the U.S. EPA Endocrine Disruptor Screening Program. Objectives: We describe a large-scale modeling project called CERAPP (Collaborative Estrogen Receptor Activity Prediction Project) and demonstrate the efficacy of using predictive computational models trained on high-throughput screening data to evaluate thousands of chemicals for ER-related activity and prioritize them for further testing. Methods: CERAPP combined multiple models developed in collaboration with 17 groups in the United States and Europe to predict ER activity of a common set of 32,464 chemical structures. Quantitative structure–activity relationship models and docking approaches were employed, mostly using a common training set of 1,677 chemical structures provided by the U.S. EPA, to build a total of 40 categorical and 8 continuous models for binding, agonist, and antagonist ER activity. All predictions were evaluated on a set of 7,522 chemicals curated from the literature. To overcome the limitations of single models, a consensus was built by weighting models on scores based on their evaluated accuracies. Results: Individual model scores ranged from 0.69 to 0.85, showing high prediction reliabilities. Out of the 32,464 chemicals, the consensus model predicted 4,001 chemicals (12.3%) as high priority actives and 6,742 potential actives (20.8%) to be considered for further testing. Conclusion: This project demonstrated the possibility to screen large libraries of chemicals using a consensus of different in silico approaches. This concept will be applied in future projects related to other

  2. How IGF-1 activates its receptor

    PubMed Central

    Kavran, Jennifer M; McCabe, Jacqueline M; Byrne, Patrick O; Connacher, Mary Katherine; Wang, Zhihong; Ramek, Alexander; Sarabipour, Sarvenaz; Shan, Yibing; Shaw, David E; Hristova, Kalina; Cole, Philip A; Leahy, Daniel J

    2014-01-01

    The type I insulin-like growth factor receptor (IGF1R) is involved in growth and survival of normal and neoplastic cells. A ligand-dependent conformational change is thought to regulate IGF1R activity, but the nature of this change is unclear. We point out an underappreciated dimer in the crystal structure of the related Insulin Receptor (IR) with Insulin bound that allows direct comparison with unliganded IR and suggests a mechanism by which ligand regulates IR/IGF1R activity. We test this mechanism in a series of biochemical and biophysical assays and find the IGF1R ectodomain maintains an autoinhibited state in which the TMs are held apart. Ligand binding releases this constraint, allowing TM association and unleashing an intrinsic propensity of the intracellular regions to autophosphorylate. Enzymatic studies of full-length and kinase-containing fragments show phosphorylated IGF1R is fully active independent of ligand and the extracellular-TM regions. The key step triggered by ligand binding is thus autophosphorylation. DOI: http://dx.doi.org/10.7554/eLife.03772.001 PMID:25255214

  3. Small caliber arterial endothelial cells calcium signals elicited by PAR2 are preserved from endothelial dysfunction

    PubMed Central

    Hennessey, John C; Stuyvers, Bruno D; McGuire, John J

    2015-01-01

    Endothelial cell (EC)-dependent vasodilation by proteinase-activated receptor 2 (PAR2) is preserved in small caliber arteries in disease states where vasodilation by muscarinic receptors is decreased. In this study, we identified and characterized the PAR2-mediated intracellular calcium (Ca2+)-release mechanisms in EC from small caliber arteries in healthy and diseased states. Mesenteric arterial EC were isolated from PAR2 wild-type (WT) and null mice, after saline (controls) or angiotensin II (AngII) infusion, for imaging intracellular calcium and characterizing the calcium-release system by immunofluorescence. EC Ca2+ signals comprised two forms of Ca2+-release events that had distinct spatial-temporal properties and occurred near either the plasmalemma (peripheral) or center of EC. In healthy EC, PAR2-dependent increases in the densities and firing rates of both forms of Ca2+-release were abolished by inositol 1,4,5- trisphosphate receptor (IP3R) inhibitor, but partially reduced by transient potential vanilloid channels inhibitor ruthenium red (RR). Acetylcholine (ACh)-induced less overall Ca2+-release than PAR2 activation, but enhanced selectively the incidence of central events. PAR2-dependent Ca2+-activity, inhibitors sensitivities, IP3R, small- and intermediate-conductance Ca2+-activated potassium channels expressions were unchanged in EC from AngII WT. However, the same cells exhibited decreases in ACh-induced Ca2+-release, RR sensitivity, and endothelial nitric oxide synthase expression, indicating AngII-induced dysfunction was differentiated by receptor, Ca2+-release, and downstream targets of EC activation. We conclude that PAR2 and muscarinic receptors selectively elicit two elementary Ca2+ signals in single EC. PAR2-selective IP3R-dependent peripheral Ca2+-release mechanisms are identical between healthy and diseased states. Further study of PAR2-selective Ca2+-release for eliciting pathological and/or normal EC functions is warranted. PMID:25729579

  4. The house dust mite allergen Der p 1, unlike Der p 3, stimulates the expression of interleukin-8 in human airway epithelial cells via a proteinase-activated receptor-2-independent mechanism.

    PubMed

    Adam, Emmanuelle; Hansen, Kristina K; Astudillo Fernandez, Olaya; Astudillo, Olaya Fernandez; Coulon, Ludivine; Bex, Françoise; Duhant, Xavier; Jaumotte, Erika; Hollenberg, Morley D; Jacquet, Alain

    2006-03-17

    We investigated and compared the mechanisms by which two dust mite proteolytic allergens, Der p 1 and Der p 3, and a peptide agonist of proteinase-activated receptor 2 (PAR(2)AP) trigger interleukin (IL)-8 release from human pulmonary epithelial cells (A549). Although all three stimuli tested induced the up-regulation of IL-8 (mRNA and protein), the Der p 1-mediated signaling events did not exactly match those induced by PAR(2)AP and Der p 3. First, Der p 1 was less effective in stimulating IL-8 gene transcriptional activity than PAR(2)AP and Der p 3. Second, Der p 1-mediated IL-8 expression was mainly dependent on NF-kappaB, whereas Der p 3 and PAR(2)AP regulated IL-8 expression through the activation of both NF-kappaB and AP-1. Third, although all three MAP kinases, ERK1/2, p38, and JNK, were activated, Der p 1 induced IL-8 release exclusively via the ERK1/2 signaling pathway, whereas PAR(2)AP and Der p 3 also involved the other kinases. Fourth, in HeLa cells, Der p 1 was able to up-regulate IL-8 secretion independent of PAR(2) expression, and in contrast with PAR(2)AP and Der p 3, Der p 1 was unable to affect calcium signaling via PAR(2) in PAR(2)-expressing KNRK cells. Finally, cleavage by Der p 1 of a synthetic peptide representing the N-terminal activation-cleavage site of PAR(2) did not release a high potency activator of PAR(2) as does Der p 3. We conclude that Der p 1 (but not Der p 3)-induced IL-8 production in A549 epithelial cells is independent of PAR(2) activation.

  5. Alterations in serotonin, transient receptor potential channels and protease-activated receptors in rats with irritable bowel syndrome attenuated by Shugan decoction

    PubMed Central

    Shi, Hai-Lian; Liu, Chu-Hsuan; Ding, Li-Li; Zheng, Yu; Fei, Xiao-Yan; Lu, Lu; Zhou, Xue-Ming; Yuan, Jian-Ye; Xie, Jian-Qun

    2015-01-01

    AIM: To determine the molecular mechanisms of Shugan decoction (SGD) in the regulation of colonic motility and visceral hyperalgesia (VHL) in irritable bowel syndrome (IBS). METHODS: The chemical compounds contained in SGD were measured by high-performance liquid chromatography. A rat model of IBS was induced by chronic water avoidance stress (WAS). The number of fecal pellets was counted after WAS and the pain pressure threshold was measured by colorectal distension. Morphological changes in colonic mucosa were detected by hematoxylin-eosin staining. The contents of tumor necrosis factor (TNF)-α in colonic tissue and calcitonin-gene-related peptide (CGRP) in serum were measured by ELISA. The protein expression of serotonin [5-hydroxytryptamide (5-HT)], serotonin transporter (SERT), chromogranin A (CgA) and CGRP in colon tissue was measured by immunohistochemistry. RESULTS: SGD inhibited colonic motility dysfunction and VHL in rats with IBS. Blockers of transient receptor potential (TRP) vanilloid 1 (TRPV1) (Ruthenium Red) and TRP ankyrin-1 (TRPA1) (HC-030031) and activator of protease-activated receptor (PAR)4 increased the pain pressure threshold, whereas activators of PAR2 and TRPV4 decreased the pain pressure threshold in rats with IBS. The effect of SGD on pain pressure threshold in these rats was abolished by activators of TRPV1 (capsaicin), TRPV4 (RN1747), TRPA1 (Polygodial) and PAR2 (AC55541). In addition, CGRP levels in serum and colonic tissue were both increased in these rats. TNF-α level in colonic tissue was also significantly upregulated. However, the levels of 5-HT, SERT and CgA in colonic tissue were decreased. All these pathological changes in rats with IBS were attenuated by SGD. CONCLUSION: SGD alleviated VHL and attenuated colon motility in IBS, partly by regulating TRPV1, TRPV4, TRPA1, PAR2, 5-HT, CgA and SERT, and reducing CGRP and TNF-α level. PMID:25944998

  6. Intrinsic Relative Activities of Opioid Agonists in Activating Gα proteins and Internalizing Receptor: Differences between Human and Mouse Receptors

    PubMed Central

    DiMattio, Kelly M.; Ehlert, Frederick J.; Liu-Chen, Lee-Yuan

    2015-01-01

    Several investigators recently identified biased opioid receptor (KOP receptor) agonists. However, no comprehensive study of the functional selectivity of available KOP receptor agonists at the human and mouse KOP receptors (hKOP receptor and mKOP receptor, respectively) has been published. Here we examined the ability of over 20 KOP receptor agonists to activate G proteins and to internalize the receptor. Clonal neuro-2a mouse neuroblastoma (N2a) cells stably transfected with the hKOP receptor or mKOP receptor were used. We employed agonist-induced [35S]GTPγS binding and KOP receptor internalization as measures of activation of G protein and β-arrestin pathways, respectively. The method of Ehlert and colleagues was used to quantify intrinsic relative activities at G protein activation (RAi−G) and receptor internalization (RAi−I) and the degree of functional selectivity between the two [Log RAi−G − Log RAi−I, RAi−G/RAi−I and bias factor]. The parameter, RAi, represents a relative estimate of agonist affinity for the active receptor state that elicits a given response. The endogenous ligand dynorphin A (1–17) was designated as the balanced ligand with a bias factor of 1. Interestingly, we found that there were species differences in functional selectivity. The most striking differences were for 12-epi-salvinorin A, U69,593, and ICI-199,441. 12-Epi-salvinorin A was highly internalization-biased at the mKOP receptor, but apparently G protein-biased at hKOP receptor. U69,593 was much more internalization-biased at mKOP receptor than hKOP receptor. ICI199,441 showed internalization-biased at the mKOP receptor and G protein-biased at the hKOP receptor. Possible mechanisms for the observed species differences are discussed. PMID:26057692

  7. Dopamine D1 Receptor Immunoreactivity on Fine Processes of GFAP-Positive Astrocytes in the Substantia Nigra Pars Reticulata of Adult Mouse

    PubMed Central

    Nagatomo, Katsuhiro; Suga, Sechiko; Saitoh, Masato; Kogawa, Masahito; Kobayashi, Kazuto; Yamamoto, Yoshio; Yamada, Katsuya

    2017-01-01

    Substantia nigra pars reticulata (SNr), the major output nucleus of the basal ganglia, receives dopamine from dendrites extending from dopaminergic neurons of the adjacent nucleus pars compacta (SNc), which is known for its selective degeneration in Parkinson's disease. As a recipient for dendritically released dopamine, the dopamine D1 receptor (D1R) is a primary candidate due to its very dense immunoreactivity in the SNr. However, the precise location of D1R remains unclear at the cellular level in the SNr except for that reported on axons/axon terminals of presumably striatal GABAergic neurons. To address this, we used D1R promotor-controlled, mVenus-expressing transgenic mice. When cells were acutely dissociated from SNr of mouse brain, prominent mVenus fluorescence was detected in fine processes of glia-like cells, but no such fluorescence was detected from neurons in the same preparation, except for the synaptic bouton-like structure on the neurons. Double immunolabeling of SNr cells dissociated from adult wild-type mice brain further revealed marked D1R immunoreactivity in the processes of glial fibrillary acidic protein (GFAP)-positive astrocytes. Such D1R imunoreactivity was significantly stronger in the SNr astrocytes than that in those of the visual cortex in the same preparation. Interestingly, GFAP-positive astrocytes dissociated from the striatum demonstrated D1R immunoreactivity, either remarkable or minimal, similarly to that shown in neurons in this nucleus. In contrast, in the SNr and visual cortex, only weak D1R immunoreactivity was detected in the neurons tested. These results suggest that the SNr astrocyte may be a candidate recipient for dendritically released dopamine. Further study is required to fully elucidate the physiological roles of divergent dopamine receptor immunoreactivity profiles in GFAP-positive astrocytes. PMID:28203148

  8. A reassessment of soluble urokinase-type plasminogen activator receptor in glomerular disease.

    PubMed

    Spinale, Joann M; Mariani, Laura H; Kapoor, Shiv; Zhang, Jidong; Weyant, Robert; Song, Peter X; Wong, Hetty N; Troost, Jonathan P; Gadegbeku, Crystal A; Gipson, Debbie S; Kretzler, Matthias; Nihalani, Deepak; Holzman, Lawrence B

    2015-03-01

    It has been suggested that soluble urokinase receptor (suPAR) is a causative circulating factor for and a biomarker of focal and segmental glomerulosclerosis (FSGS). Here we undertook validation of these assumptions in both mouse and human models. Injection of recombinant suPAR in wild-type mice did not induce proteinuria within 24 h. Moreover, a disease phenotype was not seen in an inducible transgenic mouse model that maintained elevated suPAR concentrations for 6 weeks. Plasma and urine suPAR concentrations were evaluated as clinical biomarkers in 241 patients with glomerular disease from the prospective, longitudinal multicenter observational NEPTUNE cohort. The serum suPAR concentration at baseline inversely correlated with estimated glomerular filtration rate (eGFR) and the urine suPAR/creatinine ratio positively correlated with the urine protein/creatinine ratio. After adjusting for eGFR and urine protein, neither the serum nor urine suPAR level was an independent predictor of FSGS histopathology. A multivariable mixed-effects model of longitudinal data evaluated the association between the change in serum suPAR concentration from baseline with eGFR. After adjusting for baseline suPAR concentration, age, gender, proteinuria, and time, the change in suPAR from baseline was associated with eGFR, but this association was not different for patients with FSGS as compared with other diagnoses. Thus these results do not support a pathological role for suPAR in FSGS.

  9. D4 and D1 dopamine receptors modulate [3H] GABA release in the substantia nigra pars reticulata of the rat.

    PubMed

    Acosta-García, Jacqueline; Hernández-Chan, Nancy; Paz-Bermúdez, Francisco; Sierra, Arturo; Erlij, David; Aceves, Jorge; Florán, Benjamín

    2009-12-01

    Neurons of the globus pallidus express dopamine D4 receptors that can modulate transmitter release by their axon terminals. Indeed, GABA release from pallidal terminals in the subthalamic nucleus and in the reticular nucleus of the thalamus is inhibited by activation of D4 receptors. Here we investigated whether GABA release by pallidal projections to the substantia nigra reticulate (SNr) is also modulated by D4 receptors. Dopamine-stimulated depolarization-induced GABA release in slices of the SNr; however, after selective blockade of D1 receptors, dopamine inhibited release. The selective D4 agonist PD 168,077 (IC(50) = 5.30 nM) mimicked the inhibition of release while the selective D4 antagonist L-745,870 blocked the inhibition. To identify the source of D1 and D4 modulated terminals, we unilaterally injected kainic acid in either the GP or the striatum. After lesions of the pallidum, the D4 induced inhibition of release was blocked while the D1 induced stimulation was still significant. Lesions of the striatum had the converse effects. We conclude that release of dopamine in the SNr enhances GABA release mainly through activation of D1 receptors in striatonigral projections and inhibits release mainly through activation of D4 receptors in pallidonigral projections. Because deficient D4 receptor signaling in globus pallidus terminals will lead to disinhibition of impulse traffic through the thalamus we speculate that the D4 abnormalities observed in ADHD patients may be important in the generation of the syndrome.

  10. Activation of Neurotensin Receptor Type 1 Attenuates Locomotor Activity

    PubMed Central

    Vadnie, Chelsea A.; Hinton, David J.; Choi, Sun; Choi, YuBin; Ruby, Christina L.; Oliveros, Alfredo; Prieto, Miguel L.; Park, Jun Hyun; Choi, Doo-Sup

    2014-01-01

    Intracerebroventricular administration of neurotensin (NT) suppresses locomotor activity. However, the brain regions that mediate the locomotor depressant effect of NT and receptor subtype-specific mechanisms involved are unclear. Using a brain-penetrating, selective NT receptor type 1 (NTS1) agonist PD149163, we investigated the effect of systemic and brain region-specific NTS1 activation on locomotor activity. Systemic administration of PD149163 attenuated the locomotor activity of C57BL/6J mice both in a novel environment and in their homecage. However, mice developed tolerance to the hypolocomotor effect of PD149163 (0.1 mg/kg, i.p.). Since NTS1 is known to modulate dopaminergic signaling, we examined whether PD149163 blocks dopamine receptor-mediated hyperactivity. Pretreatment with PD149163 (0.1 or 0.05 mg/kg, i.p.) inhibited D2R agonist bromocriptine (8 mg/kg, i.p.)-mediated hyperactivity. D1R agonist SKF81297 (8 mg/kg, i.p.)-induced hyperlocomotion was only inhibited by 0.1 mg/kg of PD149163. Since the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC) have been implicated in the behavioral effects of NT, we examined whether microinjection of PD149163 into these regions reduces locomotion. Microinjection of PD149163 (2 pmol) into the NAc, but not the mPFC suppressed locomotor activity. In summary, our results indicate that systemic and intra-NAc activation of NTS1 is sufficient to reduce locomotion and NTS1 activation inhibits D2R-mediated hyperactivity. Our study will be helpful to identify pharmacological factors and a possible therapeutic window for NTS1-targeted therapies for movement disorders. PMID:24929110

  11. Peroxisome Proliferator Activated Receptors and Lipoprotein Metabolism

    PubMed Central

    Kersten, Sander

    2008-01-01

    Plasma lipoproteins are responsible for carrying triglycerides and cholesterol in the blood and ensuring their delivery to target organs. Regulation of lipoprotein metabolism takes place at numerous levels including via changes in gene transcription. An important group of transcription factors that mediates the effect of dietary fatty acids and certain drugs on plasma lipoproteins are the peroxisome proliferator activated receptors (PPARs). Three PPAR isotypes can be distinguished, all of which have a major role in regulating lipoprotein metabolism. PPARα is the molecular target for the fibrate class of drugs. Activation of PPARα in mice and humans markedly reduces hepatic triglyceride production and promotes plasma triglyceride clearance, leading to a clinically significant reduction in plasma triglyceride levels. In addition, plasma high-density lipoprotein (HDL)-cholesterol levels are increased upon PPARα activation in humans. PPARγ is the molecular target for the thiazolidinedione class of drugs. Activation of PPARγ in mice and human is generally associated with a modest increase in plasma HDL-cholesterol and a decrease in plasma triglycerides. The latter effect is caused by an increase in lipoprotein lipase-dependent plasma triglyceride clearance. Analogous to PPARα, activation of PPARβ/δ leads to increased plasma HDL-cholesterol and decreased plasma triglyceride levels. In this paper, a fresh perspective on the relation between PPARs and lipoprotein metabolism is presented. The emphasis is on the physiological role of PPARs and the mechanisms underlying the effect of synthetic PPAR agonists on plasma lipoprotein levels. PMID:18288277

  12. Identification of Gene Markers for Activation of the Nuclear Receptor Pregnane X Receptor

    EPA Science Inventory

    Many environmentally-relevant chemicals and drugs activate the nuclear receptor pregnane X receptor (PXR). Activation of PXR in the mouse liver can lead to increases in liver weight in part through increased hepatocyte replication similar to chemicals that activate other nuclear ...

  13. Model for growth hormone receptor activation based on subunit rotation within a receptor dimer

    SciTech Connect

    Brown, Richard J.; Adams, Julian J.; Pelekanos, Rebecca A.; Wan, Yu; McKinstry, William J.; Palethorpe, Kathryn; Seeber, Ruth M.; Monks, Thea A.; Eidne, Karin A.; Parker, Michael W.; Waters, Michael J.

    2010-07-13

    Growth hormone is believed to activate the growth hormone receptor (GHR) by dimerizing two identical receptor subunits, leading to activation of JAK2 kinase associated with the cytoplasmic domain. However, we have reported previously that dimerization alone is insufficient to activate full-length GHR. By comparing the crystal structure of the liganded and unliganded human GHR extracellular domain, we show here that there is no substantial change in its conformation on ligand binding. However, the receptor can be activated by rotation without ligand by inserting a defined number of alanine residues within the transmembrane domain. Fluorescence resonance energy transfer (FRET), bioluminescence resonance energy transfer (BRET) and coimmunoprecipitation studies suggest that receptor subunits undergo specific transmembrane interactions independent of hormone binding. We propose an activation mechanism involving a relative rotation of subunits within a dimeric receptor as a result of asymmetric placement of the receptor-binding sites on the ligand.

  14. PAR1 is selectively over expressed in high grade breast cancer patients: a cohort study

    PubMed Central

    Hernández, Norma A; Correa, Elma; Avila, Esther P; Vela, Teresa A; Pérez, Víctor M

    2009-01-01

    Background The protease-activated receptor (PAR1) expression is correlated with the degree of invasiveness in cell lines. Nevertheless it has never been directed involved in breast cancer patients progression. The aim of this study was to determine whether PAR1 expression could be used as predictor of metastases and mortality. Methods In a cohort of patients with infiltrating ductal carcinoma studied longitudinally since 1996 and until 2007, PAR1 over-expression was assessed by immunoblotting, immunohistochemistry, and flow citometry. Chi-square and log rank tests were used to determine whether there was a statistical association between PAR1 overexpression and metastases, mortality, and survival. Multivariate analysis was performed including HER1, stage, ER and nodes status to evaluate PAR1 as an independent prognostic factor. Results Follow up was 95 months (range: 2–130 months). We assayed PAR1 in a cohort of patients composed of 136 patients; we found PAR1 expression assayed by immunoblotting was selectively associated with high grade patients (50 cases of the study cohort; P = 0.001). Twenty-nine of 50 (58%) patients overexpressed PAR1, and 23 of these (46%) developed metastases. HER1, stage, ER and PAR1 overexpression were robustly correlated (Cox regression, P = 0.002, P = 0.024 and P = 0.002 respectively). Twenty-one of the 50 patients (42%) expressed both receptors (PAR1 and HER1 P = 0.0004). We also found a statistically significant correlation between PAR1 overexpression and increased mortality (P = 0.0001) and development of metastases (P = 0.0009). Conclusion Our data suggest PAR1 overexpression may be involved in the development of metastases in breast cancer patient and is associated with undifferentiated cellular progression of the tumor. Further studies are needed to understand PAR1 mechanism of action and in a near future assay its potential use as risk factor for metastasis development in high grade breast cancer patients. PMID:19538737

  15. Membrane lipid peroxidation in neurodegeneration: Role of thrombin and proteinase-activated receptor-1.

    PubMed

    Citron, Bruce A; Ameenuddin, Syed; Uchida, K; Suo, William Z; SantaCruz, Karen; Festoff, Barry W

    2016-07-15

    Thrombin and membrane lipid peroxidation (MLP) have been implicated in various central nervous system (CNS) disorders from CNS trauma to stroke, Alzheimer's (AD) and Parkinson's (PD) diseases. Because thrombin also induces MLP in platelets and its involvement in neurodegenerative diseases we hypothesized that its deleterious effects might, in part, involve formation of MLP in neuronal cells. We previously showed that thrombin induced caspase-3 mediated apoptosis in motor neurons, via a proteinase-activated receptor (PAR1). We have now investigated thrombin's influence on the oxidative state of neurons leading to induction of MLP-protein adducts. Translational relevance of thrombin-induced MLP is supported by increased levels of 4-hydroxynonenal-protein adducts (HNEPA) in AD and PD brains. We now report for the first time that thrombin dose-dependently induces formation of HNEPA in NSC34 mouse motor neuron cells using anti-HNE and anti-acrolein monoclonal antibodies. The most prominent immunoreactive band, in SDS-PAGE, was at ∼54kDa. Membrane fractions displayed higher amounts of the protein-adduct than cytosolic fractions. Thrombin induced MLP was mediated, at least in part, through PAR1 since a PAR1 active peptide, PAR1AP, also elevated HNEPA levels. Of interest, glutamate and Fe2SO4 also increased the ∼54kDa HNEPA band in these cells but to a lesser extent. Taken together our results implicate the involvement of thrombin and MLP in neuronal cell loss observed in various CNS degenerative and traumatic pathologies.

  16. Expression of Proteinase-activated Receptor-2 in the Esophageal Mucosa of Gastroesophageal Reflux Disease Patients: A Histomorphologic and Immunohistochemical Study.

    PubMed

    Abd El-Rehim, Dalia M; Fath El-Bab, Hanaa K; Kamal, Enas M

    2015-10-01

    Data are limited regarding the role of proteinase-activated receptor-2 (PAR-2) in the esophageal mucosa in gastroesophageal reflux disease (GERD) patients. Our aim was to study PAR-2 expression and its relationship with different GERD-related clinical and pathologic parameters. Histomorphologic alterations in eosophageal mucosa in nonerosive reflux disease (NERD) and erosive reflux disease (ERD) were also, evaluated. Endoscopic biopsies of the esophageal mucosa were obtained from 94 GERD patients and 20 participants for histopathologic analysis and PAR-2 immunohistochemical staining. The present study demonstrated significantly higher PAR-2 expression in GERD patients compared with control, whereas no significant differences were seen between NERD and ERD groups. PAR-2 expression significantly correlated with histologic score (r=0.572, P<0.001) and severity of heartburn (r=0.541, P<0.001). PAR-2 expression was significantly associated with basal cell hyperplasia, and dilated intercellular spaces and inflammatory cell count (P<0.05). Histologic analysis revealed GERD-related histomorphologic alterations in the esophageal mucosa of GERD patients with significant differences (P<0.05) among groups. Total histologic score was significantly correlated with heartburn (r=0.299, P=0.025) and endoscopic severity (r=0.359, P=0.027) in NERD and ERD patients, respectively. Taken together, this study provides evidence for the major role of PAR-2 in the pathogenesis of GERD and GERD-associated mucosal alterations.

  17. The pars intercerebralis affects digestive activities of the American cockroach, Periplaneta Americana, via crustacean cardioactive peptide and allatostatin-A.

    PubMed

    Matsui, Takaaki; Sakai, Tsubasa; Satake, Honoo; Takeda, Makio

    2013-01-01

    Our previous report showed that the pars intercerebralis (PI)-ablated cockroach, Periplaneta americana (PIX), exhibited hypertrophy and a significant increase in α-amylase and protease activities in the midgut under constant darkness (DD). Bath-applied crustacean cardioactive peptide (CCAP) and allatostatin (AST) stimulated α-amylase and protease activities in the dissected midgut cultured in medium. However, the functional relationship and regulatory mechanism between the brain, particularly the pars intercerebralis and the midgut digestive activity remain to be investigated. Here, we investigated the immunohistochemical reactivities (IHCr) against CCAP and AST in the midgut of cockroach subjected to the above operation (PIX-DD). Three types of IHCr cells were observed in both the muscle layer and the epithelium: (1) CCAP-ir only, (2) AST-ir only and (3) both reactivities are colocalized. The number of all three types increased intensively after PIX under DD compared with that of sham operated control that was kept under constant condition (CNT-DD), indicating that the PI suppresses the expression of CCAP and AST in the midgut epithelium. We also showed that co-administration of CCAP and AST to the midgut caused increases of 1.5-fold and 1.4-fold for α-amylase and protease activities, respectively, compared with application of either peptide above. On the other hand, CCAP-ir in the muscle layer was more strongly expressed but AST-ir was suppressed in PIX-DD. While these peptides showed opposite effects on spontaneous contraction, when epithelially released, these peptides both activated the digestive enzyme system. Overall, up-regulated AST-6 and down-regulated CCAP in the stomatogastric nerve in the muscle layer produce the same end result, that is, stimulation of digestive activity (hypertrophy) via both enzyme activation and the retarded peristalsis that leads to increased throughput time.

  18. Dopamine D4 receptor stimulation prevents nigrostriatal dopamine pathway activation by morphine: relevance for drug addiction.

    PubMed

    Rivera, Alicia; Gago, Belén; Suárez-Boomgaard, Diana; Yoshitake, Takashi; Roales-Buján, Ruth; Valderrama-Carvajal, Alejandra; Bilbao, Ainhoa; Medina-Luque, José; Díaz-Cabiale, Zaida; Craenenbroeck, Kathleen Van; Borroto-Escuela, Dasiel O; Kehr, Jan; Rodríguez de Fonseca, Fernando; Santín, Luis; de la Calle, Adelaida; Fuxe, Kjell

    2016-05-22

    Morphine is one of the most effective drugs used for pain management, but it is also highly addictive. Morphine elicits acute and long-term adaptive changes at cellular and molecular level in the brain, which play a critical role in the development of tolerance, dependence and addiction. Previous studies indicated that the dopamine D4 receptor (D4 R) activation counteracts morphine-induced adaptive changes of the μ opioid receptor (MOR) signaling in the striosomes of the caudate putamen (CPu), as well as the induction of several Fos family transcription factors. Thus, it has been suggested that D4 R could play an important role avoiding some of the addictive effects of morphine. Here, using different drugs administration paradigms, it is determined that the D4 R agonist PD168,077 prevents morphine-induced activation of the nigrostriatal dopamine pathway and morphological changes of substantia nigra pars compacta (SNc) dopamine neurons, leading to a restoration of dopamine levels and metabolism in the CPu. Results from receptor autoradiography indicate that D4 R activation modulates MOR function in the substantia nigra pars reticulata (SNr) and the striosomes of the CPu, suggesting that these regions are critically involved in the modulation of SNc dopamine neuronal function through a functional D4 R/MOR interaction. In addition, D4 R activation counteracts the rewarding effects of morphine, as well as the development of hyperlocomotion and physical dependence without any effect on its analgesic properties. These results provide a novel role of D4 R agonist as a pharmacological strategy to prevent the adverse effects of morphine in the treatment of pain.

  19. Degradation of Internalized αvβ5 Integrin Is Controlled by uPAR Bound uPA: Effect on β1 Integrin Activity and α-SMA Stress Fiber Assembly

    PubMed Central

    Wang, Lingyan; Pedroja, Benjamin S.; Meyers, Erin E.; Garcia, Angelo L.; Twining, Sally S.; Bernstein, Audrey M.

    2012-01-01

    Myofibroblasts (Mfs) that persist in a healing wound promote extracellular matrix (ECM) accumulation and excessive tissue contraction. Increased levels of integrin αvβ5 promote the Mf phenotype and other fibrotic markers. Previously we reported that maintaining uPA (urokinase plasminogen activator) bound to its cell-surface receptor, uPAR prevented TGFβ-induced Mf differentiation. We now demonstrate that uPA/uPAR controls integrin β5 protein levels and in turn, the Mf phenotype. When cell-surface uPA was increased, integrin β5 levels were reduced (61%). In contrast, when uPA/uPAR was silenced, integrin β5 total and cell-surface levels were increased (2–4 fold). Integrin β5 accumulation resulted from a significant decrease in β5 ubiquitination leading to a decrease in the degradation rate of internalized β5. uPA-silencing also induced α-SMA stress fiber organization in cells that were seeded on collagen, increased cell area (1.7 fold), and increased integrin β1 binding to the collagen matrix, with reduced activation of β1. Elevated cell-surface integrin β5 was necessary for these changes after uPA-silencing since blocking αvβ5 function reversed these effects. Our data support a novel mechanism by which downregulation of uPA/uPAR results in increased integrin αvβ5 cell-surface protein levels that regulate the activity of β1 integrins, promoting characteristics of the persistent Mf. PMID:22470492

  20. OXYTOCIN INDUCES SOCIAL COMMUNICATION BY ACTIVATING ARGININEVASOPRESSIN V1A RECEPTORS AND NOT OXYTOCIN RECEPTORS

    PubMed Central

    SONG, Zhimin; MCCANN, Katharine E.; MCNEILL, John K.; LARKIN, Tony E.; HUHMAN, Kim L.; ALBERS, H. Elliott

    2014-01-01

    Arginine-vasopressin (AVP) and oxytocin (OT) and their receptors are very similar in structure. As a result, at least some of the effects of these peptides may be the result of crosstalk between their canonical receptors. The present study investigated this hypothesis by determining whether the induction of flank marking, a form of social communication in Syrian hamsters, by OT is mediated by the OT receptor or the AVP V1a receptor. Intracerebroventricular (ICV) injections of OT or AVP induced flank marking in a dose-dependent manner although the effects of AVP were approximately 100 times greater than those of OT. Injections of highly selective V1a receptor agonists but not OT receptor agonists induced flank marking, and V1a receptor antagonists but not OT receptor antagonists significantly inhibited the ability of OT to induce flank marking. Lastly, injection of alpha-melanocyte-stimulating hormone (α-MSH), a peptide that stimulates OT but not AVP release, significantly increased odor-induced flank marking, and these effects were blocked by a V1a receptor antagonist. These data demonstrate that OT induces flank marking by activating AVP V1a and not OT receptors, suggesting that the V1a receptor should be considered to be an OT receptor as well as an AVP receptor. PMID:25173438

  1. Cancer Cell Invasion in Three-dimensional Collagen Is Regulated Differentially by Gα13 Protein and Discoidin Domain Receptor 1-Par3 Protein Signaling.

    PubMed

    Chow, Christina R; Ebine, Kazumi; Knab, Lawrence M; Bentrem, David J; Kumar, Krishan; Munshi, Hidayatullah G

    2016-01-22

    Cancer cells can invade in three-dimensional collagen as single cells or as a cohesive group of cells that require coordination of cell-cell junctions and the actin cytoskeleton. To examine the role of Gα13, a G12 family heterotrimeric G protein, in regulating cellular invasion in three-dimensional collagen, we established a novel method to track cell invasion by membrane type 1 matrix metalloproteinase-expressing cancer cells. We show that knockdown of Gα13 decreased membrane type 1 matrix metalloproteinase-driven proteolytic invasion in three-dimensional collagen and enhanced E-cadherin-mediated cell-cell adhesion. E-cadherin knockdown reversed Gα13 siRNA-induced cell-cell adhesion but failed to reverse the effect of Gα13 siRNA on proteolytic invasion. Instead, concurrent knockdown of E-cadherin and Gα13 led to an increased number of single cells rather than groups of cells. Significantly, knockdown of discoidin domain receptor 1 (DDR1), a collagen-binding protein that also co-localizes to cell-cell junctions, reversed the effects of Gα13 knockdown on cell-cell adhesion and proteolytic invasion in three-dimensional collagen. Knockdown of the polarity protein Par3, which can function downstream of DDR1, also reversed the effects of Gα13 knockdown on cell-cell adhesion and proteolytic invasion in three-dimensional collagen. Overall, we show that Gα13 and DDR1-Par3 differentially regulate cell-cell junctions and the actin cytoskeleton to mediate invasion in three-dimensional collagen.

  2. RELAXIN ACTIVATES PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR GAMMA

    PubMed Central

    Singh, Sudhir; Bennett, Robert G

    2009-01-01

    SUMMARY Relaxin is a polypeptide hormone that triggers multiple signaling pathways through its receptor RXFP1. Many of relaxin’s functions, including vascular and antifibrotic effects, are similar to those induced by activation of PPARγ. In this study, we tested the hypothesis that relaxin signaling through RXFP1 would activate PPARγ activity. In cells overexpressing RXFP1 (HEK-RXFP1), relaxin increased transcriptional activity through a PPAR response element (PPRE) in a concentration-dependent manner. In cells lacking RXFP1, relaxin had no effect. Relaxin increased both the baseline activity and the response to the PPARγ agonists rosiglitazone and 15d-PGJ2, but not to agonists of PPARα or PPARδ. In HEK-RXFP1 cells infected with adenovirus expressing PPARγ, relaxin increased transcriptional activity through PPRE, and this effect was blocked with an adenovirus expressing a dominant-negative PPARγ. Knockdown of PPARγ using siRNA resulted in a decrease in the response to both relaxin and rosiglitazone. Both relaxin and rosiglitazone increased expression of the PPARγ target genes CD36 and LXRα in HEK-RXFP1 and in THP-1 cells naturally expressing RXFP1. Relaxin did not increase PPARγ mRNA or protein levels. Treatment of cells with GW9662, an inhibitor of PPARγ ligand binding, effectively blocked rosiglitazone-induced PPARγ activation, but had no effect on relaxin activation of PPARγ. These results suggest that relaxin activates PPARγ activity, and increases the overall response in the presence PPARγ agonists. This activation is dependent on the presence of RXFP1. Furthermore, relaxin activates PPARγ via a ligand-independent mechanism. These studies represent the first report that relaxin can activate the transcriptional activity of PPARγ. PMID:19712722

  3. Soluble Urokinase-Type Plasminogen Activator Receptor Plasma Concentration May Predict Susceptibility to High Altitude Pulmonary Edema

    PubMed Central

    Zügel, Stefanie; Schoeb, Michele; Auinger, Katja; Dehnert, Christoph; Maggiorini, Marco

    2016-01-01

    Introduction. Acute exposure to high altitude induces inflammation. However, the relationship between inflammation and high altitude related illness such as high altitude pulmonary edema (HAPE) and acute mountain sickness (AMS) is poorly understood. We tested if soluble urokinase-type plasminogen activator receptor (suPAR) plasma concentration, a prognostic factor for cardiovascular disease and marker for low grade activation of leukocytes, will predict susceptibility to HAPE and AMS. Methods. 41 healthy mountaineers were examined at sea level (SL, 446 m) and 24 h after rapid ascent to 4559 m (HA). 24/41 subjects had a history of HAPE and were thus considered HAPE-susceptible (HAPE-s). Out of the latter, 10/24 HAPE-s subjects were randomly chosen to suppress the inflammatory cascade with dexamethasone 8 mg bid 24 h prior to ascent. Results. Acute hypoxic exposure led to an acute inflammatory reaction represented by an increase in suPAR (1.9 ± 0.4 at SL versus 2.3 ± 0.5 at HA, p < 0.01), CRP (0.7 ± 0.5 at SL versus 3.6 ± 4.6 at HA, p < 0.01), and IL-6 (0.8 ± 0.4 at SL versus 3.3 ± 4.9 at HA, p < 0.01) in all subjects except those receiving dexamethasone. The ascent associated decrease in PaO2 correlated with the increase in IL-6 (r = 0.46, p < 0.001), but not suPAR (r = 0.27, p = 0.08); the increase in IL-6 was not correlated with suPAR (r = 0.16, p = 0.24). Baseline suPAR plasma concentration was higher in the HAPE-s group (2.0 ± 0.4 versus 1.8 ± 0.4, p = 0.04); no difference was found for CRP and IL-6 and for subjects developing AMS. Conclusion. High altitude exposure leads to an increase in suPAR plasma concentration, with the missing correlation between suPAR and IL-6 suggesting a cytokine independent, leukocyte mediated mechanism of low grade inflammation. The correlation between IL-6 and PaO2 suggests a direct effect of hypoxia, which is not the case for suPAR. However, suPAR plasma concentration measured before hypoxic exposure may predict

  4. Mineralocorticoid receptor activation in obesity hypertension.

    PubMed

    Nagase, Miki; Fujita, Toshiro

    2009-08-01

    Obesity hypertension and metabolic syndrome have become major public health concerns. Nowadays, aldosterone is recognized as an important mediator of cardiovascular and renal damage. In the kidney, aldosterone injures glomerular visceral epithelial cells (podocytes), the final filtration barrier to plasma macromolecules, leading to proteinuria and glomerulosclerosis. Mineralocorticoid receptor (MR) antagonists effectively ameliorate proteinuria in patients or in animal models of hypertension, diabetes mellitus and chronic kidney disease (CKD), as well as in patients who experience 'aldosterone breakthrough.' Recently, clinical and experimental studies have shown that plasma aldosterone concentration is associated with obesity hypertension and metabolic syndrome. We showed that spontaneously hypertensive rats (SHR)/cp, an experimental model of obesity hypertension and metabolic syndrome, are prone to glomerular podocyte injury, proteinuria and left ventricular diastolic dysfunction, especially when the animals are fed a high-salt diet. Inappropriate activation of the aldosterone/MR system underlies the renal and cardiac injuries. Adipocyte-derived aldosterone-releasing factors (ARFs), although still unidentified, may account for aldosterone excess and the resultant target organ complication in SHR/cp. On the other hand, recent studies have shown that MR activation triggers target organ disease even in normal or low aldosterone states. We identified a small GTP (guanosine triphosphate)-binding protein, Rac1, as a novel activator of MR, and showed that this ligand-independent MR activation by Rac1 contributes to the nephropathy of several CKD models. We expect that ARFs and Rac1 can be novel therapeutic targets for metabolic syndrome and CKD. Future large-scale clinical trials are awaited to prove the efficacy of MR blockade in patients with obesity hypertension and metabolic syndrome.

