Science.gov

Sample records for activated relaxation process

  1. Relaxation processes in non-Debye dielectrics

    NASA Astrophysics Data System (ADS)

    Turik, A. V.; Bogatin, A. S.; Andreev, E. V.

    2011-12-01

    The specific features of the relaxation processes in non-Debye dielectrics have been investigated. The nature of the difference between the relaxation frequencies of the dielectric constant and dielectric loss (conductivity) has been explained. It has been shown that the average relaxation frequency of the conductivity is considerably (in some cases, by several orders of magnitude) higher than the relaxation frequency of the dielectric constant owing to an increase in the conductivity spectra of the statistical weight of the relaxation processes with short relaxation times.

  2. Relaxation processes of densified silica glass

    NASA Astrophysics Data System (ADS)

    Cornet, Antoine; Martinez, Valérie; de Ligny, Dominique; Champagnon, Bernard; Martinet, Christine

    2017-03-01

    Densified SiO2 glasses, obtained from different pressure and temperature routes, have been annealed over a wide range of temperatures far below the glass transition temperature (500 °C-900 °C). Hot and cold compressions were useful to separate the effects of pressure and the compression temperature. In situ micro-Raman spectroscopy was used to follow the structural evolution during the thermal relaxation. A similar glass structure between the non-densified silica and the recovered densified silica after the temperature annealing demonstrates a perfect recovery of the non-densified silica glass structure. While the density decreases monotonically, the structural relaxation takes place through a more complex mechanism, which shows that density is not a sufficient parameter to fully characterize the structure of densified silica glass. The relaxation takes place through a transitory state, consisting in an increase of the network inhomogeneity, shown by an increase in the intensity of the D2 band which is associated with 3 membered rings. The activation energy of these processes is 255 ± 45 kJ/mol for the hot compressed samples. The kinetic is overall faster for the cold compressed samples. In that last case, the relaxation is partially activated by internal stresses release.

  3. Kinetic activation-relaxation technique.

    PubMed

    Béland, Laurent Karim; Brommer, Peter; El-Mellouhi, Fedwa; Joly, Jean-François; Mousseau, Normand

    2011-10-01

    We present a detailed description of the kinetic activation-relaxation technique (k-ART), an off-lattice, self-learning kinetic Monte Carlo (KMC) algorithm with on-the-fly event search. Combining a topological classification for local environments and event generation with ART nouveau, an efficient unbiased sampling method for finding transition states, k-ART can be applied to complex materials with atoms in off-lattice positions or with elastic deformations that cannot be handled with standard KMC approaches. In addition to presenting the various elements of the algorithm, we demonstrate the general character of k-ART by applying the algorithm to three challenging systems: self-defect annihilation in c-Si (crystalline silicon), self-interstitial diffusion in Fe, and structural relaxation in a-Si (amorphous silicon).

  4. Kinetic activation-relaxation technique

    NASA Astrophysics Data System (ADS)

    Béland, Laurent Karim; Brommer, Peter; El-Mellouhi, Fedwa; Joly, Jean-François; Mousseau, Normand

    2011-10-01

    We present a detailed description of the kinetic activation-relaxation technique (k-ART), an off-lattice, self-learning kinetic Monte Carlo (KMC) algorithm with on-the-fly event search. Combining a topological classification for local environments and event generation with ART nouveau, an efficient unbiased sampling method for finding transition states, k-ART can be applied to complex materials with atoms in off-lattice positions or with elastic deformations that cannot be handled with standard KMC approaches. In addition to presenting the various elements of the algorithm, we demonstrate the general character of k-ART by applying the algorithm to three challenging systems: self-defect annihilation in c-Si (crystalline silicon), self-interstitial diffusion in Fe, and structural relaxation in a-Si (amorphous silicon).

  5. Suppression of flow pulsation activity by relaxation process of additive effect on viscous media transport

    NASA Astrophysics Data System (ADS)

    Kharlamov, S.; Dedeyev, P.; Meucci, L.; Shenderova, I.; Manastirniy, A.; Usenko, M.

    2015-11-01

    The article presents the analysis of the processes occurring together with the turbulent transfer of impulse in mixture of hydrocarbon fluid and polymer solutions (anti-turbulent additives). The study evaluates complex shear flows by popular theoretical and practical methods. Understanding of hydrodynamic and dissipative effects of laminar-turbulent transition tightening and turbulence suppression is provided. The peculiarities of "thin" flow structure in pipeline zones with complex shape walls are evaluated. Recommendations to forecast the local flow parameters, calculation of hydraulic resistance are given.

  6. ABC relaxation theory and the factor structure of relaxation states, recalled relaxation activities, dispositions, and motivations.

    PubMed

    Smith, J C; Wedell, A B; Kolotylo, C J; Lewis, J E; Byers, K Y; Segin, C M

    2000-06-01

    ABC Relaxation Theory proposes 15 psychological relaxation-related states (R-States): Sleepiness, Disengagement, Physical Relaxation, Mental Quiet, Rested/Refreshed, At Ease/At Peace, Energized, Aware, Joy, Thankfulness and Love, Prayerfulness, Childlike Innocence, Awe and Wonder, Mystery, and Timeless/Boundless/Infinite. The present study summarizes the results of 13 separate factor analyses of immediate relaxation-related states, states associated with recalled relaxation activities, relaxation dispositions, and relaxation motivations on a combined sample of 1,904 individuals (group average ages ranged from 28-40 yr.). Four exploratory factor analyses of Smith Relaxation Inventories yielded 15 items that most consistently and exclusively load (generally at least .70) on six replicated factors. These items included happy, joyful, energized, rested, at peace, warm, limp, silent, quiet, dozing, drowsy, prayerful, mystery, distant, and indifferent. Subsequent factor analyses restricted to these items and specifying six factors were performed on 13 different data sets. Each yielded the same six-factor solution: Factor 1: Centered Positive Affect, Factor 2: Sleepiness, Factor 3: Disengagement, Factor 4: Physical Relaxation, Factor 5: Mental Quiet, and Factor 6: Spiritual. Implications for ABC Relaxation Theory are discussed.

  7. Relaxation processes in disaccharide sugar glasses

    NASA Astrophysics Data System (ADS)

    Hwang, Yoon-Hwae; Kwon, Hyun-Joung; Seo, Jeong-Ah; Shin, Dong-Myeong; Ha, Ji-Hye; Kim, Hyung-Kook

    2013-02-01

    We represented relaxation processes of disaccharide sugars (anhydrous trehalose and maltose) in supercooled and glassy states by using several spectroscopy techniques which include a broadband dielectric loss spectroscopy, photon correlation spectroscopy and X-ray diffraction (Retvield analysis) methods which are powerful tools to measure the dynamics in glass forming materials. In a dielectric loss spectroscopy study, we found that anhydrous trehalose and maltose glasses have an extra relaxation process besides α-, JG β- and γ-relaxations which could be related to a unique property of glycoside bond in disaccharides. In photon correlation spectroscopy study, we found an interesting compressed exponential relaxation at temperatures above 140°C. The q-1 dependence of its relaxation time corresponds to an ultraslow ballistic motion due to the local structure rearrangements. In the same temperature range, we found the glycosidic bond structure changes in trehalose molecule from the Raman and the Retvield X-ray diffraction measurements indicating that the observed compressed exponential relaxation in supercooled liquid trehalose could be resulted in the glycosidic bond structure change. Therefore, the overall results from this study might support the fact that the superior bioprotection ability of disaccharide sugar glasses might originate from this unique relaxation process of glycosidic bond.

  8. Electron spin-lattice relaxation mechanisms of nitroxyl radicals in ionic liquids and conventional organic liquids: temperature dependence of a thermally activated process.

    PubMed

    Kundu, Krishnendu; Kattnig, Daniel R; Mladenova, Boryana Y; Grampp, Günter; Das, Ranjan

    2015-03-26

    During the past two decades, several studies have established a significant role played by a thermally activated process in the electron spin relaxation of nitroxyl free radicals in liquid solutions. Its role has been used to explain the spin relaxation behavior of these radicals in a wide range of viscosities and microwave frequencies. However, no temperature dependence of this process has been reported. In this work, our main aim was to investigate the temperature dependence of this process in neat solvents. Electron spin-lattice relaxation times of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and 4-hydroxy-TEMPO (TEMPOL), in X-band microwave frequency, were measured by the pulse saturation recovery technique in three room-temperature ionic liquids ([bmim][BF4], [emim][BF4], and [bmim][PF6]), di-isononyl phthalate, and sec-butyl benzene. The ionic liquids provided a wide range of viscosity in a modest range of temperature. An auxiliary aim was to examine whether the dynamics of a probe molecule dissolved in ionic liquids was different from that in conventional molecular liquids, as claimed in several reports on fluorescence dynamics in ionic liquids. This was the reason for the inclusion of di-isononyl phthalate, whose viscosities are similar to that of the ionic liquids in similar temperatures, and sec-butyl benzene. Rotational correlation times of the nitroxyl radicals were determined from the hyperfine dependence of the electron paramagnetic resonance (EPR) line widths. Observation of highly well-resolved proton hyperfine lines, riding over the nitrogen hyperfine lines, in the low viscosity regime in all the solvents, gave more accurate values of the rotational correlation times than the values generally measured in the absence of these hyperfine lines and reported in the literature. The measured rotational correlation times obeyed a modified Stokes-Einstein-Debye relation of temperature dependence in all solvents. By separating the contributions of g

  9. Strong dependence on doping of a low-activation-energy relaxation process in YBa{sub 2}Cu{sub 3}O{sub 6+{ital x}}: Possible polaron relaxation

    SciTech Connect

    Cannelli, G.; Cantelli, R.; Cordero, F.; Trequattrini, F.; Ferretti, M.

    1996-12-01

    The elastic energy loss of YBa{sub 2}Cu{sub 3}O{sub 6+{ital x}} is measured below room temperature with {ital x} close to the maximum stoichiometry, where three low-activation-energy peaks are present. It is found that the intensity of the process with the lowest activation energy, {ital E}{approximately}0.076 eV decreases very steeply when {ital x} is lowered just below its maximum value; it becomes undetectable when the sample is still in the {ital T}{sub {ital c}}=90 K plateau and all the other peaks are nearly unaffected. The possible mechanisms for this process are discussed, mainly in terms of hopping of polarons or off-center atoms. The characteristics that these defects should possess in order to produce anelastic relaxation are specified. The most natural way to interpret the peak is the assumption of the formation and reorientation of bipolarons among orbitals which are occupied by holes only at the highest O stoichiometries; according to Tolentino {ital et} {ital al}. [Physica C {bold 192}, 115 (1992)], such holes could reside in the {ital p}{sub {ital z}} orbitals of the apical O atoms. {copyright} {ital 1996 The American Physical Society.}

  10. Characteristics of the secondary relaxation process in soft colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Saha, Debasish; Joshi, Yogesh M.; Bandyopadhyay, Ranjini

    2015-11-01

    A universal secondary relaxation process, known as the Johari-Goldstein (J-G) β-relaxation process, appears in glass formers. It involves all parts of the molecule and is particularly important in glassy systems because of its very close relationship with the α-relaxation process. However, the absence of a J-G β-relaxation mode in colloidal glasses raises questions regarding its universality. In the present work, we study the microscopic relaxation processes in Laponite suspensions, a model soft glassy material, by dynamic light scattering (DLS) experiments. α- and β-relaxation timescales are estimated from the autocorrelation functions obtained by DLS measurements for Laponite suspensions with different concentrations, salt concentrations and temperatures. Our experimental results suggest that the β-relaxation process in Laponite suspensions involves all parts of the constituent Laponite particle. The ergodicity breaking time is also seen to be correlated with the characteristic time of the β-relaxation process for all Laponite concentrations, salt concentrations and temperatures. The width of the primary relaxation process is observed to be correlated with the secondary relaxation time. The secondary relaxation time is also very sensitive to the concentration of Laponite. We measure primitive relaxation timescales from the α-relaxation time and the stretching exponent (β) by applying the coupling model for highly correlated systems. The order of magnitude of the primitive relaxation time is very close to the secondary relaxation time. These observations indicate the presence of a J-G β-relaxation mode for soft colloidal suspensions of Laponite.

  11. Distributed relaxation processes in sensory adaptation.

    PubMed

    Thorson, J; Biederman-Thorson, M

    1974-01-18

    Dynamic description of most receptors, even in their near-linear ranges, has not led to understanding of the underlying physical events-in many instances because their curious transfer functions are not found in the usual repertoire of integral-order control-system analysis. We have described some methods, borrowed from other fields, which allow one to map any linear frequency response onto a putative weighting over an ensemble of simpler relaxation processes. One can then ask whether the resultant weighting of such processes suggests a corresponding plausible distribution of values for an appropriate physical variable within the sensory transducer. To illustrate this approach, we have chosen the fractional-order low-frequency response of Limulus lateral-eye photoreceptors. We show first that the current "adapting-bump" hypothesis for the generator potential can be formulated in terms of local first-order relaxation processes in which local light flux, the cross section of rhodopsin for photon capture, and restoration rate of local conductance-changing capability play specific roles. A representative spatial distribution for one of these parameters, which just accounts for the low-frequency response of the receptor, is then derived and its relation to cellular properties and recent experiments is examined. Finally, we show that for such a system, nonintegral-order dynamics are equivalent to nonhyperbolic statics, and that the efficacy distribution derived to account for the small-signal dynamics in fact predicts several decades of near-logarithmic response in the steady state. Encouraged by the result that one plausible proposal can account approximately for both the low-frequency dynamics (the transfer function s(k)) and the range-compressing statics (the Weber-Fechner relationship) measured in this photoreceptor, we have described some formally similar applications of these distributed effects to the vertebrate retina and to analogous properties of

  12. Ultra-Slow Dielectric Relaxation Process in Polyols

    NASA Astrophysics Data System (ADS)

    Yomogida, Yoshiki; Minoguchi, Ayumi; Nozaki, Ryusuke

    2004-04-01

    Dielectric relaxation processes with relaxation times larger than that for the structural α process are reported for glycerol, xylitol, sorbitol and their mixtures for the first time. Appearance of this ultra-slow process depends on cooling rate. More rapid cooling gives larger dielectric relaxation strength. However, relaxation time is not affected by cooling rate and shows non-Arrhenius temperature dependence with correlation to the α process. It can be considered that non-equilibrium dynamic structure causes the ultra-slow process. Scale of such structure would be much larger than that of the region for the cooperative molecular orientations for the α process.

  13. Ultraslow dielectric relaxation process in supercooled polyhydric alcohols

    NASA Astrophysics Data System (ADS)

    Yomogida, Yoshiki; Minoguchi, Ayumi; Nozaki, Ryusuke

    2006-04-01

    Complex permittivity was obtained on glycerol, xylitol, sorbitol and sorbitol-xylitol mixtures in the supercooled liquid state in the frequency range between 10μHz and 500MHz at temperatures near and above the glass transition temperature. For all the materials, a dielectric relaxation process was observed in addition to the well-known structural α and Johari-Goldstein β relaxation process [G. P. Johari and M. Goldstein, J. Chem. Phys. 53, 2372 (1970)]. The relaxation time for the new process is always larger than that for the α process. The relaxation time shows non-Arrhenius temperature dependence with correlation to the behavior of the α process and it depends on the molecular size systematically. The dielectric relaxation strength for the new process shows the effect of thermal history and decreases exponentially with time at a constant temperature. It can be considered that a nonequilibrium dynamics causes the new process.

  14. Relaxation processes in administered-rate pricing

    NASA Astrophysics Data System (ADS)

    Hawkins, Raymond J.; Arnold, Michael R.

    2000-10-01

    We show how the theory of anelasticity unifies the observed dynamics and proposed models of administered-rate products. This theory yields a straightforward approach to rate model construction that we illustrate by simulating the observed relaxation dynamics of two administered rate products. We also demonstrate how the use of this formalism leads to a natural definition of market friction.

  15. The influence of the secondary relaxation processes on the structural relaxation in glass-forming materials.

    PubMed

    Khamzin, A A; Popov, I I; Nigmatullin, R R

    2013-06-28

    In the frame of fractional-kinetic approach, the model of the structural α-relaxation in the presence of the secondary β-relaxation processes is suggested. The model is based on the rigorous bond between β-processes with α-process and leads to the generalized and justified expression for the complex dielectric permittivity (CDP). It allows to form a new sight on the problem of the fitting of multi-peak structure of the dielectric loss spectra in glass-forming materials. The consistency of the CDP expressions obtained is based on a good fit of experimental data for binary methanol-water mixtures.

  16. Difference and similarity of dielectric relaxation processes among polyols

    NASA Astrophysics Data System (ADS)

    Minoguchi, Ayumi; Kitai, Kei; Nozaki, Ryusuke

    2003-09-01

    Complex permittivity measurements were performed on sorbitol, xylitol, and sorbitol-xylitol mixture in the supercooled liquid state in an extremely wide frequency range from 10 μHz to 500 MHz at temperatures near and above the glass transition temperature. We determined detailed behavior of the relaxation parameters such as relaxation frequency and broadening against temperature not only for the α process but also for the β process above the glass transition temperature, to the best of our knowledge, for the first time. Since supercooled liquids are in the quasi-equilibrium state, the behavior of all the relaxation parameters for the β process can be compared among the polyols as well as those for the α process. The relaxation frequencies of the α processes follow the Vogel-Fulcher-Tammann manner and the loci in the Arrhenius diagram are different corresponding to the difference of the glass transition temperatures. On the other hand, the relaxation frequencies of the β processes, which are often called as the Johari-Goldstein processes, follow the Arrhenius-type temperature dependence. The relaxation parameters for the β process are quite similar among the polyols at temperatures below the αβ merging temperature, TM. However, they show anomalous behavior near TM, which depends on the molecular size of materials. These results suggest that the origin of the β process is essentially the same among the polyols.

  17. Relaxation Processes and Time Scale Transformation.

    DTIC Science & Technology

    1982-03-01

    frequency dependent susceptibility. As Ngai5 has emphasized the temperature dependence of such measurements is controlled by the temperature ...dependence of Tb or equivalently Ts . Then if EA is the activation energy of l/e value, the temperature of I is controlled by an effective activation energy E...mobility p 24 becomes non-Arrhenius, a well-known signature of small polaron hopping. Since b is constant in this temperature regime, this non-Arrhenius

  18. Effect of asymmetric strain relaxation on dislocation relaxation processes in heteroepitaxial semiconductors

    NASA Astrophysics Data System (ADS)

    Andersen, D.; Hull, R.

    2017-02-01

    The effect of asymmetric interfacial strain configurations upon the generation of misfit dislocation arrays in lattice mismatched epitaxy is considered. For example, elastic strain relaxation for Si1-xGex/Si(110) films is uniaxial, assuming glide on {111} planes as expected for the diamond cubic system, which leads to asymmetric strain relief. Here, we extend our previously developed relaxation model for generation of dislocation arrays in SiGe/Si, by accounting for how the different energetics of asymmetrically strained films affect the kinetics of the relaxation process. Similarly, non-polar III-nitride epitaxial films have asymmetric strain from the outset of growth due to the different c/a lattice parameter ratios. In both systems, the asymmetric strain is represented by an additional term in the misfit dislocation applied stress equation. In SiGe/Si(110), a simple elasticity analysis of the strain produced by the uniaxial array of dislocations predicts that the relaxation orthogonal to the dislocation line direction occurs at a faster rate than predicted by purely biaxial strain relief due to the contributions of the strain parallel to the dislocations. This difference is because the strain parallel to the dislocation line directions continues to resolve stress onto the misfit dislocations even as the orthogonal strain is minimized. As a result, the minimum strain energy is predicted to occur for a dislocation spacing, which produces tensile layer strain in the orthogonal direction. Such tensile strain may modify the (opto)electronic properties of a Si, Ge, or GeSi epilayer but is only predicted to occur for advanced stages of relaxation. These asymmetric derivations are applicable to any thin film system where strain is not strictly biaxial.

  19. Glass transition and relaxation processes of nanocomposite polymer electrolytes.

    PubMed

    Money, Benson K; Hariharan, K; Swenson, Jan

    2012-07-05

    This study focus on the effect of δ-Al(2)O(3) nanofillers on the dc-conductivity, glass transition, and dielectric relaxations in the polymer electrolyte (PEO)(4):LiClO(4). The results show that there are three dielectric relaxation processes, α, β, and γ, in the systems, although the structural α-relaxation is hidden in the strong conductivity contribution and could therefore not be directly observed. However, by comparing an enhanced dc-conductivity, by approximately 2 orders of magnitude with 4 wt % δ-Al(2)O(3) added, with a decrease in calorimetric glass transition temperature, we are able to conclude that the dc-conductivity is directly coupled to the hidden α-relaxation, even in the presence of nanofillers (at least in the case of δ-Al(2)O(3) nanofillers at concentrations up to 4 wt %). This filler induced speeding up of the segmental polymer dynamics, i.e., the α-relaxation, can be explained by the nonattractive nature of the polymer-filler interactions, which enhance the "free volume" and mobility of polymer segments in the vicinity of filler surfaces.

  20. Fast algorithm for relaxation processes in big-data systems

    NASA Astrophysics Data System (ADS)

    Hwang, S.; Lee, D.-S.; Kahng, B.

    2014-10-01

    Relaxation processes driven by a Laplacian matrix can be found in many real-world big-data systems, for example, in search engines on the World Wide Web and the dynamic load-balancing protocols in mesh networks. To numerically implement such processes, a fast-running algorithm for the calculation of the pseudoinverse of the Laplacian matrix is essential. Here we propose an algorithm which computes quickly and efficiently the pseudoinverse of Markov chain generator matrices satisfying the detailed-balance condition, a general class of matrices including the Laplacian. The algorithm utilizes the renormalization of the Gaussian integral. In addition to its applicability to a wide range of problems, the algorithm outperforms other algorithms in its ability to compute within a manageable computing time arbitrary elements of the pseudoinverse of a matrix of size millions by millions. Therefore our algorithm can be used very widely in analyzing the relaxation processes occurring on large-scale networked systems.

  1. Effects of interactions on the relaxation processes in magnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Atkinson, Lewis J.; Ostler, Thomas A.; Hovorka, O.; Wang, K. K.; Lu, B.; Ju, G. P.; Hohlfeld, J.; Bergman, B.; Koopmans, B.; Chantrell, Roy W.

    2016-10-01

    Controlling the relaxation of magnetization in magnetic nanostructures is key to optimizing magnetic storage device performance. This relaxation is governed by both intrinsic and extrinsic relaxation mechanisms and with the latter strongly dependent on the interactions between the nanostructures. In the present work we investigate laser induced magnetization dynamics in a broadband optical resonance type experiment revealing the role of interactions between nanostructures on the relaxation processes of granular magnetic structures. The results are corroborated by constructing a temperature dependent numerical micromagnetic model of magnetization dynamics based on the Landau-Lifshitz-Bloch equation. The model predicts a strong dependence of damping on the key material properties of coupled granular nanostructures in good agreement with the experimental data. We show that the intergranular, magnetostatic and exchange interactions provide a large extrinsic contribution to the damping. Finally we show that the mechanism can be attributed to an increase in spin-wave degeneracy with the ferromagnetic resonance mode as revealed by semianalytical spin-wave calculations.

  2. Relaxation Processes within Flux Ropes in Solar Wind

    NASA Astrophysics Data System (ADS)

    Telloni, D.; Carbone, V.; Perri, S.; Bruno, R.; Lepreti, F.; Veltri, P.

    2016-08-01

    Flux ropes are localized structures in space plasma whose tube-like organized magnetic configuration can be well approximated by a force-free field model. Both numerical simulations and simple models suggest that the ideal magnetohydrodynamics (MHD) can relax toward a minimum energy state, where magnetic helicity is conserved, characterized by force-free magnetic fields (Taylor relaxation). In this paper, we evaluate MHD rugged invariants within more than 100 flux ropes identified in the solar wind at 1 AU, showing that the magnetic and cross-helicity content carried out by these structures tend to be “attracted” toward a particular subphase in the parameter plane. The final configuration of the MHD rugged invariants in the parameter plane suggests indeed that flux ropes represent well-organized structures coming from the dynamical evolution of MHD turbulent cascade. These observational results, along with a simple model based on a truncated set of nonlinear ordinary differential equations for both the velocity and magnetic field Fourier coefficients, thus, support a scenario in which the flux ropes naturally come out from the ideal MHD decay to large-scale magnetic field in space plasmas, probably governed by relaxation processes similar to those observed in laboratory plasmas.

  3. A Block-Asynchronous Relaxation Method for Graphics Processing Units

    SciTech Connect

    Antz, Hartwig; Tomov, Stanimire; Dongarra, Jack; Heuveline, Vincent

    2011-11-30

    In this paper, we analyze the potential of asynchronous relaxation methods on Graphics Processing Units (GPUs). For this purpose, we developed a set of asynchronous iteration algorithms in CUDA and compared them with a parallel implementation of synchronous relaxation methods on CPU-based systems. For a set of test matrices taken from the University of Florida Matrix Collection we monitor the convergence behavior, the average iteration time and the total time-to-solution time. Analyzing the results, we observe that even for our most basic asynchronous relaxation scheme, despite its lower convergence rate compared to the Gauss-Seidel relaxation (that we expected), the asynchronous iteration running on GPUs is still able to provide solution approximations of certain accuracy in considerably shorter time then Gauss- Seidel running on CPUs. Hence, it overcompensates for the slower convergence by exploiting the scalability and the good fit of the asynchronous schemes for the highly parallel GPU architectures. Further, enhancing the most basic asynchronous approach with hybrid schemes – using multiple iterations within the ”subdomain” handled by a GPU thread block and Jacobi-like asynchronous updates across the ”boundaries”, subject to tuning various parameters – we manage to not only recover the loss of global convergence but often accelerate convergence of up to two times (compared to the effective but difficult to parallelize Gauss-Seidel type of schemes), while keeping the execution time of a global iteration practically the same. This shows the high potential of the asynchronous methods not only as a stand alone numerical solver for linear systems of equations fulfilling certain convergence conditions but more importantly as a smoother in multigrid methods. Due to the explosion of parallelism in todays architecture designs, the significance and the need for asynchronous methods, as the ones described in this work, is expected to grow.

  4. The WHISPER Relaxation Sounder and the CLUSTER Active Archive

    NASA Astrophysics Data System (ADS)

    Trotignon, J. G.; Décréau, P. M. E.; Rauch, J. L.; Vallières, X.; Rochel, A.; Kougblénou, S.; Lointier, G.; Facskó, G.; Canu, P.; Darrouzet, F.; Masson, A.

    The Waves of HIgh frequency and Sounder for Probing of Electron density by Relaxation (WHISPER) instrument is part of the Wave Experiment Consortium (WEC) of the CLUSTER mission. With the help of the long double sphere antennae of the Electric Field and Wave (EFW) instrument and the Digital Wave Processor (DWP), it delivers active (sounding) and natural (transmitter off) electric field spectra, respectively from 4 to 82 kHz, and from 2 to 80 kHz. These frequency ranges have been chosen to include the electron plasma frequency, which is closely related to the total electron density, in most of the regions encountered by the CLUSTER spacecraft. Presented here is an overview of the WHISPER data products available in the CLUSTER Active Archive (CAA). The instrument and its performance are first recalled. The way the WHISPER products are obtained is then described, with particular attention being paid to the density determination. Both sounding and natural measurements are commonly used in this process, which depends on the ambient plasma regime. This is illustrated using drawings similar to the Bryant plots commonly used in the CLUSTER master science plan. These give a clear overview of typical density values and the parts of the orbits where they are obtained. More information on the applied software or on the quality/reliability of the density determination can also be highlighted.

  5. Electronic Relaxation Processes of Transition Metal Atoms in Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Kautsch, Andreas; Lindebner, Friedrich; Koch, Markus; Ernst, Wolfgang E.

    2014-06-01

    Spectroscopy of doped superfluid helium nanodroplets (He_N) gives information about the influence of this cold, chemically inert, and least interacting matrix environment on the excitation and relaxation dynamics of dopant atoms and molecules. We present the results from laser induced fluorescence (LIF), photoionization (PI), and mass spectroscopy of Cr and Cu doped He_N. From these results, we can draw a comprehensive picture of the complex behavior of such transition metal atoms in He_N upon photo-excitation. The strong Cr and Cu ground state transitions show an excitation blueshift and broadening with respect to the bare atom transitions which can be taken as indication for the solvation inside the droplet. From the originally excited states the atoms relax to energetically lower states and are ejected from the He_N. The relaxation processes include bare atom spin-forbidden transitions, which clearly bears the signature of the He_N influence. Two-color resonant two-photon ionization (2CR2PI) also shows the formation of bare atoms and small Cr-He_n and Cu-He_n clusters in their ground and metastable states ^c. Currently, Cr dimer excitation studies are in progress and a brief outlook on the available results will be given. C. Callegari and W. E. Ernst, Helium Droplets as Nanocryostats for Molecular Spectroscopy - from the Vacuum Ultraviolet to the Microwave Regime, in Handbook of High-Resolution Spectroscopy, eds. M. Quack and F. Merkt, John Wiley & Sons, Chichester, 2011. A. Kautsch, M. Koch, and W. E. Ernst, J. Phys. Chem. A, 117 (2013) 9621-9625, DOI: 10.1021/jp312336m F. Lindebner, A. Kautsch, M. Koch, and W. E. Ernst, Int. J. Mass Spectrom. (2014) in press, DOI: 10.1016/j.ijms.2013.12.022 M. Koch, A. Kautsch, F. Lackner, and W. E. Ernst, submitted to J. Phys. Chem. A

  6. Anthelmintic and relaxant activities of Verbascum Thapsus Mullein

    PubMed Central

    2012-01-01

    Background Verbascum thapsus is used in tribal medicine as an antispasmodic, anti-tubercular agent and wormicide. In this study, we investigated the antispasmodic and anthelmintic activities of crude aqueous methanolic extract of the plant. Methods V. thapsus extracts were tested against roundworms (Ascaridia galli) and tapeworms (Raillietina spiralis). Each species of worm was placed into a negative control group, an albendazole treatment group, or a V. thapsus treatment group, and the time taken for paralysis and death was determined. In addition, relaxation activity tests were performed on sections of rabbit's jejunum. Plant extracts were tested on KCl-induced contractions and the relaxation activities were quantified against atropine. V. thapsus calcium chloride curves were constructed to investigate the mode of action of the plant extracts. Results We detected flavonoids, saponins, tannins, terpenoids, glycosides, carbohydrates, proteins, fats and fixed oils in V. thapsus. For both species of worm, paralysis occurred fastest at the highest concentration of extract. The relative index values for paralysis in A. galli were 4.58, 3.41 and 2.08, at concentrations of 10, 20 and 40 mg/ml of plant extract, respectively. The relative index for death in A. galli suggested that V. thapsus extract is wormicidal at high concentration. Similarly, the relative indexes for paralysis and death in R. spiralis suggested that the extract is a more potent wormicidal agent than albendazole. The mean EC50 relaxation activity values for spontaneous and KCl induced contractions were 7.5 ± 1.4 mg/ml (6.57-8.01, n = 6) and 7.9 ± 0.41 mg/ml (7.44-8.46, n = 6), respectively. The relaxation activity of the extract was 11.42 ± 2, 17.0 ± 3, 28.5 ± 4, and 128.0 ± 7% of the maximum observed for atropine at corresponding concentrations. The calcium chloride curves showed that V. thapsus extracts (3 mg/ml), had a mean EC50 (log molar [calcium]) value of -1.9 ± 0.06 (-1.87 - -1.98, n = 6

  7. Active Batch Selection via Convex Relaxations with Guaranteed Solution Bounds.

    PubMed

    Chakraborty, Shayok; Balasubramanian, Vineeth; Sun, Qian; Panchanathan, Sethuraman; Ye, Jieping

    2015-10-01

    Active learning techniques have gained popularity to reduce human effort in labeling data instances for inducing a classifier. When faced with large amounts of unlabeled data, such algorithms automatically identify the exemplar instances for manual annotation. More recently, there have been attempts towards a batch mode form of active learning, where a batch of data points is simultaneously selected from an unlabeled set. In this paper, we propose two novel batch mode active learning (BMAL) algorithms: BatchRank and BatchRand. We first formulate the batch selection task as an NP-hard optimization problem; we then propose two convex relaxations, one based on linear programming and the other based on semi-definite programming to solve the batch selection problem. Finally, a deterministic bound is derived on the solution quality for the first relaxation and a probabilistic bound for the second. To the best of our knowledge, this is the first research effort to derive mathematical guarantees on the solution quality of the BMAL problem. Our extensive empirical studies on 15 binary, multi-class and multi-label challenging datasets corroborate that the proposed algorithms perform at par with the state-of-the-art techniques, deliver high quality solutions and are robust to real-world issues like label noise and class imbalance.

  8. Reducing congestion on complex networks by dynamic relaxation processes

    NASA Astrophysics Data System (ADS)

    Macri, Pablo A.; Pastore y Piontti, Ana L.; Braunstein, Lidia A.

    2007-12-01

    We study the effects of relaxational dynamics on the congestion pressure in general transport networks. We show that the congestion pressure is reduced in scale-free networks if a relaxation mechanism is utilized, while this is in general not the case for non-scale-free graphs such as random graphs. We also present evidence supporting the idea that the emergence of scale-free networks arise from optimization mechanisms to balance the load of the networks nodes.

  9. Transition from stress-driven to thermally activated stress relaxation in metallic glasses

    NASA Astrophysics Data System (ADS)

    Qiao, J. C.; Wang, Yun-Jiang; Zhao, L. Z.; Dai, L. H.; Crespo, D.; Pelletier, J. M.; Keer, L. M.; Yao, Y.

    2016-09-01

    The short-range ordered but long-range disordered structure of metallic glasses yields strong structural and dynamic heterogeneities. Stress relaxation is a technique to trace the evolution of stress in response to a fixed strain, which reflects the dynamic features phenomenologically described by the Kohlrausch-Williams-Watts (KWW) equation. The KWW equation describes a broad distribution of relaxation times with a small number of empirical parameters, but it does not arise from a particular physically motivated mechanistic picture. Here we report an anomalous two-stage stress relaxation behavior in a Cu46Zr46Al8 metallic glass over a wide temperature range and generalize the findings in other compositions. Thermodynamic analysis identifies two categories of processes: a fast stress-driven event with large activation volume and a slow thermally activated event with small activation volume, which synthetically dominates the stress relaxation dynamics. Discrete analyses rationalize the transition mechanism induced by stress and explain the anomalous variation of the KWW characteristic time with temperature. Atomistic simulations reveal that the stress-driven event involves virtually instantaneous short-range atomic rearrangement, while the thermally activated event is the percolation of the fast event accommodated by the long-range atomic diffusion. The insights may clarify the underlying physical mechanisms behind the phenomenological description and shed light on correlating the hierarchical dynamics and structural heterogeneity of amorphous solids.

  10. Relaxation training affects success and activation on a teaching test.

    PubMed

    Helin, P; Hänninen, O

    1987-12-01

    We studied the effects of an audiocassette-relaxation training period (ART) and its timing on success at a teaching test (lecture type), on observed tension and on a number of physiological responses. The electrical activity of the upper trapezius muscle (EMG), heart rate (HR) and blood pressure (BP), of female and male instructor candidates, were examined before, during and after the teaching test as well as during its critique. The relaxation period (18 min) was presented either on the preceding night (ARTnt) or immediately before the teaching test (ARTimm). The influence of personality (types A-B and extrovert-introvert) was also studied. ART improved success at the teaching test in both sexes. In males (but not in females), ARTimm decreased EMG level during the test, but ARTnt increased EMG at the test period as compared to the control group. In females, both ARTnt and ARTimm lowered HR more than in the control group. ARTimm lowered systolic BP in both sexes. Personality types affected the ART responses; ART was more beneficial for type A than B subjects.

  11. Theory of Activated Relaxation in Nanoscale Confined Liquids

    NASA Astrophysics Data System (ADS)

    Mirigian, Stephen; Schweizer, Kenneth

    2014-03-01

    We extend the recently developed Elastically Cooperative Nonlinear Langevin Equation(ECNLE) theory of activated relaxation in supercooled liquids to treat the case of geometrically confined liquids. Generically, confinement of supercooled liquids leads to a speeding up of the dynamics(with a consequent depression of the glass transition temperature) extending on the order of tens of molecular diameters away from a free surface. At present, this behavior is not theoretically well understood. Our theory interprets the speed up in dynamics in terms of two coupled effects. First, a direct surface effect, extending two to three molecular diameters from a free surface, and related to a local rearrangement of molecules with a single cage. The second is a longer ranged ``confinement'' effect, extending tens of molecular diameters from a free surface and related to the long range elastic penalty necessary for a local rearrangement. The theory allows for the calculation of relaxation time and Tg profiles within a given geometry and first principles calculations of relevant length scales. Comparison to both dynamic and pseudo-thermodynamic measurements shows reasonable agreement to experiment with no adjustable parameters.

  12. Study of Mass Diffusion and Relaxation Processes in Polymer Systems by Laser Induced Holographic Grating Relaxation and Dynamic Light Scattering.

    NASA Astrophysics Data System (ADS)

    Xia, Jiulin

    The diffusion of dye molecules in various polymer systems is studied using the Laser Induced Holographic Grating Relaxation technique. The diffusion coefficients of camphorquinone (CQ), thymoquinone (TQ), diacetyl (DA) and azo compounds in these polymers are studied as a function of temperature, properties of both the polymers and the dye molecules. The effects of additives are also investigated. Due to the chemical reversibility of the azo compounds, the kinetics of their chemical processes are also analyzed. The mutual diffusion coefficients in poly(methyl methacrylate) (PMMA) and poly(ethylene oxide) (PEO) compatible polymer blends are measured by dynamic light scattering as a function of the molecular weight of PEO while keeping the molecular weight of PMMA fixed. The polymer chain relaxation processes of poly(isobornyl methacrylate) (PIMA) are also studied by using dynamic light scattering.

  13. Direct visualization of free-volume-triggered activation of β relaxation in colloidal glass.

    PubMed

    Lu, Yunzhuo; Lu, Xing; Qin, Zuoxiang; Shen, Jun

    2016-07-01

    β relaxation, which is predicted by mode coupling theory and involves the localized motions of particles, initiates in a supercooled liquid and continues into glassy state. It correlates essentially with many fundamental properties of amorphous materials. Despite its importance, the underlying mechanisms leading to the β relaxation have remained elusive. As natural heterogeneity, the original distributed free volume has been supposed to be associated with the activation of β relaxation in amorphous solids. However, there has been no direct experimental proof for this hypothesis. Here we used a colloidal glass to directly observe the β relaxation and free-volume distribution. We found a spatial correlation between the β relaxation and free volume. The large free volume regions were observed to possess a low-energy cost of relaxation-induced strain, indicating that the large free volume region presenting a low-energy barrier for structural relaxation benefits the β relaxation.

  14. The time dependence of rock healing as a universal relaxation process, a tutorial

    NASA Astrophysics Data System (ADS)

    Snieder, Roel; Sens-Schönfelder, Christoph; Wu, Renjie

    2017-01-01

    The material properties of earth materials often change after the material has been perturbed (slow dynamics). For example, the seismic velocity of subsurface materials changes after earthquakes, and granular materials compact after being shaken. Such relaxation processes are associated by observables that change logarithmically with time. Since the logarithm diverges for short and long times, the relaxation can, strictly speaking, not have a log-time dependence. We present a self-contained description of a relaxation function that consists of a superposition of decaying exponentials that has log-time behaviour for intermediate times, but converges to zero for long times, and is finite for t = 0. The relaxation function depends on two parameters, the minimum and maximum relaxation time. These parameters can, in principle, be extracted from the observed relaxation. As an example, we present a crude model of a fracture that is closing under an external stress. Although the fracture model violates some of the assumptions on which the relaxation function is based, it follows the relaxation function well. We provide qualitative arguments that the relaxation process, just like the Gutenberg-Richter law, is applicable to a wide range of systems and has universal properties.

  15. The time dependence of rock healing as a universal relaxation process, a tutorial

    NASA Astrophysics Data System (ADS)

    Snieder, Roel; Sens-Schönfelder, Christoph; Wu, Renjie

    2016-10-01

    The material properties of earth materials often change after the material has been perturbed (slow dynamics). For example, the seismic velocity of subsurface materials changes after earthquakes, and granular materials compact after being shaken. Such relaxation processes are associated by observables that change logarithmically with time. Since the logarithm diverges for short and long times, the relaxation can, strictly speaking, not have a log-time dependence. We present a self-contained description of a relaxation function that consists of a superposition of decaying exponentials that has log-time behavior for intermediate times, but converges to zero for long times, and is finite for t = 0. The relaxation function depends on two parameters, the minimum and maximum relaxation time. These parameters can, in principle, be extracted from the observed relaxation. As an example, we present a crude model of a fracture that is closing under an external stress. Although the fracture model violates some of the assumptions on which the relaxation function is based, it follows the relaxation function well. We provide qualitative arguments that the relaxation process, just like the Gutenberg-Richter law, is applicable to a wide range of systems and has universal properties.

  16. Communications: Comparison of activation barriers for the Johari-Goldstein and alpha relaxations and its implications.

    PubMed

    Goldstein, Martin

    2010-01-28

    The range of activation barrier heights for the Johari-Goldstein (JG) relaxation in glasses is shown to overlap the range for the main (alpha) relaxation, but to be on the average somewhat lower. This suggests the JG relaxation, like the alpha, involve transitions between megabasins in the energy landscape, and that the original conjecture by Johari and this author that the JG relaxation is an intrabasin one cannot be correct. A further possibility is that there is a closer connection of the JG relaxation to the phenomenon of dynamic heterogeneity in supercooled liquids than so far assumed.

  17. Relaxation processes and glass transition in confined 1,4-polybutadiene films: A Molecular Dynamics study

    NASA Astrophysics Data System (ADS)

    Paul, Wolfgang; Solar, Mathieu

    We will present results from Molecular Dynamics simulations of a chemically realistic model of 1,4-polybutadiene (PB) chains confined by graphite walls. Relaxation processes in this system are heterogeneous and anisotropic. We will present evidence for a slow additional relaxation process related to chain desorption from the walls. We also study the structural relaxation resolved with respect to the distance from the graphite walls and show the influence of structural changes on the relaxation behavior. The temperature dependence of the dielectric relaxation in layers of different thickness near the walls shows no indication of a shift of Tg as a function of thickness when analyzed with a Vogel-Fulcher fit. We explain this by the importance of intramolecular dihedral barriers for the glass transition in PB which dominate over the density changes next to a wall except for a 1 nm thick layer directly at the wall.

  18. A study of the stack relaxation in thermal batteries on activation

    SciTech Connect

    GUIDOTTI,RONALD A.; REINHARDT,FREDERICK W.; THOMAS,EDWARD V.

    2000-04-17

    The stack-relaxation processes occurring in a thermal-battery upon activation and discharge were studied dynamically with a special test fixture that incorporated an internal load cell. The factors which were screened initially included stack diameter and height (number of cells), thickness and binder content of the separator, temperature, and closing pressure. A second series of more-detailed experiments included only those factors that were identified by the screening study as being important (as closing force, number of cells, and separator thickness). The resulting experimental data from this second series of experiments were used to generate a surface-response model based on these three factors. This model accounted for 94% of the variation in the response (final stack-relaxation pressure) over the range of conditions studied.

  19. Relaxation of Isolated Ventricular Cardiomyocytes by a Voltage-Dependent Process

    NASA Astrophysics Data System (ADS)

    Bridge, John H. B.; Spitzer, Kenneth W.; Ershler, Philip R.

    1988-08-01

    Cell contraction and relaxation were measured in single voltage-clamped guinea pig cardiomyocytes to investigate the contribution of sarcolemmal Na+-Ca2+ exchange to mechanical relaxation. Cells clamped from -80 to 0 millivolts displayed initial phasic and subsequent tonic contractions; caffeine reduced or abolished the phasic and enlarged the tonic contraction. The rate of relaxation from tonic contractions was steeply voltage-dependent and was significantly slowed in the absence of a sarcolemmal Na+ gradient. Tonic contractions elicited in the absence of a Na+ gradient promptly relaxed when external Na+ was applied, reflecting activation of Na+-Ca2+ exchange. It appears that a voltage-dependent Na+-Ca2+ exchange can rapidly mechanically relax mammalian heart muscle.

  20. Investigation of the shear-mechanical and dielectric relaxation processes in two monoalcohols close to the glass transition

    NASA Astrophysics Data System (ADS)

    Jakobsen, Bo; Maggi, Claudio; Christensen, Tage; Dyre, Jeppe C.

    2008-11-01

    Shear-mechanical and dielectric measurements on the two monohydroxy (monoalcohol) molecular glass formers 2-ethyl-1-hexanol and 2-butanol close to the glass-transition temperature are presented. The shear-mechanical data are obtained using the piezoelectric shear-modulus gauge method covering frequencies from 1 mHz to 10 kHz. The shear-mechanical relaxation spectra show two processes, which follow the typical scenario of a structural (alpha) relaxation and an additional (Johari-Goldstein) beta relaxation. The dielectric relaxation spectra are dominated by a Debye-type peak with an additional non-Debye peak visible. This Debye-type relaxation is a common feature peculiar to monoalcohols. The time scale of the non-Debye dielectric relaxation process is shown to correspond to the mechanical structural (alpha) relaxation. Glass-transition temperatures and fragilities are reported based on the mechanical alpha relaxation and the dielectric Debye-type process, showing that the two glass-transition temperatures differ by approximately 10 K and that the fragility based on the Debye-type process is a factor of 2 smaller than the structural fragility. If a mechanical signature of the Debye-type relaxation exists in these liquids, its relaxation strength is at most 1% and 3% of the full relaxation strength of 2-butanol and 2-ethyl-1-hexanol, respectively. These findings support the notion that it is the non-Debye dielectric relaxation process that corresponds to the structural alpha relaxation in the liquid.

  1. Method of Relaxation Moments for Studying Nonlinear Locally Nonequilibrium Processes of Transfer of Polymeric Systems

    NASA Astrophysics Data System (ADS)

    Popov, V. I.

    2015-01-01

    A method for simulating the processes of transfer of thermodynamic systems with polymeric microstructure is considered. The method is based on the classical locally equilibrium medium-state entropy concept expanded by the introduction of a structural tensor parameter whose evolution characterizes the nonlinear anisotropic relaxation properties of a thermodynamic system and the associated transfer phenomena. The dynamic, thermal, and mass transfer characteristics of macrotransfer are determined by corresponding integrals of relaxation moments.

  2. Activated mechanisms in proteins: a multiple-temperature activation-relaxation technique study

    NASA Astrophysics Data System (ADS)

    Malek, Rachid; Mousseau, Normand; Derreumaux, Philippe

    2001-03-01

    The low-temperature dynamics of proteins is controlled by a complex activated dynamics taking place over long time-scales compared with the period of thermal oscillations. In view of the range of relevant time scales, the numerical study of these processes remains a challenge and numerous methods have been introduced to address this problem. We introduce here a mixture of two algorithms, the activation-relaxation technique (ART)^1,2 coupled with the parallel tempering method, and use it to study the structure of the energy landscape around the native state of a 38-residue polypeptide. While ART samples rapidly the local energy landscape, the parallel tempering, which sets up exchanges of configuration between simultaneous runs at multiple temperatures, generates a very efficient sampling of energy basins separated by high barriers^(3). Results show the nature of the barriers and local minima surrounding the native state of this 38-residue peptide, modeled with off-lattice OPEP-like interactions^4. (1) G.T. Barkema and N. Mousseau, PRL 77, 4358 (1996) (2) N. Mousseau and G.T. Barkema, PRE 57, 2419 (1998) (3) E. Marinari and G. Parisi, Europhys. Lett., 19 (6), 451 (1992) (4) Ph. Derreumaux, J. Chem. Phys. 111, 2301 (1999); PRB 85, 206 (2000)

  3. Direct simulation Monte Carlo modeling of relaxation processes in polyatomic gases

    SciTech Connect

    Pfeiffer, M. Nizenkov, P. Mirza, A. Fasoulas, S.

    2016-02-15

    Relaxation processes of polyatomic molecules are modeled and implemented in an in-house Direct Simulation Monte Carlo code in order to enable the simulation of atmospheric entry maneuvers at Mars and Saturn’s Titan. The description of rotational and vibrational relaxation processes is derived from basic quantum-mechanics using a rigid rotator and a simple harmonic oscillator, respectively. Strategies regarding the vibrational relaxation process are investigated, where good agreement for the relaxation time according to the Landau-Teller expression is found for both methods, the established prohibiting double relaxation method and the new proposed multi-mode relaxation. Differences and applications areas of these two methods are discussed. Consequently, two numerical methods used for sampling of energy values from multi-dimensional distribution functions are compared. The proposed random-walk Metropolis algorithm enables the efficient treatment of multiple vibrational modes within a time step with reasonable computational effort. The implemented model is verified and validated by means of simple reservoir simulations and the comparison to experimental measurements of a hypersonic, carbon-dioxide flow around a flat-faced cylinder.

  4. Direct simulation Monte Carlo modeling of relaxation processes in polyatomic gases

    NASA Astrophysics Data System (ADS)

    Pfeiffer, M.; Nizenkov, P.; Mirza, A.; Fasoulas, S.

    2016-02-01

    Relaxation processes of polyatomic molecules are modeled and implemented in an in-house Direct Simulation Monte Carlo code in order to enable the simulation of atmospheric entry maneuvers at Mars and Saturn's Titan. The description of rotational and vibrational relaxation processes is derived from basic quantum-mechanics using a rigid rotator and a simple harmonic oscillator, respectively. Strategies regarding the vibrational relaxation process are investigated, where good agreement for the relaxation time according to the Landau-Teller expression is found for both methods, the established prohibiting double relaxation method and the new proposed multi-mode relaxation. Differences and applications areas of these two methods are discussed. Consequently, two numerical methods used for sampling of energy values from multi-dimensional distribution functions are compared. The proposed random-walk Metropolis algorithm enables the efficient treatment of multiple vibrational modes within a time step with reasonable computational effort. The implemented model is verified and validated by means of simple reservoir simulations and the comparison to experimental measurements of a hypersonic, carbon-dioxide flow around a flat-faced cylinder.

  5. Probing of structural relaxation times in the glassy state of sucrose and trehalose based on dynamical properties of two secondary relaxation processes

    SciTech Connect

    Kaminski, K.; Adrjanowicz, K.; Paluch, M.; Kaminska, E.

    2011-06-15

    Time-dependent isothermal dielectric measurements were carried out deeply in the glassy state on two very important saccharides: sucrose and trehalose. In both compounds two prominent secondary relaxation processes were identified. The faster one is an inherent feature of the whole family of carbohydrates. The slower one can also be detected in oligo- and polysaccharides. It was shown earlier that the {beta} process is the Johari-Goldstein (JG) relaxation coupled to motions of the glycosidic linkage, while the {gamma} relaxation originates from motions of the exocyclic hydroxymethyl unit. Recently, it was shown that the JG relaxation process can be used to determine structural relaxation times in the glassy state [R. Casalini and C. M. Roland, Phys. Rev. Lett. 102, 035701 (2009)]. In this paper we present the results of an analysis of the data obtained during aging using two independent approaches. The first was proposed by Casalini and Roland, and the second one is based on the variation of the dielectric strength of the secondary relaxation process during aging [J. K. Vij and G. Power, J. Non-Cryst. Solids 357, 783 (2011)]. Surprisingly, we found that the estimated structural relaxation times in the glassy state of both saccharides are almost the same, independent of the type of secondary mode. This finding calls into question the common view that secondary modes of intramolecular origin do not provide information about the dynamics of the glassy state.

  6. Viscoelastic characterization of compacted pharmaceutical excipient materials by analysis of frequency-dependent mechanical relaxation processes

    NASA Astrophysics Data System (ADS)

    Welch, K.; Mousavi, S.; Lundberg, B.; Strømme, M.

    2005-09-01

    A newly developed method for determining the frequency-dependent complex Young's modulus was employed to analyze the mechanical response of compacted microcrystalline cellulose, sorbitol, ethyl cellulose and starch for frequencies up to 20 kHz. A Debye-like relaxation was observed in all the studied pharmaceutical excipient materials and a comparison with corresponding dielectric spectroscopy data was made. The location in frequency of the relaxation peak was shown to correlate to the measured tensile strength of the tablets, and the relaxation was interpreted as the vibrational response of the interparticle hydrogen and van der Waals bindings in the tablets. Further, the measured relaxation strength, holding information about the energy loss involved in the relaxation processes, showed that the weakest material in terms of tensile strength, starch, is the material among the four tested ones that is able to absorb the most energy within its structure when exposed to external perturbations inducing vibrations in the studied frequency range. The results indicate that mechanical relaxation analysis performed over relatively broad frequency ranges should be useful for predicting material properties of importance for the functionality of a material in applications such as, e.g., drug delivery, drug storage and handling, and also for clarifying the origin of hitherto unexplained molecular processes.

  7. The logarithmic relaxation process and the critical temperature of liquids in nano-confined states

    PubMed Central

    Chen, Changjiu; Wong, Kaikin; Mole, Richard A.; Yu, Dehong; Chathoth, Suresh M.

    2016-01-01

    The logarithmic relaxation process is the slowest of all relaxation processes and is exhibited by only a few molecular liquids and proteins. Bulk salol, which is a glass-forming liquid, is known to exhibit logarithmic decay of intermediate scattering function for the β-relaxation process. In this article, we report the influence of nanoscale confinements on the logarithmic relaxation process and changes in the microscopic glass-transition temperature of salol in the carbon and silica nanopores. The generalized vibrational density-of-states of the confined salol indicates that the interaction of salol with ordered nanoporous carbon is hydrophilic in nature whereas the interaction with silica surfaces is more hydrophobic. The mode-coupling theory critical temperature derived from the QENS data shows that the dynamic transition occurs at much lower temperature in the carbon pores than in silica pores. The results of this study indicate that, under nano-confinements, liquids that display logarithmic β-relaxation phenomenon undergo a unique glass transition process. PMID:27671486

  8. The logarithmic relaxation process and the critical temperature of liquids in nano-confined states

    NASA Astrophysics Data System (ADS)

    Chen, Changjiu; Wong, Kaikin; Mole, Richard A.; Yu, Dehong; Chathoth, Suresh M.

    2016-09-01

    The logarithmic relaxation process is the slowest of all relaxation processes and is exhibited by only a few molecular liquids and proteins. Bulk salol, which is a glass-forming liquid, is known to exhibit logarithmic decay of intermediate scattering function for the β-relaxation process. In this article, we report the influence of nanoscale confinements on the logarithmic relaxation process and changes in the microscopic glass-transition temperature of salol in the carbon and silica nanopores. The generalized vibrational density-of-states of the confined salol indicates that the interaction of salol with ordered nanoporous carbon is hydrophilic in nature whereas the interaction with silica surfaces is more hydrophobic. The mode-coupling theory critical temperature derived from the QENS data shows that the dynamic transition occurs at much lower temperature in the carbon pores than in silica pores. The results of this study indicate that, under nano-confinements, liquids that display logarithmic β-relaxation phenomenon undergo a unique glass transition process.

  9. Active open boundary forcing using dual relaxation time-scales in downscaled ocean models

    NASA Astrophysics Data System (ADS)

    Herzfeld, M.; Gillibrand, P. A.

    2015-05-01

    Regional models actively forced with data from larger scale models at their open boundaries often contain motion at different time-scales (e.g. tidal and low frequency). These motions are not always individually well specified in the forcing data, and one may require a more active boundary forcing while the other exert less influence on the model interior. If a single relaxation time-scale is used to relax toward these data in the boundary equation, then this may be difficult. The method of fractional steps is used to introduce dual relaxation time-scales in an open boundary local flux adjustment scheme. This allows tidal and low frequency oscillations to be relaxed independently, resulting in a better overall solution than if a single relaxation parameter is optimized for tidal (short relaxation) or low frequency (long relaxation) boundary forcing. The dual method is compared to the single relaxation method for an idealized test case where a tidal signal is superimposed on a steady state low frequency solution, and a real application where the low frequency boundary forcing component is derived from a global circulation model for a region extending over the whole Great Barrier Reef, and a tidal signal subsequently superimposed.

  10. Relaxation Process of Interacting Two-mode System Influenced by Markovian Thermal Reservoirs

    NASA Astrophysics Data System (ADS)

    Ban, Masashi

    2016-11-01

    Two different models of a relaxation process are considered for a linearly interacting two-mode system under the influence of independent Markovian thermal reservoirs. One is to describe the relaxation process of bare particles and the other is to describe the one of quasi particles which are derived from bare particles by the Bogoliubov transformation. The difference is that the former does not includes the effect of the inter-mode interaction on the damping operator while the latter does. The equations of motion are solved algebraically by making use of non-equilibrium thermo field dynamics. The relaxation processes in the two models are investigated in detail. The results are applied for investigating a non-ideal beam splitter with photon loss and noise addition.

  11. Relaxation Process of Interacting Two-mode System Influenced by Markovian Thermal Reservoirs

    NASA Astrophysics Data System (ADS)

    Ban, Masashi

    2017-02-01

    Two different models of a relaxation process are considered for a linearly interacting two-mode system under the influence of independent Markovian thermal reservoirs. One is to describe the relaxation process of bare particles and the other is to describe the one of quasi particles which are derived from bare particles by the Bogoliubov transformation. The difference is that the former does not includes the effect of the inter-mode interaction on the damping operator while the latter does. The equations of motion are solved algebraically by making use of non-equilibrium thermo field dynamics. The relaxation processes in the two models are investigated in detail. The results are applied for investigating a non-ideal beam splitter with photon loss and noise addition.

  12. Muscle relaxant activity of Elaeagnus angustifolia L. fruit seeds in mice.

    PubMed

    Hosseinzadeh, Hossein; Ramezani, Mohammad; Namjo, Nazanin

    2003-02-01

    Muscle relaxant effect of Elaeagnus angustifolia L. (Elaeagnaceae) fruit seeds was studied in mice using traction test. The aqueous and ethanolic extracts (i.p) induced a muscle relaxant effect in a dose dependent manner as effective as diazepam (1 mg/kg). The aqueous extract was partitioned with methanol-chloroform (MeCh) and n-butanol (Bu.) saturated with water. The MeCh and Bu. fractions did not show activity. Preliminary phytochemical tests showed that the extract contains flavonoid. The results suggested that E. angustifolia fruit seeds exerted muscle relaxant activity via flavonoid component(s).

  13. Theory of electronic relaxation in solution in the absence of an activation barrier

    NASA Astrophysics Data System (ADS)

    Bagchi, Biman; Fleming, Graham R.; Oxtoby, David W.

    1983-06-01

    We present a theory which describes the effects of viscosity on those electronic relaxation processes in solution in which the intramolecular potential surface does not present a barrier to the motion leading to the decay of the initially formed excited state. We model the reactive motion as the motion of a solute particle on the excited state potential surface with a position dependent sink which gives rise to the decay of the excited state population. Three different types of sinks are considered: (A) a pinhole sink at the minimum of the potential surface; this models the situation when the molecule decays to ground state as soon as it reaches the potential minimum; (B) a Gaussian sink with probability of decay maximum at the potential minimum; (C) a Lorentzian sink with maximum decay at the potential minimum. For case (A) an explicit analytic solution is obtained for the decay rate, but for cases (B) and (C) we obtained the decay rate numerically. Model (A) predicts nonexponential decay at all viscosities except at long times when the decay is single exponential. For cases (B) and (C) the decay is single exponential at low viscosities but becomes multiexponential at high viscosities. We show that the experimentally observed fractional viscosity dependence of fluorescence quantum yield arises naturally in this theory due to the position dependence of the sink as well as due to the competition between radiative and nonradiative relaxation. Our model also predicts a crossover from an apparent negative (constant viscosity) activation energy at low viscosities to a positive activation energy at high viscosity. The physical significance of these results is discussed in light of the available experimental results on TPM dye relaxation. Some possible generalizations of our theory to more realistic cases are indicated.

  14. Investigation of the muscle relaxant activity of nitrazepam.

    PubMed

    Date, S K; Hemavathi, K G; Gulati, O D

    1984-11-01

    Administered intravenously in decerebrate cats nitrazepam or diazepam (0.0625 to 0.5 mg/kg) produced dose-related inhibition of the ipsilateral extensor reflex. Nitrazepam (0.25 mg/kg i.v.) produced a significantly greater (P less than 0.001) inhibition than that produced by diazepam (0.25 mg/kg i.v.). Nitrazepam or diazepam (0.0625-4 mg/kg i.v.) had no effect on the contractions of directly stimulated (120 V, 5 msec, 0.1 Hz) quadriceps femoris muscle and on the contractions of tibialis anterior muscle produced by stimulating the cut peripheral end of the lateral popliteal nerve (8 V, 1.5 msec, 0.1 Hz). Nitrazepam or diazepam (0.125-0.5 mg/kg i.v.) produced dose-related depressor responses in cats anaesthetized with chloralose or pentobarbitone. Nitrazepam produced a depressor response at 0.0625 mg/kg dose while diazepam did not. The drugs did not appear to have any deleterious effect on the veins removed 6 hr after the first exposure to the drugs as evidenced by lack of histological changes. It is concluded that nitrazepam and diazepam produce central muscle relaxation by inhibiting polysynaptic pathways in the spinal cord. The potency of nitrazepam appears to be greater than that of diazepam. Definitive evidence has been provided that the peripheral neuromuscular or direct muscular actions are not involved in the muscular relaxation produced by the two drugs.

  15. Relaxation processes in a lower disorder order transition diblock copolymer

    SciTech Connect

    Sanz, Alejandro; Ezquerra, Tiberio A.; Nogales, Aurora

    2015-02-14

    The dynamics of lower disorder-order temperature diblock copolymer leading to phase separation has been observed by X ray photon correlation spectroscopy. Two different modes have been characterized. A non-diffusive mode appears at temperatures below the disorder to order transition, which can be associated to compositional fluctuations, that becomes slower as the interaction parameter increases, in a similar way to the one observed for diblock copolymers exhibiting phase separation upon cooling. At temperatures above the disorder to order transition T{sub ODT}, the dynamics becomes diffusive, indicating that after phase separation in Lower Disorder-Order Transition (LDOT) diblock copolymers, the diffusion of chain segments across the interface is the governing dynamics. As the segregation is stronger, the diffusive process becomes slower. Both observed modes have been predicted by the theory describing upper order-disorder transition systems, assuming incompressibility. However, the present results indicate that the existence of these two modes is more universal as they are present also in compressible diblock copolymers exhibiting a lower disorder-order transition. No such a theory describing the dynamics in LDOT block copolymers is available, and these experimental results may offer some hints to understanding the dynamics in these systems. The dynamics has also been studied in the ordered state, and for the present system, the non-diffusive mode disappears and only a diffusive mode is observed. This mode is related to the transport of segment in the interphase, due to the weak segregation on this system.

  16. Evidence that GABAA receptors mediate relaxation of rat duodenum by activating intramural nonadrenergic-noncholinergic neurones.

    PubMed

    Maggi, C A; Manzini, S; Meli, A

    1984-06-01

    GABA produced rapid and transient relaxation of rat duodenum. Homotaurine (3-aminopropansulphonic acid) but not (+/-)-baclofen had a GABA-like effect. GABA-induced relaxation was almost completely inhibited by tetrodotoxin but was unaffected by atropine. Cross desensitization developed between GABA and homotaurine but not between GABA and (+/-)-baclofen. The concentration response curve to the relaxant effects of GABA was shifted to the right by both bicuculline and picrotoxin. However maximal relaxation was still produced by GABA in the presence of bicuculline but not in the presence of picrotoxin. GABA-induced relaxation was not affected by prazosin, yohimbine, propranolol or reserpine pretreatment. Field stimulation (0.1 Hz) of rat isolated duodenum in the presence of atropine and guanethidine produced relaxation similar to that produced by GABA. The ganglionic stimulant DMPP produced a similar effect. Neither Met-enkephalin, noradrenaline, 5-HT, histamine, VIP or arachidonic acid could be held responsible for GABA-induced neurogenic relaxation of rat duodenum. ATP produced relaxations which closely mimicked those produced by either GABA or field stimulation. Exposure to ATP desensitized responses to both GABA and field stimulation to about the same extent. ATP, GABA and field stimulation-induced relaxation was unaffected by either theophylline or indomethacin, but was significantly and selectively antagonized by apamin. In conclusion, GABA-induced relaxation of rat isolated duodenum is largely dependent upon activation of intra-mural nonadrenergic-noncholinergic neurones. The GABA receptor involved appears to be of the GABAA subtype. Circumstantial evidence is provided indicating that ATP might be the endogenous substance released by GABA.

  17. Relaxation Biodynamics: Experimental Studies and Modeling of Biogeochemical Processes in Northern Terrestrial Ecosystems

    NASA Astrophysics Data System (ADS)

    Panikov, N. S.; Pankratov, T.

    2001-12-01

    Relaxation phenomenon in physics and chemistry stands for delay between the application of an external stress to a system and its response. When an equilibrated nuclear, atomic or molecular system is subjected to an abrupt physical change (sudden rise in temperature or pressure), it takes time for the system to re-equilibrate under the new conditions. This period (relaxation time) can provide a powerful insight into mechanisms of chemical reaction. Our intention is to extend such approach to analysis of the complex biological phenomena related mainly to microbial growth and activity in the soil. We will show how this information can be used for better understanding the biogeochemical processes in northern terrestrial ecosystems such as aerobic and anaerobic decomposition of organic matter, gas (CO2 and CH4) emission to atmosphere, migration and transformation of biogenic elements, etc. The major source of experimental data is laboratory soil incubation under controlled environmental conditions with abrupt changes in one of the key parameters: temperature (including the water-to-ice phase transition), soil moisture, light (illumination of planted soil), supply of organic substrate and mineral nutrients. The state of biological component before and after abrupt changes was followed by continuous recording of gas (CO2, CH4) exchange rate and (in some special experiments), chemical analysis of the soil solution, and the characterization of soil community (microbial and plants biomass, species composition, change of life forms, etc.) The obtained dynamic data were fit to simulation models (sets of differential equations) describing the C- and energy flow through the studied microcosm systems. The comparison of predicted and observed relaxation dynamics allowed us to discard wrong assumptions on the nature of regulatory mechanisms involved in the functioning of the soil community. Finally, the conclusions derived from the lab experiments are projected to field

  18. Optimized energy landscape exploration using the ab initio based activation-relaxation technique

    NASA Astrophysics Data System (ADS)

    Machado-Charry, Eduardo; Béland, Laurent Karim; Caliste, Damien; Genovese, Luigi; Deutsch, Thierry; Mousseau, Normand; Pochet, Pascal

    2011-07-01

    Unbiased open-ended methods for finding transition states are powerful tools to understand diffusion and relaxation mechanisms associated with defect diffusion, growth processes, and catalysis. They have been little used, however, in conjunction with ab initio packages as these algorithms demanded large computational effort to generate even a single event. Here, we revisit the activation-relaxation technique (ART nouveau) and introduce a two-step convergence to the saddle point, combining the previously used Lanczós algorithm with the direct inversion in interactive subspace scheme. This combination makes it possible to generate events (from an initial minimum through a saddle point up to a final minimum) in a systematic fashion with a net 300-700 force evaluations per successful event. ART nouveau is coupled with BigDFT, a Kohn-Sham density functional theory (DFT) electronic structure code using a wavelet basis set with excellent efficiency on parallel computation, and applied to study the potential energy surface of C20 clusters, vacancy diffusion in bulk silicon, and reconstruction of the 4H-SiC surface.

  19. Understanding long-time vacancy aggregation in iron: A kinetic activation-relaxation technique study

    NASA Astrophysics Data System (ADS)

    Brommer, Peter; Béland, Laurent Karim; Joly, Jean-François; Mousseau, Normand

    2014-10-01

    Vacancy diffusion and clustering processes in body-centered-cubic (bcc) Fe are studied using the kinetic activation-relaxation technique (k-ART), an off-lattice kinetic Monte Carlo method with on-the-fly catalog building capabilities. For monovacancies and divacancies, k-ART recovers previously published results while clustering in a 50-vacancy simulation box agrees with experimental estimates. Applying k-ART to the study of clustering pathways for systems containing from one to six vacancies, we find a rich set of diffusion mechanisms. In particular, we show that the path followed to reach a hexavacancy cluster influences greatly the associated mean-square displacement. Aggregation in a 50-vacancy box also shows a notable dispersion in relaxation time associated with effective barriers varying from 0.84 to 1.1 eV depending on the exact pathway selected. We isolate the effects of long-range elastic interactions between defects by comparing to simulations where those effects are deliberately suppressed. This allows us to demonstrate that in bcc Fe, suppressing long-range interactions mainly influences kinetics in the first 0.3 ms, slowing down quick energy release cascades seen more frequently in full simulations, whereas long-term behavior and final state are not significantly affected.

  20. Optimized energy landscape exploration using the ab initio based activation-relaxation technique.

    PubMed

    Machado-Charry, Eduardo; Béland, Laurent Karim; Caliste, Damien; Genovese, Luigi; Deutsch, Thierry; Mousseau, Normand; Pochet, Pascal

    2011-07-21

    Unbiased open-ended methods for finding transition states are powerful tools to understand diffusion and relaxation mechanisms associated with defect diffusion, growth processes, and catalysis. They have been little used, however, in conjunction with ab initio packages as these algorithms demanded large computational effort to generate even a single event. Here, we revisit the activation-relaxation technique (ART nouveau) and introduce a two-step convergence to the saddle point, combining the previously used Lanczós algorithm with the direct inversion in interactive subspace scheme. This combination makes it possible to generate events (from an initial minimum through a saddle point up to a final minimum) in a systematic fashion with a net 300-700 force evaluations per successful event. ART nouveau is coupled with BigDFT, a Kohn-Sham density functional theory (DFT) electronic structure code using a wavelet basis set with excellent efficiency on parallel computation, and applied to study the potential energy surface of C(20) clusters, vacancy diffusion in bulk silicon, and reconstruction of the 4H-SiC surface.

  1. Numerical methods for TVD transport and coupled relaxing processes in gases and plasmas

    NASA Technical Reports Server (NTRS)

    Cambier, Jean-Luc

    1990-01-01

    The construction of second-order upwind schemes for nonequilibrium plasmas, for both one- and two-fluid formulations is demonstrated. Coupled relaxation processes, including ionization kinetics and radiative processes and their algorithms for nonequilibrium, multiple temperature conditions are described as well. The paper applies the numerical techniques on some simple test cases, points out critical problems and their solutions, and makes qualitative comparisons with known results, whenever possible.

  2. Self-consistent approach to the description of relaxation processes in classical multiparticle systems

    NASA Astrophysics Data System (ADS)

    Mokshin, A. V.

