Sample records for activated sludge bioreactor

  1. Bioreactor Scalability: Laboratory-Scale Bioreactor Design Influences Performance, Ecology, and Community Physiology in Expanded Granular Sludge Bed Bioreactors

    PubMed Central

    Connelly, Stephanie; Shin, Seung G.; Dillon, Robert J.; Ijaz, Umer Z.; Quince, Christopher; Sloan, William T.; Collins, Gavin

    2017-01-01

    Studies investigating the feasibility of new, or improved, biotechnologies, such as wastewater treatment digesters, inevitably start with laboratory-scale trials. However, it is rarely determined whether laboratory-scale results reflect full-scale performance or microbial ecology. The Expanded Granular Sludge Bed (EGSB) bioreactor, which is a high-rate anaerobic digester configuration, was used as a model to address that knowledge gap in this study. Two laboratory-scale idealizations of the EGSB—a one-dimensional and a three- dimensional scale-down of a full-scale design—were built and operated in triplicate under near-identical conditions to a full-scale EGSB. The laboratory-scale bioreactors were seeded using biomass obtained from the full-scale bioreactor, and, spent water from the distillation of whisky from maize was applied as substrate at both scales. Over 70 days, bioreactor performance, microbial ecology, and microbial community physiology were monitored at various depths in the sludge-beds using 16S rRNA gene sequencing (V4 region), specific methanogenic activity (SMA) assays, and a range of physical and chemical monitoring methods. SMA assays indicated dominance of the hydrogenotrophic pathway at full-scale whilst a more balanced activity profile developed during the laboratory-scale trials. At each scale, Methanobacterium was the dominant methanogenic genus present. Bioreactor performance overall was better at laboratory-scale than full-scale. We observed that bioreactor design at laboratory-scale significantly influenced spatial distribution of microbial community physiology and taxonomy in the bioreactor sludge-bed, with 1-D bioreactor types promoting stratification of each. In the 1-D laboratory bioreactors, increased abundance of Firmicutes was associated with both granule position in the sludge bed and increased activity against acetate and ethanol as substrates. We further observed that stratification in the sludge-bed in 1-D laboratory

  2. Regional synchrony in full-scale activated sludge bioreactors due to deterministic microbial community assembly

    PubMed Central

    Griffin, James S; Wells, George F

    2017-01-01

    Seasonal community structure and regionally synchronous population dynamics have been observed in natural microbial ecosystems, but have not been well documented in wastewater treatment bioreactors. Few studies of community dynamics in full-scale activated sludge systems facing similar meteorological conditions have been done to compare the importance of deterministic and neutral community assembly mechanisms. We subjected weekly activated sludge samples from six regional full-scale bioreactors at four wastewater treatment plants obtained over 1 year to Illumina sequencing of 16S ribosomal RNA genes, resulting in a library of over 17 million sequences. All samples derived from reactors treating primarily municipal wastewater. Despite variation in operational characteristics and location, communities displayed temporal synchrony at the individual operational taxonomic unit (OTU), broad phylogenetic affiliation and community-wide scale. Bioreactor communities were dominated by 134 abundant and highly regionally synchronized OTU populations that accounted for over 50% of the total reads. Non-core OTUs displayed abundance-dependent population synchrony. Alpha diversity varied by reactor, but showed a highly reproducible and synchronous seasonal fluctuation. Community similarity was dominated by seasonal changes, but individual reactors maintained minor stable differences after 1 year. Finally, the impacts of mass migration driven by direct biomass transfers between reactors was investigated, but had no significant effect on community similarity or diversity in the sink community. Our results show that population dynamics in activated sludge bioreactors are consistent with niche-driven assembly guided by seasonal temperature fluctuations. PMID:27996980

  3. Microalgae-activated sludge treatment of molasses wastewater in sequencing batch photo-bioreactor.

    PubMed

    Tsioptsias, Costas; Lionta, Gesthimani; Samaras, Petros

    2017-05-01

    The aim of this work was the examination of the treatment potential of molasses wastewater, by the utilization of activated sludge and microalgae. The systems used included a sequencing batch bioreactor and a similar photo-bioreactor, favoring microalgae growth. The microalgae treatment of molasses wastewater mixture resulted in a considerable reduction in the total nitrogen content. A reduction in the ammonium and nitrate content was observed in the photo-bioreactor, while the effluent's total nitrogen consisted mainly of 50% organic nitrogen. The transformation of the nitrogen forms in the photo-bioreactor was attributed to microalgae activity, resulting in the production of a better quality effluent. Lower COD removal was observed for the photo-bioreactor than the control, which however increased, by the replacement of the anoxic phase by a long aeration period. The mechanism of nitrogen removal included both the denitrification process during the anoxic stage and the microalgae activities, as the replacement of the anoxic stage resulted in low total nitrogen removal capacities. A decrease in the photobioreactor performance was observed after 35 days of operation due to biofilm formation on the light tube surface, while the operation at higher temperature accelerated microalgae growth, resulting thus in the early failure of the photoreactor.

  4. A comparison of the physical, chemical, and biological properties of sludges from a complete-mix activated sludge reactor and a submerged membrane bioreactor.

    PubMed

    Merlo, Rion P; Trussell, R Shane; Hermanowicz, Slawomir W; Jenkins, David

    2007-03-01

    The properties of sludges from a pilot-scale submerged membrane bioreactor (SMBR) and two bench-scale complete-mix, activated sludge (CMAS) reactors treating municipal primary effluent were determined. Compared with the CMAS sludges, the SMBR sludge contained a higher amount of soluble microbial products (SMP) and colloidal material attributed to the use of a membrane for solid-liquid separation; a higher amount nocardioform bacteria, resulting from efficient foam trapping; and a lower amount of extracellular polymeric substances (EPS), possibly because there was no selective pressure for the sludge to settle. High aeration rates in both the CMAS and SMBR reactors produced sludges with higher numbers of smaller particles. Normalized capillary suction time values for the SMBR sludge were lower than for the CMAS sludges, possibly because of its lower EPS content.

  5. Important operational parameters of membrane bioreactor-sludge disintegration (MBR-SD) system for zero excess sludge production.

    PubMed

    Yoon, Seong-Hoon

    2003-04-01

    In order to prevent excess sludge production during wastewater treatment, a membrane bioreactor-sludge disintegration (MBR-SD) system has been introduced, where the disintegrated sludge is recycled to the bioreactor as a feed solution. In this study, a mathematical model was developed by incorporating a sludge disintegration term into the conventional activated sludge model and the relationships among the operational parameters were investigated. A new definition of F/M ratio for the MBR-SD system was suggested to evaluate the actual organic loading rate. The actual F/M ratio was expected to be much higher than the apparent F/M ratio in MBR-SD. The kinetic parameters concerning the biodegradability of organics hardly affect the system performance. Instead, sludge solubilization ratio (alpha) in the SD process and particulate hydrolysis rate constant (k(h)) in biological reaction determine the sludge disintegration number (SDN), which is related with the overall economics of the MBR-SD system. Under reasonable alpha and k(h) values, SDN would range between 3 and 5 which means the amount of sludge required to be disintegrated would be 3-5 times higher for preventing a particular amount of sludge production. Finally, normalized sludge disintegration rate (q/V) which is needed to maintain a certain level of MLSS in the MBR-SD system was calculated as a function of F/V ratio.

  6. H2 production with anaerobic sludge using activated-carbon supported packed-bed bioreactors.

    PubMed

    Lee, Kuo-Shing; Lo, Yung-Sheng; Lo, Yung-Chung; Lin, Ping-Jei; Chang, Jo-Shu

    2003-01-01

    Packed-bed bioreactors containing activated carbon as support carrier were used to produce H2 anaerobically from a sucrose-limiting medium while acclimated sewage sludge was used as the H2 producer. The effects of bed porosity (epsilon(b)) and substrate loading rate on H2 fermentation were examined using packed beds with epsilon(b) of 70-90% being operated at hydraulic retention times (HRT) of 0.5-4 h. Higher epsilon(b) and lower HRT favored H2 production. With 20 g COD l(-1) of sucrose in the feed, the optimal H2 production rate (7.4 l h(-1) l(-1)) was obtained when the bed with epsilon(b) = 90% was operated at HRT = 0.5 h. Flocculation of cells enhanced the retention of sludge for stable operations of the bioreactor at low HRTs. The gas products resulting from fermentative H2 production consisted of 30-40% H2 and 60-70% CO2. Butyric acid was the primary soluble product, followed by propionic acid and valeric acid.

  7. Degradation of triclosan and triclocarban and formation of transformation products in activated sludge using benchtop bioreactors

    USDA-ARS?s Scientific Manuscript database

    Benchtop bioreactors were run aerobically with activated sludge samples collected from a large municipal wastewater treatment plant (WWTP) to understand how increased hydraulic retention time (HRT) and varying treatment temperatures (21°C and 30°C) impact concentrations of the endocrine disrupting a...

  8. Bacterial Community Dynamics in Full-Scale Activated Sludge Bioreactors: Operational and Ecological Factors Driving Community Assembly and Performance

    PubMed Central

    Valentín-Vargas, Alexis; Toro-Labrador, Gladys; Massol-Deyá, Arturo A.

    2012-01-01

    The assembling of bacterial communities in conventional activated sludge (CAS) bioreactors was thought, until recently, to be chaotic and mostly unpredictable. Studies done over the last decade have shown that specific, and often, predictable random and non-random factors could be responsible for that process. These studies have also motivated a “structure–function” paradigm that is yet to be resolved. Thus, elucidating the factors that affect community assembly in the bioreactors is necessary for predicting fluctuations in community structure and function. For this study activated sludge samples were collected during a one-year period from two geographically distant CAS bioreactors of different size. Combining community fingerprinting analysis and operational parameters data with a robust statistical analysis, we aimed to identify relevant links between system performance and bacterial community diversity and dynamics. In addition to revealing a significant β-diversity between the bioreactors’ communities, results showed that the largest bioreactor had a less dynamic but more efficient and diverse bacterial community throughout the study. The statistical analysis also suggests that deterministic factors, as opposed to stochastic factors, may have a bigger impact on the community structure in the largest bioreactor. Furthermore, the community seems to rely mainly on mechanisms of resistance and functional redundancy to maintain functional stability. We suggest that the ecological theories behind the Island Biogeography model and the species-area relationship were appropriate to predict the assembly of bacterial communities in these CAS bioreactors. These results are of great importance for engineers and ecologists as they reveal critical aspects of CAS systems that could be applied towards improving bioreactor design and operation. PMID:22880016

  9. Two Devices for Removing Sludge From Bioreactor Wastewater

    NASA Technical Reports Server (NTRS)

    Archer, Shivaun; Hitchens, G. DUncan; Jabs, Harry; Cross, Jennifer; Pilkinton, Michelle; Taylor, Michael

    2007-01-01

    Two devices a magnetic separator and a special filter denoted a self-regenerating separator (SRS) have been developed for separating sludge from the stream of wastewater from a bioreactor. These devices were originally intended for use in microgravity, but have also been demonstrated to function in normal Earth gravity. The magnetic separator (see Figure 1) includes a thin-walled nonmagnetic, stainless-steel cylindrical drum that rotates within a cylindrical housing. The wastewater enters the separator through a recirculation inlet, and about 80 percent of the wastewater flow leaves through a recirculation outlet. Inside the drum, a magnet holder positions strong permanent magnets stationary and, except near a recirculation outlet, close to the inner drum surface. To enable magnetic separation, magnetite (a ferromagnetic and magnetically soft iron oxide) powder is mixed into the bioreactor wastewater. The magnetite becomes incorporated into the sludge by condensation, onto the powder particles, of microbe flocks that constitute the sludge. As a result, the magnets inside the drum magnetically attract the sludge onto the outer surface of the drum.

  10. Anaerobic hydrogen production with an efficient carrier-induced granular sludge bed bioreactor.

    PubMed

    Lee, Kuo-Shing; Wu, Ji-Fang; Lo, Yung-Sheng; Lo, Yung-Chung; Lin, Ping-Jei; Chang, Jo-Shu

    2004-09-05

    A novel bioreactor containing self-flocculated anaerobic granular sludge was developed for high-performance hydrogen production from sucrose-based synthetic wastewater. The reactor achieved an optimal volumetric hydrogen production rate of approximately 7.3 L/h/L (7,150 mmol/d/L) and a maximal hydrogen yield of 3.03 mol H2/mol sucrose when it was operated at a hydraulic retention time (HRT) of 0.5 h with an influent sucrose concentration of 20 g COD/L. The gas-phase hydrogen content and substrate conversion also exceeded 40 and 90%, respectively, under optimal conditions. Packing of a small quantity of carrier matrices on the bottom of the upflow reactor significantly stimulated sludge granulation that can be accomplished within 100 h. Among the four carriers examined, spherical activated carbon was the most effective inducer for granular sludge formation. The carrier-induced granular sludge bed (CIGSB) bioreactor was started up with a low HRT of 4-8 h (corresponding to an organic loading rate of 2.5-5 g COD/h/L) and enabled stable operations at an extremely low HRT (up to 0.5 h) without washout of biomass. The granular sludge was rapidly formed in CIGSB supported with activated carbon and reached a maximal concentration of 26 g/L at HRT = 0.5 h. The ability to maintain high biomass concentration at low HRT (i.e., high organic loading rate) highlights the key factor for the remarkable hydrogen production efficiency of the CIGSB processes.

  11. Role of nickel in high rate methanol degradation in anaerobic granular sludge bioreactors

    PubMed Central

    Fermoso, Fernando G.; Collins, Gavin; Bartacek, Jan; O’Flaherty, Vincent

    2008-01-01

    The effect of nickel deprivation from the influent of a mesophilic (30°C) methanol fed upflow anaerobic sludge bed (UASB) reactor was investigated by coupling the reactor performance to the evolution of the Methanosarcina population of the bioreactor sludge. The reactor was operated at pH 7.0 and an organic loading rate (OLR) of 5–15 g COD l−1 day−1 for 191 days. A clear limitation of the specific methanogenic activity (SMA) on methanol due to the absence of nickel was observed after 129 days of bioreactor operation: the SMA of the sludge in medium with the complete trace metal solution except nickel amounted to 1.164 (±0.167) g CH4-COD g VSS−1 day−1 compared to 2.027 (±0.111) g CH4-COD g VSS−1 day−1 in a medium with the complete (including nickel) trace metal solution. The methanol removal efficiency during these 129 days was 99%, no volatile fatty acid (VFA) accumulation was observed and the size of the Methanosarcina population increased compared to the seed sludge. Continuation of the UASB reactor operation with the nickel limited sludge lead to incomplete methanol removal, and thus methanol accumulation in the reactor effluent from day 142 onwards. This methanol accumulation subsequently induced an increase of the acetogenic activity in the UASB reactor on day 160. On day 165, 77% of the methanol fed to the system was converted to acetate and the Methanosarcina population size had substantially decreased. Inclusion of 0.5 μM Ni (dosed as NiCl2) to the influent from day 165 onwards lead to the recovery of the methanol removal efficiency to 99% without VFA accumulation within 2 days of bioreactor operation. PMID:18247139

  12. Effects of chemical sludge disintegration on the performances of wastewater treatment by membrane bioreactor.

    PubMed

    Oh, Young-Khee; Lee, Ki-Ryong; Ko, Kwang-Baik; Yeom, Ick-Tae

    2007-06-01

    A new wastewater treatment process combining a membrane bioreactor (MBR) with chemical sludge disintegration was tested in bench scale experiments. In particular, the effects of the disintegration treatment on the excess sludge production in MBR were investigated. Two MBRs were operated. In one reactor, a part of the mixed liquor was treated with NaOH and ozone gas consecutively and was returned to the bioreactor. The flow rate of the sludge disintegration stream was 1.5% of the influent flow rate. During the 200 days of operation, the MLSS level in the bioreactor with the disintegration treatment was maintained relatively constant at the range of 10,000-11,000 mg/L while it increased steadily up to 25,000 mg/L in the absence of the treatment. In the MBR with the sludge disintegration, relatively constant transmembrane pressures (TMPs) could be maintained for more than 6 months while the MBR without disintegration showed an abrupt increase of TMP in the later phase of the operation. In conclusion, a complete control of excess sludge production in the membrane-coupled bioreactor was possible without significant deterioration of the treated water quality and membrane performances.

  13. A high-efficiency denitrification bioreactor for the treatment of acrylonitrile wastewater using waterborne polyurethane immobilized activated sludge.

    PubMed

    Dong, Honghong; Wang, Wei; Song, Zhaozheng; Dong, Hao; Wang, Jianfeng; Sun, Shanshan; Zhang, Zhongzhi; Ke, Ming; Zhang, Zhenjia; Wu, Wei-Min; Zhang, Guangqing; Ma, Jie

    2017-09-01

    The performance of a laboratory-scale, high-efficiency denitrification bioreactor (15L) using activated sludge immobilized by waterborne polyurethane in treating acrylonitrile wastewater with high concentration of nitrate nitrogen (249mg/L) was investigated. The bioreactor was operated at 30°C for 220days. Batch denitrification experiments showed that the optimal operation parameters were C/NO 3 - -N molar ratio of 2.0 using sodium acetate as electron donor and carrier filling rate of 20% (V/V) in the bioreactor. Stable performance of denitrification was observed with a hydraulic retention time of 30 to 38h. A volumetric removal rate up to 2.1kgN/m 3 ·d was achieved with a total nitrogen removal efficiency of 95%. Pyrosequencing results showed that Rhodocyclaceae and Pseudomonadaceae were the dominant bacterial families in the immobilized carrier and bioreactor effluent. The overall microbial diversity declined as denitrifiers gradually dominated and the relative abundance of other bacteria decreased along with testing time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Enhanced waste activated sludge digestion using a submerged anaerobic dynamic membrane bioreactor: performance, sludge characteristics and microbial community

    NASA Astrophysics Data System (ADS)

    Yu, Hongguang; Wang, Zhiwei; Wu, Zhichao; Zhu, Chaowei

    2016-02-01

    Anaerobic digestion (AD) plays an important role in waste activated sludge (WAS) treatment; however, conventional AD (CAD) process needs substantial improvements, especially for the treatment of WAS with low solids content and poor anaerobic biodegradability. Herein, we propose a submerged anaerobic dynamic membrane bioreactor (AnDMBR) for simultaneous WAS thickening and digestion without any pretreatment. During the long-term operation, the AnDMBR exhibited an enhanced sludge reduction and improved methane production over CAD process. Moreover, the biogas generated in the AnDMBR contained higher methane content than CAD process. Stable carbon isotopic signatures elucidated the occurrence of combined methanogenic pathways in the AnDMBR process, in which hydrogenotrophic methanogenic pathway made a larger contribution to the total methane production. It was also found that organic matter degradation was enhanced in the AnDMBR, thus providing more favorable substrates for microorganisms. Pyrosequencing revealed that Proteobacteria and Bacteroidetes were abundant in bacterial communities and Methanosarcina and Methanosaeta in archaeal communities, which played an important role in the AnDMBR system. This study shed light on the enhanced digestion of WAS using AnDMBR technology.

  15. Low-temperature limitation of bioreactor sludge in anaerobic treatment of domestic wastewater.

    PubMed

    Bowen, Emma J; Dolfing, Jan; Davenport, Russell J; Read, Fiona L; Curtis, Thomas P

    2014-01-01

    Two strategies exist for seeding low-temperature anaerobic reactors: the use of specialist psychrophilic biomass or mesophilic bioreactor sludge acclimated to low temperature. We sought to determine the low-temperature limitation of anaerobic sludge from a bioreactor acclimated to UK temperatures (<15 °C). Anaerobic incubation tests using low-strength real domestic wastewater (DWW) and various alternative soluble COD sources were conducted at 4, 8 and 15 °C; methanogenesis and acidogenesis were monitored separately. Production of methane and acetate was observed; decreasing temperature resulted in decreased yields and increased 'start-up' times. At 4 °C methanogenesis not hydrolysis/acidogenesis was rate-limiting. The final methane yields at 4 °C were less than 35% of the theoretical potential whilst at 8 and 15 °C more than 75 and 100% of the theoretical yield was achieved respectively. We propose that the lower temperature limit for DWW treatment with anaerobic bioreactor sludge lies between 8 and 4 °C and that 8 °C is the threshold for reliable operation.

  16. Enhanced waste activated sludge digestion using a submerged anaerobic dynamic membrane bioreactor: performance, sludge characteristics and microbial community

    PubMed Central

    Yu, Hongguang; Wang, Zhiwei; Wu, Zhichao; Zhu, Chaowei

    2016-01-01

    Anaerobic digestion (AD) plays an important role in waste activated sludge (WAS) treatment; however, conventional AD (CAD) process needs substantial improvements, especially for the treatment of WAS with low solids content and poor anaerobic biodegradability. Herein, we propose a submerged anaerobic dynamic membrane bioreactor (AnDMBR) for simultaneous WAS thickening and digestion without any pretreatment. During the long-term operation, the AnDMBR exhibited an enhanced sludge reduction and improved methane production over CAD process. Moreover, the biogas generated in the AnDMBR contained higher methane content than CAD process. Stable carbon isotopic signatures elucidated the occurrence of combined methanogenic pathways in the AnDMBR process, in which hydrogenotrophic methanogenic pathway made a larger contribution to the total methane production. It was also found that organic matter degradation was enhanced in the AnDMBR, thus providing more favorable substrates for microorganisms. Pyrosequencing revealed that Proteobacteria and Bacteroidetes were abundant in bacterial communities and Methanosarcina and Methanosaeta in archaeal communities, which played an important role in the AnDMBR system. This study shed light on the enhanced digestion of WAS using AnDMBR technology. PMID:26830464

  17. Microbial adaptation to biodegrade toxic organic micro-pollutants in membrane bioreactor using different sludge sources.

    PubMed

    Boonnorat, Jarungwit; Chiemchaisri, Chart; Chiemchaisri, Wilai; Yamamoto, Kazuo

    2014-08-01

    Biodegradation of toxic organic micro-pollutants in municipal solid waste (MSW) leachate by membrane bioreactor (MBR) was investigated. The MBR systems were seeded with different sludge sources, one was from a pilot-scale MBR system treating MSW leachate and the other was from an activated sludge sewage treatment plant. The biodegradation of BPA, 2,6-DTBP, BHT, DEP, DBP and DEHP, DCP and BBzP, by sludge from both reactors were found improved with time. However, enhanced biodegradation of micro-pollutants was observed in MBR operated under long sludge age condition. Bacterial population analyses determined by PCR-DGGE revealed the development of phenol and phthalate degrading bacteria consortium in MBR sludge during its operation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Effects of sludge concentrations and different sponge configurations on the performance of a sponge-submerged membrane bioreactor.

    PubMed

    Nguyen, Tien Thanh; Ngo, Huu Hao; Guo, Wenshan; Li, Jianxin; Listowski, Andrzej

    2012-07-01

    The performance of a novel sponge-submerged membrane bioreactor (SSMBR) was evaluated to treat primary treated sewage effluent at three different activated sludge concentrations. Polyurethane sponge cubes with size of 1 × 1 × 1 cm were used as attached growth media in the bioreactor. The results indicated the successful removal of organic carbon and phosphorous with the efficiency higher than 98% at all conditions. Acclimatised sponge MBR showed about 5% better ammonia nitrogen removal at 5 and 10 g/L sludge concentration as compared to the new sponge system. The respiration test revealed that the specific oxygen uptake rate was around 1.0-3.5 mgO(2)/gVSS.h and likely more stable at 10 g/L sludge concentration. The sludge volume index of less than 100 mL/g during the operation indicated the good settling property of the sludge. The low mixed liquor suspended solid increase indicated that SSMBR could control the sludge production. This SSMBR was also successful in reducing membrane fouling with significant lower transmembrane pressure (e.g. only 0.5 kPa/day) compared to the conventional MBR system. Further study will be conducted to optimise other operating conditions.

  19. Startup of the Anammox Process in a Membrane Bioreactor (AnMBR) from Conventional Activated Sludge.

    PubMed

    Gutwiński, P; Cema, G; Ziembińska-Buczyńska, A; Surmacz-Górska, J; Osadnik, M

    2016-12-01

      In this study, a laboratory-scale anammox process in a membrane bioreactor (AnMBR) was used to startup the anaerobic ammonium oxidation (anammox) process from conventional activated sludge. Stable operation was achieved after 125 days. From that time, nitrogen load was gradually increased. After six months, the average nitrogen removal efficiency exceeded 80%. The highest obtained special anammox activity (SAA) achieved was 0.17 g (-N + -N) (g VSS × d)-1. Fluorescent in situ hybridization also proved the presence of the anammox bacteria, typically a genus of Brocadia anammoxidans and Kuenenia stuttgartiensis.