  5. Exploration of locomotion in the ParA/ParB system

    NASA Astrophysics Data System (ADS)

    Jindal, Lavisha; Emberly, Eldon

    2015-03-01

    In many bacteria the ParA/ParB system is responsible for actively segregating DNA during replication. ParB precessively moves by hydrolyzing DNA bound ParA-ATP forming a depleted ParA region in its wake. Recent in-vitro experiments have shown that a ParB covered bead can traverse a ParA bound DNA substrate. It has been suggested that the formation of a gradient in ParA leads to diffusion-ratchet like motion of the ParB bead but its origin and potential consequences requires investigation. We have developed a deterministic model for the in-vitro ParA/ParB system and show that any amount of spatial noise in ParA can lead to the spontaneous formation of its gradient. The velocity of the bead is independent of this noise but depends on the scale over which ParA exerts a force on the bead and the scale over which ParB hydrolyzes ParA from the substrate. There is a particular ratio of these scales at which the velocity is a maximum. We also explore the effects of cooperative vs independent rebinding of ParA to the substrate. Our model shows how the driving force for ParB originates and highlights necessary conditions for directed motion in the in-vitro system that may provide insight into the in-vivo behaviour of the ParA/ParB system.

  6. Sigma-1 receptors modulate functional activity of rat splenocytes.

    PubMed

    Liu, Y; Whitlock, B B; Pultz, J A; Wolfe, S A

    1995-06-01

    Neuroleptics, opiates, and cocaine are commonly prescribed for or abused by humans. Although primarily used for their actions at other receptors in brain, these compounds also act at sigma receptors. We have previously identified sigma-1 receptors on human peripheral blood leukocytes and rat spleen, and in the present study we demonstrate a correlation between the pharmacology of these receptors and the ability of drugs to suppress concanavalin A-induced splenocyte proliferation. These results support the hypothesis that sigma-1 receptors regulate functional activities of immune cells, and suggest that sigma agonists may cause changes in immune competence in vivo.

  7. Sigma Receptors Suppress Multiple Aspects of Microglial Activation

    PubMed Central

    Hall Aaron, A.; Yelenis, Herrera; Ajmo Craig, T.; Javier, Cuevas; Pennypacker Keith, R.

    2009-01-01

    During brain injury, microglia become activated and migrate to areas of degenerating neurons. These microglia release pro-inflammatory cytokines and reactive oxygen species causing additional neuronal death. Microglia express high levels of sigma receptors, however, the function of these receptors in microglia and how they may affect the activation of these cells remain poorly understood. Using primary rat microglial cultures, it was found that sigma receptor activation suppresses the ability of microglia to rearrange their actin cytoskeleton, migrate, and release cytokines in response to the activators adenosine triphosphate (ATP), monocyte chemoattractant protein 1 (MCP-1), and lipopolysaccharide (LPS). Next, the role of sigma receptors in the regulation of calcium signaling during microglial activation was explored. Calcium fluorometry experiments in vitro show that stimulation of sigma receptors suppressed both transient and sustained intracellular calcium elevations associated with the microglial response to these activators. Further experiments showed that sigma receptors suppress microglial activation by interfering with increases in intracellular calcium. In addition, sigma receptor activation also prevented membrane ruffling in a calcium-independent manner, indicating that sigma receptors regulate the function of microglia via multiple mechanisms. PMID:19031439

  8. Npas4 Is Activated by Melatonin, and Drives the Clock Gene Cry1 in the Ovine Pars Tuberalis

    PubMed Central

    West, A.; Dupré, S.M.; Yu, L.; Paton, I.R.; Miedzinska, K.; McNeilly, A.S.; Davis, J.R.E.

    2013-01-01

    Seasonal mammals integrate changes in the duration of nocturnal melatonin secretion to drive annual physiologic cycles. Melatonin receptors within the proximal pituitary region, the pars tuberalis (PT), are essential in regulating seasonal neuroendocrine responses. In the ovine PT, melatonin is known to influence acute changes in transcriptional dynamics coupled to the onset (dusk) and offset (dawn) of melatonin secretion, leading to a potential interval-timing mechanism capable of decoding changes in day length (photoperiod). Melatonin offset at dawn is linked to cAMP accumulation, which directly induces transcription of the clock gene Per1. The rise of melatonin at dusk induces a separate and distinct cohort, including the clock-regulated genes Cry1 and Nampt, but little is known of the up-stream mechanisms involved. Here, we used next-generation sequencing of the ovine PT transcriptome at melatonin onset and identified Npas4 as a rapidly induced basic helix-loop-helix Per-Arnt-Sim domain transcription factor. In vivo we show nuclear localization of NPAS4 protein in presumptive melatonin target cells of the PT (α-glycoprotein hormone-expressing cells), whereas in situ hybridization studies identified acute and transient expression in the PT of Npas4 in response to melatonin. In vitro, NPAS4 forms functional dimers with basic helix loop helix-PAS domain cofactors aryl hydrocarbon receptor nuclear translocator (ARNT), ARNT2, and ARNTL, transactivating both Cry1 and Nampt ovine promoter reporters. Using a combination of 5′-deletions and site-directed mutagenesis, we show NPAS4-ARNT transactivation to be codependent upon two conserved central midline elements within the Cry1 promoter. Our data thus reveal NPAS4 as a candidate immediate early-response gene in the ovine PT, driving molecular responses to melatonin. PMID:23598442

  9. Blocking PAR2 Alleviates Bladder Pain and Hyperactivity via TRPA1 Signal.

    PubMed

    Chen, Daihui; Liu, Nian; Li, Mao; Liang, Simin

    2016-01-01

    Bladder disorders associated with interstitial cystitis are frequently characterized by increased contractility and pain. The goals of this study were to examine 1) the effects of blocking proteinase-activated receptor-2 (PAR2) on the exaggerated bladder activity and pain evoked by cystitis and 2) the underlying mechanisms responsible for the role of PAR2 in regulating cystic sensory activity. The protein expression of PAR2 was amplified in rats with cystitis by inducing it with systemic administration of cyclophosphamide (CYP) as compared with control rats. Blocking PAR2 by intrathecal infusion of PAR2 antagonist FSLLRY-NH2 attenuated bladder hyperactivity and pain. In addition, blocking PAR2 attenuated the transient receptor potential A1 (TRPA1) signal pathway, whereas inhibition of the TRPA1 decreased bladder hyperactivity and pain. The data revealed specific signaling pathways leading to CYP-induced bladder hyperactivity and pain, including the activation of PAR2 and TRPA1. Inhibition of these pathways alleviates cystic pain. Targeting one or more of these signaling molecules may present new opportunities for treatment and management of overactive bladder and pain often observed in cystitis.

  10. Blocking PAR2 Alleviates Bladder Pain and Hyperactivity via TRPA1 Signal

    PubMed Central

    Chen, Daihui; Liu, Nian; Li, Mao

    2016-01-01

    Abstract Bladder disorders associated with interstitial cystitis are frequently characterized by increased contractility and pain. The goals of this study were to examine 1) the effects of blocking proteinase-activated receptor-2 (PAR2) on the exaggerated bladder activity and pain evoked by cystitis and 2) the underlying mechanisms responsible for the role of PAR2 in regulating cystic sensory activity. The protein expression of PAR2 was amplified in rats with cystitis by inducing it with systemic administration of cyclophosphamide (CYP) as compared with control rats. Blocking PAR2 by intrathecal infusion of PAR2 antagonist FSLLRY-NH2 attenuated bladder hyperactivity and pain. In addition, blocking PAR2 attenuated the transient receptor potential A1 (TRPA1) signal pathway, whereas inhibition of the TRPA1 decreased bladder hyperactivity and pain. The data revealed specific signaling pathways leading to CYP-induced bladder hyperactivity and pain, including the activation of PAR2 and TRPA1. Inhibition of these pathways alleviates cystic pain. Targeting one or more of these signaling molecules may present new opportunities for treatment and management of overactive bladder and pain often observed in cystitis. PMID:28123833

  11. The Orphan Nuclear Receptor TR4 Is a Vitamin A-activated Nuclear Receptor

    SciTech Connect

    Zhou, X. Edward; Suino-Powell, Kelly M.; Xu, Yong; Chan, Cee-Wah; Tanabe, Osamu; Kruse, Schoen W.; Reynolds, Ross; Engel, James Douglas; Xu, H. Eric

    2015-11-30

    Testicular receptors 2 and 4 (TR2/4) constitute a subgroup of orphan nuclear receptors that play important roles in spermatogenesis, lipid and lipoprotein regulation, and the development of the central nervous system. Currently, little is known about the structural features and the ligand regulation of these receptors. Here we report the crystal structure of the ligand-free TR4 ligand binding domain, which reveals an autorepressed conformation. The ligand binding pocket of TR4 is filled by the C-terminal half of helix 10, and the cofactor binding site is occupied by the AF-2 helix, thus preventing ligand-independent activation of the receptor. However, TR4 exhibits constitutive transcriptional activity on multiple promoters, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, or ligand binding substantially reduce the transcriptional activity of this receptor. Importantly, both retinol and retinoic acid are able to promote TR4 to recruit coactivators and to activate a TR4-regulated reporter. These findings demonstrate that TR4 is a ligand-regulated nuclear receptor and suggest that retinoids might have a much wider regulatory role via activation of orphan receptors such as TR4.

  12. Quantifying agonist activity at G protein-coupled receptors.

    PubMed

    Ehlert, Frederick J; Suga, Hinako; Griffin, Michael T

    2011-12-26

    When an agonist activates a population of G protein-coupled receptors (GPCRs), it elicits a signaling pathway that culminates in the response of the cell or tissue. This process can be analyzed at the level of a single receptor, a population of receptors, or a downstream response. Here we describe how to analyze the downstream response to obtain an estimate of the agonist affinity constant for the active state of single receptors. Receptors behave as quantal switches that alternate between active and inactive states (Figure 1). The active state interacts with specific G proteins or other signaling partners. In the absence of ligands, the inactive state predominates. The binding of agonist increases the probability that the receptor will switch into the active state because its affinity constant for the active state (K(b)) is much greater than that for the inactive state (K(a)). The summation of the random outputs of all of the receptors in the population yields a constant level of receptor activation in time. The reciprocal of the concentration of agonist eliciting half-maximal receptor activation is equivalent to the observed affinity constant (K(obs)), and the fraction of agonist-receptor complexes in the active state is defined as efficacy (ε) (Figure 2). Methods for analyzing the downstream responses of GPCRs have been developed that enable the estimation of the K(obs) and relative efficacy of an agonist. In this report, we show how to modify this analysis to estimate the agonist K(b) value relative to that of another agonist. For assays that exhibit constitutive activity, we show how to estimate K(b) in absolute units of M(-1). Our method of analyzing agonist concentration-response curves consists of global nonlinear regression using the operational model. We describe a procedure using the software application, Prism (GraphPad Software, Inc., San Diego, CA). The analysis yields an estimate of the product of K(obs) and a parameter proportional to efficacy (

  13. Correlating Structural and Energetic Changes in Glycine Receptor Activation*

    PubMed Central

    Scott, Suzanne; Lynch, Joseph W.; Keramidas, Angelo

    2015-01-01

    Pentameric ligand-gated ion channels (pLGICs) mediate fast chemoelectrical transduction in the nervous system. The mechanism by which the energy of ligand binding leads to current-conducting receptors is poorly understood and may vary among family members. We addressed these questions by correlating the structural and energetic mechanisms by which a naturally occurring M1 domain mutation (α1Q−26′E) enhances receptor activation in homo- and heteromeric glycine receptors. We systematically altered the charge of spatially clustered residues at positions 19′ and 24′, in the M2 and M2-M3 linker domains, respectively, which are known to be critical to efficient receptor activation, on a background of α1Q−26′E. Changes in the durations of single receptor activations (clusters) and conductance were used to determine interaction coupling energies, which we correlated with conformational displacements as measured in pLGIC crystal structures. Presence of the α1Q−26′E enhanced cluster durations and reduced channel conductance in homo- and heteromeric receptors. Strong coupling between α1−26′ and α119′ across the subunit interface suggests an important role in receptor activation. A lack of coupling between α1−26′ and α124′ implies that 24′ mutations disrupt activation via other interactions. A similar lack of energetic coupling between α1−26′ and reciprocal mutations in the β subunit suggests that this subunit remains relatively static during receptor activation. However, the channel effects of α1Q−26′E on α1β receptors suggests at least one α1-α1 interface per pentamer. The coupling-energy change between α1−26′ and α119′ correlates with a local structural rearrangement essential for pLGIC activation, implying it comprises a key energetic pathway in activating glycine receptors and other pLGICs. PMID:25572390

  14. Tools and techniques to study ligand-receptor interactions and receptor activation by TNF superfamily members.

    PubMed

    Schneider, Pascal; Willen, Laure; Smulski, Cristian R

    2014-01-01

    Ligands and receptors of the TNF superfamily are therapeutically relevant targets in a wide range of human diseases. This chapter describes assays based on ELISA, immunoprecipitation, FACS, and reporter cell lines to monitor interactions of tagged receptors and ligands in both soluble and membrane-bound forms using unified detection techniques. A reporter cell assay that is sensitive to ligand oligomerization can identify ligands with high probability of being active on endogenous receptors. Several assays are also suitable to measure the activity of agonist or antagonist antibodies, or to detect interactions with proteoglycans. Finally, self-interaction of membrane-bound receptors can be evidenced using a FRET-based assay. This panel of methods provides a large degree of flexibility to address questions related to the specificity, activation, or inhibition of TNF-TNF receptor interactions in independent assay systems, but does not substitute for further tests in physiologically relevant conditions.

  15. Enhanced Nitric Oxide Synthase Activation via Protease-Activated Receptor 2 Is Involved in the Preserved Vasodilation in Aortas from Metabolic Syndrome Rats.

    PubMed

    Maruyama, Kana; Kagota, Satomi; McGuire, John J; Wakuda, Hirokazu; Yoshikawa, Noriko; Nakamura, Kazuki; Shinozuka, Kazumasa

    2015-01-01

    Endothelium-dependent vasodilation via protease-activated receptor 2 (PAR2) is preserved in mesenteric arteries from SHRSP.Z-Leprfa/IzmDmcr rats (SHRSP.ZF) with metabolic syndrome even though nitric oxide (NO)-mediated vasodilation is attenuated. Therefore, we examined the PAR2 mechanisms underlying metabolic syndrome-resistant vasodilation in SHRSP.ZF aortas with ageing. In isolated aortas, the PAR2 agonist 2-furoyl-LIGRLO-amide (2fly) caused vasodilation that was sustained in male SHRSP.ZF until 18 weeks of age, but was attenuated afterwards compared with age-matched Wistar-Kyoto rats (controls) at 23 weeks. In contrast, acetylcholine-induced vasodilation was impaired in SHRSP.ZF already at 18 weeks of age. Treatments of aortas with inhibitors of NO synthase and soluble guanylate cyclase abolished the sustained 2fly- and residual acetylcholine-induced vasodilation in SHRSP.ZF at 18 weeks of age. In the aortas of SHRSP.ZF, 8-bromo-cGMP-induced vasodilation, NO production and cGMP accumulation elicited by 2fly were not different from in the controls. PAR2 agonist increased phospho-Ser1177-eNOS protein content only in SHRSP.ZF aortas. These results indicate that vasodilation mediated by PAR2 is sustained even though NO-dependent relaxation is attenuated with ageing/exposure to metabolic disorders in large-caliber arteries from SHRSP.ZF. PAR2 stimulation of NO production via an additional pathway that targets phosphorylation of Ser1177-eNOS suggests a regulatory mechanism for sustaining agonist-mediated vasodilation in metabolic syndrome.

  16. Insect Repellents: Modulators of Mosquito Odorant Receptor Activity

    DTIC Science & Technology

    2010-08-01

    molecular pathways through allosteric regulation of various proteins including proteases [39,40], the cannabinoid receptor 1 (CB1) [41], the a7 nicotinic...41. Price MR, Baillie GL, Thomas A, Stevenson LA, Easson M, et al. (2005) Allosteric modulation of the cannabinoid CB1 receptor . Mol Pharmacol 68...Insect Repellents: Modulators of Mosquito Odorant Receptor Activity Jonathan D. Bohbot, Joseph C. Dickens* Invasive Insect Biocontrol and Behavior

  17. Fluorescence Correlation Spectroscopy and Photon Counting Histogram on membrane proteins: Functional dynamics of the GPI-anchored Urokinase Plasminogen Activator Receptor

    PubMed Central

    Malengo, Gabriele; Andolfo, Annapaola; Sidenius, Nicolai; Gratton, Enrico; Zamai, Moreno; Caiolfa, Valeria R

    2009-01-01

    The oligomerization of GPI-anchored proteins is thought to regulate their association with membrane microdomains, sub-cellular sorting and activity. However, these mechanisms need to be comprehensively explored in living, unperturbed cells, without artificial clustering agents, and using fluorescent protein-tagged chimeras that are fully biologically active. We expressed in HEK293 cells a biologically active chimera of the urokinase plasminogen activator receptor (uPAR), the uPAR-mEGFP-GPI. We also produced HEK293/D2D3-mEGFP-GPI cells expressing the truncated form of the receptor, lacking biological activity. We studied the dynamics and oligomerization of the two proteins, combining FCS and PCH analyses, and using subclones with homogenously low expression levels. Overall, the mobile fractions of the two proteins, constituted by monomers and dimers, had comparable diffusion coefficients. However, only for the active receptor the diffusion coefficient decreased in monomer-enriched fractions, suggesting that uPAR monomers might be preferentially engaged in multi-protein transmembrane signaling complexes. Our approach helps in limiting the alteration of the data due to out-of-focus, and minimizing the overestimation of the molecular brightness. Joint to a careful design of the cellular model, it gives reliable estimates of diffusion coefficients and oligomerization of GPI-anchored proteins, in steady state conditions, at low expression levels, and in live, unperturbed cells. PMID:18601539

  18. Regulation of long-term repopulating hematopoietic stem cells by EPCR/PAR1 signaling

    PubMed Central

    Gur-Cohen, Shiri; Kollet, Orit; Graf, Claudine; Esmon, Charles T.; Ruf, Wolfram; Lapidot, Tsvee

    2016-01-01

    The common developmental origin of endothelial and hematopoietic cells is manifested by coexpression of several cell surface receptors. Adult murine bone marrow (BM) long-term repopulating hematopoietic stem cells (LT-HSCs), endowed with the highest repopulation and self-renewal potential, express endothelial protein C receptor (EPCR), which is used as a marker to isolate them. EPCR/PAR1 signaling in endothelial cells has anticoagulant and anti-inflammatory roles, while thrombin/PAR1 signaling induces coagulation and inflammation. Recent studies define two new PAR1-mediated signaling cascades that regulate EPCR+ LT-HSC BM retention and egress. EPCR/PAR1 signaling facilitates LT-HSC BM repopulation, retention, survival, and chemotherapy resistance by restricting nitric oxide (NO) production, maintaining NOlow LT-HSC BM retention with increased VLA4 expression, affinity, and adhesion. Conversely, acute stress and clinical mobilization upregulate thrombin generation and activate different PAR1 signaling which overcomes BM EPCR+ LT-HSC retention, inducing their recruitment to the bloodstream. Thrombin/PAR1 signaling induces NO generation, TACE-mediated EPCR shedding, and upregulation of CXCR4 and PAR1, leading to CXCL12-mediated stem and progenitor cell mobilization. This review discusses new roles for factors traditionally viewed as coagulation related, which independently act in the BM to regulate PAR1 signaling in bone- and blood-forming progenitor cells, navigating their fate by controlling NO production. PMID:26928241

  19. Activation of human peroxisome-activated receptor-gamma ...

    EPA Pesticide Factsheets

    Obesity in children has become an epidemic and recent research suggests a possible contribution from exposure to environmental chemicals. Several chemicals, such as phthalates, brominated flame retardants, and perfluorinated chemicals, are common in house dust on floors where children play and are suspected obesogens. Obesogens can act via a mechanism that involves activation of peroxisome proliferator-activated receptor-gamma (PPARy). A previous study found that dust collected from children’s homes binds to PPARy. Here, we investigated the ability of house dust to activate PPARy in a transiently transfected cell assay. Dust samples were collected in 2012 from carpeted and hardwood floors in children’s homes using thimbles fitted into a vacuum cleaner hose (“TEO” samples), or from homes in an adult cohort NIEHS study. Dust was extracted with 50:50 hexane:acetone, sonicated, centrifuged, and the organic layer collected. This was repeated 2X. The extracts were filtered to remove particulates, dried with purified nitrogen, and reconstituted in DMS0 at 200 ug/ul. COS-1 cells were transfected for 24 hrs with a human PPARy vector containing a luciferase reporter, and exposed for 24 hrs to negative controls water or DMSO (0.1%), positive controls Troglitazone (3 uM in water) or Rosiglitazone (100 nM in DMSO), or dust extracts serially diluted in DMEM at 50, 100, and 200 ug/ml in 0.1% DMSO. Cells were lysed and luciferase activity was measured. Data were log-tra

  20. P2 receptors activated by uracil nucleotides--an update.

    PubMed

    Brunschweiger, Andreas; Müller, Christa E

    2006-01-01

    Pyrimidine nucleotides, including UTP, UDP and UDP-glucose, are important signaling molecules which activate G protein-coupled membrane receptors (GPCRs) of the P2Y family. Four distinct pyrimidine nucleotide-sensitive P2Y receptor subtypes have been cloned, P2Y2, P2Y4, P2Y6 and P2Y14. P2Y2 and P2Y4 receptors are activated by UTP (the P2Y2, and the rat but not the human P2Y4 receptor are also activated by ATP), the P2Y6 receptor is activated by UDP, and the P2Y14 receptor by UDP-glucose. Furthermore, non-P2Y GPCRs, the cysteinylleukotriene receptors (CysLT1R and CysLT2R) have been described to be activated by UDP in addition to activation by cysteinylleukotrienes. While P2Y2, P2Y4, and P2Y6 receptor activation results in stimulation of phospholipase C, the P2Y14 receptor is coupled to inhibition of adenylate cyclase. Derivatives and analogs of the physiological nucleotides UTP, UDP and ATP have been synthesized and evaluated in order to obtain enzymatically stable, subtype-selective agonists. The P2Y2 receptor agonists diuridine tetraphosphate (diquafosol) and the uracil-cytosine dinucleotide denufosol are currently undergoing clinical trials for dry eye disease, retinal detachment disease, upper respiratory tract symptoms, and cystic fibrosis, respectively. The first antagonists for P2Y2 and P2Y6 receptors that appear to be selective versus other P2Y receptor subtypes have recently been described. Selective antagonists for P2Y4 and P2Y14 receptors are still lacking. Uracil nucleotide-sensitive P2Y receptor subtypes may constitute future targets for the treatment of certain cancer types, vascular diseases, inflammatory diseases, and immunomodulatory intervention. They have also been proposed to play a role in neurodegenerative diseases. This article is an updated version of "P2-Pyrimidinergic Receptors and Their Ligands" by C. E. Müller published in Curr. Pharm. Des. 2002, 8, 2353-2369.

  1. Clinical Value of Plasma Soluble Urokinase-Type Plasminogen Activator Receptor Levels in Term Neonates with Infection or Sepsis: A Prospective Study

    PubMed Central

    Siahanidou, Tania; Margeli, Alexandra; Charoni, Stavroula; Giannaki, Maria; Vavourakis, Eustathios; Charisiadou, Athina; Papassotiriou, Ioannis

    2014-01-01

    Background. suPAR, the soluble form of the urokinase-type plasminogen activator receptor, has been identified as a biomarker of infection in adults but its properties in neonatal infection are not known. Methods. Plasma suPAR levels were determined by ELISA in 47 term neonates with infection (19 bacterial and 28 viral) and in 18 healthy neonates as controls. Thirteen out of 47 infected neonates were septic. In all infected neonates, suPAR levels were repeated at 24 hours, 48 hours, 3–5 days, and 7–10 days following admission. Results. Plasma suPAR levels were significantly increased in infected neonates upon admission, whereas they were highest in septic neonates, in comparison with controls (P < 0.001) and correlated positively with serum CRP levels (P = 0.001). At infection subsidence, suPAR concentrations decreased significantly in comparison with baseline (P < 0.001) but remained higher than in controls (P = 0.01). Receiver operating characteristic analysis resulted in significant areas under the curve for detecting either infected or septic neonates, but not for discriminating between bacterial and viral cause of infection. Conclusions. suPAR is a diagnostic biomarker of infection or sepsis in term neonates; however, it cannot discriminate bacterial from viral infections and also its utility for monitoring the response to treatment is questioned. PMID:24882949

  2. [Regulation of G protein-coupled receptor kinase activity].

    PubMed

    Haga, T; Haga, K; Kameyama, K; Nakata, H

    1994-09-01

    Recent progress on the activation of G protein-coupled receptor kinases is reviewed. beta-Adrenergic receptor kinase (beta ARK) is activated by G protein beta gamma -subunits, which interact with the carboxyl terminal portion of beta ARK. Muscarinic receptor m2-subtypes are phosphorylated by beta ARK1 in the central part of the third intracellular loop (I3). Phosphorylation of I3-GST fusion protein by beta ARK1 is synergistically stimulated by the beta gamma -subunits and mastoparan or a peptide corresponding to portions adjacent to the transmembrane segments of m2-receptors or by beta gamma -subunits and the agonist-bound I3-deleted m2 variant. These results indicate that agonist-bound receptors serve as both substrates and activators of beta ARK.

  3. Prothymosin Alpha Selectively Enhances Estrogen Receptor Transcriptional Activity by Interacting with a Repressor of Estrogen Receptor Activity

    PubMed Central

    Martini, Paolo G. V.; Delage-Mourroux, Regis; Kraichely, Dennis M.; Katzenellenbogen, Benita S.

    2000-01-01

    We find that prothymosin alpha (PTα) selectively enhances transcriptional activation by the estrogen receptor (ER) but not transcriptional activity of other nuclear hormone receptors. This selectivity for ER is explained by PTα interaction not with ER, but with a 37-kDa protein denoted REA, for repressor of estrogen receptor activity, a protein that we have previously shown binds to ER, blocking coactivator binding to ER. We isolated PTα, known to be a chromatin-remodeling protein associated with cell proliferation, using REA as bait in a yeast two-hybrid screen with a cDNA library from MCF-7 human breast cancer cells. PTα increases the magnitude of ERα transcriptional activity three- to fourfold. It shows lesser enhancement of ERβ transcriptional activity and has no influence on the transcriptional activity of other nuclear hormone receptors (progesterone receptor, glucocorticoid receptor, thyroid hormone receptor, or retinoic acid receptor) or on the basal activity of ERs. In contrast, the steroid receptor coactivator SRC-1 increases transcriptional activity of all of these receptors. Cotransfection of PTα or SRC-1 with increasing amounts of REA, as well as competitive glutathione S-transferase pulldown and mammalian two-hybrid studies, show that REA competes with PTα (or SRC-1) for regulation of ER transcriptional activity and suppresses the ER stimulation by PTα or SRC-1, indicating that REA can function as an anticoactivator in cells. Our data support a model in which PTα, which does not interact with ER, selectively enhances the transcriptional activity of the ER but not that of other nuclear receptors by recruiting the repressive REA protein away from ER, thereby allowing effective coactivation of ER with SRC-1 or other coregulators. The ability of PTα to directly interact in vitro and in vivo with REA, a selective coregulator of the ER, thereby enabling the interaction of ER with coactivators, appears to explain its ability to selectively enhance

  4. Plant cysteine proteases that evoke itch activate protease-activated receptors

    PubMed Central

    Reddy, V.B.; Lerner, E.A.

    2013-01-01

    Background Bromelain, ficin and papain are cysteine proteases from plants that produce itch upon injection into skin. Their mechanism of action has not been considered previously. Objectives To determine the mechanism by which these proteases function. Methods The ability of these proteases to activate protease-activated receptors was determined by ratiometric calcium imaging. Results We show here that bromelain, ficin and papain activate protease-activated receptors 2 and 4. Conclusions Bromelain, ficin and papain function as signalling molecules and activate protease-activated receptors. Activation of these receptors is the likely mechanism by which these proteases evoke itch. PMID:20491769

  5. Endomorphins fully activate a cloned human mu opioid receptor.

    PubMed

    Gong, J; Strong, J A; Zhang, S; Yue, X; DeHaven, R N; Daubert, J D; Cassel, J A; Yu, G; Mansson, E; Yu, L

    1998-11-13

    Endomorphins were recently identified as endogenous ligands with high selectivity for mu opioid receptors. We have characterized the ability of endomorphins to bind to and functionally activate the cloned human mu opioid receptor. Both endomorphin-1 and endomorphin-2 exhibited binding selectivity for the mu opioid receptor over the delta and kappa opioid receptors. Both agonists inhibited forskolin-stimulated increase of cAMP in a dose-dependent fashion. When the mu opioid receptor was coexpressed in Xenopus oocytes with G protein-activated K+ channels, application of either endomorphin activated an inward K+ current. This activation was dose-dependent and blocked by naloxone. Both endomorphins acted as full agonists with efficacy similar to that of [D-Ala2,N-Me-Phe4,Gly-ol5]enkephalin (DAMGO). These data indicate that endomorphins act as full agonists at the human mu opioid receptor, capable of stimulating the receptor to inhibit the cAMP/adenylyl cyclase pathway and activate G-protein-activated inwardly rectifying potassium (GIRK) channels.

  6. Human Receptor Activation by Aroclor 1260, a Polychlorinated Biphenyl Mixture

    PubMed Central

    Wahlang, Banrida; Falkner, K. Cameron; Clair, Heather B.; Al-Eryani, Laila; Prough, Russell A.; States, J. Christopher; Coslo, Denise M.; Omiecinski, Curtis J.; Cave, Matthew C.

    2014-01-01

    Polychlorinated biphenyls (PCBs) are persistent environmental toxicants, present in 100% of U.S. adults and dose-dependently associated with obesity and non-alcoholic fatty liver disease (NAFLD). PCBs are predicted to interact with receptors previously implicated in xenobiotic/energy metabolism and NAFLD. These receptors include the aryl hydrocarbon receptor (AhR), pregnane xenobiotic receptor (PXR), constitutive androstane receptor (CAR), peroxisome proliferator-activated receptors (PPARs), liver-X-receptor (LXRα), and farnesoid-X-receptor (FXR). This study evaluates Aroclor 1260, a PCB mixture with congener composition mimicking that of human adipose tissue, and selected congeners, as potential ligands for these receptors utilizing human hepatoma-derived (HepG2) and primate-derived (COS-1) cell lines, and primary human hepatocytes. Aroclor 1260 (20 μg/ml) activated AhR, and PCB 126, a minor component, was a potent inducer. Aroclor 1260 activated PXR in a simple concentration-dependent manner at concentrations ≥10 μg/ml. Among the congeners tested, PCBs 138, 149, 151, 174, 183, 187, and 196 activated PXR. Aroclor 1260 activated CAR2 and CAR3 variants at lower concentrations and antagonize CAR2 activation by the CAR agonist, CITCO, at higher concentrations (≥20 μg/ml). Additionally, Aroclor 1260 induced CYP2B6 in primary hepatocytes. At subtoxic doses, Aroclor 1260 did not activate LXR or FXR and had no effect on LXR- or FXR-dependent induction by the agonists T0901317 or GW4064, respectively. Aroclor 1260 (20 μg/ml) suppressed PPARα activation by the agonist nafenopin, although none of the congeners tested demonstrated significant inhibition. The results suggest that Aroclor 1260 is a human AhR, PXR and CAR3 agonist, a mixed agonist/antagonist for CAR2, and an antagonist for human PPARα. PMID:24812009

  7. Activating Receptor Signals Drive Receptor Diversity in Developing Natural Killer Cells

    PubMed Central

    Freund, Jacquelyn; May, Rebecca M.; Li, Hongchuan; McCullen, Matthew; Zhang, Bin; Lenvik, Todd; Cichocki, Frank; Anderson, Stephen K.; Kambayashi, Taku

    2016-01-01

    It has recently been appreciated that NK cells exhibit many features reminiscent of adaptive immune cells. Considerable heterogeneity exists with respect to the ligand specificity of individual NK cells and as such, a subset of NK cells can respond, expand, and differentiate into memory-like cells in a ligand-specific manner. MHC I-binding inhibitory receptors, including those belonging to the Ly49 and KIR families, are expressed in a variegated manner, which creates ligand-specific diversity within the NK cell pool. However, how NK cells determine which inhibitory receptors to express on their cell surface during a narrow window of development is largely unknown. In this manuscript, we demonstrate that signals from activating receptors are critical for induction of Ly49 and KIR receptors during NK cell development; activating receptor-derived signals increased the probability of the Ly49 bidirectional Pro1 promoter to transcribe in the forward versus the reverse direction, leading to stable expression of Ly49 receptors in mature NK cells. Our data support a model where the balance of activating and inhibitory receptor signaling in NK cells selects for the induction of appropriate inhibitory receptors during development, which NK cells use to create a diverse pool of ligand-specific NK cells. PMID:27500644

  8. Inhibition of proinflammatory cytokines by SCH79797, a selective protease-activated receptor 1 antagonist, protects rat kidney against ischemia-reperfusion injury.

    PubMed

    El Eter, Eman Abdelazeem; Aldrees, Abdulmajeed

    2012-06-01

    Renal ischemia-reperfusion injury (I/R) is the most common cause of acute renal failure. It is partially mediated by thrombin as it is attenuated by thrombin inhibition or deletion of its receptor protease-activated receptor 1 (PAR1). However, the role of PAR1 in renal I/R injury needs to be further elucidated. The present study investigated the effect of PAR1 antagonist, SCH79797 (SCH), on renal protection and downstream effectors involved. Male Wistar rats were pretreated with SCH (25 μg/kg i.p.) or vehicle, 15 min before 45 min of clamping of left renal pedicle after right nephrectomy. To investigate the involvement of phosphatidylinositol 3-kinase (PI3K)/Akt, a group of rats was subjected to pretreatment with an inhibitor of PI3K/Akt (LY 29004, 3 mg/kg i.p.) before renal ischemia and SCH treatment. A sham-operated group served as control and received saline. All rats were killed 24 h after reperfusion or sham operation, and blood samples collected and kidney tissues processed either for immunostaining and histological assessment or for biochemical analysis. SCH79797 markedly attenuated kidney damage histologically and by improving serum creatinine. Both plasma and protein expression of P selectin were markedly reduced as well as neutrophil infiltration, cytokine-induced neutrophil chemoattractant 1, and tumor necrosis factor α. These protective effects of blocking PAR1 receptor were abolished by preadministration of LY29004. These results suggest that PAR1 mediates renal I/R injury and that blocking PAR1 using SCH limits renal injury by an anti-inflammatory effect possibly signaling via PI3K/Akt.

  9. Characterization of peroxisome proliferator-activiated receptor alpha (PPARalpha)-independent effects of PPARalpha activators in the rodent liver: Di(2-ethylehexyl) phthalate activates the constitutive activated receptor

    EPA Science Inventory

    Peroxisome proliferator chemicals (PPC) are thought to mediate their effects in rodents on hepatocyte growth and liver cancer through the nuclear receptor peroxisome proliferator-activated receptor alpha (PPARalpha). Recent studies indicate that the plasticizer di-2-ethylhexyl ph...

  10. Inhibition of establishment of primary and micrometastatic tumors by a urokinase plasminogen activator receptor antagonist.

    PubMed

    Ignar, D M; Andrews, J L; Witherspoon, S M; Leray, J D; Clay, W C; Kilpatrick, K; Onori, J; Kost, T; Emerson, D L

    1998-01-01

    Tumor establishment and metastasis are dependent on extracellular matrix proteolysis, tumor cell migration, and angiogenesis. Urokinase plasminogen activator (uPA) and its receptor are essential mediators of these processes. The purpose of this study was to investigate the effect of a recombinant human uPAR antagonist on growth, establishment, and metastasis of tumors derived from human cancer cell lines. A noncatalytic recombinant protein, consisting of amino acids 1-137 of human uPA and the CH2 and CH3 regions of mouse IgG1 (uPA-IgG), was expressed, purified, and shown to bind specifically to human uPAR and to saturate the surface of human tumor cells which express uPAR. Daily i.p. administration of uPA-IgG to nude mice extended latencies of unstaged tumors derived from Lox melanoma and SW48 colon carcinoma cells by 7.7 and 5.5 days, respectively. uPA-IgG treatment did not affect the growth of Lox or KB tumors staged to 200 mg before antagonist treatment commenced. The effect of uPA-IgG on the establishment of micrometastases was assessed in SCID mice. KB head/neck tumor cells were injected in the tail vein and allowed to seed for 48 h before initiation of daily i.p. injections of uPA-IgG for 24 days. The number of lung colonies ranged between 5 and 30% of vehicle-treated mice in two separate experiments. Furthermore, a single 800 microg dose of uPA-IgG administered 1 h prior to tail vein injection of KB cells reduced lung colony formation to just 3.5% of vehicle-treated SCID mice. These data demonstrate that antagonism of uPAR arrested metastasis and inhibited the establishment of primary tumors and micrometastases. Thus, small molecule uPAR antagonists may serve as useful adjuvant agents in combination with existing cancer chemotherapy.

  11. Activation of the orphan receptor tyrosine kinase ALK by zinc.

    PubMed

    Bennasroune, Aline; Mazot, Pierre; Boutterin, Marie-Claude; Vigny, Marc

    2010-08-06

    Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase essentially and transiently expressed during development of the central and peripheral nervous system. The nature of the cognate ligand of this receptor in Vertebrates is still a matter of debate. During synaptic transmission the release of ionic zinc found in vesicles of certain glutamatergic and gabaergic terminals may act as a neuromodulator by binding to pre- or post-synaptic receptors. Recently, zinc has been shown to activate the receptor tyrosine kinase, TrkB, independently of neurotrophins. This activation occurs via increasing the Src family kinase activity. In the present study, we investigated whether the ALK activity could be modulated by extracellular zinc. We first showed that zinc alone rapidly activates ALK. This activation is dependent of ALK tyrosine kinase activity and dimerization of the receptor but is independent of Src family kinase activity. In contrast, addition of sodium pyrithione, a zinc ionophore, led to a further activation of ALK. This stronger activation is dependent of Src family kinase but independent of ALK activity and dimerization. In conclusion, zinc could constitute an endogenous ligand of ALK in vertebrates.