    2015-04-01

    The concept of time correlation functions is a very convenient theoretical tool in describing relaxation processes in multiparticle systems because, on one hand, correlation functions are directly related to experimentally measured quantities (for example, intensities in spectroscopic studies and kinetic coefficients via the Kubo-Green relation) and, on the other hand, the concept is also applicable beyond the equilibrium case. We show that the formalism of memory functions and the method of recurrence relations allow formulating a self-consistent approach for describing relaxation processes in classical multiparticle systems without needing a priori approximations of time correlation functions by model dependences and with the satisfaction of sum rules and other physical conditions guaranteed. We also demonstrate that the approach can be used to treat the simplest relaxation scenarios and to develop microscopic theories of transport phenomena in liquids, the propagation of density fluctuations in equilibrium simple liquids, and structure relaxation in supercooled liquids. This approach generalizes the mode-coupling approximation in the Götze-Leutheusser realization and the Yulmetyev-Shurygin correlation approximations.

  3. Smooth muscle relaxant activity of Crocus sativus (saffron) and its constituents: possible mechanisms.

    PubMed

    Mokhtari-Zaer, Amin; Khazdair, Mohammad Reza; Boskabady, Mohammad Hossein

    2015-01-01

    Saffron, Crocus sativus L. (C. sativus) is rich in carotenoids and used in traditional medicine for treatment of various conditions such as coughs, stomach disorders, amenorrhea, asthma and cardiovascular disorders. These therapeutic effects of the plant are suggested to be due to its relaxant effect on smooth muscles. The effect of C. sativus and its constituents on different smooth muscles and the underlying mechanisms have been studied. Several studies have shown the relaxant effects of C. sativus and its constituents including safranal, crocin, crocetin and kaempferol on blood vessels. In addition, it was reported that saffron stigma lowers systolic blood pressure. The present review highlights the relaxant effects of C. sativus and its constituents on various smooth muscles. The possible mechanisms of this relaxing effect including activation of ß2-adrenoceptors, inhibition of histamine H1 and muscarinic receptors and calcium channels and modulation of nitric oxide (NO) are also reviewed.

  4. Exploring the assembly mechanism of tetrapeptide oligomers using the Activation-Relaxation Technique

    NASA Astrophysics Data System (ADS)

    Wei, Guanghong; Mousseau, Normand; Derreumaux, Philippe

    2004-03-01

    Alzheimer's disease and Parkinson's disease are associated with formation of amyloid fibrils. All amyloid fibrils seem to share a common cross β-sheet structure. Experimental studies have shown that peptides as short as 4 amino acids can form amyloid fibrils. It has also been shown that the oligomers that form early in the aggregation process of even non-disease-related proteins may be cytotoxic. We report a detailed study of the assembly mechanisms of the tetrapeptides into different size oligomers: trimers, hexamers and more. The assembly of the oligomers, in which the peptides form β-sheets through interpeptide interactions, are studied using the activation-relaxation technique (ART) in combination with a reduced off-lattice energy model (OPEP). We also describe the multiple pathways of oligomerization as well as categorize the various oligomeric intermediates, providing information of the early events of β-sheet formation.

  5. Study of relaxation and transport processes by means of AFM based dielectric spectroscopy

    SciTech Connect

    Miccio, Luis A.

    2014-05-15

    Since its birth a few years ago, dielectric spectroscopy studies based on atomic force microscopy (AFM) have gained a growing interest. Not only the frequency and temperature ranges have become broader since then but also the kind of processes that can be studied by means of this approach. In this work we analyze the most adequate experimental setup for the study of several dielectric processes with a spatial resolution of a few nanometers by using force mode AFM based dielectric spectroscopy. Proof of concept experiments were performed on PS/PVAc blends and PMMA homopolymer films, for temperatures ranging from 300 to 400 K. Charge transport processes were also studied by this approach. The obtained results were analyzed in terms of cantilever stray contribution, film thickness and relaxation strength. We found that the method sensitivity is strongly coupled with the film thickness and the relaxation strength, and that it is possible to control it by using an adequate experimental setup.

  6. New relaxation processes in diluted Ho2Ti2O7

    SciTech Connect

    Gardner, Jason; Ehlers, Georg

    2009-01-01

    We have studied the spin relaxation in diluted spin ice Ho{sub 2-x}R{sub x}Ti{sub 2}O{sub 7} (R = La or Y) by means of neutron scattering. Remarkably, doping with nonmagnetic ions does not relieve the geometrical frustration and the dynamics of the freezing is unaltered whilst the cubic unit cell is maintained. When the nonmagnetic substitution starts to distort the lattice, a new relaxation process is revealed. We present new data from several diluted spin ice samples where Arrhenius behavior observed in the parent compound, Ho{sub 2}Ti{sub 2}O{sub 7} is superseded by other processes including a quantum tunnelling process.

  7. Relaxation times of the two-phonon processes with spin-flip and spin-conserving in quantum dots

    SciTech Connect

    Wang, Zi-Wu; Liu, Lei; Li, Shu-Shen

    2014-04-07

    We perform a theoretical investigation on the two-phonon processes of the spin-flip and spin-conserving relaxation in quantum dots in the frame of the Huang-Rhys' lattice relaxation model. We find that the relaxation time of the spin-flip is two orders of magnitude longer than that of the spin-conserving, which is in agreement with previous experimental measurements. Moreover, the opposite variational trends of the relaxation time as a function of the energy separation for two-phonon processes are obtained in different temperature regime. The relaxation times display the oscillatory behaviors at the demarcation point with increasing magnetic field, where the energy separation matches the optical phonon energy and results in the optical phonon resonance. These results are useful in understanding the intraband levels' relaxation in quantum dots and could be helpful in designing photoelectric and spin-memory devices.

  8. The effect of a broad activation energy distribution on deuteron spin-lattice relaxation.

    PubMed

    Ylinen, E E; Punkkinen, M; Birczyński, A; Lalowicz, Z T

    2015-10-01

    Deuteron NMR spectra and spin-lattice relaxation were studied experimentally in zeolite NaY(2.4) samples containing 100% or 200% of CD3OH or CD3OD molecules of the total coverage of Na atoms in the temperature range 20-150K. The activation energies describing the methyl and hydroxyl motions show broad distributions. The relaxation data were interpreted by improving a recent model (Stoch et al., 2013 [16]) in which the nonexponential relaxation curves are at first described by a sum of three exponentials with adjustable relaxation rates and weights. Then a broad distribution of activation energies (the mean activation energy A0 and the width σ) was assumed for each essentially different methyl and hydroxyl position. The correlation times were calculated from the Arrhenius equation (containing the pre-exponential factor τ0), individual relaxation rates computed and classified into three classes, and finally initial relaxation rates and weights for each class formed. These were compared with experimental data, motional parameters changed slightly and new improved rates and weights for each class calculated, etc. This method was improved by deriving for the deuterons of the A and E species methyl groups relaxation rates, which depend explicitly on the tunnel frequency ωt. The temperature dependence of ωt and of the low-temperature correlation time were obtained by using the solutions of the Mathieu equation for a threefold potential. These dependencies were included in the simulations and as the result sets of A0, σ and τ0 obtained, which describe the methyl and hydroxyl motions in different positions in zeolite.

  9. Phentolamine relaxes human corpus cavernosum by a nonadrenergic mechanism activating ATP-sensitive K+ channel.

    PubMed

    Silva, L F G; Nascimento, N R F; Fonteles, M C; de Nucci, G; Moraes, M E; Vasconcelos, P R L; Moraes, M O

    2005-01-01

    To investigate the pharmacodynamics of phentolamine in human corpus cavernosum (HCC) with special attention to the role of the K+ channels. Strips of HCC precontracted with nonadrenergic stimuli and kept in isometric organ bath immersed in a modified Krebs-Henseleit solution enriched with guanethidine and indomethacine were used in order to study the mechanism of the phentolamine-induced relaxation. Phentolamine caused relaxation (approximately 50%) in HCC strips precontracted with K+ 40 mM. This effect was not blocked by tetrodotoxin (1 microM) (54.6+/-4.6 vs 48.9+/-6.4%) or (atropine (10 microM) (52.7+/-6.5 vs 58.6+/-5.6%). However, this relaxation was significantly attenuated by L-NAME (100 microM) (59.7+/-5.8 vs 27.8+/-7.1%; P<0.05; n = 8) and ODQ (100 microM) (62.7+/-5.1 vs 26.8+/-3.9%; P<0.05; n = 8). Charybdotoxin and apamin (K(Ca)-channel blockers) did not affect the phentolamine relaxations (54.6+/-4.6 vs 59.3+/-5.2%). Glibenclamide (100 microM), an inhibitor of K(ATP)-channel, caused a significant inhibition (56.7+/-6.3 vs 11.3+/-2.3%; P<0.05; n = 8) of the phentolamine-induced relaxation. In addition, the association of glibenclamide and L-NAME almost abolished the phentolamine-mediated relaxation (54.6+/-5.6 vs 5.7+/-1.4%; P<0.05; n = 8). The results suggest that phentolamine relaxes HCC by a nonadrenergic-noncholinergic mechanism dependent on nitric oxide synthase activity and activation of K(ATP)-channel.

  10. Growth and relaxation processes in Ge nanocrystals on free-standing Si(001) nanopillars.

    PubMed

    Kozlowski, G; Zaumseil, P; Schubert, M A; Yamamoto, Y; Bauer, J; Schülli, T U; Tillack, B; Schroeder, T

    2012-03-23

    We study the growth and relaxation processes of Ge crystals selectively grown by chemical vapour deposition on free-standing 90 nm wide Si(001) nanopillars. Epi-Ge with thickness ranging from 4 to 80 nm was characterized by synchrotron based x-ray diffraction and transmission electron microscopy. We found that the strain in Ge nanostructures is plastically released by nucleation of misfit dislocations, leading to degrees of relaxation ranging from 50 to 100%. The growth of Ge nanocrystals follows the equilibrium crystal shape terminated by low surface energy (001) and {113} facets. Although the volumes of Ge nanocrystals are homogeneous, their shape is not uniform and the crystal quality is limited by volume defects on {111} planes. This is not the case for the Ge/Si nanostructures subjected to thermal treatment. Here, improved structure quality together with high levels of uniformity of the size and shape is observed.

  11. Uncertainty management by relaxation of conflicting constraints in production process scheduling

    NASA Technical Reports Server (NTRS)

    Dorn, Juergen; Slany, Wolfgang; Stary, Christian

    1992-01-01

    Mathematical-analytical methods as used in Operations Research approaches are often insufficient for scheduling problems. This is due to three reasons: the combinatorial complexity of the search space, conflicting objectives for production optimization, and the uncertainty in the production process. Knowledge-based techniques, especially approximate reasoning and constraint relaxation, are promising ways to overcome these problems. A case study from an industrial CIM environment, namely high-grade steel production, is presented to demonstrate how knowledge-based scheduling with the desired capabilities could work. By using fuzzy set theory, the applied knowledge representation technique covers the uncertainty inherent in the problem domain. Based on this knowledge representation, a classification of jobs according to their importance is defined which is then used for the straightforward generation of a schedule. A control strategy which comprises organizational, spatial, temporal, and chemical constraints is introduced. The strategy supports the dynamic relaxation of conflicting constraints in order to improve tentative schedules.

  12. Adapting Creative and Relaxation Activities to Students with Cancer

    ERIC Educational Resources Information Center

    Jenko, Nika; Stopar, Mojca Lipec

    2015-01-01

    The team which forms a comprehensive treatment plan for students with cancer includes, among other experts, special educators. In cooperation with other team members, their role is to enable students to integrate in the educational process, having regard to their individual needs. In the present paper we introduce the study of specific methodical…

  13. Magnetic relaxations arising from spin-phonon interactions in the nonthermally activated temperature range for a double-decker terbium phthalocyanine single molecule magnet.

    PubMed

    Fukuda, Takamitsu; Shigeyoshi, Natsuko; Yamamura, Tomoo; Ishikawa, Naoto

    2014-09-02

    Magnetic relaxations arising from spin-phonon interactions for a magnetically diluted double-decker terbium phthalocyanine single molecule magnet, dil1, in the nonthermally activated temperature range have been investigated. While the relaxation time, τ, is independent of the external static magnetic field, H(dc), in the high temperature range, where linear relationships between -ln τ and T(-1) are observed in the Arrhenius plot, magnetic field dependences for τ are observed in the lower temperature range. The τ(-1) vs H(dc) plot at 12 K fits the quadric curve when H(dc) < 12 kOe, while linear relationships are observed in the τ(-1) vs T plots in the temperature range of 12-20 K. These results indicate that the direct process is the dominant magnetic relaxation pathway in the nonthermally activated temperature range, while the contribution from the Raman process, if any, is not observable. We emphasize in this paper that the contribution from the thermal relaxation processes and the quantum tunneling of magnetizations (QTMs) to the experimentally observed magnetic relaxations must be evaluated carefully in order to avoid confusion between the thermal and quantum-mechanical relaxation pathways.

  14. TRPM8 Channel Activation Induced by Monoterpenoid Rotundifolone Underlies Mesenteric Artery Relaxation

    PubMed Central

    Silva, Darizy Flavia; de Almeida, Monica Moura; Chaves, Cinthia Guedes; Braz, Ana Letícia; Gomes, Maria Aparecida; Pinho-da-Silva, Leidiane; Pesquero, Jorge Luiz; Andrade, Viviane Aguiar; Leite, Maria de Fátima; de Albuquerque, José George Ferreira; Araujo, Islania Giselia Albuquerque; Nunes, Xirley Pereira; Barbosa-Filho, José Maria; Cruz, Jader dos Santos; Correia, Nadja de Azevedo; de Medeiros, Isac Almeida

    2015-01-01

    In this study, our aims were to investigate transient receptor potential melastatin-8 channels (TRPM8) involvement in rotundifolone induced relaxation in the mesenteric artery and to increase the understanding of the role of these thermosensitive TRP channels in vascular tissue. Thus, message and protein levels of TRPM8 were measured by semi-quantitative PCR and western blotting in superior mesenteric arteries from 12 week-old Spague-Dawley (SD) rats. Isometric tension recordings evaluated the relaxant response in mesenteric rings were also performed. Additionally, the intracellular Ca2+ changes in mesenteric artery myocytes were measured using confocal microscopy. Using PCR and western blotting, both TRPM8 channel mRNA and protein expression was measured in SD rat mesenteric artery. Rotundifolone and menthol induced relaxation in the isolated superior mesenteric artery from SD rats and improved the relaxant response induced by cool temperatures. Also, this monoterpene induced an increase in transient intracellular Ca2+. These responses were significantly attenuated by pretreatment with capsazepine or BCTC, both TRPM8 channels blockers. The response induced by rotundifolone was not significantly attenuated by ruthenium red, a non-selective TRP channels blocker, or following capsaicin-mediated desensitization of TRPV1. Our findings suggest that rotundifolone induces relaxation by activating TRPM8 channels in rat superior mesenteric artery, more selectively than menthol, the classic TRPM8 agonist, and TRPM8 channels participates in vasodilatory pathways in isolated rat mesenteric arteries. PMID:26599698

  15. TRPM8 Channel Activation Induced by Monoterpenoid Rotundifolone Underlies Mesenteric Artery Relaxation.

    PubMed

    Silva, Darizy Flavia; de Almeida, Monica Moura; Chaves, Cinthia Guedes; Braz, Ana Letícia; Gomes, Maria Aparecida; Pinho-da-Silva, Leidiane; Pesquero, Jorge Luiz; Andrade, Viviane Aguiar; Leite, Maria de Fátima; de Albuquerque, José George Ferreira; Araujo, Islania Giselia Albuquerque; Nunes, Xirley Pereira; Barbosa-Filho, José Maria; Cruz, Jader dos Santos; Correia, Nadja de Azevedo; de Medeiros, Isac Almeida

    2015-01-01

    In this study, our aims were to investigate transient receptor potential melastatin-8 channels (TRPM8) involvement in rotundifolone induced relaxation in the mesenteric artery and to increase the understanding of the role of these thermosensitive TRP channels in vascular tissue. Thus, message and protein levels of TRPM8 were measured by semi-quantitative PCR and western blotting in superior mesenteric arteries from 12 week-old Spague-Dawley (SD) rats. Isometric tension recordings evaluated the relaxant response in mesenteric rings were also performed. Additionally, the intracellular Ca2+ changes in mesenteric artery myocytes were measured using confocal microscopy. Using PCR and western blotting, both TRPM8 channel mRNA and protein expression was measured in SD rat mesenteric artery. Rotundifolone and menthol induced relaxation in the isolated superior mesenteric artery from SD rats and improved the relaxant response induced by cool temperatures. Also, this monoterpene induced an increase in transient intracellular Ca2+. These responses were significantly attenuated by pretreatment with capsazepine or BCTC, both TRPM8 channels blockers. The response induced by rotundifolone was not significantly attenuated by ruthenium red, a non-selective TRP channels blocker, or following capsaicin-mediated desensitization of TRPV1. Our findings suggest that rotundifolone induces relaxation by activating TRPM8 channels in rat superior mesenteric artery, more selectively than menthol, the classic TRPM8 agonist, and TRPM8 channels participates in vasodilatory pathways in isolated rat mesenteric arteries.

  16. Relaxant activity of three aporphine alkaloids from Annona cherimolia on isolated aorta of rat.

    PubMed

    Chuliá, S; Ivorra, M D; Cavé, A; Cortés, D; Noguera, M A; D'Ocón, M P

    1995-08-01

    In the present study we tested the relaxant effect of three aporphine alkaloids--roemerine, anonaine and dehydroroemerine--isolated from the roots of Annona cherimolia, on isolated strips of rat thoracic aorta. All compounds completely relaxed KCl- and noradrenaline-induced contractions with different potencies depending on their structural characteristics. The experiments, carried out in Ca(2+)-free medium using two different agonists (noradrenaline and caffeine) which mobilize calcium intracellularly by different mechanisms of action, showed that the alkaloids made no contribution to intracellular calcium processes. The present study provides evidence that the relaxant effects produced by aporphine alkaloids may be due to the blockade of calcium movements across the cell membrane, mainly through voltage-operated channels, and to the disruption of alpha 1-adrenoceptors connected to receptor-operated channels.

  17. Dielectric properties and fluctuating relaxation processes of poly(methyl methacrylate) based polymeric nanocomposite electrolytes

    NASA Astrophysics Data System (ADS)

    Sengwa, R. J.; Choudhary, Shobhna

    2014-06-01

    Solid polymer nanocomposite electrolytes (SPNEs) consisted of poly(methyl methacrylate) (PMMA) and lithium perchlorate (LiClO4) of molar ratio C=O:Li+=4:1 with varying concentration of montmorillonite (MMT) clay as nanofiller have been prepared by classical solution casting and high intensity ultrasonic assisted solution casting methods. The dielectric/electrical dispersion behaviour of these electrolytes was studied by dielectric relaxation spectroscopy at ambient temperature. The dielectric loss tangent and electric modulus spectra have been analyzed for relaxation processes corresponding to the side groups rotation and the segmental motion of PMMA chain, which confirm their fluctuating behaviour with the sample preparation methods and also with change of MMT concentration. The feasibility of these relaxation fluctuations has been explained using a transient complex structural model based on Lewis acid-base interactions. The low permittivity and moderate dc ionic conductivity at ambient temperature suggest the suitability of these electrolytes in fabrication of ion conducting electrochromic devices and lithium ion batteries. The amorphous behaviour and the exfoliated/intercalated MMT structures of these nanocomposite electrolytes were confirmed by X-ray diffraction measurements.

  18. Polymorphous-Crystalloid Structure and Relaxation Processes in Some Chalcogenide Glass-Forming Substances

    DTIC Science & Technology

    2001-06-01

    structure is absent. Azoulay in 1975 [21], heating glasses of Ge-Se system with 15-30 at.% Ge content up to temperatures of 280-300 0C, discovered in...at.% Ge only GeSe 2 phase can be formed. Therefore, Azoulay appears to be the first who discovered LTPM GeSe2 and observed the phase transition LTPM...HTPM which can be interpreted as the process of relaxation of crystalline GeSe 2 at temperature increase. The confirmation of the fact that Azoulay

  19. Isolated many-body quantum systems far from equilibrium: Relaxation process and thermalization

    SciTech Connect

    Torres-Herrera, E. J.; Santos, Lea F.

    2014-10-15

    We present an overview of our recent numerical and analytical results on the dynamics of isolated interacting quantum systems that are taken far from equilibrium by an abrupt perturbation. The studies are carried out on one-dimensional systems of spins-1/2, which are paradigmatic models of many-body quantum systems. Our results show the role of the interplay between the initial state and the post-perturbation Hamiltonian in the relaxation process, the size of the fluctuations after equilibration, and the viability of thermalization.

  20. Anomalous diffusion and non-monotonic relaxation processes in Ge-Se liquids

    NASA Astrophysics Data System (ADS)

    Yildirim, Can; Raty, Jean-Yves; Micoulaut, Matthieu

    2016-06-01

    We investigate the dynamical properties of liquid GexSe100-x as a function of Ge content by first-principles molecular dynamic simulations for a certain number of temperatures in the liquid state. The focus is set on ten compositions (where x ≤ 33%) encompassing the reported flexible to rigid and rigid to stressed-rigid transitions. We examine diffusion coefficients, diffusion activation energies, glassy relaxation behavior, and viscosity of these liquids from Van Hove correlation and intermediate scattering functions. At fixed temperature, all properties/functions exhibit an anomalous behavior with Ge content in the region 18%-22%, and provide a direct and quantitative link to the network rigidity.

  1. Dynamical fingerprints for probing individual relaxation processes in biomolecular dynamics with simulations and kinetic experiments

    SciTech Connect

    Noe, F; Diadone, Isabella; Lollmann, Marc; Sauer, Marcus; Chondera, John D; Smith, Jeremy C

    2011-01-01

    There is a gap between kinetic experiment and simulation in their views of the dynamics of complex biomolecular systems. Whereas experiments typically reveal only a few readily discernible exponential relaxations, simulations often indicate complex multistate behavior. Here, a theoretical framework is presented that reconciles these two approaches. The central concept is dynamical fingerprints which contain peaks at the time scales of the dynamical processes involved with amplitudes determined by the experimental observable. Fingerprints can be generated from both experimental and simulation data, and their comparison by matching peaks permits assignment of structural changes present in the simulation to experimentally observed relaxation processes. The approach is applied here to a test case interpreting single molecule fluorescence correlation spectroscopy experiments on a set of fluorescent peptides with molecular dynamics simulations. The peptides exhibit complex kinetics shown to be consistent with the apparent simplicity of the experimental data. Moreover, the fingerprint approach can be used to design new experiments with site-specific labels that optimally probe specific dynamical processes in the molecule under investigation.

  2. Energy-transfer and exciton-state relaxation processes in allophycocyanin

    SciTech Connect

    Beck, W.F.; Sauer, K.

    1992-05-28

    The authors have employed picosecond spectroscopic techniques to characterize the photophysics of the phycocyanobilin chromophores in linker-free allophycocyanin isolated from the cyanobactrium Synechococcus PCC 6301 (AN112 mutant). In analogy with the known structure of the related phycobiliprotein C-phycocyanin, allophycocyanin is probably organized as a ringlike homotrimer; the monomeric units are composed of an {alpha} and a {beta} subunit, each of which binds a phycocyanobilin chromophore via a thioether linkage to a cysteine residue at amino acid position 84. The authors observe bidirectional excitation transfer in the {alpha}{beta} monomer between the {alpha}84 and {beta}84 chromophores with a 140-ps time constant. The authors assign an ultrafast (<2-ps time constant) anisotropy and photobleaching transient observed only in ({alpha}{beta}){sub 3} trimers to an interexciton level transition; the transient occurs with a polarization change that is consistent with a transition between the orthogonal upper and lower exciton states. The upper exciton state also relaxes directly to the ground state through a decay process with a 45-ps time constant. They attribute the heterogeneous relaxation of the upper exciton state through these two paths to an inhomogeneous broadening due to site heterogeneity, which was previously observed in C-phycocyanin in hole-burning experiments at low temperature. Excitation transfer among the degenerate lower exciton states is detected in terms of a 70-ps anisotropy decay observed in the photobleaching and stimulated emission. The interexcition level transition rapidly concentrates excitation in the lower exciton state of allophycocyanin ({alpha}{beta}){sub 3} trimers; this kind of spectral relaxation process may be important in facilitating directional excitation transfer in reaction center/light-harvesting protein assemblies. 47 refs., 8 figs.

  3. End-tidal PCO2 as an index of psychophysiological activity during VDT data-entry work and relaxation.

    PubMed

    Schleifer, L M; Ley, R

    1994-02-01

    The present study was designed to assess the utility of end-tidal PCO2 (peak concentration of carbon dioxide in a single breath of exhaled air) as an index of psychophysiological activity during performance of a computer-based task and during relaxation. Eleven data-entry operators were monitored continuously for three consecutive, 6 hour work days under the following conditions: (a) during a self-relaxation baseline period; (b) during an abbreviated progressive muscle relaxation period; and (c) during a period of computer-based data-entry work. End-tidal PCO2, respiration frequency, and cardiac inter-beat interval (a measure of heart rate and its variability) were monitored continuously during the three conditions of the study. Self-ratings of relaxation and tension were also monitored at periodic intervals. Consistent with a decrease in psychophysiological arousal, end-tidal PCO2 and self-ratings of relaxation were significantly higher during progressive muscle relaxation than during baseline relaxation. Consistent with an increase in psychophysiological arousal, end-tidal PCO2, cardiac inter-beat interval, and relaxation ratings during data-entry work were significantly lower than during either baseline relaxation or progressive muscle relaxation, while respiration frequency and tension ratings were higher. The findings indicate that end-tidal PCO2 discriminates among different psychophysiological states, and that end-tidal PCO2 may be useful in indexing the stress-health effects of human-computer interactions.

  4. Force depression and relaxation kinetics after active shortening and deactivation in mouse soleus muscle.

    PubMed

    Van Noten, P; Van Leemputte, M

    2013-03-15

    After active shortening, isometric force production capacity of muscle is reduced (force depression, FD). The mechanism is incompletely understood but increasing cross-bridge detachment and/or decreasing attachment rate might be involved. Therefore we aimed to investigate the relation between work delivered during shortening (W), and change in half-relaxation time (Δ0.5RT) and change in the slow phase of muscle relaxation (Δkslow), considered as a marker for cross-bridge detachment rate, after shortening and after a short (0.7s) interruption of activation (deactivation). We hypothesized that shortening induces an accelerated relaxation related to W which is, similar to FD, largely abolished by a short deactivation. In 10 incubated supra-maximally stimulated mouse soleus muscles, we varied the amount of FD at L0 by varying shortening amplitude (0.6, 1.2 and 2.4mm). We found that W not only induces FD (R(2)=0.92) but also a dose dependent accelerated relaxation (R(2)=0.88 and R(2)=0.77 for respectively Δkslow and Δ0.5RT). In cyclic movements this is of functional significance, because the loss in force generating capacity might be (partially) compensated by faster relaxation. After a short deactivation, both FD and Δkslow were largely abolished but Δ0.5RT remained largely present. Under the assumption that Δkslow reflects a change in cross-bridge detachment rate, these results support the idea that FD is an intrinsic sarcomeric property originating from a work induced reduction of the number of force generating cross-bridges, however not via decreased attachment but via increased detachment rate.

  5. Diffusion of point defects in crystalline silicon using the kinetic activation-relaxation technique method

    DOE PAGES

    Trochet, Mickaël; Béland, Laurent Karim; Joly, Jean -François; ...

    2015-06-16

    We study point-defect diffusion in crystalline silicon using the kinetic activation-relaxation technique (k-ART), an off-lattice kinetic Monte Carlo method with on-the-fly catalog building capabilities based on the activation-relaxation technique (ART nouveau), coupled to the standard Stillinger-Weber potential. We focus more particularly on the evolution of crystalline cells with one to four vacancies and one to four interstitials in order to provide a detailed picture of both the atomistic diffusion mechanisms and overall kinetics. We show formation energies, activation barriers for the ground state of all eight systems, and migration barriers for those systems that diffuse. Additionally, we characterize diffusion pathsmore » and special configurations such as dumbbell complex, di-interstitial (IV-pair+2I) superdiffuser, tetrahedral vacancy complex, and more. In conclusion, this study points to an unsuspected dynamical richness even for this apparently simple system that can only be uncovered by exhaustive and systematic approaches such as the kinetic activation-relaxation technique.« less

  6. Diffusion of point defects in crystalline silicon using the kinetic activation-relaxation technique method

    SciTech Connect

    Trochet, Mickaël; Béland, Laurent Karim; Joly, Jean -François; Brommer, Peter; Mousseau, Normand

    2015-06-16

    We study point-defect diffusion in crystalline silicon using the kinetic activation-relaxation technique (k-ART), an off-lattice kinetic Monte Carlo method with on-the-fly catalog building capabilities based on the activation-relaxation technique (ART nouveau), coupled to the standard Stillinger-Weber potential. We focus more particularly on the evolution of crystalline cells with one to four vacancies and one to four interstitials in order to provide a detailed picture of both the atomistic diffusion mechanisms and overall kinetics. We show formation energies, activation barriers for the ground state of all eight systems, and migration barriers for those systems that diffuse. Additionally, we characterize diffusion paths and special configurations such as dumbbell complex, di-interstitial (IV-pair+2I) superdiffuser, tetrahedral vacancy complex, and more. In conclusion, this study points to an unsuspected dynamical richness even for this apparently simple system that can only be uncovered by exhaustive and systematic approaches such as the kinetic activation-relaxation technique.

  7. Evaluation of skeletal muscle relaxant activity of aqueous extract of Nerium oleander flowers in Albino rats

    PubMed Central

    Tirumalasetti, Jayasree; Patel, Maulik; Shaikh, Ubedulla; Harini, K.; Shankar, J.

    2015-01-01

    Objectives: Nerium oleander is traditionally used in various diseases because of its medicinal properties. One of its uses is in musculoskeletal disorder. The aim of the study was to evaluate the skeletal muscle relaxant activity of the aqueous extract of Nerium oleander flowers (AENOF) in albino rats in comparison with diazepam. Materials and Methods: A total of 20 Swiss albino rats aged 6–7 weeks, of either sex, weighing about 100–150 g, were taken, and after acute toxicity studies two different doses were selected. The animals were divided into four different groups. The first group was kept as the control (normal saline), second as the standard (diazepam) and the remaining two groups as Test I and Test II, and given different doses of the AENOF. Skeletal muscle relaxant activity (motor coordination) on Rotarod and locomotor activity on photoactometer was performed. Statistical analysis was carried out by using analysis of variance, followed by Dunnett's multiple comparison tests. Results: The result from the Actophotometer test and Rotarod test showed that the extract of AENOF significantly reduced (P < 0.05) the motor coordination of the tested animals. Conclusions: Our data indicates that AENOF possesses skeletal muscle relaxant activities. PMID:26288474

  8. Diffusion of point defects in crystalline silicon using the kinetic activation-relaxation technique method

    NASA Astrophysics Data System (ADS)

    Trochet, Mickaël; Béland, Laurent Karim; Joly, Jean-François; Brommer, Peter; Mousseau, Normand

    2015-06-01

    We study point-defect diffusion in crystalline silicon using the kinetic activation-relaxation technique (k-ART), an off-lattice kinetic Monte Carlo method with on-the-fly catalog building capabilities based on the activation-relaxation technique (ART nouveau), coupled to the standard Stillinger-Weber potential. We focus more particularly on the evolution of crystalline cells with one to four vacancies and one to four interstitials in order to provide a detailed picture of both the atomistic diffusion mechanisms and overall kinetics. We show formation energies, activation barriers for the ground state of all eight systems, and migration barriers for those systems that diffuse. Additionally, we characterize diffusion paths and special configurations such as dumbbell complex, di-interstitial (IV-pair+2I) superdiffuser, tetrahedral vacancy complex, and more. This study points to an unsuspected dynamical richness even for this apparently simple system that can only be uncovered by exhaustive and systematic approaches such as the kinetic activation-relaxation technique.

  9. Elastically cooperative activated barrier hopping theory of relaxation in viscous fluids. I. General formulation and application to hard sphere fluids.

    PubMed

    Mirigian, Stephen; Schweizer, Kenneth S

    2014-05-21

    We generalize the force-level nonlinear Langevin equation theory of single particle hopping to include collective effects associated with long range elastic distortion of the liquid. The activated alpha relaxation event is of a mixed spatial character, involving two distinct, but inter-related, local and collective barriers. There are no divergences at volume fractions below jamming or temperatures above zero Kelvin. The ideas are first developed and implemented analytically and numerically in the context of hard sphere fluids. In an intermediate volume fraction crossover regime, the local cage process is dominant in a manner consistent with an apparent Arrhenius behavior. The super-Arrhenius collective barrier is more strongly dependent on volume fraction, dominates the highly viscous regime, and is well described by a nonsingular law below jamming. The increase of the collective barrier is determined by the amplitude of thermal density fluctuations, dynamic shear modulus or transient localization length, and a growing microscopic jump length. Alpha relaxation time calculations are in good agreement with recent experiments and simulations on dense fluids and suspensions of hard spheres. Comparisons of the theory with elastic models and entropy crisis ideas are explored. The present work provides a foundation for constructing a quasi-universal, fit-parameter-free theory for relaxation in thermal molecular liquids over 14 orders of magnitude in time.

  10. Time scale bridging in atomistic simulation of slow dynamics: viscous relaxation and defect activation

    NASA Astrophysics Data System (ADS)

    Kushima, A.; Eapen, J.; Li, Ju; Yip, S.; Zhu, T.

    2011-08-01

    Atomistic simulation methods are known for timescale limitations in resolving slow dynamical processes. Two well-known scenarios of slow dynamics are viscous relaxation in supercooled liquids and creep deformation in stressed solids. In both phenomena the challenge to theory and simulation is to sample the transition state pathways efficiently and follow the dynamical processes on long timescales. We present a perspective based on the biased molecular simulation methods such as metadynamics, autonomous basin climbing (ABC), strain-boost and adaptive boost simulations. Such algorithms can enable an atomic-level explanation of the temperature variation of the shear viscosity of glassy liquids, and the relaxation behavior in solids undergoing creep deformation. By discussing the dynamics of slow relaxation in two quite different areas of condensed matter science, we hope to draw attention to other complex problems where anthropological or geological-scale time behavior can be simulated at atomic resolution and understood in terms of micro-scale processes of molecular rearrangements and collective interactions. As examples of a class of phenomena that can be broadly classified as materials ageing, we point to stress corrosion cracking and cement setting as opportunities for atomistic modeling and simulations.

  11. Uncovering Molecular Relaxation Processes with Nonlinear Spectroscopies in the Deep UV

    NASA Astrophysics Data System (ADS)

    West, Brantley Andrew

    Conical intersections mediate internal conversion dynamics that compete with even the fastest nuclear motions in molecular systems. Traditional kinetic models do not apply in this regime of commensurate electronic and nuclear motion because the surroundings do not maintain equilibrium throughout the relaxation process. This dissertation focuses on uncovering the physics associated with vibronic interactions at conical intersections. Of particular interest are coherent nuclear motions driven by steep excited state potential energy gradients. Technical advances have only recently made these dynamics accessible in many systems including DNA nucleobases and cyclic polyene molecules. Optical analogues of multidimensional NMR spectroscopies have recently yielded transformative insight in relaxation processes ranging from energy transfer in photosynthesis to bond making and breaking in liquids. Prior to the start of this research, such experiments had only been conducted at infrared and visible wavelengths. Applications in the ultraviolet were motivated by studies of numerous biological systems (e.g., DNA, proteins), but had been challenged by technical issues. The work presented in this dissertation combines pulse generation techniques developed in the optical physics community with spectroscopic techniques largely pioneered by physical chemists to implement two-dimensional ultraviolet spectroscopy (2DUV). This technique is applied at the shortest wavelengths and with the best signal-to-noise ratios reported to date. Sub-picosecond excited state deactivation processes provide photo stability to the DNA double helix. Vibrational energy transfer from the solute to surrounding solvent enables relaxation of the highly non-equilibrium ground state produced by fast internal conversion. In this dissertation, nonlinear spectroscopies carried out at cryogenic temperatures are used to uncover the particular nuclear modes in the solvent that primarily accept vibrational energy from

  12. Reduced activity of SKCa and Na-K ATPase underlies the accelerated impairment of EDH-type relaxations in mesenteric arteries of aging spontaneously hypertensive rats

    PubMed Central

    Kong, Billy W C; Man, Ricky Y K; Gao, Yuansheng; Vanhoutte, Paul M; Leung, Susan W S

    2015-01-01

    Aging is accompanied by endothelial dysfunction due to reduced bioavailability of nitric oxide (NO) and/or reduced endothelium-dependent hyperpolarizations (EDH). This study examines the hypothesis that hypertension aggravates the impairment of EDH-type relaxation due to aging. EDH-type relaxations were studied in superior mesenteric arteries isolated from Wistar Kyoto (WKY) and spontaneously hypertensive (SHR) rats of 12, 36, 60, and 72 weeks of age. EDH-type relaxations in WKY were reduced with aging, and this was associated with an impairment of the function of small-conductance calcium-activated potassium channels (SKCa) and sodium-potassium ATPase (Na-K ATPase). EDH-type relaxation in SHR was smaller than that in WKY arteries, and further reduction occurred with aging. Pharmacological experiments suggested a reduced involvement of SKCa and Na-K ATPase and activation of adenosine monophosphate-activated protein kinase and silent information regulator T1 (sirtuin-1; SIRT1) in mesenteric arteries of 12-week-old SHR. These pharmacological findings suggest that in superior mesenteric arteries of the rat, the reduction in EDH-type relaxation occurs with aging and that such a reduction is exacerbated in hypertension. The latter exacerbation appears to involve proteins associated with the process of cellular senescence and is related to impaired function of SKCa and Na-K ATPase, a phenomenon that is also observed in mesenteric arteries of older normotensive rats. PMID:26171229

  13. Visfatin Impairs Endothelium-Dependent Relaxation in Rat and Human Mesenteric Microvessels through Nicotinamide Phosphoribosyltransferase Activity

    PubMed Central

    Angulo, Javier; Villalobos, Laura A.; Cercas, Elena; Leivas, Alejandra; Bermejo, Elena; Carraro, Raffaele; Sánchez-Ferrer, Carlos F.; Peiró, Concepción

    2011-01-01

    Visfatin, also known as extracellular pre–B-cell colony–enhancing factor (PBEF) and nicotinamide phosphoribosyltransferase (Nampt), is an adipocytokine whose circulating levels are enhanced in metabolic disorders, such as type 2 diabetes mellitus and obesity. Circulating visfatin levels have been positively associated with vascular damage and endothelial dysfunction. Here, we investigated the ability of visfatin to directly impair vascular reactivity in mesenteric microvessels from both male Sprague-Dawley rats and patients undergoing non-urgent, non-septic abdominal surgery. The pre-incubation of rat microvessels with visfatin (50 and 100 ng/mL) did not modify the contractile response to noradrenaline (1 pmol/L to 30 µmol/L), as determined using a small vessel myograph. However, visfatin (10 to 100 ng/mL) concentration-dependently impaired the relaxation to acetylcholine (ACh; 100 pmol/L to 3 µmol/L), without interfering with the endothelium-independent relaxation to sodium nitroprusside (1 nmol/L to 3 µmol/L). In both cultured human umbilical vein endothelial cells and rat microvascular preparations, visfatin (50 ng/mL) stimulated nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, as determined by lucigenin-derived chemiluminiscence. The relaxation to ACh impaired by visfatin was restored by the NADPH oxidase inhibitor apocynin (10 µmol/L). Additionally, the Nampt inhibitor APO866 (10 mmol/L to 10 µmol/L), but not an insulin receptor-blocking antibody, also prevented the stimulation of NADPH oxidase and the relaxation impairment elicited by visfatin. Accordingly, the product of Nampt activity nicotinamide mononucleotide (100 nmol/L to 1 mmol/L) stimulated endothelial NADPH oxidase activity and concentration-dependently impaired ACh-induced vasorelaxation. In human mesenteric microvessels pre-contracted with 35 mmol/L potassium chloride, the endothelium-dependent vasodilation to bradykinin (1 nmol/L to 3 µmol/L) was equally impaired by

  14. Nonlinear structural response using adaptive dynamic relaxation on a massively-parallel-processing system

    NASA Technical Reports Server (NTRS)

    Oakley, David R.; Knight, Norman F., Jr.

    1994-01-01

    A parallel adaptive dynamic relaxation (ADR) algorithm has been developed for nonlinear structural analysis. This algorithm has minimal memory requirements, is easily parallelizable and scalable to many processors, and is generally very reliable and efficient for highly nonlinear problems. Performance evaluations on single-processor computers have shown that the ADR algorithm is reliable and highly vectorizable, and that it is competitive with direct solution methods for the highly nonlinear problems considered. The present algorithm is implemented on the 512-processor Intel Touchstone DELTA system at Caltech, and it is designed to minimize the extent and frequency of interprocessor communication. The algorithm has been used to solve for the nonlinear static response of two and three dimensional hyperelastic systems involving contact. Impressive relative speedups have been achieved and demonstrate the high scalability of the ADR algorithm. For the class of problems addressed, the ADR algorithm represents a very promising approach for parallel-vector processing.

  15. Relaxational processes in the one-dimensional Ising model with long-range interactions

    NASA Astrophysics Data System (ADS)

    Tomita, Yusuke

    2016-12-01

    Relaxational processes in ordered phases of one-dimensional Ising models with long-range interactions are investigated by Monte Carlo simulations. Three types of spin model, the pure ferromagnetic, the diluted ferromagnetic, and the spin glass models, are examined. The effective dimension of the one-dimensional systems are controlled by a parameter σ , which tunes the rate of interaction decay. Systematical investigations of droplet dynamics, from the lower to the upper critical dimension, are conducted by changing the value of σ . Comparing numerical data with the droplet theory, it is found that the surface dimension of droplets is distributed around the effective dimension. The distribution in the surface dimension makes the droplet dynamics complex and extremely enhances dynamical crossover.

  16. Relaxational processes in the one-dimensional Ising model with long-range interactions.

    PubMed

    Tomita, Yusuke

    2016-12-01

    Relaxational processes in ordered phases of one-dimensional Ising models with long-range interactions are investigated by Monte Carlo simulations. Three types of spin model, the pure ferromagnetic, the diluted ferromagnetic, and the spin glass models, are examined. The effective dimension of the one-dimensional systems are controlled by a parameter σ, which tunes the rate of interaction decay. Systematical investigations of droplet dynamics, from the lower to the upper critical dimension, are conducted by changing the value of σ. Comparing numerical data with the droplet theory, it is found that the surface dimension of droplets is distributed around the effective dimension. The distribution in the surface dimension makes the droplet dynamics complex and extremely enhances dynamical crossover.

  17. Kinetic arrest, dynamical transitions, and activated relaxation in dense fluids of attractive nonspherical colloids

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Schweizer, Kenneth S.

    2011-06-01

    The coupled translation-rotation activated dynamics in dense suspensions of attractive homogeneous and Janus uniaxial dicolloids are studied using microscopic statistical mechanical theory. Multiple kinetic arrest transitions and reentrant phenomena are predicted that are associated with fluid, gel, repulsive glass, attractive glass, plastic glass, and novel glass-gel states. The activated relaxation rate is a nonuniversal nonmonotonic function of attraction strength at high volume fractions due to the consequences of a change of the transient localization mechanism from caging to physical bonding.

  18. Unified Theory of Activated Relaxation in Cold Liquids over 14 Decades in Time

    NASA Astrophysics Data System (ADS)

    Schweizer, Kenneth; Mirigian, Stephen

    2014-03-01

    We formulate a predictive theory at the level of forces of activated relaxation in thermal liquids that covers in a unified manner the apparent Arrhenius, crossover and deeply supercooled regimes (J.Phys.Chem.Lett.4,3648(2013)). The alpha relaxation event involves coupled cage-scale hopping and a long range cooperative elastic distortion of the surrounding liquid, which results in two inter-related, but distinct, barriers. The strongly temperature and density dependent collective barrier is associated with a growing length scale, the shear modulus and density fluctuations. Thermal liquids are mapped to an effective hard sphere fluid based on matching long wavelength density fluctuation amplitudes. The theory is devoid of fit parameters, has no divergences at finite temperature nor below jamming, and captures the key features of the alpha relaxation time in molecular liquids from picoseconds to hundreds of seconds. The approach is extended to polymer liquids based on the Kuhn length as the key variable. The influence of chain length and backbone stiffness on the glass transition temperature and fragility have been studied where degree of polymerization enters via corrections to asymptotic conformational statistics.

  19. The dynamical activation-relaxation technique (DART): an on-the-fly kinetic Monte-Carlo algorithm

    NASA Astrophysics Data System (ADS)

    El-Mellouhi, Fadwa; Cote, Michel; Lewis, Laurent J.; Mousseau, Normand

    2008-03-01

    We present DART, the dynamical activation-relaxation technique, that combines the activation-relaxation technique (ART nouveau) with a non-lattice KMC method that allows the on-the-fly identification of barriers and the full treatment of lattice deformations. Most KMC schemes rely on the use of a fixed list of events and barriers, which are drawn with the proper weight during the simulation. While this works well for a number of problems (such as metal-on-metal growth), it cannot be used for processes where the events may change with time. DART overcomes this limitation. ART nouveau has been used extensively for the study of activated mechanisms in different materials within both an empirical and an ab-initio description of the systems. In the DART implementation, KMC moves are based on a catalog of events constructed on-the-fly using ART. After each KMC move, this catalog is updated so as to take into account new environments that may appear. A topological description of the structure of the system at each moment allows the method to identify rapidly these new environments and to move forward efficiently. In this talk, we will describe the method and present the case of interstitial diffusion in Si. Our results are compared with previous molecular-dynamics and on-lattice KMC simulations.

  20. Statistical Modeling Applied to Deformation-Relaxation Processes in a Composite Biopolymer Network Induced by Magnetic Field.

    PubMed

    Tarrío-Saavedra, Javier; González, Cécilia Galindo; Naya, Salvador; López-Beceiro, Jorge; Ponton, Alain

    2017-01-01

    This study investigated a methodology based on image processing and statistics to characterize and model the deformation upon controlled and uniform magnetic field and the relaxation under zero field of droplets observed in aqueous solutions of sodium alginate incorporating magnetic maghemite nanoparticles stabilized by adsorption of citrate ions. The changes of droplet geometry were statistically analyzed using a new approach based on the data obtained from optical microscopy, image processing, nonlinear regression, evolutionary optimization, analysis of variance and resampling. Image enhancement and then image segmentation (Gaussian mixture modeling) processes were applied to extract features with reliable information of droplets dimensions from optical micrographs. The droplets deformation and relaxation trends were accurately adjusted by the Kohlrausch-Williams-Watts (KWW) function and a mean relaxation time was obtained by fitting the time evolution of geometry parameters. It was found to be proportional to the initial radius of the spherical droplets and was associated to interfacial tension.

  1. Statistical Modeling Applied to Deformation-Relaxation Processes in a Composite Biopolymer Network Induced by Magnetic Field

    PubMed Central

    Tarrío-Saavedra, Javier; González, Cécilia Galindo; Naya, Salvador; López-Beceiro, Jorge

    2017-01-01

    This study investigated a methodology based on image processing and statistics to characterize and model the deformation upon controlled and uniform magnetic field and the relaxation under zero field of droplets observed in aqueous solutions of sodium alginate incorporating magnetic maghemite nanoparticles stabilized by adsorption of citrate ions. The changes of droplet geometry were statistically analyzed using a new approach based on the data obtained from optical microscopy, image processing, nonlinear regression, evolutionary optimization, analysis of variance and resampling. Image enhancement and then image segmentation (Gaussian mixture modeling) processes were applied to extract features with reliable information of droplets dimensions from optical micrographs. The droplets deformation and relaxation trends were accurately adjusted by the Kohlrausch-Williams-Watts (KWW) function and a mean relaxation time was obtained by fitting the time evolution of geometry parameters. It was found to be proportional to the initial radius of the spherical droplets and was associated to interfacial tension. PMID:28081239

  2. Ultrafast geminate recombination and vibrational relaxation processes in ferrous nicotinate myoglobin

    NASA Astrophysics Data System (ADS)

    Pereira, Marco A.; Boffi, Alberto; Ridsdale, Andrew

    1998-04-01

    The photolysis, geminate recombination and vibrational relaxation of the low affinity ferrous myoglobin nicotinate complex have been studied by femtosecond transient absorption spectroscopy. This is an interesting system due to the peculiar interaction between ligand and protein fluctuations. This ligand is bulky and affects the naturally occurring protein fluctuations in a way similar to a doorstop precluding a door from closing totally. The whole Q band absorption transient spectrum of the photoproduct has been monitored starting from 100 fs to 100 ps. The time evolution of the spectrum has clearly shown two distinct phases, a vibrational cooling process occurring within 4 ps after the photolyzing pulse and a geminate rebinding process with a time constant of 28.8 +/- 0.1 ps. The transient spectra show different cooling rates for the different excited normal modes. The geminate rebinding process appears to be complete within 100 ps and hence appears to be the fastest geminate recombination process reported to date for a hemoprotein. This is the first report on the photolysis of a ferrous heme adduct with a nitrogenous base, previously considered as photoinert.

  3. Relaxation System

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Environ Corporation's relaxation system is built around a body lounge, a kind of super easy chair that incorporates sensory devices. Computer controlled enclosure provides filtered ionized air to create a feeling of invigoration, enhanced by mood changing aromas. Occupant is also surrounded by multidimensional audio and the lighting is programmed to change colors, patterns, and intensity periodically. These and other sensory stimulators are designed to provide an environment in which the learning process is stimulated, because research has proven that while an individual is in a deep state of relaxation, the mind is more receptive to new information.

  4. Physiological relaxation induced by horticultural activity: transplanting work using flowering plants

    PubMed Central

    2013-01-01

    Background Despite increasing attention and a growing volume of research data, little physiological evidence is available on the benefits of horticultural activity and the different effects on individuals. Therefore, the aim of the present study was to investigate the physiological effects of horticultural activity and to examine how differences in personality alter these effects. Results The effects of transplanting real flowers (horticultural activity) and handling artificial flowers (control activity) on human physiological activity were compared. On the first day, eight participants engaged in horticultural activity and another eight in the control activity. On the second day, participants switched roles. Participants’ physiological conditions during each activity were assessed by measuring the heart rate and heart rate variability (HRV). Psychological responses, which were measured using a semantic differential rating scale, showed that the horticultural activity promoted comfortable, soothed, and natural feelings, compared to the control activity. Analysis of physiological responses using two-way repeated measures analysis of variance (ANOVA) revealed that sympathetic nervous activity significantly decreased in the late time period (11 to 15 minutes) of horticultural activity only in the type A group. Conclusions This study supports the fact that the horticultural activity can enhance psychological and physiological relaxation effects, although these physiological effects can differ among individuals with different personalities. PMID:24112302

  5. Electronic structure contributions to electron-transfer reactivity in iron-sulfur active sites: 1. Photoelectron spectroscopic determination of electronic relaxation.

    PubMed

    Kennepohl, Pierre; Solomon, Edward I

    2003-02-10

    Electronic relaxation, the change in molecular electronic structure as a response to oxidation, is investigated in [FeX(4)](2)(-)(,1)(-) (X = Cl, SR) model complexes. Photoelectron spectroscopy, in conjunction with density functional methods, is used to define and evaluate the core and valence electronic relaxation upon ionization of [FeX(4)](2)(-). The presence of intense yet formally forbidden charge-transfer satellite peaks in the PES data is a direct reflection of electronic relaxation. The phenomenon is evaluated as a function of charge redistribution at the metal center (Deltaq(rlx)) resulting from changes in the electronic structure. This charge redistribution is calculated from experimental core and valence PES data using a valence bond configuration interaction (VBCI) model. It is found that electronic relaxation is very large for both core (Fe 2p) and valence (Fe 3d) ionization processes and that it is greater in [Fe(SR)(4)](2)(-) than in [FeCl(4)](2)(-). Similar results are obtained from DFT calculations. The results suggest that, although the lowest-energy valence ionization (from the redox-active molecular orbital) is metal-based, electronic relaxation causes a dramatic redistribution of electron density ( approximately 0.7ē) from the ligands to the metal center corresponding to a generalized increase in covalency over all M-L bonds. The more covalent tetrathiolate achieves a larger Deltaq(rlx) because the LMCT states responsible for relaxation are significantly lower in energy than those in the tetrachloride. The large observed electronic relaxation can make significant contributions to the thermodynamics and kinetics of electron transfer in inorganic systems.

  6. Reflex influences on muscle spindle activity in relaxed human leg muscles.

    PubMed

    Gandevia, S C; Miller, S; Aniss, A M; Burke, D

    1986-07-01

    The study was designed to determine whether low-threshold cutaneous and muscle afferents from the foot reflexly activate gamma-motoneurons innervating relaxed muscles of the leg. In 15 experiments multiunit recordings were made from 21 nerve fascicles innervating triceps surae or tibialis anterior. In a further nine experiments the activity of 19 identified single muscle spindle afferents was recorded, 13 from triceps surae, 5 from tibialis anterior, and 1 from extensor digitorum longus. Trains of electrical stimuli (5 stimuli, 300 Hz) were delivered to the sural nerve at the ankle (intensity, twice sensory threshold) and the posterior tibial nerve at the ankle (intensity, 1.1 times motor threshold for the small muscles of the foot). In addition, a tap on the appropriate tendon at varying times after the stimuli was used to assess the dynamic responsiveness of the afferents under study. The conditioning electrical stimuli did not change the discharge of single spindle afferents. Recordings of rectified and averaged multiunit activity also revealed no change in the overall level of background neural activity following the electrical stimuli. The afferent responses to tendon taps did not differ significantly whether or not they were preceded by stimulation of the sural or posterior tibial nerves. These results suggest that low-threshold afferents from the foot do not produce significant activation of fusimotor neurons in relaxed leg muscles, at least as judged by their ability to alter the discharge of muscle spindle afferents. As there may be no effective background activity in fusimotor neurons innervating relaxed human muscles, it is possible that these inputs from the foot could influence the fusimotor system during voluntary contractions when the fusimotor neurons have been brought to firing threshold. In one subject trains of stimuli were delivered to the posterior tibial nerve at painful levels (30 times motor threshold). They produced an acceleration of the

  7. Bone marrow segmentation based on a combined consideration of transverse relaxation processes and Dixon oscillations.

    PubMed

    Balasubramanian, Mukund; Jarrett, Delma Y; Mulkern, Robert V

    2016-05-01

    The aim of this study was to demonstrate that gradient-echo sampling of single spin echoes can be used to isolate the signal from trabecular bone marrow, with high-quality segmentation and surface reconstructions resulting from the application of simple post-processing strategies. Theoretical expressions of the time-domain single-spin-echo signal were used to simulate signals from bone marrow, non-bone fatty deposits and muscle. These simulations were compared with and used to interpret signals obtained by the application of the gradient-echo sampling of a spin-echo sequence to image the knee and surrounding tissues at 1.5 T. Trabecular bone marrow has a much higher reversible transverse relaxation rate than surrounding non-bone fatty deposits and other musculoskeletal tissues. This observation, combined with a choice of gradient-echo spacing that accentuates Dixon-type oscillations from chemical-shift interference effects, enabled the isolation of bone marrow signal from surrounding tissues through the use of simple image subtraction and thresholding. Three-dimensional renderings of the marrow surface were then readily generated with this approach - renderings that may prove useful for bone morphology assessment, e.g. for the measurement of femoral anteversion. In conclusion, understanding the behavior of signals from bone marrow and surrounding tissue as a function of time through a spin echo facilitates the segmentation and reconstruction of bone marrow surfaces using straightforward post-processing strategies that are typically available on modern radiology workstations.

  8. Metabolic alterations induced in cultured skeletal muscle by stretch-relaxation activity

    NASA Technical Reports Server (NTRS)

    Hatfaludy, Sophia; Shansky, Janet; Vandenburgh, Herman H.

    1989-01-01

    Muscle cells differentiated in vitro are repetitively stretched and relaxed in order to determine the presence of short- and long-term alterations occurring in glucose uptake and lactate efflux that are similar to the metabolic alterations occurring in stimulated organ-cultured muscle and in vivo skeletal muscle during the active state. It is observed that whereas mechanical stimulation increases these metabolic parameters within 4-6 h of starting activity, unstimulated basal rates in control cultures also increase during this period of time, and by 8 h, their rates have reached or exceeded the rates in continuously stimulated cells. Measurements of these parameters in media of different compositions show that activity-induced long-term alterations in the parameters occur independently of growth factors in serium and embryo extracts.

  9. Primary and secondary relaxation process in plastically crystalline cyanocyclohexane studied by 2H nuclear magnetic resonance. II. Quantitative analysis

    NASA Astrophysics Data System (ADS)

    Micko, B.; Kruk, D.; Rössler, E. A.

    2013-02-01

    We analyze the results of our previously reported 2H nuclear magnetic resonance (NMR) experiments in the plastically crystalline (PC) phase of cyanocyclohexane (Part I of this work) to study the fast secondary relaxation (or β-process) in detail. Both, the occurrence of an additional minimum in the spin-lattice relaxation T1 and the pronounced effects arising in the solid-echo spectrum above the glass transition temperature Tg = 134 K, allow for a direct determination of the restricting geometry of the β-process in terms of the "wobbling-in-a-cone" model. Whereas at temperatures below Tg the reorientation is confined to rather small solid angles (below 10°), the spatial restriction decreases strongly with temperature above Tg, i.e., the distribution of cone angles shifts continuously towards higher values. The β-process in the PC phase of cyanocyclohexane proceeds via the same mechanism as found in structural glass formers. This is substantiated by demonstrating the very similar behavior (for T < Tg) of spin-lattice relaxation, stimulated echo decays, and spectral parameters when plotted as a function of ⟨log τβ⟩ (taken from dielectric spectroscopy). We do, however, not observe a clear-cut relation between the relaxation strength of the β-process observed by NMR (calculated within the wobbling-in-a-cone model) and dielectric spectroscopy.

  10. Myosin light chain phosphatase activation is involved in the hydrogen sulfide-induced relaxation in mouse gastric fundus.

    PubMed

    Dhaese, Ingeborg; Lefebvre, Romain A

    2009-03-15

    The relaxant effect of hydrogen sulfide (H(2)S) in the vascular tree is well established but its influence and mechanism of action in gastrointestinal smooth muscle was hardly investigated. The influence of H(2)S on contractility in mouse gastric fundus was therefore examined. Sodium hydrogen sulfide (NaHS; H(2)S donor) was administered to prostaglandin F(2alpha) (PGF(2alpha))-contracted circular muscle strips of mouse gastric fundus, before and after incubation with interfering drugs. NaHS caused a concentration-dependent relaxation of the pre-contracted mouse gastric fundus strips. The K(+) channels blockers glibenclamide, apamin, charybdotoxin, 4-aminopyridin and barium chloride had no influence on the NaHS-induced relaxation. The relaxation by NaHS was also not influenced by L-NAME, ODQ and SQ 22536, inhibitors of the cGMP and cAMP pathway, by nerve blockers capsazepine, omega-conotoxin and tetrodotoxin or by several channel and receptor blockers (ouabain, nifedipine, 2-aminoethyl diphenylborinate, ryanodine and thapsigargin). The myosin light chain phosphatase (MLCP) inhibitor calyculin-A reduced the NaHS-induced relaxation, but the Rho-kinase inhibitor Y-27632 had no influence. We show that NaHS is able to relax PGF(2alpha)-contracted mouse gastric fundus strips. The results suggest that in the mouse gastric fundus, H(2)S causes relaxation at least partially via activation of MLCP.

  11. Predicting the activation states of the muscles governing upper esophageal sphincter relaxation and opening

    PubMed Central

    Jones, Corinne A.; Hammer, Michael J.; Cock, Charles; Dinning, Philip; Wiklendt, Lukasz; Costa, Marcello; McCulloch, Timothy M.

    2016-01-01

    The swallowing muscles that influence upper esophageal sphincter (UES) opening are centrally controlled and modulated by sensory information. Activation and deactivation of neural inputs to these muscles, including the intrinsic cricopharyngeus (CP) and extrinsic submental (SM) muscles, results in their mechanical activation or deactivation, which changes the diameter of the lumen, alters the intraluminal pressure, and ultimately reduces or promotes flow of content. By measuring the changes in diameter, using intraluminal impedance, and the concurrent changes in intraluminal pressure, it is possible to determine when the muscles are passively or actively relaxing or contracting. From these “mechanical states” of the muscle, the neural inputs driving the specific motor behaviors of the UES can be inferred. In this study we compared predictions of UES mechanical states directly with the activity measured by electromyography (EMG). In eight subjects, pharyngeal pressure and impedance were recorded in parallel with CP- and SM-EMG activity. UES pressure and impedance swallow profiles correlated with the CP-EMG and SM-EMG recordings, respectively. Eight UES muscle states were determined by using the gradient of pressure and impedance with respect to time. Guided by the level and gradient change of EMG activity, mechanical states successfully predicted the activity of the CP muscle and SM muscle independently. Mechanical state predictions revealed patterns consistent with the known neural inputs activating the different muscles during swallowing. Derivation of “activation state” maps may allow better physiological and pathophysiological interpretations of UES function. PMID:26767985

  12. Active braze process

    SciTech Connect

    Levine, I.L.; Pike, R.A.

    1990-11-02

    Active metal bonding using Cusil (silver-copper) braze alloys is a well established method used at GE Neutron Devices (GEND) for bonding metal to metal, metal to ceramics, and ceramics to ceramics. However, there are many instances in which using a silver alloy for bonding is undesirable (e.g., in vacuum tube envelopes, or where sequential braze steps at different temperatures are required to complete an assembly). The Material and Processes Laboratory at GEND has discovered a new method of active brazing with non-silver alloys which has proved especially successful in ceramic-to-ceramic joints. This method has the added advantage of eliminating several steps which are required in conventional bonding techniques. 2 figs., 10 tabs.

  13. Femtosecond dynamics of fundamental reaction processes in liquids: Proton transfer, geminate recombination, isomerization and vibrational relaxation

    SciTech Connect

    Schwartz, B.J.

    1992-11-01

    The fast excited state intramolecular proton transfer of 3-hydroxyflavone is measured and effects of external hydrogen-bonding interactions on the proton transfer are studied. The proton transfer takes place in {approximately}240 fsec in nonpolar environments, but becomes faster than instrumental resolution of 110 fsec in methanol solution. The dynamics following photodissociation of CH{sub 2}I{sub 2} and other small molecules provide the first direct observations of geminate recombination. The recombination of many different photodissociating species occurs on a {approximately}350 fsec time scale. Results show that recombination yields but not rates depend on the solvent environment and suggest that recombination kinetics are dominated by a single collision with surrounding solvent cage. Studies of sterically locked phenyl-substituted butadienes offer new insights into the electronic structure and isomerization behavior of conjugated polyenes. Data show no simple correlation between hinderance of specific large amplitude motions and signatures of isomerizative behavior such as viscosity dependent excited state lifetimes, implying that the isomerization does not provide a suitable for simple condensed phase reaction rate theories. The spectral dynamics of a photochromic spiropyran indicate that recombination, isomerization and vibrational relaxation all play important roles in photoreactivity of complex molecules. The interplay of these microscopic phenomena and their effect on macroscopic properties such as photochromism are discussed. All the results indicate that the initial steps of the photochromic reaction process occur extremely rapidly. Laser system and computer codes for data analysis are discussed.

  14. Relationship between relaxation processes of light scattering in network of droplets

    NASA Astrophysics Data System (ADS)

    Sharifi, Soheil

    2015-02-01

    This work presents a study of the association behavior of different length scale of tri-block polymers in aqueous solution, in the presence of oil in water microemulsion nano-droplets. We have investigated various types of multiply bridging tri-block polymers and their effect on the structure and dynamics of droplets. A detailed structural form was obtained by X-ray scattering measurements, especially with respect to the effects on the droplet sizes and even more on the interactions in the microemulsion systems induced by the bridging tri-block polymer. The results show that the size of droplets is little affected by the addition of the polymer while the interactions are modified by the presence of the polymer. The dynamic response of the systems becomes much more complex with increasing number of arms and slow relaxation processes become very pronounced due to a much more efficient network formation. The distance between diffusion coefficient of slow and fast motion of droplets is increasing with increase of length scale of bridging tri-block polymer.

  15. Femtosecond Dynamics of Fundamental Reaction Processes in Liquids: Proton Transfer, Geminate Recombination, Isomerization and Vibrational Relaxation.

    NASA Astrophysics Data System (ADS)

    Schwartz, Benjamin Joel

    Femtosecond and picosecond transient absorption spectroscopy are used to probe several fundamental aspects of chemical reactivity in the condensed phase including proton transfer, germinate recombination, isomerization and vibrational relaxation. The fast excited state intramolecular proton transfer of 3-hydroxyflavone is measured for the first time, and the effects of external hydrogen-bonding interactions on the proton transfer are studied in detail. The proton transfer takes place in ~240 fsec in non-polar environments, but becomes faster than the instrumental resolution of 110 fsec in methanol solutions. A simple model is proposed to explain these results. The dynamics following photodissociation of CH _2I_2 and other small molecules provide the first direct observations of germinate recombination. The recombination of many different photodissociating species occurs on a ~350 fsec time scale. Results also show that recombination yields but not rates depend on the molecular details of the solvent environment and suggest that recombination kinetics are dominated by a single collision with the surrounding solvent cage. Studies of sterically locked phenyl-substituted butadienes offer new insights into the electronic structure and isomerization behavior of conjugated polyenes. The data show no simple correlation between the hinderance of specific large amplitude motions and signatures of isomerizative behavior such as viscosity dependent excited state lifetimes. This strongly implies that the isomerization of these systems does not provide a suitable testing ground for simple condensed phase reaction rate theories. The spectral dynamics of a photochromic spiropyran indicate that recombination, isomerization and vibrational relaxation all play important roles in the photoreactivity of complex molecules. The interplay of these microscopic phenomena and their effect on macroscopic properties such as photochromism are discussed. All the results indicate that the initial

  16. The slow relaxation dynamics in active pharmaceutical ingredients studied by DSC and TSDC: Voriconazole, miconazole and itraconazole.

    PubMed

    Ramos, Joaquim J Moura; Diogo, Hermínio P

    2016-03-30

    The slow molecular mobility of three active pharmaceutical drugs (voriconazole, miconazole and itraconazole) has been studied by differential scanning calorimetry (DSC) and thermally stimulated depolarization currents (TSDC). This study yielded the main kinetic features of the secondary relaxations and of the main (glass transition) relaxation, in particular their distribution of relaxation times. The dynamic fragility of the three glass formers was determined from DSC data (using two different procedures) and from TSDC data. According to our results voriconazole behaves as a relatively strong liquid, while miconazole is moderately fragile and itraconazole is a very fragile liquid. There are no studies in this area published in the literature relating to voriconazole. Also not available in the literature is a slow mobility study by dielectric relaxation spectroscopy in the amorphous miconazole. Apart from that, the results obtained are in reasonable agreement with published works using different experimental techniques.

  17. Optically activated sub-millimeter dielectric relaxation in amorphous thin film silicon at room temperature

    SciTech Connect

    Rahman, Rezwanur; Ohno, Tim R.; Taylor, P. C.; Scales, John A.

    2014-05-05

    Knowing the frequency-dependent photo-induced complex conductivity of thin films is useful in the design of photovoltaics and other semi-conductor devices. For example, annealing in the far-infrared could in principle be tailored to the specific dielectric properties of a particular sample. The frequency dependence of the conductivity (whether dark or photo-induced) also gives insight into the effective dimensionality of thin films (via the phonon density of states) as well as the presence (or absence) of free carriers, dopants, defects, etc. Ultimately, our goal is to make low-noise, phase-sensitive room temperature measurements of the frequency-dependent conductivity of thin films from microwave frequencies into the far-infrared; covering, the frequency range from ionic and dipole relaxation to atomic and electronic processes. To this end, we have developed a high-Q (quality factor) open cavity resonator capable of resolving the complex conductivity of sub-micron films in the range of 100–350 GHz (0.1–0.35 THz, or 0.4–1 meV). In this paper, we use a low-power green laser to excite bound charges in high-resistivity amorphous silicon thin film. Even at room temperature, we can resolve both the dark conductivity and photo-induced changes associated with dielectric relaxation and possibly some small portion of free carriers.

  18. Relaxant activity of methanolic extract from seeds of Peganum harmala on isolated rat aorta.

    PubMed

    Berrougui, H; Herrera-Gonzalez, M D; Marhuenda, E; Ettaib, A; Hmamouchi, M

    2002-01-01

    The activity of methanolic extract from the seeds of Peganum harmala L. (MEP) on vascular smooth muscle (rat aorta) was investigated. MEP induced relaxation in aorta precontracted with noradrenaline (10(-6) M) or KCl (80 mM) (IC50 = 14.49 +/- 1.15 and 5.93 +/- 1.26 micrograms/mL, respectively) in a dose-dependent manner and this relaxant effect was not endothelium-dependent. The vasodilatory effects were potentiated by isoprenaline (10(-9) M) (1.08 +/- 0.14 micrograms/mL) and negatively affected by a non-specific inhibitor of phosphodiesterase, IBMX (10(-4) M) (20.81 +/- 1.06 micrograms/mL). Pretreatment with MEP (3, 6, 18 micrograms/ml) shifted the phenylephrine-induced dose-response curves to the right and the maximum response was attenuated, indicating that the antagonist effect of MEP on alpha 1-adrenoceptors was non-competitive. These results suggest that MEP exerts a vasodilatory effect not related to the presence of endothelium and the main mechanism may be related to the inhibition of cyclic AMP phosphodiesterase.

  19. A review of the slow relaxation processes in the glass-rubber transition region of amorphous polymers

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; He, Xianru; Huang, Guangsu

    2015-09-01

    This article is a review that introduces several articles about slow relaxation processes, also known as slower segmental dynamics. According to the literature, the coupling effect and free volume holes are two important elements for slower micro-dynamics. In addition, the slower processes of many-body systems (blend and diluted systems) are summarised. A good numerical method for detecting multiple modes in the glass-rubber transition region is introduced.

