Science.gov

Sample records for activated sludge biological

  1. Activated Sludge. Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Boe, Owen K.; Klopping, Paul H.

    This student manual contains the textual material for a seven-lesson unit on activated sludge. Topic areas addressed in the lessons include: (1) activated sludge concepts and components (including aeration tanks, aeration systems, clarifiers, and sludge pumping systems); (2) activated sludge variations and modes; (3) biological nature of activated…

  2. Polyphosphate Kinase from Activated Sludge Performing Enhanced Biological Phosphorus Removal†

    PubMed Central

    McMahon, Katherine D.; Dojka, Michael A.; Pace, Norman R.; Jenkins, David; Keasling, Jay D.

    2002-01-01

    A novel polyphosphate kinase (PPK) was retrieved from an uncultivated organism in activated sludge carrying out enhanced biological phosphorus removal (EBPR). Acetate-fed laboratory-scale sequencing batch reactors were used to maintain sludge with a high phosphorus content (approximately 11% of the biomass). PCR-based clone libraries of small subunit rRNA genes and fluorescent in situ hybridization (FISH) were used to verify that the sludge was enriched in Rhodocyclus-like β-Proteobacteria known to be associated with sludges carrying out EBPR. These organisms comprised approximately 80% of total bacteria in the sludge, as assessed by FISH. Degenerate PCR primers were designed to retrieve fragments of putative ppk genes from a pure culture of Rhodocyclus tenuis and from organisms in the sludge. Four novel ppk homologs were found in the sludge, and two of these (types I and II) shared a high degree of amino acid similarity with R. tenuis PPK (86 and 87% similarity, respectively). Dot blot analysis of total RNA extracted from sludge demonstrated that the Type I ppk mRNA was present, indicating that this gene is expressed during EBPR. Inverse PCR was used to obtain the full Type I sequence from sludge DNA, and a full-length PPK was cloned, overexpressed, and purified to near homogeneity. The purified PPK has a specific activity comparable to that of other PPKs, has a requirement for Mg2+, and does not appear to operate in reverse. PPK activity was found mainly in the particulate fraction of lysed sludge microorganisms. PMID:12324346

  3. Activated Sludge. Instructor's Guide. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Boe, Owen K.

    This instructor's guide contains the materials needed to teach a seven-lesson unit on activated sludge. These materials include an overview of the unit, lesson plans, lecture outlines (keyed to slides designed for use with the lessons), student worksheets for each of the seven lessons (with answers), and two copies of a final quiz (with and…

  4. Gamma irradiation induced disintegration of waste activated sludge for biological hydrogen production

    NASA Astrophysics Data System (ADS)

    Yin, Yanan; Wang, Jianlong

    2016-04-01

    In this paper, gamma irradiation was applied for the disintegration and dissolution of waste activated sludge produced during the biological wastewater treatment, and the solubilized sludge was used as substrate for bio-hydrogen production. The experimental results showed that the solubilization of waste activated sludge was 53.7% at 20 kGy and pH=12, and the SCOD, polysaccharides, protein, TN and TP contents in the irradiated sludge solutions was 3789.6 mg/L, 268.3 mg/L, 1881.5 mg/L, 132.3 mg/L and 80.4 mg/L, respectively. The irradiated sludge was used for fermentative hydrogen production, and the hydrogen yield was 10.5±0.7 mL/g SCODconsumed. It can be concluded that the irradiated waste activated sludge could be used as a low-cost substrate for fermentative hydrogen production.

  5. Is anaerobic digestion effective for the removal of organic micropollutants and biological activities from sewage sludge?

    PubMed

    Gonzalez-Gil, L; Papa, M; Feretti, D; Ceretti, E; Mazzoleni, G; Steimberg, N; Pedrazzani, R; Bertanza, G; Lema, J M; Carballa, M

    2016-10-01

    The occurrence of emerging organic micropollutants (OMPs) in sewage sludge has been widely reported; nevertheless, their fate during sludge treatment remains unclear. The objective of this work was to study the fate of OMPs during mesophilic and thermophilic anaerobic digestion (AD), the most common processes used for sludge stabilization, by using raw sewage sludge without spiking OMPs. Moreover, the results of analytical chemistry were complemented with biological assays in order to verify the possible adverse effects (estrogenic and genotoxic) on the environment and human health in view of an agricultural (re)use of digested sludge. Musk fragrances (AHTN, HHCB), ibuprofen (IBP) and triclosan (TCS) were the most abundant compounds detected in sewage sludge. In general, the efficiency of the AD process was not dependent on operational parameters but compound-specific: some OMPs were highly biotransformed (e.g. sulfamethoxazole and naproxen), while others were only slightly affected (e.g. IBP and TCS) or even unaltered (e.g. AHTN and HHCB). The MCF-7 assay evidenced that estrogenicity removal was driven by temperature. The Ames test did not show point mutation in Salmonella typhimurium while the Comet test exhibited a genotoxic effect on human leukocytes attenuated by AD. This study highlights the importance of combining chemical analysis and biological activities in order to establish appropriate operational strategies for a safer disposal of sewage sludge. Actually, it was demonstrated that temperature has an insignificant effect on the disappearance of the parent compounds while it is crucial to decrease estrogenicity.

  6. Activated Sludge.

    ERIC Educational Resources Information Center

    Saunders, F. Michael

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. This review covers: (1) activated sludge process; (2) process control; (3) oxygen uptake and transfer; (4) phosphorus removal; (5) nitrification; (6) industrial wastewater; and (7) aerobic digestion. A list of 136 references is also presented. (HM)

  7. Pilot scale study on retrofitting conventional activated sludge plant for biological nutrient removal.

    PubMed

    Chiang, W W; Qasim, S R; Zhu, G; Crosby, E C

    1999-01-01

    Eutrophication of receiving waters due to the discharge of nitrogen and phosphorus through the wastewater effluent has received much interest in recent years. Numerous techniques have been proposed and aimed at retrofitting the existing conventional activated sludge process for nutrient removal. A pilot-scale research program was conducted to evaluate the effectiveness of a biological nutrient process for this purpose. The results indicated that creating an anoxic/anaerobic zone before aeration basin significantly enhances total phosphorus (TP) and total nitrogen (TN) removal. Without internal cycle, about 80 percent TP and TN removal were respectively achieved under their optimal conditions. However, adverse trends for phosphorus and nitrogen removal were observed when the ratio of return sludge to the influent was varied in the range between 0.5 and 3.0. The total phosphorus removal decreased as the concentration of BOD5 in the mixture of influent and return sludge decreased. Improved sludge settling properties and reduced foaming problems were also observed during the pilot plant operation. Based upon experimental results, the strategies to modify an existing conventional activated sludge plant into a biological nutrient removal (BNR) system are discussed.

  8. Understanding the granulation process of activated sludge in a biological phosphorus removal sequencing batch reactor.

    PubMed

    Wu, Chang-Yong; Peng, Yong-Zhen; Wang, Ran-Deng; Zhou, Yue-Xi

    2012-02-01

    The granulation of activated sludge was investigated using two parallel sequencing batch reactors (SBRs) operated in biological nitrogen and phosphorus removal conditions though the reactor configuration and operating parameters did not favor the granulation. Granules were not observed when the SBR was operated in biological nitrogen removal period for 30d. However, aerobic granules were formed naturally without the increase of aeration intensity when enhanced biological phosphorus removal (EBPR) was achieved. It can be detected that plenty of positive charged particles were formed with the release of phosphorus during the anaerobic period of EBPR. The size of the particles was about 5-20 μm and their highest positive ζ potential was about 73 mV. These positive charged particles can stimulate the granulation. Based on the experimental results, a hypothesis was proposed to interpret the granulation process of activated sludge in the EBPR process in SBR. Dense and compact subgranules were formed stimulated by the positive charged particles. The subgranules grew gradually by collision, adhesion and attached growth of bacteria. Finally, the extrusion and shear of hydrodynamic shear force would help the maturation of granules. Aerobic granular SBR showed excellent biological phosphorus removal ability. The average phosphorus removal efficiency was over 95% and the phosphorus in the effluent was below 0.50 mg L(-1) during the operation.

  9. The biological effect of metal ions on the granulation of aerobic granular activated sludge.

    PubMed

    Hao, Wen; Li, Yaochen; Lv, Junping; Chen, Lisha; Zhu, Jianrong

    2016-06-01

    As a special biofilm structure, microbial attachment is believed to play an important role in the granulation of aerobic granular activated sludge (AGAS). This experiment was to investigate the biological effect of Ca(2+), Mg(2+), Cu(2+), Fe(2+), Zn(2+), and K(+) which are the most common ions present in biological wastewater treatment systems, on the microbial attachment of AGAS and flocculent activated sludge (FAS), from which AGAS is always derived, in order to provide a new strategy for the rapid cultivation and stability control of AGAS. The result showed that attachment biomass of AGAS was about 300% higher than that of FAS without the addition of metal ions. Different metal ions had different effects on the process of microbial attachment. FAS and AGAS reacted differently to the metal ions as well, and in fact, AGAS was more sensitive to the metal ions. Specifically, Ca(2+), Mg(2+), and K(+) could increase the microbial attachment ability of both AGAS and FAS under appropriate concentrations, Cu(2+), Fe(2+), and Zn(2+) were also beneficial to the microbial attachment of FAS at low concentrations, but Cu(2+), Fe(2+), and Zn(2+) greatly inhibited the attachment process of AGAS even at extremely low concentrations. In addition, the acylated homoserine lactone (AHL)-based quorum sensing system, the content of extracellular polymeric substances and the relative hydrophobicity of the sludges were greatly influenced by metal ions. As all these parameters had close relationships with the microbial attachment process, the microbial attachment may be affected by changes of these parameters.

  10. Simulation and optimization of a coking wastewater biological treatment process by activated sludge models (ASM).

    PubMed

    Wu, Xiaohui; Yang, Yang; Wu, Gaoming; Mao, Juan; Zhou, Tao

    2016-01-01

    Applications of activated sludge models (ASM) in simulating industrial biological wastewater treatment plants (WWTPs) are still difficult due to refractory and complex components in influents as well as diversity in activated sludges. In this study, an ASM3 modeling study was conducted to simulate and optimize a practical coking wastewater treatment plant (CWTP). First, respirometric characterizations of the coking wastewater and CWTP biomasses were conducted to determine the specific kinetic and stoichiometric model parameters for the consecutive aeration-anoxic-aeration (O-A/O) biological process. All ASM3 parameters have been further estimated and calibrated, through cross validation by the model dynamic simulation procedure. Consequently, an ASM3 model was successfully established to accurately simulate the CWTP performances in removing COD and NH4-N. An optimized CWTP operation condition could be proposed reducing the operation cost from 6.2 to 5.5 €/m(3) wastewater. This study is expected to provide a useful reference for mathematic simulations of practical industrial WWTPs.

  11. Enhanced biological phosphorus removal and its modeling for the activated sludge and membrane bioreactor processes.

    PubMed

    Zuthi, M F R; Guo, W S; Ngo, H H; Nghiem, L D; Hai, F I

    2013-07-01

    A modified activated sludge process (ASP) for enhanced biological phosphorus removal (EBPR) needs to sustain stable performance for wastewater treatment to avoid eutrophication in the aquatic environment. Unfortunately, the overall efficiency of the EBPR in ASPs and membrane bioreactors (MBRs) is frequently hindered by different operational/system constraints. Moreover, although phosphorus removal data from several wastewater treatment systems are available, a comprehensive mathematical model of the process is still lacking. This paper presents a critical review that highlights the core issues of the biological phosphorus removal in ASPs and MBRs while discussing the inhibitory process requirements for other nutrients' removal. This mini review also successfully provided an assessment of the available models for predicting phosphorus removal in both ASP and MBR systems. The advantages and limitations of the existing models were discussed together with the inclusion of few guidelines for their improvement.

  12. Effects of glucose on the performance of enhanced biological phosphorus removal activated sludge enriched with acetate.

    PubMed

    Gebremariam, Seyoum Yami; Beutel, Marc W; Christian, David; Hess, Thomas F

    2012-10-01

    The effects of glucose on enhanced biological phosphorus removal (EBPR) activated sludge enriched with acetate was investigated using sequencing batch reactors. A glucose/acetate mixture was serially added to the test reactor in ratios of 25/75%, 50/50%, and 75/25% and the EBPR activity was compared to the control reactor fed with 100% acetate. P removal increased at a statistically significant level to a near-complete in the test reactor when the mixture increased to 50/50%. However, EBPR deteriorated when the glucose/acetate mixture increased to 75/25% in the test reactor and when the control reactor abruptly switched to 100% glucose. These results, in contrast to the EBPR conventional wisdom, suggest that the addition of glucose at moderate levels in wastewaters does not impede and may enhance EBPR, and that glucose waste products should be explored as an economical sustainable alternative when COD enhancement of EBPR is needed.

  13. Sequencing biological acidification of waste-activated sludge aiming to optimize phosphorus dissolution and recovery.

    PubMed

    Guilayn, Felipe; Braak, Etienne; Piveteau, Simon; Daumer, Marie-Line

    2016-09-20

    Phosphorus (P) recovery in wastewater treatment plants (WWTP) as pure crystals such as struvite (MgNH4PO4.6H2O), potassium struvite (KMgPO4.6H2O) and calcium phosphates (e.g. Ca3(PO4)2) is an already feasible technique that permits the production of green and marketable fertilizers and the reduction of operational costs. Commercial crystallizers can recovery more than 90% of soluble P. However, most of the P in WWTP sludge is unavailable for the processes (not dissolved). P solubilization and separation are thus the limiting steps in P-crystallization. With an innovative two-step sequencing acidification strategy, the current study has aimed to improve biological P solubilization on waste-activated sludge (WAS) from a full-scale plant. In the first step (P-release), low charges of organic waste were used as co-substrates of WAS pre-fermentation, seeking to produce volatile fatty acids to feed the P-release by Polyphosphate-accumulating organisms, while keeping its optimal metabolic pH (6-7). In this phase, milk serum, WWTP grease, urban organic waste and collective restaurant waste were individually applied as co-substrates. In the second step (P-dissolution), pH 4 was aimed at as it allows the dissolution of the most common precipitated species of P. Biological acidification was performed by white sugar addition, as a carbohydrate-rich organic waste model, which was compared to chemical acidification by HCl (12M) addition. With short retention times (48-96 h) and without inoculum application, all experiences succeeded on P solubilization (37-55% of soluble P), principally when carbohydrate-rich co-substrates were applied. Concentrations from 270 to 450 mg [Formula: see text] were achieved.

  14. Activated sludge

    SciTech Connect

    1987-12-31

    This manual is designed to give the operator a framework for decision-making based on an understanding of the biological and chemical principles at work and the past experiencing of the more than 60 individuals who contributed to this manual. Chapters cover: process and equipment descriptions, process control, energy conservation, and trouble-shooting. The manual is intended to be used as both a training tool and a reference book. The easy-to-follow format will make the book useful to the newcomer as well as to the experienced operator.

  15. The impact of sea water flushing on biological nitrification-denitrification activated sludge sewage treatment process.

    PubMed

    Yu, S M; Leung, W Y; Ho, K M; Greenfield, P F; Eckenfelder, W W

    2002-01-01

    The process performance of the two largest activated sludge processes in Hong Kong, the Sha Tin and the Tai Po Sewage Treatment Works (STW), deteriorated in the initial period after the introduction of seawater flushing in 1995 and 1996, respectively. High effluent ammonia nitrogen (NH4-N) and total suspended solids (TSS) in excess of the discharge standards resulted from incomplete nitrification and changes in floc characteristics. A desktop study on the inhibitory effects of salinity, particularly on nitrification, was subsequently conducted using the Tai Po STW operating data. To assist the upgrade of the Sha Tin STW a five-month extensive bench-scale investigation on a simple but flexible modified Ludzack-Ettinger configuration with bio-selector was conducted to quantify the inhibitory effects due to the saline concentration. The Sha Tin STW upgrade consists of restoration of its original design capacity (conventional process) of 205,000 m3/day from its currently much reduced capacity as a Bardenpho process. Only the volume of the existing biological process and clarifier is to be utilized. The saline concentration ranges from 3,500 up to 6,500 mg Cl-/L, both daily and seasonally. High and greatly fluctuating saline concentrations have been known to inhibit nitrification. Design consideration should also be given to the peak daily and seasonal TKN loading of up to three times the average. Although the nitrifiers maximum specific growth rate was significantly reduced to a low 0.25 day(-1), the inhibition was considered to be tolerable with effluent NH4-N and NO3-N consistently at < 1 and < 6 mg/L. The bio-selector was demonstrated to be efficient in control of sludge foaming and bulking with SVI consistently < or = 125 mL/g. Results from the IAWO Model No. 1 and the hydraulic model of the secondary clarifiers allowed overall process capacity maximization. With an anoxic mass fraction of 25-30%, operating sludge age of 9-14 days and SVI < or = 125 mL/g, both the

  16. Waste-Activated Sludge Fermentation for Polyacrylamide Biodegradation Improved by Anaerobic Hydrolysis and Key Microorganisms Involved in Biological Polyacrylamide Removal

    PubMed Central

    Dai, Xiaohu; Luo, Fan; Zhang, Dong; Dai, Lingling; Chen, Yinguang; Dong, Bin

    2015-01-01

    During the anaerobic digestion of dewatered sludge, polyacrylamide (PAM), a chemical conditioner, can usually be consumed as a carbon and nitrogen source along with other organic matter (e.g., proteins and carbohydrates in the sludge). However, a significant accumulation of acrylamide monomers (AMs) was observed during the PAM biodegradation process. To improve the anaerobic hydrolysis of PAM, especially the amide hydrolysis process, and to avoid the generation of the intermediate product AM, a new strategy is reported herein that uses an initial pH of 9, 200 mg COD/L of PAM and a fermentation time of 17 d. First, response surface methodology (RSM) was applied to optimize PAM removal in the anaerobic digestion of the sludge. The biological hydrolysis of PAM reached 86.64% under the optimal conditions obtained from the RSM. Then, the mechanisms for the optimized parameters that significantly improved the biological hydrolysis of PAM were investigated by the synergistic effect of the main organic compounds in the sludge, the floc size distribution, and the enzymatic activities. Finally, semi-continuous-flow experiments for a microbial community study were investigated based on the determination of key microorganisms involved in the biological hydrolysis of PAM. PMID:26144551

  17. Impact of oxygen cut off and starvation conditions on biological activity and physico-chemical properties of activated sludge.

    PubMed

    Villain, Maud; Clouzot, Ludiwine; Guibaud, Gilles; Marrot, Benoit

    2013-01-01

    Physico-chemical and biological parameters were monitored both throughout different oxygen cut off and starvation (OCS) times (6 h-72 h) and after the restoration of normal operational conditions. Sludge apparent viscosity and soluble extracellular polymeric substances (EPS) characteristics were measured to determine the activated sludge (AS) properties. Oxygen transfer, biological activity with specific oxygen uptake rate (SOUR) measurements during endogenous/exogenous conditions (without any external substrate/with external substrate consumption) and chemical oxygen demand (COD) removal were measured to assess the AS performances. During the different stress times, AS deflocculated as a decrease of apparent viscosity was observed and microorganisms biodegraded the released EPS to survive. After aeration return, and under endogenous conditions, size exclusion chromatographic fingerprints of soluble EPS were modified and macromolecules probably of type humic-like substances appeared in significant quantities. These new macromolecules presumably acted as biosurfactants. Consequently, the liquid surface tension, as well as the oxygen transfer rate (OTR), decreased. Under exogenous conditions, high biological activity (SOUR = 11.8 +/- 2.1 mg(O2 x g(MLVSS)(-1) x h(-1)) compensated the decrease of oxygen transfer. Finally, AS biomass maintained a constant COD degradation rate (15.7 +/- 1.9 mg(O2) x g(MLVSS)(-1) x h(-1)) before and after the disturbances for all times tested. This work demonstrates that AS microorganisms can counteract concomitant oxygen and nutrients shortage when the duration of such a condition does not exceed 72 h. Dissociation of endogenous/exogenous conditions appears to offer an ideal laboratory model to study EPS and biomass activity effects on oxygen transfer.

  18. Model development with defined biological mechanisms for xenobiotic treatment activated sludge at steady state.

    PubMed

    Chong, Nyuk-Min

    2015-06-01

    Activated sludge treatment of a xenobiotic organic compound, much different from treatment of biogenic organics, must be modeled with interactions involving a two-part biomass of degrader and nondegrader, which selectively or competitively grow on a two-part substrate of input xenobiotic and its biogenic metabolites. A xenobiotic treatment model was developed which incorporates kinetics of the growth of degrader and nondegrader, the line dividing metabolites into xenobiotic and biogenic, yields of degrader and nondegrader from utilization of their parts of substrates, and kinetics of degrader reversion to nondegrader due to instability of the degradative element degraders carry. Experimental activated sludge operated for treatment of a xenobiotic generated data for calibration of the model. With the input of influent xenobiotic concentration, mean cell and hydraulic residence times, and calibrated parameters, the model readily outputs concentrations of degrader, nondegrader, and effluent biogenic residue that closely match the results obtained from experiments.

  19. Two-stage thermophilic-mesophilic anaerobic digestion of waste activated sludge from a biological nutrient removal plant.

    PubMed

    Watts, S; Hamilton, G; Keller, J

    2006-01-01

    A two-stage thermophilic-mesophilic anaerobic digestion pilot-plant was operated solely on waste activated sludge (WAS) from a biological nutrient removal (BNR) plant. The first-stage thermophilic reactor (HRT 2 days) was operated at 47, 54 and 60 degrees C. The second-stage mesophilic digester (HRT 15 days) was held at a constant temperature of 36-37 degrees C. For comparison with a single-stage mesophilic process, the mesophilic digester was also operated separately with an HRT of 17 days and temperature of 36-37 degrees C. The results showed a truly thermophilic stage (60 degrees C) was essential to achieve good WAS degradation. The lower thermophilic temperatures examined did not offer advantages over single-stage mesophilic treatment in terms of COD and VS removal. At a thermophilic temperature of 60 degrees C, the plant achieved 35% VS reduction, representing a 46% increase compared to the single-stage mesophilic digester. This is a significant level of degradation which could make such a process viable in situations where there is no primary sludge generated. The fate of the biologically stored phosphorus in this BNR sludge was also investigated. Over 80% of the incoming phosphorus remained bound up with the solids and was not released into solution during the WAS digestion. Therefore only a small fraction of phosphorus would be recycled to the main treatment plant with the dewatering stream.

  20. Long-term analysis of a full-scale activated sludge wastewater treatment system exhibiting seasonal biological foaming.

    PubMed

    Frigon, Dominic; Guthrie, R Michael; Bachman, G Timothy; Royer, James; Bailey, Barbara; Raskin, Lutgarde

    2006-03-01

    The seasonal accumulation of biological foam on the activated sludge system of the Urbana-Champaign Sanitary District Northeast (UCSD-NE) wastewater treatment plant was investigated over an 8-year period by statistical analyses including path analysis, multivariate regression, and principal component analysis. Results of these analyses suggested that variation in the activated sludge reactor temperature and the use of a stream bypassing the primary clarifier were the two main factors determining the observed temporal foam profile. Characterization of the primary clarifier influent and effluent suggested the involvement of high lipid loading rates from the bypass stream in foam accumulation. In light of these results, it is hypothesized that increasing temperatures and lipid loading rates are responsible for foam formation through the same mechanism: the foam-forming microbial population is specialized in consuming lipids, substrates classified as slowly degradable. When the temperature increases, the rate of lipid hydrolysis becomes sufficiently high for this population to become abundant, accumulate on the surfaces of the aeration basins, and cause biological foaming.

  1. Biological removal of selenate and ammonium by activated sludge in a sequencing batch reactor.

    PubMed

    Mal, J; Nancharaiah, Y V; van Hullebusch, E D; Lens, P N L

    2017-04-01

    Wastewaters contaminated by both selenium and ammonium need to be treated prior to discharge into natural water bodies, but there are no studies on the simultaneous removal of selenium and ammonium. A sequencing batch reactor (SBR) was inoculated with activated sludge and operated for 90days. The highest ammonium removal efficiency achieved was 98%, while the total nitrogen removal was 75%. Nearly a complete chemical oxygen demand removal efficiency was attained after 16days of operation, whereas complete selenate removal was achieved only after 66days. The highest total Se removal efficiency was 97%. Batch experiments showed that the total Se in the aqueous phase decreased by 21% with increasing initial ammonium concentration from 50 to 100mgL(-1). This study showed that SBR can remove both selenate and ammonium via, respectively, bioreduction and partial nitrification-denitrification and thus offer possibilities for treating selenium and ammonium contaminated effluents.

  2. Effect of chemical and biological surfactants on activated sludge of MBR system: microscopic analysis and foam test.

    PubMed

    Capodici, Marco; Di Bella, Gaetano; Nicosia, Salvatore; Torregrossa, Michele

    2015-02-01

    A bench-scale MBR unit was operated, under stressing condition, with the aim of stimulating the onset of foaming in the activated sludge. Possible synergies between synthetic surfactants in the wastewater and biological surfactants (Extra-Cellular Polymeric Substances, EPSs) were investigated by changing C/N ratio. The growth of filamentous bacteria was also discussed. The MBR unit provided satisfactory overall carbon removal overall efficiencies: in particular, synthetic surfactants were removed with efficiency higher than 90% and 95% for non-ionic and ionic surfactants, respectively. Lab investigation suggested also the importance to reduce synthetic surfactants presence entering into mixed liquor: otherwise, their presence can significantly worsen the natural foaming caused by biological surfactants (EPSs) produced by bacteria. Finally, a new analytic method based on "ink test" has been proposed as a useful tool to achieve a valuation of EPSs bound fraction.

  3. Behavior of metals, pathogen parasites, and indicator bacteria in sewage effluents during biological treatment by activated sludge.

    PubMed

    Tonani, K A A; Julião, F C; Trevilato, T M B; Takayanagui, A M M; Bocio, Ana; Domingo, Jose L; Segura-Muñoz, Susana I

    2011-11-01

    The purpose of this study was to evaluate the behavior of metals, pathogen parasites, and indicator bacteria in sewage effluents during biological treatment by activated sludge in a wastewater treatment plant in Ribeirão Preto (WTP-RP), Sao Paulo, Brazil. The evaluation was done during a period of 1 year. Results showed that metal concentrations in treated effluents decreased, reaching concentrations according to those established by national regulations. The activated sludge process at the WTP-RP promoted a partial removal of parasites considered as possible indicators according to the WHO guidelines. Reduction factors varied between 18.2% and 100% for agents such as Endolimax nana, Entamoeba coli, Entamoeba hystolitica, Giardia sp., Ancylostoma sp., Ascaris sp., Fasciola hepatica, and Strongyloides stercoralis. A removal was also observed in total and fecal coliforms quantification. The present study represents an initial evaluation of the chemical and microbiological removal capacity of the WTP-RP. The results should be of interest for the authorities responsible for the environmental health at municipal, regional, national, and international levels.

  4. Influence of powdered activated carbon addition on water quality, sludge properties, and microbial characteristics in the biological treatment of commingled industrial wastewater.

    PubMed

    Hu, Qing-Yuan; Li, Meng; Wang, Can; Ji, Min

    2015-09-15

    A powdered activated carbon-activated sludge (PAC-AS) system, a traditional activated sludge (AS) system, and a powdered activated carbon (PAC) system were operated to examine the insights into the influence of PAC addition on biological treatment. The average COD removal efficiencies of the PAC-AS system (39%) were nearly double that of the AS system (20%). Compared with the average efficiencies of the PAC system (7%), COD removal by biodegradation in the PAC-AS system was remarkably higher than that in the AS system. The analysis of the influence of PAC on water quality and sludge properties showed that PAC facilitated the removal of hydrophobic matter and metabolic acidic products, and also enhanced the biomass accumulation, sludge settleability, and specific oxygen uptake rate inside the biological system. The microbial community structures in the PAC-AS and AS systems were monitored. The results showed that the average well color development in the PAC-AS system was higher than that in the AS system. The utilization of various substrates by microorganisms in the two systems did not differ. The dissimilarity index was far less than one; thus, showing that the microbial community structures of the two systems were the same.

  5. Modeling the Effect of External Carbon Source Addition under Different Electron Acceptor Conditions in Biological Nutrient Removal Activated Sludge Systems.

    PubMed

    Hu, Xiang; Wisniewski, Kamil; Czerwionka, Krzysztof; Zhou, Qi; Xie, Li; Makinia, Jacek

    2016-02-16

    The aim of this study was to expand the International Water Association Activated Sludge Model No. 2d (ASM2d) to predict the aerobic/anoxic behavior of polyphosphate accumulating organisms (PAOs) and "ordinary" heterotrophs in the presence of different external carbon sources and electron acceptors. The following new aspects were considered: (1) a new type of the readily biodegradable substrate, not available for the anaerobic activity of PAOs, (2) nitrite as an electron acceptor, and (3) acclimation of "ordinary" heterotrophs to the new external substrate via enzyme synthesis. The expanded model incorporated 30 new or modified process rate equations. The model was evaluated against data from several, especially designed laboratory experiments which focused on the combined effects of different types of external carbon sources (acetate, ethanol and fusel oil) and electron acceptors (dissolved oxygen, nitrate and nitrite) on the behavior of PAOs and "ordinary" heterotrophs. With the proposed expansions, it was possible to improve some deficiencies of the ASM2d in predicting the behavior of biological nutrient removal (BNR) systems with the addition of external carbon sources, including the effect of acclimation to the new carbon source.

  6. Heterogeneous catalytic ozonation of biologically pretreated Lurgi coal gasification wastewater using sewage sludge based activated carbon supported manganese and ferric oxides as catalysts.

    PubMed

    Zhuang, Haifeng; Han, Hongjun; Hou, Baolin; Jia, Shengyong; Zhao, Qian

    2014-08-01

    Sewage sludge of biological wastewater treatment plant was converted into sewage sludge based activated carbon (SBAC) with ZnCl₂ as activation agent, which supported manganese and ferric oxides as catalysts (including SBAC) to improve the performance of ozonation of real biologically pretreated Lurgi coal gasification wastewater. The results indicated catalytic ozonation with the prepared catalysts significantly enhanced performance of pollutants removal and the treated wastewater was more biodegradable and less toxic than that in ozonation alone. On the basis of positive effect of higher pH and significant inhibition of radical scavengers in catalytic ozonation, it was deduced that the enhancement of catalytic activity was responsible for generating hydroxyl radicals and the possible reaction pathway was proposed. Moreover, the prepared catalysts showed superior stability and most of toxic and refractory compounds were eliminated at successive catalytic ozonation runs. Thus, the process with economical, efficient and sustainable advantages was beneficial to engineering application.

  7. Effect of basic operating parameters on biological phosphorus removal in a continuous-flow anaerobic-anoxic activated sludge system.

    PubMed

    Kapagiannidis, A G; Zafiriadis, I; Aivasidis, A

    2012-03-01

    A continuous-flow anaerobic-anoxic (A2) activated sludge system was operated for efficient enhanced biological phosphorus removal (EBPR). Because of the system configuration with no aeration zones, phosphorus (P) uptake takes place solely under anoxic conditions with simultaneous denitrification. Basic operating conditions, namely biomass concentration, influent carbon to phosphorus ratio and anaerobic retention time were chosen as variables in order to assess their impact on the system performance. The experimental results indicated that maintenance of biomass concentration above 2,500 mg MLVSS/L resulted in the complete phosphate removal from the influent (i.e. 15 mg PO(4) (3-)-P/L) for a mean hydraulic residence time (HRT) of 15 h. Additionally, by increasing the influent COD/P ratio from 10 to 20 g/g, the system P removal efficiency was improved although the experimental results indicated a possible enhancement of the competition between phosphorus accumulating organisms (PAOs) and other microbial populations without phosphorus uptake ability. Moreover, because of the use of acetate (i.e. easily biodegradable substrate) as the sole carbon source in the system feed, application of anaerobic retention times greater than 2 h resulted in no significant release of additional P in the anaerobic zone and no further amelioration of the system P removal efficiency. The application of anoxic P removal resulted in more than 50% reduction of the organic carbon necessitated for nitrogen and phosphorus removal when compared to a conventional EBPR system incorporating aerobic phosphorus removal.

  8. Production and flocculating performance of sludge bioflocculant from biological sludge.

    PubMed

    Zhang, Xiuhong; Sun, Jie; Liu, Xiuxiu; Zhou, Jiti

    2013-10-01

    Excess biological sludge was utilized to prepared bioflocculant with hydrochloric acid. The prepared crude bioflocculant was purified and fractionally precipitated to attain four purified sludge bioflocculant defined as PSB1-4. The PSB-2 has higher flocculating rate for kaolin suspension than others. When the pH of the flocculation system ranged from 4.0 to 11.0 the flocculating rates of PSB-2 were over 96.0%. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectra showed that amino and hydroxyl groups were present in the bioflocculant molecules. More amine group existed in the bioflocculant PSB-2 relatively. The amino group was believed to play an important role in flocculation. The experiment of zeta potential measuring indicated that the charge neutralization contributed to flocculation process. Flocculating mechanism investigation reveals that the sludge bioflocculant caused kaolin suspension instability by means of charge neutralization firstly and then promoted the aggregation of suspension particles by adsorption and bridge.

  9. Biodegradability enhancement of a leachate after biological lagooning using a solar driven photo-Fenton reaction, and further combination with an activated sludge biological process, at pre-industrial scale.

    PubMed

    Silva, Tânia F C V; Fonseca, Amélia; Saraiva, Isabel; Vilar, Vítor J P; Boaventura, Rui A R

    2013-06-15

    This work proposes an integrated leachate treatment strategy, combining a solar photo-Fenton reaction, to enhance the biodegradability of the leachate from an aerated lagoon, with an activated sludge process, under aerobic and anoxic conditions, to achieve COD target values and nitrogen content according to the legislation. The efficiency and performance of the photo-Fenton reaction, concerning a sludge removal step after acidification, defining the optimum phototreatment time to reach a biodegradable wastewater that can be further oxidized in a biological reactor and, activation sludge biological process, defining the nitrification and denitrification reaction rates, alkalinity balance and methanol dose necessary as external carbon source, was evaluated in the integrated system at a scale close to industrial. The pre-industrial plant presents a photocatalytic system with 39.52 m(2) of compound parabolic collectors (CPCs) and 2 m(3) recirculation tank and, an activated sludge biological reactor with 3 m(3) capacity. Leachate biodegradability enhancement by means of a solar driven photo-Fenton process was evaluated using direct biodegradability tests, as Zahn-Wellens method, and indirect measure according to average oxidation state (AOS), low molecular carboxylic acids content (fast biodegradable character) and humic substances (recalcitrant character) concentration. Due to high variability of leachate composition, UV absorbance on-line measurement was established as a useful parameter for photo-Fenton reaction control.

  10. Long-term effects of copper nanoparticles on wastewater biological nutrient removal and N2O generation in the activated sludge process.

    PubMed

    Chen, Yinguang; Wang, Dongbo; Zhu, Xiaoyu; Zheng, Xiong; Feng, Leiyu

    2012-11-20

    The increasing use of copper nanoparticles (Cu NPs) raises concerns about their potential toxic effects on the environment. However, their influences on wastewater biological nutrient removal (BNR) and nitrous oxide (N(2)O) generation in the activated sludge process have never been documented. In this study the long-term effects of Cu NPs (0.1-10 mg/L) on BNR and N(2)O generation were investigated. The total nitrogen (TN) removal was enhanced and N(2)O generation was reduced at any Cu NPs levels investigated, but both ammonia and phosphorus removals were not affected. The mechanism studies showed although most of the Cu NPs were absorbed to activated sludge, the activated sludge surface was not damaged, and the released copper ion from Cu NPs dissolution was the main reason for TN removal improvement and N(2)O reduction. It was also found that the transformation of polyhydroxyalkanoates and the activities of ammonia monooxygenase, nitrite oxidoreductase, exopolyphosphatase, and polyphosphate kinase were not affected by Cu NPs, whereas the decreased metabolism of glycogen and the increased activities of denitrification enzymes were observed. Further investigation revealed that Cu NPs increased the number of denitrifiers (especially N(2)O reducing denitrifiers) but decreased nitrite accumulation. All these observations were in correspondence with the enhancement of TN removal and reduction of N(2)O generation.

  11. Modeling external carbon addition in biological nutrient removal processes with an extension of the international water association activated sludge model.

    PubMed

    Swinarski, M; Makinia, J; Stensel, H D; Czerwionka, K; Drewnowski, J

    2012-08-01

    The aim of this study was to expand the International Water Association Activated Sludge Model No. 2d (ASM2d) to account for a newly defined readily biodegradable substrate that can be consumed by polyphosphate-accumulating organisms (PAOs) under anoxic and aerobic conditions, but not under anaerobic conditions. The model change was to add a new substrate component and process terms for its use by PAOs and other heterotrophic bacteria under anoxic and aerobic conditions. The Gdansk (Poland) wastewater treatment plant (WWTP), which has a modified University of Cape Town (MUCT) process for nutrient removal, provided field data and mixed liquor for batch tests for model evaluation. The original ASM2d was first calibrated under dynamic conditions with the results of batch tests with settled wastewater and mixed liquor, in which nitrate-uptake rates, phosphorus-release rates, and anoxic phosphorus uptake rates were followed. Model validation was conducted with data from a 96-hour measurement campaign in the full-scale WWTP. The results of similar batch tests with ethanol and fusel oil as the external carbon sources were used to adjust kinetic and stoichiometric coefficients in the expanded ASM2d. Both models were compared based on their predictions of the effect of adding supplemental carbon to the anoxic zone of an MUCT process. In comparison with the ASM2d, the new model better predicted the anoxic behaviors of carbonaceous oxygen demand, nitrate-nitrogen (NO3-N), and phosphorous (PO4-P) in batch experiments with ethanol and fusel oil. However, when simulating ethanol addition to the anoxic zone of a full-scale biological nutrient removal facility, both models predicted similar effluent NO3-N concentrations (6.6 to 6.9 g N/m3). For the particular application, effective enhanced biological phosphorus removal was predicted by both models with external carbon addition but, for the new model, the effluent PO4-P concentration was approximately one-half of that found from

  12. Anaerobic phosphate release from activated sludge with enhanced biological phosphorus removal. A possible mechanism of intracellular pH control

    SciTech Connect

    Bond, P.L.; Keller, J.; Blackall, L.L.

    1999-06-05

    The biochemical mechanisms of the wastewater treatment process known as enhanced biological phosphorus removal (EBPR) are presently described in a metabolic model. The authors investigated details of the EBPR model to determine the nature of the anaerobic phosphate release and how this may be metabolically associated with polyhydroxyalkanoate (PHA) formation. Iodoacetate, an inhibitor of glycolysis, was found to inhibit the anaerobic formation of PHA and phosphate release, supporting the pathways proposed in the EBPR metabolic model. In the metabolic model, it is proposed that polyphosphate degradation provides energy for the microorganisms in anaerobic regions of these treatment systems. Other investigations have shown that anaerobic phosphate release depends on the extracellular pH. The authors observed that when the intracellular pH of EBPR sludge was raised, substantial anaerobic phosphate release was caused without volatile fatty acid (VFA) uptake. Acidification of the sludge inhibited anaerobic phosphate release even in the presence of VFA. from these observations, the authors postulate that an additional possible role of anaerobic polyphosphate degradation in EBPR is for intracellular pH control. Intracellular pH control may be a metabolic feature of EBPR, not previously considered, that could have some use in the control and optimization of EBPR.

  13. Fatty acid methyl ester (FAME) technology for monitoring biological foaming in activated sludge: full scale plant verification.

    PubMed

    Lee, J W; Cha, D K; Kim, I; Son, A; Ahn, K H

    2008-02-01

    Fatty acid methyl ester (FAME) technology was evaluated as a monitoring tool for quantification of Gordonia amarae in activated sludge systems. The fatty acid, 19:1 alcohol, which was identified as a unique fatty acid in G. amarae was not only confirmed to be present in foaming plant samples, but the quantity of the signature peak correlated closely with the degree of foaming. Foaming potential experiment provided a range of critical foaming levels that corresponded to G. amarae population. This range of critical Gordonia levels was correlated to the threshold signature FAME amount. Six full-scale wastewater treatment plants were selected based on a survey to participate in our full-scale study to evaluate the potential application of the FAME technique as the Gordonia monitoring tool. Greater amounts of signature FAME were extracted from the mixed liquor samples obtained from treatment plants experiencing Gordonia foaming problems. The amounts of signature FAME correlated well with the conventional filamentous counting technique. These results demonstrated that the relative abundance of the signature FAMEs can be used to quantitatively monitor the abundance of foam-causing microorganism in activated sludge.

  14. Effects of free cyanide on microbial communities and biological carbon and nitrogen removal performance in the industrial activated sludge process.

    PubMed

    Kim, Young Mo; Lee, Dae Sung; Park, Chul; Park, Donghee; Park, Jong Moon

    2011-01-01

    The changes in process performance and microbial communities under free cyanide (CN(-)) were investigated in a lab-scale activated sludge process treating industrial wastewater. The performance of phenol degradation did not appear to be adversely affected by increases in CN(-) concentrations. In contrast, CN(-) was found to have an inhibitory effect on SCN(-) biodegradation, resulting in the increase of TOC and COD concentrations. Nitratation also appeared to be inhibited at CN(-) concentrations in excess of 1.0 mg/L, confirming that nitrite-oxidizing bacteria (NOB) is more sensitive to the CN(-) toxicity than ammonia oxidizing bacteria (AOB). After CN(-) loads were stopped, SCN(-) removal, denitrification, and nitrification inhibited by CN(-) were recovered to performance efficiency of more than 98%. The AOB and NOB communities in the aerobic reactor were analyzed by terminal restriction fragment length (T-RFLP) and quantitative real-time PCR (qPCR). Nitrosomonas europaea lineage was the predominant AOB at all samples during the operation, but an obvious change was observed in the diversity of AOB at the shock loading of 30 and 50 mg/L CN(-), resulting in Nitrosospira sp. becoming dominant. We also observed coexisting Nitrospira and Nitrobacter genera for NOB. The increase of CN(-) loading seemed to change the balance between Nitrospira and Nitrobacter, resulting in the high dominance of Nitrobacter over Nitrospira. Meanwhile, through using the qPCR, it was observed that the nitrite-reducing functional genes (i.e., nirS) were dominant in the activated sludge of the anoxic reactor, regardless of CN(-) loads.

  15. Assessing the effects of silver nanoparticles on biological nutrient removal in bench-scale activated sludge sequencing batch reactors.

    PubMed

    Alito, Christina L; Gunsch, Claudia K

    2014-01-21

    Consumer products such as clothing and medical products are increasingly integrating silver and silver nanoparticles (AgNPs) into base materials to serve as an antimicrobial agent. Thus, it is critical to assess the effects of AgNPs on wastewater microorganisms essential to biological nutrient removal. In the present study, pulse and continuous additions of 0.2 and 2 ppm gum arabic and citrate coated AgNPs as well as Ag as AgNO3 were fed into sequencing batch reactors (SBRs) inoculated with nitrifying sludge. Treatment efficiency (chemical oxygen demand (COD) and ammonia removal), Ag dissolution measurements, and 16S rRNA bacterial community analyses (terminal restriction fragment length polymorphism, T-RFLP) were performed to evaluate the response of the SBRs to Ag addition. Results suggest that the AgNPs may have been precipitating in the SBRs. While COD and ammonia removal decreased by as much as 30% or greater directly after spikes, SBRs were able to recover within 24 h (3 hydraulic retention times (HRTs)) and resume removal near 95%. T-RFLP results indicate Ag spiked SBRs were similar in a 16s rRNA bacterial community. The results shown in this study indicate that wastewater treatment could be impacted by Ag and AgNPs in the short term but the amount of treatment disruption will depend on the magnitude of influent Ag.

  16. Improvement strategy on enhanced biological phosphorus removal for municipal wastewater treatment plants: full-scale operating parameters, sludge activities, and microbial features.

    PubMed

    Zhang, Zhijian; Li, Hui; Zhu, Jun; Weiping, Liu; Xin, Xu

    2011-04-01

    The poor quality of effluent discharged by municipal wastewater treatment plants (WWTPs) is threatening the safety of water ecology. This study, which integrated a field survey, batch tests, and microbial community identification, was designed to improve the effectiveness of the enhanced biological phosphorus removal (EBPR) process for WWTPs. Over two-thirds of the investigated WWTPs could not achieve total P in effluent lower than 0.5 mg/L, mainly due to the high ratio of chemical oxygen demand to P (28.6-196.2) in the influent. The rates of anaerobic P release and aerobic P uptake for the activated sludge varied from 0.22 to 7.9 mg/g VSS/h and 0.43 to 8.11 mg/g VSS/h, respectively. The fraction of Accumulibacter (PAOs: polyphosphate accumulating organisms) was 4.8 ± 2.0% of the total biomass, while Competibacter (GAOs: glycogen-accumulating organisms) accounted for 4.8 ± 6.4%. The anaerobic P-release rate was found to be an effective indicator of EBPR. Four classifications of the principal components were identified to improve the EBPR effluent quality and sludge activity.

  17. Role of Nocardia in Activated Sludge

    PubMed Central

    Bafghi, Mehdi Fatahi; Yousefi, Nader

    2016-01-01

    Activated sludge process is a biological process that is widely used in the domestic and industrial wastewater treatment in over the world. The foam formation is often reported in wastewater treatment plants which are related to this process. Some operational problems can be created by foaming, such as effluent quality deteriorates, the creation of malodorous, increased time requirements in order to plant maintenance, and in extreme cases, hazardous working conditions resulting from foam spilling out of the aeration basin and as well as increased in operational costs. There are different ways to overcome this problem, such as reduce air flows into the aeration basin, reduction in the grease and oil content of the wastewater, surface and return activated sludge (RAS) chlorination, anoxic and anaerobic selectors, solid retention time (SRT) control and antifoams and organic polymer addition. On the other hand, rapid and accurate identification of the foam causes is in the first step to control bulking and foaming. Foam problem is often created by filamentous bacteria, such as Nocardia and Gordonia species. This bacterium has a role important in activated sludge. PMID:27418874

  18. Role of Nocardia in Activated Sludge.

    PubMed

    Bafghi, Mehdi Fatahi; Yousefi, Nader

    2016-05-01

    Activated sludge process is a biological process that is widely used in the domestic and industrial wastewater treatment in over the world. The foam formation is often reported in wastewater treatment plants which are related to this process. Some operational problems can be created by foaming, such as effluent quality deteriorates, the creation of malodorous, increased time requirements in order to plant maintenance, and in extreme cases, hazardous working conditions resulting from foam spilling out of the aeration basin and as well as increased in operational costs. There are different ways to overcome this problem, such as reduce air flows into the aeration basin, reduction in the grease and oil content of the wastewater, surface and return activated sludge (RAS) chlorination, anoxic and anaerobic selectors, solid retention time (SRT) control and antifoams and organic polymer addition. On the other hand, rapid and accurate identification of the foam causes is in the first step to control bulking and foaming. Foam problem is often created by filamentous bacteria, such as Nocardia and Gordonia species. This bacterium has a role important in activated sludge.

  19. Utilizing waste activated sludge for animal feeding

    SciTech Connect

    Beszedits, S.

    1981-01-01

    Activated sludge has a high protein content and is a good source of B-group vitamins and generally also of minerals (Ca, Mg, Fe and K). Propionibacterium freudenreichii can be readily incorporated into the activated sludge to synthesize vitamin B12, particularly high vitamin yields being obtained with sewage mixed with dairy waste. Numerous examples of successful use of activated sludge in animal feeding are given.

  20. Biological pretreatment of non-flocculated sludge augments the biogas production in the anaerobic digestion of the pretreated waste activated sludge.

    PubMed

    Merrylin, J; Kumar, S Adish; Kaliappan, S; Yeom, Ick-Tae; Banu, J Rajesh

    2013-01-01

    High-efficiency resource recovery from municipal solid waste (MSW) has been a focus of attention. The objective of this research is to develop a bio-pretreatment process for application prior to the anaerobic digestion of MSW to improve methane productivity. Bacillus licheniformis was used for pretreating MSW (non-flocculated with 0.07% citric acid), followed by anaerobic digestion. Laboratory-scale experiments were carried out in semi-continuous bioreactors, with a total volume of 5 L and working volume of 3 L. Among the nine organic loading rates (OLRs) investigated, the OLR of 0.84 kg SS m(-3) reactor day(-1) was found to be the most appropriate for economic operation of the reactor. Pretreatment of MSW prior to anaerobic digestion led to 55% and 64% increase of suspended solids (SS) and volatile solids reduction, respectively, with an improvement of 57% in biogas production. The results indicate that the pretreatment of non-flocculated sludge with Bacillus licheniformis which consumes less energy compared to other pretreatment techniques could be a cost-effective and environmentally sound method for producing methane from MSW.

  1. The sludge loading rate regulates the growth and release of heterotrophic bacteria resistant to six types of antibiotics in wastewater activated sludge.

    PubMed

    Yuan, Qing-Bin; Guo, Mei-Ting; Yang, Jian

    2015-01-01

    Wastewater treatment plants are considered as hot reservoirs of antimicrobial resistance. However, the fates of antibiotic-resistant bacteria during biological treatment processes and relevant influencing factors have not been fully understood. This study evaluated the effects of the sludge loading rate on the growth and release of six kinds of antibiotic-resistant bacteria in an activated sludge system. The results indicated that higher sludge loading rates amplified the growth of all six types of antibiotic resistant bacteria. The release of most antibiotic-resistant bacteria through both the effluent and biosolids was amplified with increased sludge loading rate. Biosolids were the main pattern for all antibiotic-resistant bacteria release in an activated sludge system, which was determined primarily by their growth in the activated sludge. A higher sludge loading rate reactor tended to retain more antibiotic resistance. An activated sludge system with lower sludge loading rates was considered more conducive to the control of antibiotic resistance.

  2. Comparing cost and process performance of activated sludge (AS) and biological aerated filters (BAF) over ten years of full sale operation.

    PubMed

    Hansen, R; Thogersen, T; Rogalla, F

    2007-01-01

    In the early 1990s, the Wastewater Treatment Plant (WWTP) of Frederikshavn, Denmark, was extended to meet new requirements for nutrient removal (8 mg/L TN, 1.5 mg TP/L) as well as to increase its average daily flow to 16,500 m(3)/d (4.5 MGD). As the most economical upgrade of the existing activated sludge (AS) plant, a parallel biological aerated filter (BAF) was selected, and started up in 1995. Running two full scale processes in parallel for over ten years on the same wastewater and treatment objectives enabled a direct comparison in relation to operating performance, costs and experience. Common pretreatment consists of screening, an aerated grit and grease removal and three primary settlers with chemical addition. The effluent is then pumped to the two parallel biological treatment stages, AS with recirculation and an upflow BAF with floating media. The wastewater is a mixture of industrial and domestic wastewater, with a dominant discharge of fish processing effluent which can amount to 50% of the flow. The maximum hydraulic load on the pretreatment section as a whole is 1,530 m(3)/h. Approximately 60% of the sewer system is combined with a total of 32 overflow structures. To avoid the direct discharge of combined sewer overflows into the receiving waters, the total hydraulic wet weather capacity of the plant is increased to 4,330 m(3)/h, or 6 times average flow. During rain, some of the raw sewage can be directed through a stormwater bypass to the BAF, which can be modified in its operation to accommodate various treatment needs: either using simultaneous nitrification/denitrification in all filters with recirculation introducing bottom aeration with full nitrification in some filters for storm treatment and/or post-denitrification in one filter. After treatment, the wastewater is discharged to the Baltic Sea through a 500 m outfall. The BAF backwash sludge, approximately 1,900 m(3) per 24 h in dry weather, is redirected to the AS plant. Primary settler

  3. Microbial evaluation of activated sludge and filamentous population at eight Czech nutrient removal activated sludge plants during year 2000.

    PubMed

    Krhutková, O; Ruzicková, I; Wanner, J

    2002-01-01

    The long-term project on the survey of filamentous microorganisms, which started in 1996, was finished in 2000 by the survey of eight Czech activated sludge plants with biological nutrient removal (BNR) systems. At all plants with enhanced biological nutrient removal, specific microbial population (mostly from the point of view of filaments occurrence), operational problems (presence of biological foaming, bulking) and plant operation were observed periodically and longer than 1 year. In our paper the relationship between the composition of activated sludge (especially filaments) consortia and modification of the process with nutrient removal is discussed. At the surveyed plants Type 0092 and Microthrix parvicella were identified as dominant Eikelboom filamentous types.

  4. The occurrence of enhanced biological phosphorus removal in a 200,000 m(3)/day partial nitration and Anammox activated sludge process at the Changi water reclamation plant, Singapore.

    PubMed

    Cao, Yeshi; Kwok, Bee Hong; van Loosdrecht, Mark C M; Daigger, Glen T; Png, Hui Yi; Long, Wah Yuen; Chye, Chua Seng; Ghani, Yahya A B D

    2017-02-01

    Mainstream partial nitritation and Anammox (PN/A) has been observed and studied in the step-feed activated sludge process at the Changi water reclamation plant (WRP), which is the largest WRP (800,000 m(3)/d) in Singapore. This paper presents the study results for enhanced biological phosphorus removal (EBPR) co-existing with PN/A in the activated sludge process. Both the in-situ EBPR efficiency and ex-situ activities of phosphorus release and uptake were high. The phosphorus accumulating organisms were dominant, with little presence of glycogen accumulating organisms in the activated sludge. Chemical oxygen demand (COD) mass balance illustrated that the carbon usage for EBPR was the same as that for heterotrophic denitrification, owing to autotrophic PN/A conversions. This much lower carbon demand for nitrogen removal, compared to conventional biological nitrogen removal, made effective EBPR possible. This paper demonstrated for the first time the effective EBPR co-existence with PN/A in the mainstream in a large full-scale activated sludge process, and the feasibility to accommodate EBPR into the mainstream PN/A process. It also shows EBPR can work under warm climates.

  5. [Biodiversity and Function Analyses of BIOLAK Activated Sludge Metagenome].

    PubMed

    Tian, Mei; Liu, Han-hu; Shen, Xin; Zhao, Fang-qing; Chen, Shuai; Yao, Yong-jia

    2015-05-01

    The BIOLAK is a multi-stage activated sludge process, which has been successfully promoted worldwide. However, the biological community and function of the BIOLAK activated sludge ( the core component in the process) have not been reported so far. In this study, taking Lianyungang Dapu Industrial Zone WWTP as an example, a large-scale metagenomic data (428 588 high-quality DNA sequences) of the BIOLAK activated sludge were obtained by means of a new generation of high-throughput sequencing technology. Amazing biodiversity was revealed in the BIOLAK activated sludge, which included 47 phyla, 872 genera and 1351 species. There were 33 phyla identified in the Bacteria domain (289 933 sequences). Proteohacteria was the most abundant phylum (62.54%), followed by Bacteroidetes (11.29%), Nitrospirae ( 5. 65%) and Planctomycetes (4.79%), suggesting that these groups played a key role in the BIOLAK wastewater treatment system. Among the 748 bacterial genera, Nitrospira (5.60%) was the most prevalent genus, which was a key group in the nitrogen cycle. Followed by Gemmatimonas (2.45%), which was an important genus in the biological phosphorus removal process. In Archaea domain (1019 sequences), three phyla and 39 genera were detected. In Eukaryota domain (1055 sequences), 60 genera and 10 phyla were identified, among which Ciliophora was the largest phylum (257 sequences). Meanwhile, 448 viral sequences were detected in the BIOLAK sludge metagenome, which were dominated by bacteriophages. The proportions of nitrogen, aromatic compounds and phosphorus metabolism in the BIOLAK sludge were 2.50%, 2.28% and 1.56%, respectively, which were higher than those in the sludge of United States and Australia. Among four processes of nitrogen metabolism, denitrification-related genes were most abundant (80.81%), followed by ammonification (12.78%), nitrification,(4.38%) and nitrogen fixation (2.04%). In conclusion, the BIOLAK activated sludge had amazing biodiversity, meanwhile

  6. Metals distributions in activated sludge systems

    SciTech Connect

    Patterson, J.W.; Kodukula, P.S.

    1984-05-01

    Despite extensive laboratory and field studies over the past 25 years, little advance has been made in prediction of metals distribution and removal in activated sludge treatment systems. This paper reports the results of carefully controlled pilot studies, from which empirical metals distribution models were developed. The models accurately predict the distribution of process stream metals at each point in the activated sludge process between the soluble and solids phases. The distribution models together with data on primary and secondary clarifier suspended solids removal efficiencies, are easily applied to predict the removals of influent metals in activated sludge systems. 36 references, 2 figures.

  7. Microbiology of coke-plant activated sludge

    SciTech Connect

    Owens, J.R.

    1983-01-01

    The biological treatment of coke-plant wastewater represents the most economical means of detoxification and contaminant removal, but little is known about the microbial ecology of this system. Research was therefore undertaken to determine the kinds of microorganisms that survive and function in this environment and to examine the growth patterns that influence treatment efficiency. The microbial flora of coke-plant activated sludge is predominated by populations of aerobic gram negative rods. The principle genera identified were Pseudomonas, Alcaligenes, Flavobacterium and Acinetobacter. The genera Bacillus, Nocardia and Micrococcus were also present at low levels. A single type of rotifer was present along with various protozoans. The ability of microorganisms in coke wastewater to grow on various organic compounds as their sole source of carbon and energy is more restrictive when compared with that of isolates obtained from activated sludge processes treating municipal wastes. The phenol degrading bacteria can be maintained in a continuous culture system with a hydraulic retention time (HRT) of as long as 14 days. Under conditions of increasing HRT the average cell size decreased and the number of cells per milliter increased. As the HRT increased cell yields decreased. At long HRT's (7 to 14 days) cell yields remained constant.

  8. Testing the toxicity of influents to activated sludge plants with the Vibrio fischeri bioassay utilising a sludge matrix.

    PubMed

    Hoffmann, C; Christofi, N

    2001-10-01

    To protect the bioceonosis within activated sludge, a method of predicting the toxic effect of influents to the biological treatment stage of waste water treatment plants, based on DIN method 38412 L 34, has been developed. A population of the luminescent marine bacterium Vibrio fischeri was incorporated into a sludge testing matrix derived from a model laboratory and real activated sludge plants. The sludge was challenged with different concentrations of pure toxicants and complex aqueous samples, and light output by V. fischeri monitored. The results were compared to toxicant testing in the absence of sludge (standard test). The modified method was found to be less sensitive for some toxicants tested than the standard DIN and other bioluminescent tests, but considered more realistic as it provides buffering and takes into account sorption which can affect the sensitivity of the test towards some compounds. The method is comparable in terms of ease of use, speed, reproducibility and cost effectiveness to standard V. fischeri luminescence methods.

  9. Treatability Studies of Tributyltin in Activated Sludge

    DTIC Science & Technology

    1989-12-01

    tributyltin and its degradation produts. We found that tributyltin degraded to dibutyltin and monobutyltin in activated sludge at the bench scale... Dibutyltin dichloride GC-FPD Gas chromatography-flame photometric detection L/day Liters per day L/min Liters per minute MBT Monobutyltin trichloride m3...that tributyltin degraded to dibutyltin and monobutyltin in activated sludge at the bench scale. Tributyltin also degrades under anaerobic conditions

  10. A modified oxic-settling-anaerobic activated sludge process using gravity thickening for excess sludge reduction

    PubMed Central

    Wang, Jun; Li, Shi-Yu; Jiang, Feng; Wu, Ke; Liu, Guang-Li; Lu, Hui; Chen, Guang-Hao

    2015-01-01

    Oxic-settling-anaerobic process (OSA) was known as a cost-effective way to reduce the excess sludge production with simple upgrade of conventional activated sludge process (CAS). A low oxidation-reduction potential (ORP) level was the key factor to sludge decay and lysis in the sludge holding tank of the OSA process. However, the ORP control with nitrogen purge or chemical dosing in the OSA process would induce extra expense and complicate the operation. Hence, in this study, a sludge holding tank using gravity thickening was applied to OSA process to reduce the excess sludge production without any ORP control. Results showed that the modified OSA process not only reduced the excess sludge production effectively but also improved the sludge settleability without affected the treatment capacity. The reduction of the excess sludge production in the modified OSA process resulted from interactions among lots of factors. The key element of the process was the gravity thickening sludge holding tank. PMID:26350761

  11. A modified oxic-settling-anaerobic activated sludge process using gravity thickening for excess sludge reduction

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Li, Shi-Yu; Jiang, Feng; Wu, Ke; Liu, Guang-Li; Lu, Hui; Chen, Guang-Hao

    2015-09-01

    Oxic-settling-anaerobic process (OSA) was known as a cost-effective way to reduce the excess sludge production with simple upgrade of conventional activated sludge process (CAS). A low oxidation-reduction potential (ORP) level was the key factor to sludge decay and lysis in the sludge holding tank of the OSA process. However, the ORP control with nitrogen purge or chemical dosing in the OSA process would induce extra expense and complicate the operation. Hence, in this study, a sludge holding tank using gravity thickening was applied to OSA process to reduce the excess sludge production without any ORP control. Results showed that the modified OSA process not only reduced the excess sludge production effectively but also improved the sludge settleability without affected the treatment capacity. The reduction of the excess sludge production in the modified OSA process resulted from interactions among lots of factors. The key element of the process was the gravity thickening sludge holding tank.

  12. Reduction by sonication of excess sludge production in a conventional activated sludge system: continuous flow and lab-scale reactor.

    PubMed

    Vaxelaire, S; Gonze, E; Merlin, G; Gonthier, Y

    2008-12-01

    Conventional activated sludge wastewater treatment plants currently produce a large quantity of excess sludge. To reduce this sludge production and to improve sludge characteristics in view of their subsequent elimination, an ultrasonic cell disintegration process was studied. In a lab-scale continuous flow pilot plant, part of the return sludge was sonicated by low-frequency and high-powered ultrasound and then recycled to the aeration tank. Two parallel lines were used: one as a control and the other as an assay with ultrasonic treatment. The reactors were continuously fed with synthetic domestic wastewater with a COD (chemical oxygen demand) of approximately 0.5 g l(-) corresponding to a daily load of 0.35-0.50 kg COD kg(-1) TS d(-1). Removal efficiencies (carbon, particles), excess sludge production and sludge characteristics (particle size distribution, mineralization, respiration rate, biological component) were measured every day during the 56-day experiment. This study showed that whilst organic removal efficiency did not deteriorate, excess sludge production was decreased by about 25-30% by an ultrasonic treatment. Several hypotheses are advanced: (i) the treatment made a part of the organic matter soluble as a consequence of the floc disintegration, and optimised the conversion of the carbonaceous pollutants into carbon dioxide and (ii) the treatment modified the physical characteristics of sludge by a mechanical effect: floc size was reduced, increasing the exchange surface and sludge activity. The originality of this study is that experiments were conducted in a continuous-flow activated sludge reactor rather than in a batch reactor.

  13. Interaction between common antibiotics and a Shewanella strain isolated from an enhanced biological phosphorus removal activated sludge system.

    PubMed

    Liu, Hang; Yang, Yongkui; Ge, Yanhui; Zhao, Lin; Long, Sha; Zhang, Ruochun

    2016-12-01

    With increasing production and consumption, more antibiotics are discharged into wastewater treatment plants and generally cannot be sufficiently removed. Because of the complexities of biological treatment processes, the fates of antibiotics and their effects on microorganisms, particularly those involved in the phosphorus removal system, are still unclear. Here, a Shewanella strain was isolated from an enhanced biological phosphorus removal (EBPR) system and was found to have the ability to remove phosphorus (P) and chemical oxygen demand (CODcr). Antibiotics affected the Shewanella strain through metabolism of the three main intracellular polymers, altering the ability of the strain to remove P and CODcr. These effects varied with the structure and concentration of the antibiotics. The Shewanella strain removed cefalexin and amoxicillin by degradation or adsorption, producing 2-hydroxy-3-phenyl pyrazine from cefalexin. This study enabled the recognition of the effect and removal of antibiotics during wastewater treatment.

  14. Sludge population optimisation: a new dimension for the control of biological wastewater treatment systems.

    PubMed

    Yuan, Zhiguo; Blackall, Linda L

    2002-01-01

    The activated sludge comprises a complex microbiological community. The structure (what types of microorganisms are present) and function (what can the organisms do and at what rates) of this community are determined by external physico-chemical features and by the influent to the sewage treatment plant. The external features we can manipulate but rarely the influent. Conventional control and operational strategies optimise activated sludge processes more as a chemical system than as a biological one. While optimising the process in a short time period, these strategies may deteriorate the long-term performance of the process due to their potentially adverse impact on the microbial properties. Through briefly reviewing the evidence available in the literature that plant design and operation affect both the structure and function of the microbial community in activated sludge, we propose to add sludge population optimisation as a new dimension to the control of biological wastewater treatment systems. We stress that optimising the microbial community structure and property should be an explicit aim for the design and operation of a treatment plant. The major limitations to sludge population optimisation revolve around inadequate microbiological data, specifically community structure, function and kinetic data. However, molecular microbiological methods that strive to provide that data are being developed rapidly. The combination of these methods with the conventional approaches for kinetic study is briefly discussed. The most pressing research questions pertaining to sludge population optimisation are outlined.

  15. Community proteogenomics highlights microbial strain-variant protein expression within activated sludge performing enhanced biological phosphorus removal.

    SciTech Connect

    Wilmes, P; Andersson, Anders F.; Lefsrud, Mark G; Wexler, Margaret; Shah, Manesh B; Zhang, B; Hettich, Robert {Bob} L; Bond, P. L.; Verberkmoes, Nathan C; Banfield, Jillian F.

    2008-01-01

    Enhanced biological phosphorus removal (EBPR) selects for polyphosphate accumulating organisms to achieve phosphate removal from wastewater. We used highresolution community proteomics to identify key metabolic pathways in "Candidatus Accumulibacter phosphatis"-mediated EBPR and to evaluate the contributions of co- 5 existing strains within the dominant population. Results highlight the importance of denitrification, fatty acid cycling and the glyoxylate bypass in EBPR. Despite overall strong similarity in protein profiles under anaerobic and aerobic conditions, fatty acid degradation proteins were more abundant during the anaerobic phase. By comprehensive genome-wide alignment of orthologous proteins, we uncovered strong 10 functional partitioning for enzyme variants involved in both core-metabolism and EBPR-specific pathways among the dominant strains. These findings emphasize the importance of genetic diversity in maintaining the stable performance of EBPR systems and demonstrate the power of integrated cultivation-independent genomics and proteomics for analysis of complex biotechnological systems.

  16. Characteristics of adsorbents made from biological, chemical and hybrid sludges and their effect on organics removal in wastewater treatment.

    PubMed

    Pan, Zhi-hui; Tian, Jia-yu; Xu, Guo-ren; Li, Jun-jing; Li, Gui-bai

    2011-01-01

    Meso-macropore adsorbents were prepared from biological sludge, chemical sludge and hybrid sludge of biological and chemical sludges, by chemically activating with 18.0 M H(2)SO(4) in the mass ratio of 1:3, and then pyrolyzing at 550 °C for 1 h in anoxic atmosphere. The physical and chemical characteristics of the sludge-based adsorbents were examined in terms of surface physical morphology, specific surface area and pore size distribution, aluminum and iron contents, surface functional groups and crystal structure. Furthermore, the adsorption effect of these adsorbents on the organic substances in wastewater was also investigated. The results indicated that the adsorption capacities of the sludge-based adsorbents for UV(254) were lower than that of commercial activated carbon (AC), whereas the adsorption capacities of the adsorbents prepared from hybrid sludge (HA) and chemical sludge (CA) for soluble COD(Cr) (SCOD(Cr)) were comparable or even higher than that of the commercial AC. The reasons might be that the HA and CA possessed well-developed mesopore and macropore structure, as well as abundant acidic surface functional groups. However, the lowest adsorption efficiency was observed for the biological sludge-based adsorbent, which might be due to the lowest metal content and overabundance of surface acidic functional groups in this adsorbent.

  17. EBP2R - an innovative enhanced biological nutrient recovery activated sludge system to produce growth medium for green microalgae cultivation.

    PubMed

    Valverde-Pérez, Borja; Ramin, Elham; Smets, Barth F; Plósz, Benedek Gy

    2015-01-01

    Current research considers wastewater as a source of energy, nutrients and water and not just a source of pollution. So far, mainly energy intensive physical and chemical unit processes have been developed to recover some of these resources, and less energy and resource demanding alternatives are needed. Here, we present a modified enhanced biological phosphorus removal and recovery system (referred to as EBP2R) that can produce optimal culture media for downstream micro-algal growth in terms of N and P content. Phosphorus is recovered as a P-stream by diversion of some of the effluent from the upstream anaerobic reactor. By operating the process at comparably low solids retention times (SRT), the nitrogen content of wastewater is retained as free and saline ammonia, the preferred form of nitrogen for most micro-algae. Scenario simulations were carried out to assess the capacity of the EBP2R system to produce nutrient rich organic-carbon depleted algal cultivation media of target composition. Via SRT control, the quality of the constructed cultivation media can be optimized to support a wide range of green micro-algal growth requirements. Up to 75% of the influent phosphorus can be recovered, by diverting 30% of the influent flow as a P-stream at an SRT of 5 days. Through global sensitivity analysis we find that the effluent N-to-P ratio and the P recovered are mainly dependent on the influent quality rather than on biokinetics or stoichiometry. Further research is needed to demonstrate that the system performance predicted through the model-based design can be achieved in reality.

  18. Biological nutrient removal with limited organic matter using a novel anaerobic–anoxic/oxic multi-phased activated sludge process

    PubMed Central

    Naseer, Rusul; Abualhail, Saad; Xiwu, Lu

    2012-01-01

    An anaerobic–anoxic/oxic (A2/O) multi-phased biological process called “phased isolation tank step feed technology (PITSF)” was developed to force the oscillation of organic and nutrient concentrations in process reactors. PITSF can be operated safely with a limited carbon source in terms of low carbon requirements and aeration costs whereas NAR was achieved over 95% in the last aerobic zone through a combination of short HRT and low DO levels. PCR assay was used for XAB quantification to correlate XAB numbers with nutrient removal. PCR assays showed, high NAR was achieved at XAB population 5.2 × 108 cells/g MLVSS in response to complete and partial nitrification process. It was exhibited that low DO with short HRT promoted XAB growth. Simultaneous nitrification and denitrification (SND) via nitrate were observed obviously, SND rate was between 69–72%, at a low DO level of 0.5 mg/l in the first aerobic tank during main phases and the removal efficiency of TN, NH4+-N, COD, TP was 84.7 .97, 88.3 and 96% respectively. The removal efficiencies of TN, NH4+-N, and TP at low C/N ratio and DO level were 84.2, 98.5 and 96.9% respectively which were approximately equal to the complete nitrification–denitrification with the addition of external carbon sources at a normal DO level of (1.5–2.5 mg/l). PMID:23961214

  19. Phosphorus recycling potential assessment by a biological test applied to wastewater sludge.

    PubMed

    Braak, Etienne; Auby, Sarah; Piveteau, Simon; Guilayn, Felipe; Daumer, Marie-Line

    2016-01-01

    Phosphorus (P) recycling as mineral fertilizer from wastewater activated sludge (WAS) depends on the amount that can be dissolved and separated from the organic matter before the final crystallization step. The aim of the biological phosphorus dissolution potential (BPDP) test developed here was to assess the maximum amount of P that could be biologically released from WAS prior that the liquid phase enters the recovery process. It was first developed for sludge combining enhanced biological phosphorus removal and iron chloride. Because carbohydrates are known to induce acidification during the first stage of anaerobic digestion, sucrose was used as a co-substrate. Best results were obtained after 24-48 h, without inoculum, with a sugar/sludge ratio of 0.5 gCOD/gVS and under strict anaerobic conditions. Up to 75% of the total phosphorus in sludge from a wastewater treatment plant combining enhanced biological phosphorus removal and iron chloride phosphorus removal could be dissolved. Finally, the test was applied to assess BPDP from different sludge using alum compounds for P removal. No dissolution was observed when alum polychloride was used and less than 20% when alum sulphate was used. In all the cases, comparison to chemical acidification showed that the biological process was a major contributor to P dissolution. The possibility to crystallize struvite was discussed from the composition of the liquids obtained. The BPDP will be used not only to assess the potential for phosphorus recycling from sludge, but also to study the influence of the co-substrates available for anaerobic digestion of sludge.

  20. Filterability of membrane bioreactor (MBR) sludge: impacts of polyelectrolytes and mixing with conventional activated sludge.