  12. Motor neuron cell death in wobbler mutant mice follows overexpression of the G-protein-coupled, protease-activated receptor for thrombin.

    PubMed Central

    Festoff, B. W.; D'Andrea, M. R.; Citron, B. A.; Salcedo, R. M.; Smirnova, I. V.; Andrade-Gordon, P.

    2000-01-01

    BACKGROUND: Mechanisms underlying neurodegeneration are actively sought for new therapeutic strategies. Transgenic, knockout and genetic mouse models greatly aid our understanding of the mechanisms for neuronal cell death. A naturally occurring, autosomal recessive mutant, known as wobbler, and mice transgenic for familial amyotrophic lateral sclerosis (FALS) superoxide dismutase (SOD)1 mutations are available, but the molecular mechanisms remain equally unknown. Both phenotypes are detectable after birth. Wobbler is detectable in the third week of life, when homozygotes (wr/wr) exhibit prominent gliosis and significant motor neuron loss in the cervical, but not in lumbar, spinal cord segments. To address molecular mechanisms, we evaluated "death signals" associated with the multifunctional serine protease, thrombin, which leads to apoptotic motor neuronal cell death in culture by cleavage of a G-protein coupled, protease-activated receptor 1 (PAR-1). MATERIALS AND METHODS: Thrombin activities were determined with chromogenic substrate assays, Western immunoblots and immunohistochemistry were performed with anti-PAR-1 to observe localizations of the receptor and anti-GFAP staining was used to monitor astrocytosis. PAR-1 mRNA levels and locations were determined by reverse transcription polymerase chain reaction (qRT-PCR) and in situ hybridizations. Cell death was monitored with in situ DNA fragmentation assays. RESULTS: In preliminary studies we found a 5-fold increase in PAR-1 mRNA in cervical spinal cords from wr/wr, compared with wild-type (wt) littermates. Our current studies suggested that reactive astrocytosis and motor neuron cell death were causally linked with alterations in thrombin signaling. PAR-1 protein expression was increased, as demonstrated by immunocytochemistry and confirmed with in situ hybridization, in phenotypic wr/wr motor neurons, compared with wt, but not in astrocytes. This increase was much greater in cervical, compared with lumbar

  13. Structure and dynamics of a constitutively active neurotensin receptor

    PubMed Central

    Krumm, Brian E.; Lee, Sangbae; Bhattacharya, Supriyo; Botos, Istvan; White, Courtney F.; Du, Haijuan; Vaidehi, Nagarajan; Grisshammer, Reinhard

    2016-01-01

    Many G protein-coupled receptors show constitutive activity, resulting in the production of a second messenger in the absence of an agonist; and naturally occurring constitutively active mutations in receptors have been implicated in diseases. To gain insight into mechanistic aspects of constitutive activity, we report here the 3.3 Å crystal structure of a constitutively active, agonist-bound neurotensin receptor (NTSR1) and molecular dynamics simulations of agonist-occupied and ligand-free receptor. Comparison with the structure of a NTSR1 variant that has little constitutive activity reveals uncoupling of the ligand-binding domain from conserved connector residues, that effect conformational changes during GPCR activation. Furthermore, molecular dynamics simulations show strong contacts between connector residue side chains and increased flexibility at the intracellular receptor face as features that coincide with robust signalling in cells. The loss of correlation between the binding pocket and conserved connector residues, combined with altered receptor dynamics, possibly explains the reduced neurotensin efficacy in the constitutively active NTSR1 and a facilitated initial engagement with G protein in the absence of agonist. PMID:27924846

  14. Structure and dynamics of a constitutively active neurotensin receptor

    SciTech Connect

    Krumm, Brian E.; Lee, Sangbae; Bhattacharya, Supriyo; Botos, Istvan; White, Courtney F.; Du, Haijuan; Vaidehi, Nagarajan; Grisshammer, Reinhard

    2016-12-07

    Many G protein-coupled receptors show constitutive activity, resulting in the production of a second messenger in the absence of an agonist; and naturally occurring constitutively active mutations in receptors have been implicated in diseases. To gain insight into mechanistic aspects of constitutive activity, we report here the 3.3 Å crystal structure of a constitutively active, agonist-bound neurotensin receptor (NTSR1) and molecular dynamics simulations of agonist-occupied and ligand-free receptor. Comparison with the structure of a NTSR1 variant that has little constitutive activity reveals uncoupling of the ligand-binding domain from conserved connector residues, that effect conformational changes during GPCR activation. Furthermore, molecular dynamics simulations show strong contacts between connector residue side chains and increased flexibility at the intracellular receptor face as features that coincide with robust signalling in cells. The loss of correlation between the binding pocket and conserved connector residues, combined with altered receptor dynamics, possibly explains the reduced neurotensin efficacy in the constitutively active NTSR1 and a facilitated initial engagement with G protein in the absence of agonist.

  15. Coordination of Satellite Cell Activation and Self-Renewal by Par-Complex-Dependent Asymmetric Activation of p38α/β MAPK

    PubMed Central

    Troy, Andrew; Cadwallader, Adam B.; Fedorov, Yuri; Tyner, Kristina; Tanaka, Kathleen Kelly; Olwin, Bradley B.

    2014-01-01

    SUMMARY In response to muscle injury, satellite cells activate the p38α/β MAPK pathway to exit quiescence, then proliferate, repair skeletal muscle, and self-renew, replenishing the quiescent satellite cell pool. Although satellite cells are capable of asymmetric division, the mechanisms regulating satellite cell self-renewal are not understood. We found that satellite cells, once activated, enter the cell cycle and a subset undergoes asymmetric division, renewing the satellite cell pool. Asymmetric localization of the Par complex activates p38α/β MAPK in only one daughter cell, inducing MyoD, which permits cell cycle entry and generates a proliferating myoblast. The absence of p38α/β MAPK signaling in the other daughter cell prevents MyoD induction, renewing the quiescent satellite cell. Thus, satellite cells employ a mechanism to generate distinct daughter cells, coupling the Par complex and p38α/β MAPK signaling to link the response to muscle injury with satellite cell self-renewal. PMID:23040480

  16. Activation of 5-HT7 receptors increases neuronal platelet-derived growth factor β receptor expression.

    PubMed

    Vasefi, Maryam S; Kruk, Jeff S; Liu, Hui; Heikkila, John J; Beazely, Michael A

    2012-03-09

    Several antipsychotics have a high affinity for 5-HT7 receptors yet despite intense interest in the 5-HT7 receptor as a potential drug target to treat psychosis, the function and signaling properties of 5-HT7 receptors in neurons remain largely uncharacterized. In primary mouse hippocampal and cortical neurons, as well as in the SH-SY5Y cell line, incubation with 5-HT, 5-carboxamidotryptamine (5-CT), or 5-HT7 receptor-selective agonists increases the expression of platelet-derived growth factor (PDGF)β receptors. The increased PDGFβ receptor expression is cyclic AMP-dependent protein kinase (PKA)-dependent, suggesting that 5-HT7 receptors couple to Gα(s) in primary neurons. Interestingly, up-regulated PDGFβ receptors display an increased basal phosphorylation state at the phospholipase Cγ-activating tyrosine 1021. This novel linkage between the 5-HT7 receptor and the PDGF system may be an important GPCR-neurotrophic factor signaling pathway in neurons.

  17. Multiple switches in G protein-coupled receptor activation.

    PubMed

    Ahuja, Shivani; Smith, Steven O

    2009-09-01

    The activation mechanism of G protein-coupled receptors has presented a puzzle that finally may be close to solution. These receptors have a relatively simple architecture consisting of seven transmembrane helices that contain just a handful of highly conserved amino acids, yet they respond to light and a range of chemically diverse ligands. Recent NMR structural studies on the active metarhodopsin II intermediate of the visual receptor rhodopsin, along with the recent crystal structure of the apoprotein opsin, have revealed multiple structural elements or 'switches' that must be simultaneously triggered to achieve full activation. The confluence of several required structural changes is an example of "coincidence counting", which is often used by nature to regulate biological processes. In ligand-activated G protein-coupled receptors, the presence of multiple switches may provide an explanation for the differences between full, partial and inverse agonists.

  18. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation

    PubMed Central

    Samarajeewa, Anshula; Goldemann, Lolita; Vasefi, Maryam S.; Ahmed, Nawaz; Gondora, Nyasha; Khanderia, Chandni; Mielke, John G.; Beazely, Michael A.

    2014-01-01

    The serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the cortex and hippocampus. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF) receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA)-induced toxicity. The tropomyosin-related kinase B (TrkB) receptor is one of the receptors for brain-derived neurotrophic factor (BDNF) and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins toward the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands. PMID:25426041

  19. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation.

    PubMed

    Samarajeewa, Anshula; Goldemann, Lolita; Vasefi, Maryam S; Ahmed, Nawaz; Gondora, Nyasha; Khanderia, Chandni; Mielke, John G; Beazely, Michael A

    2014-01-01

    The serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the cortex and hippocampus. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF) receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA)-induced toxicity. The tropomyosin-related kinase B (TrkB) receptor is one of the receptors for brain-derived neurotrophic factor (BDNF) and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins toward the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands.

  20. Heat stress-induced disruption of endothelial barrier function is via PAR1 signaling and suppressed by Xuebijing injection.

    PubMed

    Xu, Qiulin; Liu, Jingxian; Wang, Zhenglian; Guo, Xiaohua; Zhou, Gengbiao; Liu, Yanan; Huang, Qiaobing; Su, Lei

    2015-01-01

    Increased vascular permeability leading to acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) is central to the pathogenesis of heatstroke. Protease-activated receptor 1 (PAR1), the receptor for thrombin, plays a key role in disruption of endothelial barrier function in response to extracellular stimuli. However, the role of PAR1 in heat stress-induced endothelial hyper-permeability is unknown. In this study, we measured PAR1 protein expression in heat-stressed human umbilical venous endothelial cells (HUVECs), investigated the influences of PAR1 on endothelial permeability, F-actin rearrangement, and moesin phosphorylation by inhibiting PAR1 with its siRNA, neutralizing antibody (anti-PAR1), specific inhibitor(RWJ56110), and Xuebijing injection (XBJ), a traditional Chinese medicine used for sepsis treatment, and evaluated the role of PAR1 in heatstroke-related ALI/ARDS in mice by suppressing PAR1 with RWJ56110, anti-PAR1and XBJ. We found that heat stress induced PAR1 protein expression 2h after heat stress in endothelial cells, caused the release of endothelial matrix metalloprotease 1, an activator of PAR1, after 60 or 120 min of heat stimulation, as well as promoted endothelial hyper-permeability and F-actin rearrangement, which were inhibited by suppressing PAR1 with RWJ56110, anti-PAR1 and siRNA. PAR1 mediated moesin phosphorylation, which caused F-actin rearrangement and disruption of endothelial barrier function. To corroborate findings from in vitro experiments, we found that RWJ56110 and the anti-PAR1 significantly decreased lung edema, pulmonary microvascular permeability, protein exudation, and leukocytes infiltrations in heatstroke mice. Additionally, XBJ was found to suppress PAR1-moesin signal pathway and confer protective effects on maintaining endothelial barrier function both in vitro and in vivo heat-stressed model, similar to those observed above with the inhibition of PAR1. These results suggest that PAR1 is a potential

  1. Activation of the p75 neurotrophin receptor through conformational rearrangement of disulphide-linked receptor dimers

    PubMed Central

    Vilar, Marçal; Charalampopoulos, Ioannis; Kenchappa, Rajappa S.; Simi, Anastasia; Karaca, Esra; Reversi, Alessandra; Choi, Soyoung; Bothwell, Mark; Mingarro, Ismael; Friedman, Wilma J.; Schiavo, Giampietro; Bastiaens, Philippe I. H.; Verveer, Peter J.; Carter, Bruce D.; Ibáñez, Carlos F.

    2010-01-01

    SUMMARY Ligand-mediated dimerization has emerged as a universal mechanism of growth factor receptor activation. Recent structural studies have shown that neurotrophins interact with dimers of the p75 neurotrophin receptor (p75NTR), but the actual mechanism of receptor activation has remained elusive. Here we show that p75NTR forms disulphide-linked dimers independently of neurotrophin binding through the highly conserved Cys257 in its transmembrane domain. Mutation of Cys257 abolished neurotrophin-dependent receptor activity but did not affect downstream signaling by the p75NTR/NgR/Lingo-1 complex in response to MAG, indicating the existence of distinct, ligand-specific activation mechanisms for p75NTR. FRET experiments revealed a close association of p75NTR intracellular domains that was transiently disrupted by conformational changes induced upon NGF binding. Although mutation of Cys257 did not alter the oligomeric state of p75NTR, the mutant receptor was no longer able to propagate conformational changes to the cytoplasmic domain upon ligand binding. We propose that neurotrophins activate p75NTR by a novel mechanism involving rearrangement of disulphide-linked receptor subunits. PMID:19376068

  2. Mast cells positive to tryptase, endothelial cells positive to protease-activated receptor-2, and microvascular density correlate among themselves in hepatocellular carcinoma patients who have undergone surgery

    PubMed Central

    Ammendola, Michele; Sacco, Rosario; Sammarco, Giuseppe; Piardi, Tullio; Zuccalà, Valeria; Patruno, Rosa; Zullo, Alessandra; Zizzo, Nicola; Nardo, Bruno; Marech, Ilaria; Crovace, Alberto; Gadaleta, Cosmo Damiano; Pessaux, Patrick; Ranieri, Girolamo

    2016-01-01

    Background Mast cells (MCs) can stimulate angiogenesis, releasing several proangiogenic cytokines stored in their cytoplasm. In particular MCs can release tryptase, a potent in vivo and in vitro proangiogenic factor via proteinase-activated receptor-2 (PAR-2) activation and mitogen-activated protein kinase phosphorylation. Nevertheless, no data are available concerning the relationship between MC density positive to tryptase (MCDPT), endothelial cells positive to PAR-2 forming microvascular density (PAR-2-MVD), and classical MVD (C-MVD) in hepatocellular carcinoma (HCC) angiogenesis. This study analyzed the correlation between MCDPT, PAR-2-MVD, and C-MVD, each correlated to the others and to the main clinicopathological features, in early HCC patients who underwent surgery. Methods A series of 53 HCC patients with early stage (stage 0 according to the Barcelona Clinic Liver Cancer Staging Classification) were selected and then underwent surgery. Tumor tissue samples were evaluated by means of immunohistochemistry and image analysis methods in terms of number of MCDPT, PAR-2-MVD, and C-MVD. Results A significant correlation between MCDPT, PAR-2-MVD, and C-MVD groups, each correlated to the others, was found by Pearson t-test analysis (r ranged from 0.67 to 0.81; P-value ranged from 0.01 to 0.03). No other significant correlation was found. Conclusion Our in vivo pilot data suggest that MCDPT and PAR-2-MVD may play a role in HCC angiogenesis and could be further evaluated as a target of antiangiogenic therapy. PMID:27499640

  3. Monomer–dimer dynamics and distribution of GPI-anchored uPAR are determined by cell surface protein assemblies

    PubMed Central

    Caiolfa, Valeria R.; Zamai, Moreno; Malengo, Gabriele; Andolfo, Annapaola; Madsen, Chris D.; Sutin, Jason; Digman, Michelle A.; Gratton, Enrico; Blasi, Francesco; Sidenius, Nicolai

    2007-01-01

    To search for functional links between glycosylphosphatidylinositol (GPI) protein monomer–oligomer exchange and membrane dynamics and confinement, we studied urokinase plasminogen activator (uPA) receptor (uPAR), a GPI receptor involved in the regulation of cell adhesion, migration, and proliferation. Using a functionally active fluorescent protein–uPAR in live cells, we analyzed the effect that extracellular matrix proteins and uPAR ligands have on uPAR dynamics and dimerization at the cell membrane. Vitronectin directs the recruitment of dimers and slows down the diffusion of the receptors at the basal membrane. The commitment to uPA–plasminogen activator inhibitor type 1–mediated endocytosis and recycling modifies uPAR diffusion and induces an exchange between uPAR monomers and dimers. This exchange is fully reversible. The data demonstrate that cell surface protein assemblies are important in regulating the dynamics and localization of uPAR at the cell membrane and the exchange of monomers and dimers. These results also provide a strong rationale for dynamic studies of GPI-anchored molecules in live cells at steady state and in the absence of cross-linker/clustering agents. PMID:18056417

  4. Mincle suppresses Toll-like receptor 4 activation.

    PubMed

    Greco, Stephanie H; Mahmood, Syed Kashif; Vahle, Anne-Kristin; Ochi, Atsuo; Batel, Jennifer; Deutsch, Michael; Barilla, Rocky; Seifert, Lena; Pachter, H Leon; Daley, Donnele; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu R; Miller, George

    2016-07-01

    Regulation of Toll-like receptor responses is critical for limiting tissue injury and autoimmunity in both sepsis and sterile inflammation. We found that Mincle, a C-type lectin receptor, regulates proinflammatory Toll-like receptor 4 signaling. Specifically, Mincle ligation diminishes Toll-like receptor 4-mediated inflammation, whereas Mincle deletion or knockdown results in marked hyperresponsiveness to lipopolysaccharide in vitro, as well as overwhelming lipopolysaccharide-mediated inflammation in vivo. Mechanistically, Mincle deletion does not up-regulate Toll-like receptor 4 expression or reduce interleukin 10 production after Toll-like receptor 4 ligation; however, Mincle deletion decreases production of the p38 mitogen-activated protein kinase-dependent inhibitory intermediate suppressor of cytokine signaling 1, A20, and ABIN3 and increases expression of the Toll-like receptor 4 coreceptor CD14. Blockade of CD14 mitigates the increased sensitivity of Mincle(-/-) leukocytes to Toll-like receptor 4 ligation. Collectively, we describe a major role for Mincle in suppressing Toll-like receptor 4 responses and implicate its importance in nonmycobacterial models of inflammation.

  5. Differential trafficking of AMPA receptors following activation of NMDA receptors and mGluRs.

    PubMed

    Sanderson, Thomas M; Collingridge, Graham L; Fitzjohn, Stephen M

    2011-07-27

    The removal of AMPA receptors from synapses is a major component of long-term depression (LTD). How this occurs, however, is still only partially understood. To investigate the trafficking of AMPA receptors in real-time we previously tagged the GluA2 subunit of AMPA receptors with ecliptic pHluorin and studied the effects of NMDA receptor activation. In the present study we have compared the effect of NMDA receptor and group I mGluR activation, using GluA2 tagged with super ecliptic pHluorin (SEP-GluA2) expressed in cultured hippocampal neurons. Surprisingly, agonists of the two receptors, which are both able to induce chemical forms of LTD, had clearly distinct effects on AMPA receptor trafficking. In agreement with our previous work we found that transient NMDA receptor activation results in an initial decrease in surface GluA2 from extrasynaptic sites followed by a delayed reduction in GluA2 from puncta (putative synapses). In contrast, transient activation of group I mGluRs, using DHPG, led to a pronounced but more delayed decrease in GluA2 from the dendritic shafts. Surprisingly, there was no average change in the fluorescence of the puncta. Examination of fluorescence at individual puncta, however, indicated that alterations did take place, with some puncta showing an increase and others a decrease in fluorescence. The effects of DHPG were, like DHPG-induced LTD, prevented by treatment with a protein tyrosine phosphatase (PTP) inhibitor. The electrophysiological correlate of the effects of DHPG in the SEP-GluA2 infected cultures was a reduction in mEPSC frequency with no change in amplitude. The implications of these findings for the initial mechanisms of expression of both NMDA receptor- and mGluR-induced LTD are discussed.

  6. Platelet-activating factor: receptors and signal transduction.

    PubMed

    Chao, W; Olson, M S

    1993-06-15

    During the past two decades, studies describing the chemistry and biology of PAF have been extensive. This potent phosphoacylglycerol exhibits a wide variety of physiological and pathophysiological effects in various cells and tissues. PAF acts, through specific receptors and a variety of signal transduction systems, to elicit diverse biochemical responses. Several important future directions can be enumerated for the characterization of PAF receptors and their attendant signalling mechanisms. The recent cloning and sequence analysis of the gene for the PAF receptor will allow a number of important experimental approaches for characterizing the structure and analysing the function of the various domains of the receptor. Using molecular genetic and immunological technologies, questions relating to whether there is receptor heterogeneity, the precise mechanism(s) for the regulation of the PAF receptor, and the molecular details of the signalling mechanisms in which the PAF receptor is involved can be explored. Another area of major significance is the examination of the relationship between the signalling response(s) evoked by PAF binding to its receptor and signalling mechanisms activated by a myriad of other mediators, cytokines and growth factors. A very exciting recent development in which PAF receptors undoubtedly play a role is in the regulation of the function of various cellular adhesion molecules. Finally, there remain many incompletely characterized physiological and pathophysiological situations in which PAF and its receptor play a crucial signalling role. Our laboratory has been active in the elucidation of several tissue responses in which PAF exhibits major autocoid signalling responses, e.g. hepatic injury and inflammation, acute and chronic pancreatitis, and cerebral stimulation and/or trauma. As new experimental strategies are developed for characterizing the fine structure of the molecular mechanisms involved in tissue injury and inflammation, the

  7. Directed and persistent movement arises from mechanochemistry of the ParA/ParB system

    NASA Astrophysics Data System (ADS)

    Hu, Longhua; Vecchiarelli, Anthony G.; Mizuuchi, Kiyoshi; Neuman, Keir C.; Liu, Jian

    The segregation of DNA prior to cell division is essential for faithful genetic inheritance. In many bacteria, segregation of the low-copy-number plasmids involves an active partition system composed of ParA ATPase and its stimulator protein ParB. Recent experiments suggest that ParA/ParB system motility is driven by a diffusion-ratchet mechanism in which ParB-coated plasmid both creates and follows a ParA gradient on the nucleoid surface. However, the detailed mechanism of ParA/ParB-mediated directed and persistent movement remains unknown. We develop a theoretical model describing ParA/ParB-mediated motility. We show that the ParA/ParB system can work as a Brownian ratchet, which effectively couples the ATPase-dependent cycling of ParA-nucleoid affinity to the motion of the ParB bound cargo. Paradoxically, the resulting processive motion relies on quenching diffusive plasmid motion through a large number of transient ParA/ParB-mediated tethers to the nucleoid surface. Our work sheds light on a new emergent phenomenon in which non-motor proteins work collectively via mechanochemical coupling to propel cargos -- an ingenious solution shaped by evolution to cope with the lack of processive motor proteins in bacteria.

  8. Retinoic Acid-mediated Nuclear Receptor Activation and Hepatocyte Proliferation

    PubMed Central

    Bushue, Nathan; Wan, Yu-Jui Yvonne

    2016-01-01

    Due to their well-known differentiation and apoptosis-inducing abilities, retinoic acid (RA) and its analogs have strong anti-cancer efficacy in human cancers. However, in vivo RA is a liver mitogen. While speculation has persisted that RA-mediated signaling is likely involved in hepatocyte proliferation during liver regeneration, direct evidence is still required. Findings in support of this proposition include observations that a release of retinyl palmitate (the precursor of RA) occurs in liver stellate cells following liver injury. Nevertheless, the biological action of this released vitamin A is virtually unknown. More likely is that the released vitamin A is converted to RA, the biological form, and then bound to a specific receptor (retinoid x receptor; RXRα), which is most abundantly expressed in the liver. Considering the mitogenic effects of RA, the RA-activated RXRα would likely then influence hepatocyte proliferation and liver tissue repair. At present, the mechanism by which RA stimulates hepatocyte proliferation is largely unknown. This review summarizes the activation of nuclear receptors (peroxisome proliferator activated receptor-α, pregnane x receptor, constitutive androstane receptor, and farnesoid x receptor) in an RXRα dependent manner to induce hepatocyte proliferation, providing a link between RA and its proliferative role. PMID:27635169

  9. Altered Expression of Brain Proteinase-Activated Receptor-2, Trypsin-2 and Serpin Proteinase Inhibitors in Parkinson's Disease.

    PubMed

    Hurley, Michael J; Durrenberger, Pascal F; Gentleman, Steve M; Walls, Andrew F; Dexter, David T

    2015-09-01

    Neuroinflammation is thought to contribute to cell death in neurodegenerative disorders, but the factors involved in the inflammatory process are not completely understood. Proteinase-activated receptor-2 (PAR2) expression in brain is increased in Alzheimer's disease and multiple sclerosis, but the status of PAR2 in Parkinson's disease is unknown. This study examined expression of PAR2 and endogenous proteinase activators (trypsin-2, mast cell tryptase) and proteinase inhibitors (serpin-A5, serpin-A13) in areas vulnerable and resistant to neurodegeneration in Parkinson's disease at different Braak α-synuclein stages of the disease in post-mortem brain. In normal aged brain, expression of PAR-2, trypsin-2, and serpin-A5 and serpin-A13 was found in neurons and microglia, and alterations in the amount of immunoreactivity for these proteins were found in some brain regions. Namely, there was a decrease in neurons positive for serpin-A5 in the dorsal motor nucleus, and serpin-A13 expression was reduced in the locus coeruleus and primary motor cortex, while expression of PAR2, trypsin-2 and both serpins was reduced in neurons within the substantia nigra. There was an increased number of microglia that expressed serpin-A5 in the dorsal motor nucleus of vagus and elevated numbers of microglia that expressed serpin-A13 in the substantia nigra of late Parkinson's disease cases. The number of microglia that expressed trypsin-2 increased in primary motor cortex of incidental Lewy body disease cases. Analysis of Parkinson's disease cases alone indicated that serpin-A5 and serpin-A13, and trypsin-2 expression in midbrain and cerebral cortex was different in cases with a high incidence of L-DOPA-induced dyskinesia and psychosis compared to those with low levels of these treatment-induced side effects. This study showed that there was altered expression in brain of PAR2 and some proteins that can control its function in Parkinson's disease. Given the role of PAR2 in

  10. Mycobacterium tuberculosis Activates Human Macrophage Peroxisome Proliferator-Activated Receptor γ Linking Mannose Receptor Recognition to Regulation of Immune Responses

    PubMed Central

    Rajaram, Murugesan V. S.; Brooks, Michelle N.; Morris, Jessica D.; Torrelles, Jordi B.; Azad, Abul K.; Schlesinger, Larry S.

    2010-01-01

    Mycobacterium tuberculosis enhances its survival in macrophages by suppressing immune responses in part through its complex cell wall structures. Peroxisome proliferator-activated receptor γ (PPARγ), a nuclear receptor superfamily member, is a transcriptional factor that regulates inflammation and has high expression in alternatively activated alveolar macrophages and macrophage-derived foam cells, both cell types relevant to tuberculosis pathogenesis. In this study, we show that virulent M. tuberculosis and its cell wall mannose-capped lipoarabinomannan induce PPARγ expression through a macrophage mannose receptor-dependent pathway. When activated, PPARγ promotes IL-8 and cyclooxygenase 2 expression, a process modulated by a PPARγ agonist or antagonist. Upstream, MAPK-p38 mediates cytosolic phospholipase A2 activation, which is required for PPARγ ligand production. The induced IL-8 response mediated by mannose-capped lipoarabinomannan and the mannose receptor is independent of TLR2 and NF-κB activation. In contrast, the attenuated Mycobacterium bovis bacillus Calmette-Guérin induces less PPARγ and preferentially uses the NF-κB–mediated pathway to induce IL-8 production. Finally, PPARγ knockdown in human macrophages enhances TNF production and controls the intracellular growth of M. tuberculosis. These data identify a new molecular pathway that links engagement of the mannose receptor, an important pattern recognition receptor for M. tuberculosis, with PPARγ activation, which regulates the macrophage inflammatory response, thereby playing a role in tuberculosis pathogenesis. PMID:20554962

  11. Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator-activated receptor-retinoid X receptor heterodimers.

    PubMed Central

    Keller, H; Dreyer, C; Medin, J; Mahfoudi, A; Ozato, K; Wahli, W

    1993-01-01

    The nuclear hormone receptors called PPARs (peroxisome proliferator-activated receptors alpha, beta, and gamma) regulate the peroxisomal beta-oxidation of fatty acids by induction of the acyl-CoA oxidase gene that encodes the rate-limiting enzyme of the pathway. Gel retardation and cotransfection assays revealed that PPAR alpha heterodimerizes with retinoid X receptor beta (RXR beta; RXR is the receptor for 9-cis-retinoic acid) and that the two receptors cooperate for the activation of the acyl-CoA oxidase gene promoter. The strongest stimulation of this promoter was obtained when both receptors were exposed simultaneously to their cognate activators. Furthermore, we show that natural fatty acids, and especially polyunsaturated fatty acids, activate PPARs as potently as does the hypolipidemic drug Wy 14,643, the most effective activator known so far. Moreover, we discovered that the synthetic arachidonic acid analogue 5,8,11,14-eicosatetraynoic acid is 100 times more effective than Wy 14,643 in the activation of PPAR alpha. In conclusion, our data demonstrate a convergence of the PPAR and RXR signaling pathways in the regulation of the peroxisomal beta-oxidation of fatty acids by fatty acids and retinoids. Images Fig. 1 Fig. 2 PMID:8384714

  12. Heterodimeric interaction between retinoid X receptor alpha and orphan nuclear receptor OR1 reveals dimerization-induced activation as a novel mechanism of nuclear receptor activation.

    PubMed Central

    Wiebel, F F; Gustafsson, J A

    1997-01-01

    OR1 is a member of the steroid/thyroid hormone nuclear receptor superfamily which has been described to mediate transcriptional responses to retinoids and oxysterols. On a DR4 response element, an OR1 heterodimer with the nuclear receptor retinoid X receptor alpha (RXR alpha) has been described to convey transcriptional activation in both the absence and presence of the RXR ligand 9-cis retinoic acid, the mechanisms of which have remained unclear. Here, we dissect the effects of RXR alpha and OR1 ligand-binding domain interaction on transcriptional regulation and the role of the respective carboxy-terminal activation domains (AF-2s) in the absence and presence of the RXR ligand, employing chimeras of the nuclear receptors containing the heterologous GAL4 DNA-binding domain as well as natural receptors. The results show that the interaction of the RXR and OR1 ligand-binding domains unleashes a transcription activation potential that is mainly dependent on the AF-2 of OR1, indicating that interaction with RXR activates OR1. This defines dimerization-induced activation as a novel function of heterodimeric interaction and mechanism of receptor activation not previously described for nuclear receptors. Moreover, we present evidence that activation of OR1 occurs by a conformational change induced upon heterodimerization with RXR. PMID:9199332

  13. Protease-Activated Receptors and other G-Protein-Coupled Receptors: the Melanoma Connection.

    PubMed

    Rosero, Rebecca A; Villares, Gabriel J; Bar-Eli, Menashe

    2016-01-01

    The vast array of G-protein-coupled receptors (GPCRs) play crucial roles in both physiological and pathological processes, including vision, coagulation, inflammation, autophagy, and cell proliferation. GPCRs also affect processes that augment cell proliferation and metastases in many cancers including melanoma. Melanoma is the deadliest form of skin cancer, yet limited therapeutic modalities are available to patients with metastatic melanoma. Studies have found that both chemokine receptors and protease-activated receptors, both of which are GPCRs, are central to the metastatic melanoma phenotype and may serve as potential targets in novel therapies against melanoma and other cancers.

  14. Endothelin-converting enzyme 2 differentially regulates opioid receptor activity

    PubMed Central

    Gupta, A; Fujita, W; Gomes, I; Bobeck, E; Devi, L A

    2015-01-01

    BACKGROUND AND PURPOSE Opioid receptor function is modulated by post-activation events such as receptor endocytosis, recycling and/or degradation. While it is generally understood that the peptide ligand gets co-endocytosed with the receptor, relatively few studies have investigated the role of the endocytosed peptide and peptide processing enzymes in regulating receptor function. In this study, we focused on endothelin-converting enzyme 2 (ECE2), a member of the neprilysin family of metallopeptidases that exhibits an acidic pH optimum, localizes to an intracellular compartment and selectively processes neuropeptides including opioid peptides in vitro, and examined its role in modulating μ receptor recycling and resensitization. EXPERIMENTAL APPROACH The effect of ECE2 inhibition on hydrolysis of the endocytosed peptide was examined using thin-layer chromatography and on μ opioid receptor trafficking using either elisa or microscopy. The effect of ECE2 inhibition on receptor signalling was measured using a cAMP assay and, in vivo, on antinociception induced by intrathecally administered opioids by the tail-flick assay. KEY RESULTS The highly selective ECE2 inhibitor, S136492, significantly impaired μ receptor recycling and signalling by only those ligands that are ECE2 substrates and this was seen both in heterologous cells and in cells endogenously co-expressing μ receptors with ECE2. We also found that ECE2 inhibition attenuated antinociception mediated only by opioid peptides that are ECE2 substrates. CONCLUSIONS AND IMPLICATIONS These results suggest that ECE2, by selectively processing endogenous opioid peptides in the endocytic compartment, plays a role in modulating opioid receptor activity. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2 PMID:24990314

  15. Activation and inhibition of erythropoietin receptor function: role of receptor dimerization.

    PubMed Central

    Watowich, S S; Hilton, D J; Lodish, H F

    1994-01-01

    Members of the cytokine receptor superfamily have structurally similar extracellular ligand-binding domains yet diverse cytoplasmic regions lacking any obvious catalytic domains. Many of these receptors form ligand-induced oligomers which are likely to participate in transmembrane signaling. A constitutively active (factor-independent) mutant of the erythropoietin receptor (EPO-R), R129C in the exoplasmic domain, forms disulfide-linked homodimers, suggesting that the wild-type EPO-R is activated by ligand-induced homodimerization. Here, we have taken two approaches to probe the role EPO-R dimerization plays in signal transduction. First, on the basis of the crystal structure of the ligand-bound, homodimeric growth hormone receptor (GH-R) and sequence alignment between the GH-R and EPO-R, we identified residues of the EPO-R which may be involved in intersubunit contacts in an EPO-R homodimer. Residue 129 of the EPO-R corresponds to a residue localized to the GH-R dimer interface region. Alanine or cysteine substitutions were introduced at four other residues of the EPO-R predicted to be in the dimer interface region. Substitution of residue E-132 or E-133 with cysteine renders the EPO-R constitutively active. Like the arginine-to-cysteine mutation at position 129 in the exoplasmic domain (R129C), E132C and E133C form disulfide-linked homodimers, suggesting that constitutive activity is due to covalent dimerization. In the second approach, we have coexpressed the wild-type EPO-R with inactive mutants of the receptor missing all or part of the cytosolic domain. These truncated receptors have a dominant inhibitory effect on the proliferative action of the wild-type receptor. Taken together, these results strengthen the hypothesis that an initial step in EPO- and EPO-R-mediated signal transduction is ligand-induced receptor dimerization. Images PMID:8196600

  16. Clinically used selective oestrogen receptor modulators increase LDL receptor activity in primary human lymphocytes

    PubMed Central

    Cerrato, F; Fernández-Suárez, M E; Alonso, R; Alonso, M; Vázquez, C; Pastor, O; Mata, P; Lasunción, M A; Gómez-Coronado, D

    2015-01-01

    Background and Purpose Treatment with selective oestrogen receptor modulators (SERMs) reduces low-density lipoprotein (LDL) cholesterol levels. We assessed the effect of tamoxifen, raloxifene and toremifene and their combinations with lovastatin on LDL receptor activity in lymphocytes from normolipidaemic and familial hypercholesterolaemic (FH) subjects, and human HepG2 hepatocytes and MOLT-4 lymphoblasts. Experimental Approach Lymphocytes were isolated from peripheral blood, treated with different compounds, and 1,1′-dioctadecyl-3,3,3,3′-tetramethylindocarbocyanine perchlorate (DiI)-labelled LDL uptake was analysed by flow cytometry. Key Results Tamoxifen, toremifene and raloxifene, in this order, stimulated DiI-LDL uptake by lymphocytes by inhibiting LDL-derived cholesterol trafficking and subsequent down-regulation of LDL receptor expression. Differently to what occurred in HepG2 and MOLT-4 cells, only tamoxifen consistently displayed a potentiating effect with lovastatin in primary lymphocytes. The SERM-mediated increase in LDL receptor activity was not altered by the anti-oestrogen ICI 182 780 nor was it reproduced by 17β-oestradiol. However, the tamoxifen-active metabolite endoxifen was equally effective as tamoxifen. The SERMs produced similar effects on LDL receptor activity in heterozygous FH lymphocytes as in normal lymphocytes, although none of them had a potentiating effect with lovastatin in heterozygous FH lymphocytes. The SERMs had no effect in homozygous FH lymphocytes. Conclusions and Implications Clinically used SERMs up-regulate LDL receptors in primary human lymphocytes. There is a mild enhancement between SERMs and lovastatin of lymphocyte LDLR activity, the potentiation being greater in HepG2 and MOLT-4 cells. The effect of SERMs is independent of oestrogen receptors but is preserved in the tamoxifen-active metabolite endoxifen. This mechanism may contribute to the cholesterol-lowering action of SERMs. PMID:25395200

  17. Endothelial progenitor cell-dependent angiogenesis requires localization of the full-length form of uPAR in caveolae.

    PubMed

    Margheri, Francesca; Chillà, Anastasia; Laurenzana, Anna; Serratì, Simona; Mazzanti, Benedetta; Saccardi, Riccardo; Santosuosso, Michela; Danza, Giovanna; Sturli, Niccolò; Rosati, Fabiana; Magnelli, Lucia; Papucci, Laura; Calorini, Lido; Bianchini, Francesca; Del Rosso, Mario; Fibbi, Gabriella

    2011-09-29

    Endothelial urokinase-type plasminogen activator receptor (uPAR) is thought to provide a regulatory mechanism in angiogenesis. Here we studied the proangiogenic role of uPAR in endothelial colony-forming cells (ECFCs), a cell population identified in human umbilical blood that embodies all of the properties of an endothelial progenitor cell matched with a high proliferative rate. By using caveolae-disrupting agents and by caveolin-1 silencing, we have shown that the angiogenic properties of ECFCs depend on caveolae integrity and on the presence of full-length uPAR in such specialized membrane invaginations. Inhibition of uPAR expression by antisense oligonucleotides promoted caveolae disruption, suggesting that uPAR is an inducer of caveolae organization. Vascular endothelial growth factor (VEGF) promoted accumulation of uPAR in ECFC caveolae in its undegraded form. We also demonstrated that VEGF-dependent ERK phosphorylation required integrity of caveolae as well as caveolar uPAR expression. VEGF activity depends on inhibition of ECFC MMP12 production, which results in impairment of MMP12-dependent uPAR truncation. Further, MMP12 overexpression in ECFC inhibited vascularization in vitro and in vivo. Our data suggest that intratumor homing of ECFCs suitably engineered to overexpress MMP12 could have the chance to control uPAR-dependent activities required for tumor angiogenesis and malignant cells spreading.

  18. Transient early neurotrophin release and delayed inflammatory cytokine release by microglia in response to PAR-2 stimulation.

    PubMed

    Chen, Chen-Wen; Chen, Qian-Bo; Ouyang, Qing; Sun, Ji-Hu; Liu, Fang-Ting; Song, Dian-Wen; Yuan, Hong-Bin

    2012-06-25

    Activated microglia exerts both beneficial and deleterious effects on neurons, but the signaling mechanism controlling these distinct responses remain unclear. We demonstrated that treatment of microglial cultures with the PAR-2 agonist, 2-Furoyl-LIGRLO-NH2, evoked early transient release of BDNF, while sustained PAR-2 stimulation evoked the delayed release of inflammatory cytokines (IL-1 β and TNF-α) and nitric oxide. Culture medium harvested during the early phase (at 1 h) of microglial activation induced by 2-Furoyl-LIGRLO-NH2 (microglial conditioned medium, MCM) had no deleterious effects on cultured neurons, while MCM harvested during the late phase (at 72 h) promoted DNA fragmentation and apoptosis as indicated by TUNEL and annexin/PI staining. Blockade of PAR-1 during the early phase of PAR-2 stimulation enhanced BDNF release (by 11%, small but significant) while a PAR-1 agonist added during the late phase (24 h after 2-Furoyl-LIGRLO-NH2 addition) suppressed the release of cytokines and NO. The neuroprotective and neurotoxic effects of activated microglial exhibit distinct temporal profiles that are regulated by PAR-1 and PAR-2 stimulation. It may be possible to facilitate neuronal recovery and repair by appropriately timed stimulation and inhibition of microglial PAR-1 and PAR-2 receptors.