  20. Ultrafast dynamics of liquid water: Energy relaxation and transfer processes of the OH stretch and the HOH bend

    SciTech Connect

    Imoto, Sho; Xantheas, Sotiris S.; Saito, Shinji

    2015-08-27

    The vibrational energy relaxation and transfer processes of the OH stretching and the HOH bending vibrations in liquid water are investigated via the theoretical calculation of the pump-probe spectra obtained from non-equilibrium molecular dynamics simulations with the TTM3-F interaction potential. The excitation of the OH stretch induces an instantaneous response of the high frequency librational motions in the 600-1000 cm-1 range. In addition, the excess energy of the OH stretch of a water molecule quickly transfers to the OH stretches of molecules in its first hydration shell with a time constant of ~50 fs, followed by relaxation to the HOH bends of the surrounding molecules with a time constant of 230 fs. The excitation of the HOH bend also results in the ultrafast excitation of the high frequency librational motions. The energy of the excited HOH bend of a water molecule decays, with a time constant of 200 fs, mainly to the relaxation of the HOH bends of its surrounding molecules. The energies of the HOH bends were found to transfer quickly to the intermolecular motions via the coupling with the high frequency librational motions. The excess energy of the OH stretch or the HOH bend relaxes to the high frequency intermolecular librational motions and eventually to the hot ground state with a time scale of ~1 ps via the coupling with the librational and translational motions. The energy relaxation and transfer processes were found to depend on the local hydrogen bonding network; the relaxations of the excess energy of the OH stretch and the HOH bend of four- and five-coordinated molecules are faster than those of a three-coordinated molecule due to the delocalization of the vibrational motions of the former (four- and five-coordinated molecules) compared to those of the later (three-coordinated molecules). The present results highlight the importance of the high frequency intermolecular librational modes in facilitating the ultrafast energy relaxation process in

  1. Microwave permittivity and dielectric relaxation of a high surface area activated carbon

    NASA Astrophysics Data System (ADS)

    Atwater, J. E.; Wheeler, R. R., Jr.

    Carbonaceous materials are amenable to microwave heating to varying degrees. The primary indicator of susceptibility is the complex permittivity (ɛ*), of which, the real component correlates with polarization, and the imaginary term represents dielectric loss. For a given material, the complex permittivity is dependent upon both frequency and temperature. Here we report the complex permittivity of a high surface area coconut shell activated carbon which is commonly used in analytical chemistry and a wide variety of industrial separations. Associated polarization-relaxation phenomena are also characterized. Broadband measurements were made using a high temperature compatible open-ended coaxial dielectric probe at frequencies between 0.2 and 26 GHz, and across the temperature region between 24 °C and 191 °C.

  2. Femtosecond UV studies of the electronic relaxation processes in Cytochrome c.

    PubMed

    Bräm, Olivier; Consani, Cristina; Cannizzo, Andrea; Chergui, Majed

    2011-11-24

    We report on an experimental study with UV and visible ultrafast time-gated emission and transient absorption of the early photodynamics of horse heart Cytochrome c in both ferric and ferrous redox states. A clear separation in time and energy of tryptophan and haem emission is observed. Excitation of the haem via resonant energy transfer from the tryptophan residue is observed in the subsequent haem electronic relaxation. Different Trp-haem energy transfer time constants of the ferrous and ferric forms are obtained. An almost instantaneous relaxation to the lowest singlet excited state (corresponding to the so-called Q band) characterizes the earliest electronic dynamics of the haem, independent of excitation energy, while dark intermediate states govern the ground-state recovery. The information gathered in these two experiments and in the literature allows us to propose a simple scheme for the electronic relaxation leading to ligand dissociation.

  3. Activating and relaxing music entrains the speed of beat synchronized walking.

    PubMed

    Leman, Marc; Moelants, Dirk; Varewyck, Matthias; Styns, Frederik; van Noorden, Leon; Martens, Jean-Pierre

    2013-01-01

    Inspired by a theory of embodied music cognition, we investigate whether music can entrain the speed of beat synchronized walking. If human walking is in synchrony with the beat and all musical stimuli have the same duration and the same tempo, then differences in walking speed can only be the result of music-induced differences in stride length, thus reflecting the vigor or physical strength of the movement. Participants walked in an open field in synchrony with the beat of 52 different musical stimuli all having a tempo of 130 beats per minute and a meter of 4 beats. The walking speed was measured as the walked distance during a time interval of 30 seconds. The results reveal that some music is 'activating' in the sense that it increases the speed, and some music is 'relaxing' in the sense that it decreases the speed, compared to the spontaneous walked speed in response to metronome stimuli. Participants are consistent in their observation of qualitative differences between the relaxing and activating musical stimuli. Using regression analysis, it was possible to set up a predictive model using only four sonic features that explain 60% of the variance. The sonic features capture variation in loudness and pitch patterns at periods of three, four and six beats, suggesting that expressive patterns in music are responsible for the effect. The mechanism may be attributed to an attentional shift, a subliminal audio-motor entrainment mechanism, or an arousal effect, but further study is needed to figure this out. Overall, the study supports the hypothesis that recurrent patterns of fluctuation affecting the binary meter strength of the music may entrain the vigor of the movement. The study opens up new perspectives for understanding the relationship between entrainment and expressiveness, with the possibility to develop applications that can be used in domains such as sports and physical rehabilitation.

  4. Gomisin J from Schisandra chinensis induces vascular relaxation via activation of endothelial nitric oxide synthase.

    PubMed

    Park, Ji Young; Choi, Young Whan; Yun, Jung Wook; Bae, Jin Ung; Seo, Kyo Won; Lee, Seung Jin; Park, So Youn; Kim, Chi Dae

    2012-01-01

    Gomisin J (GJ) is a lignan contained in Schisandra chinensis (SC) which is a well-known medicinal herb for improvement of cardiovascular symptoms in Korean. Thus, the present study examined the vascular effects of GJ, and also determined the mechanisms involved. Exposure of rat thoracic aorta to GJ (1-30μg/ml) resulted in a concentration-dependent vasorelaxation, which was more prominent in the endothelium (ED)-intact aorta. ED-dependent relaxation induced by GJ was markedly attenuated by pretreatment with L-NAME, a nitric oxide synthase (NOS) inhibitor. In the intact endothelial cells of rat thoracic aorta, GJ also enhanced nitric oxide (NO) production. In studies using human coronary artery endothelial cells, GJ enhanced phosphorylation of endothelial NOS (eNOS) at Ser(1177) with increased cytosolic translocation of eNOS, and subsequently increased NO production. These effects of GJ were attenuated not only by calcium chelators including EGTA and BAPTA-AM, but also by LY294002, a PI3K/Akt inhibitor, indicating calcium- and PI3K/Akt-dependent activation of eNOS by GJ. Moreover, the levels of intracellular calcium were increased immediately after GJ administration, but Akt phosphorylation was started to increase at 20min of GJ treatment. Based on these results with the facts that ED-dependent relaxation occurred rapidly after GJ treatment, it was suggested that the ED-dependent vasorelaxant effects of GJ were mediated mainly by calcium-dependent activation of eNOS with subsequent production of endothelial NO.

  5. Hydrogels with tunable stress relaxation regulate stem cell fate and activity

    PubMed Central

    Chaudhuri, Ovijit; Gu, Luo; Klumpers, Darinka; Darnell, Max; Bencherif, Sidi A.; Weaver, James C.; Huebsch, Nathaniel; Lee, Hong-pyo; Lippens, Evi; Duda, Georg N.; Mooney, David J.

    2015-01-01

    Natural extracellular matrices (ECMs) are viscoelastic and exhibit stress relaxation. However, hydrogels used as synthetic ECMs for three-dimensional (3D) culture are typically elastic. Here, we report a materials approach to tune the rate of stress relaxation of hydrogels for 3D culture, independently of the hydrogel’s initial elastic modulus, cell-adhesion-ligand density and degradation. We find that cell spreading, proliferation, and osteogenic differentiation of mesenchymal stem cells (MSCs) are all enhanced in cells cultured in gels with faster relaxation. Strikingly, MSCs form a mineralized, collagen-1-rich matrix similar to bone in rapidly relaxing hydrogels with an initial elastic modulus of 17 kPa. We also show that the effects of stress relaxation are mediated by adhesion-ligand binding, actomyosin contractility and mechanical clustering of adhesion ligands. Our findings highlight stress relaxation as a key characteristic of cell-ECM interactions and as an important design parameter of biomaterials for cell culture. PMID:26618884

  6. Hydrogels with tunable stress relaxation regulate stem cell fate and activity

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Ovijit; Gu, Luo; Klumpers, Darinka; Darnell, Max; Bencherif, Sidi A.; Weaver, James C.; Huebsch, Nathaniel; Lee, Hong-Pyo; Lippens, Evi; Duda, Georg N.; Mooney, David J.

    2016-03-01

    Natural extracellular matrices (ECMs) are viscoelastic and exhibit stress relaxation. However, hydrogels used as synthetic ECMs for three-dimensional (3D) culture are typically elastic. Here, we report a materials approach to tune the rate of stress relaxation of hydrogels for 3D culture, independently of the hydrogel's initial elastic modulus, degradation, and cell-adhesion-ligand density. We find that cell spreading, proliferation, and osteogenic differentiation of mesenchymal stem cells (MSCs) are all enhanced in cells cultured in gels with faster relaxation. Strikingly, MSCs form a mineralized, collagen-1-rich matrix similar to bone in rapidly relaxing hydrogels with an initial elastic modulus of 17 kPa. We also show that the effects of stress relaxation are mediated by adhesion-ligand binding, actomyosin contractility and mechanical clustering of adhesion ligands. Our findings highlight stress relaxation as a key characteristic of cell-ECM interactions and as an important design parameter of biomaterials for cell culture.

  7. A single-molecule magnet featuring a parallelogram [Dy4(OCH2-)4] core and two magnetic relaxation processes.

    PubMed

    Liu, Cai-Ming; Zhang, De-Qing; Zhu, Dao-Ben

    2013-10-01

    An alkoxido-bridged tetranuclear Dy(iii) complex, [Dy4(H3L)2(OAc)6]·2EtOH {, H6L = 1,3-bis[tris(hydroxymethyl)methylamino]propane}, has been solvothermally synthesized and characterized. An X-ray crystallographic study revealed that complex possesses a novel "parallelogram" [Dy4(OCH2-)4] core, and a new binding mode η(3):η(3):η(1):η(1):η(1):η(2):μ(4) of the Bis-tris propane ligand was observed. Magnetic investigations indicated that it is a single-molecule magnet (SMM), showing two distinct magnetic relaxation processes with the energy barriers of 44 K and 107 K, respectively. Such a two-step magnetic relaxation process could be well described by the sum of two modified Debye functions.

  8. A Relaxed Active Site After Exon Ligation by the Group I Intron

    SciTech Connect

    Lipchock,S.; Strobel, S.

    2008-01-01

    During RNA maturation, the group I intron promotes two sequential phosphorotransfer reactions resulting in exon ligation and intron release. Here, we report the crystal structure of the intron in complex with spliced exons and two additional structures that examine the role of active-site metal ions during the second step of RNA splicing. These structures reveal a relaxed active site, in which direct metal coordination by the exons is lost after ligation, while other tertiary interactions are retained between the exon and the intron. Consistent with these structural observations, kinetic and thermodynamic measurements show that the scissile phosphate makes direct contact with metals in the ground state before exon ligation and in the transition state, but not after exon ligation. Despite no direct exonic interactions and even in the absence of the scissile phosphate, two metal ions remain bound within the active site. Together, these data suggest that release of the ligated exons from the intron is preceded by a change in substrate-metal coordination before tertiary hydrogen bonding contacts to the exons are broken.

  9. Stochastic resonance whole body vibration increases perceived muscle relaxation but not cardiovascular activation: A randomized controlled trial

    PubMed Central

    Elfering, Achim; Burger, Christian; Schade, Volker; Radlinger, Lorenz

    2016-01-01

    AIM To investigate the acute effects of stochastic resonance whole body vibration (SR-WBV), including muscle relaxation and cardiovascular activation. METHODS Sixty-four healthy students participated. The participants were randomly assigned to sham SR-WBV training at a low intensity (1.5 Hz) or a verum SR-WBV training at a higher intensity (5 Hz). Systolic blood pressure (SBP), diastolic blood pressure (DBP), heart rate (HR) and self-reported muscle relaxation were assessed before and immediately after SR-WBV. RESULTS Two factorial analyses of variance (ANOVA) showed a significant interaction between pre- vs post-SR-WBV measurements and SR-WBV conditions for muscle relaxation in the neck and back [F(1,55) = 3.35, P = 0.048, η2 = 0.07]. Muscle relaxation in the neck and back increased in verum SR-WBV, but not in sham SR-WBV. No significant changes between pre- and post-training levels of SBD, DBD and HR were observed either in sham or verum SR-WBV conditions. With verum SR-WBV, improved muscle relaxation was the most significant in participants who reported the experience of back, neck or shoulder pain more than once a month (P < 0.05). CONCLUSION A single session of SR-WBV increased muscle relaxation in young healthy individuals, while cardiovascular load was low. An increase in musculoskeletal relaxation in the neck and back is a potential mediator of pain reduction in preventive worksite SR-WBV trials. PMID:27900274

  10. Exploring the energy landscape of proteins: A characterization of the activation-relaxation technique

    NASA Astrophysics Data System (ADS)

    Wei, Guanghong; Mousseau, Normand; Derreumaux, Philippe

    2002-12-01

    Finding the global energy minimum region of a polypeptide chain, independently of the starting conformation and in a reasonable computational time, is of fundamental interest. As the energy landscape of proteins is very rugged, sampling is hindered by the vast number of minima existing on this multidimensional landscape. In this study, we use activation-relaxation technique (ART) to explore the energy landscape of a series of peptide models with 14, 26, and 28 amino acids. Peptides are modeled by a reduced off-lattice representation and a simplified OPEP-like (optimized potential for efficient peptide-structure prediction) energy model. ART defines moves directly in the energy landscape and can generate with equal efficiency events with root-mean-square deviation as small as 0.1 or as large as 4 Å. Our results show that (i) ART trajectories are reversible and provide real activated paths; (ii) ART simulations converge to the same low-energy minimum region, for a wide range of starting configurations; (iii) ART method can sample the phase space effectively, going through many hyper-basins, and can generate significant moves in a single event. Possible applications of ART method to biomolecules are discussed.

  11. Influence of the turbulence on the processes formation and relaxation of periodical artificial irregularities in the lower ionosphere

    NASA Astrophysics Data System (ADS)

    Terina, Galina

    2016-07-01

    The periodic artificial irregularities (PAI) are formed in the standing wave field of powerful radio emission. The study the scattering of probing radio pulses on PAI allowed to create a method diagnostics of the ionospheric plasma parameters - the resonance scattering method (RSM) of radio waves on the periodic artificial irregularities. The different mechanisms of PAI formation in D and E ranges of the lower ionosphere were investigated (G.I. Terina, J.Atm.Terr.Phys., 1996, 58, 645). However the height range 75-90 km where there is turbulent diffusion, remained unstudied. In present paper the study results the processes formation and relaxation of periodic artificial irregularities in this height range are considered. For the analysis the processes of the formation and the relaxation of PAI one can use quasi-hydrodynamic equation for the homogeneous isotropic ionospheric plasma. Under the small disturbances, quasi-neutral plasma and some assumptions can to obtain the differential equations for regular and fluctuation PAI parts, which take account: the ambipolar diffusion, the temperature dependence of the coefficient of electrons recombination, the temperature dependence of the coefficient of the electrons attachment to the neutral molecules and also the turbulent diffusion and caused by it small-scale irregularities of the electron density. The solutions of the inhomogeneous and homogeneous equations present the processes of the formation and relaxation of PAI accordingly. The numerical estimations of obtained solutions showed that the main reasons of PAI formation in considered range of heights are the small-scale irregularities of the electron concentration and the turbulence diffusion. The obtained results qualitatively agree with results of experimental investigations. The experiments were carried out at the heating facilities "Zimenki" and "Sura". The heater transmitter periodically was switched on for several seconds and off for the same duration. The

  12. The development of the Be Active & Relax “Vitality in Practice” (VIP) project and design of an RCT to reduce the need for recovery in office employees

    PubMed Central

    2012-01-01

    Background There is strong evidence to suggest that multiple work-related health problems are preceded by a higher need for recovery. Physical activity and relaxation are helpful in decreasing the need for recovery. This article aims to describe (1) the development and (2) the design of the evaluation of a daily physical activity and relaxation intervention to reduce the need for recovery in office employees. Methods/Design The study population will consist of employees of a Dutch financial service provider. The intervention was systematically developed, based on parts of the Intervention Mapping (IM) protocol. Assessment of employees needs was done by combining results of face-to-face interviews, a questionnaire and focus group interviews. A set of theoretical methods and practical strategies were selected which resulted in an intervention program consisting of Group Motivational Interviewing (GMI) supported by a social media platform, and environmental modifications. The Be Active & Relax program will be evaluated in a modified 2 X 2 factorial design. The environmental modifications will be pre-stratified and GMI will be randomised on department level. The program will be evaluated, using 4 arms: (1) GMI and environmental modifications; (2) environmental modifications; (3) GMI; (4) no intervention (control group). Questionnaire data on the primary outcome (need for recovery) and secondary outcomes (daily physical activity, sedentary behaviour, relaxation/detachment, work- and health-related factors) will be gathered at baseline (T0), at 6 months (T1), and at 12 months (T2) follow-up. In addition, an economic and a process evaluation will be performed. Discussion Reducing the need for recovery is hypothesized to be beneficial for employees, employers and society. It is assumed that there will be a reduction in need for recovery after 6 months and 12 months in the intervention group, compared to the control group. Results are expected in 2013. Trial

  13. Revealing the connection between the slow β relaxation and sub-Tg enthalpy relaxation in metallic glasses

    NASA Astrophysics Data System (ADS)

    Zhou, Chao; Yue, Yuanzheng; Hu, Lina

    2016-12-01

    We report a new approach, i.e., the hyperquenching-calorimetric approach, by which the activation energy of slow β relaxation (Eβ) in metallic glasses can be determined. This method is based on the correlations among the kinetic liquid fragility index (m), the glass transition temperature (Tg), the characteristic fictive temperature (Tf,c), and the activation energy for sub-Tg enthalpy relaxation. Tf,c is the temperature at which Eβ is equal to the activation energy of the onset of the sub-Tg enthalpy relaxation of metallic glasses. The linear Tf,c/Tg ˜ m relation is attributed to the link between the contribution of the slow β relaxation to the entire relaxation process and the liquid fragility for metallic glasses. This relation is explained in terms of the potential energy landscape. The new approach reveals the inherent relation between the slow β relaxation and sub-Tg enthalpy relaxation in metallic glasses.

  14. Cross-relaxation quenching of x-ray excited luminescence in Eu-activated phosphors

    NASA Astrophysics Data System (ADS)

    Pacold, Joseph; Mortensen, Devon; Reichlin, William; Finfrock, Zou; Diaz, Anthony; Seidler, Gerald

    2015-03-01

    Compounds, molecules, and nanoparticles containing lanthanides as primary constituents or as dopants are widely used in applications including luminescent dyes and lighting phosphors. Recent work has shown that x-ray spectroscopy methods can be used to monitor the sequence of excited states that leads to luminescence in lanthanide materials. Here, we use x-ray excited optical luminescence (XEOL) to identify a nonradiative process that quenches the emissive excited state of Eu3+ in the phosphors YVO4:Eu3+ and YVO4:Bi3+,Eu3+. Taking advantage of the high flux (up to 2 ×1012 photons/second) and focusing capability (beam FWHM 5 μm) of a modern synchrotron beamline, we observe saturation of the XEOL yield at high x-ray flux densities. The saturation effect is interpreted with a kinetic model in which pairs of excited Eu ions undergo an Auger-like cross-relaxation. This effect is well documented in the literature on cathode-ray phosphors, and allows us to estimate the excited fraction of Eu3+ ions. We discuss applications of this method to the broader problem of studying energy transfer in luminescent materials, as well as technical implications for future x-ray spectroscopy studies that require high flux.

  15. Muscle relaxing activity of Hyssopus officinalis essential oil on isolated intestinal preparations.

    PubMed

    Lu, Mei; Battinelli, Lucia; Daniele, Claudia; Melchioni, Cristiana; Salvatore, Giuseppe; Mazzanti, Gabriela

    2002-03-01

    The muscle relaxing activity of the essential oil of Hyssopus officinalis L. (Lamiaceae) and some of its main components (isopinocamphone, limonene and beta-pinene) was studied on isolated preparations of guinea-pig and rabbit intestine. The essential oil and isopinocamphone inhibited the acetylcholine- and BaCl2-induced contractions in guinea-pig ileum in a concentration-dependent manner (IC50 42.4 microg/ml and 61.9 microg/ml to acetylcholine; 48.3 microg/ml and 70.4 microg/ml to BaCl2) whereas limonene or beta-pinene left tissue contraction unchanged. In guinea-pig ileum H. officinalis essential oil also blocked the contractions induced by CaCl2. In isolated rabbit jejunum the essential oil reduced the amplitude of spontaneous movements and decreased the basal tone; neither haemoglobin, methylene blue, N(omega)-nitro-L-arginine methyl ester (L-NAME) or propranolol blocked the myorelaxant effect.

  16. Detailed characterization of lithium diffusion mechanisms in crystalline silicon using the kinetic Activation-Relaxation Technique

    NASA Astrophysics Data System (ADS)

    Trochet, Mickaël; Restrepo Gutierrez, Oscar Antonio; Mousseau, Normand

    Silicon displays a potential for high-capacity anode material for lithium-ion batteries as it can absorb large quantities of this metal. Yet, very little is understood about the evolution of diffusion mechanisms and migration barriers as the concentration of lithium increases. Until now, for example, simulations studies were limited by the time scale over which diffusion takes place. Here, we use the kinetic activation relaxation technique (kART), an unbiased off-lattice Monte Carlo method with on-the fly catalog building, coupled with the ReaxFF forcefield to follow diffusion of Li in c - Si over timescale of seconds and more at room temperature, obtaining detailed information about the whole set of possible diffusion mechanisms as the local environment evolves. We first present a detailed characterization of Li diffusion in the presence of 1 to 3 impurities and then show the evolution of systems with a higher concentration of solute as Li aggregate. These results provide a first detailed picture of the onset of Li aggregating into this high-capacity material, as it modifies the structure through local rearrangements and long-range elastic deformations, crucial information for the development of the next generation of high-capacity anode. ∖pard ∖pard.

  17. The Relaxant Activity of Safranal in Isolated Rat Aortas is Mediated Predominantly via an Endothelium-Independent Mechanism

    PubMed Central

    Razavi, Bibi Marjan; Amanloo, Mojtaba Alipoor; Imenshahidi, Mohsen; Hosseinzadeh, Hossein

    2016-01-01

    Objectives: Safranal is a pharmacologically active component of saffron and is responsible for the unique aroma of saffron. The hypotensive effect of safranal has been shown in previous studies. This study evaluates the mechanism for the vasodilatory effects induced by safranal on isolated rat aortas. Methods: To study the vasodilatory effects of safranal (0.2, 0.4 and 0.8 mM), we contracted isolated rat thoracic aorta rings by using 10-6-M phenylephrine (PE) or 80-mM KCl. Dimethyl sulfoxide (DMSO) was used as a control. The vasodilatory effect of safranal was also evaluated both on intact and denuded endothelium aortic rings. Furthermore, to study the role of nitric oxide and prostacyclin in the relaxation induced by safranal, we incubated the aortic rings by using L-NAME (10-6 M) or indomethacin (10-5 M), each for 20 minutes. Results: Safranal induced relaxation in endothelium-intact aortic rings precontracted by using PE or KCl in a concentration-dependent manner, with a maximum relaxation of more than 100%. The relaxant activity of safranal was not eliminated by incubating the aortic rings with L-NAME (EC50 = 0.29 vs. EC50 = 0.43) or with indomethacin (EC50 = 0.29 vs. EC50 = 0.35), where EC50 is the half maximal effective concentration. Also, the vasodilatory activity of safranal was not modified by endothelial removal. Conclusion: This study indicated that relaxant activity of safranal is mediated predominantly through an endothelium- independent mechanism. PMID:28097042

  18. Differential control of active and silent phases in relaxation models of neuronal rhythms.

    PubMed

    Tabak, Joël; O'Donovan, Michael J; Rinzel, John

    2006-12-01

    Rhythmic bursting activity, found in many biological systems, serves a variety of important functions. Such activity is composed of episodes, or bursts (the active phase, AP) that are separated by quiescent periods (the silent phase, SP). Here, we use mean field, firing rate models of excitatory neural network activity to study how AP and SP durations depend on two critical network parameters that control network connectivity and cellular excitability. In these models, the AP and SP correspond to the network's underlying bistability on a fast time scale due to rapid recurrent excitatory connectivity. Activity switches between the AP and SP because of two types of slow negative feedback: synaptic depression-which has a divisive effect on the network input/output function, or cellular adaptation-a subtractive effect on the input/output function. We show that if a model incorporates the divisive process (regardless of the presence of the subtractive process), then increasing cellular excitability will speed up the activity, mostly by decreasing the silent phase. Reciprocally, if the subtractive process is present, increasing the excitatory connectivity will slow down the activity, mostly by lengthening the active phase. We also show that the model incorporating both slow processes is less sensitive to parameter variations than the models with only one process. Finally, we note that these network models are formally analogous to a type of cellular pacemaker and thus similar results apply to these cellular pacemakers.

  19. Anticonvulsant and muscle relaxant activity of the ethanolic extract of stems of Dendrophthoe falcata (Linn. F.) in mice

    PubMed Central

    Sinoriya, Pooja; Irchhaiya, R.; Sharma, Bhawna; Sahu, Gayatri; Kumar, Santosh

    2011-01-01

    Objective: To investigate the anticonvulsant and muscle relxant activity of ethanolic extract of stems of Dendrophthoe falcata in mice. Materials and Methods: The ethanolic extract of stems of D. falcata (100, 300 and 500 mg/kg, p.o.) was studied for its anticonvulsant effect on maximal electroshock-induced seizures and muscle relaxant activity at the same dose level using rota rod and traction test in mice. Results: Preliminary phytochemical analysis revealed presence of proteins, carbohydrates, glycosides, steroids, triterpenes, flavonoids, tannins and phenolic compounds. D. falcata ethanolic extract (DFEE) (100, 300 and 500 mg/kg, p.o.) significantly (P<0.001) inhibited seizures induced by MES, reduced the duration of Hind limb tonic extensor phase (HLTE) and a decline in motor coordination. Conclusion: The ethanolic extract possesses anticonvulsant activity and muscle relaxant activity. PMID:22144780

  20. Relaxation - Induced by Vibroacoustic Stimulation via a Body Monochord and via Relaxation Music - Is Associated with a Decrease in Tonic Electrodermal Activity and an Increase of the Salivary Cortisol Level in Patients with Psychosomatic Disorders.

    PubMed

    Sandler, Hubertus; Fendel, Uta; Buße, Petra; Rose, Matthias; Bösel, Rainer; Klapp, Burghard F

    2017-01-01

    Vibroacoustic stimulation by a Body Monochord can induce relaxation states of various emotional valence. The skin conductance level (SCL) of the tonic electrodermal activity is an indicator of sympathetic arousal of the autonomic nervous system and thus an indicator of the relaxation response. Salivary cortisol is considered to be a stress indicator of the HPA-axis. The effects of the treatment with a Body Monochord and listening to relaxation music (randomized chronological presentation) on SCL and salivary cortisol in relation to the emotional valence of the experience were examined in patients with psychosomatic disorders (N = 42). Salivary cortisol samples were collected immediately before and after the expositions. Subjective experience was measured via self-rating scales. Overall, both the exposure to the Body Monochord as well as the exposure to the relaxation music induced an improvement of patients' mood and caused a highly significant reduction of SCL. A more emotionally positive experience of relaxation correlated with a slightly stronger reduction of the SCL. Both treatment conditions caused a slight increase in salivary cortisol, which was significant after exposure to the first treatment. The increase of salivary cortisol during a relaxation state is contrary to previous findings. It is possible that the relaxation state was experienced as an emotional challenge, due to inner images and uncommon sensations that might have occurred.

  1. Relaxation – Induced by Vibroacoustic Stimulation via a Body Monochord and via Relaxation Music – Is Associated with a Decrease in Tonic Electrodermal Activity and an Increase of the Salivary Cortisol Level in Patients with Psychosomatic Disorders

    PubMed Central

    Sandler, Hubertus; Fendel, Uta; Buße, Petra; Rose, Matthias; Bösel, Rainer; Klapp, Burghard F.

    2017-01-01

    Vibroacoustic stimulation by a Body Monochord can induce relaxation states of various emotional valence. The skin conductance level (SCL) of the tonic electrodermal activity is an indicator of sympathetic arousal of the autonomic nervous system and thus an indicator of the relaxation response. Salivary cortisol is considered to be a stress indicator of the HPA-axis. The effects of the treatment with a Body Monochord and listening to relaxation music (randomized chronological presentation) on SCL and salivary cortisol in relation to the emotional valence of the experience were examined in patients with psychosomatic disorders (N = 42). Salivary cortisol samples were collected immediately before and after the expositions. Subjective experience was measured via self-rating scales. Overall, both the exposure to the Body Monochord as well as the exposure to the relaxation music induced an improvement of patients’ mood and caused a highly significant reduction of SCL. A more emotionally positive experience of relaxation correlated with a slightly stronger reduction of the SCL. Both treatment conditions caused a slight increase in salivary cortisol, which was significant after exposure to the first treatment. The increase of salivary cortisol during a relaxation state is contrary to previous findings. It is possible that the relaxation state was experienced as an emotional challenge, due to inner images and uncommon sensations that might have occurred. PMID:28114399

  2. Improving the mechanical properties of Zr-based bulk metallic glass by controlling the activation energy for β-relaxation through plastic deformation

    SciTech Connect

    Adachi, Nozomu; Todaka, Yoshikazu Umemoto, Minoru; Yokoyama, Yoshihiko

    2014-09-29

    The mechanism of plastic deformation in bulk metallic glasses (BMGs) is widely believed to be based on a shear transformation zone (STZ). This model assumes that a shear-induced atomic rearrangement occurs at local clusters that are a few to hundreds of atoms in size. It was recently postulated that the potential energy barrier for STZ activation, W{sub STZ}, calculated using the cooperative shear model, is equivalent to the activation energy for β-relaxation, E{sub β}. This result suggested that the fundamental process for STZ activation is the mechanically activated β-relaxation. Since the E{sub β} value and the glass transition temperature T{sub g} of BMGs have a linear relation, that is, because E{sub β} ≈ 26RT{sub g}, the composition of the BMG determines the ease with which the STZ can be activated. Enthalpy relaxation experiments revealed that the BMG Zr{sub 50}Cu{sub 40}Al{sub 10} when deformed by high-pressure torsion (HPT) has a lower E{sub β} of 101 kJ/mol. The HPT-processed samples accordingly exhibited tensile plastic elongation (0.34%) and marked decreases in their yield strength (330 MPa). These results suggest that mechanically induced structural defects (i.e., the free volume and the anti-free volume) effectively act to reduce W{sub STZ} and increase the number of STZs activated during tensile testing to accommodate the plastic strain without requiring a change in the composition of the BMG. Thus, this study shows quantitatively that mechanically induced structural defects can overcome the compositional limitations of E{sub β} (or W{sub STZ}) and result in improvements in the mechanical properties of the BMG.

  3. Relationship between active cervical range of motion and flexion-relaxation ratio in asymptomatic computer workers.

    PubMed

    Yoo, Won-Gyu; Park, Se-Yeon; Lee, Mi-Ra

    2011-01-01

    A high prevalence and incidence of neck and shoulder pain is present in the working population, especially sedentary workers. Recent findings have indicated that the flexion-relaxation (FR) ratio in the cervical erector spinae (CES) muscles might be a significant criteria of neuromuscular impairment and function. Additionally, the active cervical range of motion (ROM) is frequently used for discriminating between individuals with pain and those who are asymptomatic. The purpose of the present study was to examine the relationship between the active cervical ROM and the FR ratio in a sample of regular visual display terminal (VDT) workers. In total, 20 asymptomatic male VDT workers were recruited. Active cervical ROM was measured by a cervical ROM (CROM) instrument. Surface electromyography (EMG) was used to collect myoelectrical signals from the CES muscles, and the FR ratio was calculated for statistical analysis. Pearson correlation coefficients were used to quantify the linear relationship between the active cervical ROM and the FR ratio. The values obtained for the FR ratio in the right CES muscles correlated significantly with the active cervical ROM measured in flexion (r=0.73, p<0.01), left lateral flexion (r=0.64, p<0.01), and left rotation (r=0.60, p<0.01). Flexion (r=0.74, p<0.01) and right lateral flexion (r=0.61, p<0.01) positively correlated with the left FR ratio. Extension and right rotation showed either a very weak or no correlation with the mean value of the right and left FR ratio. Our findings suggested that the cervical FR ratio had a positive correlation with cervical movements, and that changes of the activation patterns in CES demonstrated as cervical FR ratio are associated with reduction of the cervical range of motion including flexion and lateral flexion. In addition, muscular dysfunction of the CES could occur in regular computer workers prior to occurrence of pain; this means that the FR ratio could be used to evaluate the potential

  4. EMG activities of the quadratus lumborum and erector spinae muscles during flexion-relaxation and other motor tasks.

    PubMed

    Andersson, E A; Oddsson, L I E; Grundström, H; Nilsson, J; Thorstensson, A

    1996-10-01

    OBJECTIVE: The aim of this study was to provide new information on the myoelectrical activation of the quadratus lumborum, the deep lateral and the superficial medial lumbar erector spinae, the psoas, and the iliacus muscles in various motor tasks. DESIGN: An intramuscular electromyographic study was performed. BACKGROUND: The contribution of individual deep trunk muscles to the stability of the lumbar spine is relatively unknown in different tasks, including the flexion-relaxation phenomenon. METHODS: Seven healthy subjects participated. Fine-wire electrodes were inserted with a needle guided by ultrasound. RESULTS: The highest activity observed for quadratus lumborum and deep lateral erector spinae occurred in ipsilateral trunk flexion in a side-lying position and for superficial medial erector spinae during bilateral leg lift in a prone position. Quadratus lumborum and deep lateral erector spinae were activated when the flexion-relaxation phenomenon was present for superficial medial erector spinae, i.e. when its activity ceased in the latter part of full forward flexion of the trunk, held relaxed and kyphotic. CONCLUSIONS: In general, the activation of the investigated muscles showed a high degree of task specificity, where activation of a certain muscle was not always predictable from its anatomical arrangement and mechanical advantage.

  5. Kaempferol enhances endothelium-dependent relaxation in the porcine coronary artery through activation of large-conductance a2+-activated K+ channels

    PubMed Central

    Xu, Y C; Leung, S W S; Leung, G P H; Man, R Y K

    2015-01-01

    Background and Purpose Kaempferol, a plant flavonoid present in normal human diet, can modulate vasomotor tone. The present study aimed to elucidate the signalling pathway through which this flavonoid enhanced relaxation of vascular smooth muscle. Experimental Approach The effect of kaempferol on the relaxation of porcine coronary arteries to endothelium-dependent (bradykinin) and -independent (sodium nitroprusside) relaxing agents was studied in an in vitro organ chamber setup. The whole-cell patch-clamp technique was used to determine the effect of kaempferol on potassium channels in porcine coronary artery smooth muscle cells (PCASMCs). Key Results At a concentration without direct effect on vascular tone, kaempferol (3 × 10−6 M) enhanced relaxations produced by bradykinin and sodium nitroprusside. The potentiation by kaempferol of the bradykinin-induced relaxation was not affected by Nω-nitro-L-arginine methyl ester, an inhibitor of NO synthase (10−4 M) or TRAM-34 plus UCL 1684, inhibitors of intermediate- and small-conductance calcium-activated potassium channels, respectively (10−6 M each), but was abolished by tetraethylammonium chloride, a non-selective inhibitor of calcium-activated potassium channels (10−3 M), and iberiotoxin, a selective inhibitor of large-conductance calcium-activated potassium channel (KCa1.1; 10−7 M). Iberiotoxin also inhibited the potentiation by kaempferol of sodium nitroprusside-induced relaxations. Kaempferol stimulated an outward-rectifying current in PCASMCs, which was abolished by iberiotoxin. Conclusions and Implications The present results suggest that, in smooth muscle cells of the porcine coronary artery, kaempferol enhanced relaxations caused by endothelium-derived and exogenous NO as well as those due to endothelium-dependent hyperpolarization. This vascular effect of kaempferol involved the activation of KCa1.1 channels. PMID:25652142

  6. Modeling and simulation of the deposition/relaxation processes of polycrystalline diatomic structures of metallic nitride films

    NASA Astrophysics Data System (ADS)

    García, M. F.; Restrepo-Parra, E.; Riaño-Rojas, J. C.

    2015-05-01

    This work develops a model that mimics the growth of diatomic, polycrystalline thin films by artificially splitting the growth into deposition and relaxation processes including two stages: (1) a grain-based stochastic method (grains orientation randomly chosen) is considered and by means of the Kinetic Monte Carlo method employing a non-standard version, known as Constant Time Stepping, the deposition is simulated. The adsorption of adatoms is accepted or rejected depending on the neighborhood conditions; furthermore, the desorption process is not included in the simulation and (2) the Monte Carlo method combined with the metropolis algorithm is used to simulate the diffusion. The model was developed by accounting for parameters that determine the morphology of the film, such as the growth temperature, the interacting atomic species, the binding energy and the material crystal structure. The modeled samples exhibited an FCC structure with grain formation with orientations in the family planes of < 111 >, < 200 > and < 220 >. The grain size and film roughness were analyzed. By construction, the grain size decreased, and the roughness increased, as the growth temperature increased. Although, during the growth process of real materials, the deposition and relaxation occurs simultaneously, this method may perhaps be valid to build realistic polycrystalline samples.

  7. Activating and Relaxing Music Entrains the Speed of Beat Synchronized Walking

    PubMed Central

    Leman, Marc; Moelants, Dirk; Varewyck, Matthias; Styns, Frederik; van Noorden, Leon; Martens, Jean-Pierre

    2013-01-01

    Inspired by a theory of embodied music cognition, we investigate whether music can entrain the speed of beat synchronized walking. If human walking is in synchrony with the beat and all musical stimuli have the same duration and the same tempo, then differences in walking speed can only be the result of music-induced differences in stride length, thus reflecting the vigor or physical strength of the movement. Participants walked in an open field in synchrony with the beat of 52 different musical stimuli all having a tempo of 130 beats per minute and a meter of 4 beats. The walking speed was measured as the walked distance during a time interval of 30 seconds. The results reveal that some music is ‘activating’ in the sense that it increases the speed, and some music is ‘relaxing’ in the sense that it decreases the speed, compared to the spontaneous walked speed in response to metronome stimuli. Participants are consistent in their observation of qualitative differences between the relaxing and activating musical stimuli. Using regression analysis, it was possible to set up a predictive model using only four sonic features that explain 60% of the variance. The sonic features capture variation in loudness and pitch patterns at periods of three, four and six beats, suggesting that expressive patterns in music are responsible for the effect. The mechanism may be attributed to an attentional shift, a subliminal audio-motor entrainment mechanism, or an arousal effect, but further study is needed to figure this out. Overall, the study supports the hypothesis that recurrent patterns of fluctuation affecting the binary meter strength of the music may entrain the vigor of the movement. The study opens up new perspectives for understanding the relationship between entrainment and expressiveness, with the possibility to develop applications that can be used in domains such as sports and physical rehabilitation. PMID:23874469

  8. Subsecond pore-scale displacement processes and relaxation dynamics in multiphase flow

    PubMed Central

    Armstrong, Ryan T; Ott, Holger; Georgiadis, Apostolos; Rücker, Maja; Schwing, Alex; Berg, Steffen

    2014-01-01

    With recent advances at X-ray microcomputed tomography (μCT) synchrotron beam lines, it is now possible to study pore-scale flow in porous rock under dynamic flow conditions. The collection of four-dimensional data allows for the direct 3-D visualization of fluid-fluid displacement in porous rock as a function of time. However, even state-of-the-art fast-μCT scans require between one and a few seconds to complete and the much faster fluid movement occurring during that time interval is manifested as imaging artifacts in the reconstructed 3-D volume. We present an approach to analyze the 2-D radiograph data collected during fast-μCT to study the pore-scale displacement dynamics on the time scale of 40 ms which is near the intrinsic time scale of individual Haines jumps. We present a methodology to identify the time intervals at which pore-scale displacement events in the observed field of view occur and hence, how reconstruction intervals can be chosen to avoid fluid-movement-induced reconstruction artifacts. We further quantify the size, order, frequency, and location of fluid-fluid displacement at the millisecond time scale. We observe that after a displacement event, the pore-scale fluid distribution relaxes to (quasi-) equilibrium in cascades of pore-scale fluid rearrangements with an average relaxation time for the whole cascade between 0.5 and 2.0 s. These findings help to identify the flow regimes and intrinsic time and length scales relevant to fractional flow. While the focus of the work is in the context of multiphase flow, the approach could be applied to many different μCT applications where morphological changes occur at a time scale less than that required for collecting a μCT scan. PMID:25745271

  9. Relaxation process and ferromagnetic resonance investigation of ferrofluids with Mn-Zn and Mn-Fe mixed ferrite particles

    NASA Astrophysics Data System (ADS)

    Mălăescu, I.; Ştefu, N.; Gabor, L.

    2001-09-01

    The magnetic relaxation processes in two ferrofluids with Mn 0.4Zn 0.6Fe 2O 4 (sample F1) and Mn 0.6Fe 0.4Fe 2O 4 (sample F2) mixed ferrite particles, dispersed in n-decan and kerosene, respectively, are investigated through the determination of components χ' and χ'' of the complex magnetic susceptibility in the range of (2-30) MHz. The values of the saturation magnetization of the two ferrofluids are M∞=5.28 kA/m for sample F1 and M∞=10.99 kA/m for sample F2. A maximum of the imaginary component χ'' was observed for both samples at frequencies of tens MHz. This maximum was assigned to relaxation processes of Néel type. The effective anisotropy constant K of the particles from the studied samples was evaluated, using both static and dynamic measurements and the values were found to be K1=6.12×10 3 J m -3 for the ferrofluid F1, and K2=5.60×10 3 J m -3 for the ferrofluid F2. From ferromagnetic resonance measurements, and based on the theoretical values computed for the Lande factor ( g), the effective anisotropy constants for the mixed ferrite particles in the studied ferrofluids and the anisotropy field values were determined using a new method. The values obtained in this way for the anisotropy constants K1 and K2 are compared to the ones determined from magnetic relaxation measurements.

  10. Study of α-, β-, and γ-relaxation processes in some supercooled liquids and supercooled plastic crystals

    NASA Astrophysics Data System (ADS)

    Gangasharan, Murthy, S. S. N.

    1993-12-01

    Using dielectric spectroscopy, we have studied different types of relaxation processes, namely, primary (α), secondary (β), and other sub-Tg processes, in the supercooled liquids of tritolylphosphate (TTP), 3-bromopentane (3BP), isopropylbenzene (IPB), glucose (GL), and also in the supercooled plastic crystals of cyclohexanol (CHOL) and camphor, over a wide frequency (10-3-106 Hz) and temperature (above 77 K) range. Asymmetric Cole-Cole plots are found at temperatures above Tg in all the systems except camphor where they are very symmetric. TTP and 3BP are found to have weak sub-Tg processes and the corresponding α process do not show significant change in the shape of Cole-Cole plots with temperature. TTP, 3BP, and IPB are found to possess at least two sub-Tg processes (designated as β and γ processes, respectively) and the evidence for any of them to be intermolecular in nature is not strong. The origin of these processes probably lies in a side group and/or segmental rotation which still survive in the glassy state. In both GL and CHOL, the sub-Tg process previously designated as the β process by earlier workers is found to be non-Arrhenius in character representing another glass transition below the main Tg. Calorimetric evidence is provided for the purpose. The origin of this process is probably due to the ``free'' molecules. The origin of the various sub-Tg processes has been discussed in greater detail.

  11. Motion, relaxation dynamics, and diffusion processes in two-dimensional colloidal crystals confined between walls.

    PubMed

    Wilms, Dorothea; Virnau, Peter; Snook, Ian K; Binder, Kurt

    2012-11-01

    The dynamical behavior of single-component two-dimensional colloidal crystals confined in a slit geometry is studied by Langevin dynamics simulation of a simple model. The colloids are modeled as pointlike particles, interacting with the repulsive part of the Lennard-Jones potential, and the fluid molecules in the colloidal suspension are not explicitly considered. Considering a crystalline strip of triangular lattice structure with n=30 rows, the (one-dimensional) walls confining the strip are chosen as two rigidly fixed crystalline rows at each side, commensurate with the lattice structure and, thus, stabilizing long-range order. The case when the spacing between the walls is incommensurate with the ideal triangular lattice is also studied, where (due to a transition in the number of rows, n → n-1) the confined crystal is incommensurate with the confining boundaries, and a soliton staircase forms along the walls. It is shown that mean-square displacements (MSDs) of particles as a function of time show an overshoot and then saturate at a horizontal plateau in the commensurate case, the value of the plateau being largest in the center of the strip. Conversely, when solitons are present, MSDs are largest in the rows containing the solitons, and all MSDs do not settle down at well-defined plateaus in the direction parallel to the boundaries, due to the lack of positional long-range order in ideal two-dimensional crystals. The MSDs of the solitons (which can be treated like quasiparticles at very low temperature) have also been studied and their dynamics are found to be about an order of magnitude slower than that of the colloidal particles themselves. Finally, transport of individual colloidal particles by diffusion processes is studied: both standard vacancy-interstitial pair formation and cooperative ring rotation processes are identified. These processes require thermal activation, with activation energies of the order of 10T(m) (T(m) being the melting

  12. Guinea-pig interpubic joint (symphysis pubica) relaxation at parturition: Underlying cellular processes that resemble an inflammatory response

    PubMed Central

    Rodríguez, Horacio A; Ortega, Hugo H; Ramos, Jorge G; Muñoz-de-Toro, Mónica; Luque, Enrique H

    2003-01-01

    Background At term, cervical ripening in coordination with uterine contractions becomes a prerequisite for a normal vaginal delivery. Currently, cervical ripening is considered to occur independently from uterine contractions. Many evidences suggest that cervical ripening resembles an inflammatory process. Comparatively little attention has been paid to the increased flexibility of the pelvic symphysis that occurs in many species to enable safe delivery. The aim of this study was to investigate whether the guinea-pig interpubic joint relaxation process observed during late pregnancy and parturition resembles an inflammatory process. Methods Samples of pubic symphysis were taken from pregnant guinea-pigs sacrificed along gestation, parturition and postpartum. Serial sections of paraffin-embedded tissues were used to measure the interpubic distance on digitalized images, stained with Giemsa to quantify leukocyte infiltration and to describe the vascular area changes, or studied by the picrosirius-polarization method to evaluate collagen remodeling. P4 and E2 serum levels were measured by a sequential immunometric assay. Results Data showed that the pubic relaxation is associated with an increase in collagen remodeling. In addition, a positive correlation between E2 serum levels and the increase in the interpubic distance was found. On the other hand, a leukocyte infiltration in the interpubic tissue around parturition was described, with the presence of almost all inflammatory cells types. At the same time, histological images show an increase in vascular area (angiogenesis). Eosinophils reached their highest level immediately before parturition; whereas for the neutrophilic and mononuclear infiltration higher values were recorded one day after parturition. Correlation analysis showed that eosinophils and mononuclear cells were positively correlated with E2 levels, but only eosinophilic infiltration was associated with collagen remodeling. Additionally, we observed

  13. Relaxed heaps

    SciTech Connect

    Driscoll, J.R. ); Gabow, H.N.; Shrairman, R. ); Tarjan, R.E. )

    1988-11-01

    The relaxed heap is a priority queue data structure that achieves the same amortized time bounds as the Fibonacci heap - a sequence of m decrease key and n delete min operations takes time O(m + n log n). A variant of relaxed heaps achieves similar bounds in the worst case - O(1) time for decrease key and O(log n) for delete min. Relaxed heaps give a processor-efficient parallel implementation of Dijkstra's shortest path algorithm, and hence other algorithms in network optimization. A relaxed heap is a type of binomial queue that allows heap order to be violated.

  14. Stress relaxant and antioxidant activities of acid glycoside from Spondias mangifera fruit against physically and chemically challenged albino mice

    PubMed Central

    Arif, Muhammad; Fareed, Sheeba; Rahman, Md. Azizur

    2016-01-01

    Aim: Stress relaxant and antioxidant activities of ethanolic extract of fruit Spondias mangifera (EEFSM) and its isolated compound (Sm-01) were evaluated. The structure of Sm-01 was also elucidated. Materials and Methods: EEFSM at two different doses of 100 and 200 mg/kg (bw)/day and Sm-01 at dose of 10 mg/kg (bw)/day were screened for in vivo stress relaxant activity using anoxia stress tolerance, swimming endurance and cyclophosphamide-induced immune suppression model and in vitro antioxidant activity using 1,1-diphenyl-2-picrylhydrazyl (DPPH) model. The levels of Hb, red blood cell (RBC) and white blood cell (WBC) along with organ and body weights suppressed by cyclophosphamide were estimated. The structure of Sm-01 was elucidated by spectroscopy (ultraviolet, infrared, 1H-nuclear magnetic resonance [NMR],13 C-NMR and mass spectrometry) and chemical analyses. Results: Sm-01 was structurally elucidated as propan-1,2-dioic acid-3-carboxyl-β-D-glucopyranosyl-(6’→1”)-β-D-glucofuranoside. It was found that EEFSM and Sm-01 significantly increased the anoxia stress tolerance, swimming endurance and duration of stay on rotarod and normalized the levels of Hb, RBC, and WBC along with altered organ and body weights suppressed by cyclophosphamide. EEFSM and Sm-01 also exhibited significant antioxidant activity against DPPH free radical at the concentrations of 0.05, 0.5, and 1.0 mg/mL with obtained IC50 of 0.32 and 0.15 mg/mL, respectively. Conclusions: These findings demonstrated that extract and Sm-01 both possess significant stress relaxant and antioxidant activities favoring its use as adaptogens. The activities of the extract may be due to the Sm-01. PMID:26957871

  15. Theory of activated glassy relaxation, mobility gradients, surface diffusion, and vitrification in free standing thin films.

    PubMed

    Mirigian, Stephen; Schweizer, Kenneth S

    2015-12-28

    We have constructed a quantitative, force level, statistical mechanical theory for how confinement in free standing thin films introduces a spatial mobility gradient of the alpha relaxation time as a function of temperature, film thickness, and location in the film. The crucial idea is that relaxation speeds up due to the reduction of both near-surface barriers associated with the loss of neighbors in the local cage and the spatial cutoff and dynamical softening near the vapor interface of the spatially longer range collective elasticity cost for large amplitude hopping. These two effects are fundamentally coupled. Quantitative predictions are made for how an apparent glass temperature depends on the film thickness and experimental probe technique, the emergence of a two-step decay and mobile layers in time domain measurements, signatures of confinement in frequency-domain dielectric loss experiments, the dependence of film-averaged relaxation times and dynamic fragility on temperature and film thickness, surface diffusion, and the relationship between kinetic experiments and pseudo-thermodynamic measurements such as ellipsometry.

  16. Theory of activated glassy relaxation, mobility gradients, surface diffusion, and vitrification in free standing thin films

    SciTech Connect

    Mirigian, Stephen E-mail: smirigian@gmail.com; Schweizer, Kenneth S. E-mail: smirigian@gmail.com

    2015-12-28

    We have constructed a quantitative, force level, statistical mechanical theory for how confinement in free standing thin films introduces a spatial mobility gradient of the alpha relaxation time as a function of temperature, film thickness, and location in the film. The crucial idea is that relaxation speeds up due to the reduction of both near-surface barriers associated with the loss of neighbors in the local cage and the spatial cutoff and dynamical softening near the vapor interface of the spatially longer range collective elasticity cost for large amplitude hopping. These two effects are fundamentally coupled. Quantitative predictions are made for how an apparent glass temperature depends on the film thickness and experimental probe technique, the emergence of a two-step decay and mobile layers in time domain measurements, signatures of confinement in frequency-domain dielectric loss experiments, the dependence of film-averaged relaxation times and dynamic fragility on temperature and film thickness, surface diffusion, and the relationship between kinetic experiments and pseudo-thermodynamic measurements such as ellipsometry.

  17. Disulfide-activated protein kinase G Iα regulates cardiac diastolic relaxation and fine-tunes the Frank–Starling response

    PubMed Central

    Scotcher, Jenna; Prysyazhna, Oleksandra; Boguslavskyi, Andrii; Kistamas, Kornel; Hadgraft, Natasha; Martin, Eva D.; Worthington, Jenny; Rudyk, Olena; Rodriguez Cutillas, Pedro; Cuello, Friederike; Shattock, Michael J.; Marber, Michael S.; Conte, Maria R.; Greenstein, Adam; Greensmith, David J.; Venetucci, Luigi; Timms, John F.; Eaton, Philip

    2016-01-01

    The Frank–Starling mechanism allows the amount of blood entering the heart from the veins to be precisely matched with the amount pumped out to the arterial circulation. As the heart fills with blood during diastole, the myocardium is stretched and oxidants are produced. Here we show that protein kinase G Iα (PKGIα) is oxidant-activated during stretch and this form of the kinase selectively phosphorylates cardiac phospholamban Ser16—a site important for diastolic relaxation. We find that hearts of Cys42Ser PKGIα knock-in (KI) mice, which are resistant to PKGIα oxidation, have diastolic dysfunction and a diminished ability to couple ventricular filling with cardiac output on a beat-to-beat basis. Intracellular calcium dynamics of ventricular myocytes isolated from KI hearts are altered in a manner consistent with impaired relaxation and contractile function. We conclude that oxidation of PKGIα during myocardial stretch is crucial for diastolic relaxation and fine-tunes the Frank–Starling response. PMID:27782102

  18. Disulfide-activated protein kinase G Iα regulates cardiac diastolic relaxation and fine-tunes the Frank-Starling response.

    PubMed

    Scotcher, Jenna; Prysyazhna, Oleksandra; Boguslavskyi, Andrii; Kistamas, Kornel; Hadgraft, Natasha; Martin, Eva D; Worthington, Jenny; Rudyk, Olena; Rodriguez Cutillas, Pedro; Cuello, Friederike; Shattock, Michael J; Marber, Michael S; Conte, Maria R; Greenstein, Adam; Greensmith, David J; Venetucci, Luigi; Timms, John F; Eaton, Philip

    2016-10-26

    The Frank-Starling mechanism allows the amount of blood entering the heart from the veins to be precisely matched with the amount pumped out to the arterial circulation. As the heart fills with blood during diastole, the myocardium is stretched and oxidants are produced. Here we show that protein kinase G Iα (PKGIα) is oxidant-activated during stretch and this form of the kinase selectively phosphorylates cardiac phospholamban Ser16-a site important for diastolic relaxation. We find that hearts of Cys42Ser PKGIα knock-in (KI) mice, which are resistant to PKGIα oxidation, have diastolic dysfunction and a diminished ability to couple ventricular filling with cardiac output on a beat-to-beat basis. Intracellular calcium dynamics of ventricular myocytes isolated from KI hearts are altered in a manner consistent with impaired relaxation and contractile function. We conclude that oxidation of PKGIα during myocardial stretch is crucial for diastolic relaxation and fine-tunes the Frank-Starling response.

  19. Identifying Model Inaccuracies and Solution Uncertainties in Non-Invasive Activation-Based Imaging of Cardiac Excitation using Convex Relaxation

    PubMed Central

    Erem, Burak; van Dam, Peter M.; Brooks, Dana H.

    2014-01-01

    Noninvasive imaging of cardiac electrical function has begun to move towards clinical adoption. Here we consider one common formulation of the problem, in which the goal is to estimate the spatial distribution of electrical activation times during a cardiac cycle. We address the challenge of understanding the robustness and uncertainty of solutions to this formulation. This formulation poses a non-convex, non-linear least squares optimization problem. We show that it can be relaxed to be convex, at the cost of some degree of physiological realism of the solution set, and that this relaxation can be used as a framework to study model inaccuracy and solution uncertainty. We present two examples, one using data from a healthy human subject and the other synthesized with the ECGSIM software package. In the first case, we consider uncertainty in the initial guess and regularization parameter. In the second case, we mimic the presence of an ischemic zone in the heart in a way which violates a model assumption. We show that the convex relaxation allows understanding of spatial distribution of parameter sensitivity in the first case, and identification of model violation in the second. PMID:24710159

  20. The lignan eudesmin extracted from Piper truncatum induced vascular relaxation via activation of endothelial histamine H1 receptors.

    PubMed

    Raimundo, Juliana Montani; Trindade, Ana Paula Felix; Velozo, Leosvaldo Salazar Marques; Kaplan, Maria Auxiliadora Coelho; Sudo, Roberto Takashi; Zapata-Sudo, Gisele

    2009-03-15

    In Brazilian folk medicine, extracts from Piper species are used to reduce blood pressure. Previously, we demonstrated the vasodilatory activity of crude extracts from leaves of Piper truncatum explaining their possible use in the treatment of hypertension in traditional medicine. In the present study, we investigated the effects of eudesmin, a lignan isolated from hexane extract of leaves from Piper truncatum, on the contractility of rat aortas and the possible mechanisms involved in its vascular action. Eudesmin induced an intense concentration-dependent relaxation of aortic rings precontracted with phenylephrine. The concentration of eudesmin necessary to reduce phenylephrine-induced aortic contraction by 50% (IC(50)) was 10.69+/-0.67 microg/ml. Eudesmin-induced vasodilation required an intact endothelium since vascular relaxation was inhibited by mechanic removal of endothelium, and by pretreatment with nitric oxide synthase inhibitor and soluble guanylate cyclase inhibitor. Relaxation induced by eudesmin was also impaired in the presence of indomethacin and diphenhydramine, a cyclooxygenase inhibitor and an antagonist of type 1 histamine receptor (H(1)), respectively. IC(50) was increased to 18.1+/-1.8 and 18.1+/-2.6 microg/ml (P<0.05; n=6) after exposure to indomethacin and diphenhydramine, respectively. Atropine (muscarinic receptor antagonist), propranolol (beta-adrenoceptor antagonist) and glibenclamide (ATP-sensitive K(+) channel blocker) did not alter the effect of eudesmin. These results indicate that eudesmin-induced vascular relaxation in rat aorta is mediated by release of nitric oxide and prostanoid through the involvement of histamine receptor present in the endothelial cells.

  1. Study of relaxation process of dipalmitoyl phosphatidylcholine monolayers at air-water interface: effect of electrostatic energy.

    PubMed

    Ou-Yang, Wei; Weis, Martin; Manaka, Takaaki; Iwamoto, Mitsumasa

    2011-04-21

    The instability of organic monolayer composed of polar molecules at the air-water interface has been a spotlight in interface science for many decades. However, the effect of electrostatic energy contribution to the free energy in the system is still not understood. Herein, we investigate the mechanical and electrical properties by studying the isobaric relaxation process of a dipalmitoyl phosphatidylcholine monolayer on water subphase with various concentrations of divalent ions to reveal the effect of electrostatic energy on thermodynamics and kinetics of the collapse mechanism. Our results demonstrate that electrical energy among the dipolar molecules plays an important role in the stability of monolayer and enhances the formation of micelles into subphase under high pressure. In addition, to confirm the electrostatic energy contribution, the well-known thermal effect on the stability of the film is compared. Hence, the general description of the monolayer free energy with contribution of electrostatic energy is suggested to describe the phase transition.

  2. Discussion of the Separation of Chemical and Relaxational Kinetics of Chemically Activated Intermediates in Master Equation Simulations.

    PubMed

    Döntgen, Malte; Leonhard, Kai

    2017-03-02

    Chemical activation of intermediates, such as hydrogen abstraction products, is emerging as a basis for a fully new reaction type: hot β-scission. While for thermally equilibrated intermediates chemical kinetics are typically orders of magnitude slower than relaxational kinetics, chemically activated intermediates raise the issue of inseparable chemical and relaxational kinetics. Here, this separation problem is discussed in the framework of master equation simulations, proposing three cases often encountered in chemistry: insignificant chemical activation, predominant chemical activation, and the transition between these two limits. These three cases are illustrated via three example systems: methoxy (CH3Ȯ), diazenyl (ṄNH), and methyl formate radicals (CH3OĊO). For diazenyl, it is found that hot β-scission fully replaces the sequence of hydrogen abstraction and β-scission of thermally equilibrated diazenyl. Building on the example systems, a rule of thumb is proposed that can be used to intuitively judge the significance of hot β-scission: if the reverse hydrogen abstraction barrier height is comparable to or larger than the β-scission barrier height, hot β-scission should be considered in more detail.

  3. The role of non-equilibrium fluxes in the relaxation processes of the linear chemical master equation

    SciTech Connect

    Oliveira, Luciana Renata de; Bazzani, Armando; Giampieri, Enrico; Castellani, Gastone C.

    2014-08-14

    We propose a non-equilibrium thermodynamical description in terms of the Chemical Master Equation (CME) to characterize the dynamics of a chemical cycle chain reaction among m different species. These systems can be closed or open for energy and molecules exchange with the environment, which determines how they relax to the stationary state. Closed systems reach an equilibrium state (characterized by the detailed balance condition (D.B.)), while open systems will reach a non-equilibrium steady state (NESS). The principal difference between D.B. and NESS is due to the presence of chemical fluxes. In the D.B. condition the fluxes are absent while for the NESS case, the chemical fluxes are necessary for the state maintaining. All the biological systems are characterized by their “far from equilibrium behavior,” hence the NESS is a good candidate for a realistic description of the dynamical and thermodynamical properties of living organisms. In this work we consider a CME written in terms of a discrete Kolmogorov forward equation, which lead us to write explicitly the non-equilibrium chemical fluxes. For systems in NESS, we show that there is a non-conservative “external vector field” whose is linearly proportional to the chemical fluxes. We also demonstrate that the modulation of these external fields does not change their stationary distributions, which ensure us to study the same system and outline the differences in the system's behavior when it switches from the D.B. regime to NESS. We were interested to see how the non-equilibrium fluxes influence the relaxation process during the reaching of the stationary distribution. By performing analytical and numerical analysis, our central result is that the presence of the non-equilibrium chemical fluxes reduces the characteristic relaxation time with respect to the D.B. condition. Within a biochemical and biological perspective, this result can be related to the “plasticity property” of biological systems

  4. The role of non-equilibrium fluxes in the relaxation processes of the linear chemical master equation.

    PubMed

    de Oliveira, Luciana Renata; Bazzani, Armando; Giampieri, Enrico; Castellani, Gastone C

    2014-08-14

    We propose a non-equilibrium thermodynamical description in terms of the Chemical Master Equation (CME) to characterize the dynamics of a chemical cycle chain reaction among m different species. These systems can be closed or open for energy and molecules exchange with the environment, which determines how they relax to the stationary state. Closed systems reach an equilibrium state (characterized by the detailed balance condition (D.B.)), while open systems will reach a non-equilibrium steady state (NESS). The principal difference between D.B. and NESS is due to the presence of chemical fluxes. In the D.B. condition the fluxes are absent while for the NESS case, the chemical fluxes are necessary for the state maintaining. All the biological systems are characterized by their "far from equilibrium behavior," hence the NESS is a good candidate for a realistic description of the dynamical and thermodynamical properties of living organisms. In this work we consider a CME written in terms of a discrete Kolmogorov forward equation, which lead us to write explicitly the non-equilibrium chemical fluxes. For systems in NESS, we show that there is a non-conservative "external vector field" whose is linearly proportional to the chemical fluxes. We also demonstrate that the modulation of these external fields does not change their stationary distributions, which ensure us to study the same system and outline the differences in the system's behavior when it switches from the D.B. regime to NESS. We were interested to see how the non-equilibrium fluxes influence the relaxation process during the reaching of the stationary distribution. By performing analytical and numerical analysis, our central result is that the presence of the non-equilibrium chemical fluxes reduces the characteristic relaxation time with respect to the D.B. condition. Within a biochemical and biological perspective, this result can be related to the "plasticity property" of biological systems and to their

  5. Effect of Relaxation Processes on Auger Recombination in Semiconductor Quantum Wells

    DTIC Science & Technology

    1999-06-18

    and the common sense. The solution to this paradox is the direct taking into account of various scattering processes. Finally we note here that it is...not the case for QWs. It was assumed that both electrons in the conduction band and holes in the va- lence band have Fermi -Dirac distribution with

  6. Investigation of gender- and age-related preferences of men and women regarding lighting conditions for activation and relaxation

    NASA Astrophysics Data System (ADS)

    Schweitzer, S.; Schinagl, C.; Djuras, G.; Frühwirth, M.; Hoschopf, H.; Wagner, F.; Schulz, B.; Nemitz, W.; Grote, V.; Reidl, S.; Pritz, P.; Moser, M.; Wenzl, F. P.

    2016-09-01

    In recent years, LED lighting became an indispensable alternative to conventional lighting systems. Sophisticated solutions offer not only comfortable white light with a good color rendering. They also provide the possibility of changing illuminance and color temperature. Some systems even simulate daylight over the entire day, some including natural variations as due to clouds. Such systems are supposed to support the chronobiological needs of human and to have a positive effect on well-being, performance, sleep-quality and health. Lighting can also be used to support specific aims in a situation, like to improve productivity in activation or to support recreation in relaxation. Research regarding suitable light-settings for such situations and superordinate questions like their influence on well-being and health is still incomplete. We investigated the subjective preferences of men and women regarding light-settings for activation and relaxation. We supplied two rooms and four cubes with light sources that provide the possibility of tuning illuminance, color temperature and deviation from Plackian locus. More than 80 individuals - belonging to four groups differing in gender and age - were asked to imagine activating and recovering situations for which they should adjust suitable and pleasant lighting by tuning the above mentioned light properties. It was shown that there are clear differences in the lighting conditions preferred for these two situations. Also some combined gender- and age-specific differences became apparent.

  7. Carrier relaxation through two-electron process during photoconduction in highly UV sensitive quasi-one-dimensional ZnO nanowires

    SciTech Connect

    Bera, A.; Basak, D.

    2008-08-04

    We have investigated the carrier relaxation process during photoconduction in quasi-one-dimensional (Q1D) ZnO nanowires (NWs) of diameters 29-36 nm on different substrates using photocurrent transient measurements. Ultraviolet (UV) sensitive NWs show around three to four orders of change in the photo-to-dark current ratio. Under steady UV illumination, the photocarrier relaxation occurs through two-electron process--carrier loss due to the trapping by the surface states and recombination at the deep defect states. The results demonstrate that the carrier relaxation during photoconduction in Q1D NWs of diameter comparable to the Debye length is also dominated by the surface states.

  8. Involvement of large-conductance Ca(2+) -activated K(+) channels in both nitric oxide and endothelium-derived hyperpolarization-type relaxation in human penile small arteries.

    PubMed

    Király, István; Pataricza, János; Bajory, Zoltán; Simonsen, Ulf; Varro, András; Papp, Julius Gy; Pajor, Lászlo; Kun, Attila

    2013-07-01

    Large-conductance Ca(2+) -activated K(+) channels (BKC a ), located on the vascular smooth muscle, play an important role in regulation of vascular tone. In penile corpus cavernosum tissue, opening of BKC a channels leads to relaxation of corporal smooth muscle, which is essential during erection; however, there is little information on the role of BKC a channels located in penile vascular smooth muscle. This study was designed to investigate the involvement of BKC a channels in endothelium-dependent and endothelium-independent relaxation of human intracavernous penile arteries. In human intracavernous arteries obtained in connection with transsexual operations, change in isometric force was recorded in microvascular myographs, and endothelium-dependent [nitric oxide (NO) and endothelium-derived hyperpolarization (EDH)-type] and endothelium-independent (NO-donor) relaxations were measured in contracted arteries. In penile small arteries contracted with phenylephrine, acetylcholine evoked NO- and EDH-type relaxations, which were sensitive to iberiotoxin (IbTX), a selective blocker of BKC a channels. Iberiotoxin also inhibited relaxations induced by a NO-donor, sodium nitroprusside. NS11021, a selective opener of BKC a channels, evoked pronounced relaxations that were inhibited in the presence of IbTX. NS13558, a BKC a -inactive analogue of NS11021, failed to relax human penile small arteries. Our results show that BKC a channels are involved in both NO- and EDH-type relaxation of intracavernous penile arteries obtained from healthy men. The effect of a selective opener of BKC a channels also suggests that direct activation of the channel may be an advantageous approach for treatment of impaired endothelium-dependent relaxation often associated with erectile dysfunction.

  9. Electric relaxation processes in chemodynamics of aqueous metal complexes: from simple ligands to soft nanoparticulate complexants.

    PubMed

    van Leeuwen, Herman P; Buffle, Jacques; Town, Raewyn M

    2012-01-10

    The chemodynamics of metal complexes with nanoparticulate complexants can differ significantly from that for simple ligands. The spatial confinement of charged sites and binding sites to the nanoparticulate body impacts on the time scales of various steps in the overall complex formation process. The greater the charge carried by the nanoparticle, the longer it takes to set up the counterion distribution equilibrium with the medium. A z+ metal ion (z > 1) in a 1:1 background electrolyte will accumulate in the counterionic atmosphere around negatively charged simple ions, as well as within/around the body of a soft nanoparticle with negative structural charge. The rate of accumulation is often governed by diffusion and proceeds until Boltzmann partition equilibrium between the charged entity and the ions in the medium is attained. The electrostatic accumulation proceeds simultaneously with outer-sphere and inner-sphere complex formation. The rate of the eventual inner-sphere complex formation is generally controlled by the rate constant of dehydration of the metal ion, k(w). For common transition metal ions with moderate to fast dehydration rates, e.g., Cu(2+), Pb(2+), and Cd(2+), it is shown that the ionic equilibration with the medium may be the slower step and thus rate-limiting in their overall complexation with nanoparticles.

  10. Metal speciation in a complexing soft film layer: a theoretical dielectric relaxation study of coupled chemodynamic and electrodynamic interfacial processes.