  20. Integrated fixed-biofilm activated sludge reactor as a powerful tool to enrich anammox biofilm and granular sludge.

    PubMed

    Zhang, Liang; Liu, Miaomiao; Zhang, Shujun; Yang, Yandong; Peng, Yongzhen

    2015-12-01

    A pilot-scale activated sludge bioreactor was filled with immobile carrier to treat high ammonium wastewater. Autotrophic nitrogen elimination occurred rapidly by inoculating nitrifying activated sludge and anammox biofilm. As the ammonium loading rate increased, nitrogen removal rate of 1.2kgNm(-3)d(-1) was obtained with the removal efficiency of 80%. Activated sludge diameter distribution profiles presented two peak values, indicating simultaneous existence of flocculent and granular sludge. Red granular sludge was observed in the reactor. Furthermore, the results of morphological and molecular analysis showed that the characteristics of granular sludge were similar to that of biofilm, while much different from the flocculent sludge. It was assumed granular sludge was formed through the continuous growth and detachment of anammox biofilm. The mechanism of granular sludge formation was discussed and the procedure model was proposed. According to the experimental results, the integrated fixed-biofilm activated sludge reactor provided an alternative to nitrogen removal based on anammox. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Impact of Coagulant and Flocculant Addition to an Anaerobic Dynamic Membrane Bioreactor (AnDMBR) Treating Waste-Activated Sludge.

    PubMed

    Kooijman, Guido; Lopes, Wilton; Zhou, Zhongbo; Guo, Hongxiao; de Kreuk, Merle; Spanjers, Henri; van Lier, Jules

    2017-03-23

    In this work, we investigated the effects of flocculation aid (FA) addition to an anaerobic dynamic membrane bioreactor (AnDMBR) (7 L, 35 °C) treating waste-activated sludge (WAS). The experiment consisted of three distinct periods. In period 1 (day 1-86), the reactor was operated as a conventional anaerobic digester with a solids retention time (SRT) and hydraulic retention time (HRT) of 24 days. In period 2 (day 86-303), the HRT was lowered to 18 days with the application of a dynamic membrane while the SRT was kept the same. In period 3 (day 303-386), a cationic FA in combination with FeCl₃ was added. The additions led to a lower viscosity, which was expected to lead to an increased digestion performance. However, the FAs caused irreversible binding of the substrate, lowering the volatile solids destruction from 32% in period 2 to 24% in period 3. An accumulation of small particulates was observed in the sludge, lowering the average particle size by 50%. These particulates likely caused pore blocking in the cake layer, doubling the trans-membrane pressure. The methanogenic consortia were unaffected. Dosing coagulants and flocculants into an AnDMBR treating sludge leads to a decreased cake layer permeability and decreased sludge degradation.

  2. Change in the fouling propensity of sludge in membrane bioreactors (MBR) in relation to the accumulation of biopolymer clusters.

    PubMed

    Sun, Fei-yun; Wang, Xiao-mao; Li, Xiao-yan

    2011-04-01

    A membrane bioreactor (MBR) and an activated sludge process (ASP) were operated side by side to evaluate the change of sludge supernatant characteristics and the evolution of the sludge fouling propensity. The MBR sludge had a higher organic concentration and more biopolymer clusters (BPC) in the supernatant compared with ASP. BPC increased in both concentration and size in the MBR. The results show that the change in the liquid-phase property had a profound effect on the sludge fouling propensity. MBR operation transformed typical activated sludge to MBR sludge with a higher fouling propensity. Distinct from the ASP, membrane filtration retained soluble microbial products (SMP) within the MBR, and the vast membrane surface provided a unique environment for the transformation of SMP to large size BPC, leading to further sludge deposition on the membrane surface. Thus, membrane filtration is the crucial cause of the inevitable fouling problem in submerged MBRs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Membrane fouling in a submerged membrane bioreactor with focus on surface properties and interactions of cake sludge and bulk sludge.

    PubMed

    Yu, Haiying; Lin, Hongjun; Zhang, Meijia; Hong, Huachang; He, Yiming; Wang, Fangyuan; Zhao, Leihong

    2014-10-01

    In this study, the fouling behaviors and surface properties of cake sludge and bulk sludge in a submerged membrane bioreactor (MBR) were investigated and compared. It was found that the specific filtration resistance (SFR) of cake sludge was about 5 times higher than that of bulk sludge. Two types of sludge possessed similar extracellular polymeric substances (EPS) content, particle size distribution (PSD) and zeta potential. However, their surface properties in terms of surface tensions were significantly different. Further analysis showed that cake sludge was more hydrophilic and had worse aggregation ability. Moreover, cake sludge surface possessed more hydrocarbon, less oxygen and nitrogen moieties than bulk sludge surface. It was suggested that, rather than EPS and PSD differences, the differences in the surface composition were the main cause of the great differences in SFR and adhesion ability between cake sludge and bulk sludge. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Enhanced Lipid and Biodiesel Production from Glucose-Fed Activated Sludge: Kinetics an Microbial Community Analysis

    EPA Science Inventory

    An innovative approach to increase biofuel feedstock lipid yields from municipal sewage sludge via manipulation of carbon:nitrogen (C:N) ratio and glucose loading in activated sludge bioreactors was investigated. Sludge lipid and fatty acid methyl ester (biodiesel) yields (% cel...

  5. Alternative treatment for septic tank sludge: co-digestion with municipal solid waste in bioreactor landfill simulators.

    PubMed

    Valencia, R; den Hamer, D; Komboi, J; Lubberding, H J; Gijzen, H J

    2009-02-01

    Co-disposal of septic tank sludge had a positive effect on the municipal solid waste (MSW) stabilisation process in Bioreactor Landfill simulators. Co-disposal experiments were carried out using the Bioreactor Landfill approach aiming to solve the environmental problems caused by indiscriminate and inadequate disposal of MSW and especially of septic tank sludge. The simulator receiving septic tank sludge exhibited a 200 days shorter lag-phase as compared to the 350 days required by the control simulator to start the exponential biogas production. Additionally, the simulator with septic sludge apparently retained more moisture (>60% w/w), which enhanced the overall conversion of organic matter hence increasing the biogas production (0.60 m3 biogas kg(-1)VS(converted)) and removal efficiency of 60% for VS from the simulator. Alkaline pH values (pH>8.5) did not inhibit the biogas production; moreover it contributed to reduce partially the negative effects of NH(4)(+) (>2 g L(-1)) due to NH(3) volatilisation thus reducing the nitrogen content of the residues. Associated risks and hazards with septage disposal were practically eliminated as total coliform and faecal coliform contents were reduced by 99% and 100%, respectively at the end of the experiment. These results indicate that co-disposal has two direct benefits, including the safe and environmentally sound disposal of septic tank sludge and an improvement of the overall performance of the Bioreactor Landfill by increasing moisture retention and supplying a more acclimatised bacterial population.

  6. Anaerobic digestion of municipal wastewater sludges using anaerobic fluidized bed bioreactor.

    PubMed

    Mustafa, Nizar; Elbeshbishy, Elsayed; Nakhla, George; Zhu, Jesse

    2014-11-01

    The anaerobic digestion of primary sludge (PS) and thickened waste activated sludge (TWAS) using an anaerobic fluidized bed bioreactor (AnFBR) employing zeolite particles as the carrier media was investigated at different organic loading rates (OLRs). PS was tested at OLRs from 4.2 to 39kgCOD/m(3)-d corresponding to hydraulic retention times (HRTs) from 1.0 to 8.9days. The highest COD removal and VSS destruction efficiencies for primary sludge of 85% and 88%, respectively, were achieved at an HRT of 8.9days and OLR of 4.2kgCOD/m(3)-d. For TWAS, VSS destruction efficiencies varied from 42% at an HRT of 2.6days and OLR of 13.1kgCOD/m(3)-d to 69% at an HRT of 8.8days and an OLR of 4.2kgCOD/m(3)-d. The first-order COD biodegradation rates in the AnFBR for PS and TWAS were 0.4d(-1) and 0.1d(-1), respectively, almost double the rates in conventional high-rate digesters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment.

    PubMed

    Radjenović, Jelena; Petrović, Mira; Barceló, Damià

    2009-02-01

    In this paper we report on the performances of full-scale conventional activated sludge (CAS) treatment and two pilot-scale membrane bioreactors (MBRs) in eliminating various pharmaceutically active compounds (PhACs) belonging to different therapeutic groups and with diverse physico-chemical properties. Both aqueous and solid phases were analysed for the presence of 31 pharmaceuticals included in the analytical method. The most ubiquitous contaminants in the sewage water were analgesics and anti-inflammatory drugs ibuprofen (14.6-31.3 microg/L) and acetaminophen (7.1-11.4 microg/L), antibiotic ofloxacin (0.89-31.7 microg/L), lipid regulators gemfibrozil (2.0-5.9 microg/L) and bezafibrate (1.9-29.8 microg/L), beta-blocker atenolol (0.84-2.8 microg/L), hypoglycaemic agent glibenclamide (0.12-15.9 microg/L) and a diuretic hydrochlorothiazide (2.3-4.8 microg/L). Also, several pharmaceuticals such as ibuprofen, ketoprofen, diclofenac, ofloxacin and azithromycin were detected in sewage sludge at concentrations up to 741.1, 336.3, 380.7, 454.7 and 299.6 ng/g dry weight. Two pilot-scale MBRs exhibited enhanced elimination of several pharmaceutical residues poorly removed by the CAS treatment (e.g., mefenamic acid, indomethacin, diclofenac, propyphenazone, pravastatin, gemfibrozil), whereas in some cases more stable operation of one of the MBR reactors at prolonged SRT proved to be detrimental for the elimination of some compounds (e.g., beta-blockers, ranitidine, famotidine, erythromycin). Moreover, the anti-epileptic drug carbamazepine and diuretic hydrochlorothiazide by-passed all three treatments investigated. Furthermore, sorption to sewage sludge in the MBRs as well as in the entire treatment line of a full-scale WWTP is discussed for the encountered analytes. Among the pharmaceuticals encountered in sewage sludge, sorption to sludge could be a relevant removal pathway only for several compounds (i.e., mefenamic acid, propranolol, and loratidine). Especially in the

  8. Start-up of the ananmmox process from the conventional activated sludge in a hybrid bioreactor.

    PubMed

    Duan, Xiumei; Zhou, Jiti; Qiao, Sen; Yin, Xin; Tian, Tian; Xu, Fangdi

    2012-01-01

    The anaerobic ammonium oxidation (anammox) process was successfully started up from conventional activated sludge using a hybrid bioreactor within 2 months. The average removal efficiencies of ammonia and nitrite were both over 80%, and the maximum total nitrogen removal rate of 1.85 kg N/(m3 x day) was obtained on day 362 with the initial sludge concentration of 0.7 g mixed liquor suspended solids (MLSS)/L. Scanning electron microscope (SEM) observation of the granular sludge in the hybrid reactor clearly showed a high degree of compactness and cell sphericity, and the cell size was quite uniform. Transmission electron microscope photos showed that cells were round or oval, the cellular diameter was 0.6-1.0 microm, and the percentage of the anammoxosome compartment was 51%-85% of the whole cell volume. Fluorescence in situ hybridization analysis (FISH) indicated that anammox bacteria became the dominant population in the community (accounting for more than 51% of total bacteria on day 250). Seven planctomycete 16S rRNA gene sequences were present in the 16S rRNA gene clone library generated from the biomass and affiliated to Candidatus Kuenenia stuttgartiensis and Candidatus Brocadia sp., a new anammox species. In addition, the average effluent suspended solid (MLSS) concentrations of outlets I (above the non-woven carrier) and II (below the non-woven carrier) were 0.0009 and 0.0035 g/L, respectively. This showed that the non-woven carrier could catch the biomass effectively, which increased biomass and improved the nitrogen removal rate in the reactor.

  9. Membrane filtration device for studying compression of fouling layers in membrane bioreactors

    PubMed Central

    Bugge, Thomas Vistisen; Larsen, Poul; Nielsen, Per Halkjær; Christensen, Morten Lykkegaard

    2017-01-01

    A filtration devise was developed to assess compressibility of fouling layers in membrane bioreactors. The system consists of a flat sheet membrane with air scouring operated at constant transmembrane pressure to assess the influence of pressure on resistance of fouling layers. By fitting a mathematical model, three model parameters were obtained; a back transport parameter describing the kinetics of fouling layer formation, a specific fouling layer resistance, and a compressibility parameter. This stands out from other on-site filterability tests as model parameters to simulate filtration performance are obtained together with a characterization of compressibility. Tests on membrane bioreactor sludge showed high reproducibility. The methodology’s ability to assess compressibility was tested by filtrations of sludges from membrane bioreactors and conventional activated sludge wastewater treatment plants from three different sites. These proved that membrane bioreactor sludge showed higher compressibility than conventional activated sludge. In addition, detailed information on the underlying mechanisms of the difference in fouling propensity were obtained, as conventional activated sludge showed slower fouling formation, lower specific resistance and lower compressibility of fouling layers, which is explained by a higher degree of flocculation. PMID:28749990

  10. Fate of antibiotics in activated sludge followed by ultrafiltration (CAS-UF) and in a membrane bioreactor (MBR).

    PubMed

    Sahar, Eyal; Messalem, Rami; Cikurel, Haim; Aharoni, Avi; Brenner, Asher; Godehardt, Manuel; Jekel, Martin; Ernst, Mathias

    2011-10-15

    The fates of several macrolide, sulphonamide, and trimethoprim antibiotics contained in the raw sewage of the Tel-Aviv wastewater treatment plant (WWTP) were investigated after the sewage was treated using either a full-scale conventional activated sludge (CAS) system coupled with a subsequent ultrafiltration (UF) step or a pilot membrane bioreactor (MBR) system. Antibiotics removal in the MBR system, once it achieved stable operation, was 15-42% higher than that of the CAS system. This advantage was reduced to a maximum of 20% when a UF was added to the CAS. It was hypothesized that the contribution of membrane separation (in both systems) to antibiotics removal was due either to sorption to biomass (rather than improvement in biodegradation) or to enmeshment in the membrane biofilm (since UF membrane pores are significantly larger than the contaminant molecules). Batch experiments with MBR biomass showed a markedly high potential for sorption of the tested antibiotics onto the biomass. Moreover, methanol extraction of MBR biomass released significant amounts of sorbed antibiotics. This finding implies that more attention must be devoted to the management of excess sludge. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. High-rate composting of barley dregs with sewage sludge in a pilot scale bioreactor.

    PubMed

    Lu, Li-An; Kumar, Mathava; Tsai, Jen-Chieh; Lin, Jih-Gaw

    2008-05-01

    The feasibility of high-rate composting of barley dregs and sewage sludge was examined using a pilot scale bioreactor. A central composite design (CCD) was used to optimize the mix ratio of barley dregs/sewage sludge and moisture content. The performance of the bioreactor was monitored as a function of carbon decomposition rate (CDR) and total volatile solids (TVS) loss rate. The optimum range of mix ratio and moisture content was found to be 35-40% and 55-60%, respectively. High CO2 evolution rate (CER) and TVS loss rate were observed after 3 days of the composting and the compost was matured/stable after 7 days. Cardinal temperature model with inflection (CTMI) was used to analyze the compost stability with respect to CER as a parameter of composting efficiency. After examining the phytotoxicity, the compost can be promoted for land application.

  12. Acclimation of aerobic-activated sludge degrading benzene derivatives and co-metabolic degradation activities of trichloroethylene by benzene derivative-grown aerobic sludge.

    PubMed

    Wang, Shizong; Yang, Qi; Bai, Zhiyong; Wang, Shidong; Wang, Yeyao; Nowak, Karolina M

    2015-01-01

    The acclimation of aerobic-activated sludge for degradation of benzene derivatives was investigated in batch experiments. Phenol, benzoic acid, toluene, aniline and chlorobenzene were concurrently added to five different bioreactors which contained the aerobic-activated sludge. After the acclimation process ended, the acclimated phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic-activated sludge were used to explore the co-metabolic degradation activities of trichloroethylene (TCE). Monod equation was employed to simulate the kinetics of co-metabolic degradation of TCE by benzene derivative-grown sludge. At the end of experiments, the mixed microbial communities grown under different conditions were identified. The results showed that the acclimation periods of microorganisms for different benzene derivatives varied. The maximum degradation rates of TCE for phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic sludge were 0.020, 0.017, 0.016, 0.0089 and 0.0047 mg g SS(-1) h(-1), respectively. The kinetic of TCE degradation in the absence of benzene derivative followed Monod equation well. Also, eight phyla were observed in the acclimated benzene derivative-grown aerobic sludge. Each of benzene derivative-grown aerobic sludge had different microbial community composition. This study can hopefully add new knowledge to the area of TCE co-metabolic by mixed microbial communities, and further the understanding on the function and applicability of aerobic-activated sludge.

  13. Modeling energy consumption in membrane bioreactors for wastewater treatment in north Africa.

    PubMed

    Skouterisl, George; Arnot, Tom C; Jraou, Mouna; Feki, Firas; Sayadi, Sami

    2014-03-01

    Two pilot-scale membrane bioreactors were operated alongside a full-sized activated sludge plant in Tunisia in order to compare specific energy demand and treated water quality. Energy consumption rates were measured for the complete membrane bioreactor systems and for their different components. Specific energy demand was measured for the systems and compared with the activated sludge plant, which operated at around 3 kWh m(-3). A model was developed for each membrane bioreactor based on both dynamic and steady-state mass balances, microbial kinetics and stoichiometry, and energy balance. Energy consumption was evaluated as a function of mixed-liquor suspended solids concentration, net permeate fluxes, and the resultant treated water quality. This work demonstrates the potential for using membrane bioreactors in decentralised domestic water treatment in North Africa, at energy consumption levels similar or lower than conventional activated sludge systems, with the added benefit of producing treated water suitable for unrestricted crop irrigation.

  14. Electricity generation and in situ phosphate recovery from enhanced biological phosphorus removal sludge by electrodialysis membrane bioreactor.

    PubMed

    Geng, Yi-Kun; Wang, Yunkun; Pan, Xin-Rong; Sheng, Guo-Ping

    2018-01-01

    In this study, a novel electrodialysis membrane bioreactor was used for EBPR sludge treatment for energy and phosphorus resource recovery simultaneously. After 30days stable voltage outputting, the maximum power density reached 0.32W/m 3 . Over 90% of phosphorus in EBPR sludge was released while about 50% of phosphorus was concentrated to 4mmol/L as relatively pure phosphate solution. Nitrogen could be removed from EBPR sludge by desalination and denitrification processes. This study provides an optimized way treating sludge for energy production and in situ phosphorus recovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Enrichment of denitrifying methanotrophic bacteria from municipal wastewater sludge in a membrane bioreactor at 20°C.

    PubMed

    Kampman, Christel; Temmink, Hardy; Hendrickx, Tim L G; Zeeman, Grietje; Buisman, Cees J N

    2014-06-15

    Simultaneous nitrogen and methane removal by the slow growing denitrifying methanotrophic bacterium 'Candidatus Methylomirabilis oxyfera' offers opportunities for a new approach to wastewater treatment. However, volumetric nitrite consumption rates should be increased by an order of magnitude before application in wastewater treatment becomes possible. A maximum volumetric nitrite consumption rate of 36 mg NO2(-)-N/L d was achieved in a membrane bioreactor inoculated with wastewater sludge and operated at 20°C. This rate is similar to maximum rates reported in literature, though it was thought that by strict biomass retention using membranes, higher rates would be achieved. In experiments lasting several years, growth was not stable: every experiment showed a decrease in activity after 1-2 years. The cause remains unknown. Rates increased after addition of copper and operating a membrane bioreactor at shorter hydraulic retention times. Further research should focus on long-term effects of copper addition and operation at hydraulic retention times in the order of hours using membrane bioreactors. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. IASON - Intelligent Activated Sludge Operated by Nanotechnology - Hydrogel Microcarriers in Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Fleit, E.; Melicz, Z.; Sándor, D.; Zrínyi, M.; Filipcsei, G.; László, K.; Dékány, I.; Király, Z.

    Performance of biological wastewater treatment depends to a large extent on mechanical strength, size distribution, permeability and other textural properties of the activated sludge flocs. A novel approach was developed in applying synthetic polymer materials to organize floc architecture instead of spontaneously formed activated sludge floc. Developed microcarrier polymer materials were used in our experiments to mitigate technological goals. Preliminary results suggest that the PVA-PAA (polyvinyl alcohol-polyacrylic acid copolymer) is a feasible choice for skeleton material replacing "traditional" activated sludge floc. Use of PVA-PAA hydrogel material as microreactors and methods for biofilm formation of wastewater bacteria on the carrier material are described. Laboratory scale experimental results with microscopic size bioreactors and their potential application for simultaneous nitrification and denitrification are presented.

  17. Micrococcus flavus sp. nov., isolated from activated sludge in a bioreactor.

    PubMed

    Liu, Xing-Yu; Wang, Bao-Jun; Jiang, Cheng-Ying; Liu, Shuang-Jiang

    2007-01-01

    Bacterial strain LW4(T) was isolated from activated sludge of a wastewater-treatment bioreactor. Cells of strain LW4(T) were Gram-positive cocci, with a diameter of 0.7-1.0 microm. Colonies produced on LB agar plates were yellow, smooth, circular and 0.5-1.5 mm in diameter. Strain LW4(T) was aerobic and grew over the temperature range 26-34 degrees C and pH range 5-9, with optimal growth at 30.5-31.5 degrees C and pH 6.0-6.2. The cell-wall peptidoglycan of strain LW4(T) contained amino acid residues of lysine, glutamic acid, alanine, glycine and aspartic acid. The most abundant cellular fatty acids of strain LW4(T) were anteiso-C(15 : 0) (32.15 %) and iso-C(15 : 0) (31.65 %). Major respiratory quinones were MK-8(H(2)) (57.3 %) and MK-7(H(2)) (32.9 %). The DNA G+C content was 71.4 mol% (T(m)). 16S rRNA gene sequence analysis indicated that strain LW4(T) was phylogenetically related to members of the genus Micrococcus, with similarities ranging from 96.5 to 97.3 %. Levels of DNA-DNA relatedness of strain LW4(T) to Micrococcus luteus DSM 20030(T), Micrococcus lylae DSM 20315(T) and Micrococcus antarcticus AS 1.2372(T) were 55, 48 and 36 %, respectively. Based on these results, it is concluded that strain LW4(T) represents a novel species of the genus Micrococcus, for which the name Micrococcus flavus sp. nov. is proposed. The type strain is strain LW4(T) (=CGMCC 1.5361(T)=JCM 14000(T)).

  18. Improving efficiency of transport fuels production by thermal hydrolysis of waste activated sludge

    NASA Astrophysics Data System (ADS)

    Gulshin, Igor

    2017-10-01

    The article deals with issues of transport biofuels. Transport biofuels are an important element of a system of energy security. Moreover, as part of a system it is inextricably linked to the urban, rural or industrial infrastructure. The paper discusses methods of increasing the yield of biogas from anaerobic digesters at wastewater treatment plants. The thermal hydrolysis method was considered. The main advantages and drawbacks of this method were analyzed. The experimental biomass (from SNDOD-bioreactor) and high-organic substrate have been previously studied by respirometry methods. A biomethane potential of the investigated organic substrate has high rates because of substrate composition (the readily biodegradable substrate in the total composition takes about 85%). Waste activated sludge from SNDOD-bioreactor can be used for biofuel producing with high efficiency especially with pre-treatment like a thermal hydrolysis. Further studies have to consider the possibility of withdrawing inhibitors from waste activated sludge.

  19. Filtration Characterization Method as Tool to Assess Membrane Bioreactor Sludge Filterability—The Delft Experience

    PubMed Central

    Lousada-Ferreira, Maria; Krzeminski, Pawel; Geilvoet, Stefan; Moreau, Adrien; Gil, Jose A.; Evenblij, Herman; van Lier, Jules B.; van der Graaf, Jaap H. J. M.