  19. Immunohistochemical localization of urokinase-type plasminogen activator, urokinase-type plasminogen activator receptor and α2-antiplasmin in human corneal perforation: a case report

    PubMed Central

    2012-01-01

    Background Corneal ulceration leading to perforation is associated with infectious and non-infectious destructive conditions in the cornea. The fibrinolytic (plasminogen/plasmin) system is considered to contribute to tissue remodeling in the wound healing process and it is believed to play an important role in proteolysis and fibrosis. To determine the localization of urokinase-type plasminogen activator (u-PA), u-PA receptor (u-PAR) and α2-antiplasmin (α2AP) in the tissue of a corneal perforation, we investigated immunohistochemical expressions of u-PA, u-PAR, α2AP, CD68, and α-smooth muscle actin (α-SMA) in a patient with corneal perforation that developed from an ulcer of no clear cause. Case presentation The patient was a 77-year-old woman who presented with a perforated corneal ulcer in her right eye. The cause of her corneal ulcer was unknown. Double immunohistochemistry was performed for the combinations of u-PA with u-PAR, CD68 or α-SMA and α2AP with CD68 or α-SMA to detect the localization of u-PA and α2AP. u-PA and u-PAR co-localization was seen in the corneal ulceration area. u-PA was mainly observed in CD68-positive cells and in some α-SMA positive cells. On the other hand, α2AP was not expressed in CD68-positive cells, but was expressed in α-SMA positive cells. Conclusion We identified expression of the u-PA/u-PAR complex and α2AP in a patient with a corneal ulcer. These two molecules are believed to play a crucial role in inflammatory cell recruitment, ECM synthesis and degradation during corneal wound healing. PMID:23190581

  20. Monitoring leptin activity using the chicken leptin receptor.

    PubMed

    Hen, Gideon; Yosefi, Sera; Ronin, Ana; Einat, Paz; Rosenblum, Charles I; Denver, Robert J; Friedman-Einat, Miriam

    2008-05-01

    We report on the construction of a leptin bioassay based on the activation of chicken leptin receptor in cultured cells. A human embryonic kidney (HEK)-293 cell line, stably transfected with the full-length cDNA of chicken leptin receptor together with a STAT3-responsive reporter gene specifically responded to recombinant human and Xenopus leptins. The observed higher sensitivity of chicken leptin receptor to the former is in agreement with the degree of sequence similarity among these species (about 60 and 38% identical amino acids between humans and chickens, and between humans and Xenopus respectively). The specific activation of signal transduction through the chicken leptin receptor, shown here for the first time, suggests that the transition of Gln269 (implicated in the Gln-to-Pro Zucker fatty mutation in rats) to Glu in chickens does not impair its activity. Analysis of leptin-like activity in human serum samples of obese and lean subjects coincided well with leptin levels determined by RIA. Serum samples of pre- and post partum cows showed a tight correlation with the degree of adiposity. However, specific activation of the chicken leptin receptor in this assay was not observed with serum samples from broiler or layer chickens (representing fat and lean phenotypes respectively) or with those from turkey. Similar leptin receptor activation profiles were observed with cells transfected with human leptin receptor. Further work is needed to determine whether the lack of leptin-like activity in the chicken serum samples is due to a lack of leptin in this species or simply to a serum level of leptin that is below the detection threshold.

  1. Platelet-activating factor (PAF) receptor and genetically engineered PAF receptor mutant mice.

    PubMed

    Ishii, S; Shimizu, T

    2000-01-01

    Platelet-activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) is a biologically active phospholipid mediator. Although PAF was initially recognized for its potential to induce platelet aggregation and secretion, intense investigations have elucidated potent biological actions of PAF in a broad range of cell types and tissues, many of which also produce the molecule. PAF acts by binding to a unique G-protein-coupled seven transmembrane receptor. PAF receptor is linked to intracellular signal transduction pathways, including turnover of phosphatidylinositol, elevation in intracellular calcium concentration, and activation of kinases, resulting in versatile bioactions. On the basis of numerous pharmacological reports, PAF is thought to have many pathophysiological and physiological functions. Recently advanced molecular technics enable us not only to clone PAF receptor cDNAs and genes, but also generate PAF receptor mutant animals, i.e., PAF receptor-overexpressing mouse and PAF receptor-deficient mouse. These mutant mice gave us a novel and specific approach for identifying the pathophysiological and physiological functions of PAF. This review also describes the phenotypes of these mutant mice and discusses them by referring to previously reported pharmacological and genetical data.

  2. Immunohistochemical quantitation of oestrogen receptors and proliferative activity in oestrogen receptor positive breast cancer.

    PubMed Central

    Jensen, V; Ladekarl, M

    1995-01-01

    AIM--To evaluate the effect of the duration of formalin fixation and of tumour heterogeneity on quantitative estimates of oestrogen receptor content (oestrogen receptor index) and proliferative activity (MIB-1 index) in breast cancer. METHODS--Two monoclonal antibodies, MIB-1 and oestrogen receptor, were applied to formalin fixed, paraffin wax embedded tissue from 25 prospectively collected oestrogen receptor positive breast carcinomas, using a microwave antigen retrieval method. Tumour tissue was allocated systematically to different periods of fixation to ensure minimal intraspecimen variation. The percentages of MIB-1 positive and oestrogen receptor positive nuclei were estimated in fields of vision sampled systematically from the entire specimen and from the whole tumour area of one "representative" cross-section. RESULTS--No correlation was found between the oestrogen receptor and MIB-1 indices and the duration of formalin fixation. The estimated MIB-1 and oestrogen receptor indices in tissue sampled systematically from the entire tumour were closely correlated with estimates obtained in a "representative" section. The intra- and interobserver correlation of the MIB-1 index was good, although a slight systematical error at the second assessment of the intraobserver study was noted. CONCLUSION--Quantitative estimates of oestrogen receptor content and proliferative activity are not significantly influenced by the period of fixation in formalin, varying from less than four hours to more than 48 hours. The MIB-1 and the oestrogen receptor indices obtained in a "representative" section do not deviate significantly from average indices determined in tissue samples from the entire tumour. Finally, the estimation of MIB-1 index is reproducible, justifying its routine use. PMID:7629289

  3. Identification of COUP-TFII Orphan Nuclear Receptor as a Retinoic Acid–Activated Receptor

    PubMed Central

    Kruse, Schoen W; Suino-Powell, Kelly; Zhou, X. Edward; Kretschman, Jennifer E; Reynolds, Ross; Vonrhein, Clemens; Xu, Yong; Wang, Liliang; Tsai, Sophia Y; Tsai, Ming-Jer; Xu, H. Eric

    2008-01-01

    The chicken ovalbumin upstream promoter-transcription factors (COUP-TFI and II) make up the most conserved subfamily of nuclear receptors that play key roles in angiogenesis, neuronal development, organogenesis, cell fate determination, and metabolic homeostasis. Although the biological functions of COUP-TFs have been studied extensively, little is known of their structural features or aspects of ligand regulation. Here we report the ligand-free 1.48 Å crystal structure of the human COUP-TFII ligand-binding domain. The structure reveals an autorepressed conformation of the receptor, where helix α10 is bent into the ligand-binding pocket and the activation function-2 helix is folded into the cofactor binding site, thus preventing the recruitment of coactivators. In contrast, in multiple cell lines, COUP-TFII exhibits constitutive transcriptional activity, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, and ligand binding, substantially reduce the COUP-TFII transcriptional activity. Importantly, retinoid acids are able to promote COUP-TFII to recruit coactivators and activate a COUP-TF reporter construct. Although the concentration needed is higher than the physiological levels of retinoic acids, these findings demonstrate that COUP-TFII is a ligand-regulated nuclear receptor, in which ligands activate the receptor by releasing it from the autorepressed conformation. PMID:18798693

  4. Identification of COUP-TFII Orphan Nuclear Receptor as a Retinoic Acid-Activated Receptor

    SciTech Connect

    Kruse, Schoen W; Suino-Powell, Kelly; Zhou, X Edward; Kretschman, Jennifer E; Reynolds, Ross; Vonrhein, Clemens; Xu, Yong; Wang, Liliang; Tsai, Sophia Y; Tsai, Ming-Jer; Xu, H Eric

    2010-01-12

    The chicken ovalbumin upstream promoter-transcription factors (COUP-TFI and II) make up the most conserved subfamily of nuclear receptors that play key roles in angiogenesis, neuronal development, organogenesis, cell fate determination, and metabolic homeostasis. Although the biological functions of COUP-TFs have been studied extensively, little is known of their structural features or aspects of ligand regulation. Here we report the ligand-free 1.48 {angstrom} crystal structure of the human COUP-TFII ligand-binding domain. The structure reveals an autorepressed conformation of the receptor, where helix {alpha}10 is bent into the ligand-binding pocket and the activation function-2 helix is folded into the cofactor binding site, thus preventing the recruitment of coactivators. In contrast, in multiple cell lines, COUP-TFII exhibits constitutive transcriptional activity, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, and ligand binding, substantially reduce the COUP-TFII transcriptional activity. Importantly, retinoid acids are able to promote COUP-TFII to recruit coactivators and activate a COUP-TF reporter construct. Although the concentration needed is higher than the physiological levels of retinoic acids, these findings demonstrate that COUP-TFII is a ligand-regulated nuclear receptor, in which ligands activate the receptor by releasing it from the autorepressed conformation.

  5. Involvement of mast cells and proteinase-activated receptor 2 in oxaliplatin-induced mechanical allodynia in mice.

    PubMed

    Sakamoto, Ayumi; Andoh, Tsugunobu; Kuraishi, Yasushi

    2016-03-01

    The chemotherapeutic agent oxaliplatin induces neuropathic pain, a dose-limiting side effect, but the underlying mechanisms are not fully understood. Here, we show the potential involvement of cutaneous mast cells in oxaliplatin-induced mechanical allodynia in mice. A single intraperitoneal injection of oxaliplatin induced mechanical allodynia, which peaked on day 10 after injection. Oxaliplatin-induced mechanical allodynia was almost completely prevented by congenital mast cell deficiency. The numbers of total and degranulated mast cells was significantly increased in the skin after oxaliplatin administration. Repetitive topical application of the mast cell stabilizer azelastine hydrochloride inhibited mechanical allodynia and the degranulation of mast cells without affecting the number of mast cells in oxaliplatin-treated mice. The serine protease inhibitor camostat mesilate and the proteinase-activated receptor 2 (PAR2) antagonist FSLLRY-NH2 significantly inhibited oxaliplatin-induced mechanical allodynia. However, it was not inhibited by the H1 histamine receptor antagonist terfenadine. Single oxaliplatin administration increased the activity of cutaneous serine proteases, which was attenuated by camostat and mast cell deficiency. Depletion of the capsaicin-sensitive primary afferents by neonatal capsaicin treatment almost completely prevented oxaliplatin-induced mechanical allodynia, the increase in the number of mast cells, and the activity of cutaneous serine proteases. These results suggest that serine protease(s) released from mast cells and PAR2 are involved in oxaliplatin-induced mechanical allodynia. Therefore, oxaliplatin may indirectly affect the functions of mast cells through its action on capsaicin-sensitive primary afferents.

  6. Preclinical evaluation of a urokinase plasminogen activator receptor-targeted nanoprobe in rhesus monkeys

    PubMed Central

    Chen, Yushu; Gong, Li; Gao, Ning; Liao, Jichun; Sun, Jiayu; Wang, Yuqing; Wang, Lei; Zhu, Pengjin; Fan, Qing; Wang, Yongqiang Andrew; Zeng, Wen; Mao, Hui; Yang, Lily; Gao, Fabao

    2015-01-01

    Purpose To translate a recombinant peptide containing the amino-terminal fragment (ATF) of urokinase plasminogen activator receptor-targeted magnetic iron oxide (IO) nanoparticles (uPAR-targeted human ATF-IONPs) into clinical applications, we conducted a pilot study to evaluate the toxicity and pharmacokinetics of this nanoparticle in normal rhesus monkeys. Methods We assessed the changes in the following: magnetic resonance imaging (MRI) signals from pretreatment stage to 14 days posttreatment, serum iron concentrations from 5 minutes posttreatment to 12 weeks posttreatment, routine blood examination and serum chemistry analysis results from pretreatment stage to 12 weeks after administration, and results of staining of the liver with Perls’ Prussian Blue and hematoxylin–eosin at 24 hours and 3 months posttreatment in two rhesus monkeys following an intravenous administration of the targeted nanoparticles either with a polyethylene glycol (ATF-PEG-IONP) or without a PEG (ATF-IONP) coating. Results The levels of alkaline phosphatase, alanine transaminase, and direct bilirubin in the two monkeys increased immediately after the administration of the IONPs but returned to normal within 20 days and stayed within the normal reference range 3 months after the injection. The creatinine levels of the two monkeys stayed within the normal range during the study. In addition, red blood cells, white blood cells, hemoglobin level, and platelets remained normal during the 3 months of the study. Conclusion All of the results suggest that a transient injury in terms of normal organ functions, but no microscopic necrotic lesions, was observed at a systemic delivery dose of 5 mg/kg of iron equivalent concentration in the acute phase, and that no chronic toxicity was found 3 months after the injection. Therefore, we conclude that uPAR-targeted IONPs have the potential to be used as receptor-targeted MRI contrasts as well as theranostic agents for the detection and treatment of

  7. The use of high spectral resolution bands for estimating absorbed photosynthetically active radiation (A par)

    NASA Technical Reports Server (NTRS)

    Kim, Moon S.; Daughtry, C. S. T.; Chappelle, E. W.; Mcmurtrey, J. E.; Walthall, C. L.

    1994-01-01

    Most remote sensing estimations of vegetation variables such as Leaf Area Index (LAI), Absorbed Photosynthetically Active Radiation (APAR), and phytomass are made using broad band sensors with a bandwidth of approximately 100 nm. However, high resolution spectrometers are available and have not been fully exploited for the purpose of improving estimates of vegetation variables. A study directed to investigate the use of high spectral resolution spectroscopy for remote sensing estimates of APAR in vegetation canopies in the presence of nonphotosynthetic background materials such as soil and leaf litter is presented. A high spectral resolution method defined as the Chlorophyll Absorption Ratio Index (CARI) was developed for minimizing the effects of nonphotosynthetic materials in the remote estimates of APAR. CARI utilizes three bands at 550, 670, and 700 nm with bandwidth of 10 nm. Simulated canopy reflectance of a range of LAI were generated with the SAIL model using measurements of 42 different soil types as canopy background. CARI obtained from the simulated canopy reflectance was compared with the broad band vegetation indices (Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI), and Simple Ratio (SR)). CARI reduced the effect of nonphotosynthetic background materials in the assessment of vegetation canopy APAR more effectively than broad band vegetation indices.

  8. Characterization of the AMPA-activated receptors present on motoneurons.

    PubMed

    Greig, A; Donevan, S D; Mujtaba, T J; Parks, T N; Rao, M S

    2000-01-01

    Motoneurons have been shown to be particularly sensitive to Ca2+-dependent glutamate excitotoxicity, mediated via AMPA receptors (AMPARs). To determine the molecular basis for this susceptibility we have used immunocytochemistry, RT-PCR, and electrophysiology to profile AMPARs on embryonic day 14.5 rat motoneurons. Motoneurons show detectable AMPAR-mediated calcium permeability in vitro and in vivo as determined by cobalt uptake and electrophysiology. Motoneurons express all four AMPAR subunit mRNAs, with glutamate receptor (GluR) 2 being the most abundant (63.9+/-4.8%). GluR2 is present almost exclusively in the edited form, and electrophysiology confirms that most AMPARs present are calcium-impermeant. However, the kainate current in motoneurons was blocked an average of 32.0% by Joro spider toxin, indicating that a subset of the AM PARs is Ca2+-permeable. Therefore, heterogeneity of AMPARs, rather than the absence of GluR2 or the presence of unedited GluR2, explains AMPAR-mediated Ca2+ permeability. The relative levels of flip/flop isoforms of each subunit were also examined by semiquantitative PCR. Both isoforms were present, but the relative proportion varied for each subunit, and the flip isoform predominated. Thus, our data show that despite high levels of edited GluR2 mRNA, some AMPARs are Ca2+-permeable, and this subset of AMPARs can account for the AMPAR-mediated Ca2+ inflow inferred from cobalt uptake and electrophysiology studies.

  9. Genome-wide protein QTL mapping identifies human plasma kallikrein as a post-translational regulator of serum uPAR levels.

    PubMed

    Portelli, Michael A; Siedlinski, Mateusz; Stewart, Ceri E; Postma, Dirkje S; Nieuwenhuis, Maartje A; Vonk, Judith M; Nurnberg, Peter; Altmuller, Janine; Moffatt, Miriam F; Wardlaw, Andrew J; Parker, Stuart G; Connolly, Martin J; Koppelman, Gerard H; Sayers, Ian

    2014-02-01

    The soluble cleaved urokinase plasminogen activator receptor (scuPAR) is a circulating protein detected in multiple diseases, including various cancers, cardiovascular disease, and kidney disease, where elevated levels of scuPAR have been associated with worsening prognosis and increased disease aggressiveness. We aimed to identify novel genetic and biomolecular mechanisms regulating scuPAR levels. Elevated serum scuPAR levels were identified in asthma (n=514) and chronic obstructive pulmonary disease (COPD; n=219) cohorts when compared to controls (n=96). In these cohorts, a genome-wide association study of serum scuPAR levels identified a human plasma kallikrein gene (KLKB1) promoter polymorphism (rs4253238) associated with serum scuPAR levels in a control/asthma population (P=1.17 × 10(-7)), which was also observed in a COPD population (combined P=5.04 × 10(-12)). Using a fluorescent assay, we demonstrated that serum KLKB1 enzymatic activity was driven by rs4253238 and is inverse to scuPAR levels. Biochemical analysis identified that KLKB1 cleaves scuPAR and negates scuPAR's effects on primary human bronchial epithelial cells (HBECs) in vitro. Chymotrypsin was used as a proproteolytic control, while basal HBECs were used as a control to define scuPAR-driven effects. In summary, we reveal a novel post-translational regulatory mechanism for scuPAR using a hypothesis-free approach with implications for multiple human diseases.

  10. Polyphenols in alcoholic beverages activating constitutive androstane receptor CAR.

    PubMed

    Yao, Ruiqing; Yasuoka, Akihito; Kamei, Asuka; Kitagawa, Yoshinori; Rogi, Tomohiro; Taieishi, Norifumi; Tsuruoka, Nobuo; Kiso, Yoshionobu; Misaka, Takumi; Abe, Keiko

    2011-01-01

    The constitutive androstane receptor CAR is a xenosensing nuclear receptor that can be activated by natural polyphenols such as flavonoids and catechins. We examined alcoholic beverage phytochemicals for their ability to activate CAR. HepG2 cells were transfected with CAR expression vector and its reporter gene, and then treated with trans-resveratrol, ellagic acid, β-caryophyllene, myrcene, and xanthohumol. A luciferase assay revealed that ellagic acid and trans-resveratrol activated both human and mouse CAR. Since CAR regulates many genes involved in energy metabolism, the possibility exists that these polyphenols would reduce the risk of certain alcohol-induced metabolic disorders with the help of CAR.

  11. Activation of Group I Metabotropic Glutamate Receptors Potentiates Heteromeric Kainate Receptors

    PubMed Central

    Wetherington, Jonathon; Shaw, Renee; Serrano, Geidy; Swanger, Sharon; Dingledine, Raymond

    2013-01-01

    Kainate receptors (KARs), a family of ionotropic glutamate receptors, are widely expressed in the central nervous system and are critically involved in synaptic transmission. KAR activation is influenced by metabotropic glutamate receptor (mGlu) signaling, but the underlying mechanisms are not understood. We undertook studies to examine how mGlu modulation affects activation of KARs. Confocal immunohistochemistry of rat hippocampus and cultured rat cortex revealed colocalization of the high-affinity KAR subunits with group I mGlu receptors. In hippocampal and cortical cultures, the calcium signal caused by activation of native KARs was potentiated by activation of group I mGlu receptors. In Xenopus laevis oocytes, activation of group I mGlu receptors potentiated heteromeric but not homomeric KAR-mediated currents, with no change in agonist potency. The potentiation of heteromeric KARs by mGlu1 activation was attenuated by GDPβS, blocked by an inhibitor of phospholipase C or the calcium chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA), prolonged by the phosphatase inhibitor okadaic acid, but unaffected by the tyrosine kinase inhibitor lavendustin A. Protein kinase C (PKC) inhibition reduced the potentiation by mGlu1 of GluK2/GluK5, and conversely, direct activation of PKC by phorbol 12-myristate,13-acetate potentiated GluK2/GluK5. Using site-directed mutagenesis, we identified three serines (Ser833, Ser836, and Ser840) within the membrane proximal region of the GluK5 C-terminal domain that, in combination, are required for mGlu1-mediated potentiation of KARs. Together, these data suggest that phosphorylation of key residues in the C-terminal domain changes the overall charge of this domain, resulting in potentiated agonist responses. PMID:23066089

  12. Modular Activating Receptors in Innate and Adaptive Immunity.

    PubMed

    Berry, Richard; Call, Matthew E

    2017-03-14

    Triggering of cell-mediated immunity is largely dependent on the recognition of foreign or abnormal molecules by a myriad of cell surface-bound receptors. Many activating immune receptors do not possess any intrinsic signaling capacity but instead form noncovalent complexes with one or more dimeric signaling modules that communicate with a common set of kinases to initiate intracellular information-transfer pathways. This modular architecture, where the ligand binding and signaling functions are detached from one another, is a common theme that is widely employed throughout the innate and adaptive arms of immune systems. The evolutionary advantages of this highly adaptable platform for molecular recognition are visible in the variety of ligand-receptor interactions that can be linked to common signaling pathways, the diversification of receptor modules in response to pathogen challenges, and the amplification of cellular responses through incorporation of multiple signaling motifs. Here we provide an overview of the major classes of modular activating immune receptors and outline the current state of knowledge regarding how these receptors assemble, recognize their ligands, and ultimately trigger intracellular signal transduction pathways that activate immune cell effector functions.

  13. Pronociceptive response elicited by TRPA1 receptor activation in mice.

    PubMed

    Andrade, E L; Luiz, A P; Ferreira, J; Calixto, J B

    2008-03-18

    Ankyrin-repeat transient receptor potential 1 (TRPA1) is a member of the transient receptor potential (TRP) channel family and it is found in sensory neurons. In the present study, we found that TRPA1 receptor activation with allyl isothiocyanate or cinnamaldehyde caused dose-dependent spontaneous nociception when injected into the mouse hind paw. Very similar results were obtained when stimulating transient receptor potential vanilloid 1 (TRPV1) receptors with capsaicin. Pretreatment with the TRP receptor antagonist Ruthenium Red (1 nmol/paw) inhibited capsaicin-(0.1 nmol/paw) and allyl isothiocyanate-(1 nmol/paw) induced nociceptive responses. However, the nonselective TRPV1 receptor antagonist capsazepine (1 nmol/paw) and the selective TRPV1 receptor antagonist SB 366791 (1 nmol/paw) only attenuated capsaicin-induced nociception. In contrast, the intrathecal treatment with TRPA1 antisense oligodeoxynucleotide (2.5 nmol/site) and the degeneration of the subset of primary afferent fibers sensitive to capsaicin significantly reduced allyl isothiocyanate-induced nociception. Consequently to TRPA1 antisense oligodeoxynucleotide treatment there was a marked decrease of the expression of TRPA1 receptor in both sciatic nervous and spinal cord segments. Moreover, capsaicin and allyl isothiocyanate-induced nociception were not significantly changed by chemical sympathectomy produced by guanethidine. The previous degranulation of mast cells by compound 48/80 and treatment with antagonist H(1) receptor antagonist pyrilamine (400 microg/paw) both significantly inhibited the capsaicin- and allyl isothiocyanate-induced nociception. The selective NK(1) receptor antagonist N(2)-[(4R)-4-hydroxy-1-(1-methyl-1H-indol-3-yl) carbony-1-L-prolyl]-N-methyl-N-phenylmethyl-3-2-(2-naphtyl)-L-alaninamide (10 nmol/paw) reduced either capsaicin- or allyl isothiocyanate-induced nociception. Collectively, the present findings demonstrate that the TRPA1 agonist allyl isothiocyanate produces a

  14. Motogenic and morphogenic activity of epithelial receptor tyrosine kinases

    PubMed Central

    1996-01-01

    Receptor tyrosine kinases play essential roles in morphogenesis and differentiation of epithelia. Here we examined various tyrosine kinase receptors, which are preferentially expressed in epithelia (c-met, c- ros, c-neu, and the keratin growth factor [KGF] receptor), for their capacity to induce cell motility and branching morphogenesis of epithelial cells. We exchanged the ligand-binding domain of these receptors by the ectodomain of trkA and could thus control signaling by the new ligand, NGF. We demonstrate here that the tyrosine kinases of c- met, c-ros, c-neu, the KGF receptor, and trkA, but not the insulin receptor, induced scattering and increased motility of kidney epithelial cells in tissue culture. Mutational analysis suggests that SHC binding is essential for scattering and increased cell motility induced by trkA. The induction of motility in epithelial cells is thus an important feature of various receptor tyrosine kinases, which in vivo play a role in embryogenesis and metastasis. In contrast, only the c-met receptor promoted branching morphogenesis of kidney epithelial cells in three-dimensional matrices, which resemble the formation of tubular epithelia in development. Interestingly, the ability of c-met to induce morphogenesis could be transferred to trkA, when in a novel receptor hybrid COOH-terminal sequences of c-met (including Y14 to Y16) were fused to the trkA kinase domain. These data demonstrate that tubulogenesis of epithelia is a restricted activity of tyrosine kinases, as yet only demonstrated for the c-met receptor. We predict the existence of specific substrates that mediate this morphogenesis signal. PMID:8655582

  15. PAR2 exerts local protection against acute pancreatitis via modulation of MAP kinase and MAP kinase phosphatase signaling.

    PubMed

    Namkung, Wan; Yoon, Jae Seok; Kim, Kyung Hwan; Lee, Min Goo

    2008-11-01

    During acute pancreatitis, protease-activated receptor 2 (PAR2) can be activated by interstitially released trypsin. In the mild form of pancreatitis, PAR2 activation exerts local protection against intrapancreatic damage, whereas, in the severe form of pancreatitis, PAR2 activation mediates some systemic complications. This study aimed to identify the molecular mechanisms of PAR2-mediated protective effects against intrapancreatic damage. A mild form of acute pancreatitis was induced by an intraperitoneal injection of caerulein (40 microg/kg) in rats. Effects of PAR2 activation on intrapancreatic damage and on mitogen-activated protein (MAP) kinase signaling were assessed. Caerulein treatment activated extracellular signal-regulated kinase (ERK) and c-Jun NH(2)-terminal kinase (JNK) within 15 min and maintained phosphorylation of ERK and JNK for 2 h in the rat pancreas. Although PAR2 activation by the pretreatment with PAR2-activating peptide (AP) itself increased ERK phosphorylation in rat pancreas, the same treatment remarkably decreased caerulein-induced activation of ERK and JNK principally by accelerating their dephosphorylation. Inhibition of ERK and JNK phosphorylation by the pretreatment with MAP/ERK kinase (MEK) or JNK inhibitors decreased caerulein-induced pancreatic damage that was similar to the effect induced by PAR2-AP. Notably, in caerulein-treated rats, PAR2-AP cotreatment highly increased the expression of a group of MAP kinase phosphatases (MKPs) that deactivate ERK and JNK. The above results imply that downregulation of MAP kinase signaling by MKP induction is a key mechanism involved in the protective effects of PAR2 activation on caerulein-induced intrapancreatic damage.

  16. Glucocorticoid receptor activation and inactivation in cultured human lymphocytes.

    PubMed

    Wheeler, R H; Leach, K L; La Forest, A C; O'Toole, T E; Wagner, R; Pratt, W B

    1981-01-10

    Although glucocorticoids are not cytolytic for and do not inhibit the growth of the IM-9 line of cultured human lymphoblasts, these cells have a high steroid-binding capacity. We have used IM-9 cells in order to examine whether unoccupied glucocorticoid receptors are inactivated and activated in intact cells. when IM-9 cells are incubated in glucose-free medium in a nitrogen atmosphere, both their ability to bind triamcinolone acetonide and their ATP levels decline and, when glucose and oxygen are reintroduced, ATP levels and receptor activity return. The specific glucocorticoid-binding activity of cytosol prepared from cells exposed to various degrees of energy limitation is directly correlated with the ATP content. Receptor activation in intact cells is rapid and independent of protein synthesis. Cytosol prepared from inactivated cells cannot be activated by addition of ATP. The inactivation of glucocorticoid receptors that occurs when cytosol from normal IM-9 cells is incubated at 25 degrees C is inhibited by molybdate, vanadate, fluoride, ATP, and several other nucleotides. The experiments with intact human lymphoblasts suggest that assays of specific glucocorticoid-binding capacity do not necessarily reflect the cellular content of receptor protein.

  17. Novel benzopolycyclic amines with NMDA receptor antagonist activity.

    PubMed

    Valverde, Elena; Sureda, Francesc X; Vázquez, Santiago

    2014-05-01

    A new series of benzopolycyclic amines active as NMDA receptor antagonists were synthesized. Most of them exhibited increased activity compared with related analogues previously published. All the tested compounds were more potent than clinically approved amantadine and one of them displayed a lower IC50 value than memantine, an anti-Alzheimer's approved drug.

  18. Peroxisome proliferator-activated receptor alpha and the ketogenic diet.

    PubMed

    Cullingford, Tim

    2008-11-01

    Peroxisome proliferator-activated receptor alpha (PPARalpha) is a drug/fatty acid-activated trans cription factor involved in the starvation response, and is thus relevant to the ketogenic diet (KD). This article summarizes research indicating the role of PPARalpha in central and peripheral nervous system function with particular reference to downstream targets relevant to anticonvulsant action.

  19. Extended Synaptotagmin Interaction with the Fibroblast Growth Factor Receptor Depends on Receptor Conformation, Not Catalytic Activity.

    PubMed

    Tremblay, Michel G; Herdman, Chelsea; Guillou, François; Mishra, Prakash K; Baril, Joëlle; Bellenfant, Sabrina; Moss, Tom

    2015-06-26

    We previously demonstrated that ESyt2 interacts specifically with the activated FGF receptor and is required for a rapid phase of receptor internalization and for functional signaling via the ERK pathway in early Xenopus embryos. ESyt2 is one of the three-member family of Extended Synaptotagmins that were recently shown to be implicated in the formation of endoplasmic reticulum (ER)-plasma membrane (PM) junctions and in the Ca(2+) dependent regulation of these junctions. Here we show that ESyt2 is directed to the ER by its putative transmembrane domain, that the ESyts hetero- and homodimerize, and that ESyt2 homodimerization in vivo requires a TM adjacent sequence but not the SMP domain. ESyt2 and ESyt3, but not ESyt1, selectively interact in vivo with activated FGFR1. In the case of ESyt2, this interaction requires a short TM adjacent sequence and is independent of receptor autophosphorylation, but dependent on receptor conformation. The data show that ESyt2 recognizes a site in the upper kinase lobe of FGFR1 that is revealed by displacement of the kinase domain activation loop during receptor activation.

  20. NF-κB contributes to MMP1 expression in breast cancer spheroids causing paracrine PAR1 activation and disintegrations in the lymph endothelial barrier in vitro

    PubMed Central

    Nguyen, Chi Huu; Senfter, Daniel; Basilio, Jose; Holzner, Silvio; Stadler, Serena; Krieger, Sigurd; Huttary, Nicole; Milovanovic, Daniela; Viola, Katharina; Simonitsch-Klupp, Ingrid; Jäger, Walter; de Martin, Rainer; Krupitza, Georg

    2015-01-01

    RELA, RELB, CREL, NFKB1 and NFKB2, and the upstream regulators NEMO and NIK were knocked-down in lymph endothelial cells (LECs) and in MDA-MB231 breast cancer spheroids to study the contribution of NF-κB in vascular barrier breaching. Suppression of RELA, NFKB1 and NEMO inhibited “circular chemo-repellent induced defects” (CCIDs), which form when cancer cells cross the lymphatic vasculature, by ~20–30%. Suppression of RELB, NFKB2 and NIK inhibited CCIDs by only ~10–15%. In MDA-MB231 cells RELA and NFKB1 constituted MMP1 expression, which caused the activation of PAR1 in adjacent LECs. The knock-down of MMP1 in MDA-MB231 spheroids and pharmacological inhibition of PAR1 in LECs inhibited CCID formation by ~30%. Intracellular Ca2+ release in LECs, which was induced by recombinant MMP1, was suppressed by the PAR1 inhibitor SCH79797, thereby confirming a functional intercellular axis: RELA/NFKB1 – MMP1 (MDA-MB231) – PAR1 (LEC). Recombinant MMP1 induced PAR1-dependent phosphorylation of MLC2 and FAK in LECs, which is indicative for their activity and for directional cell migration such as observed during CCID formation. The combined knock-down of the NF-κB pathways in LECs and MDA-MB231 spheroids inhibited CCIDs significantly stronger than knock-down in either cell type alone. Also the knock-down of ICAM-1 in LECs (a NF-κB endpoint with relevance for CCID formation) and knock-down of MMP1 in MDA-MB231 augmented CCID inhibition. This evidences that in both cell types NF-κB significantly and independently contributes to tumour-mediated breaching of the lymphatic barrier. Hence, inflamed tumour tissue and/or vasculature pose an additional threat to cancer progression. PMID:26513020

  1. NF-κB contributes to MMP1 expression in breast cancer spheroids causing paracrine PAR1 activation and disintegrations in the lymph endothelial barrier in vitro.

    PubMed

    Nguyen, Chi Huu; Senfter, Daniel; Basilio, Jose; Holzner, Silvio; Stadler, Serena; Krieger, Sigurd; Huttary, Nicole; Milovanovic, Daniela; Viola, Katharina; Simonitsch-Klupp, Ingrid; Jäger, Walter; de Martin, Rainer; Krupitza, Georg

    2015-11-17

    RELA, RELB, CREL, NFKB1 and NFKB2, and the upstream regulators NEMO and NIK were knocked-down in lymph endothelial cells (LECs) and in MDA-MB231 breast cancer spheroids to study the contribution of NF-κB in vascular barrier breaching. Suppression of RELA, NFKB1 and NEMO inhibited "circular chemo-repellent induced defects" (CCIDs), which form when cancer cells cross the lymphatic vasculature, by ~20-30%. Suppression of RELB, NFKB2 and NIK inhibited CCIDs by only ~10-15%. In MDA-MB231 cells RELA and NFKB1 constituted MMP1 expression, which caused the activation of PAR1 in adjacent LECs. The knock-down of MMP1 in MDA-MB231 spheroids and pharmacological inhibition of PAR1 in LECs inhibited CCID formation by ~30%. Intracellular Ca(2+) release in LECs, which was induced by recombinant MMP1, was suppressed by the PAR1 inhibitor SCH79797, thereby confirming a functional intercellular axis: RELA/NFKB1 - MMP1 (MDA-MB231) - PAR1 (LEC). Recombinant MMP1 induced PAR1-dependent phosphorylation of MLC2 and FAK in LECs, which is indicative for their activity and for directional cell migration such as observed during CCID formation. The combined knock-down of the NF-κB pathways in LECs and MDA-MB231 spheroids inhibited CCIDs significantly stronger than knock-down in either cell type alone. Also the knock-down of ICAM-1 in LECs (a NF-κB endpoint with relevance for CCID formation) and knock-down of MMP1 in MDA-MB231 augmented CCID inhibition. This evidences that in both cell types NF-κB significantly and independently contributes to tumour-mediated breaching of the lymphatic barrier. Hence, inflamed tumour tissue and/or vasculature pose an additional threat to cancer progression.

  2. The emergence of proteinase-activated receptor-2 as a novel target for the treatment of inflammation-related CNS disorders

    PubMed Central

    Bushell, Trevor

    2007-01-01

    The signalling molecules that are involved in inflammatory pathways are now thought to play a part in many disorders of the central nervous system (CNS). In common with peripheral chronic inflammatory diseases such a rheumatoid arthritis and ulcerative colitis, evidence now exists for the involvement of inflammatory cytokines, for example tumour necrosis factor (TNF) and interleukins (IL), in neurological disorders. A common factor observed with the up-regulation of these cytokines in peripheral inflammatory diseases, is the increased expression of the proteinase-activated receptor (PAR) subtype PAR-2. Indeed, recent evidence suggests that targeting PAR-2 helps reduce joint swelling observed in animal models of arthritis. So could targeting this receptor prove to be useful in treating those CNS disorders where inflammatory processes are thought to play an intrinsic role? The aim of this review is to summarize the emerging data regarding the role of PAR-2 in neuroinflammation and ischaemic injury and discuss its potential as an exciting new target for the prevention and/or treatment of CNS disorders. PMID:17347265

  3. Effects of full D1 dopamine receptor agonists on firing rates in the globus pallidus and substantia nigra pars compacta in vivo: tests for D1 receptor selectivity and comparisons to the partial agonist SKF 38393.

    PubMed

    Ruskin, D N; Rawji, S S; Walters, J R

    1998-07-01

    Many studies have used the D1 agonist SKF 38393 to characterize D1 receptor influences on firing rates in basal ganglia nuclei in vivo. However, SKF 38393 is a partial agonist and so may not be ideal for delineating D1 receptor effects. This study characterizes the effects of four full D1 agonists, SKF 82958 (chloro-APB), SKF 81297 (6-chloro-PB), dihydrexidine and A-77636, on the firing rates of midbrain dopamine and globus pallidus neurons. Recordings were done in fully anesthetized or paralyzed, locally anesthetized rats, and drugs were given systemically intravenously. Dihydrexidine, SKF 81297 and A-77636 were free of rate effects on midbrain dopamine neurons (up to 10.2 mg/kg) and also did not antagonize the inhibitory effects of quinpirole. In contrast, SKF 82958 strongly inhibited dopamine cells through activation of D2 autoreceptors (ED50 = 0.70 mg/kg). Of these drugs, SKF 82958 also was the only one to increase pallidal unit firing rates when given alone (at 5.0 but not 1.0 mg/kg); the other compounds appeared to be selective for postsynaptic D1 receptors. The results suggest that SKF 82958 may be more properly classified as a mixed D1/D2 agonist. In addition, all four agonists strongly potentiated the pallidal response to quinpirole, demonstrating a D1 receptor potentiation of D2 receptor effects. The results support the role of D1 receptors in the midbrain and globus pallidus as previously characterized with SKF 38393. The similar actions of partial and full D1 agonists in these systems support evidence for a D1 receptor reserve and possibly an effector system other than adenylate cyclase.