    PubMed

    Merlin, Jenny; Duval, Jérôme F L

    2012-04-07

    We report a comprehensive formalism for the dynamics of metal speciation across an interphase formed between a complexing soft film layer and an electrolyte solution containing indifferent ions and metal ions that form complexes with charged molecular ligands distributed throughout the film. The analysis integrates the intricate interplay between metal complexation kinetics and diffusive metal transfer from/toward the ligand film, together with the kinetics of metal electrostatic partitioning across the film/solution interphase. This partitioning is determined by the settling dynamics of the interfacial electric double layer (EDL), as governed by time-dependent conduction-diffusion transports of both indifferent and reactive metal ions. The coupling between such chemodynamic and electrodynamic processes is evaluated via derivation of the dielectric permittivity increment for the ligand film/electrolyte interphase that is perturbed upon application of an ac electric field (pulsation ω) between electrodes supporting the films. The dielectric response is obtained from the ω-dependent distributions of all ions across the ligand film, as ruled by coupled Poisson-Nernst-Planck equations amended for a chemical source term involving the intra-film complex formation and dissociation pulsations (ω(a) and ω(d) respectively). Dielectric spectra are discussed for bare and film coated-electrodes over a wide range of field pulsations and Deborah numbers De = ω(a,d)/ω(diff), where ω(diff) is the electric double layer relaxation pulsation. The frequency-dependent dynamic or inert character of the formed metal complexes is then addressed over a time window that ranges from transient to fully relaxed EDL. The shape and magnitude of the dielectric spectra are further shown to reflect the lability of dynamic complexes, i.e. whether the overall speciation process at a given pulsation ω is primarily rate-limited either by complexation kinetics or by ion-transport dynamics. The

  11. Active Inference: A Process Theory.

    PubMed

    Friston, Karl; FitzGerald, Thomas; Rigoli, Francesco; Schwartenbeck, Philipp; Pezzulo, Giovanni

    2017-01-01

    This article describes a process theory based on active inference and belief propagation. Starting from the premise that all neuronal processing (and action selection) can be explained by maximizing Bayesian model evidence-or minimizing variational free energy-we ask whether neuronal responses can be described as a gradient descent on variational free energy. Using a standard (Markov decision process) generative model, we derive the neuronal dynamics implicit in this description and reproduce a remarkable range of well-characterized neuronal phenomena. These include repetition suppression, mismatch negativity, violation responses, place-cell activity, phase precession, theta sequences, theta-gamma coupling, evidence accumulation, race-to-bound dynamics, and transfer of dopamine responses. Furthermore, the (approximately Bayes' optimal) behavior prescribed by these dynamics has a degree of face validity, providing a formal explanation for reward seeking, context learning, and epistemic foraging. Technically, the fact that a gradient descent appears to be a valid description of neuronal activity means that variational free energy is a Lyapunov function for neuronal dynamics, which therefore conform to Hamilton's principle of least action.

  12. Kinetic Activation-Relaxation Technique and Self-Evolving Atomistic Kinetic Monte Carlo: Comparison of on-the-fly kinetic Monte Carlo algorithms

    DOE PAGES

    Beland, Laurent Karim; Osetskiy, Yury N.; Stoller, Roger E.; ...

    2015-02-07

    Here, we present a comparison of the Kinetic Activation–Relaxation Technique (k-ART) and the Self-Evolving Atomistic Kinetic Monte Carlo (SEAKMC), two off-lattice, on-the-fly Kinetic Monte Carlo (KMC) techniques that were recently used to solve several materials science problems. We show that if the initial displacements are localized the dimer method and the Activation–Relaxation Technique nouveau provide similar performance. We also show that k-ART and SEAKMC, although based on different approximations, are in agreement with each other, as demonstrated by the examples of 50 vacancies in a 1950-atom Fe box and of interstitial loops in 16,000-atom boxes. Generally speaking, k-ART’s treatment ofmore » geometry and flickers is more flexible, e.g. it can handle amorphous systems, and rigorous than SEAKMC’s, while the later’s concept of active volumes permits a significant speedup of simulations for the systems under consideration and therefore allows investigations of processes requiring large systems that are not accessible if not localizing calculations.« less

  13. Kinetic Activation-Relaxation Technique and Self-Evolving Atomistic Kinetic Monte Carlo: Comparison of on-the-fly kinetic Monte Carlo algorithms

    SciTech Connect

    Beland, Laurent Karim; Osetskiy, Yury N.; Stoller, Roger E.; Xu, Haixuan

    2015-02-07

    Here, we present a comparison of the Kinetic Activation–Relaxation Technique (k-ART) and the Self-Evolving Atomistic Kinetic Monte Carlo (SEAKMC), two off-lattice, on-the-fly Kinetic Monte Carlo (KMC) techniques that were recently used to solve several materials science problems. We show that if the initial displacements are localized the dimer method and the Activation–Relaxation Technique nouveau provide similar performance. We also show that k-ART and SEAKMC, although based on different approximations, are in agreement with each other, as demonstrated by the examples of 50 vacancies in a 1950-atom Fe box and of interstitial loops in 16,000-atom boxes. Generally speaking, k-ART’s treatment of geometry and flickers is more flexible, e.g. it can handle amorphous systems, and rigorous than SEAKMC’s, while the later’s concept of active volumes permits a significant speedup of simulations for the systems under consideration and therefore allows investigations of processes requiring large systems that are not accessible if not localizing calculations.

  14. Femtosecond dynamics of fundamental reaction processes in liquids: Proton transfer, geminate recombination, isomerization and vibrational relaxation. [Spiropyrans

    SciTech Connect

    Schwartz, B.J.

    1992-11-01

    The fast excited state intramolecular proton transfer of 3-hydroxyflavone is measured and effects of external hydrogen-bonding interactions on the proton transfer are studied. The proton transfer takes place in [approximately]240 fsec in nonpolar environments, but becomes faster than instrumental resolution of 110 fsec in methanol solution. The dynamics following photodissociation of CH[sub 2]I[sub 2] and other small molecules provide the first direct observations of geminate recombination. The recombination of many different photodissociating species occurs on a [approximately]350 fsec time scale. Results show that recombination yields but not rates depend on the solvent environment and suggest that recombination kinetics are dominated by a single collision with surrounding solvent cage. Studies of sterically locked phenyl-substituted butadienes offer new insights into the electronic structure and isomerization behavior of conjugated polyenes. Data show no simple correlation between hinderance of specific large amplitude motions and signatures of isomerizative behavior such as viscosity dependent excited state lifetimes, implying that the isomerization does not provide a suitable for simple condensed phase reaction rate theories. The spectral dynamics of a photochromic spiropyran indicate that recombination, isomerization and vibrational relaxation all play important roles in photoreactivity of complex molecules. The interplay of these microscopic phenomena and their effect on macroscopic properties such as photochromism are discussed. All the results indicate that the initial steps of the photochromic reaction process occur extremely rapidly. Laser system and computer codes for data analysis are discussed.

  15. Multigrid mapping and box relaxation for simulation of the whole process of flow transition in 3-D boundary layers

    SciTech Connect

    Liu, C.; Liu, Z.

    1994-12-31

    A new multilevel technology was developed in this study which provides a successful numerical simulation for the whole process of flow transition in 3-D flat plate boundary layers, including linear growth, secondary instability, breakdown, and transition on a relatively coarse grid with low CPU cost. A fourth-order finite difference scheme on stretched and staggered grids, a fully implicit time-marching technique, a semi-coarsening multigrid based on the so-called approximate line-box relaxation, and a buffer domain for the outflow boundary conditions were all employed for high-order accuracy, good stability, and fast convergence. A new fine-coarse-fine grid mapping technique was developed to catch the large eddies and represent main roles of small eddies to keep the code running after the laminar flow breaks down. The computational results are in good agreement with linear stability theory, secondary instability theory, and some experiments. The computation also reproduced the K-type and C-type transition observed by laboratory experiments. The CPU cost for a typical case is around 2-9 CRAY-YMP hours.

  16. Exchange protein activated by cAMP (Epac) induces vascular relaxation by activating Ca2+-sensitive K+ channels in rat mesenteric artery.

    PubMed

    Roberts, Owain Llŷr; Kamishima, Tomoko; Barrett-Jolley, Richard; Quayle, John M; Dart, Caroline

    2013-10-15

    Vasodilator-induced elevation of intracellular cyclic AMP (cAMP) is a central mechanism governing arterial relaxation but is incompletely understood due to the diversity of cAMP effectors. Here we investigate the role of the novel cAMP effector exchange protein directly activated by cAMP (Epac) in mediating vasorelaxation in rat mesenteric arteries. In myography experiments, the Epac-selective cAMP analogue 8-pCPT-2-O-Me-cAMP-AM (5 μM, subsequently referred to as 8-pCPT-AM) elicited a 77.6 ± 7.1% relaxation of phenylephrine-contracted arteries over a 5 min period (mean ± SEM; n = 6). 8-pCPT-AM induced only a 16.7 ± 2.4% relaxation in arteries pre-contracted with high extracellular K(+) over the same time period (n = 10), suggesting that some of Epac's relaxant effect relies upon vascular cell hyperpolarization. This involves Ca(2+)-sensitive, large-conductance K(+) (BK(Ca)) channel opening as iberiotoxin (100 nM) significantly reduced the ability of 8-pCPT-AM to reverse phenylephrine-induced contraction (arteries relaxed by only 35.0 ± 8.5% over a 5 min exposure to 8-pCPT-AM, n = 5; P < 0.05). 8-pCPT-AM increased Ca(2+) spark frequency in Fluo-4-AM-loaded mesenteric myocytes from 0.045 ± 0.008 to 0.103 ± 0.022 sparks s(-1) μm(-1) (P < 0.05) and reversibly increased both the frequency (0.94 ± 0.25 to 2.30 ± 0.72 s(-1)) and amplitude (23.9 ± 3.3 to 35.8 ± 7.7 pA) of spontaneous transient outward currents (STOCs) recorded in isolated mesenteric myocytes (n = 7; P < 0.05). 8-pCPT-AM-activated STOCs were sensitive to iberiotoxin (100 nM) and to ryanodine (30 μM). Current clamp recordings of isolated myocytes showed a 7.9 ± 1.0 mV (n = 10) hyperpolarization in response to 8-pCPT-AM that was sensitive to iberiotoxin (n = 5). Endothelial disruption suppressed 8-pCPT-AM-mediated relaxation in phenylephrine-contracted arteries (24.8 ± 4.9% relaxation after 5 min of exposure, n = 5; P < 0.05), as did apamin and TRAM-34, blockers of Ca(2+)-sensitive, small- and

  17. Dielectric relaxation spectroscopy of phlogopite mica

    NASA Astrophysics Data System (ADS)

    Kaur, Navjeet; Singh, Mohan; Singh, Anupinder; Awasthi, A. M.; Singh, Lakhwant

    2012-11-01

    An in-depth investigation of the dielectric characteristics of annealed phlogopite mica has been conducted in the frequency range 0.1 Hz-10 MHz and over the temperature range 653-873 K through the framework of dielectric permittivity, electric modulus and conductivity formalisms. These formalisms show qualitative similarities in relaxation processes. The frequency dependence of the M″ and dc conductivity is found to obey an Arrhenius law and the activation energy of the phlogopite mica calculated both from dc conductivity and the modulus spectrum is similar, indicating that same type of charge carriers are involved in the relaxation phenomena. The electric modulus and conductivity data have been fitted with the Havriliak-Negami function. Scaling of M‧, M″, ac conductivity has also been performed in order to obtain insight into the relaxation mechanisms. The scaling behaviour indicates that the relaxation describes the same mechanism at different temperatures. The relaxation mechanism was also examined using the Cole-Cole approach. The study elaborates that the investigation regarding the temperature and frequency dependence of dielectric relaxation in the phlogopite mica will be helpful for various cutting edge applications of this material in electrical engineering.

  18. Cross-relaxation induced tunable emissions from the Tm(3+)/Er(3+)/Eu(3+) ions activated BaGd2O4 nanoneedles.

    PubMed

    Seeta Rama Raju, G; Pavitra, E; Yu, Jae Su

    2014-07-07

    Tm(3+), Er(3+), Tm(3+)/Er(3+), Tm(3+)/Er(3+)/Eu(3+) single, double and triple activator ion/ions doped nanocrystalline BaGd2O4 (BG) phosphors were prepared by a Pechini type sol-gel process. After annealing at 1300 °C, X-ray diffraction patterns confirmed their orthorhombic structure. Field-emission transmission electron microscope images of the BG sample indicated a nanoneedle-type morphology. Photoluminescence (PL) and cathodoluminescence (CL) measurements were utilized to establish the emission properties of rare-earth ions doped nanocrystalline BG host lattice. Under near-ultraviolet (NUV) excitations, BG:Tm(3+) and BG:Er(3+) exhibited their characteristic emissions in the blue and green regions, respectively, while BG:Tm(3+)/Er(3+) and BG:Tm(3+)/Er(3+)/Eu(3+) showed cyan and white light emissions, respectively, when doped with appropriate amounts of activator ions. In the PL, the cross-relaxation process is dominant rather than the energy transfer process. Due to the different mechanism from PL, the CL spectra showed different emission features of BG:Tm(3+)/Er(3+)/Eu(3+) phosphor. The CL spectra of BG:Tm(3+) and BG:Er(3+) established the high purity blue and green emissions, respectively. From the PL and CL investigations, the white-light emission was realized from the single-phase BG:Tm(3+)/Er(3+)/Eu(3+) phosphor under NUV and low voltage electron beam excitations.

  19. In situ high-resolution transmission electron microscopy observation of the phason-strain relaxation process in an Al-Cu-Co-Si decagonal quasicrystal

    NASA Astrophysics Data System (ADS)

    Edagawa, Keiichi; Mandal, Pranabananda; Hosono, Kaoru; Suzuki, Kunio; Takeuchi, Shin

    2004-11-01

    Transition process from a rational approximant state, which is regarded as containing a uniform phason strain in a quasicrystalline state, to the quasicrystalline state in the Al-Cu-Co-Si system has been observed by in situ high-temperature high-resolution transmission electron microscopy (HRTEM). The tiling pattern changing with lapse of time in the HRTEM image has been analyzed, and the spatial and temporal variations of the phason field have been deduced. The results show that two types of processes lead the phason-strain relaxation: one is the shrink of the area with the uniform strain by shifting the boundaries and the other a continuous strain-relaxation in the area outside of the boundary. Such processes arise from a combination of collective and successive phason flips like domino-toppling along different symmetry directions.

  20. Correlation between Mechanical and Dielectric Relaxation Processes in Epoxy Resin Composites with Nano- and Micro-fillers

    NASA Astrophysics Data System (ADS)

    Hyuga, Mayumi; Tanaka, Toshikatsu; Ohki, Yoshimichi; Imai, Takahiro; Harada, Miyuki; Ochi, Mitsukazu

    Effects of addition of nano-sized and micro-sized fillers into epoxy resin on its mechanical and dielectric relaxation phenomena were examined. The glass transition temperature (Tg) decreases when a small content of nanoclay modified by octadecylamine was added, while the decrease in Tg is suppressed when the nanoclay was modified by dimethyldodecylamine. On the other hand, Tg increases when microsilica was added abundantly. At temperatures above Tg, both mechanical and dielectric relaxations are accelerated in samples with octadecylamine-modified nanoclay, while the acceleration does not occur in samples with nanoclay modified by dimethyldodecylamine. Both relaxations are restricted in composites with abundant microsilica. Therefore, co-addition of dimethyldodecylamine-modified nanoclay and abundant microsilica is adequate in order to make an epoxy resin composite with a high Tg and low dielectric loss.

  1. Glycosynthase Mutants of Endoglycosidase S2 Show Potent Transglycosylation Activity and Remarkably Relaxed Substrate Specificity for Antibody Glycosylation Remodeling.

    PubMed

    Li, Tiezheng; Tong, Xin; Yang, Qiang; Giddens, John P; Wang, Lai-Xi

    2016-08-05

    Glycosylation can exert a profound impact on the structures and biological functions of antibodies. Glycosylation remodeling using the endoglycosidase-catalyzed deglycosylation and transglycosylation approach is emerging as a promising platform to produce homogeneous glycoforms of antibodies, but the broad application of this method will require the availability of highly efficient glycosynthase mutants. We describe in this paper a systematic site-directed mutagenesis of an endoglycosidase from Streptococcus pyogenes of serotype M49 (Endo-S2) and the evaluation of the resulting mutants for their hydrolysis and transglycosylation activities. We found that mutations at the Asp-184 residue gave mutants that demonstrated significantly different properties, some possessed potent transglycosylation activity with diminished hydrolysis activity but others did not, which would be otherwise difficult to predict without the comparative study. In contrast to the previously reported Endo-S mutants that are limited to action on complex type N-glycans, the Endo-S2 glycosynthases described here, including D184M and D184Q, were found to have remarkably relaxed substrate specificity and were capable of transferring three major types (complex, high-mannose, and hybrid type) of N-glycans for antibody glycosylation remodeling. In addition, the Endo-S2 glycosynthase mutants were found to be much more active in general than the Endo-S mutants for transglycosylation. The usefulness of these Endo-S2 glycosynthase mutants was exemplified by an efficient glycosylation remodeling of two therapeutic monoclonal antibodies, rituximab and trastuzumab (Herceptin).

  2. Activation of PPARβ/δ prevents hyperglycaemia-induced impairment of Kv7 channels and cAMP-mediated relaxation in rat coronary arteries.

    PubMed

    Morales-Cano, Daniel; Moreno, Laura; Barreira, Bianca; Briones, Ana M; Pandolfi, Rachele; Moral-Sanz, Javier; Callejo, Maria; Mondejar-Parreño, Gema; Cortijo, Julio; Salaices, Mercedes; Duarte, Juan; Perez-Vizcaino, Francisco; Cogolludo, Angel

    2016-10-01

    PPARβ/δ activation protects against endothelial dysfunction in diabetic models. Elevated glucose is known to impair cAMP-induced relaxation and Kv channel function in coronary arteries (CA). Herein, we aimed to analyse the possible protective effects of the PPARβ/δ agonist GW0742 on the hyperglycaemic-induced impairment of cAMP-induced relaxation and Kv channel function in rat CA. As compared with low glucose (LG), incubation under high glucose (HG) conditions attenuated the relaxation induced by the adenylate cyclase activator forskolin in CA and this was prevented by GW0742. The protective effect of GW0742 was supressed by a PPARβ/δ antagonist. In myocytes isolated from CA under LG, forskolin enhanced Kv currents and induced hyperpolarization. In contrast, when CA were incubated with HG, Kv currents were diminished and the electrophysiological effects of forskolin were abolished. These deleterious effects were prevented by GW0742. The protective effects of GW0742 on forskolin-induced relaxation and Kv channel function were confirmed in CA from type-1 diabetic rats. In addition, the differences in the relaxation induced by forskolin in CA incubated under LG, HG or HG + GW0742 were abolished by the Kv7 channel inhibitor XE991. Accordingly, GW0742 prevented the down-regulation of Kv7 channels induced by HG. Finally, the preventive effect of GW0742 on oxidative stress and cAMP-induced relaxation were overcome by the pyruvate dehydrogenase kinase 4 (PDK4) inhibitor dichloroacetate (DCA). Our results reveal that the PPARβ/δ agonist GW0742 prevents the impairment of the cAMP-mediated relaxation in CA under HG. This protective effect was associated with induction of PDK4, attenuation of oxidative stress and preservation of Kv7 channel function.

  3. Breathing-mode relaxation associated with electron emission and capture processes of EL 2 in GaAs

    SciTech Connect

    Samara, G.A. ); Vook, D.W.; Gibbons, J.F. )

    1992-03-09

    Analysis of the effects of hydrostatic pressure on the electronic emission and capture properties of the (0/+) and (+/++) deep levels of the {ital EL}2 defect in GaAs leads to the following conclusions: (1) Both levels move higher in the band gap with pressure; (2) relatively large inward (outward) lattice relaxations accompany electron emission (capture) from (by) these levels; and (3) the magnitudes of the relaxations agree quantitatively with theoretical results which identify {ital EL}2 as the As antisite defect. These results which emphasize the antibonding character of the orbitals which describe {ital EL}2 are consistent with this identification.

  4. Smooth muscle relaxation activity of an aqueous extract of dried immature fruit of Poncirus trifoliata (PF-W) on an isolated strip of rat ileum.

    PubMed

    Kim, Kyu-Sang; Shim, Won-Sik; dela Peña, Ike Campomayor; Seo, Eun-Kyung; Kim, Woo-Young; Jin, Hyo-Eon; Kim, Dae-Duk; Chung, Suk-Jae; Cheong, Jae-Hoon; Shim, Chang-Koo

    2013-08-01

    We demonstrated that an aqueous extract of dried immature fruit of Poncirus trifoliate (PF-W) produces relaxation of intestinal smooth muscle using the ileac strips of a rat. Furthermore, the underlying mechanism of its relaxant activity was investigated. PF-W was prepared using the standard extraction protocol. A 1.5 - 2 cm long rat ileac strip was placed in an organ bath with Tyrode's solution and smooth muscle contractility was recorded by connecting it to a force transducer. Various compounds were added to the organ baths, and changes in muscular contractility were measured. PF-W concentration-dependently induced relaxation of rat ileac strips that were contracted both spontaneously and via acetylcholine treatment. Various potassium channel blockers did not inhibit the relaxation by PF-W. No difference in the effect of PF-W was observed between ileac strips treated with low (20 mM) and high concentrations (60 mM) of KCl. PF-W inhibited the contraction of rat ileac strips induced by extracellular calcium. PF-W acts as a potent smooth muscle relaxant, implicating its possible action as a rapid acting reliever for abdominal pains and a cure for intestinal convulsion. Considering that PF-W also exhibits prokinetic activity, its use in various gastrointestinal disorders seems promising.

  5. Effects of aging and sex on voluntary activation and peak relaxation rate of human elbow flexors studied with motor cortical stimulation.

    PubMed

    Molenaar, Joery P; McNeil, Chris J; Bredius, Marlous S; Gandevia, Simon C

    2013-08-01

    Data are equivocal on whether voluntary activation is preserved or decreased in old compared to young adults. Further, data are scant on the effect of age on the rate of muscle relaxation when the muscle is contracting voluntarily. Assessment of both measures with transcranial magnetic stimulation (TMS) yields information which cannot be obtained with traditional peripheral nerve stimulation. Hence, voluntary activation and peak relaxation rate of the elbow flexors were assessed with TMS during repeated maximal efforts in 30 men and 28 women between the ages of 22-84 years. Voluntary activation was similar for the two sexes (P = 0.154) and was not affected by age in men (96.2 ± 2.7 %; P = 0.887) or women (95.1 ± 3.0 %; P = 0.546). Men had a significantly faster peak rate of relaxation than women in absolute units (-880.0 ± 223.2 vs. -360.2 ± 78.5 Nm/ s, respectively; P < 0.001) and when normalized to subject strength (-12.5 ± 2.1 vs. -8.7 ± 1.0 s(-1), respectively; P < 0.001). Absolute and normalized relaxation rates slowed with age in men (P = 0.002 and P = 0.006, respectively), but not women (P = 0.142 and P = 0.950, respectively). Across the age range studied, all subjects, regardless of age or sex, were able to achieve high voluntary activation scores for the elbow flexors (~95 %). In contrast, peak relaxation rate was markedly faster in men than women and slowed with age in men but not women. Normalization of relaxation rates to strength did not affect the influence of age or sex.

  6. Parallel Activation in Bilingual Phonological Processing

    ERIC Educational Resources Information Center

    Lee, Su-Yeon

    2011-01-01

    In bilingual language processing, the parallel activation hypothesis suggests that bilinguals activate their two languages simultaneously during language processing. Support for the parallel activation mainly comes from studies of lexical (word-form) processing, with relatively less attention to phonological (sound) processing. According to…

  7. Ultrafast Relaxation in Conjugated Polymers

    NASA Astrophysics Data System (ADS)

    Kobayashi, Takayoshi

    The following sections are included: * INTRODUCTION * EXPERIMENTAL * Samples * Femtosecond experimental apparatus * RESULTS AND DISCUSSION * Poly(phenylacetylenes) * Blue-phase PDA-3BCMU * Red-phase PDA-4BCMU * Blue-phase PDA-DFMP * P3MT * P3DT * PTV * RELAXATION MECHANISMS * Review of the previous works * Symmetry of the lower electronic excited states * Primary relaxation processes * Theoretical studies of nonlinear excitations * Mechanism of relaxation in polymers with a weakly nondegenerate ground state (poly(phenylacetylene)s) * Dual peak component with power-law decay * Single-peak component with an exponential decay * Hot self-trapped exciton * Transition to the electron-hole threshold * Transition to a biexciton state * Mechanism of relaxation in polymers with a strongly or moderately nondegenerate ground state * Classifications of polymers * Femtosecond relaxation * Picosecond relaxation * CONCLUSION * Acknowledgments * REFERENCES

  8. Association, partition, and surface activity in biphasic systems displaying relaxation oscillations.

    PubMed

    Pradines, Vincent; Tadmouri, Rawad; Lavabre, Dominique; Micheau, Jean-Claude; Pimienta, Véronique

    2007-11-06

    Several biphasic systems giving rise to periodical Marangoni instability have been analyzed from the point of view of the physicochemical properties of the involved compounds. In each case, the compound at the origin of the oscillatory behavior has been identified: the reactant cetyltrimethylammonium bromide (CTAB) for the CTAB/picric acid (PH) system and the product of reaction dodecyl sulfate tetraalkylammonium (TAADS) for the sodium dodecyl sulfate/tetraalkylammonium bromide (SDS/TAAB) system. The properties of the latter system have been varied progressively by increasing the chain length of the tetraalkylammonium ion. Oscillations were observed whichever the direction of transfer (from water to dichloromethane and from dichloromethane to water). The comparison of the dynamic interfacial tension, recorded during transfer, to equilibrium measurements shows that the instability is favored when partition is highly in favor of the organic phase. The main criteria for the appearance of the instability are a high surface activity and a low interfacial adsorption.

  9. Aortic relaxant activity of Crataegus gracilior Phipps and identification of some of its chemical constituents.

    PubMed

    Hernández-Pérez, Abigail; Bah, Moustapha; Ibarra-Alvarado, César; Rivero-Cruz, José Fausto; Rojas-Molina, Alejandra; Rojas-Molina, Juana Isela; Cabrera-Luna, José Alejandro

    2014-12-15

    This study focused on the assessment of the vasorelaxant activity of the organic and aqueous extracts obtained from leaves and fruits of a Mexican hawthorn (Crataegus gracilior) on isolated rat aorta, and on the purification and identification of some of their secondary metabolites by the use of chromatographic and spectroscopic techniques. The results obtained showed that the methanol extract has a significantly more potent and effective vasorelaxant effect than the other tested extracts, with an EC50 = 8.69 ± 4.34 µg/mL and an Emax = 94.6% ± 11.30%, values that are close to that of acetylcholine, the positive control. From the same extract, two major triterpenes were isolated and identified as ursolic and corosolic acids by comparison of their experimental NMR spectroscopic data with those reported in the literature. Chlorogenic acid, rutin, quercetin, kaempferol and (+)-catechin were also identified using HPLC coupled with PDAD. All these compounds have already been proven to possess on their own antihypertensive effect and other benefits on cardiovascular diseases and they can support, at least in part, the traditional use of this plant species.

  10. BOOK REVIEW: Magnetohydrodynamics of Plasma Relaxation

    NASA Astrophysics Data System (ADS)

    Connor, J. W.

    1998-06-01

    global magnetic helicity. Some of the shortcomings of the Taylor theory in explaining details of real pinch experiments are used by the authors as a justification for a more phenomenological approach, described in detail in Chapter 4. They construct a `phenomenological model' that utilizes experimental information and linear stability properties; this is described authoritatively, since the authors have been very much involved in this work. The experimental evidence showing the presence of large scale instabilities in RFPs is used to provide support for the main thrust of the monograph, described in Chapter 5, namely that numerical computations of the non-linear evolution of MHD modes is the key to understanding the dynamical processes occurring in relaxation. These MHD processes give rise to a dynamo effect, analogous to that generating magnetic fields in the earth or stars, which overcomes the natural consequences of Spitzer resistivity and produces a reversed toroidal field. Chapter 5 begins with a general discussion of dynamo models and then moves on to the pioneering work of Sykes and Wesson on numerical simulation of relaxation, before launching into an authoritative account of more detailed and advanced simulations in which the authors themselves have played a major part. These calculations capture the basic features of relaxation in pinches and provide a demonstration of Taylor's theory. Chapters 6 and 7 describe some applications to RFPs of relaxation theory: the anomalous loop voltage, improving their performance by helicity injection, as well as sawteeth and thermal transport. The penultimate Chapter 8 proposes applications of this computational approach to relaxation, developed initially for laboratory pinches, to the solar corona. This is a stimulating discussion, drawing analogues between the two very different situations, ideal for broadening the perspectives of the fusion physicist. Specifically, the authors consider modelling of the evolution of active

  11. Long-time atomistic evolution of grain boundary in nickel using the kinetic activation-relaxation technique

    NASA Astrophysics Data System (ADS)

    Mahmoud, Sami; Trochet, Mickaël; Restrepo, Oscar; Mousseau, Normand

    The microscopic mechanisms associated with the evolution of metallic materials are still a matter of debate as both experimental and numerical approaches fail to provide a detailed atomic picture of their time evolution. Here, we use the kinetic activation-relaxation technique (k-ART), an unbiased off-lattice kinetic Monte Carlo method with on-the-fly catalog building to overcome these limitations and follow the atomistic evolution of a 10.000-atom grain boundary Ni system over macroscopic time scales. We first characterize the kinetic properties of four different empirical potentials, the embedded atom method (EAM), the first and second modified embedded atom method (MEAM1NN and MEAM2NN respectively) and the Reax force field (ReaxFF) potentials. Comparing the energetics, the elastic effects and the diffusion mechanisms for systems with one to three vacancies and one to three self-interstitials in nickel simulated over second time scale, we conclude that ReaxFF and EAM potentials are closest to experimental values. We then proceed to study the long-time evolution of a grain boundary with the Reax forcefield and to offer a detailed description of its energy landscape, including the exact description of short and long-range effects on self-diffusion along the interface

  12. Quantum-Classical Reentrant Relaxation Crossover in Dy2Ti2O7 Spin Ice

    NASA Astrophysics Data System (ADS)

    Snyder, J.; Ueland, B. G.; Slusky, J. S.; Karunadasa, H.; Cava, R. J.; Mizel, Ari; Schiffer, P.

    2003-09-01

    We have studied spin relaxation in the spin ice compound Dy2Ti2O7 through measurements of the ac magnetic susceptibility. While the characteristic spin-relaxation time (τ) is thermally activated at high temperatures, it becomes almost temperature independent below Tcross˜13 K. This behavior, combined with nonmonotonic magnetic field dependence of τ, indicates that quantum tunneling dominates the relaxational process below that temperature. As the low-entropy spin ice state develops below Tice˜4 K, τ increases sharply with decreasing temperature, suggesting the emergence of a collective degree of freedom for which thermal relaxation processes again become important as the spins become strongly correlated.

  13. Development of relaxation turbulence models

    NASA Technical Reports Server (NTRS)

    Hung, C. M.

    1976-01-01

    Relaxation turbulence models have been intensively studied. The complete time dependent mass averaged Navier-Stokes equations have been solved for flow into a two dimensional compression corner. A new numerical scheme has been incorporated into the developed computed code with an attendant order of magnitude reduction in computation time. Computed solutions are compared with experimental measurements of Law for supersonic flow. Details of the relaxation process have been studied; several different relaxation models, including different relaxation processes and varying relaxation length, are tested and compared. Then a parametric study has been conducted in which both Reynolds number and wedge angle are varied. To assess effects of Reynolds number and wedge angle, the parametric study includes the comparison of computed separation location and upstream extent of pressure rise; numerical results are also compared with the measurements of surface pressure, skin friction and mean velocity field.

  14. Natural relaxation

    NASA Astrophysics Data System (ADS)

    Marzola, Luca; Raidal, Martti

    2016-11-01

    Motivated by natural inflation, we propose a relaxation mechanism consistent with inflationary cosmology that explains the hierarchy between the electroweak scale and Planck scale. This scenario is based on a selection mechanism that identifies the low-scale dynamics as the one that is screened from UV physics. The scenario also predicts the near-criticality and metastability of the Standard Model (SM) vacuum state, explaining the Higgs boson mass observed at the Large Hadron Collider (LHC). Once Majorana right-handed neutrinos are introduced to provide a viable reheating channel, our framework yields a corresponding mass scale that allows for the seesaw mechanism as well as for standard thermal leptogenesis. We argue that considering singlet scalar dark matter extensions of the proposed scenario could solve the vacuum stability problem and discuss how the cosmological constant problem is possibly addressed.

  15. Beta relaxations and their correlations to plasticity in metallic glasses and soft disordered systems

    NASA Astrophysics Data System (ADS)

    Yu, Hai-Bin

    2015-03-01

    Focusing on metallic glasses as model systems, we show that mechanical properties and deformation mechanisms of glassy materials are closely related to a kind of dynamical process inherent in glasses, i.e., the so-called Johari-Goldstein beta relaxations. Microscopically, we demonstrate that beta relaxations and the basic deformation units of glasses have the same activation energy, and this activation energy correlates with the deformability of metallic glasses. Macroscopically, we illustrate that metallic glasses with pronounced beta relaxations around room temperature could have outstanding tensile plasticity, and the transition from brittle to ductile in tension and the beta relaxations follow a same temperature-time relationship. We will also show how to tune the beta relaxations by the understanding of chemical influence to get desirable properties. Atomic signatures of beta relaxations in metallic glasses will be addressed based on recent computer simulations.

  16. A nine-coordinated dysprosium(III) compound with an oxalate-bridged dysprosium(III) layer exhibiting two slow magnetic relaxation processes.

    PubMed

    Zhang, Sheng; Ke, Hongshan; Liu, Xiangyu; Wei, Qing; Xie, Gang; Chen, Sanping

    2015-10-21

    A 2D oxalate-bridged dysprosium(III) compound, formulated as [Dy(C2O4)1.5(H2O)3]n·2nH2O (1), has been hydrothermally isolated. As for compound 1, structural analysis reveals that the nine-coordinated Dy(III) ions reside in a slightly distorted tricapped trigonal prism. Under an applied magnetic field of 700 Oe, the compound was magnetically characterized as a new example that two slow relaxations of the magnetization processes can be observed in a 2D oxalate-bridged dysprosium(III) layer.

  17. Relaxation in quantum glasses

    NASA Astrophysics Data System (ADS)

    Ancona Torres, Carlos E.

    The Ising model in transverse field provides the simplest description of a quantum glass. I study two systems that are realizations of the Ising model in transverse field, LiHoxY1-- xF4 and Rb1-- x(NH4)xH2PO 4. In the spin glass LiHoxY1-- xF4, applying a magnetic field Ht transverse to the Ising direction introduces tunneling between the bare Ising eigenstates. In addition, the coupling between the transverse dipolar interaction and the transverse field introduces entanglement or tunable random fields depending on the concentration. By comparing the classical and quantum transitions in LiHo0.198Y0.802F4 and LiHo 0.167Y0.833F4, I characterize the crossover from random field dominated behavior in the 19.8% sample to entanglement dominated behavior in the 16.7% sample. The quantum transition in the 19.8% sample is dominated by the limit on its correlation length caused by the random fields, while the dominant effect in the 16.7% sample is the enhanced tunneling rate introduced by entanglement. The proton glass Rb1--x(NH 4)xH2PO4 relaxes through tunneling of protons in the hydrogen bonds of the crystal, yielding an effective Ising model in transverse field. Since this field cannot be tuned directly, I combine bulk dielectric susceptibility measurements with neutron Compton scattering measurements of the local tunneling potential in two different concentrations, x = 35% and 72%. I find that tunneling drives the fastest relaxation processes at temperatures as high as 20 K and explicitly calculate the tunneling rate from the tunneling potential of the hydrogen bond. Moreover, the structural mechanism for the glassy relaxation allows a real-space picture of the relaxation dynamics to be correlated to the free energy description of aging. I find that the glassy relaxation is driven by the sequential diffusion of defects called Takagi configurations with a classical to quantum crossover in the relaxation at 3 K. I relate the relaxation rate to the quantum action of tunneling

  18. Breathing and Relaxation

    MedlinePlus

    ... Home Health Insights Stress & Relaxation Breathing and Relaxation Breathing and Relaxation Make an Appointment Ask a Question ... level is often dependent on his or her breathing pattern. Therefore, people with chronic lung conditions may ...

  19. Anomalous C-V response correlated to relaxation processes in TiO{sub 2} thin film based-metal-insulator-metal capacitor: Effect of titanium and oxygen defects

    SciTech Connect

    Kahouli, A.; Marichy, C.; Pinna, N.

    2015-04-21

    Capacitance-voltage (C–V) and capacitance-frequency (C–f) measurements are performed on atomic layer deposited TiO{sub 2} thin films with top and bottom Au and Pt electrodes, respectively, over a large temperature and frequency range. A sharp capacitance peak/discontinuity (C–V anomalous) is observed in the C–V characteristics at various temperatures and voltages. It is demonstrated that this phenomenon is directly associated with oxygen vacancies. The C–V peak irreversibility and dissymmetry at the reversal dc voltage are attributed to difference between the Schottky contacts at the metal/TiO{sub 2} interfaces. Dielectric analyses reveal two relaxation processes with degeneration of the activation energy. The low trap level of 0.60–0.65 eV is associated with the first ionized oxygen vacancy at low temperature, while the deep trap level of 1.05 eV is associated to the second ionized oxygen vacancy at high temperature. The DC conductivity of the films exhibits a transition temperature at 200 °C, suggesting a transition from a conduction regime governed by ionized oxygen vacancies to one governed by interstitial Ti{sup 3+} ions. Both the C–V anomalous and relaxation processes in TiO{sub 2} arise from oxygen vacancies, while the conduction mechanism at high temperature is governed by interstitial titanium ions.

  20. Relaxation Assessment with Varied Structured Milieu (RELAX).

    ERIC Educational Resources Information Center

    Cassel, Russell N.; Cassel, Susie L.

    1983-01-01

    Describes Relaxation Assessment with Varied Structured Milieu (RELAX), a clinical program designed to assess the degree to which an individual is able to demonstrate self-control for overall general relaxation. The program is designed for use with the Cassel Biosensors biofeedback equipment. (JAC)

  1. Secondary and primary relaxations in hyperbranched polyglycerol: A comparative study in the frequency and time domains

    NASA Astrophysics Data System (ADS)

    Garcia-Bernabé, Abel; Dominguez-Espinosa, Gustavo; Diaz-Calleja, Ricardo; Riande, Evaristo; Haag, Rainer

    2007-09-01

    The non-Debye relaxation behavior of hyperbranched polyglycerol was investigated by broadband dielectric spectroscopy. A thorough study of the relaxations was carried out paying special attention to truncation effects on deconvolutions of overlapping processes. Hyperbranched polyglycerol exhibits two relaxations in the glassy state named in increasing order of frequency β and γ processes. The study of the evolution of these two fast processes with temperature in the time retardation spectra shows that the β absorption is swallowed by the α in the glass-liquid transition, the γ absorption being the only relaxation that remains operative in the liquid state. In heating, a temperature is reached at which the α absorption vanishes appearing the αγ relaxation. Two characteristics of α absorptions, decrease of the dielectric strength with increasing temperature and rather high activation energy, are displayed by the αγ process. Williams' ansatz seems to hold for these topologically complex macromolecules.

  2. Secondary and primary relaxations in hyperbranched polyglycerol: a comparative study in the frequency and time domains.

    PubMed

    Garcia-Bernabé, Abel; Dominguez-Espinosa, Gustavo; Diaz-Calleja, Ricardo; Riande, Evaristo; Haag, Rainer

    2007-09-28

    The non-Debye relaxation behavior of hyperbranched polyglycerol was investigated by broadband dielectric spectroscopy. A thorough study of the relaxations was carried out paying special attention to truncation effects on deconvolutions of overlapping processes. Hyperbranched polyglycerol exhibits two relaxations in the glassy state named in increasing order of frequency beta and gamma processes. The study of the evolution of these two fast processes with temperature in the time retardation spectra shows that the beta absorption is swallowed by the alpha in the glass-liquid transition, the gamma absorption being the only relaxation that remains operative in the liquid state. In heating, a temperature is reached at which the alpha absorption vanishes appearing the alphagamma relaxation. Two characteristics of alpha absorptions, decrease of the dielectric strength with increasing temperature and rather high activation energy, are displayed by the alphagamma process. Williams' ansatz seems to hold for these topologically complex macromolecules.

  3. Meditation-induced neuroplastic changes in amygdala activity during negative affective processing.

    PubMed

    Leung, Mei-Kei; Lau, Way K W; Chan, Chetwyn C H; Wong, Samuel S Y; Fung, Annis L C; Lee, Tatia M C

    2017-04-10

    Recent evidence suggests that the effects of meditation practice on affective processing and resilience have the potential to induce neuroplastic changes within the amygdala. Notably, literature speculates that meditation training may reduce amygdala activity during negative affective processing. Nonetheless, studies have thus far not verified this speculation. In this longitudinal study, participants (N = 21, 9 men) were trained in awareness-based compassion meditation (ABCM) or matched relaxation training. The effects of meditation training on amygdala activity were examined during passive viewing of affective and neutral stimuli in a non-meditative state. We found that the ABCM group exhibited significantly reduced anxiety and right amygdala activity during negative emotion processing than the relaxation group. Furthermore, ABCM participants who performed more compassion practice had stronger right amygdala activity reduction during negative emotion processing. The lower right amygdala activity after ABCM training may be associated with a general reduction in reactivity and distress. As all participants performed the emotion processing task in a non-meditative state, it appears likely that the changes in right amygdala activity are carried over from the meditation practice into the non-meditative state. These findings suggest that the distress-reducing effects of meditation practice on affective processing may transfer to ordinary states, which have important implications on stress management.

  4. Non-Debye relaxation in the dielectric response of nematic liquid crystals: surface and memory effects in the adsorption-desorption process of ionic impurities.

    PubMed

    de Paula, J L; Santoro, P A; Zola, R S; Lenzi, E K; Evangelista, L R; Ciuchi, F; Mazzulla, A; Scaramuzza, N

    2012-11-01

    We demonstrate theoretically that the presence of ions in insulating materials such as nematic liquid crystals may be responsible for the dielectric spectroscopy behavior observed experimentally. It is shown that, at low frequencies, an essentially non-Debye relaxation process takes place due to surface effects. This is accomplished by investigating the effects of the adsorption-desorption process on the electrical response of an electrolytic cell when the generation and recombination of ions is present. The adsorption-desorption is governed by a non-usual kinetic equation in order to incorporate memory effects related to a non-Debye relaxation and the roughness of the surface. The analysis is carried out by searching for solutions to the drift-diffusion equation that satisfy the Poisson equation relating the effective electric field to the net charge density. We also discuss the effect of the mobility of the ions, i.e., situations with equal and different diffusion coefficients for positive and negative ions, on the impedance and obtain an exact expression for the admittance. The model is compared with experimental results measured for the impedance of a nematic liquid crystal sample and a very good agreement is obtained.

  5. Non-Debye relaxation in the dielectric response of nematic liquid crystals: Surface and memory effects in the adsorption-desorption process of ionic impurities

    NASA Astrophysics Data System (ADS)

    de Paula, J. L.; Santoro, P. A.; Zola, R. S.; Lenzi, E. K.; Evangelista, L. R.; Ciuchi, F.; Mazzulla, A.; Scaramuzza, N.

    2012-11-01

    We demonstrate theoretically that the presence of ions in insulating materials such as nematic liquid crystals may be responsible for the dielectric spectroscopy behavior observed experimentally. It is shown that, at low frequencies, an essentially non-Debye relaxation process takes place due to surface effects. This is accomplished by investigating the effects of the adsorption-desorption process on the electrical response of an electrolytic cell when the generation and recombination of ions is present. The adsorption-desorption is governed by a non-usual kinetic equation in order to incorporate memory effects related to a non-Debye relaxation and the roughness of the surface. The analysis is carried out by searching for solutions to the drift-diffusion equation that satisfy the Poisson equation relating the effective electric field to the net charge density. We also discuss the effect of the mobility of the ions, i.e., situations with equal and different diffusion coefficients for positive and negative ions, on the impedance and obtain an exact expression for the admittance. The model is compared with experimental results measured for the impedance of a nematic liquid crystal sample and a very good agreement is obtained.

  6. Steepest-entropy-ascent quantum thermodynamic modeling of the relaxation process of isolated chemically reactive systems using density of states and the concept of hypoequilibrium state

    NASA Astrophysics Data System (ADS)

    Li, Guanchen; von Spakovsky, Michael R.

    2016-01-01

    This paper presents a study of the nonequilibrium relaxation process of chemically reactive systems using steepest-entropy-ascent quantum thermodynamics (SEAQT). The trajectory of the chemical reaction, i.e., the accessible intermediate states, is predicted and discussed. The prediction is made using a thermodynamic-ensemble approach, which does not require detailed information about the particle mechanics involved (e.g., the collision of particles). Instead, modeling the kinetics and dynamics of the relaxation process is based on the principle of steepest-entropy ascent (SEA) or maximum-entropy production, which suggests a constrained gradient dynamics in state space. The SEAQT framework is based on general definitions for energy and entropy and at least theoretically enables the prediction of the nonequilibrium relaxation of system state at all temporal and spatial scales. However, to make this not just theoretically but computationally possible, the concept of density of states is introduced to simplify the application of the relaxation model, which in effect extends the application of the SEAQT framework even to infinite energy eigenlevel systems. The energy eigenstructure of the reactive system considered here consists of an extremely large number of such levels (on the order of 10130) and yields to the quasicontinuous assumption. The principle of SEA results in a unique trajectory of system thermodynamic state evolution in Hilbert space in the nonequilibrium realm, even far from equilibrium. To describe this trajectory, the concepts of subsystem hypoequilibrium state and temperature are introduced and used to characterize each system-level, nonequilibrium state. This definition of temperature is fundamental rather than phenomenological and is a generalization of the temperature defined at stable equilibrium. In addition, to deal with the large number of energy eigenlevels, the equation of motion is formulated on the basis of the density of states and a set of

  7. Steepest-entropy-ascent quantum thermodynamic modeling of the relaxation process of isolated chemically reactive systems using density of states and the concept of hypoequilibrium state.

    PubMed

    Li, Guanchen; von Spakovsky, Michael R

    2016-01-01

    This paper presents a study of the nonequilibrium relaxation process of chemically reactive systems using steepest-entropy-ascent quantum thermodynamics (SEAQT). The trajectory of the chemical reaction, i.e., the accessible intermediate states, is predicted and discussed. The prediction is made using a thermodynamic-ensemble approach, which does not require detailed information about the particle mechanics involved (e.g., the collision of particles). Instead, modeling the kinetics and dynamics of the relaxation process is based on the principle of steepest-entropy ascent (SEA) or maximum-entropy production, which suggests a constrained gradient dynamics in state space. The SEAQT framework is based on general definitions for energy and entropy and at least theoretically enables the prediction of the nonequilibrium relaxation of system state at all temporal and spatial scales. However, to make this not just theoretically but computationally possible, the concept of density of states is introduced to simplify the application of the relaxation model, which in effect extends the application of the SEAQT framework even to infinite energy eigenlevel systems. The energy eigenstructure of the reactive system considered here consists of an extremely large number of such levels (on the order of 10^{130}) and yields to the quasicontinuous assumption. The principle of SEA results in a unique trajectory of system thermodynamic state evolution in Hilbert space in the nonequilibrium realm, even far from equilibrium. To describe this trajectory, the concepts of subsystem hypoequilibrium state and temperature are introduced and used to characterize each system-level, nonequilibrium state. This definition of temperature is fundamental rather than phenomenological and is a generalization of the temperature defined at stable equilibrium. In addition, to deal with the large number of energy eigenlevels, the equation of motion is formulated on the basis of the density of states and a set

  8. Energetics of active transport processes.

    PubMed

    Essig, A; Caplan, S R

    1968-12-01

    Discussions of active transport usually assume stoichiometry between the rate of transport J(+) and the metabolic rate J(r). However, the observation of a linear relationship between J(+) and J(r) does not imply a stoichiometric relationship, i.e., complete coupling. Since coupling may possibly be incomplete, we examine systems of an arbitrary degree of coupling q, regarding stoichiometry as a limiting case. We consider a sodium pump, with J(+) and J(r) linear functions of the electrochemical potential difference, -X(+), and the chemical affinity of the metabolic driving reaction, A. The affinity is well defined even for various complex reaction pathways. Incorporation of a series barrier and a parallel leak does not affect the linearity of the composite observable system. The affinity of some region of the metabolic chain may be maintained constant, either by large pools of reactants or by regulation. If so, this affinity can be evaluated by two independent methods. Sodium transport is conveniently characterized by the open-circuit potential (Deltapsi)(I=0) and the natural limits, level flow (J(+))(X+=0), and static head X(0) (+) = (X(+))(J+=0). With high degrees of coupling -X(0) (+)/F approaches the electromotive force E(Na) (Ussing); -X(0) (+)/F cannot be identified with ((RT/F) ln f)(X+=0), where f is the flux ratio. The efficiency eta = -J(+)X(+)/J(r)A is of significance only when appreciable energy is being converted from one form to another. When either J(+) or -X(+) is small eta is low; the significant parameters are then the efficacies epsilon(J+) = J(+)/J(r)A and epsilon(X+) = -X(+)/J(r)A, respectively maximal at level flow and static head. Leak increases both J(+) and epsilon(J+) for isotonic saline reabsorption, but diminishes -X(0) (+) and epsilon(Xfemale symbol). Electrical resistance reflects both passive parameters and metabolism. Various fundamental relations are preserved despite coupling of passive ion and water flows.

  9. Low temperature dielectric relaxation and charged defects in ferroelectric thin films

    SciTech Connect

    Artemenko, A.; Payan, S.; Rousseau, A.; Arveux, E.; Maglione, M.; Levasseur, D.; Guegan, G.

    2013-04-15

    We report a dielectric relaxation in BaTiO{sub 3}-based ferroelectric thin films of different composition and with several growth modes: sputtering (with and without magnetron) and sol-gel. The relaxation was observed at cryogenic temperatures (T < 100 K) for frequencies from 100 Hz up to 10 MHz. This relaxation activation energy is always lower than 200 meV and is very similar to the relaxation that we reported in the parent bulk perovskites. Based on our Electron Paramagnetic Resonance (EPR) investigation, we ascribe this dielectric relaxation to the hopping of electrons among Ti{sup 3+}-V(O) charged defects. Being dependent on the growth process and on the amount of oxygen vacancies, this relaxation can be a useful probe of defects in actual integrated capacitors with no need for specific shaping.

  10. Time Course of Corticospinal Excitability and Intracortical Inhibition Just before Muscle Relaxation

    PubMed Central

    Suzuki, Tomotaka; Sugawara, Kenichi; Ogahara, Kakuya; Higashi, Toshio

    2016-01-01

    Using transcranial magnetic stimulation (TMS), we investigated how short-interval intracortical inhibition (SICI) was involved with transient motor cortex (M1) excitability changes observed just before the transition from muscle contraction to muscle relaxation. Ten healthy participants performed a simultaneous relaxation task of the ipsilateral finger and foot, relaxing from 10% of their maximal voluntary contraction (MVC) force after the go signal. In the simple reaction time (RT) paradigm, single or paired TMS pulses were randomly delivered after the go signal, and motor evoked potentials (MEPs) were recorded from the right first dorsal interosseous (FDI) muscle. We analyzed the time course prior to the estimated relaxation reaction time (RRT), defined here as the onset of voluntary relaxation. SICI decreased in the 80–100 ms before RRT, and MEPs were significantly greater in amplitude in the 60–80 ms period before RRT than in the other intervals in single-pulse trials. TMS pulses did not effectively increase RRT. These results show that cortical excitability in the early stage, before muscle relaxation, plays an important role in muscle relaxation control. SICI circuits may vary between decreased and increased activation to continuously maintain muscle relaxation during or after a relaxation response. With regard to M1 excitability dynamics, we suggest that SICI also dynamically changes throughout the muscle relaxation process. PMID:26858619

  11. Decreased electroencephalogram alpha band [8-13 Hz] power in amyotrophic lateral sclerosis patients: a study of alpha activity in an awake relaxed state.

    PubMed

    Santhosh, Jayashree; Bhatia, Manvir; Sahu, Shweta; Anand, Sneh

    2005-03-01

    An attempt was made to quantitatively analyze the alpha activity in the awake relaxed state of Amyotrophic Lateral Sclerosis (ALS) patients and was compared with normals. ALS patients showed significantly low amplitude with a corresponding alpha band (8-13 Hz) power reduction, in both hemispheres though the change was more prominent in the left hemisphere. A review of the literature revealed no studies done on alpha oscillations in ALS patients; hence the results may have important implications for the interpretation of resting state brain activities.

  12. Ultrafast electronic relaxation processes in semiconductor nanoparticles (silver iodide, silver iodide/silver sulfide, silver bromide/silver sulfide, silver sulfide, cupric sulfide, and copper sulfide) and carotenoids

    NASA Astrophysics Data System (ADS)

    Brelle, Michael Chris

    2000-11-01

    This dissertation examines primarily the ultrafast dynamics of excited state charge carriers in semiconductor nanoparticles. The dissertation also briefly examines the excited state lifetimes of a few carotenoids. Understanding the dynamic properties of charge carriers in semiconductor nanoparticles is crucial for the further development of applications utilizing these systems. The dynamic properties including shallow and deep trapping as well as recombination have been studied in a variety of semiconductor nanoparticle systems. Kinetic modeling was utilized to assist in the assignment of all observed signals and the nature of the decays. The first observation of ultrafast trapping in silver halides was observed in AgI nanoparticles including the identification that interstitial silver ions may act as deep traps. Several interesting phenomena were observed in Ag2S and CuxS nanoparticles including dark shallow trap states and shallow trap state saturation leading to increased transient absorption over transient bleach with increasing excitation intensity. These observations have provided further insight into the relaxation pathways for charge carriers in semiconductor nanoparticle systems. Lifetimes of the S2 excited states of four carotenoids have also been determined. The S2 lifetime for beta-carotene was confirmed from previous fluorescence up-conversion experiments whereas the S2 lifetimes that were previously unknown for three carotenoids, violaxanthin, neaxanthin, and lutein were discovered. These experiments together demonstrate the capabilities of femtosecond pump-probe spectroscopy to characterize and better understand the processes involved in the ultrafast relaxation events in both molecular and nanoparticle systems.

  13. The poly(ADP-ribose)-dependent chromatin remodeler Alc1 induces local chromatin relaxation upon DNA damage

    PubMed Central

    Sellou, Hafida; Lebeaupin, Théo; Chapuis, Catherine; Smith, Rebecca; Hegele, Anna; Singh, Hari R.; Kozlowski, Marek; Bultmann, Sebastian; Ladurner, Andreas G.; Timinszky, Gyula; Huet, Sébastien

    2016-01-01

    Chromatin relaxation is one of the earliest cellular responses to DNA damage. However, what determines these structural changes, including their ATP requirement, is not well understood. Using live-cell imaging and laser microirradiation to induce DNA lesions, we show that the local chromatin relaxation at DNA damage sites is regulated by PARP1 enzymatic activity. We also report that H1 is mobilized at DNA damage sites, but, since this mobilization is largely independent of poly(ADP-ribosyl)ation, it cannot solely explain the chromatin relaxation. Finally, we demonstrate the involvement of Alc1, a poly(ADP-ribose)- and ATP-dependent remodeler, in the chromatin-relaxation process. Deletion of Alc1 impairs chromatin relaxation after DNA damage, while its overexpression strongly enhances relaxation. Altogether our results identify Alc1 as an important player in the fast kinetics of the NAD+- and ATP-dependent chromatin relaxation upon DNA damage in vivo. PMID:27733626

  14. Resonant dipolar relaxation in poly ( ɛ -caprolactone)—A thermally stimulated depolarization current study

    NASA Astrophysics Data System (ADS)

    Patidar, M. M.; Jain, D.; Nath, R.; Ganesan, V.

    2016-07-01

    Resonant dipolar relaxation in poly( ɛ-caprolactone) (PCL) is reported using thermally stimulated discharge current spectroscopy. PCL is a bio-medically known shape memory polymer having a well defined γ, β, α, and α ' relaxations, respectively, centered around 125 K, 170 K, 220 K, and 270 K as seen by the measurements. By employing a new protocol variable poling temperature at constant freezing temperature, resonant dipolar relaxation in PCL could be induced, especially in the vicinity of α relaxation. Such a protocol is useful in de-convoluting the features in a more meaningful fashion. By an analysis of activation process, we could show a clear contrast enhancement of the dynamics of the participating dipoles by means of a minimum in the activation energies situated around the glass transition region. The relevant parameters of interest such as activation energies and relaxation times are estimated and discussed.

  15. Time of relaxation in dusty plasma model

    NASA Astrophysics Data System (ADS)

    Timofeev, A. V.

    2015-11-01

    Dust particles in plasma may have different values of average kinetic energy for vertical and horizontal motion. The partial equilibrium of the subsystems and the relaxation processes leading to this asymmetry are under consideration. A method for the relaxation time estimation in nonideal dusty plasma is suggested. The characteristic relaxation times of vertical and horizontal motion of dust particles in gas discharge are estimated by analytical approach and by analysis of simulation results. These relaxation times for vertical and horizontal subsystems appear to be different. A single hierarchy of relaxation times is proposed.

  16. Reduced KCNQ4-encoded voltage-dependent potassium channel activity underlies impaired β-adrenoceptor-mediated relaxation of renal arteries in hypertension.

    PubMed

    Chadha, Preet S; Zunke, Friederike; Zhu, Hai-Lei; Davis, Alison J; Jepps, Thomas A; Olesen, Søren P; Cole, William C; Moffatt, James D; Greenwood, Iain A

    2012-04-01

    KCNQ4-encoded voltage-dependent potassium (Kv7.4) channels are important regulators of vascular tone that are severely compromised in models of hypertension. However, there is no information as to the role of these channels in responses to endogenous vasodilators. We used a molecular knockdown strategy, as well as pharmacological tools, to examine the hypothesis that Kv7.4 channels contribute to β-adrenoceptor-mediated vasodilation in the renal vasculature and underlie the vascular deficit in spontaneously hypertensive rats. Quantitative PCR and immunohistochemistry confirmed gene and protein expression of KCNQ1, KCNQ3, KCNQ4, KCNQ5, and Kv7.1, Kv7.4, and Kv7.5 in rat renal artery. Isoproterenol produced concentration-dependent relaxation of precontracted renal arteries and increased Kv7 channel currents in isolated smooth muscle cells. Application of the Kv7 blocker linopirdine attenuated isoproterenol-induced relaxation and current. Isoproterenol-induced relaxations were also reduced in arteries incubated with small interference RNAs targeted to KCNQ4 that produced a ≈60% decrease in Kv7.4 protein level. Relaxation to isoproterenol and the Kv7 activator S-1 were abolished in arteries from spontaneously hypertensive rats, which was associated with ≈60% decrease in Kv7.4 abundance. This study provides the first evidence that Kv7 channels contribute to β-adrenoceptor-mediated vasodilation in the renal vasculature and that abrogation of Kv7.4 channels is strongly implicated in the impaired β-adrenoceptor pathway in spontaneously hypertensive rats. These findings may provide a novel pathogenic link between arterial dysfunction and hypertension.

  17. Dielectric Relaxation in Dimethyl Sulfoxide/Water Mixtures Studied by Microwave Dielectric Relaxation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lu, Zijie; Manias, Evangelos; MacDonald, Digby D.; Lanagan, Michael

    2009-10-01

    Dielectric spectra of dimethyl sulfoxide (DMSO)/water mixtures, over the entire concentration range, have been measured using the transmission line method at frequencies from 45 MHz to 26 GHz and at temperatures of 298-318 K. The relaxation times of the mixtures show a maximum at an intermediate molar fraction of DMSO. The specific structure of mixtures in different concentration regions was determined by the dielectric relaxation dynamics, obtained from the effect of temperature on the relaxation time. A water structure "breaking effect" is observed in dilute aqueous solutions. The average number of hydrogen bonds per water molecule in these mixtures is found to be reduced compared to pure water. The increase in the dielectric relaxation time in DMSO/water mixtures is attributed to the spatial (steric) constraints of DMSO molecules on the hydrogen-bond network, rather than being due to hydrophobic hydration of the methyl groups. The interaction between water and DMSO by hydrogen bonding reaches a maximum at a DMSO molar fraction of 0.33, reflected by the maximum activation enthalpy for dielectric relaxation in this concentration, suggesting the formation of a stoichiometric compound, H2O-DMSO-H2O. In highly concentrated solutions, negative activation entropies are observed, indicating the presence of aggregates of DMSO molecules. A distinct antiparallel arrangement of dipoles is obtained for neat DMSO in the liquid state according to the Kirkwood correlation factor (gK = 0.5), calculated from the static permittivity. The similarity of the dielectric behavior of pure DMSO and DMSO-rich mixtures suggests that dipole-dipole interactions contribute significantly to the rotational relaxation process in these solutions.

  18. Relaxation labeling using modular operators

    SciTech Connect

    Duncan, J.S.; Frei, W.

    1983-01-01

    Probabilistic relaxation labeling has been shown to be useful in image processing, pattern recognition, and artificial intelligence. The approaches taken to date have been encumbered with computationally extensive summations which generally prevent real-time operation and/or easy hardware implementation. The authors present a new and unique approach to the relaxation labeling problem using modular, VLSI-oriented hierarchical complex operators. One of the fundamental concepts of this work is the representation of the probability distribution of the possible labels for a given object (pixel) as an ellipse, which may be summed with neighboring object's distribution ellipses, resulting in a new, relaxed label space. The mathematical development of the elliptical approach will be presented and compared to more classical approaches, and a hardware block diagram that shows the implementation of the relaxation scheme using vlsi chips will be presented. Finally, results will be shown which illustrate applications of the modular scheme, iteratively, to both edges and lines. 13 references.

  19. Phonon-assisted relaxation in a frustrated antiferromagnet

    SciTech Connect

    Ehlers, Georg

    2006-01-01

    A thermally activated magnetic relaxation is observed using neutron spin-echo in the pyrochlore slab (kagom{acute e} bilayer) compound SrCr{sub 9x}Ga{sub 12-9x}O{sub 19} (x=0.95) in a restricted temperature range, 4K < T < 4K, above a cross-over to a low temperature relaxation regime with a weaker temperature dependence. The activation energy of the thermally activated relaxation, of the order of 7 meV, coincides with the energy of a phonon mode observed with neutron and Raman spectroscopy, indicating a phonon-assisted regime. The experimental observation of phonon-assisted process gives additional insight to the importance of spin-phonon coupling in frustrated magnets with regard to the models mostly based on purely magnetic interactions.

  20. Influence of silver nanoparticles on relaxation processes and efficiency of dipole – dipole energy transfer between dye molecules in polymethylmethacrylate films

    SciTech Connect

    Bryukhanov, V V; Borkunov, R Yu; Tsarkov, M V; Konstantinova, E I; Slezhkin, V A

    2015-10-31

    The fluorescence and phosphorescence of dyes in thin polymethylmethacrylate (PMMA) films in the presence of ablated silver nanoparticles has been investigated in a wide temperature range by methods of femtosecond and picosecond laser photoexcitation. The fluorescence and phosphorescence times, as well as spectral and kinetic characteristics of rhodamine 6G (R6G) molecules in PMMA films are measured in a temperature range of 80 – 330 K. The temperature quenching activation energy of the fluorescence of R6G molecules in the presence of ablated silver nanoparticles is found. The vibrational relaxation rate of R6G in PMMA films is estimated, the efficiency of the dipole – dipole electron energy transfer between R6G and brilliant green molecules (enhanced by plasmonic interaction with ablated silver nanoparticles) is analysed, and the constants of this energy transfer are determined. (nanophotonics)

  1. Slow processes in viscous liquids: Stress and structural relaxation, chemical reaction freezing, crystal nucleation and microemulsion arrest, in relation to liquid fragility

    NASA Astrophysics Data System (ADS)

    Angell, C. A.; Alba, C.; Arzimanoglou, A.; Fan, J.; Böhmer, R.; Lu, Q.; Sanchez, E.; Senapati, H.; Tatsumisago, M.

    1992-05-01

    We review a variety of measurements on model systems in the medium viscosity range which seem consistent with both thermodynamical (entropy vanishing) and dynamical (mode coupling) origins of glassy behavior and then examine behavior near and below Tg to seek relations between liquid fragility and the non-exponential and non-linear aspects of liquid relaxation processes. We include the model ionic system Ca(NO3)2-KNO3 and analogs, van der Waals systems, and the covalently-bonded system Ge-As-Se in which the relation of liquid properties to the vector percolation concepts of Phillips and Thorpe can be conveniently studied. With some basic phenomenology in the liquid state itself thereby established, we turn attention to longer length-scale processes occurring in viscous liquid media. Among these will be the kinetics of nucleation of crystals, the freezing of microemulsion droplet sizes during continuous cooling of temperature sensitive microemulsions, and the freezing of chemical reactions during continuous cooling or continuous evaporation of solvent. The latter freezings can occur at temperatures which are far above the solvent glass transition temperature depending on solvent fragility, which may be a consideration in the strategies adopted by nature in preservation of plant and insect integrity in cold and arid climates. Finally we consider the slowing down which occurs in liquids with density maxima like water and SiO2 which appear to have, as their low temperature metastable limits, spinodal instabilities (with associated divergences in physical properties) in place of the usual ideal glass transitions. So far little studied for lack of tractable slow systems, these offer a new and challenging arena for relaxation studies.

  2. The kinetic activation-relaxation technique: an off-lattice, self-learning kinetic Monte Carlo algorithm with on-the-fly event search

    NASA Astrophysics Data System (ADS)

    Mousseau, Nomand

    2012-02-01

    While kinetic Monte Carlo algorithm has been proposed almost 40 years ago, its application in materials science has been mostly limited to lattice-based motion due to the difficulties associated with identifying new events and building usable catalogs when atoms moved into off-lattice position. Here, I present the kinetic activation-relaxation technique (kinetic ART) is an off-lattice, self-learning kinetic Monte Carlo algorithm with on-the-fly event search [1]. It combines ART nouveau [2], a very efficient unbiased open-ended activated method for finding transition states, with a topological classification [3] that allows a discrete cataloguing of local environments in complex systems, including disordered materials. In kinetic ART, local topologies are first identified for all atoms in a system. ART nouveau event searches are then launched for new topologies, building an extensive catalog of barriers and events. Next, all low energy events are fully reconstructed and relaxed, allowing to take complete account of elastic effects in the system's kinetics. Using standard kinetic Monte Carlo, the clock is brought forward and an event is then selected and applied before a new search for topologies is launched. In addition to presenting the various elements of the algorithm, I will discuss three recent applications to ion-bombarded silicon, defect diffusion in Fe and structural relaxation in amorphous silicon.[4pt] This work was done in collaboration with Laurent Karim B'eland, Peter Brommer, Fedwa El-Mellouhi, Jean-Francois Joly and Laurent Lewis.[4pt] [1] F. El-Mellouhi, N. Mousseau and L.J. Lewis, Phys. Rev. B. 78, 153202 (2008); L.K. B'eland et al., Phys. Rev. E 84, 046704 (2011).[2] G.T. Barkema and N. Mousseau, Phys. Rev. Lett. 77, 4358 (1996); E. Machado-Charry et al., J. Chem Phys. 135, 034102, (2011).[3] B.D. McKay, Congressus Numerantium 30, 45 (1981).

  3. Relaxant effects of NKH477, a new water-soluble forskolin derivative, on guinea-pig tracheal smooth muscle: the role of Ca2+-activated K+ channels

    PubMed Central

    Satake, K; Takagi, K; Kodama, I; Honjo, H; Toyama, J; Shibata, S

    1998-01-01

    Mechanisms underlying the bronchorelaxant action of NKH477, a newly developed water-soluble forskolin derivative, were investigated in guinea-pig isolated tracheal smooth muscle. In muscles precontracted with 3 μM histamine, NKH477 (1 nM–1 μM) caused a concentration-dependent decrease of isometric tension, resulting in a complete relaxation at 300 nM. The EC50 for the relaxation was 32.6±4.3 nM (n=6). In the presence of 30 or 90 nM iberiotoxin (IbTX), a selective blocker of the large-conductance Ca2+-activated K+ (BKCa) channel, the relaxing action of NKH477 on the histamine-induced contraction was inhibited, giving rise to a parallel shift of the concentration-response curves; the EC50 of NKH477 was increased to 131.4±20.4 nM at 30 nM IbTX (n=4), and 125.3±12.2 nM at 90 nM IbTX (n=4). Pretreatment of muscles with 30 mM tetraethylammonium (TEA) caused a similar rightward shift of the concentration-response curve to NKH477 with an increase of the EC50 to 139.8±18.4 nM (n=5). In contrast, the relaxing action of NKH477 was unaffected by 10 μM glibenclamide, an ATP-sensitive K+ channel blocker, or by 100 nM apamin, a blocker of small conductance Ca2+-activated K+ channels. In muscles pretreated with 1 μM nifedipine, a blocker of the voltage-dependent Ca2+ channel (VDC), 30–90 nM IbTX did not affect the relaxant effects of NKH477 on the histamine-induced contraction. In muscles precontracted by a K+-rich (40 mM) solution, NKH477 caused only minimal relaxation (19.8±1.7%, n=4) even at the highest concentration (1 μM). In experiments to measure the ratio of fura-2 fluorescence signals (R340/380) as an index of the intracellular Ca2+ concentration ([Ca2+]i), the application of 100 nM NKH477 or 200 nM isoprenaline to the preparation precontracted by 3 μM histamine resulted in a decrease in [Ca2+]i in association with a decrease in tension. The reduction of [Ca2+]i and tension by NKH477 was 47.0±5.6% and 62.8±7

  4. Effects of electronic relaxation processes on vibrational linewidths of adsorbates on surfaces: The case of CO/Cu(100)

    NASA Astrophysics Data System (ADS)

    Novko, D.; Alducin, M.; Blanco-Rey, M.; Juaristi, J. I.

    2016-12-01

    We investigate nonadiabatic effects for the vibrational stretch mode of the CO molecule adsorbed on the top site of the Cu(100) surface. By studying the long-wavelength (q ≈0 ) imaginary and real parts of the density functional theory based phonon self-energy due to the electron-phonon coupling Πλ we obtain the phonon linewidth and the frequency renormalization of the CO stretch mode, respectively. To simulate electronic scattering processes that lead to further damping of the phonon modes we include a phenomenological damping in the phonon self-energy, as well as in the single-electron spectral function that enters Πλ, through the momentum distribution function. For the specific case of electron-impurity scattering we explicitly show how this process opens the indirect intraband channel and broadens the linewidth of the CO stretch mode. To emphasize the importance of accounting for electronic scattering processes we compare the phonon linewidths in the clean noninteracting limit (infinite electron lifetime) and when electronic scattering processes are phenomenologically included (finite electron lifetime) with available experimental data. We find that the agreement with experiments is improved in the latter case.

  5. Lattice-level observation of the elastic-to-plastic relaxation process with subnanosecond resolution in shock-compressed Ta using time-resolved in situ Laue diffraction

    DOE PAGES

    Wehrenberg, C. E.; Comley, A. J.; Barton, N. R.; ...