    PubMed

    Yigit, Nevzat O; Civelekoglu, Gokhan; Cinar, Ozer; Kitis, Mehmet

    2010-01-01

    The main objective of this work was to investigate the filterability of MBR sludge and its mixture with conventional activated sludge (CAS). In addition, the impacts of type and dose of various polyelectrolytes, filter type and sludge properties on the filterability of both MBR and Mixed sludges were determined. Specific cake resistance (SCR) measured by the Buchner funnel filtration test apparatus and the solids content of the resulting sludge cake were used to assess the dewaterability of tested sludges. The type of filter paper used in Buchner tests affected the results of filterability for MBR, CAS and Mixed sludges. SCR values and optimum polyelectrolyte doses increased with increasing MLSS concentrations in the MBR, which suggested that increase in MLSS concentrations accompanied by increases in EPS and SMP concentrations and a shift toward smaller particles caused poorer dewaterability of the MBR sludge. The significant differences observed among the filterability of CAS and MBR sludges suggested that MLSS alone is not a good predictor of sludge dewaterability. Combining CAS and MBR sludges at different proportions generally improved their dewaterability. Combining MBR sludges having typically high MLSS and EPS concentrations with CAS having much lower MLSS concentrations may be an option for full-scale treatment plants experiencing sludge dewaterability problems. Better filterability and higher cake dry solids were achieved with cationic polyelectrolytes compared to anionic and non-ionic ones for all sludge types tested.

  1. Metaproteomics Provides Functional Insight into Activated Sludge Wastewater Treatment

    PubMed Central

    Wilmes, Paul; Wexler, Margaret; Bond, Philip L.

    2008-01-01

    Background Through identification of highly expressed proteins from a mixed culture activated sludge system this study provides functional evidence of microbial transformations important for enhanced biological phosphorus removal (EBPR). Methodology/Principal Findings A laboratory-scale sequencing batch reactor was successfully operated for different levels of EBPR, removing around 25, 40 and 55 mg/l P. The microbial communities were dominated by the uncultured polyphosphate-accumulating organism “Candidatus Accumulibacter phosphatis”. When EBPR failed, the sludge was dominated by tetrad-forming α-Proteobacteria. Representative and reproducible 2D gel protein separations were obtained for all sludge samples. 638 protein spots were matched across gels generated from the phosphate removing sludges. 111 of these were excised and 46 proteins were identified using recently available sludge metagenomic sequences. Many of these closely match proteins from “Candidatus Accumulibacter phosphatis” and could be directly linked to the EBPR process. They included enzymes involved in energy generation, polyhydroxyalkanoate synthesis, glycolysis, gluconeogenesis, glycogen synthesis, glyoxylate/TCA cycle, fatty acid β oxidation, fatty acid synthesis and phosphate transport. Several proteins involved in cellular stress response were detected. Conclusions/Significance Importantly, this study provides direct evidence linking the metabolic activities of “Accumulibacter” to the chemical transformations observed in EBPR. Finally, the results are discussed in relation to current EBPR metabolic models. PMID:18392150

  2. Extracellular polymers of ozonized waste activated sludge.

    PubMed

    Liu, J C; Lee, C H; Lai, J Y; Wang, K C; Hsu, Y C; Chang, B V

    2001-01-01

    Effect of ozonation on characteristics of waste activated sludge was investigated in the current study. Concentrations of cell-bound extracellular polymers (washed ECPs) did not change much upon ozonation, whereas the sum of cell-bound and soluble extracellular polymers (unwashed ECPs) increased with increasing ozone dose. Washed ECPs in original sludge as divided by molecular weight distribution was 39% < 1,000 Da (low MW), 30% from 1,000 to 10,000 Da (medium MW), and 31% > 10,000 Da (high MW). It was observed that the low-MW fraction decreased, and the high-MW fraction increased in ozonized sludge. The unwashed ECPs were characterized as 44% in low MW, 30% in medium MW, and 26% in high MW. Both low-MW and medium-MW fractions of unwashed ECPs decreased while high-MW fraction increased in ozonized sludge. The dewaterability of ozonized sludge, assessed by capillary suction time (CST) and specific resistance to filtration (SRF), deteriorated with ozone dose. The optimal dose of cationic polyelectrolyte increased with increasing ozone dose. The production rate and the accumulated amount of methane gas of ozonized sludge were also higher.

  3. Kinetic model of excess activated sludge thermohydrolysis.

    PubMed

    Imbierowicz, Mirosław; Chacuk, Andrzej

    2012-11-01

    Thermal hydrolysis of excess activated sludge suspensions was carried at temperatures ranging from 423 K to 523 K and under pressure 0.2-4.0 MPa. Changes of total organic carbon (TOC) concentration in a solid and liquid phase were measured during these studies. At the temperature 423 K, after 2 h of the process, TOC concentration in the reaction mixture decreased by 15-18% of the initial value. At 473 K total organic carbon removal from activated sludge suspension increased to 30%. It was also found that the solubilisation of particulate organic matter strongly depended on the process temperature. At 423 K the transfer of TOC from solid particles into liquid phase after 1 h of the process reached 25% of the initial value, however, at the temperature of 523 K the conversion degree of 'solid' TOC attained 50% just after 15 min of the process. In the article a lumped kinetic model of the process of activated sludge thermohydrolysis has been proposed. It was assumed that during heating of the activated sludge suspension to a temperature in the range of 423-523 K two parallel reactions occurred. One, connected with thermal destruction of activated sludge particles, caused solubilisation of organic carbon and an increase of dissolved organic carbon concentration in the liquid phase (hydrolysate). The parallel reaction led to a new kind of unsolvable solid phase, which was further decomposed into gaseous products (CO(2)). The collected experimental data were used to identify unknown parameters of the model, i.e. activation energies and pre-exponential factors of elementary reactions. The mathematical model of activated sludge thermohydrolysis appropriately describes the kinetics of reactions occurring in the studied system.

  4. Activated sludge optimization using ATP in pulp and paper industry.

    PubMed

    Bäckman, Göran; Gytel, Ulla

    2015-01-01

    The activated sludge process is an old technology, but still the most commonly used one for treatment of wastewater. Despite the wide spread usage the technology still suffers from instability (Tandoi et al. 2006) and high operating cost. Activated sludge processes often carry a large solids inventory. Managing the total inventory without interference is the key component of the optimization process described in this paper. Use of nutrients is common in pulp and paper effluent treatment. Feeding enough nutrients to support the biomass growth is a delicate balance. Overfeeding or underfeeding of nutrients can result in higher costs. Detrimental substances and toxic components in effluents entering a biological treatment system can cause severe, long lasting disturbances (Hynninen & Ingman 1998; Bergeron & Pelletier 2004). A LumiKem test kit is used to measure biological activity with adenosine triphosphate (ATP) in a pulp and paper mill. ATP data are integrated with other standardized mill parameters. Measurements of active volatile suspended solids based on ATP can be used to quantify the living biomass in the activated sludge process and to ensure that sufficient biomass is present in order to degrade the wastewater constituents entering the process. Information about active biomass will assist in optimizing sludge inventories and feeding of nutrients allowing the living biomass to re-populate to create optimal efficiency. ATP measurements can also be used to alert operators if any components toxic to bacteria are present in wastewater. The bio stress index represents the stress level experienced by the microbiological population. This parameter is very useful in monitoring toxicity in and around bioreactors. Results from the wastewater process optimization and ATP measurements showed that treatment cost could be reduced by approximately 20-30% with fewer disturbances and sustained biological activity compared to the reference period. This was mainly achieved by

  5. Adsorption/desorption of linear alkylbenzenesulfonate (LAS) and azoproteins by/from activated sludge flocs.

    PubMed

    Conrad, A; Cadoret, A; Corteel, P; Leroy, P; Block, J-C

    2006-01-01

    Our study investigated the adsorption/desorption by/from activated sludge flocs, dispersed in river water or in diluted wastewater, of organic compounds (C(11)-LAS, azoalbumin and azocasein) at concentrations relevant to environmental conditions. Activated sludge flocs, used as a model of biological aggregates, are characterized by a very heterogeneous matrix able to sorb the three organic compounds tested at 4 degrees C. The adsorbed amount of C(11)-LAS by activated sludge flocs was higher than that of azocasein or azoalbumin, as shown by the Freundlich parameters (K(ads)=8.6+/-1.7, 1.6+/-0.3 and 0.3+/-0.1 micromol(1-1/n)g(-1)l(1/n) for C(11)-LAS, azocasein and azoalbumin, respectively; n=3 sludges). C(11)-LAS sorption from activated sludge appeared to be partially reversible in river water, while a marked hysteresis phenomenon was observed for azocasein and azoalbumin, implying a low degree of reversibility in their exchange between activated sludge and river water. It has also been displayed that the conductivity variation of bulk water (comprised between 214 and 838 microS cm(-1)) exerted no dramatic effect on the C(11)-LAS desorption from activated sludge flocs, while a little effect of it on azocasein desorption was observed. Thus, biological aggregates as activated sludge flocs can serve as an intermediate carrier for C(11)-LAS, while it represents a sink for proteins.

  6. Soil management of copper mine tailing soils--sludge amendment and tree vegetation could improve biological soil quality.

    PubMed

    Asensio, Verónica; Covelo, Emma F; Kandeler, Ellen

    2013-07-01

    Mine soils at the depleted copper mine in Touro (Northwest Spain) are physico-chemically degraded and polluted by chromium and copper. To increase the quality of these soils, some areas at this mine have been vegetated with eucalyptus or pines, amended with sludges, or received both treatments. Four sites were selected at the Touro mine tailing in order to evaluate the effect of these different reclamation treatments on the biological soil quality: (1) Control (untreated), (2) Forest (vegetated), (3) Sludge (amended with sludges) and (4) Forest+Sludge (vegetated and amended). The new approach of the present work is that we evaluated the effect of planting trees or/and amending with sludges on the biological soil quality of mine sites polluted by metals under field conditions. The addition of sludges to mine sites recovered the biological quality of the soil, while vegetating with trees did not increase microbial biomass and function to the level of unpolluted sites. Moreover, amending with sludges increased the efficiency of the soil's microbial community to metabolize C and N, which was indicated by the decrease of the specific enzyme activities and the increase in the ratio Cmic:Nmic (shift towards predominance of fungi instead of bacteria). However, the high Cu and Cr concentrations still have negative influence on the microorganisms in all the treated soils. For the future remediation of mine soils, we recommend periodically adding sludge and planting native legume species.

  7. Predicting the degradability of waste activated sludge.

    PubMed

    Jones, Richard; Parker, Wayne; Zhu, Henry; Houweling, Dwight; Murthy, Sudhir

    2009-08-01

    The objective of this study was to identify methods for estimating anaerobic digestibility of waste activated sludge (WAS). The WAS streams were generated in three sequencing batch reactors (SBRs) treating municipal wastewater. The wastewater and WAS properties were initially determined through simulation of SBR operation with BioWin (EnviroSim Associates Ltd., Flamborough, Ontario, Canada). Samples of WAS from the SBRs were subsequently characterized through respirometry and batch anaerobic digestion. Respirometry was an effective tool for characterizing the active fraction of WAS and could be a suitable technique for determining sludge composition for input to anaerobic models. Anaerobic digestion of the WAS revealed decreasing methane production and lower chemical oxygen demand removals as the SRT of the sludge increased. BioWin was capable of accurately describing the digestion of the WAS samples for typical digester SRTs. For extended digestion times (i.e., greater than 30 days), some degradation of the endogenous decay products was assumed to achieve accurate simulations for all sludge SRTs.

  8. Biological testing of a digested sewage sludge and derived composts.

    PubMed

    Moreira, R; Sousa, J P; Canhoto, C

    2008-11-01

    Aiming to evaluate a possible loss of soil habitat function after amendment with organic wastes, a digested sewage sludge and derived composts produced with green residues, where biologically tested in the laboratory using soil animals (Eisenia andrei and Folsomia candida) and plants (Brassica rapa and Avena sativa). Each waste was tested mimicking a field application of 6ton/ha or 12ton/ha. Avoidance tests did not reveal any impact of sludge and composts to soil biota. Germination and growth tests showed that application of composts were beneficial for both plants. Composts did not affect earthworm's mass increase or reproduction, but the highest sludge amendment revealed negative effects on both parameters. Only the amendment of composts at the highest dose originated an impairment of springtails reproductive output. We suggest that bioassays using different test species may be an additional tool to evaluate effects of amendment of organic wastes in soil. Biological tests are sensitive to pollutants at low concentrations and to interactions undetected by routine chemical analysis.

  9. A study of boron adsorption onto activated sludge.

    PubMed

    Fujita, Yuichiro; Hata, Takayosi; Nakamaru, Makoto; Iyo, Toru; Yoshino, Tsuneo; Shimamura, Tadashi

    2005-08-01

    Boron adsorption onto activated sludge was investigated using bench-scale reactors under simulated wastewater treatment conditions. Two experiments, continuous flow and batch, were performed. Boron concentrations were determined by means of inductively coupled plasma mass spectrometry. The results of the continuous-flow experiment indicated that a small amount of boron accumulated on the activated sludge and its concentration in the sludge depended on the nature of the biota in the sludge. Freundlich and Langmuir isotherm plots generated using the data from the batch experiment indicated that boron was adsorbed onto rather than absorbed into the sludge. The Freundlich constants, k and 1/n, were determined to be 26 mg/kg and 0.87. These values indicate that activated sludge has a limited capacity for boron adsorption and thus utilization of the excess sludge for farmland may not be toxic to plant at least boron concern.

  10. Assessing microbial communities for a metabolic profile similar to activated sludge.

    PubMed

    Paixão, S M; Sàágua, M C; Tenreiro, R; Anselmo, A M

    2007-05-01

    To search for reliable testing inocula alternatives to activated sludge cultures, several model microbial consortia were compared with activated sludge populations for their functional diversity. The evaluation of the metabolic potential of these mixed inocula was performed using the Biolog EcoPlates and GN and GP MicroPlates (Biolog, Inc., Hayward, California). The community-level physiological profiles (CLPPs) obtained for model communities and activated sludge samples were analyzed by principal component analysis and hierarchic clustering methods, to evaluate the ability of Biolog plates to distinguish among the different microbial communities. The effect of different inocula preparation methodologies on the community structure was also studied. The CLPPs obtained with EcoPlates and GN MicroPlates showed that EcoPlates are suitable to screen communities with a metabolic profile similar to activated sludge. New, well-defined, standardized, and safe inocula presenting the same metabolic community profile as activated sludge were selected and can be tested as surrogate cultures in activated-sludge-based bioassays.

  11. Anaerobic waste-activated sludge digestion - A bioconversion mechanism and kinetic model

    SciTech Connect

    Shimizu, Tatsuo; Kudo, Kenzo; Nasu, Yoshikazu )

    1993-05-01

    The anaerobic bioconversion of raw and mechanically lysed waste-activated sludge was kinetically investigated. The hydrolysis of the biopolymers, such as protein, which leaked out from the biological sludge with ultrasonic lysis, was a first-order reaction in anaerobic digestion and the rate constant was much higher than the decay rate constant of the raw waste activated sludge. An anaerobic digestion model that is capable of evaluating the effect of the mechanical sludge lysis on digestive performance was developed. The present model includes four major biological processes - the release of intracellular matter with sludge lysis; hydrolysis of biopolymers to volatile acids; the degradation of various volatile acids to acetate; and the conversion of acetate and hydrogen to methane. Each process was assumed to follow first-order kinetics. The model approximately simulated the overall process performance of the anaerobic digestion of waste-activated sludge. The model suggested that when the lysed waste-activated sludge was fed, the overall digestive performance remarkably increased in the two-phase system consisting of an acid forming process and a methanogenic process, which ensured the symbiotic growth of acetogenic and methanogenic bacteria.

  12. Effects of waste activated sludge and surfactant addition on primary sludge hydrolysis and short-chain fatty acids accumulation.

    PubMed

    Ji, Zhouying; Chen, Guanlan; Chen, Yinguang

    2010-05-01

    This paper focused on the effects of waste activated sludge (WAS) and surfactant sodium dodecylbenzene sulfonate (SDBS) addition on primary sludge (PS) hydrolysis and short-chain fatty acids (SCFA) accumulation in fermentation. The results showed that sludge hydrolysis, SCFA accumulation, NH(4)(+)-N and PO(4)(3-)-P release, and volatile suspended solids (VSS) reduction were increased by WAS addition to PS, which were further increased by the addition of SDBS to the mixture of PS and WAS. Acetic, propionic and valeric acids were the top three SCFA in all experiments. Also, the fermentation liquids of PS, PS+WAS, and PS+WAS+SDBS were added, respectively, to municipal wastewater to examine their effects on biological municipal wastewater treatment, and the enhancement of both wastewater nitrogen and phosphorus removals was observed compared with no fermentation liquid addition.

  13. The degradation of antibiotic amoxicillin in the Fenton-activated sludge combined system.

    PubMed

    Guo, Ruixin; Xie, Xiaodan; Chen, Jianqiu

    2015-01-01

    The present study investigated the removal efficiency of amoxicillin by the Fenton process, individual activated sludge process and Fenton-activated sludge combined system. For the antibiotic at 1 g L(-1), the optimal conditions of the Fenton process included: 4 mL FeSO4·7H2O solution (20.43 g  L(-1)), 6 mL H2O2 solution (3%) and 40°C. Under the optimal conditions, the removal rate of amoxicillin achieved up to 80% in 70 min. In addition, the impact of amoxicillin on microorganism limited the removal capacity of the activated sludge process. When the concentration of amoxicillin was less than 350 mg L(-1), 69.04-88.79% of the antibiotic was removed. However, the antibiotic could not be treated by the activated sludge when the concentration increased up to 650 mg L(-1). On the other hand, ifamoxicillin was pretreated partly by the Fenton process it was then degraded completely by the same activated sludge. Thus, the combined system included two steps: 80% amoxicillin was degraded in step I and was removed completely in the cheaper biological treatment (step II). Our result showed that compared with the individual activated sludge process, the Fenton process improved the removal capacity of the subsequent activated sludge process in the combined system.

  14. Modelling carbon oxidation in pulp mill activated sludge systems: calibration of Activated Sludge Model No 3.

    PubMed

    Barañao, P A; Hall, E R

    2004-01-01

    Activated Sludge Model No 3 (ASM3) was chosen to model an activated sludge system treating effluents from a mechanical pulp and paper mill. The high COD concentration and the high content of readily biodegradable substrates of the wastewater make this model appropriate for this system. ASM3 was calibrated based on batch respirometric tests using fresh wastewater and sludge from the treatment plant, and on analytical measurements of COD, TSS and VSS. The model, developed for municipal wastewater, was found suitable for fitting a variety of respirometric batch tests, performed at different temperatures and food to microorganism ratios (F/M). Therefore, a set of calibrated parameters, as well as the wastewater COD fractions, was estimated for this industrial wastewater. The majority of the calibrated parameters were in the range of those found in the literature.

  15. Aerobic and anaerobic bioprocessing of activated sludge: floc disintegration by enzymes.

    PubMed

    Ayol, Azize; Filibeli, Ayse; Sir, Diclehan; Kuzyaka, Ersan

    2008-11-01

    Hydrolytic enzymes such as glucosidases, lipases, and proteases have an imperative function at the hydrolysis stage of complex organic structures in the degradation of biodegradable particulate organic matter. As a key factor, extracellular polymeric substances (EPS) control the extracellular hydrolytic enzymes in this degradation mechanism. A flocculated matrix of EPS bridging with bacteria holds back the dewaterability properties of the bioprocessed sludges. Disruption of the flocculated matrix leads to improved solubilization of sludge solids by attacking the hydrolytic enzymes to polymeric substances forming enzyme-substrate complexes. To determine the floc disintegration mechanisms by enzymes during aerobic and anaerobic bioprocessing of sludges, experimental data obtained from three aerobic digesters and three anaerobic digesters were evaluated. As part of a broader project examining the overall fate and effects of hydrolytic enzymes in biological sludge stabilization, this paper compares the performances of aerobic and anaerobic reactors used in this study and reports significant improvements in enzymatic treatment of activated sludge.

  16. Improvement of activated sludge bacteria growth by low intensity ultrasound

    NASA Astrophysics Data System (ADS)

    Yan, Y. X.; Ding, J. Y.; Gao, J. L.

    2016-08-01

    Influence of low intensity ultrasound (US) on growth rate of bacteria separated from aerobic activated sludge was studied. In order to reveal the optimal ultrasonic conditions,specific oxygen uptake rate (SOUR) of activated sludge was first detected and results showed that the maximum SOUR was obtained (increased by 40%) at US intensity of 3 Wcm-2 and irradiation time of 10min. Under the optimal conditions, 2 species of bacteria isolated from activated sludge were sonicated and then cultivated for 36h, and increment of 6% and 10% of growth rate were detected for the 2 species of bacteria, respectively, indicating US irradiation of suitable parameters effectively improved activated sludge bacteria growth.

  17. Digital image processing and analysis for activated sludge wastewater treatment.

    PubMed

    Khan, Muhammad Burhan; Lee, Xue Yong; Nisar, Humaira; Ng, Choon Aun; Yeap, Kim Ho; Malik, Aamir Saeed

    2015-01-01

    Activated sludge system is generally used in wastewater treatment plants for processing domestic influent. Conventionally the activated sludge wastewater treatment is monitored by measuring physico-chemical parameters like total suspended solids (TSSol), sludge volume index (SVI) and chemical oxygen demand (COD) etc. For the measurement, tests are conducted in the laboratory, which take many hours to give the final measurement. Digital image processing and analysis offers a better alternative not only to monitor and characterize the current state of activated sludge but also to predict the future state. The characterization by image processing and analysis is done by correlating the time evolution of parameters extracted by image analysis of floc and filaments with the physico-chemical parameters. This chapter briefly reviews the activated sludge wastewater treatment; and, procedures of image acquisition, preprocessing, segmentation and analysis in the specific context of activated sludge wastewater treatment. In the latter part additional procedures like z-stacking, image stitching are introduced for wastewater image preprocessing, which are not previously used in the context of activated sludge. Different preprocessing and segmentation techniques are proposed, along with the survey of imaging procedures reported in the literature. Finally the image analysis based morphological parameters and correlation of the parameters with regard to monitoring and prediction of activated sludge are discussed. Hence it is observed that image analysis can play a very useful role in the monitoring of activated sludge wastewater treatment plants.

  18. Micropollutant degradation via extracted native enzymes from activated sludge.

    PubMed

    Krah, Daniel; Ghattas, Ann-Kathrin; Wick, Arne; Bröder, Kathrin; Ternes, Thomas A

    2016-05-15

    A procedure was developed to assess the biodegradation of micropollutants in cell-free lysates produced from activated sludge of a municipal wastewater treatment plant (WWTP). This proof-of-principle provides the basis for further investigations of micropollutant biodegradation via native enzymes in a solution of reduced complexity, facilitating downstream protein analysis. Differently produced lysates, containing a variety of native enzymes, showed significant enzymatic activities of acid phosphatase, β-galactosidase and β-glucuronidase in conventional colorimetric enzyme assays, whereas heat-deactivated controls did not. To determine the enzymatic activity towards micropollutants, 20 compounds were spiked to the cell-free lysates under aerobic conditions and were monitored via LC-ESI-MS/MS. The micropollutants were selected to span a wide range of different biodegradabilities in conventional activated sludge treatment via distinct primary degradation reactions. Of the 20 spiked micropollutants, 18 could be degraded by intact sludge under assay conditions, while six showed reproducible degradation in the lysates compared to the heat-deactivated negative controls: acetaminophen, N-acetyl-sulfamethoxazole (acetyl-SMX), atenolol, bezafibrate, erythromycin and 10,11-dihydro-10-hydroxycarbamazepine (10-OH-CBZ). The primary biotransformation of the first four compounds can be attributed to amide hydrolysis. However, the observed biotransformations in the lysates were differently influenced by experimental parameters such as sludge pre-treatment and the addition of ammonium sulfate or peptidase inhibitors, suggesting that different hydrolase enzymes were involved in the primary degradation, among them possibly peptidases. Furthermore, the transformation of 10-OH-CBZ to 9-CA-ADIN was caused by a biologically-mediated oxidation, which indicates that in addition to hydrolases further enzyme classes (probably oxidoreductases) are present in the native lysates. Although the

  19. Fate and behaviour of copper and zinc in secondary biological wastewater treatment processes: II. Removal at varying sludge age.

    PubMed

    Santos, A; Barton, P; Cartmell, E; Coulon, F; Crane, R S; Hillis, P; Lester, J N; Stephenson, T; Judd, S J

    2010-06-01

    The mechanisms for the removal of heavy metals during secondary biological treatment of wastewater, with particular emphasis on the activated sludge process, are considered. It is concluded that the predominant mechanism is the entrapment and co-settlement of insoluble metal species in the mixed liquor (biomass). Secondary extracellular polymeric materials, particularly extracellular polysaccharides and other capsule-forming materials, may also play a role. In general, removal of both copper and zinc was superior at the higher sludge ages employed in this study, 4.3 and 8 days, and can in part be attributed to the superior removals of both biochemical oxygen demand and effluent suspended solids achieved at these sludge ages compared with the lowest sludge age studied, 3.6 days. For both copper and zinc there is an increase in soluble metal across the activated sludge process. However, significant removal of both metals occurs as a consequence of the removal of substantial amounts of insoluble metal. The presence of returned sludge liquors, high in settleable solids, to the mixed liquor appears to moderately enhance the percentage removal of copper and zinc. Membranes used in place of secondary sedimentation also enhance removal of both metals by reducing effluent suspended solids. It is concluded that there is potential for maximizing metal removal by optimization of secondary biological treatment in a sustainable manner, without recourse to energy-intensive or chemically-dependent tertiary treatment technologies.

  20. Application of forward osmosis (FO) under ultrasonication on sludge thickening of waste activated sludge.

    PubMed

    Nguyen, Nguyen Cong; Nguyen, Hau Thi; Chen, Shiao-Shing; Nguyen, Nhat Thien; Li, Chi-Wang

    2015-01-01

    Forward osmosis (FO) is an emerging process for dewatering solid-liquid stream which has the potential to be innovative and sustainable. However, the applications have still been hindered by low water flux and membrane fouling when activated sludge is used as the feed solution due to bound water from microbial cells. Hence, a novel strategy was designed to increase sludge thickening and reduce membrane fouling in the FO process under ultrasonic condition. The results from the ultrasound/FO hybrid system showed that the sludge concentration reached up to 20,400 and 28,400 mg/L from initial sludge concentrations of 3000 and 8000 mg/L with frequency of 40 kHz after 22 hours, while the system without ultrasound had to spend 26 hours to achieve the same sludge concentration. This identifies that the presence of ultrasound strongly affected sludge structure as well as sludge thickening of the FO process. Furthermore, the ultrasound/FO hybrid system could achieve NH4+-N removal efficiency of 96%, PO4(3-)-P of 98% and dissolved organic carbon (DOC) of 99%. The overall performance demonstrates that the proposed ultrasound/FO system using seawater as a draw solution is promising for sludge thickening application.

  1. Sludge.

    ERIC Educational Resources Information Center

    Tenenbaum, David

    1992-01-01

    Cites a recycling success story involving sludge production from wastewater and transformation into an effective plant fertilizer. Discusses related concerns such as dealing with pollutants like heavy metals and PCBs often found in sludge. Provides an example of an application of sludge produced in Chicago to an area reclamation site. (MCO)

  2. Preparation of the sludge activated carbon with domestic sludge mixed agricultural straw

    NASA Astrophysics Data System (ADS)

    Wang, Laifu; Wang, Yan; Lian, Jingyan

    2017-01-01

    Urban sewage sludge with complicated composition produce largely each year, pollution problem and resource utilization has increasingly become the focus of attention. Sewage sludge is utilized to prepare adsorbent that is a new type method. Agricultural stalks was added to material (urban sewage sludge) and activator (ZnCl2), calcined under the condition of no inert gas, and obtained domestic sludge activated carbon. The properties were measured by iodine adsorption value and BET, discussed influence factors of sludge activated carbon preparation, including activator concentration, solid-liquid ratio, calcific temperature and calcific time. The best process condition of orthogonal experiment had explored that activated time is 10 minutes, calcific temperature is 350°C, the activator concentration ZnCl2 is 3 mol/L and the mixing ratio of raw materials and activator is approximately 1:5. The iodine adsorption value and the optimal BET of as-obtained domestic sludge activated carbon is 445.06 mg/g, 525.31m2/g, respectively.

  3. Production of carboxylates from high rate activated sludge through fermentation.

    PubMed

    Cagnetta, C; Coma, M; Vlaeminck, S E; Rabaey, K

    2016-10-01

    The aim of this work was to study the key parameters affecting fermentation of high rate activated A-sludge to carboxylates, including pH, temperature, inoculum, sludge composition and iron content. The maximum volatile fatty acids production was 141mgCg(-1) VSSfed, at pH 7. Subsequently the potential for carboxylate and methane production for A-sludge from four different plants at pH 7 and 35°C were compared. Initial BOD of the sludge appeared to be key determining carboxylate yield from A-sludge. Whereas methanogenesis could be correlated linearly to the quantity of ferric used for coagulation, fermentation did not show a dependency on iron presence. This difference may enable a strategy whereby A-stage sludge is separated to achieve fermentation, and iron dosing for phosphate removal is only implemented at the B-stage.

  4. Control of the aeration volume in an activated sludge process for nitrogen removal.

    PubMed

    Samuelsson, P; Carlsson, B

    2002-01-01

    Biological nitrogen removal in an activated sludge process is obtained by two biological processes; nitrification and denitrification. Nitrifying bacteria need dissolved oxygen and a sufficiently large aeration volume for converting ammonium to nitrate in the wastewater. The objective of this paper is to develop an automatic control strategy for adjusting the aerated volume so that the effluent ammonium level can be kept close to a desired value despite major changes in the influent load. The strategy is based on applying exact linearization of the IAWO Activated Sludge Process Model No 1. Simulation results show that the suggested controller effectively attenuates process disturbances.

  5. Biological and abiotic losses of polynuclear aromatic hydrocarbons (PAHs) from soils freshly amended with sewage sludge

    SciTech Connect

    Wild, S.R.; Jones, K.C. )

    1993-01-01

    Sewage sludge containing typical indigenous concentrations of polynuclear aromatic hydrocarbons (PAHs) was applied to several different soils in glass microcosms. Biologically active and sterilized soils were monitored for PAH content over a period of approximately 205 d. Agricultural soils with and without previous exposure to sewage sludge were tested, together with a forest soil and a soil from a major roadside. Loss of PAHs from a soil spike with a PAH standard solution was also investigated. Results indicate the PAH compounds with less than four benzene rings are susceptible to abiotic loss processes. However, losses by these mechanisms were insignificant for compounds with four or more benzene rings. Half-lives for the sludge-applied PAHs were derived and indicated a strong dependence of persistence on chemical structure. Half-lives for phenanthrene and benzo[ghi]perylene were between 83 and 193 d and 282 and 535 d, respectively. Mean half-lives correlate directly with log K[sub ow] and inversely with log water solubility. Behavior of PAHs was different in each soil, probably due to different soil characteristics and history of PAH exposure. The soil spiked with PAHs provided the lowest half-life values for most PAH compounds, suggesting a higher susceptibility of spiked PAHs to both abiotic and biological degradation.

  6. Denitrification kinetics in anoxic/aerobic activated sludge systems

    SciTech Connect

    Horne, G.M.

    1998-12-11

    Nitrogen removal needs at municipal wastewater treatment plants (WWTPs) have increased due to greater concerns about eutrophication and increased interest in reuse of treated municipal effluents. Biological processes are the most cost-effective method for nitrogen removal. Biological nitrogen removal is accomplished in two distinctly different processes by the conversion of nitrogen in the wastewater from organic nitrogen and ammonia to nitrate, followed by reduction of the nitrate to nitrogen gas. Nitrate production occurs in an aerobic activated sludge treatment zone during a process called nitrification. The nitrate is then converted through a series of intermediate steps to nitrogen gas in an anoxic zone (an anaerobic condition with nitrate present) during a process called denitrification, effectively removing the nitrogen from the wastewater. Many different WWTP designs have been developed to incorporate these two conditions for nitrogen removal.

  7. Chemical inhibition of nitrification in activated sludge.

    PubMed

    Kelly, R T; Henriques, I D S; Love, N G

    2004-03-20

    Conventional aerobic nitrification was adversely affected by single pulse inputs of six different classes of industrially relevant chemical toxins: an electrophilic solvent (1-chloro-2,4-dinitrobenzene, CDNB), a heavy metal (cadmium), a hydrophobic chemical (1-octanol), an uncoupling agent (2,4-dinitrophenol, DNP), alkaline pH, and cyanide in its weak metal complexed form. The concentrations of each chemical source that caused 1 5, 25, and 50% respiratory inhibition of a nitrifying mixed liquor during a short-term assay were used to shock sequencing batch reactors containing nitrifying conventional activated sludge. The reactors were monitored for recovery over a period of 30 days or less. All shock conditions inhibited nitrification, but to different degrees. The nitrate generation rate (NGR) of the shocked reactors recovered overtime to control reactor levels and showed that it was a more sensitive indicator of nitrification inhibition than both initial respirometric tests conducted on unexposed biomass and effluent nitrogen species analyses. CDNB had the most severe impact on nitrification, followed by alkaline pH 11, cadmium, cyanide, octanol, and DNP. Based on effluent data, cadmium and octanol primarily inhibited ammonia-oxidizing bacteria (AOB) while CDNB, pH 11,and cyanide inhibited both AOB and nitrite-oxidizing bacteria (NOB). DNP initially inhibited nitrification but quickly increased the NGR relative to the control and stimulated nitrification after several days in a manner reflective of oxidative uncoupling. The shocked mixed liquor showed trends toward recovery from inhibition for all chemicals tested, but in some cases this reversion was slow. These results contribute to our broader effort to identify relationships between chemical sources and the process effects they induce in activated sludge treatment systems.

  8. Enhancement of activated sludge disintegration and dewaterability by Fenton process

    NASA Astrophysics Data System (ADS)

    Heng, G. C.; Isa, M. H.

    2016-06-01

    Municipal and industrial wastewater treatment plants produce large amounts of sludge. This excess sludge is an inevitable drawback inherent to the activated sludge process. In this study, the waste activated sludge was obtained from the campus wastewater treatment plant at Universiti Teknologi PETRONAS (UTP), Malaysia. Fenton pretreatment was optimized by using the response surface methodology (RSM) to study the effects of three operating conditions including the dosage of H2O2 (g H2O2/kg TS), the molar ratio of H2O2/Fe2+ and reaction time. The optimum operating variables to achieve MLVSS removal 65%, CST reduction 28%, sCOD 11000 mg/L and EPS 500 mg/L were: 1000 g H2O2/kg TS, H2O2/Fe2+ molar ratio 70 and reaction time 45 min. Fenton process was proved to be able to enhance the sludge disintegration and dewaterability.

  9. Disturbance and temporal partitioning of the activated sludge metacommunity

    PubMed Central

    Vuono, David C; Benecke, Jan; Henkel, Jochen; Navidi, William C; Cath, Tzahi Y; Munakata-Marr, Junko; Spear, John R; Drewes, Jörg E

    2015-01-01

    The resilience of microbial communities to press disturbances and whether ecosystem function is governed by microbial composition or by the environment have not been empirically tested. To address these issues, a whole-ecosystem manipulation was performed in a full-scale activated sludge wastewater treatment plant. The parameter solids retention time (SRT) was used to manipulate microbial composition, which started at 30 days, then decreased to 12 and 3 days, before operation was restored to starting conditions (30-day SRT). Activated sludge samples were collected throughout the 313-day time series in parallel with bioreactor performance (‘ecosystem function'). Bacterial small subunit (SSU) rRNA genes were surveyed from sludge samples resulting in a sequence library of >417 000 SSU rRNA genes. A shift in community composition was observed for 12- and 3-day SRTs. The composition was altered such that r-strategists were enriched in the system during the 3-day SRT, whereas K-strategists were only present at SRTs⩾12 days. This shift corresponded to loss of ecosystem functions (nitrification, denitrification and biological phosphorus removal) for SRTs⩽12 days. Upon return to a 30-day SRT, complete recovery of the bioreactor performance was observed after 54 days despite an incomplete recovery of bacterial diversity. In addition, a different, yet phylogenetically related, community with fewer of its original rare members displaced the pre-disturbance community. Our results support the hypothesis that microbial ecosystems harbor functionally redundant phylotypes with regard to general ecosystem functions (carbon oxidation, nitrification, denitrification and phosphorus accumulation). However, the impacts of decreased rare phylotype membership on ecosystem stability and micropollutant removal remain unknown. PMID:25126758

  10. An observation on sludge granulation in an enhanced biological phosphorus removal process.

    PubMed

    Ong, Ying Hui; Chua, Adeline Seak May; Lee, Boon Pin; Ngoh, Gek Cheng; Hashim, Mohd Ali

    2012-01-01

    A sequencing batch reactor (SBR) seeded with flocculated sludge and fed with synthetic wastewater was operated for an enhanced biological phosphorus removal (EBPR) process. Eight weeks after reactor startup, sludge granules were observed. The granules had a diameter of 0.5 to 3.0 mm and were brownish in color and spherical or ellipsoidal in shape. No significant change was observed in sludge granule size when operational pH was changed from 7 to 8. The 208-day continuous operation of the SBR showed that sludge granules were stably maintained with a sludge volume index (SVI) between 30 to 55 mL/g while securing a removal efficiency of 83% for carbon and 97% for phosphorus. Fluorescent in situ hybridization (FISH) confirmed the enrichment of polyphosphate accumulating organisms (PAOs) in the SBR. The observations of sludge granulation in this study encourage further studies in the development of granules-based EBPR process.

  11. Fractionating soluble microbial products in the activated sludge process.

    PubMed

    Ni, Bing-Jie; Zeng, Raymond J; Fang, Fang; Xie, Wen-Ming; Sheng, Guo-Ping; Yu, Han-Qing

    2010-04-01

    Soluble microbial products (SMP) are the pool of organic compounds originating from microbial growth and decay, and are usually the major component of the soluble organic matters in effluents from biological treatment processes. In this work, SMP in activated sludge were characterized, fractionized, and quantified using integrated chemical analysis and mathematical approach. The utilization-associated products (UAP) in SMP, produced in the substrate-utilization process, were found to be carbonaceous compounds with a molecular weight (MW) lower than 290 kDa which were quantified separately from biomass-associated products (BAP). The BAP were mainly cellular macromolecules with an MW in a range of 290-5000 kDa, and for the first time were further classified into the growth-associated BAP (GBAP) with an MW of 1000 kDa, which were produced in the microbial growth phase, and the endogeny-associated BAP (EBAP) with an MW of 4500 kDa, which were generated in the endogenous phase. Experimental and modeling results reveal that the UAP could be utilized by the activated sludge and that the BAP would accumulate in the system. The GBAP and EBAP had different formation rates from the hydrolysis of extracellular polymeric substances and distinct biodegradation kinetics. This study provides better understanding of SMP formation mechanisms and becomes useful for subsequent effluent treatment.

  12. Fate and effects of triclosan in activated sludge.

    PubMed

    Federle, Thomas W; Kaiser, Sandra K; Nuck, Barbara A

    2002-07-01

    Triclosan (TCS; 5-chloro-2-[2,4-dichloro-phenoxy]-phenol) is a widely used antimicrobial agent. To understand its fate during sewage treatment, the biodegradation and removal of TCS were determined in activated sludge. In addition, the effects of TCS on treatment processes were assessed. Fate was determined by examining the biodegradation and removal of TCS radiolabeled with 14C in the 2,4-dichlorphenoxy ring in laboratory batch mineralization experiments and bench-top continuous activated-sludge (CAS) systems. In batch experiments with unacclimated sludge, TCS was mineralized to 14CO2, but the total yield varied as a function of test concentration. Systems that were redosed with TCS exhibited more extensive and faster mineralization, indicating that adaptation was a critical factor determining the rate and extent of biodegradation. In a CAS study in which the influent level of TCS was incrementally increased from 40 microg/L to 2,000 microg/L, removal of the parent compound exceeded 98.5% and removal of total radioactivity (parent and metabolites) exceeded 85%. Between 1.5 and 4.5% of TCS in the influent was sorbed to the wasted solids, whereas >94% underwent primary biodegradation and 81 to 92% was mineralized to CO2 or incorporated in biomass. Increasing levels of TCS in the influent had no major adverse effects on any wastewater treatment process, including chemical oxygen demand, biological oxygen demand, and ammonia removal. In a subsequent experiment, a CAS system, acclimated to TCS at 35 microg/L, received two separate 4-h shock loads of 750 microg/L TCS. Neither removal of TCS nor treatment processes exhibited major adverse effects. An additional CAS study was conducted to examine the removal of a low level (10 microg/L) of TCS. Removal of parent equaled 94.7%, and biodegradation remained the dominant removal mechanism. A subsequent series of CAS experiments examined removal at four influent concentrations (7.5, 11, 20, and 50 microg/L) of TCS and

  13. Protists as bioindicators in activated sludge: Identification, ecology and future needs.

    PubMed

    Foissner, Wilhelm

    2016-08-01

    When the activated sludge process was developed, operators and scientists soon recognized protists as valuable indicators. However, only when Curds et al. (1968) showed with a few photographs the need of ciliates for a clear plant effluent, sewage protistology began to bloom but was limited by the need of species identification. Still, this is a major problem although several good guides are available. Thus, molecular kits should be developed for identification. Protists are indicators in two stages of wastewater treatment, viz., in the activated sludge and in the environmental water receiving the plant effluent. Continuous control of the protist and bacterial communities can prevent biological sludge foaming and bulking and may greatly save money for sludge oxygenation because several protist species are excellent indicators for the amount of oxygen present. The investigation of the effluent-receiving rivers gives a solid indication about the long term function of sewage works. The literature on protist bioindication in activated sludge is widely distributed. Thus, I compiled the data in a simple Table, showing which communities and species indicate good, mediocre, or poor plant performance. Further, many details on indication are provided, such as sludge loading and nitrifying conditions. Such specific features should be improved by appropriate statistics and more reliable identification of species. Then, protistologists have a fair chance to become important in wastewater works. Activated sludge is a unique habitat for particular species, often poorly or even undescribed. As an example, I present two new species. The first is a minute (∼30μm) Metacystis that makes an up to 300μm-sized mucous envelope mimicking a sludge floc. The second is a Phialina that is unique in having the contractile vacuole slightly posterior to mid-body. Finally, I provide a list of species which have the type locality in sewage plants.

  14. [Quickly enrichment of carbon in wastewater by activated sludge].

    PubMed

    Liu, Hong-Bo; Zhao, Fang; Wen, Xiang-Hua

    2011-10-01

    Pilot tests were carried out to investigate the absorption characteristics of the carbon source in urban wastewater by activated sludge and to analyze the carbon release from the carbon absorbed activated sludge in the settling process. The results indicated that carbon in wastewater could be quickly enriched by activated sludge. The absorption process of indissolvable organic matter could be finished as shortly as less than 10 min, while the absorption process of the dissolved organic matter was relatively slow and should consume up about 30 min. Moreover, carbon release was observed in the settling process of enriched sludge. In the period of 30-100 min, the release amount of total COD (TCOD) was 11.44 mg x g(-1), while in the period of 60-150 min, the release amount of dissolved COD (SCOD) was 6.24 mg x g(-1). Furthermore, based on the results of the bench-scale tests, a pilot-scale plant was built to investigate the absorption of carbon, nitrogen and phosphorus by activated sludge and the settleability of enriched sludge. The results indicated that under continuously operation mode, 60% of COD, 75% of TP and 10% of TN in the wastewater could be removed by the absorption of activated sludge, and the enriched sludge with SVI of 34.2 mL x g(-1) presented good settleability. Carbon enrichment by activated sludge could not only reclaim the carbon source in wastewater, but also reduce the loading of organic matter and give low C/N for the following nitrification unit and improving the nitrification efficiency.

  15. Physiological adaptation of growth kinetics in activated sludge.

    PubMed

    Friedrich, M; Takács, I; Tränckner, J

    2015-11-15

    Physiological adaptation as it occurs in bacterial cells at variable environmental conditions influences characteristic properties of growth kinetics significantly. However, physiological adaptation to growth related parameters in activated sludge modelling is not yet recognised. Consequently these parameters are regarded to be constant. To investigate physiological adaptation in activated sludge the endogenous respiration in an aerobic degradation batch experiment and simultaneous to that the maximum possible respiration in an aerobic growth batch experiment was measured. The activated sludge samples were taken from full scale wastewater treatment plants with different sludge retention times (SRTs). It could be shown that the low SRT sludge adapts by growth optimisation (high maximum growth rate and high decay rate) to its particular environment where a high SRT sludge adapts by survival optimization (low maximum growth rate and low decay rate). Thereby, both the maximum specific growth rate and the decay rate vary in the same pattern and are strongly correlated to each other. To describe the physiological state of mixed cultures like activated sludge quantitatively a physiological state factor (PSF) is proposed as the ratio of the maximum specific growth rate and the decay rate. The PSF can be expressed as an exponential function with respect to the SRT.

  16. Valuation of OSA process and folic acid addition as excess sludge minimization alternatives applied in the activated sludge process.

    PubMed

    Martins, C L; Velho, V F; Ramos, S R A; Pires, A S C D; Duarte, E C N F A; Costa, R H R

    2016-01-01

    The aim of this study was to investigate the ability of the oxic-settling-anaerobic (OSA)-process and the folic acid addition applied in the activated sludge process to reduce the excess sludge production. The study was monitored during two distinct periods: activated sludge system with OSA-process, and activated sludge system with folic acid addition. The observed sludge yields (Yobs) were 0.30 and 0.08 kgTSS kg(-1) chemical oxygen demand (COD), control phase and OSA-process (period 1); 0.33 and 0.18 kgTSS kg(-1) COD, control phase and folic acid addition (period 2). The Yobs decreased by 73 and 45% in phases with the OSA-process and folic acid addition, respectively, compared with the control phases. The sludge minimization alternatives result in a decrease in excess sludge production, without negatively affecting the performance of the effluent treatment.

  17. Effect of ozonation on activated sludge from pulp and paper industry.

    PubMed

    Gupta, S; Chakrabarti, S K; Singh, S

    2010-01-01

    Aerobic biological treatment with activated sludge is the predominant process all over the world for treatment of pulp and paper industry wastewater. 50-70% of the biodegradable organic material is oxidized to CO₂ and the rest is converted to bacterial biomass, typically termed as excess sludge or waste activated sludge (WAS). Handling and disposal of WAS in general and in particular from the pulp and paper industry face different processing difficulties, regulatory stringency due to organochlorine contamination and reluctance of people for reuse. With an objective of reducing the net disposable biomass, ozonation of WAS from a pulp and paper mill and from a laboratory scale batch activated sludge process operated with the wastewater and bacterial seed of the same pulp and paper mill have been carried out. With the mill sludge having predominant filamentous organisms 18% MLSS was reduced at an ozone dosage of 55 mg O₃/g dry MLSS solid (DS) resulting in 2.5 times COD increase. With the laboratory sludge which is well structured and flocculating, only 6% MLSS was reduced at an ozone dosage of 55 mg O₃/g DS. Ozonation mineralizes 26% and 20% AOX compounds embedded in the secondary sludge in the mill and laboratory sludge respectively at an ozone dosage of 55 mg O₃/g DS. During ozonation, absorbed/adsorbed lignin on biomass was released which resulted in increased colour concentration. Ozonation can be a potential oxidative pretreatment process for reducing the WAS and paving the way for cost effective overall treatment of WAS.

  18. Effect of activated sludge properties and membrane operation conditions on fouling characteristics in membrane bioreactors.

    PubMed

    Choi, Hyeok; Zhang, Kai; Dionysiou, Dionysios D; Oerther, Daniel B; Sorial, George A

    2006-06-01

    Biofouling control is considered to be a major challenge in operating membrane bioreactors (MBRs) for the treatment of wastewater. This study examined the impact of biological, chemical, and physical properties of activated sludge on membrane filtration performance in laboratory-scale MBRs. Sludges with different microbial communities were produced using pseudo-continuous stirred-tank reactors and pseudo-plug flow reactors treating a synthetic paper mill wastewater. Various filtration resistances were used to investigate membrane fouling characteristics, and molecular biology tools targeting 16S ribosomal DNA gene sequences were used to identify predominant bacterial populations in the sludges or attached to the fouled membranes. Filtration experiments using axenic cultures of Escherichia coli, Acinetobacter calcoaceticus, and Gordonia amarae were also performed to better understand the initiation and development of biofouling. The results showed that the tendency of membranes to biofoul depended upon membrane operating conditions as well as the properties of the activated sludge in the MBR systems. Specific bacterial populations, which were not dominant in the activated sludges, were selectively accumulated on the membrane surface leading to the development of irreversible biofouling.

  19. ENHANCED BIODEGRADATION OF IOPROMIDE AND TRIMETHOPRIM IN NITRIFYING ACTIVATED SLUDGE

    EPA Science Inventory

    Iopromide and trimethoprim are frequently detected pharmaceuticals in effluents of wastewater treatment plants and in surface waters due to their persistence and high usage. Laboratory scale experiments showed that a significantly higher removal rate in nutrifying activated sludg...

  20. Evaluation of Control Parameters for the Activated Sludge Process

    ERIC Educational Resources Information Center

    Stall, T. Ray; Sherrard, Josephy H.

    1978-01-01

    An evaluation of the use of the parameters currently being used to design and operate the activated sludge process is presented. The advantages and disadvantages for the use of each parameter are discussed. (MR)

  1. Correlation of EPS content in activated sludge at different sludge retention times with membrane fouling phenomena.

    PubMed

    Al-Halbouni, Djamila; Traber, Jacqueline; Lyko, Sven; Wintgens, Thomas; Melin, Thomas; Tacke, Daniela; Janot, Andreas; Dott, Wolfgang; Hollender, Juliane

    2008-03-01

    In this study, activated sludge characteristics were studied with regard to membrane fouling in membrane bioreactors (MBRs) for two pilot plants and one full-scale plant treating municipal wastewater. For the full-scale MBR, concentrations of extracellular polymeric substances (EPS) bound to sludge flocs were shown to have seasonal variations from as low as 17mgg(-1) dry matter (DM) in summer up to 51mg(gDM)(-1) in winter, which correlated with an increased occurrence of filamentous bacteria in the colder season. Therefore, it was investigated at pilot-scale MBRs with different sludge retention times (SRTs) whether different EPS contents and corresponding sludge properties influence membrane fouling. Activated sludge from the pilot MBR with low SRT (23d) was found to have worse filterability, settleability and dewaterability. Photometric analysis of EPS extracts as well as LC-OCD measurements showed that it contained significantly higher concentrations of floc-bound EPS than sludge at higher SRT (40d) The formation of fouling layers on the membranes, characterised by SEM-EDX as well as photometric analysis of EPS extracts, was more distinct at lower SRT where concentrations of deposited EPS were 40-fold higher for proteins and 5-fold higher for carbohydrates compared with the membrane at higher SRT. Floc-bound EPS and metals were suggested to play a role in the fouling process at the full-scale MBR and this was confirmed by the pilot-scale study. However, despite the different sludge properties, the permeability of membranes was found to be similar.

  2. Aerobic Heterotrophic Bacterial Populations of Sewage and Activated Sludge

    PubMed Central

    Prakasam, T. B. S.; Dondero, N. C.

    1970-01-01

    Two procedures, the confidence interval method and Mountford's index, were tested in analyses of the microbial populations of 11 laboratory activated sludges acclimated to aromatic compounds. The two methods gave somewhat different results but indicated that the populations were quite dissimilar. The activity of seven of the sludges correlated well with the population structure. Some considerations in analysis of microbial population structure are discussed. PMID:5418947

  3. Starvation Improves Survival of Bacteria Introduced into Activated Sludge

    PubMed Central

    Watanabe, Kazuya; Miyashita, Mariko; Harayama, Shigeaki

    2000-01-01

    A phenol-degrading bacterium, Ralstonia eutropha E2, was grown in Luria-Bertani (LB) medium or in an inorganic medium (called MP) supplemented with phenol and harvested at the late-exponential-growth phase. Phenol-acclimated activated sludge was inoculated with the E2 cells immediately after harvest or after starvation in MP for 2 or 7 days. The densities of the E2 populations in the activated sludge were then monitored by quantitative PCR. The E2 cells grown on phenol and starved for 2 days (P-2 cells) survived in the activated sludge better than those treated differently: the population density of the P-2 cells 7 days after their inoculation was 50 to 100 times higher than the population density of E2 cells without starvation or that with 7-day starvation. LB medium-grown cells either starved or nonstarved were rapidly eliminated from the sludge. The P-2 cells showed a high cell surface hydrophobicity and retained metabolic activities. Cells otherwise prepared did not have one of these two features. From these observations, it is assumed that hydrophobic cell surface and metabolic activities higher than certain levels were required for the inoculated bacteria to survive in the activated sludge. Reverse transcriptase PCR analyses showed that the P-2 cells initiated the expression of phenol hydroxylase within 1 day of their inoculation into the sludge. These results suggest the utility of a short starvation treatment for improving the efficacy of bioaugumentation. PMID:10966407

  4. A grit separation module for inorganic matter removal from activated sludge: investigation on characteristics of split sludge from the module.

    PubMed

    Chen, You-Peng; Guo, Jin-Song; Wang, Jing; Yan, Peng; Ji, Fang-Ying; Fang, Fang; Dong, Yang

    2016-12-01

    A grit separation module was developed to prevent the accumulation of inorganic solids in activated sludge systems, and it achieved effective separation of organic matter and inorganic solids. To provide technical and theoretical support for further comprehensive utilization of split sludge (underflow and overflow sludge from the separation module), the characteristics of split sludge were investigated. The settling and dewatering properties of the underflow sludge were excellent, and it had high inorganic matter content, whereas the overflow sludge had higher organic matter content. The most abundant inorganic constituent was SiO2 (59.34%), and SiO2, Al2O3, and Fe2O3 together accounted for 79.53% of the inorganic matter in the underflow sludge. The mass ratio of Fe2O3, CaO, and MgO to SiO2 and Al2O3 was 0.245 in the inorganic component of the underflow sludge. The underflow sludge had the beneficial characteristics of simple treatment and disposal, and it was suitable for use as a base raw material for ceramsite production. The overflow sludge with higher organic matter content was constantly returned from the separation module to the wastewater treatment system, gradually improving the volatile suspended solid/total suspended solid ratio of the activated sludge in the wastewater treatment system.

  5. IASON - Intelligent Activated Sludge Operated by Nanotechnology - Hydrogel Microcarriers in Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Fleit, E.; Melicz, Z.; Sándor, D.; Zrínyi, M.; Filipcsei, G.; László, K.; Dékány, I.; Király, Z.

    Performance of biological wastewater treatment depends to a large extent on mechanical strength, size distribution, permeability and other textural properties of the activated sludge flocs. A novel approach was developed in applying synthetic polymer materials to organize floc architecture instead of spontaneously formed activated sludge floc. Developed microcarrier polymer materials were used in our experiments to mitigate technological goals. Preliminary results suggest that the PVA-PAA (polyvinyl alcohol-polyacrylic acid copolymer) is a feasible choice for skeleton material replacing "traditional" activated sludge floc. Use of PVA-PAA hydrogel material as microreactors and methods for biofilm formation of wastewater bacteria on the carrier material are described. Laboratory scale experimental results with microscopic size bioreactors and their potential application for simultaneous nitrification and denitrification are presented.

  6. Rapid adaptation of activated sludge bacteria into a glycogen accumulating biofilm enabling anaerobic BOD uptake.

    PubMed

    Hossain, Md Iqbal; Paparini, Andrea; Cord-Ruwisch, Ralf

    2017-03-01

    Glycogen accumulating organisms (GAO) are known to allow anaerobic uptake of biological oxygen demand (BOD) in activated sludge wastewater treatment systems. In this study, we report a rapid transition of suspended activated sludge biomass to a GAO dominated biofilm by selective enrichment using sequences of anaerobic loading followed by aerobic exposure of the biofilm to air. The study showed that within eight weeks, a fully operational, GAO dominated biofilm had developed, enabling complete anaerobic BOD uptake at a rate of 256mg/L/h. The oxygen uptake by the biofilm directly from the atmosphere had been calculated to provide significant energy savings. This study suggests that wastewater treatment plant operators can convert activated sludge systems readily into a "passive aeration" biofilm that avoids costly oxygen transfer to bulk wastewater solution. The described energy efficient BOD removal system provides an opportunity to be coupled with novel nitrogen removal processes such as anammox.

  7. Industrial activated sludge exhibit unique bacterial community composition at high taxonomic ranks.

    PubMed

    Ibarbalz, Federico M; Figuerola, Eva L M; Erijman, Leonardo

    2013-07-01

    Biological degradation of domestic and industrial wastewater by activated sludge depends on a common process of separation of the diverse self-assembled and self-sustained microbial flocs from the treated wastewater. Previous surveys of bacterial communities indicated the presence of a common core of bacterial phyla in municipal activated sludge, an observation consistent with the concept of ecological coherence of high taxonomic ranks. The aim of this work was to test whether this critical feature brings about a common pattern of abundance distribution of high bacterial taxa in industrial and domestic activated sludge, and to relate the bacterial community structure of industrial activated sludge with relevant operational parameters. We have applied 454 pyrosequencing of 16S rRNA genes to evaluate bacterial communities in full-scale biological wastewater treatment plants sampled at different times, including seven systems treating wastewater from different industries and one plant that treats domestic wastewater, and compared our datasets with the data from municipal wastewater treatment plants obtained by three different laboratories. We observed that each industrial activated sludge system exhibited a unique bacterial community composition, which is clearly distinct from the common profile of bacterial phyla or classes observed in municipal plants. The influence of process parameters on the bacterial community structure was evaluated using constrained analysis of principal coordinates (CAP). Part of the differences in the bacterial community structure between industrial wastewater treatment systems were explained by dissolved oxygen and pH. Despite the ecological relevance of floc formation for the assembly of bacterial communities in activated sludge, the wastewater characteristics are likely to be the major determinant that drives bacterial composition at high taxonomic ranks.

  8. [Comparison of sludge filtration characteristics between a membrane bioreactor and a conventional activated sludge process].

    PubMed

    Sun, Bao-sheng; Zhang, Hai-feng; Qi, Geng-shen

    2006-02-01

    According to the filtration characteristics of sludge, a comparison between a membrane bioreactor (MBR) and a conventional activated sludge process(CAS) was carried out under similar conditions. Experiment results show that the filtration resistance in MBR was 2 to approximately 3 times of that in CAS. The contribution of supernatant resistance to filtration resistance was about 90% both in CAS and in MBR. The test on resistance distribution showed the cake resistance made up 87.30% and 94.18% of total resistance in CAS and MBR, respectively.

  9. Comparison between ozonation and the OSA process: analysis of excess sludge reduction and biomass activity in two different pilot plants.

    PubMed

    Torregrossa, Michele; Di Bella, Gaetano; Di Trapani, Daniele

    2012-01-01

    The excess biomass produced during biological treatment of municipal wastewater represents a major issue worldwide, as its disposal implies environmental, economic and social impacts. Therefore, there has been a growing interest in developing technologies to reduce sludge production. The main proposed strategies can be categorized according to the place inside the wastewater treatment plant (WWTP) where the reduction takes place. In particular, sludge minimization can be achieved in the wastewater line as well as in the sludge line. This paper presents the results of two pilot scale systems, to evaluate their feasibility for sludge reduction and to understand their effect on biomass activity: (1) a pilot plant with an ozone contactor in the return activated sludge (RAS) stream for the exposition of sludge to a low ozone dosage; and (2) an oxic-settling-anaerobic (OSA) process with high retention time in the anaerobic sludge holding tank have been studied. The results showed that both technologies enabled significant excess sludge reduction but produced a slight decrease of biomass respiratory activity.

  10. Cometabolic degradation of organic wastewater micropollutants by activated sludge and sludge-inherent microorganisms.

    PubMed

    Fischer, Klaus; Majewsky, Marius

    2014-08-01

    Municipal wastewaters contain a multitude of organic trace pollutants. Often, their biodegradability by activated sludge microorganisms is decisive for their elimination during wastewater treatment. Since the amounts of micropollutants seem too low to serve as growth substrate, cometabolism is supposed to be the dominating biodegradation process. Nevertheless, as many biodegradation studies were performed without the intention to discriminate between metabolic and cometabolic processes, the specific contribution of the latter to substance transformations is often not clarified. This minireview summarizes current knowledge about the cometabolic degradation of organic trace pollutants by activated sludge and sludge-inherent microorganisms. Due to their relevance for communal wastewater contamination, the focus is laid on pharmaceuticals, personal care products, antibiotics, estrogens, and nonylphenols. Wherever possible, reference is made to the molecular process level, i.e., cometabolic pathways, involved enzymes, and formed transformation products. Particular cometabolic capabilities of different activated sludge consortia and various microbial species are highlighted. Process conditions favoring cometabolic activities are emphasized. Finally, knowledge gaps are identified, and research perspectives are outlined.

  11. Enhanced nitrogen removal in a wastewater treatment process characterized by carbon source manipulation with biological adsorption and sludge hydrolysis.

    PubMed

    Liu, Hongbo; Zhao, Fang; Mao, Boyang; Wen, Xianghua

    2012-06-01

    An innovative adsorption/nitrification/denitrification/sludge-hydrolysis wastewater treatment process (ENRS) characterized by carbon source manipulation with a biological adsorption unit and a sludge hydrolysis unit was developed to enhance nitrogen removal and reduce sludge production for municipal wastewater treatment. The system presented good performance in pollutants removal, yielding the effluent with average COD, NH(4)(+)-N, TN and TP of 48.5, 0.6, 13.2 and 1.0 mg/L, respectively. Sixty percent of the total carbon source in the influent was concentrated and separated by the quick adsorption of activated sludge, providing the possibilities of reusing waste carbon source in the denitrification tank and accumulating nitrobacteria in the nitrification tank. Low temperature of 6-15 °C and high hydraulic loading rate of 3.0-15.0 m(3)/d did not affect NH(4)(+)-N removal performance, yielding the NH(4)(+)-N of lower 1.0 mg/L in the effluent. Furthermore, 50% of the residual sludge in the ENRS system could be transformed into soluble COD (SCOD) by alkaline thermal hydrolysis with temperature of 60 °C and pH of 11, and the hydrolyzed carbon could completely substitute methanol as a good quality carbon to support high efficient denitrification.

  12. Tracing the evolution of degraders in activated sludge during the sludge’s acclimation to a xenobiotic organic

    NASA Astrophysics Data System (ADS)

    Chong, N. M.; Fan, C. H.; Yang, Y. C.

    2017-01-01

    The molecular biology method of high-throughput pyrosequencing was employed to examine the change of activated sludge community structures during the process in which activated sludge was acclimated to and degraded a target xenobiotic. The sample xenobiotic organic compound used as the activated sludge acclimation target was the herbicide 2,4-dichlorphenoxyacetic acid (2,4-D). Indigenous activated sludge microorganisms were acclimated to 2,4-D as the sole carbon source in both the batch and the continuous-flow reaction modes. Sludge masses at multiple time points during the course of acclimation were subjected to pyrosequencing targeting the microorganisms’ 16S rRNA genes. With the bacterial 16S rRNA sequencing results the genera that increased in abundance were checked with degradative pathway databases or literature to confirm that they are commonly seen as potent degraders of 2,4-D. From this systematic examination of degrader changes at time points during activated sludge acclimation and degradation of the target xenobiotic, the trend of degrader evolution in activated sludge over the sludge’s acclimation process to a xenobiotic was traced.

  13. Polyhydroxyalkanoate production potential of heterotrophic bacteria in activated sludge.

    PubMed

    Inoue, Daisuke; Suzuki, Yuta; Uchida, Takahiro; Morohoshi, Jota; Sei, Kazunari

    2016-01-01

    This study was conducted to evaluate the polyhydroxyalkanoate (PHA) production potential of cultivable heterotrophic bacteria in activated sludge by genotypic and phenotypic characterizations. A total of 114 bacterial strains were isolated from four activated sludge samples taken from a lab-scale sequencing batch reactor and three wastewater treatment processes of two municipal wastewater treatment plants. PCR detection of the phaC genes encoding class I and II PHA synthase revealed that 15% of the total isolates possessed phaC genes, all of which had the closest similarities to known phaC genes of α- and β-Proteobacteria and Actinobacteria. PHA production experiments under aerobic and nitrogen-limited conditions showed that 68% of the total isolates were capable of producing PHA from at least one of the six substrates used (acetate, propionate, lactate, butyrate, glucose and glycerol). Genotypic and phenotypic characterizations revealed that 75% of the activated sludge bacteria had PHA production potential. Our results also indicated that short-chain fatty acids would be the preferable substrates for PHA production by activated sludge bacteria, and that there might be a variety of unidentified phaC genes in activated sludge.

  14. Gas chromatographic analysis of polyhydroxybutyrate in activated sludge: a round-robin test.

    PubMed

    Baetens, D; Aurola, A M; Foglia, A; Dionisi, D; van Loosdrecht, M C M

    2002-01-01

    Polyhydroxyalkanoates (PHA) and poly-beta-hydroxybutyrate (PHB) in particular have become compounds which is routinely investigated in wastewater research. The PHB analysis method has only recently been applied to activated sludge samples where PHA contents might be relatively low. This urges the need to investigate the reproducibility of the gas chromatographic method for PHB analysis. This was evaluated in a round-robin test in 5 European laboratories with samples from lab-scale and full-scale enhanced biological phosphorus removal systems. It was shown that the standard deviation of measurements in each lab and the reproducibility between the labs was very good. Experimental results obtained by different laboratories using this analysis method can be compared. Sludge samples with PHB contents varying between 0.3 and 22.5 mg PHB/mg sludge were analysed. The gas chromatographic method allows for PHV, PH2MB and PH2MV analysis as well.

  15. Application of Moving Bed Biofilm Reactor (MBBR) and Integrated Fixed Activated Sludge (IFAS) for Biological River Water Purification System: A Short Review

    NASA Astrophysics Data System (ADS)

    Lariyah, M. S.; Mohiyaden, H. A.; Hayder, G.; Hayder, G.; Hussein, A.; Basri, H.; Sabri, A. F.; Noh, MN

    2016-03-01

    This review paper present the MBBR and IFAS technology for urban river water purification including both conventional methods and new emerging technologies. The aim of this paper is to present the MBBR and IFAS technology as an alternative and successful method for treating different kinds of effluents under different condition. There are still current treatment technologies being researched and the outcomes maybe available in a while. The review also includes many relevant researches carried out at the laboratory and pilot scales. This review covers the important processes on MBBR and IFAS basic treatment process, affecting of carrier type and influent types. However, the research concluded so far are compiled herein and reported for the first time to acquire a better perspective and insight on the subject with a view of meeting the news approach. The research concluded so far are compiled herein and reported for the first time to acquire a better perspective and insight on the subject with a view of meeting the news approach. To this end, the most feasible technology could be the combination of advanced biological process (bioreactor systems) including MBBR and IFAS system.

  16. Anaerobic bioleaching of metals from waste activated sludge.

    PubMed

    Meulepas, Roel J W; Gonzalez-Gil, Graciela; Teshager, Fitfety Melese; Witharana, Ayoma; Saikaly, Pascal E; Lens, Piet N L

    2015-05-01

    Heavy metal contamination of anaerobically digested waste activated sludge hampers its reuse as fertilizer or soil conditioner. Conventional methods to leach metals require aeration or the addition of leaching agents. This paper investigates whether metals can be leached from waste activated sludge during the first, acidifying stage of two-stage anaerobic digestion without the supply of leaching agents. These leaching experiments were done with waste activated sludge from the Hoek van Holland municipal wastewater treatment plant (The Netherlands), which contained 342 μg g(-1) of copper, 487 μg g(-1) of lead, 793 μg g(-1) of zinc, 27 μg g(-1) of nickel and 2.3 μg g(-1) of cadmium. During the anaerobic acidification of 3 gdry weight L(-1) waste activated sludge, 80-85% of the copper, 66-69% of the lead, 87% of the zinc, 94-99% of the nickel and 73-83% of the cadmium were leached. The first stage of two-stage anaerobic digestion can thus be optimized as an anaerobic bioleaching process and produce a treated sludge (i.e., digestate) that meets the land-use standards in The Netherlands for copper, zinc, nickel and cadmium, but not for lead.

  17. Effect of Malathion on the Microbial Ecology of Activated Sludge

    DTIC Science & Technology

    2015-03-26

    EFFECT OF MALATHION ON THE MICROBIAL ECOLOGY OF ACTIVATED SLUDGE THESIS Seth K. Martin, Senior Master Sergeant, USAF AFIT-ENV-MS-15-M-095 DEPARTMENT...Government and is not subject to copyright protection in the United States. AFIT-ENV-MS-15-M-095 EFFECT OF MALATHION ON THE MICROBIAL ECOLOGY OF ACTIVATED...UNLIMITED. AFIT-ENV-MS-15-M-095 EFFECT OF MALATHION ON THE MICROBIAL ECOLOGY OF ACTIVATED SLUDGE THESIS Seth K. Martin, B.S. Senior Master Sergeant

  18. Nonoxidative removal of organics in the activated sludge process

    PubMed Central

    Modin, Oskar; Persson, Frank; Wilén, Britt-Marie; Hermansson, Malte

    2016-01-01

    ABSTRACT The activated sludge process is commonly used to treat wastewater by aerobic oxidation of organic pollutants into carbon dioxide and water. However, several nonoxidative mechanisms can also contribute to removal of organics. Sorption onto activated sludge can remove a large fraction of the colloidal and particulate wastewater organics. Intracellular storage of, e.g., polyhydroxyalkanoates (PHA), triacylglycerides (TAG), or wax esters can convert wastewater organics into precursors for high-value products. Recently, several environmental, economic, and technological drivers have stimulated research on nonoxidative removal of organics for wastewater treatment. In this paper, we review these nonoxidative removal mechanisms as well as the existing and emerging process configurations that make use of them for wastewater treatment. Better utilization of nonoxidative processes in activated sludge could reduce the wasteful aerobic oxidation of organic compounds and lead to more resource-efficient wastewater treatment plants. PMID:27453679

  19. Anammox biofilm in activated sludge swine wastewater treatment plants.

    PubMed

    Suto, Ryu; Ishimoto, Chikako; Chikyu, Mikio; Aihara, Yoshito; Matsumoto, Toshimi; Uenishi, Hirohide; Yasuda, Tomoko; Fukumoto, Yasuyuki; Waki, Miyoko

    2017-01-01

    We investigated anammox with a focus on biofilm in 10 wastewater treatment plants (WWTPs) that use activated sludge treatment of swine wastewater. In three plants, we found red biofilms in aeration tanks or final sedimentation tanks. The biofilm had higher anammox 16S rRNA gene copy numbers (up to 1.35 × 10(12) copies/g-VSS) and higher anammox activity (up to 295 μmoL/g-ignition loss/h) than suspended solids in the same tank. Pyrosequencing analysis revealed that Planctomycetes accounted for up to 17.7% of total reads in the biofilm. Most of them were related to Candidatus Brocadia or Ca. Jettenia. The highest copy number and the highest proportion of Planctomycetes were comparable to those of enriched anammox sludge. Thus, swine WWTPs that use activated sludge treatment can fortuitously acquire anammox biofilm. Thus, concentrated anammox can be detected by focusing on red biofilm.

  20. Determination of the acute toxicities of physicochemical pretreatment and advanced oxidation processes applied to dairy effluents on activated sludge.

    PubMed

    Sivrioğlu, Özge; Yonar, Taner

    2015-04-01

    In this study, the acute toxicities of raw, physicochemical pre-treated, ozonated, and Fenton reagent applied samples of dairy wastewater toward activated sludge microorganisms, evaluated using the International Organization for Standardization's respiration inhibition test (ISO 8192), are presented. Five-day biological oxygen demand (BOD5) was measured to determine the biodegradability of physicochemical treatment, ozonation, Fenton oxidation or no treatment (raw samples) of dairy wastewater. Chemical pretreatment positively affected biodegradability, and the inhibition exhibited by activated sludge was removed to a considerable degree. Ozonation and the Fenton process exhibited good chemical oxygen demand removal (61%) and removal of toxins. Low sludge production was observed for the Fenton process applied to dairy effluents. We did not determine the inhibitory effect of the Fenton-process on the activated sludge mixture. The pollutant-removal efficiencies of the applied processes and their associated operating costs were determined.

  1. Oxygen transfer dynamics and activated sludge floc structure under different sludge retention times at low dissolved oxygen concentrations.

    PubMed

    Fan, Haitao; Liu, Xiuhong; Wang, Hao; Han, Yunping; Qi, Lu; Wang, Hongchen

    2017-02-01

    In activated sludge systems, the aeration process consumes the most energy. The energy cost can be dramatically reduced by decreasing the operating dissolved oxygen (DO) concentration. However, low DO may lead to incomplete nitrification and poor settling performance of activated sludge flocs (ASFs). This study investigates oxygen transfer dynamics and settling performances of activated sludge under different sludge retention times (SRTs) and DO conditions using microelectrodes and microscopic techniques. Our experimental results showed that with longer SRTs, treatment capacity and settling performances of activated sludge improved due to smaller floc size and less extracellular polymeric substances (EPS). Long-term low DO conditions produced larger flocs and more EPS per unit sludge, which produced a more extensive anoxic area and led to low oxygen diffusion performance in flocs. Long SRTs mitigated the adverse effects of low DO. According to the microelectrode analysis and fractal dimension determination, smaller floc size and less EPS in the long SRT system led to high oxygen diffusion property and more compact floc structure that caused a drop in the sludge volume index (SVI). In summary, our results suggested that long SRTs of activated sludge can improve the operating performance under low DO conditions.