  4. Serum Soluble Urokinase-Type Plasminogen Activator Receptor Is Associated with Low Left Ventricular Ejection Fraction and Elevated Plasma Brain-Type Natriuretic Peptide Level

    PubMed Central

    Fujita, Shu-ichi; Tanaka, Suguru; Maeda, Daichi; Morita, Hideaki; Fujisaka, Tomohiro; Takeda, Yoshihiro; Ito, Takahide; Ishizaka, Nobukazu

    2017-01-01

    Background Recent studies have suggested that soluble urokinase plasminogen activator receptor (suPAR), a biomarker of subclinical levels of inflammation, is significantly correlated with cardiovascular events. Purpose We investigated the association between suPAR and left ventricular ejection fraction (LVEF), left ventricular mass index (LVMI), and plasma B-type natriuretic peptide (BNP) among cardiac inpatients. Methods and Results In total, 242 patients (mean age 71.3 ± 9.8 years; 70 women) admitted to the cardiology department were enrolled in the study. suPAR was significantly correlated with LVEF (R = -0.24, P<0.001), LVMI (R = 0.16, P = 0.014) and BNP (R = 0.46, P<0.001). In logistic regression analysis, the highest suPAR tertile (> 3236 pg/mL) was associated with low LVEF (< 50%) and elevated BNP (> 300 pg/mL) with an odds ratio of 3.84 (95% confidence interval [CI], 1.22–12.1) and 5.36 (95% CI, 1.32–21.8), respectively, after adjusting for age, sex, log-transformed estimated glomerular filtration rate (log(eGFR)), C-reactive protein, and diuretic use. The association between suPAR and LVMI was not statistically significant. In multivariate receiver operating characteristic analysis, addition of log(suPAR) to the combination of age, sex, log(eGFR) and CRP incrementally improved the prediction of low LVEF (area under the curve [AUC], 0.827 to 0.852, P = 0.046) and BNP ≥ 300 pg/mL (AUC, 0.869 to 0.906; P = 0.029). Conclusions suPAR was associated with low LVEF and elevated BNP, but not with left ventricular hypertrophy, independent of CRP, renal function, and diuretic use among cardiac inpatients who were not undergoing chronic hemodialysis. PMID:28135310

  5. Metal interactions with voltage- and receptor-activated ion channels.

    PubMed Central

    Vijverberg, H P; Oortgiesen, M; Leinders, T; van Kleef, R G

    1994-01-01

    Effects of Pb and several other metal ions on various distinct types of voltage-, receptor- and Ca-activated ion channels have been investigated in cultured N1E-115 mouse neuroblastoma cells. Experiments were performed using the whole-cell voltage clamp and single-channel patch clamp techniques. External superfusion of nanomolar to submillimolar concentrations of Pb causes multiple effects on ion channels. Barium current through voltage-activated Ca channels is blocked by micromolar concentrations of Pb, whereas voltage-activated Na current appears insensitive. Neuronal type nicotinic acetylcholine receptor-activated ion current is blocked by nanomolar concentrations of Pb and this block is reversed at micromolar concentrations. Serotonin 5-HT3 receptor-activated ion current is much less sensitive to Pb. In addition, external superfusion with micromolar concentrations of Pb as well as of Cd and aluminum induces inward current, associated with the direct activation of nonselective cation channels by these metal ions. In excised inside-out membrane patches of neuroblastoma cells, micromolar concentrations of Ca activate small (SK) and big (BK) Ca-activated K channels. Internally applied Pb activates SK and BK channels more potently than Ca, whereas Cd is approximately equipotent to Pb with respect to SK channel activation, but fails to activate BK channels. The results show that metal ions cause distinct, selective effects on the various types of ion channels and that metal ion interaction sites of ion channels may be highly selective for particular metal ions. PMID:7531139

  6. Regulation of Proteome Maintenance Gene Expression by Activators of Peroxisome Proliferator-Activated Receptor a (PPARa)

    EPA Science Inventory

    The nuclear receptor peroxisome proliferator-activated receptor alpha (PPARa) is activated by a large number of xenobiotic and hypolipidemic compounds called peroxisome proliferator chemicals (PPC). One agonist of PPARa (WY-14,643) regulates responses in the mouse liver to chemic...

  7. Androgen receptor serine 81 mediates Pin1 interaction and activity

    PubMed Central

    La Montagna, Raffaele; Caligiuri, Isabella; Maranta, Pasquale; Lucchetti, Chiara; Esposito, Luca; Paggi, Marco G.; Toffoli, Giuseppe; Rizzolio, Flavio; Giordano, Antonio

    2012-01-01

    Hormone-dependent tumors are characterized by deregulated activity of specific steroid receptors, allowing aberrant expression of many genes involved in cancer initiation, progression and metastasis. In prostate cancer, the androgen receptor (AR) protein has pivotal functions, and over the years it has been the target of different drugs. AR is a nuclear receptor whose activity is regulated by a phosphorylation mechanism controlled by hormone and growth factors. Following phosphorylation, AR interacts with many cofactors that closely control its function. Among such cofactors, Pin1 is a peptidyl-prolyl isomerase that is involved in the control of protein phosphorylation and has a prognostic value in prostate cancer. In the present study, we demonstrate that ARSer81 is involved in the interaction with Pin1, and that this interaction is important for the transcriptional activity of AR. Since Pin1 expression positively correlates with tumor grade, our results suggest that Pin1 can participate in this process by modulating AR function. PMID:22894932

  8. Interfering with mineralocorticoid receptor activation: the past, present, and future

    PubMed Central

    2014-01-01

    Aldosterone is a potent mineralocorticoid produced by the adrenal gland. Aldosterone binds to and activates the mineralocorticoid receptor (MR) in a plethora of tissues, but the cardiovascular actions of aldosterone are of primary interest clinically. Although MR antagonists were developed as antihypertensive agents, they are now considered to be important therapeutic options for patients with heart failure. Specifically, blocking only the MR has proven to be a difficult task because of its similarity to other steroid receptors, including the androgen and progesterone receptors. This lack of specificity caused the use of the first-generation mineralocorticoid receptor antagonists to be fraught with difficulty because of the side effects produced by drug administration. However, in recent years, several advances have been made that could potentially increase the clinical use of agents that inhibit the actions of aldosterone. These will be discussed here along with some examples of the beneficial effects of these new therapeutic agents. PMID:25165560

  9. Redundant signaling mechanisms contribute to the vasodilatory response of the afferent arteriole to proteinase-activated receptor-2.

    PubMed

    Wang, Xuemei; Hollenberg, Morley D; Loutzenhiser, Rodger

    2005-01-01

    We previously demonstrated that stimulation of proteinase-activated receptor-2 (PAR-2) by SLIGRL-NH(2) elicits afferent arteriolar vasodilation, in part, by elaborating nitric oxide (NO), suggesting an endothelium-dependent mechanism (Trottier G, Hollenberg M, Wang X, Gui Y, Loutzenhiser K, and Loutzenhiser R. Am J Physiol Renal Physiol 282: F891-F897, 2002). In the present study, we characterized the NO-independent component of this response, using the in vitro perfused hydronephrotic rat kidney. SLIGRL-NH(2) (10 mumol/l) dilated afferent arterioles preconstricted with ANG II, and the initial transient component of this response was resistant to NO synthase (NOS) and cyclooxygenase inhibition. This NO-independent response was not prevented by treatment with 10 nmol/l charybdotoxin and 1 mumol/l apamin, a manipulation that prevents the endothelium-derived hyperpolarizing factor (EDHF)-like response of the afferent arteriole to acetylcholine, nor was it blocked by the addition of 1 mmol/l tetraethylammonium (TEA) or 50 mumol/l 17-octadecynoic acid, treatments that block the EDHF-like response to bradykinin. To determine whether the PAR-2 response additionally involves the electrogenic Na(+)-K(+)-ATPase, responses were evaluated in the presence of 3 mmol/l ouabain. In this setting, SLIGRL-NH(2) induced a biphasic dilation in control and a transient response after NOS inhibition. The latter was not prevented by charybdotoxin plus apamin or by TEA alone but was abolished by combined treatment with charybdotoxin, apamin, and TEA. This treatment did not prevent the NO-dependent dilation evoked in the absence of NOS inhibition. Our findings indicate a remarkable redundancy in the signaling cascade mediating PAR-2 -induced afferent arteriolar vasodilation, suggesting an importance in settings such as inflamation or ischemia, in which vascular mechanisms might be impaired and the PAR system is thought to be activated.

  10. Glycine Potentiates AMPA Receptor Function through Metabotropic Activation of GluN2A-Containing NMDA Receptors

    PubMed Central

    Li, Li-Jun; Hu, Rong; Lujan, Brendan; Chen, Juan; Zhang, Jian-Jian; Nakano, Yasuko; Cui, Tian-Yuan; Liao, Ming-Xia; Chen, Jin-Cao; Man, Heng-Ye; Feng, Hua; Wan, Qi

    2016-01-01

    NMDA receptors are Ca2+-permeable ion channels. The activation of NMDA receptors requires agonist glutamate and co-agonist glycine. Recent evidence indicates that NMDA receptor also has metabotropic function. Here we report that in cultured mouse hippocampal neurons, glycine increases AMPA receptor-mediated currents independent of the channel activity of NMDA receptors and the activation of glycine receptors. The potentiation of AMPA receptor function by glycine is antagonized by the inhibition of ERK1/2. In the hippocampal neurons and in the HEK293 cells transfected with different combinations of NMDA receptors, glycine preferentially acts on GluN2A-containing NMDA receptors (GluN2ARs), but not GluN2B-containing NMDA receptors (GluN2BRs), to enhance ERK1/2 phosphorylation independent of the channel activity of GluN2ARs. Without requiring the channel activity of GluN2ARs, glycine increases AMPA receptor-mediated currents through GluN2ARs. Thus, these results reveal a metabotropic function of GluN2ARs in mediating glycine-induced potentiation of AMPA receptor function via ERK1/2 activation. PMID:27807405

  11. Modulation of Opioid Receptor Ligand Affinity and Efficacy Using Active and Inactive State Receptor Models

    PubMed Central

    Anand, Jessica P.; Purington, Lauren C.; Pogozheva, Irina D.; Traynor, John R.; Mosberg, Henry I.

    2012-01-01

    Mu opioid receptor (MOR) agonists are widely used for the treatment of pain; however chronic use results in the development of tolerance and dependence. It has been demonstrated that co-administration of a MOR agonist with a delta opioid receptor (DOR) antagonist maintains the analgesia associated with MOR agonists, but with reduced negative side effects. Using our newly refined opioid receptor models for structure-based ligand design, we have synthesized several pentapeptides with tailored affinity and efficacy profiles. In particular, we have obtained pentapeptides 8, Tyr-c(S-S)[DCys-1Nal-Nle-Cys]NH2, and 12, Tyr-c(S-S)[DCys-1Nal-Nle-Cys]OH, which demonstrates high affinity and full agonist behavior at MOR, high affinity but very low efficacy for DOR, and minimal affinity for the kappa opioid receptor (KOR). Functional properties of these peptides as MOR agonists/DOR antagonists lacking undesired KOR activity make them promising candidates for future in vivo studies of MOR/DOR interactions. Subtle structural variation of 12, by substituting D-Cys5 for L-Cys5, generated analog 13 which maintains low nanomolar MOR and DOR affinity, but which displays no efficacy at either receptor. These results demonstrate the power and utility of accurate receptor models for structure-based ligand design, as well as the profound sensitivity of ligand function on its structure. PMID:22882801

  12. Extracellular loop 2 in the FSH receptor is crucial for ligand mediated receptor activation.

    PubMed

    Dupakuntla, Madhavi; Pathak, Bhakti; Roy, Binita Sur; Mahale, Smita D

    2012-10-15

    The present study aims to determine the role of the specific residues of the extracellular loops (ELs) of the FSH receptor (FSHR) in hormone binding and receptor activation. By substituting the sequences of each of the ELs of human FSHR with those of the luteinizing hormone/choriogonadotropin receptor (LH/CGR), we generated three mutant constructs where the three ELs were individually replaced. A fourth construct had all the three substituted ELs. The receptor expression and hormone binding ability of the mutants were comparable to that of the wild type. Hormone-induced signaling and internalization were lower in the EL2 substitution mutant (EL2M). In this mutant, the EL2 of FSHR was substituted with the corresponding loop of LH/CGR. Interestingly, homology modeling revealed a change in the orientation of EL2 in the mutant receptor. Thus, disruption of EL2 affected overall receptor function, suggesting the role of FSHR specific residues of the loop in ligand mediated signaling.

  13. Modulation of Receptor Phosphorylation Contributes to Activation of Peroxisome Proliferator Activated Receptor α by Dehydroepiandrosterone and Other Peroxisome Proliferators

    PubMed Central

    Tamasi, Viola; Miller, Kristy K. Michael; Ripp, Sharon L.; Vila, Ermin; Geoghagen, Thomas E.; Prough, Russell A.

    2008-01-01

    Dehydroepiandrosterone (DHEA), a C19 human adrenal steroid, activates peroxisome proliferator-activated receptor α (PPARα) in vivo but does not ligand-activate PPARα in transient transfection experiments. We demonstrate that DHEA regulates PPARα action by altering both the levels and phosphorylation status of the receptor. Human hepatoma cells (HepG2) were transiently transfected with the expression plasmid encoding PPARα and a plasmid containing two copies of fatty acyl coenzyme oxidase (FACO) peroxisome-proliferator activated receptor responsive element consensus oligonucleotide in a luciferase reporter gene. Nafenopin treatment increased reporter gene activity in this system, whereas DHEA treatment did not. Okadaic acid significantly decreased nafenopin-induced reporter activity in a concentration-dependent manner. Okadaic acid treatment of primary rat hepatocytes decreased both DHEA- and nafenopin-induced FACO activity in primary rat hepatocytes. DHEA induced both PPARα mRNA and protein levels, as well as PP2A message in primary rat hepatocytes. Western blot analysis showed that the serines at positions 12 and 21 were rapidly dephosphorylated upon treatment with DHEA and nafenopin. Results using specific protein phosphatase inhibitors suggested that protein phosphatase 2A (PP2A) is responsible for DHEA action, and protein phosphatase 1 might be involved in nafenopin induction. Mutation of serines at position 6, 12, and 21 to an uncharged alanine residue significantly increased transcriptional activity, whereas mutation to negative charged aspartate residues (mimicking receptor phosphorylation) decreased transcriptional activity. DHEA action involves induction of PPARα mRNA and protein levels as well as increased PPARα transcriptional activity through decreasing receptor phosphorylation at serines in the AF1 region. PMID:18079279

  14. Differential involvement of thrombin receptors in Ca2+ release from two different intracellular stores in human platelets

    PubMed Central

    Jardin, Isaac; Ben Amor, Nidhal; Bartegi, Ahgleb; Pariente, José A.; Salido, Ginés M.; Rosado, Juan A.

    2006-01-01

    Physiological agonists increase cytosolic free Ca2+ concentration to regulate a number of cellular processes. The platelet thrombin receptors, PAR (protease-activated receptor) 1 PAR-4 and GPIb-IX-V (glycoprotein Ib-IX-V) have been described as potential contributors of thrombin-induced platelet aggregation. Platelets present two separate Ca2+ stores, the DTS (dense tubular system) and acidic organelles, differentiated by the distinct sensitivity of their respective SERCAs (sarcoplasmic/endoplasmic-reticulum Ca2+-ATPases) to TG (thapsigargin) and TBHQ [2,5-di-(tert-butyl)-1,4-hydroquinone]. However, the involvement of the thrombin receptors in Ca2+ release from each Ca2+ store remains unknown. Depletion of the DTS using ADP, which releases Ca2+ solely from the DTS, in combination with 10 nM TG, to selectively inhibit SERCA2 located on the DTS reduced Ca2+ release evoked by the PAR-1 agonist, SFLLRN, and the PAR-4 agonist, AYPGKF, by 80 and 50% respectively. Desensitization of PAR-1 and PAR-4 or pre-treatment with the PAR-1 and PAR-4 antagonists SCH 79797 and tcY-NH2 reduced Ca2+ mobilization induced by thrombin, and depletion of the DTS after desensitization or blockade of PAR-1 and PAR-4 had no significant effect on Ca2+ release stimulated by thrombin through the GPIb-IX-V receptor. Converse experiments showed that depletion of the acidic stores using TBHQ reduced Ca2+ release evoked by SFLLRN or AYPGKF, by 20 and 50% respectively, and abolished thrombin-stimulated Ca2+ release through the GPIb-IX-V receptor when PAR-1 and PAR-4 had been desensitized or blocked. Our results indicate that thrombin-induced activation of PAR-1 and PAR-4 evokes Ca2+ release from both Ca2+ stores, while activation of GPIb-IX-V by thrombin releases Ca2+ solely from the acidic compartments in human platelets. PMID:16939417

  15. Memory retrieval requires ongoing protein synthesis and NMDA receptor activity-mediated AMPA receptor trafficking.

    PubMed

    Lopez, Joëlle; Gamache, Karine; Schneider, Rilla; Nader, Karim

    2015-02-11

    Whereas consolidation and reconsolidation are considered dynamic processes requiring protein synthesis, memory retrieval has long been considered a passive readout of previously established plasticity. However, previous findings suggest that memory retrieval may be more dynamic than previously thought. This study therefore aimed at investigating the molecular mechanisms underlying memory retrieval in the rat. Infusion of protein synthesis inhibitors (rapamycin or anisomycin) in the amygdala 10 min before memory retrieval transiently impaired auditory fear memory expression, suggesting ongoing protein synthesis is required to enable memory retrieval. We then investigated the role of protein synthesis in NMDA receptor activity-mediated AMPA receptor trafficking. Coinfusion of an NMDA receptor antagonist (ifenprodil) or infusion of an AMPA receptor endocytosis inhibitor (GluA23Y) before rapamycin prevented this memory impairment. Furthermore, rapamycin transiently decreased GluA1 levels at the postsynaptic density (PSD), but did not affect extrasynaptic sites. This effect at the PSD was prevented by an infusion of GluA23Y before rapamycin. Together, these data show that ongoing protein synthesis is required before memory retrieval is engaged, and suggest that this protein synthesis may be involved in the NMDAR activity-mediated trafficking of AMPA receptors that takes place during memory retrieval.

  16. A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation.

    PubMed

    Macho, Alberto P; Schwessinger, Benjamin; Ntoukakis, Vardis; Brutus, Alexandre; Segonzac, Cécile; Roy, Sonali; Kadota, Yasuhiro; Oh, Man-Ho; Sklenar, Jan; Derbyshire, Paul; Lozano-Durán, Rosa; Malinovsky, Frederikke Gro; Monaghan, Jacqueline; Menke, Frank L; Huber, Steven C; He, Sheng Yang; Zipfel, Cyril

    2014-03-28

    Innate immunity relies on the perception of pathogen-associated molecular patterns (PAMPs) by pattern-recognition receptors (PRRs) located on the host cell's surface. Many plant PRRs are kinases. Here, we report that the Arabidopsis receptor kinase EF-TU RECEPTOR (EFR), which perceives the elf18 peptide derived from bacterial elongation factor Tu, is activated upon ligand binding by phosphorylation on its tyrosine residues. Phosphorylation of a single tyrosine residue, Y836, is required for activation of EFR and downstream immunity to the phytopathogenic bacterium Pseudomonas syringae. A tyrosine phosphatase, HopAO1, secreted by P. syringae, reduces EFR phosphorylation and prevents subsequent immune responses. Thus, host and pathogen compete to take control of PRR tyrosine phosphorylation used to initiate antibacterial immunity.

  17. Immunomodulatory effects of endogenous and synthetic peptides activating opioid receptors.

    PubMed

    Pomorska, Dorota K; Gach, Katarzyna; Janecka, Anna

    2014-01-01

    The main role of endogenous opioid peptides is the modulation of pain. Opioid peptides exert their analgesic activity by binding to the opioid receptors distributed widely in the central nervous system (CNS). However, opioid receptors are also found on tissues and organs outside the CNS, including the cells of the immune system, indicating that opioids are capable of exerting additional effects in periphery. Morphine, which is a gold standard in the treatment of chronic pain, is well-known for its immunosuppressive effects. Much less is known about the immunomodulatory effects exerted by endogenous (enkephalins, endorphins, dynorphins and endomorphins) and synthetic peptides activating opioid receptors. In this review we tried to summarize opioid peptide-mediated modulation of immune cell functions which can be stimulatory as well as inhibitory.

  18. Structural basis for selective activation of ABA receptors

    SciTech Connect

    Peterson, Francis C.; Burgie, E. Sethe; Park, Sang-Youl; Jensen, Davin R.; Weiner, Joshua J.; Bingman, Craig A.; Chang, Chia-En A.; Cutler, Sean R.; Phillips, Jr., George N.; Volkman, Brian F.

    2010-11-01

    Changing environmental conditions and lessening fresh water supplies have sparked intense interest in understanding and manipulating abscisic acid (ABA) signaling, which controls adaptive responses to drought and other abiotic stressors. We recently discovered a selective ABA agonist, pyrabactin, and used it to discover its primary target PYR1, the founding member of the PYR/PYL family of soluble ABA receptors. To understand pyrabactin's selectivity, we have taken a combined structural, chemical and genetic approach. We show that subtle differences between receptor binding pockets control ligand orientation between productive and nonproductive modes. Nonproductive binding occurs without gate closure and prevents receptor activation. Observations in solution show that these orientations are in rapid equilibrium that can be shifted by mutations to control maximal agonist activity. Our results provide a robust framework for the design of new agonists and reveal a new mechanism for agonist selectivity.

  19. Lysophospholipid activation of G protein-coupled receptors.

    PubMed

    Mutoh, Tetsuji; Chun, Jerold

    2008-01-01

    One of the major lipid biology discoveries in last decade was the broad range of physiological activities of lysophospholipids that have been attributed to the actions of lysophospholipid receptors. The most well characterized lysophospholipids are lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P). Documented cellular effects of these lipid mediators include growth-factor-like effects on cells, such as proliferation, survival, migration, adhesion, and differentiation. The mechanisms for these actions are attributed to a growing family of 7-transmembrane, G protein-coupled receptors (GPCRs). Their pathophysiological actions include immune modulation, neuropathic pain modulation, platelet aggregation, wound healing, vasopressor activity, and angiogenesis. Here we provide a brief introduction to receptor-mediated lysophospholipid signaling and physiology, and then discuss potential therapeutic roles in human diseases.

  20. Dissociation between the panicolytic effect of cannabidiol microinjected into the substantia nigra, pars reticulata, and fear-induced antinociception elicited by bicuculline administration in deep layers of the superior colliculus: The role of CB1-cannabinoid receptor in the ventral mesencephalon.

    PubMed

    da Silva, Juliana Almeida; Biagioni, Audrey Francisco; Almada, Rafael Carvalho; de Souza Crippa, José Alexandre; Cecílio Hallak, Jaime Eduardo; Zuardi, Antônio Waldo; Coimbra, Norberto Cysne

    2015-07-05

    Many studies suggest that the substantia nigra, pars reticulata (SNpr), a tegmental mesencephalic structure rich in γ-aminobutyric acid (GABA)- and cannabinoid receptor-containing neurons, is involved in the complex control of defensive responses through the neostriatum-nigral disinhibitory and nigro-tectal inhibitory GABAergic pathways during imminently dangerous situations. The aim of the present work was to investigate the role played by CB1-cannabinoid receptor of GABAergic pathways terminal boutons in the SNpr or of SNpr-endocannabinoid receptor-containing interneurons on the effect of intra-nigral microinjections of cannabidiol in the activity of nigro-tectal inhibitory pathways. GABAA receptor blockade in the deep layers of the superior colliculus (dlSC) elicited vigorous defensive behaviour. This explosive escape behaviour was followed by significant antinociception. Cannabidiol microinjection into the SNpr had a clear anti-aversive effect, decreasing the duration of defensive alertness, the frequency and duration of defensive immobility, and the frequency and duration of explosive escape behaviour, expressed by running and jumps, elicited by transitory GABAergic dysfunction in dlSC. However, the innate fear induced-antinociception was not significantly changed. The blockade of CB1 endocannabinoid receptor in the SNpr decreased the anti-aversive effect of canabidiol based on the frequency and duration of defensive immobility, the frequency of escape expressed by running, and both the frequency and duration of escape expressed by jumps. These findings suggest a CB1 mediated endocannabinoid signalling in cannabidiol modulation of panic-like defensive behaviour, but not of innate fear-induced antinociception evoked by GABAA receptor blockade with bicuculline microinjection into the superior colliculus, with a putative activity in nigro-collicular GABAergic pathways.

  1. Targeting uPAR with antagonistic recombinant human antibodies in aggressive breast cancer.

    PubMed

    LeBeau, Aaron M; Duriseti, Sai; Murphy, Stephanie T; Pepin, Francois; Hann, Byron; Gray, Joe W; VanBrocklin, Henry F; Craik, Charles S

    2013-04-01

    Components of the plasminogen activation system, which are overexpressed in aggressive breast cancer subtypes, offer appealing targets for development of new diagnostics and therapeutics. By comparing gene expression data in patient populations and cultured cell lines, we identified elevated levels of the urokinase plasminogen activation receptor (uPAR, PLAUR) in highly aggressive breast cancer subtypes and cell lines. Recombinant human anti-uPAR antagonistic antibodies exhibited potent binding in vitro to the surface of cancer cells expressing uPAR. In vivo these antibodies detected uPAR expression in triple negative breast cancer (TNBC) tumor xenografts using near infrared imaging and (111)In single-photon emission computed tomography. Antibody-based uPAR imaging probes accurately detected small disseminated lesions in a tumor metastasis model, complementing the current clinical imaging standard (18)F-fluorodeoxyglucose at detecting non-glucose-avid metastatic lesions. A monotherapy study using the antagonistic antibodies resulted in a significant decrease in tumor growth in a TNBC xenograft model. In addition, a radioimmunotherapy study, using the anti-uPAR antibodies conjugated to the therapeutic radioisotope (177)Lu, found that they were effective at reducing tumor burden in vivo. Taken together, our results offer a preclinical proof of concept for uPAR targeting as a strategy for breast cancer diagnosis and therapy using this novel human antibody technology.

  2. The interaction between uPAR and vitronectin triggers ligand-independent adhesion signalling by integrins

    PubMed Central

    Ferraris, Gian Maria Sarra; Schulte, Carsten; Buttiglione, Valentina; De Lorenzi, Valentina; Piontini, Andrea; Galluzzi, Massimiliano; Podestà, Alessandro; Madsen, Chris D; Sidenius, Nicolai

    2014-01-01

    The urokinase-type plasminogen activator receptor (uPAR) is a non-integrin vitronectin (VN) cell adhesion receptor linked to the plasma membrane by a glycolipid anchor. Through structure–function analyses of uPAR, VN and integrins, we document that uPAR-mediated cell adhesion to VN triggers a novel type of integrin signalling that is independent of integrin–matrix engagement. The signalling is fully active on VN mutants deficient in integrin binding site and is also efficiently transduced by integrins deficient in ligand binding. Although integrin ligation is dispensable, signalling is crucially dependent upon an active conformation of the integrin and its association with intracellular adaptors such as talin. This non-canonical integrin signalling is not restricted to uPAR as it poses no structural constraints to the receptor mediating cell attachment. In contrast to canonical integrin signalling, where integrins form direct mechanical links between the ECM and the cytoskeleton, the molecular mechanism enabling the crosstalk between non-integrin adhesion receptors and integrins is dependent upon membrane tension. This suggests that for this type of signalling, the membrane represents a critical component of the molecular clutch. PMID:25168639

  3. Molecular networks implicated in speech-related disorders: FOXP2 regulates the SRPX2/uPAR complex.

    PubMed

    Roll, Patrice; Vernes, Sonja C; Bruneau, Nadine; Cillario, Jennifer; Ponsole-Lenfant, Magali; Massacrier, Annick; Rudolf, Gabrielle; Khalife, Manal; Hirsch, Edouard; Fisher, Simon E; Szepetowski, Pierre

    2010-12-15

    It is a challenge to identify the molecular networks contributing to the neural basis of human speech. Mutations in transcription factor FOXP2 cause difficulties mastering fluent speech (developmental verbal dyspraxia, DVD), whereas mutations of sushi-repeat protein SRPX2 lead to epilepsy of the rolandic (sylvian) speech areas, with DVD or with bilateral perisylvian polymicrogyria. Pathophysiological mechanisms driven by SRPX2 involve modified interaction with the plasminogen activator receptor (uPAR). Independent chromatin-immunoprecipitation microarray screening has identified the uPAR gene promoter as a potential target site bound by FOXP2. Here, we directly tested for the existence of a transcriptional regulatory network between human FOXP2 and the SRPX2/uPAR complex. In silico searches followed by gel retardation assays identified specific efficient FOXP2-binding sites in each of the promoter regions of SRPX2 and uPAR. In FOXP2-transfected cells, significant decreases were observed in the amounts of both SRPX2 (43.6%) and uPAR (38.6%) native transcripts. Luciferase reporter assays demonstrated that FOXP2 expression yielded a marked inhibition of SRPX2 (80.2%) and uPAR (77.5%) promoter activity. A mutant FOXP2 that causes DVD (p.R553H) failed to bind to SRPX2 and uPAR target sites and showed impaired down-regulation of SRPX2 and uPAR promoter activity. In a patient with polymicrogyria of the left rolandic operculum, a novel FOXP2 mutation (p.M406T) was found in the leucine-zipper (dimerization) domain. p.M406T partially impaired the FOXP2 regulation of SRPX2 promoter activity, whereas that of the uPAR promoter remained unchanged. Together with recently described FOXP2-CNTNAP2 and SRPX2/uPAR links, the FOXP2-SRPX2/uPAR network provides exciting insights into molecular pathways underlying speech-related disorders.

  4. Nuclear Receptor Activity and Liver Cancer Lesion Progression

    EPA Science Inventory

    Nuclear receptors (NRs) are ligand-activated transcription factors that control diverse cellular processes. Chronic stimulation of some NRs is a non-genotoxic mechanism of rodent liver cancer with unclear relevance to humans. We explored this question using human CAR, PXR, PPARα,...

  5. Covalent agonists for studying G protein-coupled receptor activation

    PubMed Central

    Weichert, Dietmar; Kruse, Andrew C.; Manglik, Aashish; Hiller, Christine; Zhang, Cheng; Hübner, Harald; Kobilka, Brian K.; Gmeiner, Peter

    2014-01-01

    Structural studies on G protein-coupled receptors (GPCRs) provide important insights into the architecture and function of these important drug targets. However, the crystallization of GPCRs in active states is particularly challenging, requiring the formation of stable and conformationally homogeneous ligand-receptor complexes. Native hormones, neurotransmitters, and synthetic agonists that bind with low affinity are ineffective at stabilizing an active state for crystallogenesis. To promote structural studies on the pharmacologically highly relevant class of aminergic GPCRs, we here present the development of covalently binding molecular tools activating Gs-, Gi-, and Gq-coupled receptors. The covalent agonists are derived from the monoamine neurotransmitters noradrenaline, dopamine, serotonin, and histamine, and they were accessed using a general and versatile synthetic strategy. We demonstrate that the tool compounds presented herein display an efficient covalent binding mode and that the respective covalent ligand-receptor complexes activate G proteins comparable to the natural neurotransmitters. A crystal structure of the β2-adrenoreceptor in complex with a covalent noradrenaline analog and a conformationally selective antibody (nanobody) verified that these agonists can be used to facilitate crystallogenesis. PMID:25006259

  6. The cardiovascular effects of peroxisome proliferator-activated receptor agonists.

    PubMed

    Friedland, Sayuri N; Leong, Aaron; Filion, Kristian B; Genest, Jacques; Lega, Iliana C; Mottillo, Salvatore; Poirier, Paul; Reoch, Jennifer; Eisenberg, Mark J

    2012-02-01

    Although peroxisome proliferator-activated receptor agonists are prescribed to improve cardiovascular risk factors, their cardiovascular safety is controversial. We therefore reviewed the literature to identify landmark randomized controlled trials evaluating the effect of peroxisome proliferator-activated receptor gamma agonists (pioglitazone and rosiglitazone), alpha agonists (fenofibrate and gemfibrozil), and pan agonists (bezafibrate, muraglitazar, ragaglitazar, tesaglitazar, and aleglitazar) on cardiovascular outcomes. Pioglitazone may modestly reduce cardiovascular events but also may increase the risk of bladder cancer. Rosiglitazone increases the risk of myocardial infarction and has been withdrawn in European and restricted in the United States. Fibrates improve cardiovascular outcomes only in select subgroups: fenofibrate in diabetic patients with metabolic syndrome, gemfibrozil in patients with dyslipidemia, and bezafibrate in patients with diabetes or metabolic syndrome. The cardiovascular safety of the new pan agonist aleglitazar, currently in phase II trials, remains to be determined. The heterogenous effects of peroxisome proliferator-activated receptor agonists to date highlight the importance of postmarketing surveillance. The critical question of why peroxisome proliferator-activated receptor agonists seem to improve cardiovascular risk factors without significantly improving cardiovascular outcomes requires further investigation.

  7. The Search for Endogenous Activators of the Aryl Hydrocarbon Receptor

    PubMed Central

    Nguyen, Linh P.; Bradfield, Christopher A.

    2008-01-01

    In its simplest aspect, this review is an attempt to describe the major ligand classes of the aryl hydrocarbon receptor (AHR). A grander objective is to provide models that may help define the physiological activator or “endogenous ligand” of the AHR. We begin by presenting evidence that supports a developmental function for the AHR. This is followed by proposing mechanisms by which an endogenous ligand and consequent AHR activation might be important during normal physiology and development. With this background, we then present a survey of the known xenobiotic, endogenous, dietary and “un-conventional” activators of the AHR. When possible, this includes information about their induction potency, receptor binding affinity and potential for exposure. Because of the essential function of the AHR in embryonic development, we discuss the candidacy of each of these compounds as physiologically important activators. PMID:18076143

  8. Dietary modulation of peroxisome proliferator-activated receptor gamma.

    PubMed

    Marion-Letellier, R; Déchelotte, P; Iacucci, M; Ghosh, S

    2009-04-01

    Peroxisome proliferator-activated receptor gamma (PPAR gamma) is a nuclear receptor that regulates intestinal inflammation. PPAR gamma is highly expressed in the colon and can be activated by various dietary ligands. A number of fatty acids such as polyunsaturated fatty acids or eicosanoids are considered as endogenous PPAR gamma activators. Nevertheless, other nutrients such as glutamine, spicy food or flavonoids are also able to activate PPAR gamma. As PPAR gamma plays a key role in bacterial induced inflammation, anti-inflammatory properties of probiotics may be mediated through PPAR gamma. The aims of the present review are to discuss of the potential roles of dietary compounds in modulating intestinal inflammation through PPAR gamma.

  9. Identification of prostaglandin E2 receptor subtype 2 as a receptor activated by OxPAPC.

    PubMed

    Li, Rongsong; Mouillesseaux, Kevin P; Montoya, Dennis; Cruz, Daniel; Gharavi, Navid; Dun, Martin; Koroniak, Lukasz; Berliner, Judith A

    2006-03-17

    Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC), which has been shown to accumulate in atherosclerotic lesions and other sites of chronic inflammation, activates endothelial cells (EC) to bind monocytes by activation of endothelial beta1 integrin and subsequent deposition of fibronectin on the apical surface. Our previous studies suggest this function of OxPAPC is mediated via a Gs protein-coupled receptor (GPCR). PEIPC (1-palmitoyl-2-epoxyisoprostane E2-sn-glycero-3-phosphorylcholine) is the most active lipid in OxPAPC that activates this pathway. We screened a number of candidate GPCRs for their interaction with OxPAPC and PEIPC, using a reporter gene assay; we identified prostaglandin E2 receptor EP2 and prostaglandin D2 receptor DP as responsive to OxPAPC. We focused on EP2, which is expressed in ECs, monocytes, and macrophages. OxPAPC component PEIPC, but not POVPC, activated EP2 with an EC50 of 108.6 nmol/L. OxPAPC and PEIPC were also able to compete with PGE2 for binding to EP2 in a ligand-binding assay. The EP2 specific agonist butaprost was shown to mimic the effect of OxPAPC on the activation of beta1 integrin and the stimulation of monocyte binding to endothelial cells. Butaprost also mimicked the effect of OxPAPC on the regulation of tumor necrosis factor-alpha and interleukin-10 in monocyte-derived cells. EP2 antagonist AH6809 blocked the activation of EP2 by OxPAPC in HEK293 cells and blocked the interleukin-10 response to PEIPC in monocytic THP-1 cells. These results suggest that EP2 functions as a receptor for OxPAPC and PEIPC, either as the phospholipid ester or the released fatty acid, in both endothelial cells and macrophages.

  10. Silencing of the constitutive activity of the dopamine D1B receptor. Reciprocal mutations between D1 receptor subtypes delineate residues underlying activation properties.

    PubMed

    Charpentier, S; Jarvie, K R; Severynse, D M; Caron, M G; Tiberi, M

    1996-11-08

    Recently, we have shown that the dopamine D1B/D5 receptor displays binding and coupling properties that are reminiscent of those of the constitutively activated G protein-coupled receptors when compared with the related D1A/D1 receptor subtype (Tiberi, M., and Caron, M. G. (1994) J. Biol. Chem. 269, 27925-27931). The carboxyl-terminal region of the third cytoplasmic loop of several G protein-coupled receptors has been demonstrated to be important for the regulation of the equilibrium between inactive and active receptor conformations. In this cytoplasmic region, the primary structure of dopamine D1A and D1B receptors differs by only two residues: Phe264/Arg266 are present in D1A receptor compared with Ile288/Lys290 in the D1B receptor. To investigate whether these structural differences could account for the distinct binding and coupling properties of these dopamine receptor subtypes, we swapped the variant residues located in the carboxyl-terminal region by site-directed mutagenesis. The exchange of the D1A receptor residue Phe264 by the D1B receptor counterpart isoleucine led to a D1A receptor mutant exhibiting D1B-like constitutive properties. In contrast, substitution of D1B receptor Ile288 by the D1A receptor counterpart phenylalanine resulted in a loss of constitutive activation of the D1B receptor with binding and coupling properties similar to the D1A receptor. The Arg/Lys substitution had no effect on the function of either receptor. These results demonstrate that the carboxyl-terminal region, and in particular residue Ile288, is a major determinant of the constitutive activity of the dopamine D1B receptor. Moreover, these results establish that not only can agonist-independent activity of a receptor be induced, but when given the appropriate mutation, it can be reversed or silenced.

  11. [Structural regularities in activated cleavage sites of thrombin receptors].

    PubMed

    Mikhaĭlik, I V; Verevka, S V

    1999-01-01

    Comparison of thrombin receptors activation splitting sites sequences testifies to their similarity both in activation splitting sites of protein precursors and protein proteinase inhibitors reactive sites. In all these sites corresponded to effectory sites P2'-positions are placed by hydrophobic amino-acids only. The regularity defined conforms with previous thesis about the role of effectory S2'-site in regulation of the processes mediated by serine proteinases.

  12. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A

    SciTech Connect

    Sato, Shoko; Shirakawa, Hitoshi; Tomita, Shuhei; Tohkin, Masahiro; Gonzalez, Frank J.; Komai, Michio

    2013-11-15

    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein–protein interactions with GR. - Highlights: • Aryl hydrocarbon receptor forms a complex with glucocorticoid receptor in cells. • Human metallothionein gene is regulated by the AHR and GR interaction. • AHR–GR complex binds to glucocorticoid response element in metallothionein gene. • We demonstrated a novel transcriptional mechanism via AHR and GR interaction.

  13. Structural insights into µ-opioid receptor activation.

    PubMed

    Huang, Weijiao; Manglik, Aashish; Venkatakrishnan, A J; Laeremans, Toon; Feinberg, Evan N; Sanborn, Adrian L; Kato, Hideaki E; Livingston, Kathryn E; Thorsen, Thor S; Kling, Ralf C; Granier, Sébastien; Gmeiner, Peter; Husbands, Stephen M; Traynor, John R; Weis, William I; Steyaert, Jan; Dror, Ron O; Kobilka, Brian K

    2015-08-20

    Activation of the μ-opioid receptor (μOR) is responsible for the efficacy of the most effective analgesics. To shed light on the structural basis for μOR activation, here we report a 2.1 Å X-ray crystal structure of the murine μOR bound to the morphinan agonist BU72 and a G protein mimetic camelid antibody fragment. The BU72-stabilized changes in the μOR binding pocket are subtle and differ from those observed for agonist-bound structures of the β2-adrenergic receptor (β2AR) and the M2 muscarinic receptor. Comparison with active β2AR reveals a common rearrangement in the packing of three conserved amino acids in the core of the μOR, and molecular dynamics simulations illustrate how the ligand-binding pocket is conformationally linked to this conserved triad. Additionally, an extensive polar network between the ligand-binding pocket and the cytoplasmic domains appears to play a similar role in signal propagation for all three G-protein-coupled receptors.