    2015-09-29

    We report direct lattice level measurements of plastic relaxation kinetics through time-resolved, in-situ Laue diffraction of shock-compressed single-crystal [001] Ta at pressures of 27-210 GPa. For a 50 GPa shock, a range of shear strains is observed extending up to the uniaxial limit for early data points (<0.6 ns) and the average shear strain relaxes to a near steady state over ~1 ns. For 80 and 125 GPa shocks, the measured shear strains are fully relaxed already at 200 ps, consistent with rapid relaxation associated with the predicted threshold for homogeneous nucleation of dislocations occurring at shock pressure ~65 GPa.more » The relaxation rate and shear stresses are used to estimate the dislocation density and these quantities are compared to the Livermore Multiscale Strength model as well as various molecular dynamics simulations.« less

  6. Dielectric relaxation in a protein matrix

    SciTech Connect

    Pierce, D.W.; Boxer, S.G.

    1992-06-25

    The dielectric relaxation of a sperm whale ApoMb-DANCA complex is measured by the fluorescence dynamic Stokes shift method. Emission energy increases with decreasing temperature, suggesting that the relaxation activation energies of the rate-limiting motions either depend on the conformational substrate or different types of protein motions with different frequencies participate in the reaction. Experimental data suggest that there may be relaxations on a scale of <100 ps. 61 refs., 7 figs., 2 tabs.

  7. Vibrational relaxation in H/sub 2/ molecules by wall collisions: applications to negative ion source processes

    SciTech Connect

    Karo, A.M.; Hiskes, J.R.; Hardy, R.J.

    1984-10-01

    In the volume of a hydrogen discharge, H/sub 2/ molecules, excited to high vibrational levels (v'' > 6), are formed either by fast-electron collisions or from H/sub 2//sup +/ ions that are accelerated across the discharge-wall potential that undergo Auger neutralization prior to impact with the discharge chamber wall. We have used computer molecular dynamics to study the de-excitation and re-excitation of vibrationally-excited H/sub 2/ molecules undergoing repeated wall collisions. The initial translational energies range from thermal to 100 eV and the initial vibrational states range from v'' = 2 to v'' = 12. The average loss or gain of vibrational, rotational, translational, and total molecular energies and the survival rates of the molecules have been evaluated. At thermal energies vibrational de-excitation is the predominant process, and a consistent picture emerges of rapid energy redistribution into all the molecular degrees of freedom and a slower rate of loss of total molecular energy to the wall. At higher translational energies (1 to 100 eV) a substantial fraction of the molecules survive with large (v'' > 6) vibrational energy. This vibrational population provides a contribution to the total excited vibrational population comparable to that from the fast-electron collision process.

  8. Processing of Color Words Activates Color Representations

    ERIC Educational Resources Information Center

    Richter, Tobias; Zwaan, Rolf A.

    2009-01-01

    Two experiments were conducted to investigate whether color representations are routinely activated when color words are processed. Congruency effects of colors and color words were observed in both directions. Lexical decisions on color words were faster when preceding colors matched the color named by the word. Color-discrimination responses…

  9. Latent Period of Relaxation.

    PubMed

    Kobayashi, M; Irisawa, H

    1961-10-27

    The latent period of relaxation of molluscan myocardium due to anodal current is much longer than that of contraction. Although the rate and the grade of relaxation are intimately related to both the stimulus condition and the muscle tension, the latent period of relaxation remains constant, except when the temperature of the bathing fluid is changed.

  10. Ionic, electronic and ion-diffusion controlled relaxation processes in CaF2, BaF2 and LiBaF3 crystals

    NASA Astrophysics Data System (ADS)

    Ziraps, V.; Kulis, P.; Tale, I.; Veispals, A.

    The ionic, electronic and anion-diffusion controlled thermally stimulated relaxation (TSR) processes at 80-700 K in CaF2 BaF2 and LiBaF3 crystals (X-ray irradiated or non-irradiated) have been investigated by means of ionic conductivity, ionic thermally stimulated (TS) depolarization current (TSDC); as well as current (TSC), luminescence (TSL) and bleaching (TSB) techniques. Above 250-290 K broad and overlapping anion TSDC peaks and correlated TSB stages are detected. The TSB kinetics is initiated and controlled by anion detrapping and interaction with the localized charges, i.e., the anion-diffusion controlled TSR processes take place in fluorides. The TSL and TSC data for LiBaF3 indicate that the lifetime and drift of electrons at 80-250 K is very small because of deep retrapping. The main TSL peaks at 132K, 170K and 220 K are caused by Vk center detrapping and hole-diffusion controlled tunnel recombination within pairs like .

  11. Speech perception as an active cognitive process.

    PubMed

    Heald, Shannon L M; Nusbaum, Howard C

    2014-01-01

    One view of speech perception is that acoustic signals are transformed into representations for pattern matching to determine linguistic structure. This process can be taken as a statistical pattern-matching problem, assuming realtively stable linguistic categories are characterized by neural representations related to auditory properties of speech that can be compared to speech input. This kind of pattern matching can be termed a passive process which implies rigidity of processing with few demands on cognitive processing. An alternative view is that speech recognition, even in early stages, is an active process in which speech analysis is attentionally guided. Note that this does not mean consciously guided but that information-contingent changes in early auditory encoding can occur as a function of context and experience. Active processing assumes that attention, plasticity, and listening goals are important in considering how listeners cope with adverse circumstances that impair hearing by masking noise in the environment or hearing loss. Although theories of speech perception have begun to incorporate some active processing, they seldom treat early speech encoding as plastic and attentionally guided. Recent research has suggested that speech perception is the product of both feedforward and feedback interactions between a number of brain regions that include descending projections perhaps as far downstream as the cochlea. It is important to understand how the ambiguity of the speech signal and constraints of context dynamically determine cognitive resources recruited during perception including focused attention, learning, and working memory. Theories of speech perception need to go beyond the current corticocentric approach in order to account for the intrinsic dynamics of the auditory encoding of speech. In doing so, this may provide new insights into ways in which hearing disorders and loss may be treated either through augementation or therapy.

  12. Ultrafast Relaxation Dynamics of Photoexcited Zinc-Porphyrin: Electronic-Vibrational Coupling

    SciTech Connect

    Abraham, Baxter; Nieto-Pescador, Jesus; Gundlach, Lars

    2016-08-02

    Cyclic tetrapyrroles are the active core of compounds with crucial roles in living systems, such as hemoglobin and chlorophyll, and in technology as photocatalysts and light absorbers for solar energy conversion. Zinc-tetraphenylporphyrin (Zn-TPP) is a prototypical cyclic tetrapyrrole that has been intensely studied in past decades. Because of its importance for photochemical processes the optical properties are of particular interest, and, accordingly, numerous studies have focused on light absorption and excited-state dynamics of Zn-TPP. Relaxation after photoexcitation in the Soret band involves internal conversion that is preceded by an ultrafast process. This relaxation process has been observed by several groups. Until now, it has not been established if it involves a higher lying ”dark” state or vibrational relaxation in the excited S2 state. Here we combine high time resolution electronic and vibrational spectroscopy to show that this process constitutes vibrational relaxation in the anharmonic 2 potential.

  13. Identification of the slower secondary relaxation's nature in maltose by means of theoretical and dielectric studies

    NASA Astrophysics Data System (ADS)

    Wlodarczyk, P.; Kaminski, K.; Adrjanowicz, K.; Wojnarowska, Z.; Czarnota, B.; Paluch, M.; Ziolo, J.; Pilch, J.

    2009-09-01

    Dielectric relaxation measurements on maltose were performed at ambient and increasing pressure. The loss spectra collected below glass transition of this disaccharide revealed presence of two well separated secondary relaxations. Activation energies determined for both modes are Ea=73 kJ/mol and 47 kJ/mol for the slower (β) and faster (γ) relaxation, respectively. From high pressure measurements activation volume ΔV =15.6 ml/mol for the slower secondary relaxation was estimated. Both quantities: activation energy and activation volume for α-process derived from dielectric data, were compared to those obtained from the conformational calculations with use of density functional theory (DFT). We found out satisfactory agreement between both quantities for the molecular motion related to the rotation of the two monosaccharide units around glycosidic linkage in this disaccharide.

  14. Controlling contagion processes in activity driven networks.

    PubMed

    Liu, Suyu; Perra, Nicola; Karsai, Márton; Vespignani, Alessandro

    2014-03-21

    The vast majority of strategies aimed at controlling contagion processes on networks consider the connectivity pattern of the system either quenched or annealed. However, in the real world, many networks are highly dynamical and evolve, in time, concurrently with the contagion process. Here, we derive an analytical framework for the study of control strategies specifically devised for a class of time-varying networks, namely activity-driven networks. We develop a block variable mean-field approach that allows the derivation of the equations describing the coevolution of the contagion process and the network dynamic. We derive the critical immunization threshold and assess the effectiveness of three different control strategies. Finally, we validate the theoretical picture by simulating numerically the spreading process and control strategies in both synthetic networks and a large-scale, real-world, mobile telephone call data set.

  15. Zero-field studies of spin-lattice relaxation processes in non-Kramers doublet of LiF:Ni2+

    NASA Astrophysics Data System (ADS)

    Azamat, D. V.; Badalyan, A. G.; Dejneka, A.; Jastrabik, L.; Lančok, J.

    2016-12-01

    We use the inversion recovery technique with electron-spin-echo detection in order to study the non-resonant cross-relaxation of Ni2+-VLi with a faster relaxers—the exchange-coupled clusters of Ni2+ ions. An analysis of the results revealed a very high relaxation rate in non-Kramers doublet of LiF:Ni2+. The effect of a magnetic field on the spin-lattice relaxation of Ni2+ has estimated by comparing the results obtained for non-Kramers doublet around zero-magnetic field and for resonance at 394 mT (X-band microwave frequency).

  16. Effectiveness of a Worksite Social & Physical Environment Intervention on Need for Recovery, Physical Activity and Relaxation; Results of a Randomized Controlled Trial

    PubMed Central

    Coffeng, Jennifer K.; Boot, Cécile R. L.; Duijts, Saskia F. A.; Twisk, Jos W. R.; van Mechelen, Willem; Hendriksen, Ingrid J. M.

    2014-01-01

    Objective To investigate the effectiveness of a worksite social and physical environment intervention on need for recovery (i.e., early symptoms of work-related mental and physical fatigue), physical activity and relaxation. Also, the effectiveness of the separate interventions was investigated. Methods In this 2×2 factorial design study, 412 office employees from a financial service provider participated. Participants were allocated to the combined social and physical intervention, to the social intervention only, to the physical intervention only or to the control group. The primary outcome measure was need for recovery. Secondary outcomes were work-related stress (i.e., exhaustion, detachment and relaxation), small breaks, physical activity (i.e., stair climbing, active commuting, sport activities, light/moderate/vigorous physical activity) and sedentary behavior. Outcomes were measured by questionnaires at baseline, 6 and 12 months follow-up. Multilevel analyses were performed to investigate the effects of the three interventions. Results In all intervention groups, a non-significant reduction was found in need for recovery. In the combined intervention (n = 92), exhaustion and vigorous physical activities decreased significantly, and small breaks at work and active commuting increased significantly compared to the control group. The social intervention (n = 118) showed a significant reduction in exhaustion, sedentary behavior at work and a significant increase in small breaks at work and leisure activities. In the physical intervention (n = 96), stair climbing at work and active commuting significantly increased, and sedentary behavior at work decreased significantly compared to the control group. Conclusion None of the interventions was effective in improving the need for recovery. It is recommended to implement the social and physical intervention among a population with higher baseline values of need for recovery. Furthermore, the intervention

  17. Relaxation of liquid bridge after droplets coalescence

    NASA Astrophysics Data System (ADS)

    Zheng, Jiangen; Shi, Haiyang; Chen, Guo; Huang, Yingzhou; Wei, Hua; Wang, Shuxia; Wen, Weijia

    2016-11-01

    We investigate the relaxation of liquid bridge after the coalescence of two sessile droplets resting on an organic glass substrate both experimentally and theoretically. The liquid bridge is found to relax to its equilibrium shape via two distinct approaches: damped oscillation relaxation and underdamped relaxation. When the viscosity is low, damped oscillation shows up, in this approach, the liquid bridge undergoes a damped oscillation process until it reaches its stable shape. However, if the viscous effects become significant, underdamped relaxation occurs. In this case, the liquid bridge relaxes to its equilibrium state in a non-periodic decay mode. In depth analysis indicates that the damping rate and oscillation period of damped oscillation are related to an inertial-capillary time scale τc. These experimental results are also testified by our numerical simulations with COMSOL Multiphysics.

  18. Process for preparing active oxide powders

    DOEpatents

    Berard, Michael F.; Hunter, Jr., Orville; Shiers, Loren E.; Dole, Stephen L.; Scheidecker, Ralph W.

    1979-02-20

    An improved process for preparing active oxide powders in which cation hydroxide gels, prepared in the conventional manner are chemically dried by alternately washing the gels with a liquid organic compound having polar characteristics and a liquid organic compound having nonpolar characteristics until the mechanical water is removed from the gel. The water-free cation hydroxide is then contacted with a final liquid organic wash to remove the previous organic wash and speed drying. The dried hydroxide treated in the conventional manner will form a highly sinterable active oxide powder.

  19. "Stressing" Relaxation in the Classroom.

    ERIC Educational Resources Information Center

    Prager-Decker, Iris

    A rationale is offered for incorporating relaxation training in elementary school classroom activities. Cited are research studies which focus on the reaction of children to stressful life changes and resulting behavioral and physical disorders. A list is given of significant life events which may be factors in causing diseases or misbehavior in…

  20. Ellipsoidal Relaxation of Deformed Vesicles

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Lira, Rafael B.; Riske, Karin A.; Dimova, Rumiana; Lin, Hao

    2015-09-01

    Theoretical analysis and experimental quantification on the ellipsoidal relaxation of vesicles are presented. The current work reveals the simplicity and universal aspects of this process. The Helfrich formula is shown to apply to the dynamic relaxation of moderate-to-high tension membranes, and a closed-form solution is derived which predicts the vesicle aspect ratio as a function of time. Scattered data are unified by a time scale, which leads to a similarity behavior, governed by a distinctive solution for each vesicle type. Two separate regimes in the relaxation are identified, namely, the "entropic" and the "constant-tension" regimes. The bending rigidity and the initial membrane tension can be simultaneously extracted from the data analysis, posing the current approach as an effective means for the mechanical analysis of biomembranes.

  1. Active voltammetric microsensors with neural signal processing.

    SciTech Connect

    Vogt, M. C.

    1998-12-11

    Many industrial and environmental processes, including bioremediation, would benefit from the feedback and control information provided by a local multi-analyte chemical sensor. For most processes, such a sensor would need to be rugged enough to be placed in situ for long-term remote monitoring, and inexpensive enough to be fielded in useful numbers. The multi-analyte capability is difficult to obtain from common passive sensors, but can be provided by an active device that produces a spectrum-type response. Such new active gas microsensor technology has been developed at Argonne National Laboratory. The technology couples an electrocatalytic ceramic-metallic (cermet) microsensor with a voltammetric measurement technique and advanced neural signal processing. It has been demonstrated to be flexible, rugged, and very economical to produce and deploy. Both narrow interest detectors and wide spectrum instruments have been developed around this technology. Much of this technology's strength lies in the active measurement technique employed. The technique involves applying voltammetry to a miniature electrocatalytic cell to produce unique chemical ''signatures'' from the analytes. These signatures are processed with neural pattern recognition algorithms to identify and quantify the components in the analyte. The neural signal processing allows for innovative sampling and analysis strategies to be employed with the microsensor. In most situations, the whole response signature from the voltammogram can be used to identify, classify, and quantify an analyte, without dissecting it into component parts. This allows an instrument to be calibrated once for a specific gas or mixture of gases by simple exposure to a multi-component standard rather than by a series of individual gases. The sampled unknown analytes can vary in composition or in concentration, the calibration, sensing, and processing methods of these active voltammetric microsensors can detect, recognize, and

  2. Dielectric relaxations in partly deuterated ammonium dichromate

    NASA Astrophysics Data System (ADS)

    Gilchrist, John le G.

    1987-12-01

    Two dielectric relaxations in partly deuterated ammonium dichromate are attributed to reorientations of mixed-isotope ammonium ions. Loss peaks were observed between 20 and 40 K and obey the Arrhenius law with activation energy 1.5 kcal/mol for the stronger relaxation. The dipole moment is of the order of 0.015 D.

  3. Proteolytic Processing Regulates Placental Growth Factor Activities*

    PubMed Central

    Hoffmann, Daniel C.; Willenborg, Sebastian; Koch, Manuel; Zwolanek, Daniela; Müller, Stefan; Becker, Ann-Kathrin A.; Metzger, Stephanie; Ehrbar, Martin; Kurschat, Peter; Hellmich, Martin; Hubbell, Jeffrey A.; Eming, Sabine A.

    2013-01-01

    Placental growth factor (PlGF) is a critical mediator of blood vessel formation, yet mechanisms of its action and regulation are incompletely understood. Here we demonstrate that proteolytic processing regulates the biological activity of PlGF. Specifically, we show that plasmin processing of PlGF-2 yields a protease-resistant core fragment comprising the vascular endothelial growth factor receptor-1 binding site but lacking the carboxyl-terminal domain encoding the heparin-binding domain and an 8-amino acid peptide encoded by exon 7. We have identified plasmin cleavage sites, generated a truncated PlGF118 isoform mimicking plasmin-processed PlGF, and explored its biological function in comparison with that of PlGF-1 and -2. The angiogenic responses induced by the diverse PlGF forms were distinct. Whereas PlGF-2 increased endothelial cell chemotaxis, vascular sprouting, and granulation tissue formation upon skin injury, these activities were abrogated following plasmin digestion. Investigation of PlGF/Neuropilin-1 binding and function suggests a critical role for heparin-binding domain/Neuropilin-1 interaction and its regulation by plasmin processing. Collectively, here we provide new mechanistic insights into the regulation of PlGF-2/Neuropilin-1-mediated tissue vascularization and growth. PMID:23645683

  4. Activation of consolidation processes of alumina ceramics

    NASA Astrophysics Data System (ADS)

    Matrenin, S. V.; Zenin, B. S.; Tayukin, R. V.

    2016-02-01

    The methods for activating sintering ceramics based on Al2O3 by mechanical activation in the planetary mill, by adding in the mixture of nanopowders (NP) Al, Al2O3, and submicron powder TiO2, and by applying the technology of spark plasma sintering (SPS) are developed. It has been shown that adding the nanopowder up to 20 wt. % Al2O3 in a coarse powder α-Al2O3 activates the sintering process resulting in increased density and hardness of the sintered alumina ceramics. Substantial effect of increasing density of alumina ceramics due to adding the submicron powder TiO2 in the compound of initial powder mixtures has been established.

  5. A mixed relaxed clock model

    PubMed Central

    2016-01-01

    Over recent years, several alternative relaxed clock models have been proposed in the context of Bayesian dating. These models fall in two distinct categories: uncorrelated and autocorrelated across branches. The choice between these two classes of relaxed clocks is still an open question. More fundamentally, the true process of rate variation may have both long-term trends and short-term fluctuations, suggesting that more sophisticated clock models unfolding over multiple time scales should ultimately be developed. Here, a mixed relaxed clock model is introduced, which can be mechanistically interpreted as a rate variation process undergoing short-term fluctuations on the top of Brownian long-term trends. Statistically, this mixed clock represents an alternative solution to the problem of choosing between autocorrelated and uncorrelated relaxed clocks, by proposing instead to combine their respective merits. Fitting this model on a dataset of 105 placental mammals, using both node-dating and tip-dating approaches, suggests that the two pure clocks, Brownian and white noise, are rejected in favour of a mixed model with approximately equal contributions for its uncorrelated and autocorrelated components. The tip-dating analysis is particularly sensitive to the choice of the relaxed clock model. In this context, the classical pure Brownian relaxed clock appears to be overly rigid, leading to biases in divergence time estimation. By contrast, the use of a mixed clock leads to more recent and more reasonable estimates for the crown ages of placental orders and superorders. Altogether, the mixed clock introduced here represents a first step towards empirically more adequate models of the patterns of rate variation across phylogenetic trees. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’. PMID:27325829

  6. A mixed relaxed clock model.

    PubMed

    Lartillot, Nicolas; Phillips, Matthew J; Ronquist, Fredrik

    2016-07-19

    Over recent years, several alternative relaxed clock models have been proposed in the context of Bayesian dating. These models fall in two distinct categories: uncorrelated and autocorrelated across branches. The choice between these two classes of relaxed clocks is still an open question. More fundamentally, the true process of rate variation may have both long-term trends and short-term fluctuations, suggesting that more sophisticated clock models unfolding over multiple time scales should ultimately be developed. Here, a mixed relaxed clock model is introduced, which can be mechanistically interpreted as a rate variation process undergoing short-term fluctuations on the top of Brownian long-term trends. Statistically, this mixed clock represents an alternative solution to the problem of choosing between autocorrelated and uncorrelated relaxed clocks, by proposing instead to combine their respective merits. Fitting this model on a dataset of 105 placental mammals, using both node-dating and tip-dating approaches, suggests that the two pure clocks, Brownian and white noise, are rejected in favour of a mixed model with approximately equal contributions for its uncorrelated and autocorrelated components. The tip-dating analysis is particularly sensitive to the choice of the relaxed clock model. In this context, the classical pure Brownian relaxed clock appears to be overly rigid, leading to biases in divergence time estimation. By contrast, the use of a mixed clock leads to more recent and more reasonable estimates for the crown ages of placental orders and superorders. Altogether, the mixed clock introduced here represents a first step towards empirically more adequate models of the patterns of rate variation across phylogenetic trees.This article is part of the themed issue 'Dating species divergences using rocks and clocks'.

  7. Modeling of an Active Tablet Coating Process.

    PubMed

    Toschkoff, Gregor; Just, Sarah; Knop, Klaus; Kleinebudde, Peter; Funke, Adrian; Djuric, Dejan; Scharrer, Georg; Khinast, Johannes G

    2015-12-01

    Tablet coating is a common unit operation in the pharmaceutical industry, during which a coating layer is applied to tablet cores. The coating uniformity of tablets in a batch is especially critical for active coating, that is, coating that contains an active pharmaceutical ingredient. In recent years, discrete element method (DEM) simulations became increasingly common for investigating tablet coating. In this work, DEM was applied to model an active coating process as closely as possible, using measured model parameters and non-spherical particles. We studied how operational conditions (rotation speed, fill level, number of nozzles, and spray rate) influence the coating uniformity. To this end, simulation runs were planned and interpreted according to a statistical design of (simulation) experiments. Our general goal was to achieve a deeper understanding of the process in terms of residence times and dimensionless scaling laws. With that regard, the results were interpreted in light of analytical models. The results were presented at various detail levels, ranging from an overview of all variations to in-depth considerations. It was determined that the biggest uniformity improvement in a realistic setting was achieved by increasing the number of spray nozzles, followed by increasing the rotation speed and decreasing the fill level.

  8. Active PZT fibers: a commercial production process

    NASA Astrophysics Data System (ADS)

    Strock, Harold B.; Pascucci, Marina R.; Parish, Mark V.; Bent, Aaron A.; Shrout, Thomas R.

    1999-07-01

    Lead Zirconate Titanate (PZT) active fibers, from 80 to 250 micrometers in diameter, are produced for the AFOSR/DARPA funded Active Fiber Composites Consortium (AFCC) Program and commercial customers. CeraNova has developed a proprietary ceramics-based technology to produce PZT mono-filaments of the required purity, composition, straightness, and piezoelectric properties for use in active fiber composite structures. CeraNova's process begins with the extrusion of continuous lengths of mono-filament precursor fiber from a plasticized mix of PZT-5A powder. The care that must be taken to avoid mix contamination is described using illustrations form problems experiences with extruder wear and metallic contamination. Corrective actions are described and example microstructures are shown. The consequences of inadequate lead control are also shown. Sintered mono- filament mechanical strength and piezoelectric properties data approach bulk values but the validity of such a benchmark is questioned based on variable correlation with composite performance measures. Comb-like ceramic preform structures are shown that are being developed to minimize process and handling costs while maintaining the required mono-filament straightness necessary for composite fabrication. Lastly, actuation performance data are presented for composite structures fabricated and tested by Continuum Control Corporation. Free strain actuation in excess of 2000 microstrain are observed.

  9. Relaxation in glassforming liquids and amorphous solids

    NASA Astrophysics Data System (ADS)

    Angell, C. A.; Ngai, K. L.; McKenna, G. B.; McMillan, P. F.; Martin, S. W.

    2000-09-01

    The field of viscous liquid and glassy solid dynamics is reviewed by a process of posing the key questions that need to be answered, and then providing the best answers available to the authors and their advisors at this time. The subject is divided into four parts, three of them dealing with behavior in different domains of temperature with respect to the glass transition temperature, Tg, and a fourth dealing with "short time processes." The first part tackles the high temperature regime T>Tg, in which the system is ergodic and the evolution of the viscous liquid toward the condition at Tg is in focus. The second part deals with the regime T˜Tg, where the system is nonergodic except for very long annealing times, hence has time-dependent properties (aging and annealing). The third part discusses behavior when the system is completely frozen with respect to the primary relaxation process but in which secondary processes, particularly those responsible for "superionic" conductivity, and dopart mobility in amorphous silicon, remain active. In the fourth part we focus on the behavior of the system at the crossover between the low frequency vibrational components of the molecular motion and its high frequency relaxational components, paying particular attention to very recent developments in the short time dielectric response and the high Q mechanical response.

  10. Relaxation in glassforming liquids and amorphous solids

    SciTech Connect

    Angell, C. A.; Ngai, K. L.; McKenna, G. B.; McMillan, P. F.; Martin, S. W.

    2000-09-15

    The field of viscous liquid and glassy solid dynamics is reviewed by a process of posing the key questions that need to be answered, and then providing the best answers available to the authors and their advisors at this time. The subject is divided into four parts, three of them dealing with behavior in different domains of temperature with respect to the glass transition temperature, T{sub g}, and a fourth dealing with ''short time processes.'' The first part tackles the high temperature regime T>T{sub g}, in which the system is ergodic and the evolution of the viscous liquid toward the condition at T{sub g} is in focus. The second part deals with the regime T{approx}T{sub g}, where the system is nonergodic except for very long annealing times, hence has time-dependent properties (aging and annealing). The third part discusses behavior when the system is completely frozen with respect to the primary relaxation process but in which secondary processes, particularly those responsible for ''superionic'' conductivity, and dopart mobility in amorphous silicon, remain active. In the fourth part we focus on the behavior of the system at the crossover between the low frequency vibrational components of the molecular motion and its high frequency relaxational components, paying particular attention to very recent developments in the short time dielectric response and the high Q mechanical response. (c) 2000 American Institute of Physics.

  11. Yield stress in metallic glasses: The jamming-unjamming transition studied through Monte Carlo simulations based on the activation-relaxation technique

    SciTech Connect

    Rodney, David; Schuh, Christopher A.

    2009-11-01

    A Monte Carlo approach allowing for stress control is employed to study the yield stress of a two-dimensional metallic glass in the limit of low temperatures and long (infinite) time scales. The elementary thermally activated events are determined using the activation-relaxation technique (ART). By tracking the minimum-energy state of the glass for various applied stresses, we find a well-defined jamming-unjamming transition at a yield stress about 30% lower than the steady-state flow stress obtained in conventional strain-controlled quasistatic simulations. ART is then used to determine the evolution of the distribution of thermally activated events in the glass microstructure both below and above the yield stress. We show that aging below the yield stress increases the stability of the glass, both thermodynamically (the internal potential energy decreases) and dynamically (the aged glass is surrounded by higher-energy barriers than the initial quenched configuration). In contrast, deformation above the yield stress brings the glass into a high internal potential energy state that is only marginally stable, being surrounded by a high density of low-energy barriers. The strong influence of deformation on the glass state is also evidenced by the microstructure polarization, revealed here through an asymmetry of the distribution of thermally activated inelastic strains in glasses after simple shear deformation.

  12. PARAMAGNETIC RELAXATION IN CRYSTALS.

    DTIC Science & Technology

    CRYSTALS, PARAMAGNETIC RESONANCE, RELAXATION TIME , CRYSTAL DEFECTS, QUARTZ, GLASS, STRAIN(MECHANICS), TEMPERATURE, NUCLEAR SPINS, HYDROGEN, CALCIUM COMPOUNDS, FLUORIDES, COLOR CENTERS, PHONONS, OXYGEN.

  13. Study of dielectric relaxations of anhydrous trehalose and maltose glasses

    NASA Astrophysics Data System (ADS)

    Kwon, Hyun-Joung; Seo, Jeong-Ah; Kim, Hyung Kook; Hwang, Yoon-Hwae

    2011-01-01

    We investigated the frequency dependent dielectric relaxation behaviors of anhydrous trehalose and maltose glasses in the temperature range which covers a supercooled and glassy states. In addition to the α-, Johari-Goldstein (JG) β-, and γ-relaxations in a typical glass forming system, we observed an extra relaxation process between JG β- and γ-relaxations in the dielectric loss spectra. We found that the unknown extra relaxation is a unique property of disaccharide which might originate from the intramolecular motion of flexible glycosidic bond. We also found that the temperature dependence of the JG β-relaxation time changes at 0.95Tg and it might be universal.

  14. Prominent β-relaxations in yttrium based metallic glasses

    SciTech Connect

    Luo, P.; Lu, Z.; Zhu, Z. G.; Li, Y. Z.; Bai, H. Y.; Wang, W. H.

    2015-01-19

    Most metallic glasses (MGs) exhibit weak slow β-relaxation. We report the prominent β-relaxation in YNiAl metallic glass with a wide composition range. Compared with other MGs, the MGs show a pronounced β-relaxation peak and high β-relaxation peak temperature, and the β-relaxation behavior varies significantly with the changes of the constituent elements, which is attributed to the fluctuations of chemical interactions between the components. We demonstrate the correlation between the β-relaxation and the activation of flow units for mechanical behaviors of the MG and show that the MG is model system for studying some controversial issues in glasses.

  15. Ca2+-activated K+ channel (KCa) stimulation improves relaxant capacity of PDE5 inhibitors in human penile arteries and recovers the reduced efficacy of PDE5 inhibition in diabetic erectile dysfunction

    PubMed Central

    González-Corrochano, R; La Fuente, JM; Cuevas, P; Fernández, A; Chen, MX; Sáenz de Tejada, I; Angulo, J

    2013-01-01

    Background and Purpose We have evaluated the influence of calcium-activated potassium channels (KCa) activation on cGMP-mediated relaxation in human penile tissues from non-diabetic and diabetic patients, and on the effects of PDE5 inhibitors on erectile responses in control and diabetic rats. Experimental Approach Cavernosal tissues were collected from organ donors and from patients with erectile dysfunction (ED). Relaxations of corpus cavernosum strips (HCC) and penile resistance arteries (HPRA) obtained from these specimens were evaluated. Intracavernosal pressure (ICP) increases to cavernosal nerve electrical stimulation were determined in anaesthetized diabetic and non-diabetic rats. Key Results Concentration-dependent vasodilation to the PDE5 inhibitor, sildenafil, in HPRA was sensitive to endothelium removal, NO/cGMP pathway inhibition and KCa blockade. Accordingly, activation of KCa with NS-8 (10 μM) significantly potentiated sildenafil-induced relaxations in HPRA (EC50 0.49 ± 0.22 vs. 5.21 ± 0.63 μM). In HCC, sildenafil-induced relaxation was unaffected by KCa blockade or activation. Potentiating effects in HPRA were reproduced with an alternative PDE5 inhibitor (tadalafil) and KCa activator (NS1619) and prevented by removing the endothelium. Large-conductance KCa (BK) and intermediate-conductance KCa (IK) contribute to NS-8-induced effects and were immunodetected in human and rat penile arteries. NS-8 potentiated sildenafil-induced enhancement of erectile responses in rats. Activation of KCa recovered the impaired relaxation to sildenafil in diabetic HPRA while sildenafil completely reversed diabetes-induced ED in rats only when combined with KCa activation. Conclusions and Implications Activation of KCa improves vasodilatory capacity of PDE5 inhibitors in diabetic and non-diabetic HPRA, resulting in the recovery of erectile function in diabetic rats. These results suggest a therapeutic potential for KCa activation in diabetic ED. PMID:23441682

  16. 15 CFR 400.31 - Manufacturing and processing activity; criteria.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Manufacturing and processing activity... ZONES BOARD Manufacturing and Processing Activity-Reviews § 400.31 Manufacturing and processing activity....” When evaluating zone and subzone manufacturing and processing activity, either as proposed in...

  17. 15 CFR 400.31 - Manufacturing and processing activity; criteria.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 2 2011-01-01 2011-01-01 false Manufacturing and processing activity... ZONES BOARD Manufacturing and Processing Activity-Reviews § 400.31 Manufacturing and processing activity....” When evaluating zone and subzone manufacturing and processing activity, either as proposed in...

  18. 15 CFR 400.31 - Manufacturing and processing activity; criteria.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 2 2012-01-01 2012-01-01 false Manufacturing and processing activity... ZONES BOARD Manufacturing and Processing Activity-Reviews § 400.31 Manufacturing and processing activity....” When evaluating zone and subzone manufacturing and processing activity, either as proposed in...

  19. Two structural relaxations in protein hydration water and their dynamic crossovers.

    PubMed

    Camisasca, G; De Marzio, M; Corradini, D; Gallo, P

    2016-07-28

    We study the translational single particle dynamics of hydration water of lysozyme upon cooling by means of molecular dynamics simulations. We find that water close to the protein exhibits two distinct relaxations. By characterizing their behavior upon cooling, we are able to assign the first relaxation to the structural α-relaxation also present in bulk water and in other glass-forming liquids. The second, slower, relaxation can be ascribed to a dynamic coupling of hydration water motions to the fluctuations of the protein structure. Both relaxation times exhibit crossovers in the behavior upon cooling. For the α-process, we find upon cooling a crossover from a fragile behavior to a strong behavior at a temperature which is about five degrees higher than that of bulk water. The long-relaxation time appears strictly connected to the protein motion as it shows upon cooling a temperature crossover from a strong behavior with a lower activation energy to a strong behavior with a higher activation energy. The crossover temperature coincides with the temperature of the protein dynamical transition. These findings can help experimentalists to disentangle the different information coming from total correlators and to better characterize hydration water relaxations in different biomolecules.

  20. NS19504: A Novel BK Channel Activator with Relaxing Effect on Bladder Smooth Muscle Spontaneous Phasic Contractions

    PubMed Central

    Nausch, Bernhard; Rode, Frederik; Jørgensen, Susanne; Nardi, Antonio; Korsgaard, Mads P. G.; Hougaard, Charlotte; Bonev, Adrian D.; Brown, William D.; Dyhring, Tino; Strøbæk, Dorte; Olesen, Søren-Peter; Christophersen, Palle; Grunnet, Morten; Nelson, Mark T.

    2014-01-01

    Large-conductance Ca2+-activated K+ channels (BK, KCa1.1, MaxiK) are important regulators of urinary bladder function and may be an attractive therapeutic target in bladder disorders. In this study, we established a high-throughput fluorometric imaging plate reader–based screening assay for BK channel activators and identified a small-molecule positive modulator, NS19504 (5-[(4-bromophenyl)methyl]-1,3-thiazol-2-amine), which activated the BK channel with an EC50 value of 11.0 ± 1.4 µM. Hit validation was performed using high-throughput electrophysiology (QPatch), and further characterization was achieved in manual whole-cell and inside-out patch-clamp studies in human embryonic kidney 293 cells expressing hBK channels: NS19504 caused distinct activation from a concentration of 0.3 and 10 µM NS19504 left-shifted the voltage activation curve by 60 mV. Furthermore, whole-cell recording showed that NS19504 activated BK channels in native smooth muscle cells from guinea pig urinary bladder. In guinea pig urinary bladder strips, NS19504 (1 µM) reduced spontaneous phasic contractions, an effect that was significantly inhibited by the specific BK channel blocker iberiotoxin. In contrast, NS19504 (1 µM) only modestly inhibited nerve-evoked contractions and had no effect on contractions induced by a high K+ concentration consistent with a K+ channel–mediated action. Collectively, these results show that NS19504 is a positive modulator of BK channels and provide support for the role of BK channels in urinary bladder function. The pharmacologic profile of NS19504 indicates that this compound may have the potential to reduce nonvoiding contractions associated with spontaneous bladder overactivity while having a minimal effect on normal voiding. PMID:24951278

  1. TEACHING NEUROMUSCULAR RELAXATION.

    ERIC Educational Resources Information Center

    NORRIS, JEANNE E.; STEINHAUS, ARTHUR H.

    THIS STUDY ATTEMPTED TO FIND OUT WHETHER (1) THE METHODS FOR ATTAINING NEUROMUSCULAR RELAXATION THAT HAVE PROVED FRUITFUL IN THE ONE-TO-ONE RELATIONSHIP OF THE CLINIC CAN BE SUCCESSFULLY ADAPTED TO THE TEACHER-CLASS RELATIONSHIP OF THE CLASSROOM AND GYMNASIUM, AND (2) NEUROMUSCULAR RELAXATION CAN BE TAUGHT SUCCESSFULLY BY AN APPROPRIATELY TRAINED…

  2. Relaxation of magnetotail plasmas

    NASA Technical Reports Server (NTRS)

    Bhattacharjee, A.

    1987-01-01

    A quasi-thermodynamic model is presented for the relaxation of magnetotail plasmas during substorms, followed by quiet times. It is proposed that the plasma relaxes to a state of low-potential energy subject to a small number of global constraints. The constraints are exactly preserved by all ideal motions and, approximately, by a wide class of motions of the plasma undergoing magnetic reconnection. A variational principle which minimizes the free energy predicts the relaxed state. Exact, two-dimensional solutions of the relaxed state are obtained. A universal feature of the exact solutions is a chain of magnetic islands along the tail axis. Sufficient conditions for the stability of relaxed states are obtained from the second variation of the free-energy functional.

  3. Energy landscape of relaxed amorphous silicon

    NASA Astrophysics Data System (ADS)

    Valiquette, Francis; Mousseau, Normand

    2003-09-01

    We analyze the structure of the energy landscape of a well-relaxed 1000-atom model of amorphous silicon using the activation-relaxation technique (ART nouveau). Generating more than 40 000 events starting from a single minimum, we find that activated mechanisms are local in nature, that they are distributed uniformly throughout the model, and that the activation energy is limited by the cost of breaking one bond, independently of the complexity of the mechanism. The overall shape of the activation-energy-barrier distribution is also insensitive to the exact details of the configuration, indicating that well-relaxed configurations see essentially the same environment. These results underscore the localized nature of relaxation in this material.

  4. Enthalpy relaxation and annealing effect in polystyrene.

    PubMed

    Sakatsuji, Waki; Konishi, Takashi; Miyamoto, Yoshihisa

    2013-07-01

    The effects of thermal history on the enthalpy relaxation in polystyrene are studied by differential scanning calorimetry. The temperature dependence of the specific heat in the liquid and the glassy states, that of relaxation time, and the exponent of the Kohlrausch-Williams-Watts function are determined by measurements of the thermal response against sinusoidal temperature variation. A phenomenological model equation previously proposed to interpret the memory effect in the frozen state is applied to the enthalpy relaxation and the evolution of entropy under a given thermal history is calculated. The annealing below the glass transition temperature produces two effects on enthalpy relaxation: the decay of excess entropy with annealing time in the early stage of annealing and the increase in relaxation time due to physical aging in the later stage. The crossover of these effects is reflected in the variation of temperature of the maximum specific heat observed in the heating process after annealing and cooling.

  5. Is Relaxation Training Effective in the Treatment of Clinical Depression?

    ERIC Educational Resources Information Center

    Beaty, Lee A.

    The process of relaxation is a complex triarchic phenomenon that incorporates behavioral, cognitive, and physiological components. Existing literature is surveyed in order to determine the efficacy of treating various forms of depression with cognitive-behavioral relaxation strategies. Relaxation training has been shown to be effective in treating…

  6. Correlated activity supports efficient cortical processing

    PubMed Central

    Hung, Chou P.; Cui, Ding; Chen, Yueh-peng; Lin, Chia-pei; Levine, Matthew R.

    2015-01-01

    Visual recognition is a computational challenge that is thought to occur via efficient coding. An important concept is sparseness, a measure of coding efficiency. The prevailing view is that sparseness supports efficiency by minimizing redundancy and correlations in spiking populations. Yet, we recently reported that “choristers”, neurons that behave more similarly (have correlated stimulus preferences and spontaneous coincident spiking), carry more generalizable object information than uncorrelated neurons (“soloists”) in macaque inferior temporal (IT) cortex. The rarity of choristers (as low as 6% of IT neurons) indicates that they were likely missed in previous studies. Here, we report that correlation strength is distinct from sparseness (choristers are not simply broadly tuned neurons), that choristers are located in non-granular output layers, and that correlated activity predicts human visual search efficiency. These counterintuitive results suggest that a redundant correlational structure supports efficient processing and behavior. PMID:25610392

  7. THE EXCRETION OF CARBON DIOXIDE BY RELAXED AND CONTRACTED SEA ANEMONES

    PubMed Central

    Parker, G. H.

    1922-01-01

    1. The metabolism of the sea anemone Metridium marginatum Edw. was measured in four states, relaxed, relaxing, contracted, and contracting, by means of an Osterhout respiratory apparatus. The basis of measurement was the number of hundred-thousandths of a milligram of carbon dioxide excreted per second by a gram of living sea anemone. 2. In the relaxed state this varied from 6.1 to 4.4+ and averaged 5.43–. 3. In a comparison of the relaxed and contracted states the amount of carbon dioxide excreted was found to beabout the same; in one instance in relaxation 4.2 and in contraction 4.1+; in another in relaxation 7.8+ and 7.9– and in contraction 8.1–. 4. In a comparison of the three states relaxed, relaxing, and contracting, the first two were found to average about the same, 4.8+ and 4.6– respectively and the last proved to be appreciably higher 7.1–. 5. It is, therefore, concluded that the process of relaxing and the states of relaxation and of contraction are accompanied by no unusual metabolism, but that in the operation of contracting the metabolism becomes about half again as intense as that characteristic of the other states. 6. The maintenance of the contracted state in Metridium for days at a time without an increase of metabolism indicates that its musculature is of the type known as tonus muscle. 7. In tonus muscle, contraction is accomplished by an active shortening of the myofibrils, extension by a passive drawing out of these fibrils through the distension of the adjacent cavities, etc., and the continued maintenance of any particular state of shortening by some form of catch mechanism in the muscle, such, possibly, as the gelation of its sarcoplasm. PMID:19871978

  8. Relaxed structural property of Al nano-cluster: Theory

    NASA Astrophysics Data System (ADS)

    Diwan, Bhoopendra Dhar; Khaskalam, Amit

    2013-06-01

    In this paper we have studied the thermodynamic property of metallic Aluminium (Al) nano-clusters with relaxed structure by model approach. The relaxed cohesive energy is higher than that of the un-relaxed one due to relaxation process decreasing the total energy. It is found that cohesive energy of nano-clauster depends on the size of the clusters and increase with increasing the cluster size.

  9. Handling qualities of a wide-body transport airplane utilizing Pitch Active Control Systems (PACS) for relaxed static stability application

    NASA Technical Reports Server (NTRS)

    Grantham, William D.; Person, Lee H., Jr.; Brown, Philip W.; Becker, Lawrence E.; Hunt, George E.; Rising, J. J.; Davis, W. J.; Willey, C. S.; Weaver, W. A.; Cokeley, R.

    1985-01-01

    Piloted simulation studies have been conducted to evaluate the effectiveness of two pitch active control systems (PACS) on the flying qualities of a wide-body transport airplane when operating at negative static margins. These two pitch active control systems consisted of a simple 'near-term' PACS and a more complex 'advanced' PACS. Eight different flight conditions, representing the entire flight envelope, were evaluated with emphasis on the cruise flight conditions. These studies were made utilizing the Langley Visual/Motion Simulator (VMS) which has six degrees of freedom. The simulation tests indicated that (1) the flying qualities of the baseline aircraft (PACS off) for the cruise and other high-speed flight conditions were unacceptable at center-of-gravity positions aft of the neutral static stability point; (2) within the linear static stability flight envelope, the near-term PACS provided acceptable flying qualities for static stabilty margins to -3 percent; and (3) with the advanced PACS operative, the flying qualities were demonstrated to be good (satisfactory to very acceptable) for static stabilty margins to -20 percent.

  10. Excitation and relaxation of metastable atomic states in an active medium of a repetitively pulsed copper vapour laser

    SciTech Connect

    Bokhan, P A; Zakrevskii, D E; Lavrukhin, M A; Lyabin, N A; Chursin, A D

    2016-02-28

    The influence of a pre-pulse population of copper atom metastable states and their sub-population at a current pulse edge on the copper vapour laser pulse energy is studied under optimal temperature conditions. Experiments have been performed with active elements of a commercial laser having an internal diameter of a discharge channel of 14 and 20 mm. It is found that at a pulse repetition frequency of 12 – 14 kHz, corresponding to a maximal output power, the reduction of the energy due to a residual population of metastable states is by an order of magnitude less than due to their sub-population at a current pulse edge. The modelling based on the experimental results obtained has shown that in the case of an active element with an internal diameter of 14 mm, a decrease in the pulse leading edge from ∼25 ns to 0.6 ns does not reduce the laser pulse energy up to the repetition frequency of ∼50 kHz at an average output power of 70 W m{sup -1} and efficiency of ∼11%. (lasers)

  11. Comparative Relaxant Effects of Ataciguat and Zaprinast on Sheep Sphincter of Oddi

    PubMed Central

    Çakmak, Erol; Yönem, Özlem; Saraç, Bülent; Parlak, Mesut; Çelik, Cumali; Ataseven, Hilmi; Bağcivan, İhsan

    2016-01-01

    Background: Relaxing the sphincter of Oddi (SO) is an important process during endoscopic retrograde cholangiopancreatography (ERCP) procedures. This issue suggests that the easier the sphincterotomy and cannulation, the more post-ERCP complications decrease. Aims: To compare the relaxant effects of ataciguat (a novel soluble guanylyl cyclase activator) and zaprinast (an inhibitor of phosphodiesterase 5) on sheep SO in vitro, thus testing whether they can be used during ERCP. Study Design: Animal experimentation. Methods: Sheep SO rings were placed in tissue baths and their isometric tension to ataciguat and zaprinast were tested. We also tested their isometric tension against ataciguat in the presence of 1H-(1,2,4) oxadiazole (4,3-a) quinoxalin-1-one (ODQ) which is a soluble guanylyl cyclase inhibitor. Results: Ataciguat and zaprinast both triggered concentration addicted relaxation on sheep SO rings (p=0.0018, p=0.0025 respectively) but the relaxation of the ataciguat was significantly greater than that of zaprinast at all concentrations (p=0.0024). It was observed that decreased relaxation responses were initiated by ataciguat in the presence of ODQ (p=0.0012). Conclusion: Ataciguat and zaprinast both have relaxing effects on sphincter of Oddi, although that of zaprinast is lower. We believe that ataciguat and zaprinast can be used in ERCP procedures in order to relax the sphincter of Oddi and thus can be used locally in order to decrease complications. PMID:27606143

  12. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project-longitudinal handling qualities study of a relaxed-stability airplane

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The results of a piloted simulation of longitudinal handling qualities of an airplane with relaxed static stability are described. This task was performed under the Integrated Application of Active Controls (IAAC) Technology Project within the NASA Energy Efficient Transport Program. A representative medium range transport airplane, the Boeing Model 757, was simulated. Evaluations were made of the unaugmented airplane and of the airplane with an Essential Pitch Augmented Stability (PAS) System and with a Primary PAS System at various center of gravity (cg) conditions. Level 2 pilot ratings were attained with cg locations aft to about 57% mean aerodynamic chord (MAC) or 6% aft of the neutral point for unaugmented landing approach. For Mach = 0.80, unaugmented cruise Level 2 ratings were attained to 47% MAC or 5% forward of the maneuver point. The augmented airplane model provided handling qualities close to or within the Level 1 boundary at all cg locations for both Essential and Primary PAS. Analyses of the test conditions when compared with existing handling qualities criteria based on classical unaugmented airplane characteristics agreed well with the pilot ratings. The unaugmented results are comparable to those reported by both the Douglas Aircraft Company and Lockheed California Company from simulation investigations of transport configurations with roughly similar dimensional and mass characteristics.

  13. Relaxation techniques for stress

    MedlinePlus

    ... problems such as high blood pressure, stomachaches, headaches, anxiety, and depression. Using relaxation techniques can help you feel calm. These exercises can also help you manage stress and ease ...

  14. Antibotulinal activity of process cheese ingredients.

    PubMed

    Glass, Kathleen A; Johnson, Eric A

    2004-08-01

    Ingredients used in the manufacture of reduced-fat process cheese products were screened for their ability to inhibit growth of Clostridium botulinum serotypes A and B in media. Reinforced clostridial medium (RCM) supplemented with 0, 0.5, 1, 2, 3, 5, or 10% (wt/vol) of various ingredients, including a carbohydrate-based fat replacer, an enzyme-modified cheese (EMC) derived from a Blue cheese, sweet whey, modified whey protein, or whey protein concentrate, did not inhibit botulinal growth and toxin production when stored at 30 degrees C for 1 week. In contrast, RCM supplemented with 10% soy-based flavor enhancer, 10% Parmesan EMC, or 5 or 10% Cheddar EMC inhibited botulinal toxin production in media for at least 6 weeks of storage at 30 degrees C. Subsequent trials revealed that the antibotulinal effect varied significantly among 13 lots of EMC and that the antimicrobial effect was not correlated with the pH or water activity of the EMC.

  15. Degassing Processes at Persistently Active Explosive Volcanoes

    NASA Astrophysics Data System (ADS)

    Smekens, Jean-Francois

    Among volcanic gases, sulfur dioxide (SO2) is by far the most commonly measured. More than a monitoring proxy for volcanic degassing, SO 2 has the potential to alter climate patterns. Persistently active explosive volcanoes are characterized by short explosive bursts, which often occur at periodic intervals numerous times per day, spanning years to decades. SO 2 emissions at those volcanoes are poorly constrained, in large part because the current satellite monitoring techniques are unable to detect or quantify plumes of low concentration in the troposphere. Eruption plumes also often show high concentrations of ash and/or aerosols, which further inhibit the detection methods. In this work I focus on quantifying volcanic gas emissions at persistently active explosive volcanoes and their variations over short timescales (minutes to hours), in order to document their contribution to natural SO2 flux as well as investigate the physical processes that control their behavior. In order to make these measurements, I first develop and assemble a UV ground-based instrument, and validate it against an independently measured source of SO2 at a coal-burning power plant in Arizona. I establish a measurement protocol and demonstrate that the instrument measures SO 2 fluxes with < 20 % error. Using the same protocol, I establish a record of the degassing patterns at Semeru volcano (Indonesia), a volcano that has been producing cycles of repeated explosions with periods of minutes to hours for the past several decades. Semeru produces an average of 21-71 tons of SO2 per day, amounting to a yearly output of 8-26 Mt. Using the Semeru data, along with a 1-D transient numerical model of magma ascent, I test the validity of a model in which a viscous plug at the top of the conduit produces cycles of eruption and gas release. I find that it can be a valid hypothesis to explain the observed patterns of degassing at Semeru. Periodic behavior in such a system occurs for a very narrow range

  16. Activation of G protein-coupled estrogen receptor 1 induces coronary artery relaxation via Epac/Rap1-mediated inhibition of RhoA/Rho kinase pathway in parallel with PKA

    PubMed Central

    Yu, Xuan; Zhang, Qiao; Zhao, Yan; Schwarz, Benjamin J.; Stallone, John N.; Heaps, Cristine L.; Han, Guichun

    2017-01-01

    Previously, we reported that cAMP/PKA signaling is involved in GPER-mediated coronary relaxation by activating MLCP via inhibition of RhoA pathway. In the current study, we tested the hypothesis that activation of GPER induces coronary artery relaxation via inhibition of RhoA/Rho kinase pathway by cAMP downstream targets, exchange proteins directly activated by cAMP (Epac) as well as PKA. Our results show that Epac inhibitors, brefeldin A (BFA, 50 μM), or ESI-09 (20 μM), or CE3F4 (100 μM), all partially inhibited porcine coronary artery relaxation response to the selective GPER agonist, G-1 (0.3–3 μM); while concurrent administration of BFA and PKI (5 μM), a PKA inhibitor, almost completely blocked the relaxation effect of G-1. The Epac specific agonist, 8-CPT-2Me-cAMP (007, 1–100 μM), induced a concentration-dependent relaxation response. Furthermore, the activity of Ras-related protein 1 (Rap1) was up regulated by G-1 (1 μM) treatment of porcine coronary artery smooth muscle cells (CASMCs). Phosphorylation of vasodilator-stimulated phosphoprotein (p-VASP) was elevated by G-1 (1 μM) treatment, but not by 007 (50 μM); and the effect of G-1 on p-VASP was blocked by PKI, but not by ESI-09, an Epac antagonist. RhoA activity was similarly down regulated by G-1 and 007, whereas ESI-09 restored most of the reduced RhoA activity by G-1 treatment. Furthermore, G-1 decreased PGF2α-induced p-MYPT1, which was partially reversed with either ESI-09 or PKI; whereas, concurrent administration of ESI-09 and PKI totally prevented the inhibitory effect of G-1. The inhibitory effects of G-1 on p- MLC levels in CASMCs were mostly restored by either ESI-09 or PKI. These results demonstrate that activation of GPER induces coronary artery relaxation via concurrent inhibition of RhoA/Rho kinase by Epac/Rap1 and PKA. GPER could be a potential drug target for preventing and treating cardiovascular diseases. PMID:28278256

  17. [A study on Korean concepts of relaxation].

    PubMed

    Park, J S

    1992-01-01

    Relaxation technique is an independent nursing intervention used in various stressful situations. The concept of relaxation must be explored for the meaning given by the people in their traditional thought and philosophy. Korean relaxation technique, wanting to become culturally acceptable and effective, is learning to recognize and develop Korean concepts, experiences, and musics of relaxation. This study was aimed at discovering Korean concepts, experiences and musics of relaxation and contributing the development of the relaxation technique for Korean people. The subjects were 59 nursing students, 39 hospitalized patients, 61 housewives, 21 rural residents and 16 researchers. Data were collected from September 4th to October 24th, 1991 by interviews or questionnaires. The data analysis was done by qualitative research method, and validity assured by conformation of the concept and category by 2 nursing scientists who had written a Master's thesis on the relaxation technique. The results of the study were summarized as follows; 1. The meaning of the relaxation concept; From 298 statements, 107 concepts were extracted and then 5 categories "Physical domain", "Psychological domain", "Complex domain", "Situation", and "environment" were organized. 'Don't have discomforts, 'don't have muscle tension', 'don't have energy (him in Korean)', 'don't have activities' subcategories were included in "Physical domain". 'Don't have anxiety', 'feel good', 'emotional stability', 'don't have wordly thoughts', 'feel one's brain muddled', 'loss of desire' subcategories were included in "physical domain" 'Comfort body and mind', 'don't have tension of body and mind', 'be sagged' 'liveliness of thoughts' subcategories were included in "Complex domain". 'Rest', 'sleep', 'others' subcategories were included in "Situation domain". And 'quite environment' & 'comfortable environment' subcategories were included in "Environmental domain". 2. The experiences of the relaxation; From 151

  18. Low-temperature dielectric relaxation in ferroelectric pyridinium tetrafluoroborate

    NASA Astrophysics Data System (ADS)

    Shin, H. K.

    2015-09-01

    The dielectric behavior of polycrystalline pyridinium tetrafluoroborate, C5NH6BF4, has been investigated in detail at temperatures in the range of 120 K ≤ T ≤ 280 K and frequencies in the range of 10 Hz ≤ ν ≤ 105 Hz. The marked dielectric dispersion observed at temperatures below 205 K was analyzed by using the sum of two different relaxation processes. The temperature dependence of the relaxation time for the main one with dominant strength revealed an excellent fit to the Arrhenius equation with an activation energy E = 2702 ± 6 K and a pre-exponential factor τ0 = 2.2 × 10-11 s. The coupled reorienting motion of the pyridinium cation and the BF4 anion is suggested to account for the main process. The relaxation time for the other weak process also obeys the Arrhenius law with E = 815±14 K and τ0 = 7.9×10-5 s. The origin of the weak process is ascribed to the ferroelectric domain-wall motion.

  19. Arresting relaxation in Pickering Emulsions

    NASA Astrophysics Data System (ADS)

    Atherton, Tim; Burke, Chris

    2015-03-01

    Pickering emulsions consist of droplets of one fluid dispersed in a host fluid and stabilized by colloidal particles absorbed at the fluid-fluid interface. Everyday materials such as crude oil and food products like salad dressing are examples of these materials. Particles can stabilize non spherical droplet shapes in these emulsions through the following sequence: first, an isolated droplet is deformed, e.g. by an electric field, increasing the surface area above the equilibrium value; additional particles are then adsorbed to the interface reducing the surface tension. The droplet is then allowed to relax toward a sphere. If more particles were adsorbed than can be accommodated by the surface area of the spherical ground state, relaxation of the droplet is arrested at some non-spherical shape. Because the energetic cost of removing adsorbed colloids exceeds the interfacial driving force, these configurations can remain stable over long timescales. In this presentation, we present a computational study of the ordering present in anisotropic droplets produced through the mechanism of arrested relaxation and discuss the interplay between the geometry of the droplet, the dynamical process that produced it, and the structure of the defects observed.

  20. Slow spin relaxation in dipolar spin ice.

    NASA Astrophysics Data System (ADS)

    Orendac, Martin; Sedlakova, Lucia; Orendacova, Alzbeta; Vrabel, Peter; Feher, Alexander; Pajerowski, Daniel M.; Cohen, Justin D.; Meisel, Mark W.; Shirai, Masae; Bramwell, Steven T.

    2009-03-01

    Spin relaxation in dipolar spin ice Dy2Ti2O7 and Ho2Ti2O7 was investigated using the magnetocaloric effect and susceptibility. The magnetocaloric behavior of Dy2Ti2O7 at temperatures where the orientation of spins is governed by ``ice rules`` (T < Tice) revealed thermally activated relaxation; however, the resulting temperature dependence of the relaxation time is more complicated than anticipated by a mere extrapolation of the corresponding high temperature data [1]. A susceptibility study of Ho2Ti2O7 was performed at T > Tice and in high magnetic fields, and the results suggest a slow relaxation of spins analogous to the behavior reported in a highly polarized cooperative paramagnet [2]. [1] J. Snyder et al., Phys. Rev. Lett. 91 (2003) 107201. [2] B. G. Ueland et al., Phys. Rev. Lett. 96 (2006) 027216.

  1. Backbone dynamics of a biologically active human FGF-1 monomer, complexed to a hexasaccharide heparin-analogue, by 15N NMR relaxation methods.

    PubMed

    Canales-Mayordomo, Angeles; Fayos, Rosa; Angulo, Jesús; Ojeda, Rafael; Martín-Pastor, Manuel; Nieto, Pedro M; Martín-Lomas, Manuel; Lozano, Rosa; Giménez-Gallego, Guillermo; Jiménez-Barbero, Jesús

    2006-08-01

    The binding site and backbone dynamics of a bioactive complex formed by the acidic fibroblast growth factor (FGF-1) and a specifically designed heparin hexasaccharide has been investigated by HSQC and relaxation NMR methods. The comparison of the relaxation data for the free and bound states has allowed showing that the complex is monomeric, and still induces mutagenesis, and that the protein backbone presents reduced motion in different timescale in its bound state, except in certain points that are involved in the interaction with the fibroblast growth factor receptor (FGFR).

  2. Transient energy relaxation in scattering-assisted terahertz quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Wang, F.; Guo, X. G.; Cao, J. C.

    2017-03-01

    We adopt a self-consistent Maxwell-Bloch method to investigate the energy relaxation process from unsaturated to saturated in the scattering-assisted terahertz quantum cascade laser. In the lasing-establishment process, more nonequilibrium LO phonons are accumulated and more electrons are thermalized. At the same time, more efficient energy relaxation of the saturated situation can be found compared with the unsaturated situation. These phenomena stem from the improved electron transport efficiency across the active region, due to the lasing-induced lifetime reduction of electrons in the upper lasing subband. The simulation results are qualitatively identical with previous experimental results.

  3. Relaxation in the glass former acetylsalicylic acid studied by deuteron magnetic resonance and dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Nath, R.; El Goresy, T.; Geil, B.; Zimmermann, H.; Böhmer, R.

    2006-08-01

    Supercooled liquid and glassy acetylsalicylic acid was studied using dielectric spectroscopy and deuteron relaxometry in a wide temperature range. The supercooled liquid is characterized by major deviations from thermally activated behavior. In the glass the secondary relaxation exhibits the typical features of a Johari-Goldstein process. Via measurements of spin-lattice relaxation times the selectively deuterated methyl group was used as a sensitive probe of its local environments. There is a large difference in the mean activation energy in the glass with respect to that in crystalline acetylsalicylic acid. This can be understood by taking into account the broad energy barrier distribution in the glass.

  4. Alternating-current conductivity and dielectric relaxation of bulk iodoargentate

    SciTech Connect

    Duan, Hai-Bao Yu, Shan-Shan; Zhou, Hong

    2015-05-15

    Graphical abstract: The electric modulus shows single dielectric relaxation process in the measured frequency range. - Highlights: • The conduction mechanism is described by quantum mechanical tunneling model. • The applications of dielectric modulus give a simple method for evaluating the activation energy of the dielectric relaxation. • The [Ag{sub 2}I{sub 4}]{sup 2−}1-D chain and [Cu(en){sub 2}]{sup 2+} cation column form the layered stacks by hydrogen bond interactions. - Abstract: An inorganic-organic hybrid compound Cu(en){sub 2}Ag{sub 2}I{sub 4} (en = ethylenediamine) (1) was synthesized and single crystal structurally characterized. Along the [001] direction, the inorganic parts form an infinite 1-D chain and [Cu(en){sub 2}]{sup 2+} cations are separated by inorganic chain. The electrical conductivity and dielectric properties of 1 have been investigated over wide ranges of frequency. The alternating-current conductivities have been fitted to the Almond–West type power law expression with use of a single value of S. It is found that S values for 1 are nearly temperature-independent, which indicates that the conduction mechanism could be quantum mechanical tunneling (QMT) model. The dielectric loss and electric modulus show single dielectric relaxation process. The activation energy obtained from temperature-dependent electric modulus compare with the calculated from the dc conductivity plots.

  5. New evidence disclosed for networking in natural rubber by dielectric relaxation spectroscopy.

    PubMed

    Liu, Jie; Wu, Siwu; Tang, Zhenghai; Lin, Tengfei; Guo, Baochun; Huang, Guangsu

    2015-03-21

    Resolving the structure of natural rubber (NR) has been an important issue for a long time and essential progress has been made. It is well established that non-rubber components have significant effects on the performance of NR. A detailed discussion on the effects of proteins and phospholipids on the chain dynamics of NR will be crucial for the in-depth understanding of the role of proteins and phospholipids in NR. However, to date, there is still a lack of elaborate studies on the dielectric spectroscopy of NR. In the present study, we performed detailed dielectric relaxation analysis, together with rheological measurements, to reveal the effects of proteins and phospholipids on the chain dynamics of NR. Distinctly different from the widely accepted segmental mode (SM) and normal mode (NM), a new relaxation mode in deproteinized NR (DPNR) was identified for the first time, which cannot be found either in NR or in transesterified DPNR (TE-DPNR). Because this new mode relaxation process behaves as a thermally activated process and it is about four orders of magnitude slower than NM, it could be rationally attributed to the relaxation of the phospholipids core of DPNR, named branch mode (BM) relaxation. When further conversion of DPNR to TE-DPNR was conducted, the phospholipids were removed and BM disappeared. In addition, a new relaxation mode, which occurs at considerably lower temperature than that for SM, was revealed in TE-DPNR, and may be related to the relaxation of free mono- or di-phosphate groups at the α ends in TE-DPNR. Hence, the identification of the new relaxation modes in DPNR and TE-DPNR provide new evidence for the natural networking structure linked by protein-based ω ends and phospholipids-based α ends.

  6. Relaxation phenomena and jointing in ore bodies under explosive injection treatment

    NASA Astrophysics Data System (ADS)

    Shevchenko, YuS

    2017-02-01

    Under analysis are relaxation phenomena in ore bodies under leaching. It is shown that liquid and gas–liquid phases make these phenomena last longer, thus it is recommended to apply synergetically interconnected processes of explosive fracture of an ore block and simultaneous injection of active leaching solutions in the generated system of joints.

  7. Laboratory Activities for Developing Process Skills.

    ERIC Educational Resources Information Center

    Institute for Services to Education, Inc., Washington, DC.

    This workbook contains laboratory exercises designed for use in a college introductory biology course. Each exercise helps the student develop a basic science skill. The exercises are arranged in a hierarchical sequence suggesting the scientific method. Each skill facilitates the development of succeeding ones. Activities include Use of the…

  8. Enhancement of Paramagnetic Relaxation by Photoexcited Gold Nanorods

    PubMed Central

    Wen, Tao; Wamer, Wayne G.; Subczynski, Witold K.; Hou, Shuai; Wu, Xiaochun; Yin, Jun-Jie

    2016-01-01

    Electron spin resonance (ESR) spectroscopy was used to investigate the switchable, light-dependent effects of gold nanorods (GNRs) on paramagnetic properties of nitroxide spin probes. The photoexcited GNRs enhanced the spin-spin and spin-lattice relaxations of nitroxide spin probes. It was shown that molecular oxygen plays the key role in this process. Our results demonstrate that ESR is a powerful tool for investigating the events following photoexcitation of GNRs. The novel light-controlled effects observed for GNRs on paramagnetic properties and activities of surrounding molecules have a number of significant applications where oxygen sensing and oxygen activity is important. PMID:27071507

  9. Thermal annealing-induced electric dipole relaxation in natural alexandrite

    NASA Astrophysics Data System (ADS)

    Scalvi, Rosa M. Fernandes; Li, Maximo Siu; Scalvi, Luis V. A.

    2005-02-01

    Electrical properties of natural alexandrite (BeAl2O4:Cr3+) are investigated by the thermally stimulated depolarization current (TSDC) technique. Samples are submitted to consecutive annealing processes and TSDC is carried out after each annealing, yielding bands with different parameters. These bands are fitted by a continuous distribution of relaxation parameters: activation energy and pre-exponential factor of the Arrhenius equation. It has been observed that annealing influences the dipole relaxation behavior, since it promotes a modification of Fe3+ and Cr3+ impurity distributions on sites of distinct symmetry: Al1 and Al2. In order to have a reference for comparison, TSDC is also carried out on a synthetic alexandrite sample, where the only impurity present is Cr3+ ion.

  10. Dielectric relaxation in AC powder electroluminescent devices

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Su, Haibin; Tan, Chuan Seng; Wong, Terence Kin Shun; Teo, Ronnie Jin Wah

    2017-01-01

    The dielectric properties of AC powder electroluminescent devices were measured and analyzed using complex impedance spectroscopy to determine the relaxation processes occurring within the devices. The relaxation processes identified were ascribed to the electrode polarization caused by ion accumulation at the electrode/resin interfaces, the Maxwell-Wagner-Sillars effects at the (ZnS or BaTiO3) particle/resin interfaces, and the dipolar reorientation of polymer chains in the resin matrix. Each relaxation process was represented by its corresponding equivalent circuit component. Space charge polarization at the electrodes were represented by a Warburg element, a resistor, and a constant phase element. The resin matrix, ZnS/resin and BaTiO3/resin interfaces could each be modeled by a resistor and a capacitor in parallel. The simulated equivalent circuits for three different printed structures showed good fitting with their experimental impedance results.

  11. Ultrasonic relaxations in lanthanide phosphate glasses

    NASA Astrophysics Data System (ADS)

    Carini, G.; D'angelo, G.; Federico, M.; Tripodo, G.; Saunders, G. A.; Senin, H. B.

    1994-08-01

    The attenuation and velocity of ultrasonic waves of frequencies in the range of 10 to 90 MHz have been measured in La2O3-P2O5 and Sm2O3-P2O5 glasses with high lanthanide concentrations as a function of temperature between 1.5 and 400 K. Two distinct features characterize the attenuation behavior: (i) a plateau at temperatures below 15 K and (ii) a broad high-temperature peak. The former feature is interpreted in terms of the phonon-assisted relaxation of two-level systems and the latter by assuming the existence of a distribution of thermally activated relaxing centers. For both these mechanisms the product of the deformation potential squared and the density of relaxing particles decreases with increasing lanthanide-ion concentration. This result, taken together with previous observations of the properties of oxide glasses, provides physical insight into the microscopic origin of the relaxation effects and suggests that the source of the low- and high-temperature attenuation mechanisms is the same. At temperatures below 100 K, the sound velocity, after the subtraction of the relaxation and anharmonic contributions, follows a linear law as predicted by the soft-potential model for the relaxation of soft harmonic oscillators. An encouraging agreement is obtained between the parameters regulating this mechanism and those determined from the acoustic attenuation plateau.

  12. Modelling the Active Hearing Process in Mosquitoes

    NASA Astrophysics Data System (ADS)

    Avitabile, Daniele; Homer, Martin; Jackson, Joe; Robert, Daniel; Champneys, Alan

    2011-11-01

    A simple microscopic mechanistic model is described of the active amplification within the Johnston's organ of the mosquito species Toxorhynchites brevipalpis. The model is based on the description of the antenna as a forced-damped oscillator coupled to a set of active threads (ensembles of scolopidia) that provide an impulsive force when they twitch. This twitching is in turn controlled by channels that are opened and closed if the antennal oscillation reaches a critical amplitude. The model matches both qualitatively and quantitatively with recent experiments. New results are presented using mathematical homogenization techniques to derive a mesoscopic model as a simple oscillator with nonlinear force and damping characteristics. It is shown how the results from this new model closely resemble those from the microscopic model as the number of threads approach physiologically correct values.