    2014-01-01

    Prevention and removal of fouling is often the most energy intensive process in Membrane Bioreactors (MBRs), responsible for 40% to 50% of the total specific energy consumed in submerged MBRs. In the past decade, methods were developed to quantify and qualify fouling, aiming to support optimization in MBR operation. Therefore, there is a need for an evaluation of the lessons learned and how to proceed. In this article, five different methods for measuring MBR activated sludge filterability and critical flux are described, commented and evaluated. Both parameters characterize the fouling potential in full-scale MBRs. The article focuses on the Delft Filtration Characterization method (DFCm) as a convenient tool to characterize sludge properties, namely on data processing, accuracy, reproducibility, reliability, and applicability, defining the boundaries of the DFCm. Significant progress was made concerning fouling measurements in particular by using straight forward approaches focusing on the applicability of the obtained results. Nevertheless, a fouling measurement method is still to be defined which is capable of being unequivocal, concerning the fouling parameters definitions; practical and simple, in terms of set-up and operation; broad and useful, in terms of obtained results. A step forward would be the standardization of the aforementioned method to assess the sludge filtration quality. PMID:24957174

  20. Influence of operational conditions on the performance of a mesh filter activated sludge process.

    PubMed

    Fuchs, W; Resch, C; Kernstock, M; Mayer, M; Schoeberl, P; Braun, R

    2005-03-01

    Recently, a new type of wastewater treatment system became the focus of scientific research, the mesh filter activated sludge system. It is a modification of the membrane bioreactor where a membrane filtration process serves to separate the sludge from the purified effluent. The difference is that a mesh filter is used instead of the membrane. Due to the much larger pore size of the mesh, the effluent is not of the same excellent quality as with membrane bioreactors. Nevertheless, it still resembles the quality of the now most widely used standard treatment system, where settling tanks are used to retain the activated sludge. At the same time, the new system features all the other advantages of membrane bioreactors including elevated sludge concentrations resulting in decreased volumina of basins and complete substitution of the settling tank. Therefore, this process presents a potential future alternative where a small footprint of the plant is required. However, so far only a few preliminary studies on this innovative process type have been done. In this paper, the effects of suspended solids concentration, flux rate as well as aeration rate on the effluent quality are discussed. Furthermore, the characteristic of the sludge floc was identified as a factor of vital importance. Therefore, another influencing parameter, the food to microorganism (F/M) ratio, which is known to have a significant effect on floc characteristics, was studied. The main result demonstrated that the process was very effective under most of the operation conditions. The suspended solids concentration in the effluent was below 12 mg l(-1), the average COD in the effluent was between 24 and 45 mg l(-1) and the BOD(5) was lower than 5 mg l(-1). High flux rates of up to 150 l m(-2)h(-1) were also achieved.

  1. Activated sludge model (ASM) based modelling of membrane bioreactor (MBR) processes: a critical review with special regard to MBR specificities.

    PubMed

    Fenu, A; Guglielmi, G; Jimenez, J; Spèrandio, M; Saroj, D; Lesjean, B; Brepols, C; Thoeye, C; Nopens, I

    2010-08-01

    Membrane bioreactors (MBRs) have been increasingly employed for municipal and industrial wastewater treatment in the last decade. The efforts for modelling of such wastewater treatment systems have always targeted either the biological processes (treatment quality target) as well as the various aspects of engineering (cost effective design and operation). The development of Activated Sludge Models (ASM) was an important evolution in the modelling of Conventional Activated Sludge (CAS) processes and their use is now very well established. However, although they were initially developed to describe CAS processes, they have simply been transferred and applied to MBR processes. Recent studies on MBR biological processes have reported several crucial specificities: medium to very high sludge retention times, high mixed liquor concentration, accumulation of soluble microbial products (SMP) rejected by the membrane filtration step, and high aeration rates for scouring purposes. These aspects raise the question as to what extent the ASM framework is applicable to MBR processes. Several studies highlighting some of the aforementioned issues are scattered through the literature. Hence, through a concise and structured overview of the past developments and current state-of-the-art in biological modelling of MBR, this review explores ASM-based modelling applied to MBR processes. The work aims to synthesize previous studies and differentiates between unmodified and modified applications of ASM to MBR. Particular emphasis is placed on influent fractionation, biokinetics, and soluble microbial products (SMPs)/exo-polymeric substances (EPS) modelling, and suggestions are put forward as to good modelling practice with regard to MBR modelling both for end-users and academia. A last section highlights shortcomings and future needs for improved biological modelling of MBR processes. (c) 2010 Elsevier Ltd. All rights reserved.

  2. Define of internal recirculation coefficient for biological wastewater treatment in anoxic and aerobic bioreactors

    NASA Astrophysics Data System (ADS)

    Rossinskyi, Volodymyr

    2018-02-01

    The biological wastewater treatment technologies in anoxic and aerobic bioreactors with recycle of sludge mixture are used for the effective removal of organic compounds from wastewater. The change rate of sludge mixture recirculation between bioreactors leads to a change and redistribution of concentrations of organic compounds in sludge mixture in bioreactors and change hydrodynamic regimes in bioreactors. Determination of the coefficient of internal recirculation of sludge mixture between bioreactors is important for the choice of technological parameters of biological treatment (wastewater treatment duration in anoxic and aerobic bioreactors, flow capacity of recirculation pumps). Determination of the coefficient of internal recirculation of sludge mixture requires integrated consideration of hydrodynamic parameter (flow rate), kinetic parameter (rate of oxidation of organic compounds) and physical-chemical parameter of wastewater (concentration of organic compounds). The conducted numerical experiment from the proposed mathematical equations allowed to obtain analytical dependences of the coefficient of internal recirculation sludge mixture between bioreactors on the concentration of organic compounds in wastewater, the duration of wastewater treatment in bioreactors.

  3. Comparison of biomass from integrated fixed-film activated sludge (IFAS), moving bed biofilm reactor (MBBR) and membrane bioreactor (MBR) treating recalcitrant organics: Importance of attached biomass.

    PubMed

    Huang, Chunkai; Shi, Yijing; Xue, Jinkai; Zhang, Yanyan; Gamal El-Din, Mohamed; Liu, Yang

    2017-03-15

    This study compared microbial characteristics and oil sands process-affected water (OSPW) treatment performance of five types of microbial biomass (MBBR-biofilm, IFAS-biofilm, IFAS-floc, MBR-aerobic-floc, and MBR-anoxic-floc) cultivated from three types of bioreactors (MBBR, IFAS, and MBR) in batch experiments. Chemical oxygen demand (COD), ammonium, acid extractable fraction (AEF), and naphthenic acids (NAs) removals efficiencies were distinctly different between suspended and attached bacterial aggregates and between aerobic and anoxic suspended flocs. MBR-aerobic-floc and MBR-anoxic-floc demonstrated COD removal efficiencies higher than microbial aggregates obtained from MBBR and IFAS, MBBR and IFAS biofilm had higher AEF removal efficiencies than those obtained using flocs. MBBR-biofilm demonstrated the most efficient NAs removal from OSPW. NAs degradation efficiency was highly dependent on the carbon number and NA cyclization number according to UPLC/HRMS analysis. Mono- and di-oxidized NAs were the dominant oxy-NA species in OSPW samples. Microbial analysis with quantitative polymerase chain reaction (q-PCR) indicated that the bacterial 16S rRNA gene abundance was significantly higher in the batch bioreactors with suspended flocs than in those with biofilm, the NSR gene abundance in the MBR-anoxic bioreactor was significantly lower than that in aerobic batch bioreactors, and denitrifiers were more abundant in the suspended phase of the activated sludge flocs. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Oceanobacillus neutriphilus sp. nov., isolated from activated sludge in a bioreactor.

    PubMed

    Yang, Jun-Yi; Huo, Ying-Yi; Xu, Xue-Wei; Meng, Fan-Xu; Wu, Min; Wang, Chun-Sheng

    2010-10-01

    A Gram-stain-positive, neutrophilic, rod-shaped bacterium, strain A1g(T), was isolated from activated sludge of a bioreactor and was subjected to a polyphasic taxonomic characterization. The isolate grew in the presence of 0-17.0 % (w/v) NaCl and at pH 6.0-9.0; optimum growth was observed in the presence of 3.0-5.0 % (w/v) NaCl and at pH 7.0. Strain A1g(T) was motile, formed cream-coloured colonies, was catalase- and oxidase-positive and was able to hydrolyse aesculin, Tween 40 and Tween 60. Chemotaxonomic analysis revealed menaquinone-7 as the predominant respiratory quinone and anteiso-C₁₅:₀, anteiso-C₁₇:₀, iso-C₁₆:₀ and iso-C₁₅:₀ as major fatty acids. The genomic DNA G+C content of strain A1g(T) was 36.3 mol%. Comparative 16S rRNA gene sequence analysis revealed that the new isolate belonged to the genus Oceanobacillus and exhibited closest phylogenetic affinity to the type strains of Oceanobacillus oncorhynchi subsp. incaldanensis (97.9 % similarity) and O. oncorhynchi subsp. oncorhynchi (97.5 %), but less than 97 % sequence similarity with respect to the type strains of other recognized Oceanobacillus species. Levels of DNA-DNA relatedness between strain A1g(T) and reference strains O. oncorhynchi subsp. incaldanensis DSM 16557(T), O. oncorhynchi subsp. oncorhynchi JCM 12661(T) and Oceanobacillus iheyensis DSM 14371(T) were 29, 45 and 38 %, respectively. On the basis of phenotypic and genotypic data, strain A1g(T) is considered to represent a novel species of the genus Oceanobacillus, for which the name Oceanobacillus neutriphilus sp. nov. is proposed. The type strain is A1g(T) (=CGMCC 1.7693(T) =JCM 15776(T)).

  5. Removal of triclosan in nitrifying activated sludge: effects of ammonia amendment and bioaugmentation.

    PubMed

    Lee, Do Gyun; Cho, Kun-Ching; Chu, Kung-Hui

    2015-04-01

    This study investigated two possible strategies, increasing ammonia oxidation activity and bioaugmenting with triclosan-degrader Sphingopyxis strain KCY1, to enhance triclosan removal in nitrifying activated sludge (NAS). Triclosan (2 mg L(-1)) was removed within 96-h in NAS bioreactors amended with 5, 25 and 75 mg L(-1) of ammonium (NH4-N). The fastest triclosan removal was observed in 25 mg NH4-NL(-1) amended-bioreactors where high ammonia oxidation occurred. Inhibition of ammonia oxidation and slower triclosan removal were observed in 75 mg NH4-NL(-1) amended-bioreactors. Triclosan removal was correlated to the molar ratio of the amount of nitrate produced to the amount of ammonium removed. Bioaugmentation with strain KCY1 did not enhance triclosan removal in the bioreactors with active ammonia oxidation. Approximately 36-42% and 59% of triclosan added were removed within 24-h by ammonia-oxidizing bacteria and unknown triclosan-degrading heterotrophs, respectively. The results suggested that increasing ammonia oxidation activity can be an effective strategy to enhance triclosan removal in NAS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Nitrous oxide from moving bed based integrated fixed film activated sludge membrane bioreactors.

    PubMed

    Mannina, Giorgio; Capodici, Marco; Cosenza, Alida; Di Trapani, Daniele; Laudicina, Vito Armando; Ødegaard, Hallvard

    2017-02-01

    The present paper reports the results of a nitrous oxide (N 2 O) production investigation in a moving bed based integrated fixed film activated sludge (IFAS) membrane bioreactor (MBR) pilot plant designed in accordance with the University of Cape Town layout for biological phosphorous removal. Gaseous and liquid samples were collected in order to measure the gaseous as well as the dissolved concentration of N 2 O. Furthermore, the gas flow rate from each reactor was measured and the gas flux was estimated. The results confirmed that the anoxic reactor represents the main source of nitrous oxide production. A significant production of N 2 O was, however, also found in the anaerobic reactor, thus indicating a probable occurrence of the denitrifying phosphate accumulating organism activity. The highest N 2 O fluxes were emitted from the aerated reactors (3.09 g N 2 ON m -2  h -1 and 9.87 g N 2 ON m -2  h -1 , aerobic and MBR tank, respectively). The emission factor highlighted that only 1% of the total treated nitrogen was emitted from the pilot plant. Furthermore, the measured N 2 O concentrations in the permeate flow were comparable with other reactors. Nitrous oxide mass balances outlined a moderate production also in the MBR reactor despite the low hydraulic retention time. On the other hand, the mass balance showed that in the aerobic reactor a constant consumption of nitrous oxide (up to almost 15 mg N 2 O h -1 ) took place, due to the high amount of stripped gas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The investigation of paper mill industry wastewater treatment and activated sludge properties in a submerged membrane bioreactor.

    PubMed

    Erkan, Hanife Sari; Engin, Guleda Onkal

    2017-10-01

    The paper mill industry produces high amounts of wastewater and, for this reason, stringent discharge limits are applied for sustainable reclamation and reuse of paper mill industry wastewater in many countries. Submerged membrane bioreactor (sMBR) systems can create new opportunities to eliminate dissolved substances present in paper mill wastewater including. In this study, a sMBR was operated for the treatment of paper mill industry wastewater at 35 h of hydraulic retention time (HRT) and 40 d of sludge retention time (SRT). The chemical oxygen demand (COD), NH 3 -N and total phosphorus (TP) removal efficiencies were found to be 98%, 92.99% and 96.36%. The results demonstrated that sMBR was a suitable treatment for the removal of organic matter and nutrients for treating paper mill wastewater except for the problem of calcium accumulation. During the experimental studies, it was noted that the inorganic fraction of the sludge increased as a result of calcium accumulation in the reactor and increased membrane fouling was observed on the membrane surface due to the calcification problem encountered. The properties of the sludge, such as extracellular polymeric substances (EPS) and soluble microbial products (SMP), relative hydrophobicity, zeta potential and floc size distribution were also monitored. According to the obtained results, the total EPS was found to be 43.93 mg/gMLSS and the average total SMP rejection by the membrane was determined as 66.2%.

  8. Evaluation of activated sludge for biodegradation of propylene glycol as an aircraft deicing fluid.

    PubMed

    Delorit, Justin D; Racz, LeeAnn

    2014-04-01

    Aircraft deicing fluid used at airport facilities is often collected for treatment or disposal in order to prevent serious ecological threats to nearby surface waters. This study investigated lab scale degradation of propylene glycol, the active ingredient in a common aircraft deicing fluid, by way of a laboratory-scale sequencing batch reactor containing municipal waste water treatment facility activated sludge performing simultaneous organic carbon oxidation and nitrification. The ability of activated sludge to remove propylene glycol was evaluated by studying the biodegradation and sorption characteristics of propylene glycol in an activated sludge medium. The results indicate sorption may play a role in the fate of propylene glycol in AS, and the heterotrophic bacteria readily degrade this compound. Therefore, a field deployable bioreactor may be appropriate for use in flight line applications.

  9. Comparison of bacterial communities of conventional and A-stage activated sludge systems

    PubMed Central

    Gonzalez-Martinez, Alejandro; Rodriguez-Sanchez, Alejandro; Lotti, Tommaso; Garcia-Ruiz, Maria-Jesus; Osorio, Francisco; Gonzalez-Lopez, Jesus; van Loosdrecht, Mark C. M.

    2016-01-01

    The bacterial community structure of 10 different wastewater treatment systems and their influents has been investigated through pyrosequencing, yielding a total of 283486 reads. These bioreactors had different technological configurations: conventional activated sludge (CAS) systems and very highly loaded A-stage systems. A-stage processes are proposed as the first step in an energy producing municipal wastewater treatment process. Pyrosequencing analysis indicated that bacterial community structure of all influents was similar. Also the bacterial community of all CAS bioreactors was similar. Bacterial community structure of A-stage bioreactors showed a more case-specific pattern. A core of genera was consistently found for all influents, all CAS bioreactors and all A-stage bioreactors, respectively, showing that different geographical locations in The Netherlands and Spain did not affect the functional bacterial communities in these technologies. The ecological roles of these bacteria were discussed. Influents and A-stage bioreactors shared several core genera, while none of these were shared with CAS bioreactors communities. This difference is thought to reside in the different operational conditions of the two technologies. This study shows that bacterial community structure of CAS and A-stage bioreactors are mostly driven by solids retention time (SRT) and hydraulic retention time (HRT), as suggested by multivariate redundancy analysis. PMID:26728449

  10. Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology.

    PubMed

    Lares, Mirka; Ncibi, Mohamed Chaker; Sillanpää, Markus; Sillanpää, Mika

    2018-04-15

    Wastewater treatment plants (WWTPs) are acting as routes of microplastics (MPs) to the environment, hence the urgent need to examine MPs in wastewaters and different types of sludge through sampling campaigns covering extended periods of time. In this study, the efficiency of a municipal WWTP to remove MPs from wastewater was studied by collecting wastewater and sludge samples once in every two weeks during a 3-month sampling campaign. The WWTP was operated based on the conventional activated sludge (CAS) process and a pilot-scale membrane bioreactor (MBR). The microplastic particles and fibers from both water and sludge samples were identified by using an optical microscope, Fourier Transform Infrared (FTIR) microscope and Raman microscope. Overall, the retention capacity of microplastics in the studied WWTP was found to be 98.3%. Most of the MP fraction was removed before the activated sludge process. The efficiency of an advanced membrane bioreactor (MBR) technology was also examined. The main related finding is that MBR permeate contained 0.4 MP/L in comparison with the final effluent of the CAS process (1.0 MP/L). According to this study, both microplastic fibers and particles are discharged from the WWTP to the aquatic environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Disturbance and temporal partitioning of the activated sludge metacommunity

    PubMed Central

    Vuono, David C; Benecke, Jan; Henkel, Jochen; Navidi, William C; Cath, Tzahi Y; Munakata-Marr, Junko; Spear, John R; Drewes, Jörg E

    2015-01-01

    The resilience of microbial communities to press disturbances and whether ecosystem function is governed by microbial composition or by the environment have not been empirically tested. To address these issues, a whole-ecosystem manipulation was performed in a full-scale activated sludge wastewater treatment plant. The parameter solids retention time (SRT) was used to manipulate microbial composition, which started at 30 days, then decreased to 12 and 3 days, before operation was restored to starting conditions (30-day SRT). Activated sludge samples were collected throughout the 313-day time series in parallel with bioreactor performance (‘ecosystem function'). Bacterial small subunit (SSU) rRNA genes were surveyed from sludge samples resulting in a sequence library of >417 000 SSU rRNA genes. A shift in community composition was observed for 12- and 3-day SRTs. The composition was altered such that r-strategists were enriched in the system during the 3-day SRT, whereas K-strategists were only present at SRTs⩾12 days. This shift corresponded to loss of ecosystem functions (nitrification, denitrification and biological phosphorus removal) for SRTs⩽12 days. Upon return to a 30-day SRT, complete recovery of the bioreactor performance was observed after 54 days despite an incomplete recovery of bacterial diversity. In addition, a different, yet phylogenetically related, community with fewer of its original rare members displaced the pre-disturbance community. Our results support the hypothesis that microbial ecosystems harbor functionally redundant phylotypes with regard to general ecosystem functions (carbon oxidation, nitrification, denitrification and phosphorus accumulation). However, the impacts of decreased rare phylotype membership on ecosystem stability and micropollutant removal remain unknown. PMID:25126758

  12. Denitrification of nitrate-contaminated groundwater using a simple immobilized activated sludge bioreactor.

    PubMed

    Ye, Zhengfang; Wang, Feng; Bi, Haitao; Wang, Zhongyou; Liu, Guo-hua

    2012-01-01

    A simple anaerobic-activated sludge system, in which microorganisms are immobilized by a novel functional carrier, was used for removing nitrate in groundwater. The operating conditions, including hydraulic retention time (HRT), C/N ratio, temperature and NO(3)(-)-N loading concentration were investigated. The NO(3)(-)-N concentration, residual chemical oxygen demand (COD) and nitrite accumulation were used as indicators to assess the water quality of the effluent. The anaerobic biomass loading capacity in the carrier was 12.8 g/L and the denitrifying Pseudomonas sp. and Rhodocyclaceae bacterium were dominant among the immobilized microorganisms in the anaerobic-activated sludge. Under operating conditions of HRT= 1.5 h, C/N= 2-3 and T= 16.8-20 °C, the removal efficiency of NO(3)(-)-N exceeded 93%, corresponding to a relatively high denitrification rate of 0.73 kg NO(3)(-)-N m(-3) d(-1), when the NO(3)(-)-N loading concentration was 50 mg/L. The NO(3)(-)-N concentration of the effluent always met regulatory criteria for drinking water (<10 mg/L) in the main developed and developing countries. The effluent COD was also below 10 mg/L. Although some nitrite accumulated (0-1.77 mg/L) during the operating period, it can be decreased through adjusting the operating pH and HRT. The immobilized activated sludge system may be useful for the removal of nitrate from groundwater.

  13. Optimization of Wastewater of Batik Buaran Pekalongan by Using Photocatalytic Membrane Bioreactor

    NASA Astrophysics Data System (ADS)

    Arifan, Fahmi; Nugraheni, FS; Lianandaya, Niken Elsa

    2018-02-01

    The purpose of this study is to determine the final COD concentration reduction by changing COD and MLSS concentration on the performance of submerged membrane bioreactor (MBRs) as a waste treatment of Batik in Buaran Pekalongan. The method is covers the process of seeding, the acclimatization process and the main process. Description of the process that we take an active mud from IPLT Buaran Pekalongan, then we analyze the sludge MLSS, MLVSS, COD, BOD, and TSS. After that we enter the active sludge in the bath nursery that has been given aerator (a tool for aeration) and made provision in the form of NPK nutrients and glucose at a ratio of 1:10. Activated sludge from the acclimatization process is inserted into the MBRs (membrane bioreactor submerged) that is equipped with an aerator. Then prepare influent(waste to be lowered concentration of COD). How, liquid waste of Batik Pekalongan Buaran COD diluted concentration of 10,000 mg / l and 15,000 mg / l, and then inserted in influent tub. After that liquid waste of Batik Buaran Pekalongan influent flowed into Photocatalytic Membrane Bioreactor, of MPB effluent flowed into the tub (result).

  14. Influence of fermentation liquid from waste activated sludge on anoxic/oxic- membrane bioreactor performance: Nitrogen removal, membrane fouling and microbial community.

    PubMed

    Han, Xiaomeng; Zhou, Zhen; Mei, Xiaojie; Ma, Yan; Xie, Zhenfang

    2018-02-01

    In order to investigate effects of waste activated sludge (WAS) fermentation liquid on anoxic/oxic- membrane bioreactor (A/O-MBR), two A/O-MBRs with and without WAS fermentation liquid addition were operated in parallel. Results show that addition of WAS fermentation liquid clearly improved denitrification efficiency without deterioration of nitrification, while severe membrane fouling occurred. WAS fermentation liquid resulted in an elevated production of proteins and humic acids in bound extracellular polymeric substance (EPS) and release of organic matter with high MW fractions in soluble microbial product (SMP) and loosely bound EPS (LB-EPS). Measurement of deposition rate and fluid structure confirmed increased fouling potential of SMP and LB-EPS. γ-Proteobacteria and Ferruginibacter, which can secrete and export EPS, were also found to be abundant in the MBR with WAS fermentation liquid. It is implied that when WAS fermentation liquid was applied, some operational steps to control membrane fouling should be employed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The effect of malathion on the activity, performance, and microbial ecology of activated sludge

    PubMed Central

    Rauglas, Erik; Martin, Seth; Bailey, Kandace; Magnuson, Matthew; Phillips, Rebecca; Harper, Willie F.