  14. A transgenic zebrafish model for monitoring glucocorticoid receptor activity

    PubMed Central

    Krug, Randall G.; Poshusta, Tanya L.; Skuster, Kimberly J.; Berg, MaKayla R.; Gardner, Samantha L.; Clark, Karl J.

    2014-01-01

    Gene regulation resulting from glucocorticoid receptor and glucocorticoid response element interactions is a hallmark feature of stress response signaling. Imbalanced glucocorticoid production and glucocorticoid receptor activity have been linked to socio-economically crippling neuropsychiatric disorders, and accordingly there is a need to develop in vivo models to help understand disease progression and management. Therefore, we developed the transgenic SR4G zebrafish reporter line with six glucocorticoid response elements used to promote expression of a short half-life green fluorescent protein following glucocorticoid receptor activation. Herein, we document the ability of this reporter line to respond to both chronic and acute exogenous glucocorticoid treatment. The green fluorescent protein expression in response to transgene activation was high in a variety of tissues including the brain, and provided single cell resolution in the effected regions. The specificity of these responses is demonstrated using the partial agonist mifepristone and mutation of the glucocorticoid receptor. Importantly, the reporter line also modeled the temporal dynamics of endogenous stress response signaling, including the increased production of the glucocorticoid cortisol following hyperosmotic stress and the fluctuations of basal cortisol concentrations with the circadian rhythm. Taken together, these results characterize our newly developed reporter line for elucidating environmental or genetic modifiers of stress response signaling, which may provide insights to the neuronal mechanisms underlying neuropsychiatric disorders such as major depressive disorder. PMID:24679220

  15. Receptor for bombesin with associated tyrosine kinase activity.

    PubMed Central

    Cirillo, D M; Gaudino, G; Naldini, L; Comoglio, P M

    1986-01-01

    The neuropeptide bombesin is known for its potent mitogenic activity on murine 3T3 fibroblasts and other cells. Recently it has been implicated in the pathogenesis of small cell lung carcinoma, in which it acts through an autocrine loop of growth stimulation. Phosphotyrosine (P-Tyr) antibodies have been successfully used to recognize the autophosphorylated receptors for known growth factors. In Swiss 3T3 fibroblasts, phosphotyrosine antibodies identified a 115,000-Mr cell surface protein (p115) that became phosphorylated on tyrosine as a specific response to bombesin stimulation of quiescent cells. The extent of phosphorylation was dose dependent and correlated with the mitogenic effect induced by bombesin, measured by [3H]thymidine incorporation. Tyrosine phosphorylation of p115 was detectable minutes after the addition of bombesin, and its time course paralleled that described for the binding of bombesin to its receptor. Immunocomplexes of phosphorylated p115 and phosphotyrosine antibodies bound 125I-labeled [Tyr4]bombesin in a specific and saturable manner and displayed an associated tyrosine kinase activity enhanced by bombesin. Furthermore, the 125I-labeled bombesin analog gastrin-releasing peptide, bound to intact live cells, was coprecipitated with p115. These data strongly suggest that p115 participates in the structure and function of the surface receptor for bombesin, a new member of the family of growth factor receptors with associated tyrosine kinase activity. Images PMID:2432404

  16. Regulation of ligands for the NKG2D activating receptor

    PubMed Central

    Raulet, David H.; Gasser, Stephan; Gowen, Benjamin G.; Deng, Weiwen; Jung, Heiyoun

    2014-01-01

    NKG2D is an activating receptor expressed by all NK cells and subsets of T cells. It serves as a major recognition receptor for detection and elimination of transformed and infected cells and participates in the genesis of several inflammatory diseases. The ligands for NKG2D are self-proteins that are induced by pathways that are active in certain pathophysiological states. NKG2D ligands are regulated transcriptionally, at the level of mRNA and protein stability, and by cleavage from the cell surface. In some cases, ligand induction can be attributed to pathways that are activated specifically in cancer cells or infected cells. We review the numerous pathways that have been implicated in the regulation of NKG2D ligands, discuss the pathologic states in which those pathways are likely to act, and attempt to synthesize the findings into general schemes of NKG2D ligand regulation in NK cell responses to cancer and infection. PMID:23298206

  17. Peroxisome proliferator-activated receptor alpha target genes.

    PubMed

    Rakhshandehroo, Maryam; Knoch, Bianca; Müller, Michael; Kersten, Sander

    2010-01-01

    The peroxisome proliferator-activated receptor alpha (PPARα) is a ligand-activated transcription factor involved in the regulation of a variety of processes, ranging from inflammation and immunity to nutrient metabolism and energy homeostasis. PPARα serves as a molecular target for hypolipidemic fibrates drugs which bind the receptor with high affinity. Furthermore, PPARα binds and is activated by numerous fatty acids and fatty acid-derived compounds. PPARα governs biological processes by altering the expression of a large number of target genes. Accordingly, the specific role of PPARα is directly related to the biological function of its target genes. Here, we present an overview of the involvement of PPARα in lipid metabolism and other pathways through a detailed analysis of the different known or putative PPARα target genes. The emphasis is on gene regulation by PPARα in liver although many of the results likely apply to other organs and tissues as well.

  18. Peroxisome Proliferator-Activated Receptor Alpha Target Genes

    PubMed Central

    Rakhshandehroo, Maryam; Knoch, Bianca; Müller, Michael; Kersten, Sander

    2010-01-01

    The peroxisome proliferator-activated receptor alpha (PPARα) is a ligand-activated transcription factor involved in the regulation of a variety of processes, ranging from inflammation and immunity to nutrient metabolism and energy homeostasis. PPARα serves as a molecular target for hypolipidemic fibrates drugs which bind the receptor with high affinity. Furthermore, PPARα binds and is activated by numerous fatty acids and fatty acid-derived compounds. PPARα governs biological processes by altering the expression of a large number of target genes. Accordingly, the specific role of PPARα is directly related to the biological function of its target genes. Here, we present an overview of the involvement of PPARα in lipid metabolism and other pathways through a detailed analysis of the different known or putative PPARα target genes. The emphasis is on gene regulation by PPARα in liver although many of the results likely apply to other organs and tissues as well. PMID:20936127

  19. Biological Signaling: the Role of ``Electrostatic Epicenter'' in ``Protein Quake'' and Receptor Activation

    NASA Astrophysics Data System (ADS)

    Xie, Aihua; Kaledhonkar, Sandip; Kang, Zhouyang; Hendriks, Johnny; Hellingwerf, Klaas

    2013-03-01

    Activation of a receptor protein during biological signaling is often characterized by a two state model: a receptor state (also called ``off state'') for detection of a stimuli, and a signaling state (``on state'') for signal relay. Receptor activation is a process that a receptor protein is structurally transformed from its receptor state to its signaling state through substantial conformational changes that are recognizable by its downstream signal relay partner. What are the structural and energetic origins for receptor activation in biological signaling? We report extensive evidence that further support the role of ``electrostatic epicenter'' in driving ``protein quake'' and receptor activation. Photoactive yellow protein (PYP), a bacterial blue light photoreceptor protein for the negative phototaxis of a salt loving Halorhodospira halophia, is employed as a model system in this study. We will discuss potential applications of this receptor activation mechanism to other receptor proteins, including B-RAF receptor protein that is associated with many cancers.

  20. CINPA1 is an inhibitor of constitutive androstane receptor that does not activate pregnane X receptor.

    PubMed

    Cherian, Milu T; Lin, Wenwei; Wu, Jing; Chen, Taosheng

    2015-05-01

    Constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are xenobiotic sensors that enhance the detoxification and elimination of xenobiotics and endobiotics by modulating the expression of genes encoding drug-metabolizing enzymes and transporters. Elevated levels of drug-metabolizing enzymes and efflux transporters, resulting from CAR activation in various cancers, promote the elimination of chemotherapeutic agents, leading to reduced therapeutic effectiveness and acquired drug resistance. CAR inhibitors, in combination with existing chemotherapeutics, could therefore be used to attenuate multidrug resistance in cancers. Interestingly, all previously reported CAR inverse-agonists are also activators of PXR, rendering them mechanistically counterproductive in tissues where both these xenobiotic receptors are present and active. We used a directed high-throughput screening approach, followed by subsequent mechanistic studies, to identify novel, potent, and specific small-molecule CAR inhibitors that do not activate PXR. We describe here one such inhibitor, CINPA1 (CAR inhibitor not PXR activator 1), capable of reducing CAR-mediated transcription with an IC50 of ∼70 nM. CINPA1 1) is a specific xenobiotic receptor inhibitor and has no cytotoxic effects up to 30 µM; 2) inhibits CAR-mediated gene expression in primary human hepatocytes, where CAR is endogenously expressed; 3) does not alter the protein levels or subcellular localization of CAR; 4) increases corepressor and reduces coactivator interaction with the CAR ligand-binding domain in mammalian two-hybrid assays; and 5) disrupts CAR binding to the promoter regions of target genes in chromatin immunoprecipitation assays. CINPA1 could be used as a novel molecular tool for understanding CAR function.

  1. Disturbance of vasodilation via protease-activated receptor 2 in SHRSP.Z-Lepr fa/IzmDmcr rats with metabolic syndrome.

    PubMed

    Kagota, Satomi; Maruyama, Kana; Wakuda, Hirokazu; McGuire, John J; Yoshikawa, Noriko; Nakamura, Kazuki; Shinozuka, Kazumasa

    2014-10-01

    Protease-activated receptor-2 (PAR2) activation causes vascular inflammation and vasodilation, but its role in metabolic syndrome (MetS) remains uncertain. Therefore, we examined whether the PAR2-induced vasodilation of SHRSP.Z-Lepr(fa)/IzmDmcr rats (SHRSP.ZF) is impaired and if so, whether administering telmisartan is protective. PAR2-activating peptide, 2-furoyl-LIGRLO-amide (2fly), relaxed the isolated superior and first-order branches of mesenteric arteries (MAs) from Wistar-Kyoto rats (WKY) and SHRSP.ZF. Superior-MA relaxation by 2fly was less in SHRSP.ZF than in WKY. Relaxation of first-order MAs by 2fly was the same in SHRSP.ZF and WKY. NO synthase inhibitor partially reduced 2fly-induced relaxation of superior and first-order MAs in SHRSP.ZF and WKY; inhibition of relaxation was proportionately larger in SHRSP.ZF. In SHRSP.ZF, nitroprusside-induced relaxation and the expression of soluble guanylyl cyclase decreased. In SHRSP.ZF, telmisartan reversed these abnormalities, and decreased blood pressure and serum levels of thiobarbituric acid reactive substances, an index of oxidative stress. Vasodilation via PAR2 activation was preserved in small-caliber MAs, in contrast to large-caliber MAs, even when MetS reduced NO-dependent relaxation mechanisms. NO and non-NO relaxing factor(s) contributed to PAR2-mediated relaxation in MAs, and the balance between factors may be altered to preserve vasodilation in MetS. Telmisartan prevented vascular dysfunction in MetS by protecting arteries against oxidative stress.

  2. Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling.

    PubMed

    Grøntved, Lars; Waterfall, Joshua J; Kim, Dong Wook; Baek, Songjoon; Sung, Myong-Hee; Zhao, Li; Park, Jeong Won; Nielsen, Ronni; Walker, Robert L; Zhu, Yuelin J; Meltzer, Paul S; Hager, Gordon L; Cheng, Sheue-yann

    2015-04-28

    A bimodal switch model is widely used to describe transcriptional regulation by the thyroid hormone receptor (TR). In this model, the unliganded TR forms stable, chromatin-bound complexes with transcriptional co-repressors to repress transcription. Binding of hormone dissociates co-repressors and facilitates recruitment of co-activators to activate transcription. Here we show that in addition to hormone-independent TR occupancy, ChIP-seq against endogenous TR in mouse liver tissue demonstrates considerable hormone-induced TR recruitment to chromatin associated with chromatin remodelling and activated gene transcription. Genome-wide footprinting analysis using DNase-seq provides little evidence for TR footprints both in the absence and presence of hormone, suggesting that unliganded TR engagement with repressive complexes on chromatin is, similar to activating receptor complexes, a highly dynamic process. This dynamic and ligand-dependent interaction with chromatin is likely shared by all steroid hormone receptors regardless of their capacity to repress transcription in the absence of ligand.

  3. Conserved phosphorylation sites in the activation loop of the Arabidopsis phytosulfokine receptor PSKR1 differentially affect kinase and receptor activity

    PubMed Central

    Hartmann, Jens; Linke, Dennis; Bönniger, Christine; Tholey, Andreas; Sauter, Margret

    2015-01-01

    PSK (phytosulfokine) is a plant peptide hormone perceived by a leucine-rich repeat receptor kinase. Phosphosite mapping of epitope-tagged PSKR1 (phytosulfokine receptor 1) from Arabidopsis thaliana plants identified Ser696 and Ser698 in the JM (juxtamembrane) region and probably Ser886 and/or Ser893 in the AL (activation loop) as in planta phosphorylation sites. In vitro-expressed kinase was autophosphorylated at Ser717 in the JM, and at Ser733, Thr752, Ser783, Ser864, Ser911, Ser958 and Thr998 in the kinase domain. The LC–ESI–MS/MS spectra provided support that up to three sites (Thr890, Ser893 and Thr894) in the AL were likely to be phosphorylated in vitro. These sites are evolutionarily highly conserved in PSK receptors, indicative of a conserved function. Site-directed mutagenesis of the four conserved residues in the activation segment, Thr890, Ser893, Thr894 and Thr899, differentially altered kinase activity in vitro and growth-promoting activity in planta. The T899A and the quadruple-mutated TSTT-A (T890A/S893A/T894A/T899A) mutants were both kinase-inactive, but PSKR1(T899A) retained growth-promoting activity. The T890A and S893A/T894A substitutions diminished kinase activity and growth promotion. We hypothesize that phosphorylation within the AL activates kinase activity and receptor function in a gradual and distinctive manner that may be a means to modulate the PSK response. PMID:26472115

  4. A protease-activated receptor 2 agonist (AC-264613) suppresses interferon regulatory factor 5 and decreases interleukin-12p40 production by lipopolysaccharide-stimulated macrophages: Role of p53.

    PubMed

    Yamaguchi, Rui; Yamamoto, Takatoshi; Sakamoto, Arisa; Ishimaru, Yasuji; Narahara, Shinji; Sugiuchi, Hiroyuki; Yamaguchi, Yasuo

    2016-06-01

    The transcription factor interferon regulatory factor 5 (IRF5) has a key role in the production of interleukin (IL)-12 by macrophages. IRF5 is also a central mediator of toll-like receptor signaling and is a direct target of p53. Activation of protease-activated receptor 2 (PAR-2) upregulates p53 and suppresses apoptosis. This study investigated the influence of human neutrophil elastase (HNE) and PAR-2 agonists on expression of IRF5 and IL-12p40 by macrophages stimulated with lipopolysaccharide. Granulocyte-macrophage colony-stimulating factor (GM-CSF)-dependent macrophages showed upregulation of IRF5 expression, while HNE reduced expression of p53 and IRF5 in a concentration-dependent manner. HNE also caused a concentration-dependent decrease of IRF5 in macrophages transfected with small interfering RNA to silence p53, while silencing of β-arrestin 2 blunted the reduction of p53 or IRF5 by HNE. Incubation of macrophages with a PAR-2 agonist, AC-264613, caused a decrease of IRF5 expression and also significantly reduced p53 protein expression. HNE upregulated the expression of tumor necrosis factor receptor-associated factor 6 (TRAF6) and caused transactivation of TLR4, while AC-264613 did not promote TLR4 transactivation. In conclusion, the PAR-2 agonist AC-264613 attenuated IRF5-associated IL-12p40 production by macrophages.

  5. Allosteric receptor activation by the plant peptide hormone phytosulfokine.

    PubMed

    Wang, Jizong; Li, Hongju; Han, Zhifu; Zhang, Heqiao; Wang, Tong; Lin, Guangzhong; Chang, Junbiao; Yang, Weicai; Chai, Jijie

    2015-09-10

    Phytosulfokine (PSK) is a disulfated pentapeptide that has a ubiquitous role in plant growth and development. PSK is perceived by its receptor PSKR, a leucine-rich repeat receptor kinase (LRR-RK). The mechanisms underlying the recognition of PSK, the activation of PSKR and the identity of the components downstream of the initial binding remain elusive. Here we report the crystal structures of the extracellular LRR domain of PSKR in free, PSK- and co-receptor-bound forms. The structures reveal that PSK interacts mainly with a β-strand from the island domain of PSKR, forming an anti-β-sheet. The two sulfate moieties of PSK interact directly with PSKR, sensitizing PSKR recognition of PSK. Supported by biochemical, structural and genetic evidence, PSK binding enhances PSKR heterodimerization with the somatic embryogenesis receptor-like kinases (SERKs). However, PSK is not directly involved in PSKR-SERK interaction but stabilizes PSKR island domain for recruitment of a SERK. Our data reveal the structural basis for PSKR recognition of PSK and allosteric activation of PSKR by PSK, opening up new avenues for the design of PSKR-specific small molecules.

  6. Tumor therapeutics by design: targeting and activation of death receptors.

    PubMed

    Wajant, Harald; Gerspach, Jeannette; Pfizenmaier, Klaus

    2005-02-01

    Due to their strong apoptosis-inducing capacity, the death receptor ligands CD95L, TNF and TRAIL have been widely viewed as potential cancer therapeutics. While clinical data with CD95L and TRAIL are not yet available, TNF is a registered drug, albeit only for loco-regional application in a limited number of indications. The TNF experience has told us that specific delivery and restricted action is a major challenge in the development of multifunctional, pleiotropically acting cytokines into effective cancer therapeutics. Thus, gene-therapeutic approaches and new cytokine variants have been designed over the last 10 years with the aim of increasing anti-tumoral activity and reducing systemic side effects. Here, we present our current view of the therapeutic potential of the death receptor ligands TNF, CD95L and TRAIL and of the progress made towards improving their efficacy by tumor targeting, use of gene therapy and genetic engineering. Results generated with newly designed fusion proteins suggest that enhanced tumor-directed activity and prevention of undesirable actions of death receptor ligands is possible, thereby opening up a useful therapeutic window for all of the death receptor ligands, including CD95L.

  7. Different phenolic compounds activate distinct human bitter taste receptors.

    PubMed

    Soares, Susana; Kohl, Susann; Thalmann, Sophie; Mateus, Nuno; Meyerhof, Wolfgang; De Freitas, Victor

    2013-02-20

    Bitterness is a major sensory attribute of several common foods and beverages rich in polyphenol compounds. These compounds are reported as very important for health as chemopreventive compounds, but they are also known to taste bitter. In this work, the activation of the human bitter taste receptors, TAS2Rs, by six polyphenol compounds was analyzed. The compounds chosen are present in a wide range of plant-derived foods and beverages, namely, red wine, beer, tea, and chocolate. Pentagalloylglucose (PGG) is a hydrolyzable tannin, (-)-epicatechin is a precursor of condensed tannins, procyanidin dimer B3 and trimer C2 belong to the condensed tannins, and malvidin-3-glucoside and cyanidin-3-glucoside are anthocyanins. The results show that the different compounds activate different combinations of the ~25 TAS2Rs. (-)-Epicatechin activated three receptors, TAS2R4, TAS2R5, and TAS2R39, whereas only two receptors, TAS2R5 and TAS2R39, responded to PGG. In contrast, malvidin-3-glucoside and procyanidin trimer stimulated only one receptor, TAS2R7 and TAS2R5, respectively. Notably, tannins are the first natural agonists found for TAS2R5 that display high potency only toward this receptor. The catechol and/or galloyl groups appear to be important structural determinants that mediate the interaction of these polyphenolic compounds with TAS2R5. Overall, the EC(50) values obtained for the different compounds vary 100-fold, with the lowest values for PGG and malvidin-3-glucoside compounds, suggesting that they could be significant polyphenols responsible for the bitterness of fruits, vegetables, and derived products even if they are present in very low concentrations.

  8. Pyrimidinergic Receptor Activation Controls Toxoplasma gondii Infection in Macrophages

    PubMed Central

    Moreira-Souza, Aline Cristina Abreu; Marinho, Ygor; Correa, Gladys; Santoro, Giani França; Coutinho, Claudia Mara Lara Melo; Vommaro, Rossiane Claudia; Coutinho-Silva, Robson

    2015-01-01

    Infection by the protozoan parasite Toxoplasma gondii is highly prevalent worldwide and may have serious clinical manifestations in immunocompromised patients. T. gondii is an obligate intracellular parasite that infects almost any cell type in mammalian hosts, including immune cells. The immune cells express purinergic P2 receptors in their membrane – subdivided into P2Y and P2X subfamilies - whose activation is important for infection control. Here, we examined the effect of treatment with UTP and UDP in mouse peritoneal macrophages infected with T. gondii tachyzoites. Treatment with these nucleotides reduced parasitic load by 90%, but did not increase the levels of the inflammatory mediators NO and ROS, nor did it modulate host cell death by apoptosis or necrosis. On the other hand, UTP and UDP treatments induced early egress of tachyzoites from infected macrophages, in a Ca2+-dependent manner, as shown by scanning electron microscopy analysis, and videomicroscopy. In subsequent infections, prematurely egressed parasites had reduced infectivity, and could neither replicate nor inhibit the fusion of lysosomes to the parasitophorous vacuole. The use of selective agonists and antagonists of the receptor subtypes P2Y2 and P2Y4 and P2Y6 showed that premature parasite egress may be mediated by the activation of these receptor subtypes. Our results suggest that the activity of P2Y host cell receptors controls T. gondii infection in macrophages, highlighting the importance of pyrimidinergic signaling for innate immune system response against infection. Finally the P2Y receptors should be considered as new target for the development of drugs against T. gondii infection. PMID:26192447

  9. Differential effects of quercetin glycosides on GABAC receptor channel activity.

    PubMed

    Kim, Hyeon-Joong; Lee, Byung-Hwan; Choi, Sun-Hye; Jung, Seok-Won; Kim, Hyun-Sook; Lee, Joon-Hee; Hwang, Sung-Hee; Pyo, Mi-Kyung; Kim, Hyoung-Chun; Nah, Seung-Yeol

    2015-01-01

    Quercetin, a representative flavonoid, is a compound of low molecular weight found in various colored plants and vegetables. Quercetin shows a wide range of neuropharmacological activities. In fact, quercetin naturally exists as monomer-(quercetin-3-O-rhamnoside) (Rham1), dimer-(Rutin), or trimer-glycosides [quercetin-3-(2(G)-rhamnosylrutinoside)] (Rham2) at carbon-3 in fruits and vegetables. The carbohydrate components are removed after ingestion into gastrointestinal systems. The role of the glycosides attached to quercetin in the regulation of γ-aminobutyric acid class C (GABAC) receptor channel activity has not been determined. In the present study, we examined the effects of quercetin glycosides on GABAC receptor channel activity by expressing human GABAC alone in Xenopus oocytes using a two-electrode voltage clamp technique and also compared the effects of quercetin glycosides with quercetin. We found that GABA-induced inward current (I GABA ) was inhibited by quercetin or quercetin glycosides. The inhibitory effects of quercetin and its glycosides on I GABA were concentration-dependent and reversible in the order of Rutin ≈ quercetin ≈ Rham 1 > Rham 2. The inhibitory effects of quercetin and its glycosides on I GABA were noncompetitive and membrane voltage-insensitive. These results indicate that quercetin and its glycosides regulate GABAC receptor channel activity through interaction with a different site from that of GABA, and that the number of carbohydrate attached to quercetin might play an important role in the regulation of GABAC receptor channel activity.

  10. An integrative framework of the skin receptors activation: mechanoreceptors activity patterns versus "labeled lines".

    PubMed

    Zeveke, Alexander V; Efes, Ekaterina D; Polevaya, Sofia A

    2013-03-01

    The paper presents a review of electrophysiological data which indicate the integrative mechanisms of information coded in the human and animal peripheral skin receptors. The activity of the skin sensory receptors was examined by applying various natural stimuli. It was revealed that numerous identical receptors respond to various stimuli (mechanical, temperature, and pain ones), but the spike patterns of these receptors were found to be specific for each stimulus. The description of characteristic structures of spike patterns in the cutaneous nerve fibers in response to five major modalities, namely: "touch", "pain", "vibration/breath", "cold", and "heat", is being presented. The recordings of the cutaneous physical state revealed a correlation between the patterns of spatiotemporal skin deformation and the receptors activity. A rheological state of the skin can be changed either in response to external temperature variation or by the sympathetic pilomotor activation. These results indicate that the skin sensory receptors activity may be considered as an integrative process. It depends not only on the receptors themselves, but also on the changes in the surrounding tissue and on the adaptive influence of the central nervous system. A new framework for the sensory channel system related to the skin is proposed on the basis of experimental results.

  11. House dust mite potentiates capsaicin-evoked Ca2+ transients in mouse pulmonary sensory neurons via activation of protease-activated receptor-2.

    PubMed

    Gu, Qihai; Lee, Lu-Yuan

    2012-04-01

    House dust mite (HDM) is a major source of allergen in house dust and has been suggested to be involved in the pathogenesis of asthma. In this study, we aimed to investigate whether HDM can modulate the sensitivity of pulmonary sensory neurons and, if so, to elucidate the underlying mechanism. Fura-2-based ratiometric Ca(2+) imaging was carried out to determine the effect of HDM extract on the capsaicin-evoked Ca(2+) transient in mouse vagal pulmonary sensory neurons. Pretreatment with HDM (50 μg ml(-1), 5 min) significantly enhanced the Ca(2+) transient evoked by capsaicin in these neurons isolated from wild-type mice. This potentiating effect of HDM was not antagonized by E-64, a selective cysteine protease inhibitor, but was completely prevented by AEBSF, a specific serine protease inhibitor. In addition, the potentiating effect of HDM on capsaicin-evoked Ca(2+) transient was absent in the pulmonary sensory neurons isolated from protease-activated receptor-2 (PAR(2)) knockout mice. Furthermore, the sensitizing effect of HDM was completely abolished by U73122, a phosholipase C inhibitor, or chelerythrine, a protein kinase C inhibitor. In summary, our results demonstrate that HDM, mainly through its serine protease activity, potentiates capsaicin-evoked Ca(2+) transient in mouse pulmonary sensory neurons via the activation of PAR(2) and the phosholipase C-protein kinase C intracellular transduction cascade.

  12. Human peroxisome proliferator-activated receptor mRNA and protein expression during development

    EPA Science Inventory

    The peroxisome proliferator-activated receptors (PPAR) are nuclear hormone receptors that regulate lipid and glucose homeostasis and are important in reproduction and development. PPARs are targets ofpharmaceuticals and are also activated by environmental contaminants, including ...

  13. Allosterism and Structure in Thermally Activated Transient Receptor Potential Channels.

    PubMed

    Diaz-Franulic, Ignacio; Poblete, Horacio; Miño-Galaz, Germán; González, Carlos; Latorre, Ramón

    2016-07-05

    The molecular sensors that mediate temperature changes in living organisms are a large family of proteins known as thermosensitive transient receptor potential (TRP) ion channels. These membrane proteins are polymodal receptors that can be activated by cold or hot temperatures, depending on the channel subtype, voltage, and ligands. The stimuli sensors are allosterically coupled to a pore domain, increasing the probability of finding the channel in its ion conductive conformation. In this review we first discuss the allosteric coupling between the temperature and voltage sensor modules and the pore domain, and then discuss the thermodynamic foundations of thermo-TRP channel activation. We provide a structural overview of the molecular determinants of temperature sensing. We also posit an anisotropic thermal diffusion model that may explain the large temperature sensitivity of TRP channels. Additionally, we examine the effect of several ligands on TRP channel function and the evidence regarding their mechanisms of action.

  14. Morpheus: a conformation-activity relationships and receptor modeling package.

    PubMed

    Andrews, P R; Quint, G; Winkler, D A; Richardson, D; Sadek, M; Spurling, T H

    1989-09-01

    Our molecular modeling software package, MORPHEUS, allows the study of the interactions between biologically active molecules and their receptors. The package is capable of exploring the multidimensional conformational space accessible to each molecule of the data set under study. By specifying distance constraints or hypothetical receptor binding points, the package is able to filter the biologically accessible conformations of each active compound and deduce a three-dimensional model of the binding sites consistent with the properties of the agonists (or antagonists) under scrutiny. The electrostatic potentials in the environment of a putative binding site can also be investigated using the MORPHEUS package. The molecular modeling module CRYS-X, which is written in FORTRAN 77 for IBM PC machines, is capable of building, displaying and manipulating molecules.

  15. An allosteric role for receptor activity-modifying proteins in defining GPCR pharmacology

    PubMed Central

    J Gingell, Joseph; Simms, John; Barwell, James; Poyner, David R; Watkins, Harriet A; Pioszak, Augen A; Sexton, Patrick M; Hay, Debbie L

    2016-01-01

    G protein-coupled receptors are allosteric proteins that control transmission of external signals to regulate cellular response. Although agonist binding promotes canonical G protein signalling transmitted through conformational changes, G protein-coupled receptors also interact with other proteins. These include other G protein-coupled receptors, other receptors and channels, regulatory proteins and receptor-modifying proteins, notably receptor activity-modifying proteins (RAMPs). RAMPs have at least 11 G protein-coupled receptor partners, including many class B G protein-coupled receptors. Prototypic is the calcitonin receptor, with altered ligand specificity when co-expressed with RAMPs. To gain molecular insight into the consequences of this protein–protein interaction, we combined molecular modelling with mutagenesis of the calcitonin receptor extracellular domain, assessed in ligand binding and functional assays. Although some calcitonin receptor residues are universally important for peptide interactions (calcitonin, amylin and calcitonin gene-related peptide) in calcitonin receptor alone or with receptor activity-modifying protein, others have RAMP-dependent effects, whereby mutations decreased amylin/calcitonin gene-related peptide potency substantially only when RAMP was present. Remarkably, the key residues were completely conserved between calcitonin receptor and AMY receptors, and between subtypes of AMY receptor that have different ligand preferences. Mutations at the interface between calcitonin receptor and RAMP affected ligand pharmacology in a RAMP-dependent manner, suggesting that RAMP may allosterically influence the calcitonin receptor conformation. Supporting this, molecular dynamics simulations suggested that the calcitonin receptor extracellular N-terminal domain is more flexible in the presence of receptor activity-modifying protein 1. Thus, RAMPs may act in an allosteric manner to generate a spectrum of unique calcitonin receptor

  16. Aryl hydrocarbon receptor-independent activation of estrogen receptor-dependent transcription by 3-methylcholanthrene.

    PubMed

    Shipley, Jonathan M; Waxman, David J

    2006-06-01

    Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that stimulates transcription directed by xenobiotic response elements upstream of target genes. Recently, AhR ligands were reported to induce formation of an AhR-estrogen receptor (ER) complex, which can bind to estrogen response elements (EREs) and stimulate transcription of ER target genes. Presently, we investigate the effect of the AhR ligands 3-methylcholanthrene (3MC), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 3,3',4,4',5-pentachlorobiphenyl (BZ126) on ERE-regulated luciferase reporter activity and endogenous ER target gene expression. In MCF-7 human breast cancer cells, 3MC induced transcription of ER reporter genes containing native promoter sequences of the ER-responsive genes complement 3 and pS2 and heterologous promoters regulated by isolated EREs. Dose-response studies revealed that the concentration of 3MC required to half-maximally activate transcription (EC(50)) was >100-fold higher for an ER reporter (27-57 muM) than for an AhR reporter (86-250 nM) in both MCF-7 cells and in human endometrial cancer Ishikawa cells. 3MC also stimulated expression of the endogenous ER target genes amphiregulin, cathepsin D and progesterone receptor, albeit to a much lower extent than was achieved following stimulation with 17beta-estradiol. In Ishikawa cells, 3MC, but not BZ126 or TCDD, stimulated ERalpha-dependent reporter activity but did not induce expression of endogenous ER target genes. Finally, studies carried out in the AhR-positive rat hepatoma cell line 5L and the AhR-deficient variant BP8 demonstrated that ER reporter activity could be induced by 3MC in a manner that was independent of AhR and thus distinct from the AhR-ER 'hijacking' mechanism described recently. 3MC may thus elicit estrogenic activity by multiple mechanisms.

  17. Effects of tobacco ethylene receptor mutations on receptor kinase activity, plant growth and stress responses.

    PubMed

    Chen, Tao; Liu, Jun; Lei, Gang; Liu, Yun-Feng; Li, Zhi-Gang; Tao, Jian-Jun; Hao, Yu-Jun; Cao, Yang-Rong; Lin, Qing; Zhang, Wan-Ke; Ma, Biao; Chen, Shou-Yi; Zhang, Jin-Song

    2009-09-01

    Ethylene receptor is the first component of ethylene signaling that regulates plant growth, development and stress responses. Previously, we have demonstrated that tobacco subfamily 2 ethylene receptor NTHK1 had Ser/Thr kinase activity, and overexpression of NTHK1 caused large rosette, reduced ethylene sensitivity, and increased salt sensitivity in transgenic Arabidopsis plants. Here we found that N-box mutation in the NTHK1 kinase domain abolished the kinase activity and led to disruption of NTHK1 roles in conferring reduced ethylene sensitivity and salt sensitive response in transgenic Arabidopsis plants. However, N-box mutation had partial effects on NTHK1 regulation of rosette growth and expression of salt- and ethylene-responsive genes AtNAC2, AtERF1 and AtCor6.6. Mutation of conserved residues in the H box did not affect kinase activity, seedling growth, ethylene sensitivity or salt-induced epinasty in transgenic plants but did influence NTHK1 function in control of specific salt- and ethylene-responsive gene expression. Compared with NTHK1, the tobacco subfamily 1 ethylene receptor NtETR1 had His kinase activity and played a weak role in regulation of rosette growth, triple response and salt response. Mutation of the conserved His residue in the NtETR1 H box eliminated phosphorylation and altered the effect of Ntetr1-1 on reporter gene activity. These results imply that the Ser/Thr kinase activity of NTHK1 is differentially required for various responses, and NTHK1 plays a larger role than NtETR1.

  18. Pharmacological activation of lysophosphatidic acid receptors regulates erythropoiesis

    PubMed Central

    Lin, Kuan-Hung; Ho, Ya-Hsuan; Chiang, Jui-Chung; Li, Meng-Wei; Lin, Shi-Hung; Chen, Wei-Min; Chiang, Chi-Ling; Lin, Yu-Nung; Yang, Ya-Jan; Chen, Chiung-Nien; Lu, Jenher; Huang, Chang-Jen; Tigyi, Gabor; Yao, Chao-Ling; Lee, Hsinyu

    2016-01-01

    Lysophosphatidic acid (LPA), a growth factor-like phospholipid, regulates numerous physiological functions, including cell proliferation and differentiation. In a previous study, we have demonstrated that LPA activates erythropoiesis by activating the LPA 3 receptor subtype (LPA3) under erythropoietin (EPO) induction. In the present study, we applied a pharmacological approach to further elucidate the functions of LPA receptors during red blood cell (RBC) differentiation. In K562 human erythroleukemia cells, knockdown of LPA2 enhanced erythropoiesis, whereas knockdown of LPA3 inhibited RBC differentiation. In CD34+ human hematopoietic stem cells (hHSC) and K526 cells, the LPA3 agonist 1-oleoyl-2-methyl-sn-glycero-3-phosphothionate (2S-OMPT) promoted erythropoiesis, whereas the LPA2 agonist dodecyl monophosphate (DMP) and the nonlipid specific agonist GRI977143 (GRI) suppressed this process. In zebrafish embryos, hemoglobin expression was significantly increased by 2S-OMPT treatment but was inhibited by GRI. Furthermore, GRI treatment decreased, whereas 2S-OMPT treatment increased RBC counts and amount of hemoglobin level in adult BALB/c mice. These results indicate that LPA2 and LPA3 play opposing roles during RBC differentiation. The pharmacological activation of LPA receptor subtypes represent a novel strategies for augmenting or inhibiting erythropoiesis. PMID:27244685

  19. Techniques for measuring intercepted and absorbed PAR in corn canopies

    NASA Technical Reports Server (NTRS)

    Gallo, K. P.; Daughtry, C. S. T.

    1984-01-01

    The quantity of radiation potentially available for photosynthesis that is captured by the crop is best described as absorbed photosynthetically active radiation (PAR). Absorbed PAR (APAR) is the difference between descending and ascending fluxes. The four components of APAR were measured above and within two planting densities of corn (Zea mays L.) and several methods of measuring and estimating APAR were examined. A line quantum sensor that spatially averages the photosynthetic photon flux density provided a rapid and portable method of measuring APAR. PAR reflectance from the soil (Typic Argiaquoll) surface decreased from 10% to less than 1% of the incoming PAR as the canopy cover increased. PAR reflectance from the canopy decreased to less than 3% at maximum vegetative cover. Intercepted PAR (1 - transmitted PAR) generally overestimated absorbed PAR by less than 4% throughout most of the growing season. Thus intercepted PAR appears to be a reasonable estimate of absorbed PAR.

  20. Ultrastructural and biochemical analysis of fibrinogen receptors on activated thrombocytes

    SciTech Connect

    O'Toole, E.T.

    1989-01-01

    The present studies have been concerned with the role of fibrinogen and its receptor, GP IIb/IIIa, during the activation and early aggregation of pigeon thrombocytes. Thrombocytes were surface labeled with {sup 125}I then separated on SDS-PAGE. Analysis by gel autoradiography revealed major bands at MW 145 kd and 98 kd, which corresponded to human GPIIb and GPIIIa. Immunologic similarity of the pigeon and human receptor components was established by dot blot analysis using polyclonal antibodies directed against human GPIIb and GPIIIa. Pigeon fibrinogen, isolated by plasma precipitation with PEG-1000 and purified over Sepharose 4B, was used to study receptor-ligand interaction. Separation of pigeon fibrinogen on SDS-PAGE resulted in three peptides having apparent MW of 62kd, 55kd, and 47kd which are comparable to human fibrinogen. Further similarity of human and pigeon fibrinogen was verified by immonodiffusion against an antibody specific for the human protein. The role of fibrinogen and its receptor in thrombocyte function was established by turbidimetric aggregation using thrombin as an agonist under conditions requiring Ca++ and fibrinogen.