  2. Reduction of selenite to elemental selenium nanoparticles by activated sludge.

    PubMed

    Jain, Rohan; Matassa, Silvio; Singh, Satyendra; van Hullebusch, Eric D; Esposito, Giovanni; Lens, Piet N L

    2016-01-01

    Total selenium removal by the activated sludge process, where selenite is reduced to colloidal elemental selenium nanoparticles (BioSeNPs) that remain entrapped in the activated sludge flocs, was studied. Total selenium removal efficiencies with glucose as electron donor (2.0 g chemical oxygen demand (COD) L(-1)) at neutral pH and 30 °C gave 2.9 and 6.8 times higher removal efficiencies as compared to the electron donors lactate and acetate, respectively. Total selenium removal efficiencies of 79 (±3) and 86 (±1) % were achieved in shake flasks and fed batch reactors, respectively, at dissolved oxygen (DO) concentrations above 4.0 mg L(-1) and 30 °C when fed with 172 mg L(-1) (1 mM) Na2SeO3 and 2.0 g L(-1) COD of glucose. Continuously operated reactors operating at neutral pH, 30 °C and a DO >3 mg L(-1) removed 33.98 and 36.65 mg of total selenium per gram of total suspended solids (TSS) at TSS concentrations of 1.3 and 3.0 g L(-1), respectively. However, selenite toxicity to the activated sludge led to failure of a continuously operating activated sludge reactor at the applied loading rates. This suggests that a higher hydraulic retention time (HRT) or different reactor configurations need to be applied for selenium-removing activated sludge processes. Graphical Abstract Scheme representing the possible mechanisms of selenite reduction at high and low DO levels in the activated sludge process.

  3. Effect of microwave pre-treatment of thickened waste activated sludge on biogas production from co-digestion of organic fraction of municipal solid waste, thickened waste activated sludge and municipal sludge.

    PubMed

    Ara, E; Sartaj, M; Kennedy, K

    2014-12-01

    Anaerobic co-digestion of organic fraction of municipal solid waste, with thickened waste activated sludge and primary sludge has the potential to enhance biodegradation of solid waste, increase longevity of existing landfills and lead to more sustainable development by improving waste to energy production. This study reports on mesophilic batch and continuous studies using different concentrations and combinations (ratios) of organic fraction of municipal solid waste, thickened waste activated sludge (microwave pre-treated and untreated) and primary sludge to assess the potential for improved biodegradability and specific biogas production. Improvements in specific biogas production for batch assays, with concomitant improvements in total chemical oxygen demand and volatile solid removal, were obtained with organic fraction of municipal solid waste:thickened waste activated sludge:primary sludge mixtures at a ratio of 50:25:25 (with and without thickened waste activated sludge microwave pre-treatment). This combination was used for continuous digester studies. At 15 d hydraulic retention times, the co-digestion of organic fraction of municipal solid waste:organic fraction of municipal solid waste:primary sludge and organic fraction of municipal solid waste:thickened waste activated sludge microwave:primary sludge resulted in a 1.38- and 1.46-fold increase in biogas production and concomitant waste stabilisation when compared with thickened waste activated sludge:primary sludge (50:50) and thickened waste activated sludge microwave:primary sludge (50:50) digestion at the same hydraulic retention times and volumetric volatile solid loading rate, respectively. The digestion of organic fraction of municipal solid waste with primary sludge and thickened waste activated sludge provides beneficial effects that could be implemented at municipal wastewater treatment plants that are operating at loading rates of less than design capacity.

  4. Fate of linear alkylbenzene sulfonate (LAS) in activated sludge plants.

    PubMed

    Temmink, H; Klapwijk, Bram

    2004-02-01

    Monitoring data were collected in a pilot-scale municipal activated sludge plant to assess the fate of the C12-homologue of linear alkyl benzene sulfonate (LAS-C12). The pilot-plant was operated at influent LAS-C12 concentrations between 2 and 12 mg l(-1) and at sludge retention times of 10 and 27 days. Effluent and waste sludge concentrations varied between 5 and 10 microg l(-1) and between 37 and 69 microg g(-1) VSS, respectively. In the sludge samples only 2-8% was present as dissolved LAS-C12, whereas the remaining 92-98% was found to be adsorbed to the sludge. In spite of this high degree of sorption, more than 99% of the LAS-C12 load was removed by biodegradation, showing that not only the soluble fraction but also the adsorbed fraction of LAS-C12 is readily available for biodegradation. Sorption and biodegradation of LAS-C12 were also investigated separately. Sorption was an extremely fast and reversible process and could be described by a linear isotherm with a partition coefficient of 3.2 l g(-1) volatile suspended solids. From the results of biodegradation kinetic tests it was concluded that primary biodegradation of LAS-C12 cannot be described by a (growth) Monod model, but a secondary utilisation model should be used instead. The apparent affinity of the sludge to biodegrade LAS-C12 increased when the sludge was loaded with higher influent concentrations of LAS-C12.

  5. Treatment of industrial effluents by a continuous system: electrocoagulation--activated sludge.

    PubMed

    Moisés, Tejocote-Pérez; Patricia, Balderas-Hernández; Barrera-Díaz, C E; Gabriela, Roa-Morales; Natividad-Rangel, Reyna

    2010-10-01

    A continuous system electrocoagulation--active sludge was designed and built for the treatment of industrial wastewater. The system included an electrochemical reactor with aluminum electrodes, a clarifier and a biological reactor. The electrochemical reactor was tested under different flowrates (50, 100 and 200 mL/min). In the biological reactor, the performance of different cultures of active sludge was assessed: coliform bacterial, ciliate and flagellate protozoa and aquatic fungus. Overall treatment efficiencies of color, turbidity and COD removal were 94%, 92% and 80%, respectively, under optimal conditions of 50 mL/min flowrate and using ciliate and flagellate protozoa. It was concluded that the system was efficient for the treatment of industrial wastewater.

  6. [Activated Sludge Bacteria Transforming Cyanopyridines and Amides of Pyridinecarboxylic Acids].

    PubMed

    Demakov, V A; Vasil'ev, D M; Maksimova, Yu G; Pavlova, Yu A; Ovechkina, G V; Maksimov, A Yu

    2015-01-01

    Species diversity of bacteria from the activated sludge of Perm biological waste treatment facilities capable of transformation of cyanopyridines and amides of pyridinecarboxylic acids was investigated. Enrichment cultures in mineral media with 3-cyanopyridine as the sole carbon and nitrogen source were used to obtain 32 clones of gram-negative heterotrophic bacteria exhibiting moderate growth on solid and liquid media with 3- and 4-cyanopyridine. Sequencing of the 16S rRNA gene fragments revealed that the clones with homology of at least 99% belonged to the genera Acinetobacte, Alcaligenes, Delftia, Ochrobactrum, Pseudomonas, Stenotrophomonas, and Xanthobacter. PCR analysis showed that 13 out of 32 isolates contained the sequences (-1070 bp) homologous to the nitrilase genes reported previously in Alcaligenes faecalis JM3 (GenBank, D13419.1). Nine clones were capable of nitrile and amide transformation in minimal salt medium. Acinetobacter sp. 11 h and Alcaligenes sp. osv transformed 3-cyanopyridine to nicotinamide, while most of the clones possessed amidase activity (0.5 to 46.3 mmol/(g h) for acetamide and 0.1 to 5.6 mmol/(g h) for nicotinamide). Nicotinamide utilization by strain A. faecalis 2 was shown to result in excretion of a secondary metabolite, which was identified as dodecyl acrylate at 91% probability.

  7. Two-phased hyperthermophilic anaerobic co-digestion of waste activated sludge with kitchen garbage.

    PubMed

    Lee, Myungyeol; Hidaka, Taira; Tsuno, Hiroshi

    2009-11-01

    For co-digestion of waste activated sludge with kitchen garbage, hyperthermophilic digester systems that consisted of an acidogenic reactor operated at hyperthermophilic (70 degrees C) and a methanogenic reactor operated at mesophilic (35 degrees C), thermophilic (55 degrees C) or hyperthermophilic (65 degrees C) conditions in series were studied by comparing with a thermophilic digester system that consisted of thermophilic (55 degrees C) acidogenic and methanogenic reactors. Laboratory scale reactors were operated continuously fed with a substrate blend composed of concentrated waste activated sludge and artificial kitchen garbage. At the acidogenic reactor, solubilization efficiencies of chemical oxygen demand (COD), carbohydrate and protein at 70 degrees C were about 39%, 42% and 54%, respectively, and they were higher than those at 55 degrees C by around 10%. The system of acidogenesis at 70 degrees C and methanogenesis at 55 degrees C was stable and well-functioned in terms of treatment performances and low ammonium nitrogen concentrations. Microbial community analysis was conducted using a molecular biological method. The key microbe determined at the hyperthermophilic acidogenesis step was Coprothermobacter sp., which was possibly concerned with the degradation of protein in waste activated sludge. The present study proved that the hyperthermophilic system was advantageous for treating substrate blends containing high concentrations of waste activated sludge.

  8. Microwave pyrolysis of oily sludge with activated carbon.

    PubMed

    Chen, Yi-Rong

    2016-12-01

    The aim of this study is to explore catalytic microwave pyrolysis of crude oil storage tank sludge for fuels using granular activated carbon (GAC) as a catalyst. The effect of GAC loading on the yield of pyrolysis products was also investigated. Heating rate of oily sludge and yield of microwave pyrolysis products such as oil and fuel gas was found to depend on the ratio of GAC to oily sludge. The optimal GAC loading was found to be 10%, while much smaller and larger feed sizes adversely influenced production. During oily sludge pyrolysis, a maximum oil yield of 77.5% was achieved. Pyrolytic oils with high concentrations of diesel oil and gasoline (about 70 wt% in the pyrolytic oil) were obtained. The leaching of heavy metals, such as Cr, As and Pb, was also suppressed in the solid residue after pyrolysis. This technique provides advantages such as harmless treatment of oily sludge and substantial reduction in the consumption of energy, time and cost.

  9. [Dynamics of quickly absorption of the carbon source in wastewater by activated sludge].

    PubMed

    Liu, Hong-Bo; Wen, Xiang-Hua; Zhao, Fang

    2011-09-01

    In this paper, absorption characteristics of organic matter in municipal wastewater by three kinds of activated sludge (carbon-enriching, nitrification and denitrification sludge) were studied, and the absorption kinetic data was checked using three kinds of absorption kinetic equations based on Ritchie rate equation. The objectives of this study were to investigate the absorption mechanism of activated sludge to organic matter in municipal wastewater, and to identify the possibility of reclaiming organic matter by activated sludge. Results indicated that in the early 30 min, absorption process of organic matter by activated sludge was found to be mainly physical adsorption, which could be expressed by the Lagergren single-layer adsorption model. The carbon-enriching sludge had the highest adsorption capacity (COD/SS) which was 60 mg/g but the adsorption rate was lower than that of denitrification sludge. While nitrification sludge had the lowest adsorption rate and higher adsorption capacity compared with denitrification sludge, which was about 35 mg/g. The rates of the fitting index theta(0) of carbon-enriching, nitrification and denitrification sludge were 0.284, 0.777 and 0.923, respectively, which indicated that the sorbed organic matter on the surface of carbon-enriching sludge was the easiest fraction to be washed away. That is, the combination intensity of carbon-enriching sludge and organic matter was the feeblest, which was convenient for carbon-enriching sludge to release sorbed carbon. Furthermore, by fitting with Langmuir model, concentration of organic matter was found to be the key parameter influencing the adsorption capacity of activated sludge, while the influence of temperature was not obvious. The kinetic law of organic matter absorption by activated sludge was developed, which introduces a way to kinetically analyze the removing mechanism of pollutant by activated sludge and provides theoretical base for the reclaiming of nutriments in

  10. How does the entering of copper nanoparticles into biological wastewater treatment system affect sludge treatment for VFA production.

    PubMed

    Chen, Hong; Chen, Yinguang; Zheng, Xiong; Li, Xiang; Luo, Jingyang

    2014-10-15

    Usually the studies regarding the effect of engineered nanoparticles (NPs), which are released to wastewater treatment plant, on sludge anaerobic treatment in the literature have been conducted by directly adding NPs to sludge treatment system. Actually, NPs must enter into the wastewater treatment facility from influent before sludge being treated. Thus, the documented results can not reflect the real situations. During sludge anaerobic treatment for producing volatile fatty acids (VFA, the preferred carbon source for wastewater biological nutrient removal), it was found in this study that the entering of CuNPs to biological wastewater treatment system had no significant effect on sludge-derived VFA generation, while direct addition of CuNPs to sludge fermentation reactor caused a much lower VFA production, when compared to the control test. Further investigation revealed that the entering of CuNPs into wastewater biological treatment system improved sludge solubilization due to the decline of sludge particle size and the increase of sludge microorganism cells breakage. In addition, there was no obvious influence on hydrolysis, while significant inhibition was observed on acidification, resulting in the final VFA production similar to the control. When CuNPs were directly added to the fermentation system, the solubilization was little influenced, however the hydrolysis and acidification were seriously inhibited, causing the ultimate VFA generation decreased. Therefore, selecting proper method close to the real situation is vital to accurately assess the toxicity of nanoparticles on sludge anaerobic fermentation.

  11. Treatment of biomass gasification wastewater using a combined wet air oxidation/activated sludge process

    SciTech Connect

    English, C.J.; Petty, S.E.; Sklarew, D.S.

    1983-02-01

    A lab-scale treatability study for using thermal and biological oxidation to treat a biomass gasification wastewater (BGW) having a chemical oxygen demand (COD) of 46,000 mg/l is described. Wet air oxidation (WA0) at 300/sup 0/C and 13.8 MPa (2000 psi) was used to initially treat the BGW and resulted in a COD reduction of 74%. This was followed by conventional activated sludge treatment using operating conditions typical of municipal sewage treatment plants. This resulted in an additional 95% COD removal. Overall COD reduction for the combined process was 99%. A detailed chemical analysis of the raw BGW and thermal and biological effluents was performed using gas chromatography/mass spectrometry (GC/MS). These results showed a 97% decrease in total extractable organics with WA0 and a 99.6% decrease for combined WA0 and activated sludge treatment. Components of the treated waters tended to be fewer in number and more highly oxidized. An experiment was conducted to determine the amount of COD reduction caused by volatilization during biological treatment. Unfortunately, this did not yield conclusive results. Treatment of BGW using WA0 followed by activated sludge appears to be very effective and investigations at a larger scale are recommended.

  12. Advanced Activated Sludge. Training Module 2.117.4.77.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with operation of activated sludge wastewater treatment plants. Included are objectives, instructor guides, student handouts and transparency masters. This is the third level of a three module series and considers design and operation…

  13. Microscopic Analysis of Plankton, Periphyton, and Activated Sludge. Training Manual.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Water Programs.

    This manual is intended for professional personnel in the fields of water pollution control, limnology, water supply and waste treatment. Primary emphasis is given to practice in the identification and enumeration of microscopic organisms which may be encountered in water and activated sludge. Methods for the chemical and instrumental evaluation…

  14. Intermediate Activated Sludge. Training Module 2.116.3.77.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with operation of activated sludge wastewater treatment plants. Included are objectives, instructor guides, student handouts and transparency masters. This is the second level of a three module series and considers aeration devices,…

  15. Basic Activated Sludge. Training Module 2.115.2.77.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with operation of activated sludge wastewater treatment plants. Included are objectives, instructor guides, student handouts, and transparency masters. This is the first of a three module series and considers definition of terms, design…

  16. Calibrating a side-stream membrane bioreactor using Activated Sludge Model No. 1.

    PubMed

    Jiang, T; Liu, X; Kennedy, M D; Schippers, J C; Vanrolleghem, P A

    2005-01-01

    Membrane bioreactors (MBRs) are attracting global interest but the mathematical modeling of the biological performance of MBRs remains very limited. This study focuses on the modeling of a side-stream MBR system using the Activated Sludge Model No. 1 (ASM1), and compares the results with the modeling of traditional activated sludge processes. ASM1 parameters relevant for the long-term biological behaviour in MBR systems were calibrated (i.e. Y(H) = 0.72 gCOD/gCOD, Y(A) = 0.25 gCOD/gN, b(H) = 0.25 d(-1), b(A) = 0.080 d(-1) and f(p) = 0.06), and generally agreed with the parameters in traditional activated sludge processes, with the exception that a higher autotrophic biomass decay rate was observed in the MBR. Influent wastewater characterization was proven to be a critical step in model calibration, and special care should be taken in characterizing the inert particulate COD (X(I)) concentration in the MBR influent. It appeared that the chemical-biological method was superior to the physical-chemical method. A sensitivity analysis for steady-state operation and DO dynamics suggested that the biological performance of the MBR system (the sludge concentration, effluent quality and the DO dynamics) are very sensitive to the parameters (i.e. Y(H), Y(A), b(H), b(A) micro(maxH) and micro(maxA), and influent wastewater components (X(I), S(s), X(s) and S(NH)).

  17. PAH removal from spiked municipal wastewater sewage sludge using biological, chemical and electrochemical treatments.

    PubMed

    Zheng, Xue-Jing; Blais, Jean-François; Mercier, Guy; Bergeron, Mario; Drogui, Patrick

    2007-06-01

    Polycyclic aromatic hydrocarbons (PAHs) have been widely studied due to their presence in all the environmental media and toxicity to life. These molecules are strongly adsorbed on the particulate matters of soils, sludges or sediments because of their strong hydrophobicity which makes them less bioavailability, thus limiting their bioremediation. Different sludge treatment processes were tested to evaluate their performances for PAH removal from sludge prealably doped with 11 PAHs (5.5mg each PAH kg(-1) of dry matter (DM)): two biological processes (mesophilic aerobic digestion (MAD) and simultaneous sewage sludge digestion and metal leaching (METIX-BS)) were tested to evaluate PAH biodegradation in sewage sludge. In parallel, two chemical processes (quite similar Fenton processes: chemical metal leaching (METIX-AC) and chemical stabilization (STABIOX)) and one electrochemical process (electrochemical stabilization (ELECSTAB)) were tested to measure PAH removal by these oxidative processes. Moreover, PAH solubilisation from sludge by addition of a nonionic surfactant Tween 80 (Tw80) was also tested. The best yields of PAH removal were obtained by MAD and METIX-BS with more than 95% 3-ring PAH removal after a 21-day treatment period. Tw80 addition during MAD treatment increased 4-ring PAHs removal rate. In addition, more than 45% of 3-ring PAHs were removed from sludge by METIX-AC and during ELECSTAB process were quiet good with approximately 62% of 3-ring PAHs removal. However, little weaker removal of 3-ring PAHs (<35%) by STABIOX. None of the tested processes were efficient for the elimination of high molecular weight (> or = 5-ring) PAHs from sludge.

  18. Short-chain fatty acid production from different biological phosphorus removal sludges: the influences of PHA and Gram-staining bacteria.

    PubMed

    Wang, Dongbo; Chen, Yinguang; Zheng, Xiong; Li, Xiang; Feng, Leiyu

    2013-03-19

    Recently, the reuse of waste activated sludge to produce short-chain fatty acids (SCFA) has attracted much attention. However, the influences of sludge characteristics, especially polyhydroxyalkanoates (PHA) and Gram-staining bacteria, on SCFA production have seldom been investigated. It was found in this study that during sludge anaerobic fermentation not only the fermentation time but also the SCFA production were different between two sludges, which had different PHA contents and Gram-negative bacteria to Gram-positive bacteria (GNB/GPB) ratios and were generated respectively from the anaerobic/oxic (AO) and aerobic/extended-idle (AEI) biological phosphorus removal processes. The optimal fermentation time for the AEI and AO sludges was respectively 4 and 8 d, and the corresponding SCFA production was 304.6 and 231.0 mg COD/g VSS (volatile suspended solids) in the batch test and 143.4 and 103.9 mg COD/g VSS in the semicontinuous experiment. The mechanism investigation showed that the AEI sludge had greater PHA content and GNB/GPB ratio, and the increased PHA content accelerated cell lysis and soluble substrate hydrolysis while the increased GNB/GPB ratio benefited cell lysis. Denaturing gradient gel electrophoresis profiles revealed that the microbial community in the AEI sludge fermentation reactor was dominated by Clostridium sp., which was reported to be SCFA-producing microbes. Further enzyme analyses indicated that the activities of key hydrolytic and acids-forming enzymes in the AEI sludge fermentation reactor were higher than those in the AO one. Thus, less fermentation time was required, but higher SCFA was produced in the AEI sludge fermentation system.

  19. Enhanced biological nutrient removal in a simultaneous fermentation, denitrification and phosphate removal reactor using primary sludge as internal carbon source.

    PubMed

    Zhang, Liang; Zhang, Shujun; Wang, Shuying; Wu, Chengcheng; Chen, Yinguang; Wang, Yayi; Peng, Yongzhen

    2013-04-01

    The production of volatile fatty acids (VFAs) from primary sludge and the subsequent application to improve biological nutrient removal has drawn much attention. In this study, a novel approach of using primary sludge as an additional carbon source was conducted in batch tests. The nitritation effluent was directly injected into the sludge fermentation reactor to achieve nitrogen removal. Complete denitrification could be realized in the combined reactor. Moreover, injecting nitrite not only promoted the sludge stabilization process, but also reduced the release of phosphate and ammonium during sludge stabilization. The novel process was further evaluated in a continuous system by treating sludge dewatering liquors. Under optimum conditions, 85% removal of ammonium and 75% of total nitrogen could be obtained using primary sludge, resulting in the suitable effluent for recycling into the inlet of the wastewater treatment plant.

  20. A hundred years of activated sludge: time for a rethink

    PubMed Central

    Sheik, Abdul R.; Muller, Emilie E. L.; Wilmes, Paul

    2014-01-01

    Biological wastewater treatment plants (BWWTPs) based on the activated sludge (AS) process have dramatically improved worldwide water sanitation despite increased urbanization and industrialization. However, current AS-based operations are considered economically and environmentally unsustainable. In this Perspective, we discuss our current understanding of microbial populations and their metabolic transformations in AS-based BWWTPs in view of developing more sustainable processes in the future. In particular, much has been learned over the course of the past 25 years about specialized microorganisms, which could be more comprehensively leveraged to recover energy and/or nutrients from wastewater streams. To achieve this, we propose a bottom-up design approach, focused around the concept of a “wastewater biorefinery column”, which would rely on the engineering of distinct ecological niches into a BWWTP in order to guarantee the targeted enrichment of specific organismal groups which in turn will allow the harvest of high-value resources from wastewater. This concept could be seen as a possible grand challenge to microbial ecologists and engineers alike at the centenary of the discovery of the AS process. PMID:24624120

  1. Biodegradation of imidazolium ionic liquids by activated sludge microorganisms.

    PubMed

    Liwarska-Bizukojc, Ewa; Maton, Cedric; Stevens, Christian V

    2015-11-01

    Biological properties of ionic liquids (ILs) have been usually tested with the help of standard biodegradation or ecotoxicity tests. So far, several articles on the identification of intermediate metabolites of microbiological decay of ILs have been published. Simultaneously, the number of novel ILs with unrecognized characteristics regarding biodegradability and effect on organisms and environment is still increasing. In this work, seven imidazolium ionic liquids of different chemical structure were studied. Three of them are 1-alkyl-3-methyl-imidazolium bromides, while the other four are tetra- or completely substituted imidazolium iodides. This study focused on the identification of intermediate metabolites of the aforementioned ionic liquids subjected to biodegradation in a laboratory activated sludge system. Both fully substituted ionic liquids and 1-ethyl-3-methyl-imidazolium bromide were barely biodegradable. In the case of two of them, no biotransformation products were detected. The elongation of the alkyl side chain made the IL more susceptible for microbiological decomposition. 1-Decyl-3-methyl-imidazolium bromide was biotransformed most easily. Its primary biodegradation up to 100 % could be achieved. Nevertheless, the cleavage of the imidazolium ring has not been observed.

  2. Membrane bioreactor (MBR) sludge inoculation in a hybrid process scheme concept to assist overloaded conventional activated sludge (CAS) process operations.

    PubMed

    Fenu, A; Roels, J; Van Damme, S; Wambecq, T; Weemaes, M; Thoeye, C; De Gueldre, G; Van De Steene, B

    2012-01-01

    This study analyzes the effect of inoculating membrane bioreactor (MBR) sludge in a parallel-operated overloaded conventional activated sludge (CAS) system. Modelling studies that showed the beneficial effect of this inoculation were confirmed though full scale tests. Total nitrogen (TN) removal in the CAS increased and higher nitrate formation rates were achieved. During MBR sludge inoculation, the TN removal in the CAS was proven to be dependent on MBR sludge loading. Special attention was given to the effect of inoculation on sludge quality. The MBR flocs, grown without selection pressure, were clearly distinct from the more compact flocs in the CAS system and also contained more filamentous bacteria. After inoculation the MBR flocs did not evolve into good-settling compact flocs, resulting in a decreasing sludge quality. During high flow conditions the effluent CAS contained more suspended solids. Sludge volume index, however, did not increase. Laboratory tests were held to determine the threshold volume of MBR sludge to be seeded into the CAS reactor. Above 16-30%, supernatant turbidity and scum formation increased markedly.

  3. Influence of secondary settling tank performance on suspended solids mass balance in activated sludge systems.

    PubMed

    Patziger, M; Kainz, H; Hunze, M; Józsa, J

    2012-05-01

    Secondary settling is the final step of the activated sludge-based biological waste water treatment. Secondary settling tanks (SSTs) are therefore an essential unit of producing a clear effluent. A further important function of SSTs is the sufficient thickening to achieve highly concentrated return sludge and biomass within the biological reactor. In addition, the storage of activated sludge is also needed in case of peak flow events (Ekama et al., 1997). Due to the importance of a high SST performance the problem has long been investigated (Larsen, 1977; Krebs, 1991; Takács et al., 1991; Ekama et al., 1997; Freimann, 1999; Patziger et al., 2005; Bürger et al., 2011), however, a lot of questions are still to solve regarding e.g. the geometrical features (inflow, outflow) and operations (return sludge control, scraper mechanism, allowable maximum values of surface overflow rates). In our study we focused on SSTs under dynamic load considering both the overall unsteady behaviour and the features around the peaks, investigating the effect of various sludge return strategies as well as the inlet geometry on SST performance. The main research tool was a FLUENT-based novel mass transport model consisting of two modules, a 2D axisymmetric SST model and a mixed reactor model of the biological reactor (BR). The model was calibrated and verified against detailed measurements of flow and concentration patterns, sludge settling, accompanied with continuous on-line measurement of in- and outflow as well as returned flow rates of total suspended solids (TSS) and water. As to the inlet arrangement a reasonable modification of the geometry could result in the suppression of the large scale flow structures of the sludge-water interface thus providing a significant improvement in the SST performance. Furthermore, a critical value of the overflow rate (q(crit)) was found at which a pronounced large scale circulation pattern develops in the vertical plane, the density current in

  4. Heavy metals and adsorbents effects on activated sludge microorganisms.

    PubMed

    Ong, S A; Lim, P E; Seng, C E

    2004-01-01

    The sorption of Cu(II) and Cd(II) from synthetic solution by powdered activated carbon (PAC), biomass, rice husk (RH) and activated rice husk (ARH) were investigate under batch conditions. After activated by concentrated nitric acid for 15 hours at 60-65 degrees C, the adsorption capacity for RH was increased. The adsorbents arranged in the increasing order of adsorption capacities to the Langmuir Q degree parameter were biomass > PAC > ARH > RH. The addition of adsorbents in base mix solution had increased the specific oxygen uptake rate (SOUR) activated sludge microorganisms with and without the presence of metals. The increased of SOUR were due to the ability of PAC and RH in reducing the inhibitory effect of metals on microorganisms and provide a reaction site between activated sludge microorganisms and substrates.

  5. Methane recovery from water hyacinth through anaerobic activated sludge process

    SciTech Connect

    Savaswat, N.; Khana, P.

    1986-02-01

    The concepts of phase separation, anaerobic activated sludge process, and alkali pretreatment have been incorporated in this investigation with the objective of developing rational and cost-effective designs of diphasic anaerobic activated sludge systems, with and without alkali treatment, for methane recovery from water hyacinth (WH). Evaluation of process kinetics and optimization analyses of laboratory data reveal that a diphasic system with alkali treatment could be designed with an alkali pretreatment step (3.6% Na/sub 2/CO/sub 3/ + 2.5% Ca(OH)/sub 2/ (w/w) of WH, 24 h duration) followed by an open acid phase (2.1 days HRT) and closed methane reactor with sludge recycle (5.7 days HRT, 7.7 days MCRT) for gas yield of 50 L/kg WH/d at 35-37/sup 0/C. Likewise, a diphasic system without alkali treatment could be designed with an open acid phase (2 days HRT) followed by closed methane reactor with sludge recycle (3.2 days HRT, 6 days MCRT) for gas yield of 32.5 L/kg WH/d at 35-37/sup 0/C. Detailed economic analyses bring forth greater cost-efficacy of the diphasic system without alkali treatment and reveal that the advantage accrued in terms of higher gas yield is overshadowed by the cost of chemicals in the diphasic system with alkali treatment.

  6. Methane recovery from water hyacinth through anaerobic activated sludge process

    SciTech Connect

    Saraswat, N.; Khanna, P.

    1986-02-01

    The concepts of phase separation, anaerobic activated sludge process, and alkali pretreatment have been incorporated in this investigation with the objective of developing rational and cost-effective designs of diphasic anaerobic activated sludge systems, with and without alkali treatment, for methane recovery from water hyacinth (WH). Evaluation of process kinetics and optimization analyses of laboratory data reveal that a diphasic system with alkali treatment could be designed with an alkali pretreatment step (3.6% Na/sub 2/CO/sub 3/ + 2.5% Ca(OH)/sub 2/ (w/w) of WH, 24 h duration) followed by an open acid phase (2.1 days HRT) and closed methane reactor with sludge recycle (5.7 days HRT, 7.7 days MCRT) for gas yield of 50 l/kg WH/d at 35-37/sup 0/C. Likewise, a diphasic system without alkali treatment could be designed with an open acid phase (2 days HRT) followed by close methane reactor with sludge recycle (3.2 days HRT, 6 days MCRT) for gas yield of 32.5 l.kg WH/d at 35-37/sup 0/C. Detailed economic analyses bring forth greater cost-efficacy of the diphasic system without alkali treatment and reveal that the advantage accrued in terms of higher gas yield is overshadowed by the cost of chemicals in the diphasic system with alkali treatment.

  7. Simultaneous nitrogen and phosphorus recovery from sludge-fermentation liquid mixture and application of the fermentation liquid to enhance municipal wastewater biological nutrient removal.

    PubMed

    Zhang, Chao; Chen, Yinguang

    2009-08-15

    Recently, waste activated sludge (WAS) fermentation for short-chain fatty acids (SCFAs) production has drawn much attention because the waste biosolids produced in wastewater treatment plants (WWTP) can be reused, and the produced SCFAs can be applied to promote biological nutrient removal (BNR). Usually, after WAS fermentation, the fermentation liquid is separated and then the recovery of ammonium and phosphorus, which are released during WAS fermentation, is conducted to prevent the increase of nitrogen and phosphorus loadings to WWTP. As an alternative to the traditional process, this paper investigated the recovery of ammonium and phosphorus in the formation of struvite before sludge-liquid separation, and its positive effecton the following sludge-liquid filtration separation. First, the conditions for ammonium and phosphorus recovery from the WAS fermentation mixture were optimized by response surface methodology (RSM). Then, the effect of ammonium and phosphorus recovery on sludge filtration dewatering was investigated. With ammonium and phosphorus recovery, it was observed that the specific resistance to filtration (SRF), the capillary suction time (CST), and the sludge volume after filtration reduced by 96.9, 99.6, and 88.7%, respectively, compared with no ammonium and phosphorus recovered sludge. Third, the mechanisms for ammonium and phosphorus recovery significantly enhancing sludge dewatering capacity were investigated. The formation of struvite, the neutralization of 5 potential, the increase of magnesium ion, which was added during ammonium and phosphorus recovery, and the decrease of sludge polymeric substance caused the improvement of sludge dewatering. Finally, the fermentation liquid was used as the additional carbon source of BNR, and the nutrient removal efficiency was obviously enhanced.

  8. Improve bio-activity of anaerobic sludge by low energy ultrasound.

    PubMed

    Zhu, Yichun; Li, Xin; Du, Maoan; Liu, Zuwen; Luo, Hui; Zhang, Tao

    2015-01-01

    This research focused on ultrasound-enhanced bio-activity of anaerobic sludge. Low energy ultrasound irradiation can increase the bio-activity of anaerobic sludge. Ultrasonic parameter, characteristics of anaerobic sludge and experimental conditions are important parameters which affect the enhancement effect on anaerobic sludge. In order to assess the effects of characteristics of anaerobic sludge and experimental conditions on ultrasonic irradiation of anaerobic sludge, experiments with different characteristics of anaerobic sludge were carried out and analyzed with the content of coenzyme F420 and dehydrogenase activity (DHA). The results showed that anaerobic sludge bio-activity was impacted by the initial temperature, initial chemical oxygen demand (COD), sludge concentration, and stirring during the ultrasonic process. Optimal performance was achieved when sound frequency, power density, and ultrasonic irradiation period was 20 kHz, 0.1 W/mL, and 10 min, respectively, under which the wastewater COD removal efficiency was increased by 12.9 percentage points. The results indicated that low temperature could affect the anaerobic sludge irradiation effect, while intermittent stirring could enhance the bio-activity of anaerobic sludge irradiation effect and low substrate concentration improved anaerobic sludge activity by ultrasound.

  9. Simultaneous nitrification-denitrification and clarification in a pseudoliquified activated sludge system.

    PubMed

    Nakhla, George F; Lugowski, Andrew; Sverdlikov, Anatoly; Scherbina, Gennadij; Babcock, Ken

    2005-01-01

    This paper describes results from a pilot study of a novel wastewater treatment technology, which incorporates nutrient removal and solids separation to a single step. The pseudoliquified activated sludge process pilot system was tested on grit removal effluent at flowrates of 29.4 to 54.7 m3/d, three different solid residence times (SRT) (15, 37, and 57 days), and over a temperature range of 12 to 28 degrees C. Despite wide fluctuations in the influent characteristics, the system performed reliably and consistently with respect to organics and total suspended solids (TSS) removals, achieving biochemical oxygen demand (BOD) and TSS reductions of > 96% and approximately 90%, respectively, with BOD5 and TSS concentrations as low as 3 mg/L. Although the system achieved average effluent ammonia concentrations of 2.7 to 3.2 mg/L, nitrification efficiency appeared to be hampered at low temperatures (< 15 degrees C). The system achieved tertiary effluent quality with denitrification efficiencies of 90 and 91% total nitrogen removal efficiency at a total hydraulic retention time of 4.8 hours and an SRT of 12 to 17 days. With ferric chloride addition, effluent phosphorous concentrations of 0.5 to 0.8 mg/L were achieved. Furthermore, because of operation at high biomass concentrations and relatively long biological SRTs, sludge yields were over 50% below typical values for activated sludge plants. The process was modeled using activated sludge model No. 2, as a two-stage system comprised an aerobic activated sludge system followed by an anoxic system. Model predictions for soluble BOD, ammonia, nitrates, and orthophosphates agreed well with experimental data.

  10. Metabolic modelling of full-scale enhanced biological phosphorus removal sludge.

    PubMed

    Lanham, Ana B; Oehmen, Adrian; Saunders, Aaron M; Carvalho, Gilda; Nielsen, Per H; Reis, Maria A M

    2014-12-01

    This study investigates, for the first time, the application of metabolic models incorporating polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) towards describing the biochemical transformations of full-scale enhanced biological phosphorus removal (EBPR) activated sludge from wastewater treatment plants (WWTPs). For this purpose, it was required to modify previous metabolic models applied to lab-scale systems by incorporating the anaerobic utilisation of the TCA cycle and the aerobic maintenance processes based on sequential utilisation of polyhydroxyalkanoates, followed by glycogen and polyphosphate. The abundance of the PAO and GAO populations quantified by fluorescence in situ hybridisation served as the initial conditions of each biomass fraction, whereby the models were able to describe accurately the experimental data. The kinetic rates were found to change among the four different WWTPs studied or even in the same plant during different seasons, either suggesting the presence of additional PAO or GAO organisms, or varying microbial activities for the same organisms. Nevertheless, these variations in kinetic rates were largely found to be proportional to the difference in acetate uptake rate, suggesting a viable means of calibrating the metabolic model. The application of the metabolic model to full-scale sludge also revealed that different Accumulibacter clades likely possess different acetate uptake mechanisms, as a correlation was observed between the energetic requirement for acetate transport across the cell membrane with the diversity of Accumulibacter present. Using the model as a predictive tool, it was shown that lower acetate concentrations in the feed as well as longer aerobic retention times favour the dominance of the TCA metabolism over glycolysis, which could explain why the anaerobic TCA pathway seems to be more relevant in full-scale WWTPs than in lab-scale systems.

  11. Evaluation-of soil enzyme activities as soil quality indicators in sludge-amended soils.

    PubMed

    Dindar, Efsun; Şağban, Fatma Olcay Topaç; Başkaya, Hüseyin Savaş

    2015-07-01

    Soil enzymatic activities are commonly used as biomarkers of soil quality. Several organic and inorganic compounds found in municipal wastewater sludges can possibly be used as fertilizers. Monitoring and evaluating the quality of sludge amended soils with enzyme activities accepted as a beneficial practice with respect to sustainable soil management. In the present study, variation of some enzyme activities (Alkaline phosphatase, dehydrogenase, urease and beta-glucosidase activities) in soils amended with municipal wastewater sludge at different application rates (50, 100 and 200 t ha(-1) dry sludge) was evaluated. Air dried sludge samples were applied to soil pots and sludge-soil mixtures were incubated during a period of three months at 28 degrees C. The results of the study showed that municipal wastewater sludge amendment apparently increased urease, dehydrogenase, alkaline phosphatase and P-glucosidase activities in soil by 48-70%, 14-47%, 33-66% and 9-14%, respectively. The maximum activity was generally observed in sludge amended soil with dose of 200 t ha(-1). Urease activity appeared to be a better indicator of soil enhancement with wastewater sludge, as its activity was more strongly increased by sludge amendment. Accordingly, urease activity is suggested to be soil quality indicator best suited for measuring existing conditions and potential changes in sludge-amended soil.

  12. Critical review of the influences of nanoparticles on biological wastewater treatment and sludge digestion.

    PubMed

    Wang, Dongbo; Chen, Yinguang

    2016-10-01

    Nanoparticles (NPs), with at least one dimension less than 100 nm, are substantially employed in consumer and industrial products due to their specific physical and chemical properties. The wide uses of engineered NPs inevitably cause their release into the environment, especially wastewater treatment plants. Therefore, it is essential to systematically assess their potential impact on biological wastewater treatment and subsequent sewage sludge digestion. This review aims to provide such support. First, this paper reviews the recent advances on the analytical developments and nano-bio interface of NPs in wastewater and sewage sludge treatment. The effects of NPs on biological wastewater treatment and sewage sludge digestion and related mechanisms are discussed in detail. Finally, the key questions that need to be answered in the future are pointed out, which include on-line revelation of the changes of NPs in sewage and sludge environments, in situ assessment of the variations of microorganisms involved in these biological systems after they are exposed to NPs. Differentiation of the contribution of individual toxicity mechanisms to these systems, and the identification of under what conditions the nanoparticle-induced toxicity will be increased or decreased are also considered.

  13. Biofilms Versus Activated Sludge: Considerations in Metal and Metal Oxide Nanoparticle Removal from Wastewater.

    PubMed

    Walden, Connie; Zhang, Wen

    2016-08-16

    The increasing application of metal and metal oxide nanoparticles [Me(O)NPs] in consumer products has led to a growth in concentration of these nanoparticles in wastewater as emerging contaminants. This may pose a threat to ecological communities (e.g., biological nutrient removal units) within treatment plants and those subject to wastewater effluents. Here, the toxicity, fate, and process implications of Me(O)NPs within wastewater treatment, specifically during activated sludge processing and biofilm systems are reviewed and compared. Research showed activated sludge achieves high removal rate of Me(O)NPs by the formation of aggregates through adsorption. However, recent literature reveals evidence that inhibition is likely for nutrient removal capabilities such as nitrification. Biofilm systems were much less studied, but show potential to resist Me(O)NP inhibition and achieve removal through possible retention by sorption. Implicating factors during bacteria-Me(O)NP interactions such as aggregation, surface functionalization, and the presence of organics are summarized. At current modeled levels, neither activated sludge nor biofilm systems can achieve complete removal of Me(O)NPs, thus allowing for long-term environmental exposure of diverse biological communities to Me(O)NPs in streams receiving wastewater effluents. Future research directions are identified throughout in order to minimize the impact of these nanoparticles released.

  14. Enhanced Lipid and Biodiesel Production from Glucose-Fed Activated Sludge: Kinetics an Microbial Community Analysis

    EPA Science Inventory

    An innovative approach to increase biofuel feedstock lipid yields from municipal sewage sludge via manipulation of carbon:nitrogen (C:N) ratio and glucose loading in activated sludge bioreactors was investigated. Sludge lipid and fatty acid methyl ester (biodiesel) yields (% cel...

  15. Insights into the amplification of bacterial resistance to erythromycin in activated sludge.

    PubMed

    Guo, Mei-Ting; Yuan, Qing-Bin; Yang, Jian

    2015-10-01

    Wastewater treatment plants are significant reservoirs for antimicrobial resistance. However, little is known about wastewater treatment effects on the variation of antibiotic resistance. The shifts of bacterial resistance to erythromycin, a macrolide widely used in human medicine, on a lab-scale activated sludge system fed with real wastewater was investigated from levels of bacteria, community and genes, in this study. The resistance variation of total heterotrophic bacteria was studied during the biological treatment process, based on culture dependent method. The alterations of bacterial community resistant to erythromycin and nine typical erythromycin resistance genes were explored with molecular approaches, including high-throughput sequencing and quantitative polymerase chain reaction. The results revealed that the total heterotrophs tolerance level to erythromycin concentrations (higher than 32 mg/L) was significantly amplified during the activated sludge treatment, with the prevalence increased from 9.6% to 21.8%. High-throughput sequencing results demonstrated an obvious increase of the total heterotrophic bacterial diversity resistant to erythromycin. Proteobacteria and Bacteroidetes were the two dominant phyla in the influent and effluent of the bioreactor. However, the prevalence of Proteobacteria decreased from 76% to 59% while the total phyla number increased greatly from 18 to 29 through activated sludge treatment. The gene proportions of erm(A), mef(E) and erm(D) were greatly amplified after biological treatment. It is proposed that the transfer of antibiotic resistance genes through the variable mixtures of bacteria in the activated sludge might be the reason for the antibiotic resistance amplification. The amplified risk of antibiotic resistance in wastewater treatment needs to be paid more attention.

  16. Application of activated sludge to purify urban soils of Baku city from oil contamination

    NASA Astrophysics Data System (ADS)

    Babaev, M. P.; Nadzhafova, S. I.; Ibragimov, A. G.

    2015-07-01

    A biopreparation inducing oil destruction and increasing the biological activity of soils was developed on the basis of activated sludge. Its oxidative activity towards hydrocarbons was studied. The application of this biopreparation to oil-contaminated soil increased the population density of microorganisms, including destroyers of hydrocarbons, and accelerated oil decomposition. The degree of destruction of oil and oil products in the case of a single treatment of the soil with this biopreparation comprised 30 to 50% within 60 days. The presence of cellulose-decomposing microorganisms in this biopreparation also favored an accelerated decomposition of plant substances, including plant litter and sawdust applied to the urban soils as an adsorbent.

  17. Bioremediation of oil refinery sludge by landfarming in semiarid conditions: influence on soil microbial activity.

    PubMed

    Marin, J A; Hernandez, T; Garcia, C

    2005-06-01

    Bioremediation of a refinery sludge containing hydrocarbons in a semi-arid climate using landfarming techniques is described. The objective of this study was to assess the ability of this technique to reduce the total hydrocarbon content added to the soil with the refinery sludge in semiarid climate (low rain and high temperature). In addition, we have evaluated the effect of this technique on the microbial activity of the soil involved. For this, biological parameters (carbon fractions, microbial biomass carbon, basal respiration and ATP) and biochemical parameters(different enzymatic activities) were determined. The results showed that 80% of the hydrocarbons were eliminated in eleven months, half of this reduction taking place during the first three months. The labile carbon fractions, MBC, basal respiration and ATP of the soils submitted to landfarming showed higher values than the control soil during the first months of the process, although these values fell down by the end of the experimental period as the hydrocarbons were degraded by mineralisation. All the enzymatic activities studied: oxidoreductases such as dehydrogenase activity, and hydrolases of C(beta-glucosidase activity) and N Cycle (urease and protease) showed higher values in the soils amended with the refinery sludge than in the control. As in the case of the previous parameters, these value fell down as the bioremediation of the hydrocarbons progressed, many of them reaching levels similar to those of the control soil after eleven months.

  18. Relationship between protozoan and metazoan communities and operation and performance parameters in a textile sewage activated sludge system.

    PubMed

    Araújo dos Santos, Liliana; Ferreira, Vânia; Pereira, Maria Olívia; Nicolau, Ana

    2014-08-01

    The present study aims at investigating the possibility of assessing performance and depuration conditions of an activated sludge wastewater treatment plant through an exploration of the microfauna. The plant, receiving textile industrial (70%) and domestic (30%) sewage, consists of a two-step biological depurating plant, with activated sludge followed by a percolating system. A total of 35 samples were analyzed during five months, and 30 taxa of protozoa and small metazoa were found. Epistylis rotans, Vorticella microstoma, Aspidisca cicada and Arcella sp. were the most frequent protozoa identified. Several significant correlations between biological, physical-chemical and operational parameters were determined, but no significant correlations could be established between biological parameters and removal efficiencies. The Sludge Biotic Index (SBI) reflected the overall state of the community but only presented statistically significant correlations with the influent total suspended solids (TSS), total suspended solids in mixed-liquor (MLTSS) and dissolved oxygen (DO). The determination of key groups and taxa along with general community parameters showed to have potential value as indicators of the depuration conditions. Despite the impossibility of correlating biological parameters and the removal efficiencies, the present study attests the value of the microfauna to assess the operation of the activated sludge systems even in the case of non-conventional plants and/or plants receiving industrial sewage.

  19. Metaproteomics: Evaluation of protein extraction from activated sludge.

    PubMed

    Hansen, Susan Hove; Stensballe, Allan; Nielsen, Per Halkjaer; Herbst, Florian-Alexander

    2014-11-01

    Metaproteomic studies of full-scale activated sludge systems require reproducible protein extraction methods. A systematic evaluation of three different extractions protocols, each in combination with three different methods of cell lysis, and a commercial kit were evaluated. Criteria used for comparison of each method included the extracted protein concentration and the number of identified proteins and peptides as well as their phylogenetic, cell localization and functional distribution and quantitative reproducibility. Furthermore, the advantage of using specific metagenomes and a 2-step database approach was illustrated. The results recommend a protocol for protein extraction from activated sludge based on the protein extraction reagent B-Per and bead beating. The data have been deposited to the ProteomeXchange with identifier PXD000862 (http://proteomecentral.proteomexchange.org/dataset/PXD000862).

  20. Activity inhibition on municipal activated sludge by single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Parise, Alex; Thakor, Harshrajsinh; Zhang, Xiaoqi

    2014-01-01

    The objective of this study was to evaluate the respiratory activity inhibition of activated sludge used in a typical wastewater treatment plant by single-walled carbon nanotubes (SWCNTs) with different length and functionality. Four types of SWCNTs were evaluated: short, functionalized short, long, and functionalized long. Based on the effective concentration (EC50) values obtained, we determined that functionalized SWCNTs resulted in a higher microbial respiratory inhibition than non-functionalized nanotubes, and long SWCNTs gave a higher microbial respiratory inhibition than their short counterparts. Among the four types of SWCNTs studied, functionalized long exhibited the highest respiration inhibition. Scanning electron microscopy imaging indicates that the long SWCNTs dispersed more favorably after sonication than the short variety. The findings demonstrated that the toxicity of CNTs (exhibited by respiratory inhibition) is related to their physical properties; the length and functionality of SWCNTs affected the toxicity of SWCNTs in a mixed-cultured biologic system.

  1. Enhancing combined biological nitrogen and phosphorus removal from wastewater by applying mechanically disintegrated excess sludge.

    PubMed

    Zubrowska-Sudol, Monika; Walczak, Justyna

    2015-06-01

    The goal of the study was to evaluate the possibility of applying disintegrated excess sludge as a source of organic carbon to enhance biological nitrogen and phosphorus removal. The experiment, performed in a sequencing batch reactor, consisted of two two-month series, without and with applying mechanically disintegrated excess sludge, respectively. The effects on carbon, nitrogen and phosphorus removal were observed. It was shown that the method allows enhancement of combined nitrogen and phosphorus removal. After using disintegrated sludge, denitrification effectiveness increased from 49.2 ± 6.8% to 76.2 ± 2.3%, which resulted in a decline in the NOx-N concentration in the effluent from the SBR by an average of 21.4 mg NOx-N/L. Effectiveness of biological phosphorus removal increased from 28.1 ± 11.3% to 96.2 ± 2.5%, thus resulting in a drop in the [Formula: see text] concentration in the effluent by, on average, 6.05 mg PO4(3-)-P/L. The application of disintegrated sludge did not deteriorate effluent quality in terms of COD and NH4(+)-N. The concentration of NH4(+)-N in both series averaged 0.16 ± 0.11 mg NH4(+)-N/L, and the concentration of COD was 15.36 ± 3.54 mg O2/L.

  2. Characterization of air pollutants from an activated sludge process

    SciTech Connect

    Scheff, P.A.; Holden, J.A.; Wadden, R.A.

    1981-02-01

    An eight-month monitoring study was conducted to characterize air pollutants near a large activated sludge plant in a Chicago suburb. Air pollutants detected include aerobic bacteria-containing particles, total suspended particulates, nitrogen dioxide, sulfur dioxide, chloride, hydrogen sulfides, and trace elements. The wastewater treatment plant is concluded to be a significant source of total coliforms and atmospheric bacteria-containing particles. (6 maps, 23 references, 6 tables)

  3. Wet oxidation of activated sludge: transformations and mechanisms.

    PubMed

    Urrea, José Luis; Collado, Sergio; Laca, Amanda; Díaz, Mario

    2014-12-15

    Wet oxidation (WO) is an interesting alternative for the solubilization and mineralization of activated sludge. The effects of different temperatures (160-200 °C) and pressures (4-8 MPa), on the evolution of chemical composition and rheological characteristics of a thickened activated sludge during WO are analyzed in this work. Soluble COD increases initially to a maximum and then diminishes, while the apparent viscosity of the mixture falls continuously throughout the experiment. Based on the experimental evolution of the compositions and rheological characteristics of the sludge, a mechanism consisting of two stages in series is proposed. Initially, the solid organic compounds are solubilized following a pseudo-second order kinetic model with respect to solid COD. After that, the solubilized COD was oxidized, showing a pseudofirst kinetic order, by two parallel pathways: the complete mineralization of the organic matter and the formation of highly refractory COD. Kinetic parameters of the model, including the activation energies are mentioned, with good global fitting to the experiments described.

  4. Preparation of activated carbon from wet sludge by electrochemical-NaClO activation.

    PubMed

    Miao, Chen; Ye, Caihong; Zhu, Tianxing; Lou, Ziyang; Yuan, Haiping; Zhu, Nanwen

    2014-01-01

    Activated carbon (AC) from sludge is one potential solution for sewage sludge disposal, while the drying sludge is cost and time consuming for preparation. AC preparation from the wet sludge with electrochemical-NaClO activation was studied in this work. Three pretreatment processes, i.e. chemical activation, electrolysis and electrochemical-reagent reaction, were introduced to improve the sludge-derived AC properties, and the optimum dosage of reagent was tested from the 0.1:1 to 1:1 (mass rate, reagent:dried sludge). It was shown that the electrochemical-NaClO preparation is the best method under the test conditions, in which AC has the maximum Brunauer, Emmett and Teller area of 436 m²/g at a mass ratio of 0.7. Extracellular polymeric substances in sludge can be disintegrated by electrochemical-NaClO pretreatment, with a disintegration degree of more than 45%. The percentage of carbon decreased from 34.16 to 8.81 after treated by electrochemical-NaClO activation. Fourier transform infrared spectra showed that a strong C-Cl stretching was formed in electrochemical-NaClO prepared AC. The maximum adsorption capacity of AC reaches 109 mg/g on MB adsorption experiment at pH 10 and can be repeated for three times with high removal efficiency after regeneration.

  5. Modeling organic nitrogen conversions in activated sludge bioreactors.

    PubMed

    Makinia, Jacek; Pagilla, Krishna; Czerwionka, Krzysztof; Stensel, H David

    2011-01-01

    For biological nutrient removal (BNR) systems designed to maximize nitrogen removal, the effluent total nitrogen (TN) concentration may range from 2.0 to 4.0 g N/m(3) with about 25-50% in the form of organic nitrogen (ON). In this study, current approaches to modeling organic N conversions (separate processes vs. constant contents of organic fractions) were compared. A new conceptual model of ON conversions was developed and combined with Activated Sludge Model No. 2d (ASM2d). The model addresses a new insight into the processes of ammonification, biomass decay and hydrolysis of particulate and colloidal ON (PON and CON, respectively). Three major ON fractions incorporated are defined as dissolved (DON) (<0.1 µm), CON (0.1-1.2 µm) and PON (41.2 µm). Each major fraction was further divided into two sub-fractions - biodegradable and non-biodegradable. Experimental data were collected during field measurements and lab experiments conducted at the ''Wschod'' WWTP (570,000 PE) in Gdansk (Poland). The accurate steady-state predictions of DON and CON profiles were possible by varying ammonification and hydrolysis rates under different electron acceptor conditions. With the same model parameter set, the behaviors of both inorganic N forms (NH4-N, NOX-N) and ON forms (DON, CON) in the batch experiments were predicted. The challenges to accurately simulate and predict effluent ON levels from BNR systems are due to analytical methods of direct ON measurement (replacing TKN) and lack of large enough database (in-process measurements, dynamic variations of the ON concentrations) which can be used to determine parameter value ranges.

  6. Feasibility study of the applicability of the activated sludge process to treatment of radioactive organic liquid waste

    SciTech Connect

    Koyama, Akio; Nishimaki, Kenzo

    1997-12-31

    The authors used an activated sludge process to treat radioactive organic liquid waste. Organic liquid waste is difficult to treat by conventional radioactive liquid treatment processes, but in order to reduce long-term irradiation of the public the removal of radionuclides from such waste is preferable to dilution. Activated sludge processes are widely used for the biological treatment of sewage and are considered appropriate means for treating radioactive organic liquid waste. In this process, the fate of radionuclides eluted by treated water or immobilized by activated sludge, is extremely important for public safety and for the treatment of radioactive organic liquid waste. The authors performed uptake and desorption behavior experiments on the three short half-life radionuclides {sup 134}Cs, {sup 57}Co and {sup 85}Sr, and used three nutritive types of artificial sewage as the feed solution. On the basis of the results, they discuss the uptake-desorption behavior of these radionuclides in an activated sludge process. The authors conclude that treatment of radioactive organic liquid waste by an activated sludge process is possible, but improvements must be made in the process if it is to be more effective.

  7. Para-chlorophenol containing synthetic wastewater treatment in an activated sludge unit: effects of hydraulic residence time.

    PubMed

    Kargi, Fikret; Konya, Isil

    2007-07-01

    Due to the toxic nature of chlorophenol compounds present in some chemical industry effluents, biological treatment of such wastewaters is usually realized with low treatment efficiencies. Para-chlorophenol (4-chlorophenol, 4-CP) containing synthetic wastewater was treated in an activated sludge unit at different hydraulic residence times (HRT) varying between 5 and 30 h while the feed COD (2500 mg l(-1)), 4-CP (500 mg l(-1)) and sludge age (SRT, 10 days) were constant. Effects of HRT variations on COD, 4-CP, toxicity removals and on settling characteristics of the sludge were investigated. Percent COD removals increased and the effluent COD concentrations decreased when HRT increased from 5 to 15 h and remained almost constant for larger HRT levels. Nearly, 91% COD and 99% 4-CP removals were obtained at HRT levels above 15 h. Because of the highly concentrated microbial population at HRT levels of above 15 h, low effluent (reactor) 4-CP concentrations and almost complete toxicity removals were obtained. High biomass concentrations obtained at HRT levels above 15 h were due to low 4-CP contents in the aeration tank yielding negligible inhibition effects and low maintenance requirements. The sludge volume index (SVI) decreased with increasing HRT up to 15 h due to high biomass concentrations at high HRT levels resulting in well settling sludge with low SVI values. Hydraulic residence times above 15 h resulted in more than 90% COD and complete 4-CP and toxicity removals along with well settling sludge.

  8. Acclimation of aerobic-activated sludge degrading benzene derivatives and co-metabolic degradation activities of trichloroethylene by benzene derivative-grown aerobic sludge.

    PubMed

    Wang, Shizong; Yang, Qi; Bai, Zhiyong; Wang, Shidong; Wang, Yeyao; Nowak, Karolina M

    2015-01-01

    The acclimation of aerobic-activated sludge for degradation of benzene derivatives was investigated in batch experiments. Phenol, benzoic acid, toluene, aniline and chlorobenzene were concurrently added to five different bioreactors which contained the aerobic-activated sludge. After the acclimation process ended, the acclimated phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic-activated sludge were used to explore the co-metabolic degradation activities of trichloroethylene (TCE). Monod equation was employed to simulate the kinetics of co-metabolic degradation of TCE by benzene derivative-grown sludge. At the end of experiments, the mixed microbial communities grown under different conditions were identified. The results showed that the acclimation periods of microorganisms for different benzene derivatives varied. The maximum degradation rates of TCE for phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic sludge were 0.020, 0.017, 0.016, 0.0089 and 0.0047 mg g SS(-1) h(-1), respectively. The kinetic of TCE degradation in the absence of benzene derivative followed Monod equation well. Also, eight phyla were observed in the acclimated benzene derivative-grown aerobic sludge. Each of benzene derivative-grown aerobic sludge had different microbial community composition. This study can hopefully add new knowledge to the area of TCE co-metabolic by mixed microbial communities, and further the understanding on the function and applicability of aerobic-activated sludge.

  9. An activated sludge model based on activated sludge model number 3 for full-scale wastewater treatment plant simulation.

    PubMed

    Fan, Ji; Lu, Shu-Guang; Qiu, Zhao-fu; Wang, Xiao-Xia; Li, Wen-Zhen

    2009-06-01

    A modified model based on the activated sludge model no. 3 was established to simulate a full-scale municipal wastewater treatment plant in Shanghai, China. The activated sludge model no. 3 was modified to describe the simultaneous storage and growth processes occurring in activated sludge systems under aerobic and anoxic conditions. The mechanism of soluble microbial product formation and degradation by microorganisms was considered in this proposed model. Three months simulation was conducted including soluble chemical oxygen demand, NH4(+)-N, NO(X)(-)-N and T-N parameters, and compared with measured data from the Quyang wastewater treatment plant. Results indicated that the calculated effluent chemical oxygen demand and NH4(+)-N using this proposed model were in good agreement with the measured data. Results also showed that besides inert soluble organic matter contributing to the effluent chemical oxygen demand, soluble microbial products played an important part in the effluent chemical oxygen demand and, therefore, demonstrated that these products composed an important portion of effluent soluble chemical oxygen demand in wastewater treatment plants and should not be neglected.

  10. Self-heating co-pyrolysis of excessive activated sludge with waste biomass: energy balance and sludge reduction.

    PubMed

    Ding, Hong-Sheng; Jiang, Hong

    2013-04-01

    In this work, co-pyrolysis of sludge with sawdust or rice husk was investigated. The results showed that the co-pyrolysis technology could be used to dispose of the excessive activated sludge without external energy input. The results also demonstrated that no obvious synergistic effect occurred except for heat transfer in the co-pyrolysis if the co-feeding biomass and sludge had similar thermogravimetric characteristics. The experimental results combined with calculation showed that adding sawdust accounting for 49.6% of the total feedstock or rice husk accounting for 74.7% could produce bio-oil to keep the energy balance of the co-pyrolysis system and self-heat it. The sludge from solar drying bed can be further reduced by 38.6% and 35.1% by weight when co-pyrolyzed with rice husk and sawdust, respectively. This study indicates that sludge reduction without external heat supply through co-pyrolysis of sludge with waste biomass is practically feasible.

  11. Enhanced dewaterability of waste activated sludge by Fe(II)-activated peroxymonosulfate oxidation.

    PubMed

    Liu, Jun; Yang, Qi; Wang, Dongbo; Li, Xiaoming; Zhong, Yu; Li, Xin; Deng, Yongchao; Wang, Liqun; Yi, Kaixin; Zeng, Guangming

    2016-04-01

    The effect of Fe(II)-activated peroxymonosulfate (Fe(II)-PMS) oxidation on the waste activated sludge (WAS) dewatering and its mechanisms were investigated in this study. The capillary suction time (CST), specific resistance to filterability (SRF) of sludge and water content (WC) of dewatered sludge cake were chosen as the main parameters to evaluate the sludge dewaterability. Experimental results showed that Fe(II)-PMS effectively disintegrated sludge and improved sludge dewaterability. High CST and SRF reduction (90% and 97%) was achieved at the optimal conditions of PMS (HSO5(-)) 0.9 mmol/gVSS, Fe(II) 0.81 mmol/gVSS, and pH 6.8. Extracellular polymeric substances (EPS) and three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy before and after Fe(II)-PMS oxidation were determined to explain the enhanced dewatering mechanism. The release of EPS-bound water induced by the destruction of EPS was the primary reason for the improvement of sludge dewaterability during Fe(II)-PMS oxidation.

  12. Degradation of pharmaceuticals from membrane biological reactor sludge with Trametes versicolor.

    PubMed

    Llorens-Blanch, Guillem; Badia-Fabregat, Marina; Lucas, Daniel; Rodriguez-Mozaz, Sara; Barceló, Damià; Pennanen, Taina; Caminal, Gloria; Blánquez, Paqui

    2015-02-01

    Emerging contaminants are a wide group of chemical products that are found at low concentrations in the environment. These contaminants can be either natural, e.g., estrogens, or synthetics, such as pesticides and pharmaceuticals, which can enter the environment through the water and sludge from wastewater treatment plants (WWTP). The growth of Trametes versicolor on membrane biological reactor (MBR) sludge in bioslurry systems at the Erlenmeyer scale was assessed and its capacity for removing pharmaceutical and personal care products (PPCPs) was evaluated. The ability of the fungus to remove hydrochlorothiazide (HZT) from liquid media cultures was initially assessed. Consequently, different bioslurry media (complete nutrient, glucose and no-nutrient addition) and conditions (sterile and non-sterile) were tested, and the removal of spiked HZT was monitored under each condition. The highest spiked HZT removal was assessed under non-sterile conditions without nutrient addition (93.2%). Finally, the removal assessment of a broad set of pharmaceuticals was performed in non-spiked bioslurry. Under non-sterile conditions, the fungus was able to completely degrade 12 out of the 28 drugs initially detected in the MBR sludge, achieving an overall degradation of 66.9%. Subsequent microbial analysis showed that the microbial diversity increased after 15 days of treatment, but there was still some T. versicolor in the bioslurry. Results showed that T. versicolor can be used to remove PPCPs in bioslurry systems under non-sterile conditions, without extra nutrients in the media, and in matrices as complex as an MBR sludge.

  13. [Characterisation of excess sludge reduction in an anoxic + oxic-settling-anaerobic activated sludge process].

    PubMed

    Gao, Xu; Lu, Yan-Hua; Guo, Jin-Song

    2009-05-15

    An energy balance analysis method with auto calorimeter being adopted was introduced to determine calorific values of sludge samples in influent and effluent of uncoupling tank in an anoxic (A) + oxic-settling-anaerobic (OSA) process and a reference system. The affiliation of sludge amount change and its energy content were studied, as well as potential of excess sludge reduction was evaluated through modifying performance of uncoupling tank. The characteristi s and causes of sludge reduction in OSA system were deduced according to energy and matter balance analysis. Results show that when the hydraulic retention time (HRT) of uncoupling tank are 5.56 h, 7.14 h and 9 h, the excess sludge reduction of whole A + OS Asystem are 1.236 g/d, 0.771 g/d and 0.599 g/d respectively. Energy content of sludge flows into and out of the uncoupling tank changes, the specific calorific value of sludge in effluent is inclined to be higher than that in influent with the HRT of the tank increasing: there isn't any significant difference of sludge calorific values between influent and effluent at 5.56 h, while the differences are in 99-113 J/g at 7.14 h, and 191-329 J/g at 9 h. Sludge in uncoupling tank would decay and longer HRT will result in more attenuation. It could be concluded that excess sludge reduction of A + OSA system is caused by both of sludge decay in uncoupling tank and sludge proliferation in AO reaction zone.

  14. The presence and role of bacterial quorum sensing in activated sludge

    PubMed Central

    Chong, Grace; Kimyon, Onder; Rice, Scott A.; Kjelleberg, Staffan; Manefield, Mike

    2012-01-01

    Summary Activated sludge used for wastewater treatment globally is composed of a high‐density microbial community of great biotechnological significance. In this study the presence and purpose of quorum sensing via N‐acylated‐l‐homoserine lactones (AHLs) in activated sludge was explored. The presence of N‐heptanoyl‐l‐homoserine lactone in organic extracts of sludge was demonstrated along with activation of a LuxR‐based AHL monitor strain deployed in sludge, indicating AHL‐mediated gene expression is active in sludge flocculates but not in the bulk aqueous phase. Bacterial isolates from activated sludge were screened for AHL production and expression of phenotypes commonly but not exclusively regulated by AHL‐mediated gene transcription. N‐acylated‐l‐homoserine lactone and exoenzyme production were frequently observed among the isolates. N‐acylated‐l‐homoserine lactone addition to sludge upregulated chitinase activity and an AHL‐ and chitinase‐producing isolate closely related to Aeromonas hydrophila was shown to respond to AHL addition with upregulation of chitinase activity. N‐acylated‐l‐homoserine lactones produced by this strain were identified and genes ahyI/R and chiA, encoding AHL production and response and chitinase activity respectively, were sequenced. These experiments provide insight into the relationship between AHL‐mediated gene expression and exoenzyme activity in activated sludge and may ultimately create opportunities to improve sludge performance. PMID:22583685

  15. Potential and optimization of two-phase anaerobic digestion of oil refinery waste activated sludge and microbial community study

    PubMed Central

    Wang, Qinghong; Liang, Ying; Zhao, Peng; Li, Qing X.; Guo, Shaohui; Chen, Chunmao

    2016-01-01

    Oil refinery waste activated sludge produced from oil wastewater biological treatment is a major industrial sludge. Two-phase anaerobic digestion of oil refinery waste activated sludge was studied for the first time. Thermal pretreatment under 170 °C is effective on sludge solubilization. At the optimum hydrolytic-acidogenic condition which was pH of 6.5, temperature of 55 °C and HRT of 2 days, 2754 mg/L volatile fatty acids (VFAs) were produced and acetic acid and butyric acid were the key components. Comparative studies of single-phase and two-phase anaerobic digestion in terms of organic removal, biogas production and methane concentration were conducted. The cumulative methane production and soluble COD (SCOD) removal efficiency in the two-phase system were 228 mL/g COD added and 77.8%, respectively, which were 1.6 and 2.1 times higher than those in single-phase anaerobic digestion. Such improved performance is attributed to intensification of dominant microbial population in separated reactors. Caloramator, Ureibacillus, Dechloromonas, Petrobacter, and T78 played important roles in hydrolytic-acidification and oil-organics degradation. Syntrophic bacteria in the family Porphyromonadaceae and the genus Anaerobranca provide acetate for methanogen. The results demonstrated the potential and operating condition of two-phase anaerobic digestion in treatment of oil refinery waste activated sludge. PMID:27905538

  16. Potential and optimization of two-phase anaerobic digestion of oil refinery waste activated sludge and microbial community study

    NASA Astrophysics Data System (ADS)

    Wang, Qinghong; Liang, Ying; Zhao, Peng; Li, Qing X.; Guo, Shaohui; Chen, Chunmao

    2016-12-01

    Oil refinery waste activated sludge produced from oil wastewater biological treatment is a major industrial sludge. Two-phase anaerobic digestion of oil refinery waste activated sludge was studied for the first time. Thermal pretreatment under 170 °C is effective on sludge solubilization. At the optimum hydrolytic-acidogenic condition which was pH of 6.5, temperature of 55 °C and HRT of 2 days, 2754 mg/L volatile fatty acids (VFAs) were produced and acetic acid and butyric acid were the key components. Comparative studies of single-phase and two-phase anaerobic digestion in terms of organic removal, biogas production and methane concentration were conducted. The cumulative methane production and soluble COD (SCOD) removal efficiency in the two-phase system were 228 mL/g COD added and 77.8%, respectively, which were 1.6 and 2.1 times higher than those in single-phase anaerobic digestion. Such improved performance is attributed to intensification of dominant microbial population in separated reactors. Caloramator, Ureibacillus, Dechloromonas, Petrobacter, and T78 played important roles in hydrolytic-acidification and oil-organics degradation. Syntrophic bacteria in the family Porphyromonadaceae and the genus Anaerobranca provide acetate for methanogen. The results demonstrated the potential and operating condition of two-phase anaerobic digestion in treatment of oil refinery waste activated sludge.

  17. Potential and optimization of two-phase anaerobic digestion of oil refinery waste activated sludge and microbial community study.

    PubMed

    Wang, Qinghong; Liang, Ying; Zhao, Peng; Li, Qing X; Guo, Shaohui; Chen, Chunmao

    2016-12-01

    Oil refinery waste activated sludge produced from oil wastewater biological treatment is a major industrial sludge. Two-phase anaerobic digestion of oil refinery waste activated sludge was studied for the first time. Thermal pretreatment under 170 °C is effective on sludge solubilization. At the optimum hydrolytic-acidogenic condition which was pH of 6.5, temperature of 55 °C and HRT of 2 days, 2754 mg/L volatile fatty acids (VFAs) were produced and acetic acid and butyric acid were the key components. Comparative studies of single-phase and two-phase anaerobic digestion in terms of organic removal, biogas production and methane concentration were conducted. The cumulative methane production and soluble COD (SCOD) removal efficiency in the two-phase system were 228 mL/g COD added and 77.8%, respectively, which were 1.6 and 2.1 times higher than those in single-phase anaerobic digestion. Such improved performance is attributed to intensification of dominant microbial population in separated reactors. Caloramator, Ureibacillus, Dechloromonas, Petrobacter, and T78 played important roles in hydrolytic-acidification and oil-organics degradation. Syntrophic bacteria in the family Porphyromonadaceae and the genus Anaerobranca provide acetate for methanogen. The results demonstrated the potential and operating condition of two-phase anaerobic digestion in treatment of oil refinery waste activated sludge.

  18. Variations in physical, chemical and biological properties in relation to sludge dewaterability under Fe (II) - Oxone conditioning.

    PubMed

    Xiao, Keke; Chen, Yun; Jiang, Xie; Yang, Qin; Seow, Wan Yi; Zhu, Wenyu; Zhou, Yan

    2017-02-01

    The mechanism of Fe (II) - oxone conditioning to improve sludge dewaterability was investigated in this study. Five different types of sludge were tested, including raw sludge (Group 1: mixed primary and secondary sludge, waste activated sludge and anaerobic digested sludge) and pretreated sludge with prior solubilisation (Group 2: ultrasonic or thermal pretreated sludge). After Fe (II) - oxone conditioning, the concentrations of dissolved organic carbon, protein and polysaccharide of soluble extracellular polymeric substances (SB EPS) increased for Group 1, but decreased for Group 2. For all types of sludge investigated, the related organic compounds of loosely bound (LB) and tightly bound (TB) EPS decreased with Fe (II) - oxone conditioning, and increased sludge filterability showed strong and positive correlation with the removal of low molecular weight protein and neutrals in LB EPS. Fe (II) - oxone was very effective in disintegrating cell membrane and caused potential cell lysis, as indicated by increased percentage of damaged microbial cells. From this study, the mechanism of Fe (II) - oxone conditioning was proposed and can be divided into two steps: (1) Oxidation step - sulfate radicals degraded organic compounds in LB and TB EPS in sludge and transformed bound water to free water that was trapped in TB and LB EPS; It also damaged cells membrane and may help to release intracellular water content. Sludge flocs were broken into smaller particles; (2) Coagulation step - Fe (III), generated from the oxidation step can act as a coagulant to agglomerate smaller particles into larger ones and reduce the repulsive electrostatic interactions. Combined effects from above two steps can greatly improve sludge filterability.