    2018-01-01

    This study evaluated the effect of a VX (O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate) surrogate (malathion) on the activity, performance, and ecology of activated sludge bioreactors. In the presence of malathion, the maximum observed respiration rates varied between 43 and 53 μg/O2 min, generally similar to the 49 μg O2/min rates observed in controls. Malathion did not alter the respiration ratio of O2 consumed-to-CO2 produced nor did it impact the shape of the oxygen consumption curves during respirometry. Shorter term (12 h) batch tests showed that both chemical oxygen demand (COD) and ammonia removal were not negatively impacted by the presence of 0.1–3 mg/L malathion. Longer term continuous addition (i.e. 40 days) of 0.1 mg/L of malathion also had no effect on COD and ammonia removal. In contrast to shorter term exposures, longer term continuous addition of 3 mg/L of malathion negatively impacted both COD and nitrogen removal and was associated with shifts in the abundance of species that are common to activated sludge. These results illustrate the impact that chemicals like malathion may have on COD removal, and nitrification, as well as the robustness of activated sludge microbial communities. PMID:27594690

  16. Comparison and Analysis of Membrane Fouling between Flocculent Sludge Membrane Bioreactor and Granular Sludge Membrane Bioreactor

    PubMed Central

    Zhi-Qiang, Chen; Jun-Wen, Li; Yi-Hong, Zhang; Xuan, Wang; Bin, Zhang

    2012-01-01

    The goal of this study is to investigate the effect of inoculating granules on reducing membrane fouling. In order to evaluate the differences in performance between flocculent sludge and aerobic granular sludge in membrane reactors (MBRs), two reactors were run in parallel and various parameters related to membrane fouling were measured. The results indicated that specific resistance to the fouling layer was five times greater than that of mixed liquor sludge in the granular MBR. The floc sludge more easily formed a compact layer on the membrane surface, and increased membrane resistance. Specifically, the floc sludge had a higher moisture content, extracellular polymeric substances concentration, and negative surface charge. In contrast, aerobic granules could improve structural integrity and strength, which contributed to the preferable permeate performance. Therefore, inoculating aerobic granules in a MBR presents an effective method of reducing the membrane fouling associated with floc sludge the perspective of from the morphological characteristics of microbial aggregates. PMID:22859954

  17. Application of a membrane bioreactor for winery wastewater treatment.

    PubMed

    Bolzonella, D; Fatone, F; Pavan, P; Cecchi, F

    2010-01-01

    Winery wastewaters are variable in nature and are hard to treat by means of the conventional activated sludge process because of the high organic loading associated with their production, especially during vintage. To face this situation, recently, membrane bioreactors have been widely applied to treat winery wastewaters. In this study, a full-scale membrane bioreactor treated some 110 m(3)/d of wastewater and organic loadings up to 1,600 kg COD per day. The average removal efficiency was 95% while the corresponding sludge yield was only 0.1 kg MLVSS per kg COD removed, as usual for these wastewaters. A detailed analysis of energy consumption showed specific energy demands of 2.0-3.6 kWh/m(3) of treated wastewater or 1 kWh per kg of COD removed.

  18. A novel rotation generator of hydrodynamic cavitation for waste-activated sludge disintegration.

    PubMed

    Petkovšek, Martin; Mlakar, Matej; Levstek, Marjetka; Stražar, Marjeta; Širok, Brane; Dular, Matevž

    2015-09-01

    The disintegration of raw sludge is very important for enhancement of the biogas production in anaerobic digestion process as it provides easily degradable substrate for microorganisms to perform maximum sludge treatment efficiency and stable digestion of sludge at lower costs. In the present study the disintegration was studied by using a novel rotation generator of hydrodynamic cavitation (RGHC). At the first stage the analysis of hydrodynamics of the RGHC were made with tap water, where the cavitation extent and aggressiveness was evaluated. At the second stage RGHC was used as a tool for pretreatment of a waste-activated sludge (WAS), collected from wastewater treatment plant (WWTP). In case of WAS the disintegration rate was measured, where the soluble chemical oxygen demand (SCOD) and soluble Kjeldahl nitrogen were monitored and microbiological pictures were taken. The SCOD increased from initial 45 mg/L up to 602 mg/L and 12.7% more biogas has been produced by 20 passes through RGHC. The results were obtained on a pilot bioreactor plant, volume of 400 L. Copyright © 2015. Published by Elsevier B.V.

  19. Greenhouse gas emissions and the links to plant performance in a fixed-film activated sludge membrane bioreactor - Pilot plant experimental evidence.

    PubMed

    Mannina, Giorgio; Capodici, Marco; Cosenza, Alida; Di Trapani, Daniele; Olsson, Gustaf

    2017-10-01

    The present study explores the interlinkages among the operational variables of a University of Cape Town (UCT) Integrated Fixed Film Activated Sludge (IFAS) membrane bioreactor (MBR) pilot plant. Specifically, dedicated experimental tests were carried out with the final aim to find-out a constitutive relationship among operational costs (OCs), effluent quality index (EQI), effluent fines (EF). Greenhouse gas (GHG) emissions were also included in the study. Results showed that the EQI increases at low flow rate likely due to the dissolved oxygen (DO) limitation in the biological processes. Direct GHGs increase with the increasing of the air flow due to the anoxic N 2 O contribution. Irreversible membrane fouling reduce from 98% to 85% at the air flow rate of 0.57m 3 h -1 and 2.56m 3 h -1 , respectively. However, the increase of the air flow rate leads to the increase of the N 2 O-N flux emitted from the MBR (from 40% to 80%). Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. The effect of malathion on the activity, performance, and microbial ecology of activated sludge.

    PubMed

    Rauglas, Erik; Martin, Seth; Bailey, Kandace; Magnuson, Matthew; Phillips, Rebecca; Harper, Willie F

    2016-12-01

    This study evaluated the effect of a VX (O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate) surrogate (malathion) on the activity, performance, and ecology of activated sludge bioreactors. In the presence of malathion, the maximum observed respiration rates varied between 43 and 53 μg/O2 min, generally similar to the 49 μg O2/min rates observed in controls. Malathion did not alter the respiration ratio of O2 consumed-to-CO2 produced nor did it impact the shape of the oxygen consumption curves during respirometry. Shorter term (12 h) batch tests showed that both chemical oxygen demand (COD) and ammonia removal were not negatively impacted by the presence of 0.1-3 mg/L malathion. Longer term continuous addition (i.e. 40 days) of 0.1 mg/L of malathion also had no effect on COD and ammonia removal. In contrast to shorter term exposures, longer term continuous addition of 3 mg/L of malathion negatively impacted both COD and nitrogen removal and was associated with shifts in the abundance of species that are common to activated sludge. These results illustrate the impact that chemicals like malathion may have on COD removal, and nitrification, as well as the robustness of activated sludge microbial communities. Published by Elsevier Ltd.

  1. The influence of hydrolysis induced biopolymers from recycled aerobic sludge on specific methanogenic activity and sludge filterability in an anaerobic membrane bioreactor.

    PubMed

    Buntner, D; Spanjers, H; van Lier, J B

    2014-03-15

    The objective of the present study was to evaluate the impact of excess aerobic sludge on the specific methanogenic activity (SMA), in order to establish the maximum allowable aerobic sludge loading. In batch tests, different ratios of aerobic sludge to anaerobic inoculum were used, i.e. 0.03, 0.05, 0.10 and 0.15, showing that low ratios led to an increased SMA. However, the ratio 0.15 caused more than 20% SMA decrease. In addition to the SMA tests, the potential influence of biopolymers and extracellular substances, that are generated as a result of excess aerobic sludge hydrolysis, on membrane performance was determined by assessing the fouling potential of the liquid broth, taking into account parameters such as specific resistance to filtration (SRF) and supernatant filterability (SF). Addition of aerobic sludge to the anaerobic biomass resulted in a high membrane fouling potential. The increase in biopolymers could be ascribed to aerobic sludge hydrolysis. A clear positive correlation between the concentration of the colloidal fraction of biopolymer clusters (cBPC) and the SRF was observed and a negative correlation between the cBPC and the SF measured at the end of the above described SMA tests. The latter implies that sludge filtration resistance increases when more aerobic sludge is hydrolyzed, and thus more cBPC is released. During AnMBR operation, proteins significantly contributed to sludge filterability decrease expressed as SRF and SF, whereas the carbohydrate fraction of SMP was of less importance due to low concentrations. On the contrary, carbohydrates seemed to improve filterability and diminish SRF of the sludge. Albeit, cBPC increase caused an increase in mean TMP during the AnMBR operation, confirming that cBPC is positively correlated to membrane fouling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Comparison between a moving bed membrane bioreactor and a conventional membrane bioreactor on organic carbon and nitrogen removal.

    PubMed

    Yang, Shuai; Yang, Fenglin; Fu, Zhimin; Lei, Ruibo

    2009-04-01

    A membrane bioreactor filled with carriers instead of activated sludge named a moving bed membrane bioreactor (MBMBR) was investigated for simultaneously removing organic carbon and nitrogen in wastewater. Its performance was compared with a conventional membrane bioreactor (CMBR) at various influent COD/TN ratios of 8.9-22.1. The operational parameters were optimized to increase the treatment efficiency. COD removal efficiency averaged at 95.6% and 96.2%, respectively, for MBMBR and CMBR during the 4 months experimental period. The MBMBR system demonstrated good performance on nitrogen removal at different COD/TN ratios. When COD/TN was 8.9 and the total nitrogen (TN) load was 7.58 mg/l h, the TN and ammonium nitrogen removal efficiencies of the MBMBR were maintained over 70.0% and 80.0%, respectively, and the removed total nitrogen (TN) load reached to 5.31 mg/l h. Multifunctional microbial reactions in the carrier, such as simultaneous nitrification and denitrification (SND), play important roles in nitrogen removal. In comparison, the CMBR did not perform so well. Its TN removal was not stable, and the removed total nitrogen (TN) load was only 1.02 mg/l h at COD/TN ratio 8.9. The specific oxygen utilization rate (SOUR) showed that the biofilm has a better microbial activity than an activated sludge. Nevertheless, the membrane fouling behavior was more severe in the MBMBR than in the CMBR due to a thick and dense cake layer formed on the membrane surface, which was speculated to be caused by the filamentous bacteria in the MBMBR.

  3. Improving the performance of membrane bioreactors by powdered activated carbon dosing with cost considerations.

    PubMed

    Yang, W; Paetkau, M; Cicek, N

    2010-01-01

    Effects of powdered activated carbon (PAC) dosing on the overall performance of membrane bioreactors (MBR) were investigated in two bench-scale submerged MBRs. Positive impacts of PAC dosing on membrane fouling and the removal of 17beta-estradiol (E2) and 17alpha-ethyinylestradiol (EE2) were demonstrated over a six-month stable operational period. PAC dosing in the MBR increased the removal rates of E2 and EE2 by 3.4% and 15.8%, respectively. The average soluble extracellular polymeric substances (EPS) and colloidal total organic carbon (TOC) concentrations in the PAC-MBR sludge was 60.1% and 61.8% lower than the control MBR sludge, respectively. Lower soluble EPS and colloidal TOC concentrations in the PAC-MBR sludge resulted in a slower rate of trans-membrane pressure (TMP) increase during MBRs operation, which could prolong the lifespan of membranes. Cost assessment showed that PAC dosing could reduce the operating cost for membrane cleaning and/or membrane replacement by about 25%. The operating cost for PAC dosing could be offset by the benefit from its reducing the cost for membrane maintenance.

  4. Reduction of excess sludge production using mechanical disintegration devices.

    PubMed

    Strünkmann, G W; Müller, J A; Albert, F; Schwedes, J

    2006-01-01

    The usability of mechanical disintegration techniques for the reduction of excess sludge production in the activated sludge process was investigated. Using three different disintegration devices (ultrasonic homogeniser, stirred media mill, high pressure homogeniser) and different operational parameters of the disintegration, the effect of mechanical disintegration on the excess sludge production and on the effluent quality was studied within a continuously operated, laboratory scale wastewater treatment system with pre-denitrification. Depending on the operational conditions and the disintegration device used, a reduction of excess sludge production of up to 70% was achieved. A combination of mechanical disintegration with a membrane bioreactor process with high sludge age is more energy effective concerning reduction of sludge production than with a conventional activated sludge process at lower sludge ages. Depending on the disintegration parameters, the disintegration has no, or only minor, negative effect on the soluble effluent COD and on the COD-removal capacity of the activated sludge process. Nitrogen-removal was slightly deteriorated by the disintegration, whereas the system used was not optimised for nitrogen removal before disintegration was implemented.

  5. Co-conditioning and dewatering of chemical sludge and waste activated sludge.

    PubMed

    Chang, G R; Liu, J C; Lee, D J

    2001-03-01

    The conditioning and dewatering behaviors of chemical and waste activated sludges from a tannery were studied. Capillary suction time (CST), specific resistance to filtration (SRF), and bound water content were used to evaluate the sludge dewatering behaviors. Zeta potentials were also measured. Experiments were conducted on each sludge conditioned and dewatered separately, and on the sludge mixed at various ratios. Results indicate that the chemical sludge was relatively difficult to be dewatered, even in the presence of polyelectrolyte. When the waste activated sludge was mixed with the chemical sludge at ratios of 1:1 and 2:1, respectively, the dewaterability of chemical sludge improved remarkably while the relatively better dewaterability of the waste activated sludge deteriorated only to a limited extent. As the mixing ratios became 4:1 and 8:1, the dewaterability of the mixed sludge was equal to that of the waste activated sludge. The optimal polyelectrolyte dosage for the mixed sludge was equal to or less than that of the waste activated sludge. It is proposed that the chemical sludges act as skeleton builders that reduce the compressibility of the mixed sludge whose dewaterability is enhanced. Bound water contents of sludge decreased at low polyelectrolyte dosage and were not significantly affected as polyelectrolyte dosage increased. Advantages and disadvantages of co-conditioning and dewatering chemical sludge and waste activated sludge were discussed.

  6. Aerobic composting of waste activated sludge: Kinetic analysis for microbiological reaction and oxygen consumption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Y.; Kawase, Y.

    2006-07-01

    In order to examine the optimal design and operating parameters, kinetics for microbiological reaction and oxygen consumption in composting of waste activated sludge were quantitatively examined. A series of experiments was conducted to discuss the optimal operating parameters for aerobic composting of waste activated sludge obtained from Kawagoe City Wastewater Treatment Plant (Saitama, Japan) using 4 and 20 L laboratory scale bioreactors. Aeration rate, compositions of compost mixture and height of compost pile were investigated as main design and operating parameters. The optimal aerobic composting of waste activated sludge was found at the aeration rate of 2.0 L/min/kg (initial compostingmore » mixture dry weight). A compost pile up to 0.5 m could be operated effectively. A simple model for composting of waste activated sludge in a composting reactor was developed by assuming that a solid phase of compost mixture is well mixed and the kinetics for microbiological reaction is represented by a Monod-type equation. The model predictions could fit the experimental data for decomposition of waste activated sludge with an average deviation of 2.14%. Oxygen consumption during composting was also examined using a simplified model in which the oxygen consumption was represented by a Monod-type equation and the axial distribution of oxygen concentration in the composting pile was described by a plug-flow model. The predictions could satisfactorily simulate the experiment results for the average maximum oxygen consumption rate during aerobic composting with an average deviation of 7.4%.« less

  7. The effect of activated carbon addition on membrane bioreactor processes for wastewater treatment and reclamation - A critical review.

    PubMed

    Skouteris, George; Saroj, Devendra; Melidis, Paraschos; Hai, Faisal I; Ouki, Sabèha

    2015-06-01

    This review concentrates on the effect of activated carbon (AC) addition to membrane bioreactors (MBRs) treating wastewaters. Use of AC-assisted MBRs combines adsorption, biodegradation and membrane filtration. This can lead to advanced removal of recalcitrant pollutants and mitigation of membrane fouling. The relative contribution of adsorption and biodegradation to overall removal achieved by an AC-assisted MBR process can vary, and "biological AC" may not fully develop due to competition of target pollutants with bulk organics in wastewater. Thus periodic replenishment of spent AC is necessary. Sludge retention time (SRT) governs the frequency of spent AC withdrawal and addition of fresh AC, and is an important parameter that significantly influences the performance of AC-assisted MBRs. Of utmost importance is AC dosage because AC overdose may aggravate membrane fouling, increase sludge viscosity, impair mass transfer and reduce sludge dewaterability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Lipid profiling in sewage sludge.

    PubMed

    Zhu, Fenfen; Wu, Xuemin; Zhao, Luyao; Liu, Xiaohui; Qi, Juanjuan; Wang, Xueying; Wang, Jiawei

    2017-06-01

    High value-added reutilization of sewage sludge from wastewater treatment plants (WWTPs) is essential in sustainable development in WWTPs. However, despite the advantage of high value reutilization, this process must be based on a detailed study of organics in sludge. We used the methods employed in life sciences to determine the profile of lipids (cellular lipids, free fatty acids (FFAs), and wax/gum) in five sludge samples obtained from three typical WWTPs in Beijing; these samples include one sludge sample from a primary sedimentation tank, two activated sludge samples from two Anaerobic-Anoxic-Oxic (A2/O) tanks, and two activated sludge samples from two membrane bioreactor tanks. The percentage of total raw lipids varied from 2.90% to 12.3%. Sludge from the primary sedimentation tank showed the highest concentrations of lipid, FFA, and wax/gum and the second highest concentration of cellular lipids. All activated sludge contained an abundance of cellular lipids (>54%). Cells in sludge can from plants, animals, microbes and so on in wastewater. Approximately 14 species of cellular lipids were identified, including considerable high value-potential ceramide (9567-38774 mg/kg), coenzyme (937-3897 mg/kg), and some phosphatidylcholine (75-548 mg/kg). The presence of those lipid constituents would thus require a wider range of recovery methods for sludge. Both cellular lipids and FFAs contain an abundance of C16-C18 lipids at high saturation level, and they serve as good resources for biodiesel production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Microbial Community Composition in a Simultaneous Nitrification and Denitrification Bioreactor for Domestic Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Ouyang, Wukun; Huang, Shan; Peng, Xiaochun

    2018-01-01

    Traditional domestic wastewater treatments rely on aerobic processes followed by anaerobic processes. The aerobic step in which ammonium and organic carbon are oxidized, calls for large oxygen input, while the anaerobic process often requires extra carbon input. The challenge of synchronizing both processes is to maintain an active nitrifiers sludge under low dissolved oxygen (DO) condition. In this study, a membrane bioreactor was established and operated stable with low DO of 0.1-0.4 mg L-1. Chemical indicators were determined daily, and bacterial community was checked by qPCR and 16S rDNA sequencing every month. After 2 months incubation, the bioreactor reached to a stable removal rate of total nitrogen around 50% and total organic carbon around 90% with the retaining time of 12 h. The sludge showed enrichment of low DO nitrifiers (Nitrosomonadaceae, Chitinophagaceae, and Nitrospiraceae) which were different from sludge in other regular wastewater treatment plants with aerobic and anaerobic cycles.

  10. Performance and activated sludge characteristics at short solid retention time in a submerged MBR: effects of C/N ratio of wastewater.

    PubMed

    Sari Erkan, Hanife; Onkal Engin, Guleda

    2018-02-22

    This study investigated the effect of carbon to nitrogen (C/N) ratio of influent wastewater on performance and activated sludge properties at a sludge retention time of 5 d in a submerged membrane bioreactor. The chemical oxygen demand and ammonia-Nitrogen (NH 3 -N) removal efficiencies were found to be over 96.3% and 86.9% in the sMBRs having different C/N ratios. It was found that total extracellular polymeric substances and total soluble microbial products increased with an increase in C/N ratio. It was also observed that critical flux, relative hydrophobicity and zeta potential values decreased, and capillary suction time, particle size and viscosity of sludge increased as the C/N ratio increased.

  11. Metabolism studies of diclofenac and clofibric acid in activated sludge bioreactors using liquid chromatography with quadrupole - time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kosjek, Tina; Heath, Ester; Pérez, Sandra; Petrović, Mira; Barceló, Damia

    2009-06-01

    SummaryTwo environmentally relevant pharmaceuticals, the non-steroidal antiinflammatory drug, diclofenac and the pharmacologically active metabolite of several serum triglyceride-lowering pharmaceuticals, clofibric acid, were subjected to microbiological transformation in activated sludge bioreactors, and the production of breakdown products was studied. For separation, detection and identification of diclofenac's metabolites a UPLC-(+)ESI-QqToF-MS was employed, which enabled the detection of seven transformation products of diclofenac, all including the diagnostic fragment ion at m/z 214. The chemical structure of one metabolite was proposed, which was produced by dehydratation and lactame formation. Further investigations revealed additional two metabolites, which were isomeric structures with an elemental composition C 13H 10NCl 2; however, their chemical structures were not completely resolved. In addition, another biodegradation product showed an abundant fragment ion at m/z 295, the elemental composition of which was confirmed with a high degree of certainty as C 14H 11NO 2Cl 2. The biodegradation of clofibric acid revealed one metabolite in the (-)ESI-QqToF chromatogram, 4-chlorophenol, which is known to exhibit a higher toxicity than the parent compound. This study confirms that further research is needed on the formation of stable metabolites both during wastewater treatment and in the environment. It also highlights the need for parallel toxicity testing. In addition, this study suggests that more needs to be known about the environmental fate of pharmaceuticals so that we are able to provide a comprehensive risk assessment.

  12. Factors influencing sorption of ciprofloxacin onto activated sludge: experimental assessment and modelling implications.

    PubMed

    Polesel, Fabio; Lehnberg, Kai; Dott, Wolfgang; Trapp, Stefan; Thomas, Kevin V; Plósz, Benedek Gy

    2015-01-01

    Many of the pharmaceuticals and personal care products occurring in municipal sewage are ionizing substances, and their partitioning behaviour is affected by ionic interactions with solid matrices. In activated sludge systems, such interactions have currently not been adequately understood and described, particularly for zwitterionic chemicals. Here we present an assessment of the effects of pH and iron salt dosing on the sorption of ciprofloxacin onto activated sludge using laboratory experiments and full-scale fate modelling. Experimental results were described with Freundlich isotherms and showed that non-linear sorption occurred under all the conditions tested. The greatest sorption potential was measured at pH=7.4, at which ciprofloxacin is speciated mostly as zwitterion. Iron salt dosing increased sorption under aerobic and, to a lesser extent, anoxic conditions, whereas no effect was registered under anaerobic conditions. The activated sludge model for xenobiotics (ASM-X) was extended with Freundlich-based sorption kinetics and used to predict the fate of ciprofloxacin in a wastewater treatment plant (WWTP). Scenario simulations, using experimental Freundlich parameters, were used to identify whether the assessed factors caused a significant increase of aqueous ciprofloxacin concentration in full-scale bioreactors. Simulation results suggest that a pH increase, rather than a reduction in iron salt dosing, could be responsible for a systematic deterioration of sorption of ciprofloxacin in the WWTP. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Enhanced treatment of waste frying oil in an activated sludge system by addition of crude rhamnolipid solution.

    PubMed

    Zhang, Hongzi; Xiang, Hai; Zhang, Guoliang; Cao, Xia; Meng, Qing

    2009-08-15

    The presence of high-strength oil and grease (O&G) in wastewater poses serious challenges for environment. Addition of surfactant into the activated sludge bioreactor is feasible in reducing high concentrations of O&G via enhancing its bioavailability. In this paper, an aqueous biosurfactant solution of rhamnolipid as a cell-free culture broth of Pseudomonas aeruginosa zju.um1 was added into a batch of aerobic activated sludge system for treatment of the waste frying oil. This treatment was conducted on both bench and pilot-scales, whereas the removal efficiency of frying oil was determined by analyzing the residue concentration of O&G and chemical oxygen demand (COD). In the presence of varying concentrations of rhamnolipid from 22.5 mg/L to 90 mg/L, aerobic treatment for 30 h was enough to remove over 93% of O&G while this biodegradability was only 10% in the control system with the absence of rhamnolipids. The equivalent biodegradability was similarly obtained on COD under addition of rhamnolipid. Compared with bench studies, a higher treatment efficiency with the presence of rhamnolipids was achieved on a pilot-scale of activated sludge system, in which a short time of 12h was required for removing approximately 95% of O&G while the control treatment attained a low efficiency of 17%. Finally, foaming and biodegradability of rhamnolipids in activated sludge system were further examined in the whole treatment process. It seems that the addition of rhamnolipid-containing culture broth showed great potential for treatment of oily wastewater by activated sludge.

  14. Lipid-enhancement of activated sludges obtained from conventional activated sludge and oxidation ditch processes.

    PubMed

    Revellame, Emmanuel D; Hernandez, Rafael; French, W Todd; Holmes, William E; Forks, Allison; Callahan, Robert

    2013-11-01

    Lipid-enhancement of activated sludges was conducted to increase the amount of saponifiable lipids in the sludges. The sludges were obtained from a conventional activated sludge (CAS) and an oxidation ditch process (ODP). Results showed 59-222% and 150-250% increase in saponifiable lipid content of the sludges from CAS and ODP, respectively. The fatty acid methyl ester (FAMEs) obtained from triacylglycerides was 57-67% (of total FAMEs) for enhanced CAS and 55-73% for enhanced ODP, a very significant improvement from 6% to 10% (CAS) and 4% to 8% (ODP). Regardless of the source, the enhancement resulted in sludges with similar fatty acid profile indicating homogenization of the lipids in the sludges. This study provides a potential strategy to utilize existing wastewater treatment facilities as source of significant amount of lipids for biofuel applications. Published by Elsevier Ltd.

  15. Effects of 4-chlorophenol wastewater treatment on sludge acute toxicity, microbial diversity and functional genes expression in an activated sludge process.