  1. Symptomatic and neuroprotective effects following activation of nigral group III metabotropic glutamate receptors in rodent models of Parkinson's disease

    PubMed Central

    Austin, PJ; Betts, MJ; Broadstock, M; O'Neill, MJ; Mitchell, SN; Duty, S

    2010-01-01

    Background and purpose: Increased glutamatergic innervation of the substantia nigra pars reticulata (SNpr) and pars compacta (SNpc) may contribute to the motor deficits and neurodegeneration, respectively, in Parkinson's disease (PD). This study aimed to establish whether activation of pre-synaptic group III metabotropic glutamate (mGlu) receptors reduced glutamate release in the SN, and provided symptomatic or neuroprotective relief in animal models of PD. Experimental approach: Broad-spectrum group III mGlu receptor agonists, O-phospho-l-serine (l-SOP) and l-2-amino-4-phosphonobutyrate (l-AP4), were assessed for their ability to inhibit KCl-evoked [3H]-d-aspartate release in rat nigral prisms or inhibit KCl-evoked endogenous glutamate release in the SNpr in vivo using microdialysis. Reversal of akinesia in reserpine-treated rats was assessed following intranigral injection of l-SOP and l-AP4. Finally, the neuroprotective effect of 7 days' supra-nigral treatment with l-AP4 was examined in 6-hydroxydopamine (6-OHDA)-lesioned rats. Key results: l-SOP and l-AP4 inhibited [3H]-d-aspartate release by 33 and 44% respectively. These effects were blocked by the selective group III mGlu antagonist (RS)-α-cyclopropyl-4-phosphonophenylglycine (CPPG). l-SOP also reduced glutamate release in the SNpr in vivo by 48%. Injection of l-SOP and l-AP4 into the SNpr reversed reserpine-induced akinesia. Following administration above the SNpc, l-AP4 provided neurochemical, histological and functional protection against 6-OHDA lesion of the nigrostriatal tract. Pretreatment with CPPG inhibited these effects. Conclusions and implications: These findings highlight group III mGlu receptors in the SN as potential targets for providing both symptomatic and neuroprotective relief in PD, and indicate that inhibition of glutamate release in the SN may underlie these effects. PMID:20649576

  2. Peroxisome proliferator-activated receptors and the control of inflammation.

    PubMed

    Cabrero, A; Laguna, J C; Vázquez, M

    2002-09-01

    Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors which form a subfamily of the nuclear receptor gene family. This subfamily consists of three isotypes, alpha (NR1C1), gamma (NR1C3), and beta/delta (NRC1C2) with a differential tissue distribution. PPARalpha is expressed primarily in tissues with a high level of fatty acid catabolism such as liver, brown fat, kidney, heart and skeletal muscle. PPARbeta is ubiquitously expressed, and PPARgamma has a restricted pattern of expression, mainly in white and brown adipose tissues, whereas other tissues such as skeletal muscle and heart contain limited amounts. Furthermore, PPARalpha and gamma isotypes are expressed in vascular cells including endothelial and smooth muscle cells and macrophages/foam cells. PPARs are activated by ligands, such as naturally occurring fatty acids, which are activators of all three PPAR isotypes. In addition to fatty acids, several synthetic compounds, such as fibrates and thiazolidinediones, bind and activate PPARalpha and PPARgamma, respectively. In order to be transcriptionally active, PPARs need to heterodimerize with the retinoid-X-receptor (RXR). Upon activation, PPAR-RXR heterodimers bind to DNA specific sequences called peroxisome proliferator-response elements (PPRE) and stimulate transcription of target genes. PPARs play a critical role in lipid and glucose homeostasis, but lately they have been implicated as regulators of inflammatory responses. The first evidence of the involvement of PPARs in the control of inflammation came from the PPARalpha null mice, which showed a prolonged inflammatory response. PPARalpha activation results in the repression of NF-kappaB signaling and inflammatory cytokine production in different cell-types. A role for PPARgamma in inflammation has also been reported in monocyte/macrophages, where ligands of this receptor inhibited the activation of macrophages and the production of inflammatory cytokines (TNFalpha

  3. 3-Methylcholanthrene and other aryl hydrocarbon receptor agonists directly activate estrogen receptor alpha.

    PubMed

    Abdelrahim, Maen; Ariazi, Eric; Kim, Kyounghyun; Khan, Shaheen; Barhoumi, Rola; Burghardt, Robert; Liu, Shengxi; Hill, Denise; Finnell, Richard; Wlodarczyk, Bogdan; Jordan, V Craig; Safe, Stephen

    2006-02-15

    3-Methylcholanthrene (3MC) is an aryl hydrocarbon receptor (AhR) agonist, and it has been reported that 3MC induces estrogenic activity through AhR-estrogen receptor alpha (ER alpha) interactions. In this study, we used 3MC and 3,3',4,4',5-pentachlorobiphenyl (PCB) as prototypical AhR ligands, and both compounds activated estrogen-responsive reporter genes/gene products (cathepsin D) in MCF-7 breast cancer cells. The estrogenic responses induced by these AhR ligands were inhibited by the antiestrogen ICI 182780 and by the transfection of a small inhibitory RNA for ER alpha but were not affected by the small inhibitory RNA for AhR. These results suggest that 3MC and PCB directly activate ER alpha, and this was confirmed in a competitive ER alpha binding assay and in a fluorescence resonance energy transfer experiment in which PCB and 3MC induced CFP-ER alpha/YFP-ER alpha interactions. In a chromatin immunoprecipitation assay, PCB and 3MC enhanced ER alpha (but not AhR) association with the estrogen-responsive region of the pS2 gene promoter. Moreover, in AhR knockout mice, 3MC increased uterine weights and induced expression of cyclin D1 mRNA levels. These results show that PCB and 3MC directly activate ER alpha-dependent transactivation and extend the number of ligands that activate both AhR and ER alpha.

  4. Cinnamaldehyde suppresses toll-like receptor 4 activation mediated through the inhibition of receptor oligomerization.

    PubMed

    Youn, Hyung S; Lee, Jun K; Choi, Yong J; Saitoh, Shin I; Miyake, Kensuke; Hwang, Daniel H; Lee, Joo Y

    2008-01-15

    Toll-like receptors (TLRs) play a critical role in induction of innate immune and inflammatory responses by recognizing invading pathogens or non-microbial endogenous molecules. TLRs have two major downstream signaling pathways, MyD88- and TRIF-dependent pathways leading to the activation of NFkappaB and IRF3 and the expression of inflammatory mediators. Deregulation of TLR activation is known to be closely linked to the increased risk of many chronic diseases. Cinnamaldehyde (3-phenyl-2-propenal) has been reported to inhibit NFkappaB activation induced by pro-inflammatory stimuli and to exert anti-inflammatory and anti-bacterial effects. However, the underlying mechanism has not been clearly identified. Our results showed that cinnamaldehyde suppressed the activation of NFkappaB and IRF3 induced by LPS, a TLR4 agonist, leading to the decreased expression of target genes such as COX-2 and IFNbeta in macrophages (RAW264.7). Cinnamaldehyde did not inhibit the activation of NFkappaB or IRF3 induced by MyD88-dependent (MyD88, IKKbeta) or TRIF-dependent (TRIF, TBK1) downstream signaling components. However, oligomerization of TLR4 induced by LPS was suppressed by cinnamaldehyde resulting in the downregulation of NFkappaB activation. Further, cinnamaldehyde inhibited ligand-independent NFkappaB activation induced by constitutively active TLR4 or wild-type TLR4. Our results demonstrated that the molecular target of cinnamaldehyde in TLR4 signaling is oligomerization process of receptor, but not downstream signaling molecules suggesting a novel mechanism for anti-inflammatory activity of cinnamaldehyde.

  5. Transgenic silkworms expressing human insulin receptors for evaluation of therapeutically active insulin receptor agonists.

    PubMed

    Matsumoto, Yasuhiko; Ishii, Masaki; Ishii, Kenichi; Miyaguchi, Wataru; Horie, Ryo; Inagaki, Yoshinori; Hamamoto, Hiroshi; Tatematsu, Ken-ichiro; Uchino, Keiro; Tamura, Toshiki; Sezutsu, Hideki; Sekimizu, Kazuhisa

    2014-12-12

    We established a transgenic silkworm strain expressing the human insulin receptor (hIR) using the GAL4/UAS system. Administration of human insulin to transgenic silkworms expressing hIR decreased hemolymph sugar levels and facilitated Akt phosphorylation in the fat body. The decrease in hemolymph sugar levels induced by injection of human insulin in the transgenic silkworms expressing hIR was blocked by co-injection of wortmannin, a phosphoinositide 3-kinase inhibitor. Administration of bovine insulin, an hIR ligand, also effectively decreased sugar levels in the transgenic silkworms. These findings indicate that functional hIRs that respond to human insulin were successfully induced in the transgenic silkworms. We propose that the humanized silkworm expressing hIR is useful for in vivo evaluation of the therapeutic activities of insulin receptor agonists.

  6. Type-1 cannabinoid receptor activity during Alzheimer's disease progression.

    PubMed

    Manuel, Iván; González de San Román, Estíbaliz; Giralt, M Teresa; Ferrer, Isidro; Rodríguez-Puertas, Rafael

    2014-01-01

    The activity of CB1 cannabinoid receptors was studied in postmortem brain samples of Alzheimer's disease (AD) patients during clinical deterioration. CB1 activity was higher at earlier AD stages in limited hippocampal areas and internal layers of frontal cortex, but a decrease was observed at the advanced stages. The pattern of modification appears to indicate initial hyperactivity of the endocannabinoid system in brain areas that lack classical histopathological markers at earlier stages of AD, indicating an attempt to compensate for the initial synaptic impairment, which is then surpassed by disease progression. These results suggest that initial CB1 stimulation might have therapeutic relevance.

  7. Activation of glycine receptors modulates spontaneous epileptiform activity in the immature rat hippocampus

    PubMed Central

    Chen, Rongqing; Okabe, Akihito; Sun, Haiyan; Sharopov, Salim; Hanganu-Opatz, Ileana L; Kolbaev, Sergei N; Fukuda, Atsuo; Luhmann, Heiko J; Kilb, Werner

    2014-01-01

    While the expression of glycine receptors in the immature hippocampus has been shown, no information about the role of glycine receptors in controlling the excitability in the immature CNS is available. Therefore, we examined the effect of glycinergic agonists and antagonists in the CA3 region of an intact corticohippocampal preparation of the immature (postnatal days 4–7) rat using field potential recordings. Bath application of 100 μm taurine or 10 μm glycine enhanced the occurrence of recurrent epileptiform activity induced by 20 μm 4-aminopyridine in low Mg2+ solution. This proconvulsive effect was prevented by 3 μm strychnine or after incubation with the loop diuretic bumetanide (10 μm), suggesting that it required glycine receptors and an active NKCC1-dependent Cl− accumulation. Application of higher doses of taurine (≥1 mm) or glycine (100 μm) attenuated recurrent epileptiform discharges. The anticonvulsive effect of taurine was also observed in the presence of the GABAA receptor antagonist gabazine and was attenuated by strychnine, suggesting that it was partially mediated by glycine receptors. Bath application of the glycinergic antagonist strychnine (0.3 μm) induced epileptiform discharges. We conclude from these results that in the immature hippocampus, activation of glycine receptors can mediate both pro- and anticonvulsive effects, but that a persistent activation of glycine receptors is required to suppress epileptiform activity. In summary, our study elucidated the important role of glycine receptors in the control of neuronal excitability in the immature hippocampus. PMID:24665103

  8. Involvement of urokinase receptor in the cross-talk between human hematopoietic stem cells and bone marrow microenvironment

    PubMed Central

    Salvati, Annamaria; Serio, Bianca; Pesapane, Ada; Ricci, Patrizia; Gorrasi, Anna; Santi, Anna Li; Hoyer-Hansen, Gunilla; Ragno, Pia

    2016-01-01

    Hematopoietic stem cells (HSCs) reside in bone marrow (BM) and can be induced to mobilize into the circulation for transplantation. Homing and lodgement into BM of transplanted HSCs are the first critical steps in their engraftment and involve multiple interactions between HSCs and the BM microenvironment. uPAR is a three domain receptor (DIDIIDIII) which binds urokinase, vitronectin, integrins. uPAR can be cleaved and shed from the cell surface generating full-length and cleaved soluble forms (suPAR and DIIDIII-suPAR). DIIDIII-suPAR can bind fMLF receptors through the SRSRY sequence (residues 88-92). We previously reported the involvement of soluble uPAR in HSC mobilization. We now investigate its possible role in HSC homing and engraftment. We show similar levels of circulating full-length suPAR in healthy donors and in acute myeloid leukemia (AML) patients before and after the pre-transplant conditioning regimen. By contrast, levels of circulating DIIDIII-suPAR in AML patients are higher as compared to controls and significantly decrease after the conditioning. We found that suPAR and uPAR84-95, a uPAR-derived peptide which mimics active DIIDIII-suPAR, induce a significant increase in Long Term Culture (LTC)-Initiating Cells (ICs) and in the release of clonogenic progenitors from LTCs of CD34+ HSCs. Further, suPAR increases adhesion and survival of CD34+ KG1 AML cells, whereas uPAR84-95 increases their proliferation. Thus, circulating DIIDIII-suPAR, strongly increased in HSC mobilization, is indeed down-regulated by pre-transplant conditioning, probably to favour HSC homing. BM full-length suPAR and DIIDIII-suPAR may be involved in HSC lodgement within the BM by contributing to a suitable microenvironment. PMID:27517491

  9. Unexpected antipsychotic-like activity with the muscarinic receptor ligand (5R,6R)6-(3-propylthio-1,2,5-thiadiazol-4-yl)-1-azabicyclo[3.2.1]octane .

    PubMed

    Bymaster, F P; Shannon, H E; Rasmussen, K; Delapp, N W; Mitch, C H; Ward, J S; Calligaro, D O; Ludvigsen, T S; Sheardown, M J; Olesen, P H; Swedberg, M D; Sauerberg, P; Fink-Jensen, A

    1998-09-04

    (5R,6R)6-(3-propylthio-1,2,5-thiadiazol-4-yl)-1-azabicyclo[3 .2.1]octane (PTAC) is a potent muscarinic receptor ligand with high affinity for central muscarinic receptors and no or substantially less affinity for a large number of other receptors or binding sites including dopamine receptors. The ligand exhibits partial agonist effects at muscarinic M2 and M4 receptors and antagonist effects at muscarinic M1, M3 and M5 receptors. PTAC inhibited conditioned avoidance responding, dopamine receptor agonist-induced behavior and D-amphetamine-induced FOS protein M5 expression in the nucleus accumbens without inducing catalepsy, tremor or salivation at pharmacologically relevant doses. The effect of PTAC on conditioned avoidance responding and dopamine receptor agonist-induced behavior was antagonized by the acetylcholine receptor antagonist scopolamine. The compound selectively inhibited dopamine cell firing (acute administration) as well as the number of spontaneously active dopamine cells (chronic administration) in the limbic ventral tegmental area (A10) relative to the non-limbic substantia nigra, pars compacta (A9). The results demonstrate that PTAC exhibits functional dopamine receptor antagonism despite its lack of affinity for the dopamine receptors and indicate that muscarinic receptor partial agonists may be an important new approach in the medical treatment of schizophrenia.

  10. Cholecystokinin 1 receptor modulates the MEKK1-induced c-Jun trans-activation: structural requirements of the receptor

    PubMed Central

    Ibarz, Géraldine; Oiry, Catherine; Carnazzi, Eric; Crespy, Philippe; Escrieut, Chantal; Fourmy, Daniel; Galleyrand, Jean Claude; Gagne, Didier; Martinez, Jean

    2006-01-01

    In cells overexpressing active MEKK1 to enhance c-Jun trans-activation, expression of rat cholecystokinin 1 receptor increased the activity of c-Jun while in the same experimental conditions overexpression of mouse cholecystokinin 1 receptor repressed it. This differential trans-activation is specific, since it was not observed for either the other overexpressed kinases (MEK, PKA) or for other transcription factors (ATF2, ELK-1, CREB). This differential behaviour was also detected in a human colon adenocarcinoma cell-line naturally producing high levels of endogenous MEKK1. This differential behaviour between the two receptors on the MEKK1-induced c-Jun trans-activation was independent of the activation state of JNK, of the phosphorylation level of c-Jun and of its ability to bind its specific DNA responsive elements. Two amino acids (Val43 and Phe50 in the mouse cholecystokinin 1 receptor, replaced by Leu43 and Ileu50 in the rat cholecystokinin 1 receptor) localized in the first transmembrane domain were found to play a crucial role in this differential behaviour. MEKK1 probably activates a transcriptional partner of c-Jun whose activity is maintained or increased in the presence of the rat cholecystokinin 1 receptor but repressed in the presence of the mouse cholecystokinin 1 receptor. PMID:16491099

  11. Cholecystokinin 1 receptor modulates the MEKK1-induced c-Jun trans-activation: structural requirements of the receptor.

    PubMed

    Ibarz, Géraldine; Oiry, Catherine; Carnazzi, Eric; Crespy, Philippe; Escrieut, Chantal; Fourmy, Daniel; Galleyrand, Jean Claude; Gagne, Didier; Martinez, Jean

    2006-04-01

    In cells overexpressing active MEKK1 to enhance c-Jun trans-activation, expression of rat cholecystokinin 1 receptor increased the activity of c-Jun while in the same experimental conditions overexpression of mouse cholecystokinin 1 receptor repressed it. This differential trans-activation is specific, since it was not observed for either the other overexpressed kinases (MEK, PKA) or for other transcription factors (ATF2, ELK-1, CREB). This differential behaviour was also detected in a human colon adenocarcinoma cell-line naturally producing high levels of endogenous MEKK1. This differential behaviour between the two receptors on the MEKK1-induced c-Jun trans-activation was independent of the activation state of JNK, of the phosphorylation level of c-Jun and of its ability to bind its specific DNA responsive elements. Two amino acids (Val43 and Phe50 in the mouse cholecystokinin 1 receptor, replaced by Leu43 and Ileu50 in the rat cholecystokinin 1 receptor) localized in the first transmembrane domain were found to play a crucial role in this differential behaviour. MEKK1 probably activates a transcriptional partner of c-Jun whose activity is maintained or increased in the presence of the rat cholecystokinin 1 receptor but repressed in the presence of the mouse cholecystokinin 1 receptor.

  12. Persistently active cannabinoid receptors mute a subpopulation of hippocampal interneurons.

    PubMed

    Losonczy, Attila; Biró, Agota A; Nusser, Zoltan

    2004-02-03

    Cortical information processing requires an orchestrated interaction between a large number of pyramidal cells and albeit fewer, but highly diverse GABAergic interneurons (INs). The diversity of INs is thought to reflect functional and structural specializations evolved to control distinct network operations. Consequently, specific cortical functions may be selectively modified by altering the input-output relationship of unique IN populations. Here, we report that persistently active cannabinoid receptors, the site of action of endocannabinoids, and the psychostimulants marijuana and hashish, switch off the output (mute) of a unique class of hippocampal INs. In paired recordings between cholecystokinin-immunopositive, mossy fiber-associated INs, and their target CA3 pyramidal cells, no postsynaptic currents could be evoked with single presynaptic action potentials or with repetitive stimulations at frequencies <25 Hz. Cannabinoid receptor antagonists converted these "mute" synapses into high-fidelity ones. The selective muting of specific GABAergic INs, achieved by persistent presynaptic cannabinoid receptor activation, provides a state-dependent switch in cortical networks.

  13. Structural rearrangement of the intracellular domains during AMPA receptor activation

    PubMed Central

    Zachariassen, Linda G.; Katchan, Ljudmila; Jensen, Anna G.; Pickering, Darryl S.; Plested, Andrew J. R.

    2016-01-01

    α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are ligand-gated ion channels that mediate the majority of fast excitatory neurotransmission in the central nervous system. Despite recent advances in structural studies of AMPARs, information about the specific conformational changes that underlie receptor function is lacking. Here, we used single and dual insertion of GFP variants at various positions in AMPAR subunits to enable measurements of conformational changes using fluorescence resonance energy transfer (FRET) in live cells. We produced dual CFP/YFP-tagged GluA2 subunit constructs that had normal activity and displayed intrareceptor FRET. We used fluorescence lifetime imaging microscopy (FLIM) in live HEK293 cells to determine distinct steady-state FRET efficiencies in the presence of different ligands, suggesting a dynamic picture of the resting state. Patch-clamp fluorometry of the double- and single-insert constructs showed that both the intracellular C-terminal domain (CTD) and the loop region between the M1 and M2 helices move during activation and the CTD is detached from the membrane. Our time-resolved measurements revealed unexpectedly complex fluorescence changes within these intracellular domains, providing clues as to how posttranslational modifications and receptor function interact. PMID:27313205

  14. Identification of intracellular receptor proteins for activated protein kinase C.

    PubMed Central

    Mochly-Rosen, D; Khaner, H; Lopez, J

    1991-01-01

    Protein kinase C (PKC) translocates from the cytosol to the particulate fraction on activation. This activation-induced translocation of PKC is thought to reflect PKC binding to the membrane lipids. However, immunological and biochemical data suggest that PKC may bind to proteins in the cytoskeletal elements in the particulate fraction and in the nuclei. Here we describe evidence for the presence of intracellular receptor proteins that bind activated PKC. Several proteins from the detergent-insoluble material of the particulate fraction bound PKC in the presence of phosphatidylserine and calcium; binding was further increased with the addition of diacylglycerol. Binding of PKC to two of these proteins was concentration-dependent, saturable, and specific, suggesting that these binding proteins are receptors for activated C-kinase, termed here "RACKs." PKC binds to RACKs via a site on PKC distinct from the substrate binding site. We suggest that binding to RACKs may play a role in activation-induced translocation of PKC. Images PMID:1850844

  15. Detection of Neu1 sialidase activity in regulating Toll-like receptor activation.

    PubMed

    Amith, Schammim R; Jayanth, Preethi; Finlay, Trisha; Franchuk, Susan; Gilmour, Alanna; Abdulkhalek, Samar; Szewczuk, Myron R

    2010-09-07

    Mammalian Toll-like receptors (TLRs) are a family of receptors that recognize pathogen-associated molecular patterns. Not only are TLRs crucial sensors of microbial (e.g., viruses, bacteria and parasite) infections, they also play an important role in the pathophysiology of infectious diseases, inflammatory diseases, and possibly in autoimmune diseases. Thus, the intensity and duration of TLR responses against infectious diseases must be tightly controlled. It follows that understanding the structural integrity of sensor receptors, their ligand interactions and signaling components is essential for subsequent immunological protection. It would also provide important opportunities for disease modification through sensor manipulation. Although the signaling pathways of TLR sensors are well characterized, the parameters controlling interactions between the sensors and their ligands still remain poorly defined. We have recently identified a novel mechanism of TLR activation by its natural ligand, which has not been previously observed. It suggests that ligand-induced TLR activation is tightly controlled by Neu1 sialidase activation. We have also reported that Neu1 tightly regulates neurotrophin receptors like TrkA and TrkB, which involve Neu1 and matrix metalloproteinase-9 (MMP-9) cross-talk in complex with the receptors. The sialidase assay has been initially use to find a novel ligand, thymoquinone, in the activation of Neu4 sialidase on the cell surface of macrophages, dendritic cells and fibroblast cells via GPCR Gαi proteins and MMP-9. For TLR receptors, our data indicate that Neu1 sialidase is already in complex with TLR-2, -3 and -4 receptors, and is induced upon ligand binding to either receptor. Activated Neu1 sialidase hydrolyzes sialyl α-2,3-linked β-galactosyl residues distant from ligand binding to remove steric hinderance to TLR-4 dimerization, MyD88/TLR4 complex recruitment, NFkB activation and pro-inflammatory cell responses. In a collaborative

  16. Urokinase plasminogen activator receptor induced non-small cell lung cancer invasion and metastasis requires NHE1 transporter expression and transport activity.

    PubMed

    Provost, J J; Rastedt, D; Canine, J; Ngyuen, T; Haak, A; Kutz, C; Berthelsen, N; Slusser, A; Anderson, K; Dorsam, G; Wallert, M A

    2012-04-01

    BACKGROUND: Non-small cell lung cancers (NSLC) are aggressive cancers that are insensitive to chemotherapies and accounts for nearly 33% of all cancer deaths in the United States. Two hallmarks of cancer that allow cells to invade and metastasize are sustained proliferation and enhanced motility. In this study we investigate the relationship between urokinase plasminogen activator (uPA)/uPA receptor (uPAR) signaling and Na(+)/H(+) exchanger isoform 1 (NHE1) expression and activity. METHODS AND RESULTS: The addition of 10nM uPA increased the carcinogenic potential of three NSCLC cell lines, NCI-H358, NCI-H460, and NCI-H1299. This included an increase in the rate of cell proliferation 1.6 to 1.9 fold; an increase in the percentage of cells displaying stress fibers 3.05 to 3.17 fold; and an increase in anchorage-independent growth from 1.64 to 2.0 fold. In each of these cases the increase was blocked when the experiments were performed with NHE1 inhibited by 10 μM EIPA (ethylisopropyl amiloride). To further evaluate the role of uPA/uPAR and NHE1 in tumor progression we assessed signaling events using full-length uPA compared to the uPA amino terminal fragment (ATF). Comparing uPA and ATF signaling in H460 cells, we found that both uPA and ATF increased stress fiber formation approximately 2 fold, while uPA increased matrix metalloproteinase 9 (MMP9) activity 5.44 fold compared to 2.81 fold for ATF. To expand this signaling study, two new cell lines were generated, one with reduced NHE1 expression (H460 NHE1 K/D) and one with reduced uPAR expression (H460 uPAR K/D). Using the K/D cell lines we found that neither uPA nor ATF could stimulate stress fiber formation or MMP9 activity in cells with dramatically decreased NHE1 or uPAR expression. Finally, using in vivo tumor formation studies in athymic mice we found that when mice were injected with H460 cells 80% of mice formed tumors with an average volume of 390 mm(3). This was compared to 20% of H460 uPAR K/D injected

  17. AF-2 activity and recruitment of steroid receptor coactivator 1 to the estrogen receptor depend on a lysine residue conserved in nuclear receptors.

    PubMed Central

    Henttu, P M; Kalkhoven, E; Parker, M G

    1997-01-01

    Hormone-dependent transcriptional activation by nuclear receptors depends on the presence of a conserved C-terminal amphipathic alpha-helix (helix 12) in the ligand-binding domain. Here we show that a lysine residue, which is conserved in most nuclear receptors in the predicted helix 3, is also required for estrogen-dependent transactivation. The replacement of lysine 366 with alanine appreciably reduced activation function 2 (AF-2) activity without affecting steroid- or DNA-binding activity in the mouse estrogen receptor. The mutation dramatically reduced the ability of the receptor to bind steroid receptor coactivator 1 (SRC-1) but had no effect on receptor-interacting protein 140 (RIP-140) binding, indicating that while their sites of interaction overlap, they are not entirely consistent and in keeping with the proposal that the recruitment of coactivators, such as SRC-1, is required for AF-2 activity. Although the function of RIP-140 remains to be established, RIP-140 appears to be capable of recruiting the basal transcription machinery, since overexpression of the protein markedly increased the transcriptional activity of the mutant receptor. Since the lysine residue is conserved, we propose that it is required, together with residues in helix 12, to form the surface by which members of the nuclear receptor family interact with coactivators. PMID:9121431

  18. Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain.

    PubMed

    Dai, Yi; Wang, Shenglan; Tominaga, Makoto; Yamamoto, Satoshi; Fukuoka, Tetsuo; Higashi, Tomohiro; Kobayashi, Kimiko; Obata, Koichi; Yamanaka, Hiroki; Noguchi, Koichi

    2007-07-01

    Proinflammatory agents trypsin and mast cell tryptase cleave and activate PAR2, which is expressed on sensory nerves to cause neurogenic inflammation. Transient receptor potential A1 (TRPA1) is an excitatory ion channel on primary sensory nerves of pain pathway. Here, we show that a functional interaction of PAR2 and TRPA1 in dorsal root ganglion (DRG) neurons could contribute to the sensation of inflammatory pain. Frequent colocalization of TRPA1 with PAR2 was found in rat DRG neurons. PAR2 activation increased the TRPA1 currents evoked by its agonists in HEK293 cells transfected with TRPA1, as well as DRG neurons. Application of phospholipase C (PLC) inhibitors or phosphatidylinositol-4,5-bisphosphate (PIP(2)) suppressed this potentiation. Decrease of plasma membrane PIP(2) levels through antibody sequestration or PLC-mediated hydrolysis mimicked the potentiating effects of PAR2 activation at the cellular level. Thus, the increased TRPA1 sensitivity may have been due to activation of PLC, which releases the inhibition of TRPA1 from plasma membrane PIP(2). These results identify for the first time to our knowledge a sensitization mechanism of TRPA1 and a novel mechanism through which trypsin or tryptase released in response to tissue inflammation might trigger the sensation of pain by TRPA1 activation.

  19. Identification of Modulators of the Nuclear Receptor Peroxisome Proliferator-Activated Receptor α (PPARα) in a Mouse Liver Gene Expression Compendium

    EPA Science Inventory

    The nuclear receptor family member peroxisome proliferator-activated receptor α (PPARα) is activated by therapeutic hypolipidemic drugs and environmentally-relevant chemicals to regulate genes involved in lipid transport and catabolism. Chronic activation of PPARα in rodents inc...

  20. The prostaglandin EP1 receptor potentiates kainate receptor activation via a protein kinase C pathway and exacerbates status epilepticus

    PubMed Central

    Rojas, Asheebo; Gueorguieva, Paoula; Lelutiu, Nadia; Quan, Yi; Shaw, Renee; Dingledine, Raymond

    2014-01-01

    Prostaglandin E2 (PGE2) regulates membrane excitability, synaptic transmission, plasticity, and neuronal survival. The consequences of PGE2 release following seizures has been the subject of much study. Here we demonstrate that the prostaglandin E2 receptor 1 (EP1, or Ptger1) modulates native kainate receptors, a family of ionotropic glutamate receptors widely expressed throughout the central nervous system. Global ablation of the EP1 gene in mice (EP1-KO) had no effect on seizure threshold after kainate injection but reduced the likelihood to enter status epilepticus. EP1-KO mice that did experience typical status epilepticus had reduced hippocampal neurodegeneration and a blunted inflammatory response. Further studies with native prostanoid and kainate receptors in cultured cortical neurons, as well as with recombinant prostanoid and kainate receptors expressed in Xenopus oocytes, demonstrated that EP1 receptor activation potentiates heteromeric but not homomeric kainate receptors via a second messenger cascade involving phospholipase C, calcium and protein kinase C. Three critical GluK5 C-terminal serines underlie the potentiation of the GluK2/GluK5 receptor by EP1 activation. Taken together, these results indicate that EP1 receptor activation during seizures, through a protein kinase C pathway, increases the probability of kainic acid induced status epilepticus, and independently promotes hippocampal neurodegeneration and a broad inflammatory response. PMID:24952362

  1. HIV-1 Infected Lymphoid Organs Upregulate Expression and Release of the Cleaved Form of uPAR That Modulates Chemotaxis and Virus Expression

    PubMed Central

    Nebuloni, Manuela; Zawada, Lidia; Ferri, Angelita; Tosoni, Antonella; Zerbi, Pietro; Resnati, Massimo; Poli, Guido; Genovese, Luca; Alfano, Massimo

    2013-01-01

    Cell-associated receptor for urokinase plasminogen activator (uPAR) is released as both full-length soluble uPAR (suPAR) and cleaved (c-suPAR) form that maintain ability to bind to integrins and other receptors, thus triggering and modulating cell signaling responses. Concerning HIV-1 infection, plasma levels of suPAR have been correlated with the severity of disease, levels of immune activation and ineffective immune recovery also in individuals receiving combination anti-retroviral therapy (cART). However, it is unknown whether and which suPAR forms might contribute to HIV-1 induced pathogenesis and to the related state of immune activation. In this regard, lymphoid organs represent an import site of chronic immune activation and virus persistence even in individuals receiving cART. Lymphoid organs of HIV-1+ individuals showed an enhanced number of follicular dendritic cells, macrophages and endothelial cells expressing the cell-associated uPAR in comparison to those of uninfected individuals. In order to investigate the potential role of suPAR forms in HIV-1 infection of secondary lymphoid organs, tonsil histocultures were established from HIV-1 seronegative individuals and infected ex vivo with CCR5- and CXCR4-dependent HIV-1 strains. The levels of suPAR and c-suPAR were significantly increased in HIV-infected tonsil histocultures supernatants in comparison to autologous uninfected histocultures. Supernatants from infected and uninfected cultures before and after immunodepletion of suPAR forms were incubated with the chronically infected promonocytic U1 cell line characterized by a state of proviral latency in unstimulated conditions. In the contest of HIV-conditioned supernatants we established that c-suPAR, but not suPAR, inhibited chemotaxis and induced virus expression in U1 cells. In conclusion, lymphoid organs are an important site of production and release of both suPAR and c-suPAR, this latter form being endowed with the capacity of inhibiting

  2. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A.

    PubMed

    Sato, Shoko; Shirakawa, Hitoshi; Tomita, Shuhei; Tohkin, Masahiro; Gonzalez, Frank J; Komai, Michio

    2013-11-15

    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein-protein interactions with GR.

  3. Discovery of new small molecules targeting the vitronectin-binding site of the urokinase receptor that block cancer cell invasion.

    PubMed

    Rea, Vincenza Elena Anna; Lavecchia, Antonio; Di Giovanni, Carmen; Rossi, Francesca Wanda; Gorrasi, Anna; Pesapane, Ada; de Paulis, Amato; Ragno, Pia; Montuori, Nunzia

    2013-08-01

    Besides focusing urokinase (uPA) proteolytic activity on the cell membrane, the uPA receptor (uPAR) is able to bind vitronectin, via a direct binding site. Furthermore, uPAR interacts with other cell surface receptors, such as integrins, receptor tyrosine kinases, and chemotaxis receptors, triggering cell-signaling pathways that promote tumor progression. The ability of uPAR to coordinate binding and degradation of extracellular matrix (ECM) and cell signaling makes it an attractive therapeutic target in cancer. We used structure-based virtual screening (SB-VS) to search for small molecules targeting the uPAR-binding site for vitronectin. Forty-one compounds were identified and tested on uPAR-negative HEK-293 epithelial cells transfected with uPAR (uPAR-293 cells), using the parental cell line transfected with the empty vector (V-293 cells) as a control. Compounds 6 and 37 selectively inhibited uPAR-293 cell adhesion to vitronectin and the resulting changes in cell morphology and signal transduction, without exerting any effect on V-293 cells. Compounds 6 and 37 inhibited uPAR-293 cell binding to vitronectin with IC50 values of 3.6 and 1.2 μmol/L, respectively. Compounds 6 and 37 targeted S88 and R91, key residues for uPAR binding to vitronectin but also for uPAR interaction with the fMLF family of chemotaxis receptors (fMLF-Rs). As a consequence, compounds 6 and 37 impaired uPAR-293 cell migration toward fetal calf serum (FCS), uPA, and fMLF, likely by inhibiting the interaction between uPAR and FPR1, the high affinity fMLF-R. Both compounds blocked in vitro ECM invasion of several cancer cell types, thus representing new promising leads for pharmaceuticals in cancer.

  4. Analysis of Ah receptor pathway activation by brominated flame retardants.

    PubMed

    Brown, David J; Van Overmeire, Ilse; Goeyens, Leo; Denison, Michael S; De Vito, Michael J; Clark, George C

    2004-06-01

    Brominated flame-retardants (BFRs) are used as additives in plastics to decrease the rate of combustion of these materials, leading to greater consumer safety. As the use of plastics has increased, the production and use of flame-retardants has also grown. Many BFRs are persistent and have been detected in environmental samples, raising concerns about the biological/toxicological risk associated with their use. Most BFRs appear to be non-toxic, however there is still some concern that these compounds, or possible contaminants in BFRs mixtures could interact with cellular receptors. In this study we have examined the interaction of decabromodiphenyl ether, Firemaster BP4A (tetrabromobisphenol A), Firemaster PHT4 (tetrabromophthalic anhydride), hexabromobenzene, pentabromotoluene, decabromobiphenyl, Firemaster BP-6 (2,2',4,4',5,5'-hexabromobiphenyl) and possible contaminants of BFR mixtures with the Ah receptor. Receptor binding and activation was examined using the Gel Retardation Assay and increased expression of dioxin responsive genes was detected using the reporter gene based CALUX assay. The results demonstrate the ability of BFRs to activate the AhR signal transduction pathway at moderate to high concentrations as assessed using both assays. AhR-dependent activation by BFRs may be due in part to contaminants present in commercial/technical mixtures. This was suggested by our comparative analysis of Firemaster BP-6 versus its primary component 2,2',4,4',5,5'-hexabromobiphenyl. Some technical mixtures of brominated flame-retardants contain brominated biphenyls, dioxins or dibenzofurans as contaminants. When tested in the CALUX assay these compounds were found to be equivalent to, or more active than their chlorinated analogues. Relative effective potency values were determined from dose response curves for these brominated HAHs.

  5. The Pharmacochaperone Activity of Quinine on Bitter Taste Receptors

    PubMed Central

    Upadhyaya, Jasbir D.; Chakraborty, Raja; Shaik, Feroz A.; Jaggupilli, Appalaraju; Bhullar, Rajinder P.; Chelikani, Prashen

    2016-01-01

    Bitter taste is one of the five basic taste sensations which is mediated by 25 bitter taste receptors (T2Rs) in humans. The mechanism of bitter taste signal transduction is not yet elucidated. The cellular processes underlying T2R desensitization including receptor internalization, trafficking and degradation are yet to be studied. Here, using a combination of molecular and pharmacological techniques we show that T2R4 is not internalized upon agonist treatment. Pretreatment with bitter agonist quinine led to a reduction in subsequent quinine-mediated calcium responses to 35 ± 5% compared to the control untreated cells. Interestingly, treatment with different bitter agonists did not cause internalization of T2R4. Instead, quinine treatment led to a 2-fold increase in T2R4 cell surface expression which was sensitive to Brefeldin A, suggesting a novel pharmacochaperone activity of quinine. This phenomenon of chaperone activity of quinine was also observed for T2R7, T2R10, T2R39 and T2R46. Our results suggest that the observed action of quinine for these T2Rs is independent of its agonist activity. This study provides novel insights into the pharmacochaperone activity of quinine and possible mechanism of T2R desensitization, which is of fundamental importance in understanding the mechanism of bitter taste signal transduction. PMID:27223611

  6. Thiophene-Core Estrogen Receptor Ligands Having Superagonist Activity

    PubMed Central

    Min, Jian; Wang, Pengcheng; Srinivasan, Sathish; Nwachukwu, Jerome C.; Guo, Pu; Huang, Minjian; Carlson, Kathryn E.; Katzenellenbogen, John A.; Nettles, Kendall W.; Zhou, Hai-Bing

    2013-01-01

    To probe the importance of the heterocyclic core of estrogen receptor (ER) ligands, we prepared a series of thiophene-core ligands by Suzuki cross-coupling of aryl boronic acids with bromo-thiophenes, and we assessed their receptor binding and cell biological activities. The disposition of the phenol substituents on the thiophene core, at alternate or adjacent sites, and the nature of substituents on these phenols all contribute to binding affinity and subtype selectivity. Most of the bis(hydroxyphenyl)-thiophenes were ERβ selective, whereas the tris(hydroxyphenyl)-thiophenes were ERα selective; analogous furan-core compounds generally have lower affinity and less selectivity. Some diarylthiophenes show distinct superagonist activity in reporter gene assays, giving maximal activities 2–3 times that of estradiol, and modeling suggests that these ligands have a different interaction with a hydrogen-bonding residue in helix-11. Ligand-core modification may be a new strategy for developing ER ligands whose selectivity is based on having transcriptional activity greater than that of estradiol. PMID:23586645

  7. PAR-2, IL-4R, TGF-β and TNF-α in bronchoalveolar lavage distinguishes extrinsic allergic alveolitis from sarcoidosis.

    PubMed

    Matěj, Radoslav; Smětáková, Magdalena; Vašáková, Martina; Nováková, Jana; Sterclová, Martina; Kukal, Jaromír; Olejár, Tomáš

    2014-08-01

    Sarcoidosis (SARC) and extrinsic allergic alveolitis (EAA) share certain markers, making a differential diagnosis difficult even with histopathological investigation. In lung tissue, proteinase-activated receptor-2 (PAR-2) is primarily investigated with regard to epithelial and inflammatory perspectives. Varying levels of certain chemokines can be a useful tool for distinguishing EAA and SARC. Thus, in the present study, differences in the levels of transforming growth factor (TGF)-β1, tumor necrosis factor (TNF)-α, interleukin-4 receptor (IL-4R) and PAR-2 in bronchoalveolar lavage fluid (BALF) were compared, using an ELISA method, between 14 patients with EAA and six patients with SARC. Statistically significant higher levels of IL-4R, PAR-2 and the PAR-2/TGF-β1 and PAR-2/TNF-α ratios were observed in EAA patients as compared with SARC patients. Furthermore, the ratios of TNF-α/total protein, TGF-β1/PAR-2 and TNF-α/PAR-2 were significantly lower in EAA patients than in SARC patients. The results indicated a higher detection of PAR-2 in EAA samples in association with TNF-α and TGF-β levels. As EAA and PAR-2 in parallel belong to the Th2-mediated pathway, the results significantly indicated an association between this receptor and etiology. In addition, the results indicated that SARC is predominantly a granulomatous inflammatory disease, thus, higher levels of TNF-α are observed. Therefore, the detection of PAR-2 and investigated chemokines in BALF may serve as a useful tool in the differential diagnosis between EAA and SARC.