  19. Mechanisms involved in Escherichia coli and Serratia marcescens removal during activated sludge wastewater treatment

    PubMed Central

    Orruño, Maite; Garaizabal, Idoia; Bravo, Zaloa; Parada, Claudia; Barcina, Isabel; Arana, Inés

    2014-01-01

    Wastewater treatment reduces environmental contamination by removing gross solids and mitigating the effects of pollution. Treatment also reduces the number of indicator organisms and pathogens. In this work, the fates of two coliform bacteria, Escherichia coli and Serratia marcescens, were analyzed in an activated sludge process to determine the main mechanisms involved in the reduction of pathogenic microorganisms during wastewater treatment. These bacteria, modified to express green fluorescent protein, were inoculated in an activated sludge unit and in batch systems containing wastewater. The results suggested that, among the different biological factors implied in bacterial removal, bacterivorous protozoa play a key role. Moreover, a representative number of bacteria persisted in the system as free-living or embedded cells, but their distribution into liquid or solid fractions varied depending on the bacterium tested, questioning the real value of bacterial indicators for the control of wastewater treatment process. Additionally, viable but nonculturable cells constituted an important part of the bacterial population adhered to solid fractions, what can be derived from the competition relationships with native bacteria, present in high densities in this environment. These facts, taken together, emphasize the need for reliable quantitative and qualitative analysis tools for the evaluation of pathogenic microbial composition in sludge, which could represent an undefined risk to public health and ecosystem functions when considering its recycling. PMID:25044599

  20. Entrapped elemental selenium nanoparticles affect physicochemical properties of selenium fed activated sludge.

    PubMed

    Jain, Rohan; Seder-Colomina, Marina; Jordan, Norbert; Dessi, Paolo; Cosmidis, Julie; van Hullebusch, Eric D; Weiss, Stephan; Farges, François; Lens, Piet N L

    2015-09-15

    Selenite containing wastewaters can be treated in activated sludge systems, where the total selenium is removed from the wastewater by the formation of elemental selenium nanoparticles, which are trapped in the biomass. No studies have been carried out so far on the characterization of selenium fed activated sludge flocs, which is important for the development of this novel selenium removal process. This study showed that more than 94% of the trapped selenium in activated sludge flocs is in the form of elemental selenium, both as amorphous/monoclinic selenium nanospheres and trigonal selenium nanorods. The entrapment of the elemental selenium nanoparticles in the selenium fed activated sludge flocs leads to faster settling rates, higher hydrophilicity and poorer dewaterability compared to the control activated sludge (i.e., not fed with selenite). The selenium fed activated sludge showed a less negative surface charge density as compared to the control activated sludge. The presence of trapped elemental selenium nanoparticles further affected the spatial distribution of Al and Mg in the activated sludge flocs. This study demonstrated that the formation and subsequent trapping of elemental selenium nanoparticles in the activated sludge flocs affects their physicochemical properties.

  1. Effect of gamma-ray irradiation on the dewaterability of waste activated sludge

    NASA Astrophysics Data System (ADS)

    Wu, Yuqi; Jiang, Yinghe; Ke, Guojun; Liu, Yingjiu

    2017-01-01

    The effect of gamma-ray irradiation on waste activated sludge (WAS) dewaterability was investigated with irradiation doses of 0-15 kGy. Time to filter (TTF50), specific resistance of filtration (SRF) and water content of sludge cake were measured to evaluate sludge dewaterability. Soluble chemical oxygen demand (SCOD), soluble extracellular polymeric substances (EPS) concentration and sludge particle size were determined to explain changes in sludge dewaterability. The optimal irradiation dose to obtain the maximum dewaterability characteristics was 1-4 kGy, which generated sludge with optimal disintegration (1.5-4.0%), soluble EPS concentration (590-750 mg/L) and particle size distribution (100-115 μm diameter). The combination of irradiation and cationic polyacrylamide (CPAM) addition exhibited minimal synergistic effect on increasing sludge dewatering rate compared with CPAM conditioning alone.

  2. Nutrient removal, microbial community and sludge settlement in anaerobic/aerobic sequencing batch reactors without enhanced biological phosphorus removal.

    PubMed

    Wu, Guangxue; Rodgers, Michael

    2010-01-01

    Nutrient removal, microbial community and sludge settlement were examined in two 3-litre laboratory-scale anaerobic/aerobic sequencing batch reactors (SBRs). One SBR was operated at 10 degrees C and the other SBR at 20 degrees C. Different from conventional enhanced biological phosphorus removal, most of the soluble sodium acetate was removed in the aerobic phase and no organic carbon uptake or biological phosphorus release occurred in the anaerobic phase. In this type of anaerobic/aerobic SBR, the phosphorus removal and sludge settlement seemed to be unstable, and the dominant microorganism was Zoogloea sp. Although no excess biological phosphorus removal occurred, extracellular phosphorus precipitation contributed a significant proportion to total phosphorus removed. Sludge volume index decreased with increasing phosphorus contents in the biomass under all conditions. The functions of extracellular polymeric substances in sludge settlement and phosphorus removal depended on the environmental conditions applied.

  3. Evaluation of anaerobic digestion processes for short sludge-age waste activated sludge combined with anammox treatment of digestate liquor.

    PubMed

    Ge, Huoqing; Batstone, Damien; Keller, Jurg

    2016-01-01

    The need to reduce energy input and enhance energy recovery from wastewater is driving renewed interest in high-rate activated sludge treatment (i.e. short hydraulic and solids retention times (HRT and SRT, respectively)). This process generates short SRT activated sludge stream, which should be highly degradable. However, the evaluation of anaerobic digestion of short SRT sludge has been limited. This paper assesses anaerobic digestion of short SRT sludge digestion derived from meat processing wastewater under thermophilic and mesophilic conditions. The thermophilic digestion system (55°C) achieved 60 and 68% volatile solids destruction at 8 day and 10 day HRT, respectively, compared with 50% in the mesophilic digestion system (35°C, 10 day HRT). The digestion effluents from the thermophilic (8-10 day HRT) and mesophilic systems were stable, as assessed by residual methane potentials. The ammonia rich sludge dewatering liquor was effectively treated by a batch anammox process, which exhibited comparable nitrogen removal rate as the tests using a control synthetic ammonia solution, indicating that the dewatering liquor did not have inhibiting/toxic effects on the anammox activity.

  4. Using respirometric techniques and fluorescent in situ hybridization to evaluate the heterotrophic active biomass in activated sludge.

    PubMed

    Ismail, A; Wentzel, M C; Bux, F

    2007-10-15

    The separation and accurate quantification of active biomass components in activated sludge is of paramount importance in models, used for the management and design of waste water (WW) treatment plants. Accurate estimates of microbial population concentrations and the direct, in situ determination of kinetic parameters could improve the calibration and validation of existing models of biological nutrient removal activated sludge systems. The aim of this study was to obtain correlations between heterotrophic active biomass (Z(BH)) concentrations predicted by mathematical models and quantitative information obtained by Fluorescent in situ hybridizations (FISH). Respirometric batch test were applied to mixed liquors drawn from a well-defined parent anoxic/aerobic activated sludge system to quantify the Z(BH) concentrations. Similarly fluorescent labeled, 16S rRNA-targeted oligonucleotide probes specific for ammonia and nitrite oxidizers were used in combination with DAPI staining to validate the Z(BH) active biomass component in activate sludge respirometric batch tests. For the direct enumeration and simultaneous in situ analysis of the distribution of nitrifying bacteria, in situ hybridization with oligonucleotide probes were used. Probes (NSO 1225, NSR 1156, and NIT3) were used to target the nitrifiers and the universal probe (EUB MIX) was used to target all Eubacteria. Deducting the lithoautotrophic population from the total bacteria population revealed the Z(BH) population. A conversion factor of 8.49 x 10(-11) mg VSS/cell was applied to express the Z(BH) in terms of COD concentration. Z(BH) values obtained by molecular probing correlated closely with values obtained from the modified batch test. However, the trend of consistently poor correspondence of measured and theoretical concentrations were evident. Therefore, the focus of this study was to investigate alternative technology, such as FISH to validate or replace kinetic parameters which are invariably

  5. A new process for enriching nitrifiers in activated sludge through separate heterotrophic wasting from biofilm carriers.

    PubMed

    Parker, Denny S; Rusten, Bjørn; Wien, Asgeir; Siljudalen, Jon G

    2002-01-01

    A new process, the biofilm-activated sludge innovative nitrification (BASIN) process, consisting of a moving-bed biofilm reactor (MBBR) with separate heterotrophic wasting, followed by an activated-sludge process, has been proposed to reduce the volumetric requirements of the activated-sludge process for nitrification. The basic principle is to remove chemical oxygen demand on the biofilm carriers by heterotrophic organisms and then to waste a portion of the heterotrophic biomass before it can be released into the activated-sludge reactor. By this means, the amount of heterotrophic organisms grown in the activated-sludge reactor is reduced, thereby reducing the volume of that tank needed for nitrification. For nitrification applications, the simplest method for stripping biomass was to use an in-tank technique using high shearing rates with aeration. Bench-scale testing showed sludge yields in the BASIN process were one-half of that in a control activated-sludge process and twice that of a process line with intermediate settling between the MBBR and activated-sludge stage. Critical washout solids retention times for nitrifiers were the same for all three lines, so activated-sludge volumes for the BASIN process could be reduced by 50% compared with the control. Originally conceived process concepts for the BASIN process were confirmed by the experimental work.

  6. Pharmaceutically active compounds in sludge stabilization treatments: anaerobic and aerobic digestion, wastewater stabilization ponds and composting.

    PubMed

    Martín, Julia; Santos, Juan Luis; Aparicio, Irene; Alonso, Esteban

    2015-01-15

    Sewage sludge disposal onto lands has been stabilized previously but still many pollutants are not efficiently removed. Special interest has been focused on pharmaceutical compounds due to their potential ecotoxicological effects. Nowadays, there is scarce information about their occurrence in different sludge stabilization treatments. In this work, the occurrence of twenty-two pharmaceutically active compounds has been studied in sludge from four sludge stabilization treatments: anaerobic digestion, aerobic digestion, composting and lagooning. The types of sludge evaluated were primary, secondary, anaerobically-digested and dehydrated, composted, mixed, aerobically-digested and dehydrated and lagoon sludge. Nineteen of the twenty-two pharmaceutically active compounds monitored were detected in sewage sludge. The most contaminated samples were primary sludge, secondary sludge and mixed sludge (the average concentrations of studied compounds in these sludges were 179, 310 and 142 μg/kg dm, respectively) while the mean concentrations found in the other types of sewage sludge were 70 μg/kg dm (aerobically-digested sludge), 63 μg/kg dm (lagoon sludge), 12 μg/kg dm (composted sludge) and 8 μg/kg dm (anaerobically-digested sludge). The antibiotics ciprofloxacin and norfloxacin were found at the highest concentration levels in most of the analyzed sludge samples (up to 2660 and 4328 μg/kg dm, respectively). Anaerobic-digestion treatment reduced more considerably the concentration of most of the studied compounds than aerobic-digestion (especially in the case of bezafibrate and fluoroquinolones) and more than anaerobic stabilization ponds (in the case of acetaminophen, atenolol, bezafibrate, carbamazepine, 17α-ethinylestradiol, naproxen and salicylic acid). Ecotoxicological risk assessment, of sludge application onto soils, has also been evaluated. Risk quotients, expressed as the ratio between the predicted environmental concentration and the predicted non

  7. Diversity and dynamics of Archaea in an activated sludge wastewater treatment plant

    PubMed Central

    2012-01-01

    Background The activated sludge process is one of the most widely used methods for treatment of wastewater and the microbial community composition in the sludge is important for the process operation. While the bacterial communities have been characterized in various activated sludge systems little is known about archaeal communities in activated sludge. The diversity and dynamics of the Archaea community in a full-scale activated sludge wastewater treatment plant were investigated by fluorescence in situ hybridization, terminal restriction fragment length polymorphism analysis and cloning and sequencing of 16S rRNA genes. Results The Archaea community was dominated by Methanosaeta-like species. During a 15 month period major changes in the community composition were only observed twice despite seasonal variations in environmental and operating conditions. Water temperature appeared to be the process parameter that affected the community composition the most. Several terminal restriction fragments also showed strong correlations with sludge properties and effluent water properties. The Archaea were estimated to make up 1.6% of total cell numbers in the activated sludge and were present both as single cells and colonies of varying sizes. Conclusions The results presented here show that Archaea can constitute a constant and integral part of the activated sludge and that it can therefore be useful to include Archaea in future studies of microbial communities in activated sludge. PMID:22784022

  8. Physicochemical changes effected in activated sludge by the earthworm Eisenia foetida. [Concentration of heavy metals during sludge catabolism

    SciTech Connect

    Hartenstein, R.; Hartenstein, F.

    1981-09-01

    Measurements were made of some physicochemical changes effected in activated sludge by the earthworm Eisenia foetida following conversion of the sludge into wormcasts. Mineralization was accelerated 1.3-fold and 2% of the minerals were assimilated. The rate at which heavy metals were concentrated during sludge catabolism was also accelerated. Castings stabilized within 2 weeks, as indexed by respirometry. Nucleic acids, which can be used as an index of microbial biomass, were present at a greater concentration in the wormcasts than in the sludge, while the phenolic content, which may potentially serve as an index of humification, was less concentrated. Other changes included a reduction in pH and an increase in oxidation-reduction potential and cation exchange capacity. The major general effect of E. foetida on the physicochemical properties of activated sludge is to convert a material which has a relatively small surface/volume ratio into numerous particles with an overall large S/V ratio, thus accelerating decomposition, mineralization, drying, and preclusion of malodor.

  9. Composition of activated sludge settling and planktonic bacterial communities treating industrial effluent and their correlation to settling problems.

    PubMed

    Nadarajah, Nalina; Allen, D Grant; Fulthorpe, Roberta R

    2010-11-01

    Problems with deflocculation and solids separation in biological wastewater treatment systems are linked to fluctuations in physicochemical conditions. This study examined the composition of activated sludge bacterial communities in lab-scale sequencing batch reactors treating bleached kraft mill effluent, under transient temperature conditions (30 to 45 °C) and their correlation to sludge settleability problems. The bacterial community composition of settled and planktonic biomass samples in the reactors was monitored via denaturing gradient gel electrophoresis of 16S ribosomal RNA gene fragments. Our analysis showed that settled biomass has a different community composition from the planktonic biomass (49 ± 7% difference based on Jaccard similarity coefficients; p < 0.01). During times of poor sludge compression, the settled and planktonic biomass became more similar. This observation supports the hypothesis that settling problems observed were due to deflocculation of normally settling flocs rather than the outgrowth of non-settling bacterial species.

  10. Compression dewatering of municipal activated sludge: effects of salt and pH.

    PubMed

    Raynaud, Mickael; Vaxelaire, Jean; Olivier, Jérémy; Dieudé-Fauvel, Emilie; Baudez, Jean-Christophe

    2012-09-15

    Even after mechanical dewatering, activated sludge contains a large amount of water. Due to its composition and biological nature this material is usually highly compressible and known to be difficult to dewater. In the present work, two treatments (salt addition and pH modification) are proposed to highlight some aspects which could explain the poor dewaterability of activated sludge. Dewatering tests are carried out in a pressure-driven device in order to well examine both, filtration and compression stages. Physico-chemical parameters, such as surface charge, hydrophobicity, extracellular polymeric substances (EPS) content and filtrate turbidity are measured on the tested sludge, for a better analysis of dewatering results. The dewatering ability of the sludge is widely linked to the cohesion of the flocculated matrix and the presence of fine particles. Both treatments alter the flocculated matrix and release fine particles. The release of fine particles tends to clog both, the filter cake and the filter medium. Consequently, the filtration rate decreases due to higher resistances to the flow. On another hand, the polymeric matrix breakdown enables to release some water trapped within the floc to the bulk liquid phase and thus facilitates its removal, which tends to decrease the moisture content of the filter-cake. It also impacts the compression dewatering step. The more destroyed structures lead to less elastic cakes and thus a slower primary consolidation stage. At the opposite, the mobility of the broken aggregates within the filter-cake does not seem to be improved by size reduction (the kinetics of the secondary consolidation stage are not significantly modified).

  11. Effect of wet oxidation on the fingerprints of polymeric substances from an activated sludge.

    PubMed

    Urrea, José Luis; Collado, Sergio; Oulego, Paula; Díaz, Mario

    2016-11-15

    Thermal pre-treatments of activated sludge involve the release of a high amount of polymeric substances into the bulk medium. The molecular size of these polymers will largely define the subsequent biological treatment of the liquid effluent generated. In this work, the effects of wet oxidation treatment (WO) on the fingerprints of the polymeric substances which compose the activated sludge, were analysed. For a better understanding of these transformations, the sludge was separated into its main fractions: soluble microbial products (SMP), loosely bound extracellular polymeric substances (LB-EPS), tightly bound extracellular polymeric substances (TB-EPS) and naked cells, and then each one was subjected to WO separately (190 °C and 65 bar), determining the fingerprints evolution by size exclusion technique. Results revealed a fast degradation of larger molecules (over 500 kDa) during the first minutes of treatment (40 min). WO also increases the absorptive properties of proteins (especially for 30 kDa), which is possibly due to the hydroxylation of phenylalanine amino acids in their structure. WO of naked cells involved the formation of molecules between 23 and 190 kDa, which are related to the release of cytoplasmic polymers, and more hydrophobic polymers, probably from the cell membrane. The results allowed to establish a relationship between the location of polymeric material and its facility to become oxidised; thus, the more internal the polymeric material in the cell, the easier its oxidation. When working directly with the raw sludge, hydrolysis mechanisms played a key role during the starting period. Once a high degree of solubilisation was reached, the molecules were rapidly oxidised into other compounds with refractory characteristics. The final effluent after WO showed almost 90% of low molecular weight solubilised substances (0-35 kDa).

  12. [Analysis of hydrolytic enzyme activities on sludge aerobic/anoxic digestion after ultrasonic pretreatment].

    PubMed

    Ye, Yun-di; Sun, Shui-yu; Zheng, Li; Liu, Bao-jian; Xu, Yan-bin; Zhan, Xing-xing; Liu, Jing-yong

    2012-08-01

    In order to evaluate the function of sludge aerobic/anoxic digestibility by ultrasonic pretreatment. The SS, VSS and hydrolytic enzyme activities (amylase, glucosidase, protease, phosphatase) were measured before and after ultrasonic pretreatment (28 kHz, 0.15 kW x L(-1), 10 min). The results showed that the performances of aerobic/anoxic were greatly improved after ultrasonic pretreatment, the removal efficiency of VSS went to 44.3%, 7.8% better than of traditional aerobic/anoxic digestion. The variational trend of sludge hydrolytic enzyme activities increased firstly and then fell off during 13d digestion, the maximum of amylase activity and glucosidase activity in ultrasonic sludge, appeared in the 5 d, amylase activity was 0.104 micromol x g(-1) and glucosidase activity was 0.637 (micromol x g(-1). The maximum of intracellular protease activity and extracellular proteases activity in ultrasonic sludge, appeared in the 7 d, intracellular protease activity was 23.68 micromol x g(-1), higher than extracellular proteases activity, and it was playing a leading role in sludge digestion. The acid phosphatase activity of ultrasonic sludge was higher than the control sludge, and the alkaline phosphatase was sensitive to environment. So the alkaline phosphatase activity reduced when the internal properties of sludge was changed.

  13. Reduction of Biological Sludge Production Applying an Alternating Oxic/anoxic Process in Water Line.

    PubMed

    Eusebi, Anna Laura; Panigutti, Maximiliano; Battistoni, Paolo

    2016-06-01

    Alternating oxic/anoxic process, applied for the main objective of the improvement of nitrogen performances, was studied in terms of secondary effect of biomass reduction. The process was carried out in one real water resource recovery facility and the data were compared with the previous conventional period when a conventional process was adopted. The main mechanism of the process for the sludge minimization is recognized in the metabolic uncoupling. In fact, an increase of the specific oxygen uptake rate in the biological reactor was recorded stimulated by the change of the oxidation reduction potential environment. Moreover, the heterotrophic growth yield was measured equal to 0.385 kgVSS/kgCOD. The global percentage of reduction was tested with the mass balance of solids. The process is able to decrease the observed sludge yield up to 20%. The specific energy consumption was evaluated.

  14. The mechanisms and relative importance of abiotic and biological processes for VOC loss from sludge amended soils

    SciTech Connect

    Wilson, S.C.; Jones, K.C.

    1994-12-31

    The presence of volatile organic compounds (VOCs) in sewage sludge has been a cause of increasing concern due to the possible risk to human health and the environment when sludge is applied to agricultural soils. Sludge application to agricultural land in the UK is expected to increase as a result of restrictions on alternative disposal routes and also increasingly stringent wastewater treatment requirements. Few studies have examined the fate and behavior of VOCs in sewage sludge amended soils and those reported have used spiked sludge rather than investigating the behavior of VOCs resident in the sludge itself. This study was designed to evaluate the behavior of aromatic VOCs (namely toluene, xylene and ethyl benzene) in unspiked sewage sludge amended soils and assess the relative importance and mechanisms of abiotic and biological loss processes. This was undertaken by adding sewage sludge to sterilized and unsterilized soil in closed and open systems. Results indicated that abiotic loss processes, primarily volatilization, were most important for the removal of VOCs. Initial rate of VOC loss was similar in all systems. After 65 days a residual VOC soil concentration remained which was apparently dependent on the conditions within the system.

  15. Ecophysiology of the Actinobacteria in activated sludge systems.

    PubMed

    Seviour, Robert J; Kragelund, Caroline; Kong, Yunhong; Eales, Katherine; Nielsen, Jeppe L; Nielsen, Per H

    2008-06-01

    This review considers what is known about the Actinobacteria in activated sludge systems, their abundance and their functional roles there. Participation in processes leading to the microbiological removal of phosphate and in the operational problems of bulking and foaming are discussed in terms of their ecophysiological traits. We consider critically whether elucidation of their nutritional requirements and other physiological properties allow us to understand better what might affect their survival capabilities in these highly competitive systems. Furthermore, how this information might allow us to improve how these processes work is discussed.

  16. Biological wastewater treatment by a bioreactor with repeated coupling of aerobes and anaerobes aiming at on-site reduction of excess sludge.

    PubMed

    Yu, Anfeng; Feng, Quan; Liu, Zehua; Zhou, Yunan; Xing, Xin-Hui

    2006-01-01

    Activated sludge has been widely used in wastewater treatment throughout the world. However, the biggest disadvantage of this method is the by-production of excess sludge in a large amount, resulting in difficulties in operation and high costs for wastewater treatment. Technological innovations for wastewater treatment capable of reducing excess sludge have thus become research topics of interest in recent years. In our present research, we developed a new biological wastewater treatment process by repeated coupling of aerobes and anaerobes (rCAA) to reduce the excess sludge during the treatment of wastewater. During 460-day continuous running, COD (300-700 mg/L) and TOC (100-350 mg/L) were effectively removed, of which the removal rate was above 80 and 90%, respectively. SS in the effluent was 13 mg/L on average in the rCAA bioreactor without a settling tank. The on-site reduction of the excess sludge in the rCAA might be contributed by several mechanisms. The degradation of the grown aerobes after moving into the anaerobic regions was considered to be one of the most important factors. Besides, the repeatedly coupling of aerobes and anaerobes could also result in a complex microbial community with more metazoans and decoupling of the microbial anabolism and catabolism.

  17. Removal of fecal indicator organisms and parasites (fecal coliforms and helminth eggs) from municipal biologic sludge by anaerobic mesophilic and thermophilic digestion.

    PubMed

    Rojas Oropeza, M; Cabirol, N; Ortega, S; Castro Ortiz, L P; Noyola, A

    2001-01-01

    In this work, two egg-shaped, 5L-volume, anaerobic sludge digesters were used, one under mesophilic conditions (35 degrees C, M1), and the other under thermophilic conditions (55 degrees C, T1). Both digesters were fed with the purged sludge from an anaerobic treatment plant (start-up period) and from an activated sludge plant (stabilization period), treating municipal wastewaters. The purpose of the study was to establish the technical feasibility of the anaerobic thermophilic sludge treatment comparatively, during the stages of start-up and stabilization of the process, for removing pathogenic microorganisms and parasites efficiently. The results show that, in both stages, the anaerobic thermophilic digester presents higher efficiency on the removal of pathogens and parasites, than the mesophilic digester. Anaerobic thermophilic digestion is close to complying with the EPA (1998) limits for "Class A" type biosolids, referring to the number of parasitic helminth eggs (0.25 HELarval/gTS), and to the pathogen indicator fecal coliforms (< 1000 MPN/gTS). Therefore, the results show that thermophilic anaerobic digestion of biologic sludge may be considered as a suitable technology for the production of Class A biosolids, for further use in agriculture without restrictions.

  18. Enhancing filterability of activated sludge from landfill leachate treatment plant by applying electrical field ineffective on bacterial life.

    PubMed

    Akkaya, Gulizar Kurtoglu; Sekman, Elif; Top, Selin; Sagir, Ece; Bilgili, Mehmet Sinan; Guvenc, Senem Yazici

    2017-03-09

    The aim of this study is to investigate filterability enhancement of activated sludge supplied form a full-scale leachate treatment plant by applying DC electric field while keeping the biological operational conditions in desirable range. The activated sludge samples were received from the nitrification tank in the leachate treatment plant of Istanbul's Odayeri Sanitary Landfill Site. Experimental sets were conducted as laboratory-scale batch studies and were duplicated for 1A, 2A, 3A, 4A, and 5A of electrical currents and 2, 5, 10, 15, and 30 min of exposure times under continuous aeration. Physicochemical parameters such as temperature, pH, and oxidation reduction potential in the mixture right after each experimental set and biochemical parameters such as chemical oxygen demand, total phosphorus, and ammonia nitrogen in supernatant were analyzed to define the sets that remain in the range of ideal biological operational conditions. Later on, sludge filterability properties such as capillary suction time, specific resistance to filtration, zeta potential, and particle size were measured for remaining harmless sets. Additionally, cost analyses were conducted in respect to energy and electrode consumptions. Application of 2A DC electric field and 15-min exposure time was found to be the most favorable conditions to enhance filterability of the landfill leachate-activated sludge.

  19. A pilot-scale study on PVA gel beads based integrated fixed film activated sludge (IFAS) plant for municipal wastewater treatment.

    PubMed

    Kumar Singh, Nitin; Singh, Jasdeep; Bhatia, Aakansha; Kazmi, A A

    2016-01-01

    In the present study, a pilot-scale reactor incorporating polyvinyl alcohol gel beads as biomass carrier and operating in biological activated sludge mode (a combination of moving bed biofilm reactor (MBBR) and activated sludge) was investigated for the treatment of actual municipal wastewater. The results, during a monitoring period of 4 months, showed effective removal of chemical oxygen demand (COD), biological oxygen demand (BOD) and NH3-N at optimum conditions with 91%, ∼92% and ∼90% removal efficiencies, respectively. Sludge volume index (SVI) values of activated sludge varied in the range of 25-72 mL/g, indicating appreciable settling characteristics. Furthermore, soluble COD and BOD in the effluent of the pilot plant were reduced to levels well below discharge limits of the Punjab Pollution Control Board, India. A culture dependent method was used to enrich and isolate abundant heterotrophic bacteria in activated sludge. In addition to this, 16S rRNA genes analysis was performed to identify diverse dominant bacterial species in suspended and attached biomass. Results revealed that Escherichia coli, Pseudomonas sp. and Nitrosomonas communis played a significant role in biomass carrier, while Acinetobactor sp. were dominant in activated sludge of the pilot plant. Identification of ciliated protozoa populations rendered six species of ciliates in the plant, among which Vorticella was the most dominant.

  20. Experimental evaluation of starch utilization mechanism by activated sludge.

    PubMed

    Karahan, Ozlem; Martins, António; Orhon, Derin; van Loosdrecht, Mark C M

    2006-04-05

    The study aimed to explore the conversion processes of hydrolysable substrates by activated sludge. Experimental data were collected from a sequencing batch reactor (SBR) and from batch tests using activated sludge acclimated to native potato starch (NPS). Parallel batch tests were run with NPS (particulate), soluble starch (SolS), maltose, and glucose for comparative evaluation. The fate of organic carbon in the reactor was followed directly by measuring substrate, poly-glucose, and oxygen uptake rate. Results indicated that adsorption was the dominant mechanism for starch removal with subsequent enzymatic hydrolysis inside the flocs. The role of bulk liquid enzyme activity was minimal. Starch was observed to hydrolyze to maltose rather than glucose. The behavior of NPS and SolS was quite similar to maltose in terms of poly-glucose formation and oxygen uptake. Since the simplest hydrolysis product was maltose, the biomass was not acclimated to glucose and thus, glucose exhibited a significantly different removal and storage pattern. The study also showed that differentiation of readily biodegradable and slowly biodegradable COD should better be based on the kinetics of their utilization rather than simple physical characterization.

  1. [Biological activity of Spirulina].

    PubMed

    Blinkova, L P; Gorobets, O B; Baturo, A P

    2001-01-01

    In this review information of Spirulina platensis (SP), a blue-green alga (photosynthesizing cyanobacterium) having diverse biological activity is presented. Due to high content of highly valuable proteins, indispensable amino acids, vitamins, beta-carotene and other pigments, mineral substances, indispensable fatty acids and polysaccharides, PS has been found suitable for use as bioactive additive. SP produces an immunostimulating effect by enhancing the resistance of humans, mammals, chickens and fish to infections, the capacity of influencing hemopoiesis, stimulating the production of antibodies and cytokines. Under the influence of SP macrophages, T and B cells are activated. SP sulfolipids have proved to be effective against HIV. Preparations obtained from SP biomass have also been found active against herpesvirus, cytomegalovirus, influenza virus, etc. SP extracts are capable in inhibiting cancerogenesis. SP preparations are regarded as functional products contributing to the preservation of the resident intestinal microflora, especially lactic acid bacilli and bifidobacteria, and to a decrease in the level of Candida albicans. The biological activity of SP with respect to microorganisms holds good promise for using these microalgae as components of culture media.

  2. Effect of low temperature on highly unsaturated fatty acid biosynthesis in activated sludge.

    PubMed

    He, Su; Ding, Li-Li; Xu, Ke; Geng, Jin-Ju; Ren, Hong-Qiang

    2016-07-01

    Low temperature is a limiting factor for the microbial activity of activated sludge for sewage treatment plant in winter. Highly unsaturated fatty acid (UFA) biosynthesis, phospholipid fatty acid (PLFA) constituents and microbial structure in activated sludge at low temperature were investigated. Over 12 gigabases of metagenomic sequence data were generated with the Illumina HiSeq 2000 platform. The result showed 43.11% of phospholipid fatty acid (PLFA) in the activated sludge participated in UFA biosynthesis, and γ-Linolenic could be converted to Arachidonic acid at low temperature. The highly UFA biosynthesis in activated sludge was n-6 highly UFA biosynthesis, rather than n-3 highly UFA biosynthesis. The microbial community structures of activated sludge were analyzed by PLFA and high-throughput sequencing (HiSeq) simultaneously. Acidovorax, Pseudomonas, Flavobacterium and Polaromonas occupied higher percentage at 5°C, and genetic changes of highly UFA biosynthesis derived from microbial community structures change.

  3. Pyrolysis of activated sludge: energy analysis and its technical feasibility.

    PubMed

    Agarwal, Manu; Tardio, James; Venkata Mohan, S

    2015-02-01

    A comprehensive study on the potential of pyrolysis of activated sludge to generate substances that can be used to produce energy was evaluated for its technical and environmental viability. The products of the process viz., pyrolysis gas, pyrolysis oil and char can readily be used by the major energy consumers viz., electricity and transportation. Based on the results obtained it is estimated that a 1 ton capacity process for pyrolysis of activated sludge can serve the electrical needs of a maximum of 239, 95 and 47 Indian houses per day, considering lower middle class, middle class and upper middle class, respectively. In addition the process would also produce the daily methane (CNG) requirement of 128 public transport buses. The process was determined to be technically feasible at low and medium temperatures for both, pyrolysis gas and electrical energy. The gas generated could be utilized as fuel directly while the oil generated would require pretreatment before its potential application. The process is potentially sustainable when commercialized and can self-sustain in continuous mode of operation in biorefinery context.

  4. Toxic influence of silver and uranium salts on activated sludge of wastewater treatment plants and synthetic activated sludge associates modeled on its pure cultures.

    PubMed

    Tyupa, Dmitry V; Kalenov, Sergei V; Skladnev, Dmitry A; Khokhlachev, Nikolay S; Baurina, Marina M; Kuznetsov, Alexander Ye

    2015-01-01

    Toxic impact of silver and uranium salts on activated sludge of wastewater treatment facilities has been studied. Some dominating cultures (an active nitrogen fixer Agrobacterium tumifaciens (A.t) and micromyces such as Fusarium nivale, Fusarium oxysporum, and Penicillium glabrum) have been isolated and identified as a result of selection of the activated sludge microorganisms being steadiest under stressful conditions. For these cultures, the lethal doses of silver amounted 1, 600, 50, and 300 µg/l and the lethal doses of uranium were 120, 1,500, 1,000, and 1,000 mg/l, respectively. A.tumifaciens is shown to be more sensitive to heavy metals than micromyces. Synthetic granular activated sludge was formed on the basis of three cultures of the isolated micromyces steadiest against stress. Its granules were much more resistant to silver than the whole native activated sludge was. The concentration of silver causing 50 % inhibition of synthetic granular activated sludge growth reached 160-170 μg/l as far as for the native activated sludge it came only to 100-110 μg/l.

  5. Influences of influent carbon source on extracellular polymeric substances (EPS) and physicochemical properties of activated sludge.

    PubMed

    Ye, Fenxia; Peng, Ge; Li, Ying

    2011-08-01

    It is necessary to understand the bioflocculation, settling and dewatering characteristics in the activated sludge process in order to establish more efficient operational strategies. The influences of carbon source on the extracellular polymeric substances (EPS) and flocculation, settling and dewatering properties of the activated sludge were investigated. Laboratory-scale completely mixed activated sludge processes were used to grow the activated sludge with different carbon sources of starch, glucose and sodium acetate. The sludge fed with acetate had highest loosely bound EPS (LB-EPS) and that fed with starch lowest. The amount of tightly bound EPS (TB-EPS), protein content in LB-EPS, polysaccharide content and protein contents in TB-EPS, were independent of the influent carbon source. The polysaccharide content in LB-EPS of the activated sludge fed with sodium acetate was lower slightly than those of starch and glucose. The sludge also had a nearly consistent flocs size and the sludge volume index (SVI) value. ESS content of the sludge fed with sodium acetate was higher initially, although it was similar to those fed with glucose and starch finally. However, the specific resistance to filtration and normalized capillary suction time fluctuated first, but finally were stable at around 5.0×10(8)mkg(-1) and 3.5 s Lg(-1) SS, respectively. Only the protein content in LB-EPS weakly correlated with the flocs size and SVI of the activated sludge. But there was no correlation between any other EPS contents or components and the physicochemical properties of the activated sludge.

  6. Understanding the role of extracellular polymeric substances in an enhanced biological phosphorus removal granular sludge system.

    PubMed

    Wang, Randeng; Peng, Yongzhen; Cheng, Zhanli; Ren, Nanqi

    2014-10-01

    The role of extracellular polymeric substances (EPS) in the enhanced biological phosphorus removal (EBPR) process was investigated in a P-accumulating granular sludge system by analyzing the distribution and transfer of P, K(+), Mg(2+) and Ca(2+) in the sludge phase, EPS, and the bulk liquid. In the sludge phase, about 30% P, 44.7% K(+), 27.7% Mg(2+), 28% Ca(2+) accumulated in the EPS at the end of aeration. The rate of P, K(+), Mg(2+) and Ca(2+) released from the EPS matrix into the bulk liquid in the anaerobic phase was faster than the rate they were adsorbed from the bulk liquid into the EPS in the aerobic phase. P, K(+), Mg(2+) and Ca(2+) were retained in EPS before transferring into the phosphorus accumulating organisms (PAOs). These results suggest that EPS play a critical role in facilitating the accumulation and transfer of P, K(+), Ca(2+) and Mg(2+) between PAO cells and bulk liquid.

  7. Simultaneous nitrification/denitrification and stable sludge/water separation achieved in a conventional activated sludge process with severe filamentous bulking.

    PubMed

    Zhang, Xueyu; Zheng, Shaokui; Xiao, Xuze; Wang, Lu; Yin, Yunjun

    2017-02-01

    This study investigated the long-term treatment performance of a conventional activated sludge (AS) process operating at a microaerobic DO level (0.5-1.0mg·L(-1)) in the aeration tank and a long settling time of >10h in the clarification tank for sewage treatment. The microaerobic DO conditions led to severe sludge bulking. However, good sludge/water separation and excellent pollutant removal performance (COD, 95±2%; NH4(+)-N, 99±1%; and TN, 69±6%) were stably achieved in the microaerobic AS system during its 150days of continuous operation. This is the first report to demonstrate that a long settling time effectively overcame the effect of severe filamentous bulking in conventional AS process, and that microaerobic DO conditions achieved excellent simultaneous nitrification and denitrification reactions in the aeration tank. The process characteristics of the microaerobic AS system differed substantially from those existing biological denitrification processes, including A/O, CANON, and OLAND processes.

  8. Characterization of bioflocculants from biologically aerated filter backwashed sludge and its application in dying wastewater treatment.

    PubMed

    Liu, WeiJie; Yuan, HongLi; Yang, JinShui; Li, BaoZhen

    2009-05-01

    In this study, the feasibility of bioflocculant extraction from backwashing sludge to reduce its production costs was investigated. Results showed that ultrasound and base treatment could significantly enhance bioflocculant extraction efficiency, however, flocculating activity was affected. It was observed that bioflocculants extracted from sludge of pH 11.0 had no flocculating activity. In contrast, bioflocculants extracted from sludge of pH 5.0, named as M-1, had good flocculating activity. To further study the flocculating activity of M-1, factors such as bioflocculant dosage, temperature and pH of the reaction solution were tested. The optimal conditions were 6.0mg/l bioflocculant dosage and pH 5.0, at a temperature of 10 degrees C. Under these conditions, the flocculating rate of kaolin clay was 92.67%. The effectiveness of such bioflocculants in the decolorization of synthetically dyed wastewater was then examined. In flocculating methylene blue and fast blue in aqueous solutions, decolorization efficiency levels were 82.9% and 77.8%, respectively.

  9. Simulating a cyclic activated sludge system by employing a modified ASM3 model for wastewater treatment.

    PubMed

    Gao, Feng; Nan, Jun; Zhang, Xinhui

    2017-03-13

    To interpret the biological nutrient removal in a cyclic activated sludge system (CAS), a modified model was developed by combining the process of simultaneous storage and growth, and the kinetics of soluble microbial product (S SMP) and extracellular polymeric substance (X EPS) with activated sludge model no. 3 (ASM3). These most sensitive parameters were initially selected whilst parameters with low sensitivity were given values from literature. The selected parameters were then calibrated on an oxygen uptake rate test and a batch CAS reactor on an operational cycle. The calibrated model was validated using a combination of the measurements from a batch CAS reactor operated for 1 month and the average deviation method. The simulations demonstrated that the modified model was capable of predicting higher effluent concentrations compared to outputs of the ASM3 model. Additionally, it was also shown that the average deviation of effluent S COD, S NH, S SMP and X EPS simulated with the modified model was all less than 1 mg L(-1). In summary, the model could effectively describe biological processes in a CAS reactor and provide a wonderful tool for operation.

  10. The application of multi-objective optimization method for activated sludge process: a review.

    PubMed

    Dai, Hongliang; Chen, Wenliang; Lu, Xiwu

    2016-01-01

    The activated sludge process (ASP) is the most generally applied biological wastewater treatment approach. Depending on the design and specific application, activated sludge wastewater treatment plants (WWTPs) can achieve biological nitrogen (N) and phosphorus (P) removal, besides the removal of organic carbon substances. However, the effluent N and P limits are getting tighter because of increased emphasis on environmental protection, and the needs for energy conservation as well as the operational reliability. Therefore, the balance between treatment performance and cost becomes a critical issue for the operations of WWTPs, which necessitates a multi-objective optimization (MOO). Recent studies in this field have shown promise in utilizing MOO to address the multiple conflicting criteria (i.e. effluent quality, operation cost, operation stability), including studying the ASP models that are primarily responsible for the process, and developing the method of MOO in the wastewater treatment process, which facilitates better optimization of process performance. Based on a better understanding of the application of MOO for ASP, a comprehensive review is conducted to offer a clear vision of the advances, and potential areas for future research are also proposed in the field.

  11. Cost estimation and economical evaluation of three configurations of activated sludge process for a wastewater treatment plant (WWTP) using simulation

    NASA Astrophysics Data System (ADS)

    Jafarinejad, Shahryar

    2016-07-01

    The activated sludge (AS) process is a type of suspended growth biological wastewater treatment that is used for treating both municipal sewage and a variety of industrial wastewaters. Economical modeling and cost estimation of activated sludge processes are crucial for designing, construction, and forecasting future economical requirements of wastewater treatment plants (WWTPs). In this study, three configurations containing conventional activated sludge (CAS), extended aeration activated sludge (EAAS), and sequencing batch reactor (SBR) processes for a wastewater treatment plant in Tehran city were proposed and the total project construction, operation labor, maintenance, material, chemical, energy and amortization costs of these WWTPs were calculated and compared. Besides, effect of mixed liquor suspended solid (MLSS) amounts on costs of WWTPs was investigated. Results demonstrated that increase of MLSS decreases the total project construction, material and amortization costs of WWTPs containing EAAS and CAS. In addition, increase of this value increases the total operation, maintenance and energy costs, but does not affect chemical cost of WWTPs containing EAAS and CAS.

  12. Effects of Metal Nanoparticles on Methane Production from Waste-Activated Sludge and Microorganism Community Shift in Anaerobic Granular Sludge.

    PubMed

    Wang, Tao; Zhang, Dong; Dai, Lingling; Chen, Yinguang; Dai, Xiaohu

    2016-05-11

    Extensive use of nanoparticles (NPs) in consumer and industrial products has led to concerns about their potential environmental impacts; however, the influences of different NPs (e.g., nZVI (nano zero-valent iron), Ag NPs, Fe2O3 NPs and MgO NPs) on the anaerobic digestion of sludge have not yet been studied in depth. Additionally, a new guideline or the use of different NPs in the anaerobic digestion of sludge should be established to improve the anaerobic digestion of sludge and avoid inhibitory effects. This study investigated the effects of four representative NPs (i.e., nZVI, Ag NPs, Fe2O3 NPs and MgO NPs) on methane production during the anaerobic digestion of waste activated sludge (WAS). The presence of 10 mg/g total suspended solids (TSS) nZVI and 100 mg/g TSS Fe2O3 NPs increased methane production to 120% and 117% of the control, respectively, whereas 500 mg/g TSS Ag NPs and 500 mg/g TSS MgO NPs generated lower levels of methane production (73.52% and 1.08% that of the control, respectively). These results showed that low concentrations of nZVI and Fe2O3 NPs promoted the amount of microbes (Bacteria and Archaea) and activities of key enzymes but that higher concentrations of Ag NPs and MgO NPs inhibited them.

  13. Effects of Metal Nanoparticles on Methane Production from Waste-Activated Sludge and Microorganism Community Shift in Anaerobic Granular Sludge

    PubMed Central

    Wang, Tao; Zhang, Dong; Dai, Lingling; Chen, Yinguang; Dai, Xiaohu

    2016-01-01

    Extensive use of nanoparticles (NPs) in consumer and industrial products has led to concerns about their potential environmental impacts; however, the influences of different NPs (e.g., nZVI (nano zero-valent iron), Ag NPs, Fe2O3 NPs and MgO NPs) on the anaerobic digestion of sludge have not yet been studied in depth. Additionally, a new guideline or the use of different NPs in the anaerobic digestion of sludge should be established to improve the anaerobic digestion of sludge and avoid inhibitory effects. This study investigated the effects of four representative NPs (i.e., nZVI, Ag NPs, Fe2O3 NPs and MgO NPs) on methane production during the anaerobic digestion of waste activated sludge (WAS). The presence of 10 mg/g total suspended solids (TSS) nZVI and 100 mg/g TSS Fe2O3 NPs increased methane production to 120% and 117% of the control, respectively, whereas 500 mg/g TSS Ag NPs and 500 mg/g TSS MgO NPs generated lower levels of methane production (73.52% and 1.08% that of the control, respectively). These results showed that low concentrations of nZVI and Fe2O3 NPs promoted the amount of microbes (Bacteria and Archaea) and activities of key enzymes but that higher concentrations of Ag NPs and MgO NPs inhibited them. PMID:27166174

  14. Effects of Metal Nanoparticles on Methane Production from Waste-Activated Sludge and Microorganism Community Shift in Anaerobic Granular Sludge

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Zhang, Dong; Dai, Lingling; Chen, Yinguang; Dai, Xiaohu

    2016-05-01

    Extensive use of nanoparticles (NPs) in consumer and industrial products has led to concerns about their potential environmental impacts; however, the influences of different NPs (e.g., nZVI (nano zero-valent iron), Ag NPs, Fe2O3 NPs and MgO NPs) on the anaerobic digestion of sludge have not yet been studied in depth. Additionally, a new guideline or the use of different NPs in the anaerobic digestion of sludge should be established to improve the anaerobic digestion of sludge and avoid inhibitory effects. This study investigated the effects of four representative NPs (i.e., nZVI, Ag NPs, Fe2O3 NPs and MgO NPs) on methane production during the anaerobic digestion of waste activated sludge (WAS). The presence of 10 mg/g total suspended solids (TSS) nZVI and 100 mg/g TSS Fe2O3 NPs increased methane production to 120% and 117% of the control, respectively, whereas 500 mg/g TSS Ag NPs and 500 mg/g TSS MgO NPs generated lower levels of methane production (73.52% and 1.08% that of the control, respectively). These results showed that low concentrations of nZVI and Fe2O3 NPs promoted the amount of microbes (Bacteria and Archaea) and activities of key enzymes but that higher concentrations of Ag NPs and MgO NPs inhibited them.

  15. Comparative study of phenol and cyanide containing wastewater in CSTR and SBR activated sludge reactors.

    PubMed

    Papadimitriou, C A; Samaras, P; Sakellaropoulos, G P

    2009-01-01

    The objectives of this work were the examination of the performance of two bench scale activated sludge systems, a conventional Continuous Stirring Tank Reactor (CSTR) and a Sequential Batch Reactor (SBR), for the treatment of wastewaters containing phenol and cyanides and the assessment of the toxicity reduction potential by bioassays. The operation of the reactors was monitored by physicochemical analyses, while detoxification potential of the systems was monitored by two bioassays, the marine photobacterium Vibrio fischeri and the ciliate protozoan Tetrahymena thermophila. The reactors influent was highly toxic to both organisms, while activated sludge treatment resulted in the reduction of toxicity of the influent. An increased toxicity removal was observed in the SBR; however CSTR system presented a lower ability for toxicity reduction of influent. The performance of both systems was enhanced by the addition of powdered activated carbon in the aeration tank; activated carbon upgraded the performance of the systems due to the simultaneous biological removal of pollutants and to carbon adsorption process; almost negligible values of phenol and cyanides were measured in the effluents, while further toxicity reduction was observed in both systems.

  16. Effects of SRT and DO on N2O reductase activity in an anoxic-oxic activated sludge system.

    PubMed

    Noda, N; Kaneko, N; Mikami, M; Kimochi, Y; Tsuneda, S; Hirata, A; Mizuochi, M; Inamori, Y

    2003-01-01

    Nitrous oxide (N2O) is emitted from wastewater treatment processes, and is known to be a green house gas contributing to global warming. It is thus important to develop technology that can suppress N2O emission. The effects of sludge retention time (SRT) and dissolved oxygen (DO) on N2O emission in an anoxic-oxic activated sludge system were estimated. Moreover, the microbial community structure in the sludge, which plays an important role in N2O suppression, was clarified based on nitrous oxide reductase (nosZ) gene analysis by molecular biological techniques. The results showed that under low SRT conditions, nitrification efficiency was reduced and the N2O emission rate in the oxic reactors was increased. It was also observed that N2O emission was enhanced under low DO conditions, where the available oxygen is insufficient for nitrification. Moreover, molecular analysis revealed that the clones identified in this study were closely related to Ralstonia eutropha and Paracoccus denitrificans. The fact that the identified sequences are not closely related to known culturable denitrifier nosZ sequences indicates a substantial in situ diversity of denitrifiers contributing to N2O suppression, which are not reflected in the cultivatable fraction of the population. The further application of these new molecular techniques should serve to enhance our knowledge of the microbial community of denitrifying bacteria contributing to N2O suppression in wastewater treatment systems.

  17. Biological treatment of sewage treatment plant sludge by pure bacterial culture with optimum process conditions in a stirred tank bioreactor.

    PubMed

    Alam, M Z; Muyibi, Suleyman A; Jamal, P

    2007-09-01

    Biological treatment of sewage treatment plant (STP) sludge by potential pure bacterial culture (Bacillus sp.) with optimum process conditions for effective biodegradation and bioseparation was carried out in the laboratory. The effective and efficient bioconversion was evaluated with the treatment of pure bacterial culture and existing microbes (uninnoculated) in sludge. The optimum process conditions i.e., temperature, 40 degrees C; pH, 6; inoculum, 5% (v/v); aeration, 1 vvm; agitation speed, 50 rpm obtained from the previous studies with chemical oxygen demand COD at 30 mgL(-1) were applied for the biological treatment of sludge. The results indicated that pure bacterial culture (Bacillus sp.) showed higher degradation and separation of treated sludge compared to treatment with the existing mixed microbes in a stirred tank bioreactor. The treated STP sludge by potential pure bacterial culture and existing microbes gave 30% and 11%; 91.2% and 59.1; 88.5% and 52.3%; 98.4% and 51.3%; 96.1% and 75.2%; 99.4% and 72.8% reduction of total suspended solids (TSS, biosolids), COD, soluble protein, turbidity, total dissolved solids (TDS) and specific resistance to filtration (SRF), respectively within 7 days of treatment. The pH was observed at 6.5 and 4 during the treatment of sludge by pure culture and existing microbes, respectively.

  18. A novel approach for phosphorus recovery and no wasted sludge in enhanced biological phosphorus removal process with external COD addition.

    PubMed

    Xia, Cheng-Wang; Ma, Yun-Jie; Zhang, Fang; Lu, Yong-Ze; Zeng, Raymond J

    2014-01-01

    In enhanced biological phosphorus removal (EBPR) process, phosphorus (P) in wastewater is removed via wasted sludge without actual recovery. A novel approach to realize phosphorus recovery with special external chemical oxygen demand (COD) addition in EBPR process was proposed. During the new operating approach period, it was found that (1) no phosphorus was detected in the effluent; (2) with an external addition of 10 % of influent COD amount, 79 % phosphorus in the wastewater influent was recovered; (3) without wasted sludge, the MLVSS concentration in the system increased from 2,010 to 3,400 mg/L and kept stable after day 11 during 24-day operating period. This demonstrates that the novel approach is feasible to realize phosphorus recovery with no wasted sludge discharge in EBPR process. Furthermore, this approach decouples P removal and sludge age, which may enhance the application of membrane bioreactor for P removal.

  19. Fate of Malathion in an Activated Sludge Municipal Wastewater Treatment System

    DTIC Science & Technology

    2013-03-01

    1. The degradation of malathion by municipal WWTP AS a) The capacity for AS to degrade malathion b) Degradation kinetics of AS with respect to...abiotically. Sorption kinetics and isotherm experiments resulted in negligible malathion sorption to AS minimizing the potential for sludge...FATE OF MALATHION IN AN ACTIVATED SLUDGE MUNICIPAL WASTEWATER TREATMENT SYSTEM THESIS

  20. SUMMARY REPORT: THE CAUSES AND CONTROL OF ACTIVATED SLUDGE BULKING AND FOAMING

    EPA Science Inventory

    This 92-page Technology Transfer Summary Report provides reference material on the causes and controls of sludge bulking and foaming in activated sludge treatment that can be readily understood, and it includes sufficient detail to help plant operators control their systems. The ...

  1. Dynamic fouling behaviors of submerged nonwoven bioreactor for filtration of activated sludge with different SRT.

    PubMed

    Chuang, Shun-Hsing; Lin, Po-Kuen; Chang, Wei-Chin

    2011-09-01

    The flux variations and resistances accumulated during filtration of activated sludge with sludge retention time (SRT) of 15, 30, and 60 days were analyzed to investigate the dynamic fouling behavior in a submerged nonwoven bioreactor. Different SRT values varied sludge condition and particle size distribution in the supernatants, which caused dissimilar fouling characteristics. Short-term fouling of the nonwoven bioreactor during filtration of activated sludge with SRT of 15 days was fully reversible, and the resistance percentages of solutes, colloids, and suspended solids were 6%, 27%, and 67%, respectively. On the other hand, significant increases of colloid resistance, such as with the filtration of activated sludge with SRT of 30 and 60 days, were related to the occurrence of irreversible fouling. The phenomenon of pore blocking by particles or colloids with size analogous to the pore of nonwoven fabric was a decisive factor leading to irreversible fouling in the large-pore materials.

  2. Fenton peroxidation improves the drying performance of waste activated sludge.

    PubMed

    Dewil, Raf; Baeyens, Jan; Neyens, Elisabeth

    2005-01-31

    Advanced sludge treatment processes (AST) reduce the amount of sludge produced and improve the dewaterability, thus probably also affecting the heat transfer properties and the drying characteristics of the sludge. This paper studies the influence of the Fenton peroxidation on the thermal conductivity of the sludge. Results demonstrate that the Fenton's peroxidation positively influences the sludge cake consistency and hence enhances the mechanical dewaterability and the drying characteristics of the dewatered sludge. For the two sludges used in this study, i.e. obtained from the wastewater treatment plants (WWTP) of Tienen and Sint-Niklaas--the dry solids content of the mechanically dewatered sludge increased from 22.5% to 40.3% and from 18.7% to 35.2%, respectively. The effective thermal conductivity k(e) of the untreated and the peroxidized sludges is measured and used to determine the heat transfer coefficient h(s). An average improvement for k(e) of 16.7% (Tienen) and 5.8% (Sint-Niklaas) was observed. Consequently the value of h(s) increased with 15.6% (Tienen) and 5.0% (Sint-Niklaas). This increased heat transfer coefficient in combination with the increased dewaterability has direct implications on the design of sludge dryers. A plate-to-plate calculation of a multiple hearth dryer illustrates that the number of plates required to dry the peroxidized sludge to 90% DS is less than half the number of plates needed to dry untreated sludge. This results in reduced dryer dimensions or a higher capacity for an existing dryer of given dimensions.

  3. Effects of Sludge Retention Times on Nutrient Removal and Nitrous Oxide Emission in Biological Nutrient Removal Processes

    PubMed Central

    Li, Bo; Wu, Guangxue

    2014-01-01

    Sludge retention time (SRT) is an important factor affecting not only the performance of the nutrient removal and sludge characteristics, but also the production of secondary pollutants such as nitrous oxide (N2O) in biological nutrient removal (BNR) processes. Four laboratory-scale sequencing batch reactors (SBRs), namely, SBR5, SBR10, SBR20 and SBR40 with the SRT of 5 d, 10 d, 20 d and 40 d, respectively, were operated to examine effects of SRT on nutrient removal, activated sludge characteristics and N2O emissions. The removal of chemical oxygen demand or total phosphorus was similar under SRTs of 5–40 d, SRT mainly affected the nitrogen removal and the optimal SRT for BNR was 20 d. The molecular weight distribution of the effluent organic matters was in the range of 500–3,000 Da under SRTs of 5–40 d. The lowest concentration of the effluent soluble microbial products concentration was obtained at the SRT of 5 d. Nitrifier growth was limited at a short SRT and nitrite existed in the effluent of SBR5. With increasing SRTs, mixed liquor suspended solids concentration increased while the excess sludge production was reduced due to the high endogenous decay rate at high SRTs. Endogenous decay coefficients were 0.020 d−1, 0.036 d−1, 0.037 d−1 and 0.039 d−1 under SRTs of 5–40 d, respectively. In BNR, the N2O emission occurred mainly during the aerobic phase and its emission ratio decreased with increasing SRTs. The ratio between the N2O-N emission and the removed ammonium nitrogen in the aerobic phase was 5%, 3%, 1.8% and 0.8% at the SRT of 5 d, 10 d, 20 d and 40 d, respectively. With low concentrations of dissolved oxygen and high concentrations of oxidized nitrogen, the N2O emission was significantly accelerated due to heterotrophic denitrification activities. PMID:24681555

  4. Impact of nitrite on aerobic phosphorus uptake by poly-phosphate accumulating organisms in enhanced biological phosphorus removal sludges.

    PubMed

    Zeng, Wei; Li, Boxiao; Yang, Yingying; Wang, Xiangdong; Li, Lei; Peng, Yongzhen

    2014-02-01

    Impact of nitrite on aerobic phosphorus (P) uptake of poly-phosphate accumulating organisms (PAOs) in three different enhanced biological phosphorus removal (EBPR) systems was investigated, i.e., the enriched PAOs culture fed with synthetic wastewater, the two lab-scale sequencing batch reactors (SBRs) treating domestic wastewater for nutrient removal through nitrite-pathway nitritation and nitrate-pathway nitrification, respectively. Fluorescence in situ hybridization results showed that PAOs in the three sludges accounted for 72, 7.6 and 6.5% of bacteria, respectively. In the enriched PAOs culture, at free nitrous acid (FNA) concentration of 0.47 × 10(-3) mg HNO₂-N/L, aerobic P-uptake and oxidation of intercellular poly-β-hydroxyalkanoates were both inhibited. Denitrifying phosphorus removal under the aerobic conditions was observed, indicating the existence of PAOs using nitrite as electron acceptor in this culture. When the FNA concentration reached 2.25 × 10(-3) mg HNO2-N/L, denitrifying phosphorus removal was also inhibited. And the inhibition ceased once nitrite was exhausted. Corresponding to both SBRs treating domestic wastewater with nitritation and nitrification pathway, nitrite inhibition on aerobic P-uptake by PAOs did not occur even though FNA concentration reached 3 × 10(-3) and 2.13 × 10(-3) mg HNO₂-N/L, respectively. Therefore, PAOs taken from different EBPR activated sludges had different tolerance to nitrite.

  5. Anaerobic co-digestion of waste activated sludge and greasy sludge from flotation process: batch versus CSTR experiments to investigate optimal design.

    PubMed

    Girault, R; Bridoux, G; Nauleau, F; Poullain, C; Buffet, J; Peu, P; Sadowski, A G; Béline, F

    2012-02-01

    In this study, the maximum ratio of greasy sludge to incorporate with waste activated sludge was investigated in batch and CSTR experiments. In batch experiments, inhibition occurred with a greasy sludge ratio of more than 20-30% of the feed COD. In CSTR experiments, the optimal greasy sludge ratio was 60% of the feed COD and inhibition occurred above a ratio of 80%. Hence, batch experiments can predict the CSTR yield when the degradation phenomenon are additive but cannot be used to determine the maximum ratio to be used in a CSTR configuration. Additionally, when the ratio of greasy sludge increased from 0% to 60% of the feed COD, CSTR methane production increased by more than 60%. When the greasy sludge ratio increased from 60% to 90% of the feed COD, the reactor yield decreased by 75%.

  6. Effect of food:microorganism ratio in activated sludge foam control.

    PubMed

    Chua, H; Yu, P H; Sin, S N; Tan, K N

    2000-01-01

    Foaming is a common operational problem in activated sludge processes that often adversely affects the quality of the treated effluent. Overgrowth of the filamentous Nocardia spp. in the microbial ecosystem was previously identified as the cause of foaming. In the present study, the specific growth rate of Nocardia amarae was found to be much higher than that of nonfilamentous bacteria under food:microorganism (F:M) ratios lower than 0.5 mg of biological oxygen demand (BOD)/(mg of mixed liquor suspended solids [MLSS].d). This indicated that filamentous overgrowth may occur in normal activated sludge processes that are continually operated under the usual F:M range of 0.2-0.6 mg of BOD/(mg of MLSS.d). A novel two-component feast-fast operation (FFO) that capitalized on the sensitivity of filamentous bacteria to F:M ratio was designed to prevent and control foaming problems. The F:M ratio in the "feasting" aeration unit was 0.8 mg of BOD/(mg of MLSS.d) whereas that in the "fasting" aeration unit was 0.2 mg of BOD/(mg of MLSS.d). The FFO resulted in an overall process F:M ratio that still remained within the normal range, while avoiding prolonged exposure of the activated sludge ecosystem to an F:M ratio below 0.5 mg of BOD/(mg of MLSS.d). The FFO suppressed the overgrowth of filamentous bacteria without adversely affecting the organic treatment efficiency of the modified process.

  7. [Microbial composition of the activated sludges of the Moscow wastewater treatment plants].

    PubMed

    Kallistova, A Iu; Pimenov, N V; Kozlov, M N; Nikolaev, Iu A; Dorofeev, A G; Aseeva, V G; Grachev, V A; Men'ko, E V; Berestovskaia, Iu Iu; Nozhevnikova, A N; Kevbrina, M V

    2014-01-01

    The contribution of the major technologically important microbial groups (ammonium- and nitrite-oxidizing, phosphate-accumulating, foam-inducing, and anammox bacteria, as well as planctomycetes and methanogenic archaea) was characterized for the aeration tanks of the Moscow wastewater treatment facilities. FISH investigation revealed that aerobic sludges were eubacterial communities; the metabolically active archaea contributed insignificantly. Stage II nitrifying microorganisms and planctomycetes were significant constituents of the bacterial component of activated sludge, with Nitrobacter spp. being the dominant nitrifier. No metabolically active anammox bacteria were revealed in the sludge from aeration tanks. The sludge from the aeration tanks using different wastewater treatment technologies were found to differ in characteristics. Abundance of the nitrifying and phosphate-accumulating bacteria in the sludges generally correlated with microbial activity, in microcosms and with efficiency of nitrogen and phosphorus removal from wastewater. The highest microbial numbers and activity were found in the sludges of the tanks operating according to the technologies developed in the universities of Hanover and Cape Town. The activated sludge from the Novokur yanovo facilities, where abundant growth of filamentous bacteria resulted in foam formation, exhibited the lowest activity The group of foaming bacteria included Gordonia spp. and Acinetobacter spp., utilizing petroleum and motor oils, Sphaerotilus spp. utilizing unsaturated fatty acids, and Candidatus 'Microthrix parvicella'. Thus, the data on abundance and composition of metabolically active microorganisms obtained by FISH may be used for the technological control of wastewater treatment.

  8. Nitrogen removal from wastewater and external waste activated sludge reutilization/reduction by simultaneous sludge fermentation, denitrification and anammox (SFDA).

    PubMed

    Wang, Bo; Peng, Yongzhen; Guo, Yuanyuan; Zhao, Mengyue; Wang, Shuying

    2016-08-01

    This work demonstrates the feasibility of simultaneous nitrogen removal and external waste activated sludge (WAS) reutilization/reduction by using the synergy of sludge fermentation, denitrification and anammox processes in up-flow reactors (SFDA). Pre-treated domestic wastewater and synthetic wastewater (containing nitrite ∼20mg/L, ammonium ∼10mg/L in both) were fed to 1# and 2# SFDA, respectively. Long-term operation of 1# SFDA was investigated with achieving the peak ammonium removal rate of 0.021 and nitrite removal rate of 0.081kgN/(m(3)d) as nitrogen loading rate elevated from 0.075 to 0.106kgN/(m(3)d). Negative effect of dissolved oxygen on anammox or fermentation in the 2# SFDA was demonstrated negligible due to rapid depletion by microorganisms. Furthermore, a "net" sludge reduction of 38.8% was obtained due to sludge decay and organics consumption by denitrification. The SFDA process was expected to potentially be used for nitrogen removal and WAS reutilization/reduction in full-scale application.

  9. SLUDGE BATCH 7B QUALIFICATION ACTIVITIES WITH SRS TANK FARM SLUDGE

    SciTech Connect

    Pareizs, J.; Click, D.; Lambert, D.; Reboul, S.

    2011-11-16

    Waste Solidification Engineering (WSE) has requested that characterization and a radioactive demonstration of the next batch of sludge slurry - Sludge Batch 7b (SB7b) - be completed in the Shielded Cells Facility of the Savannah River National Laboratory (SRNL) via a Technical Task Request (TTR). This characterization and demonstration, or sludge batch qualification process, is required prior to transfer of the sludge from Tank 51 to the Defense Waste Processing Facility (DWPF) feed tank (Tank 40). The current WSE practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks. Discharges of nuclear materials from H Canyon are often added to Tank 51 during sludge batch preparation. The sludge is washed and transferred to Tank 40, the current DWPF feed tank. Prior to transfer of Tank 51 to Tank 40, SRNL typically simulates the Tank Farm and DWPF processes with a Tank 51 sample (referred to as the qualification sample). With the tight schedule constraints for SB7b and the potential need for caustic addition to allow for an acceptable glass processing window, the qualification for SB7b was approached differently than past batches. For SB7b, SRNL prepared a Tank 51 and a Tank 40 sample for qualification. SRNL did not receive the qualification sample from Tank 51 nor did it simulate all of the Tank Farm washing and decanting operations. Instead, SRNL prepared a Tank 51 SB7b sample from samples of Tank 7 and Tank 51, along with a wash solution to adjust the supernatant composition to the final SB7b Tank 51 Tank Farm projections. SRNL then prepared a sample to represent SB7b in Tank 40 by combining portions of the SRNL-prepared Tank 51 SB7b sample and a Tank 40 Sludge Batch 7a (SB7a) sample. The blended sample was 71% Tank 40 (SB7a) and 29% Tank 7/Tank 51 on an insoluble solids basis. This sample is referred to as the SB7b Qualification Sample. The blend represented the highest projected Tank 40 heel (as of May 25, 2011), and thus, the highest

  10. Viscous Product from Activated Sludge by Methanol Fermentation

    PubMed Central

    Davis, Edwin N.; Wallen, Lowell L.

    1976-01-01

    Aeration of activated sludge with 3 to 4% added methanol for 5 to 7 days yields an odorless, highly viscous (5,000 to 10,000 centipoise), black, pudding-like product containing glycan(s) linked other than α-1-4 or β-1-3. Backseeding gives maximum thickening in 3 to 4 days. Incomplete acid hydrolysis of the black product gives a 0.27% solution of reducing sugars (75% glucose) which is an 11.4% yield from the added methanol. Backseeding into either centrifuge supernatant or 0.1% yeast extract in tap water gives a light-colored polymer. Viscosity decreases during extended sterile cold storage. A 5% salt addition lowers viscosity one-half. From 6 to 12 colony types appear on plating backseeded media, but none of these isolates is a reliable polymer former. PMID:16345172

  11. Selenite bioremediation potential of indigenous microorganisms from industrial activated sludge.

    PubMed

    Garbisu, C; Alkorta, I; Carlson, D E; Leighton, T; Buchanan, B B

    1997-12-01

    Ten bacterial strains were isolated from the activated sludge waste treatment system (BIOX) at the Exxon refinery in Benicia, California. Half of these isolates could be grown in minimal medium. When tested for selenite detoxification capability, these five isolates (members of the genera Bacillus, Pseudomonas, Enterobacter and Aeromonas), were capable of detoxifying selenite with kinetics similar to those of a well characterized Bacillus subtilis strain (168 Trp+) studied previously. The selenite detoxification phenotype of the Exxon isolates was stable to repeated transfer on culture media which did not contain selenium. Microorganisms isolated from the Exxon BIOX reactor were capable of detoxifying selenite. Treatability studies using the whole BIOX microbial community were also carried out to evaluate substrates for their ability to support growth and selenite bioremediation. Under the appropriate conditions, indigenous microbial communities are capable of remediating selenite in situ.

  12. Simultaneous biodegradation of bisphenol A and a biogenic substrate in semi-continuous activated sludge reactors.

    PubMed

    Ferro Orozco, A M; Contreras, E M; Zaritzky, N E

    2015-06-01

    In this work, the simultaneous degradation of BPA and cheese whey (CW) in semi-continuous activated sludge reactors was studied. The acclimation process and microbial growth on BPA, CW and BPA + CW were analyzed. In addition, the effect of increasing CW concentration on the BPA degradation by acclimated activated sludge was also studied. In order to reduce the factors involved in the analysis of the simultaneous degradation of BPA and CW, the effect of bisphenol A (BPA) on activated sludge not previously exposed to BPA (native activated sludge) was studied. Results demonstrate that BPA concentrations lower than 40 mg l(-1) had a negligible effect on the growth of native activated sludge. In the semi-continuous reactors, the presence of CW increased the acclimation time to 40 mg l(-1) of BPA. Once the capability of degrading BPA was acquired, the removal of BPA was not affected by the presence of CW. Increasing the CW concentration did not affect the removal of BPA by the acclimated activated sludge. Additionally, the CW consumption was not modified by the presence of BPA. Kinetic and stoichiometric coefficients reported in the present work can be useful in developing mathematical models to describe the simultaneous aerobic biodegradation of a biogenic substrate, such as CW, and BPA by activated sludge.

  13. Studies on the effect of inoculation of activated sludge with bacteria actively degrading hydrocarbons on the biodegradation of petroleum products.

    PubMed

    Bieszkiewicz, Ewa; Boszczyk-Maleszak, Hanka; Włodarczyk, Anna; Horoch, Maciej

    2002-01-01

    Eighteen strains of bacteria were isolated from activated sludge purifying petroleum-refining wastewaters. These strains were plated on solidified mineral medium supplemented with oil fraction in concentration 1000 mg/l. Four of the strains that grew best in the presence of oil were selected for further studies. The strains were identified based on Bonde's scheme and microscopic observations. Three of them belonged to the genus Arthrobacter and one to the genus Micrococcus. Stationary cultures of single strains and their mixtures were set up in mineral medium containing oil (sterile and non-sterile) as sole carbon source in concentration 1000 mg/l. The oils were found to be removed the most efficiently by a mixture of the strains. After 14 days of culture the amount of oil was utilized by from 63 to 95%. In the next stage of the studies the bacteria were used to inoculate activated sludge. Stationary cultures of the activated sludge were set up in mineral medium with oil. The utilisation of petroleum products by non-inoculated activated sludge (control), activated sludge inoculated with a single strain or a mixture of all four strains was examined. In both inoculated activated sludge cultures approximately 80% of the oils were removed, compared to 60% in the control activated sludge. Therefore, inoculated activated sludge showed 20% higher effectiveness of removal of petroleum derivatives.

  14. Biotic and abiotic bisphenol-A removal from wastewater by activated sludge: effects of temperature, biomass, and bisphenol-A concentrations.

    PubMed

    Keskinkan, Olcayto; Balci, Behzat

    2016-01-01

    In this study, bisphenol-A (BPA) removal from synthetic wastewaters using a laboratory-scale activated sludge system was achieved. Activated (biotic) sludge was used for BPA elimination, whereas inactivated (abiotic) sludge was used during the adsorption study. In each step, six different BPA concentrations (5, 10, 20, 30, 40, and 50 mg L(-1)) were tested, and temperatures were set to 10, 20, and 30 °C in the shakers. Four different activated sludge concentrations (1,000, 2,000, 3,000, and 4,000 mg TSS L(-1)) were applied in the biotic study, and only 2,000 mg TSS L(-1) was used in the abiotic study. After settlement of the sludge in the shakers, supernatants and control groups were filtered and analyzed for BPA using high performance liquid chromatography. In the biotic study, BPA and chemical oxygen demand (COD) concentrations were reduced at 100% and 99% levels, respectively. However, the BPA concentrations during the abiotic study changed slightly at varying temperatures, whereas there was no change of BPA concentration observed in the control groups. Results indicate that the main factor of BPA removal in an activated sludge system is biological. Kinetic studies were also conducted. BPA removal was best fit to zero- and first-order reaction kinetics, and the reaction rate constants are provided in this paper.

  15. Inhibitory effect of high calcium concentration on municipal solid waste leachate treatment by the activated sludge process.