    PubMed

    Zhao, Jianguo; Li, Yahe; Li, Yu; Yu, Zeya; Chen, Xiurong

    2018-05-31

    In this study, the effects of 4-chlorophenol (4-CP) wastewater treatment on sludge acute toxicity of luminescent bacteria, microbial diversity and functional genes expression of Pseudomonas were explored. Results showed that in the entire operational process, the sludge acute toxicity acclimated by 4-CP in a sequencing batch bioreactor (SBR) was significantly higher than the control SBR without 4-CP. The dominant phyla in acclimated SBR were Proteobacteria and Firmicutes, which also existed in control SBR. Some identified genera in acclimated SBR were responsible for 4-CP degradation. At the stable operational stages, the functional genes expression of Pseudomonas in acclimated SBR was down-regulated at the end of SBR cycle, and their expression mechanisms needed further research. This study provides a theoretical support to comprehensively understand the sludge performance in industrial wastewater treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge.

    PubMed

    Li, X Y; Yang, S F

    2007-03-01

    Laboratory experiments on the activated sludge (AS) process were carried out to investigate the influence of microbial extracellular polymeric substances (EPS), including loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS), on biomass flocculation, sludge settlement and dewaterability. The heat EPS extraction method was modified to include a mild step and a harsh step for extracting the LB-EPS and TB-EPS, respectively, from the sludge suspension. Six lab-scale AS reactors were used to grow AS with different carbon sources of glucose and sodium acetate, and different sludge retention times (SRTs) of 5, 10 and 20 days. The variation in the bioreactor condition produced sludge with different abundances of EPS and different flocculation and separation characteristics. The sludge that was fed on glucose had more EPS than the sludge that was fed on acetate. For any of the feeding substrates, the sludge had a nearly consistent TB-EPS value regardless of the SRT, and an LB-EPS content that decreased with the SRT. The acetate-fed sludge performed better than the glucose-fed sludge in terms of bioflocculation, sludge sedimentation and compression, and sludge dewaterability. The sludge flocculation and separation improved considerably as the SRT lengthened. The results demonstrate that the LB-EPS had a negative effect on bioflocculation and sludge-water separation. The parameters for the performance of sludge-water separation were much more closely correlated with the amount of LB-EPS than with the amount of TB-EPS. It is argued that although EPS is essential to sludge floc formation, excessive EPS in the form of LB-EPS could weaken cell attachment and the floc structure, resulting in poor bioflocculation, greater cell erosion and retarded sludge-water separation.

  17. Linking hydrolytic activities to variables influencing a submerged membrane bioreactor (MBR) treating urban wastewater under real operating conditions.

    PubMed

    Gómez-Silván, C; Arévalo, J; Pérez, J; González-López, J; Rodelas, B

    2013-01-01

    The seasonal variation of the hydrolytic activities acid and alkaline phosphatase, α-glucosidase and protease, was studied in both the aerated and anoxic phases of a full-scale membrane bioreactor (MBR) (total operational volume = 28.2 m(3)), operated in pre-denitrification mode and fed real urban wastewater. Non-metric multidimensional scaling (MDS) and BIO-ENV analysis were used to study the distribution of enzyme activities in different seasons of the year (spring, summer and autumn) and unveil their relationships with changes in variables influencing the system (composition of influent wastewater, activated sludge temperature and biomass concentration in the bioreactors). The activities of all the tested hydrolases were remarkably dynamic, and each enzyme showed complex and diverse patterns of variation. Except in the summer season, the variables included in this study gave a good explanation of those patterns and displayed high and consistent correlations with them; however, markedly different correlation trends were found in each season, indicating dissimilar adaptation responses of the community to the influence of changing conditions. A consistent and highly negative correlation between protease and α-glucosidase was revealed in all the experiments. The variables included in this study showed contrary influences on these activities, suggesting an alternation of the major groups of carbon-degrading hydrolases in connection to changes in temperature and the availability and composition of nutrients in the different seasons. Sampling over a long period of time was required to adequately lay down the links between hydrolytic activities and the variables influencing the MBR system. These results highlight the complexity of the regulation of substrate degradation by the mixed microbial sludge communities under real operating conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Effect of volumetric organic loading on the nitrogen removal rate by immobilised activated sludge.

    PubMed

    Zielinska, M; Wojnowska-Baryla, I

    2006-05-01

    Activated sludge was immobilised in a porous ceramic carrier to create a stationary core of a bio-reactor. Municipal wastewater was treated in this reactor under varied conditions of volumetric organic loading rate (expressed by chemical oxygen demand (COD)) that were the following: 6.5, 8.0, 20.8, 48.8 g COD l(-1) d(-1). The rate constants of ammonification, nitrification and denitrification under aerobic conditions were determined. All rate constants increased with a growth in volumetric loading rate, but the highest loading value of 48.8 g COD l(-1) d(-1) limited the ammonification and nitrification rates.

  19. Implications of changes in solids retention time on long term evolution of sludge filterability in anaerobic membrane bioreactors treating high strength industrial wastewater.

    PubMed

    Dereli, Recep Kaan; Grelot, Aurelie; Heffernan, Barry; van der Zee, Frank P; van Lier, Jules B

    2014-08-01

    Long-term experiments were conducted to assess the impact of changing the solids retention time (SRT) on sludge filterability in anaerobic membrane bioreactors (AnMBRs), treating corn-based bioethanol thin stillage. Well established parameters, such as capillary suction time (CST) and specific resistance to filtration (SRF), developed for sludge dewatering, were used to evaluate the SRT effect on sludge filterability. Our results clearly demonstrated that SRT is one of the most important factors influencing sludge filterability in AnMBRs. SRT effects the accumulation of fine particles and solutes, which were found to affect attainable flux and fouling, in reactor broth. A better filterability was observed at a SRT of 20 days compared to elevated SRTs, i.e. 50 days. A clear correlation between sludge filtration characteristics and membrane filtration resistance could not be established especially at short SRTs, whereas many parameters such as total suspended solids (TSS), CST, soluble microbial products (SMP) and supernatant filterability were found to be mutually correlated. Net membrane fluxes between 9 and 13 L m(-2) h(-1) were obtained at 0.5 m s(-1) cross-flow velocity and the long term fouling was controlled by using frequent filtration and backwash cycles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Effect of sludge retention time on the biological performance of anaerobic membrane bioreactors treating corn-to-ethanol thin stillage with high lipid content.

    PubMed

    Dereli, Recep Kaan; van der Zee, Frank P; Heffernan, Barry; Grelot, Aurelie; van Lier, Jules B

    2014-02-01

    The potential of anaerobic membrane bioreactors (AnMBRs) for the treatment of lipid rich corn-to-ethanol thin stillage was investigated at three different sludge retention times (SRT), i.e. 20, 30 and 50 days. The membrane assisted biomass retention in AnMBRs provided an excellent solution to sludge washout problems reported for the treatment of lipid rich wastewaters by granular sludge bed reactors. The AnMBRs achieved high COD removal efficiencies up to 99% and excellent effluent quality. Although higher organic loading rates (OLRs) up to 8.0 kg COD m(-3) d(-1) could be applied to the reactors operated at shorter SRTs, better biological degradation efficiencies, i.e. up to 83%, was achieved at increased SRTs. Severe long chain fatty acid (LCFA) inhibition was observed at 50 days SRT, possibly caused by the extensive dissolution of LCFA in the reactor broth, inhibiting the methanogenic biomass. Physicochemical mechanisms such as precipitation with divalent cations and adsorption on the sludge played an important role in the occurrence of LCFA removal, conversion, and inhibition. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Continuous sulfidogenic wastewater treatment with iron sulfide sludge oxidation and recycle.

    PubMed

    Deng, Dongyang; Lin, Lian-Shin

    2017-05-01

    This study evaluated the technical feasibility of packed-bed sulfidogenic bioreactors dosed with ferrous chloride for continuous wastewater treatment over a 450-day period. In phase I, the bioreactors were operated under different combinations of carbon, iron, and sulfate mass loads without sludge recycling to identify optimal treatment conditions. A COD/sulfate mass ratio of 2 and a Fe/S molar ratio of 1 yielded the best treatment performance with COD oxidation rate of 786 ± 82 mg/(L⋅d), which resulted in 84 ± 9% COD removal, 94 ± 6% sulfate reduction, and good iron retention (99 ± 1%) under favorable pH conditions (6.2-7.0). In phase II, the bioreactors were operated under this chemical load combination over a 62-day period, during which 7 events of sludge collection, oxidation, and recycling were performed. The collected sludge materials contained both inorganic and organic matter with FeS and FeS 2 as the main inorganic constituents. In each event, the sludge materials were oxidized in an oxidizing basin before recycling to mix with the wastewater influent. Sludge recycling yielded enhanced COD removal (90 ± 6% vs. 75 ± 7%), and better effluent quality in terms of pH (6.8 ± 0.1 vs. 6.5 ± 0.2), iron (0.7 ± 0.5 vs. 1.9 ± 1.7 mg/L), and sulfide-S (0.3 ± 0.1 vs. 0.4 ± 0.1 mg/L) removal compared to the baseline operation without sludge recycling during phase II. This process exhibited treatment stability with reasonable variations, and fairly consistent sludge content over long periods of operation under a range of COD/sulfate and Fe/S ratios without sludge recycling. The bioreactors were found to absorb recycling-induced changes efficiently without causing elevated suspended solids in the effluents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Start-up of membrane bioreactor and hybrid moving bed biofilm reactor-membrane bioreactor: kinetic study.

    PubMed

    Leyva-Díaz, J C; Poyatos, J M

    2015-01-01

    A hybrid moving bed biofilm reactor-membrane bioreactor (hybrid MBBR-MBR) system was studied as an alternative solution to conventional activated sludge processes and membrane bioreactors. This paper shows the results obtained from three laboratory-scale wastewater treatment plants working in parallel in the start-up and steady states. The first wastewater treatment plant was a MBR, the second one was a hybrid MBBR-MBR system containing carriers both in anoxic and aerobic zones of the bioreactor (hybrid MBBR-MBRa), and the last one was a hybrid MBBR-MBR system which contained carriers only in the aerobic zone (hybrid MBBR-MBRb). The reactors operated with a hydraulic retention time of 30.40 h. A kinetic study for characterizing heterotrophic biomass was carried out and organic matter and nutrients removals were evaluated. The heterotrophic biomass of the hybrid MBBR-MBRb showed the best kinetic performance in the steady state, with yield coefficient for heterotrophic biomass=0.30246 mg volatile suspended solids per mg chemical oxygen demand, maximum specific growth rate for heterotrophic biomass=0.00308 h(-1) and half-saturation coefficient for organic matter=3.54908 mg O2 L(-1). The removal of organic matter was supported by the kinetic study of heterotrophic biomass.

  3. Characteristics and fates of soluble microbial products in ceramic membrane bioreactor at various sludge retention times.

    PubMed

    Shin, Hang-Sik; Kang, Seok-Tae

    2003-01-01

    The formation and fate of soluble microbial products (SMP) in membrane bioreactor (MBR) was investigated at various sludge retention times (SRT) for 170 days. The SMP concentration was estimated by feeding glucose, which could be completely degraded, and by measuring the dissolved organic carbon (DOC) of the effluent from MBR. Under the conditions of SRT of 20 days, influent DOC of 112 mg/l and HRT of 6 h, the produced SMP was 4.7 mg DOC/l of which 57% was removed or retained by the membrane. DOC of MBR supernatant increased during 100 days and then gradually decreased. Specific UV absorbance showed that the accumulated compounds had a portion of larger, more aromatic, more hydrophobic and double-bond-rich organics, which originated from the decayed biomass. Molecular weight distributions of SMP in MBR supernatant showed that the acclimated microorganisms in a long SRT could decompose high molecular weight organics, it caused the shift of molecular weight distributions of SMP to a lower range. During the operation period, enumeration of active cells in the MBR showed that microbial inhibitions by accumulated SMP was not observed.

  4. Example study for granular bioreactor stratification: Three-dimensional evaluation of a sulfate-reducing granular bioreactor

    PubMed Central

    Hao, Tian-wei; Luo, Jing-hai; Su, Kui-zu; Wei, Li; Mackey, Hamish R.; Chi, Kun; Chen, Guang-Hao

    2016-01-01

    Recently, sulfate-reducing granular sludge has been developed for application in sulfate-laden water and wastewater treatment. However, little is known about biomass stratification and its effects on the bioprocesses inside the granular bioreactor. A comprehensive investigation followed by a verification trial was therefore conducted in the present work. The investigation focused on the performance of each sludge layer, the internal hydrodynamics and microbial community structures along the height of the reactor. The reactor substratum (the section below baffle 1) was identified as the main acidification zone based on microbial analysis and reactor performance. Two baffle installations increased mixing intensity but at the same time introduced dead zones. Computational fluid dynamics simulation was employed to visualize the internal hydrodynamics. The 16S rRNA gene of the organisms further revealed that more diverse communities of sulfate-reducing bacteria (SRB) and acidogens were detected in the reactor substratum than in the superstratum (the section above baffle 1). The findings of this study shed light on biomass stratification in an SRB granular bioreactor to aid in the design and optimization of such reactors. PMID:27539264

  5. Critical operational parameters for zero sludge production in biological wastewater treatment processes combined with sludge disintegration.

    PubMed

    Yoon, Seong-Hoon; Lee, Sangho

    2005-09-01

    Mathematical models were developed to elucidate the relationships among process control parameters and the effect of these parameters on the performance of anoxic/oxic biological wastewater processes combined with sludge disintegrators (A/O-SD). The model equations were also applied for analyses of activated sludge processes hybrid with sludge disintegrators (AS-SD). Solubilization ratio of sludge in the sludge disintegrator, alpha, hardly affected sludge reduction efficiencies if the biomass was completely destructed to smaller particulates. On the other hand, conversion efficiency of non-biodegradable particulates to biodegradable particulates, beta, significantly affected sludge reduction efficiencies because beta was directly related to the accumulation of non-biodegradable particulates in bioreactors. When 30% of sludge in the oxic tank was disintegrated everyday and beta was 0.5, sludge reduction was expected to be 78% and 69% for the A/O-SD and AS-SD processes, respectively. Under this condition, the sludge disintegration number (SDN), which is the amount of sludge disintegrated divided by the reduced sludge, was calculated to be around 4. Due to the sludge disintegration, live biomass concentration decreased while other non-biodegradable particulates concentration increased. As a consequence, the real F/M ratio was expected to be much higher than the apparent F/M. The effluent COD was maintained almost constant for the range of sludge disintegration rate considered in this study. Nitrogen removal efficiencies of the A/O-SD process was hardly affected by the sludge disintegration until daily sludge disintegration reaches 40% of sludge in the oxic tank. Above this level of sludge disintegration, autotrophic biomass concentration decreases overly and TKN in the effluent increases abruptly in both the A/O-SD and AS-SD processes. Overall, the trends of sludge reduction and effluent quality according to operation parameters matched well with experimental results

  6. Application of enhanced membrane bioreactor (eMBR) to treat dye wastewater.

    PubMed

    Rondon, Hector; El-Cheikh, William; Boluarte, Ida Alicia Rodriguez; Chang, Chia-Yuan; Bagshaw, Steve; Farago, Leanne; Jegatheesan, Veeriah; Shu, Li

    2015-05-01

    An enhanced membrane bioreactor (eMBR) consisting of two anoxic bioreactors (ARs) followed by an aerated membrane bioreactor (AMBR), UV-unit and a granular activated carbon (GAC) filter was employed to treat 50-100 mg/L of remazol blue BR dye. The COD of the feed was 2334 mg/L and COD:TN:TP in the feed was 119:1.87:1. A feed flow rate of 5 L/d was maintained when the dye concentration was 50 mg/L; 10 L/d of return activated sludge was recirculated to each AR from the AMBR. Once the biological system is acclimatised, 95% of dye, 99% of COD, 97% of nitrogen and 73% of phosphorus were removed at a retention time of 74.4 h. When the effluent from the AMBR was drawn at a flux rate of 6.5 L/m(2)h, the trans-membrane pressure reached 40 kPa in every 10 days. AMBR effluent was passed through the UV-unit and GAC filter to remove the dye completely. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Microbial Ecology of Activated Sludge

    PubMed Central

    Dias, F. F.; Bhat, J. V.

    1964-01-01

    Over 300 bacterial strains were isolated from seven samples of activated sludge by plating on sewage agar. Gram-negative bacteria of the genera Zoogloea and Comamonas predominated. Many isolates (51%) showed sudanophilic inclusions of poly-β-hydroxybutyric acid, whereas 34% accumulated iodophilic material on media containing starch. A large number required either vitamins or amino acids, or both, for growth. None of the isolates tested for their ability to bring about changes in autoclaved sewage produced an effluent comparable in quality to the activated sludge control, although the Zoogloea did produce activated sludgelike flocs. A study of 150 bacterial strains isolated from raw sewage revealed that they differed from the sludge isolates in several respects. Coliforms, which constitute nearly a quarter of the sewage isolates, were rarely encountered in sludge. PMID:14215970

  8. Stable aerobic granules in continuous-flow bioreactor with self-forming dynamic membrane.

    PubMed

    Liu, Hongbo; Li, Yajie; Yang, Changzhu; Pu, Wenhong; He, Liu; Bo, Fu

    2012-10-01

    A novel continuous-flow bioreactor with aerobic granular sludge and self-forming dynamic membrane (CGSFDMBR) was developed for efficient wastewater treatment. Under continuous-flow operation, aerobic granular sludge was successfully cultivated and characterized with small particle size of about 0.1-1.0mm, low settling velocity of about 15-25 m/h, loose structure and high water content of about 96-98%. To maintain the stability of aerobic granular sludge, strategies based on the differences of settling velocity and particle-size between granular and flocculent sludge were implemented. Moreover, in CGSFDMBR, membrane fouling was greatly relieved. Dynamic membrane was just cleaned once in more than 45 days' operation. CGSFDMBR presented good performance in treating septic tank wastewater, obtaining average COD, NH(4)(+)-N, TN and TP removal rates of 83.3%, 73.3%, 67.3% and 60%, respectively, which was more efficient than conventional bioreactors since that carbon, nitrogen and phosphorus were simultaneously removed in a single aerobic reactor. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. The innovative osmotic membrane bioreactor (OMBR) for reuse of wastewater.

    PubMed

    Cornelissen, E R; Harmsen, D; Beerendonk, E F; Qin, J J; Oo, H; de Korte, K F; Kappelhof, J W M N

    2011-01-01

    An innovative osmotic membrane bioreactor (OMBR) is currently under development for the reclamation of wastewater, which combines activated sludge treatment and forward osmosis (FO) membrane separation with a RO post-treatment. The research focus is FO membrane fouling and performance using different activated sludge investigated both at laboratory scale (membrane area of 112cm2) and at on-site bench scale (flat sheet membrane area of 0.1 m2). FO performance on laboratory-scale (i) increased with temperature due to a decrease in viscosity and (ii) was independent of the type of activated sludge. Draw solution leakage increased with temperature and varied for different activated sludge. FO performance on bench-scale (i) increased with osmotic driving force, (ii) depended on the membrane orientation due to internal concentration polarization and (iii) was invariant to feed flow decrease and air injection at the feed and draw side. Draw solution leakage could not be evaluated on bench-scale due to experimental limitation. Membrane fouling was not found on laboratory scale and bench-scale, however, partially reversible fouling was found on laboratory scale for FO membranes facing the draw solution. Economic assessment indicated a minimum flux of 15L.m-2 h-1 at 0.5M NaCl for OMBR-RO to be cost effective, depending on the FO membrane price.

  10. A novel approach for quantitative evaluation of the physicochemical interactions between rough membrane surface and sludge foulants in a submerged membrane bioreactor.

    PubMed

    Lin, Hongjun; Zhang, Meijia; Mei, Rongwu; Chen, Jianrong; Hong, Huachang

    2014-11-01

    This study proposed a novel approach for quantitative evaluation of the physicochemical interactions between a particle and rough surface. The approach adopts the composite Simpson's rule to numerically calculate the double integrals in the surface element integration of these physicochemical interactions. The calculation could be achieved by a MATLAB program based on this approach. This approach was then applied to assess the physicochemical interactions between rough membrane surface and sludge foulants in a submerged membrane bioreactor (MBR). The results showed that, as compared with smooth membrane surface, rough membrane surface had a much lower strength of interactions with sludge foulants. Meanwhile, membrane surface morphology significantly affected the strength and properties of the interactions. This study showed that the newly developed approach was feasible, and could serve as a primary tool for investigating membrane fouling in MBRs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. [Membrane fouling alleviation characteristics of sludge/water pre-separation MBR].

    PubMed

    Wang, Hong-Jie; Dong, Wen-Yi; Bai, Wei; Li, Wei-Guang; Yang, Yue

    2009-07-15

    A long-term operation was conducted to investigate the alleviation of membrane fouling by sludge/water pre-separation membrane bioreactor (S/W-MBR). The variation of trans-membrane pressure (TMP), concentration of sludge and extracellular polymeric substances (EPS) on S/W-MBR and submerged membrane bioreactor (SMBR) was also studied. The results showed that the sludge concentration in S/W-MBR was basically identical with that of SMBR's biotic area, while the sludge concentration was significantly decreased in S/W-MBR's membrane area than that of SMBR's. The concentration of EPS was increased with operation time in both two MBRs' biotic area, but it was lower and basically maintained at the level of 15 mg/g in S/W-MBR's membrane area. The S/W-MBR was more capable of alleviating membrane fouling, and it had been cleaned only 2 times while the SMBR who had been cleaned 5 times during the period of about 90 days laboratory performance.

  12. Improvement of primary settling performance with activated sludge.

    PubMed

    Yetis, U; Tarlan, E

    2002-04-01

    In biological treatment plants employing activated sludge processes, it is possible to recirculate some portion of the waste activated sludge that is not sent to the aeration basin, to the inlet of the primary sedimentation tanks. But in the literature there is no detailed information about the conditions, ratios and the characteristics of the waste sludge that can be recirculated back. However, depending on its settling characteristics, the addition of waste activated sludge to raw wastewater may improve primary settling. Settling tests have shown that the effect of waste activated sludge on primary settling is strongly dependent on the mean cell residence time (or sludge age), theta(c), of the waste activated sludge and also on the suspended solids concentration. Different sludge ages of 4, 6, 8, 10, 14, 20 and 26 days, and for each sludge age at least five different initial suspended solids concentrations were studied. A sludge age of 8-10 days achieved the optimum efficiency in terms of the remaining suspended solids concentration as well as percent-suspended solids removal. Also, the settled sludge volumes were measured throughout the experiments; so, the comparison was made between settled sludge volumes, initial suspended solids (SS) concentrations and theta(c).

  13. Activated Sludge. Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Boe, Owen K.; Klopping, Paul H.

    This student manual contains the textual material for a seven-lesson unit on activated sludge. Topic areas addressed in the lessons include: (1) activated sludge concepts and components (including aeration tanks, aeration systems, clarifiers, and sludge pumping systems); (2) activated sludge variations and modes; (3) biological nature of activated…

  14. A comparison of aerobic granular sludge with conventional and compact biological treatment technologies.

    PubMed

    Bengtsson, Simon; de Blois, Mark; Wilén, Britt-Marie; Gustavsson, David

    2018-03-20

    The aerobic granular sludge (AGS) technology is growing towards becoming a mature option for new municipal wastewater treatment plants and capacity extensions. A process based on AGS was compared to conventional activated sludge processes (with and without enhanced biological phosphorus removal), an integrated fixed-film activated sludge (IFAS) process and a membrane bioreactor (MBR) by estimating the land area demand (footprint), electricity demand and chemicals' consumption. The process alternatives compared included pre-settling, sludge digestion and necessary post-treatment to achieve effluent concentrations of 8 mg/L nitrogen and 0.2 mg/L phosphorus at 7°C. The alternative based on AGS was estimated to have a 40-50% smaller footprint and 23% less electricity requirement than conventional activated sludge. In relation to the other compact treatment options IFAS and MBR, the AGS process had an estimated electricity usage that was 35-70% lower. This suggests a favourable potential for processes based on AGS although more available experience of AGS operation and performance at full scale is desired.

  15. Removal of steroid estrogens from municipal wastewater in a pilot scale expanded granular sludge blanket reactor and anaerobic membrane bioreactor

    PubMed Central

    Ito, Ayumi; Mensah, Lawson; Cartmell, Elise; Lester, John N.