  8. ATP-regulated interactions between P1 ParA, ParB and non-specific DNA that are stabilized by the plasmid partition site, parS

    PubMed Central

    Havey, James C.; Vecchiarelli, Anthony G.; Funnell, Barbara E.

    2012-01-01

    Localization of the P1 plasmid requires two proteins, ParA and ParB, which act on the plasmid partition site, parS. ParB is a site-specific DNA-binding protein and ParA is a Walker-type ATPase with non-specific DNA-binding activity. In vivo ParA binds the bacterial nucleoid and forms dynamic patterns that are governed by the ParB–parS partition complex on the plasmid. How these interactions drive plasmid movement and localization is not well understood. Here we have identified a large protein–DNA complex in vitro that requires ParA, ParB and ATP, and have characterized its assembly by sucrose gradient sedimentation and light scattering assays. ATP binding and hydrolysis mediated the assembly and disassembly of this complex, while ADP antagonized complex formation. The complex was not dependent on, but was stabilized by, parS. The properties indicate that ParA and ParB are binding and bridging multiple DNA molecules to create a large meshwork of protein–DNA molecules that involves both specific and non-specific DNA. We propose that this complex represents a dynamic adaptor complex between the plasmid and nucleoid, and further, that this interaction drives the redistribution of partition proteins and the plasmid over the nucleoid during partition. PMID:21965538

  9. FATTY ACIDS MODULATE TOLL-LIKE RECEPTOR 4 ACTIVATION THROUGH REGULATION OF RECEPTOR DIMERIZATION AND RECRUITMENT INTO LIPID RAFTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The saturated fatty acids acylated on Lipid A of lipopolysaccharide (LPS) or bacterial lipoproteins play critical roles in ligand recognition and receptor activation for Toll-like Receptor 4 (TLR4) and TLR2. The results from our previous studies (J Biol Chem 2003, 2004) demonstrated that saturated ...

  10. Role of PAR2 in regulating oxaliplatin-induced neuropathic pain via TRPA1.

    PubMed

    Tian, Liujun; Fan, Tianren; Zhou, Nan; Guo, Hui; Zhang, Weijie

    2015-01-01

    Oxaliplatin (OXL) is a third-generation chemotherapeutic agent commonly used to treat metastatic digestive tumors; however, one of the main limiting complications of OXL is neuropathic pain. In this study, the underlying mechanisms responsible for OXL evoked-neuropathic pain were examined. Using a rat model, the results demonstrated that intraperitoneal (i.p.) injection of OXL significantly increased mechanical pain and cold sensitivity as compared with control animals (P < 0.05 vs. control rats). Blocking proteinase-activated receptor 2 (PAR2) significantly attenuated mechanical pain and cold sensitivity observed in control rats and OXL rats (P < 0.05 vs. vehicle control). The attenuating effect of PAR2 on mechanical pain and cold sensitivity were significantly smaller in OXL-rats than in control rats. The role played by PAR2 downstream signaling pathways [namely, transient receptor potential ankyrin 1 (TRPA1)] in regulating OXL evoked-neuropathic pain was also examined. The data shows that TRPA1 expression was upregulated in the lumbar dorsal root ganglion (DRG) of OXL rats and blocking TRPA1 inhibited mechanical pain and heightened cold sensitivity (P < 0.05 vs. control rats). Blocking PAR2 also significantly decreased TRPA1 expression in the DRG. Findings in this study show that OXL intervention amplifies mechanical hyperalgesia and cold hypersensitivity and PAR2 plays an important role in regulating OXL-induced neuropathic pain via TRPA1 pathways.

  11. Dopamine Receptor Activation Increases HIV Entry into Primary Human Macrophages

    PubMed Central

    Gaskill, Peter J.; Yano, Hideaki H.; Kalpana, Ganjam V.; Javitch, Jonathan A.; Berman, Joan W.

    2014-01-01

    Macrophages are the primary cell type infected with HIV in the central nervous system, and infection of these cells is a major component in the development of neuropathogenesis and HIV-associated neurocognitive disorders. Within the brains of drug abusers, macrophages are exposed to increased levels of dopamine, a neurotransmitter that mediates the addictive and reinforcing effects of drugs of abuse such as cocaine and methamphetamine. In this study we examined the effects of dopamine on HIV entry into primary human macrophages. Exposure to dopamine during infection increased the entry of R5 tropic HIV into macrophages, irrespective of the concentration of the viral inoculum. The entry pathway affected was CCR5 dependent, as antagonizing CCR5 with the small molecule inhibitor TAK779 completely blocked entry. The effect was dose-dependent and had a steep threshold, only occurring above 108 M dopamine. The dopamine-mediated increase in entry required dopamine receptor activation, as it was abrogated by the pan-dopamine receptor antagonist flupenthixol, and could be mediated through both subtypes of dopamine receptors. These findings indicate that the effects of dopamine on macrophages may have a significant impact on HIV pathogenesis. They also suggest that drug-induced increases in CNS dopamine may be a common mechanism by which drugs of abuse with distinct modes of action exacerbate neuroinflammation and contribute to HIV-associated neurocognitive disorders in infected drug abusers. PMID:25268786

  12. Genome-wide protein QTL mapping identifies human plasma kallikrein as a post-translational regulator of serum uPAR levels

    PubMed Central

    Portelli, Michael A.; Siedlinski, Mateusz; Stewart, Ceri E.; Postma, Dirkje S.; Nieuwenhuis, Maartje A.; Vonk, Judith M.; Nurnberg, Peter; Altmuller, Janine; Moffatt, Miriam F.; Wardlaw, Andrew J.; Parker, Stuart G.; Connolly, Martin J.; Koppelman, Gerard H.; Sayers, Ian

    2014-01-01

    The soluble cleaved urokinase plasminogen activator receptor (scuPAR) is a circulating protein detected in multiple diseases, including various cancers, cardiovascular disease, and kidney disease, where elevated levels of scuPAR have been associated with worsening prognosis and increased disease aggressiveness. We aimed to identify novel genetic and biomolecular mechanisms regulating scuPAR levels. Elevated serum scuPAR levels were identified in asthma (n=514) and chronic obstructive pulmonary disease (COPD; n=219) cohorts when compared to controls (n=96). In these cohorts, a genome-wide association study of serum scuPAR levels identified a human plasma kallikrein gene (KLKB1) promoter polymorphism (rs4253238) associated with serum scuPAR levels in a control/asthma population (P=1.17×10−7), which was also observed in a COPD population (combined P=5.04×10−12). Using a fluorescent assay, we demonstrated that serum KLKB1 enzymatic activity was driven by rs4253238 and is inverse to scuPAR levels. Biochemical analysis identified that KLKB1 cleaves scuPAR and negates scuPAR's effects on primary human bronchial epithelial cells (HBECs) in vitro. Chymotrypsin was used as a proproteolytic control, while basal HBECs were used as a control to define scuPAR-driven effects. In summary, we reveal a novel post-translational regulatory mechanism for scuPAR using a hypothesis-free approach with implications for multiple human diseases.—Portelli, M. A., Siedlinski, M., Stewart, C. E., Postma, D. S., Nieuwenhuis, M. A., Vonk, J. M., Nurnberg, P., Altmuller, J., Moffatt, M. F., Wardlaw, A. J., Parker, S. G., Connolly, M. J., Koppelman, G. H., Sayers, I. Genome-wide protein QTL mapping identifies human plasma kallikrein as a post-translational regulator of serum uPAR levels. PMID:24249636

  13. The Urokinase/Urokinase Receptor System in Mast Cells: Effects of its Functional Interaction with fMLF Receptors

    PubMed Central

    Rossi, Francesca Wanda; Prevete, Nella; Rivellese, Felice; Napolitano, Filomena; Montuori, Nunzia; Postiglione, Loredana; Selleri, Carmine; de Paulis, Amato

    2016-01-01

    Mast cell and basophils express the high affinity receptor for IgE (FcɛRI) and are primary effector cells of allergic disorders. The urokinase (uPA)-mediated plasminogen activation system is involved in physiological and pathological events based on cell migration and tissue remodelling, such as inflammation, wound healing, angiogenesis and metastasis. uPA is a serine protease that binds uPAR, a high affinity glycosyl-phosphatidyl-inositol (GPI)-anchored receptor. uPAR focuses uPA activity at the cell surface and activates intracellular signaling through lateral interactions with integrins, receptor tyrosine kinases and the G-protein-coupled family of fMLF chemotaxis receptors (FPRs). We investigated the expression of the uPA-uPAR system and its functional interaction with FPRs in human mast cells (MCs). Differently from basophils, MCs produced uPA that was able to induce their chemotaxis. Indeed, MCs also expressed uPAR, both in the intact and in a cleaved form (DII-DIII-uPAR) that can expose, at the N-terminus, the SRSRY sequence, able to interact with FPRs and to mediate cell chemotaxis. MCs also expressed mRNAs for FPRs that were functionally active; indeed, uPA and a soluble peptide (uPAR84–95), containing the SRSRY chemotactic sequence of uPAR and able to interact with FPRs, were able to induce MCs chemotaxis. Thus, uPA is a potent chemoattractant for MCs acting through the exposure of the chemotactic epitope of uPAR, that is an endogenous ligand for FPRs. The same mechanism could be involved in VEGF-A secretion by human MCs, also induced by uPA and uPAR84–95 stimulation. PMID:27896225

  14. Glucocorticoid receptor signalling activates YAP in breast cancer

    PubMed Central

    Sorrentino, Giovanni; Ruggeri, Naomi; Zannini, Alessandro; Ingallina, Eleonora; Bertolio, Rebecca; Marotta, Carolina; Neri, Carmelo; Cappuzzello, Elisa; Forcato, Mattia; Rosato, Antonio; Mano, Miguel; Bicciato, Silvio; Del Sal, Giannino

    2017-01-01

    The Hippo pathway is an oncosuppressor signalling cascade that plays a major role in the control of cell growth, tissue homoeostasis and organ size. Dysregulation of the Hippo pathway leads to aberrant activation of the transcription co-activator YAP (Yes-associated protein) that contributes to tumorigenesis in several tissues. Here we identify glucocorticoids (GCs) as hormonal activators of YAP. Stimulation of glucocorticoid receptor (GR) leads to increase of YAP protein levels, nuclear accumulation and transcriptional activity in vitro and in vivo. Mechanistically, we find that GCs increase expression and deposition of fibronectin leading to the focal adhesion-Src pathway stimulation, cytoskeleton-dependent YAP activation and expansion of chemoresistant cancer stem cells. GR activation correlates with YAP activity in human breast cancer and predicts bad prognosis in the basal-like subtype. Our results unveil a novel mechanism of YAP activation in cancer and open the possibility to target GR to prevent cancer stem cells self-renewal and chemoresistance. PMID:28102225

  15. Aryl hydrocarbon receptor-independent activation of estrogen receptor-dependent transcription by 3-methycholanthrene

    SciTech Connect

    Shipley, Jonathan M.; Waxman, David J. . E-mail: djw@bu.edu

    2006-06-01

    Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that stimulates transcription directed by xenobiotic response elements upstream of target genes. Recently, AhR ligands were reported to induce formation of an AhR-estrogen receptor (ER) complex, which can bind to estrogen response elements (EREs) and stimulate transcription of ER target genes. Presently, we investigate the effect of the AhR ligands 3-methylcholanthrene (3MC), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 3,3',4,4',5-pentachlorobiphenyl (BZ126) on ERE-regulated luciferase reporter activity and endogenous ER target gene expression. In MCF-7 human breast cancer cells, 3MC induced transcription of ER reporter genes containing native promoter sequences of the ER-responsive genes complement 3 and pS2 and heterologous promoters regulated by isolated EREs. Dose-response studies revealed that the concentration of 3MC required to half-maximally activate transcription (EC{sub 5}) was >100-fold higher for an ER reporter (27-57 {mu}M) than for an AhR reporter (86-250 nM) in both MCF-7 cells and in human endometrial cancer Ishikawa cells. 3MC also stimulated expression of the endogenous ER target genes amphiregulin, cathepsin D and progesterone receptor, albeit to a much lower extent than was achieved following stimulation with 17{beta}-estradiol. In Ishikawa cells, 3MC, but not BZ126 or TCDD, stimulated ER{alpha}-dependent reporter activity but did not induce expression of endogenous ER target genes. Finally, studies carried out in the AhR-positive rat hepatoma cell line 5L and the AhR-deficient variant BP8 demonstrated that ER reporter activity could be induced by 3MC in a manner that was independent of AhR and thus distinct from the AhR-ER 'hijacking' mechanism described recently. 3MC may thus elicit estrogenic activity by multiple mechanisms.

  16. PAR-1 mediated apoptosis of breast cancer cells by V. cholerae hemagglutinin protease.

    PubMed

    Ray, Tanusree; Pal, Amit

    2016-05-01

    Bacterial toxins have emerged as promising agents in cancer treatment strategy. Hemagglutinin (HAP) protease secreted by Vibrio cholerae induced apoptosis in breast cancer cells and regresses tumor growth in mice model. The success of novel cancer therapies depends on their selectivity for cancer cells with limited toxicity for normal tissues. Increased expression of Protease Activated Receptor-1 (PAR-1) has been reported in different malignant cells. In this study we report that HAP induced activation and over expression of PAR-1 in breast cancer cells (EAC). Immunoprecipitation studies have shown that HAP specifically binds with PAR-1. HAP mediated activation of PAR-1 caused nuclear translocation of p50-p65 and the phosphorylation of p38 which triggered the activation of NFκB and MAP kinase signaling pathways. These signaling pathways enhanced the cellular ROS level in malignant cells that induced the intrinsic pathway of cell apoptosis. PAR-1 mediated apoptosis by HAP of malignant breast cells without effecting normal healthy cells in the same environment makes it a good therapeutic agent for treatment of cancer.

  17. uPAR induces epithelial–mesenchymal transition in hypoxic breast cancer cells

    PubMed Central

    Lester, Robin D.; Jo, Minji; Montel, Valérie; Takimoto, Shinako; Gonias, Steven L.

    2007-01-01

    Hypoxia activates genetic programs that facilitate cell survival; however, in cancer, it may promote invasion and metastasis. In this study, we show that breast cancer cells cultured in 1.0% O2 demonstrate changes consistent with epithelial–mesenchymal transition (EMT). Snail translocates to the nucleus, and E-cadherin is lost from plasma membranes. Vimentin expression, cell migration, Matrigel invasion, and collagen remodeling are increased. Hypoxia-induced EMT is accompanied by increased expression of the urokinase-type plasminogen activator receptor (uPAR) and activation of cell signaling factors downstream of uPAR, including Akt and Rac1. Glycogen synthase kinase-3β is phosphorylated, and Snail expression is increased. Hypoxia-induced EMT is blocked by uPAR gene silencing and mimicked by uPAR overexpression in normoxia. Antagonizing Rac1 or phosphatidylinositol 3-kinase also inhibits development of cellular properties associated with EMT in hypoxia. Breast cancer cells implanted on chick chorioallantoic membranes and treated with CoCl2, to model hypoxia, demonstrate increased dissemination. We conclude that in hypoxia, uPAR activates diverse cell signaling pathways that cooperatively induce EMT and may promote cancer metastasis. PMID:17664334

  18. Activation of μ-opioid receptor and Toll-like receptor 4 by plasma from morphine-treated mice.

    PubMed

    Xie, Nan; Gomes, Fabio P; Deora, Vandana; Gregory, Kye; Vithanage, Tharindu; Nassar, Zeyad D; Cabot, Peter J; Sturgess, David; Shaw, Paul N; Parat, Marie-Odile

    2017-03-01

    In this study, we quantified the ability of opioids present in biological samples to activate the μ-opioid receptor and TLR4 using cell-based assays. Each assay was standardised, in the presence of plasma, using morphine, its μ receptor-active metabolite morphine-6 glucuronide (M6G) and its μ receptor-inactive, but TLR4-active metabolite morphine-3 glucuronide (M3G). Specificity was verified using antagonists. Morphine- and M6G-spiked plasma samples exhibited μ receptor activation, which M3G-spiked plasma lacked. In contrast, M3G showed moderate but consistent activation of TLR-4. Plasma samples were collected at a number of time points from mice administered morphine (1 or 10mg/kg every 12h for 3days) or saline. Morphine administration led to intermittent μ receptor activation, reversed by μ receptor antagonists, and to TRL4 activation at time points where M3G is measured in plasma. Interestingly, this protocol of morphine administration also led to TLR4-independent NF-κB activation, at time points where M3G was not detected, presumably via elevation of circulating cytokines including, but not limited to, TNFα. Circulating TNFα was increased after three days of morphine administration, and TNFα mRNA elevated in the spleen of morphine-treated mice.

  19. Regulation of ligands for the activating receptor NKG2D

    PubMed Central

    Mistry, Anita R; O'Callaghan, Chris A

    2007-01-01

    The outcome of an encounter between a cytotoxic cell and a potential target cell depends on the balance of signals from inhibitory and activating receptors. Natural Killer group 2D (NKG2D) has recently emerged as a major activating receptor on T lymphocytes and natural killer cells. In both humans and mice, multiple different genes encode ligands for NKG2D, and these ligands are non-classical major histocompatibility complex class I molecules. The NKG2D–ligand interaction triggers an activating signal in the cell expressing NKG2D and this promotes cytotoxic lysis of the cell expressing the ligand. Most normal tissues do not express ligands for NKG2D, but ligand expression has been documented in tumour and virus-infected cells, leading to lysis of these cells. Tight regulation of ligand expression is important. If there is inappropriate expression in normal tissues, this will favour autoimmune processes, whilst failure to up-regulate the ligands in pathological conditions would favour cancer development or dissemination of intracellular infection. PMID:17614877

  20. Differential uPAR recruitment in caveolar-lipid rafts by GM1 and GM3 gangliosides regulates endothelial progenitor cells angiogenesis.

    PubMed

    Margheri, Francesca; Papucci, Laura; Schiavone, Nicola; D'Agostino, Riccardo; Trigari, Silvana; Serratì, Simona; Laurenzana, Anna; Biagioni, Alessio; Luciani, Cristina; Chillà, Anastasia; Andreucci, Elena; Del Rosso, Tommaso; Margheri, Giancarlo; Del Rosso, Mario; Fibbi, Gabriella

    2015-01-01

    Gangliosides and the urokinase plasminogen activator receptor (uPAR) tipically partition in specialized membrane microdomains called lipid-rafts. uPAR becomes functionally important in fostering angiogenesis in endothelial progenitor cells (EPCs) upon recruitment in caveolar-lipid rafts. Moreover, cell membrane enrichment with exogenous GM1 ganglioside is pro-angiogenic and opposite to the activity of GM3 ganglioside. On these basis, we first checked the interaction of uPAR with membrane models enriched with GM1 or GM3, relying on the adoption of solid-supported mobile bilayer lipid membranes with raft-like composition formed onto solid hydrophilic surfaces, and evaluated by surface plasmon resonance (SPR) the extent of uPAR recruitment. We estimated the apparent dissociation constants of uPAR-GM1/GM3 complexes. These preliminary observations, indicating that uPAR binds preferentially to GM1-enriched biomimetic membranes, were validated by identifying a pro-angiogenic activity of GM1-enriched EPCs, based on GM1-dependent uPAR recruitment in caveolar rafts. We have observed that addition of GM1 to EPCs culture medium promotes matrigel invasion and capillary morphogenesis, as opposed to the anti-angiogenesis activity of GM3. Moreover, GM1 also stimulates MAPKinases signalling pathways, typically associated with an angiogenesis program. Caveolar-raft isolation and Western blotting of uPAR showed that GM1 promotes caveolar-raft partitioning of uPAR, as opposed to control and GM3-challenged EPCs. By confocal microscopy, we have shown that in EPCs uPAR is present on the surface in at least three compartments, respectively, associated to GM1, GM3 and caveolar rafts. Following GM1 exogenous addition, the GM3 compartment is depleted of uPAR which is recruited within caveolar rafts thereby triggering angiogenesis.

  1. Differential uPAR recruitment in caveolar-lipid rafts by GM1 and GM3 gangliosides regulates endothelial progenitor cells angiogenesis

    PubMed Central

    Margheri, Francesca; Papucci, Laura; Schiavone, Nicola; D'Agostino, Riccardo; Trigari, Silvana; Serratì, Simona; Laurenzana, Anna; Biagioni, Alessio; Luciani, Cristina; Chillà, Anastasia; Andreucci, Elena; Del Rosso, Tommaso; Margheri, Giancarlo; Del Rosso, Mario; Fibbi, Gabriella

    2015-01-01

    Gangliosides and the urokinase plasminogen activator receptor (uPAR) tipically partition in specialized membrane microdomains called lipid-rafts. uPAR becomes functionally important in fostering angiogenesis in endothelial progenitor cells (EPCs) upon recruitment in caveolar-lipid rafts. Moreover, cell membrane enrichment with exogenous GM1 ganglioside is pro-angiogenic and opposite to the activity of GM3 ganglioside. On these basis, we first checked the interaction of uPAR with membrane models enriched with GM1 or GM3, relying on the adoption of solid-supported mobile bilayer lipid membranes with raft-like composition formed onto solid hydrophilic surfaces, and evaluated by surface plasmon resonance (SPR) the extent of uPAR recruitment. We estimated the apparent dissociation constants of uPAR-GM1/GM3 complexes. These preliminary observations, indicating that uPAR binds preferentially to GM1-enriched biomimetic membranes, were validated by identifying a pro-angiogenic activity of GM1-enriched EPCs, based on GM1-dependent uPAR recruitment in caveolar rafts. We have observed that addition of GM1 to EPCs culture medium promotes matrigel invasion and capillary morphogenesis, as opposed to the anti-angiogenesis activity of GM3. Moreover, GM1 also stimulates MAPKinases signalling pathways, typically associated with an angiogenesis program. Caveolar-raft isolation and Western blotting of uPAR showed that GM1 promotes caveolar-raft partitioning of uPAR, as opposed to control and GM3-challenged EPCs. By confocal microscopy, we have shown that in EPCs uPAR is present on the surface in at least three compartments, respectively, associated to GM1, GM3 and caveolar rafts. Following GM1 exogenous addition, the GM3 compartment is depleted of uPAR which is recruited within caveolar rafts thereby triggering angiogenesis. PMID:25313007

  2. Shear stress activation of nuclear receptor PXR in endothelial detoxification.

    PubMed

    Wang, Xiaohong; Fang, Xi; Zhou, Jing; Chen, Zhen; Zhao, Beilei; Xiao, Lei; Liu, Ao; Li, Yi-Shuan J; Shyy, John Y-J; Guan, Youfei; Chien, Shu; Wang, Nanping

    2013-08-06

    Endothelial cells (ECs) are constantly exposed to xenobiotics and endobiotics or their metabolites, which perturb EC function, as well as to shear stress, which plays a crucial role in vascular homeostasis. Pregnane X receptor (PXR) is a nuclear receptor and a key regulator of the detoxification of xeno- and endobiotics. Here we show that laminar shear stress (LSS), the atheroprotective flow, activates PXR in ECs, whereas oscillatory shear stress, the atheroprone flow, suppresses PXR. LSS activation of PXR in cultured ECs led to the increased expression of a PXR target gene, multidrug resistance 1 (MDR1). An in vivo study using rats showed that the expression of MDR1 was significantly higher in the endothelium from the descending thoracic aorta, where flow is mostly laminar, than from the inner curvature of aortic arch, where flow is disturbed. Functionally, LSS-activated PXR protects ECs from apoptosis triggered by doxorubicin via the induction of MDR1 and other detoxification genes. PXR also suppressed the expression of proinflammatory adhesion molecules and monocyte adhesion in response to TNF-α and lipopolysaccharide. Overexpression of a constitutively active PXR in rat carotid arteries potently attenuated proinflammatory responses. In addition, cDNA microarray revealed a large number of the PXR-activated endothelial genes whose products are responsible for major steps of detoxification, including phase I and II metabolizing enzymes and transporters. These detoxification genes in ECs are induced by LSS in ECs in a PXR-dependent manner. In conclusion, our results indicate that PXR represents a flow-activated detoxification system to protect ECs against damage by xeno- and endobiotics.

  3. Artificial masculinization in tilapia involves androgen receptor activation.

    PubMed

    Golan, Matan; Levavi-Sivan, Berta

    2014-10-01

    Estrogens have a pivotal role in natural female sexual differentiation of tilapia while lack of steroids results in testicular development. Despite the fact that androgens do not participate in natural sex differentiation, synthetic androgens, mainly 17-α-methyltestosterone (MT) are effective in the production of all-male fish in aquaculture. The sex inversion potency of synthetic androgens may arise from their androgenic activity or else as inhibitors of aromatase activity. The current study is an attempt to differentiate between the two alleged activities in order to evaluate their contribution to the sex inversion process and aid the search for novel sex inversion agents. In the present study, MT inhibited aromatase activity, when applied in vitro as did the non-aromatizable androgen dihydrotestosterone (DHT). In comparison, exposure to fadrozole, a specific aromatase inhibitor, was considerably more effective. Androgenic activity of MT was evaluated by exposure of Sciaenochromis fryeri fry to the substance and testing for the appearance of blue color. Flutamide, an androgen antagonist, administered concomitantly with MT, reduced the appearance of the blue color and the sex inversion potency of MT in a dose-dependent manner. In tilapia, administration of MT, fadrozole or DHT resulted in efficient sex inversion while flutamide reduced the sex inversion potency of all three compounds. In the case of MT and DHT the decrease in sex inversion efficiency caused by flutamide is most likely due to the direct blocking of the androgen binding to its cognate receptor. The negative effect of flutamide on the efficiency of the fadrozole treatment may indicate that the masculinizing activity of fadrozole may be attributed to excess, un-aromatized, androgens accumulated in the differentiating gonad. The present study shows that when androgen receptors are blocked, there is a reduction in the efficiency of sex inversion treatments. Our results suggest that in contrast to

  4. Shear stress activation of nuclear receptor PXR in endothelial detoxification

    PubMed Central

    Wang, Xiaohong; Fang, Xi; Zhou, Jing; Chen, Zhen; Zhao, Beilei; Xiao, Lei; Liu, Ao; Li, Yi-Shuan J.; Shyy, John Y.-J.; Guan, Youfei; Chien, Shu; Wang, Nanping

    2013-01-01

    Endothelial cells (ECs) are constantly exposed to xenobiotics and endobiotics or their metabolites, which perturb EC function, as well as to shear stress, which plays a crucial role in vascular homeostasis. Pregnane X receptor (PXR) is a nuclear receptor and a key regulator of the detoxification of xeno- and endobiotics. Here we show that laminar shear stress (LSS), the atheroprotective flow, activates PXR in ECs, whereas oscillatory shear stress, the atheroprone flow, suppresses PXR. LSS activation of PXR in cultured ECs led to the increased expression of a PXR target gene, multidrug resistance 1 (MDR1). An in vivo study using rats showed that the expression of MDR1 was significantly higher in the endothelium from the descending thoracic aorta, where flow is mostly laminar, than from the inner curvature of aortic arch, where flow is disturbed. Functionally, LSS-activated PXR protects ECs from apoptosis triggered by doxorubicin via the induction of MDR1 and other detoxification genes. PXR also suppressed the expression of proinflammatory adhesion molecules and monocyte adhesion in response to TNF-α and lipopolysaccharide. Overexpression of a constitutively active PXR in rat carotid arteries potently attenuated proinflammatory responses. In addition, cDNA microarray revealed a large number of the PXR-activated endothelial genes whose products are responsible for major steps of detoxification, including phase I and II metabolizing enzymes and transporters. These detoxification genes in ECs are induced by LSS in ECs in a PXR-dependent manner. In conclusion, our results indicate that PXR represents a flow-activated detoxification system to protect ECs against damage by xeno- and endobiotics. PMID:23878263

  5. Oxidatively fragmented phosphatidylcholines activate human neutrophils through the receptor for platelet-activating factor.

    PubMed

    Smiley, P L; Stremler, K E; Prescott, S M; Zimmerman, G A; McIntyre, T M

    1991-06-15

    Platelet-activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) activates neutrophils (polymorphonuclear leukocytes, PMN) through a receptor that specifically recognizes short sn-2 residues. We oxidized synthetic [2-arachidonoyl]phosphatidylcholine to fragment and shorten the sn-2 residue, and then examined the phospholipid products for the ability to stimulate PMN. 1-Palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine was fragmented by ozonolysis to 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine. This phospholipid activated human neutrophils at submicromolar concentrations, and is effects were inhibited by specific PAF receptor antagonists WEB2086, L659,989, and CV3988. 1-Palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine next was fragmented by an uncontrolled free radical-catalyzed reaction: it was treated with soybean lipoxygenase to form its sn-2 15-hydroperoxy derivative (which did not activate neutrophils) and then allowed to oxidize under air. The secondary oxidation resulted in the formation of numerous fragmented phospholipids (Stremler, K. E., Stafforini, D. M., Prescott, S. M., and McIntyre, T. M. (1991) J. Biol. Chem. 266, 11095-11103), some of which activated PMN. Hydrolysis of sn-2 residues with phospholipase A2 destroyed biologic activity, as did hydrolysis with PAF acetylhydrolase. PAF acetylhydrolase is specific for short or intermediate length sn-2 residues and does not hydrolyze the starting material (Stremler, K. E., Stafforini, D. M., Prescott, S. M., and McIntyre, T. M. (1991) J. Biol. Chem. 266, 11095-11103). Neutrophil activation was completely blocked by L659,989, a specific PAF receptor antagonist. We conclude that diacylphosphatidylcholines containing an sn-2 polyunsaturated fatty acyl residue can be oxidatively fragmented to species with sn-2 residues short enough to activate the PAF receptor of neutrophils. This suggests a new mechanism for the appearance of biologically active phospholipids, and shows

  6. Kainate receptor activation induces glycine receptor endocytosis through PKC deSUMOylation

    PubMed Central

    Sun, Hao; Lu, Li; Zuo, Yong; Wang, Yan; Jiao, Yingfu; Zeng, Wei-Zheng; Huang, Chao; Zhu, Michael X.; Zamponi, Gerald W.; Zhou, Tong; Xu, Tian-Le; Cheng, Jinke; Li, Yong

    2014-01-01

    Surface expression and regulated endocytosis of glycine receptors (GlyRs) play a critical function in balancing neuronal excitability. SUMOylation (SUMO modification) is of critical importance for maintaining neuronal function in the central nervous system. Here we show that activation of kainate receptors (KARs) causes GlyR endocytosis in a calcium- and protein kinase C (PKC)-dependent manner, leading to reduced GlyR-mediated synaptic activity in cultured spinal cord neurons and the superficial dorsal horn of rat spinal cord slices. This effect requires SUMO1/sentrin-specific peptidase 1 (SENP1)-mediated deSUMOylation of PKC, indicating that the crosstalk between KARs and GlyRs relies on the SUMOylation status of PKC. SENP1-mediated deSUMOylation of PKC is involved in the kainate-induced GlyR endocytosis and thus plays an important role in the anti-homeostatic regulation between excitatory and inhibitory ligand-gated ion channels. Altogether, we have identified a SUMOylation-dependent regulatory pathway for GlyR endocytosis, which may have important physiological implications for proper neuronal excitability. PMID:25236484

  7. The glucagon-like peptide 1 receptor agonist enhances intrinsic peroxisome proliferator-activated receptor γ activity in endothelial cells

    SciTech Connect

    Onuma, Hirohisa; Inukai, Kouichi Kitahara, Atsuko; Moriya, Rie; Nishida, Susumu; Tanaka, Toshiaki; Katsuta, Hidenori; Takahashi, Kazuto; Sumitani, Yoshikazu; Hosaka, Toshio; Ishida, Hitoshi

    2014-08-22

    Highlights: • PPARγ activation was involved in the GLP-1-mediated anti-inflammatory action. • Exendin-4 enhanced endogenous PPARγ transcriptional activity in HUVECs. • H89, a PKA inhibitor, abolished GLP-1-induced PPARγ enhancement. • The anti-inflammatory effects of GLP-1 may be explained by PPARγ activation. - Abstract: Recent studies have suggested glucagon-like peptide-1 (GLP-1) signaling to exert anti-inflammatory effects on endothelial cells, although the precise underlying mechanism remains to be elucidated. In the present study, we investigated whether PPARγ activation is involved in the GLP-1-mediated anti-inflammatory action on endothelial cells. When we treated HUVEC cells with 0.2 ng/ml exendin-4, a GLP-1 receptor agonist, endogenous PPARγ transcriptional activity was significantly elevated, by approximately 20%, as compared with control cells. The maximum PPARγ activity enhancing effect of exendin-4 was observed 12 h after the initiation of incubation with exendin-4. As H89, a PKA inhibitor, abolished GLP-1-induced PPARγ enhancement, the signaling downstream from GLP-1 cross-talk must have been involved in PPARγ activation. In conclusion, our results suggest that GLP-1 has the potential to induce PPARγ activity, partially explaining the anti-inflammatory effects of GLP-1 on endothelial cells. Cross-talk between GLP-1 signaling and PPARγ activation would have major impacts on treatments for patients at high risk for cardiovascular disease.

  8. A new mechanism for growth hormone receptor activation of JAK2, and implications for related cytokine receptors

    PubMed Central

    Waters, Michael J; Brooks, Andrew J; Chhabra, Yash

    2014-01-01

    The growth hormone receptor was the first cytokine receptor to be cloned and crystallized, and provides a valuable exemplar for activation of its cognate kinase, JAK2. We review progress in understanding its activation mechanism, in particular the molecular movements made by this constitutively dimerized receptor in response to ligand binding, and how these lead to a separation of JAK-binding Box1 motifs. Such a separation leads to removal of the pseudokinase inhibitory domain from the kinase domain of a partner JAK2 bound to the receptor, and vice versa, leading to apposition of the kinase domains and transactivation. This may be a general mechanism for class I cytokine receptor action. PMID:25101218

  9. Increased peroxisome proliferator-activated receptor-gamma activity reduces imatinib uptake and efficacy in chronic myeloid leukemia mononuclear cells.

    PubMed

    Wang, Jueqiong; Lu, Liu; Kok, Chung H; Saunders, Verity A; Goyne, Jarrad M; Dang, Phuong; Leclercq, Tamara M; Hughes, Timothy P; White, Deborah L

    2017-02-02

    Imatinib is actively transported by OCT-1 influx transporter, and low OCT-1 activity in diagnostic chronic myeloid leukemia blood mononuclear cells is significantly associated with poor molecular response to imatinib. Here we report that, in diagnostic chronic myeloid leukemia mononuclear cells and BCR-ABL1+ cell lines, peroxisome proliferator-activated receptor gamma agonists (GW1929, rosiglitazone, pioglitazone) significantly decrease OCT-1 activity; conversely, peroxisome proliferator-activated receptor gamma antagonists (GW9662, T0070907) increase OCT-1 activity. Importantly, these effects can lead to corresponding changes in sensitivity to Bcr-Abl kinase inhibition. Results were confirmed in peroxisome proliferator-activated receptor gamma-transduced K562 cells. Furthermore, we identified a strong negative correlation between OCT-1 activity and peroxisome proliferator-activated receptor gamma transcriptional activity in diagnostic chronic myeloid leukemia patients (n=84; p<0.0001), suggesting that peroxisome proliferator-activated receptor gamma activation has a negative impact on the intracellular uptake of imatinib and consequent Bcr-Abl kinase inhibition. The inter-patient variability of peroxisome proliferator-activated receptor gamma activation likely accounts for the heterogeneity observed in patient OCT-1 activity at diagnosis. Recently, the peroxisome proliferator-activated receptor gamma agonist pioglitazone was reported to act synergistically with imatinib targeting the residual chronic myeloid leukemia stem cell pool. Our findings suggest that peroxisome proliferator-activated receptor gamma ligands have differential effects on circulating mononuclear cells compared to stem cells. Since the effect of peroxisome proliferator-activated receptor gamma activation on imatinib uptake in mononuclear cells may counteract the clinical benefit of this activation in stem cells, caution should be applied when combining these therapies, especially in patients

  10. Constitutive androstane receptor activation evokes the expression of glycolytic genes.

    PubMed

    Yarushkin, Andrei A; Kazantseva, Yuliya A; Prokopyeva, Elena A; Markova, Diana N; Pustylnyak, Yuliya A; Pustylnyak, Vladimir O

    2016-09-23

    It is well-known that constitutive androstane receptor (CAR) activation by 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) increases the liver-to-body weight ratio. CAR-mediated liver growth is correlated with increased expression of the pleiotropic transcription factor cMyc, which stimulates cell cycle regulatory genes and drives proliferating cells into S phase. Because glycolysis supports cell proliferation and cMyc is essential for the activation of glycolytic genes, we hypothesized that CAR-mediated up-regulation of cMyc in mouse livers might play a role in inducing the expression of glycolytic genes. The aim of the present study was to examine the effect of long-term CAR activation on glycolytic genes in a mouse model not subjected to metabolic stress. We demonstrated that long-term CAR activation by TCPOBOP increases expression of cMyc, which was correlated with reduced expression of gluconeogenic genes and up-regulation of glucose transporter, glycolytic and mitochondrial pyruvate metabolising genes. These changes in gene expression after TCPOBOP treatment were strongly correlated with changes in levels of glycolytic intermediates in mouse livers. Moreover, we demonstrated a significant positive regulatory effect of TCPOBOP-activated CAR on both mRNA and protein levels of Pkm2, a master regulator of glucose metabolism and cell proliferation. Thus, our findings provide evidence to support the conclusion that CAR activation initiates a transcriptional program that facilitates the coordinated metabolic activities required for cell proliferation.

  11. Decreased response of interneurons in the medial prefrontal cortex to 5-HT₁A receptor activation in the rat 6-hydroxydopamine Parkinson model.

    PubMed

    Zhang, Qiaojun; Wang, Shuang; Zhang, Lina; Zhang, Huan; Qiao, Hongfei; Niu, Xiaolin; Liu, Jian

    2014-08-01

    This study examined the response of interneurons in the medial prefrontal cortex (mPFC) to 5-HT1A receptor agonist 8-OH-DPAT and change in expression of 5-HT1A receptor on glutamate decarboxylase 67 (GAD67)-positive neurons in rats with 6-hydroxydopamine (6-OHDA) lesions of the substantia nigra pars compacta (SNc). Systemic administration of 5-HT1A receptor agonist 8-OH-DPAT dose-dependently inhibited the firing rate of the interneurons at all doses tested in sham-operated rats. In 6-OHDA-lesioned rats, 8-OH-DPAT, at the same doses, also inhibited the firing rate of the interneurons, whereas the inhibition was significant only at a high cumulative dose. Furthermore, injection of 8-OH-DPAT into the mPFC inhibited the interneurons in sham-operated rats, while having no effect on firing rate of the interneurons in 6-OHDA-lesioned rats. In contrast to sham-operated rats, SNc lesion reduced the expression of 5-HT1A receptor on GAD67-positive neurons in the prelimbic cortex, a sub-region of the mPFC. Our results indicate that degeneration of the nigrostriatal pathway leads to decreased response of mPFC interneurons to 5-HT1A receptor activation, which attributes to the down-regulation of 5-HT1A receptor expression in these interneurons.

  12. The Role of Hippocampal NMDA Receptors in Long-Term Emotional Responses following Muscarinic Receptor Activation.

    PubMed

    Hoeller, Alexandre A; Costa, Ana Paula R; Bicca, Maíra A; Matheus, Filipe C; Lach, Gilliard; Spiga, Francesca; Lightman, Stafford L; Walz, Roger; Collingridge, Graham L; Bortolotto, Zuner A; de Lima, Thereza C M

    2016-01-01

    Extensive evid