    PubMed

    Xia, Yi; He, Pin Jing; Pu, Hong Xia; Lü, Fan; Shao, Li Ming; Zhang, Hua

    2017-01-01

    This research focused on the inhibitory effects of Ca on the aerobic biological treatment of landfill leachate containing extremely high Ca concentrations. When the Ca concentration in leachate to be treated was more than 4500 mg l(-1), the total organic carbon removal rate was significantly reduced and the processing time to achieve the same removal efficiency was 1.4 times that in the control treatment without added Ca. In contrast, the total nitrogen and ammonia nitrogen (NH4(+)-N) removal efficiencies were positively related to the Ca concentration, increasing from 65.2% to 81.2% and from 69.2% to 83.7%, respectively, when the dosage of added Ca increased from zero to 8000 mg l(-1). During aerobic treatment, the reductions of solution Ca concentration were in the range of 1003-2274 mg l(-1) and were matched with increases in the Ca content in the residual sludge. The inhibition threshold of Ca in the leachate treated by the activated sludge process appeared to be 4500 mg l(-1), which could be realized by controlling the influent Ca concentration and using an appropriate sludge return ratio in the activated sludge process.

  16. More than a decade of experience of landfill leachate treatment with a full-scale anammox plant combining activated sludge and activated carbon biofilm.

    PubMed

    Azari, Mohammad; Walter, Uwe; Rekers, Volker; Gu, Ji-Dong; Denecke, Martin

    2017-05-01

    The performance of biological treatment for high ammonium removal from landfill leachate has been demonstrated. The plant was upgraded combining the activated sludge process followed by activated carbon reactor. Based on a long-term analysis of data collected from 2006 to 2015, the average total nitrogen removal efficiency of 94% was achieved for wastewaters with a C: N ratio varying from 1 to 5 kg-COD kg-TN(-1). But without the presence of activated carbon reactor, the average of biological removal efficiency for total nitrogen was only 82% ± 6% for the activated sludge stage. It means that up to 20% of the nitrogen in the influent can only be eliminated by microorganisms attached to granular activated carbon. After upgrades of the plant, the energy efficiency showed a reduction in the specific energy demand from 1.6 to less than 0.2 kWh m(-3). Methanol consumption and sludge production was reduced by 91% and 96%, respectively. Fluorescent in situ Hybridization was used for microbial diversity analysis on floccular sludge and granular biofilm samples. Anaerobic ammonium oxidation (anammox) bacteria and nitrifiers were detected and Candidatus Scalindua was found in two forms of flocs and biofilms. Due to stochastic risk assessment based on the long-term data analysis given in this research, the treatment criteria were achieved and the combination of granular activated carbon biofilm process and activated sludge can be a novel and sought approach to better enrich anammox biomass for full-scale treatment applications to reduce operating costs and promote nutrient removal stability and efficiency.

  17. Identification of selected microorganisms from activated sludge capable of benzothiazole and benzotriazole transformation.

    PubMed

    Kowalska, Katarzyna; Felis, Ewa

    2015-01-01

    Benzothiazole (BT) and benzotriazole (BTA) are present in the environment - especially in urban and industrial areas, usually as anthropogenic micropollutants. BT and BTA have been found in the municipal and industrial wastewater, rivers, soil, groundwater, sediments and sludge. The origins of those substances' presence in the environment are various industry branches (food, chemical, metallurgical, electrical), households and surface runoff from industrial areas. Increasingly strict regulations on water quality and the fact that the discussed compounds are poorly biodegradable, make them a serious problem in the environment. Considering this, it is important to look for environmentally friendly and socially acceptable ways to remove BT and BTA. The aim of this study was to identify microorganisms capable of BT and BTA transformation or/and degradation in aquatic environment. Selected microorganisms were isolated from activated sludge. The identification of microorganisms capable of BT and BTA removal was possible using molecular biology techniques (PCR, DNA sequencing). Among isolated microorganisms of activated sludge are bacteria potentially capable of BT and BTA biotransformation and/or removal. The most common bacteria capable of BT and BTA transformation were Rhodococcus sp., Enterobacter sp., Arthrobacter sp. They can grow in a medium with BT and BTA as the only carbon source. Microorganisms previously adapted to the presence of the studied substances at a concentration of 10 mg/l, showed a greater rate of growth of colonies on media than microorganisms unconditioned to the presence of such compounds. Results of the biodegradation test suggest that BT was degraded to a greater extent than BTA, 98-100% and 11-19%, respectively.

  18. Feasibility of a multi-component additive for efficient control of activated sludge filamentous bulking.

    PubMed

    Seka, A M; Van De Wiele, T; Verstraete, W

    2001-08-01

    Instantaneous improvement of the settling of bulking filamentous activated sludge can be achieved by the addition of a polymer or a large amount (up to 100% of the MLSS concentration) of talc powder to the sludge. Long-term improvement relies on repeated additions, as these additives have no adverse effects on the causative filaments. A multi-component additive was compared to the traditional additives in lab-scale activated sludge units using three highly filamentous sludges from different industrial treatment plants. The study demonstrated that the multi-component additive was superior to the traditional remedies. It was shown that, in the case of severe filamentous bulking, a single addition of the new additive immediately improved sludge settling and exerted a destructive effect on the causative filamentous bacteria. Thus, the latter additive also ensured a long-term sludge sedimentation improvement. The traditional additives exhibited an immediate and short-term effect. The novel additive also retarded sludge rising due to denitrification and it improved sludge dewaterability. The study revealed Nostocoido limicola II, with slightly hydrophobic cell wall, to be somewhat resistant to the quaternary ammonium salt present as biocide in the additive.

  19. Use of activated sludge biomass as an agent for advanced primary separation.

    PubMed

    Araneda, Michael; Pavez, Javier; Luza, Benjamín; Jeison, David

    2017-05-01

    Conventional primary settling is a physical process of solid-liquid separation, normally presenting low removal efficiencies. Improvement of this separation process would result in energetic advantages: lower aeration requirements and higher biogas production form primary and secondary sludges. Secondary sludge has been proposed as a potential agent promoting an increase in primary separation efficiency. Few processes have been proposed, based on the cultivation of sludge under special conditions. However, one can speculate that regular sludge may have a similar effect. The aim of this research was to study that possibility. Sludges from different activated sludge reactors were tested. Results showed that COD removals were up to 55%, 2 times higher than that for simple settling. Under that condition, COD balances showed that aeration requirements would reduce 40%, and biogas production from primary and secondary sludges would increase 50%. It is inferred then that the application of activated sludge as an external agent represents an interesting alternative that have the potential to significantly improve energetic efficiency of sewage treatment plants.

  20. The first metagenome of activated sludge from full-scale anaerobic/anoxic/oxic (A2O) nitrogen and phosphorus removal reactor using Illumina sequencing.

    PubMed

    Tian, Mei; Zhao, Fangqing; Shen, Xin; Chu, Kahou; Wang, Jinfeng; Chen, Shuai; Guo, Yan; Liu, Hanhu

    2015-09-01

    The anaerobic/anoxic/oxic (A2O) process is globally one of the widely used biological sewage treatment processes. This is the first report of a metagenomic analysis using Illumina sequencing of full-scale A2O sludge from a municipal sewage treatment plant. With more than 530,000 clean reads from different taxa and metabolic categories, the metagenome results allow us to gain insight into the functioning of the biological community of the A2O sludge. There are 51 phyla and nearly 900 genera identified from the A2O activated sludge ecosystem. Proteobacteria, Bacteroidetes, Nitrospirae and Chloroflexi are predominant phyla in the activated sludge, suggesting that these organisms play key roles in the biodegradation processes in the A2O sewage treatment system. Nitrospira, Thauera, Dechloromonas and Ignavibacterium, which have abilities to metabolize nitrogen and aromatic compounds, are most prevalent genera. The percent of nitrogen and phosphorus metabolism in the A2O sludge is 2.72% and 1.48%, respectively. In the current A2O sludge, the proportion of Candidatus Accumulibacter is 1.37%, which is several times more than that reported in a recent study of A2O sludge. Among the four processes of nitrogen metabolism, denitrification related genes had the highest number of sequences (76.74%), followed by ammonification (15.77%), nitrogen fixation (3.88%) and nitrification (3.61%). In phylum Planctomycetes, four genera (Planctomyces, Pirellula, Gemmata and Singulisphaera) are included in the top 30 abundant genera, suggesting the key role of ANAMMOX in nitrogen metabolism in the A2O sludge.

  1. Removal performance and mechanism of ibuprofen from water by catalytic ozonation using sludge-corncob activated carbon as catalyst.

    PubMed

    Wang, Hongjuan; Zhang, Liqiu; Qi, Fei; Wang, Xue; Li, Lu; Feng, Li

    2014-09-01

    To discover the catalytic activity of sludge-corncob activated carbon in catalytic ozonation of Ibuprofen, the performance of sludge-corncob activated carbon and three selected commercial activated carbons as catalysts in catalytic ozonation was investigated. The observation indicates the degradation rate of Ibuprofen increases significantly in the presence of sludge-corncob activated carbon and the catalytic activity of sludge-corncob activated carbon is much higher than that of the other three commercial activated carbons. Ibuprofen's removal rate follows pseudo-first order kinetics model well. It is also found that the adsorption removal of Ibuprofen by sludge-corncob activated carbon is less than 30% after 40 min. And the removal efficiency of Ibuprofen in the hybrid ozone/sludge-corncob activated carbon system is higher than the sum of sludge-corncob activated carbon adsorption and ozonation alone, which is a supportive evidence for catalytic reaction. In addition, the results of radical scavenger experiments demonstrate that catalytic ozonation of Ibuprofen by sludge-corncob activated carbon follows a hydroxyl radical reaction pathway. During ozonation of Ibuprofen in the presence of activated carbon, ozone could be catalytically decomposed to form hydrogen peroxide, which can promote the formation of hydroxyl radical. The maximum amount of hydrogen peroxide occurs in the presence of sludge-corncob activated carbon, which can explain why sludge-corncob activated carbon has the best catalytic activity among four different activated carbons.

  2. Molecular and Kinetic Characterization of Planktonic Nitrospira spp. Selectively Enriched from Activated Sludge.

    PubMed

    Park, Mee-Rye; Park, Hongkeun; Chandran, Kartik

    2017-03-07

    Nitrospira spp. are chemolithoautotrophic nitrite-oxidizing bacteria (NOB), which are ubiquitous in natural and engineered environments. However, there exist few independent biokinetic studies on Nitrospira spp., likely because their isolation and selective enrichment from environmental consortia such as activated sludge can be challenging. Herein, planktonic Nitrospira spp. cultures closely related to Candidatus Nitrospira defluvii (Nitrospira lineage I) were successfully enriched from activated sludge in a sequencing batch reactor by maintaining sustained limiting extant nitrite and dissolved oxygen concentrations. Morphologically, the enrichment consisted largely of planktonic cells with an average characteristic diameter of 1.3 ± 0.6 μm. On the basis of respirometric assays, estimated maximum specific growth rate (μmax), nitrite half saturation coefficient (KS), oxygen half saturation coefficient (KO), and biomass yield coefficient (Y) of the enriched cultures were 0.69 ± 0.10 d(-1), 0.52 ± 0.14 mg-N/L, 0.33 ± 0.14 mg-O2/L, and 0.14 ± 0.02 mg-COD/mg-N, respectively. These parameters collectively reflect not just higher affinities of this enrichment for nitrite and oxygen, respectively, but also a higher biomass yield and energy transfer efficiency relative to Nitrobacter spp. Used in combination, these kinetic and thermodynamic parameters can help toward the development and application of energy-efficient biological nutrient removal processes through effective Nitrospira out-selection.

  3. The effect of metal ions on the microbial attachment ability of flocculent activate sludge.

    PubMed

    Hao, Wen; Lv, Junping; Li, Yaochen; Chen, Lisha; Zhu, Jianrong

    2016-01-01

    As a kind of biofilm structure, microbial attachment was believed to play an important role in the aggregation and stability of flocculent activated sludge (FAS), and also its translation to aerobic granular activated sludge (AGAS). The aim of this study was to investigate the effect of Ca2+, Mg2+, Cu2+, Fe2+, Zn2+, K+, and Na+, which were frequently found in the biological wastewater-treatment systems on the microbial attachment of FAS, in order to provide a new strategy for the cultivation of FAS and AGAS. The results showed that different metal ions had different effects on the process of microbial attachment of FAS; in particular, Cu2+, Fe2+, and Zn2+ could increase the microbial attachment ability of FAS at appropriate concentrations, and disrupted the process at higher concentrations. Mg2+ would greatly enhance the microbial attachment of FAS at lower concentrations but then the biomass of attachment was fallen down to a level close to that of the control. However, Ca2+), K+, and Na+ always exhibited a positive impact on the microbial attachment of FAS. Besides, the concentration of FAS suspension and the culture time both had an effect on the microbial attachment of FAS. Moreover, the acyl-homoserine-lactones-based quorum-sensing system, the content of EPS, and the relative hydrophobicity of FAS had been greatly influenced by metal ions. As all these parameters had close relationships with microbial attachment process, changes in these parameters may affect the microbial attachment of FAS.

  4. Aerobic degradation of sulfanilic acid using activated sludge.

    PubMed

    Chen, Gang; Cheng, Ka Yu; Ginige, Maneesha P; Kaksonen, Anna H

    2012-01-01

    This paper evaluates the aerobic degradation of sulfanilic acid (SA) by an acclimatized activated sludge. The sludge was enriched for over three months with SA (>500 mg/L) as the sole carbon and energy source and dissolved oxygen (DO, >5mg/L) as the primary electron acceptor. Effects of aeration rate (0-1.74 L/min), DO concentration (0-7 mg/L) and initial SA concentration (104-1085 mg/L) on SA biodegradation were quantified. A modified Haldane substrate inhibition model was used to obtain kinetic parameters of SA biodegradation and oxygen uptake rate (OUR). Positive linear correlations were obtained between OUR and SA degradation rate (R(2)≥ 0.91). Over time, the culture consumed more oxygen per SA degraded, signifying a gradual improvement in SA mineralization (mass ratio of O(2): SA at day 30, 60 and 120 were 0.44, 0.51 and 0.78, respectively). The concomitant release of near stoichiometric quantity of sulphate (3.2 mmol SO(4)(2-) released from 3.3 mmol SA) and the high chemical oxygen demand (COD) removal efficacy (97.1%) indicated that the enriched microbial consortia could drive the overall SA oxidation close to a complete mineralization. In contrast to other pure-culture systems, the ammonium released from the SA oxidation was predominately converted into nitrate, revealing the presence of ammonium-oxidizing bacteria (AOB) in the mixed culture. No apparent inhibitory effect of SA on the nitrification was noted. This work also indicates that aerobic SA biodegradation could be monitored by real-time DO measurement.

  5. Activated Sludge. Selected Instructional Activities and References. Instructional Resources Monograph Series.

    ERIC Educational Resources Information Center

    Shepard, Clinton L.; Walasek, James B.

    This monograph contains a variety of selected materials related to wastewater treatment and water quality education and instruction. Part I presents a brief discussion of the activated sludge process in wastewater treatment operations. Part II, Instructional Units, contains selected portions of existing programs which may be utilized in…

  6. Changes in hormone and stress-inducing activities of municipal wastewater in a conventional activated sludge wastewater treatment plant.

    PubMed

    Wojnarowicz, Pola; Yang, Wenbo; Zhou, Hongde; Parker, Wayne J; Helbing, Caren C

    2014-12-01

    Conventional municipal wastewater treatment plants do not efficiently remove contaminants of emerging concern, and so are primary sources for contaminant release into the aquatic environment. Although these contaminants are present in effluents at ng-μg/L concentrations (i.e. microcontaminants), many compounds can act as endocrine disrupting compounds or stress-inducing agents at these levels. Chemical fate analyses indicate that additional levels of wastewater treatment reduce but do not always completely remove all microcontaminants. The removal of microcontaminants from wastewater does not necessarily correspond to a reduction in biological activity, as contaminant metabolites or byproducts may still be biologically active. To evaluate the efficacy of conventional municipal wastewater treatment plants to remove biological activity, we examined the performance of a full scale conventional activated sludge municipal wastewater treatment plant located in Guelph, Ontario, Canada. We assessed reductions in levels of conventional wastewater parameters and thyroid hormone disrupting and stress-inducing activities in wastewater at three phases along the treatment train using a C-fin assay. Wastewater treatment was effective at reducing total suspended solids, chemical and biochemical oxygen demand, and stress-inducing bioactivity. However, only minimal reduction was observed in thyroid hormone disrupting activities. The present study underscores the importance of examining multiple chemical and biological endpoints in evaluating and monitoring the effectiveness of wastewater treatment for removal of microcontaminants.

  7. Development of an ATP measurement method suitable for xenobiotic treatment activated sludge biomass.

    PubMed

    Nguyen, Lan Huong; Chong, Nyuk-Min

    2015-09-01

    Activated sludge consumes a large amount of energy to degrade a xenobiotic organic compound. By tracking the energy inventory of activated sludge biomass during the sludge's degradation of a xenobiotic, any disadvantageous effect on the sludge's performance caused by energy deficiency can be observed. The purpose of this study was to develop a reliable and accurate method for measuring the ATP contents of activated sludge cells that were to degrade a xenobiotic organic. Cell disruption and cellular ATP extraction were performed by a protocol with which xenobiotic degrading activated sludge biomass was washed with SDS, treated by Tris and TCA, and followed by bead blasting. The suspension of disrupted cells was filtered before the filtrate was injected into HPLC that was set at optimal conditions to measure the ATP concentration therein. This extraction protocol and HPLC measurement of ATP was evaluated for its linearity, limits of detection, and reproducibility. Evaluation test results reported a R(2) of 0.999 of linear fit of ATP concentration versus activated sludge concentration, a LOD=0.00045mg/L, a LOQ=0.0015mg/L for HPLC measurement of ATP, a MDL=0.46mg/g SS for ATP extraction protocol, and a recovery efficiency of 96.4±2%. This method of ATP measurement was simple, rapid, reliable, and was unburdened of some limitations other methods may have.

  8. Cr(Vi) reduction capacity of activated sludge as affected by nitrogen and carbon sources, microbial acclimation and cell multiplication.

    PubMed

    Ferro Orozco, A M; Contreras, E M; Zaritzky, N E

    2010-04-15

    The objectives of the present work were: (i) to analyze the capacity of activated sludge to reduce hexavalent chromium using different carbon sources as electron donors in batch reactors, (ii) to determine the relationship between biomass growth and the amount of Cr(VI) reduced considering the effect of the nitrogen to carbon source ratio, and (iii) to determine the effect of the Cr(VI) acclimation stage on the performance of the biological chromium reduction assessing the stability of the Cr(VI) reduction capacity of the activated sludge. The highest specific Cr(VI) removal rate (q(Cr)) was attained with cheese whey or lactose as electron donors decreasing in the following order: cheese whey approximately lactose>glucose>citrate>acetate. Batch assays with different nitrogen to carbon source ratio demonstrated that biological Cr(VI) reduction is associated to the cell multiplication phase; as a result, maximum Cr(VI) removal rates occur when there is no substrate limitation. The biomass can be acclimated to the presence of Cr(VI) and generate new cells that maintain the ability to reduce chromate. Therefore, the activated sludge process could be applied to a continuous Cr(VI) removal process.

  9. Biodegradation of an Organophosphate Chemical Warfare Agent Simulant by Activated Sludge with Varying Solid Retention Times

    DTIC Science & Technology

    2013-03-21

    coefficient close to that of VX, which may yield similar sorption kinetics between the two. Walters (2013) found that sorption of malathion to the activated...weapons in the activated sludge or under what conditions this removal is optimal. This study examined the fate of malathion , a surrogate compound for...activated sludge process in wastewater treatment facilities. Results show that a constant influent of malathion will be removed from the effluent

  10. [Using Excess Activated Sludge Treated 4-Chlorophenol Contained Waste Water to Cultivate Chlorella vulgaris].

    PubMed

    Wang, Lu; Chen, Xiu-rong; Yan, Long; He, Yi-xuan; Shi, Zhen-dong

    2015-04-01

    Using different rations of sludge extracts and supernate from 4-Chlorophenol (4-CP) simulated wastewater's excess sludge after centrifugation to cultivate the Chlorella vulgaris to achieve the goal of excess sludge utilization together with chlorella cultivating. The experiments were performed in 500 mL flasks with different rations of sludge extracts & BG-11 and supernate & BG-11 in a light growth chamber respectively. Number of algal cells, Chlorophyll, enzyme activity, oil and water total nitrogen (TN), total phosphorus (TP), total organic carbon (TOC), toxicity index were investigated. Result showed that the nutrition supplies and toxicity in the excess sludge were removed efficiently via Chlorella vulgaris, the removal rates of TN and TP were at least 40% and 90% respectively; After 10 days cultivation, the density growth of 50% sludge extracts was 20 times higher of the beginning while its chlorophyll content was lower than that of the blank group. Sludge extracts could promote the proliferation of algae, but were not conducive to the synthesis of chlorophyll. The quantity of SOD in per cell showed Chlorella vulgaris gave a positive response via stimulation from toxicant in sludge extracts and supernate. The best time for collecting chlorella vulgaris was the fifth day of cultivation, taking neutral oil accumulation as the evaluating indicator for its utilization combined with the removal of supplies and toxicity.

  11. Influence of Copper Nanoparticles on the Physical-Chemical Properties of Activated Sludge

    PubMed Central

    Chen, Hong; Zheng, Xiong; Chen, Yinguang; Li, Mu; Liu, Kun; Li, Xiang

    2014-01-01

    The physical-chemical properties of activated sludge, such as flocculating ability, hydrophobicity, surface charge, settleability, dewaterability and bacteria extracellular polymer substances (EPS), play vital roles in the normal operation of wastewater treatment plants (WWTPs). The nanoparticles released from commercial products will enter WWTPs and can induce potential adverse effects on activated sludge. This paper focused on the effects of copper nanoparticles (CuNPs) on these specific physical-chemical properties of activated sludge. It was found that most of these properties were unaffected by the exposure to lower CuNPs concentration (5 ppm), but different observation were made at higher CuNPs concentrations (30 and 50 ppm). At the higher CuNPs concentrations, the sludge surface charge increased and the hydrophobicity decreased, which were attributed to more Cu2+ ions released from the CuNPs. The carbohydrate content of EPS was enhanced to defense the toxicity of CuNPs. The flocculating ability was found to be deteriorated due to the increased cell surface charge, the decreased hydrophobicity, and the damaged cell membrane. The worsened flocculating ability made the sludge flocs more dispersed, which further increased the toxicity of the CuNPs by increasing the availability of the CuNPs to the bacteria present in the sludge. Further investigation indicated that the phosphorus removal efficiency decreased at higher CuNPs concentrations, which was consistent with the deteriorated physical-chemical properties of activated sludge. It seems that the physical-chemical properties can be used as an indicator for determining CuNPs toxicity to the bacteria in activated sludge. This work is important because bacteria toxicity effects to the activated sludge caused by nanoparticles may lead to the deteriorated treatment efficiency of wastewater treatment, and it is therefore necessary to find an easy way to indicate this toxicity. PMID:24663333

  12. Influence of copper nanoparticles on the physical-chemical properties of activated sludge.

    PubMed

    Chen, Hong; Zheng, Xiong; Chen, Yinguang; Li, Mu; Liu, Kun; Li, Xiang

    2014-01-01

    The physical-chemical properties of activated sludge, such as flocculating ability, hydrophobicity, surface charge, settleability, dewaterability and bacteria extracellular polymer substances (EPS), play vital roles in the normal operation of wastewater treatment plants (WWTPs). The nanoparticles released from commercial products will enter WWTPs and can induce potential adverse effects on activated sludge. This paper focused on the effects of copper nanoparticles (CuNPs) on these specific physical-chemical properties of activated sludge. It was found that most of these properties were unaffected by the exposure to lower CuNPs concentration (5 ppm), but different observation were made at higher CuNPs concentrations (30 and 50 ppm). At the higher CuNPs concentrations, the sludge surface charge increased and the hydrophobicity decreased, which were attributed to more Cu2+ ions released from the CuNPs. The carbohydrate content of EPS was enhanced to defense the toxicity of CuNPs. The flocculating ability was found to be deteriorated due to the increased cell surface charge, the decreased hydrophobicity, and the damaged cell membrane. The worsened flocculating ability made the sludge flocs more dispersed, which further increased the toxicity of the CuNPs by increasing the availability of the CuNPs to the bacteria present in the sludge. Further investigation indicated that the phosphorus removal efficiency decreased at higher CuNPs concentrations, which was consistent with the deteriorated physical-chemical properties of activated sludge. It seems that the physical-chemical properties can be used as an indicator for determining CuNPs toxicity to the bacteria in activated sludge. This work is important because bacteria toxicity effects to the activated sludge caused by nanoparticles may lead to the deteriorated treatment efficiency of wastewater treatment, and it is therefore necessary to find an easy way to indicate this toxicity.

  13. A new process for efficiently producing methane from waste activated sludge: alkaline pretreatment of sludge followed by treatment of fermentation liquid in an EGSB reactor.

    PubMed

    Zhang, Dong; Chen, Yinguang; Zhao, Yuxiao; Ye, Zhengxiang

    2011-01-15

    In the literature the production of methane from waste activated sludge (WAS) was usually conducted in a continuous stirred tank reactor (CSTR) after sludge was pretreated. It was reported in our previous publication that compared with other pretreatment methods the methane production in CSTR could be significantly enhanced when sludge was pretreated by NaOH at pH 10 for 8 days. In order to further improve methane production, this study reported a new process for efficiently producing methane from sludge, that is, sludge was fermented at pH 10 for 8 days, which was adjusted by Ca(OH)(2), and then the fermentation liquid was treated in an expanded granular sludge bed (EGSB) for methane generation. First, for comparing the methane production observed in this study with that reported in the literature, the conventional operational model was applied to produce methane from the pH 10 pretreated sludge, that is, directly using the pH 10 pretreated sludge to produce methane in a CSTR. It was observed that the maximal methane production was only 0.61 m(3)CH(4)/m(3)-reactor/day. Then, the use of fermentation liquid of pH 10 pretreated sludge to produce methane in the reactors of up-flow anaerobic sludge bed (UASB), anaerobic sequencing batch reactor (ASBR) and EGSB was compared. The maximal methane production in UASB, ASBR, and EGSB reached 1.41, 3.01, and 12.43 m(3)CH(4)/m(3)-reactor/day, respectively. Finally, the mechanisms for EGSB exhibiting remarkably higher methane production were investigated by enzyme, adenosine-triphosphate (ATP), scanning electron microscope (SEM) and fluorescence in situ hybridization (FISH) analyses. It was found that the granular sludge in EGSB had the highest conversion efficiency of acetic acid to methane, and the greatest activity of hydrolysis and acidification enzymes and general physiology with much more Methanosarcinaceae.

  14. Utilization of spent activated carbon to enhance the combustion efficiency of organic sludge derived fuel.

    PubMed

    Chen, Wei-Sheng; Lin, Chang-Wen; Chang, Fang-Chih; Lee, Wen-Jhy; Wu, Jhong-Lin

    2012-06-01

    This study examines the heating value and combustion efficiency of organic sludge derived fuel, spent activated carbon derived fuel, and derived fuel from a mixture of organic sludge and spent activated carbon. Spent activated carbon was sampled from an air pollution control device of an incinerator and characterized by XRD, XRF, TG/DTA, and SEM. The spent activated carbon was washed with deionized water and solvent (1N sulfuric acid) and then processed by the organic sludge derived fuel manufacturing process. After washing, the salt (chloride) and sulfide content could be reduced to 99% and 97%, respectively; in addition the carbon content and heating value were increased. Different ratios of spent activated carbon have been applied to the organic sludge derived fuel to reduce the NO(x) emission of the combustion.

  15. [INT-ETS activity change of activated sludge during nitrification, denirification and organism removal in SBR process].

    PubMed

    Yin, Jun; Wang, Jian-hui; Xie, Yan-cui; Huo, Yu-feng; Wang, Xue-feng

    2007-10-01

    Through nitrogen shock loading and organic shock loading experiments, we studied the changing rule and activity status of biological activity of activated sludge in organic matter biodegradation, nitrification and denitrification course in SBR process by the determination of INT-ETS activity. The experimental results show that INT-ETS activity could provide a good indication of the ongoing biological reactions of SBR process. Biological activity of organic matter biodegradation, nitrification and denitrification course in SBR process reduced orderly. INT-ETS activity reduced from 232.59 mg/(gxh) to 190.65 mg/(gxh) and resultly to 113.88 mg/(gxh) when the effluent concentration of COD and NH4(+)-N were 300 mg/L and 40 mg/L. Nitrogen shock loading (14.5 mg/L and 42.0 mg/L) and organic shock loading (COD are 293 mg/L and 685 mg/L) experiments cure verify that the operational conditions could not influence the changing rule of INT-ETS activity, but the time of the appearance of break points marking different reaction course in profile was influenced.

  16. Identification and quantification of microbial populations in activated sludge and anaerobic digestion processes.

    PubMed

    Reyes, M; Borrás, L; Seco, A; Ferrer, J

    2015-01-01

    Eight different phenotypes were studied in an activated sludge process (AeR) and anaerobic digester (AnD) in a full-scale wastewater treatment plant by means of fluorescent in situ hybridization (FISH) and automated FISH quantification software. The phenotypes were ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, denitrifying bacteria, phosphate-accumulating organisms (PAO), glycogen-accumulating organisms (GAO), sulphate-reducing bacteria (SRB), methanotrophic bacteria and methanogenic archaea. Some findings were unexpected: (a) Presence of PAO, GAO and denitrifiers in the AeR possibly due to unexpected environmental conditions caused by oxygen deficiencies or its ability to survive aerobically; (b) presence of SRB in the AeR due to high sulphate content of wastewater intake and possibly also due to digested sludge being recycled back into the primary clarifier; (c) presence of methanogenic archaea in the AeR, which can be explained by the recirculation of digested sludge and its ability to survive periods of high oxygen levels; (d) presence of denitrifying bacteria in the AnD which cannot be fully explained because the nitrate level in the AnD was not measured. However, other authors reported the existence of denitrifiers in environments where nitrate or oxygen was not present suggesting that denitrifiers can survive in nitrate-free anaerobic environments by carrying out low-level fermentation; (e) the results of this paper are relevant because of the focus on the identification of nearly all the significant bacterial and archaeal groups of microorganisms with a known phenotype involved in the biological wastewater treatment.

  17. Performance of calcium peroxide for removal of endocrine-disrupting compounds in waste activated sludge and promotion of sludge solubilization.

    PubMed

    Zhang, Ai; Wang, Jie; Li, Yongmei

    2015-03-15

    Removal of six phenolic endocrine disrupting compounds (EDCs) (estrone, 17β-estradiol, 17α-ethinylestradiol, estriol, bisphenol A, and 4-nonylphenols) from waste activated sludge (WAS) was investigated using calcium peroxide (CaO2) oxidation. Effects of initial pH and CaO2 dosage were investigated. The impacts of CaO2 treatment on sludge solubilization and anaerobic digestion were also evaluated. Specifically, the role of reactive oxygen species (ROS) in EDC degradation during CaO2 oxidation was tested. Effects of 6 metal ions contained in the sludge matrix on EDC degradation were also evaluated. The results showed that CaO2 treatment can be a promising technology for EDC removal and facilitating sludge reuse. The EDC removal efficiencies increased with the increase in CaO2 dosage. At CaO2 doses of more than 0.34 g per gram of total solid (g g(-1) TS), more than 50% of EDCs were removed in a wide pH range of 2-12. Higher removal efficiencies were achieved at initial pH values of 12 and 2. The products of EDCs during CaO2 oxidation had less estrogenic activity than the originals. Under the conditions of neutral pH and CaO2 dosage = 0.34 g g(-1) TS, the sludge solubilization can be improved by increasing the soluble total organic carbon (STOC) and volatile suspended solids (VSS) reduction by 25% and 27% in 7 d, respectively; the volatile fatty acid (VFA) production was enhanced by 96% in the 15 d following anaerobic digestion. The ROS released by CaO2 are the main factors contributing to EDC removal, among which, hydroxyl radicals (OH) play the most important role. Metal ions contained in the sludge matrix also affected EDC removal. For most cases, Fe, Cu, and Zn had positive effects; Mn and Ag had negative effects; and Mg had an insignificant effect on EDC removal.

  18. A Combined Activated Sludge Anaerobic Digestion Model (CASADM) to understand the role of anaerobic sludge recycling in wastewater treatment plant performance.

    PubMed

    Young, Michelle N; Marcus, Andrew K; Rittmann, Bruce E

    2013-05-01

    The Combined Activated Sludge-Anaerobic Digestion Model (CASADM) quantifies the effects of recycling anaerobic-digester (AD) sludge on the performance of a hybrid activated sludge (AS)-AD system. The model includes nitrification, denitrification, hydrolysis, fermentation, methanogenesis, and production/utilization of soluble microbial products and extracellular polymeric substances (EPS). A CASADM example shows that, while effluent COD and N are not changed much by hybrid operation, the hybrid system gives increased methane production in the AD and decreased sludge wasting, both caused mainly by a negative actual solids retention time in the hybrid AD. Increased retention of biomass and EPS allows for more hydrolysis and conversion to methane in the hybrid AD. However, fermenters and methanogens survive in the AS, allowing significant methane production in the settler and thickener of both systems, and AD sludge recycle makes methane formation greater in the hybrid system.

  19. A Guide for Developing Standard Operating Job Procedures for the Activated Sludge - Aeration & Sedimentation Process Wastewater Treatment Facility. SOJP No. 5.

    ERIC Educational Resources Information Center

    Mason, George J.

    This guide for developing standard operating job procedures for wastewater treatment facilities is devoted to the activated sludge aeration and sedimentation process. This process is for conversion of nonsettleable and nonfloatable materials in wastewater to settleable, floculated biological groups and separation of the settleable solids from the…

  20. Enhanced primary sludge sonication by heat insulation to reclaim carbon source for biological phosphorous removal.

    PubMed

    Tian, Qing; Wang, Qi; Zhu, Yanbing; Li, Fang; Zhuang, Lin; Yang, Bo

    2017-01-01

    Ultrasound pretreatment is a potent step to disintegrate primary sludge (PS). The supernatant of sonicated PS is recycled as an alternative carbon source for biological phosphorus removal. In this study, we investigated the role of temperature on PS disintegration during sonication. We found that a temperature of 60°C yielded a dissolution rate of about 2% soluble chemical oxygen demand (SCOD) as compared to 7% SCOD using sonication at the specific energy (SE) of 7359kJ/kg TS. Using the SE of 6000kJ/kg TS with heat insulation during sonication, the SCOD dissolution rate of PS was similar to the result at the SE of 7051kJ/kg TS without heat insulation. Upon treatment with sonication, the PS released low concentrations of Cu and Zn into the supernatant. The phosphorus-accumulating organisms (PAOs) used the supernatant of sonicated PS as the carbon source. Supplementation with the diluted sonicated PS supernatant (SCOD≈1000mg/L) in anaerobic phase resulted in the release of phosphorus (36mg/L) and the production of polyhydroxyalkanoates (PHAs) (0.36g PHA/g SS). Compared with sodium acetate, higher polyhydroxyvalerate (PHV) faction in the polyhydroxyalkanoates (PHAs) was observed in the biomass when incubated with sonicated PS as the carbon source. This work provides a simple pathway to conserve energy and to enhance efficiencies of ultrasonic pretreatment and the recovery of carbon source from the sludge for improving the phosphorus removal in the ENR system.

  1. Simultaneous fluorescent gram staining and activity assessment of activated sludge bacteria.

    PubMed

    Forster, Scott; Snape, Jason R; Lappin-Scott, Hilary M; Porter, Jonathan

    2002-10-01

    Wastewater treatment is one of the most important commercial biotechnological processes, and yet the component bacterial populations and their associated metabolic activities are poorly understood. The novel fluorescent dye hexidium iodide allows assessment of Gram status by differential absorption through bacterial cell walls. Differentiation between gram-positive and gram-negative wastewater bacteria was achieved after flow cytometric analysis. This study shows that the relative proportions of gram-positive and gram-negative bacterial cells identified by traditional microscopy and hexidium iodide staining were not significantly different. Dual staining of cells for Gram status and activity proved effective in analyzing mixtures of cultured bacteria and wastewater populations. Levels of highly active organisms at two wastewater treatment plants, both gram positive and gram negative, ranged from 1.5% in activated sludge flocs to 16% in the activated sludge fluid. Gram-positive organisms comprised <5% of the total bacterial numbers but accounted for 19 and 55% of the highly active organisms within flocs at the two plants. Assessment of Gram status and activity within activated sludge samples over a 4-day period showed significant differences over time. This method provides a rapid, quantitative measure of Gram status linked with in situ activity within wastewater systems.

  2. Novel insights into enhanced dewaterability of waste activated sludge by Fe(II)-activated persulfate oxidation.

    PubMed

    Zhen, Guangyin; Lu, Xueqin; Li, Yuyou; Zhao, Youcai; Wang, Baoying; Song, Yu; Chai, Xiaoli; Niu, Dongjie; Cao, Xianyan

    2012-09-01

    The potential of Fe(II)-activated persulfate (S(2)O(8)(2-)) oxidation on enhancing the dewaterability of sludge flocs from 3-full scale wastewater treatment plants (WWTPs) were investigated. Normalized capillary suction time (CST) was applied to evaluate sludge dewaterability. Both extracellular polymeric substances (EPS) and metabolic activity of microorganisms were determined to explore the responsible mechanism. Fe(II)-S(2)O(8)(2-) oxidation effectively improved sludge dewaterability. The most important mechanisms were proposed to be the degradation of EPS incorporated in sludge flocs and rupture of microbial cells. Three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy confirmed that the powerful SO(4)(-) from Fe(II)-S(2)O(8)(2-) system destroyed the particular functional groups of fluorescing substances (i.e., aromatic protein-, tryptophan protein-, humic- and fulvic-like substances) in EPS and caused cleavage of linkages in the polymeric backbone and simultaneous destruction of microbial cells, resulting in the release of EPS-bound water, intracellular materials and water of hydration inside cells, and subsequent enhancement of dewaterability.

  3. The impact of zinc oxide nanoparticles on the bacterial microbiome of activated sludge systems

    NASA Astrophysics Data System (ADS)

    Meli, K.; Kamika, I.; Keshri, J.; Momba, M. N. B.

    2016-12-01

    The expected growth in nanomaterial applications could result in increased amounts of nanoparticles entering municipal sewer systems, eventually ending up in wastewater treatment plants and therefore negatively affecting microbial populations and biological nutrient removal. The aim of this study was to ascertain the impact of zinc oxide nanoparticles (nZnO) on the bacterial microbiome of an activated sludge system. A metagenomic approach combined with the latest generation Illumina MiSeq platform and RDP pipeline tools were used to identify and classify the bacterial microbiome of the sludge. Results revealed a drastic decrease in the number of operational taxonomic units (OTUs) from 27 737 recovered in the nZnO-free sample to 23 743, 17 733, and 13 324 OTUs in wastewater samples exposed to various concentrations of nZnO (5, 10 and 100 mg/L nZnO, respectively). These represented 12 phyla, 21 classes, 30 orders, 54 families and 51 genera, completely identified at each taxonomic level in the control samples; 7-15-25-28-20 for wastewater samples exposed to 5 mg/L nZnO; 9-15-24-31-23 for those exposed to 10 mg/L and 7-11-19-26-17 for those exposed 100 mg/L nZnO. A large number of sequences could not be assigned to specific taxa, suggesting a possibility of novel species to be discovered.

  4. Looking for phosphate-accumulating bacteria in activated sludge processes: a multidisciplinary approach.

    PubMed

    Tarayre, Cédric; Charlier, Raphaëlle; Delepierre, Anissa; Brognaux, Alison; Bauwens, Julien; Francis, Frédéric; Dermience, Michaël; Lognay, Georges; Taminiau, Bernard; Daube, Georges; Compère, Philippe; Meers, Erik; Michels, Evi; Delvigne, Frank

    2017-01-29

    Over the past decades, an increasing need in renewable resources has progressively appeared. This trend concerns not only fossil fuels but also mineral resources. Wastewater and sewage sludge contain significant concentrations in phosphate and can be considered as a fertilizer source of the utmost importance. In wastewater treatment plants, the biological uptake of phosphate is performed by a specific microbiota: the phosphate-accumulating organisms. These microorganisms are recovered in sewage sludge. Here, we aimed to investigate the occurrence of phosphate accumulators in four wastewater treatment plants. A 16S metagenetic analysis identified the main bacterial phyla extracted from the aerobic treatment: α-Proteobacteria, β-Proteobacteria, and Sphingobacteria. An enrichment stage was performed to stimulate the specific growth of phosphate-accumulating bacteria in an acetate medium. An analysis of metabolic activities of sulfur and phosphorus highlighted strong modifications related to phosphorus and much less distinguishable effects with sulfur. A solid acetate medium containing 5-Br-4-Cl-3-indolyl phosphate was used to select potential phosphate-accumulating bacteria from the enriched consortia. The positive strains have been found to belong in the genera Acinetobacter, Corynebacterium, and Pseudomonas. Finally, electron microscopy was applied to the strains and allowed to confirm the presence of polyphosphate granules. Some of these bacteria contained granules the size of which exceeded 100 nm.

  5. Fundamental nonlinearities of the reactor-settler interaction in the activated sludge process.

    PubMed

    Diehl, Stefan; Farås, Sebastian

    2012-01-01

    The activated sludge process can be modelled by ordinary and partial differential equations for the biological reactors and secondary settlers, respectively. Because of the complexity of such a system, simulation models are most often used to investigate them. However, simulation models cannot give general rules on how to control a complex nonlinear process. For a reduced-order model with only two components, soluble substrate and particulate biomass, general results on steady-state solutions have recently been obtained, such as existence, uniqueness and stability of solutions. The aim of the present paper is to utilize those results to formulate some implications of practical importance. In particular, strategies are described for the manual control of the effluent substrate concentration subject to the constraint that the settler is maintained in normal operation (with a sludge blanket in the thickening zone) in steady state. Such strategies contain how the two control parameters, the recycle and waste volumetric flow ratios, should be chosen for any (steady-state) values of the input variables.

  6. The impact of zinc oxide nanoparticles on the bacterial microbiome of activated sludge systems

    PubMed Central

    Meli, K.; Kamika, I.; Keshri, J.; Momba, M. N. B.

    2016-01-01

    The expected growth in nanomaterial applications could result in increased amounts of nanoparticles entering municipal sewer systems, eventually ending up in wastewater treatment plants and therefore negatively affecting microbial populations and biological nutrient removal. The aim of this study was to ascertain the impact of zinc oxide nanoparticles (nZnO) on the bacterial microbiome of an activated sludge system. A metagenomic approach combined with the latest generation Illumina MiSeq platform and RDP pipeline tools were used to identify and classify the bacterial microbiome of the sludge. Results revealed a drastic decrease in the number of operational taxonomic units (OTUs) from 27 737 recovered in the nZnO-free sample to 23 743, 17 733, and 13 324 OTUs in wastewater samples exposed to various concentrations of nZnO (5, 10 and 100 mg/L nZnO, respectively). These represented 12 phyla, 21 classes, 30 orders, 54 families and 51 genera, completely identified at each taxonomic level in the control samples; 7-15-25-28-20 for wastewater samples exposed to 5 mg/L nZnO; 9-15-24-31-23 for those exposed to 10 mg/L and 7-11-19-26-17 for those exposed 100 mg/L nZnO. A large number of sequences could not be assigned to specific taxa, suggesting a possibility of novel species to be discovered. PMID:27966634

  7. Winery waste recycling through anaerobic co-digestion with waste activated sludge.

    PubMed

    Da Ros, C; Cavinato, C; Pavan, P; Bolzonella, D

    2014-11-01

    In this study biogas and high quality digestate were recovered from winery waste (wine lees) through anaerobic co-digestion with waste activated sludge both in mesophilic and thermophilic conditions. The two conditions studied showed similar yields (0.40 m(3)/kgCODfed) but different biological process stability: in fact the mesophilic process was clearly more stable than the thermophilic one in terms of bioprocess parameters. The resulting digestates showed good characteristics for both the tested conditions: heavy metals, dioxins (PCDD/F), and dioxin like bi-phenyls (PCBs) were concentred in the effluent if compared with the influent because of the important reduction of the solid dry matter, but remained at levels acceptable for agricultural reuse. Pathogens in digestate decreased. Best reductions were observed in thermophilic condition, while at 37°C the concentration of Escherichia coli was at concentrations level as high as 1000 UFC/g. Dewatering properties of digestates were evaluated by means of the capillary suction time (CST) and specific resistance to filtration (SRF) tests and it was found that a good dewatering level was achievable only when high doses of polymer (more than 25 g per kg dry solids) were added to sludge.

  8. Activated sludge is a potential source for production of biodegradable plastics from wastewater.

    PubMed

    Khardenavis, A; Guha, P K; Kumar, M S; Mudliar, S N; Chakrabarti, T

    2005-05-01

    Increased utilization of synthetic plastics caused severe environmental pollution due to their non-biodegradable nature. In the search for environmentally friendly materials to substitute for conventional plastics, different biodegradable plastics have been developed by microbial fermentations. However, limitations of these materials still exist due to high cost. This study aims at minimization of cost for the production of biodegradable plastics P(3HB) and minimization of environmental pollution. The waste biological sludge generated at wastewater treatment plants is used for the production of P(3HB) and wastewater is used as carbon source. Activated sludge was induced by controlling the carbon: nitrogen ratio to accumulate storage polymer. Initially polymer accumulation was studied by using different carbon and nitrogen sources. Maximum accumulation of polymer was observed with carbon source acetic acid and diammonium hydrogen phosphate (DAHP) as nitrogen source. Further studies were carried out to optimize the carbon: nitrogen ratios using acetic acid and DAHP. A maximum of 65.84% (w/w) P(3HB) production was obtained at C/N ratio of 50 within 96 hours of incubation.

  9. Combined System of Activated Sludge and Ozonation for the Treatment of Kraft E1 Effluent

    PubMed Central

    Assalin, Marcia Regina; dos Santos Almeida, Edna; Durán, Nelson

    2009-01-01

    The treatment of paper mill effluent for COD, TOC, total phenols and color removal was investigated using combined activated sludge-ozonation processes and single processes. The combined activated sludge-O3/pH 10 treatment was able to remove around 80% of COD, TOC and color from Kraft E1 effluent. For the total phenols, the efficiency removal was around 70%. The ozonation post treatment carried out at pH 8.3 also showed better results than the single process. The COD, TOC, color and total phenols removal efficiency obtained were 75.5, 59.1, 77 and 52.3%, respectively. The difference in the concentrations of free radical produced by activated sludge-O3/pH 10 and activated sludge-O3/pH 8.3 affected mainly the TOC and total phenol removal values. PMID:19440438

  10. Effect of activator on the structure and desulphurization efficiency of sludge-activated carbon.

    PubMed

    Li, Fen; Yan, Bo; Zhang, Yanping; Zhang, Linhuan; Lei, Tao

    2014-01-01

    Sludge-activated carbons (SACs) prepared with excess of activated sludge are used to solve the problems of sludge disposal and odour pollution in a sewage treatment plant. For the preparation, ZnCl2, KOH and H2SO4 are used as activators, respectively. The structure of the SACs are characterized by scanning electron microscope, X-ray photoelectron spectrometer, specific surface area and pore structure technologies, and the adsorption performance of H2S is investigated. Results indicate that the desulphurization activity of SACs, whose activators are ZnCl2 and KOH (SACZ and SACK), is better than that of carbon with H2SO4 as the activator (SACH). The breakthrough time of SACZ and SACK is up to 86 min, the sulphur capacity is 7.7 mg/cm3, and the maximal iodine value is 409.95 mg/g. While the breakthrough time of SACH is only 26 min with the sulphur capacity of 2.3 mg/cm3. A large percentage of pore volume with a diameter of 2-5 nm in the total pore volume is conductive to the desulphurization reaction. The large amount of surface acid functional groups is also helpful to the adsorption of H2S. The desulphurization activity of SACZ and SACK is superior over that of commercial-activated carbon.

  11. Treatment of coal-conversion wastewater with the powdered activated carbon-contact stabilization activated-sludge process. First semiannual technical progress report, August 1, 1980-January 31, 1981

    SciTech Connect

    Suidan, M.T.; Pirbazari, M.; Gee, C.S.; Deady, M.A.

    1981-01-01

    The treatment of coal conversion wastewaters has traditionally been accomplished through the use of the activated sludge process and its various modifications. General observations have been that phenol was degraded efficiently; however, very poor removal efficiencies of thiocyanate, cyanide, and ammonia were obtained. The addition of powdered activated carbon (PAC) to the activated sludge process has been reported to result in a number of distinct advantages. Generally, however, improving the effluent water quality beyond the capabilities of conventional biological treatment and enhancing the treatability of wastewaters that inhibit or toxify biological treatment systems are the primary objectives of utilizing PAC in secondary biological treatment. The focus of the present research project is to assess the effectiveness of the powdered activated carbon-contact stabilization activated sludge process in the treatment of a coking wastewater. The purpose of the contact tank in such a process will be to provide sufficient time for the adsorbable constituents of the coking wastewater to adsorb onto the PAC. The liquor leaving the contact tank is then clarified with the concentratrated underflow receiving treatment in the stabilization tank. After stabilization the sludge is returned to the contact tank. The clarifier supernatant is then nitrified in an activated sludge-type nitrification process and the nitrified effluent is subsequently denitrified in an anoxic filter.

  12. Potential of predominant activated sludge bacteria as recipients in conjugative plasmid transfer.

    PubMed

    Inoue, Daisuke; Sei, Kazunari; Soda, Satoshi; Ike, Michihiko; Fujita, Masanori

    2005-12-01

    We investigated the possibility of conjugative plasmid transfer to the predominant bacteria in activated sludge and the factors influencing the transfer frequency in the activated sludge process. We performed conjugative transfers of a self-transmissible, broad-host-range plasmid RP4 from Escherichia coli C600 to activated sludge bacteria by broth mating. Most of the activated sludge bacteria tested could acquire plasmid RP4, although the transfer frequencies varied from 8.8 x 10(-7) to 1.3 x 10(-2) transconjugants per recipient. The transfer frequencies in several strains were similar to, or higher than, that in intraspecific transfer to E. coli HB101. Matings under various environmental conditions showed that factors relevant to physiological activity, such as temperature and nutrient conditions, seemed to affect the transfer frequency. In addition, conjugative transfer was detected even in filtered raw and treated wastewaters. Thus, the predominant activated sludge bacteria seem to have sufficient potential as recipients in conjugative plasmid transfer under the conditions likely to occur in the activated sludge process. Transfer frequency was reduced by agitation in the presence of suspended solid. This may suggest that conjugative plasmid transfer is physically inhibited in aeration tanks.

  13. Interference sources in ATP bioluminescence assay of silica nanoparticle toxicity to activated sludge.

    PubMed

    Sibag, Mark; Kim, Seung Hwan; Kim, Choah; Kim, Hee Jun; Cho, Jinwoo

    2015-06-01

    ATP measurement provides an overview of the general state of microbial activity, and thus it has proven useful for the evaluation of nanoparticle toxicity in activated sludge. ATP bioluminescence assay, however, is susceptible to interference by the components of activated sludge other than biomass. This paper presents the interference identified specific to the use of this assay after activated sludge respiration inhibition test of silica nanoparticles (OECD 209). We observed a high degree of interference (90%) in the presence of 100 mg/L silica nanoparticles and a low level of ATP being measured (0.01 μM); and 30% interference by the synthetic medium regardless of silica nanoparticle concentration and ATP level in the samples. ATP measurement in activated sludge with different MLSS concentrations revealed interference of high biomass content. In conclusion, silica nanoparticles, synthetic medium and activated sludge samples themselves interfere with ATP bioluminescence; this will need to be considered in the evaluation of silica nanoparticle toxicity to activated sludge when this type of assay is used.

  14. Optimisation of aeration for activated sludge treatment with simultaneous nitrification denitrification.

    PubMed

    Thauré, David; Lemoine, Cyrille; Daniel, Olivier; Moatamri, Nader; Chabrol, Julien

    2008-01-01

    Following a promising study at pilot scale a new aeration control law has been implemented at a full scale wastewater treatment plant displaying a conventional activated sludge process. The new control law is based on the direct measurements of ammonium and nitrate concentration in the biological tank by ion selective electrodes. This control law features a cascade of two Predictive Function Controls and calculates an optimal air flow rate to be provided to the biomass through fine bubble diffusers. The results obtained at the full scale plant confirmed the high performance of this control strategy allowing to substantially reduce the amount of diffused air while providing an easy means to manage the effluent quality to the plant operator.

  15. Film analysis of activated sludge microbial discs by the Taguchi method and grey relational analysis.

    PubMed

    Chen, M Y; Syu, M J

    2003-12-01

    A biofilm model with substrate inhibition is proposed for the activated sludge growing discs of rotating biological contactor (RBC); this model is different from the steady-state biofilm model based on the Monod assumption. Both deep and shallow types of biofilms are examined and discussed. The biofilm models based on both Monod and substrate inhibition (Haldane) assumptions are compared. In addition, the relationships between substrate utilization rate, biofilm thickness, and liquid phase substrate concentration are discussed. The influence order of the factors that affect the biofilm thickness is studied and discussed by combining the Taguchi method and grey relational analysis. In this work, a Taguchi orthogonal table is used to construct the series that is needed for grey relational analysis to determine the influence priority of the four parameters S(B), kX(f), K(s), and K(i).

  16. Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron.

    PubMed

    Feng, Yinghong; Zhang, Yaobin; Quan, Xie; Chen, Suo

    2014-04-01

    Anaerobic digestion is promising technology to recover energy from waste activated sludge. However, the sludge digestion is limited by its low efficiency of hydrolysis-acidification. Zero valent iron (ZVI) as a reducing material is expected to enhance anaerobic process including the hydrolysis-acidification process. Considering that, ZVI was added into an anaerobic sludge digestion system to accelerate the sludge digestion in this study. The results indicated that ZVI effectively enhanced the decomposition of protein and cellulose, the two main components of the sludge. Compared to the control test without ZVI, the degradation of protein increased 21.9% and the volatile fatty acids production increased 37.3% with adding ZVI. More acetate and less propionate are found during the hydrolysis-acidification with ZVI. The activities of several key enzymes in the hydrolysis and acidification increased 0.6-1 time. ZVI made the methane production raise 43.5% and sludge reduction ratio increase 12.2 percent points. Fluorescence in situ hybridization analysis showed that the abundances of hydrogen-consuming microorganisms including homoacetogens and hydrogenotrophic methanogens with ZVI were higher than the control, which reduced the H2 accumulation to create a beneficial condition for the sludge digestion in thermodynamics.

  17. Effect of humic acid in leachate on specific methanogenic activity of anaerobic granular sludge.

    PubMed

    Guo, Mengfei; Xian, Ping; Yang, Longhui; Liu, Xi; Zhan, Longhui; Bu, Guanghui

    2015-01-01

    In order to find out the effects of humic acid (HA) in anaerobic-treated landfill leachate on granular sludge, the anaerobic biodegradability of HA as well as the influences of HA on the total cumulative methane production, the anaerobic methanization process and the specific methanogenic activity (SMA) of granular sludge are studied in this paper. Experimental results show that as a non-biodegradable organic pollutant, HA is also difficult to be decomposed by microbes in the anaerobic reaction process. Presence of HA and changes in the concentration have no significant influences on the total cumulative methane production and the anaerobic methanization process of granular sludge. Besides, the total cumulative methane production cannot reflect the inhibition of toxics on the methanogenic activity of granular sludge on the premise of sufficient reaction time. Results also show that HA plays a promoting role on SMA of granular sludge. Without buffering agent the SMA value increased by 19.2% on average due to the buffering and regulating ability of HA, while with buffering agent the SMA value increased by 5.4% on average due to the retaining effect of HA on the morphology of the sludge particles. However, in the presence of leachate the SMA value decreased by 27.6% on average, because the toxic effect of the toxics in the leachate on granular sludge is much larger than the promoting effect of HA.

  18. Inertisation of galvanic sludge with calcium oxide, activated carbon, and phosphoric acid.

    PubMed

    Oreščanin, Višnja; Lovrenčić Mikelić, Ivanka; Kollar, Robert; Mikulić, Nenad; Medunić, Gordana

    2012-09-01

    In this study we compared three methods for the treatment of electroplating sludge highly loaded with zinc and iron: (1) calcium oxide-based solidification/stabilisation; (2) conversion into inert material by adsorption of organic and inorganic pollutants onto activated carbon; and (3) conversion of mobile waste components into insoluble phosphates. All three methods proved highly efficient in the conversion of hazardous waste into inert material. Under optimum treatment conditions zinc concentration in the leachate of solidified waste was reduced by 99.7 % compared to untreated sludge. Zinc retention efficiency in the waste treated with activated carbon and phosphoric acid was 99.9 % and 98.7 %, respectively. The advantages of electroplating sludge treatment with activated carbon over the other two methods are high sorption capacity, insignificant pH and volume changes of the sludge, and simple use.

  19. Biotransformation and adsorption of pharmaceutical and personal care products by activated sludge after correcting matrix effects.

    PubMed

    Deng, Yu; Li, Bing; Yu, Ke; Zhang, Tong

    2016-02-15

    This study reported significant suppressive matrix effects in analyses of six pharmaceutical and personal care products (PPCPs) in activated sludge, sterilized activated sludge and untreated sewage by ultra-performance liquid chromatography-tandem mass spectrometry. Quantitative matrix evaluation on selected PPCPs supplemented the limited quantification data of matrix effects on mass spectrometric determination of PPCPs in complex environment samples. The observed matrix effects were chemical-specific and matrix-dependent, with the most pronounced average effect (-55%) was found on sulfadiazine in sterilized activated sludge. After correcting the matrix effects by post-spiking known amount of PPCPs, the removal mechanisms and biotransformation kinetics of selected PPCPs in activated sludge system were revealed by batch experiment. Experimental data elucidated that the removal of target PPCPs in the activated sludge process was mainly by biotransformation while contributions of adsorption, hydrolysis and volatilization could be neglected. High biotransformation efficiency (52%) was observed on diclofenac while other three compounds (sulfadiazine, sulfamethoxazole and roxithromycin) were partially biotransformed by ~40%. The other two compounds, trimethoprim and carbamazepine, showed recalcitrant to biotransformation of the activated sludge.

  20. [Rheological measurement used as a tool to assess sludges settleability].

    PubMed

    Guibaud, G; Dollet, P; Tixier, N; Dagot, C; Baudu, M

    2004-06-01

    The activated sludge process is the most widely used biological wastewater treatment method. The measurement of some physico-chemical parameters in aeration tanks do not still allow to avoid clarification operation failure. This study focus on the ability to apply rheological measurements on activated sludge at standard concentrations in order to assess sludge settleability. Measurements in shear flow show a pseudonewtonian region which corresponds to the maximum dispersion of the suspensions that can be detected with the rotational system used. The Bingham's viscosity and shear stress are used to characterise activated sludge. Different shear sensitivities of flocs seem to result from various operational conditions of activated sludge process. Significant relationships with different parameters of settleability point out the ability of Bingham's shear stress to express the compressibility of the activated sludge. According to the protocol of measurement of the study, Bingham's shear stress may influence the nature of the sludge on its settleability.

  1. Biological pretreatment enhances biogas production in the anaerobic digestion of pulp and paper sludge.

    PubMed

    Lin Yunqin; Wang Dehan; Wang Lishang

    2010-09-01

    High efficient resource recovery from pulp and paper sludge (PPS) has been the focus of attention. The objective of this research was to develop a bio-pretreatment process prior to anaerobic digestion of PPS to improve the methane productivity. Active and inactive mushroom compost extracts (MCE) were used for pretreating PPS, followed by anaerobic digestion with monosodium glutamate waste liquor (MGWL). Laboratory-scale experiments were carried out in completely mixed bioreactors, 1-L capacity with 700 ml useful capacity. Optimal amount of active MCE for organics' solubilization in the step of pretreatment was 250 A.U./gVS( sludge). Under this condition, the PPS floc structure was well disrupted, resulting in void rate and fibre size diminishment after pretreatment. In addition, SCOD and VS removal were found to be 56% and 43.6%, respectively, after anaerobic digestion, being the peak value of VFA concentration determined as 1198 mg acetic acid L(-1). The anaerobic digestion efficiency of PPS with and without pretreatment was evaluated. The highest methane yield under optimal pretreatment conditions was 0.23 m(3) CH4/kgVS(add), being 134.2% of the control. The results indicated that MCE bio-pretreatment could be a cost-effective and environmentally sound method for producing methane from PPS.

  2. Ultrasonic waste activated sludge disintegration for recovering multiple nutrients for biofuel production.

    PubMed

    Xie, Guo-Jun; Liu, Bing-Feng; Wang, Qilin; Ding, Jie; Ren, Nan-Qi

    2016-04-15

    Waste activated sludge is a valuable resource containing multiple nutrients, but is currently treated and disposed of as an important source of pollution. In this work, waste activated sludge after ultrasound pretreatment was reused as multiple nutrients for biofuel production. The nutrients trapped in sludge floc were transferred into liquid medium by ultrasonic disintegration during first 30 min, while further increase of pretreatment time only resulted in slight increase of nutrients release. Hydrogen production by Ethanoligenens harbinense B49 from glucose significantly increased with the concentration of ultrasonic sludge, and reached maximum yield of 1.97 mol H2/mol glucose at sludge concentration of 7.75 g volatile suspended solids/l. Without addition of any other chemicals, waste molasses rich in carbohydrate was efficiently turned into hydrogen with yield of 189.34 ml H2/g total sugar by E. harbinense B49 using ultrasonic sludge as nutrients. The results also showed that hydrogen production using pretreated sludge as multiple nutrients was higher than those using standard nutrients. Acetic acid produced by E. harbinense B49 together with the residual nutrients in the liquid medium were further converted into hydrogen (271.36 ml H2/g total sugar) by Rhodopseudomonas faecalis RLD-53 through photo fermentation, while ethanol was the sole end product with yield of 220.26 mg/g total sugar. Thus, pretreated sludge was an efficient nutrients source for biofuel production, which could replace the standard nutrients. This research provided a novel strategy to achieve environmental friendly sludge disposal and simultaneous efficient biofuel recovery from organic waste.

  3. Soluble microbial products (SMPs) release in activated sludge systems: a review

    PubMed Central

    2012-01-01

    This review discusses the characterization, production and implications of soluble microbial products (SMPs) in biological wastewater treatment. The precise definition of SMPs is open to talk about, but is currently regarded as “the pool of organic compounds that are released into solution from substrate metabolism and biomass decay”'. Some of the SMPs have been identified as humic acids, polysaccharides, proteins, amino acids, antibiotics, extracellular enzymes and structural components of cells and products of energy metabolism. They adversely affect the kinetic activity, flocculating and settling properties of sludge. This review outlines some important findings with regard to biodegradability and treatability of SMPs and also the effect of process parameters on their production. As SMPs are produced during biological treatment process, their trace amounts normally remain in the effluent that defines the highest COD removal efficiency. Their presence in effluent represents a high potential risk of toxic by-product formation during chlorine disinfection. Studies have indicated that among all wastewater post-treatment processes, the adsorption by granular activated carbon combined with biologically induced degradation is the most effective method for removal of SMPs. However, it may be concludes that the knowledge regarding SMPs is still under progress and more work is required to fully understand their contribution to the treatment process. PMID:23369231

  4. Soluble microbial products (SMPs) release in activated sludge systems: a review.

    PubMed

    Azami, Hamed; Sarrafzadeh, Mohammad Hossein; Mehrnia, Mohammad Reza

    2012-12-18

    This review discusses the characterization, production and implications of soluble microbial products (SMPs) in biological wastewater treatment. The precise definition of SMPs is open to talk about, but is currently regarded as "the pool of organic compounds that are released into solution from substrate metabolism and biomass decay"'. Some of the SMPs have been identified as humic acids, polysaccharides, proteins, amino acids, antibiotics, extracellular enzymes and structural components of cells and products of energy metabolism. They adversely affect the kinetic activity, flocculating and settling properties of sludge. This review outlines some important findings with regard to biodegradability and treatability of SMPs and also the effect of process parameters on their production. As SMPs are produced during biological treatment process, their trace amounts normally remain in the effluent that defines the highest COD removal efficiency. Their presence in effluent represents a high potential risk of toxic by-product formation during chlorine disinfection. Studies have indicated that among all wastewater post-treatment processes, the adsorption by granular activated carbon combined with biologically induced degradation is the most effective method for removal of SMPs. However, it may be concludes that the knowledge regarding SMPs is still under progress and more work is required to fully understand their contribution to the treatment process.

  5. Aerobic activated sludge transformation of methotrexate: identification of biotransformation products.

    PubMed

    Kosjek, Tina; Negreira, Noelia; de Alda, Miren López; Barceló, Damià

    2015-01-01

    This study describes the biotransformation of cytostatic and immunosuppressive pharmaceutical methotrexate. Its susceptibility to microbiological breakdown was studied in a batch biotransformation system, in presence or absence of carbon source and at two activated sludge concentrations. The primary focus of the present study are methotrexate biotransformation products, which were tentatively identified by the ultra-high performance liquid chromatography-quadrupole--Orbitrap-MS. Data-dependent experiments, combining full-scan MS data with product ion spectra were acquired, in order to identify the molecular ions of methotrexate transformation products, to propose the molecular formulae and to elucidate their chemical structures. Among the identified transformation products 2,4-diamino-N10-methyl-pteroic acid is most abundant and persistent. Other biotransformation reactions involve demethylation, oxidative cleavage of amine, cleavage of C-N bond, aldehyde to carboxylate transformation and hydroxylation. Finally, a breakdown pathway is proposed, which shows that most of methotrexate breakdown products retain the diaminopteridine structural segment. In total we propose nine transformation products, among them eight are described as methotrexate transformation products for the first time.

  6. Disturbance opens recruitment sites for bacterial colonization in activated sludge.

    PubMed

    Vuono, David C; Munakata-Marr, Junko; Spear, John R; Drewes, Jörg E

    2016-01-01

    Little is known about the role of immigration in shaping bacterial communities or the factors that may dictate success or failure of colonization by bacteria from regional species pools. To address these knowledge gaps, the influence of bacterial colonization into an ecosystem (activated sludge bioreactor) was measured through a disturbance gradient (successive decreases in the parameter solids retention time) relative to stable operational conditions. Through a DNA sequencing approach, we show that the most abundant bacteria within the immigrant community have a greater probability of colonizing the receiving ecosystem, but mostly as low abundance community members. Only during the disturbance do some of these bacterial populations significantly increase in abundance beyond background levels and in few cases become dominant community members post-disturbance. Two mechanisms facilitate the enhanced enrichment of immigrant populations during disturbance: (i) the availability of resources left unconsumed by established species and (ii) the increased availability of niche space for colonizers to establish and displace resident populations. Thus, as a disturbance decreases local diversity, recruitment sites become available to promote colonization. This work advances our understanding of microbial resource management and diversity maintenance in complex ecosystems.

  7. Enhanced dewaterability of sewage sludge in the presence of Fe(II)-activated persulfate oxidation.

    PubMed

    Zhen, Guangyin; Lu, Xueqin; Zhao, Youcai; Chai, Xiaoli; Niu, Dongjie

    2012-07-01

    The potential benefits of Fe(II)-activated persulfate oxidation on sludge dewatering and its mechanisms were investigated in this study. Capillary suction time (CST) was used to evaluate sludge dewaterability. Both extracellular polymeric substances (EPS) and viscosity were determined in an attempt to explain the observed changes in sludge dewaterability. The optimal conditions to give preferable dewaterability characteristics were found to be persulfate (S(2)O(8)(2-)) 1.2 mmol/gVSS, Fe(II) 1.5 mmol/gVSS, and pH 3.0-8.5, which demonstrated a very high CST reduction efficiency (88.8% reduction within 1 min). It was further observed that both soluble EPS and viscosity played relatively negative roles in sludge dewatering, whereas no correlation was established between sludge dewaterability and bound EPS. Three-dimensional excitation-emission matrix (EEM) fluorescence spectra also revealed that soluble EPS of sludge were degraded and sludge flocs were ruptured by persulfate oxidation, which caused the release of water in the intracellular pace and subsequent improvement of its dewaterability.

  8. [Diversity of culturable filamentous bacteria in the activated sludge from A2O wastewater treatment process].

    PubMed

    Gao, Sha; Jin, De-Cai; Zhao, Zhi-Rui; Qi, Rong; Peng, Xia-Wei; Bai, Zhi-Hui

    2013-07-01

    The anoxic-anaerobic-oxic (A2O) process is widely used in wastewater treatment plant, however, sludge bulking and foaming are the most frequent operational problems in this process. Activated sludge bulking is caused by the overgrowth of some types of filamentous bacteria, especially Microthrix parvicella. In the study, 17 strains of filamentous bacteria were isolated from the bulking sludge of A2O process using Gause's medium. The 16S rRNA genes of the 17 isolates were sequenced to analyze their diversity. The results showed all of the 17 isolates were Streptomyces. Further analysis of these strains by the repetitive sequence based on polymerase chain reaction (rep-PCR) technology showed that there was a high diversity in these isolated Streptomyces. The physiological properties of them were different from Microthrix parvicella. The settleability of activated sludge was improved when some of the isolates were inoculated.

  9. The influence of hydrolysis induced biopolymers from recycled aerobic sludge on specific methanogenic activity and sludge filterability in an anaerobic membrane bioreactor.

    PubMed

    Buntner, D; Spanjers, H; van Lier, J B

    2014-03-15

    The objective of the present study was to evaluate the impact of excess aerobic sludge on the specific methanogenic activity (SMA), in order to establish the maximum allowable aerobic sludge loading. In batch tests, different ratios of aerobic sludge to anaerobic inoculum were used, i.e. 0.03, 0.05, 0.10 and 0.15, showing that low ratios led to an increased SMA. However, the ratio 0.15 caused more than 20% SMA decrease. In addition to the SMA tests, the potential influence of biopolymers and extracellular substances, that are generated as a result of excess aerobic sludge hydrolysis, on membrane performance was determined by assessing the fouling potential of the liquid broth, taking into account parameters such as specific resistance to filtration (SRF) and supernatant filterability (SF). Addition of aerobic sludge to the anaerobic biomass resulted in a high membrane fouling potential. The increase in biopolymers could be ascribed to aerobic sludge hydrolysis. A clear positive correlation between the concentration of the colloidal fraction of biopolymer clusters (cBPC) and the SRF was observed and a negative correlation between the cBPC and the SF measured at the end of the above described SMA tests. The latter implies that sludge filtration resistance increases when more aerobic sludge is hydrolyzed, and thus more cBPC is released. During AnMBR operation, proteins significantly contributed to sludge filterability decrease expressed as SRF and SF, whereas the carbohydrate fraction of SMP was of less importance due to low concentrations. On the contrary, carbohydrates seemed to improve filterability and diminish SRF of the sludge. Albeit, cBPC increase caused an increase in mean TMP during the AnMBR operation, confirming that cBPC is positively correlated to membrane fouling.

  10. The potential application of activated carbon from sewage sludge to organic dyes removal.

    PubMed

    Graham, N; Chen, X G; Jayaseelan, S

    2001-01-01

    The objective of this research work was to study the potential application of activated carbon from sewage sludge to organic dye removal. Methylene blue and crystal violet were the two dyes investigated in the present study. Three activated carbons were produced from the exclusive sewage sludge (referred to as DS), the sludge with the additive of coconut husk (DC) and sludge with the additive of peanut shell (DP) respectively. They were characterized by their surface area and porosity and their surface chemistry structure. Adsorption studies were performed by the batch technique to obtain kinetic and equilibrium data. The results show that the three sludge-derived activated carbons had a developed porosity and marked content of surface functional groups. They exhibited a rapid three-stage adsorption process for both methylene blue and crystal violet. Their adsorption capacities for the two dyes were high, the carbon DP performed best in the adsorption whereas the carbon DC performed worst. It is therefore concluded that the activated carbons made from sewage sludge and its mixtures are promising for dye removal from aqueous streams.

  11. [Harvest of the carbon source in wastewater by the adsorption and desorption of activated sludge].

    PubMed

    Liu, Hong-Bo; Wen, Xiang-Hua; Zhao, Fang; Mei, Yi-Jun

    2011-04-01

    The carbon source in municipal wastewater was adsorbed by activated sludge and then harvested through the hydrolysis of activated sludge. Results indicated that activated sludge had high absorbing ability towards organic carbon and phosphorus under continuous operation mode, and the average COD and TP absorption rate reached as high as 63% and 76%, respectively. Moreover, about 50% of the soluble carbon source was outside of the sludge cell and could be released under mild hydrolysis condition. Whereas the absorbed amount of nitrogen was relatively low, and the removal rate of ammonia was only 13% . Furthermore, the releases of organic carbon, nitrogen and phosphorus from the sludge absorbing pollutants in the wastewater were studied. By comparing different hydrolysis conditions of normal (pH 7.5, 20 degrees C), heating (pH 7.5, 60 degrees C) and the alkaline heating (pH 11, 60 degrees C), the last one presented the optimum hydrolysis efficiency. Under which, the release rate of COD could reach 320 mg/g after 24 hours, whereas nitrogen and phosphorus just obtained low release rates of 18 mg/g and 2 mg/g, respectively. Results indicate that the carbon source in wastewater could be harvested by the adsorption and desorption of activated sludge, and the concentrations of nitrogen and phosphorus are low and would not influence the reuse of the harvested carbon source.