    2016-01-01

    Anaerobic treatment of municipal wastewater offers the prospect of a new paradigm by reducing aeration costs and minimizing sludge production. It has been successfully applied in warm climates, but does not always achieve the desired outcomes in temperate climates at the biochemical oxygen demand (BOD) values of municipal crude wastewater. Recently the concept of ‘fortification' has been proposed to increase organic strength and has been demonstrated at the laboratory and pilot scale treating municipal wastewater at temperatures of 10–17°C. The process treats a proportion of the flow anaerobically by combining it with primary sludge from the residual flow and then polishing it to a high effluent standard aerobically. Energy consumption is reduced as is sludge production. However, no new treatment process is viable if it only addresses the problems of traditional pollutants (suspended solids – SS, BOD, nitrogen – N and phosphorus – P); it must also treat hazardous substances. This study compared three potential municipal anaerobic treatment regimes, crude wastewater in an expanded granular sludge blanket (EGSB) reactor, fortified crude wastewater in an EGSB and crude wastewater in an anaerobic membrane bioreactor. The benefits of fortification were demonstrated for the removal of SS, BOD, N and P. These three systems were further challenged with the removal of steroid estrogens at environmental concentrations from natural indigenous sources. All three systems removed these compounds to a significant degree, confirming that estrogen removal is not restricted to highly aerobic autotrophs, or aerobic heterotrophs, but is also a faculty of anaerobic bacteria. PMID:26212345

  16. Carbon fibers with a nano-hydroxyapatite coating as an excellent biofilm support for bioreactors

    NASA Astrophysics Data System (ADS)

    Liu, Qijie; Zhang, Chao; Bao, Yanling; Dai, Guangze

    2018-06-01

    A biofilm support with high biocompatibility is needed for bioreactors. A nano-hydroxyapatite (HA) coating on carbon fibers (CFs) was prepared by electrochemical deposition (ECD). The sludge immobilization assays, bacterial cells adhesion assays and Derjaguin-Landau-Verwey-Overbeek (DLVO) theory were used to evaluate the capacity of CF supports to immobilize activated sludge and bacterial cells. The sludge immobilization and bacterial cells adhesion assays illustrated that HA coating could enhance the capacity of CFs to immobilize microorganisms. SEM images showed that HA and bacterial cells formed a dense film on CFs surface. In addition, HA, acting as a glue, could combine CFs with bacterial cells or between cells, which helped CFs capture more bacterial cells. DLVO theory illustrated that CFs with HA coating had a lower total interaction energy than CFs without handling, explaining the higher capacity of CFs with HA coating to immobilize bacterial cells. This result was owning to the less negative zeta potential and higher hydrophilicity of CFs with HA coating, and the hydrophilicity made a greater contribution to the lower total interaction energy. Experiments and theory reveal that HA coating could enhance the biocompatibility of CFs, and CFs with HA coating could be used as an excellent biofilm support for bioreactors.

  17. The role and control of sludge age in biological nutrient removal activated sludge systems.

    PubMed

    Ekama, G A

    2010-01-01

    The sludge age is the most fundamental and important parameter in the design, operation and control of biological nutrient removal (BNR) activated sludge (AS) systems. Generally, the better the effluent and waste sludge quality required from the system, the longer the sludge age, the larger the biological reactor and the more wastewater characteristics need to be known. Controlling the reactor concentration does not control sludge age, only the mass of sludge in the system. When nitrification is a requirement, sludge age control becomes a requirement and the secondary settling tanks can no longer serve the dual purpose of clarifier and waste activated sludge thickeners. The easiest and most practical way to control sludge age is with hydraulic control by wasting a defined proportion of the reactor volume daily. In AS plants with reactor concentration control, nitrification fails first. With hydraulic control of sludge age, nitrification will not fail, rather the plant fails by shedding solids over the secondary settling tank effluent weirs.

  18. Gravitational sedimentation of flocculated waste activated sludge.

    PubMed

    Chu, C P; Lee, D J; Tay, J H

    2003-01-01

    The sedimentation characteristics of flocculated wastewater sludge have not been satisfactorily explored using the non-destructive techniques, partially owing to the rather low solid content (ca. 1-2%) commonly noted in the biological sediments. This paper investigated, for the first time, the spatial-temporal gravitational settling characteristics of original and polyelectrolyte flocculated waste activated sludge using Computerized Axial Tomography Scanner. The waste activated sludge possessed a distinct settling characteristic from the kaolin slurries. The waste activated sludges settled more slowly and reached a lower solid fraction in the final sediment than the latter. Flocculation markedly enhanced the settleability of both sludges. Although the maximum achievable solid contents for the kaolin slurries were reduced, flocculation had little effects on the activated sludge. The purely plastic rheological model by Buscall and White (J Chem Soc Faraday Trans 1(83) (1987) 873) interpreted the consolidating sediment data, while the purely elastic model by Tiller and Leu (J. Chin. Inst. Chem. Eng. 11 (1980) 61) described the final equilibrated sediment. Flocculation produced lower yield stress during transient settling, thereby resulting in the more easily consolidated sludge than the original sample. Meanwhile, the flocculated activated sludge was stiffer in the final sediment than in the original sample. The data reported herein are valuable to the theories development for clarifier design and operation.

  19. Comparison of two treatments for the removal of selected organic micropollutants and bulk organic matter: conventional activated sludge followed by ultrafiltration versus membrane bioreactor.

    PubMed

    Sahar, E; Ernst, M; Godehardt, M; Hein, A; Herr, J; Kazner, C; Melin, T; Cikurel, H; Aharoni, A; Messalem, R; Brenner, A; Jekel, M

    2011-01-01

    The potential of membrane bioreactor (MBR) systems to remove organic micropollutants was investigated at different scales, operational conditions, and locations. The effluent quality of the MBR system was compared with that of a plant combining conventional activated sludge (CAS) followed by ultrafiltration (UF). The MBR and CAS-UF systems were operated and tested in parallel. An MBR pilot plant in Israel was operated for over a year at a mixed liquor suspended solids (MLSS) range of 2.8-10.6 g/L. The MBR achieved removal rates comparable to those of a CAS-UF plant at the Tel-Aviv wastewater treatment plant (WWTP) for macrolide antibiotics such as roxythromycin, clarithromycin, and erythromycin and slightly higher removal rates than the CAS-UF for sulfonamides. A laboratory scale MBR unit in Berlin - at an MLSS of 6-9 g/L - showed better removal rates for macrolide antibiotics, trimethoprim, and 5-tolyltriazole compared to the CAS process of the Ruhleben sewage treatment plant (STP) in Berlin when both were fed with identical quality raw wastewater. The Berlin CAS exhibited significantly better benzotriazole removal and slightly better sulfamethoxazole and 4-tolyltriazole removal than its MBR counterpart. Pilot MBR tests (MLSS of 12 g/L) in Aachen, Germany, showed that operating flux significantly affected the resulting membrane fouling rate, but the removal rates of dissolved organic matter and of bisphenol A were not affected.

  20. Evaluating sedimentation problems in activated sludge treatment plants operating at complete sludge retention time.

    PubMed

    Amanatidou, Elisavet; Samiotis, Georgios; Trikoilidou, Eleni; Pekridis, George; Taousanidis, Nikolaos

    2015-02-01

    Zero net sludge growth can be achieved by complete retention of solids in activated sludge wastewater treatment, especially in high strength and biodegradable wastewaters. When increasing the solids retention time, MLSS and MLVSS concentrations reach a plateau phase and observed growth yields values tend to zero (Yobs ≈ 0). In this work, in order to evaluate sedimentation problems arised due to high MLSS concentrations and complete sludge retention operational conditions, two identical innovative slaughterhouse wastewater treatment plants were studied. Measurements of wastewaters' quality characteristics, treatment plant's operational conditions, sludge microscopic analysis and state point analysis were conducted. Results have shown that low COD/Nitrogen ratios increase sludge bulking and flotation phenomena due to accidental denitrification in clarifiers. High return activated sludge rate is essential in complete retention systems as it reduces sludge condensation and hydraulic retention time in the clarifiers. Under certain operational conditions sludge loading rates can greatly exceed literature limit values. The presented methodology is a useful tool for estimation of sedimentation problems encountered in activated sludge wastewater treatment plants with complete retention time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Bioreactors configured with distributors and carriers enhance the performance of continuous dark hydrogen fermentation.

    PubMed

    Lo, Yung-Chung; Lee, Kuo-Shing; Lin, Ping-Jei; Chang, Jo-Shu

    2009-10-01

    Anaerobic granular sludge bed (AnGSB) bioreactors were supplemented with activated carbon carriers and combined with distributors (e.g., acrylic resin board, stainless steel net and plastic net) installed at different locations to investigate the effect of distributor/carrier on biohydrogen production efficiency. The results show that plastic net stimulated the substrate/microorganisms contact and sludge granulation, thereby leading to a much better H(2) production performance when compared with those obtained from traditional CSTR. The highest H(2) production rate (7.89 L/h/L) and yield (3.42 mol H(2)/mol sucrose) were obtained when two pieces of plastic nets were installed at both 4 cm and 16 cm from the bottom of AnGSB without carrier addition and the bioreactor was operated at a HRT of 0.5h. For the AnGSB installed with two pieces of plastic net distributors, addition of carriers led to significant improvement on the H(2) production efficiency at a longer HRT (1-4h) when compared with the carrier-absent system.

  2. High-rate anaerobic co-digestion of kraft mill fibre sludge and activated sludge by CSTRs with sludge recirculation.

    PubMed

    Ekstrand, Eva-Maria; Karlsson, Marielle; Truong, Xu-Bin; Björn, Annika; Karlsson, Anna; Svensson, Bo H; Ejlertsson, Jörgen

    2016-10-01

    Kraft fibre sludge from the pulp and paper industry constitutes a new, widely available substrate for the biogas production industry, with high methane potential. In this study, anaerobic digestion of kraft fibre sludge was examined by applying continuously stirred tank reactors (CSTR) with sludge recirculation. Two lab-scale reactors (4L) were run for 800days, one on fibre sludge (R1), and the other on fibre sludge and activated sludge (R2). Additions of Mg, K and S stabilized reactor performance. Furthermore, the Ca:Mg ratio was important, and a stable process was achieved at a ratio below 16:1. Foaming was abated by short but frequent mixing. Co-digestion of fibre sludge and activated sludge resulted in more robust conditions, and high-rate operation at stable conditions was achieved at an organic loading rate of 4g volatile solids (VS)L(-1)day(-1), a hydraulic retention time of 4days and a methane production of 230±10NmL per g VS. Copyright © 2016. Published by Elsevier Ltd.

  3. Effects of hydraulic retention time and bioflocculant addition on membrane fouling in a sponge-submerged membrane bioreactor.

    PubMed

    Deng, Lijuan; Guo, Wenshan; Ngo, Huu Hao; Du, Bing; Wei, Qin; Tran, Ngoc Han; Nguyen, Nguyen Cong; Chen, Shiao-Shing; Li, Jianxin

    2016-06-01

    The characteristics of activated sludge and membrane fouling were evaluated in a sponge-submerged membrane bioreactor (SSMBR) at different hydraulic retention times (HRTs) (6.67, 5.33 and 4.00h). At shorter HRT, more obvious membrane fouling was caused by exacerbated cake layer formation and aggravated pore blocking. Activated sludge possessed more extracellular polymeric substances (EPS) due to excessive growth of biomass and lower protein to polysaccharide ratio in soluble microbial products (SMP). The cake layer resistance was aggravated by increased sludge viscosity together with the accumulated EPS and biopolymer clusters (BPC) on membrane surface. However, SMP showed marginal effect on membrane fouling when SSMBRs were operated at all HRTs. The SSMBR with Gemfloc® addition at the optimum HRT of 6.67h demonstrated superior sludge characteristics such as larger floc size, less SMP in mixed liquor with higher protein/polysaccharide ratio, less SMP and BPC in cake layer, thereby further preventing membrane fouling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Interactive effect of trivalent iron on activated sludge digestion and biofilm structure in attached growth reactor of waste tire rubber.

    PubMed

    Sharafat, Iqra; Saeed, Dania Khalid; Yasmin, Sumera; Imran, Asma; Zafar, Zargona; Hameed, Abdul; Ali, Naeem

    2018-01-01

    Waste tire rubber (WTR) has been introduced as an alternative, novel media for biofilm development in several experimental systems including attached growth bioreactors. In this context, four laboratory-scale static batch bioreactors containing WTR as a support material for biofilm development were run under anoxic condition for 90 days using waste activated sludge as an inoculum under the influence of different concentrations (2.5, 6.5, 8.5 mg/l) of trivalent ferric iron (Fe 3+ ). The data revealed that activated sludge with a Fe 3+ concentration of 8.5 mg/l supported the maximum bacterial biomass [4.73E + 10 CFU/ml cm 2 ]; besides, it removed 38% more Chemical oxygen demand compared to Fe 3+ free condition from the reactor. Biochemical testing and 16S rDNA phylogenetic analysis of WTR-derived biofilm communities further suggested the role of varying concentrations of Fe 3+ on the density and diversity of members of Enterobacteria(ceae), ammonium (AOB) and nitrite oxidizing bacteria. Furthermore, Fluorescent in situ hybridization with phylogenetic oligonucleotide probes and confocal laser scanning microscopy of WTR biofilms indicated a significant increase in density of eubacteria (3.00E + 01 to.05E + 02 cells/cm 2 ) and beta proteobacteria (8.10E + 01 to 1.42E + 02 cells/cm 2 ), respectively, with an increase in Fe 3+ concentration in the reactors, whereas, the cell density of gamma proteobacteria in biofilms decreased.

  5. Utilizing waste activated sludge for animal feeding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beszedits, S.

    1981-01-01

    Activated sludge has a high protein content and is a good source of B-group vitamins and generally also of minerals (Ca, Mg, Fe and K). Propionibacterium freudenreichii can be readily incorporated into the activated sludge to synthesize vitamin B12, particularly high vitamin yields being obtained with sewage mixed with dairy waste. Numerous examples of successful use of activated sludge in animal feeding are given.

  6. Insight into the effect of organic and inorganic draw solutes on the flux stability and sludge characteristics in the osmotic membrane bioreactor.

    PubMed

    Siddique, Muhammad Saboor; Khan, Sher Jamal; Shahzad, Muhammad Aamir; Nawaz, Muhammad Saqib; Hankins, Nicholas P

    2018-02-01

    In this study, chloride based (CaCl 2 and MgCl 2 ) and acetate based (NaOAc and MgOAc) salts in comparison with NaCl were investigated as draw solutions (DS) to evaluate their viability in the osmotic membrane bioreactor (OMBR). Membrane distillation was coupled with an OMBR setup to develop a hybrid OMBR-MD system, for the production of clean water and DS recovery. Results demonstrate that organic DS were able to mitigate the salinity buildup in the bioreactor as compared to inorganic salts. Prolonged filtration runs were observed with MgCl 2 and MgOAc in contrast with other draw solutes at the same molar concentration. Significant membrane fouling was observed with NaOAc while rapid flux decline due to increased salinity build-up was witnessed with NaCl and CaCl 2 . Improved characteristics of mixed liquor in terms of sludge filterability, particle size, and biomass growth along with the degradation of soluble microbial products (SMP) were found with organic DS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Activated Sludge.

    ERIC Educational Resources Information Center

    Saunders, F. Michael

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. This review covers: (1) activated sludge process; (2) process control; (3) oxygen uptake and transfer; (4) phosphorus removal; (5) nitrification; (6) industrial wastewater; and (7) aerobic digestion. A list of 136 references is also presented. (HM)

  8. Development of Sulfidogenic Sludge from Marine Sediments and Trichloroethylene Reduction in an Upflow Anaerobic Sludge Blanket Reactor

    PubMed Central

    Guerrero-Barajas, Claudia; Ordaz, Alberto; García-Solares, Selene Montserrat; Garibay-Orijel, Claudio; Bastida-González, Fernando; Zárate-Segura, Paola Berenice

    2015-01-01

    The importance of microbial sulfate reduction relies on the various applications that it offers in environmental biotechnology. Engineered sulfate reduction is used in industrial wastewater treatment to remove large concentrations of sulfate along with the chemical oxygen demand (COD) and heavy metals. The most common approach to the process is with anaerobic bioreactors in which sulfidogenic sludge is obtained through adaptation of predominantly methanogenic granular sludge to sulfidogenesis. This process may take a long time and does not always eliminate the competition for substrate due to the presence of methanogens in the sludge. In this work, we propose a novel approach to obtain sulfidogenic sludge in which hydrothermal vents sediments are the original source of microorganisms. The microbial community developed in the presence of sulfate and volatile fatty acids is wide enough to sustain sulfate reduction over a long period of time without exhibiting inhibition due to sulfide. This protocol describes the procedure to generate the sludge from the sediments in an upflow anaerobic sludge blanket (UASB) type of reactor. Furthermore, the protocol presents the procedure to demonstrate the capability of the sludge to remove by reductive dechlorination a model of a highly toxic organic pollutant such as trichloroethylene (TCE). The protocol is divided in three stages: (1) the formation of the sludge and the determination of its sulfate reducing activity in the UASB, (2) the experiment to remove the TCE by the sludge, and (3) the identification of microorganisms in the sludge after the TCE reduction. Although in this case the sediments were taken from a site located in Mexico, the generation of a sulfidogenic sludge by using this procedure may work if a different source of sediments is taken since marine sediments are a natural pool of microorganisms that may be enriched in sulfate reducing bacteria. PMID:26555802

  9. Development of Sulfidogenic Sludge from Marine Sediments and Trichloroethylene Reduction in an Upflow Anaerobic Sludge Blanket Reactor.

    PubMed

    Guerrero-Barajas, Claudia; Ordaz, Alberto; García-Solares, Selene Montserrat; Garibay-Orijel, Claudio; Bastida-González, Fernando; Zárate-Segura, Paola Berenice

    2015-10-15

    The importance of microbial sulfate reduction relies on the various applications that it offers in environmental biotechnology. Engineered sulfate reduction is used in industrial wastewater treatment to remove large concentrations of sulfate along with the chemical oxygen demand (COD) and heavy metals. The most common approach to the process is with anaerobic bioreactors in which sulfidogenic sludge is obtained through adaptation of predominantly methanogenic granular sludge to sulfidogenesis. This process may take a long time and does not always eliminate the competition for substrate due to the presence of methanogens in the sludge. In this work, we propose a novel approach to obtain sulfidogenic sludge in which hydrothermal vents sediments are the original source of microorganisms. The microbial community developed in the presence of sulfate and volatile fatty acids is wide enough to sustain sulfate reduction over a long period of time without exhibiting inhibition due to sulfide. This protocol describes the procedure to generate the sludge from the sediments in an upflow anaerobic sludge blanket (UASB) type of reactor. Furthermore, the protocol presents the procedure to demonstrate the capability of the sludge to remove by reductive dechlorination a model of a highly toxic organic pollutant such as trichloroethylene (TCE). The protocol is divided in three stages: (1) the formation of the sludge and the determination of its sulfate reducing activity in the UASB, (2) the experiment to remove the TCE by the sludge, and (3) the identification of microorganisms in the sludge after the TCE reduction. Although in this case the sediments were taken from a site located in Mexico, the generation of a sulfidogenic sludge by using this procedure may work if a different source of sediments is taken since marine sediments are a natural pool of microorganisms that may be enriched in sulfate reducing bacteria.

  10. Complete solids retention activated sludge process.

    PubMed

    Amanatidou, E; Samiotis, G; Trikoilidou, E; Pekridis, G; Tsikritzis, L

    2016-01-01

    In a slaughterhouse's full-scale extended aeration activated sludge wastewater treatment plant (WWTP), operating under complete solids retention time, the evolution of mixed liquor suspended solids (MLSS) and mixed liquor volatile suspended solids (MLVSS) concentration, food to micro-organisms ratio (F/M) and substrate utilization rate (SUR) were studied for over a year. Biomass growth phases in correlation to sludge biological and morphological characteristics were studied. Three distinguished growth phases were observed during the 425 days of monitoring. The imposed operational conditions led the process to extended biomass starvation conditions, minimum F/M, minimum SUR and predator species growth. MLSS and MLVSS reached a stabilization phase (plateau phase) where almost zero sludge accumulation was observed. The concept of degradation of the considered non-biodegradable particulate compounds in influent and in biomass (cell debris) was also studied. Comparison of evolution of observed sludge yields (Yobs) in the WWTP with Yobs predictions by activated sludge models verified the degradation concept for the considered non-biodegradable compounds. Control of the sedimentation process was achieved, by predicting the solids loading rate critical point using state point analysis and stirred/unstirred settling velocity tests and by applying a high return activated sludge rate. The nitrogen gas related sedimentation problems were taken into consideration.

  11. Aerobic Heterotrophic Bacterial Populations of Sewage and Activated Sludge

    PubMed Central

    Prakasam, T. B. S.; Dondero, N. C.

    1970-01-01

    An activated sludge from a sewage treatment plant and a laboratory activated sludge developed on an artificial waste were compared for their ability to utilize 11 aromatic compounds. There were several significant differences between them. The laboratory sludge contained higher numbers of organisms and metabolized the aromatics to a greater extent. Laboratory activated sludges acclimated to utilization of the aromatics differed from each other in population structure and the pattern of oxygen consumption with aromatic substrates. The oxidative patterns of uncontrolled mixed populations were unreliable for investigating metabolic pathways. Extracts of the various sludges elevated the plate counts of the sludges. PMID:5418946

  12. Isolation of aluminum-tolerant bacteria capable of nitrogen removal in activated sludge.

    PubMed

    Ji, Bin; Chen, Wei; Zhu, Lei; Yang, Kai

    2016-05-15

    Four strains of bacteria capable of withstanding 20mM concentration of aluminum were isolated from activated sludge in a bioreactor. 16S rRNA identification and morphological characteristics indicated that these strains were Chryseobacterium sp. B1, Brevundimonas diminuta B3, Hydrogenophaga sp. B4, and Bacillus cereus B5. Phylogenetic analysis revealed the position and interrelationships of these bacteria. B. diminuta B3 and Hydrogenophaga sp. B4 could achieve nitrate nitrogen removal of 94.0% and 76.8% within 36h of its initial concentration of 148.8 and 151.7mg/L, respectively. Meanwhile, B3 and B4 could degrade ammonia with little nitrite accumulation. Results of this study provide more information about aluminum-resistant bacteria and laid the foundation for aluminum salt when it is simultaneously used for chemical precipitation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. A comparison of BNR activated sludge systems with membrane and settling tank solid-liquid separation.

    PubMed

    Ramphao, M C; Wentzel, M C; Ekama, G A; Alexander, W V

    2006-01-01

    Installing membranes for solid-liquid separation into biological nutrient removal (BNR) activated sludge (AS) systems makes a profound difference not only to the design of the membrane bio-reactor (MBR) BNR system itself, but also to the design approach for the whole wastewater treatment plant (WWTP). In multi-zone BNR systems with membranes in the aerobic reactor and fixed volumes for the anaerobic, anoxic and aerobic zones (i.e. fixed volume fractions), the mass fractions can be controlled (within a range) with the inter-reactor recycle ratios. This zone mass fraction flexibility is a significant advantage of MBR BNR systems over BNR systems with secondary settling tanks (SSTs), because it allows changing the mass fractions to optimise biological N and P removal in conformity with influent wastewater characteristics and the effluent N and P concentrations required. For PWWF/ADWF ratios (fq) in the upper range (fq approximately 2.0), aerobic mass fractions in the lower range (f(maer) < 0.60) and high (usually raw) wastewater strengths, the indicated mode of operation of MBR BNR systems is as extended aeration WWTPs (no primary settling and long sludge age). However, the volume reduction compared with equivalent BNR systems with SSTs will not be large (40-60%), but the cost of the membranes can be offset against sludge thickening and stabilisation costs. Moving from a flow unbalanced raw wastewater system to a flow balanced (fq = 1) low (usually settled) wastewater strength system can double the ADWF capacity of the biological reactor, but the design approach of the WWTP changes away from extended aeration to include primary sludge stabilisation. The cost of primary sludge treatment then has to be offset against the savings of the increased WWTP capacity.

  14. Effect of hydraulic retention time and sludge recirculation on greenhouse gas emission and related microbial communities in two-stage membrane bioreactor treating solid waste leachate.