  13. Capturing Cognitive Processing Time for Active Authentication

    DTIC Science & Technology

    2014-02-01

    biometrics, extracted from keystroke dynamics , as “something a user is” for active authentication. This scheme performs continual verification in the...fingerprint for continuous authentication. Its effectiveness has been verified through a large-scale dataset. 2.0 INTRODUCTION Keystroke dynamics —the...measure the similarity. A recent survey on biometric authentication using keystroke dynamics classified research papers on the basis of their

  14. Mozart versus new age music: relaxation states, stress, and ABC relaxation theory.

    PubMed

    Smith, Jonathan C; Joyce, Carol A

    2004-01-01

    Smith's (2001) Attentional Behavioral Cognitive (ABC) relaxation theory proposes that all approaches to relaxation (including music) have the potential for evoking one or more of 15 factor-analytically derived relaxation states, or "R-States" (Sleepiness, Disengagement, Rested / Refreshed, Energized, Physical Relaxation, At Ease/Peace, Joy, Mental Quiet, Childlike Innocence, Thankfulness and Love, Mystery, Awe and Wonder, Prayerfulness, Timeless/Boundless/Infinite, and Aware). The present study investigated R-States and stress symptom-patterns associated with listening to Mozart versus New Age music. Students (N = 63) were divided into three relaxation groups based on previously determined preferences. Fourteen listened to a 28-minute tape recording of Mozart's Eine Kleine Nachtmusik and 14 listened to a 28-minute tape of Steven Halpern's New Age Serenity Suite. Others (n = 35) did not want music and instead chose a set of popular recreational magazines. Participants engaged in their relaxation activity at home for three consecutive days for 28 minutes a session. Before and after each session, each person completed the Smith Relaxation States Inventory (Smith, 2001), a comprehensive questionnaire tapping 15 R-States as well as the stress states of somatic stress, worry, and negative emotion. Results revealed no differences at Session 1. At Session 2, those who listened to Mozart reported higher levels of At Ease/Peace and lower levels of Negative Emotion. Pronounced differences emerged at Session 3. Mozart listeners uniquely reported substantially higher levels of Mental Quiet, Awe and Wonder, and Mystery. Mozart listeners reported higher levels, and New Age listeners slightly elevated levels, of At Ease/Peace and Rested/Refreshed. Both Mozart and New Age listeners reported higher levels of Thankfulness and Love. In summary, those who listened to Mozart's Eine Kleine Nachtmusik reported more psychological relaxation and less stress than either those who listened to

  15. Uav Data Processing for Rapid Mapping Activities

    NASA Astrophysics Data System (ADS)

    Tampubolon, W.; Reinhardt, W.

    2015-08-01

    During disaster and emergency situations, geospatial data plays an important role to serve as a framework for decision support system. As one component of basic geospatial data, large scale topographical maps are mandatory in order to enable geospatial analysis within quite a number of societal challenges. The increasing role of geo-information in disaster management nowadays consequently needs to include geospatial aspects on its analysis. Therefore different geospatial datasets can be combined in order to produce reliable geospatial analysis especially in the context of disaster preparedness and emergency response. A very well-known issue in this context is the fast delivery of geospatial relevant data which is expressed by the term "Rapid Mapping". Unmanned Aerial Vehicle (UAV) is the rising geospatial data platform nowadays that can be attractive for modelling and monitoring the disaster area with a low cost and timely acquisition in such critical period of time. Disaster-related object extraction is of special interest for many applications. In this paper, UAV-borne data has been used for supporting rapid mapping activities in combination with high resolution airborne Interferometric Synthetic Aperture Radar (IFSAR) data. A real disaster instance from 2013 in conjunction with Mount Sinabung eruption, Northern Sumatra, Indonesia, is used as the benchmark test for the rapid mapping activities presented in this paper. On this context, the reliable IFSAR dataset from airborne data acquisition in 2011 has been used as a comparable dataset for accuracy investigation and assessment purpose in 3 D reconstructions. After all, this paper presents a proper geo-referencing and feature extraction method of UAV data to support rapid mapping activities.

  16. Processing abstract language modulates motor system activity.

    PubMed

    Glenberg, Arthur M; Sato, Marc; Cattaneo, Luigi; Riggio, Lucia; Palumbo, Daniele; Buccino, Giovanni

    2008-06-01

    Embodiment theory proposes that neural systems for perception and action are also engaged during language comprehension. Previous neuroimaging and neurophysiological studies have only been able to demonstrate modulation of action systems during comprehension of concrete language. We provide neurophysiological evidence for modulation of motor system activity during the comprehension of both concrete and abstract language. In Experiment 1, when the described direction of object transfer or information transfer (e.g., away from the reader to another) matched the literal direction of a hand movement used to make a response, speed of responding was faster than when the two directions mismatched (an action-sentence compatibility effect). In Experiment 2, we used single-pulse transcranial magnetic stimulation to study changes in the corticospinal motor pathways to hand muscles while reading the same sentences. Relative to sentences that do not describe transfer, there is greater modulation of activity in the hand muscles when reading sentences describing transfer of both concrete objects and abstract information. These findings are discussed in relation to the human mirror neuron system.

  17. Nuclear spin-lattice relaxation in nanofluids with paramagnetic impurities.

    PubMed

    Furman, Gregory B; Goren, Shaul D; Meerovich, Victor M; Sokolovsky, Vladimir L

    2015-12-01

    We study the spin-lattice relaxation of the nuclear spins in a liquid or a gas entrapped in nanosized ellipsoidal cavities with paramagnetic impurities. Two cases are considered where the major axes of cavities are in orientational order and isotropically disordered. The evolution equation and analytical expression for spin lattice relaxation time are obtained which give the dependence of the relaxation time on the structural parameters of a nanocavity and the characteristics of a gas or a liquid confined in nanocavities. For the case of orientationally ordered cavities, the relaxation process is exponential. When the nanocavities are isotropically disordered, the time dependence of the magnetization is significantly non-exponential. As shown for this case, the relaxation process is characterized by two time constants. The measurements of the relaxation time, along with the information about the cavity size, allow determining the shape and orientation of the nanocavity and concentration of the paramagnetic impurities.

  18. Process for reducing beta activity in uranium

    DOEpatents

    Briggs, Gifford G.; Kato, Takeo R.; Schonegg, Edward

    1986-10-07

    This invention is a method for lowering the beta radiation hazards associated with the casting of uranium. The method reduces the beta radiation emitted from the as-cast surfaces of uranium ingots. The method also reduces the amount of beta radiation emitters retained on the interiors of the crucibles that have been used to melt the uranium charges and which have undergone cleaning in a remote handling facility. The lowering of the radioactivity is done by scavenging the beta emitters from the molten uranium with a molten mixture containing the fluorides of magnesium and calcium. The method provides a means of collection and disposal of the beta emitters in a manner that reduces radiation exposure to operating personnel in the work area where the ingots are cast and processed.

  19. Process for reducing beta activity in uranium

    DOEpatents

    Briggs, Gifford G.; Kato, Takeo R.; Schonegg, Edward

    1986-01-01

    This invention is a method for lowering the beta radiation hazards associated with the casting of uranium. The method reduces the beta radiation emitted from the as-cast surfaces of uranium ingots. The method also reduces the amount of beta radiation emitters retained on the interiors of the crucibles that have been used to melt the uranium charges and which have undergone cleaning in a remote handling facility. The lowering of the radioactivity is done by scavenging the beta emitters from the molten uranium with a molten mixture containing the fluorides of magnesium and calcium. The method provides a means of collection and disposal of the beta emitters in a manner that reduces radiation exposure to operating personnel in the work area where the ingots are cast and processed.

  20. Process for reducing beta activity in uranium

    DOEpatents

    Briggs, G.G.; Kato, T.R.; Schonegg, E.

    1985-04-11

    This invention is a method for lowering the beta radiation hazards associated with the casting of uranium. The method reduces the beta radiation emitted from the as-cast surfaces of uranium ingots. The method also reduces the amount of beta radiation emitters retained on the interiors of the crucibles that have been used to melt the uranium charges and which undergone cleaning in a remote handling facility. The lowering of the radioactivity is done by scavenging the beta emitters from the molten uranium with a molten mixture containing the fluorides of magnesium and calcium. The method provides a means of collection and disposal of the beta emitters in a manner that reduces radiation exposure to operating personnel in the work area where the ingots are cast and processed. 5 tabs.

  1. Hair Dye and Hair Relaxers

    MedlinePlus

    ... For Consumers Consumer Information by Audience For Women Hair Dye and Hair Relaxers Share Tweet Linkedin Pin it More sharing ... products. If you have a bad reaction to hair dyes and relaxers, you should: Stop using the ...

  2. Orientational relaxations in solid (1,1,2,2)tetrachloroethane

    NASA Astrophysics Data System (ADS)

    Tripathi, P.; Mitsari, E.; Romanini, M.; Serra, P.; Tamarit, J. Ll.; Zuriaga, M.; Macovez, R.

    2016-04-01

    We employ dielectric spectroscopy and molecular dynamic simulations to investigate the dipolar dynamics in the orientationally disordered solid phase of (1,1,2,2)tetrachloroethane. Three distinct orientational dynamics are observed as separate dielectric loss features, all characterized by a simply activated temperature dependence. The slower process, associated to a glassy transition at 156 ± 1 K, corresponds to a cooperative motion by which each molecule rotates by 180° around the molecular symmetry axis through an intermediate state in which the symmetry axis is oriented roughly orthogonally to the initial and final states. Of the other two dipolar relaxations, the intermediate one is the Johari-Goldstein precursor relaxation of the cooperative dynamics, while the fastest process corresponds to an orientational fluctuation of single molecules into a higher-energy orientation. The Kirkwood correlation factor of the cooperative relaxation is of the order of one tenth, indicating that the molecular dipoles maintain on average a strong antiparallel alignment during their collective motion. These findings show that the combination of dielectric spectroscopy and molecular simulations allows studying in great detail the orientational dynamics in molecular solids.

  3. The mechanics of mouse skeletal muscle when shortening during relaxation.

    PubMed

    Barclay, C J; Lichtwark, G A

    2007-01-01

    The dynamic properties of relaxing skeletal muscle have not been well characterised but are important for understanding muscle function during terrestrial locomotion, during which a considerable fraction of muscle work output can be produced during relaxation. The purpose of this study was to characterise the force-velocity properties of mouse skeletal muscle during relaxation. Experiments were performed in vitro (21 degrees C) using bundles of fibres from mouse soleus and EDL muscles. Isovelocity shortening was applied to muscles during relaxation following short tetanic contractions. Using data from different contractions with different shortening velocities, curves relating force output to shortening velocity were constructed at intervals during relaxation. The velocity component included contributions from shortening of both series elastic component (SEC) and contractile component (CC) because force output was not constant. Early in relaxation force-velocity relationships were linear but became progressively more curved as relaxation progressed. Force-velocity curves late in relaxation had the same curvature as those for the CC in fully activated muscles but V(max) was reduced to approximately 50% of the value in fully activated muscles. These results were the same for slow- and fast-twitch muscles and for relaxation following maximal tetani and brief, sub-maximal tetani. The measured series elastic compliance was used to partition shortening velocity between SEC and CC. The curvature of the CC force-velocity relationship was constant during relaxation. The SEC accounted for most of the shortening and work output during relaxation and its power output during relaxation exceeded the maximum CC power output. It is proposed that unloading the CC, without any change in its overall length, accelerated cross-bridge detachment when shortening was applied during relaxation.

  4. A Comparison of Relaxation Strategies.

    ERIC Educational Resources Information Center

    Matthews, Doris B.

    Some researchers argue that all relaxation techniques produce a single relaxation response while others support a specific-effects hypothesis which suggests that progressive relaxation affects the musculoskeletal system and that guided imagery affects cognitive changes. Autogenics is considered a technique which is both somatic and cognitive. This…

  5. Relaxation from particle production

    NASA Astrophysics Data System (ADS)

    Hook, Anson; Marques-Tavares, Gustavo

    2016-12-01

    We consider using particle production as a friction force by which to implement a "Relaxion" solution to the electroweak hierarchy problem. Using this approach, we are able to avoid superplanckian field excursions and avoid any conflict with the strong CP problem. The relaxation mechanism can work before, during or after inflation allowing for inflationary dynamics to play an important role or to be completely decoupled.

  6. 43 CFR 3420.3 - Activity planning: The leasing process.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Activity planning: The leasing process... LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) COMPETITIVE LEASING Competitive Leasing § 3420.3 Activity planning: The leasing process....

  7. 43 CFR 3420.3 - Activity planning: The leasing process.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Activity planning: The leasing process... LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) COMPETITIVE LEASING Competitive Leasing § 3420.3 Activity planning: The leasing process....

  8. 43 CFR 3420.3 - Activity planning: The leasing process.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Activity planning: The leasing process... LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) COMPETITIVE LEASING Competitive Leasing § 3420.3 Activity planning: The leasing process....

  9. 12 CFR 211.604 - Data processing activities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 2 2013-01-01 2013-01-01 false Data processing activities. 211.604 Section 211... processing activities under Regulation K (12 CFR part 211). This question has arisen as a result of the fact... authority in Regulation K was somewhat broader than that permissible in the United States under Regulation...

  10. 12 CFR 211.604 - Data processing activities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 2 2011-01-01 2011-01-01 false Data processing activities. 211.604 Section 211... processing activities under Regulation K (12 CFR part 211). This question has arisen as a result of the fact... authority in Regulation K was somewhat broader than that permissible in the United States under Regulation...

  11. 12 CFR 211.604 - Data processing activities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 2 2014-01-01 2014-01-01 false Data processing activities. 211.604 Section 211... processing activities under Regulation K (12 CFR part 211). This question has arisen as a result of the fact... authority in Regulation K was somewhat broader than that permissible in the United States under Regulation...

  12. 12 CFR 211.604 - Data processing activities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 2 2012-01-01 2012-01-01 false Data processing activities. 211.604 Section 211... processing activities under Regulation K (12 CFR part 211). This question has arisen as a result of the fact... authority in Regulation K was somewhat broader than that permissible in the United States under Regulation...

  13. 12 CFR 211.604 - Data processing activities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 2 2010-01-01 2010-01-01 false Data processing activities. 211.604 Section 211... processing activities under Regulation K (12 CFR part 211). This question has arisen as a result of the fact... authority in Regulation K was somewhat broader than that permissible in the United States under Regulation...

  14. 43 CFR 3420.3 - Activity planning: The leasing process.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Activity planning: The leasing process... LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) COMPETITIVE LEASING Competitive Leasing § 3420.3 Activity planning: The leasing process....

  15. Influence of microstructure on thermal relaxation in nanocrystalline soft magnetic materials

    SciTech Connect

    LoBue, M.; Basso, V.; Beatrice, C.; Tiberto, P.; Bertotti, G.

    2001-06-01

    The interplay between activation volumes and microstructure is investigated in nanocrystalline Fe{sub 73.5}Cu{sub 1}Nb{sub 3}Si{sub 13.5}B{sub 9} (Finemet) alloys. Experiments are performed beyond the Curie point of the amorphous matrix, where relaxation effects are relevant. Measurements are analyzed within a theoretical framework where hysteresis and relaxation phenomena are jointly described. In highly crystallized samples magnetization processes are characterized by a unique length scale. In poorly crystallized samples the system behavior is controlled by a distribution of characteristic volumes related to structural disorder. {copyright} 2001 American Institute of Physics.

  16. Measurement of action spectra of light-activated processes

    NASA Astrophysics Data System (ADS)

    Ross, Justin; Zvyagin, Andrei V.; Heckenberg, Norman R.; Upcroft, Jacqui; Upcroft, Peter; Rubinsztein-Dunlop, Halina H.

    2006-01-01

    We report on a new experimental technique suitable for measurement of light-activated processes, such as fluorophore transport. The usefulness of this technique is derived from its capacity to decouple the imaging and activation processes, allowing fluorescent imaging of fluorophore transport at a convenient activation wavelength. We demonstrate the efficiency of this new technique in determination of the action spectrum of the light mediated transport of rhodamine 123 into the parasitic protozoan Giardia duodenalis.

  17. Speech Perception as a Cognitive Process: The Interactive Activation Model.

    DTIC Science & Technology

    1983-04-01

    one another in COHORT, the nodes for sell, your, light, and cellulite , wil all bc in active competition with one another. The system will have no way...7 AD-AI28 787 SPEECH PERCEPTION AS A COGNITIVE PROCESS: THE INTERACTIVE ACTIVATION MODE..(U) CALIFORNIA UNIV SAN D IEGO LA dOLLA INST FOR COGNITIVE...TYPE OF REPORT & PERIOD COVERED Speech Perception as a Cognitive Process: Technical Report The Interactive Activation Model S. PERFORMING ORG. REPORT

  18. Secondary relaxations in supercooled and glassy sucrose-borate aqueous solutions.

    PubMed

    Longinotti, M Paula; Corti, Horacio R; Pablo, Juan J de

    2008-10-13

    The dielectric relaxation spectra of concentrated aqueous solutions of sucrose-borate mixtures have been measured in the supercooled and glassy regions in the frequency range of 40Hz to 2MHz. The secondary (beta) relaxation process was analyzed in the temperature range 183-233K at water contents between 20 and 30wt%. The relaxation times were obtained, and the activation energy of that process was calculated. In order to assess the effect of borate on the relaxation of disaccharide-water mixtures, we also studied the dielectric behavior of sucrose aqueous solutions in the same range of temperatures and water contents. Our findings support the view that, beyond a water content of approximately 20wt%, the secondary relaxation of water-sucrose and water-sucrose-borate mixtures adopts a universal character that can be explained in terms of a simple exponential function of the temperature scaled by the glass transition temperature (T(g)). The behavior observed for water-sucrose and water-sucrose-borate mixtures is compared with previous results obtained in other water-carbohydrate systems.

  19. Different Head Environments in Tarantula Thick Filaments Support a Cooperative Activation Process

    PubMed Central

    Sulbarán, Guidenn; Biasutto, Antonio; Alamo, Lorenzo; Riggs, Claire; Pinto, Antonio; Méndez, Franklin; Craig, Roger; Padrón, Raúl

    2013-01-01

    Myosin filaments from many muscles are activated by phosphorylation of their regulatory light chains (RLCs). Structural analysis of relaxed tarantula thick filaments shows that the RLCs of the interacting free and blocked myosin heads are in different environments. This and other data suggested a phosphorylation mechanism in which Ser-35 of the free head is exposed and constitutively phosphorylated by protein kinase C, whereas the blocked head is hidden and unphosphorylated; on activation, myosin light chain kinase phosphorylates the monophosphorylated free head followed by the unphosphorylated blocked head, both at Ser-45. Our goal was to test this model of phosphorylation. Mass spectrometry of quickly frozen, intact muscles showed that only Ser-35 was phosphorylated in the relaxed state. The location of this constitutively phosphorylated Ser-35 was analyzed by immunofluorescence, using antibodies specific for unphosphorylated or phosphorylated Ser-35. In the relaxed state, myofibrils were labeled by anti-pSer-35 but not by anti-Ser-35, whereas in rigor, labeling was similar with both. This suggests that only pSer-35 is exposed in the relaxed state, while in rigor, Ser-35 is also exposed. In the interacting-head motif of relaxed filaments, only the free head RLCs are exposed, suggesting that the constitutive pSer-35 is on the free heads, consistent with the proposed mechanism. PMID:24209856

  20. Relaxation Criteria for Iterated Traffic Simulations

    NASA Astrophysics Data System (ADS)

    Kelly, Terence; Nagel, Kai

    Iterative transportation microsimulations adjust traveler route plans by iterating between a microsimulation and a route planner. At each iteration, the route planner adjusts individuals' route choices based on the preceding microsimulations. Empirically, this process yields good results, but it is usually unclear when to stop the iterative process when modeling real-world traffic. This paper investigates several criteria to judge relaxation of the iterative process, emphasizing criteria related to traveler decision-making.

  1. Synthetic aperture radar autofocus via semidefinite relaxation.

    PubMed

    Liu, Kuang-Hung; Wiesel, Ami; Munson, David C

    2013-06-01

    The autofocus problem in synthetic aperture radar imaging amounts to estimating unknown phase errors caused by unknown platform or target motion. At the heart of three state-of-the-art autofocus algorithms, namely, phase gradient autofocus, multichannel autofocus (MCA), and Fourier-domain multichannel autofocus (FMCA), is the solution of a constant modulus quadratic program (CMQP). Currently, these algorithms solve a CMQP by using an eigenvalue relaxation approach. We propose an alternative relaxation approach based on semidefinite programming, which has recently attracted considerable attention in other signal processing problems. Experimental results show that our proposed methods provide promising performance improvements for MCA and FMCA through an increase in computational complexity.

  2. Relaxation/Covert Rehearsal for Problematic Children.

    ERIC Educational Resources Information Center

    Fling, Sheila; McKenzie, Patricia

    A study was conducted to determine whether group relaxation training combined with guided fantasy as a method of covert cognitive rehearsal would be more effective than story-listening or no special treatment in enabling "problematic" children to decrease muscle tension, activity level, and behavior problems and to increase academic performance…

  3. Dielectric relaxation characteristics of muscovite mica

    NASA Astrophysics Data System (ADS)

    Kaur, Navjeet; Singh, Lakhwant; Singh, Mohan; Awasthi, A. M.; Kumar, Jitender

    2014-04-01

    In the present work, the dielectric relaxation phenomenon in muscovite mica has been studied over the frequency range 0.1 Hz-10 MHz and in the temperature range of 653-853K, using the dielectric permittivity, electric modulus and conductivity formalisms. The values of the activation energy obtained from electric modulus and conductivity data are found to be nearly similar, suggesting that same types of charge carriers are involved in the relaxation mechanism. This type of study will explore the potential of this material for various applications in electrical engineering.

  4. Review of Theoretical Prediction Models for Organic Extract Metabolites, Effect of Drying Temperature on Smooth Muscle Relaxing Activity Induced by Organic Extracts Specially Cecropia Obtusifolia Portal and Web Server Predictors of Drug-Protein Interaction.

    PubMed

    Aguirre-Crespo, Francisco; García-Mera, Xerardo; Guillén-Poot, Mónica Anahi; May-Díaz, Héctor Fernado; Tun-Suárez, Adrián; Aguirre-Crespo, A; Hernández-Rodríguez, J; Vergara-Galicia, Jorge; Rodríguez-López, V; Prado-Prado, Francisco J

    2015-02-19

    Cecropia obtusifolia bertol is medicinal specie used in the treatment of diabetes mellitus and hypertension and it has scientific studies that support the traditional use. However, it is required to understand the influence of drying temperature on the yield and pharmacological activity. Drying rate, extraction efficiency, changes in the UV-Vis spectrum and estimating chlorophylls were stimulated with the increasing temperature. Finally, relaxant activity of vascular smooth muscle is increased by 70ºC and reducing ability by the method of CARF increases with temperature. Analytical studies are required to identify changes in the metabolic content and those that ensure the safety and efficacy for human consumption. In this sense, bioinformatic studies may be helpful. Studies such as QSAR can help us to study these metabolites derived from natural products. MIND-BETS model and NL MIND-BETS model to predict DPIs was introduced using MARCH-INSIDE (MI) software to calculate structural parameters for drugs and enzymes respectively. We firstly revised the state-of-art on the design with review of previous works with hypertension activity based on theoretical studies. A study, evaluating the effect of drying temperature of leaves of C. obtusifolia on the relaxing of vascular smooth muscle, antioxidant activity and the presence of chlorophylls, with a focus on Cecropia metabolites. Last, we carried out QSAR studies using MIND-BEST and NL MIND-BEST web servers in order to understand the essential metabolites structural requirement for binding with receptors for FDA proteins.

  5. Convex relaxations for gas expansion planning

    SciTech Connect

    Borraz-Sanchez, Conrado; Bent, Russell Whitford; Backhaus, Scott N.; Hijazi, Hassan; Van Hentenryck, Pascal

    2016-01-01

    Expansion of natural gas networks is a critical process involving substantial capital expenditures with complex decision-support requirements. Here, given the non-convex nature of gas transmission constraints, global optimality and infeasibility guarantees can only be offered by global optimisation approaches. Unfortunately, state-of-the-art global optimisation solvers are unable to scale up to real-world size instances. In this study, we present a convex mixed-integer second-order cone relaxation for the gas expansion planning problem under steady-state conditions. The underlying model offers tight lower bounds with high computational efficiency. In addition, the optimal solution of the relaxation can often be used to derive high-quality solutions to the original problem, leading to provably tight optimality gaps and, in some cases, global optimal solutions. The convex relaxation is based on a few key ideas, including the introduction of flux direction variables, exact McCormick relaxations, on/off constraints, and integer cuts. Numerical experiments are conducted on the traditional Belgian gas network, as well as other real larger networks. The results demonstrate both the accuracy and computational speed of the relaxation and its ability to produce high-quality solution

  6. Doppler effect induced spin relaxation boom

    NASA Astrophysics Data System (ADS)

    Zhao, Xinyu; Huang, Peihao; Hu, Xuedong

    2016-03-01

    We study an electron spin qubit confined in a moving quantum dot (QD), with our attention on both spin relaxation, and the product of spin relaxation, the emitted phonons. We find that Doppler effect leads to several interesting phenomena. In particular, spin relaxation rate peaks when the QD motion is in the transonic regime, which we term a spin relaxation boom in analogy to the classical sonic boom. This peak indicates that a moving spin qubit may have even lower relaxation rate than a static qubit, pointing at the possibility of coherence-preserving transport for a spin qubit. We also find that the emitted phonons become strongly directional and narrow in their frequency range as the qubit reaches the supersonic regime, similar to Cherenkov radiation. In other words, fast moving excited spin qubits can act as a source of non-classical phonons. Compared to classical Cherenkov radiation, we show that quantum dot confinement produces a small but important correction on the Cherenkov angle. Taking together, these results have important implications to both spin-based quantum information processing and coherent phonon dynamics in semiconductor nanostructures.

  7. Doppler effect induced spin relaxation boom.

    PubMed

    Zhao, Xinyu; Huang, Peihao; Hu, Xuedong

    2016-03-21

    We study an electron spin qubit confined in a moving quantum dot (QD), with our attention on both spin relaxation, and the product of spin relaxation, the emitted phonons. We find that Doppler effect leads to several interesting phenomena. In particular, spin relaxation rate peaks when the QD motion is in the transonic regime, which we term a spin relaxation boom in analogy to the classical sonic boom. This peak indicates that a moving spin qubit may have even lower relaxation rate than a static qubit, pointing at the possibility of coherence-preserving transport for a spin qubit. We also find that the emitted phonons become strongly directional and narrow in their frequency range as the qubit reaches the supersonic regime, similar to Cherenkov radiation. In other words, fast moving excited spin qubits can act as a source of non-classical phonons. Compared to classical Cherenkov radiation, we show that quantum dot confinement produces a small but important correction on the Cherenkov angle. Taking together, these results have important implications to both spin-based quantum information processing and coherent phonon dynamics in semiconductor nanostructures.

  8. Doppler effect induced spin relaxation boom

    PubMed Central

    Zhao, Xinyu; Huang, Peihao; Hu, Xuedong

    2016-01-01

    We study an electron spin qubit confined in a moving quantum dot (QD), with our attention on both spin relaxation, and the product of spin relaxation, the emitted phonons. We find that Doppler effect leads to several interesting phenomena. In particular, spin relaxation rate peaks when the QD motion is in the transonic regime, which we term a spin relaxation boom in analogy to the classical sonic boom. This peak indicates that a moving spin qubit may have even lower relaxation rate than a static qubit, pointing at the possibility of coherence-preserving transport for a spin qubit. We also find that the emitted phonons become strongly directional and narrow in their frequency range as the qubit reaches the supersonic regime, similar to Cherenkov radiation. In other words, fast moving excited spin qubits can act as a source of non-classical phonons. Compared to classical Cherenkov radiation, we show that quantum dot confinement produces a small but important correction on the Cherenkov angle. Taking together, these results have important implications to both spin-based quantum information processing and coherent phonon dynamics in semiconductor nanostructures. PMID:26996253

  9. Convex relaxations for gas expansion planning

    DOE PAGES

    Borraz-Sanchez, Conrado; Bent, Russell Whitford; Backhaus, Scott N.; ...

    2016-01-01

    Expansion of natural gas networks is a critical process involving substantial capital expenditures with complex decision-support requirements. Here, given the non-convex nature of gas transmission constraints, global optimality and infeasibility guarantees can only be offered by global optimisation approaches. Unfortunately, state-of-the-art global optimisation solvers are unable to scale up to real-world size instances. In this study, we present a convex mixed-integer second-order cone relaxation for the gas expansion planning problem under steady-state conditions. The underlying model offers tight lower bounds with high computational efficiency. In addition, the optimal solution of the relaxation can often be used to derive high-quality solutionsmore » to the original problem, leading to provably tight optimality gaps and, in some cases, global optimal solutions. The convex relaxation is based on a few key ideas, including the introduction of flux direction variables, exact McCormick relaxations, on/off constraints, and integer cuts. Numerical experiments are conducted on the traditional Belgian gas network, as well as other real larger networks. The results demonstrate both the accuracy and computational speed of the relaxation and its ability to produce high-quality solution« less

  10. Evaluation of Multiple Component Relaxation Training with Developmentally Disabled Persons.

    ERIC Educational Resources Information Center

    Calamari, John E.; And Others

    1987-01-01

    A specific progressive muscle relaxation training procedure was combined with auditory electromyographic (EMG) biofeedback, modeling, and reinforcement procedures to teach relaxation skills to 32 mentally retarded adults. The procedure was effective in reducing subjects' EMG levels and activity levels. Intellectual and adaptive behavior levels…

  11. Grain growth and structural relaxation of nanocrystalline Bi₂Te₃

    SciTech Connect

    Humphry-Baker, Samuel A.; Schuh, Christopher A.

    2014-10-21

    Recovery and grain growth behavior is investigated systematically for the nanocrystalline thermoelectric compound bismuth telluride, synthesized by mechanical alloying. During annealing treatments at elevated temperatures, structural evolution is tracked using x-ray diffraction, electron microscopy and calorimetry. Below a homologous temperature of about 0.6T{sub m}, grain growth occurs slowly with an activation energy of 89 kJ/mol. However above this temperature grain growth becomes more rampant with an activation energy of 242 kJ/mol. The transition is attributed to a shift from a relaxation or recovery process that includes some reordering of the grain boundary structure, to a more conventional diffusionally-limited grain growth process. By extrapolating the measured grain growth and microstrain evolution kinetics, a thermal budget map is constructed, permitting recommendations for improving the thermoelectric properties of nanocrystalline materials processed via a powder route.

  12. Process of activation of a palladium catalyst system

    SciTech Connect

    Sobolevskiy, Anatoly; Rossin, Joseph A.; Knapke, Michael J.

    2011-08-02

    Improved processes for activating a catalyst system used for the reduction of nitrogen oxides are provided. In one embodiment, the catalyst system is activated by passing an activation gas stream having an amount of each of oxygen, water vapor, nitrogen oxides, and hydrogen over the catalyst system and increasing a temperature of the catalyst system to a temperature of at least 180.degree. C. at a heating rate of from 1-20.degree./min. Use of activation processes described herein leads to a catalyst system with superior NOx reduction capabilities.

  13. Progressive muscle relaxation, yoga stretching, and ABC relaxation theory.

    PubMed

    Ghoncheh, Shahyad; Smith, Jonathan C

    2004-01-01

    This study compared the psychological effects of progressive muscle relaxation (PMR) and yoga stretching (hatha) exercises. Forty participants were randomly divided into two groups and taught PMR or yoga stretching exercises. Both groups practiced once a week for five weeks and were given the Smith Relaxation States Inventory before and after each session. As hypothesized, practitioners of PMR displayed higher levels of relaxation states (R-States) Physical Relaxation and Disengagement at Week 4 and higher levels of Mental Quiet and Joy as a posttraining aftereffect at Week 5. Contrary to what was hypothesized, groups did not display different levels of R-States Energized or Aware. Results suggest the value of supplementing traditional somatic conceptualizations of relaxation with the psychological approach embodied in ABC relaxation theory. Clinical and research implications are discussed.

  14. Metastability and relaxation in tensile SiGe on Ge(001) virtual substrates

    SciTech Connect

    Frigerio, Jacopo; Lodari, Mario; Chrastina, Daniel Mondiali, Valeria; Isella, Giovanni; Bollani, Monica

    2014-09-21

    We systematically study the heteroepitaxy of SiGe alloys on Ge virtual substrates in order to understand strain relaxation processes and maximize the tensile strain in the SiGe layer. The degree of relaxation is measured by high-resolution x-ray diffraction, and surface morphology is characterized by atomic force microscopy. The results are analyzed in terms of a numerical model, which considers dislocation nucleation, multiplication, thermally activated glide, and strain-dependent blocking. Relaxation is found to be sensitive to growth rate and substrate temperature as well as epilayer misfit and thickness, and growth parameters are found which allow a SiGe film with over 4 GPa of tensile stress to be obtained.

  15. Competition between ultrafast relaxation and photoionization in excited prefluorescent states of tryptophan and indole

    NASA Astrophysics Data System (ADS)

    Sherin, P. S.; Snytnikova, O. A.; Tsentalovich, Yu. P.; Sagdeev, R. Z.

    2006-10-01

    The quantum yield of photoionization of TrpH and IndH from the nonrelaxed prefluorescent state S* increases with the temperature decrease. This effect is attributed to the competition between temperature independent ionization and ultrafast thermal relaxation S*→S1. The rate constant of the relaxation does not depend on the solvent and on the presence of the amino acid side chain: the temperature dependences of photoionization quantum yield, obtained for TrpH and IndH in different solvents, practically coincide. The activation energy for the relaxation rate constant Er≈4.5kJ/mol probably corresponds to intramolecular process or to the formation of the vibronically excited transient complex between photoexcited molecule and solvent molecules.

  16. A Investigation Into the Relaxation Behavior of Pharmaceutical Film Coatings.

    NASA Astrophysics Data System (ADS)

    Sinko, Christopher Michael

    Polymeric materials utilized as film coatings exhibit many different time dependent relaxations which can yield relevant information regarding their use. In this dissertation research, the effect of additives on the primary relaxation behavior and the effect of physical aging, a relaxation to the lowest free energy state, on the physical properties of glassy polymeric materials was investigated. Glassy polymeric materials were chosen in this study since they are widely utilized in the pharmaceutical industry. The observation of the aging process using a creep compliance technique was confirmed with polystyrene, a material whose aging behavior has been well studied. Results from both hydroxypropyl methylcellulose phthalate, HP-55, and cellulose acetate indicate that these materials physically age in their sub-Tg temperature ranges. The mechanical data in both cases was successfully fit to a model which describes the relaxation behavior of condensed amorphous materials. The aging time and temperature dependence of key parameters from this model show that physical aging is thermally activated and thermoreversible. Aging time and temperature dependent reductions in the water permeability of cellulose acetate were observed. The reductions were correlated with calculations, based on the mechanical property changes, which describe the aging -induced relaxation of the glass. These results indicate that a structural change due to aging may be responsible for the observed reductions in water mobility in cellulose acetate. The dissolution rate of HP-55 was found to decrease to a limiting rate when physically aged. Mechanical measurements performed on film samples which were subjected to the same thermal history utilized in the dissolution experiments confirmed the observed aging effect. The effect of the addition of the plasticizers dibutyl phthalate and polyethylene glycol 200 on the primary relaxation behavior of Eudragit S100, an enteric coating, was also evaluated in this

  17. Magnetic relaxations in a Tb-based single molecule magnet studied by quasielastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Kofu, Maiko; Kajiwara, Takashi; Gardner, Jason S.; Simeoni, Giovanna G.; Tyagi, Madhusudan; Faraone, Antonio; Nakajima, Kenji; Ohira-Kawamura, Seiko; Nakano, Motohiro; Yamamuro, Osamu

    2013-12-01

    By using ac magnetic susceptibility and quasielatic neutron scattering (QENS) techniques, we have investigated a magnetization relaxation phenomenon of a rare-earth based single molecule magnet, TbCuC19H20N3O16. We clearly identified and characterized two magnetic relaxations. The slower relaxation observed in the ac susceptibility is at the ms timescale around T=2 K and its activation energy is 16 K. On the other hand, the faster relaxation in the QENS measurements occurs on the timescale between ns and ps with activation energy of 174 K. The slower relaxation may occur through thermally activated tunneling among magnetic substates. We discuss two possible origins for the faster relaxation; one is a thermally activated tunneling between the higher excited states, the other is the magnetic relaxation coupled with the motion of ligands around the magnetic ions. This is the first clear observation of magnetic relaxation on the single molecule magnet revealed by QENS.

  18. Hold My Calls: An Activity for Introducing the Statistical Process

    ERIC Educational Resources Information Center

    Abel, Todd; Poling, Lisa

    2015-01-01

    Working with practicing teachers, this article demonstrates, through the facilitation of a statistical activity, how to introduce and investigate the unique qualities of the statistical process including: formulate a question, collect data, analyze data, and interpret data.

  19. Evaluation of Control Parameters for the Activated Sludge Process

    ERIC Educational Resources Information Center

    Stall, T. Ray; Sherrard, Josephy H.

    1978-01-01

    An evaluation of the use of the parameters currently being used to design and operate the activated sludge process is presented. The advantages and disadvantages for the use of each parameter are discussed. (MR)

  20. Relaxing music for anxiety control.

    PubMed

    Elliott, Dave; Polman, Remco; McGregor, Richard

    2011-01-01

    The purpose of this investigation was to determine the characteristics of relaxing music for anxiety control. Undergraduate students (N=84) were instructed to imagine themselves in an anxiety producing situation while listening to a selection of 30 music compositions. For each composition, level of relaxation, the factors that either enhanced or detracted from its relaxing potential and the emotional labels attached were assessed. Participants were also asked to state which music components (e.g., tempo, melody) were most conducive to relaxation. Additional information was obtained through the use of a focus group of 6 undergraduate music students. This paper presents details on the characteristics of relaxing-music for anxiety control and emotional labels attached to the relaxing compositions. Furthermore, an importance value has been attached to each of the music components under scrutiny, thus providing an indication of which music components should receive greatest attention when selecting music for anxiety control.

  1. Ultrafast Relaxation Dynamics of Photoexcited Zinc-Porphyrin: Electronic-Vibrational Coupling

    DOE PAGES

    Abraham, Baxter; Nieto-Pescador, Jesus; Gundlach, Lars

    2016-08-02

    Cyclic tetrapyrroles are the active core of compounds with crucial roles in living systems, such as hemoglobin and chlorophyll, and in technology as photocatalysts and light absorbers for solar energy conversion. Zinc-tetraphenylporphyrin (Zn-TPP) is a prototypical cyclic tetrapyrrole that has been intensely studied in past decades. Because of its importance for photochemical processes the optical properties are of particular interest, and, accordingly, numerous studies have focused on light absorption and excited-state dynamics of Zn-TPP. Relaxation after photoexcitation in the Soret band involves internal conversion that is preceded by an ultrafast process. This relaxation process has been observed by several groups.more » Until now, it has not been established if it involves a higher lying ”dark” state or vibrational relaxation in the excited S2 state. Here we combine high time resolution electronic and vibrational spectroscopy to show that this process constitutes vibrational relaxation in the anharmonic 2 potential.« less

  2. Cascading Activation across Levels of Representation in Children's Lexical Processing

    ERIC Educational Resources Information Center

    Huang, Yi Ting; Snedeker, Jesse

    2011-01-01

    Recent work in adult psycholinguistics has demonstrated that activation of semantic representations begins long before phonological processing is complete. This incremental propagation of information across multiple levels of analysis is a hallmark of adult language processing but how does this ability develop? In two experiments, we elicit…

  3. Instructional Transaction Theory: Knowledge Relationships among Processes, Entities, and Activities.

    ERIC Educational Resources Information Center

    Merrill, M. David; And Others

    1993-01-01

    Discussion of instructional transaction theory focuses on knowledge representation in an automated instructional design expert system. A knowledge structure called PEA-Net (processes, entities, and activities) is explained; the refrigeration process is used as an example; text resources and graphic resources are described; and simulations are…

  4. Students' Learning Activities While Studying Biological Process Diagrams

    ERIC Educational Resources Information Center

    Kragten, Marco; Admiraal, Wilfried; Rijlaarsdam, Gert

    2015-01-01

    Process diagrams describe how a system functions (e.g. photosynthesis) and are an important type of representation in Biology education. In the present study, we examined students' learning activities while studying process diagrams, related to their resulting comprehension of these diagrams. Each student completed three learning tasks. Verbal…

  5. Relaxation dynamics of amorphous dibucaine using dielectric studies

    NASA Astrophysics Data System (ADS)

    Sahra, M.; Jumailath, K.; Thayyil, M. Shahin; Capaccioli, S.

    2015-06-01

    Using broadband dielectric spectroscopy the molecular mobility of dibucaine is investigated in the supercooled liquid and gassy states, over a wide temperature range for some test frequencies. Above the glass transition temperature Tg, the presence of structural α- relaxation peak was observed due to the cooperative motions of the molecule and upon cooling frozen kinetically to form the glass. The secondary relaxation process was perceivable below Tg due to localized motions. The peak loss frequency of α-relaxation process shows non-Arrhenius behavior and obeys Vogel-Fulcher-Tammann equation over the measured temperature range whereas the β- process shows Arrhenius behavior.

  6. Highly cooperative stress relaxation in two-dimensional soft colloidal crystals

    PubMed Central

    van der Meer, Berend; Qi, Weikai; Fokkink, Remco G.; van der Gucht, Jasper; Dijkstra, Marjolein; Sprakel, Joris

    2014-01-01

    Stress relaxation in crystalline solids is mediated by the formation and diffusion of defects. Although it is well established how externally generated stresses relax, through the proliferation and motion of dislocations in the lattice, it remains relatively unknown how crystals cope with internal stresses. We investigate, both experimentally and in simulations, how highly localized stresses relax in 2D soft colloidal crystals. When a single particle is actively excited, by means of optical tweezing, a rich variety of highly collective stress relaxation mechanisms results. These relaxation processes manifest in the form of open strings of cooperatively moving particles through the motion of dissociated vacancy-interstitial pairs, and closed loops of mobile particles, which either result from cooperative rotations in transiently generated circular grain boundaries or through the closure of an open string by annihilation of a vacancy-interstitial pair. Surprisingly, we find that the same collective events occur in crystals that are excited by thermal fluctuations alone; a large thermal agitation inside the crystal lattice can trigger the irreversible displacements of hundreds of particles. Our results illustrate how local stresses can induce large-scale cooperative dynamics in 2D soft colloidal crystals and shed light on the stabilization mechanisms in ultrasoft crystals. PMID:25319262

  7. Enhanced Multistatic Active Sonar via Innovative Signal Processing

    DTIC Science & Technology

    2014-09-30

    DATES COVERED (From - To) Oct. 01. 2013-Sept. 30, 2014 4. TITLE AND SUBTITLE Enhanced Multistatic Active Sonar via Innovative Signal Processing 5a...DISTRIBUTION AVAILABILITY STATEMENT Approved for Public Release; Distribution is Unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Pulsed active sonar ...PAS) and continuous active sonar (CAS) in the presence of strong direct blast are studied for the Doppler-tolerant linear frequency modulation

  8. Dissecting gamma frequency activity during human memory processing.

    PubMed

    Kucewicz, Michal T; Berry, Brent M; Kremen, Vaclav; Brinkmann, Benjamin H; Sperling, Michael R; Jobst, Barbara C; Gross, Robert E; Lega, Bradley; Sheth, Sameer A; Stein, Joel M; Das, Sandthitsu R; Gorniak, Richard; Stead, S Matthew; Rizzuto, Daniel S; Kahana, Michael J; Worrell, Gregory A

    2017-03-13

    Gamma frequency activity (30-150 Hz) is induced in cognitive tasks and is thought to reflect underlying neural processes. Gamma frequency activity can be recorded directly from the human brain using intracranial electrodes implanted in patients undergoing treatment for drug-resistant epilepsy. Previous studies have independently explored narrowband oscillations in the local field potential and broadband power increases. It is not clear, however, which processes contribute to human brain gamma frequency activity, or their dynamics and roles during memory processing. Here a large dataset of intracranial recordings obtained during encoding of words from 101 patients was used to detect, characterize and compare induced gamma frequency activity events. Individual bursts of gamma frequency activity were isolated in the time-frequency domain to determine their spectral features, including peak frequency, amplitude, frequency span, and duration. We found two distinct types of gamma frequency activity events that showed either narrowband or broadband frequency spans revealing characteristic spectral properties. Narrowband events, the predominant type, were induced by word presentations following an initial induction of broadband events, which were temporally separated and selectively correlated with evoked response potentials, suggesting that they reflect different neural activities and play different roles during memory encoding. The two gamma frequency activity types were differentially modulated during encoding of subsequently recalled and forgotten words. In conclusion, we found evidence for two distinct activity types induced in the gamma frequency range during cognitive processing. Separating these two gamma frequency activity components contributes to the current understanding of electrophysiological biomarkers, and may prove useful for emerging neurotechnologies targeting, mapping and modulating distinct neurophysiological processes in normal and epileptogenic brain.

  9. Controlling spin relaxation with a cavity

    NASA Astrophysics Data System (ADS)

    Bienfait, Audrey; Pla, Jarryd; Kubo, Yuimaru; Zhou, Xin; Stern, Michael; Lo, Cheuk; Weis, Christopher; Schenkel, Thomas; Vion, Denis; Esteve, Daniel; Morton, John; Bertet, Patrice

    Spontaneous emission of radiation is one of the fundamental relaxation mechanisms for a quantum system. For spins, however, it is negligible compared to non-radiative relaxation processes due to their weak coupling to the electromagnetic field. In 1946, Purcell realized that spontaneous emission is strongly enhanced when the quantum system is placed in a resonant cavity - an effect now used to control the lifetime of systems with an electrical dipole. Here, by coupling donor spins in silicon to a high quality factor superconducting microwave cavity of small mode volume, we reach the regime where spontaneous emission constitutes the dominant spin relaxation channel. The relaxation rate is increased by three orders of magnitude when the spins are tuned to the cavity resonance, showing it can be engineered and controlled on-demand. Our results provide a novel way to initialize any spin into its ground state, with applications in magnetic resonance and quantum information processing. They also show for the first time an alteration of spin dynamics by quantum fluctuations, a step towards the coherent magnetic coupling of a spin to microwave photons.

  10. Insulin Induces Relaxation and Decreases Hydrogen Peroxide-Induced Vasoconstriction in Human Placental Vascular Bed in a Mechanism Mediated by Calcium-Activated Potassium Channels and L-Arginine/Nitric Oxide Pathways

    PubMed Central

    Cabrera, Lissette; Saavedra, Andrea; Rojas, Susana; Cid, Marcela; Valenzuela, Cristina; Gallegos, David; Careaga, Pamela; Basualto, Emerita; Haensgen, Astrid; Peña, Eduardo; Rivas, Coralia; Vera, Juan Carlos; Gallardo, Victoria; Zúñiga, Leandro; Escudero, Carlos; Sobrevia, Luis; Wareing, Mark; González, Marcelo

    2016-01-01

    HIGHLIGHTS Short-term incubation with insulin increases the L-arginine transport in HUVECs.Short-term incubation with insulin increases the NO synthesis in HUVECs.Insulin induces relaxation in human placental vascular bed.Insulin attenuates the constriction induced by hydrogen peroxide in human placenta.The relaxation induced by insulin is dependent on BKCa channels activity in human placenta. Insulin induces relaxation in umbilical veins, increasing the expression of human amino acid transporter 1 (hCAT-1) and nitric oxide synthesis (NO) in human umbilical vein endothelial cells (HUVECs). Short-term effects of insulin on vasculature have been reported in healthy subjects and cell cultures; however, its mechanisms remain unknown. The aim of this study was to characterize the effect of acute incubation with insulin on the regulation of vascular tone of placental vasculature. HUVECs and chorionic vein rings were isolated from normal pregnancies. The effect of insulin on NO synthesis, L-arginine transport, and hCAT-1 abundance was measured in HUVECs. Isometric tension induced by U46619 (thromboxane A2 analog) or hydrogen peroxide (H2O2) were measured in vessels previously incubated 30 min with insulin and/or the following pharmacological inhibitors: tetraethylammonium (KCa channels), iberiotoxin (BKCa channels), genistein (tyrosine kinases), and wortmannin (phosphatidylinositol 3-kinase). Insulin increases L-arginine transport and NO synthesis in HUVECs. In the placenta, this hormone caused relaxation of the chorionic vein, and reduced perfusion pressure in placental cotyledons. In vessels pre-incubated with insulin, the constriction evoked by H2O2 and U46619 was attenuated and the effect on H2O2-induced constriction was blocked with tetraethylammonium and iberiotoxin, but not with genistein, or wortmannin. Insulin rapidly dilates the placental vasculature through a mechanism involving activity of BKCa channels and L-arginine/NO pathway in endothelial cells. This

  11. Investigation of oxidation process of mechanically activated ultrafine iron powders

    NASA Astrophysics Data System (ADS)

    Lysenko, E. N.; Nikolaev, E. V.; Vlasov, V. A.; Zhuravkov, S. P.

    2016-02-01

    The oxidation of mechanically activated ultrafine iron powders was studied using X- ray powder diffraction and thermogravimetric analyzes. The powders with average particles size of 100 nm were made by the electric explosion of wire, and were subjected to mechanical activation in planetary ball mill for 15 and 40 minutes. It was shown that a certain amount of FeO phase is formed during mechanical activation of ultrafine iron powders. According to thermogravimetric analysis, the oxidation process of non-milled ultrafine iron powders is a complex process and occurs in three stages. The preliminary mechanical activation of powders considerably changes the nature of the iron powders oxidation, leads to increasing in the temperature of oxidation onset and shifts the reaction to higher temperatures. For the milled powders, the oxidation is more simple process and occurs in a single step.

  12. Electron spin-lattice relaxation in radicals containing two methyl groups, generated by /γ-irradiation of polycrystalline solids

    NASA Astrophysics Data System (ADS)

    Harbridge, James R.; Eaton, Sandra S.; Eaton, Gareth R.

    2002-12-01

    The effects of methyl rotation on electron spin-lattice relaxation times were examined by pulsed electron paramagnetic resonance for the major radicals in γ-irradiated polycrystalline α-amino isobutyric acid, dimethyl-malonic acid, and L-valine. The dominant radical is the same in irradiated dimethyl-malonic acid and α-amino isobutyric acid. Continuous wave saturation recovery was measured between 10 and 295 K at S-band and X-band. Inversion recovery, echo-detected saturation recovery, and pulsed electron-electron double resonance (ELDOR) data were obtained between 77 and 295 K. For the radicals in the three solids, recovery time constants measured by the various techniques were not the same, because spectral diffusion processes contribute differently for each measurement. Hyperfine splitting due to the protons of two methyl groups is resolved in the EPR spectra for each of the samples. Pulsed ELDOR data were obtained to characterize the spectral diffusion processes that transfer magnetization between hyperfine lines. Time constants were obtained for electron spin-lattice relaxation ( T1e), nuclear spin relaxation ( T1n), cross-relaxation ( Tx1), and spin diffusion ( Ts). Between 77 and 295 K rapid cross-relaxation (Δ Ms=±1, Δ MI=∓1) was observed for each sample, which is attributed to methyl rotation at a rate that is approximately equal to the electron Larmor frequency. The large temperature range over which cross-relaxation was observed suggests that methyl groups in the radical and in the lattice, with different activation energies for rotation, contribute to the rapid cross-relaxation. Activation energies for methyl and amino group rotation between 160 and 1900 K (1.3-16 kJ/mol) were obtained by analysis of the temperature dependence of 1/ T1e at S-band and X-band in the temperature intervals where the dynamic process dominates T1e.

  13. Nanosecond Relaxation Dynamics of Hydrated Proteins: Water versus protein contributions

    SciTech Connect

    Khodadadi, S; Curtis, J. E.; Sokolov, Alexei P

    2011-01-01

    We have studied picosecond to nanosecond dynamics of hydrated protein powders using dielectric spectroscopy and molecular dynamics (MD) simulations. Our analysis of hydrogen-atom single particle dynamics from MD simulations focused on main ( main tens of picoseconds) and slow ( slow nanosecond) relaxation processes that were observed in dielectric spectra of similar hydrated protein samples. Traditionally, the interpretation of these processes observed in dielectric spectra has been ascribed to the relaxation behavior of hydration water tightly bounded to a protein and not to protein atoms. Detailed analysis of the MD simulations and comparison to dielectric data indicate that the observed relaxation process in the nanosecond time range of hydrated protein spectra is mainly due to protein atoms. The relaxation processes involve the entire structure of protein including atoms in the protein backbone, side chains, and turns. Both surface and buried protein atoms contribute to the slow processes; however, surface atoms demonstrate slightly faster relaxation dynamics. Analysis of the water molecule residence and dipolar relaxation correlation behavior indicates that the hydration water relaxes at much shorter time scales.

  14. Size effect on beta relaxation in a La-based bulk metallic glass

    NASA Astrophysics Data System (ADS)

    Jiang, Wei; Wu, Jili; Zhang, Bo

    2017-03-01

    This work studied the effect of the size of specimens on the β relaxation. Taking La70Ni15Al15 bulk metallic glass as a model material, via dynamic mechanical analysis, we found that the thickness of specimens can affect the intensity of β relaxation. Specifically, increasing the thickness of specimens can enhance intensity of β relaxation. For this enhancement, we proposed that the involvedly total free volume facilitates the β relaxed process. This finding gives a new insight on the structural relaxation of bulk metallic glasses, especially for understanding of origin of β relaxation.

  15. OCT-based approach to local relaxations discrimination from translational relaxation motions

    NASA Astrophysics Data System (ADS)

    Matveev, Lev A.; Matveyev, Alexandr L.; Gubarkova, Ekaterina V.; Gelikonov, Grigory V.; Sirotkina, Marina A.; Kiseleva, Elena B.; Gelikonov, Valentin M.; Gladkova, Natalia D.; Vitkin, Alex; Zaitsev, Vladimir Y.

    2016-04-01

    Multimodal optical coherence tomography (OCT) is an emerging tool for tissue state characterization. Optical coherence elastography (OCE) is an approach to mapping mechanical properties of tissue based on OCT. One of challenging problems in OCE is elimination of the influence of residual local tissue relaxation that complicates obtaining information on elastic properties of the tissue. Alternatively, parameters of local relaxation itself can be used as an additional informative characteristic for distinguishing the tissue in normal and pathological states over the OCT image area. Here we briefly present an OCT-based approach to evaluation of local relaxation processes in the tissue bulk after sudden unloading of its initial pre-compression. For extracting the local relaxation rate we evaluate temporal dependence of local strains that are mapped using our recently developed hybrid phase resolved/displacement-tracking (HPRDT) approach. This approach allows one to subtract the contribution of global displacements of scatterers in OCT scans and separate the temporal evolution of local strains. Using a sample excised from of a coronary arteria, we demonstrate that the observed relaxation of local strains can be reasonably fitted by an exponential law, which opens the possibility to characterize the tissue by a single relaxation time. The estimated local relaxation times are assumed to be related to local biologically-relevant processes inside the tissue, such as diffusion, leaking/draining of the fluids, local folding/unfolding of the fibers, etc. In general, studies of evolution of such features can provide new metrics for biologically-relevant changes in tissue, e.g., in the problems of treatment monitoring.

  16. Digital image processing and analysis for activated sludge wastewater treatment.

    PubMed

    Khan, Muhammad Burhan; Lee, Xue Yong; Nisar, Humaira; Ng, Choon Aun; Yeap, Kim Ho; Malik, Aamir Saeed

    2015-01-01

    Activated sludge system is generally used in wastewater treatment plants for processing domestic influent. Conventionally the activated sludge wastewater treatment is monitored by measuring physico-chemical parameters like total suspended solids (TSSol), sludge volume index (SVI) and chemical oxygen demand (COD) etc. For the measurement, tests are conducted in the laboratory, which take many hours to give the final measurement. Digital image processing and analysis offers a better alternative not only to monitor and characterize the current state of activated sludge but also to predict the future state. The characterization by image processing and analysis is done by correlating the time evolution of parameters extracted by image analysis of floc and filaments with the physico-chemical parameters. This chapter briefly reviews the activated sludge wastewater treatment; and, procedures of image acquisition, preprocessing, segmentation and analysis in the specific context of activated sludge wastewater treatment. In the latter part additional procedures like z-stacking, image stitching are introduced for wastewater image preprocessing, which are not previously used in the context of activated sludge. Different preprocessing and segmentation techniques are proposed, along with the survey of imaging procedures reported in the literature. Finally the image analysis based morphological parameters and correlation of the parameters with regard to monitoring and prediction of activated sludge are discussed. Hence it is observed that image analysis can play a very useful role in the monitoring of activated sludge wastewater treatment plants.

  17. Relaxation of Lattice Inperfections as Studied by Chlorine NQR

    NASA Astrophysics Data System (ADS)

    Hashimoto, Masao; Adachi, Masahiro; Mano, Koichi

    1986-02-01

    The intensities, linewidths, and frequencies of 35Cl NQR signals in 6-nitro-2,4-bis(trichlorom ethyl)-benzo[1,3]dioxine were found to vary remarkably depending on the crystallization methods and annealing. This finding was correlated to the degree of crystal disorder. For a sample obtained by slow crystallization from an ethanolic solution of the compound, the growth of the height of the NQR absorption signal due to annealing was measured as a function of the isothermal annealing time. A kinetic analysis of the growth process gave an activation energy of approx. 110 kJ/mole for the relaxation process of the imperfection dominating the NQR signals. The dimorphism of the compound and the magnitude of the activation energy suggest the presence of misoriented molecules accompanied by vacancies in the crystal lattice of the stable phase.

  18. Canada's physical activity guides: background, process, and development.

    PubMed

    Sharratt, Michael T; Hearst, William E

    2007-01-01

    This historical background paper chronicles the major events leading to the development of Canada's physical activity guides (for children, youth, adults, and older adults). The paper outlines the process and the steps used, including information (where applicable) regarding national partners, project administration, Health Canada communications, product development, endorsement, distribution and implementation, collateral activities, media relations and evaluation framework. Brief summaries of the science that led to the recommended guidelines are included. The paper also summarizes the various physical activity guide assessment and evaluation projects and their findings, particularly as they relate to research carried out on Canada's physical activity guides for children and youth (and the associated support resources).

  19. Spin relaxation 1/f noise in graphene

    NASA Astrophysics Data System (ADS)

    Omar, S.; Guimarães, M. H. D.; Kaverzin, A.; van Wees, B. J.; Vera-Marun, I. J.

    2017-02-01

    We report the first measurement of 1/f type noise associated with electronic spin transport, using single layer graphene as a prototypical material with a large and tunable Hooge parameter. We identify the presence of two contributions to the measured spin-dependent noise: contact polarization noise from the ferromagnetic electrodes, which can be filtered out using the cross-correlation method, and the noise originated from the spin relaxation processes. The noise magnitude for spin and charge transport differs by three orders of magnitude, implying different scattering mechanisms for the 1/f fluctuations in the charge and spin transport processes. A modulation of the spin-dependent noise magnitude by changing the spin relaxation length and time indicates that the spin-flip processes dominate the spin-dependent noise.

  20. Spin-flip relaxation via optical phonon scattering in quantum dots

    SciTech Connect

    Wang, Zi-Wu; Liu, Lei; Li, Shu-Shen

    2013-12-14

    Based on the spin-orbit coupling admixture mechanism, we theoretically investigate the spin-flip relaxation via optical phonon scattering in quantum dots by considering the effect of lattice relaxation due to the electron-acoustic phonon deformation potential coupling. The relaxation rate displays a cusp-like structure (or a spin hot spot) that becomes more clearly with increasing temperature. We also calculate the relaxation rate of the spin-conserving process, which follows a Gaussian form and is several orders of magnitude larger than that of spin-flip process. Moreover, we find that the relaxation rate displays the oscillatory behavior due to the interplay effects between the magnetic and spatial confinement for the spin-flip process not for the spin-conserving process. The trends of increasing and decreasing temperature dependence of the relaxation rates for two relaxation processes are obtained in the present model.

  1. Lattice-level observation of the elastic-to-plastic relaxation process with subnanosecond resolution in shock-compressed Ta using time-resolved in situ Laue diffraction

    SciTech Connect

    Wehrenberg, C. E.; Comley, A. J.; Barton, N. R.; Coppari, F.; Fratanduono, D.; Huntington, C. M.; Maddox, B. R.; Park, H. -S.; Plechaty, C.; Prisbrey, S. T.; Remington, B. A.; Rudd, R. E.

    2015-09-29

    We report direct lattice level measurements of plastic relaxation kinetics through time-resolved, in-situ Laue diffraction of shock-compressed single-crystal [001] Ta at pressures of 27-210 GPa. For a 50 GPa shock, a range of shear strains is observed extending up to the uniaxial limit for early data points (<0.6 ns) and the average shear strain relaxes to a near steady state over ~1 ns. For 80 and 125 GPa shocks, the measured shear strains are fully relaxed already at 200 ps, consistent with rapid relaxation associated with the predicted threshold for homogeneous nucleation of dislocations occurring at shock pressure ~65 GPa. The relaxation rate and shear stresses are used to estimate the dislocation density and these quantities are compared to the Livermore Multiscale Strength model as well as various molecular dynamics simulations.

  2. Nonoxidative removal of organics in the activated sludge process

    PubMed Central

    Modin, Oskar; Persson, Frank; Wilén, Britt-Marie; Hermansson, Malte

    2016-01-01

    ABSTRACT The activated sludge process is commonly used to treat wastewater by aerobic oxidation of organic pollutants into carbon dioxide and water. However, several nonoxidative mechanisms can also contribute to removal of organics. Sorption onto activated sludge can remove a large fraction of the colloidal and particulate wastewater organics. Intracellular storage of, e.g., polyhydroxyalkanoates (PHA), triacylglycerides (TAG), or wax esters can convert wastewater organics into precursors for high-value products. Recently, several environmental, economic, and technological drivers have stimulated research on nonoxidative removal of organics for wastewater treatment. In this paper, we review these nonoxidative removal mechanisms as well as the existing and emerging process configurations that make use of them for wastewater treatment. Better utilization of nonoxidative processes in activated sludge could reduce the wasteful aerobic oxidation of organic compounds and lead to more resource-efficient wastewater treatment plants. PMID:27453679

  3. Dielectric relaxation of thin films of polyamide random copolymers

    NASA Astrophysics Data System (ADS)

    Taniguchi, Natsumi; Fukao, Koji; Sotta, Paul; Long, Didier R.

    2015-05-01

    We investigate the relaxation behavior of thin films of a polyamide random copolymer, PA66/6I, with various film thicknesses using dielectric relaxation spectroscopy. Two dielectric signals are observed at high temperatures, the α process and the relaxation process due to electrode polarization (the EP process). The relaxation time of the EP process has a Vogel-Fulcher-Tammann type of temperature dependence, and the glass transition temperature, Tg, evaluated from the EP process agrees very well with the Tg determined from the thermal measurements. The fragility index derived from the EP process increases with decreasing film thickness. The relaxation time and the dielectric relaxation strength of the EP process are described by a linear function of the film thickness d for large values of d , which can be regarded as experimental evidence for the validity of attributing the observed signal to the EP process. Furthermore, there is distinct deviation from this linear law for thicknesses smaller than a critical value. This deviation observed in thinner films is associated with an increase in the mobility and/or diffusion constant of the charge carriers responsible for the EP process. The α process is located in a higher-frequency region than the EP process at high temperatures but merges with the EP process at lower temperatures near the glass transition region. The thickness dependence of the relaxation time of the α process is different from that of the EP process. This suggests that there is decoupling between the segmental motion of the polymers and the translational motion of the charge carriers in confinement.

  4. Microscopic origin of the fragile to strong crossover in supercooled water: The role of activated processes.

    PubMed

    De Marzio, M; Camisasca, G; Rovere, M; Gallo, P

    2017-02-28

    We perform an accurate analysis of the density self-correlation functions of TIP4P/2005 supercooled water on approaching the region of the liquid-liquid critical point. In a previous work on this model, we provided evidence of a fragile to strong crossover of the dynamical behavior in the deep supercooled region. The structural relaxation follows the Mode Coupling theory in the fragile region and then deviates from Mode Coupling regime to a strong Arrhenius behavior. This crossover is particularly important in water because it is connected to the thermodynamics of the supercooled region. To better understand the origin of this crossover, we compute now the Van Hove self-correlation functions. In particular we aim at investigating the presence and the role of the hopping phenomena that are the cause of the fragile to strong crossover in simple liquids. In TIP4P/2005 water, we find hopping processes too and we analyze how they depend on temperature and density upon approaching the fragile to strong crossover and the Mode Coupling ideal crossover temperature. Our results show that water behaves like a simple glass former. After an initial ballistic regime, the cage effect dominates the mild supercooled region, with diffusion taking place at long time. At the fragile to strong crossover, we find that hopping (activated) processes start to play a role. This is evidenced by the appearance of peaks in the Van Hove correlation functions. In the deep supercooled regime, our analysis clearly indicates that activated processes dominate the dynamics. The comparison between the Van Hove functions and the radial distribution functions allows to better understand the mechanism of hopping phenomena in supercooled water and to connect their onset directly with the crossing of the Widom Line.

  5. Impact of activation process on fog life cycle

    NASA Astrophysics Data System (ADS)

    Mazoyer, Marie; Burnet, Frédéric; Lac, Christine; Roberts, Greg; Dupont, Jean-Charles; Haeffelin, Martial; Elias, Thierry

    2015-04-01

    Fogs are complex meteorological system dealing with fine scale processes. Subtle interaction between radiative, dynamic, turbulent and microphysic processes can lead to different fog life cycle, which make prediction difficult. The droplets that composed fogs are formed trough the activation of aerosol particles called CCN (cloud condensation nuclei) described by the Köhler theory (Köhler, 1936). The number and distribution of the droplets activated during fog formation is determined by the aerosols particles properties and number and the ambient vapor supersaturation of the atmosphere. In the frame of the PreViBOSS project, an in-situ measurement platform of fog properties at ground level was deployed at SIRTA (Instrumented Site for Atmospheric Remote Sensing Research) during winter 2010 to 2013. Microphysics data supply a detailed characterization of number size spectrum from dry to wet aerosols particles and inform on the abilities of the aerosols particles to act as a CCN. 48 fog events have been studied. Supersaturation critical values and concentrations of CCN have been determined and linked to aerosols properties. The main impact of aerosols size distribution on activation have been pointed out. The study of droplets spectra evolution reveals the major physical processes into fogs and suggests that even if thermodynamic dominates the fog life cycle, activation process seems to have a significant effect. Large eddy simulation of fog run with Meso-NH model allow to explore precisely the interaction between fog physical processes and to quantify activation impact. Supersaturation modelling is a key point, a new pseudo-prognostic scheme (Thouron et al., 2012) is used. Confrontation between a detailed experimental study and three-dimensional fine scale simulation in LES provides an accurate investigation of the impact of activation process on fog life cycle.

  6. Microscopic Origin of Shear Relaxation in a Model Viscoelastic Liquid

    NASA Astrophysics Data System (ADS)

    Ashwin, J.; Sen, Abhijit

    2015-02-01

    An atomistic description of shear stress relaxation in a viscoelastic liquid is developed from first principles through accurate molecular dynamic simulations in a model Yukawa system. It is shown that the relaxation time τMex of the excess part of the shear stress autocorrelation function provides a correct measure of the relaxation process. Below a certain critical value Γc of the Coulomb coupling strength, the lifetime of local atomic connectivity τLC converges to τMex and is the microscopic origin of the relaxation. At Γ ≫Γc, i.e., in the potential energy dominated regime, τMex→τM (the Maxwell relaxation time) and can, therefore, fully account for the elastic or "solidlike" behavior. Our results can help provide a better fundamental understanding of viscoelastic behavior in a variety of strongly coupled systems such as dusty plasmas, colloids, and non-Newtonian fluids.

  7. Surface hopping investigation of the relaxation dynamics in radical cations

    NASA Astrophysics Data System (ADS)

    Assmann, Mariana; Weinacht, Thomas; Matsika, Spiridoula

    2016-01-01

    Ionization processes can lead to the formation of radical cations with population in several ionic states. In this study, we examine the dynamics of three radical cations starting from an excited ionic state using trajectory surface hopping dynamics in combination with multiconfigurational electronic structure methods. The efficiency of relaxation to the ground state is examined in an effort to understand better whether fragmentation of cations is likely to occur directly on excited states or after relaxation to the ground state. The results on cyclohexadiene, hexatriene, and uracil indicate that relaxation to the ground ionic state is very fast in these systems, while fragmentation before relaxation is rare. Ultrafast relaxation is facilitated by the close proximity of electronic states and the presence of two- and three-state conical intersections. Examining the properties of the systems in the Franck-Condon region can give some insight into the subsequent dynamics.

  8. Active Cellular Mechanics and Information Processing in the Living Cell

    NASA Astrophysics Data System (ADS)

    Rao, M.

    2014-07-01

    I will present our recent work on the organization of signaling molecules on the surface of living cells. Using novel experimental and theoretical approaches we have found that many cell surface receptors are organized as dynamic clusters driven by active currents and stresses generated by the cortical cytoskeleton adjoining the cell surface. We have shown that this organization is optimal for both information processing and computation. In connecting active mechanics in the cell with information processing and computation, we bring together two of the seminal works of Alan Turing.

  9. Active non-volatile memory post-processing

    DOEpatents

    Kannan, Sudarsun; Milojicic, Dejan S.; Talwar, Vanish

    2017-04-11

    A computing node includes an active Non-Volatile Random Access Memory (NVRAM) component which includes memory and a sub-processor component. The memory is to store data chunks received from a processor core, the data chunks comprising metadata indicating a type of post-processing to be performed on data within the data chunks. The sub-processor component is to perform post-processing of said data chunks based on said metadata.

  10. Effect of high hydrostatic pressure on the dielectric relaxation in a non-crystallizable monohydroxy alcohol in its supercooled liquid and glassy states.

    PubMed

    Pawlus, S; Paluch, M; Nagaraj, M; Vij, J K

    2011-08-28

    , for P = 1750 MPa is almost the same for process II at P = 0.1 MPa. From the results of the activation volume, activation enthalpy, and a comparison of the relaxation times with the g factor, we conclude that both processes I and II are significantly affected by hydrogen bonding and both contribute to the structural relaxation.

  11. Square Deal: Lower Bounds and Improved Relaxations for Tensor Recovery

    DTIC Science & Technology

    2013-08-16

    a low-rank tensor from incomplete information is a recurring problem in signal processing and machine learning . The most popular convex relaxation of...is a recurring problem in signal processing and machine learning . The most popular convex relaxation of this problem minimizes the sum of the nuclear...results to low-rank tensors is not obvious. The numerical algebra of tensors is fraught with hardness results [HL09]. For example, even computing a

  12. Glass transition and enthalpy relaxation of amorphous lactose glass.

    PubMed

    Haque, Md Kamrul; Kawai, Kiyoshi; Suzuki, Toru

    2006-08-14

    The glass transition temperature, T(g), and enthalpy relaxation of amorphous lactose glass were investigated by differential scanning calorimetry (DSC) for isothermal aging periods at various temperatures (25, 60, 75, and 90 degrees C) below T(g). Both T(g) and enthalpy relaxation were found to increase with increasing aging time and temperature. The enthalpy relaxation increased approximately exponentially with aging time at a temperature (90 degrees C) close to T(g) (102 degrees C). There was no significant change observed in the enthalpy relaxation around room temperature (25 degrees C) over an aging period of 1month. The Kohlrausch-Williams-Watts (KWW) model was able to fit the experimental enthalpy relaxation data well. The relaxation distribution parameter (beta) was determined to be in the range 0.81-0.89. The enthalpy relaxation time constant (tau) increased with decreasing aging temperature. The observed enthalpy relaxation data showed that molecular mobility in amorphous lactose glass was higher at temperatures closer to T(g). Lactose glass was stable for a long time at 25 degrees C. These findings should be helpful for improving the processing and storage stability of amorphous lactose and lactose containing food and pharmaceutical products.