  12. Modelling Cr(VI) removal by a combined carbon-activated sludge system.

    PubMed

    Orozco, A Micaela Ferro; Contreras, Edgardo M; Zaritzky, Noemí E

    2008-01-15

    The combined carbon-activated sludge process has been proposed as an alternative to protect the biomass against toxic substances in wastewaters; however, the information about the effect of powdered-activated carbon (PAC) addition in activated sludge reactors for the treatment of wastewaters containing Cr(VI) is limited. The objectives of the present study were: (a) to evaluate the removal of hexavalent chromium by (i) activated sludge microorganisms in aerobic batch reactors, (ii) powdered-activated carbon, and (iii) the combined action of powdered-activated carbon and biomass; (b) to propose mathematical models that interpret the experimental results. Different Cr(VI) removal systems were tested: (S1) biomass (activated sludge), (S2) PAC, and (S3) the combined activated carbon-biomass system. A Monod-based mathematical model was used to describe the kinetics of Cr(VI) removal in the system S1. A first-order kinetics with respect to Cr(VI) and PAC respectively, was proposed to model the removal of Cr(VI) in the system S2. Cr(VI) removal in the combined carbon-biomass system (S3) was faster than both Cr(VI) removal using PAC or activated sludge individually. Results showed that the removal of Cr(VI) using the activated carbon-biomass system (S3) was adequately described by combining the kinetic equations proposed for the systems S1 and S2.

  13. Structural characterization of metabolites of the X-ray contrast agent iopromide in activated sludge using ion trap mass spectrometry.

    PubMed

    Pérez, Sandra; Eichhorn, Peter; Celiz, Mary Dawn; Aga, Diana S

    2006-03-15

    Identification of degradation products of environmental contaminants is a challenging task because not only are they present in very low concentrations but they are also mixed with complex matrixes that interfere with detection. This work illustrates a simple approach using ion trap mass spectrometry combined with H/D-exchange experiments to elucidate the structures of iopromide metabolites formed during biodegradation in activated sludge. Iopromide is an X-ray contrast agent that has been detected frequently in effluents of wastewater treatment plants and in surface waters due to its persistence and high usage. Three metabolites produced by oxidation of the primary alcohols (forming carboxylates) on the side chains of iopromide were identified in a batch reactor with mixed liquor from a conventional activated sludge. Derivatization of the carboxylic acid to form a methyl ester and interpretation of the MS2 data of this derivative aided in the confirmation of the identities of these metabolites. Furthermore, one metabolite formed by dehydroxylation at the two side chains was identified in a batch reactor with mixed liquor from a nitrifying activated sludge. The MS2 fragmentation pattern of iopromide and its metabolites revealed that the iodinated ring remains intact and that minor transformations in the structure occur during biodegradation of iopromide in biological wastewater treatment plants.

  14. Nitrification and Heavy Metal Removal in the Activated Sludge Treatment Process.

    DTIC Science & Technology

    1976-08-01

    parameters to heavy metal removal in the activated sludge waste treatment process. The heavy metals studied were chromium and silver. Analyses...performed on the influent, mixed liquor, return sludge, and effluent included heavy metal concentration, pH, dissolved oxygen, temperature, suspended solids...related to heavy metal removal. Nitrification is only indirectly related. A theory for the mechanisms contributing to heavy metal removal is developed.

  15. The effect of malathion on the activity, performance, and microbial ecology of activated sludge.

    PubMed

    Rauglas, Erik; Martin, Seth; Bailey, Kandace; Magnuson, Matthew; Phillips, Rebecca; Harper, Willie F

    2016-12-01

    This study evaluated the effect of a VX (O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate) surrogate (malathion) on the activity, performance, and ecology of activated sludge bioreactors. In the presence of malathion, the maximum observed respiration rates varied between 43 and 53 μg/O2 min, generally similar to the 49 μg O2/min rates observed in controls. Malathion did not alter the respiration ratio of O2 consumed-to-CO2 produced nor did it impact the shape of the oxygen consumption curves during respirometry. Shorter term (12 h) batch tests showed that both chemical oxygen demand (COD) and ammonia removal were not negatively impacted by the presence of 0.1-3 mg/L malathion. Longer term continuous addition (i.e. 40 days) of 0.1 mg/L of malathion also had no effect on COD and ammonia removal. In contrast to shorter term exposures, longer term continuous addition of 3 mg/L of malathion negatively impacted both COD and nitrogen removal and was associated with shifts in the abundance of species that are common to activated sludge. These results illustrate the impact that chemicals like malathion may have on COD removal, and nitrification, as well as the robustness of activated sludge microbial communities.

  16. Fates of chlorinated volatile organic compounds in aerobic biological treatment processes: the effects of aeration and sludge addition.

    PubMed

    Chen, Wei-Hsiang; Yang, Wen-Ben; Yuan, Chung-Shin; Yang, Jun-Chen; Zhao, Qing-Liang

    2014-05-01

    The emission of volatile organic compounds (VOCs) from wastewater treatment plants (WWTPs) is becoming an environmental issue of increasing concern. As biological treatment has been considered as one important approach for VOC removal, lab-scale batch experiments were conducted in this study to investigate the fates of four chlorinated hydrocarbons, including chloroform, carbon tetrachloride, trichloroethylene (TCE), and tetrachloroethylene (PERC), in the biological treatment processes with respect to the effects of aeration and sludge addition. The VOC concentrations in the phases of air, water, and sludge under four simulated treatment stages (the first sedimentation, the forepart and rear part of aerobic biological treatment, and the second sedimentation) were analyzed. The results were used to understand the three-phase partitioning of these compounds and to estimate their potentials for volatilization and biological sorption and degradation in these technologies with the concept of fugacity. It was observed that the VOCs were mainly present in the water phase through the experiments. The effects of aeration or sludge addition on the fates of these VOCs occurred but appeared to be relatively limited. The concentration distributions of the VOCs were well below the reported partitioning coefficients. It was suggested that these compounds were unsaturated in the air and sludge phases, enhancing their potentials for volatilization and biological sorption/degradation through the processes. However, the properties of these chlorinated VOCs such as the volatility, polarity, or even biodegradability caused by their structural characteristics (e.g., the number of chlorine, saturated or unsaturated) may represent more significant factors for their fates in the aerobic biological treatment processes. These findings prove the complication behind the current knowledge of VOC pollutions in WWTPs and are of help to manage the adverse impacts on the environment and public

  17. Full-scale in-line hydrolysis and simulation for potential energy and resource savings in activated sludge--a case study.

    PubMed

    Hey, Tobias; Jönsson, Karin; Jansen, Jes la Cour

    2012-01-01

    The potential effects of altering primary settlers during biological in-line hydrolysis and converting a nitrifying activated sludge process into a partial pre-denitrification process for the purpose of resource conservation were evaluated. A full-scale primary sludge hydrolysis experiment was performed at a wastewater treatment plant and implemented in a dynamic modelling tool based on ASM2d. The full-scale hydrolysis experiment achieved a volatile fatty acid (VFA) production of 43 g COD(HAc) x m(-3) with no release of ammonium. Additional nitrogen removal of 44 t N x a(-1) was simulated, and the produced hydrolysate was able to replace 50% of the annual ethanol usage. Furthermore, 196 MWh of electricity per annum could be saved through the reduction of ethanol production and the optimization of the operation strategy of the activated sludge tank by operating a different number of anoxic zones.

  18. Activated sludge model (ASM) based modelling of membrane bioreactor (MBR) processes: a critical review with special regard to MBR specificities.

    PubMed

    Fenu, A; Guglielmi, G; Jimenez, J; Spèrandio, M; Saroj, D; Lesjean, B; Brepols, C; Thoeye, C; Nopens, I

    2010-08-01

    Membrane bioreactors (MBRs) have been increasingly employed for municipal and industrial wastewater treatment in the last decade. The efforts for modelling of such wastewater treatment systems have always targeted either the biological processes (treatment quality target) as well as the various aspects of engineering (cost effective design and operation). The development of Activated Sludge Models (ASM) was an important evolution in the modelling of Conventional Activated Sludge (CAS) processes and their use is now very well established. However, although they were initially developed to describe CAS processes, they have simply been transferred and applied to MBR processes. Recent studies on MBR biological processes have reported several crucial specificities: medium to very high sludge retention times, high mixed liquor concentration, accumulation of soluble microbial products (SMP) rejected by the membrane filtration step, and high aeration rates for scouring purposes. These aspects raise the question as to what extent the ASM framework is applicable to MBR processes. Several studies highlighting some of the aforementioned issues are scattered through the literature. Hence, through a concise and structured overview of the past developments and current state-of-the-art in biological modelling of MBR, this review explores ASM-based modelling applied to MBR processes. The work aims to synthesize previous studies and differentiates between unmodified and modified applications of ASM to MBR. Particular emphasis is placed on influent fractionation, biokinetics, and soluble microbial products (SMPs)/exo-polymeric substances (EPS) modelling, and suggestions are put forward as to good modelling practice with regard to MBR modelling both for end-users and academia. A last section highlights shortcomings and future needs for improved biological modelling of MBR processes.

  19. Improvement of growth of Eucalyptus globulus and soil biological parameters by amendment with sewage sludge and inoculation with arbuscular mycorrhizal and saprobe fungi.

    PubMed

    Arriagada, C; Sampedro, I; Garcia-Romera, I; Ocampo, J

    2009-08-15

    Sewage sludge is widely used as an organic soil amendment to improve soil fertility. We investigated the effects of sewage sludge (SS) application on certain biological parameters of Eucalyptus globulus Labill. The plant was either uninoculated or inoculated with saprobe fungi (Coriolopsis rigida and Trichoderma harzianum) or arbuscular mycorrhizal (AM) fungi (Glomus deserticola and Gigaspora rosea). Sewage sludge was applied to the surface of experimental plots at rates of 0, 2, 4, 6 and 8 g 100 g(-1) of soil. Inoculation with both AM and saprobe fungi in the presence of SS was essential for the promotion of plant growth. The AM, saprobe fungi and SS significantly increased dry shoot weight. The AM fungi induced a significant increase in Fluorescein diacetate (FDA) activity but did not increase beta-glucosidase activity. Addition of SS to AM-inoculated soil did not affect either FDA or alpha-glucosidase activities in plants from soil that was either uninoculated or inoculated with the saprobe fungi. SS increased beta-glucosidase activity when it was applied at 4 g 100 g(-1). SS negatively affected AM colonization as well as the mycelium SDH activity for both mycorrhizal fungi. SS increased Eucalyptus shoot biomass and enhanced its nutrient status. Inoculation of the soil with G. deserticola stimulated significant E. globulus growth and increases in shoot tissue content of N, P, K, Ca, Mg and Fe. Dual inoculation with G. deserticola and either of the saprobe fungi had positive effects on K, Ca, Mg and Fe contents. The application of 8 g 100 g(-1) of SS had no positive effects on plant nutrition. The experimental setup provided a suitable tool for evaluating SS in combination with saprobe and AM fungi as a biological fertiliser for its beneficial effects on E. globulus plant growth.

  20. Production of biodegradable plastics from activated sludge generated from a food processing industrial wastewater treatment plant.

    PubMed

    Suresh Kumar, M; Mudliar, S N; Reddy, K M K; Chakrabarti, T

    2004-12-01

    Most of the excess sludge from a wastewater treatment plant (60%) is disposed by landfill. As a resource utilization of excess sludge, the production of biodegradable plastics using the sludge has been proposed. Storage polymers in bacterial cells can be extracted and used as biodegradable plastics. However, widespread applications have been limited by high production cost. In the present study, activated sludge bacteria in a conventional wastewater treatment system were induced, by controlling the carbon: nitrogen ratio to accumulate storage polymers. Polymer yield increased to a maximum 33% of biomass (w/w) when the C/N ratio was increased from 24 to 144, where as specific growth yield decreased with increasing C/N ratio. The conditions which are required for the maximum polymer accumulation were optimized and are discussed.

  1. Extracellular polymeric substances and dewaterability of waste activated sludge during anaerobic digestion.

    PubMed

    Ye, Fenxia; Liu, Xinwen; Li, Ying

    2014-01-01

    Anaerobic digestion of waste activated sludge was conducted to gain insight into the mechanisms underlying change in sludge dewaterability during its anaerobic digestion. Unexpectedly, the results indicated that sludge dewatering properties measured by capillary suction time only deteriorated after 10 days of anaerobic digestion, after which dewaterability recovered and remained stable. The loosely bound extracellular polymeric substance (LB-EPS) content increased three-fold after 20 days of anaerobic digestion, and did not change significantly during the remaining 30 days. The tightly bound EPS (TB-EPS) content reduced slightly after 20 days of anaerobic digestion, and stabilized during the last 30 days. Polysaccharides (PS) and proteins (PN) content in LB-EPS increased after 10 days of anaerobic digestion. However, PS and PN contents in TB-EPS decreased slightly. The relationship analysis showed that only LB-EPS correlated with dewaterability of the sludge during anaerobic digestion.

  2. Identification of the most sensitive parameters in the activated sludge model implemented in BioWin software.

    PubMed

    Liwarska-Bizukojc, Ewa; Biernacki, Rafal

    2010-10-01

    In order to simulate biological wastewater treatment processes, data concerning wastewater and sludge composition, process kinetics and stoichiometry are required. Selection of the most sensitive parameters is an important step of model calibration. The aim of this work is to verify the predictability of the activated sludge model, which is implemented in BioWin software, and select its most influential kinetic and stoichiometric parameters with the help of sensitivity analysis approach. Two different measures of sensitivity are applied: the normalised sensitivity coefficient (S(i,j)) and the mean square sensitivity measure (delta(j)(msqr)). It occurs that 17 kinetic and stoichiometric parameters of the BioWin activated sludge (AS) model can be regarded as influential on the basis of S(i,j) calculations. Half of the influential parameters are associated with growth and decay of phosphorus accumulating organisms (PAOs). The identification of the set of the most sensitive parameters should support the users of this model and initiate the elaboration of determination procedures for the parameters, for which it has not been done yet.

  3. Detection of enteric viruses in activated sludge by feasible concentration methods.

    PubMed

    Prado, Tatiana; Gaspar, Ana Maria Coimbra; Miagostovich, Marize Pereira

    2014-01-01

    Human enteric viruses are responsible to cause several diseases, including gastroenteritis and hepatitis, and can be present in high amounts in sewage sludge. This study compared virus recovery efficiency of two feasible concentration methods used for detecting human adenovirus (HAdV), rotavirus species A (RV-A), norovirus genogroup II (NoV GII) and hepatitis A virus (HAV) in sewage sludge from an activated sludge process. Twelve sewage sludge samples were collected bi-monthly from January to July, 2011. Ultracentrifugation was compared with a simplified protocol based on beef extract elution for recovering enteric viruses. Viruses were quantified by quantitative real-time PCR assays and virus recovery efficiency and limits of detection were determined. Methods showed mean recovery rates lower than 7.5%, presenting critical limits of detection (higher than 10(2) - 10(3) genome copies - GC L(-1) for all viruses analyzed). Nevertheless, HAdV were detected in 90% of the analyzed sewage sludge samples (range: 1.8 × 10(4) to 1.1 × 10(5) GC L(-1)), followed by RV-A and NoV (both in 50%) and HAV (8%). Results suggesting that activated sludge is contaminated with high viral loads and HAdV are widely disseminated in these samples. The low virus recovery rates achieved, especially for HAV, indicate that other feasible concentration methods could be developed to improve virus recovery efficiency in these environmental matrices.

  4. Ornithinimicrobium pekingense sp. nov., isolated from activated sludge.

    PubMed

    Liu, Xing-Yu; Wang, Bao-Jun; Jiang, Cheng-Ying; Liu, Shuang-Jiang

    2008-01-01

    The bacterial strain LW6(T) was isolated from activated sludge of a wastewater treatment bioreactor. Cells of strain LW6(T) are Gram-positive, irregular, short rods and cocci, 0.5-0.8x1.0-1.6 microm. Colonies are light-yellow, smooth, circular and 0.2-1.0 mm in diameter after 3 days incubation. Strain LW6(T) is aerobic and heterotrophic. It grows at a temperature range of 26-38 degrees C and pH range of 6-9, with optimal growth at 33-37 degrees C and pH 7.8-8.2. The predominant cellular fatty acids of strain LW6(T) are iso-C(15:0) (38.9%) and iso-C(17:1)omega9c (18.8%). Strain LW6(T) has the major respiratory menaquinones MK-8(H(4)) and MK-8(H(2)) and polar lipids phosphatidylinositol, phosphatidylglycerol, diphosphatidylglycerol and unknown glycolipid/phospholipids. The cell wall peptidoglycan of strain LW6(T) contained the amino acids ornithine, lysine, glutamic acid, alanine, glycine and aspartic acid. Its molar DNA G+C content is 69 mol% (T(m)). Analysis of 16S rRNA gene sequences indicated that strain LW6(T) was related phylogenetically to members of the genus Ornithinimicrobium, with similarities ranging from 98.3 to 98.7%. The DNA-DNA relatedness of strain LW6(T) to Ornithinimicrobium humiphilum DSM 12362(T) and Ornithinimicrobium kibberense K22-20(T) was respectively 31.5 and 15.2%. Based on these results, it is concluded that strain LW6(T) represents a novel species of the genus Ornithinimicrobium, for which the name Ornithinimicrobium pekingense sp. nov. is proposed. The type strain is strain LW6(T) (=CGMCC 1.5362(T) =JCM 14001(T)).

  5. Chryseomicrobium aureum sp. nov., a bacterium isolated from activated sludge.

    PubMed

    Deng, Shi-Kai; Ye, Xiao-Mei; Chu, Cui-Wei; Jiang, Jin; He, Jian; Zhang, Jun; Li, Shun-Peng

    2014-08-01

    A Gram-stain-positive, rod-shaped, non-motile, non-spore-forming, aerobic bacterial strain, designated BUT-2(T), was isolated from activated sludge of one herbicide-manufacturing wastewater-treatment facility in Kunshan, Jiangsu province, China, and subjected to polyphasic taxonomic studies. Analysis of the 16S rRNA gene sequence indicated that strain BUT-2(T) shared the highest similarity with Chryseomicrobium amylolyticum (98.98%), followed by Chryseomicrobium imtechense (98.88%), with less than 96% similarlity to members of the genera Paenisporosarcina, Planococcus, Sporosarcina and Planomicrobium. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain BUT-2(T) clustered with C. amylolyticum JC16(T) and C. imtechense MW10(T), occupying a distinct phylogenetic position. The major fatty acid (>10% of total fatty acids) type of strain BUT-2(T) was iso-C(15 : 0). The quinone system comprised menaquinone MK-7 (77.8%), MK-6 (11.9%) and MK-8 (10.3%). The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and some unidentified phospholipids. The cell-wall peptidoglycan type of strain BUT-2(T) was L-Orn-D-Glu. The genomic DNA G+C content of strain BUT-2(T) was 48.5 mol%. Furthermore, the DNA-DNA relatedness in hybridization experiments against the reference strain was lower than 70%, confirming that strain BUT-2(T) did not belong to previously described species of the genus Chryseomicrobium. On the basis of its morphological, physiological and chemotaxonomic characteristics as well as phylogenetic analysis, strain BUT-2(T) is considered to represent a novel species of the genus Chryseomicrobium, for which the name Chryseomicrobium aureum sp. nov. is proposed. The type strain is BUT-2(T) ( = CCTCC AB2013082(T) = KACC 17219(T)).

  6. Influence of different anoxic time exposures on active biomass, protozoa and filamentous bacteria in activated sludge.

    PubMed

    Rodriguez-Perez, S; Fermoso, F G; Arnaiz, C

    Medium-sized wastewater treatment plants are considered too small to implement anaerobic digestion technologies and too large for extensive treatments. A promising option as a sewage sludge reduction method is the inclusion of anoxic time exposures. In the present study, three different anoxic time exposures of 12, 6 and 4 hours have been studied to reduce sewage sludge production. The best anoxic time exposure was observed under anoxic/oxic cycles of 6 hours, which reduced 29.63% of the biomass production compared with the oxic control conditions. The sludge under different anoxic time exposures, even with a lower active biomass concentration than the oxic control conditions, showed a much higher metabolic activity than the oxic control conditions. Microbiological results suggested that both protozoa density and abundance of filamentous bacteria decrease under anoxic time exposures compared to oxic control conditions. The anoxic time exposures 6/6 showed the highest reduction in both protozoa density, 37.5%, and abundance of filamentous bacteria, 41.1%, in comparison to the oxic control conditions. The groups of crawling ciliates, carnivorous ciliates and filamentous bacteria were highly influenced by the anoxic time exposures. Protozoa density and abundance of filamentous bacteria have been shown as promising bioindicators of biomass production reduction.

  7. Characterization of mesoporous activated carbons prepared by pyrolysis of sewage sludge with pyrolusite.

    PubMed

    Liu, Chen; Tang, Zhengguang; Chen, Yao; Su, Shijun; Jiang, Wenju

    2010-02-01

    Activated carbons were prepared from sewage sludge by chemical activation. Pyrolusite was added as a catalyst during activation and carbonization. The influence of the mineral addition on the properties of the activated carbons produced was evaluated. The results show that activated carbons from pyrolusite-supplemented sewage sludge had up to a 75% higher BET surface area and up to a 66% increase in mesoporosity over ordinary sludge-based activated carbons. Batch adsorption experiments applying the prepared adsorbents to synthetic dye wastewater treatment yielded adsorption data well fitted to the Langmuir isotherm. The adsorbents from pyrolusite-supplemented sludges performed better in dye removal than those without mineral addition, with the carbon from pyrolusite-augmented sludge T2 presenting a significant increase in maximum adsorption capacity of 50mg/g. The properties of the adsorbents were improved during pyrolusite-catalyzed pyrolysis via enhancement of mesopore production, thus the mesopore channels may provide fast mass transfer for large molecules like dyes.

  8. Dynamical modelling of an activated sludge system of a petrochemical plant operating at high temperatures.

    PubMed

    Maqueda, M A M; Martinez, Sergio A; Narváez, D; Rodriguez, Miriam G; Aguilar, Ricardo; Herrero, Victor M

    2006-01-01

    The Mexican petrochemical industry, Morelos S.A. de C.V., is one of the biggest and more important petroleum industries in Mexico and Latin America. It has an activated sludge system to treat its wastewater flow, which is approximately 7,000 m3/d. The wastewater contains volatile organic carbon substances classified as toxics. The old surface aeration system was changed for fine bubble diffusers; however, one major drawback of the new aeration system is that the temperature in the bioreactor has increased due to the compression of the air, which at the compressor exit reaches 85 degrees C. This effect results in the temperature in the bioreactor attaining 32 degrees C during the fall, whereas in the spring and summer, the bioreactor temperature reaches higher values than 40 degrees C. The high temperatures reduce the microorganism activity and cause a higher volatilisation rate of volatile compounds, among other effects, which affect the performance of the biological treatment. This work was performed to obtain a better modelling of the wastewater treatment from the petrochemical industry. The model describes the effect of the temperature on the performance of the biological treatment. The model was obtained from tests that were carried out in laboratory reactors with 14 L capacity, which were operated at different temperatures (from 30 to 45 degrees C), with the same wastewater and conditions as the actual system.

  9. ACTIVE PEC APPLICATIONS, THE PEC WEBSITE, AND SLUDGE STABILITY RESEARCH

    EPA Science Inventory

    Since it's creation in 1985, the Pathogen Equivalency Committee (PEC) has been reviewing novel sludge disinfection technologies with regards to their abilities to protect human health and the environment. The PEC is charged to make recommendations on whether these novel technolog...

  10. MiDAS: the field guide to the microbes of activated sludge

    PubMed Central

    McIlroy, Simon Jon; Saunders, Aaron Marc; Albertsen, Mads; Nierychlo, Marta; McIlroy, Bianca; Hansen, Aviaja Anna; Karst, Søren Michael; Nielsen, Jeppe Lund; Nielsen, Per Halkjær

    2015-01-01

    The Microbial Database for Activated Sludge (MiDAS) field guide is a freely available online resource linking the identity of abundant and process critical microorganisms in activated sludge wastewater treatment systems to available data related to their functional importance. Phenotypic properties of some of these genera are described, but most are known only from sequence data. The MiDAS taxonomy is a manual curation of the SILVA taxonomy that proposes a name for all genus-level taxa observed to be abundant by large-scale 16 S rRNA gene amplicon sequencing of full-scale activated sludge communities. The taxonomy can be used to classify unknown sequences, and the online MiDAS field guide links the identity to the available information about their morphology, diversity, physiology and distribution. The use of a common taxonomy across the field will provide a solid foundation for the study of microbial ecology of the activated sludge process and related treatment processes. The online MiDAS field guide is a collaborative workspace intended to facilitate a better understanding of the ecology of activated sludge and related treatment processes—knowledge that will be an invaluable resource for the optimal design and operation of these systems. Database URL: http://www.midasfieldguide.org PMID:26120139

  11. Ciliated protozoa community of a combined UASB-activated sludge system in southeastern Brazil.

    PubMed

    Siqueira-Castro, Isabel Cristina Vidal; Greinert-Goulart, Juliane Araújo; Rossetto, Renato; Guimarães, José Roberto; Franco, Regina Maura Bueno

    2016-12-01

    The aims of the present study were (1) to evaluate the abundance and taxonomic composition of ciliated protozoa in the activated sludge of a full-scale combined anaerobic-aerobic system operating in a tropical country and (2) to study the relationship between the effluent quality, the physicochemical variables, and the ciliates present in the operating system. The total ciliate fauna of the activated sludge of the Piçarrão Wastewater Treatment Plant (Piçarrão WWTP) was composed of 36 morphospecies belonging to 33 genera. These included 21 species observed in the activated sludge samples on the day of collection and 15 species found in cultures. The activated sludge of the Piçarrão WWTP contained a diversified ciliate community composed mainly of indicator organisms. The most frequently occurring morphospecies were Aspidisca cicada, Vorticella spp., Gastronauta aloisi, Acineria uncinata, and Epistylis plicatilis complex. These results showed that satisfactory operating conditions prevailed at the Piçarrão WWTP. In the combined UASB-activated sludge system, the presence of Aspidisca cicada suggests the occurrence of denitrification in the process while the presence of Acineria uncinata and G. alosi indicates the removal of carbonaceous organic matter.

  12. Effect of acetic acid on lipid accumulation by glucose-fed activated sludge cultures

    SciTech Connect

    Mondala, Andro; Hernandez, Rafael; French, Todd; McFarland, Linda; Sparks, Darrell; Holmes, William; Haque, Monica

    2012-01-01

    The effect of acetic acid, a lignocellulose hydrolysis by-product, on lipid accumulation by activated sludge cultures grown on glucose was investigated. This was done to assess the possible application of lignocellulose as low-cost and renewable fermentation substrates for biofuel feedstock production. Results: Biomass yield was reduced by around 54% at a 2 g L -1 acetic acid dosage but was increased by around 18% at 10 g L -1 acetic acid dosage relative to the control run. The final gravimetric lipid contents at 2 and 10 g L -1 acetic acid levels were 12.5 + 0.7% and 8.8 + 3.2% w/w, respectively, which were lower than the control (17.8 + 2.8% w/w). However, biodiesel yields from activated sludge grown with acetic acid (5.6 + 0.6% w/w for 2 g L -1 acetic acid and 4.2 + 3.0% w/w for 10 g L -1 acetic acid) were higher than in raw activated sludge (1-2% w/w). The fatty acid profiles of the accumulated lipids were similar with conventional plant oil biodiesel feedstocks. Conclusions: Acetic acid enhanced biomass production by activated sludge at high levels but reduced lipid production. Further studies are needed to enhance acetic acid utilization by activated sludge microorganisms for lipid biosynthesis.

  13. Influence of tetracycline on tetracycline-resistant heterotrophs and tet genes in activated sludge process.

    PubMed

    Yu, Jie; Liu, Dongfang; Li, Kexun

    2015-03-01

    The concentrations of tetracycline-intermediate resistant, tetracycline-resistant heterotrophic bacteria, and total heterotrophic bacteria were examined to assess the influence of tetracycline on tetracycline-resistant heterotrophs by the R2A agar cultivation method in the tetracycline fortified activated sludge process and in the natural background. Results showed that the percentages of both tetracycline-intermediate resistant and tetracycline-resistant heterotrophic bacteria in total heterotrophic bacteria were significantly increased, after tetracycline was fed to activated sludge for a 3 months period under four different operating conditions, as compared with the background. In order to investigate the mechanism of activated sludge resistance to tetracycline, polymerase chain reaction experiments were carried out to analyze the existence and evolution of tet genes in the presence of tetracycline. Results revealed that only tet A and tet B genes out of the 11 target tet genes were observed in tetracycline treated activated sludge while no tet gene was detected in background. This indicated that tet A gene could accumulate in activated sludge with slower and continuous influent, while the accumulation of tet B gene could be attributed to shorter hydraulic retention time. Therefore, it was proposed in this study that tetracycline-resistant genes created by efflux pumps spread earlier and quicker to encode resistance to tetracycline, which facilitated the increase in tetracycline-resistance.

  14. Aerobic composting of waste activated sludge: Kinetic analysis for microbiological reaction and oxygen consumption

    SciTech Connect

    Yamada, Y.; Kawase, Y. . E-mail: bckawase@mail.eng.toyo.ac.jp

    2006-07-01

    In order to examine the optimal design and operating parameters, kinetics for microbiological reaction and oxygen consumption in composting of waste activated sludge were quantitatively examined. A series of experiments was conducted to discuss the optimal operating parameters for aerobic composting of waste activated sludge obtained from Kawagoe City Wastewater Treatment Plant (Saitama, Japan) using 4 and 20 L laboratory scale bioreactors. Aeration rate, compositions of compost mixture and height of compost pile were investigated as main design and operating parameters. The optimal aerobic composting of waste activated sludge was found at the aeration rate of 2.0 L/min/kg (initial composting mixture dry weight). A compost pile up to 0.5 m could be operated effectively. A simple model for composting of waste activated sludge in a composting reactor was developed by assuming that a solid phase of compost mixture is well mixed and the kinetics for microbiological reaction is represented by a Monod-type equation. The model predictions could fit the experimental data for decomposition of waste activated sludge with an average deviation of 2.14%. Oxygen consumption during composting was also examined using a simplified model in which the oxygen consumption was represented by a Monod-type equation and the axial distribution of oxygen concentration in the composting pile was described by a plug-flow model. The predictions could satisfactorily simulate the experiment results for the average maximum oxygen consumption rate during aerobic composting with an average deviation of 7.4%.

  15. Effects of activated sludge on the degradation of chlorate in soils under varying environmental conditions.

    PubMed

    Jiang, Chunxiao; Li, Huashou; Lin, Chuxia

    2009-03-15

    Incubation experiments were conducted to examine the effects of activated sludge on degradation of chlorate in soils. The results show that application of activated sludge could significantly promote the decomposition of soil chlorate though the degradation rate of chlorate did not necessarily increase with increasing application rate of the sludge. The effectiveness of activated sludge on soil chlorate degradation was significantly affected by temperature, moisture content and pH. There is a tendency that the rate of chlorate decomposition increased with increasing temperature and moisture content until optimal values of temperature and moisture content were reached. This can be attributed to the enhanced activity of chlorate-reducing microorganisms in hot and more reducing soil conditions. Soil pH also had important controls on the decomposition of chlorate. The experimental results demonstrate that neutral pH more favoured the degradation of soil chlorate, compared to either acidic or alkaline pH. While soil organic matter content could affect chlorate decomposition, its impact on the effectiveness of activated sludge on chlorate degradation was minor. This study has implications for developing cost-effective techniques for remediating chlorate-contaminated soils, particularly in the longan-producing countries.

  16. MiDAS: the field guide to the microbes of activated sludge.

    PubMed

    McIlroy, Simon Jon; Saunders, Aaron Marc; Albertsen, Mads; Nierychlo, Marta; McIlroy, Bianca; Hansen, Aviaja Anna; Karst, Søren Michael; Nielsen, Jeppe Lund; Nielsen, Per Halkjær

    2015-01-01

    The Microbial Database for Activated Sludge (MiDAS) field guide is a freely available online resource linking the identity of abundant and process critical microorganisms in activated sludge wastewater treatment systems to available data related to their functional importance. Phenotypic properties of some of these genera are described, but most are known only from sequence data. The MiDAS taxonomy is a manual curation of the SILVA taxonomy that proposes a name for all genus-level taxa observed to be abundant by large-scale 16 S rRNA gene amplicon sequencing of full-scale activated sludge communities. The taxonomy can be used to classify unknown sequences, and the online MiDAS field guide links the identity to the available information about their morphology, diversity, physiology and distribution. The use of a common taxonomy across the field will provide a solid foundation for the study of microbial ecology of the activated sludge process and related treatment processes. The online MiDAS field guide is a collaborative workspace intended to facilitate a better understanding of the ecology of activated sludge and related treatment processes--knowledge that will be an invaluable resource for the optimal design and operation of these systems.

  17. Application of the Fluorescent-Antibody Technique for the Detection of Sphaerotilus natans in Activated Sludge

    PubMed Central

    Howgrave-Graham, Alan R.; Steyn, Pieter L.

    1988-01-01

    Sphaerotilus natans, one of the most widely reported causes of bulking in activated sludge, can exist both within and outside of a sheath. It can easily be confused with similar activated sludge bacteria and thus can be overlooked when present in low numbers. Fluorescent antiserum was successfully prepared against the nonfilamentous form and was shown to be highly specific, showing no reaction with either pure cultures of similar filamentous bacteria or entirely unrelated organisms. It did, however, show a lack of strain specificity since it reacted with S. natans isolates from the Federal Republic of Germany and the United States and with filamentous bacteria in South African activated sludges. Fluorescent antibody is capable of penetrating the filaments of S. natans to stain the cells individually. The use of fluorescent antiserum in the identification of S. natans filaments obscured by activated sludge flocs and other suspended matter was simple since the cells stained brightly and could be observed through the less dense matter, while the use of other microscope techniques would be hampered by these obstructions. The use of fluorescent antibody will facilitate ecological studies of S. natans in activated sludge and other aqueous environments. Images PMID:16347588

  18. Study of kinetics of degradation of cyclohexane carboxylic acid by acclimated activated sludge.

    PubMed

    Wang, Chunhua; Shi, Shuian; Chen, Hongyan

    2016-01-01

    Activated sludge contains complex microorganisms, which are highly effective biodegrading agents. In this study, the kinetics of biodegradation of cyclohexane carboxylic acid (CHCA) by an acclimated aerobic activated sludge were investigated. The results showed that after 180 days of acclimation, the activated sludge could steadily degrade >90% of the CHCA in 120 h. The degradation of CHCA by the acclimated activated sludge could be modeled using a first-order kinetics equation. The equations for the degradation kinetics for different initial CHCA concentrations were also obtained. The kinetics constant, kd, decreased with an increase in the CHCA concentration, indicating that, at high concentrations, CHCA had an inhibiting effect on the microorganisms in the activated sludge. The effects of pH on the degradation kinetics of CHCA were also investigated. The results showed that a pH of 10 afforded the highest degradation rate, indicating that basic conditions significantly promoted the degradation of CHCA. Moreover, it was found that the degradation efficiency for CHCA increased with an increase in temperature and concentration of dissolved oxygen under the experimental conditions.

  19. A comparative adsorption study: 17β-estradiol onto aerobic granular sludge and activated sludge.

    PubMed

    Zheng, Xiao-ying; He, Yu-jie; Chen, Wei; Wang, Ming-yang; Cao, Su-lan; Ni, Ming; Chen, Yu

    2016-01-01

    Adsorption plays a significant role in removing hydrophobic 17β-estradiol (E2) from wastewater. Batch experiments were conducted to compare the adsorption of E2 onto activated aerobic granular sludge (AGS) and activated sludge (AS), and features evaluated included the adsorption kinetics, thermodynamics, and influence of other environmental factors. By using a non-chemical wet-heat technique, both AGS and AS were treated to inactivated status. Then, after loading E2, the adsorption equilibrium capacity of the AGS was found to be greater than that of the AS at the same initial concentration of E2. Moreover, both the adsorption processes corresponded to a pseudo-second-order kinetic model; the adsorption rate constant of AGS was found to be higher and the half-adsorption time was shorter than that of AS. Next, evaluations of adsorption isotherms and thermodynamics indicated that the adsorption process was mainly a physical process. Lower temperatures facilitated a higher equilibrium adsorption capacity. However, the adsorption binding sites of AGS were distributed more uniformly at higher temperature, in contrast to the distribution found for AS. Finally, acidic conditions and an appropriate ionic strength (0.4 mol/L) were found to be particularly conducive to the adsorption process. Overall, the results showed that AGS has the potential to adsorb E2 with significant efficiency, thereby offering a new and more efficient means of treating E2 and trace oestrogens in wastewater.

  20. Effect of polyhydroxyalkanoates on dark fermentative hydrogen production from waste activated sludge.

    PubMed

    Wang, Dongbo; Zeng, Guangming; Chen, Yinguang; Li, Xiaoming

    2015-04-15

    Polyhydroxyalkanoates (PHA), an intracellular energy and carbon storage polymer, can be accumulated in activated sludge in substantial quantities under wastewater dynamic treatment (i.e., substrate feast-famine) conditions. However, its influence on hydrogen production has never been investigated before. This study therefore evaluated the influences of PHA level and composition in waste activated sludge (WAS) on hydrogen production. The results showed that with the increase of sludge PHA content from 25 to 178 mg per gram volatile suspended solids (VSS) hydrogen production from WAS alkaline anaerobic fermentation increased from 26.5 to 58.7 mL/g VSS. The composition of PHA was also found to affect hydrogen production. When the dominant composition shifted from polyhydroxybutyrate (PHB) to polyhydroxyvalerate (PHV), the amount of generated hydrogen decreased from 51.2 to 41.1 mL/g VSS even under the same PHA level (around 130 mg/g VSS). The mechanism studies exhibited that the increased PHA content accelerated both the cell solubilization and the hydrolysis process of solubilized substrates. Compared with the PHB-dominant sludge, the increased PHV fraction not only slowed the hydrolysis process but also caused more propionic acid production, with less theoretical hydrogen generation in this fermentation type. It was also found that the increased PHA content enhanced the soluble protein conversion of non-PHA biomass. Further investigations with enzyme analyses showed that both the key hydrolytic enzyme activities and hydrogen-forming enzyme activities were in the sequence of the PHB-dominant sludge > the PHV-dominant sludge > the low PHA sludge, which was in accord with the observed order of hydrogen yield.

  1. Evaluation of activated sludge for biodegradation of propylene glycol as an aircraft deicing fluid.

    PubMed

    Delorit, Justin D; Racz, LeeAnn

    2014-04-01

    Aircraft deicing fluid used at airport facilities is often collected for treatment or disposal in order to prevent serious ecological threats to nearby surface waters. This study investigated lab scale degradation of propylene glycol, the active ingredient in a common aircraft deicing fluid, by way of a laboratory-scale sequencing batch reactor containing municipal waste water treatment facility activated sludge performing simultaneous organic carbon oxidation and nitrification. The ability of activated sludge to remove propylene glycol was evaluated by studying the biodegradation and sorption characteristics of propylene glycol in an activated sludge medium. The results indicate sorption may play a role in the fate of propylene glycol in AS, and the heterotrophic bacteria readily degrade this compound. Therefore, a field deployable bioreactor may be appropriate for use in flight line applications.

  2. Long-term effects of the ozonation of the sludge recycling stream on excess sludge reduction and biomass activity at full-scale.

    PubMed

    Gardoni, D; Ficara, E; Fornarelli, R; Parolini, M; Canziani, R

    2011-01-01

    This paper presents a full-scale experience of sludge minimization by means of short contact time ozonation in a wastewater treatment plant (WWTP) mainly fed on textile wastewater. The WWTP performance over a 3-year operational data series was analysed and compared with a two-year operation with sludge ozonation. Lab-scale respirometric tests were also performed to characterize biomass activity upstream and downstream of the ozone contact reactor. Results suggest that sludge ozonation: (1) is capable of decreasing excess sludge production by 17%; (2) partially decreases both N removal, by lowering the denitrification capacity, and P removal, by reducing biomass synthesis; (3) increases the decay rate from the typical value of 0.62 d(-1) to 1.3 d(-1); (4) decreases the heterotrophic growth yield from the typical value of 0.67 to 0.58 gCOD/gCOD.

  3. Molecular characterization of nocardioform actinomycetes in activated sludge by 16S rRNA analysis.

    PubMed

    Schuppler, M; Mertens, F; Schön, G; Göbel, U B

    1995-02-01

    The analysis of complex microbiota present in activated sludge is important for the understanding and possible control of severe separation problems in sewage treatment such as sludge bulking or sludge foaming. Previous studies have shown that nocardioform actinomycetes are responsible for these conditions, which not only affect the efficiency of sewage treatment but also represent a threat to public health due to spread of pathogens. However, isolation and identification of these filamentous, nocardioform actinomycetes is hampered by their fastidious nature. Most species are still uncultivable and their taxonomy is unresolved. To study the ecology of these micro-organisms at the molecular level, we have established a clone library of 16S rRNA gene fragments amplified from bulk sludge DNA. A rough indication of the predominant flora in the sludge was given by sequencing randomly chosen clones, which revealed a great diversity of bacteria from different taxa. Colony hybridization with oligonucleotide probe MNP1 detected 27 clones with 16S rDNA inserts from nocardioform actinomycetes and mycobacteria. The sequence data from these clones together with those from randomly chosen clones were used for comparative 16S rRNA analysis and construction of dendrograms. All sequences differed from those of previously sequenced species in the databases. Phenotypic characterization of isolates of nocardioform actinomycetes and mycobacteria cultivated in parallel from the same activated-sludge sample revealed a large discrepancy between the two approaches. Only one 16S rDNA sequence of a cultured isolate was represented in the clone library, indicating that culture conditions could select species which represent only a small fraction of the organisms in the activated sludge.

  4. Metatranscriptomic array analysis of 'Candidatus Accumulibacter phosphatis'-enriched enhanced biological phosphorus removal sludge.

    PubMed

    He, Shaomei; Kunin, Victor; Haynes, Matthew; Martin, Hector Garcia; Ivanova, Natalia; Rohwer, Forest; Hugenholtz, Philip; McMahon, Katherine D

    2010-05-01

    Here we report the first metatranscriptomic analysis of gene expression and regulation of 'Candidatus Accumulibacter'-enriched lab-scale sludge during enhanced biological phosphorus removal (EBPR). Medium density oligonucleotide microarrays were generated with probes targeting most predicted genes hypothesized to be important for the EBPR phenotype. RNA samples were collected at the early stage of anaerobic and aerobic phases (15 min after acetate addition and switching to aeration respectively). We detected the expression of a number of genes involved in the carbon and phosphate metabolisms, as proposed by EBPR models (e.g. polyhydroxyalkanoate synthesis, a split TCA cycle through methylmalonyl-CoA pathway, and polyphosphate formation), as well as novel genes discovered through metagenomic analysis. The comparison between the early stage anaerobic and aerobic gene expression profiles showed that expression levels of most genes were not significantly different between the two stages. The majority of upregulated genes in the aerobic sample are predicted to encode functions such as transcription, translation and protein translocation, reflecting the rapid growth phase of Accumulibacter shortly after being switched to aerobic conditions. Components of the TCA cycle and machinery involved in ATP synthesis were also upregulated during the early aerobic phase. These findings support the predictions of EBPR metabolic models that the oxidation of intracellularly stored carbon polymers through the TCA cycle provides ATP for cell growth when oxygen becomes available. Nitrous oxide reductase was among the very few Accumulibacter genes upregulated in the anaerobic sample, suggesting that its expression is likely induced by the deprivation of oxygen.

  5. Enhanced waste activated sludge digestion using a submerged anaerobic dynamic membrane bioreactor: performance, sludge characteristics and microbial community

    PubMed Central

    Yu, Hongguang; Wang, Zhiwei; Wu, Zhichao; Zhu, Chaowei

    2016-01-01

    Anaerobic digestion (AD) plays an important role in waste activated sludge (WAS) treatment; however, conventional AD (CAD) process needs substantial improvements, especially for the treatment of WAS with low solids content and poor anaerobic biodegradability. Herein, we propose a submerged anaerobic dynamic membrane bioreactor (AnDMBR) for simultaneous WAS thickening and digestion without any pretreatment. During the long-term operation, the AnDMBR exhibited an enhanced sludge reduction and improved methane production over CAD process. Moreover, the biogas generated in the AnDMBR contained higher methane content than CAD process. Stable carbon isotopic signatures elucidated the occurrence of combined methanogenic pathways in the AnDMBR process, in which hydrogenotrophic methanogenic pathway made a larger contribution to the total methane production. It was also found that organic matter degradation was enhanced in the AnDMBR, thus providing more favorable substrates for microorganisms. Pyrosequencing revealed that Proteobacteria and Bacteroidetes were abundant in bacterial communities and Methanosarcina and Methanosaeta in archaeal communities, which played an important role in the AnDMBR system. This study shed light on the enhanced digestion of WAS using AnDMBR technology. PMID:26830464

  6. Enhanced waste activated sludge digestion using a submerged anaerobic dynamic membrane bioreactor: performance, sludge characteristics and microbial community.

    PubMed

    Yu, Hongguang; Wang, Zhiwei; Wu, Zhichao; Zhu, Chaowei

    2016-02-01

    Anaerobic digestion (AD) plays an important role in waste activated sludge (WAS) treatment; however, conventional AD (CAD) process needs substantial improvements, especially for the treatment of WAS with low solids content and poor anaerobic biodegradability. Herein, we propose a submerged anaerobic dynamic membrane bioreactor (AnDMBR) for simultaneous WAS thickening and digestion without any pretreatment. During the long-term operation, the AnDMBR exhibited an enhanced sludge reduction and improved methane production over CAD process. Moreover, the biogas generated in the AnDMBR contained higher methane content than CAD process. Stable carbon isotopic signatures elucidated the occurrence of combined methanogenic pathways in the AnDMBR process, in which hydrogenotrophic methanogenic pathway made a larger contribution to the total methane production. It was also found that organic matter degradation was enhanced in the AnDMBR, thus providing more favorable substrates for microorganisms. Pyrosequencing revealed that Proteobacteria and Bacteroidetes were abundant in bacterial communities and Methanosarcina and Methanosaeta in archaeal communities, which played an important role in the AnDMBR system. This study shed light on the enhanced digestion of WAS using AnDMBR technology.

  7. Enhanced waste activated sludge digestion using a submerged anaerobic dynamic membrane bioreactor: performance, sludge characteristics and microbial community

    NASA Astrophysics Data System (ADS)

    Yu, Hongguang; Wang, Zhiwei; Wu, Zhichao; Zhu, Chaowei

    2016-02-01

    Anaerobic digestion (AD) plays an important role in waste activated sludge (WAS) treatment; however, conventional AD (CAD) process needs substantial improvements, especially for the treatment of WAS with low solids content and poor anaerobic biodegradability. Herein, we propose a submerged anaerobic dynamic membrane bioreactor (AnDMBR) for simultaneous WAS thickening and digestion without any pretreatment. During the long-term operation, the AnDMBR exhibited an enhanced sludge reduction and improved methane production over CAD process. Moreover, the biogas generated in the AnDMBR contained higher methane content than CAD process. Stable carbon isotopic signatures elucidated the occurrence of combined methanogenic pathways in the AnDMBR process, in which hydrogenotrophic methanogenic pathway made a larger contribution to the total methane production. It was also found that organic matter degradation was enhanced in the AnDMBR, thus providing more favorable substrates for microorganisms. Pyrosequencing revealed that Proteobacteria and Bacteroidetes were abundant in bacterial communities and Methanosarcina and Methanosaeta in archaeal communities, which played an important role in the AnDMBR system. This study shed light on the enhanced digestion of WAS using AnDMBR technology.

  8. Effects of sludge retention time, carbon and initial biomass concentrations on selection process: From activated sludge to polyhydroxyalkanoate accumulating cultures.

    PubMed

    Chen, Zhiqiang; Huang, Long; Wen, Qinxue; Zhang, Huichao; Guo, Zirui

    2017-02-01

    Four sequence batch reactors (SBRs) fed by fermented sugar cane wastewater were continuously operated under the aerobic dynamic feeding (ADF) mode with different configurations of sludge retention time (SRT), carbon and initial biomass concentrations to enrich polyhydroxyalkanoate (PHA) accumulating mixed microbial cultures (MMCs) from municipal activated sludge. The stability of SBRs was investigated besides the enrichment performance. The microbial community structures of the enriched MMCs were analyzed using terminal restriction fragment length polymorphism (T-RFLP). The optimum operating conditions for the enrichment process were: SRT of 5days, carbon concentration of 2.52g COD/L and initial biomass concentration of 3.65g/L. The best enrichment performance in terms of both operating stability and PHA storage ability of enriched cultures (with the maximum PHA content and PHA storage yield (YPHA/S) of 61.26% and 0.68mg COD/mg COD, respectively) was achieved under this condition. Effects of the SRT, carbon concentration and initial biomass concentration on the PHA accumulating MMCs selection process were discussed respectively. A new model including the segmentation of the enrichment process and the effects of SRT on each phase was proposed.

  9. Steady-state analysis of activated sludge processes with a settler model including sludge compression.

    PubMed

    Diehl, S; Zambrano, J; Carlsson, B

    2016-01-01

    A reduced model of a completely stirred-tank bioreactor coupled to a settling tank with recycle is analyzed in its steady states. In the reactor, the concentrations of one dominant particulate biomass and one soluble substrate component are modelled. While the biomass decay rate is assumed to be constant, growth kinetics can depend on both substrate and biomass concentrations, and optionally model substrate inhibition. Compressive and hindered settling phenomena are included using the Bürger-Diehl settler model, which consists of a partial differential equation. Steady-state solutions of this partial differential equation are obtained from an ordinary differential equation, making steady-state analysis of the entire plant difficult. A key result showing that the ordinary differential equation can be replaced with an approximate algebraic equation simplifies model analysis. This algebraic equation takes the location of the sludge-blanket during normal operation into account, allowing for the limiting flux capacity caused by compressive settling to easily be included in the steady-state mass balance equations for the entire plant system. This novel approach grants the possibility of more realistic solutions than other previously published reduced models, comprised of yet simpler settler assumptions. The steady-state concentrations, solids residence time, and the wastage flow ratio are functions of the recycle ratio. Solutions are shown for various growth kinetics; with different values of biomass decay rate, influent volumetric flow, and substrate concentration.

  10. Effect of magnetic nanoparticles on the performance of activated sludge treatment system.

    PubMed

    Ni, Shou-Qing; Ni, Jianyuan; Yang, Ning; Wang, Juan

    2013-09-01

    Both short-term and long-term exposure experiments were carried out to investigate the influence of magnetic nanoparticles (NPs) on activated sludge. The short-term presence of 50-200 mg/L of NPs decreased total nitrogen (TN) removal efficiencies, resulted from the acute toxicity of a shock load of NPs. However, long-term exposure of 50 mg/L magnetic NPs were observed to significantly improve TN removal efficiency, partially due to the self-repair function of activated sludge and magnetic-induced bio-effect. Sludge properties and extracellular polymer substrates secretion were affected. Additional investigations with enzyme and FISH assays indicated that short-term exposure of 50 mg/L magnetic NPs led to the abatement of nitrifying bacteria. However, the activities of the enzyme nitrite oxidoreductase and key denitrifying enzymes were increased after long-term exposure.

  11. Comparison between adsorption of poliovirus and rotavirus by aluminum hydroxide and activated sludge flocs.

    PubMed Central

    Farrah, S R; Goyal, S M; Gerba, C P; Conklin, R H; Smith, E M

    1978-01-01

    Adsorption of poliovirus and rotavirus by aluminum hydroxide and activated sludge flocs was studied. Both aluminum hydroxide and activated sludge flocs adsorbed greater amounts of poliovirus than rotavirus. Aluminum hydroxide flocs reduced the titer of poliovirus in tap water by 3 log10, but they only reduced the titer of a simian rotovirus (SA-11) in tap water by 1 log10 or less and did not noticeably reduce the number of human rotavirus particles present in a dilute stool suspension. Activated sludge flocs reduced the titer of added poliovirus by 0.7 to 1.8 log10 and reduced the titer of SA-11 by 0.5 log10 or less. These studies indicate that a basic difference in the adsorptive behavior of enteroviruses and rotaviruses exists and that water and wastewater treatment processes that are highly effective in removal of enteroviruses may not be as effective in removing other viral groups such as rotaviruses. PMID:205173

  12. Microbial processes associated to the decontamination and detoxification of a polluted activated sludge during its anaerobic stabilization.

    PubMed

    Bertin, Lorenzo; Capodicasa, Serena; Occulti, Fabio; Girotti, Stefano; Marchetti, Leonardo; Fava, Fabio

    2007-06-01

    Xenobiotic compounds accumulate in activated sludge resulting from wastewater treatment plants serving both civil and industrial areas. The opportunity to use anaerobic digestion for the decontamination and beneficial disposal of a contaminated activated sludge was investigated in mesophilic and thermophilic microcosms monitored through an integrated chemical, microbiological and ecotoxicological procedure. The 10 months anaerobic sludge incubation at 35 degrees C resulted in an extensive production of a methane-rich biogas, a marked reduction of pathogenic cultivable bacteria and, importantly, a marked biodegradation of the sludge-carried organic pollutants, including some polychlorinated biphenyls and polycyclic aromatic hydrocarbons, along with a relevant sludge detoxification. The sludge decontamination seemed to occur mostly under methanogenic conditions and was not significantly affected by the addition of yeast extract or molasses. Lower bioremediation and biomethanization yields were observed under thermophilic conditions.

  13. Response of anaerobic granular sludge to a shock load of zinc oxide nanoparticles during biological wastewater treatment.

    PubMed

    Mu, Hui; Zheng, Xiong; Chen, Yinguang; Chen, Hong; Liu, Kun

    2012-06-05

    The increasing use of zinc oxide nanoparticles (ZnO NPs) in consumer and industrial products highlights a need to understand their potential environmental impacts. In this study, the response of anaerobic granular sludge (AGS) to a shock load of ZnO NPs during anaerobic biological wastewater treatment was reported. It was observed that the extracellular polymeric substances (EPS) of AGS and the methane production were not significantly influenced at ZnO NPs of 10 and 50 mg per gram of total suspended solids (mg/g-TSS), but they were decreased when the dosage of ZnO NPs was greater than 100 mg/g-TSS. The visualization of EPS structure with multiple fluorescence labeling and confocal laser scanning microscope revealed that ZnO NPs mainly caused the decrease of proteins by 69.6%. The Fourier transform infrared spectroscopy analysis further indicated that the C-O-C group of polysaccharides and carboxyl group of proteins in EPS were also changed in the presence of ZnO NPs. The decline of EPS induced by ZnO NPs resulted in their deteriorating protective role on the inner microorganisms of AGS, which was in correspondence with the observed lower general physiological activity of AGS and the death of microorganisms. Further investigation showed that the negative influence of ZnO NPs on methane production was due to their severe inhibition on the methanization step.

  14. Optimization of polyhydroxybutyrate (PHB) production by excess activated sludge and microbial community analysis.

    PubMed

    Liu, Zhenggui; Wang, Yuanpeng; He, Ning; Huang, Jiale; Zhu, Kang; Shao, Wenyao; Wang, Haitao; Yuan, Weilong; Li, Qingbiao

    2011-01-15

    In this study, a high value-added and biodegradable thermoplastic, polyhydroxybutyrate (PHB), was produced by excess activated sludge. The effects of the nutritional condition, aeration mode, sodium acetate concentration and initial pH value on PHB accumulation in the activated sludge were investigated. The maximum PHB content and PHB yield of 67.0% (dry cell weight) and 0.740gCODgCOD(-1) (COD: chemical oxygen demand), respectively, were attained by the sludge in the presence of 6.0gL(-1) sodium acetate, with an initial pH value of 7.0 and intermittent aeration. The analysis of the polymerase chain reaction (PCR)-denaturing gradient-gel-electrophoresis (DGGE) sequencing indicated that the microbial community of the sludge was significantly different during the process of PHB accumulation. Three PHB-accumulating microorganisms, which were affiliated with the Thauera, Dechloromonas and Competibacter lineages, were found in the excess activated sludge under different operating conditions for PHB accumulation.

  15. Enhancing anaerobic digestion of waste activated sludge by pretreatment: effect of volatile to total solids.

    PubMed

    Wang, Xiao; Duan, Xu; Chen, Jianguang; Fang, Kuo; Feng, Leiyu; Yan, Yuanyuan; Zhou, Qi

    2016-01-01

    In this study the effect of volatile to total solids (VS/TS) on anaerobic digestion of waste activated sludge (WAS) pretreated by alkaline, thermal and thermal-alkaline strategies was studied. Experimental results showed that the production of methane from sludge was increased with VS/TS. When anaerobic digesters were fed with sludge pretreated by the thermal-alkaline method, the average methane yield was improved from 2.8 L/d at VS/TS 0.35 to 4.7 L/d at VS/TS 0.56. Also, the efficiency of VS reduction during sludge anaerobic digestion varied between 18.9% and 45.6%, and increased gradually with VS/TS. Mechanism investigation of VS/TS on WAS anaerobic digestion suggested that the general activities of anaerobic microorganisms, activities of key enzymes related to sludge hydrolysis, acidification and methanogenesis, and the ratio of Archaea to Bacteria were all increased with VS/TS, showing good agreement with methane production.

  16. Transformation of diclofenac in hybrid biofilm-activated sludge processes.

    PubMed

    Jewell, Kevin S; Falås, Per; Wick, Arne; Joss, Adriano; Ternes, Thomas A

    2016-11-15

    The biotransformation of diclofenac during wastewater treatment was investigated. Attached growth biomass from a carrier-filled compartment of a hybrid-MBBR at the wastewater treatment plant (WWTP) in Bad Ragaz, Switzerland was used to test the biotransformation. Laboratory-scale incubation experiments were performed with diclofenac and carriers and high-resolution LC-QTof-MS was implemented to monitor the biotransformation. Up to 20 diclofenac transformation products (TPs) were detected. Tentative structures were proposed for 16 of the TPs after characterization by MS(2) fragmentation and/or inferring the structure from the transformation pathway and the molecular formula given by the high resolution ionic mass. The remaining four TPs were unambiguously identified via analytical reference standards. The postulated reactions forming the TPs were: hydroxylation, decarboxylation, oxidation, amide formation, ring-opening and reductive dechlorination. Incubation experiments of individual TPs, those which were available as reference standards, provided a deeper look into the transformation pathways. It was found that the transformation consists of four main pathways but no pathway accounted for a clear majority of the transformation. A 10-day monitoring campaign of the full-scale plant confirmed an 88% removal of diclofenac (from approximately 1.6 μg/L in WWTP influent) and the formation of TPs as found in the laboratory was observed. One of the TPs, N-(2,6-dichlorophenyl)-2-indolinone detected at concentrations of around 0.25 μg/L in WWTP effluent, accounting for 16% of the influent diclofenac concentration. The biotransformation of carriers was compared to a second WWTP not utilising carriers. It was found that in contact with activated sludge, similar hydroxylation and decarboxylation reactions occurred but at much slower rates, whereas some reactions, e.g. reductive dechlorination, were not detected at all. Finally, incubation experiments were performed with

  17. Effects of heat treatment on microbial communities of granular sludge for biological hydrogen production.

    PubMed

    Alibardi, Luca; Favaro, Lorenzo; Lavagnolo, Maria Cristina; Basaglia, Marina; Casella, Sergio

    2012-01-01

    Dark fermentation shares many features with anaerobic digestion with the exception that to maximize hydrogen production, methanogens and hydrogen-consuming bacteria should be inhibited. Heat treatment is widely applied as an inoculum pre-treatment due to its effectiveness in inhibiting methanogenic microflora but it may not exclusively select for hydrogen-producing bacteria. This work evaluated the effects of heat treatment on microbial viability and structure of anaerobic granular sludge. Heat treatment was carried out on granular sludge at 100 °C with four residence times (0.5, 1, 2 and 4 h). Hydrogen production of treated sludges was studied from glucose by means of batch test at different pH values. Results indicated that each heat treatment strongly influenced the granular sludge resulting in microbial communities having different hydrogen productions. The highest hydrogen yields (2.14 moles of hydrogen per mole of glucose) were obtained at pH 5.5 using the sludge treated for 4 h characterized by the lowest CFU concentration (2.3 × 10(3)CFU/g sludge). This study demonstrated that heat treatment should be carefully defined according to the structure of the sludge microbial community, allowing the selection of highly efficient hydrogen-producing microbes.

  18. Impacts of membrane flux enhancers on activated sludge respiration and nutrient removal in MBRs.

    PubMed

    Iversen, Vera; Koseoglu, Hasan; Yigit, Nevzat O; Drews, Anja; Kitis, Mehmet; Lesjean, Boris; Kraume, Matthias

    2009-02-01

    This paper presents the findings of experimental investigations regarding the influence of 13 different flux enhancing chemicals (FeCl3, polyaluminium chloride, 2 chitosans, 5 synthetic polymers, 2 starches and 2 activated carbons) on respirometric characteristics and nitrification/denitrification performance of membrane bioreactor (MBR) mixed liquor. Flux enhancing chemicals are a promising method to reduce the detrimental effects of fouling phenomena via the modification of mixed liquor characteristics. However, potentially inhibiting effects of these chemicals on mixed liquor biological activity triggered the biokinetic studies (in jar tests) conducted in this work. The tested polyaluminium chloride (PACl) strongly impacted on nitrification (-16%) and denitrification rate (-43%). The biodegradable nature of chitosan was striking in endogenous and exogenous tests. Considering the relatively high costs of this chemical, an application for wastewater treatment does thus not seem to be advisable. Also, addition of one of the tested activated carbons strongly impacted on the oxygen uptake rate (-28%), nitrification (-90%) and denitrification rate (-43%), due to a decrease of pH. Results show that the changes in kLa values were mostly not significant, however, a decrease of 13% in oxygen transfer was found for sludge treated with PACl.

  19. Activated-Sludge Nitrification in the Presence of Linear and Branched-Chain Alkyl Benzene Sulfonates

    PubMed Central

    Baillod, Charles R.; Boyle, W. C.

    1968-01-01

    The effects of biodegradable linear alkyl benzene sulfonate and branched-chain alkyl benzene sulfonate detergents on activated-sludge nitrification were investigated by administering a synthetic waste containing up to 23 mg of each detergent per liter to eight bench-scale, batch, activated-sludge units. It was found that both detergents tended to promote complete oxidation of ammonia to nitrate, whereas control units produced approximately equal amounts of nitrite and nitrate. Various hypotheses are offered to explain the phenomenon. PMID:5636474

  20. Effects of black liquor shocks on activated sludge treatment of bleached kraft pulp mill wastewater.

    PubMed

    Morales, Gabriela; Pesante, Silvana; Vidal, Gladys

    2015-01-01

    Kraft pulp mills use activated sludge systems to remove organic matter from effluents. Process streams may appear as toxic spills in treatment plant effluents, such as black liquor, which is toxic to microorganisms of the activated sludge. The present study evaluates the effects of black liquor shocks in activated sludge systems. Four black liquor shocks from 883 to 3,225 mg chemical oxygen demand-COD L(-1) were applied during 24 hours in a continuously operating lab-scale activated sludge system. Removal efficiencies of COD, color and specific compounds were determined. Moreover, specific oxygen uptake rate (SOUR), sludge volumetric index (SVI) and indicator microorganisms were evaluated. Results show that the addition of black liquor caused an increase in COD removal (76-67%) immediately post shock; followed two days later by a decrease (-19-50%). On the other hand, SOUR ranged between 0.152 and 0.336 mgO2 g(-1) volatile suspended solids-VSS• min(-1) during shocks, but the initial value was reestablished at hour 24. When the COD concentration of the shock was higher than 1,014 mg/L, the abundance of stalked ciliates and rotifers dropped. Finally, no changes in SVI were observed, with values remaining in the range 65.8-40.2 mL g(-1) total suspended solids-TSS during the entire operating process. Based on the results, the principal conclusion is that the activated sludge system with the biomass adapted to the kraft pulp effluent could resist a black liquor shock with 3,225 mgCOD L(-1) of concentration during 24 h, under this study's conditions.

  1. Relationship of Species-Specific Filament Levels to Filamentous Bulking in Activated Sludge

    PubMed Central

    Liao, Jiangying; Lou, Inchio; de los Reyes, Francis L.

    2004-01-01

    To examine the relationship between activated-sludge bulking and levels of specific filamentous bacteria, we developed a statistics-based quantification method for estimating the biomass levels of specific filaments using 16S rRNA-targeted fluorescent in situ hybridization (FISH) probes. The results of quantitative FISH for the filament Sphaerotilus natans were similar to the results of quantitative membrane hybridization in a sample from a full-scale wastewater treatment plant. Laboratory-scale reactors were operated under different flow conditions to develop bulking and nonbulking sludge and were bioaugmented with S. natans cells to stimulate bulking. Instead of S. natans, the filament Eikelboom type 1851 became dominant in the reactors. Levels of type 1851 filaments extending out of the flocs correlated strongly with the sludge volume index, and extended filament lengths of approximately 6 × 108 μm ml−1 resulted in bulking in laboratory-scale and full-scale activated-sludge samples. Quantitative FISH showed that high levels of filaments occurred inside the flocs in nonbulking sludge, supporting the “substrate diffusion limitation” hypothesis for bulking. The approach will allow the monitoring of incremental improvements in bulking control methods and the delineation of the operational conditions that lead to bulking due to specific filaments. PMID:15066840

  2. Zero-valent iron enhanced methanogenic activity in anaerobic digestion of waste activated sludge after heat and alkali pretreatment.

    PubMed

    Zhang, Yaobin; Feng, Yinghong; Quan, Xie

    2015-04-01

    Heat or alkali pretreatment is the effective method to improve hydrolysis of waste sludge and then enhance anaerobic sludge digestion. However the pretreatment may inactivate the methanogens in the sludge. In the present work, zero-valent iron (ZVI) was used to enhance the methanogenic activity in anaerobic sludge digester under two methanogens-suppressing conditions, i.e. heat-pretreatment and alkali condition respectively. With the addition of ZVI, the lag time of methane production was shortened, and the methane yield increased by 91.5% compared to the control group. The consumption of VFA was accelerated by ZVI, especially for acetate, indicating that the acetoclastic methanogenesis was enhanced. In the alkali-condition experiment, the hydrogen produced decreased from 27.6 to 18.8 mL when increasing the ZVI dosage from 0 to 10 g/L. Correspondingly, the methane yield increased from 1.9 to 32.2 mL, which meant that the H2-utilizing methanogenes was enriched. These results suggested that the addition of ZVI into anaerobic digestion of sludge after pretreated by the heat or alkali process could efficiently recover the methanogenic activity and increase the methane production and sludge reduction.

  3. Biodegradation of toluene diamine (TDA) in activated sludge acclimated with aniline and TDA.

    PubMed

    Asakura, S; Okazaki, S

    1995-06-01

    The biodegradability of toluene diamine (TDA) which has been regarded as a "recalcitrant compound" was examined in activated sludges. In this study, a microorganic-enzyme system which metabolized TDA was obtained by acclimating the activated sludge with aniline and TDA. In the sludge subject to be 200 days' acclimation, the considerable increase in respiration rate with the addition of TDA, accompanied the sharp decrease in its concentration. This indicated that TDA was metabolized fortuitously. The rate of biodegradation of TDA in the absence of aniline was first order with respect to its concentration when the initial TDA concentration was less than about 5 mg/l. The rate constant in this relation was proportional to mixed liquor suspended solid (MLSS). However, when the initial TDA concentration exceeded 5 mg/l, the plots were deviated from a first order rate equation.

  4. Waste activated sludge hydrolysis and acidification: A comparison between sodium hydroxide and steel slag addition.

    PubMed

    Zhang, Ying; Zhang, Chaojie; Zhang, Xuan; Feng, Leiyu; Li, Yongmei; Zhou, Qi

    2016-10-01

    Alkaline treatment with steel slag and NaOH addition were investigated under different pH conditions for the fermentation of waste activated sludge. Better performance was achieved in steel slag addition scenarios for both sludge hydrolysis and acidification. More solubilization of organic matters and much production of higher VFA (volatile fatty acid) in a shorter time can be achieved at pH10 when adjusted by steel slag. Higher enzyme activities were also observed in steel slag addition scenarios under the same pH conditions. Phosphorus concentration in the supernatant increased with fermentation time and pH in NaOH addition scenarios, while in contrast most phosphorus was released and captured by steel slag simultaneously in steel slag addition scenarios. These results suggest that steel slag can be used as a substitute for NaOH in sludge alkaline treatment.

  5. Conditioning of wastewater sludge using freezing and thawing: role of curing.

    PubMed

    Hu, Kai; Jiang, Jun-Qiu; Zhao, Qing-Liang; Lee, Duu-Jong; Wang, Kun; Qiu, Wei

    2011-11-15

    Freeze/thaw (F/T) treatment is an efficient pre-treatment process for biological sludges. When bulk sludge was frozen, tiny unfrozen regimes in the ice matrix were continuously dehydrated by surrounding ice fronts, termed as the "curing stage". This work demonstrated that the F/T treatment could not only enhance sludge dewaterability, but also solubilize organic matters from sludge matrix. Most enhancement of sludge dewaterability was achieved during bulk freezing stage, with the waste activated sludge more readily dewatered than the mixed sludges after treatment. Conversely, the freezing stage released only limited quantities of organic matters to liquid. Conversely, the curing contributed mostly on chemical oxygen demand (COD) solubilization and NH(3)-N release. The crystallization of intra-aggregate moisture was claimed to damage cell membranes so to release intracellular substances to surroundings. The F/T treatment with sufficient curing is advised to effectively condition biological sludge as the feedstock of the following anaerobic digestion process.

  6. Evaluation of the co-application of fly ash and sewage sludge on soil biological and biochemical quality.

    PubMed

    Masto, Reginald E; Sunar, Kapil K; Sengupta, Taniya; Ram, Lal C; Rout, T K; Selvi, Vetrivel A; George, Joshy; Sinha, Awadhesh K

    2012-01-01

    Disposal of sewage sludge (SS) and fly ash (FA) is a multifaceted problem, which can affect environmental quality. FA has the potential to stabilize SS by reducing metal availability and making the SS suitable for application in the agricultural sector. An experiment was performed to evaluate soil biological quality changes with the combined amendment of SS and FA (fluidized bed combustion ash (FBCA) and lignite fly ash (LFA)). SS was amended with 0, 10, 30, 50 and 100%, (w/w) of FA, and then the FA-SS mixtures were incubated with red soil at 1:1 (v/v). Soil quality parameters such as pH, electrical conductivity, N, soil enzyme activities such as dehydrogenase (DHA), urease (URE), and catalase (CAT), and microbial biomass carbon (MBC) were evaluated at 20, 30, and 60 days of incubation, pH and EC increased with FA-SS dose; however, N decreased. DHA and URE were found to be increased with 10% LFA amendment; thereafter it decreased. However, URE increased up to 30% of FBCA. CAT and MBC increased with both FA amendments, even up to addition of 50% FA. Bioavailable Zn, Cu, and Co contents were decreased by the addition of FA. Principal component analysis showed that pH is the most influential factor. MBC appears to be a sensitive soil indicator for the effects that result from the addition of FA-SS. Phytotoxicity studies with Zea mays showed optimum performance at 30% FA. Addition of 10-30% FBCA or LFA to SS has a positive advantage on soil biological quality.

  7. Experimental and Theoretical Approaches for the Surface Interaction between Copper and Activated Sludge Microorganisms at Molecular Scale

    NASA Astrophysics Data System (ADS)

    Luo, Hong-Wei; Chen, Jie-Jie; Sheng, Guo-Ping; Su, Ji-Hu; Wei, Shi-Qiang; Yu, Han-Qing

    2014-11-01

    Interactions between metals and activated sludge microorganisms substantially affect the speciation, immobilization, transport, and bioavailability of trace heavy metals in biological wastewater treatment plants. In this study, the interaction of Cu(II), a typical heavy metal, onto activated sludge microorganisms was studied in-depth using a multi-technique approach. The complexing structure of Cu(II) on microbial surface was revealed by X-ray absorption fine structure (XAFS) and electron paramagnetic resonance (EPR) analysis. EPR spectra indicated that Cu(II) was held in inner-sphere surface complexes of octahedral coordination with tetragonal distortion of axial elongation. XAFS analysis further suggested that the surface complexation between Cu(II) and microbial cells was the distorted inner-sphere coordinated octahedra containing four short equatorial bonds and two elongated axial bonds. To further validate the results obtained from the XAFS and EPR analysis, density functional theory calculations were carried out to explore the structural geometry of the Cu complexes. These results are useful to better understand the speciation, immobilization, transport, and bioavailability of metals in biological wastewater treatment plants.