    PubMed

    Nuansawan, Nararatchporn; Boonnorat, Jarungwit; Chiemchaisri, Wilai; Chiemchaisri, Chart

    2016-06-01

    Methane (CH4) and nitrous oxide (N2O) emissions and responsible microorganisms during the treatment of municipal solid waste leachate in two-stage membrane bioreactor (MBR) was investigated. The MBR system, consisting of anaerobic and aerobic stages, were operated at hydraulic retention time (HRT) of 5 and 2.5days in each reactor under the presence and absence of sludge recirculation. Organic and nitrogen removals were more than 80% under all operating conditions during which CH4 emission were found highest under no sludge recirculation condition at HRT of 5days. An increase in hydraulic loading resulted in a reduction in CH4 emission from anaerobic reactor but an increase from the aerobic reactor. N2O emission rates were found relatively constant from anaerobic and aerobic reactors under different operating conditions. Diversity of CH4 and N2O producing microorganisms were found decreasing when hydraulic loading rate to the reactors was increased. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. [Effect of sludge bulking on membrane fouling of MBR under low temperature].

    PubMed

    Ren, Nan-qi; Liu, Jiao; Wang, Xiu-heng

    2009-01-01

    The performance and membrane fouling of submerged membrane bioreactor were studied in the case of active sludge bulking under low temperature. The factors contributing to membrane fouling were discussed from the microorganism aspect. The results showed that COD removal efficiencies of supernatant and permeate were 85% and 92% respectively and filamentous sludge bulking had little impact on them. The sludge settleability became bad and the filament index (FI) increased from 2 to 5 during the formation of filamentous sludge bulking under low temperature. The filamentous bacteria extending from the sludge flocs formed net structure. Membrane fouling changed with time in linear under low temperature and the operation period of MBR was 15 d. However, membrane fouling was more serious in the condition of filamentous sludge bulking at low temperature, shortening the operation period of MBR to 7 d. The extracellular polymeric substances (EPS) content of bulking sludge was three times as that of normal sludge and the relative hydrophobicity (RH) of sludge flocs was decreased as FI increased. The increase of EPS and RH may cause more materials to deposit on the membrane surface, thus the membrane fouling rate improved and the operation period of MBR became short. Further analysis indicated that the mixed liquid viscosity, Zeta potential and sludge floc structure were all important factors of membrane fouling.

  16. Mixing characterisation of full-scale membrane bioreactors: CFD modelling with experimental validation.

    PubMed

    Brannock, M; Wang, Y; Leslie, G

    2010-05-01

    Membrane Bioreactors (MBRs) have been successfully used in aerobic biological wastewater treatment to solve the perennial problem of effective solids-liquid separation. The optimisation of MBRs requires knowledge of the membrane fouling, biokinetics and mixing. However, research has mainly concentrated on the fouling and biokinetics (Ng and Kim, 2007). Current methods of design for a desired flow regime within MBRs are largely based on assumptions (e.g. complete mixing of tanks) and empirical techniques (e.g. specific mixing energy). However, it is difficult to predict how sludge rheology and vessel design in full-scale installations affects hydrodynamics, hence overall performance. Computational Fluid Dynamics (CFD) provides a method for prediction of how vessel features and mixing energy usage affect the hydrodynamics. In this study, a CFD model was developed which accounts for aeration, sludge rheology and geometry (i.e. bioreactor and membrane module). This MBR CFD model was then applied to two full-scale MBRs and was successfully validated against experimental results. The effect of sludge settling and rheology was found to have a minimal impact on the bulk mixing (i.e. the residence time distribution).

  17. Biomass properties and permeability in an immersed hollow fibre membrane bioreactor at high sludge concentrations.

    PubMed

    Wang, Z Z; Zsirai, T; Connery, K; Fabiyi, M; Larrea, A; Li, J; Judd, S J

    2014-01-01

    This study aimed to investigate the influence of biomass properties and high mixed liquor suspended solids (MLSS) concentrations on membrane permeability in a pilot-scale hollow fibre membrane bioreactor treating domestic wastewater. Auxiliary molasses solution was added to maintain system operation at constant food-to-microorganisms ratio (F/M = 0.13). Various physicochemical and biological biomass parameters were measured throughout the trial, comprising pre-thickening, thickening and post-thickening periods with reference to the sludge concentration and with aerobic biotreatment continuing throughout. Correlations between dynamic changes in biomass characteristics and membrane permeability decline as well as permeability recovery were further assessed by statistical analyses. Results showed the MLSS concentration to exert the greatest influence on sustainable membrane permeability, with a weaker correlation with particle size distribution. The strong dependence of absolute recovered permeability on wet accumulated solids (WACS) concentration, or clogging propensity, revealed clogging to deleteriously affect membrane permeability decline and recovery (from mechanical declogging and chemical cleaning), with WACS levels increasing with increasing MLSS. Evidence from the study indicated clogging may permanently reduce membrane permeability post declogging and chemical cleaning, corroborating previously reported findings.

  18. Technologies for reducing sludge production in wastewater treatment plants: State of the art.

    PubMed

    Wang, Qilin; Wei, Wei; Gong, Yanyan; Yu, Qiming; Li, Qin; Sun, Jing; Yuan, Zhiguo

    2017-06-01

    This review presents the state-of-the-art sludge reduction technologies applied in both wastewater and sludge treatment lines. They include chemical, mechanical, thermal, electrical treatment, addition of chemical un-coupler, and predation of protozoa/metazoa in wastewater treatment line, and physical, chemical and biological pretreatment in sludge treatment line. Emphasis was put on their effect on sludge reduction performance, with 10% sludge reduction to zero sludge production in wastewater treatment line and enhanced TS (total solids) or volatile solids removal of 5-40% in sludge treatment line. Free nitrous acid (FNA) technology seems good in wastewater treatment line but it is only under the lab-scale trial. In sludge treatment line, thermal, ultrasonic (<4400kJ/kg TS), FNA pretreatment and temperature-phased anaerobic digestion (TPAD) are promising if pathogen inactivation is not a concern. However, thermal pretreatment and TPAD are superior to other pretreatment technologies when pathogen inactivation is required. The new wastewater treatment processes including SANI®, high-rate activated sludge coupled autotrophic nitrogen removal and anaerobic membrane bioreactor coupled autotrophic nitrogen removal also have a great potential to reduce sludge production. In the future, an effort should be put on the effect of sludge reduction technologies on the removal of organic micropollutants and heavy metals. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. [Feasibility study on coke wastewater treatment using membrane bioreactor (MBR) system with complete sludge retention].

    PubMed

    Zhao, Wen-Tao; Huang, Xia; Lee, Duu-Jong; He, Miao; Yuan, Yuan

    2009-11-01

    A laboratory-scale submerged anaerobic-anoxic-oxic membrane bioreactor (A1/A2/O-MBR) system was used to treat real coke wastewater and operated continuously for 160 d with complete sludge retention. Pollutants removal performance of the system was investigated through long-term operation. The characteristics of dissolved organic matters (DOMs) in influent and effluent coke wastewater were analyzed using hydrophilic/hydrophobic fractionation, and further discussed based on fluorescence excitation-emission-matrix (EEM). The results showed that A1/A2/O-MBR system could stably remove 88.0% +/- 1.6% of COD, > 99.9% of volatile phenol, 99.4% +/- 0.2% of turbidity, and 98.3% +/- 1.9% of NH4(+) -N, with individual average effluent concentrations of 249 mg/L +/- 44 mg/L, 0.18 mg/L +/- 0.05 mg/L, 1.0 NTU +/- 0.2 NTU and 4.1 mg/L +/- 4.3 mg/L, respectively; moreover, the maximum TN removal rate also reached 74.9%. During the whole operation period, the MLVSS/MLSS appeared to be constant as 90.2% +/- 1.0% and no inorganic matters accumulation occurred. The observed sludge production (MLVSS/COD) decreased with time and stabilized at 0.035 kg/kg. DOMs in coke wastewater were fractionated as hydrophobic acids (HOA), hydrophobic neutrals (HON), hydrophobic bases (HOB) and hydrophilic substances (HIS); HOA was found to be the most abundant constituent in terms of DOC and color intensity both in influent and effluent, which accounted for 70% and 67% of total DOC, and 75% and 76% of total color intensity, respectively. Humic-like substances were suggested to be the major refractory organic and color-causing compounds coke wastewater effluent according to EEM analysis.

  20. A novel membrane bioreactor inoculated with symbiotic sludge bacteria and algae: Performance and microbial community analysis.

    PubMed

    Sun, Li; Tian, Yu; Zhang, Jun; Li, Lipin; Zhang, Jian; Li, Jianzheng

    2018-03-01

    This study combined sludge MBR technology with algae to establish an effective wastewater treatment and low membrane fouling system (ASB-MBR). Compared with control-MBR (C-MBR), the amelioration of microbial activity and the improvement of sludge properties and system environment were achieved after introducing algae resulting in high nutrients removal in the combined system. Further statistical analysis revealed that the symbiosis of algae and sludge displayed more remarkable impacts on nutrients removal than either of them. Additionally, membrane permeability was improved in ASB-MBR with respect to the decreased concentration, the changed of characteristics and the broken particular functional groups of extracellular polymeric substances (EPSs). Moreover, the algae inoculation reduced sludge diversity and shifted sludge community structure. Meantime, the stimulated bacteria selectively excite algal members that would benefit for the formation of algal-bacterial consortia. Consequently, the stimulated or inhibited of some species might be responsible for the performance of ASB-MBR. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Kinetic model of excess activated sludge thermohydrolysis.

    PubMed

    Imbierowicz, Mirosław; Chacuk, Andrzej

    2012-11-01

    Thermal hydrolysis of excess activated sludge suspensions was carried at temperatures ranging from 423 K to 523 K and under pressure 0.2-4.0 MPa. Changes of total organic carbon (TOC) concentration in a solid and liquid phase were measured during these studies. At the temperature 423 K, after 2 h of the process, TOC concentration in the reaction mixture decreased by 15-18% of the initial value. At 473 K total organic carbon removal from activated sludge suspension increased to 30%. It was also found that the solubilisation of particulate organic matter strongly depended on the process temperature. At 423 K the transfer of TOC from solid particles into liquid phase after 1 h of the process reached 25% of the initial value, however, at the temperature of 523 K the conversion degree of 'solid' TOC attained 50% just after 15 min of the process. In the article a lumped kinetic model of the process of activated sludge thermohydrolysis has been proposed. It was assumed that during heating of the activated sludge suspension to a temperature in the range of 423-523 K two parallel reactions occurred. One, connected with thermal destruction of activated sludge particles, caused solubilisation of organic carbon and an increase of dissolved organic carbon concentration in the liquid phase (hydrolysate). The parallel reaction led to a new kind of unsolvable solid phase, which was further decomposed into gaseous products (CO(2)). The collected experimental data were used to identify unknown parameters of the model, i.e. activation energies and pre-exponential factors of elementary reactions. The mathematical model of activated sludge thermohydrolysis appropriately describes the kinetics of reactions occurring in the studied system. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Digital image processing and analysis for activated sludge wastewater treatment.

    PubMed

    Khan, Muhammad Burhan; Lee, Xue Yong; Nisar, Humaira; Ng, Choon Aun; Yeap, Kim Ho; Malik, Aamir Saeed

    2015-01-01

    Activated sludge system is generally used in wastewater treatment plants for processing domestic influent. Conventionally the activated sludge wastewater treatment is monitored by measuring physico-chemical parameters like total suspended solids (TSSol), sludge volume index (SVI) and chemical oxygen demand (COD) etc. For the measurement, tests are conducted in the laboratory, which take many hours to give the final measurement. Digital image processing and analysis offers a better alternative not only to monitor and characterize the current state of activated sludge but also to predict the future state. The characterization by image processing and analysis is done by correlating the time evolution of parameters extracted by image analysis of floc and filaments with the physico-chemical parameters. This chapter briefly reviews the activated sludge wastewater treatment; and, procedures of image acquisition, preprocessing, segmentation and analysis in the specific context of activated sludge wastewater treatment. In the latter part additional procedures like z-stacking, image stitching are introduced for wastewater image preprocessing, which are not previously used in the context of activated sludge. Different preprocessing and segmentation techniques are proposed, along with the survey of imaging procedures reported in the literature. Finally the image analysis based morphological parameters and correlation of the parameters with regard to monitoring and prediction of activated sludge are discussed. Hence it is observed that image analysis can play a very useful role in the monitoring of activated sludge wastewater treatment plants.

  3. Composting of sewage sludge with solid fraction of digested pulp from agricultural biogas plant

    NASA Astrophysics Data System (ADS)

    Czekała, Wojciech; Dach, Jacek; Przybył, Jacek; Mazurwiekiwcz, Jakub; Janczak, Damian; Lewicki, Andrzej; Smurzyńska, Anna; Kozłowski, Kamil

    2018-02-01

    Sewage sludge management is an important element of environmental protection. Composting and anaerobic digestion are the biological conversion methods for sewage sludge management. Mass and volume reduction is a result of a properly composted process. Solid fraction of digested pulp can be use as co-substrate, because it is good structural material. The aim of the study was to determine the possibility of composting sewage sludge with a solid fraction of digestate. The compost mix consisted of 25 kilograms of sewage sludge and 20 kilograms solid fraction of digestate in fresh mass. The experiment was carried out in laboratory conditions. Bioreactors of 165 dm3 volume were used. The experiment included two stages. Stage I took place in bioreactors and lasted until the cooling phase of the compost was complete. Stage II included compost maturation for a period of eight months (to 287 day of composting). The reduction of mass obtained at the end of Stage I amounted 30.2%. At the end of Stage II, it was 86.7% relative to the initial weight of the compost. The maximum value of temperature was 75.1°C. Studies have shown that sludge with a solid fraction of digestate can be a suitable substrate for composting with sewage sludge.

  4. A modified oxic-settling-anaerobic activated sludge process using gravity thickening for excess sludge reduction

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Li, Shi-Yu; Jiang, Feng; Wu, Ke; Liu, Guang-Li; Lu, Hui; Chen, Guang-Hao

    2015-09-01

    Oxic-settling-anaerobic process (OSA) was known as a cost-effective way to reduce the excess sludge production with simple upgrade of conventional activated sludge process (CAS). A low oxidation-reduction potential (ORP) level was the key factor to sludge decay and lysis in the sludge holding tank of the OSA process. However, the ORP control with nitrogen purge or chemical dosing in the OSA process would induce extra expense and complicate the operation. Hence, in this study, a sludge holding tank using gravity thickening was applied to OSA process to reduce the excess sludge production without any ORP control. Results showed that the modified OSA process not only reduced the excess sludge production effectively but also improved the sludge settleability without affected the treatment capacity. The reduction of the excess sludge production in the modified OSA process resulted from interactions among lots of factors. The key element of the process was the gravity thickening sludge holding tank.

  5. Toxic influence of silver and uranium salts on activated sludge of wastewater treatment plants and synthetic activated sludge associates modeled on its pure cultures.

    PubMed

    Tyupa, Dmitry V; Kalenov, Sergei V; Skladnev, Dmitry A; Khokhlachev, Nikolay S; Baurina, Marina M; Kuznetsov, Alexander Ye

    2015-01-01

    Toxic impact of silver and uranium salts on activated sludge of wastewater treatment facilities has been studied. Some dominating cultures (an active nitrogen fixer Agrobacterium tumifaciens (A.t) and micromyces such as Fusarium nivale, Fusarium oxysporum, and Penicillium glabrum) have been isolated and identified as a result of selection of the activated sludge microorganisms being steadiest under stressful conditions. For these cultures, the lethal doses of silver amounted 1, 600, 50, and 300 µg/l and the lethal doses of uranium were 120, 1,500, 1,000, and 1,000 mg/l, respectively. A.tumifaciens is shown to be more sensitive to heavy metals than micromyces. Synthetic granular activated sludge was formed on the basis of three cultures of the isolated micromyces steadiest against stress. Its granules were much more resistant to silver than the whole native activated sludge was. The concentration of silver causing 50 % inhibition of synthetic granular activated sludge growth reached 160-170 μg/l as far as for the native activated sludge it came only to 100-110 μg/l.

  6. Bioflocculation of mesophilic and thermophilic activated sludge.

    PubMed

    Vogelaar, J C T; De Keizer, A; Spijker, S; Lettinga, G

    2005-01-01

    Thermophilic activated sludge treatment is often hampered by a turbid effluent. Reasons for this phenomenon are so far unknown. Here, the hypothesis of the temperature dependency of the hydrophobic interaction as a possible cause for diminished thermophilic activated sludge bioflocculation was tested. Adsorption of wastewater colloidal particles was monitored on different flat surfaces as a function of temperature. Adsorption on a hydrophobic surface varied with temperature between 20 and 60 degrees C and no upward or downward trend could be observed. This makes the hydrophobic interaction hypothesis unlikely in explaining the differences in mesophilic and thermophilic activated sludge bioflocculation. Both mesophilic and thermophilic biomass did not flocculate with wastewater colloidal particles under anaerobic conditions. Only in the presence of oxygen, with biologically active bacteria, the differences in bioflocculation behavior became evident. Bioflocculation was shown only to occur with the combination of wastewater and viable mesophilic biomass at 30 degrees C, in the presence of oxygen. Bioflocculation did not occur in case the biomass was inactivated or when oxygen was absent. Thermophilic activated sludge hardly showed any bioflocculation, also under mesophilic conditions. Despite the differences in bioflocculation behavior, sludge hydrophobicity and sludge zetapotentials were almost similar. Theoretical calculations using the DLVO (Derjaguin, Landau, Verweij and Overbeek) theory showed that flocculation is unlikely in all cases due to long-range electrostatic forces. These calculations, combined with the fact that bioflocculation actually did occur at 30 degrees C and the unlikelyness of the hydrophobic interaction, point in the direction of bacterial exo-polymers governing bridging flocculation. Polymer interactions are not included in the DLVO theory and may vary as a function of temperature.

  7. Oxygen transfer dynamics and activated sludge floc structure under different sludge retention times at low dissolved oxygen concentrations.

    PubMed

    Fan, Haitao; Liu, Xiuhong; Wang, Hao; Han, Yunping; Qi, Lu; Wang, Hongchen

    2017-02-01

    In activated sludge systems, the aeration process consumes the most energy. The energy cost can be dramatically reduced by decreasing the operating dissolved oxygen (DO) concentration. However, low DO may lead to incomplete nitrification and poor settling performance of activated sludge flocs (ASFs). This study investigates oxygen transfer dynamics and settling performances of activated sludge under different sludge retention times (SRTs) and DO conditions using microelectrodes and microscopic techniques. Our experimental results showed that with longer SRTs, treatment capacity and settling performances of activated sludge improved due to smaller floc size and less extracellular polymeric substances (EPS). Long-term low DO conditions produced larger flocs and more EPS per unit sludge, which produced a more extensive anoxic area and led to low oxygen diffusion performance in flocs. Long SRTs mitigated the adverse effects of low DO. According to the microelectrode analysis and fractal dimension determination, smaller floc size and less EPS in the long SRT system led to high oxygen diffusion property and more compact floc structure that caused a drop in the sludge volume index (SVI). In summary, our results suggested that long SRTs of activated sludge can improve the operating performance under low DO conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Impact of gas injection on the apparent viscosity and viscoelastic property of waste activated sewage sludge.

    PubMed

    Bobade, Veena; Baudez, Jean Christophe; Evans, Geoffery; Eshtiaghi, Nicky

    2017-05-01

    Gas injection is known to play a major role on the particle size of the sludge, the oxygen transfer rate, as well as the mixing efficiency of membrane bioreactors and aeration basins in the waste water treatment plants. The rheological characteristics of sludge are closely related to the particle size of the sludge floc. However, particle size of sludge floc depends partly on the shear induced in the sludge and partly on physico-chemical nature of the sludge. The objective of this work is to determine the impact of gas injection on both the apparent viscosity and viscoelastic property of sludge. The apparent viscosity of sludge was investigated by two methods: in-situ and after sparging. Viscosity curves obtained by in-situ measurement showed that the apparent viscosity decreases significantly from 4000 Pa s to 10 Pa s at low shear rate range (below 10 s -1 ) with an increase in gas flow rate (0.5LPM to 3LPM); however the after sparging flow curve analysis showed that the reduction in apparent viscosity throughout the shear rate range is negligible to be displayed. Torque and displacement data at low shear rate range revealed that the obtained lower apparent viscosity in the in-situ method is not the material characteristics, but the slippage effect due to a preferred location of the bubbles close to the bob, causing an inconsistent decrease of torque and increase of displacement at low shear rate range. In linear viscoelastic regime, the elastic and viscous modulus of sludge was reduced by 33% & 25%, respectively, due to gas injection because of induced shear. The amount of induced shear measured through two different tests (creep and time sweep) were the same. The impact of this induced shear on sludge structure was also verified by microscopic images. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The presence and role of bacterial quorum sensing in activated sludge

    PubMed Central

    Chong, Grace; Kimyon, Onder; Rice, Scott A.; Kjelleberg, Staffan; Manefield, Mike

    2012-01-01

    Summary Activated sludge used for wastewater treatment globally is composed of a high‐density microbial community of great biotechnological significance. In this study the presence and purpose of quorum sensing via N‐acylated‐l‐homoserine lactones (AHLs) in activated sludge was explored. The presence of N‐heptanoyl‐l‐homoserine lactone in organic extracts of sludge was demonstrated along with activation of a LuxR‐based AHL monitor strain deployed in sludge, indicating AHL‐mediated gene expression is active in sludge flocculates but not in the bulk aqueous phase. Bacterial isolates from activated sludge were screened for AHL production and expression of phenotypes commonly but not exclusively regulated by AHL‐mediated gene transcription. N‐acylated‐l‐homoserine lactone and exoenzyme production were frequently observed among the isolates. N‐acylated‐l‐homoserine lactone addition to sludge upregulated chitinase activity and an AHL‐ and chitinase‐producing isolate closely related to Aeromonas hydrophila was shown to respond to AHL addition with upregulation of chitinase activity. N‐acylated‐l‐homoserine lactones produced by this strain were identified and genes ahyI/R and chiA, encoding AHL production and response and chitinase activity respectively, were sequenced. These experiments provide insight into the relationship between AHL‐mediated gene expression and exoenzyme activity in activated sludge and may ultimately create opportunities to improve sludge performance. PMID:22583685

  10. Modelling carbon oxidation in pulp mill activated sludge systems: calibration of Activated Sludge Model No 3.

    PubMed

    Barañao, P A; Hall, E R

    2004-01-01

    Activated Sludge Model No 3 (ASM3) was chosen to model an activated sludge system treating effluents from a mechanical pulp and paper mill. The high COD concentration and the high content of readily biodegradable substrates of the wastewater make this model appropriate for this system. ASM3 was calibrated based on batch respirometric tests using fresh wastewater and sludge from the treatment plant, and on analytical measurements of COD, TSS and VSS. The model, developed for municipal wastewater, was found suitable for fitting a variety of respirometric batch tests, performed at different temperatures and food to microorganism ratios (F/M). Therefore, a set of calibrated parameters, as well as the wastewater COD fractions, was estimated for this industrial wastewater. The majority of the calibrated parameters were in the range of those found in the literature.

  11. Applicability of dynamic membrane technology in anaerobic membrane bioreactors.

    PubMed

    Ersahin, Mustafa Evren; Ozgun, Hale; Tao, Yu; van Lier, Jules B

    2014-01-01

    This study investigated the applicability of dynamic membrane technology in anaerobic membrane bioreactors for the treatment of high strength wastewaters. A monofilament woven fabric was used as support material for dynamic membrane formation. An anaerobic dynamic membrane bioreactor (AnDMBR) was operated under a variety of operational conditions, including different sludge retention times (SRTs) of 20 and 40 days in order to determine the effect of SRT on both biological performance and dynamic membrane filtration characteristics. High COD removal efficiencies exceeding 99% were achieved during the operation at both SRTs. Higher filtration resistances were measured during the operation at SRT of 40 days in comparison to SRT of 20 days, applying a stable flux of 2.6 L/m(2) h. The higher filtration resistances coincided with lower extracellular polymeric substances concentration in the bulk sludge at SRT of 40 days, likely resulting in a decreased particle flocculation. Results showed that dynamic membrane technology achieved a stable and high quality permeate and AnDMBRs can be used as a reliable and satisfactory technology for treatment of high strength wastewaters. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Performance evaluation of startup for a yeast membrane bioreactor (MBRy) treating landfill leachate.