  13. Modeling aftershocks as a stretched exponential relaxation

    NASA Astrophysics Data System (ADS)

    Mignan, A.

    2015-11-01

    The decay rate of aftershocks has been modeled as a power law since the pioneering work of Omori in the late nineteenth century. Although other expressions have been proposed in recent decades to describe the temporal behavior of aftershocks, the number of model comparisons remains limited. After reviewing the aftershock models published from the late nineteenth century until today, I solely compare the power law, pure exponential and stretched exponential expressions defined in their simplest forms. By applying statistical methods recommended recently in applied mathematics, I show that all aftershock sequences tested in three regional earthquake catalogs (Southern and Northern California, Taiwan) and with three declustering techniques (nearest-neighbor, second-order moment, window methods) follow a stretched exponential instead of a power law. These results infer that aftershocks are due to a simple relaxation process, in accordance with most other relaxation processes observed in Nature.

  14. Active Mining from Process Time Series by Learning Classifier System

    NASA Astrophysics Data System (ADS)

    Kurahashi, Setsuya; Terano, Takao

    Continuation processes in chemical and/or biotechnical plants always generate a large amount of time series data. However, since conventional process models are described as a set of control models, it is difficult to explain the complicated and active plant behaviors. Based on the background, this research proposes a novel method to develop a process response model from continuous time-series data. The method consists of the following phases: 1) Collect continuous process data at each tag point in a target plant; 2) Normalize the data in the interval between zero and one; 3) Get the delay time, which maximizes the correlation between given two time series data; 4) Select tags with the higher correlation; 5) Develop a process response model to describe the relations among the process data using the delay time and the correlation values; 6) Develop a process prediction model via several tag points data using a neural network; 1) Discover control rules from the process prediction model using Learning Classifier system. The main contribution of the research is to establish a method to mine a set of meaningful control rules from Learning Classifier System using the Minimal Description Length criteria. The proposed method has been applied to an actual process of a biochemical plant and has shown the validity and the effectiveness.

  15. Enhanced Passive and Active Processing of Syllables in Musician Children

    ERIC Educational Resources Information Center

    Chobert, Julie; Marie, Celine; Francois, Clement; Schon, Daniele; Besson, Mireille

    2011-01-01

    The aim of this study was to examine the influence of musical expertise in 9-year-old children on passive (as reflected by MMN) and active (as reflected by discrimination accuracy) processing of speech sounds. Musician and nonmusician children were presented with a sequence of syllables that included standards and deviants in vowel frequency,…

  16. Ambient and focal visual processing of naturalistic activity.

    PubMed

    Eisenberg, Michelle L; Zacks, Jeffrey M

    2016-01-01

    When people inspect a picture, they progress through two distinct phases of visual processing: an ambient, or exploratory, phase that emphasizes input from peripheral vision and rapid acquisition of low-frequency information, followed by a focal phase that emphasizes central vision, salient objects, and high-frequency information. Does this qualitative shift occur during dynamic scene viewing? If so, when? One possibility is that shifts to exploratory processing are triggered at subjective event boundaries. This shift would be adaptive, because event boundaries typically occur when activity features change and when activity becomes unpredictable. Here, we used a perceptual event segmentation task, in which people identified boundaries between meaningful units of activity, to test this hypothesis. In two studies, an eye tracker recorded eye movements and pupil size while participants first watched movies of actors engaged in everyday activities and then segmented them into meaningful events. Saccade amplitudes and fixation durations during the initial viewings suggest that event boundaries function much like the onset of a new picture during static picture presentation: Viewers initiate an ambient processing phase and then progress to focal viewing as the event progresses. These studies suggest that this shift in processing mode could play a role in the formation of mental representations of the current environment.

  17. A new relaxation mechanism in nanoscale films

    NASA Astrophysics Data System (ADS)

    Ovid'ko, I. A.; Sheinerman, A. G.

    2007-02-01

    A new mechanism of stress relaxation in heteroepitaxial films of nanoscale thickness is suggested and theoretically described. The mechanism represents nucleation of a 'non-crystallographic' partial dislocation (at the film-substrate interface) whose Burgers vector magnitude continuously grows during the nucleation process. It is shown that the new mechanism effectively competes with the standard nucleation of a perfect misfit dislocation at the free surface of the film and its further glide towards the film-substrate interface.

  18. Picosecond Electronic Relaxations In Amorphous Semiconductors

    NASA Astrophysics Data System (ADS)

    Tauc, Jan

    1983-11-01

    Using the pump and probe technique the relaxation processes of photogenerated carriers in amorphous tetrahedral semiconductors and chalcogenide glasses in the time domain from 0.5 Ps to 1.4 ns have been studied. The results obtained on the following phenomena are reviewed: hot carrier thermalization in amorphous silicon; trapping of carriers in undoped a-Si:H; trapping of carriers in deep traps produced by doping; geminate recombination in As2S3-xSex glasses.

  19. Resolving environmental microheterogeneity and dielectric relaxation in fluorescence kinetics of protein

    NASA Astrophysics Data System (ADS)

    Rolinski, Olaf J.; McLaughlin, Damien; Birch, David J. S.; Vyshemirsky, Vladislav

    2016-09-01

    The fluorescence intensity decay of protein is easily measurable and reports on the intrinsic fluorophore-local environment interactions on the sub-nm spatial and sub-ns temporal scales, which are consistent with protein activity in numerous biomedical and industrial processes. This makes time-resolved fluorescence a perfect tool for understanding, monitoring and controlling these processes at the molecular level, but the complexity of the decay, which has been traditionally fitted to multi-exponential functions, has hampered the development of this technique over the last few decades. Using the example of tryptophan in HSA we present the alternative to the conventional approach to modelling intrinsic florescence intensity decay in protein where the key factors determining fluorescence decay, i.e. the excited-state depopulation and the dielectric relaxation (Toptygin and Brand 2000 Chem. Phys. Lett. 322 496-502), are represented by the individual relaxation functions. This allows quantification of both effects separately by determining their parameters from the global analysis of a series of fluorescence intensity decays measured at different detection wavelengths. Moreover, certain pairs of the recovered parameters of tryptophan were found to be correlated, indicating the influence of the dielectric relaxation on the transient rate of the electronic transitions. In this context the potential for the dual excited state depopulation /dielectric relaxation fluorescence lifetime sensing is discussed.

  20. Small polaronic hole hopping mechanism and Maxwell-Wagner relaxation in NdFeO3

    NASA Astrophysics Data System (ADS)

    Ahmad, I.; Akhtar, M. J.; Younas, M.; Siddique, M.; Hasan, M. M.

    2012-10-01

    In the modern micro-electronics, transition metal oxides due to their colossal values of dielectric permittivity possess huge potential for the development of capacitive energy storage devices. In the present work, the dielectric permittivity and the effects of temperature and frequency on the electrical transport properties of polycrystalline NdFeO3, prepared by solid state reaction method, are discussed. Room temperature Mossbauer spectrum confirms the phase purity, octahedral environment for Fe ion, and high spin state of Fe3+ ion. From the impedance spectroscopic measurements, three relaxation processes are observed, which are related to grains, grain boundaries (gbs), and electrode-semiconductor contact in the measured temperature and frequency ranges. Decrease in resistances and relaxation times of the grains and grain boundaries with temperature confirms the involvement of thermally activated conduction mechanisms. Same type of charge carriers (i.e., small polaron hole hopping) have been found responsible for conduction and relaxation processes through the grain and grain boundaries. The huge value of the dielectric constant (˜8 × 103) at high temperature and low frequency is correlated to the Maxwell-Wagner relaxation due to electrode-sample contact.

  1. Thermally activated spin fluctuations in stoichiometric LiCoO2 clarified by electron paramagnetic resonance and muon-spin rotation and relaxation measurements

    NASA Astrophysics Data System (ADS)

    Mukai, Kazuhiko; Aoki, Yoshifumi; Andreica, Daniel; Amato, Alex; Watanabe, Isao; Giblin, Sean R.; Sugiyama, Jun

    2014-03-01

    Lithium cobalt dioxide (LiCoO2) belongs to a family of layered CoO2-based materials and has considerable interests in both fundamental physics and technological applications in lithium-ion batteries. We report the results of structural, electrochemical, magnetic susceptibility (χ), electron paramagnetic resonance (EPR), and muon-spin rotation and relaxation (μSR) measurements on powder Lix0CoO2 samples, where the nominal Li/Co ratios (x0) were 0.95, 1.00, 1.02, 1.05, and 1.10, respectively. Structural, electrochemical, and χ measurements suggested that the sample with x0 = 1.02 is very close to single stoichiometric LiCoO2 (ST-LCO) phase and that the Co ions in the x0 = 1.02 sample are in a nonmagnetic low-spin state with S = 0 (t2g6). However, both EPR and μSR revealed that the x0 = 1.02 (ST-LCO) sample includes a large amount of nonordered magnetic phase in the temperature (T) range between 100 and 500 K. The volume fraction of such magnetic phase was found to be ˜45 vol% at 300 K by μSR, indicating an intrinsic bulk feature for ST-LCO. In fact, structural and photoelectron spectroscopic analyses clearly excluded the possibility that the nonordered magnetism is caused by impurities, defects, or surfaces. Because EPR and μSR sense static and dynamic nature of local magnetic environments, we concluded that Co spins in ST-LCO are fluctuating in the EPR and μSR time-windows. We also proposed possible origins of such nonordered magnetism, that is, a spin-state transition and charge disproportionation.

  2. Progressive muscle relaxation, breathing exercises, and ABC relaxation theory.

    PubMed

    Matsumoto, M; Smith, J C

    2001-12-01

    This study compared the psychological effects of Progressive Muscle Relaxation (PMR) and breathing exercises. Forty-two students were divided randomly into two groups and taught PMR or breathing exercises. Both groups practiced for five weeks and were given the Smith Relaxation States Inventory before and after each session. As hypothesized, PMR practitioners displayed greater increments in relaxation states (R-States) Physical Relaxation and Disengagement, while breathing practitioners displayed higher levels of R-State Strength and Awareness. Slight differences emerged at Weeks 1 and 2; major differences emerged at Weeks 4 and 5. A delayed and potentially reinforcing aftereffect emerged for PMR only after five weeks of training--increased levels of Mental Quiet and Joy. Clinical and theoretical implications are discussed.

  3. Unified approach to ion transport and structural relaxation in amorphous polymers and glasses.

    PubMed

    Ingram, Malcolm D; Imrie, Corrie T; Ledru, Jacques; Hutchinson, John M

    2008-01-24

    Kinetic data for structural relaxation in silver iodomolybdates at the glass transition temperature (Tg) are obtained by high-pressure differential scanning calorimetry (HP-DSC) and are compared with activation energies (EA) and volumes (VA) obtained earlier from conductivities below Tg. The results are fitted to an empirical equation, EA = MVA, and displayed in the form of a master plot of EA versus VA, an approach previously applied to strongly coupled systems, including polymer electrolytes and molten salts above their glass transition temperatures. The parameter M emerges as a localized modulus, expressive of interatomic forces within the medium, linking together EA,sigma, VA,sigma and EA,s, VA,s, the "apparent" activation parameters for ionic conductivity and structural relaxation, respectively. The VA and EA values for ion transport are much smaller than the corresponding values for structural relaxation. However, remarkably close agreement emerges between the "process parameters", Ms and Msigma, both close to 8 GPa, thus establishing a quantitative link between ion transport and structural relaxation in this highly decoupled system. A new EA versus VA master plot is constructed, which points the way to a unified approach to ion transport in polymers and glasses.

  4. The Land Processes Distributed Active Archive Center (LP DAAC)

    USGS Publications Warehouse

    Golon, Danielle K.

    2016-10-03

    The Land Processes Distributed Active Archive Center (LP DAAC) operates as a partnership with the U.S. Geological Survey and is 1 of 12 DAACs within the National Aeronautics and Space Administration (NASA) Earth Observing System Data and Information System (EOSDIS). The LP DAAC ingests, archives, processes, and distributes NASA Earth science remote sensing data. These data are provided to the public at no charge. Data distributed by the LP DAAC provide information about Earth’s surface from daily to yearly intervals and at 15 to 5,600 meter spatial resolution. Data provided by the LP DAAC can be used to study changes in agriculture, vegetation, ecosystems, elevation, and much more. The LP DAAC provides several ways to access, process, and interact with these data. In addition, the LP DAAC is actively archiving new datasets to provide users with a variety of data to study the Earth.

  5. Differential Processing for Actively Ignored Pictures and Words

    PubMed Central

    Ciraolo, Margeaux

    2017-01-01

    Previous work suggests that, when attended, pictures may be processed more readily than words. The current study extends this research to assess potential differences in processing between these stimulus types when they are actively ignored. In a dual-task paradigm, facilitated recognition for previously ignored words was found provided that they appeared frequently with an attended target. When adapting the same paradigm here, previously unattended pictures were recognized at high rates regardless of how they were paired with items during the primary task, whereas unattended words were later recognized at higher rates only if they had previously been aligned with primary task targets. Implicit learning effects obtained by aligning unattended items with attended task-targets may apply only to conceptually abstract stimulus types, such as words. Pictures, on the other hand, may maintain direct access to semantic information, and are therefore processed more readily than words, even when being actively ignored. PMID:28122022

  6. Dielectric relaxation and birefringence study of 7.O5O.7 dimeric liquid crystal compound

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Debanjan; Paul-Choudhury, Sandip; Alapati, Parameswara Rao; Bhattacharjee, Ayon

    2016-05-01

    Measurement of dielectric relaxation and birefringence phenomenon of dimeric liquid crystal compound with the dependence of temperature was reported in this paper. Homogeneous (HG) and homeotropic (HT) alignment of the cell are introduced to investigate the dielectric relaxation, activation energy and birefringence. Cole-Cole plots analyzed the dielectric relaxation of the dimeric compound. The observed Cole-Cole plots were semi-circular, and the relaxation mechanism obeys the non-Debye type of relaxation behaviour. Slater's perturbation equations have been used to analysis the activation energy of the compound. The birefringence of the compound has positively anisotropy and thin prism mechanism was used to study the anisotropy of the compound.

  7. Stress relaxation in heterogeneous polymers

    NASA Astrophysics Data System (ADS)

    Witten, T. A.

    1992-05-01

    When heterogeneous polymers such as diblock copolymers form a microdomain phase, an imposed strain gives rise to stress from two sources, and several mechanisms of stress relaxation. The release of stress by disentanglement is strongly influenced by the effective confinement of the junction points to the domain boundaries and by the stretching of the chains. Using accepted notions of entangled chain kinetics, it is argued that the relaxation time for sliding stress is exponential in the chainlength to the 7/9 power. A method for calculating the frequency-dependent dynamic modulus is sketched. Despite the slow relaxation implied by these mechanisms, it appears possible to create domains of high energy.

  8. Heteronuclear Adiabatic Relaxation Dispersion (HARD) for quantitative analysis of conformational dynamics in proteins.

    PubMed

    Traaseth, Nathaniel J; Chao, Fa-An; Masterson, Larry R; Mangia, Silvia; Garwood, Michael; Michaeli, Shalom; Seelig, Burckhard; Veglia, Gianluigi

    2012-06-01

    NMR relaxation methods probe biomolecular motions over a wide range of timescales. In particular, the rotating frame spin-lock R(1ρ) and Carr-Purcell-Meiboom-Gill (CPMG) R(2) experiments are commonly used to characterize μs to ms dynamics, which play a critical role in enzyme folding and catalysis. In an effort to complement these approaches, we introduced the Heteronuclear Adiabatic Relaxation Dispersion (HARD) method, where dispersion in rotating frame relaxation rate constants (longitudinal R(1ρ) and transverse R(2ρ)) is created by modulating the shape and duration of adiabatic full passage (AFP) pulses. Previously, we showed the ability of the HARD method to detect chemical exchange dynamics in the fast exchange regime (k(ex)∼10(4)-10(5) s(-1)). In this article, we show the sensitivity of the HARD method to slower exchange processes by measuring R(1ρ) and R(2ρ) relaxation rates for two soluble proteins (ubiquitin and 10C RNA ligase). One advantage of the HARD method is its nominal dependence on the applied radio frequency field, which can be leveraged to modulate the dispersion in the relaxation rate constants. In addition, we also include product operator simulations to define the dynamic range of adiabatic R(1ρ) and R(2ρ) that is valid under all exchange regimes. We conclude from both experimental observations and simulations that this method is complementary to CPMG-based and rotating frame spin-lock R(1ρ) experiments to probe conformational exchange dynamics for biomolecules. Finally, this approach is germane to several NMR-active nuclei, where relaxation rates are frequency-offset independent.

  9. Study of the relaxation behaviour of a tri-epoxy compound in the supercooled and glassy state by broadband dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Pisignano, D.; Capaccioli, S.; Casalini, R.; Lucchesi, M.; Rolla, P. A.; Justl, A.; Rössler, E.

    2001-05-01

    The dynamics of the glass-forming tri-epoxy triphenylolmethane triglycidyl ether (TPMTGE) was investigated in the supercooled and glassy state by broadband dielectric spectroscopy. Measurements were performed in a frequency range between 10-2 Hz and 1010 Hz for temperatures in the range between 120 and 350 K. The dielectric response revealed the existence of two relaxation processes: the lower frequency one (α-relaxation) slows down very rapidly on cooling the system and leaves the experimental window on approaching the glass transition temperature Tg; the higher frequency one (β-relaxation) is observable both above and below Tg. The β-relaxation is comparatively quite fast, thus a large separation between the main and the secondary peaks is observed, and no complete merging of the α- and the β-process is found within the experimental window even at the highest temperatures. Besides, a third relaxation (β'), very weak indeed, was observed in the glassy state. The detailed analysis performed on the experimental data indicated that a single Vogel-Fulcher-Tamman equation well describes the change of the α-relaxation time in the entire temperature interval. In the same temperature range, the conductivity and the α-relaxation time are related to each other by a fractional Debye-Stokes-Einstein law. Moreover, our results confirmed the proportionality between the β-activation energy and the glass-transition temperature, which was found in other systems. As observed in previous experiments, both the shape parameters and the relaxation strength of β-relaxation are strongly affected by the transition from liquid to glassy state.

  10. Stochastic tools hidden behind the empirical dielectric relaxation laws.

    PubMed

    Stanislavsky, Aleksander; Weron, Karina

    2017-03-01

    The paper is devoted to recent advances in stochastic modeling of anomalous kinetic processes observed in dielectric materials which are prominent examples of disordered (complex) systems. Theoretical studies of dynamical properties of 'structures with variations' (Goldenfield and Kadanoff 1999 Science 284 87-9) require application of such mathematical tools-by means of which their random nature can be analyzed and, independently of the details distinguishing various systems (dipolar materials, glasses, semiconductors, liquid crystals, polymers, etc), the empirical universal kinetic patterns can be derived. We begin with a brief survey of the historical background of the dielectric relaxation study. After a short outline of the theoretical ideas providing the random tools applicable to modeling of relaxation phenomena, we present probabilistic implications for the study of the relaxation-rate distribution models. In the framework of the probability distribution of relaxation rates we consider description of complex systems, in which relaxing entities form random clusters interacting with each other and single entities. Then we focus on stochastic mechanisms of the relaxation phenomenon. We discuss the diffusion approach and its usefulness for understanding of anomalous dynamics of relaxing systems. We also discuss extensions of the diffusive approach to systems under tempered random processes. Useful relationships among different stochastic approaches to the anomalous dynamics of complex systems allow us to get a fresh look at this subject. The paper closes with a final discussion on achievements of stochastic tools describing the anomalous time evolution of complex systems.

  11. Stochastic tools hidden behind the empirical dielectric relaxation laws

    NASA Astrophysics Data System (ADS)

    Stanislavsky, Aleksander; Weron, Karina

    2017-03-01

    The paper is devoted to recent advances in stochastic modeling of anomalous kinetic processes observed in dielectric materials which are prominent examples of disordered (complex) systems. Theoretical studies of dynamical properties of ‘structures with variations’ (Goldenfield and Kadanoff 1999 Science 284 87–9) require application of such mathematical tools—by means of which their random nature can be analyzed and, independently of the details distinguishing various systems (dipolar materials, glasses, semiconductors, liquid crystals, polymers, etc), the empirical universal kinetic patterns can be derived. We begin with a brief survey of the historical background of the dielectric relaxation study. After a short outline of the theoretical ideas providing the random tools applicable to modeling of relaxation phenomena, we present probabilistic implications for the study of the relaxation-rate distribution models. In the framework of the probability distribution of relaxation rates we consider description of complex systems, in which relaxing entities form random clusters interacting with each other and single entities. Then we focus on stochastic mechanisms of the relaxation phenomenon. We discuss the diffusion approach and its usefulness for understanding of anomalous dynamics of relaxing systems. We also discuss extensions of the diffusive approach to systems under tempered random processes. Useful relationships among different stochastic approaches to the anomalous dynamics of complex systems allow us to get a fresh look at this subject. The paper closes with a final discussion on achievements of stochastic tools describing the anomalous time evolution of complex systems.

  12. N-Glycosylation Regulates ADAM8 Processing and Activation*

    PubMed Central

    Srinivasan, Srimathi; Romagnoli, Mathilde; Bohm, Andrew; Sonenshein, Gail E.

    2014-01-01

    The transmembrane ADAM8 (A Disintegrin And Metalloproteinase 8) protein is abundantly expressed in human breast tumors and derived metastases compared with normal breast tissue, and plays critical roles in aggressive Triple-Negative breast cancers (TNBCs). During ADAM8 maturation, the inactive proform dimerizes or multimerizes and autocatalytically removes the prodomain leading to the formation of the active, processed form. ADAM8 is a glycoprotein; however, little was known about the structure or functional role of these sugar moieties. Here, we report that in estrogen receptor (ER)α-negative, but not -positive, breast cancer cells ADAM8 contains N-glycosylation, which is required for its correct processing and activation. Consistently ADAM8 dimers were detected on the surface of ERα-negative breast cancer cells but not on ERα-positive ones. Site-directed mutagenesis confirmed four N-glycosylazhytion sites (Asn-67, Asn-91, Asn-436, and Asn-612) in human ADAM8. The Asn-67 and Asn-91 prodomain sites contained high mannose, whereas complex type N-glycosylation was observed on Asn-436 and Asn-612 in the active and remnant forms. The Asn-91 and Asn-612 sites were essential for its correct processing and cell surface localization, in particular its exit from the Golgi and endoplasmic reticulum, respectively. The N436Q mutation led to decreased ADAM8 stability due to enhanced lysosomal degradation. In contrast, mutation of the Asn-67 site had only modest effects on enzyme stability and processing. Thus, N-glycosylation is essential for processing, localization, stability, and activity of ADAM8. PMID:25336660

  13. Relaxational dynamics of water molecules at protein surface

    NASA Astrophysics Data System (ADS)

    Dellerue, S.; Bellissent-Funel, M.-C.

    2000-08-01

    Relaxational dynamics of water molecules at the surface of a C-phycocyanin protein is studied by high resolution quasi-elastic neutron scattering. The neutron quasi-elastic spectra are well described by the α-relaxation process of mode coupling theory of supercooled liquids. The relaxation times of interfacial water exhibit a power law dependence on the wave vector Q. The average diffusion coefficient is 10 times lower than that of bulk water. This confirms that there is a retardation of water molecules at the protein surface which is in good agreement with the results of water at the surface of hydrophilic model systems.

  14. Developing a Learning Algorithm-Generated Empirical Relaxer

    SciTech Connect

    Mitchell, Wayne; Kallman, Josh; Toreja, Allen; Gallagher, Brian; Jiang, Ming; Laney, Dan

    2016-03-30

    One of the main difficulties when running Arbitrary Lagrangian-Eulerian (ALE) simulations is determining how much to relax the mesh during the Eulerian step. This determination is currently made by the user on a simulation-by-simulation basis. We present a Learning Algorithm-Generated Empirical Relaxer (LAGER) which uses a regressive random forest algorithm to automate this decision process. We also demonstrate that LAGER successfully relaxes a variety of test problems, maintains simulation accuracy, and has the potential to significantly decrease both the person-hours and computational hours needed to run a successful ALE simulation.

  15. Chemical Relaxation Times in a Hadron Gas at Finite Temperature

    SciTech Connect

    Goity, Jose

    1993-07-01

    The relaxation time of particle numbers in hot hadronic matter with vanishing baryon number are estimated using the ideal gas approximation and taking into account resonance decays and annihilation processes as the only sources of particle number fluctuations.Near the QCD critical temperature the longest relaxation times turn out to be of the order of 10 fm and grow roughly exponentially to become of the order of 10^3 fm at temperatures around 100 MeV.As a consequence of such long relaxation times, a clear departure from chemical equilibrium must be observed in the momentum distribution of secondary particles produced in high energy nuclear collisions.

  16. Stress Relaxation of Interim Restoratives.

    DTIC Science & Technology

    1978-05-18

    unmodified zinc oxide- eugenol cement were more favorable than those of IRM and Cavit. The plastic behavior of gutta-percha temporary stopping precluded assessment of its relaxation at temperatures in excess of 22P C. (Author)

  17. Relaxation dynamics of lithium ions in lead bismuthate glasses

    NASA Astrophysics Data System (ADS)

    Pan, A.; Ghosh, A.

    2000-08-01

    We have investigated relaxation dynamics of lithium ions in lead bismuthate glasses in the frequency range from 10 Hz to 2 MHz and in the temperature range from 303-553 K. Using the Anderson-Stuart model, we have calculated the activation energy, which is observed to be lower than that of the dc conductivity. We have studied the relaxation mechanism of these glasses in the framework of the electric modulus and conductivity formalisms. The microscopic parameters obtained from these formalisms have been compared. We have also calculated the decoupling index and correlated them with the stretched exponential relaxation parameter and the dc conductivity.

  18. Knee Cartilage Thickness, T1ρ and T2 Relaxation Time Are Related to Articular Cartilage Loading in Healthy Adults

    PubMed Central

    Van Rossom, Sam; Smith, Colin Robert; Zevenbergen, Lianne; Thelen, Darryl Gerard; Vanwanseele, Benedicte; Van Assche, Dieter; Jonkers, Ilse

    2017-01-01

    Cartilage is responsive to the loading imposed during cyclic routine activities. However, the local relation between cartilage in terms of thickness distribution and biochemical composition and the local contact pressure during walking has not been established. The objective of this study was to evaluate the relation between cartilage thickness, proteoglycan and collagen concentration in the knee joint and knee loading in terms of contact forces and pressure during walking. 3D gait analysis and MRI (3D-FSE, T1ρ relaxation time and T2 relaxation time sequence) of fifteen healthy subjects were acquired. Experimental gait data was processed using musculoskeletal modeling to calculate the contact forces, impulses and pressure distribution in the tibiofemoral joint. Correlates to local cartilage thickness and mean T1ρ and T2 relaxation times of the weight-bearing area of the femoral condyles were examined. Local thickness was significantly correlated with local pressure: medial thickness was correlated with medial condyle contact pressure and contact force, and lateral condyle thickness was correlated with lateral condyle contact pressure and contact force during stance. Furthermore, average T1ρ and T2 relaxation time correlated significantly with the peak contact forces and impulses. Increased T1ρ relaxation time correlated with increased shear loading, decreased T1ρ and T2 relaxation time correlated with increased compressive forces and pressures. Thicker cartilage was correlated with higher condylar loading during walking, suggesting that cartilage thickness is increased in those areas experiencing higher loading during a cyclic activity such as gait. Furthermore, the proteoglycan and collagen concentration and orientation derived from T1ρ and T2 relaxation measures were related to loading. PMID:28076431

  19. Nonlinear electrochemical relaxation around conductors.

    PubMed

    Chu, Kevin T; Bazant, Martin Z

    2006-07-01

    We analyze the simplest problem of electrochemical relaxation in more than one dimension-the response of an uncharged, ideally polarizable metallic sphere (or cylinder) in a symmetric, binary electrolyte to a uniform electric field. In order to go beyond the circuit approximation for thin double layers, our analysis is based on the Poisson-Nernst-Planck (PNP) equations of dilute solution theory. Unlike most previous studies, however, we focus on the nonlinear regime, where the applied voltage across the conductor is larger than the thermal voltage. In such strong electric fields, the classical model predicts that the double layer adsorbs enough ions to produce bulk concentration gradients and surface conduction. Our analysis begins with a general derivation of surface conservation laws in the thin double-layer limit, which provide effective boundary conditions on the quasineutral bulk. We solve the resulting nonlinear partial differential equations numerically for strong fields and also perform a time-dependent asymptotic analysis for weaker fields, where bulk diffusion and surface conduction arise as first-order corrections. We also derive various dimensionless parameters comparing surface to bulk transport processes, which generalize the Bikerman-Dukhin number. Our results have basic relevance for double-layer charging dynamics and nonlinear electrokinetics in the ubiquitous PNP approximation.

  20. Stress relaxation behavior of composite and eutectic Sn-Ag solder joints

    NASA Astrophysics Data System (ADS)

    Jadhav, S. G.; Bieler, T. R.; Subramanian, K. N.; Lucas, J. P.

    2001-09-01

    Stress relaxation experiments were carried out at 25 C and 150 C on 96.5Sn-3.5Ag eutectic solder and Sn-Ag composite solder joints (Sn-Ag eutectic solder with 20 vol.% Cu6Sn5 reinforcements incorporated by in-situ methods). The magnitude of the stress drop during relaxation depends primarily upon the plastic shear strain imposed prior to the stress relaxation process. For sequential stress relaxation experiments that include unloading, the stress drop is nearly independent of the accumulated plastic shear strain. However, for sequential stress relaxation that does not include unloading, the stress relaxation is more dependent upon the cumulative plastic shear strain history. The stress in single shear lap joints does not relax to zero stress, as is observed in stress relaxation of bulk tension specimens, even at 150 C. Creep strain rates extracted from the relaxation data were much lower with smaller pre-strains in both eutectic Sn-Ag and composite solder joints. The stress exponent values (n) calculated from the stress relaxation test data ranged from 7 to 15 for both eutectic and composite solder joints, which were consistent with conventional creep data. These stress-relaxation behaviors can be explained on the basis of dislocation recovery processes that occur during relaxation and when specimens are unloaded.

  1. Dynamic Stimuli And Active Processing In Human Visual Perception

    NASA Astrophysics Data System (ADS)

    Haber, Ralph N.

    1990-03-01

    Theories of visual perception traditionally have considered a static retinal image to be the starting point for processing; and has considered processing both to be passive and a literal translation of that frozen, two dimensional, pictorial image. This paper considers five problem areas in the analysis of human visually guided locomotion, in which the traditional approach is contrasted to newer ones that utilize dynamic definitions of stimulation, and an active perceiver: (1) differentiation between object motion and self motion, and among the various kinds of self motion (e.g., eyes only, head only, whole body, and their combinations); (2) the sources and contents of visual information that guide movement; (3) the acquisition and performance of perceptual motor skills; (4) the nature of spatial representations, percepts, and the perceived layout of space; and (5) and why the retinal image is a poor starting point for perceptual processing. These newer approaches argue that stimuli must be considered as dynamic: humans process the systematic changes in patterned light when objects move and when they themselves move. Furthermore, the processing of visual stimuli must be active and interactive, so that perceivers can construct panoramic and stable percepts from an interaction of stimulus information and expectancies of what is contained in the visual environment. These developments all suggest a very different approach to the computational analyses of object location and identification, and of the visual guidance of locomotion.

  2. Gaussian Process for Activity Modeling and Anomaly Detection

    NASA Astrophysics Data System (ADS)

    Liao, W.; Rosenhahn, B.; Yang, M. Ying

    2015-08-01

    Complex activity modeling and identification of anomaly is one of the most interesting and desired capabilities for automated video behavior analysis. A number of different approaches have been proposed in the past to tackle this problem. There are two main challenges for activity modeling and anomaly detection: 1) most existing approaches require sufficient data and supervision for learning; 2) the most interesting abnormal activities arise rarely and are ambiguous among typical activities, i.e. hard to be precisely defined. In this paper, we propose a novel approach to model complex activities and detect anomalies by using non-parametric Gaussian Process (GP) models in a crowded and complicated traffic scene. In comparison with parametric models such as HMM, GP models are nonparametric and have their advantages. Our GP models exploit implicit spatial-temporal dependence among local activity patterns. The learned GP regression models give a probabilistic prediction of regional activities at next time interval based on observations at present. An anomaly will be detected by comparing the actual observations with the prediction at real time. We verify the effectiveness and robustness of the proposed model on the QMUL Junction Dataset. Furthermore, we provide a publicly available manually labeled ground truth of this data set.

  3. Processing activities for STS-91 continue in OPF Bay 2

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Processing activities for STS-91 continue in KSC's Orbiter Processing Facility Bay 2. Two Get Away Special (GAS) canisters are shown after their installation into Discovery's payload bay. At left is G-648, an Canadian Space Agency-sponsored study of manufactured organic thin film by the physical vapor transport method, and the can on the right contains commemorative flags to be flown during the mission. STS-91 is scheduled to launch aboard the Space Shuttle Discovery for the ninth and final docking with the Russian Space Station Mir from KSC's Launch Pad 39A on June 2 with a launch window opening around 6:04 p.m. EDT.

  4. Processing activities for STS-91 continue in OPF Bay 2

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Processing activities for STS-91 continue in KSC's Orbiter Processing Facility Bay 2. Two Get Away Special (GAS) canisters are shown after their installation into Discovery's payload bay. At left is G-090, containing three educational experiments sponsored by Utah State University, and at right is G-743, an experiment sponsored by Broward Community College in Florida to test DNA exposed to cosmic radiation in a microgravity environment. STS-91 is scheduled to launch aboard the Space Shuttle Discovery for the ninth and final docking with the Russian Space Station Mir from KSC's Launch Pad 39A on June 2 with a launch window opening around 6:04 p.m. EDT.

  5. Hanford's Simulated Low Activity Waste Cast Stone Processing

    SciTech Connect

    Kim, Young

    2013-08-20

    Cast Stone is undergoing evaluation as the supplemental treatment technology for Hanford’s (Washington) high activity waste (HAW) and low activity waste (LAW). This report will only cover the LAW Cast Stone. The programs used for this simulated Cast Stone were gradient density change, compressive strength, and salt waste form phase identification. Gradient density changes show a favorable outcome by showing uniformity even though it was hypothesized differently. Compressive strength exceeded the minimum strength required by Hanford and greater compressive strength increase seen between the uses of different salt solution The salt waste form phase is still an ongoing process as this time and could not be concluded.

  6. Vacancy Relaxation in Cubic Crystals

    NASA Technical Reports Server (NTRS)

    Girifalco, L. A.; Weizer, V. G.

    1960-01-01

    The configuration of the atoms surrounding a vacancy in four face-centered cubic and three body-centered cubic metals has been computed, using a pairwise, central-force model in which the energy of interaction between two atoms was taken to have the form of a Morse function. Only radial relaxations were considered. The first and second nearest-neighbor relaxations for the face-centered systems were found to be: Pb (1.42,-0.43), Ni (2.14,-0.39), Cu(2.24,-0.40) and Ca (2.73,-0.41, expressed in percentages of normal distances. For the body-centered systems the relaxations out to the fourth nearest neighbors to the vacancy were: Fe (6.07,-2.12, -0.25, -), Ba (7.85, -2.70, 0.70, -0.33) and Na (10.80, -3.14, 3.43, -0.20). The positive signs indicate relaxation toward the vacancy and the negative signs indicate relaxation away from the vacancy. The energies of relaxation (eV) are: Pb (0.162), Ni (0.626), Cu (0.560), Ca (0.400), Fe (1.410), Ba (0.950) and Na (0.172).

  7. Pulse Detonation Physiochemical and Exhaust Relaxation Processes

    DTIC Science & Technology

    2006-05-01

    knowledge of detonation initiation, propagation, and blow-down needed to develop a pulse detonation engine ( PDE ) that will function on hydrocarbon fuels...phenomena required to operate a PDE . Detonation tube exhaust blow-down conditions, which are predicted to have a significant impact upon performance...to establish the scientific knowledge of detonation initiation, propagation, and blow-down needed to develop a pulse detonation engine ( PDE ) that will

  8. RESEARCH ON RELAXATION PROCESSES IN MAGNETIC MATERIALS.

    DTIC Science & Technology

    MAGNETIC PROPERTIES, DIELECTRIC PROPERTIES, FERROMAGNETIC MATERIALS, FERRITES , EUROPIUM COMPOUNDS, GALLIUM COMPOUNDS, OXIDES, DYSPROSIUM, HOLMIUM...GARNET), (* MAGNETIC PROPERTIES, YTTRIUM, CRYSTALS, IRON COMPOUNDS, POROSITY, THEORY, MATHEMATICAL ANALYSIS, SINGLE CRYSTALS, MAGNETIC MATERIALS

  9. Batch Covariance Relaxation (BCR) Adaptive Processing.

    DTIC Science & Technology

    1981-08-01

    IR&D Final Report 7263-001F, March 15, 1980. [2] Hestenes, M. R. and Steifel, E., "Methods of Conjugate Gradients for Solving Linear Systems," Journal ...Wilkinson, J. H., "Notes on the Solution of Algebraic Linear Simultaneous Equations," Quarterly Journal of Mechanics and Applied Mathematics, pp. 149-173...00 0 In F- P0 -a -- -~e -2 - - -4 - o 0 p.. to I ~ a I I PzN N oin g I ’ l g 1 C 0I ~ Nw c gL Il* . a* . * p. 4r I-in a a4i * Csea OCI I2e Co , lk. lX

  10. Terahertz normal mode relaxation in pentaerythritol tetranitrate.

    PubMed

    Pereverzev, Andrey; Sewell, Thomas D

    2011-01-07

    Normal vibrational modes for a three-dimensional defect-free crystal of the high explosive pentaerythritol tetranitrate were obtained in the framework of classical mechanics using a previously published unreactive potential-energy surface [J. Phys. Chem. B 112, 734 (2008)]. Using these results the vibrational density of states was obtained for the entire vibrational frequency range. Relaxation of selectively excited terahertz-active modes was studied using isochoric-isoergic (NVE) molecular dynamics simulations for energy and density conditions corresponding to room temperature and atmospheric pressure. Dependence of the relaxation time on the initial modal excitation was considered for five excitation energies between 10 and 500 kT and shown to be relatively weak. The terahertz absorption spectrum was constructed directly using linewidths obtained from the relaxation times of the excited modes for the case of 10 kT excitation. The spectrum shows reasonably good agreement with experimental results. Dynamics of redistribution of the excited mode energy among the other normal modes was also studied. The results indicate that, for the four terahertz-active initially excited modes considered, there is a small subset of zero wave vector (k = 0) modes that preferentially absorb the energy on a few-picosecond time scale. The majority of the excitation energy, however, is transferred nonspecifically to the bath modes of the system.

  11. Hypnotizability modulates the cardiovascular correlates of subjective relaxation.

    PubMed

    Santarcangelo, Enrica L; Paoletti, Giulia; Balocchi, Rita; Carli, Giancarlo; Morizzo, Carmela; Palombo, Carlo; Varanini, Maurizio

    2012-01-01

    Mean values and the spectral variability of heart rate (HRV), blood pressure, and skin blood flow were studied in high and low hypnotizable subjects during simple relaxation. Similar subjective relaxation was reported by highs and lows. A parasympathetic prevalence (indicated by a higher High-Frequency component of HRV and a lower High/Low-Frequency ratio) and lower renin-angiotensin activity (indicated by a lower Very-Low-Frequency component of HRV) could be attributed to highs with respect to lows. Hypnotizability did not affect blood pressure and its variability and modulated the skin blood flow across the session only in lows. The findings confirm that relaxation cannot be defined solely on cardiovascular parameters and also indicate that hypnotizability modulates cardiovascular activity during simple relaxation and suggest it may have a protective role against cardiovascular disease.

  12. Relaxation time estimation in surface NMR

    DOEpatents

    Grunewald, Elliot D.; Walsh, David O.

    2017-03-21

    NMR relaxation time estimation methods and corresponding apparatus generate two or more alternating current transmit pulses with arbitrary amplitudes, time delays, and relative phases; apply a surface NMR acquisition scheme in which initial preparatory pulses, the properties of which may be fixed across a set of multiple acquisition sequence, are transmitted at the start of each acquisition sequence and are followed by one or more depth sensitive pulses, the pulse moments of which are varied across the set of multiple acquisition sequences; and apply processing techniques in which recorded NMR response data are used to estimate NMR properties and the relaxation times T.sub.1 and T.sub.2* as a function of position as well as one-dimensional and two-dimension distributions of T.sub.1 versus T.sub.2* as a function of subsurface position.

  13. Tuning energy relaxation along quantum Hall channels.

    PubMed

    Altimiras, C; le Sueur, H; Gennser, U; Cavanna, A; Mailly, D; Pierre, F

    2010-11-26

    The chiral edge channels in the quantum Hall regime are considered ideal ballistic quantum channels, and have quantum information processing potentialities. Here, we demonstrate experimentally, at a filling factor of ν(L)=2, the efficient tuning of the energy relaxation that limits quantum coherence and permits the return toward equilibrium. Energy relaxation along an edge channel is controllably enhanced by increasing its transmission toward a floating Ohmic contact, in quantitative agreement with predictions. Moreover, by forming a closed inner edge channel loop, we freeze energy exchanges in the outer channel. This result also elucidates the inelastic mechanisms at work at ν(L)=2, informing us, in particular, that those within the outer edge channel are negligible.

  14. Dislocation Glasses: Aging during Relaxation and Coarsening

    SciTech Connect

    Bako, B.; Groma, I.; Gyoergyi, G.; Zimanyi, G. T.

    2007-02-16

    The dynamics of dislocations is reported to exhibit a range of glassy properties. We study numerically various versions of 2D edge dislocation systems, in the absence of externally applied stress. Two types of glassy behavior are identified (i) dislocations gliding along randomly placed, but fixed, axes exhibit relaxation to their spatially disordered stable state; (ii) if both climb and annihilation are allowed, irregular cellular structures can form on a growing length scale before all dislocations annihilate. In all cases both the correlation function and the diffusion coefficient are found to exhibit aging. Relaxation in case (i) is a slow power law, furthermore, in the transient process (ii) the dynamical exponent z{approx_equal}6, i.e., the cellular structure coarsens relatively slowly.

  15. Computational and statistical tradeoffs via convex relaxation

    PubMed Central

    Chandrasekaran, Venkat; Jordan, Michael I.

    2013-01-01

    Modern massive datasets create a fundamental problem at the intersection of the computational and statistical sciences: how to provide guarantees on the quality of statistical inference given bounds on computational resources, such as time or space. Our approach to this problem is to define a notion of “algorithmic weakening,” in which a hierarchy of algorithms is ordered by both computational efficiency and statistical efficiency, allowing the growing strength of the data at scale to be traded off against the need for sophisticated processing. We illustrate this approach in the setting of denoising problems, using convex relaxation as the core inferential tool. Hierarchies of convex relaxations have been widely used in theoretical computer science to yield tractable approximation algorithms to many computationally intractable tasks. In the current paper, we show how to endow such hierarchies with a statistical characterization and thereby obtain concrete tradeoffs relating algorithmic runtime to amount of data. PMID:23479655

  16. Insulin relaxes bladder via PI3K/AKT/eNOS pathway activation in mucosa: unfolded protein response-dependent insulin resistance as a cause of obesity-associated overactive bladder.

    PubMed

    Leiria, Luiz O; Sollon, Carolina; Báu, Fernando R; Mónica, Fabíola Z; D'Ancona, Carlos L; De Nucci, Gilberto; Grant, Andrew D; Anhê, Gabriel F; Antunes, Edson

    2013-05-01

    We aimed to investigate the role of insulin in the bladder and its relevance for the development of overactive bladder (OAB) in insulin-resistant obese mice. Bladders from male individuals who were involved in multiple organ donations were used. C57BL6/J mice were fed with a high-fat diet for 10 weeks to induce insulin-resistant obesity. Concentration-response curves to insulin were performed in human and mouse isolated mucosa-intact and mucosa-denuded bladders. Cystometric study was performed in terminally anaesthetized mice. Western blot was performed in bladders to detect phosphorylated endothelial NO synthase (eNOS) (Ser1177) and the phosphorylated protein kinase AKT (Ser473), as well as the unfolded protein response (UPR) markers TRIB3, CHOP and ATF4. Insulin (1-100 nm) produced concentration-dependent mouse and human bladder relaxations that were markedly reduced by mucosal removal or inhibition of the PI3K/AKT/eNOS pathway. In mouse bladders, insulin produced a 3.0-fold increase in cGMP levels (P < 0.05) that was prevented by PI3K/AKT/eNOS pathway inhibition. Phosphoinositide 3-kinase (PI3K) inhibition abolished insulin-induced phosphorylation of AKT and eNOS in bladder mucosa. Obese mice showed greater voiding frequency and non-voiding contractions, indicating overactive detrusor smooth muscle. Insulin failed to relax the bladder or to increase cGMP in the obese group. Insulin-stimulated AKT and eNOS phosphorylation in mucosa was also impaired in obese mice. The UPR markers TRIB3, CHOP and ATF4 were increased in the mucosa of obese mice. The UPR inhibitor 4-phenyl butyric acid normalized all the functional and molecular parameters in obese mice. Our data show that insulin relaxes human and mouse bladder via activation of the PI3K/AKT/eNOS pathway in the bladder mucosa. Endoplasmic reticulum stress-dependent insulin resistance in bladder contributes to OAB in obese mice.

  17. Enhancement of activated sludge disintegration and dewaterability by Fenton process

    NASA Astrophysics Data System (ADS)

    Heng, G. C.; Isa, M. H.

    2016-06-01

    Municipal and industrial wastewater treatment plants produce large amounts of sludge. This excess sludge is an inevitable drawback inherent to the activated sludge process. In this study, the waste activated sludge was obtained from the campus wastewater treatment plant at Universiti Teknologi PETRONAS (UTP), Malaysia. Fenton pretreatment was optimized by using the response surface methodology (RSM) to study the effects of three operating conditions including the dosage of H2O2 (g H2O2/kg TS), the molar ratio of H2O2/Fe2+ and reaction time. The optimum operating variables to achieve MLVSS removal 65%, CST reduction 28%, sCOD 11000 mg/L and EPS 500 mg/L were: 1000 g H2O2/kg TS, H2O2/Fe2+ molar ratio 70 and reaction time 45 min. Fenton process was proved to be able to enhance the sludge disintegration and dewaterability.

  18. Unraveling the processing and activation of snake venom metalloproteinases.

    PubMed

    Portes-Junior, José A; Yamanouye, Norma; Carneiro, Sylvia M; Knittel, Paloma S; Sant'Anna, Sávio S; Nogueira, Fabio C S; Junqueira, Magno; Magalhães, Geraldo S; Domont, Gilberto B; Moura-da-Silva, Ana M

    2014-07-03

    Snake venom metalloproteinases (SVMPs) are zinc-dependent enzymes responsible for most symptoms of human envenoming. Like matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase (ADAM) proteins, SVMPs are synthesized as zymogens, and enzyme activation is regulated by hydrolysis of their prodomain, but the processing of SVMPs is still unclear. In this study, we attempted to identify the presence of prodomain in different compartments of snake venom glands as zymogens or in the free form to elucidate some mechanism involved in SVMP activation. Using antibodies obtained by immunization with a recombinant prodomain, bands of zymogen molecular mass and prodomain peptides were detected mostly in gland extracts all along the venom production cycle and in the venom collected from the lumen at the peak of venom production. Prodomain was detected in secretory cells mostly in the secretory vesicles near the Golgi. We hypothesize that the processing of SVMPs starts within secretory vesicles and continues in the lumen of the venom gland just after enzyme secretion and involves different steps compared to ADAMs and MMPs but can be used as a model for studying the relevance of peptides resulting from prodomain processing and degradation for controlling the activity of metalloproteinases.

  19. Dynamic Correlation Functions of Adsorption Stochastic Systems with Diffusional Relaxation

    NASA Astrophysics Data System (ADS)

    Grynberg, Marcelo D.; Stinchcombe, Robin B.

    1995-02-01

    We investigate the nonequilibrium behavior of dynamic correlation functions of random sequential adsorption processes with diffusional relaxation. Depending on the relative values of the transition probability rates, in one dimension these systems reduce to a soluble problem of many fermions. In contrast to the standard diffusive relaxation of the macroscopic density, the correlation functions exhibit a faster decay. Our results are supported and compared with Monte Carlo simulations.

  20. Relaxation Behavior of Ca-Based Bulk Metallic Glasses (Postprint)

    DTIC Science & Technology

    2009-09-03

    DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To) April 2014 Interim 19 March 2014 – 31 March 2014 4. TITLE AND SUBTITLE RELAXATION...liquids.[2 4] Almost all bulk metallic glasses show intermediate fragile behavior.[ 5 ] Slow kinet- ics of crystallization due to high viscosity/high...on u is used to calculate the activation enthalpy of structural relax- ation, DHg, at the glass transition: [17] DHg ¼ R d lnu d 1 . Tcalg ½ 5

  1. Analysis of the dynamics of relaxation type oscillation in glycolysis of yeast extracts.

    PubMed Central

    Das, J; Busse, H G

    1991-01-01

    In yeasts, the glycolysis may display oscillations of its metabolites while it is converting glucose. The dynamics of the oscillations has been investigated in cytoplasmic extracts of yeast under relaxation type conditions by determining the time course of some of the glycolytic metabolites. The compounds of the nucleotide pool have been identified as fast variables and the glucose derivatives as slow variables of the relaxation type. The period of oscillation has been subdivided into four phases which represent prominent parts of the limit cycle in the phase plane of a slow versus a fast variable. From the reaction processes in these phases, a dynamical picture of the mechanisms of oscillations is suggested. Accordingly, the oscillation results from an alternating activity of the fructose bisphosphate and the polysaccharide synthesis, both of which are coupled to glycolysis via the nucleotide pool. The processes in the phases are analyzed by calculating the rates of the reaction steps in the biochemical pathway. PMID:1832975

  2. Correlation between nonexponential relaxation and non-Arrhenius behavior under conditions of high compression.

    PubMed

    Gapiński, Jacek; Paluch, Marian; Patkowski, Adam

    2002-07-01

    Photon correlation spectroscopy was used to investigate the behavior of the dynamical properties of 1,1'-di(4-methoxy-5-methyl-phenyl)cyclohexane (BMMPC) at elevated pressures. The fragility of BMMPC measured by the steepness index m(T) is decreasing and the nonexponentiality parameter beta(KWW) is increasing with increasing pressure. This result strongly suggests that the phenomenological correlation between the steepness index and nonexponentionality is also preserved under high compression. The pressure dependence of the structural relaxation times is well characterized by a simple activation volume form. The activation volume continuously increases with decreasing temperature, which is probably due to the increase of cooperativity of the structural relaxation process. Moreover, we found that the glass-transition temperature exhibits a significant dependence on pressure.

  3. Land processes distributed active archive center product lifecycle plan

    USGS Publications Warehouse

    Daucsavage, John C.; Bennett, Stacie D.

    2014-01-01

    The U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center and the National Aeronautics and Space Administration (NASA) Earth Science Data System Program worked together to establish, develop, and operate the Land Processes (LP) Distributed Active Archive Center (DAAC) to provide stewardship for NASA’s land processes science data. These data are critical science assets that serve the land processes science community with potential value beyond any immediate research use, and therefore need to be accounted for and properly managed throughout their lifecycle. A fundamental LP DAAC objective is to enable permanent preservation of these data and information products. The LP DAAC accomplishes this by bridging data producers and permanent archival resources while providing intermediate archive services for data and information products.

  4. Materials and Process Activities for NASA's Composite Crew Module

    NASA Technical Reports Server (NTRS)

    Polis, Daniel L.

    2012-01-01

    In January 2007, the NASA Administrator and Associate Administrator for the Exploration Systems Mission Directorate chartered the NASA Engineering and Safety Center (NESC) to design, build, and test a full-scale Composite Crew Module (CCM). The overall goal of the CCM project was to develop a team from the NASA family with hands-on experience in composite design, manufacturing, and testing in anticipation of future space exploration systems being made of composite materials. The CCM project was planned to run concurrently with the Orion project s baseline metallic design within the Constellation Program so that features could be compared and discussed without inducing risk to the overall Program. The materials and process activities were prioritized based on a rapid prototype approach. This approach focused developmental activities on design details with greater risk and uncertainty, such as out-of-autoclave joining, over some of the more traditional lamina and laminate building block levels. While process development and associated building block testing were performed, several anomalies were still observed at the full-scale level due to interactions between process robustness and manufacturing scale-up. This paper describes the process anomalies that were encountered during the CCM development and the subsequent root cause investigations that led to the final design solutions. These investigations highlight the importance of full-scale developmental work early in the schedule of a complex composite design/build project.

  5. Spectral dynamics of electroencephalographic activity during auditory information processing.

    PubMed

    Cacace, Anthony T; McFarland, Dennis J

    2003-02-01

    Dynamics of electroencephalographic (EEG) activity during auditory information processing were evaluated in response to changes in stimulus complexity, stimulus discriminability and attention using the oddball paradigm. In comparison to pre-stimulus baseline conditions, auditory stimulation synchronized EEG activity in delta, theta and alpha frequency bands. Event-related synchronization (ERS) effects were greatest at approximately 3 Hz (theta frequency band), and their magnitude depended on stimulus and task demands. Event-related desynchronization (ERD) of EEG activity was observed in the beta frequency band. This effect was greatest at approximately 21 Hz but occurred only for easily discriminable stimuli in attention-related target conditions. Because active discrimination tasks also required a button-press response with the right hand, ERDs involved more complex responses that may be related to a combination of perceptual, motor and cognitive processes. These results demonstrate that oddball and attention-related EEG responses to auditory stimulation could be characterized in the frequency domain. The specific design and analysis features described herein may prove useful since they provide a simple index of the brain's response to stimulation while at the same time provide powerful information not contained in typical time domain analysis.

  6. Relaxation dynamics of a protein solution investigated by dielectric spectroscopy.

    PubMed

    Wolf, M; Gulich, R; Lunkenheimer, P; Loidl, A

    2012-05-01

    In the present work, we provide a dielectric study on two differently concentrated aqueous lysozyme solutions in the frequency range from 1MHz to 40GHz and for temperatures from 275 to 330K. We analyze the three dispersion regions, commonly found in protein solutions, usually termed β-, γ-, and δ-relaxations. The β-relaxation, occurring in the frequency range around 10MHz and the γ-relaxation around 20GHz (at room temperature) can be attributed to the rotation of the polar protein molecules in their aqueous medium and the reorientational motion of the free water molecules, respectively. The nature of the δ-relaxation, which is often ascribed to the motion of bound water molecules, is not yet fully understood. Here we provide data on the temperature dependence of the relaxation times and relaxation strengths of all three detected processes and on the dc conductivity arising from ionic charge transport. The temperature dependences of the β- and γ-relaxations are closely correlated. We found a significant temperature dependence of the dipole moment of the protein, indicating conformational changes. Moreover we find a breakdown of the Debye-Stokes-Einstein relation in this protein solution, i.e., the dc conductivity is not completely governed by the mobility of the solvent molecules. Instead it seems that the dc conductivity is closely connected to the hydration shell dynamics.

  7. Competing ultrafast energy relaxation pathways in photoexcited graphene.

    PubMed

    Jensen, S A; Mics, Z; Ivanov, I; Varol, H S; Turchinovich, D; Koppens, F H L; Bonn, M; Tielrooij, K J

    2014-10-08

    For most optoelectronic applications of graphene, a thorough understanding of the processes that govern energy relaxation of photoexcited carriers is essential. The ultrafast energy relaxation in graphene occurs through two competing pathways: carrier-carrier scattering, creating an elevated carrier temperature, and optical phonon emission. At present, it is not clear what determines the dominating relaxation pathway. Here we reach a unifying picture of the ultrafast energy relaxation by investigating the terahertz photoconductivity, while varying the Fermi energy, photon energy and fluence over a wide range. We find that sufficiently low fluence (≲4 μJ/cm(2)) in conjunction with sufficiently high Fermi energy (≳0.1 eV) gives rise to energy relaxation that is dominated by carrier-carrier scattering, which leads to efficient carrier heating. Upon increasing the fluence or decreasing the Fermi energy, the carrier heating efficiency decreases, presumably due to energy relaxation that becomes increasingly dominated by phonon emission. Carrier heating through carrier-carrier scattering accounts for the negative photoconductivity for doped graphene observed at terahertz frequencies. We present a simple model that reproduces the data for a wide range of Fermi levels and excitation energies and allows us to qualitatively assess how the branching ratio between the two distinct relaxation pathways depends on excitation fluence and Fermi energy.

  8. Ultrafast energy relaxation in single light-harvesting complexes

    PubMed Central

    Malý, Pavel; Gruber, J. Michael; Cogdell, Richard J.; Mančal, Tomáš; van Grondelle, Rienk

    2016-01-01

    Energy relaxation in light-harvesting complexes has been extensively studied by various ultrafast spectroscopic techniques, the fastest processes being in the sub–100-fs range. At the same time, much slower dynamics have been observed in individual complexes by single-molecule fluorescence spectroscopy (SMS). In this work, we use a pump–probe-type SMS technique to observe the ultrafast energy relaxation in single light-harvesting complexes LH2 of purple bacteria. After excitation at 800 nm, the measured relaxation time distribution of multiple complexes has a peak at 95 fs and is asymmetric, with a tail at slower relaxation times. When tuning the excitation wavelength, the distribution changes in both its shape and position. The observed behavior agrees with what is to be expected from the LH2 excited states structure. As we show by a Redfield theory calculation of the relaxation times, the distribution shape corresponds to the expected effect of Gaussian disorder of the pigment transition energies. By repeatedly measuring few individual complexes for minutes, we find that complexes sample the relaxation time distribution on a timescale of seconds. Furthermore, by comparing the distribution from a single long-lived complex with the whole ensemble, we demonstrate that, regarding the relaxation times, the ensemble can be considered ergodic. Our findings thus agree with the commonly used notion of an ensemble of identical LH2 complexes experiencing slow random fluctuations. PMID:26903650

  9. Dynamic correlations and heterogeneity in the primary and secondary relaxations of a model molecular liquid

    NASA Astrophysics Data System (ADS)

    Fragiadakis, D.; Roland, C. M.

    2014-05-01

    Molecular dynamics simulations were carried out on a series of Lennard-Jones binary mixtures of rigid, asymmetric, dumbbell-shaped molecules. Below an onset temperature, the rotational and translational dynamics split into the slow structural α relaxation and a higher-frequency Johari-Goldstein β relaxation. Both processes are dynamically heterogeneous, having broad distributions of relaxation times. However, only the α relaxation shows strong dynamic correlations; correlations at the β time scale are weak, in particular for molecules having shorter bonds. Despite the close connection between the two processes, we find no correlation between the α and β relaxation times of individual molecules; that is, a molecule exhibiting slow β motion does not necessarily undergo slow α dynamics and likewise for fast molecules. However, the single-molecule α relaxation times do correlate with both the α and β relaxation strengths.

  10. New method for predicting lifetime of seals from compression-stress relaxation experiments

    SciTech Connect

    Gillen, K.T.; Keenan, M.R.; Wise, J.

    1998-06-01

    Interpretation of compression stress-relaxation (CSR) experiments for elastomers in air is complicated by (1) the presence of both physical and chemical relaxation and (2) anomalous diffusion-limited oxidation (DLO) effects. For a butyl material, the authors first use shear relaxation data to indicate that physical relaxation effects are negligible during typical high temperature CSR experiments. They then show that experiments on standard CSR samples ({approximately}15 mm diameter when compressed) lead to complex non-Arrhenius behavior. By combining reaction kinetics based on the historic basic autoxidation scheme with a diffusion equation appropriate to disk-shaped samples, they derive a theoretical DLO model appropriate to CSR experiments. Using oxygen consumption and permeation rate measurements, the theory shows that important DLO effects are responsible for the observed non-Arrhenius behavior. To minimize DLO effects, they introduce a new CSR methodology based on the use of numerous small disk samples strained in parallel. Results from these parallel, minidisk experiments lead to Arrhenius behavior with an activation energy consistent with values commonly observed for elastomers, allowing more confident extrapolated predictions. In addition, excellent correlation is noted between the CSR force decay and the oxygen consumption rate, consistent with the expectation that oxidative scission processes dominate the CSR results.

  11. Analysis of conductivity and dielectric spectra of Mn0.5Zn0.5Fe2O4 with coupled Cole-Cole type anomalous relaxations

    NASA Astrophysics Data System (ADS)

    Kumar, N. S. K.; Shahid, T. S.; Govindaraj, G.

    2016-05-01

    Most of the crystalline materials seldom show a well-defined dielectric loss peak due to domination of dc conductivity contribution, but effects of loss peaks are seen at high frequencies. Ac electrical data of nano-crystalline Mn0.5Zn0.5Fe2O4 synthesised by chemical co-precipitation method show such behaviour. Properly combined and formulated conduction and dielectric relaxation functions are required for such materials. Cole-Cole type relaxation function in the combined conduction and dielectric process is formulated for complex resistivity ρ*(ω), complex permittivity ε*(ω), complex conductivity σ*(ω) and complex electric modulus M*(ω). Conduction and dielectric relaxation are linked to Jonscher's idea of 'pinned dipole' and 'free dipole' to understand the relaxation dynamics. The physical parameters of 'pinned dipole' and 'free dipole' formalism are unique for all representations like ρ*(ω), ε*(ω), σ*(ω) and M*(ω). 'Pinned dipole' relaxation time τc related to conduction process and 'free dipole' relaxation time τd related to dielectric process show Arrhenius behaviour with the same activation energy. Correlation of dc conductivity σc with τc and τd indicates the coupled dynamics of 'pinned dipole' and 'free dipole'. Time-temperature scaling of conduction and dielectric relaxation reveals that the mechanism of coupled dynamics of 'pinned dipole' and 'free dipole' is temperature independent. Hopping of charge carriers with dynamics of disordered cation distribution of host matrix generates a coupled conduction and dielectric relaxation in Mn0.5Zn0.5Fe2O4.

  12. Vibrational relaxation in expanding N2 and air

    NASA Technical Reports Server (NTRS)

    Sebacher, D. I.; Guy, R. W.

    1974-01-01

    New N2 vibrational temperature data, obtained in expanding N2 and air using the electron beam technique, are analyzed permitting the vibrational relaxation times to be determined as a function of temperature. In addition, the effects on N2 vibrational relaxation times of direct vibrational energy transfer between N2 and H2O, between N2 and O2, and between N2 and free electrons introduced from arc contaminants are analyzed. The vibrational relaxation times determined from the present measurements agree with those measured in the expanding flows of shock tunnels and impact tubes. These expanding data also agree with relaxation times observed in acoustical resonant cavities where alternating compressions and expansions take place. The relaxation times in expanding flows (vib-tran exchange process) are found to be approximately 50 times faster than those measured in the compressing flow of shock tubes (tran-vib exchange process). This evidence strongly supports the concept that one relaxation time distribution cannot be applied to both exchange processes.

  13. Relaxation schemes for Chebyshev spectral multigrid methods

    NASA Technical Reports Server (NTRS)

    Kang, Yimin; Fulton, Scott R.

    1993-01-01

    Two relaxation schemes for Chebyshev spectral multigrid methods are presented for elliptic equations with Dirichlet boundary conditions. The first scheme is a pointwise-preconditioned Richardson relaxation scheme and the second is a line relaxation scheme. The line relaxation scheme provides an efficient and relatively simple approach for solving two-dimensional spectral equations. Numerical examples and comparisons with other methods are given.

  14. Active vision system integrating fast and slow processes

    NASA Astrophysics Data System (ADS)

    Castrillon-Santana, Modesto; Guerra-Artal, C.; Hernandez-Sosa, J.; Dominguez-Brito, A.; Isern-Gonzalez, J.; Cabrera-Gamez, Jorge; Hernandez-Tejera, F. M.

    1998-10-01

    This paper describes an Active Vision System whose design assumes a distinction between fast or reactive and slow or background processes. Fast processes need to operate in cycles with critical timeouts that may affect system stability. While slow processes, though necessary, do not compromise system stability if its execution is delayed. Based on this simple taxonomy, a control architecture has been proposed and a prototype implemented that is able to track people in real-time with a robotic head while trying to identify the target. In this system, the tracking mobile is considered as the reactive part of the system while person identification is considered a background task. This demonstrator has been developed using a new generation DSP (TMS320C80) as a specialized coprocessor to deal with fast processes, and a commercial robotic head with a dedicated DSP-based motor controller. These subsystems are hosted by a standard Pentium-Pro PC running Windows NT where slow processes are executed. The flexibility achieved in the design phase and the preliminary results obtained so far seem to validate the approach followed to integrate time- critical and slow tasks on a heterogeneous hardware platform.

  15. Shear-induced conformational ordering, relaxation, and crystallization of isotactic polypropylene.

    PubMed

    An, Haining; Li, Xiangyang; Geng, Yong; Wang, Yunlong; Wang, Xiao; Li, Liangbin; Li, Zhongming; Yang, Chuanlu

    2008-10-02

    The shear-induced coil-helix transition of isotactic polypropylene (iPP) has been studied with time-resolved Fourier transform infrared spectroscopy at various temperatures. The effects of temperature, shear rate, and strain on the coil-helix transition were studied systematically. The induced conformational order increases with the shear rate and strain. A threshold of shear strain is required to induce conformational ordering. High temperature reduces the effect of shear on the conformational order, though a simple correlation was not found. Following the shear-induced conformational ordering, relaxation of helices occurs, which follows the first-order exponential decay at temperatures well above the normal melting point of iPP. The relaxation time versus temperature is fitted with an Arrhenius law, which generates an activation energy of 135 kJ/mol for the helix-coil transition of iPP. At temperatures around the normal melting point, two exponential decays are needed to fit well on the relaxation kinetic of helices. This suggests that two different states of helices are induced by shear: (i) isolated single helices far away from each other without interactions, which have a fast relaxation kinetic; (ii) aggregations of helices or helical bundles with strong interactions among each other, which have a much slower relaxation process. The helical bundles are assumed to be the precursors of nuclei for crystallization. The different helix concentrations and distributions are the origin of the three different processes of crystallization after shear. The correlation between the shear-induced conformational order and crystallization is discussed.

  16. Role of sympathetic nerve activity in the process of fainting

    PubMed Central

    Iwase, Satoshi; Nishimura, Naoki; Mano, Tadaaki

    2014-01-01

    Syncope is defined as a transient loss of consciousness and postural tone, characterized by rapid onset, short duration, and spontaneous recovery, and the process of syncope progression is here described with two types of sympathetic change. Simultaneous recordings of microneurographically-recorded muscle sympathetic nerve activity (MSNA) and continuous and noninvasive blood pressure measurement has disclosed what is going on during the course of syncope progression. For vasovagal or neurally mediated syncope, three stages are identified in the course of syncope onset, oscillation, imbalance, and catastrophe phases. Vasovagal syncope is characterized by sympathoexcitation, followed by vagal overcoming via the Bezold-Jarisch reflex. Orthostatic syncope is caused by response failure or a lack of sympathetic nerve activity to the orthostatic challenge, followed by fluid shift and subsequent low cerebral perfusion. Four causes are considered for the compensatory failure that triggers orthostatic syncope: hypovolemia, increased pooling in the lower body, failure to activate sympathetic activity, and failure of vasoconstriction against sympathetic vasoconstrictive stimulation. Many pathophysiological conditions have been described from the perspectives of (1) exaggerated sympathoexcitation and (2) failure to activate the sympathetic nerve. We conclude that the sympathetic nervous system can control cardiovascular function, and its failure results in syncope; however, responses of the system obtained by microneurographically-recorded MSNA would determine the pathophysiology of the onset and progression of syncope, explaining the treatment effect that could be achieved by the analysis of this mechanism. PMID:25309444

  17. Spectroscopic Studies of the Super Relaxed State of Skeletal Muscle

    PubMed Central

    Naber, Nariman; Pate, Edward; Canton, Marcella; Reggiani, Carlo; Cooke, Roger

    2016-01-01

    In the super-relaxed state of myosin, ATPase activity is strongly inhibited by binding of the myosin heads to the core of the thick filament in a structure known as the interacting-heads motif. In the disordered relaxed state myosin heads are not bound to the core of the thick filament and have an ATPase rate that is 10 fold greater. In the interacting-heads motif the two regulatory light chains appear to bind to each other. We have made single cysteine mutants of the regulatory light chain, placed both paramagnetic and fluorescent probes on them, and exchanged them into skinned skeletal muscle fibers. Many of the labeled light chains tended to disrupt the stability of the super-relaxed state, and showed spectral changes in the transition from the disordered relaxed state to the super-relaxed state. These data support the putative interface between the two regulatory light chains identified by cryo electron microscopy and show that both the divalent cation bound to the regulatory light chain and the N-terminus of the regulatory light chain play a role in the stability of the super-relaxed state. One probe showed a shift to shorter wavelengths in the super-relaxed state such that a ratio of intensities at 440nm to that at 520nm provided a measure of the population of the super-relaxed state amenable for high throughput screens for finding potential pharmaceuticals. The results provide a proof of concept that small molecules that bind to this region can destabilize the super-relaxed state and provide a method to search for small molecules that do so leading to a potentially effective treatment for Type 2 diabetes and obesity. PMID:27479128

  18. Spectroscopic Studies of the Super Relaxed State of Skeletal Muscle.

    PubMed

    Nogara, Leonardo; Naber, Nariman; Pate, Edward; Canton, Marcella; Reggiani, Carlo; Cooke, Roger

    2016-01-01

    In the super-relaxed state of myosin, ATPase activity is strongly inhibited by binding of the myosin heads to the core of the thick filament in a structure known as the interacting-heads motif. In the disordered relaxed state myosin heads are not bound to the core of the thick filament and have an ATPase rate that is 10 fold greater. In the interacting-heads motif the two regulatory light chains appear to bind to each other. We have made single cysteine mutants of the regulatory light chain, placed both paramagnetic and fluorescent probes on them, and exchanged them into skinned skeletal muscle fibers. Many of the labeled light chains tended to disrupt the stability of the super-relaxed state, and showed spectral changes in the transition from the disordered relaxed state to the super-relaxed state. These data support the putative interface between the two regulatory light chains identified by cryo electron microscopy and show that both the divalent cation bound to the regulatory light chain and the N-terminus of the regulatory light chain play a role in the stability of the super-relaxed state. One probe showed a shift to shorter wavelengths in the super-relaxed state such that a ratio of intensities at 440nm to that at 520nm provided a measure of the population of the super-relaxed state amenable for high throughput screens for finding potential pharmaceuticals. The results provide a proof of concept that small molecules that bind to this region can destabilize the super-relaxed state and provide a method to search for small molecules that do so leading to a potentially effective treatment for Type 2 diabetes and obesity.