  8. Experimental and Theoretical Approaches for the Surface Interaction between Copper and Activated Sludge Microorganisms at Molecular Scale

    PubMed Central

    Luo, Hong-Wei; Chen, Jie-Jie; Sheng, Guo-Ping; Su, Ji-Hu; Wei, Shi-Qiang; Yu, Han-Qing

    2014-01-01

    Interactions between metals and activated sludge microorganisms substantially affect the speciation, immobilization, transport, and bioavailability of trace heavy metals in biological wastewater treatment plants. In this study, the interaction of Cu(II), a typical heavy metal, onto activated sludge microorganisms was studied in-depth using a multi-technique approach. The complexing structure of Cu(II) on microbial surface was revealed by X-ray absorption fine structure (XAFS) and electron paramagnetic resonance (EPR) analysis. EPR spectra indicated that Cu(II) was held in inner-sphere surface complexes of octahedral coordination with tetragonal distortion of axial elongation. XAFS analysis further suggested that the surface complexation between Cu(II) and microbial cells was the distorted inner-sphere coordinated octahedra containing four short equatorial bonds and two elongated axial bonds. To further validate the results obtained from the XAFS and EPR analysis, density functional theory calculations were carried out to explore the structural geometry of the Cu complexes. These results are useful to better understand the speciation, immobilization, transport, and bioavailability of metals in biological wastewater treatment plants. PMID:25399801

  9. Innovative sludge stabilization method

    SciTech Connect

    Riggenbach, J.D.

    1995-06-01

    Sludge is generated in many water and wastewater treatment processes, both biological and physical/chemical. Examples include biological sludges from sanitary and industrial wastewater treatment operations and chemical sludges such as those produced when metals are removed from metal plating wastewater. Even some potable water plants produce sludge, such as when alum is used as a flocculating agent to clarify turbid water. Because sludge is produced from such a variety of operations, different techniques have been developed to remove water from sludges and reduce the sludge volume and mass, thus making the sludge more suitable for recovery or disposal. These techniques include mechanical (e.g., filter presses), solar (sludge drying beds), and thermal. The least expensive of these methods, neglecting land costs, involves sludge drying beds and lagoons. The solar method was widely used in sewage treatment plants for many years, but has fallen in disfavor in the US; mechanical and thermal methods have been preferred. Since environmental remediation often requires managing sludges, this article presents a discussion of a variation of sludge lagoons known as evaporative sludge stabilization. Application of this process to the closure of two 2.5 acre (10117 m{sup 2}) hazardous waste surface impoundments will be discussed. 1 ref., 2 figs.

  10. Biological denitrification of brines from membrane treatment processes using an upflow sludge blanket (USB) reactor.

    PubMed

    Beliavski, M; Meerovich, I; Tarre, S; Green, M

    2010-01-01

    This paper investigates denitrification of brines originating from membrane treatment of groundwater in an upflow sludge blanket (USB) reactor, a biofilm reactor without carrier. A simulated brine wastewater was prepared from tap water and contained a nitrate concentration of 125 mg/l as N and a total salt concentration of about 1%. In order to select for a suitable energy source for denitrification, two electron donors were compared: one promoting precipitation of calcium compounds (ethanol), while the other (acetic acid), no precipitation was expected. After extended operation to reach steady state, the sludge from the two reactors showed very different mineral contents. The VSS/TSS ratio in the ethanol fed reactor was 0.2, i.e., 80% mineral content, while the VSS/TSS ratio in the acetic acid fed reactor was 0.9, i.e., 10% mineral content. In spite of the low mineral content, the sludge from the acetic acid fed reactor showed remarkably excellent granulation and settling characteristics. Although the denitrification performance of the acetic acid fed reactor was similar to that of the ethanol fed reactor, there was a huge difference in the sludge production due to mineral precipitation, with the corresponding negative aspects including increased costs of sludge treatment and disposal and moreover, instability and difficulties in reactor operation (channeling). These arguments make acetic acid a much more suitable candidate for brine denitrification, despite previous findings observed in groundwater denitrification regarding the essential role of a relatively high sludge mineral fraction for stable and effective USB reactor operation. Based on a comparison between two denitrification reactors with and without salt addition and using acetic acid as the electron donor, it was concluded that the reason for the excellent sludge settling characteristics found in the acetic acid fed reactor is the positive effects of higher salinity on granular sludge formation.

  11. Solar Energy Project, Activities: Biology.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of biology experiments. Each unit presents an introduction; objectives; skills and knowledge needed; materials; methods; questions; recommendations for further work; and a teacher information sheet. The teacher information…

  12. Gravity drainage of activated sludge: new experimental method and considerations of settling velocity, specific cake resistance and cake compressibility.

    PubMed

    Dominiak, Dominik; Christensen, Morten; Keiding, Kristian; Nielsen, Per Halkjær

    2011-02-01

    A laboratory scale setup was used for characterization of gravitational drainage of waste activated sludge. The aim of the study was to assess how time of drainage and cake dry matter depended on volumetric load, SS content and sludge floc properties. It was demonstrated that activated sludge forms compressible cakes, even at the low pressures found in gravitational drainage. The values of specific cake resistance were two to three orders of magnitude lower than those obtained in pressure filtration. Despite the compressible nature of sludge, key macroscopic parameters such as time of drainage and cake solid content showed simple functional dependency of the volumetric load and SS of a given sludge. This suggests that the proposed method may be applied for design purposes without the use of extensive numerical modeling. The possibilities for application of this new technique are, among others, the estimation of sludge drainability prior to mechanical dewatering on a belt filter, or the application of surplus sludge on reed beds, as well as adjustments of sludge loading, concentration or sludge pre-treatment in order to optimize the drainage process.

  13. Pulp mill effluents: Activated sludge treatment process. (Latest citations from the Paper and Board, Printing, and Packaging Industries Research Associations database). Published Search

    SciTech Connect

    Not Available

    1993-05-01

    The bibliography contains citations concerning plant histories, laboratory analyses, field applications, performance evaluations, and cost factors of pulping mill activated sludge treatment facilities. Monitoring techniques of the activated sludge effluent treatment process, and operating problems and solutions are discussed. Computerized simulation of activated sludge plants is included. (Contains a minimum of 75 citations and includes a subject term index and title list.)

  14. Enhanced dewaterability of sewage sludge with zero-valent iron-activated persulfate oxidation system.

    PubMed

    Hu, Lingling; Liao, Yu; He, Chun; Pan, Wenqi; Liu, Shangkun; Yang, Yichang; Li, Shuzhen; Sun, Lianpeng

    2015-01-01

    The potential benefits of zero-valent iron-activated persulfate (Na2S2O8) oxidation in enhanced dewaterability of sludge, along with the associated mechanisms were investigated in this study. The sludge dewaterability was evaluated in terms of specific resistance to filtration (SRF) and water content. Based on these indexes, it was observed that ZVI-S2O8(2) oxidation effectively improved sludge dewaterability. The optimal conditions to give preferable dewaterability were found when the molar ratio of ZVI/S2O8(2-) was 5:1 and pH value was 3.0. The most important mechanism was proposed to be the degradation of extracellular polymeric substances (EPS) incorporated in sludge flocs and rupture of microbial cells. Three-dimensional excitation-emission matrix fluorescence spectra revealed that the powerful SO4- and ·OH generated from ZVI-S2O8(2-) system destroyed the particular functional groups of fluorescing substances (aromatic protein-like and tryptophan protein-like substances), resulting in the release of bound water and the subsequent enhancement of dewaterability. Therefore, ZVI/S2O8(2-) oxidation is an alternative approach showing great potential to be applied in sludge treatment plants.

  15. Impacts of produced water origin on bacterial community structures of activated sludge.

    PubMed

    Wang, Zhenyu; Pan, Feng; Hesham, Abd El-Latif; Gao, Yingxin; Zhang, Yu; Yang, Min

    2015-11-01

    The purpose of this study was to reveal how activated sludge communities respond to influent quality and indigenous communities by treating two produced waters from different origins in a batch reactor in succession. The community shift and compositions were investigated using Polymerase Chain Reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and further 16S ribosomal DNA (rDNA) clone library analysis. The abundance of targeted genes for polycyclic aromatic hydrocarbon (PAH) degradation, nahAc/phnAc and C12O/C23O, was tracked to define the metabolic ability of the in situ microbial community by Most Probable Number (MPN) PCR. The biosystem performed almost the same for treatment of both produced waters in terms of removals of chemical oxygen demand (COD) and PAHs. Sludge communities were closely associated with the respective influent bacterial communities (similarity>60%), while one sludge clone library was dominated by the Betaproteobacteria (38%) and Bacteriodetes (30%) and the other was dominated by Gammaproteobacteria (52%). This suggested that different influent and water quality have an effect on sludge community compositions. In addition, the existence of catabolic genes in sludge was consistent with the potential for degradation of PAHs in the treatment of both produced waters.

  16. Effect of TiO2 nanoparticles on UASB biomass activity and dewatered sludge.

    PubMed

    Yadav, Tushar; Mungray, Alka A; Mungray, Arvind K

    2017-02-01

    The accumulation of the nanowastes in the wastewater treatment plants has raised several concerns; therefore, it is an utmost priority to study the nanoparticle (NP) toxicity in such systems. In this work, the effect of TiO2 NPs on up-flow anaerobic sludge blanket (UASB) microflora and their photocatalytic effect on dewatered sludge were studied. We observed 99.98% removal of TiO2 NPs by sludge biomass within 24 h, though negligible toxicity was found up to 100 mg/L TiO2 concentration on extracellular polymeric substances (EPS), volatile fatty acid and biogas generation. The low toxicity corresponds to the agglomeration of TiO2 NPs in UASB sludge. Alterations in dewatered sludge biochemical composition and increase in cell damage were observed upon exposure to sunlight as evidenced by FTIR and fluorescent microscopy, respectively. Results suggest the negligible toxicity of TiO2 NPs on UASB biomass activity; however, once exposed to open environment and sunlight, they may exert detrimental effects.

  17. Comparison of different thickening methods for active biomass recycle for anaerobic digestion of wastewater sludge.

    PubMed

    Vanyushina, A Ya; Agarev, A M; Moyzhes, S I; Nikolaev, Yu A; Kevbrina, M V; Kozlov, M N

    2012-01-01

    The effect of returning solids to the digester, after one of three thickening processes, on volatile solids reduction (VSR) and gas production was investigated. Three different thickening methods were compared: centrifugation, flotation and gravitational sedimentation. The amount and activity of retained biomass in thickened recycled sludge affected the efficiency of digestion. Semi-continuous laboratory digesters were used to study the influence of thickening processes on thermophilic sludge digestion efficiency. Centrifugation was the most effective method used and caused an increase of VSR from 43% (control) up to 70% and gas generation from 0.40 to 0.44 L g(-1) VS. Flotation and gravitational sedimentation ways of thickening appeared to be less effective if compared with centrifugation. These methods increased VSR only by up to 65 and 51%, respectively and showed no significant increase of gas production. The dewatering capacity of digested sludge, as measured by its specific resistance to filtration, was essentially better for the sludge digested in the reactors with centrifugated and settled recycle. The VS concentration of recycle (g L(-1)), as reflecting the amount of retained biomass, appeared to be one of the most important factors influencing the efficiency of sludge digestion in the recycling technology.

  18. Free nitrous acid pretreatment of wasted activated sludge to exploit internal carbon source for enhanced denitrification.

    PubMed

    Ma, Bin; Peng, Yongzhen; Wei, Yan; Li, Baikun; Bao, Peng; Wang, Yayi

    2015-03-01

    Using internal carbon source contained in waste activated sludge (WAS) is beneficial for nitrogen removal from wastewater with low carbon/nitrogen ratio, but it is usually limited by sludge disintegration. This study presented a novel strategy based on free nitrous acid (FNA) pretreatment to intensify the release of organic matters from WAS for enhanced denitrification. During FNA pretreatment, soluble chemical oxygen demand (SCOD) production kept increasing when FNA increased from 0 to 2.04 mg HNO2-N/L. Compared with untreated WAS, the internal carbon source production increased by 50% in a simultaneous fermentation and denitrification reactor fed with WAS pretreated by FNA for 24 h at 2.04 mg HNO2-N/L. This also increased denitrification efficiency by 76% and sludge reduction by 87.5%. More importantly, greenhouse gas nitrous oxide production in denitrification was alleviated since more electrons could be provided by FNA pretreated WAS.

  19. Identification of Triclosan-O-Sulfate and other transformation products of Triclosan formed by activated sludge.

    PubMed

    Chen, Xijuan; Casas, Mònica Escolà; Nielsen, Jeppe Lund; Wimmer, Reinhard; Bester, Kai

    2015-02-01

    Aerobic degradation experiments of Triclosan were performed in activated sludge to identify possible transformation products for this compound. During 7 days, the formation of biotransformation products such as 2,4-Dichlorophenol, 4-Chlorocatechol, 5-Hydroxy-Triclosan and other Monohydroxy-Triclosan derivatives as well as Dihydroxy-Triclosan-derivatives were observed. The structure of 5-Hydroxy-Triclosan was elucidated by NMR data for the first time in sludge degradation experiments. Additionally the production of a hitherto unknown transformation product in sludge, i.e., Triclosan-O-Sulfate was detected. During the incubations, the concentrations of this transformation product changed from zero to 330 μg L(-1). Based on the analysis of the biodegradation products, three types of reactions were identified: 1) chemical scission of ether bond to form phenols and catechols, 2) addition of OH moieties to the aromatic ring, and 3) adding of methyl or sulfate groups to the original hydroxyl group.

  20. Biological activity of ionene polymers

    NASA Technical Reports Server (NTRS)

    Rembaum, A.

    1973-01-01

    Ionene polymers are polyammonium salts with positive nitrogens in the backbone, resulting from the polycondensation of diamines with dihalides or from the polycondensation of halo amines. The mechanism of formation of ionene polymers of different structures and their biological activity is reviewed. The antimicrobial and antifungal properties are compared with low molecular weight ammonium salts. Ionenes were found to combine with DNA by means of ionic bonds to yield similar complexes to those obtained with polyamines (spermine and spermidine). They also combine with nerve cell receptors and exercise a more powerful and longer duration ganglionic blocking action than their monomeric analogs. The antiheparin activity of ionenes and the thromboresistance of elastomeric ionene heparin coatings is described. The enhanced biological activity of ionenes as compared with low molecular weight compounds is attributed to a cooperative effect of a large number of positive charges on the polymeric chains.

  1. Diverse biological activities of dandelion.

    PubMed

    González-Castejón, Marta; Visioli, Francesco; Rodriguez-Casado, Arantxa

    2012-09-01

    Dandelion (Taraxacum officinale Weber) is a member of the Asteraceae (Compositae) family, native to Europe but widely distributed in the warmer temperate zones of the Northern Hemisphere. Dandelion and its parts are habitually consumed as plant foods in several areas of the world, where they are also employed in phytotherapy. Indeed, dandelion contains a wide array of phytochemicals whose biological activities are actively being explored in various areas of human health. In particular, emerging evidence suggests that dandelion and its constituents have antioxidant and anti-inflammatory activities that result in diverse biological effects. The present review provides a comprehensive analysis of the constituents of dandelion, an assessment of the pharmacological properties of dandelion, and a description of relevant studies that support the use of dandelion as a medicinal plant.

  2. Use of lysis and recycle to control excess sludge production in activated sludge treatment: bench scale study and effect of chlorinated organic compounds.

    PubMed

    Nolasco, M A; Campos, A L O; Springer, A M; Pires, E C

    2002-01-01

    The most widely used treatment system in the pulp and paper industry--the activated sludge--produces high quantities of sludge which need proper disposal. In this paper a modified activated sludge process is presented. A synthetic wastewater, prepared to simulate the effluent of bleached and unbleached pulp and paper plant wastewater, was submitted to treatment in a bench scale aerobic reactor. The excess sludge was lysed in a mechanical mill--Kaddy mill--and totally recycled to the aeration tank. In the first phase the synthetic wastewater, without the chlorinated compounds, was fed to the reactor. In the second phase increasing dosages of the chlorinated compounds were used. Total recycle of excess sludge after disintegration did not produce adverse effects. During the first phase average COD removal efficiency was 65% for the control unit, which operated in a conventional way, and 63% for the treatment unit, which operated with total recycle. During the second phase the COD removal efficiency increased to 77% in the control unit and 75% in the treatment unit. Chlorinated organics removal was 85% in the treatment unit and 86% for the control unit. These differences are not significant.

  3. Effect of process variables on the production of Polyhydroxyalkanoates by activated sludge

    PubMed Central

    2012-01-01

    Polyhydroxyalkanoates are known to be temporarily stored by microorganisms in activated sludge, especially in anaerobic-aerobic processes. Due to the problems resulted from the disposals of plastic wastes and excess sludge of wastewater treatment plants, the production of polyhydroxyalkanoates by treating activated sludge and determining the effect of process variables were the main issues of this paper. In this research, an anaerobic-aerobic sequencing batch reactor was used to make microorganism adapted and a batch aerobic reactor was used for enriching them. The variables affecting polyhydroxyalkanoates production including aeration time, sludge retention time, and volatile fatty acids concentration of the influent in sequencing batch reactor, and also carbon to nitrogen ratio and cultivation time in polymer production reactor, were investigated using Taguchi statistical approach to determine optimum conditions. The maximum polymer production of 29% was achieved at sludge retention time of 5–10 days, aeration time of 2 hours, supplementation of 40% of volatile fatty acids in the influent and increasing of carbon to nitrogen ratio of polymer production reactor to above 25 g/g. Based on the results, in optimum conditions, the volatile fatty acids concentration which increased the production of polyhydroxyalkanoates up to 49% was the most effective variable. Carbon to nitrogen ratio, sludge retention time and aeration time were ranked as the next affecting parameters. Although the polyhydroxyalkanoates content achieved in present study is much lower than that by pure culture, but the proposed method may still serve well as an environmental friendly means to convert waste into valuable product. PMID:23369512

  4. Effects of pyrite sludge pollution on soil enzyme activities: ecological dose-response model.

    PubMed

    Hinojosa, M Belén; Carreira, José A; Rodríguez-Maroto, José M; García-Ruíz, Roberto

    2008-06-25

    A laboratory study was conducted to evaluate the response of soil enzyme activities (acid and alkaline phosphatase, beta-glucosidase, arylsulfatase, urease and dehydrogenase) to different levels of trace elements pollution in soils representative of the area affected by the pyrite sludge mining spill of Aznalcóllar (Guadiamar basin, SW Spain). Three uncontaminated soils from the study area were mixed with different loads of pyrite sludge to resemble field conditions and criteria applied for reclamation practices following the pollution incident: 0% ("reference" or background level), 1.3% ("attention level", further monitoring required), 4% ("intervention level", further cleaning and liming required) and 13% (ten times the "attention level"). Enzyme activities were analysed 4, 7, 14, 21, 34 and 92 days after pollutant addition and those measured after 92 days were used to calculate the ecological dose value (ED50). Soil enzyme activities and pH decreased after the pyrite sludge addition with respect to the "reference level" (0% pyrite sludge), whereas soil bioavailable (DTPA-extractable) trace elements concentration increased. Arylsulfatase, beta-glucosidase and phosphatase activities were reduced by more than 50% at 1.3% pyrite sludge dose. Arylsulfasate was the most sensitive soil enzyme (in average, ED50=0.99), whereas urease activity showed the lowest inhibition (in average, ED50=7.87) after pyrite sludge addition. Our results showed that the ecological dose concept, applied to enzyme activities, was satisfactory to quantify the effect of a multi-metalic pollutant (pyrite sludge) on soil functionality, and would provide manageable data to establish permissible limits of trace elements in polluted soils. Additionally, we evaluate the recovery of enzyme activities after addition of sugar-beet lime (calcium carbonate) to each experimentally polluted soil. The amount of lime added to each soil was enough to raise the pH to the original value (equal to control soil

  5. Operational Control Procedures for the Activated Sludge Process, Part III-A: Calculation Procedures.

    ERIC Educational Resources Information Center

    West, Alfred W.

    This is the second in a series of documents developed by the National Training and Operational Technology Center describing operational control procedures for the activated sludge process used in wastewater treatment. This document deals exclusively with the calculation procedures, including simplified mixing formulas, aeration tank…

  6. FATE OF WATER SOLUBLE AZO DYES IN THE ACTIVATED SLUDGE PROCESS

    EPA Science Inventory

    The objective of this study was to determine the partitioning of water soluble azo dyes in the activated sludge process (ASP). Azo dyes are of concern because some of the dyes, dye precursors , and/or their degradation products such as aromatic amines (which are also dye precurso...

  7. Local adaptive approach toward segmentation of microscopic images of activated sludge flocs

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Burhan; Nisar, Humaira; Ng, Choon Aun; Lo, Po Kim; Yap, Vooi Voon

    2015-11-01

    Activated sludge process is a widely used method to treat domestic and industrial effluents. The conditions of activated sludge wastewater treatment plant (AS-WWTP) are related to the morphological properties of flocs (microbial aggregates) and filaments, and are required to be monitored for normal operation of the plant. Image processing and analysis is a potential time-efficient monitoring tool for AS-WWTPs. Local adaptive segmentation algorithms are proposed for bright-field microscopic images of activated sludge flocs. Two basic modules are suggested for Otsu thresholding-based local adaptive algorithms with irregular illumination compensation. The performance of the algorithms has been compared with state-of-the-art local adaptive algorithms of Sauvola, Bradley, Feng, and c-mean. The comparisons are done using a number of region- and nonregion-based metrics at different microscopic magnifications and quantification of flocs. The performance metrics show that the proposed algorithms performed better and, in some cases, were comparable to the state-of the-art algorithms. The performance metrics were also assessed subjectively for their suitability for segmentations of activated sludge images. The region-based metrics such as false negative ratio, sensitivity, and negative predictive value gave inconsistent results as compared to other segmentation assessment metrics.

  8. Bioavailable and biodegradable dissolved organic nitrogen in activated sludge and trickling filter wastewater treatment plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was carried out to understand the fate of biodegradable dissolved organic nitrogen (BDON) and bioavailable dissolved organic nitrogen (ABDON) along the treatment trains of a wastewater treatment facility (WWTF) equipped with an activated sludge (AS) system and a WWTF equipped with a two-stag...

  9. Isolation of exocellular polymer from Zoogloea strains MP6 and 106 and from activated sludge.

    PubMed

    Farrah, S R; Unz, R F

    1976-07-01

    Exocellular polymer was isolated from zoogloeae of Zoogloea strains MP6 and 106 and from activated sludge flocs by blending samples with phosphate buffer and precipitation of solubilized polymer with cetyltrimethylammonium bromide. Samples of polymer from these sources were similar and yielded amino sugars as the principal components after acid hydrolysis.

  10. Operational Control Procedures for the Activated Sludge Process, Part I - Observations, Part II - Control Tests.

    ERIC Educational Resources Information Center

    West, Alfred W.

    This is the first in a series of documents developed by the National Training and Operational Technology Center describing operational control procedures for the activated sludge process used in wastewater treatment. Part I of this document deals with physical observations which should be performed during each routine control test. Part II…

  11. Numerical taxonomy of Skermania piniformis and related isolates from activated sludge.

    PubMed

    Sodell, J A; Seviour, R J

    1998-02-01

    The microscopic morphology of nocardioforms causing foaming problems in activated sludge usually consists of filaments with branches at either right angles (Nocardia amarae-Like Organisms, NALO) or acute angles (Pine Tree-Like Organisms, PTLO). Fifty-nine nocardioforms, mainly with PTLO morphology, isolated from mixed liquor and foam samples from Australian activated sludge plants, and 39 reference strains of nocardioforms, including type strains, were characterized using 109 morphological and physiological characters. Cluster analysis and Principal Component Analysis showed that the activated sludge isolates clustered in six groups. All isolates that had typical PTLO morphology clustered unambiguously with the Skermania piniformis type strain (formerly called Nocardia pinensis) showing that, unlike NALO, reliable unequivocal identification of S. piniformis, based on microscopic morphology in activated sludge, was possible. Other foam isolates whose morphology consisted of branches with both acute angles and right angles clustered as two separate groups, probably representing new species. These could not be confused microscopically with S. piniformis, despite some branches showing acute angles. The remaining three groups had typical NALO morphology. One of these groups did not cluster with any reference cultures and may be a new species or genus.

  12. An Operations Manual for Achieving Nitrification in an Activated Sludge Plant.

    ERIC Educational Resources Information Center

    Ontario Ministry of the Environment, Toronto.

    In Ontario, the attainment of nitrification (oxidation of ammonia) in activated sludge plants is receiving increased attention. Nitrification of waste water is a necessary requirement because it reduces plant discharge of nitrogenous oxygen demand and/or toxic ammonia. However, this new requirement will result in added responsibility for…

  13. Bioremediation of heavy metal-contaminated effluent using optimized activated sludge bacteria

    NASA Astrophysics Data System (ADS)

    Bestawy, Ebtesam El.; Helmy, Shacker; Hussien, Hany; Fahmy, Mohamed; Amer, Ranya

    2013-03-01

    Removal of heavy metals from contaminated domestic-industrial effluent using eight resistant indigenous bacteria isolated from acclimatized activated sludge was investigated. Molecular identification using 16S rDNA amplification revealed that all strains were Gram-negative among which two were resistant to each of copper, cadmium and cobalt while one was resistant to each of chromium and the heavy metal mixture. They were identified as Enterobacter sp. (Cu1), Enterobacter sp. (Cu2), Stenotrophomonas sp. (Cd1), Providencia sp. (Cd2), Chryseobacterium sp. (Co1), Comamonas sp. (Co2), Ochrobactrum sp. (Cr) and Delftia sp. (M1) according to their resistance pattern. Strains Cu1, Cd1, Co2 and Cr were able to resist 275 mg Cu/l, 320 mg Cd/l, 140 mg Co/l and 29 mg Cr/l respectively. The four resistant strains were used as a mixture to remove heavy metals (elevated concentrations) and reduce the organic load of wastewater effluent. Results revealed that using the proposed activated sludge with the resistant bacterial mixture was more efficient for heavy metal removal compared to the activated sludge alone. It is therefore recommended that the proposed activated sludge system augmented with the acclimatized strains is the best choice to ensure high treatment efficiency and performance under metal stresses especially when industrial effluents are involved.

  14. Microbial diversity in various types of paper mill sludge: identification of enzyme activities with potential industrial applications.

    PubMed

    Ghribi, Manel; Meddeb-Mouelhi, Fatma; Beauregard, Marc

    2016-01-01

    This study is the first comprehensive investigation of enzyme-producing bacteria isolated from four sludge samples (primary, secondary, press and machine) collected in a Kraft paper mill. Overall, 41 strains encompassing 11 different genera were identified by 16S rRNA gene analysis and biochemical testing. Both biodiversity and enzymatic activities were correlated with sludge composition. Press sludge hosted the largest variety of bacterial strains and enzymatic activities, which included hydrolytic enzymes and ligninolytic enzymes. In contrast, strains isolated from secondary sludge were devoid of several enzymatic activities. Most strains were found to metabolize Kraft liquor at its alkaline pH and to decolorize industrial lignin-mimicking dyes. Resistance to lignin or the ability to metabolize this substrate is a prerequisite to survival in any paper mill sludge type. We demonstrate here that the bacterial strains found in a typical Kraft paper mill represent a source of potential novel enzymes for both industrial applications and bioremediation.

  15. Impact of aerobic stabilization on the characteristics of treatment sludge in the leather tanning industry.

    PubMed

    Cokgor, Emine Ubay; Aydinli, Ebru; Tas, Didem Okutman; Zengin, Gulsum Emel; Orhon, Derin

    2014-01-01

    The efficiency of aerobic stabilization on the treatment sludge generated from the leather industry was investigated to meet the expected characteristics and conditions of sludge prior to landfill. The sludge types subjected to aerobic stabilization were chemical treatment sludge, biological excess sludge, and the mixture of both chemical and biological sludges. At the end of 23 days of stabilization, suspended solids, volatile suspended solids and total organic carbon removal efficiencies were determined as 17%, 19% and 23% for biological sludge 31%, 35% and 54% for chemical sludge, and 32%, 34% and 63% for the mixture of both chemical and biological sludges, respectively. Model simulations of the respirometric oxygen uptake rate measurements showed that the ratio of active biomass remained the same at the end of the stabilization for all the sludge samples. Although mixing the chemical and biological sludges resulted in a relatively effective organic carbon and solids removal, the level of stabilization achieved remained clearly below the required level of organic carbon content for landfill. These findings indicate the potential risk of setting numerical restrictions without referring to proper scientific support.

  16. Characterization of autotrophic and heterotrophic soluble microbial product (SMP) fractions from activated sludge.

    PubMed

    Xie, Wen-Ming; Ni, Bing-Jie; Seviour, Thomas; Sheng, Guo-Ping; Yu, Han-Qing

    2012-12-01

    Soluble microbial products (SMP) generated by microbial populations can adversely affect the efficiency of biological wastewater treatment systems and secondary effluent quality. In this work, both experimental and modeling approaches were used to investigate the formation of SMP by both heterotrophic and autotrophic bacteria. Strategies to control and reduce SMP in activated sludge systems were thus evaluated. SMP produced by heterotrophs were found to account for more than 92% of total SMP. The SMP produced by autotrophs contributed to less than 8% of the total SMP, with 5% attributable to the ammonia-oxidizing bacteria (AOB) and 3% to the nitrite-oxidizing bacteria (NOB). When external organic substrate was present, the utilization-associated products (UAP) were the main component of SMP. When external organic substrate was completely consumed, biomass-associated products (BAP) from the hydrolysis of extracellular polymeric substances (EPS) dominated the SMP. The model developed in this study described the fractions and dynamics of UAP and BAP produced by heterotrophs, AOB and NOB. Solids retention time of the reactor had a significant effect on SMP production, while the effect of the hydraulic retention time was only minor. Decreasing the solids retention time from 15 to 0.5 d reduced SMP production in the reactor by 62%.

  17. Consistency tests in guaranteed simulation of nonlinear uncertain systems with application to an activated sludge process

    NASA Astrophysics Data System (ADS)

    Kletting, Marco; Rauh, Andreas; Aschemann, Harald; Hofer, Eberhard P.

    2007-02-01

    In this paper, interval arithmetic simulation techniques are presented to determine guaranteed enclosures of the state variables of both continuous and discrete-time systems with uncertain but bounded parameters. In nonlinear uncertain systems axis-parallel interval boxes are mapped to complexly shaped regions in the state space that represent sets of possible combinations of state variables. The approximation of each region by a single interval box causes an accumulating overestimation from time-step to time-step, usually called the wrapping effect. The algorithm presented in this paper minimizes the wrapping effect by applying consistency techniques based on interval Newton methods. Subintervals that do not belong to the exact solution at a given time can be eliminated in order to give a tighter but still conservative approximation of the exact solution. Additionally, efficient splitting and merging strategies are employed to limit the number of subintervals. The proposed algorithm is applied to the simulation of an activated sludge process in biological wastewater treatment.

  18. Development of a model for activated sludge aeration systems: linking air supply, distribution, and demand.

    PubMed

    Schraa, Oliver; Rieger, Leiv; Alex, Jens

    2017-02-01

    During the design of a water resource recovery facility, it is becoming industry practice to use simulation software to assist with process design. Aeration is one of the key components of the activated sludge process, and is one of the most important aspects of modelling wastewater treatment systems. However, aeration systems are typically not modelled in detail in most wastewater treatment process modelling studies. A comprehensive dynamic aeration system model has been developed that captures both air supply and demand. The model includes sub-models for blowers, pipes, fittings, and valves. An extended diffuser model predicts both oxygen transfer efficiency within an aeration basin and pressure drop across the diffusers. The aeration system model allows engineers to analyse aeration systems as a whole to determine biological air requirements, blower performance, air distribution, control valve impacts, controller design and tuning, and energy costs. This enables engineers to trouble-shoot the entire aeration system including process, equipment and controls. It also allows much more realistic design of these highly complex systems.

  19. Enhanced remediation of black liquor by activated sludge bioaugmented with a novel exogenous microorganism culture.

    PubMed

    Zheng, Yu; Chai, Li-Yuan; Yang, Zhi-Hui; Tang, Chong-Jian; Chen, Yue-Hui; Shi, Yan

    2013-07-01

    Black liquor (BL) is a notoriously difficult wastewater to treat due to the economic and efficiency limitations of physiochemical methods and intrinsic difficulties with bioremediation strategies caused by the high pH (10-13) and lignin content. This study investigated the feasibility of a novel bioaugmentation strategy for BL treatment, which uses a mixed microorganism culture of lignocellulose-degrading microorganisms isolated from degraded bamboo slips. Black liquor treatment was assessed in terms of chemical oxygen demand (COD) and color removal with a sequencing batch reactor organic loading rate of 9 kg COD/L·day under highly alkaline conditions (pH 10). Results revealed that bioaugmented activated sludge treatment of BL with special mixed microorganisms significantly enhanced the removal efficiency of COD, color, and lignin from the wastewater up to 64.8, 50.5, and 53.2 %, respectively. Gel permeation chromatography profiles showed that the bioaugmentation system could successfully degrade high molecular lignin fragments in black liquor. This work confirms bioaugmentation as a feasible alternative strategy for enhanced biological treatment of wastewater with high lignin content and high organic load rate under strongly alkaline conditions.

  20. Efficient recovery of carbon, nitrogen, and phosphorus from waste activated sludge.

    PubMed

    Chen, Yinguang; Zheng, Xiong; Feng, Leiyu; Yang, Hong

    2013-01-01

    Carbon, nitrogen, and phosphorus need to be recovered to reduce the environmental impact of waste activated sludge (WAS). In this study the improved short-chain fatty acid (SCFA) production from WAS by the addition of kitchen waste to adjust the ratio of carbon to nitrogen (C/N), and the efficient recovery of nitrogen and phosphorus from the fermentation liquid were reported. Firstly, the optimum conditions for SCFA production were found to be pH 8, temperature 35 °C, C/N ratio 21 mg-C/1 mg-N, and fermentation time 6 d, using the response surface methodology. After alkaline fermentation, the struvite precipitation method was applied to efficiently and simultaneously recover the released ammonia and phosphorus from the fermentation liquid. Finally, the fermentation liquid was used as the additional carbon source for biological nitrogen and phosphorus removal. It was observed that, compared with acetic acid, the use of fermentation liquid as carbon source showed greater removal efficiencies of total nitrogen and total phosphorus.

  1. Overview of current biological and thermo-chemical treatment technologies for sustainable sludge management.

    PubMed

    Zhang, Linghong; Xu, Chunbao Charles; Champagne, Pascale; Mabee, Warren

    2014-07-01

    Sludge is a semi-solid residue produced from wastewater treatment processes. It contains biodegradable and recalcitrant organic compounds, as well as pathogens, heavy metals, and other inorganic constituents. Sludge can also be considered a source of nutrients and energy, which could be recovered using economically viable approaches. In the present paper, several commonly used sludge treatment processes including land application, composting, landfilling, anaerobic digestion, and combustion are reviewed, along with their potentials for energy and product recovery. In addition, some innovative thermo-chemical techniques in pyrolysis, gasification, liquefaction, and wet oxidation are briefly introduced. Finally, a brief summary of selected published works on the life cycle assessment of a variety of sludge treatment and end-use scenarios is presented in order to better understand the overall energy balance and environmental burdens associated with each sludge treatment pathway. In all scenarios investigated, the reuse of bioenergy and by-products has been shown to be of crucial importance in enhancing the overall energy efficiency and reducing the carbon footprint.

  2. Effect of Sludge Type on Enhanced Biological Phosphorus Removal in Sequencing Batch Reactors

    NASA Astrophysics Data System (ADS)

    Li, Xing; Gao, Dawen; Zhang, Baihui

    2010-11-01

    Aerobic granulation technology has become a novel biotechnology for wastewater treatment. However, the study of distinct properties and characteristics of phosphorus removal between granules and flocculent sludge are still sparse in EBPR. Two SBRs were concurrently operated to investigate the different phosphorus removal characteristics between granules (R1) and flocculate sludge (R2). Results indicated that R2 had a faster progress for enriching phosphorus-accumulating organisms compared with R1, and the phosphorus removal reached the steady state after 40 days in R1 but only 30 days in R2. The moisture content of granules (85.63%) was smaller than that (91.36%) in R2, and the granules had a higher removal efficiency of NH4+-N. However, flocculent sludge could release and take up more phosphorus. The special phosphorus release rate (SPRR) and special phosphorus uptake rate (SPUR) were 8.818 mg/gVSSṡh and 9.921 mg/gVSSṡh in R2 which were consistently larger than that (0.999 mg/gVSSṡh and 0.754 mg/gVSSṡh) in R1. The results of DGGE of PCR-amplified 16SrDNA fragments revealed that the diversity and the amount of phosphorus accumulating microbial of bacteria in flocculent sludge were much more than that in the granules. It can be concluded that the flocculent sludge showed a better phosphorus removal.

  3. Deflocculation of Activated Sludge by the Dissimilatory Fe(III)-Reducing Bacterium Shewanella alga BrY

    PubMed Central

    Caccavo, F.; Frolund, B.; Van Ommen, Kloeke F.; Nielsen, P. H.

    1996-01-01

    The influence of microbial Fe(III) reduction on the deflocculation of autoclaved activated sludge was investigated. Fe(III) flocculated activated sludge better than Fe(II). Decreasing concentrations of Fe(III) caused an increase in sludge bulk water turbidity, while bulk water turbidity remained relatively constant over a range of Fe(II) concentrations. Cells of the dissimilatory metal-reducing bacterium Shewanella alga BrY coupled the oxidation of H(inf2) to the reduction of Fe(III) bound in sludge flocs. Cell adhesion to the Fe(III)-sludge flocs was a prerequisite for Fe(III) reduction. The reduction of Fe(III) in sludge flocs by strain BrY caused an increase in bulk water turbidity, suggesting that the sludge was deflocculated. The results of this study support previous research suggesting that microbial Fe(III) respiration may have an impact on the floc structure and colloidal chemistry of activated sludge. PMID:16535299

  4. Correlation of wood-based components and dewatering properties of waste activated sludge from pulp and paper industry.

    PubMed

    Kyllönen, H; Lehto, J; Pirkonen, P; Grönroos, A; Pakkanen, H; Alén, R

    2010-01-01

    Large amounts of wet sludge are produced annually in municipal and industrial wastewater treatment. Already in pulp and paper industry, more than ten million tons of primary sludge, waste activated sludge, and de-inking sludge is generated. Waste activated sludge contains large quantities of bound water, which is difficult to dewater. Low water content would be a matter of high calorific value in incineration but it also has effects on the volume and the quality of the matter to be handled in sludge disposal. In this research waste activated sludges from different pulp and paper mills were chemically characterised and dewatered. Correlations of chemical composition and dewatering properties were determined using multivariate analysis. Chemical characterisation included basic sludge analysis, elementary analysis and analysis of wood-based components, such as hemicelluloses and lignin-derived material. Dewatering properties were determined using measurements of dry solids content, flux and flocculant dosage. The effects of different variables varied according to the response concerned. The variables which were significant regarding cake DS increase in filtration or centrifugation and flocculant dosage needed in filtration were different from those which were significant regarding flux.

  5. Bacteriophages of wastewater foaming-associated filamentous Gordonia reduce host levels in raw activated sludge.

    PubMed

    Liu, Mei; Gill, Jason J; Young, Ry; Summer, Elizabeth J

    2015-09-09

    Filamentous bacteria are a normal and necessary component of the activated sludge wastewater treatment process, but the overgrowth of filamentous bacteria results in foaming and bulking associated disruptions. Bacteriophages, or phages, were investigated for their potential to reduce the titer of foaming bacteria in a mixed-microbial activated sludge matrix. Foaming-associated filamentous bacteria were isolated from activated sludge of a commercial wastewater treatment plan and identified as Gordonia species by 16S rDNA sequencing. Four representative phages were isolated that target G. malaquae and two un-named Gordonia species isolates. Electron microscopy revealed the phages to be siphophages with long tails. Three of the phages--GordTnk2, Gmala1, and GordDuk1--had very similar ~76 kb genomes, with >93% DNA identity. These genomes shared limited synteny with Rhodococcus equi phage ReqiDocB7 and Gordonia phage GTE7. In contrast, the genome of phage Gsput1 was smaller (43 kb) and was not similar enough to any known phage to be placed within an established phage type. Application of these four phages at MOIs of 5-15 significantly reduced Gordonia host levels in a wastewater sludge model by approximately 10-fold as compared to non-phage treated reactors. Phage control was observed for nine days after treatment.

  6. Bacteriophages of wastewater foaming-associated filamentous Gordonia reduce host levels in raw activated sludge

    PubMed Central

    Liu, Mei; Gill, Jason J.; Young, Ry; Summer, Elizabeth J.

    2015-01-01

    Filamentous bacteria are a normal and necessary component of the activated sludge wastewater treatment process, but the overgrowth of filamentous bacteria results in foaming and bulking associated disruptions. Bacteriophages, or phages, were investigated for their potential to reduce the titer of foaming bacteria in a mixed-microbial activated sludge matrix. Foaming-associated filamentous bacteria were isolated from activated sludge of a commercial wastewater treatment plan and identified as Gordonia species by 16S rDNA sequencing. Four representative phages were isolated that target G. malaquae and two un-named Gordonia species isolates. Electron microscopy revealed the phages to be siphophages with long tails. Three of the phages - GordTnk2, Gmala1, and GordDuk1 - had very similar ~76 kb genomes, with >93% DNA identity. These genomes shared limited synteny with Rhodococcus equi phage ReqiDocB7 and Gordonia phage GTE7. In contrast, the genome of phage Gsput1 was smaller (43 kb) and was not similar enough to any known phage to be placed within an established phage type. Application of these four phages at MOIs of 5–15 significantly reduced Gordonia host levels in a wastewater sludge model by approximately 10-fold as compared to non-phage treated reactors. Phage control was observed for nine days after treatment. PMID:26349678

  7. Entomotoxicity, protease and chitinase activity of Bacillus thuringiensis fermented wastewater sludge with a high solids content.

    PubMed

    Brar, Satinder K; Verma, M; Tyagi, R D; Valéro, J R; Surampalli, R Y

    2009-10-01

    This study investigated the production of biopesticides, protease and chitinase activity by Bacillus thuringiensis grown in raw wastewater sludge at high solids concentration (30 g/L). The rheology of wastewater sludge was modified with addition of Tween-80 (0.2% v/v). This addition resulted in 1.6 and 1.3-fold increase in cell and spore count, respectively. The maximum specific growth rate (micro(max)) augmented from 0.17 to 0.22 h(-1) and entomotoxicity (Tx) increased by 29.7%. Meanwhile, volumetric mass transfer coefficient (k(L)a) showed marked variations during fermentation, and oxygen uptake rate (OUR) increased 2-fold. The proteolytic activity increased while chitinase decreased for Tween amended wastewater sludge, but the entomotoxicity increased. The specific entomotoxicity followed power law when plotted against spore concentration and the relation between Tx and protease activity was linear. The viscosity varied and volume percent of particles increased in Tween-80 amended wastewater sludge and particle size (D(50)) decreased at the end of fermentation. Thus, there was an increase in entomotoxicity at higher suspended solids (30 g/L) as Tween addition improved rheology (viscosity, particle size, surface tension); enhanced maximum growth rate and OUR.

  8. [Influence of biological activated carbon dosage on landfill leachate treatment].

    PubMed

    Cui, Yan-Rui; Guo, Yan; Wu, Qing

    2014-08-01

    Effects of biological activated carbon (BAC) dosage on COD removal in landfill leachate treatment were compared. The COD removal efficiency of reactors with 0, 100 and 300 g activated carbon dosage per litre activated sludge was 12.9%, 19.6% and 27.7%, respectively. The results indicated that BAC improved the refractory organic matter removal efficiency and there was a positive correlation between COD removal efficiency and BAC dosage. The output of carbon dioxide after 8h of aeration in reactors was 109, 193 and 306 mg corresponding to the activated carbon dosages mentioned above, which indicated the amount of biodegradation and BAC dosage also had a positive correlation. The combination of adsorption and bioregeneration of BAC resulted in the positive correlation betweem organic matter removal efficiency and BAC dosage, and bioregeneration was the root cause for the microbial decomposition of refractory organics.

  9. Sono-thermal pre-treatment of waste activated sludge before anaerobic digestion.

    PubMed

    Şahinkaya, Serkan; Sevimli, Mehmet Faik

    2013-01-01

    Sonication and thermalization can be applied successfully to disrupt the complex waste activated sludge (WAS) floc structure and to release extra and intra cellular polymeric substances into soluble phase along with solubilization of particulate organic matters, before sludge digestion. In this study, sonication has been combined with thermalization to improve its disintegration efficiency. It was aimed that rise in temperature occurring during the sonication of sludge was used to be as an advantage for the following thermalization in the combined pre-treatment. Thus, the effects of sonication, thermalization and sono-thermalization on physical and chemical properties of sludge were investigated separately under different pre-treatment conditions. The disintegration efficiencies of these methods were in the following descending order: sono-thermalization > sonication > thermalization. The optimum operating conditions for sono-thermalization were determined as the combination of 1-min sonication at 1.0 W/mL and thermalization at 80 °C for 1h. The influences of sludge pre-treatment on biodegradability of WAS were experienced with biochemical methane potential assay in batch anaerobic reactors. Relative to the control reactor, total methane production in the sono-thermalized reactor increased by 13.6% and it was more than the sum of relative increases achieved in the sonicated and thermalized reactors. Besides, the volatile solids and total chemical oxygen demand reductions in the sono-thermalized reactor were enhanced as well. However, it was determined that sludge pre-treatment techniques applied in this study was not feasible due to their high energy requirements.

  10. Biological and ecophysiological reactions of white wall rocket (Diplotaxis erucoides L.) grown on sewage sludge compost.

    PubMed

    Korboulewsky, Nathalie; Bonin, Gilles; Massiani, Catherine

    2002-01-01

    We studied the effects of sewage sludge compost on white wall rocket (Diplotaxis erucoides L.) compared with mineral fertilization and control (without any fertilizer) in a greenhouse experiment. The plants grown on the compost-amended soil showed a different growth dynamic: a significant delay in flowering and a bigger root system. Both the compost and the fertilization treatments increased biomass and seed yield. Heavy metal (Cu, Cd, Zn, Ni) distribution within the plant was in the following order: roots > leaves > stems, except for zinc which was homogeneously distributed. The balance of mineral nutrition was not affected by treatments. Zinc was the trace element which was most taken up. Unlike many species of Brassicaceae, white wall rocket is not a hyperaccumulator. Although sewage sludge compost improved plant growth, delay in flowering shows that it is necessary to take precautions when spreading sewage sludge in natural areas.

  11. Anaerobic stabilization of waste activated sludge at different temperatures and solid retention times: Evaluation by sludge reduction, soluble chemical oxygen demand release and dehydration capability.

    PubMed

    Li, Xiyao; Peng, Yongzhen; He, Yuelan; Wang, Shuying; Guo, Siyu; Li, Lukai

    2017-03-01

    Anaerobic treatment is the most widely used method of waste activated sludge (WAS) stabilization. Using a semi-continuous stirring tank with condensed WAS, we investigated effects of decreasing the solid retention time (SRT) from 32days to 6.4days on sludge reduction, soluble chemical oxygen demand (SCOD) release and dehydration capability, along with anaerobic digestion operated at medium temperature (MT-AD) or anaerobic digestion operated at room temperature (RT-AD). Results showed that effects of temperature on SCOD release were greater at SRT of 32d and 6.4d. When SRT was less than 8d, total solids (TS), volatile solids (VS) and capillary suction time (CST) did not change significantly. CST was lowest at SRT of 10.7days, indicating best condition for sludge dehydration. Principal component analysis (PCA) showed that the most optimum SRT was higher than 10.7d both in MT-AD or RT-AD.

  12. Environmental and resource implications of phosphorus recovery from waste activated sludge.

    PubMed

    Sørensen, Birgitte Lilholt; Dall, Ole Leinikka; Habib, Komal

    2015-11-01

    Phosphorus is an essential mineral resource for the growth of crops and thus necessary to feed the ever increasing global population. The essentiality and irreplaceability of phosphorus in food production has raised the concerns regarding the long-term phosphorus availability and the resulting food supply issues in the future. Hence, the recovery of phosphorus from waste activated sludge and other waste streams is getting huge attention as a viable solution to tackle the potential availability issues of phosphorus in the future. This study explores the environmental implications of phosphorus recovery from waste activated sludge in Denmark and further elaborates on the potential availability or scarcity issue of phosphorus today and 2050. Life cycle assessment is used to assess the possibility of phosphorus recovery with little or no environmental impacts compared to the conventional mining. The phosphorus recovery method assessed in this study consists of drying process, and thermal gasification of the waste activated sludge followed by extraction of phosphorus from the ashes. Our results indicate that the environmental impacts of phosphorus recovery in an energy efficient process are comparable to the environmental effects from the re-use of waste activated sludge applied directly on farmland. Moreover, our findings conclude that the general recommendation according to the waste hierarchy, where re-use of the waste sludge on farmland is preferable to material and energy recovery, is wrong in this case. Especially when phosphorus is a critical resource due to its life threatening necessity, lack of substitution options and potential future supply risk originating due to the high level of global supply concentration.

  13. pH-dependent biotransformation of ionizable organic micropollutants in activated sludge.

    PubMed

    Gulde, Rebekka; Helbling, Damian E; Scheidegger, Andreas; Fenner, Kathrin

    2014-12-02

    Removal of micropollutants (MPs) during activated sludge treatment can mainly be attributed to biotransformation and sorption to sludge flocs, whereby the latter process is known to be of minor importance for polar organic micropollutants. In this work, we investigated the influence of pH on the biotransformation of MPs with cationic-neutral speciation in an activated sludge microbial community. We performed batch biotransformation, sorption control, and abiotic control experiments for 15 MPs with cationic-neutral speciation, one control MP with neutral-anionic speciation, and two neutral MPs at pHs 6, 7, and 8. Biotransformation rate constants corrected for sorption and abiotic processes were estimated from measured concentration time series with Bayesian inference. We found that biotransformation is pH-dependent and correlates qualitatively with the neutral fraction of the ionizable MPs. However, a simple speciation model based on the assumption that only the neutral species is efficiently taken up and biotransformed by the cells tends to overpredict the effect of speciation. Therefore, additional mechanisms such as uptake of the ionic species and other more complex attenutation mechanisms are discussed. Finally, we observed that the sorption coefficients derived from our control experiments were small and showed no notable pH-dependence. From this we conclude that pH-dependent removal of polar, ionizable organic MPs in activated sludge systems is less likely an effect of pH-dependent sorption but rather of pH-dependent biotransformation. The latter has the potential to cause marked differences in the removal of polar, ionizable MPs at different operational pHs during activated sludge treatment.

  14. Effects of long term irrigation with polluted water and sludge amendment on some soil enzyme activities

    SciTech Connect

    Topac, F.O.; Baskaya, H.S.; Alkan, U.; Katkat, A.V.

    2008-01-15

    The objective of this study was to determine the effects of wastewater sludge-fly ash mixtures on urease, dehydrogenase, alkaline phosphatase and beta-glucosidase activities in soils. In order to evaluate the probable effects of previous soil management practices (irrigation with polluted water) on soil enzymes, two different soil samples which were similar in physical properties, but different in irrigation practice were used. The application of wastewater sludges supplemented with varying doses of fly ash increased potential enzyme activities for a short period of time (3 months) in comparison to unamended soils. However, the activity levels generally showed a decreasing trend with increasing ash ratios indicating the inhibitory effect of fly ash. The urease and dehydrogenase activities were particularly lower in soils irrigated from a polluted stream, indicating the negative effects of the previous soil management on soil microbial activity.

  15. Long-term effect of ZnO nanoparticles on waste activated sludge anaerobic digestion.

    PubMed

    Mu, Hui; Chen, Yinguang

    2011-11-01

    The increasing use of zinc oxide nanoparticles (ZnO NPs) raises concerns about their environmental impacts, but the potential effect of ZnO NPs on sludge anaerobic digestion remains unknown. In this paper, long-term exposure experiments were carried out to investigate the influence of ZnO NPs on methane production during waste activated sludge (WAS) anaerobic digestion. The presence of 1 mg/g-TSS of ZnO NPs did not affect methane production, but 30 and 150 mg/g-TSS of ZnO NPs induced 18.3% and 75.1% of inhibition respectively, which showed that the impact of ZnO NPs on methane production was dosage dependant. Then, the mechanisms of ZnO NPs affecting sludge anaerobic digestion were investigated. It was found that the toxic effect of ZnO NPs on methane production was mainly due to the release of Zn(2+) from ZnO NPs, which may cause the inhibitory effects on the hydrolysis and methanation steps of sludge anaerobic digestion. Further investigations with enzyme and fluorescence in situ hybridization (FISH) assays indicated that higher concentration of ZnO NPs decreased the activities of protease and coenzyme F(420), and the abundance of methanogenesis Archaea.

  16. Activated sludge systems removal efficiency of veterinary pharmaceuticals from slaughterhouse wastewater.

    PubMed

    Carvalho, Pedro N; Pirra, António; Basto, M Clara P; Almeida, C Marisa R

    2013-12-01

    The knowledge on the efficiency of wastewater treatment plants (WWTPs) from animal food production industry for the removal of both hormones and antibiotics of veterinary application is still very limited. These compounds have already been reported in different environmental compartments at levels that could have potential impacts on the ecosystems. This work aimed to evaluate the role of activated sludge in the removal of commonly used veterinary drugs, enrofloxacin (ENR), tetracycline (TET), and ceftiofur, from wastewater during a conventional treatment process. For that, a series of laboratory-controlled experiments using activated sludge were carried out in batch reactors. Sludge reactors with 100 μg/L initial drug charge presented removal rates of 68 % for ENR and 77 % for TET from the aqueous phase. Results indicated that sorption to sludge and to the wastewater organic matter was responsible for a significant percentage of drugs removal. Nevertheless, these removal rates still result in considerable concentrations in the aqueous phase that will pass through the WWTP to the receiving environment. Measuring only the dissolved fraction of pharmaceuticals in the WWTP effluents may underestimate the loading and risks to the aquatic environment.

  17. The occurrence of intestinal parasites in swine slurry and their removal in activated sludge plants.

    PubMed

    Reinoso, Roberto; Becares, Eloy

    2008-09-01

    Thirteen intensive pig farms and two activated sludge treatment plants for pig slurry in north-western Spain were studied from April 2005 to June 2006 in order to evaluate the presence of enteric pathogens (Cryptosporidium, Giardia and helminths) and the efficiency with which they were removed. These parasites were present on 53%, 7% and 38% of the farms studied, respectively, with concentrations of 10(4)-10(5) oocysts per litre (/L) for Cryptosporidium, 10(3)cysts/L for Giardia and 10(2)-10(3) eggs/L for helminths. The overall removal of parasites in the pig slurry treatment plants ranged from 86.7% to over 99.99%. The results revealed a constant reduction at each stage of the treatment system, with activated sludge processes being the most effective treatment in reducing pathogens in pig slurry, 78-81% for Cryptosporidium oocysts and over 99.9% for helminth eggs. A heat drying procedure for sludge removed 4.3 log units of Cryptosporidium oocysts, demonstrating the excellent effectiveness of this treatment for reducing pathogens in sludge intended to be applied to land.

  18. Effectiveness of phosphate removal during anaerobic digestion of waste activated sludge by dosing iron(III).

    PubMed

    Cheng, Xiang; Wang, Jue; Chen, Bing; Wang, Yu; Liu, Jiaqi; Liu, Lubo

    2017-05-15

    Phosphate-Fe(II) precipitation induced by Fe(III) reduction during the anaerobic digestion of excess activated sludge was investigated for the removal of phosphorus and its possible recovery. The experiments were conducted with three Fe(III) sources at 35 °C and 55 °C. The results show that ferrihydrite-Fe(III) was effectively reduced during the anaerobic sludge digestion by 63% and 96% under mesophilic and thermophilic conditions, respectively. Whereas FeCl3-Fe(III) was only mesophilically reducible and the reduction of hematite-Fe(III) was unnoticeable at either temperature. Efficient precipitation of vivianite was not observed although high saturation index values, e.g., >14 (activity reduction not considered), had been reached. This reveals the complexity of vivianite precipitation in anaerobic digestion systems; for example, Fe(II) complexation and organic interference could not be ignored. With ferrihydrite amendments at a Fe/TP of 1.5, methane production from sludge digestion was reduced by 35.1% at 35 °C, and was unaffected when the digestion temperature went up to 55 °C. But, acidic FeCl3 severely inhibited the methane production and consequently the sludge biomass degradation.

  19. The effect of alternating influent carbon source composition on activated sludge bioflocculation.

    PubMed

    Van Dierdonck, J; Van den Broeck, R; Vervoort, E; Van Impe, J; Smets, I

    2013-09-10

    The impact of alternating influent carbon sources, i.e., glucose and starch, on activated sludge bioflocculation was investigated. To this end, four lab-scale reactors were operated during a long-term experiment. During this period the influent carbon source ratio (glucose/starch) was alternated every 7 or 35 days (i.e., a fast and slow switching frequency). Bioflocculation was monitored throughout the entire experiment using an extensive set of parameters, including macroscopic and microscopic activated sludge characteristics. Sludge hydrophobicity remained high (>80%) throughout the experiment indicating good bioflocculation. However, sludge settleability decreased for all four reactors after a 60 day adaptation period to the applied alternation in influent carbon source. During this adaptation period, floc size decreased due to the release of microcolonies. The subsequent period was characterized by a decrease in settleability, coinciding with a release of primary particles and an increase in floc size. The observed phenomena could be linked with the protein concentration near the floc surface. This fraction mainly consists of hydrolytic enzymes necessary for the degradation of starch and is responsible for a progressive deterioration of the EPS matrix. The results of this specific study indicate to be independent of the influent carbon source ratio or switching frequency.

  20. Toxicity of ammonia nitrogen to ciliated protozoa Stentor coeruleus and Coleps hirtus isolated from activated sludge of wastewater treatment plants.

    PubMed

    Klimek, Beata; Fyda, Janusz; Pajdak-Stós, Agnieszka; Kocerba, Wioleta; Fiałkowska, Edyta; Sobczyk, Mateusz

    2012-11-01

    We assessed the toxicity of ammonia ions to Stentor coeruleus and Coleps hirtus (Protozoa) isolated from activated sludge taken from two municipal wastewater treatment plants in southern Poland. Stentor coeruleus is a rarely occurring species in activated sludge, unlike the widespread Coleps hirtus. The mean LC50 values (concentration causing 50 % mortality) calculated for the 24 h tests differed hugely between the tested species: 43.03 mg NH(4+) dm(-3) for Stentor coeruleus and 441.12 mg NH(4+) dm(-3) for Coleps hirtus. The ammonia ion concentration apparently is an important factor in the occurrence of these protozoan species in activated sludge.

  1. Modeling a bench-scale alternating aerobic/anoxic activated sludge system for nitrogen removal using a modified ASM1.

    PubMed

    Kim, Hyunook; Noh, Soohong; Colosimo, Mark

    2009-07-01

    The Activated Sludge Model No. 1 (ASM1), developed by The International Association of Water Pollution Research and Control, was applied to model dynamics of NH4+, and NO3- in a bench scale alternating aerobic-anoxic (AAA) activated sludge system for nitrogen removal. The model was modified by eliminating inert soluble COD (S(I)) and inert particulate COD (X(I)) from the model's state variables as these two variables are not involved in any biological reaction and are not readily measurable with conventional routine COD analysis. It was assumed that the soluble COD and particulate COD of wastewater represent readily biodegradable COD (S(S)) and slowly biodegradable (X(S)) in the model, respectively. In addition, alkalinity was also removed from the model, since alkalinity of an AAA system remains stable due to the cyclic modes of the system. Even with the elimination of the three state variables and the assumption made, the model could reasonably predict the NH4+ and NO3- dynamics of the AAA system, and effluent NH4+ and NO3- concentrations with adjustment of only a few kinetic parameters. Compared to the original ASM1, it is expected that the modified ASM1 presented in this study can be more easily utilized by engineers in designing or operating an AAA system in practice, since it requires simple characterization of wastewater COD.

  2. Can activated sludge treatments and advanced oxidation processes remove organophosphorus flame retardants?

    PubMed

    Cristale, Joyce; Ramos, Dayana D; Dantas, Renato F; Machulek Junior, Amilcar; Lacorte, Silvia; Sans, Carme; Esplugas, Santiago

    2016-01-01

    This study aims to determine the occurrence of 10 OPFRs (including chlorinated, nonchlorinated alkyl and aryl compounds) in influent, effluent wastewaters and partitioning into sludge of 5 wastewater treatment plants (WWTP) in Catalonia (Spain). All target OPFRs were detected in the WWTPs influents, and the total concentration ranged from 3.67 µg L(-1) to 150 µg L(-1). During activated sludge treatment, most OPFRs were accumulated in the sludge at concentrations from 35.3 to 9980 ng g(-1) dw. Chlorinated compounds tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl) phosphate (TCIPP) and tris(2,3-dichloropropyl) phosphate (TDCPP) were not removed by the conventional activated sludge treatment and they were released by the effluents at approximately the same inlet concentration. On the contrary, aryl compounds tris(methylphenyl) phosphate (TMPP) and 2-ethylhexyl diphenyl phosphate (EHDP) together with alkyl tris(2-ethylhexyl) phosphate (TEHP) were not detected in any of the effluents. Advanced oxidation processes (UV/H2O2 and O3) were applied to investigate the degradability of recalcitrant OPFRs in WWTP effluents. Those detected in the effluent sample (TCEP, TCIPP, TDCPP, tributyl phosphate (TNBP), tri-iso-butyl phosphate (TIBP) and tris(2-butoxyethyl) phosphate (TBOEP)) had very low direct UV-C photolysis rates. TBOEP, TNBP and TIBP were degraded by UV/H2O2 and O3. Chlorinated compounds TCEP, TDCPP and TCIPP were the most recalcitrant OPFR to the advanced oxidation processes applied. The study provides information on the partitioning and degradability pathways of OPFR within conventional activated sludge WWTPs.

  3. Effects of heavy metal and other elemental additives to activated sludge on growth of Eisenia foetida

    SciTech Connect

    Hartenstein, R.; Neuhauser, E.F.; Narahara, A.

    1981-09-01

    The approximate level at which added concentrations of certain elements would cause an activated sludge to induce a toxic effect upon the growth of Eisenia foetida was determined. During 43 trials on sludge samples obtained throughout 1 year of study, earthworms grew from 3 to 10 mg live wt at hatching to 792 mg +- 18% (mean +- C.V.) in 8 weeks, when sludge was 24/sup 0/C and contained no additives. None of several elements commonly used in microbial growth media enhanced the growth rate of the earthworm. At salt concentrations up to about 6.6% on a dry wt basis, none of six anions tested was in and of itself toxic, while five of 15 cations - Co, Hg, Cu, Ni, and Cd - appeared specifically to inhibit growth rate or cause death. Manganese, Cr, and Pb were innocuous even at the highest levels of application - 22,000, 46,000, and 52,000 mg/kg, respectively. Neither the anionic nor cationic component of certain salts, such as NaCl or NH/sub 4/Cl, could be said to inhibit growth, which occurred only at high concentrations of these salts (about 3.3 and/or 6.6%). Below 7 mmho/cm, toxicity could not be correlated with electrolytic conductance, though higher values may help to explain the nonspecific growth inhibitory effects of salts like NaCl and KCl. Nor could toxicity ever be ascribed to hydrogen ion activity, since sludge pH was not altered even at the highest salt dose. It is concluded that except under very extreme conditions, the levels of heavy metals and salts generally found in activated sludges will not have an adverse affect on the growth of E. foetida.

  4. Characterization of activated sludge exocellular polymers using several cation-associated extraction methods.

    PubMed

    Park, Chul; Novak, John T

    2007-04-01

    Evaluation of prior research and preliminary investigations in our laboratory led to the development of an extraction strategy that can be used to target different cations in activated sludge floc and extract their associated extracellular polymeric substances (EPS). The methods we used were the cation exchange resin (CER) procedure, base extraction, and sulfide addition to extract EPS linked with divalent cations, Al, and Fe, respectively. A comparison of sludge cations before and after CER extraction revealed that most of Ca(2+) and Mg(2+) were removed while Fe and Al remained intact, suggesting that this method is highly selective for Ca(2+) and Mg(2+)-bound EPS. The correlation between sludge Fe and sulfide-extracted EPS was indicative of selectivity of this method for Fe-bound EPS. The base extraction was less specific than the other methods but it was the method releasing the largest amount of Al into the extract, indicating that the method extracted Al-bound EPS. Concomitantly, the composition of extracted EPS and the amino acid composition differed for the three methods, indicating that EPS associated with different metals were not the same. The change in EPS following anaerobic and aerobic digestion was also characterized by the three extraction methods. CER-extracted EPS were reduced after aerobic digestion while they changed little by anaerobic digestion. On the other hand, anaerobic digestion was associated with the decrease in sulfide-extracted EPS. These results suggest that different types of cation-EPS binding mechanisms exist in activated sludge and that each cation-associated EPS fraction imparts unique digestion characteristics to activated sludge.

  5. Ubiquity of activated sludge ferricyanide-mediated BOD methods: a comparison of sludge seeds across wastewater treatment plants.

    PubMed

    Jordan, Mark A; Welsh, David T; Teasdale, Peter R

    2014-07-01

    Many studies have described alternatives to the BOD5 standard method, with substantial decreases in incubation time observed. However, most of these have not maintained the features that make the BOD5 assay so relevant - a high level of substrate bio-oxidation and use of wastewater treatment plant (WWTP) sludge as the biocatalyst. Two recently described ferricyanide-mediated (FM)-BOD assays, one for trade wastes and one for WWTP influents and treated effluents, satisfy these criteria and were investigated further here for their suitability for use with diverse biocatalysts. Both FM-BOD assays responded proportionately to increasing substrate concentration with sludges from 11 different WWTPs and temporally (months to years) using sludges from a single WWTP, confirming the broad applicability of both assays. Sludges from four WWTPs were selected as biocatalysts for each FM-BOD assay to compare FM-BOD equivalent values with BOD5 (three different sludge seeds) measurements for 12 real wastewater samples (six per assay). Strong and significant relationships were established for both FM-BOD assays. This study has demonstrated that sludge sourced from many WWTPs may be used as the biocatalyst in either FM-BOD assay, as it is in the BOD5 assay. The industry potential of these findings is substantial given the widespread use of the BOD5 assay, the dramatically decreased incubation period (3-6h) and the superior analytical range of both assays compared to the standard BOD5 assay.

  6. Addition of Al and Fe salts during treatment of paper mill effluents to improve activated sludge settlement characteristics.

    PubMed

    Agridiotis, V; Forster, C F; Carliell-Marquet, C

    2007-11-01

    Metal salts, ferrous sulphate and aluminium chloride, were added to laboratory-scale activated sludge plant treating paper mill effluents to investigate the effect on settlement characteristics. Before treatment the sludge was filamentous, had stirred sludge volume index (SSVI) values in excess of 300 and was moderately hydrophobic. The use of FeSO4.7H2O took three weeks to reduce the SSVI to 90. Microscopic examination showed that Fe had converted the filamentous flocs into a compact structure. When the iron dosing was stopped, the sludge returned to its bulking state within four weeks. In a subsequent trial, the addition of AlCl3 initially resulted in an improvement of the settlement index but then caused deterioration of the sludge properties. It is possible that aluminium was overdosed and caused charge reversal, increasing the SSVI.

  7. Enhancement of waste activated sludge dewaterability using calcium peroxide pre-oxidation and chemical re-flocculation.

    PubMed

    Chen, Zhan; Zhang, Weijun; Wang, Dongsheng; Ma, Teng; Bai, Runying; Yu, Dezhong

    2016-10-15

    The effects of combined calcium peroxide (CaO2) oxidation with chemical re-flocculation on dewatering performance and physicochemical properties of waste activated sludge was investigated in this study. The evolutions of extracellular polymeric substances (EPS) distribution, composition and morphological properties were analyzed to unravel the sludge conditioning mechanism. It was found that sludge filtration performance was enhanced by calcium peroxide oxidation with the optimal dosage of 20 mg/gTSS. However, this enhancement was not observed at lower dosages due to the absence of oxidation and the performance deteriorated at higher dosages because of the release of excess EPS, mainly as protein-like substances. The variation in soluble EPS (SEPS) component can be fitted well with pseudo-zero-order kinetic model under CaO2 treatment. At the same time, extractable EPS content (SEPS and loosely bound EPS (LB-EPS)) were dramatically increased, indicating sludge flocs were effectively broken and their structure became looser after CaO2 addition. The sludge floc structure was reconstructed and sludge dewaterability was significantly enhanced using chemical re-flocculation (polyaluminium chloride (PACl), ferric iron (FeCl3) and polyacrylamide (PAM)). The inorganic coagulants performed better in improving sludge filtration dewatering performance and reducing cake moisture content than organic polymer, since they could act as skeleton builders and decrease the sludge compressibility.

  8. Treatment of swine wastewater using chemically modified zeolite and bioflocculant from activated sludge.

    PubMed

    Guo, Junyuan; Yang, Chunping; Zeng, Guangming

    2013-09-01

    Sterilization, alkaline-thermal and acid-thermal treatments were applied to activated sludge and the pre-treated sludge was used as raw material for Rhodococcus R3 to produce polymeric substances. After 60 h of fermentation, bioflocculant of 2.7 and 4.2 g L(-1) were produced in sterilized and alkaline-thermal treated sludge as compared to that of 0.9 g L(-1) in acid-thermal treated sludge. Response surface methodology (RSM) was employed to optimize the treatment process of swine wastewater using the composite of bioflocculant and zeolite modified by calcining with MgO. The optimal flocculating conditions were bioflocculant of 24 mg L(-1), modified zeolite of 12 g L(-1), CaCl2 of 16 mg L(-1), pH of 8.3 and contact time of 55 min, and the corresponding removal rates of COD, ammonium and turbidity were 87.9%, 86.9%, and 94.8%. The use of the composite by RSM provides a feasible way to improve the pollutant removal efficiencies and recycle high-level of ammonium from wastewater.

  9. Digestion and dewatering characteristics of waste activated sludge treated by an anaerobic biofilm system.

    PubMed

    Wang, Tianfeng; Shao, Liming; Li, Tianshui; Lü, Fan; He, Pinjing

    2014-02-01

    Immobilization of microorganisms for sludge anaerobic digestion was investigated in this study. The effects of filler properties on anaerobic digestion and dewaterability of waste activated sludge were assessed at mesophilic temperature in batch mode. The results showed that the duration of the methanogenic stage of reactors without filler, with only filler, and with pre-incubated filler was 39days, 19days and 13days, respectively, during which time the protein was degraded by 45.0%, 29.4% and 30.0%, and the corresponding methane yield was 193.9, 107.2 and 108.2mL/g volatile suspended solids added, respectively. On day 39, the final protein degradation efficiency of the three reactors was 45.0%, 40.9% and 42.0%, respectively. The results of normalized capillary suction time and specific resistance to filtration suggested that the reactor incorporating pre-incubated filler could improve the dewaterability of digested sludge, while the effect of the reactor incorporating only filler on sludge dewaterability was uncertain.

  10. Enhanced high-solids anaerobic digestion of waste activated sludge by the addition of scrap iron.

    PubMed

    Zhang, Yaobin; Feng, Yinghong; Yu, Qilin; Xu, Zibin; Quan, Xie

    2014-05-01

    Anaerobic digestion of waste activated sludge usually requires pretreatment procedure to improve the bioavailability of sludge, which involves considerable energy and high expenditures. This study proposes a cost-effective method for enhanced anaerobic digestion of sludge without a pretreatment by directly adding iron into the digester. The results showed that addition of Fe(0) powder could enhance 14.46% methane yield, and Fe scrap (clean scrap) could further enhance methane yield (improving rate 21.28%) because the scrap has better mass transfer efficiency with sludge and liquid than Fe(0) powder. The scrap of Fe with rust (rusty scrap) could induce microbial Fe(III) reduction, which resulted in achieving the highest methane yield (improving rate 29.51%), and the reduction rate of volatile suspended solids (VSS) was also highest (48.27%) among Fe powder, clean scrap and rusty scrap. PCR-DGGE proved that the addition of rusty scrap could enhance diversity of acetobacteria and enrich iron-reducing bacteria to enhance degradation of complex substrates.

  11. Hydrolysis and volatile fatty acids accumulation of waste activated sludge enhanced by the combined use of nitrite and alkaline pH.

    PubMed

    Huang, Cheng; Liu, Congcong; Sun, Xiuyun; Sun, Yinglu; Li, Rui; Li, Jiansheng; Shen, Jinyou; Han, Weiqing; Liu, Xiaodong; Wang, Lianjun

    2015-12-01

    Volatile fatty acids (VFAs) production from anaerobic digestion of waste activated sludge (WAS) is often limited by the slow hydrolysis and/or poor substrate availability. Increased attention has been given to enhance the hydrolysis and acidification of WAS recently. This study presented an efficient and green strategy based on the combined use of nitrite pretreatment and alkaline pH to stimulate hydrolysis and VFA accumulation from WAS. Results showed that both proteins and polysaccharides increased in the presence of nitrite, indicating the enhancement of sludge solubilization and hydrolysis processes. Mechanism investigations showed that nitrite pretreatment could disintegrate the sludge particle and disperse extracellular polymeric substances (EPS). Then, anaerobic digestion tests demonstrated VFA production increased with nitrite treatment. The maximal VFA accumulation was achieved with 0.1 g N/L nitrite dosage and pH 10.0 at a sludge retention time (SRT) of 7 days, which was much higher VFA production in comparison with the blank, sole nitrite pretreatment, or sole pH 10. The potential analysis suggested that the combined nitrite pretreatment and alkaline pH is capable of enhancing WAS digestion with a great benefit for biological nutrient removal (BNR).

  12. Immobilized-cell-augmented activated sludge process for treating wastewater containing hazardous compounds.

    PubMed

    Jittawattanarat, Rungrod; Kostarelos, Konstantinos; Khan, Eakalak

    2007-05-01

    A novel bioaugmentation scheme called immobilized-cell-augmented activated sludge (ICAAS) was developed. Offline enricher reactors were used to maintain immobilized acclimated cells applied to augment completely mixed activated sludge (CMAS) treating a pentachlorophenol (PCP) pulse loading. Cellulose triacetate (CA) and powder activated carbon (PAC) combined with CA (PAC + CA) were the two media types used for entrapping the PCP-degrading culture. With ICAAS at 5% by volume augmentation, PCP removal of 73.1 and 75.1% via biodegradation, volatilization, and adsorption onto suspended cells, entrapped cells, and media was achieved for the systems with CA and PAC + CA media, respectively, while PCP removal in a control CMAS, which had a comparable level of combined PCP adsorption onto suspended cells and volatilization as the ICAAS, was 48.7%. Results further showed that the immobilized cells retained their PCP-degrading ability when they were fed with the inducer (PCP) once every 20 days.

  13. Nitrous oxide from moving bed based integrated fixed film activated sludge membrane bioreactors.

    PubMed

    Mannina, Giorgio; Capodici, Marco; Cosenza, Alida; Di Trapani, Daniele; Laudicina, Vito Armando; Ødegaard, Hallvard

    2017-02-01

    The present paper reports the results of a nitrous oxide (N2O) production investigation in a moving bed based integrated fixed film activated sludge (IFAS) membrane bioreactor (MBR) pilot plant designed in accordance with the University of Cape Town layout for biological phosphorous removal. Gaseous and liquid samples were collected in order to measure the gaseous as well as the dissolved concentration of N2O. Furthermore, the gas flow rate from each reactor was measured and the gas flux was estimated. The results confirmed that the anoxic reactor represents the main source of nitrous oxide production. A significant production of N2O was, however, also found in the anaerobic reactor, thus indicating a probable occurrence of the denitrifying phosphate accumulating organism activity. The highest N2O fluxes were emitted from the aerated reactors (3.09 g N2ON m(-2) h(-1) and 9.87 g N2ON m(-2) h(-1), aerobic and MBR tank, respectively). The emission factor highlighted that only 1% of the total treated nitrogen was emitted from the pilot plant. Furthermore, the measured N2O concentrations in the permeate flow were comparable with other reactors. Nitrous oxide mass balances outlined a moderate production also in the MBR reactor despite the low hydraulic retention time. On the other hand, the mass balance showed that in the aerobic reactor a constant consumption of nitrous oxide (up to almost 15 mg N2O h(-1)) took place, due to the high amount of stripped gas.

  14. A family 13 thioesterase isolated from an activated sludge metagenome: Insights into aromatic compounds metabolism.

    PubMed

    Sánchez-Reyez, Ayixon; Batista-García, Ramón Alberto; Valdés-García, Gilberto; Ortiz, Ernesto; Perezgasga, Lucía; Zárate-Romero, Andrés; Pastor, Nina; Folch-Mallol, Jorge Luis

    2017-03-09

    Activated sludge is produced during the treatment of sewage and industrial wastewaters. Its diverse chemical composition allows growth of a large collection of microbial phylotypes with very different physiologic and metabolic profiles. Thus, activated sludge is considered as an excellent environment to discover novel enzymes through functional metagenomics, especially activities related with degradation of environmental pollutants. Metagenomic DNA was isolated and purified from an activated sludge sample. Metagenomic libraries were subsequently constructed in Escherichia coli. Using tributyrin hydrolysis, a screening by functional analysis was conducted and a clone that showed esterase activity was isolated. Blastx analysis of the sequence of the cloned DNA revealed, among others, an ORF that encodes a putative thioesterase with 47-64% identity to GenBank CDS reported genes, similar to those in the hotdog fold thioesterase superfamily. On the basis of its amino acid similarity and its homology-modelled structure we deduced that this gene encodes an enzyme (ThYest_ar) that belongs to family TE13, with a preference for aryl-CoA substrates and a novel catalytic residue constellation. Plasmid retransformation in E. coli confirmed the clone's phenotype, and functional complementation of a paaI E. coli mutant showed preference for phenylacetate over chlorobenzene as a carbon source. This work suggests a role for TE13 family thioesterases in swimming and degradation approaches for phenyl acetic acid. Proteins 2017. © 2017 Wiley Periodicals, Inc.

  15. The ScanDeNi process could turn an existing under-performing activated sludge plant into an asset.

    PubMed

    Rosén, S; Huijbregsen, C

    2003-01-01

    With tightening up of effluent discharge standards from wastewater treatment facilities, many plants are facing costly augmentations and in many cases completely new plants will have to be constructed. The ScanDeNi process was developed in Sweden for increased nitrogen removal at the Västerås Sewage Treatment Plant (STP), 125,000 p.e. near Stockholm, and can be described as a modified contact stabilisation process with pre-denitrification and a selector stage for nitrification. The STP was upgraded at a cost of some 25 Mill. SEK (2.5 Mill. USD). It has been successfully in operation since 1998, exceeding all expectations. The process is showing the following major advantages. 25-35% less volume for the same Sludge Retention Time (SRT) and secondary sedimentation sludge load, compared to conventional pre-denitrification; or a 25-35% higher load can be applied within the same volume with the same removal efficiencies. The selector mechanism appears to be not limited to the nitrifying bacteria alone. Other microorganisms appear to be responsible for the reduction of surface active matter from the return activated sludge (RAS), as well as in the reject stream from sludge dewatering, resulting in an increase in alpha-values of approximately 50%. Due to the high alpha-values less aeration is required, resulting in significant operating cost savings. 'Automatic' creation of anaerobic conditions, enabling biological phosphorus removal. Whilst rarely a concern in warmer climates, BNR plants in cold climates in winter often lose their capacity to nitrify. The Västerås STP has consistently maintained excellent effluent quality even with effluent temperatures as low as 7 degrees C, and at an SRT of some 7-9 days, proving the effectiveness of the nitrifier selector. The ScanDeNi process could offer excellent effluent discharge standards (T-N < 10 mg/L, T-P < 0.5 mg/L) in smaller tank volumes and at a significantly lower operating cost, compared to conventional pre

  16. Molecular characteristics versus biological activity

    USGS Publications Warehouse

    Applegate, Vernon C.; Smith, Manning A.; Willeford, Bennett R.

    1967-01-01

    The molecular characteristics of mononitrophenols containing halogens not only play a key role in their biological activity but provide a novel example of selective toxicity among vertebrate animals. It has been reported that efforts to control the parasitic sea lamprey in the Great Lakes are directed at present to the applications of a selective toxicant to streams inhabited by lamprey larvae. Since 1961, the larvicide that has been used almost exclusively in the control program has been 3-trifluoromethyl-4-nitrophenol (TFM). However, this is only one of about 15 closely related compounds, all halogen-containing mononitrophenols, that display a selectively toxic action upon lampreys. Although not all of the halogenated mononitrophenols are selectively toxic to lampreys (in fact, fewer than half of those tested), no other group of related compounds has displayed any useful larvicidal activity except for the substituted nitrosalicylanilides.

  17. Effects of floc aluminum on activated sludge characteristics and removal of 17-alpha-ethinylestradiol in wastewater systems.

    PubMed

    Park, Chul; Fang, Yuan; Murthy, Sudhir N; Novak, John T

    2010-03-01

    The effects of floc aluminum (Al) on activated sludge performance and 17-alpha-ethinylestradiol (EE2) removal were studied using bench-scale activated sludge systems. The results showed that higher Al-fed activated sludge led to better settling, dewatering, and effluent quality with better EE2 removal. EE2 concentrations in the effluent revealed correlations with effluent suspended solids and large particulate/colloidal effluent biopolymer (protein+polysaccharide). Furthermore, a significant correlation existed between effluent proteins and EE2 for all size fractions, indicating that hydrophobic proteinaceous colloids provide binding sites for EE2 and washout together into the effluent. These results suggest that aluminum plays a crucial role in bioflocculation of activated sludge and the efficacy of flocculation influences the removal of endocrine disrupting compounds (EDCs) from wastewater treatment systems.

  18. [Electro-flotation using in solid-liquid separation of activated sludge].

    PubMed

    Chen, Jin-Luan; Wan, Jing; Shi, Han-Chang

    2006-11-01

    The separation of suspended solids (SS) from activated sludge was carried out in an electro-flotation cell which has two sets of electrodes,three Ti/RuO2-IrO2-TiO2 anodes and three Ti screen cathodes. The effect of operating parameters on the performance of the electro-flotation system was examined. The parameters investigated were hydraulic retention time (HRT), current density, initial SS concentration and initial pH. The results show that electro-flotation cell is a unit of high performance in solid-liquid separation. HRT and current density are the main affecting factors. The removal ratio of SS increases with increment of HRT and current density; and it decreases with the increment of sludge loading. The pH value affects the size of tiny bubbles generated from water electrolysis and the character of sludge, but it has little effect on the removal of SS. The pH value is not need to be adjusted during the electro-flotation. Under the conditions with initial SS about 1 000 mg/L, HRT 20 min, a current density 5 mA/cm2 in contacting zone, a current density 2.5 mA/cm2 in separating zone, the removal ratio of SS can reach up to 97%, at this point, the electrolysis energy consumption is 0.4 - 0.5 (kW x h)/m3 wastewater. The water content of the sludge from electro-flotation is much lower than that from dissolved air flotation and secondary sedimentation tank, which has significant in the decrement and final disposal of the sludge.

  19. Filtration properties of activated sludge in municipal MBR wastewater treatment plants are related to microbial community structure.

    PubMed

    Bugge, Thomas V; Larsen, Poul; Saunders, Aaron M; Kragelund, Caroline; Wybrandt, Lisbeth; Keiding, Kristian; Christensen, Morten L; Nielsen, Per H

    2013-11-01

    In the conventional activated sludge process, a number of important parameters determining the efficiency of settling and dewatering are often linked to specific groups of bacteria in the sludge--namely floc size, residual turbidity, shear sensitivity and composition of extracellular polymeric substances (EPS). In membrane bioreactors (MBRs) the nature of solids separation at the membrane has much in common with sludge dewaterability but less is known about the effect of specific microbial groups on the sludge characteristics that affect this process. In this study, six full-scale MBR plants were investigated to identify correlations between sludge filterability, sludge characteristics, and microbial community structure. The microbial community structure was described by quantitative fluorescence in situ hybridization and sludge filterability by a low-pressure filtration method. A strong correlation between the degree of flocculation (ratio between floc size and residual turbidity) and sludge filterability at low pressure was found. A good balance between EPS and cations in the sludge correlated with good flocculation, relatively large sludge flocs, and low amounts of small particles and single cells in the bulk phase (measured as residual turbidity), all leading to a good filterability. Floc properties could also be linked to the microbial community structure. Bacterial species forming strong microcolonies such as Nitrospira and Accumulibacter were present in plants with good flocculation and filtration properties, while few strong microcolonies and many filamentous bacteria in the plants correlated with poor flocculation and filtration problems. In conclusion this study extends the hitherto accepted perception that plant operation affects floc properties which affects fouling. Additionally, plant operation also affects species composition, which affects floc properties and in the end fouling propensity.

  20. Real-time PCR for rapidly detecting aniline-degrading bacteria in activated sludge.

    PubMed

    Kayashima, Takakazu; Suzuki, Hisako; Maeda, Toshinari; Ogawa, Hiroaki I

    2013-05-01

    We developed a detection method that uses quantitative real-time PCR (qPCR) and the TaqMan system to easily and rapidly assess the population of aniline-degrading bacteria in activated sludge prior to conducting a biodegradability test on a chemical compound. A primer and probe set for qPCR was designed by a multiple alignment of conserved amino acid sequences encoding the large (α) subunit of aniline dioxygenase. PCR amplification tests showed that the designed primer and probe set targeted aniline-degrading strains such as Acidovorax sp., Gordonia sp., Rhodococcus sp., and Pseudomonas putida, thereby suggesting that the developed method can detect a wide variety of aniline-degrading bacteria. There was a strong correlation between the relative copy number of the α-aniline dioxygenase gene in activated sludge obtained with the developed qPCR method and the number of aniline-degrading bacteria measured by the Most Probable Number method, which is the conventional method, and a good correlation with the lag time of the BOD curve for aniline degradation produced by the biodegradability test in activated sludge samples collected from eight different wastewater treatment plants in Japan. The developed method will be valuable for the rapid and accurate evaluation of the activity of inocula prior to conducting a ready biodegradability test.

  1. Physiological and transcriptional responses of nitrifying bacteria exposed to copper in activated sludge.

    PubMed

    Ouyang, Fan; Zhai, Hongyan; Ji, Min; Zhang, Hongyang; Dong, Zhao

    2016-01-15

    Cu inhibition of gene transcription in ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were rarely studied simultaneously in activated sludge. In this study, the transcription of amoA (for AOB) and nxrB (for NOB), nitrification efficiencies, AOB and NOB respiratory rates, and Cu distribution were simultaneously investigated. Modeling the relationships among the aforementioned parameters revealed that in complex activated sludge systems, nitrification efficiency was an insensitive parameter for showing Cu inhibition. Respiration activities and gene transcription were sensitive to Cu and positively correlated with each other. The transcription of amoA and nxrB genes indicated that the Cu had different inhibitory effects on AOB and NOB. AOB were more susceptible to Cu toxicity than NOB. Moreover, the degree of Cu inhibition on ammonia oxidation was greater than on nitrite oxidation. The analysis and related modeling results indicate that the inhibitory actions of Cu on nitrifying bacteria could mainly be attributed to intracellular Cu. The findings from this study provide insight into the mechanism of Cu inhibition on nitrification in complex activated sludge systems.

  2. Production of polyhydroxyalcanoates (PHAs) using milk whey and dairy wastewater activated sludge production of bioplastics using dairy residues.

    PubMed

    Bosco, Francesca; Chiampo, Fulvia

    2010-04-01

    The production of polyhydroxyalcanoates (PHAs), which are biodegradable plastics, was studied using milk whey and dairy wastewater activated sludge to define a suitable C/N ratio, the pre-treatments required to reduce the protein content, and the effect of pH correction. The results show good production of PHAs at a C/N=50 and without pH correction. The use of dairy wastewater activated sludge has the advantage of not requiring aseptic conditions.

  3. The cold adaptability of microorganisms with different carbon source in activated sludge treating synthetical wastewater.

    PubMed

    Niu, Chuan; Geng, Jinju; Ren, Hongqiang; Ding, Lili; Xu, Ke

    2012-11-01

    The cold adaptability of microorganisms with different carbon source under 5°C was studied in activated sludge for treating synthetical wastewater. Phospholipid fatty acid (PLFA) analysis indicated contents of unsaturated fatty acids in cell membrane at 5°C were 13.66% and 24.96% higher for glucose and sodium acetate source than that at 25°C. PLFA biomarkers showed more Gram-negative bacteria enriched than Gram-positive bacteria in low-temperature activated sludge. The Shannon-Wiener diversity analysis demonstrated glucose fed reactor in low temperature had lower PLFA diversity index (1.21-1.30) than that at 25°C and sodium acetate source was reverse (1.08-0.69). The 16S rRNA analysis manifested certain microbes were considerably suitable for existence under cold environment, most of which belong to Gram-negative bacteria.

  4. New mechanistically based model for predicting reduction of biosolids waste by ozonation of return activated sludge.

    PubMed

    Isazadeh, Siavash; Feng, Min; Urbina Rivas, Luis Enrique; Frigon, Dominic

    2014-04-15

    Two pilot-scale activated sludge reactors were operated for 98 days to provide the necessary data to develop and validate a new mathematical model predicting the reduction of biosolids production by ozonation of the return activated sludge (RAS). Three ozone doses were tested during the study. In addition to the pilot-scale study, laboratory-scale experiments were conducted with mixed liquor suspended solids and with pure cultures to parameterize the biomass inactivation process during exposure to ozone. The experiments revealed that biomass inactivation occurred even at the lowest doses, but that it was not associated with extensive COD solubilization. For validation, the model was used to simulate the temporal dynamics of the pilot-scale operational data. Increasing the description accuracy of the inactivation process improved the precision of the model in predicting the operational data.

  5. Development of biological process with pure bacterial cultures for effective bioconversion of sewage treatment plant sludge.

    PubMed

    Alam, Zahangir; Muyibi, Suleyman A; Jamal, Parveen

    2007-02-15

    Forty-six bacterial strains were isolated from nine different sources in four treatment plants namely Indah Water Konsortium (IWK) sewage treatment plant (STP), International Islamic University Malaysia (IIUM) wastewater treatment plant-1,-2 and -3 to evaluate the bioconversion process in terms of efficient biodegradation and bioseparation. The bacterial strains isolated were found to be 52.2% (24 isolates) and 47.8% (22 isolates) in the IWK and IIUM treatment plants, respectively. The results showed that higher microbial population (9-10 x 10(4) cfu/mL) was observed in the secondary clarifier of IWK treatment plant. Among the isolates, 23 isolates were gram-positive bacillus (GPB) and gram-positive cocci (GPC), 19 isolates were gram-negative bacillus (GNB) and gram-negative cocci (GNC), and the rest were undetermined. Gram-negative cocci (GNC) were not found in the isolates from IWK. A total of 15 bacterial strains were selected for effective and efficient sludge bioconversion. All the strains were tested against sludge (1% total suspended solids, TSS) to evaluate the biosolids production (TSS% content), chemical oxygen demand (COD) removal and filtration rate (filterability test). The strain S-1 (IWK1001) showed lower TSS content (0.8% TSS), maximum COD removal (84%) and increased filterability (1.1 min/10 mL of filtrate) of treated sludge followed by the strains S-11, S-14, S-2, S-15, S-13, S-7, S-8, S-4, S-3, S-6, S-12, S-16, S-17 and S-9. The pH values in the fermentation broth were affected by the bacterial cultures and recorded as well. Effective bioconversion was observed during the first three days of sludge treatment.

  6. Biological activation of carbon filters.

    PubMed

    Seredyńska-Sobecka, Bozena; Tomaszewska, Maria; Janus, Magdalena; Morawski, Antoni W

    2006-01-01

    To prepare biological activated carbon (BAC), raw surface water was circulated through granular activated carbon (GAC) beds. Biological activity of carbon filters was initiated after about 6 months of filter operation and was confirmed by two methods: measurement of the amount of biomass attached to the carbon and by the fluorescein diacetate (FDA) test. The effect of carbon pre-washing on WG-12 carbon properties was also studied. For this purpose, the nitrogen adsorption isotherms at 77K and Fourier transform-infrared (FT-IR) spectra analyses were performed. Moreover, iodine number, decolorizing power and adsorption properties of carbon in relation to phenol were studied. Analysis of the results revealed that after WG-12 carbon pre-washing its BET surface increased a little, the pH value of the carbon water extract decreased from 11.0 to 9.4, decolorizing power remained at the same level, and the iodine number and phenol adsorption rate increased. In preliminary studies of the ozonation-biofiltration process, a model phenol solution with concentration of approximately 10mg/l was applied. During the ozonation process a dose of 1.64 mg O(3)/mg TOC (total organic carbon) was employed and the contact time was 5 min. Four empty bed contact times (EBCTs) in the range of 2.4-24.0 min were used in the biofiltration experiment. The effectiveness of purification was measured by the following parameters: chemical oxygen demand (COD(Mn)), TOC, phenol concentration and UV(254)-absorbance. The parameters were found to decrease with EBCT.

  7. Evaluation of thermal steam-explosion key operation factors to optimize biogas production from biological sludge.

    PubMed

    Pérez-Elvira, S I; Sapkaite, I; Fdz-Polanco, F

    2015-01-01

    Thermal steam-explosion is the most extended hydrolysis pretreatment to enhance anaerobic digestion of sludge. Thermal hydrolysis key parameters are temperature (T) and time (t), and the generally accepted values reported from full-scale information are: 150-230 °C and 20-60 min. This study assesses the influence of different temperature-time-flash combinations (110-180 °C, 5-60 min, 1-3 re-flashing) on the anaerobic degradation of secondary sludge through biochemical methane potential (BMP) tests. All the conditions tested presented higher methane production compared to the untreated sludge, and both solubilization (after the hydrolysis) and degradation (by anaerobic digestion) increased linearly when increasing the severity (T-t) of the pretreatment, reaching 40% solubilization and degradation of the particulate matter at 180° C-60 min. However, for the 180 °C temperature, the treatment time impacted negatively on the lag phase. No influence of re-flashing the pretreated matter was observed. In conclusion, thermal steam-explosion at short operation times (5 min) and moderate temperatures (145 °C) seems to be very attractive from a degradation point of view thus presenting a methane production enhancement similar to the one obtained at 180°C and without negative influence of the lag phase.

  8. The Effects of Amine Based Missile Fuels on the Activated Sludge Process.

    DTIC Science & Technology

    1979-10-01

    Reference 17) used neat hydrazine as a selective inhibitor in their studies with Nitrosomonas europaea to show that hydroxylamine is an intermediate...of nitrite oxidation. That hydrazine was more toxic to Nitrobacter sp. than Nitrosomonas sp. in activated sludge was in general agreement with Meyerhof...Reference 16) who studied pure cultures of Nitrosomonas sp. and found 20-percent inhibition of ammonia oxidation at 32 mg/t. Yoshida and Alexander

  9. Gram-staining characterisation of activated sludge filamentous bacteria by automated colour analysis.

    PubMed

    Pandolfi, Denis; Pons, Marie-Noëlle

    2004-12-01

    An automated image analysis method has been developed for the monitoring of the Gram-staining characteristics of filamentous bacteria in activated sludge. The binary method of pixel classification agreed with manual estimation (level of correlation of 0.9 for Gram-positive bacteria). Its robustness has been assessed by repeatability tests. Population shifts in terms of Gram-staining characteristics have been monitored in laboratory-scale experiments with two feeding schedules using this technique.

  10. Simple method for the measurement of the hydrogenotrophic methanogenic activity of anaerobic sludges

    USGS Publications Warehouse

    Coates, J.D.; Coughlan, M.F.; Colleran, E.

    1996-01-01

    The specific hydrogenotrophic activity of anaerobic sludges is usually assayed by gas chromatographic analysis for methane in the headspace of sealed test vials. Gas is sampled with a pressure lock syringe which allows quantification independent of the pressure prevailing in the vials. An alternative method was developed using pressure transducer monitoring of the decrease in headspace gas pressure as the H2/CO2 substrate is converted to CH4. Application of a simple formula related the decrease at each sample point to millilitres of CH4 produced and gave values for the specific hydrogenotrophic activity of granular anaerobic sludge which were in good agreement with the values obtained by the more labor-intensive gas chromatographic method. The simplicity of the method facilitates multiple replicate analyses and allows more accurate determination of initial rates than is achievable by the gas chromatographic method which is prone to analytical error at the very low concentrations of CH4 present in the headspace during the early stages of the assay. Mass transfer of H2 from headspace to liquid was found to be rate-limiting and to result in significant under-estimation of the specific hydrogenotrophic activity of the granular sludge. A test protocol, which used a vial volatile suspended solids concentration between 1.7 and 8 g l-1; a 1:5 ratio between liquid and headspace; incubation of the vials horizontally with vigorous shaking (180 rev./min) and an initial H2/CO2 (80/20) gas pressure of 100-150 kPa was found to give reproducible and maximal values for the specific hydrogenotrophic activity of the test sludge.

  11. Bacterial response to a shock load of nanosilver in an activated sludge treatment system.

    PubMed

    Liang, Zhihua; Das, Atreyee; Hu, Zhiqiang

    2010-10-01

    The growing release of nanosilver into sewage systems has increased the concerns on the potential adverse impacts of silver nanoparticles (AgNPs) in wastewater treatment plants. The inhibitory effects of nanosilver on wastewater treatment and the response of activated sludge bacteria to the shock loading of AgNPs were evaluated in a Modified Ludzack-Ettinger (MLE) activated sludge treatment system. Before shock-loading experiments, batch extant respirometric assays determined that at 1mg/L of total Ag, nitrification inhibitions by AgNPs (average size=1-29 nm) and Ag(+) ions were 41.4% and 13.5%, respectively, indicating that nanosilver was more toxic to nitrifying bacteria in activated sludge than silver ions. After a 12-h period of nanosilver shock loading to reach a final peak silver concentration of 0.75 mg/L in the MLE system, the total silver concentration in the mixed liquor decreased exponentially. A continuous flow-through model predicted that the silver in the activated sludge system would be washed out 25 days after the shock loading. Meanwhile, a prolonged period of nitrification inhibition (>1 month, the highest degree of inhibition=46.5%) and increase of ammonia/nitrite concentration in wastewater effluent were observed. However, nanosilver exposure did not affect the growth of heterotrophs responsible for organic matter removal. Microbial community structure analysis indicated that the ammonium-oxidizing bacteria and nitrite-oxidizing bacteria, Nitrospira, had experienced population decrease while Nitrobacter was washed out after the shock loading.

  12. Biases during DNA extraction of activated sludge samples revealed by high throughput sequencing.

    PubMed

    Guo, Feng; Zhang, Tong

    2013-05-01

    Standardization of DNA extraction is a fundamental issue of fidelity and comparability in investigations of environmental microbial communities. Commercial kits for soil or feces are often adopted for studies of activated sludge because of a lack of specific kits, but they have never been evaluated regarding their effectiveness and potential biases based on high throughput sequencing. In this study, seven common DNA extraction kits were evaluated, based on not only yield/purity but also sequencing results, using two activated sludge samples (two sub-samples each, i.e. ethanol-fixed and fresh, as-is). The results indicate that the bead-beating step is necessary for DNA extraction from activated sludge. The two kits without the bead-beating step yielded very low amounts of DNA, and the least abundant operational taxonomic units (OTUs), and significantly underestimated the Gram-positive Actinobacteria, Nitrospirae, Chloroflexi, and Alphaproteobacteria and overestimated Gammaproteobacteria, Deltaproteobacteria, Bacteroidetes, and the rare phyla whose cell walls might have been readily broken. Among the other five kits, FastDNA(@) SPIN Kit for Soil extracted the most and the purest DNA. Although the number of total OTUs obtained using this kit was not the highest, the abundant OTUs and abundance of Actinobacteria demonstrated its efficiency. The three MoBio kits and one ZR kit produced fair results, but had a relatively low DNA yield and/or less Actinobacteria-related sequences. Moreover, the 50 % ethanol fixation increased the DNA yield, but did not change the sequenced microbial community in a significant way. Based on the present study, the FastDNA SPIN kit for Soil is recommended for DNA extraction of activated sludge samples. More importantly, the selection of the DNA extraction kit must be done carefully if the samples contain dominant lysing-resistant groups, such as Actinobacteria and Nitrospirae.

  13. Thermo-alkaline pretreatment of waste activated sludge at low-temperatures: effects on sludge disintegration, methane production, and methanogen community structure.

    PubMed

    Kim, Jaai; Yu, Youngseob; Lee, Changsoo

    2013-09-01

    Low-temperature thermo-alkaline pretreatment of waste activated sludge (WAS) was studied, within the region of 0-0.2 M NaOH and 60-90°C, for the effects of NaOH concentration and temperature on sludge degradability in anaerobic digestion (AD). Significant disintegration of sludge solids (up to 75.6%) and an increase in methane production (up to 70.6%) were observed in the pretreatment trials. Two quadratic models were successfully generated by response surface analysis (R(2)>0.9, p<0.05) to approximate how the degree of sludge disintegration (SD) and methane production (MP) respond to changes in the pretreatment conditions. The maximum responses of SD (77.8%) and MP (73.9% increase over the control) were shown at [0.16 M NaOH, 90°C] and [0.10 M NaOH, 73.7°C], respectively. NaOH addition showed a significant influence on the evolution of methanogen community structure during AD, whereas temperature did not. Aceticlastic Methanosaeta and Methanosarcina speceies were likely the major methanogens.

  14. Enzymatic and metabolic activities of four anaerobic sludges and their impact on methane production from ensiled sorghum forage.

    PubMed

    Sambusiti, C; Rollini, M; Ficara, E; Musatti, A; Manzoni, M; Malpei, F

    2014-03-01

    Biochemical methane potential (BMP) tests were run on ensiled sorghum forage using four inocula (urban, agricultural, mixture of agricultural and urban, granular) and differences on their metabolic and enzymatic activities were also discussed. Results indicate that no significant differences were observed in terms of BMP values (258±14NmLCH4g(-1)VS) with a slightly higher value when agricultural sludge was used as inoculum. Significant differences can be observed among different inocula, in terms of methane production rate. In particular the fastest biomethanization occurred when using the urban sludge (hydrolytic kinetic constant kh=0.146d(-1)) while the slowest one was obtained from the agricultural sludge (kh=0.049d(-1)). Interestingly, positive correlations between the overall enzymatic activities and methane production rates were observed for all sludges, showing that a high enzymatic activity may favour the hydrolysis of complex substrate and accelerate the methanization process of sorghum.

  15. Cultivation of a bacterial consortium with the potential to degrade total petroleum hydrocarbon using waste activated sludge.

    PubMed

    Sivakumar, S; Song, Y C; Kim, S H; Jang, S H

    2015-11-01

    Waste activated sludge was aerobically treated to demonstrate multiple uses such as cultivating an oil degrading bacterial consortium; studying the influence of a bulking agent (peat moss) and total petroleum hydrocarbon concentration on bacterial growth and producing a soil conditioner using waste activated sludge. After 30 days of incubation, the concentration of oil-degrading bacteria was 4.3 x 10(8) CFU g(-1) and 4.5 x 10(8) CFU g(-1) for 5 and 10 g of total petroleum hydrocarbon, respectively, in a mixture of waste activated sludge (1 kg) and peat moss (0.1 kg). This accounts for approximately 88.4 and 91.1%, respectively, of the total heterotrophic bacteria (total-HB). The addition of bulking agent enhanced total-HB population and total petroleum hydrocarbon-degrading bacterial population. Over 90% of total petroleum hydrocarbon degradation was achieved by the mixture of waste activated sludge, bulking agent and total petroleum hydrocarbon. The results of physico-chemical parameters of the compost (waste activated sludge with and without added peat moss compost) and a substantial reduction in E. coli showed that the use of this final product did not exhibit risk when used as soil conditioner. Finally, the present study demonstrated that cultivation of total petroleum hydrocarbon-degrading bacterial consortium and production of compost from waste activated sludge by aerobic treatment was feasible.

  16. Abundance, diversity, and dynamics of viruses on microorganisms in activated sludge processes.

    PubMed

    Otawa, Kenichi; Lee, Sang Hyon; Yamazoe, Atsushi; Onuki, Motoharu; Satoh, Hiroyasu; Mino, Takashi

    2007-01-01

    We examined the abundance of viruses on microorganisms in activated sludge and the dynamics of their community structure. Direct counting with epifluorescence microscopy and pulsed-field gel electrophoresis (PFGE) were applied to 20 samples from 14 full-scale wastewater treatment plants (wwtps) treating municipal, industrial, or animal wastewater. Furthermore, to observe the dynamics of viral community structure over time, a laboratory-scale sequencing batch reactor was operated for 58 days. The concentrations of virus particles in the wwtps, as quantified by epifluorescence microscopy, ranged from 4.2 x 10(7) to 3.0 x 10(9) mL-1. PFGE, improved by the introduction of a higher concentration of Tris-EDTA buffer in the DNA extraction step, was successfully used to profile DNA viruses in the activated sludge. Most of the samples from different wwtps commonly had bands in the 40-70 kb range. In the monitoring of viral DNA size distribution in the laboratory-scale reactor, some bands were observed stably throughout the experimental period, some emerged during the operation, and others disappeared. Rapid emergence and disappearance of two intense bands within 6 days was observed. Our data suggest that viruses--especially those associated with microorganisms--are abundant and show dynamic behavior in activated sludge.

  17. The activated sludge ecosystem contains a core community of abundant organisms.

    PubMed

    Saunders, Aaron M; Albertsen, Mads; Vollertsen, Jes; Nielsen, Per H

    2016-01-01

    Understanding the microbial ecology of a system requires that the observed population dynamics can be linked to their metabolic functions. However, functional characterization is laborious and the choice of organisms should be prioritized to those that are frequently abundant (core) or transiently abundant, which are therefore putatively make the greatest contribution to carbon turnover in the system. We analyzed the microbial communities in 13 Danish wastewater treatment plants with nutrient removal in consecutive years and a single plant periodically over 6 years, using Illumina sequencing of 16S ribosomal RNA amplicons of the V4 region. The plants contained a core community of 63 abundant genus-level operational taxonomic units (OTUs) that made up 68% of the total reads. A core community consisting of abundant OTUs was also observed within the incoming wastewater to three plants. The net growth rate for individual OTUs was quantified using mass balance, and it was found that 10% of the total reads in the activated sludge were from slow or non-growing OTUs, and that their measured abundance was primarily because of immigration with the wastewater. Transiently abundant organisms were also identified. Among them the genus Nitrotoga (class Betaproteobacteria) was the most abundant putative nitrite oxidizer in a number of activated sludge plants, which challenges previous assumptions that Nitrospira (phylum Nitrospirae) are the primary nitrite-oxidizers in activated sludge systems with nutrient removal.

  18. Estimating biodiversity of fungi in activated sludge communities using culture-independent methods.

    PubMed

    Evans, Tegan N; Seviour, Robert J

    2012-05-01

    Fungal diversity of communities in several activated sludge plants treating different influent wastes was determined by comparative sequence analyses of their 18S rRNA genes. Methods for DNA extraction and choice of primers for PCR amplification were both optimised using denaturing gradient gel electrophoresis profile patterns. Phylogenetic analysis revealed that the levels of fungal biodiversity in some communities, like those treating paper pulp wastes, were low, and most of the fungi detected in all communities examined were novel uncultured representatives of the major fungal subdivisions, in particular, the newly described clade Cryptomycota. The fungal populations in activated sludge revealed by these culture-independent methods were markedly different to those based on culture-dependent data. Members of the genera Penicillium, Cladosporium, Aspergillus and Mucor, which have been commonly identified in mixed liquor, were not identified in any of these plant communities. Non-fungal eukaryotic 18S rRNA genes were also amplified with the primer sets used. This is the first report where culture-independent methods have been applied to flocculated activated sludge biomass samples to estimate fungal community composition and, as expected, the data obtained gave a markedly different view of their population biodiversity compared to that based on culture-dependent methods.

  19. Denitrification of nitrate-contaminated groundwater using a simple immobilized activated sludge bioreactor.

    PubMed

    Ye, Zhengfang; Wang, Feng; Bi, Haitao; Wang, Zhongyou; Liu, Guo-hua

    2012-01-01

    A simple anaerobic-activated sludge system, in which microorganisms are immobilized by a novel functional carrier, was used for removing nitrate in groundwater. The operating conditions, including hydraulic retention time (HRT), C/N ratio, temperature and NO(3)(-)-N loading concentration were investigated. The NO(3)(-)-N concentration, residual chemical oxygen demand (COD) and nitrite accumulation were used as indicators to assess the water quality of the effluent. The anaerobic biomass loading capacity in the carrier was 12.8 g/L and the denitrifying Pseudomonas sp. and Rhodocyclaceae bacterium were dominant among the immobilized microorganisms in the anaerobic-activated sludge. Under operating conditions of HRT= 1.5 h, C/N= 2-3 and T= 16.8-20 °C, the removal efficiency of NO(3)(-)-N exceeded 93%, corresponding to a relatively high denitrification rate of 0.73 kg NO(3)(-)-N m(-3) d(-1), when the NO(3)(-)-N loading concentration was 50 mg/L. The NO(3)(-)-N concentration of the effluent always met regulatory criteria for drinking water (<10 mg/L) in the main developed and developing countries. The effluent COD was also below 10 mg/L. Although some nitrite accumulated (0-1.77 mg/L) during the operating period, it can be decreased through adjusting the operating pH and HRT. The immobilized activated sludge system may be useful for the removal of nitrate from groundwater.

  20. Evaluation of aeration energy saving in two modified activated sludge processes.

    PubMed

    Lee, Ingyu; Lim, Honglae; Jung, Byunghun; Colosimo, Mark F; Kim, Hyunook

    2015-12-01

    A variety of modified activated sludge processes are widely used in wastewater treatment plants (WWTPs) for removing organics and nutrients (N and P). Since energy consumption in aeration basin accounts for the major part of the overall energy usage in WWTPs, efforts have been made to find ways to reduce aeration energy. In this study, two modified activated sludge processes in a pilot scale designed for nutrient removal were evaluated for the extent of energy saving: (1) ABA(2) process - adjusting air on/off period (i.e., with a temporal change); and (2) MB-A(2)O process - changing volume ratio of aerobic tank to anoxic tank (i.e., with a spatial change). For the 1st process, the air on/off period was fixed at 60min/45min with aerobic fraction being 0.57, while for the 2nd process, the aerobic/anoxic volume ratio was reduced from 0.58 to 0.42. The results demonstrate that the effluent COD, TN, NH4(+) and TP concentrations are acceptable while reduced aeration time/volume certainly saves significant energy consumption. To the best of our knowledge, this is 1st attempt to reduce the aeration period or aeration volume to save the aeration energy in these two modified activated sludge processes. The implication of these observations is further discussed.

  1. Factors influencing sorption of ciprofloxacin onto activated sludge: experimental assessment and modelling implications.

    PubMed

    Polesel, Fabio; Lehnberg, Kai; Dott, Wolfgang; Trapp, Stefan; Thomas, Kevin V; Plósz, Benedek Gy

    2015-01-01

    Many of the pharmaceuticals and personal care products occurring in municipal sewage are ionizing substances, and their partitioning behaviour is affected by ionic interactions with solid matrices. In activated sludge systems, such interactions have currently not been adequately understood and described, particularly for zwitterionic chemicals. Here we present an assessment of the effects of pH and iron salt dosing on the sorption of ciprofloxacin onto activated sludge using laboratory experiments and full-scale fate modelling. Experimental results were described with Freundlich isotherms and showed that non-linear sorption occurred under all the conditions tested. The greatest sorption potential was measured at pH=7.4, at which ciprofloxacin is speciated mostly as zwitterion. Iron salt dosing increased sorption under aerobic and, to a lesser extent, anoxic conditions, whereas no effect was registered under anaerobic conditions. The activated sludge model for xenobiotics (ASM-X) was extended with Freundlich-based sorption kinetics and used to predict the fate of ciprofloxacin in a wastewater treatment plant (WWTP). Scenario simulations, using experimental Freundlich parameters, were used to identify whether the assessed factors caused a significant increase of aqueous ciprofloxacin concentration in full-scale bioreactors. Simulation results suggest that a pH increase, rather than a reduction in iron salt dosing, could be responsible for a systematic deterioration of sorption of ciprofloxacin in the WWTP.

  2. Enhanced electricity generation by using algae biomass and activated sludge in microbial fuel cell.

    PubMed

    Rashid, Naim; Cui, Yu-Feng; Saif Ur Rehman, Muhammad; Han, Jong-In

    2013-07-01

    Recently, interest is growing to explore low-cost and sustainable means of energy production. In this study, we have exploited the potential of sustainable energy production from wastes. Activated sludge and algae biomass are used as substrates in microbial fuel cell (MFC) to produce electricity. Activated sludge is used at anode as inoculum and nutrient source. Various concentrations (1-5 g/L) of dry algae biomass are tested. Among tested concentrations, 5 g/L (5000 mg COD/L) produced the highest voltage of 0.89 V and power density of 1.78 W/m(2) under 1000 Ω electric resistance. Pre-treated algae biomass and activated sludge are also used at anode. They give low power output than without pre-treatment. Spent algae biomass is tested to replace whole (before oil extraction) algae biomass as a substrate, but it gives low power output. This work has proved the concept of using algae biomass in MFC for high energy output.

  3. The activated sludge ecosystem contains a core community of abundant organisms

    PubMed Central

    Saunders, Aaron M; Albertsen, Mads; Vollertsen, Jes; Nielsen, Per H

    2016-01-01

    Understanding the microbial ecology of a system requires that the observed population dynamics can be linked to their metabolic functions. However, functional characterization is laborious and the choice of organisms should be prioritized to those that are frequently abundant (core) or transiently abundant, which are therefore putatively make the greatest contribution to carbon turnover in the system. We analyzed the microbial communities in 13 Danish wastewater treatment plants with nutrient removal in consecutive years and a single plant periodically over 6 years, using Illumina sequencing of 16S ribosomal RNA amplicons of the V4 region. The plants contained a core community of 63 abundant genus-level operational taxonomic units (OTUs) that made up 68% of the total reads. A core community consisting of abundant OTUs was also observed within the incoming wastewater to three plants. The net growth rate for individual OTUs was quantified using mass balance, and it was found that 10% of the total reads in the activated sludge were from slow or non-growing OTUs, and that their measured abundance was primarily because of immigration with the wastewater. Transiently abundant organisms were also identified. Among them the genus Nitrotoga (class Betaproteobacteria) was the most abundant putative nitrite oxidizer in a number of activated sludge plants, which challenges previous assumptions that Nitrospira (phylum Nitrospirae) are the primary nitrite-oxidizers in activated sludge systems with nutrient removal. PMID:26262816

  4. Potential of OUR and OTR measurements for identification of activated sludge removal processes in aerated basins.

    PubMed

    Schuchardt, A; Libra, J A; Sahlmann, C; Handschag, J; Wiesmann, U; Gnirss, R

    2005-01-01

    In order to develop a process control scheme to reduce energy costs for aeration in activated sludge systems with biological P removal, pre-denitrification and nitrification stages, the spatial distribution of carbon oxidation and nitrification was evaluated over a long full-scale plug flow aeration basin using an externally measured specific oxygen uptake rate (sOUR) and in basin measurement of the actual specific oxygen transfer rate (sOTR) with off-gas testing as well as with the calculated oxygen demand from NH4-N concentrations (sOTR(N)). Using a simple static model, a gas phase balance on oxygen and carbon dioxide, sOTR(N) values were also calculated from off-gas testing. Comparison of sOTR(N) to sOTR and sOUR for carbon oxidation (sOUR(C)) to nitrification (sOUR(N)) at different loading conditions allowed the oxidation processes to be followed over the three zones of the aeration basin. As expected, the distribution depended on the dissolved oxygen concentration (DO) in the basin. However, the major change was in the C-oxidation rate and not the nitrification rate. At a low DO, and when NH4-N was present in the zone, the amount of oxygen transferred for nitrification was nearly the same, but the overall sOTR was lower. The externally measured sOUR was only useful when it was differentiated into sOUR(N) and sOUR(C). sOUR(N) could be used to predict the nitrification rate in the basin. With further refinement, the gas phase balance model has potential to be used to monitor the degree of nitrification over the basin length. This can be integrated into a control scheme to reduce aeration costs by adjusting the DO setpoint according to loading conditions in the

  5. Comparison and distribution of copper oxide nanoparticles and copper ions in activated sludge reactors.

    PubMed

    Zhang, Dongqing; Trzcinski, Antoine P; Oh, Hyun-Suk; Chew, Evelyn; Tan, Soon Keat; Ng, Wun Jern; Liu, Yu

    2017-02-16

    Copper oxide nanoparticles (CuO NPs) are being increasingly applied in the industry which results inevitably in the release of these materials into the hydrosphere. In this study, simulated waste-activated sludge experiments were conducted to investigate the effects of Copper Oxide NPs at concentrations of 0.1, 1, 10 and 50 mg/L and to compare it with its ionic counterpart (CuSO4). It was found that 0.1 mg/L of CuO NPs had negligible effects on Chemical Oxygen Demand (COD) and ammonia removal. However, the presence of 1, 10 and 50 mg/L of CuO NPs decreased COD removal from 78.7% to 77%, 52.1% and 39.2%, respectively (P < 0.05). The corresponding effluent ammonium (NH4-N) concentration increased from 14.9 mg/L to 18, 25.1 and 30.8 mg/L, respectively. Under equal Cu concentration, copper ions were more toxic towards microorganisms compared to CuO NPs. CuO NPs were removed effectively (72-93.2%) from wastewater due to a greater biosorption capacity of CuO NPs onto activated sludge, compared to the copper ions (55.1-83.4%). The SEM images clearly showed the accumulation and adsorption of CuO NPs onto activated sludge. The decrease in Live/dead ratio after 5 h of exposure of CuO NPs and Cu(2+) indicated the loss of cell viability in sludge flocs.

  6. Measuring the activities of higher organisms in activated sludge by means of mechanical shearing pretreatment and oxygen uptake rate.

    PubMed

    Hao, Xiaodi; Wang, Qilin; Cao, Yali; van Loosdrecht, Mark C M

    2010-07-01

    A pretreatment method was developed to assess the activities of higher organisms. The method is based on mechanical shearing to damage the large cells of the protozoan and metazoan community in activated sludge. The procedure was confirmed through experimentation to be effective in determining the activities of higher organisms by comparing oxygen uptake rates (OURs) before and after the higher organisms were eradicated. Shearing led to disintegration of flocs, which could be effectively reconstituted by centrifugation. The reconstitution of the sludge flocs was essential since otherwise the activity of the floc mass would be too high due to lack of diffusion limitation. Mechanical shearing had no influence on the morphology, quantity and specific activity of yeasts, and it was inferred that bacteria smaller than yeasts in size would also not be influenced by the applied shearing procedure. Moreover, the effect of filamentous organisms on the measured activities of higher organisms was experimentally demonstrated and analyzed, and determined to be so weak that it could be ignored. Based on these tests, five typical activated sludge processes were selected to measure the contribution of higher organisms to the original OUR. The measured activities of higher organisms ranged from 9.4 to 25.0% of the original OURs.

  7. Recovery and reuse of sludge from active and passive treatment of mine drainage-impacted waters: a review.

    PubMed

    Rakotonimaro, Tsiverihasina V; Neculita, Carmen Mihaela; Bussière, Bruno; Benzaazoua, Mostafa; Zagury, Gérald J

    2017-01-01

    The treatment of mine drainage-impacted waters generates considerable amounts of sludge, which raises several concerns, such as storage and disposal, stability, and potential social and environmental impacts. To alleviate the storage and management costs, as well as to give the mine sludge a second life, recovery and reuse have recently become interesting options. In this review, different recovery and reuse options of sludge originating from active and passive treatment of mine drainage are identified and thoroughly discussed, based on available laboratory and field studies. The most valuable products presently recovered from the mine sludge are the iron oxy-hydroxides (ochre). Other by-products include metals, elemental sulfur, and calcium carbonate. Mine sludge reuse includes the removal of contaminants, such as As, P, dye, and rare earth elements. Mine sludge can also be reused as stabilizer for contaminated soil, as fertilizer in agriculture/horticulture, as substitute material in construction, as cover over tailings for acid mine drainage prevention and control, as material to sequester carbon dioxide, and in cement and pigment industries. The review also stresses out some of the current challenges and research needs. Finally, in order to move forward, studies are needed to better estimate the contribution of sludge recovery/reuse to the overall costs of mine water treatment.

  8. A novel conditioning process for enhancing dewaterability of waste activated sludge by combination of zero-valent iron and persulfate.

    PubMed

    Zhou, Xu; Wang, Qilin; Jiang, Guangming; Liu, Peng; Yuan, Zhiguo

    2015-06-01

    Improvement of sludge dewaterability is crucial for reducing the costs of sludge disposal in wastewater treatment plants. This study presents a novel conditioning method for improving waste activated sludge dewaterability by combination of persulfate and zero-valent iron. The combination of zero-valent iron (0-30g/L) and persulfate (0-6g/L) under neutral pH substantially enhanced the sludge dewaterability due to the advanced oxidization reactions. The highest enhancement of sludge dewaterability was achieved at 4g persulfate/L and 15g zero-valent iron/L, with which the capillary suction time was reduced by over 50%. The release of soluble chemical oxygen demand during the conditioning process implied the decomposition of sludge structure and microorganisms, which facilitated the improvement of dewaterability due to the release of bound water that was included in sludge structure and microorganism. Economic analysis showed that the proposed conditioning process with persulfate and ZVI is more economically favorable for improving WAS dewaterability than classical Fenton reagent.

  9. Performance of the lysozyme for promoting the waste activated sludge biodegradability.

    PubMed

    He, Jun-Guo; Xin, Xiao-Dong; Qiu, Wei; Zhang, Jie; Wen, Zhi-Dan; Tang, Jian

    2014-10-01

    The fresh waste activated sludge (WAS) from a lab-scale sequencing batch reactor was used to determine the performance of the lysozyme for promoting its biodegradability. The results showed that a strict linear relationship presented between the degree of disintegration (DDM) of WAS and the lysozyme incubation time from 0 to 240min (R(2) was 0.992, 0.995 and 0.999 in accordance with the corresponding lysozyme/TS, respectively). Ratio of net SCOD increase augmented significantly by lysozyme digestion for evaluating the sludge biodegradability changes. Moreover, the protein dominated both in the EPS and SMP. In addition, the logarithm of SMP contents in supernatant presented an increasing trend similar with the ascending logarithmic relation with the lysozyme incubation time from 0 to 240min (R(2) was 0.960, 0.959 and 0.947, respectively). The SMP, especially the soluble protein, had an important contribution to the improvement of WAS biodegradability.

  10. Hydraulic characterization of an activated sludge reactor with recycling system by tracer experiment and analytical models.

    PubMed

    Sánchez, F; Viedma, A; Kaiser, A S

    2016-09-15

    Fluid dynamic behaviour plays an important role in wastewater treatment. An efficient treatment requires the inexistence of certain hydraulic problems such as dead zones or short-circuiting flows. Residence time distribution (RTD) analysis is an excellent technique for detecting these inefficiencies. However, many wastewater treatment installations include water or sludge recycling systems, which prevent us from carrying out a conventional tracer pulse experiment to obtain the RTD curve of the installation. This paper develops an RTD analysis of an activated sludge reactor with recycling system. A tracer experiment in the reactor is carried out. Three analytical models, derived from the conventional pulse model, are proposed to obtain the RTD curve of the reactor. An analysis of the results is made, studying which model is the most suitable for each situation. This paper is useful to analyse the hydraulic efficiency of reactors with recycling systems.

  11. Microbial Community Dynamics and Activity Link to Indigo Production from Indole in Bioaugmented Activated Sludge Systems

    PubMed Central

    Deng, Jie; Deng, Ye; Van Nostrand, Joy D.; Wu, Liyou; He, Zhili; Qin, Yujia; Zhou, Jiti; Zhou, Jizhong

    2015-01-01

    Biosynthesis of the popular dyestuff indigo from indole has been comprehensively studied using pure cultures, but less has been done to characterize the indigo production by microbial communities. In our previous studies, a wild strain Comamonas sp. MQ was isolated from activated sludge and the recombinant Escherichia coli nagAc carrying the naphthalene dioxygenase gene (nag) from strain MQ was constructed, both of which were capable of producing indigo from indole. Herein, three activated sludge systems, G1 (non-augmented control), G2 (augmented with Comamonas sp. MQ), and G3 (augmented with recombinant E. coli nagAc), were constructed to investigate indigo production. After 132-day operation, G3 produced the highest yields of indigo (99.5 ± 3.0 mg/l), followed by G2 (27.3 ± 1.3 mg/l) and G1 (19.2 ± 1.2 mg/l). The microbial community dynamics and activities associated with indigo production were analyzed by Illumina Miseq sequencing of 16S rRNA gene amplicons. The inoculated strain MQ survived for at least 30 days, whereas E. coli nagAc was undetectable shortly after inoculation. Quantitative real-time PCR analysis suggested the abundance of naphthalene dioxygenase gene (nagAc) from both inoculated strains was strongly correlated with indigo yields in early stages (0–30 days) (P < 0.001) but not in later stages (30–132 days) (P > 0.10) of operation. Based on detrended correspondence analysis (DCA) and dissimilarity test results, the communities underwent a noticeable shift during the operation. Among the four major genera (> 1% on average), the commonly reported indigo-producing populations Comamonas and Pseudomonas showed no positive relationship with indigo yields (P > 0.05) based on Pearson correlation test, while Alcaligenes and Aquamicrobium, rarely reported for indigo production, were positively correlated with indigo yields (P < 0.05). This study should provide new insights into our understanding of indigo bio-production by microbial communities

  12. Utilization of molasses spentwash for production of bioplastics by waste activated sludge

    SciTech Connect

    Khardenavis, Anshuman A. Vaidya, Atul N.; Kumar, M. Suresh; Chakrabarti, Tapan

    2009-09-15

    Present study describes the treatment of molasses spentwash and its use as a potential low cost substrate for production of biopolymer polyhydroxybutyrate (PHB) by waste activated sludge. Fluorescence microscopy revealed the presence of PHB granules in sludge biomass which was further confirmed by fourier transform-infra-red spectroscopy (FT-IR) and {sup 13}C nuclear magnetic resonance (NMR). The processing of molasses spentwash was carried out for attaining different ratios of carbon and nitrogen (C:N). Highest chemical oxygen demand (COD) removal and PHB accumulation of 60% and 31% respectively was achieved with raw molasses spentwash containing inorganic nitrogen (C:N ratio = 28) followed by COD removal of 52% and PHB accumulation of 28% for filtered molasses containing inorganic nitrogen (C:N ratio = 29). PHB production yield (Y{sub p/s}) was highest (0.184 g g{sup -1} COD consumed) for deproteinized spentwash supplemented with nitrogen. In contrast, the substrate consumption and product formation were higher in case of raw spentwash. Though COD removal was lowest from deproteinized spentwash, evaluation of kinetic parameters suggested higher rates of conversion of available carbon to biomass and PHB. Thus the process provided dual benefit of conversion of two wastes viz. waste activated sludge and molasses spentwash into value-added product-PHB.

  13. Anaerobic co-digestion of microalgae Chlorella sp. and waste activated sludge.

    PubMed

    Wang, Meng; Sahu, Ashish K; Rusten, Bjørn; Park, Chul

    2013-08-01

    The study investigated the growth characteristics of environmental algal strain, Chlorella, in the modified Zarrouk medium and its anaerobic co-digestion with waste activated sludge (WAS). Analysis of extracellular polymeric substances (EPS) in algal culture and WAS indicated that Chlorella secreted more EPS into the surrounding liquid than formed floc-associated EPS as in activated sludge. Mesophilic anaerobic digestion of algae alone required extended digestion period to produce methane, with biogas yield at 262 mL/gVSfed after 45 days of digestion. When algae was co-digested with varying amounts of WAS, 59-96% in mass, not only biogas yield of microalgae improved but the gas phase was reached more quickly. The dewaterability of co-digestion products were also better than two controls digesting WAS or algae only. These results suggest that anaerobic co-digestion of algae and sludge improves the digestibility of microalgae and could also bring synergistic effects on the dewaterability of digested products for existing anaerobic digesters.

  14. Utilization of molasses spentwash for production of bioplastics by waste activated sludge.

    PubMed

    Khardenavis, Anshuman A; Vaidya, Atul N; Kumar, M Suresh; Chakrabarti, Tapan

    2009-09-01

    Present study describes the treatment of molasses spentwash and its use as a potential low cost substrate for production of biopolymer polyhydroxybutyrate (PHB) by waste activated sludge. Fluorescence microscopy revealed the presence of PHB granules in sludge biomass which was further confirmed by fourier transform-infra-red spectroscopy (FT-IR) and (13)C nuclear magnetic resonance (NMR). The processing of molasses spentwash was carried out for attaining different ratios of carbon and nitrogen (C:N). Highest chemical oxygen demand (COD) removal and PHB accumulation of 60% and 31% respectively was achieved with raw molasses spentwash containing inorganic nitrogen (C:N ratio=28) followed by COD removal of 52% and PHB accumulation of 28% for filtered molasses containing inorganic nitrogen (C:N ratio=29). PHB production yield (Y(p/s)) was highest (0.184 g g(-1) COD consumed) for deproteinized spentwash supplemented with nitrogen. In contrast, the substrate consumption and product formation were higher in case of raw spentwash. Though COD removal was lowest from deproteinized spentwash, evaluation of kinetic parameters suggested higher rates of conversion of available carbon to biomass and PHB. Thus the process provided dual benefit of conversion of two wastes viz. waste activated sludge and molasses spentwash into value-added product-PHB.

  15. Enhancement of phosphorus removal in a low temperature A(2)/O process by anaerobic phosphorus release of activated sludge.

    PubMed

    Li, Jianzheng; Jin, Yu; Guo, Yaqiong; He, Junguo

    2013-01-01

    An anaerobic phosphorus release tank was introduced to an anaerobic-anoxic-aerobic (A(2)/O) process treating domestic sewage to enhance the phosphorus removal at low temperature. Phosphorus release of the activated sludge from the second sedimentation tank was evaluated at 14 °C by batch cultures, and the nutrient removal in the modified low temperature A(2)/O process was further investigated at the same temperature. The results showed that the feasible sludge retention time was 14 h for sequencing batch reaction and 12 h for continuous flow operation. The ratio of raw sewage to activated sludge from the second sedimentation tank was 1:1 in volume to meet the demand of carbon resource for the growth of phosphorus release microbes. The feasible chemical oxygen demand (COD) loading rate of the activated sludge in the phosphorus release tank was 0.015-0.02 g COD/g MLSS (mixed liquor suspended solids) and the nitrate concentration should be less than 5 mg/L. The phosphorus release was doubled when the sludge was blended intermittently and gently. The anaerobic phosphorus release of the activated sludge improved the phosphate removal remarkably, as well as the removal of NH4(+)-N and total nitrogen (TN) in the modified low temperature A(2)/O process. The effluent COD, NH4(+)-N, TN and total phosphorus could meet a stricter discharge standard.

  16. Response of aerobic granular sludge to the long-term presence to nanosilver in sequencing batch reactors: reactor performance, sludge property, microbial activity and community.

    PubMed

    Quan, Xiangchun; Cen, Yan; Lu, Fang; Gu, Lingyun; Ma, Jingyun

    2015-02-15

    The increasing use of silver nanoparticles (Ag NPs) raises concerns about their potential toxic effects on the environment. Granular shape sludge is a special type of microbial aggregate. The response of aerobic granular sludge (AGS) to the long-term presence of Ag NPs has not been well studied. In this study, AGS was exposed to 5 and 50mg/L Ag NPs in sequence batch reactors (SBRs) for 69 days, and its response was evaluated based on the sludge properties, microbial activity and community, and reactor performance. The results showed that Ag NPs caused inhibition to microbial activities of AGS from Day 35. At the end of 69 days of Ag NPs exposure, the microbial activity of AGS was significantly inhibited in terms of inhibitions of the ammonia oxidizing rate (33.0%), respiration rate (17.7% and 45.6%) and denitrification rate (6.8%), as well as decreases in the ammonia mono-oxygenase and nitrate reductase activities. During the long-term exposure, the AGS maintained its granular shape and large granule size (approximately 900 μm); the microbial community of AGS slightly changed, but the dominant microbial population remained. Overall, the AGS tolerated the toxicity of Ag NPs well, but a long-term exposure may produce chronic toxicity to the AGS, which is concerning.

  17. Strigolactones: structures and biological activities.

    PubMed

    Yoneyama, Koichi; Xie, Xiaonan; Yoneyama, Kaori; Takeuchi, Yasutomo

    2009-05-01

    Strigolactones released from plant roots induce seed germination of root parasitic weeds, witchweeds (Striga spp.) and broomrapes (Orobanche spp.), and hyphal branching of symbiotic arbuscular mycorrhizal (AM) fungi. In addition to these functions in the rhizosphere, strigolactones have recently been shown to be a novel class of plant hormones regulating shoot outgrowth. The natural strigolactones identified so far have the common C-D ring moiety, which is thought to be the essential structure for exhibiting biological activity. The introduction of substitutions on the A-B ring moiety of 5-deoxystrigol, the basic strigolactone, affords various strigolactones, e.g. hydroxylation on C-4, C-5 and C-9 leads to orobanchol, strigol and sorgomol respectively. Then, acetylation and probably other derivatisations of these hydroxy-strigolactones would occur. Although the C-2'-(R) stereochemistry was thought to be an important structural feature for potent germination stimulation activity, 2'-epi-strigolactones were found in root exudates of tobacco, rice, pea and other plant species, indicating that at least some plants produce both epimers.

  18. Biological Activity of Masked Endotoxin

    PubMed Central

    Schwarz, Harald; Gornicec, Jan; Neuper, Theresa; Parigiani, Maria Alejandra; Wallner, Michael; Duschl, Albert; Horejs-Hoeck, Jutta

    2017-01-01

    Low endotoxin recovery (LER) is a recently discovered phenomenon describing the inability of limulus amebocyte lysate (LAL)-based assays to detect lipopolysaccharide (LPS) because of a “masking effect” caused by chelators or detergents commonly used in buffer formulations for medical products and recombinant proteins. This study investigates the masking capacities of different buffer formulations and whether masked endotoxin is biologically active. We show that both naturally occurring endotoxin as well as control standard endotoxin can be affected by LER. Furthermore, whereas masked endotoxin cannot be detected in Factor C based assays, it is still detectable in a cell-based TLR4-NF-κB-luciferase reporter gene assay. Moreover, in primary human monocytes, masked LPS induces the expression of pro-inflammatory cytokines and surface activation markers even at very low concentrations. We therefore conclude that masked LPS is a potent trigger of immune responses, which emphasizes the potential danger of masked LPS, as it may pose a health threat in pharmaceutical products or compromise experimental results. PMID:28317862

  19. Mixed carbon sources for nitrate reduction in activated sludge-identification of bacteria and process activity studies.

    PubMed

    Hagman, M; Nielsen, J L; Nielsen, P H; Jansen, J la C

    2008-03-01

    Mixtures of methanol and acetate as carbon source were investigated in order to determine their capacity to enhance denitrification and for analysis of the microbial composition and carbon degradation activity in activated sludge from wastewater treatment plants. Laboratory batch reactors at 20 degrees C were used for nitrate uptake rate (NUR) measurements in order to investigate the anoxic activity, while single and mixed carbon substrates were added to activated sludge. Microautoradiography (MAR) in combination with fluorescence in situ hybridisation (FISH) were applied for microbial analysis during exposure to different carbon sources. The NUR increased with additions of a mixture of acetate and methanol compared with additions of a single carbon source. MAR-FISH measurements demonstrated that the probe-defined group of Azoarcus was the main group of bacteria utilising acetate and the only active group utilising methanol under anoxic conditions. The present study indicated an improved denitrification potential by additions of a mixed carbon source compared with commonly used single-carbon additions. It is also established that Azoarcus bacteria are involved in the degradation of both acetate and methanol in the anoxic activated sludge.

  20. Effect of sludge retention time on continuous-flow system with enhanced biological phosphorus removal granules at different COD loading.

    PubMed

    Li, Dong; Lv, Yufeng; Zeng, Huiping; Zhang, Jie

    2016-11-01

    The effect of sludge retention time (SRT) on the continuous-flow system with enhanced biological phosphorus removal (EBPR) granules at different COD loading was investigated during the operation of more than 220days. And the results showed that when the system operated at long SRT (30days) and low COD loading (200mg·L(-1)), it could maintain excellent performance. However, long SRT and high COD loading (300mg·L(-1)) deteriorated the settling ability of granules and the performance of system and resulted in the overgrowth of filamentous bacteria. Meanwhile, the transformation of poly-β-hydroxyalkanoates (PHAs) and glycogen in metabolism process was inhibited. Moreover, the results of pyrosequencing indicated that filamentous bacteria had a competitive advantage over polyphosphate-accumulating organisms (PAOs) at high COD loading and long SRT. The PAOs specious of Candidatus_Accumlibater and system performance increased obviously when the SRT was reduced to 20days at high COD loading.

  1. Sorption and biodegradation of artificial sweeteners in activated sludge processes.

    PubMed

    Tran, Ngoc Han; Gan, Jie; Nguyen, Viet Tung; Chen, Huiting; You, Luhua; Duarah, Ankur; Zhang, Lifeng; Gin, Karina Yew-Hoong

    2015-12-01

    There is limited information on the occurrence and removal of artificial sweeteners (ASs) in biological wastewater treatment plants, and in particular, the contribution of sorption and biodegradation to their removal. This study investigated the fate of ASs in both the aqueous and solid phases in a water reclamation plant (WRP). All the four targeted ASs, i.e. acesulfame (ACE), sucralose (SUC), cyclamate (CYC) and saccharine (SAC), were detected in both the aqueous and solid phases of raw influent and primary effluent samples. The concentrations of CYC and SAC in secondary effluent or MBR permeate were below their method detection limits. ACE and SUC were persistent throughout the WRP, whereas CYC and SAC were completely removed in biological treatment (>99%). Experimental results showed that sorption played a minor role in the elimination of the ASs due to the relatively low sorption coefficients (Kd), where Kd<500L/kg. In particular, the poor removal of ACE and SUC in the WRP may be attributed to their physiochemical properties (i.e. logKow<0 or logD<3.2) and chemical structures containing strong withdrawing electron functional groups in heterocyclic rings (i.e. chloride and sulfonate).

  2. Preparation of sludge-based activated carbon and its application in dye wastewater treatment.

    PubMed

    Wang, Xiaoning; Zhu, Nanwen; Yin, Bingkui

    2008-05-01

    A novel activation process was adopted to produce highly porous activated carbon from cyclic activated sludge in secondary precipitator in municipal wastewater treatment plant for dye removal from colored wastewater. The physical properties of activated carbon produced with the activation of 3M KOH solution in the atmosphere of steam were investigated. Adsorption removal of a dye, Acid Brilliant Scarlet GR, from aqueous solution onto the sludge-based activated carbon was studied under varying conditions of adsorption time, initial concentration, carbon dosage and pH. Adsorption equilibrium was obtained in 15 min for the dye initial concentration of 300 mg/L. Initial pH of solution had an insignificant impact on the dye removal. Results indicated that 99.7% coloration and 99.6% total organic carbon (TOC) were removed after 15 min adsorption in the synthetic solution of Acid Brilliant Scarlet GR with initial concentration of 300 mg/L of the dye and 20 g/L activated carbon. The Langmuir and Freundlich equilibrium isotherm models fitted the adsorption data well with R(2)=0.996 and 0.912, respectively. Accordingly, it is concluded that the procedure of developing activated carbon used in this study could be effective and practical for utilizing in dye wastewater treatment.

  3. Improving Settling Characteristics of Pure Oxygen Activated Sludge by Stripping of Carbon Dioxide.

    PubMed

    Kundral, Somshekhar; Mudragada, Ratnaji; Coro, Ernesto; Moncholi, Manny; Mora, Nelson; Laha, Shonali; Tansel, Berrin

    2015-06-01

    Increased microbial activity at high ambient temperatures can be problematic for secondary clarifiers and gravity concentrators due to carbon dioxide (CO2) production. Production of CO2 in gravity concentrators leads to septic conditions and poor solids separation. The CO2 production can also be corrosive for the concrete surfaces. Effectiveness of CO2 stripping to improve solids settling was investigated using the sludge volume index (SVI) as the indicator parameter. Carbon dioxide was stripped by aeration from the sludge samples. Results from the study show that aeration also increased the pH values in the mixed liquor while removing CO2 and improving sludge settling. After 10 minutes of aeration at a rate of 0.37 m3 air/m3 water/min, 90% CO2 stripping was achieved. Based on the 30 min settling tests, the SVI increased by 26±1% after CO2 stripping while the pH increased by 0.8±0.1 pH units.

  4. Influence of flocculation and settling properties of activated sludge in relation to secondary settler performance.

    PubMed

    Wilén, B M; Onuki, M; Hermansson, M; Lumley, D; Mino, T

    2006-01-01

    Floc characteristics were studied at a full scale activated sludge treatment plant with a unique process solution incorporating pre-denitrification with post-nitrification in nitrifying trickling filters. Since greater nitrogen removal is achieved when more secondary settled wastewater is recirculated to the trickling filters, the secondary settlers are always operated close to their maximal capacity. The flocculation and settling properties are therefore crucial and have an effect on the overall plant performance. Since the plant is operated at a short sludge age, these properties change quickly, resulting in variable maximal secondary settler capacity. The dynamics in floc structure and microbial community composition were studied and correlated to the secondary settler performance. Fluorescence in situ hybridisation was used to investigate the microbial community structure and their spatial distribution. The floc structure could to some extent be related to the flocculation and settling properties of the sludge. Even small differences had an influence suggesting that colloidal properties also play a significant role in determining the floc properties. No correlation between microbial community composition and settling properties could be established with the group-specific probes investigated.

  5. Comparative study of wastewater treatment and nutrient recycle via activated sludge, microalgae and combination systems.

    PubMed

    Wang, Liang; Liu, Jinli; Zhao, Quanyu; Wei, Wei; Sun, Yuhan

    2016-07-01

    Algal-bacterial synergistic cultivation could be an optional wastewater treatment technology in temperate areas. In this study, a locally screened vigorous Chlorella strain was characterized and then it was used in a comparative study of wastewater treatment and nutrient recycle assessment via activated sludge (AS), microalgae and their combination systems. Chlorella sp. cultured with AS in light showed the best performance, in which case the removal efficiencies of COD, NH3-N and TP were 87.3%, 99.2% and 83.9%, respectively, within a short period of 1day. Algal-bacterial combination in light had the best settleability. Chlorella sp. contained biomass, could be processed to feed, fertilizer or fuel due to the improved quality (higher C/H/N) compared with sludge. PCR-DGGE analysis shows that two types of rhizobacteria, namely, Pseudomonas putida and Flavobacterium hauense were enriched in sludge when cultured with algae in light, serving as the basics for artificial consortium construction for improved wastewater treatment.

  6. A high yield multi-method extraction protocol for protein quantification in activated sludge.

    PubMed

    Monique, Ras; Elisabeth, Girbal-Neuhauser; Etienne, Paul; Dominique, Lefebvre

    2008-11-01

    A multi-method extraction protocol based on mechanical, ionic and hydrophobic methods was investigated on two types of activated sludge samples. Extraction methods were chosen with regards to optimal protein yield without cell disruption. Sonication, EDTA and Tween extraction methods were selected and combined. The total amount of protein released by the multi-method protocol sums up to 191 and 264 mg equiv. BSA/g VSS for the two different sludge samples. Protocol repetition on the same sample showed that protein yield after each successive protocol fitted an exponential curve model. The total amount of extractable proteins was evaluated by model predictions, 423 and 516 mg equiv. BSA/g VSS for the two sludge samples. The multi-method extraction protocol appears relevant for harvesting a representative quantity of proteins from the original sample (45-49%), moreover the multi-method criterion of the protocol also offers a heterogeneous pool of proteins. Thus, further qualitative studies may not be biased by the extraction protocol.

  7. Contribution of stratified extracellular polymeric substances to the gel-like and fractal structures of activated sludge.

    PubMed

    Yuan, D Q; Wang, Y L; Feng, J

    2014-06-01

    The gel-like and fractal structures of activated sludge (AS) before and after extracellular polymeric substances (EPS) extraction as well as different EPS fractions were investigated. The contributions of individual components in different EPS fractions to the gel-like behavior of sludge samples by enzyme treatment were examined as well. The centrifugation and ultrasound method was employed to stratify the EPS into slime, loosely and tightly bound EPS (LB- and TB-EPS). It was observed that all samples behaved as weak gels with weak-link. TB-EPS and AS after LB-EPS extraction showed the strongest elasticity in higher concentrations and highest mass fractal dimension, which may indicate the key role of TB-EPS in the gel-like and fractal structures of the sludge. Effects of protease or amylase on the gel-like property of sludge samples differed in the presence of different EPS fractions.