  19. Dynamics of photodoping and photoconductivity relaxation in oxygen-deficient YBa 2Cu 3O x

    NASA Astrophysics Data System (ADS)

    Markowitsch, W.; Stockinger, C.; Göb, W.; Lang, W.; Kula, W.; Sobolewski, Roman

    1996-02-01

    Studies of the time evolution of the photodoping process and of the relaxation of persistent photoconductivity (PPC) in oxygen-deficient YBa 2Cu 3O x are presented. We show that the resistance decrease during white light illumination of the samples does not saturate up to photon doses of 10 23-10 24 cm -2. The efficiency of the photodoping process is weakly temperature dependent, decreasing at low temperatures for extended illumination. The relaxation of PPC follows a Kohlrausch law with the time constant of several hours near room temperature and more than 1200 h at 254 K. Similarly to semiconducting samples, the temperature dependence of the relaxation rate follows the thermal activation process across an energy barrier of ≈0.9 eV. However, the dispersion parameter exhibits in our case the opposite temperature dependence - it increases with the temperature decrease. There is no indication of a threshold temperature around 270 K. The observed behavior suggests that two different mechanisms contribute to the photodoping process.

  20. Drilling to investigate processes in active tectonics and magmatism

    NASA Astrophysics Data System (ADS)

    Shervais, J.; Evans, J.; Toy, V.; Kirkpatrick, J.; Clarke, A.; Eichelberger, J.

    2014-12-01

    Coordinated drilling efforts are an important method to investigate active tectonics and magmatic processes related to faults and volcanoes. The US National Science Foundation (NSF) recently sponsored a series of workshops to define the nature of future continental drilling efforts. As part of this series, we convened a workshop to explore how continental scientific drilling can be used to better understand active tectonic and magmatic processes. The workshop, held in Park City, Utah, in May 2013, was attended by 41 investigators from seven countries. Participants were asked to define compelling scientific justifications for examining problems that can be addressed by coordinated programs of continental scientific drilling and related site investigations. They were also asked to evaluate a wide range of proposed drilling projects, based on white papers submitted prior to the workshop. Participants working on faults and fault zone processes highlighted two overarching topics with exciting potential for future scientific drilling research: (1) the seismic cycle and (2) the mechanics and architecture of fault zones. Recommended projects target fundamental mechanical processes and controls on faulting, and range from induced earthquakes and earthquake initiation to investigations of detachment fault mechanics and fluid flow in fault zones. Participants working on active volcanism identified five themes: the volcano eruption cycle; eruption sustainability, near-field stresses, and system recovery; eruption hazards; verification of geophysical models; and interactions with other Earth systems. Recommended projects address problems that are transferrable to other volcanic systems, such as improved methods for identifying eruption history and constraining the rheological structure of shallow caldera regions. Participants working on chemical geodynamics identified four major themes: large igneous provinces (LIPs), ocean islands, continental hotspot tracks and rifts, and

  1. Inhomogeneities and relaxation in supercooled liquids

    NASA Astrophysics Data System (ADS)

    Mohanty, U.

    1994-04-01

    Nonexponential relaxation in glass forming liquids has been attributed by Robertson and Donth to inhomogeneous distribution of small local regions. We show, based neither on free-volume nor on configurational entropy theories that the correlation volume V of such inhomogeneous regions isR [ΔH* (1-x)/RT]2{kBT4gΔκTg/< Δ2 ln τ>}, where Δh* is the enthalpy of activation near the glass transition temperature Tg, x is the Narayanaswamy-Gardon nonlinear parameter, ΔκTg is the change in thermal conductivity at Tg, <Δ2 ln τ>, describes how wide is the spectrum of relaxation times, and kB and R are the Boltzmann and the gas constants, respectively. The correlation length does not diverge at Tg. In fact, the correlation length at Tg for B2O3, glycerol, and PVAc are found to be approximately 1.27, 0.91, and 1.53 nm, respectively. Our results indicate, in agreement with Moynihan and Schroeder, that characteristics of nonexponential relaxation in glass forming liquids may be due to inhomogeneous domains whose size are in the nanometer length scale.

  2. A unifying perspective: the relaxed linear micromorphic continuum

    NASA Astrophysics Data System (ADS)

    Neff, Patrizio; Ghiba, Ionel-Dumitrel; Madeo, Angela; Placidi, Luca; Rosi, Giuseppe

    2014-09-01

    We formulate a relaxed linear elastic micromorphic continuum model with symmetric Cauchy force stresses and curvature contribution depending only on the micro-dislocation tensor. Our relaxed model is still able to fully describe rotation of the microstructure and to predict nonpolar size effects. It is intended for the homogenized description of highly heterogeneous, but nonpolar materials with microstructure liable to slip and fracture. In contrast to classical linear micromorphic models, our free energy is not uniformly pointwise positive definite in the control of the independent constitutive variables. The new relaxed micromorphic model supports well-posedness results for the dynamic and static case. There, decisive use is made of new coercive inequalities recently proved by Neff, Pauly and Witsch and by Bauer, Neff, Pauly and Starke. The new relaxed micromorphic formulation can be related to dislocation dynamics, gradient plasticity and seismic processes of earthquakes. It unifies and simplifies the understanding of the linear micromorphic models.

  3. Dynamics in supercooled polyalcohols: Primary and secondary relaxation

    NASA Astrophysics Data System (ADS)

    Döß, A.; Paluch, M.; Sillescu, H.; Hinze, G.

    2002-10-01

    We have studied details of the molecular dynamics in a series of pure polyalcohols by means of dielectric spectroscopy and 2H nuclear magnetic resonance (NMR). From glycerol to threitol, xylitol and sorbitol a systematic change in the dynamics of the primary and secondary relaxation is found. With increasing molecular weight and fragility an increase in the width of the α-peak is observed. Details of the molecular reorientation process responsible for the α-relaxation were exploited by two-dimensional NMR experiments. It is found that in the same sequence of polyalcohols the appearance of the secondary relaxation changes gradually from a wing type scenario to a pronounced β-peak. From NMR experiments using selectively deuterated samples the molecular origin of the secondary relaxation could be elucidated in more detail.

  4. Peculiarities of the enthalpy relaxation of a glassy crystal

    NASA Astrophysics Data System (ADS)

    Delcourt, O.; Descamps, M.; Even, J.; Bertault, M.; Willart, J. F.

    1997-02-01

    The relaxation of a supercooled orientational glassy crystal is investigated by differential scanning calorimetry. Aging performed both below and above Tg reveal two original features. (i) The glassy compound relaxes beyond the simple return to equilibration of the metastable rotator phase. The state which is reached upon aging however reverses back to the metastable state when crossing Tg. (ii) Upon reheating a transition between a low temperature ordered phase and the rotator phase is observed whose occurrence strongly depends on the aging conditions. The calorimetric signature of this transition and the usual glass relaxation endotherm are superimposed when annealing is performed below Tg. These results suggest that the peculiarities of the structure and dynamics of orientational glassy crystals lead to an effective acceleration of the relaxation process and enable the system to search for enthalpy states lower than it is usual for a glass.

  5. Understanding the microscopic deformation mechanism and macroscopic mechanical behavior of nanocrystalline Ni by the long-term stress relaxation test

    NASA Astrophysics Data System (ADS)

    Shen, Xixun; Zhang, Congcong; Zeng, Tao; Cheng, Danhong; Lian, Jianshe

    2014-05-01

    The long-term stress relaxation tests with a relaxation time of about 7 h are performed on the bulk dense nanocrystalline Ni (with a mean grain size of 27 nm) pre-deformed at strain rate from 4.17 s-1- 4.17 × 10-6 s-1, where a phenomenon that the initial relaxation behavior of nc Ni depends on itself deformation history. That is, the nc Nis pre-deformed at higher strain rate (not less than 4.17 × 10-3 s-1) exhibit a three-staged relaxation process from the initial near linear rapidly stress delayed (LRSD) stage and the subsequent lumber nonlinear stress delayed (LNSD) one and the final near linear slowly stress delayed (LSSD) one while only the later two stages are observed for the nc Nis pre-deformed at low strain rate. The three-stage relaxation behavior is attributed to the transition from the initial dislocation-dominated plasticity to the mixture of dislocation motion and diffusion-based GB activity and finally to the entire diffusion-based GB activity including GB sliding or grain rotation in the rate-controlling deformation mechanism, which was illuminated by the attained three-staged strain rate sensitivity and activation volume and the exhaustion of mobile density of deformed nc Ni in the first two stages of relaxation. Such rate-controlling deformation mechanism well interpreted the macroscopic tensile mechanical behavior of nc Ni and simultaneously an optimizing strategy in improving the ductility of nc Ni is also mentioned.

  6. Processing activities for STS-91 continue in OPF Bay 2

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Processing activities for STS-91 continue in KSC's Orbiter Processing Facility Bay 2. The payload bay of Space Shuttle Discovery is relatively empty as installation of the Get Away Special (GAS) canisters begins. Two GAS canisters can be seen in the center of the photograph. On the left is G-648, a Canadian Space Agency-sponsored study on manufactured organic thin film by the physical vapor transport method, and on the right is a can with hundreds of commemorative flags to be flown on the mission. STS-91 is scheduled to launch aboard the Space Shuttle Discovery for the ninth and final docking with the Russian Space Station Mir from KSC's Launch Pad 39A on June 2 with a launch window opening around 6:04 p.m. EDT.

  7. Processing activities for STS-91 continue in OPF Bay 2

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Processing activities for STS-91 continue in Orbiter Processing Facility Bay 2. Two Get Away Special (GAS) canisters are shown after their installation into Discovery's payload bay. The GAS payload G-765, in the canister on the left, is sponsored by the Canadian Space Agency and managed by C-CORE/Memorial University of Newfoundland. It is a study to understand the transport of fluids in porous media as it pertains to improving methods for enhanced oil recovery. The GAS canister on the right houses the Space Experiment Module (SEM-05), part of an educational initiative of NASA's Shuttle Small Payloads Project. STS-91 is scheduled to launch aboard the Space Shuttle Discovery for the ninth and final docking with the Russian Space Station Mir from KSC's Launch Pad 39A on June 2 with a launch window opening around 6:04 p.m. EDT.

  8. Rapid rotation and mixing in active OB stars - Physical processes

    NASA Astrophysics Data System (ADS)

    Zahn, Jean-Paul

    2011-07-01

    In the standard description of stellar interiors, O and B stars possess a thoroughly mixed convective core surrounded by a stable radiative envelope in which no mixing occurs. But as is well known, this model disagrees strongly with the spectroscopic diagnostic of these stars, which reveals the presence at their surface of chemical elements that have been synthesized in the core. Hence the radiation zone must be the seat of some mild mixing mechanisms. The most likely to operate there are linked with the rotation: these are the shear instabilites triggered by the differential rotation, and the meridional circulation caused by the changes in the rotation profile accompanying the non-homologous evolution of the star. In addition to these hydrodynamical processes, magnetic stresses may play an important role in active stars, which host a magnetic field. These physical processes will be critically examined, together with some others that have been suggested.

  9. A process activity monitor for AOS/VS

    NASA Technical Reports Server (NTRS)

    Mckosky, R. A.; Lindley, S. W.; Chapman, J. S.

    1986-01-01

    With the ever increasing concern for computer security, users of computer systems are becoming more sensitive to unauthorized access. One of the initial security concerns for the Shuttle Management Information System was the problem of users leaving their workstations unattended while still connected to the system. This common habit was a concern for two reasons: it ties up resources unnecessarily and it opens the way for unauthorized access to the system. The Data General MV/10000 does not come equipped with an automatic time-out option on interactive peripherals. The purpose of this memorandum is to describe a system which monitors process activity on the system and disconnects those users who show no activity for some time quantum.

  10. Periodic changes of the activity of processes in Jupiter's atmosphere

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.

    2016-10-01

    Variations of the Earth jovimagnetic latitude on Jupiter are preferred in solar-driven changes of reflective properties of clouds and haze on Jupiter. Because of the orbit eccentricity (e=0,048450) the northern hemisphere receives 21% greater solar energy flow to the atmosphere, because Jupiter is in the perihelia near the time of the summer solstice. Results of our studies showed that the ratio of the brightness of the northern and southern tropical and temperate regions is evident factor of the photometric activity of the Jupiter's atmospheric processes. The obtained from the analysis of observational data for the period from 1962 to 2015 existence of variations of activity factor of the planet hemispheres with a period of 11.86 years has allowed us to talk about an existence of the seasonal reconstruction of the physical parameters of Jupiter's atmosphere.

  11. Relaxed Poisson cure rate models.

    PubMed

    Rodrigues, Josemar; Cordeiro, Gauss M; Cancho, Vicente G; Balakrishnan, N

    2016-03-01

    The purpose of this article is to make the standard promotion cure rate model (Yakovlev and Tsodikov, ) more flexible by assuming that the number of lesions or altered cells after a treatment follows a fractional Poisson distribution (Laskin, ). It is proved that the well-known Mittag-Leffler relaxation function (Berberan-Santos, ) is a simple way to obtain a new cure rate model that is a compromise between the promotion and geometric cure rate models allowing for superdispersion. So, the relaxed cure rate model developed here can be considered as a natural and less restrictive extension of the popular Poisson cure rate model at the cost of an additional parameter, but a competitor to negative-binomial cure rate models (Rodrigues et al., ). Some mathematical properties of a proper relaxed Poisson density are explored. A simulation study and an illustration of the proposed cure rate model from the Bayesian point of view are finally presented.

  12. Topology Synthesis of Structures Using Parameter Relaxation and Geometric Refinement

    NASA Technical Reports Server (NTRS)

    Hull, P. V.; Tinker, M. L.

    2007-01-01

    Typically, structural topology optimization problems undergo relaxation of certain design parameters to allow the existence of intermediate variable optimum topologies. Relaxation permits the use of a variety of gradient-based search techniques and has been shown to guarantee the existence of optimal solutions and eliminate mesh dependencies. This Technical Publication (TP) will demonstrate the application of relaxation to a control point discretization of the design workspace for the structural topology optimization process. The control point parameterization with subdivision has been offered as an alternative to the traditional method of discretized finite element design domain. The principle of relaxation demonstrates the increased utility of the control point parameterization. One of the significant results of the relaxation process offered in this TP is that direct manufacturability of the optimized design will be maintained without the need for designer intervention or translation. In addition, it will be shown that relaxation of certain parameters may extend the range of problems that can be addressed; e.g., in permitting limited out-of-plane motion to be included in a path generation problem.

  13. Internal Friction and Mechanical Relaxation in Geomaterials (Invited)

    NASA Astrophysics Data System (ADS)

    Bagdassarov, N. S.; Wagner, N.

    2009-12-01

    The nature of mechanical losses and energy dissipation in geomaterials are manifold macroscopic and microscopic processes. As a result of differential straining, the geomaterials experience damping of mechanical energy according to 3 types of models: viscous damping, Coulomb damping (or dry friction damping), and structural damping (or hysteretic damping). Single crystals are also characterized by dislocation energy dissipation (Bordoni-peak). In polycrystalline solids grain boundaries can act as sink and source of vacancies affecting the internal friction Q-1 under dynamic loading. In geomaterials during heating-cooling cycles elastic modulus relaxation and Q-1 are characterized by a hysteretic behaviour reflecting the dynamics of formation and annihilation of relaxation centres. A pure Debye type of relaxations is very rare in geomaterials. The long-range interactions lead to a non-symmetrical broadening of the Debye peak. In glass-forming systems the mechanical relaxations can be subdivided into a strong primary relaxation (α), i.e. the “dynamical” glass transition in the supercooled melt, or relatively slow relaxation of structural units above the “thermal” glass transition temperature Tg defined due to the experimental conditions as well as several weak secondary relaxation processes in the vicinity of the thermal glass transition range (β) and in the glassy state (γ). The α relaxation in silicate melts is due to the hierarchically coupled mechanical relaxation processes with a weak correlation between the width of relaxation time distributions and the fragility index m. The β-relaxations are substantially masked by the α process as well as by the “thermal” glass transition range and correspond to the small scale structural adjustments as well as to the cooperative movement of divalent cations and non bridging oxygen. The γ-relaxation processes are linked to the low temperature cooperative movement of alkaline cations. Furthermore, all

  14. The consent process: Enabling or disabling patients' active participation?

    PubMed

    Doherty, Carole; Stavropoulou, Charitini; Saunders, Mark Nk; Brown, Tracey

    2015-10-20

    Standards expected by doctors' regulatory bodies in respect of the process of consent to treatment have arguably sought to restructure the nature of the doctor-patient relationship from one of the paternalism to that of shared decision-making. Yet, few studies have explored empirically, from patients' perspectives, the extent to which the process of consent to treatment enables or disables patients' participation in medical decision-making. Our article examines patients' attitudes towards the consent process, exploring how and why these attitudes influence patients' active participation in decision-making and considering possible consequent medico-legal issues. Data were collected longitudinally using semi-structured interviews and field observations involving 35 patients and 19 of their caregivers, in an English hospital between February and November 2014. These indicate that generally patients defer to the doctor in respect of treatment decision-making. Although most patients and their caregivers wanted detailed information and discussion, they did not necessarily expect that this would be provided. Furthermore, patients perceived that signing the consent form was an obligatory routine principally to protect doctors from legal action should something go wrong. Our study suggests that patients' predominantly paternalistic perceptions of the consent process can not only undermine attempts by doctors to involve them in decision-making but, as patients are now considered in law as informed actors, their perceptions of the consent form as not being in their interests could be a self-fulfilling prophecy if signing is undertaken without due consideration to the content.

  15. H tunneling and trapping in Y by anelastic relaxation measurements

    SciTech Connect

    Cannelli, G.; Cantelli, R.; Cordero, F.; Trequattrini, F.; Anderson, I.S.; Rush, J.J. Dipartimento di Energetica, Universita di Roma La Sapienza,'' via E. Carnevale, I-0013 Roma Istituto di Acustica O. M. Corbino,'' Consiglio Nazionale delle Ricerche, via Cassia 1216, I-00189 Roma Paul Scherrer Institut, CH-5232 Villigen PSI Materials Science Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland )

    1991-11-04

    We present the first evidence by acoustic measurements of H tunneling and trapping by O atoms in a rare-earth--hydride system. The YO{sub 0.0027}H{sub 0.016} alloy presents three new elastic-energy-loss peaks most likely due to H trapped by O between 1.4 and 330 K. The peak at the lowest temperature is due to tunneling of the trapped H; its relaxation rate strongly depends on temperature indicating a dominant contribution of multiphonon processes already at a few degrees kelvin. The other two peaks, with activation energies of 0.14 and 0.22 eV, can be attributed to jumps of H in the distorted environment of the O atom.

  16. Calorimetric and relaxation properties of xylitol-water mixtures

    NASA Astrophysics Data System (ADS)

    Elamin, Khalid; Sjöström, Johan; Jansson, Helén; Swenson, Jan

    2012-03-01

    considerably stronger water (w) relaxation at about the same frequency. However, the similarities in time scale and activation energy between the w-relaxation and the β-relaxation of xylitol at water contents below 13 wt. % suggest that the w-relaxation is governed, in some way, by the β-relaxation of xylitol, since clusters of water molecules are rare at these water concentrations. At higher water concentrations the intensity and relaxation rate of the w-relaxation increase rapidly with increasing water content (up to the concentration where ice starts to form), most likely due to a rapid increase of small water clusters where an increasing number of water molecules interacting with other water molecules.

  17. Simulation of thermal decay and dynamic relaxation in ferromagnetic materials

    NASA Astrophysics Data System (ADS)

    Boerner, Eric David

    2000-07-01

    Thermal stability of magnetic recording is of great importance. This dissertation discusses the major theories and simulation techniques currently in use. Simulations using a Langevin approach are conducted to examine the thermal decay of ensembles of non-interacting particles with both coherent and non-coherent magnetization. This decay is compared to the simplified model of exponential decay. Understanding the magnetization relaxation process is of importance when trying to understand the reversal of the magnetization within materials. This process becomes increasingly important as data rates increase. Simulations will be conducted that do not assume a phenomenological damping. Instead, it will be seen how the relaxation process begins by dissipating energy to magnetostatic and exchange coupled excitations. A model incorporating damping to lattice vibrations by magnetostriction will also be presented. During the relaxation process energy flows from the magnetic system to the lattice. Results of simulations are compared to the damping obtained via a phenomenological approach.

  18. Analog circuits for relaxation networks.

    PubMed

    Card, H

    1993-12-01

    Selected examples are presented of recent advances, primarily from the U.S. and Canada, in analog circuits for relaxation networks. Relaxation networks having feedback connections exhibit potentially greater computational power per neuron than feedforward networks. They are also more poorly understood especially with respect to learning algorithms. Examples are described of analog circuits for (i) supervised learning in deterministic Boltzmann machines, (ii) unsupervised competitive learning and feature maps and (iii) networks with resistive grids for vision and audition tasks. We also discuss recent progress on in-circuit learning and synaptic weight storage mechanisms.

  19. DOE Solar Process Heat Program: FY1991 Solar Process Heat Prefeasibility Studies activity

    SciTech Connect

    Hewett, R.

    1992-11-01

    During fiscal year (FY) 1991, the US Department of Energy (DOE) Solar Process Heat Program implemented a Solar Process Heat Prefeasibility Studies activity. For Program purposes, a prefeasibility study is an engineering assessment that investigates the technical and economic feasibility of a solar system for a specific application for a specific end-user. The study includes an assessment of institutional issues (e.g., financing, availability of insurance, etc.) that impact the feasibility of the proposed solar project. Solar process heat technology covers solar thermal energy systems (utilizing flat plate or concentrating solar Collectors) for water heating, water preheating, cooling/refrigeration, steam generation, ventilation air heating/preheating, etc. for applications in industry, commerce, and government. The studies are selected for funding through a competitive solicitation. For FY 1991, six projects were selected for funding. As of August 31, 1992, three teams had completed their studies. This paper describes the prefeasibility studies activity, presents the results from the study performed by United Solar Technologies, and summarizes the conclusions from the studies that have been completed to date and their implications for the Solar Process Heat Program.

  20. Department of Energy solar process heat program: FY 1991 solar process heat prefeasibility studies activity

    NASA Astrophysics Data System (ADS)

    Hewett, R.

    1992-11-01

    During fiscal year (FY) 1991, the US Department of Energy (DOE) Solar Process Heat Program implemented a Solar Process Heat Prefeasibility Studies activity. For Program purposes, a prefeasibility study is an engineering assessment that investigates the technical and economic feasibility of a solar system for a specific application for a specific end-user. The study includes an assessment of institutional issues (e.g., financing, availability of insurance, etc.) that impact the feasibility of the proposed solar project. Solar process heat technology covers solar thermal energy systems (utilizing flat plate or concentrating solar collectors) for water heating, water preheating, cooling/refrigeration, steam generation, ventilation air heating/preheating, etc., for applications in industry, commerce, and government. The studies are selected for funding through a competitive solicitation. For FY-91, six projects were selected for funding. As of 31 Aug. 1992, three teams had completed their studies. This paper describes the prefeasibility studies activity, presents the results from the study performed by United Solar Technologies, and summarizes the conclusions from the studies that have been completed to date and their implications for the Solar Process Heat Program.

  1. Behavioral activation system modulation on brain activation during appetitive and aversive stimulus processing

    PubMed Central

    Ventura-Campos, Noelia; Sanjuán-Tomás, Ana; Belloch, Vicente; Parcet, Maria-Antònia; Ávila, César

    2010-01-01

    The reinforcement sensitivity theory (RST) proposed the behavioral activation system (BAS) as a neurobehavioral system that is dependent on dopamine-irrigated structures and that mediates the individual differences in sensitivity and reactivity to appetitive stimuli associated with BAS-related personality traits. Theoretical developments propose that high BAS sensitivity is associated with both enhanced appetitive stimuli processing and the diminished processing of aversive stimuli. The objective of this study was to analyze how individual differences in BAS functioning were associated with brain activation during erotic and aversive picture processing while subjects were involved in a simple goal-directed task. Forty-five male participants took part in this study. The task activation results confirm the activation of the reward and punishment brain-related structures while viewing erotic and aversive pictures, respectively. The SR scores show a positive correlation with activation of the left lateral prefrontal cortex, the mesial prefrontal cortex and the right occipital cortex while viewing erotic pictures, and a negative correlation with the right lateral prefrontal cortex and the left occipital cortex while viewing aversive pictures. In summary, the SR scores modulate the activity of the cortical areas in the prefrontal and the occipital cortices that are proposed to modulate the BAS and the BIS-FFFS. PMID:20147458

  2. Urothelium muscarinic activation phosphorylates CBSSer227 via cGMP/PKG pathway causing human bladder relaxation through H2S production

    PubMed Central

    d’Emmanuele di Villa Bianca, Roberta; Mitidieri, Emma; Fusco, Ferdinando; Russo, Annapina; Pagliara, Valentina; Tramontano, Teresa; Donnarumma, Erminia; Mirone, Vincenzo; Cirino, Giuseppe; Russo, Giulia; Sorrentino, Raffaella

    2016-01-01

    The urothelium modulates detrusor activity through releasing factors whose nature has not been clearly defined. Here we have investigated the involvement of H2S as possible mediator released downstream following muscarinic (M) activation, by using human bladder and urothelial T24 cell line. Carbachol stimulation enhances H2S production and in turn cGMP in human urothelium or in T24 cells. This effect is reversed by cysthationine-β-synthase (CBS) inhibition. The blockade of M1 and M3 receptors reverses the increase in H2S production in human urothelium. In T24 cells, the blockade of M1 receptor significantly reduces carbachol-induced H2S production. In the functional studies, the urothelium removal from human bladder strips leads to an increase in carbachol-induced contraction that is mimicked by CBS inhibition. Instead, the CSE blockade does not significantly affect carbachol-induced contraction. The increase in H2S production and in turn of cGMP is driven by CBS-cGMP/PKG-dependent phosphorylation at Ser227 following carbachol stimulation. The finding of the presence of this crosstalk between the cGMP/PKG and H2S pathway downstream to the M1/M3 receptor in the human urothelium further implies a key role for H2S in bladder physiopathology. Thus, the modulation of the H2S pathway can represent a feasible therapeutic target to develop drugs for bladder disorders. PMID:27509878

  3. Urothelium muscarinic activation phosphorylates CBS(Ser227) via cGMP/PKG pathway causing human bladder relaxation through H2S production.

    PubMed

    d'Emmanuele di Villa Bianca, Roberta; Mitidieri, Emma; Fusco, Ferdinando; Russo, Annapina; Pagliara, Valentina; Tramontano, Teresa; Donnarumma, Erminia; Mirone, Vincenzo; Cirino, Giuseppe; Russo, Giulia; Sorrentino, Raffaella

    2016-08-11

    The urothelium modulates detrusor activity through releasing factors whose nature has not been clearly defined. Here we have investigated the involvement of H2S as possible mediator released downstream following muscarinic (M) activation, by using human bladder and urothelial T24 cell line. Carbachol stimulation enhances H2S production and in turn cGMP in human urothelium or in T24 cells. This effect is reversed by cysthationine-β-synthase (CBS) inhibition. The blockade of M1 and M3 receptors reverses the increase in H2S production in human urothelium. In T24 cells, the blockade of M1 receptor significantly reduces carbachol-induced H2S production. In the functional studies, the urothelium removal from human bladder strips leads to an increase in carbachol-induced contraction that is mimicked by CBS inhibition. Instead, the CSE blockade does not significantly affect carbachol-induced contraction. The increase in H2S production and in turn of cGMP is driven by CBS-cGMP/PKG-dependent phosphorylation at Ser(227) following carbachol stimulation. The finding of the presence of this crosstalk between the cGMP/PKG and H2S pathway downstream to the M1/M3 receptor in the human urothelium further implies a key role for H2S in bladder physiopathology. Thus, the modulation of the H2S pathway can represent a feasible therapeutic target to develop drugs for bladder disorders.

  4. Dynamics of Johari-Goldstein β relaxation and its universal relation to α relaxation in bulk metallic glasses by mechanical spectroscopy

    SciTech Connect

    Wu, Xuebang Guo, Lijun; Liu, C. S.

    2014-06-14

    The dynamics of the Johari–Goldstein (JG) β relaxation and the α relaxation in bulk metallic glasses (MGs) has been investigated by using mechanical spectroscopy combined with the Coupling Model. The β relaxations of MGs exhibit different behaviors such as peaks, humps, and excess wings due to the different fluctuations of the chemical interactions among the constituting atoms. A universal correlation between the β relaxation and the α relaxation is generally found by their activation energies and relaxation times as well as the non-exponentiality parameter of the α relaxation, which can be predicted quantitatively from the Coupling Model. Based on the quasi-point defects theory, a correlation factor χ shows a broad peak along with the β relaxation, suggesting that the concentration and the correlation degree of the string-like configurations involved in the β relaxation vary with increasing temperature, which challenges the previous view that the system is in an iso-configuration state below T{sub g} and may shed new light on the nature of the JG β relaxation in metallic glasses.

  5. Dynamics of Johari-Goldstein β relaxation and its universal relation to α relaxation in bulk metallic glasses by mechanical spectroscopy

    NASA Astrophysics Data System (ADS)

    Wu, Xuebang; Guo, Lijun; Liu, C. S.

    2014-06-01

    The dynamics of the Johari-Goldstein (JG) β relaxation and the α relaxation in bulk metallic glasses (MGs) has been investigated by using mechanical spectroscopy combined with the Coupling Model. The β relaxations of MGs exhibit different behaviors such as peaks, humps, and excess wings due to the different fluctuations of the chemical interactions among the constituting atoms. A universal correlation between the β relaxation and the α relaxation is generally found by their activation energies and relaxation times as well as the non-exponentiality parameter of the α relaxation, which can be predicted quantitatively from the Coupling Model. Based on the quasi-point defects theory, a correlation factor χ shows a broad peak along with the β relaxation, suggesting that the concentration and the correlation degree of the string-like configurations involved in the β relaxation vary with increasing temperature, which challenges the previous view that the system is in an iso-configuration state below Tg and may shed new light on the nature of the JG β relaxation in metallic glasses.

  6. Measuring permeability and stress relaxation of young cement paste by beam bending

    SciTech Connect

    Vichit-Vadakan, W.; Scherer, George W

    2003-12-01

    When a saturated rod of a porous material is deflected in three-point bending, two types of time-dependent relaxation processes occur simultaneously: hydrodynamic relaxation, caused by the flow of liquid in the porous body, and viscoelastic (VE) relaxation of the solid network. By measuring the decrease in the force required to sustain a constant deflection, it is possible to obtain the permeability from the hydrodynamic relaxation function, in addition to the VE stress relaxation function of the sample. We report the early-age evolution of permeability, elastic modulus, and stress relaxation function for Type III Portland cement paste with water-cement (w/c) ratios of 0.45, 0.50, and 0.55. The stress relaxation function is shown to preserve its shape during aging; that function is numerically transformed into the creep function.

  7. Dielectric Relaxation Behavior of Poly(acrylonitrile-co-methacrylonitrile) Microcapsules Dispersed in a Silicone Matrix

    NASA Technical Reports Server (NTRS)

    Park, Taigyoo; OBrien, Emmett; Lizotte, Jeremy R.; Glass, Thomas E.; Ward, Thomas C.; Long, Timothy E.; Leo, Donald J.

    2006-01-01

    The dielectric relaxation behavior of poly(acrylonitrile-co-methacrylonitrile) dispersed in a cured polydimethyl siloxane (PDMS) matrix as microcapsules was investigated over multiple thermal cycles and at varying concentrations. The copolymer microcapsules contained an isopentane core. In the PDMS matrix this copolymer displayed a pronounced relaxation signal at temperatures above the glass transition of the copolymers due to Maxwell-Wagner-Sillars (MWS) relaxation. The mechanism of MWS relaxation interpreted by the Havriliak-Negami and Kohlrausch-Williams-Watts relaxation functions was found to be very similar to previous studies of neat polyacrylonitrile and its copolymer. The activation energy of the relaxation decreased over successive thermal cycling coincident with a decreasing strength of the relaxation. These observations were attributed to the decreasing concentration of nitrile groups due to intramolecular cyclizations.

  8. Structural origins of Johari-Goldstein relaxation in a metallic glass

    NASA Astrophysics Data System (ADS)

    Liu, Y. H.; Fujita, T.; Aji, D. P. B.; Matsuura, M.; Chen, M. W.

    2014-02-01

    Johari-Goldstein or β relaxation, persisting down to glassy state from a supercooled liquid, is a universal phenomenon of glassy dynamics. Nevertheless, the underlying micromechanisms leading to the relaxation are still in debate despite great efforts devoted to this problem for decades. Here we report experimental evidence on the structural origins of Johari-Goldstein relaxation in an ultra-quenched metallic glass. The measured activation energy of the relaxation (~26 times of the product of gas constant and glass transition temperature) is consistent with the dynamic characteristics of Johari-Goldstein relaxation. Synchrotron X-ray investigations demonstrate that the relaxation originates from short-range collective rearrangements of large solvent atoms, which can be realized by local cooperative bonding switch. Our observations provide experimental insights into the atomic mechanisms of Johari-Goldstein relaxation and will be helpful in understanding the low-temperature dynamics and properties of metallic glasses.

  9. Structural origins of Johari-Goldstein relaxation in a metallic glass.

    PubMed

    Liu, Y H; Fujita, T; Aji, D P B; Matsuura, M; Chen, M W

    2014-01-01

    Johari-Goldstein or β relaxation, persisting down to glassy state from a supercooled liquid, is a universal phenomenon of glassy dynamics. Nevertheless, the underlying micromechanisms leading to the relaxation are still in debate despite great efforts devoted to this problem for decades. Here we report experimental evidence on the structural origins of Johari-Goldstein relaxation in an ultra-quenched metallic glass. The measured activation energy of the relaxation (~26 times of the product of gas constant and glass transition temperature) is consistent with the dynamic characteristics of Johari-Goldstein relaxation. Synchrotron X-ray investigations demonstrate that the relaxation originates from short-range collective rearrangements of large solvent atoms, which can be realized by local cooperative bonding switch. Our observations provide experimental insights into the atomic mechanisms of Johari-Goldstein relaxation and will be helpful in understanding the low-temperature dynamics and properties of metallic glasses.

  10. Fractionating soluble microbial products in the activated sludge process.

    PubMed

    Ni, Bing-Jie; Zeng, Raymond J; Fang, Fang; Xie, Wen-Ming; Sheng, Guo-Ping; Yu, Han-Qing

    2010-04-01

    Soluble microbial products (SMP) are the pool of organic compounds originating from microbial growth and decay, and are usually the major component of the soluble organic matters in effluents from biological treatment processes. In this work, SMP in activated sludge were characterized, fractionized, and quantified using integrated chemical analysis and mathematical approach. The utilization-associated products (UAP) in SMP, produced in the substrate-utilization process, were found to be carbonaceous compounds with a molecular weight (MW) lower than 290 kDa which were quantified separately from biomass-associated products (BAP). The BAP were mainly cellular macromolecules with an MW in a range of 290-5000 kDa, and for the first time were further classified into the growth-associated BAP (GBAP) with an MW of 1000 kDa, which were produced in the microbial growth phase, and the endogeny-associated BAP (EBAP) with an MW of 4500 kDa, which were generated in the endogenous phase. Experimental and modeling results reveal that the UAP could be utilized by the activated sludge and that the BAP would accumulate in the system. The GBAP and EBAP had different formation rates from the hydrolysis of extracellular polymeric substances and distinct biodegradation kinetics. This study provides better understanding of SMP formation mechanisms and becomes useful for subsequent effluent treatment.

  11. Methane recovery from water hyacinth through anaerobic activated sludge process

    SciTech Connect

    Savaswat, N.; Khana, P.

    1986-02-01

    The concepts of phase separation, anaerobic activated sludge process, and alkali pretreatment have been incorporated in this investigation with the objective of developing rational and cost-effective designs of diphasic anaerobic activated sludge systems, with and without alkali treatment, for methane recovery from water hyacinth (WH). Evaluation of process kinetics and optimization analyses of laboratory data reveal that a diphasic system with alkali treatment could be designed with an alkali pretreatment step (3.6% Na/sub 2/CO/sub 3/ + 2.5% Ca(OH)/sub 2/ (w/w) of WH, 24 h duration) followed by an open acid phase (2.1 days HRT) and closed methane reactor with sludge recycle (5.7 days HRT, 7.7 days MCRT) for gas yield of 50 L/kg WH/d at 35-37/sup 0/C. Likewise, a diphasic system without alkali treatment could be designed with an open acid phase (2 days HRT) followed by closed methane reactor with sludge recycle (3.2 days HRT, 6 days MCRT) for gas yield of 32.5 L/kg WH/d at 35-37/sup 0/C. Detailed economic analyses bring forth greater cost-efficacy of the diphasic system without alkali treatment and reveal that the advantage accrued in terms of higher gas yield is overshadowed by the cost of chemicals in the diphasic system with alkali treatment.

  12. Methane recovery from water hyacinth through anaerobic activated sludge process

    SciTech Connect

    Saraswat, N.; Khanna, P.

    1986-02-01

    The concepts of phase separation, anaerobic activated sludge process, and alkali pretreatment have been incorporated in this investigation with the objective of developing rational and cost-effective designs of diphasic anaerobic activated sludge systems, with and without alkali treatment, for methane recovery from water hyacinth (WH). Evaluation of process kinetics and optimization analyses of laboratory data reveal that a diphasic system with alkali treatment could be designed with an alkali pretreatment step (3.6% Na/sub 2/CO/sub 3/ + 2.5% Ca(OH)/sub 2/ (w/w) of WH, 24 h duration) followed by an open acid phase (2.1 days HRT) and closed methane reactor with sludge recycle (5.7 days HRT, 7.7 days MCRT) for gas yield of 50 l/kg WH/d at 35-37/sup 0/C. Likewise, a diphasic system without alkali treatment could be designed with an open acid phase (2 days HRT) followed by close methane reactor with sludge recycle (3.2 days HRT, 6 days MCRT) for gas yield of 32.5 l.kg WH/d at 35-37/sup 0/C. Detailed economic analyses bring forth greater cost-efficacy of the diphasic system without alkali treatment and reveal that the advantage accrued in terms of higher gas yield is overshadowed by the cost of chemicals in the diphasic system with alkali treatment.

  13. Modeling the active process of the cochlea: phase relations, amplification, and spontaneous oscillation.

    PubMed Central

    Markin, V S; Hudspeth, A J

    1995-01-01

    The high sensitivity and sharp frequency selectivity of acoustical signal transduction in the cochlea suggest that an active process pumps energy into the basilar membrane's oscillations. This function is generally attributed to outer hair cells, but its exact mechanism remains uncertain. Several classical models of amplification represent the load upon the basilar membrane as a single mass. Such models encounter a fundamental difficulty, however: the phase difference between basilar-membrane movement and the force generated by outer hair cells inhibits, rather than amplifies, the modeled basilar-membrane oscillations. For this reason, modelers must introduce artificially either negative impedance or an appropriate phase shift, neither of which is justified by physical analysis of the system. We consider here a physical model based upon the recent demonstration that the basilar membrane and reticular lamina can move independently, albeit with elastic coupling through outer hair cells. The mechanical model comprises two resonant masses, representing the basilar membrane and the reticular lamina, coupled through an intermediate spring, the outer hair cells. The spring's set point changes in response to displacement of the reticular lamina, which causes deflection of the hair bundles, variation of outer hair cell length and, hence, force production. Depending upon the frequency of the acoustical input, the basilar membrane and reticular lamina can oscillate either in phase or in counterphase. In the latter instance, the force produced by hair cells leads basilar-membrane oscillation, energy is pumped into basilar-membrane movement, and an external input can be strongly amplified. The model is also capable of producing spontaneous oscillation. In agreement with experimental observations, the model describes mechanical relaxation of the basilar membrane after electrical stimulation causes outer hair cells to change their length. PMID:7669891

  14. Deconvolution of the relaxations associated with local and segmental motions in poly(methacrylate)s containing dichlorinated benzyl moieties in the ester residue.

    PubMed

    Dominguez-Espinosa, Gustavo; Díaz-Calleja, Ricardo; Riande, Evaristo; Gargallo, Ligia; Radic, Deodato

    2005-09-15

    The relaxation behavior of poly(2,3-dichlorobenzyl methacrylate) is studied by broadband dielectric spectroscopy in the frequency range of 10(-1)-10(9) Hz and temperature interval of 303-423 K. The isotherms representing the dielectric loss of the glassy polymer in the frequency domain present a single absorption, called beta process. At temperatures close to Tg, the dynamical alpha relaxation already overlaps with the beta process, the degree of overlapping increasing with temperature. The deconvolution of the alpha and beta relaxations is facilitated using the retardation spectra calculated from the isotherms utilizing linear programming regularization parameter techniques. The temperature dependence of the beta relaxation presents a crossover associated with a change in activation energy of the local processes. The distance between the alpha and beta peaks, expressed as log(fmax;beta/fmax;alpha) where fmax is the frequency at the peak maximum, follows Arrhenius behavior in the temperature range of 310-384 K. Above 384 K, the distance between the peaks remains nearly constant and, as a result, the a onset temperature exhibited for many polymers is not reached in this system. The fraction of relaxation carried out through the alpha process, without beta assistance, is larger than 60% in the temperature range of 310-384 K where the so-called Williams ansatz holds.

  15. Cloud condensation nuclei activity and droplet activation kinetics of wet processed regional dust samples and minerals

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Sokolik, I. N.; Nenes, A.

    2011-08-01

    This study reports laboratory measurements of particle size distributions, cloud condensation nuclei (CCN) activity, and droplet activation kinetics of wet generated aerosols from clays, calcite, quartz, and desert soil samples from Northern Africa, East Asia/China, and Northern America. The dependence of critical supersaturation, sc, on particle dry diameter, Ddry, is used to characterize particle-water interactions and assess the ability of Frenkel-Halsey-Hill adsorption activation theory (FHH-AT) and Köhler theory (KT) to describe the CCN activity of the considered samples. Wet generated regional dust samples produce unimodal size distributions with particle sizes as small as 40 nm, CCN activation consistent with KT, and exhibit hygroscopicity similar to inorganic salts. Wet generated clays and minerals produce a bimodal size distribution; the CCN activity of the smaller mode is consistent with KT, while the larger mode is less hydrophilic, follows activation by FHH-AT, and displays almost identical CCN activity to dry generated dust. Ion Chromatography (IC) analysis performed on regional dust samples indicates a soluble fraction that cannot explain the CCN activity of dry or wet generated dust. A mass balance and hygroscopicity closure suggests that the small amount of ions (from low solubility compounds like calcite) present in the dry dust dissolve in the aqueous suspension during the wet generation process and give rise to the observed small hygroscopic mode. Overall these results identify an artifact that may question the atmospheric relevance of dust CCN activity studies using the wet generation method. Based on the method of threshold droplet growth analysis, wet generated mineral aerosols display similar activation kinetics compared to ammonium sulfate calibration aerosol. Finally, a unified CCN activity framework that accounts for concurrent effects of solute and adsorption is developed to describe the CCN activity of aged or hygroscopic dusts.

  16. Supporting the process of removing humic substances on activated carbon.

    PubMed

    Olesiak, Paulina; Stępniak, Longina

    2014-01-01

    This study is focused on biosorption process used in water treatment. The process has a number of advantages and a lot of research has been done into its intensification by means of ultrasonic modification of solutions. The study carried out by the authors leads to the conclusion that sonication of organic solutions allows for extension of the time of operation of carbon beds. For the analysis of the results obtained during the sorption of humic substances (HS) from the solution dependencies UV/UV₀ or DOC/DOC₀ were used. In comparative studies the effectiveness of sorption and sonosorption (UV/UV₀) shows that the share of ultrasounds (US) is beneficial for extension of time deposit, both at a flow rate HS solution equal to 1 m/h and 5 m/h. Analysis of the US impact sorption on HS sorption in a biological fluidized bed, both prepared from biopreparat and the activated sludge confirms the higher efficiency compared to sonobiosorption than biosorption. These results confirm the degree of reduction UV₂₅₄/UV₀ and DOC/DOC₀ for the same processes. EMS index also confirms the improvement of HSbiodegradation by sludge microorganisms.

  17. Theory of nuclear magnetic relaxation

    NASA Technical Reports Server (NTRS)

    Mcconnell, J.

    1983-01-01

    A theory of nuclear magnetic interaction is based on the study of the stochastic rotation operator. The theory is applied explicitly to relaxation by anisotropic chemical shift and to spin-rotational interactions. It is applicable also to dipole-dipole and quadrupole interactions.

  18. Relaxation properties in classical diamagnetism

    NASA Astrophysics Data System (ADS)

    Carati, A.; Benfenati, F.; Galgani, L.

    2011-06-01

    It is an old result of Bohr that, according to classical statistical mechanics, at equilibrium a system of electrons in a static magnetic field presents no magnetization. Thus a magnetization can occur only in an out of equilibrium state, such as that produced through the Foucault currents when a magnetic field is switched on. It was suggested by Bohr that, after the establishment of such a nonequilibrium state, the system of electrons would quickly relax back to equilibrium. In the present paper, we study numerically the relaxation to equilibrium in a modified Bohr model, which is mathematically equivalent to a billiard with obstacles, immersed in a magnetic field that is adiabatically switched on. We show that it is not guaranteed that equilibrium is attained within the typical time scales of microscopic dynamics. Depending on the values of the parameters, one has a relaxation either to equilibrium or to a diamagnetic (presumably metastable) state. The analogy with the relaxation properties in the Fermi Pasta Ulam problem is also pointed out.

  19. Distributed Relaxation for Conservative Discretizations

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.

    2001-01-01

    A multigrid method is defined as having textbook multigrid efficiency (TME) if the solutions to the governing system of equations are attained in a computational work that is a small (less than 10) multiple of the operation count in one target-grid residual evaluation. The way to achieve this efficiency is the distributed relaxation approach. TME solvers employing distributed relaxation have already been demonstrated for nonconservative formulations of high-Reynolds-number viscous incompressible and subsonic compressible flow regimes. The purpose of this paper is to provide foundations for applications of distributed relaxation to conservative discretizations. A direct correspondence between the primitive variable interpolations for calculating fluxes in conservative finite-volume discretizations and stencils of the discretized derivatives in the nonconservative formulation has been established. Based on this correspondence, one can arrive at a conservative discretization which is very efficiently solved with a nonconservative relaxation scheme and this is demonstrated for conservative discretization of the quasi one-dimensional Euler equations. Formulations for both staggered and collocated grid arrangements are considered and extensions of the general procedure to multiple dimensions are discussed.

  20. Relaxation of terrace-width distributions: Physical information from Fokker Planck time

    NASA Astrophysics Data System (ADS)

    Hamouda, Ajmi BH.; Pimpinelli, Alberto; Einstein, T. L.

    2008-12-01

    Recently some of us have constructed a Fokker-Planck formalism to describe the equilibration of the terrace-width distribution of a vicinal surface from an arbitrary initial configuration. However, the meaning of the associated relaxation time, related to the strength of the random noise in the underlying Langevin equation, was rather unclear. Here we present a set of careful kinetic Monte Carlo simulations that demonstrate convincingly that the time constant shows activated behavior with a barrier that has a physically plausible dependence on the energies of the governing microscopic model. Remarkably, the rate-limiting step for relaxation in the far-from-equilibrium regime is the generation of kink-antikink pairs, involving the breaking of three lateral bonds on a cubic {0 0 1} surface, in contrast to the processes breaking two bonds that dominate equilibrium fluctuations. After an initial regime, the Fokker-Planck time at least semiquantitatively tracks the actual physical time.

  1. Dynamic relaxation of a levitated nanoparticle from a non-equilibrium steady state.

    PubMed

    Gieseler, Jan; Quidant, Romain; Dellago, Christoph; Novotny, Lukas

    2014-05-01

    Fluctuation theorems are a generalization of thermodynamics on small scales and provide the tools to characterize the fluctuations of thermodynamic quantities in non-equilibrium nanoscale systems. They are particularly important for understanding irreversibility and the second law in fundamental chemical and biological processes that are actively driven, thus operating far from thermal equilibrium. Here, we apply the framework of fluctuation theorems to investigate the important case of a system relaxing from a non-equilibrium state towards equilibrium. Using a vacuum-trapped nanoparticle, we demonstrate experimentally the validity of a fluctuation theorem for the relative entropy change occurring during relaxation from a non-equilibrium steady state. The platform established here allows non-equilibrium fluctuation theorems to be studied experimentally for arbitrary steady states and can be extended to investigate quantum fluctuation theorems as well as systems that do not obey detailed balance.

  2. An Overview on Short and Long Time Relaxations in Glass-forming Supercooled Liquids

    NASA Astrophysics Data System (ADS)

    Karmakar, Smarajit

    2016-10-01

    Density fluctuations in supercooled liquids near the glass transition relax in multiple steps. The short time relaxation is known as β-relaxation and the final long time relaxation is called α-relaxation. It is believed that the long time α-relaxation is a cooperative phenomena associated with a growing length scales, whereas the short-time β-relaxation is often attributed to spatially local processes involving the rattling motion of a particle in the transient cage formed by its neighbors. Using molecular dynamics simulations of few model glass-forming liquids, we show that the β-relaxation is also cooperative in nature and the length scale extracted from the detailed finite-size scaling analysis of β-relaxation is found to be the same as that of the length scale that describes the spatial heterogeneity of local dynamics in the long-time α-relaxation regime. These results provide a clear connection between short-time dynamics and long-time structural relaxation in glass-forming liquids.

  3. The consent process: Enabling or disabling patients’ active participation?

    PubMed Central

    Doherty, Carole; Stavropoulou, Charitini; Saunders, Mark NK; Brown, Tracey

    2015-01-01

    Standards expected by doctors’ regulatory bodies in respect of the process of consent to treatment have arguably sought to restructure the nature of the doctor–patient relationship from one of the paternalism to that of shared decision-making. Yet, few studies have explored empirically, from patients’ perspectives, the extent to which the process of consent to treatment enables or disables patients’ participation in medical decision-making. Our article examines patients’ attitudes towards the consent process, exploring how and why these attitudes influence patients’ active participation in decision-making and considering possible consequent medico-legal issues. Data were collected longitudinally using semi-structured interviews and field observations involving 35 patients and 19 of their caregivers, in an English hospital between February and November 2014. These indicate that generally patients defer to the doctor in respect of treatment decision-making. Although most patients and their caregivers wanted detailed information and discussion, they did not necessarily expect that this would be provided. Furthermore, patients perceived that signing the consent form was an obligatory routine principally to protect doctors from legal action should something go wrong. Our study suggests that patients’ predominantly paternalistic perceptions of the consent process can not only undermine attempts by doctors to involve them in decision-making but, as patients are now considered in law as informed actors, their perceptions of the consent form as not being in their interests could be a self-fulfilling prophecy if signing is undertaken without due consideration to the content. PMID:26487687

  4. Imaging Active Surface Processes in Barnacle Adhesive Interfaces.

    PubMed

    Golden, Joel P; Burden, Daniel K; Fears, Kenan P; Barlow, Daniel E; So, Christopher R; Burns, Justin; Miltenberg, Benjamin; Orihuela, Beatriz; Rittshof, Daniel; Spillmann, Christopher M; Wahl, Kathryn J; Tender, Leonard M

    2016-01-19

    Surface plasmon resonance imaging (SPRI) and voltammetry were used simultaneously to monitor Amphibalanus (=Balanus) amphitrite barnacles reattached and grown on gold-coated glass slides in artificial seawater. Upon reattachment, SPRI revealed rapid surface adsorption of material with a higher refractive index than seawater at the barnacle/gold interface. Over longer time periods, SPRI also revealed secretory activity around the perimeter of the barnacle along the seawater/gold interface extending many millimeters beyond the barnacle and varying in shape and region with time. Ex situ experiments using attenuated total reflectance infrared (ATR-IR) spectroscopy confirmed that reattachment of barnacles was accompanied by adsorption of protein to surfaces on similar time scales as those in the SPRI experiments. Barnacles were grown through multiple molting cycles. While the initial reattachment region remained largely unchanged, SPRI revealed the formation of sets of paired concentric rings having alternately darker/lighter appearance (corresponding to lower and higher refractive indices, respectively) at the barnacle/gold interface beneath the region of new growth. Ex situ experiments coupling the SPRI imaging with optical and FTIR microscopy revealed that the paired rings coincide with molt cycles, with the brighter rings associated with regions enriched in amide moieties. The brighter rings were located just beyond orifices of cement ducts, consistent with delivery of amide-rich chemistry from the ducts. The darker rings were associated with newly expanded cuticle. In situ voltammetry using the SPRI gold substrate as the working electrode revealed presence of redox active compounds (oxidation potential approx 0.2 V vs Ag/AgCl) after barnacles were reattached on surfaces. Redox activity persisted during the reattachment period. The results reveal surface adsorption processes coupled to the complex secretory and chemical activity under barnacles as they construct

  5. Observations on Multi-Slug Activity - Implications for Volcanic Processes

    NASA Astrophysics Data System (ADS)

    Pering, T. D.; McGonigle, A. J. S.; James, M. R.; Lane, S. J.; Capponi, A.; Tamburello, G.; Aiuppa, A.

    2014-12-01

    The study of single gas slugs in volcanic conduits has received a large amount of focus within the literature. However, the more complex behaviour associated with the rise and burst of multiple slugs has yet to be considered in detail in a volcanic context. Here we combine observations and analyses of such activity using a three-pronged approach consisting of existing gas mass data collected during rapid slug driven activity at Mt. Etna, scaled laboratory analogue experiments, and computer simulations using the Ansys Fluent® fluid dynamics software. Particular focus was applied to the process of coalescence and wake capture during slug expansion and rise. The results indicate a variety of potential features and relationships, including: promotion of coalescence at distances further than predicted wake lengths, approximate maximum gas volume fraction and minimum magma viscosity values for the occurrence of stable multi-slug activity, and in the laboratory regimes a series of linear trends are associated with overall gas volume fraction and burst volume. A previously observed phenomenon at Mt. Etna, whereby larger slug bursting events are subject to a longer repose period prior to the following event, than smaller events, is also evident in the lab setting. By combining all acquired and modelled data, we derive an approximate relation, using existing formulae for slug base rise speed (Viana et al. 2003) and wake length (Campos and Guedes de Carvalho, 1988), to describe a minimum repose period which is likely to follow the burst of a slug at the surface. The outlined work has significant fluid dynamic implications for possible magma and conduit properties which can allow multi-slug activity at volcanic targets.

  6. [Intracellular signal systems in the epithelium- and endothelium-dependent relaxation of smooth muscles].

    PubMed

    Kapilevich, L V; Kovalev, I V; Baskakov, M B; Medvedev, M A

    2001-01-01

    The research of mechanisms of a regulation electrical and contractile of properties of unstriated muscles of an internals remains by an actual problem of modern physiology and medicine. Already now it is possible to state that the efficacy of means of correction of distresses of an internals depends on a degree of a level of scrutiny of these mechanisms. Among physiologically active substances effecting on smooth muscle cells (SM), the special relaxing factor synthesized by endotheliocytes, epithelial cells and SM. Identified by the majority of the explorers as oxide of nitrogen (NO), relaxing factor responds for exhibiting of many myogenic responses of pots and pneumatic routes. The mechanisms of synthesis and implementation of effects of this factor in SM cells up to the extremity are not clarified. The considerable advance in learning mechanisms of operation relaxing factor on SM is connected to discovering of ability of some nitro compounds to replicate NO-dependent relaxing effects in these cells. The main systems of intracellular regulation are involved in mechanisms of implementation endothelial and epithelial local regulatory effects on SM. The majority of the explorers bind an epithelium-dependent release phenomenon SM to an activation of a solvable fraction guanilatcyclase, found in the majority of cells, and effects of cGMP-dependent protein kinases. There are reports on ability of inhibitors NO-sintase to depress a release phenomenon SM of pots and bronchuses, about dependence of a mechanical strain SM of pots and respiratory tract from a contents cGMP in cells. However there are datas giving establishments to guess, that alongside with guanilatciclase in a release phenomenon SM, induced relaxing factors or nitro compounds, the immediate involvement is accepted by cAMP-dependent protein kinases. The most probable point of interaction cAMP and cGMP-dependent processes is phospodiesterase of cyclic nucleotides. It citosolium the enzyme labilized by

  7. Probing the Interaction between a DNA Nucleotide (Adenosine-5'-Monophosphate Disodium) and Surface Active Ionic Liquids by Rotational Relaxation Measurement and Fluorescence Correlation Spectroscopy.

    PubMed

    Roy, Arpita; Banerjee, Pavel; Dutta, Rupam; Kundu, Sangita; Sarkar, Nilmoni

    2016-10-02

    This article demonstrates the interaction of a deoxyribonucleic acid (DNA) nucleotide, adenosine-5'-monophosphate disodium (AMP) with a cationic surface active ionic liquid (SAIL) 1-dodecyl-3-methylimidazoium chloride (C12mimCl) and an anionic SAIL, 1-butyl-3-methylimidazolium n-octylsulfate ([C4mim][C8SO4]). Dynamic light scattering (DLS) measurements and 1H NMR (nuclear magnetic resonance) studies indicate that substantial interaction is taking place among the DNA nucleotide, AMP and the SAILs. Moreover, cryogenic transmission electron microscopy (cryo-TEM) suggests that SAILs containing micellar assemblies are transformed into larger micellar assemblies in presence of DNA nucleotide. Additionally, the rotational motion of two oppositely charged molecules, Rhodamine 6G perchlorate (R6G) and Fluorescein sodium salt (Fl-Na) have been monitored in these aggregates. The rotational motion of R6G and Fl-Na differs significantly between SAILs micelles, and SAILs-AMP containing larger micellar aggregates. The effect of negatively charged DNA nucleotide (AMP) addition into the cationic and anionic SAILs is more prominent for the cationic charged molecule R6G than that of anionic probe Fl-Na due to the favourable electrostatic interaction between the AMP and cationic R6G. Moreover, the influence of the anionic DNA nucleotide on the cationic and anionic SAIL micelles is monitored through the variation of the lateral diffusion motion of oppositely charged probe molecules (R6G and Fl-Na) inside these aggregates. This variation in diffusion coefficient values also suggests that interaction pattern of these oppositely charged probes are different within the SAILs-nucleotide containing aggregates. Therefore, both rotational and translational diffusion measurements confirm that the DNA nucleotide (AMP) renders more rigid microenvironment within the micellar solution of SAILs.

  8. In situ determination of surface relaxivities for unconsolidated sediments

    NASA Astrophysics Data System (ADS)

    Duschl, Markus; Galvosas, Petrik; Brox, Timothy I.; Pohlmeier, Andreas; Vereecken, Harry

    2015-08-01

    NMR relaxometry has developed into a method for rapid pore-size determination of natural porous media. Nevertheless, it is prone to uncertainties because of unknown surface relaxivities which depend mainly on the chemical composition of the pore walls as well as on the interfacial dynamics of the pore fluid. The classical approach for the determination of surface relaxivities is the scaling of NMR relaxation times by surface to volume ratios measured by gas adsorption or mercury intrusion. However, it is preferable that a method for the determination of average pore sizes uses the same substance, water, as probe molecule for both relaxometry and surface to volume measurements. One should also ensure that in both experiments the dynamics of the probe molecule takes place on similar length scales, which are in the order of some microns. Therefore, we employed NMR diffusion measurements with different observation times using bipolar pulsed field gradients and applied them to unconsolidated sediments (two purified sands, two natural sands, and one soil). The evaluation by Mitra's short-time model for diffusion in restricted environments yielded information about the surface to volume ratios which is independent of relaxation mechanisms. We point out that methods based on NMR diffusometry yield pore dimensions and surface relaxivities consistent with a pore space as sampled by native pore fluids via the diffusion process. This opens a way to calibrate NMR relaxation measurements with other NMR techniques, providing information about the pore-size distribution of natural porous media directly from relaxometry.

  9. Experimental study on relaxation time in direction changing movement

    NASA Astrophysics Data System (ADS)

    Liu, Chi; Song, Weiguo; Fu, Libi; Lian, Liping; Lo, Siuming

    2017-02-01

    Controlled experiments were conducted to clarify the movement characteristics of pedestrians in direction changing processes. We track pedestrians' trajectories and map them into real space coordinates by the direct linear transformation method. In the acceleration process, the relaxation time and free moving speed in our experiments respectively equal 0.659 s and 1.540 m/s, which are consistent with those for Chinese participants in other experiments. Meanwhile, the values of relaxation time in the direction changing process are calculated by a derived equation from the concept of the social force model. It is observed that the relaxation time is not an invariable parameter, and tends to increase with an increase in the angular difference. Furthermore, results show that pedestrians are insensitive to a tiny angular difference between instantaneous velocity and desired velocity. These experimental results presented in this work can be applied in model development and validation.

  10. AVIRIS and TIMS data processing and distribution at the land processes distributed active archive center

    NASA Technical Reports Server (NTRS)

    Mah, G. R.; Myers, J.

    1993-01-01

    The U.S. Government has initiated the Global Change Research program, a systematic study of the Earth as a complete system. NASA's contribution of the Global Change Research Program is the Earth Observing System (EOS), a series of orbital sensor platforms and an associated data processing and distribution system. The EOS Data and Information System (EOSDIS) is the archiving, production, and distribution system for data collected by the EOS space segment and uses a multilayer architecture for processing, archiving, and distributing EOS data. The first layer consists of the spacecraft ground stations and processing facilities that receive the raw data from the orbiting platforms and then separate the data by individual sensors. The second layer consists of Distributed Active Archive Centers (DAAC) that process, distribute, and archive the sensor data. The third layer consists of a user science processing network. The EOSDIS is being developed in a phased implementation. The initial phase, Version 0, is a prototype of the operational system. Version 0 activities are based upon existing systems and are designed to provide an EOSDIS-like capability for information management and distribution. An important science support task is the creation of simulated data sets for EOS instruments from precursor aircraft or satellite data. The Land Processes DAAC, at the EROS Data Center (EDC), is responsible for archiving and processing EOS precursor data from airborne instruments such as the Thermal Infrared Multispectral Scanner (TIMS), the Thematic Mapper Simulator (TMS), and Airborne Visible and Infrared Imaging Spectrometer (AVIRIS). AVIRIS, TIMS, and TMS are flown by the NASA-Ames Research Center ARC) on an ER-2. The ER-2 flies at 65000 feet and can carry up to three sensors simultaneously. Most jointly collected data sets are somewhat boresighted and roughly registered. The instrument data are being used to construct data sets that simulate the spectral and spatial

  11. Hot carrier relaxation dynamics in zinc selenide

    NASA Astrophysics Data System (ADS)

    Mehendale, Manjusha

    The ultrafast relaxation dynamics of hot carriers are monitored in a high-quality ZnSe epilayer grown on GaAs substrate by employing a novel femtosecond pump-probe differential reflectivity technique which exploits the intrinsic interferometric asymmetric Fabry-Perot sample structure. The ultrashort femtosecond pulses used in these timeresolved pump-probe experiments are derived from a hard-apertured Kerr-lens modelocked Ti:sapphire laser. The effect of pump-laser-induced thermal lensing on the stability and operational characteristics of such solid-state Femtosecond lasers is discussed. A theoretical model, which assumes the exponential cooling of electrons and holes towards the band edge and a simple two parabolic band structure, is used to estimate the hot carrier cooling times for various photoexcited carrier densities. This model shows the results to be consistent with the expected characteristic electronic LO-phonon emission time of 35-40 fs and provide evidence for the influence of a non-equilibrium LO-phonon population, known as ``hot phonon effect'', on the electron cooling dynamics for carrier densities higher than 3 × 1017 cm-3. Another model, which is based on a balance equation approach, is used to analyze the experimental data more accurately, by including the effects of various processes such as screened carrier-phonon, carrier-carrier scattering and hot phonon effects on the relaxation dynamics. Comparison of the experimental data with this latter theoretical model indicates that the observed reduction in the electron cooling rate with increasing carrier density is due to both screening of the Fröhlich interaction and hot phonon effect. Finally, a comparison of hot carrier relaxation processes at various lattice temperatures is presented. This study provides an evidence of a more pronounced hot phonon effect at a lattice temperature of 80K than at 300K, which is complicated by temperature-dependent changes in optical and physical properties of the

  12. Criminal profiling as a plotting activity based on abductive processes.

    PubMed

    Verde, Alfredo; Nurra, Antonio

    2010-10-01

    In this article the authors analyze the nature and aims of criminal profiling from a theoretical point of view. The need to become increasingly "scientific" has given rise to the modern approaches of profiling, which have been particularly successful in cases of serial homicides and sex crimes, given that compulsive (perverse) acts, because of their ritual nature, have been described as being more easily foreseeable and presumably linkable to the psychological and even personal characteristics of a given criminal. On this basis, the authors analyze profiling from an epistemological point of view and show how, in the concrete activity of profiling, profilers depart from the "certainty" of the scientific models (those that are based on deductive-inductive processes); the epistemological basis of reasoning changes as there is no longer an induction-deduction model but rather an abductive model (as conceived and explained by Peirce) in which the importance of plotting (the weaving of a narrative) becomes greater.

  13. 40 CFR 57.205 - Submission of supplementary information upon relaxation of an SO2 SIP emission limitation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... upon relaxation of an SO2 SIP emission limitation. 57.205 Section 57.205 Protection of Environment... Application and the NSO Process § 57.205 Submission of supplementary information upon relaxation of an SO2 SIP emission limitation. (a) In the event an SO2 SIP limit is relaxed subsequent to EPA approval or issuance...

  14. 40 CFR 57.205 - Submission of supplementary information upon relaxation of an SO2 SIP emission limitation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... upon relaxation of an SO2 SIP emission limitation. 57.205 Section 57.205 Protection of Environment... Application and the NSO Process § 57.205 Submission of supplementary information upon relaxation of an SO2 SIP emission limitation. (a) In the event an SO2 SIP limit is relaxed subsequent to EPA approval or issuance...

  15. 40 CFR 57.205 - Submission of supplementary information upon relaxation of an SO2 SIP emission limitation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... upon relaxation of an SO2 SIP emission limitation. 57.205 Section 57.205 Protection of Environment... Application and the NSO Process § 57.205 Submission of supplementary information upon relaxation of an SO2 SIP emission limitation. (a) In the event an SO2 SIP limit is relaxed subsequent to EPA approval or issuance...

  16. 40 CFR 57.205 - Submission of supplementary information upon relaxation of an SO2 SIP emission limitation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... upon relaxation of an SO2 SIP emission limitation. 57.205 Section 57.205 Protection of Environment... Application and the NSO Process § 57.205 Submission of supplementary information upon relaxation of an SO2 SIP emission limitation. (a) In the event an SO2 SIP limit is relaxed subsequent to EPA approval or issuance...

  17. 40 CFR 57.205 - Submission of supplementary information upon relaxation of an SO2 SIP emission limitation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... upon relaxation of an SO2 SIP emission limitation. 57.205 Section 57.205 Protection of Environment... Application and the NSO Process § 57.205 Submission of supplementary information upon relaxation of an SO2 SIP emission limitation. (a) In the event an SO2 SIP limit is relaxed subsequent to EPA approval or issuance...

  18. Linking Plagioclase Zoning Patterns to Active Magma Processes

    NASA Astrophysics Data System (ADS)

    Izbekov, P. E.; Nicolaysen, K. P.; Neill, O. K.; Shcherbakov, V.; Plechov, P.; Eichelberger, J. C.

    2015-12-01

    Plagioclase, one of the most common and abundant mineral phases in volcanic products, will vary in composition in response to changes in temperature, pressure, composition of the ambient silicate melt, and melt H2O concentration. Changes in these parameters may cause dissolution or growth of plagioclase crystals, forming characteristic textural and compositional variations (zoning patterns), the complete core-to-rim sequence of which describes events experienced by an individual crystal from its nucleation to the last moments of its growth. Plagioclase crystals in a typical volcanic rock may look drastically dissimilar despite their spatial proximity and the fact that they have erupted together. Although they shared last moments of their growth during magma ascent and eruption, their prior experiences could be very different, as plagioclase crystals often come from different domains of the same magma system. Distinguishing similar zoning patterns, correlating them across the entire population of plagioclase crystals, and linking these patterns to specific perturbations in the magmatic system may provide additional perspective on the variety, extent, and timing of magma processes at active volcanic systems. Examples of magma processes, which may be distinguished based on plagioclase zoning patterns, include (1) cooling due to heat loss, (2) heating and/or pressure build up due to an input of new magmatic material, (3) pressure drop in response to magma system depressurization, and (4) crystal transfer between different magma domains/bodies. This review will include contrasting examples of zoning patters from recent eruptions of Karymsky, Bezymianny, and Tolbachik Volcanoes in Kamchatka, Augustine and Cleveland Volcanoes in Alaska, as well as from the drilling into an active magma body at Krafla, Iceland.

  19. Activation processes in a medical linear accelerator and spatial distribution of activation products.

    PubMed

    Fischer, Helmut W; Tabot, Ben E; Poppe, Björn

    2006-12-21

    Activation products have been identified by in situ gamma spectroscopy at the isocentre of a medical linear accelerator shortly after termination of a high energy photon beam irradiation with 15 x 15 cm field size. Spectra have been recorded either with an open or with a closed collimator. Whilst some activation products disappear from the spectrum with closed collimator or exhibit reduced count rates, others remain with identical intensity. The former isotopes are neutron-deficient and mostly decay by positron emission or electron capture; the latter have neutron excess and decay by beta(-) emission. This new finding is consistent with the assumption that photons in the primary beam produce activation products by (gamma, n) reactions in the treatment head and subsequently the neutrons created in these processes undergo (n, gamma) reactions creating activation products in a much larger area. These findings are expected to be generally applicable to all medical high energy linear accelerators.

  20. Measuring non-radiative relaxation time of fluorophores by intensity-modulated laser induced photoacoustic effect

    NASA Astrophysics Data System (ADS)

    Soroushian, Behrouz; Yang, Xinmai

    2013-03-01

    Most biological chromophores and molecules relax primarily through non-radiative processes; therefore, mapping of relaxation time related to non-rediative process can be a potential indicator of tissue status. In order to map relative nonradiative relaxation time, modulated tone-burst light is used to generate photoacoustic signals. Then nonradiative relaxation time is indicated by the amplitude decay rate as modulation frequency increases. The results show that although blood is an optically weak absorber at 808 nm, by using this method a significant enhancement of contrast-tonoise ratio of a blood target compared to pulsed photoacoustic imaging at this wavelength is achieved.