    PubMed

    Amaral, Míriam C S; Gomes, Rosimeire F; Brasil, Yara L; Oliveira, Sílvia M A; Moravia, Wagner G

    2017-12-06

    The startup process of a membrane bioreactor inoculated with yeast biomass (Saccharomyces cerevisiae) and used in the treatment of landfill leachate was evaluated. The yeast membrane bioreactor (MBRy) was inoculated with an exogenous inoculum, a granulated active dry commercial bakers' yeast. The MBRy was successfully started up with a progressive increase in the landfill leachate percentage in the MBRy feed and the use of Sabouraud Dextrose Broth. The membrane plays an important role in the startup phase because of its full biomass retention and removal of organic matter. MBRy is a suitable and promising process to treat recalcitrant landfill leachate. After the acclimation period, the COD and NH 3 removal efficiency reached values of 72 ± 3% and 39 ± 2% respectively. MBRy shows a low membrane-fouling potential. The membrane fouling was influenced by soluble microbial products, extracellular polymeric substances, sludge particle size, and colloidal dissolved organic carbon.

  13. A novel membrane distillation-thermophilic bioreactor system: biological stability and trace organic compound removal.

    PubMed

    Wijekoon, Kaushalya C; Hai, Faisal I; Kang, Jinguo; Price, William E; Guo, Wenshan; Ngo, Hao H; Cath, Tzahi Y; Nghiem, Long D

    2014-05-01

    The removal of trace organic compounds (TrOCs) by a novel membrane distillation-thermophilic bioreactor (MDBR) system was examined. Salinity build-up and the thermophilic conditions to some extent adversely impacted the performance of the bioreactor, particularly the removal of total nitrogen and recalcitrant TrOCs. While most TrOCs were well removed by the thermophilic bioreactor, compounds containing electron withdrawing functional groups in their molecular structure were recalcitrant to biological treatment and their removal efficiency by the thermophilic bioreactor was low (0-53%). However, the overall performance of the novel MDBR system with respect to the removal of total organic carbon, total nitrogen, and TrOCs was high and was not significantly affected by the conditions of the bioreactor. All TrOCs investigated here were highly removed (>95%) by the MDBR system. Biodegradation, sludge adsorption, and rejection by MD contribute to the removal of TrOCs by MDBR treatment. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  14. Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization.

    PubMed

    Tiehm, A; Nickel, K; Zellhorn, M; Neis, U

    2001-06-01

    The pretreatment of waste activated sludge by ultrasonic disintegration was studied in order to improve the anaerobic sludge stabilization. The ultrasound frequency was varied within a range from 41 to 3217 kHz. The impact of different ultrasound intensities and treatment times was examined. Sludge disintegration was most significant at low frequencies. Low-frequency ultrasound creates large cavitation bubbles which upon collapse initiate powerful jet streams exerting strong shear forces in the liquid. The decreasing sludge disintegration efficiency observed at higher frequencies was attributed to smaller cavitation bubbles which do not allow the initiation of such strong shear forces. Short sonication times resulted in sludge floc deagglomeration without the destruction of bacteria cells. Longer sonication brought about the break-up of cell walls, the sludge solids were distintegrated and dissolved organic compounds were released. The anaerobic digestion of waste activated sludge following ultrasonic pretreatment causing microbial cell lysis was significantly improved. There was an increase in the volatile solids degradation as well as an increase in the biogas production. The increase in digestion efficiency was proportional to the degree of sludge disintegration. To a lesser degree the deagglomeration of sludge flocs also augmented the anaerobic volatile solids degradation.

  15. Day/night temperature differences (DNTD) trigger changes in nutrient removal and functional bacteria in membrane bioreactors.

    PubMed

    Zhang, Shaoqing; Sheng, Binbin; Lin, Wenting; Meng, Fangang

    2018-09-15

    Temperature is a well-known environmental stress that influences both microbial metabolism and community structure in the biological wastewater treatment systems. In this study, responses of biological performance and sludge microbiota to the long-term day/night temperature differences (DNTD) were investigated in membrane bioreactors (MBRs). The results showed that the functional bacteria could sustained their ecological functions at low DNTD (20/30 °C), resulting in relatively stable performance with respect to nutrient removal. However, when the activated sludge was subjected to a high DNTD (17/33 °C), the effluent concentrations of COD, TN and TP were significantly higher in MBR-B than that in MBR-A. In addition, more severe membrane fouling occurred under the perturbation of high DNTD as revealed by the transmembrane pressure (TMP) profile, which was mainly attributed to the accumulation of extracellular polymeric substances (EPS). The results of 16S rRNA gene sequencing showed that DNTD showed negligible effect on the bacterial community structures. Nonetheless, the functional bacteria responded differently to DNTD, which were in accordance with the bioreactor performances. Specifically, Nitrospina (NOB) and Tetrasphaera (PAOs) appeared to be sensitive to both low and high DNTD. In contrast, a low DNTD showed marginal effects on the denitrifiers, while a high DNTD significantly decreased their abundances. More strikingly, filamentous bulking bacteria were found to be well-adapted to DNTD, indicating their tolerance to the daily temperature fluctuation. This study will advance our knowledge regarding the response of microbial ecology of activated sludge to daily temperature variations in full-scale MBRs. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Excess sludge disruption and pollutant removal from tannery effluent by upgraded activated sludge system.

    PubMed

    Sodhi, Vijay; Bansal, Ajay; Jha, Mithilesh Kumar

    2018-04-30

    This study proposed a maintenance metabolism based upgraded activated sludge as MANODOX system that restricts excess biosludge generation from high strength real tannery effluent. The MANODOX experimental demonstration has been done using a sequenced operational arrangement of a MBBR, anaerobic digester, and oxidation ditch connected to CAS reactor, discussed in detail manner. Experimental trends revealed a prominently lower sludge yield upto 0.271 gVSS/gCOD (72% overall sludge reduction) that corresponds to parallel run CAS (0.92 gVSS/gCOD). MANODOX implementation confirmed high quality treated effluent with prominent COD and suspended solids reduction upto 97.1% and 96% respectively. The biodegradability observation was further supported by anaerobic and aerobic batch digestion analysis. The variation of soluble component turbidity analysis reflects the enriched non-flocculating predatory microbial population appears to may have been responsible for sludge reduction. MANODOX system provided a sustainable practical alternative for under capacity activated sludge based treatment facilities for a variety of wastewater types. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Enhancement of sludge reduction and methane production by removing extracellular polymeric substances from waste activated sludge.

    PubMed

    Nguyen, Minh Tuan; Mohd Yasin, Nazlina Haiza; Miyazaki, Toshiki; Maeda, Toshinari

    2014-12-01

    The management of waste activated sludge (WAS) recycling is a concern that affects the development of the future low-carbon society, particularly sludge reduction and biomass utilization. In this study, we investigated the effect of removing extracellular polymeric substances (EPS), which play important roles in the adhesion and flocculation of WAS, on increased sludge disintegration, thereby enhancing sludge reduction and methane production by anaerobic digestion. EPS removal from WAS by ethylenediaminetetraacetic acid (EDTA) significantly enhanced sludge reduction, i.e., 49 ± 5% compared with 27 ± 1% of the control at the end the digestion process. Methane production was also improved in WAS without EPS by 8881 ± 109 CH4 μmol g(-1) dry-weight of sludge. Microbial activity was determined by denaturing gradient gel electrophoresis and real-time polymerase chain reaction, which showed that the hydrolysis and acetogenesis stages were enhanced by pretreatment with 2% EDTA, with a larger methanogenic community and better methane production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Investigation of bacterial community in activated sludge with an anaerobic side-stream reactor (ASSR) to decrease the generation of excess sludge.

    PubMed

    Kim, Young Mo; Chon, Dong-Hyun; Kim, Hee-Sik; Park, Chul

    2012-09-01

    The goal of this study was to investigate the bacterial community in activated sludge with an anaerobic side-stream reactor (ASSR), a process permitting significant decrease in sludge production during wastewater treatment. The study operated five activated sludge systems with different sludge treatment schemes serving as various controls for the activated sludge with ASSR. Bacterial communities were analyzed by denaturing gradient gel electrophoresis (DGGE), sequencing and construction of phylogenetic relationships of the identified bacteria. The DGGE data showed that activated sludge incorporating ASSR contained higher diversity of bacteria, resulting from long solids retention time and recirculation of sludge under aerobic and anaerobic conditions. The similarity of DGGE profiles between ASSR and separate anaerobic digester (control) was high indicating that ASSR is primarily related to conventional anaerobic digesters. Nevertheless, there was also unique bacteria community appearing in ASSR. Interestingly, sludge in the main system and in ASSR showed considerably different bacterial composition indicating that ASSR allowed enriching its own bacterial community different than that from the aeration basin, although two reactors were connected via sludge recirculation. In activated sludge with ASSR, sequences represented by predominant DGGE bands were affiliated with Proteobacteria. The remaining groups were composed of Spirochaetes, Clostridiales, Chloroflexi, and Actinobacteria. Their putative role in the activated sludge with ASSR is also discussed in this study. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Heavy metal removal from synthetic wastewaters in an anaerobic bioreactor using stillage from ethanol distilleries as a carbon source.

    PubMed

    Gonçalves, M M M; da Costa, A C A; Leite, S G F; Sant'Anna, G L

    2007-11-01

    This work was conducted to investigate the possibility of using stillage from ethanol distilleries as substrate for sulfate reducing bacteria (SRB) growth and to evaluate the removal efficiency of heavy metals present in wastewaters containing sulfates. The experiments were carried out in a continuous bench-scale Upflow Anaerobic Sludge Blanket reactor (13 l) operated with a hydraulic retention time of 18 h. The bioreactor was inoculated with 7 l of anaerobic sludge. Afterwards, an enrichment procedure to increase SRB numbers was started. After this, cadmium and zinc were added to the synthetic wastewater, and their removal as metal sulfide was evaluated. The synthetic wastewater used represented the drainage from a dam of a metallurgical industry to which a carbon source (stillage) was added. The results showed that high percentages of removal (>99%) of Cd and Zn were attained in the bioreactor, and that the removal as sulfide precipitates was not the only form of metal removal occurring in the bioreactor environment.

  20. Occurrence and activity of Archaea in aerated activated sludge wastewater treatment plants.

    PubMed

    Gray, Neil D; Miskin, Ian P; Kornilova, Oksana; Curtis, Thomas P; Head, Ian M

    2002-03-01

    The occurrence, distribution and activity of archaeal populations within two aerated, activated sludge wastewater treatment systems, one treating domestic waste and the second treating mixed domestic and industrial wastewater, were investigated by denaturing gradient gel electrophoresis (DGGE) analysis of polymerase chain reaction (PCR)-amplified ribosomal RNA gene fragments and process measurements. In the plant receiving mixed industrial and domestic waste the archaeal populations found in the mixed liquor were very similar to those in the influent sewage, though a small number of DGGE bands specific to the mixed liquor were identified. In contrast, the activated sludge treating principally domestic waste harboured distinct archaeal populations associated with the mixed liquor that were not prevalent in the influent sewage. We deduce that the Archaea in the plant treating mixed wastewater were derived principally from the influent, whereas those in the plant treating solely domestic waste were actively growing in the treatment plant. Archaeal 16S rRNA gene sequences related to the Methanosarcinales, Methanomicrobiales and the Methanobacteriales were detected. Methanogenesis was measured in activated sludge samples incubated under oxic and anoxic conditions, demonstrating that the methanogens present in both activated sludge plants were active only in anoxic incubations. The relatively low rates of methanogenesis measured indicated that, although active, the methanogens play a minor role in carbon turnover in activated sludge.

  1. Valuation of OSA process and folic acid addition as excess sludge minimization alternatives applied in the activated sludge process.

    PubMed

    Martins, C L; Velho, V F; Ramos, S R A; Pires, A S C D; Duarte, E C N F A; Costa, R H R

    2016-01-01

    The aim of this study was to investigate the ability of the oxic-settling-anaerobic (OSA)-process and the folic acid addition applied in the activated sludge process to reduce the excess sludge production. The study was monitored during two distinct periods: activated sludge system with OSA-process, and activated sludge system with folic acid addition. The observed sludge yields (Yobs) were 0.30 and 0.08 kgTSS kg(-1) chemical oxygen demand (COD), control phase and OSA-process (period 1); 0.33 and 0.18 kgTSS kg(-1) COD, control phase and folic acid addition (period 2). The Yobs decreased by 73 and 45% in phases with the OSA-process and folic acid addition, respectively, compared with the control phases. The sludge minimization alternatives result in a decrease in excess sludge production, without negatively affecting the performance of the effluent treatment.

  2. Effect of potassium ferrate on disintegration of waste activated sludge (WAS).

    PubMed

    Ye, Fenxia; Ji, Haizhuang; Ye, Yangfang

    2012-06-15

    The activated sludge process of wastewater treatment results in the generation of a considerable amount of excess activated sludge. Increased attention has been given to minimization of waste activated sludge recently. This paper investigated the effect of potassium ferrate oxidation pretreatment on the disintegration of the waste activated sludge at various dosages of potassium ferrate. The results show that potassium ferrate pretreatment disintegrated the sludge particle, resulting in the reduction of total solid content by 31%. The solubility (SCOD/TCOD) of the sludge increased with the increase of potassium ferrate dosage. Under 0.81 g/g SS dosage of potassium ferrate, SCOD/TCOD reached 0.32. Total nitrogen (TN) and total phosphorous (TP) concentrations in the solution all increased significantly after potassium ferrate pretreatment. The sludge particles reduced from 116 to 87 μm. The settleability of the sludge (SVI) was enhanced by 17%, which was due to the re-flocculation by the by-product, Fe(III), during potassium ferrate oxidation and the decrease of the viscosity. From the result of the present investigations, it can be concluded that potassium ferrate oxidation is a feasible method for disintegration of excess activated sludge. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Impacts of cerium oxide nanoparticles on bacterial community in activated sludge.

    PubMed

    Kamika, I; Tekere, M

    2017-12-01

    Rapidly developing industry raises concerns about the environmental impacts of nanoparticles, but the effects of inorganic nanoparticles on bacterial community in wastewater treatment remain unclear. The present research assessed the impact of cerium oxide nanoparticles (nCeO) on the microbiome of activated sludge system. The results showed that 18,330 over 28,201 reads generated from control samples were assigned to Proteobacteria while 5527 reads (19.6%), 3260 reads (11.567%), and 719 reads (2.55%) were assigned to unclassified_Bacteria, Firmicutes and Actinobacteria, respectively. When stressed with nCeO 2 NPs, a decrease on reads was noted with 53, 48, 27.7 and 24% assigned to Proteobacteria. Gammaproteobacteria (80.57%) was found to be the most predominant Proteobacteria. The impact of nCeO 2 NPs was also observed on pollutants removal as only 1.83 and 35.15% of phosphate and nitrate could be removed in the bioreactor stressed with 40 mg-nCeO 2 -NPs/L. This was confirmed by a drastic reduction of activities for enzymes catalysing denitrification (NaR and NiR) and degradation of polyphosphate (ADK and PPK). ADK appeared to be the most affected enzyme with activity decrease reaching over 90% when stressed with 10 mg-nCeO 2 /L. Furthermore, bacterial diversity was not significantly different whereas their species richness showed significant difference between control and treated samples. A large number of reads from control samples could not be classified down to the lower taxonomic level "genera" suggesting hitherto vast untapped microbial diversity. The denitrification related genera including Trichococcus and Acinetobacter were found to alternatively dominating treated samples highlighting those nCeO 2 NPs could enhance the growth of some bacterial species while inhibiting those of others. Nevertheless, the study indicates that nCeO 2 NPs in wastewater at very high concentrations may have some adverse effects on activated sludge process as they inhibit the

  4. An additional simple denitrification bioreactor using packed gel envelopes applicable to industrial wastewater treatment.

    PubMed

    Morita, Masahiko; Uemoto, Hiroaki; Watanabe, Atsushi

    2007-08-15

    A simple denitrification bioreactor for nitrate-containing wastewater without organic compounds was developed. This bioreactor consisted of packed gel envelopes in a single tank. Each envelope comprised two plates of gels containing Paracoccus denitrificans cells with an internal space between the plates. As an electron donor for denitrification, ethanol was injected into the internal space and not directly into the wastewater. P. denitrificans cells in the gel reduced nitrate to nitrogen gas by using the injected ethanol. Nitrate-containing desulfurization wastewater derived from a coal-fired thermal power plant was continuously treated with 20 packed gel envelopes (size, 1,000 x 900 x 12 mm; surface area, 1.44 m(2)) in a reactor tank (volume 1.5 m(3)). When the total nitrogen concentration in the inflow was around 150 mg-N x L(-1), the envelopes removed approximately 60-80% of the total nitrogen, and the maximum nitrogen removal rate was 5.0 g-N x day(-1) per square meter of the gel surface. This value corresponded to the volumetric nitrogen removal performance of 0.109 kg-N x m(-3) x day(-1). In each envelope, a high utilization efficiency of the electron donor was attained, although more than the double amount of the electron donor was empirically injected in the present activated sludge system to achieve denitrification when compared with the theoretical value. The bioreactor using the envelopes would be extremely effective as an additional denitrification system because these envelopes can be easily installed in the vacant spaces of preinstalled water treatment systems, without requiring additional facilities for removing surplus ethanol and sludge. (c) 2007 Wiley Periodicals, Inc.

  5. [Method for Simultaneous Determination of 11 Veterinary Antibiotics in Piggery Wastewater and Sludge and Its Application in Biological Treatment].

    PubMed

    Ding, Jia-li; Liu, Rui; Zheng, Wei; Yu, Wei-juan; Ye, Zhao-xia; Chen, Lu-jun; Zhang, Yong-ming

    2015-10-01

    In order to determine eleven commonly used veterinary antibiotics (including four tetracyclines, two sulfonamides, three quinolones and two macrolides) in piggery wastewater and activated sludge in the Yangtze River Delta region, the conditions of solid phase extraction and high performance liquid chromatography-tandem mass spectrometry were optimized. The recovery rate and relative standard deviations of the method were confirmed as 73% - 105.2%, 3.1% - 10.2% for piggery wastewater (n = 3) and 57.4% - 104.6%, 1.9% - 10.9% (n = 3) respectively for the activated sludge. Removal of antibiotics was then studied in a membrane bioreactor. The results showed that antibiotics of both tetracycline and sulfonamide species took a large portion in the wastewater, while tetracycline species were the dominant in the sludge. Tetracycline species in the wastewater were removed by 85.2%, mainly through biodegradation (51.9%) and secondly by sludge adsorption (33.2%). By comparison, sulfonamide species was removed by 95.8%, almost all through biodegradation while little by sludge adsorption. Flask tests suggested that the accumulated antibiotics in the sludge give no significant influence on the microbial removal of organics and ammonium.

  6. Predicting the degradability of waste activated sludge.

    PubMed

    Jones, Richard; Parker, Wayne; Zhu, Henry; Houweling, Dwight; Murthy, Sudhir

    2009-08-01

    The objective of this study was to identify methods for estimating anaerobic digestibility of waste activated sludge (WAS). The WAS streams were generated in three sequencing batch reactors (SBRs) treating municipal wastewater. The wastewater and WAS properties were initially determined through simulation of SBR operation with BioWin (EnviroSim Associates Ltd., Flamborough, Ontario, Canada). Samples of WAS from the SBRs were subsequently characterized through respirometry and batch anaerobic digestion. Respirometry was an effective tool for characterizing the active fraction of WAS and could be a suitable technique for determining sludge composition for input to anaerobic models. Anaerobic digestion of the WAS revealed decreasing methane production and lower chemical oxygen demand removals as the SRT of the sludge increased. BioWin was capable of accurately describing the digestion of the WAS samples for typical digester SRTs. For extended digestion times (i.e., greater than 30 days), some degradation of the endogenous decay products was assumed to achieve accurate simulations for all sludge SRTs.

  7. Human Enteropathogen Load in Activated Sewage Sludge and Corresponding Sewage Sludge End Products▿

    PubMed Central

    Graczyk, Thaddeus K.; Lucy, Frances E.; Tamang, Leena; Miraflor, Allen

    2007-01-01

    This study demonstrated a significant reduction in the concentrations of Cryptosporidium parvum and Cryptosporidium hominis oocysts, Giardia lamblia cysts, and spores of human-virulent microsporidia in dewatered and biologically stabilized sewage sludge cake end products compared to those of the respective pathogens in the corresponding samples collected during the sludge activation process. PMID:17277215

  8. Fate of return activated sludge after ozonation: an optimization study for sludge disintegration.

    PubMed

    Demir, Ozlem; Filibeli, Ayse

    2012-09-01

    The effects of ozonation on sludge disintegration should be investigated before the application of ozone during biological treatment, in order to minimize excess sludge production. In this study, changes in sludge and supernatant after ozonation of return activated sludge were investigated for seven different ozone doses. The optimum ozone dose to avoid inhibition of ozonation and high ozone cost was determined in terms of disintegration degree as 0.05 g O3/gTS. Suspended solid and volatile suspended solid concentrations of sludge decreased by 77.8% and 71.6%, respectively, at the optimum ozone dose. Ozonation significantly decomposed sludge flocs. The release of cell contents was proved by the increase of supernatant total nitrogen (TN) and phosphorus (TP). While TN increased from 7 mg/L to 151 mg/L, TP increased from 8.8 to 33 mg/L at the optimum ozone dose. The dewaterability and filterability characteristics of the ozonated sludge were also examined. Capillary suction time increased with increasing ozone dosage, but specific resistance to filtration increased to a specific value and then decreased dramatically. The particle size distribution changed significantly as a result of floc disruption at an optimum dose of 0.05 gO3/gTS.

  9. [Dynamics of quickly absorption of the carbon source in wastewater by activated sludge].

    PubMed

    Liu, Hong-Bo; Wen, Xiang-Hua; Zhao, Fang

    2011-09-01

    In this paper, absorption characteristics of organic matter in municipal wastewater by three kinds of activated sludge (carbon-enriching, nitrification and denitrification sludge) were studied, and the absorption kinetic data was checked using three kinds of absorption kinetic equations based on Ritchie rate equation. The objectives of this study were to investigate the absorption mechanism of activated sludge to organic matter in municipal wastewater, and to identify the possibility of reclaiming organic matter by activated sludge. Results indicated that in the early 30 min, absorption process of organic matter by activated sludge was found to be mainly physical adsorption, which could be expressed by the Lagergren single-layer adsorption model. The carbon-enriching sludge had the highest adsorption capacity (COD/SS) which was 60 mg/g but the adsorption rate was lower than that of denitrification sludge. While nitrification sludge had the lowest adsorption rate and higher adsorption capacity compared with denitrification sludge, which was about 35 mg/g. The rates of the fitting index theta(0) of carbon-enriching, nitrification and denitrification sludge were 0.284, 0.777 and 0.923, respectively, which indicated that the sorbed organic matter on the surface of carbon-enriching sludge was the easiest fraction to be washed away. That is, the combination intensity of carbon-enriching sludge and organic matter was the feeblest, which was convenient for carbon-enriching sludge to release sorbed carbon. Furthermore, by fitting with Langmuir model, concentration of organic matter was found to be the key parameter influencing the adsorption capacity of activated sludge, while the influence of temperature was not obvious. The kinetic law of organic matter absorption by activated sludge was developed, which introduces a way to kinetically analyze the removing mechanism of pollutant by activated sludge and provides theoretical base for the reclaiming of nutriments in

  10. Membrane bioreactors for treating waste streams.

    PubMed

    Howell, J A; Arnot, T C; Liu, W

    2003-03-01

    Membrane bioreactors (MBRs) have a number of advantages for treating wastewater containing large quantities of BOD. This paper reviews the inherent advantages of an MBR, which include high potential biomass loadings, lower sludge yields, and retention of specialized organisms that may not settle well in clarifiers. A major problem in effluent treatment occurs when mixed inorganic and organic wastes occur with high concentrations of pollutants. Inorganics that might cause extremes of pH and/or salinity will inhibit microbial growth and only specialized organisms can survive under these conditions. Refractory organics are only biodegraded with difficulty by specialized organisms, which usually do not resist the extreme inorganic environments. The use of membrane bioreactors to help separate the micro-organisms from the inorganic compounds, yet permit the organics to permeate, has been developed in two different designs that are outlined in this paper. The use of membrane contactors in a multimembrane stripping system to treat acidic chlorinated wastes is proposed and discussed.

  11. The sludge loading rate regulates the growth and release of heterotrophic bacteria resistant to six types of antibiotics in wastewater activated sludge.

    PubMed

    Yuan, Qing-Bin; Guo, Mei-Ting; Yang, Jian

    2015-01-01

    Wastewater treatment plants are considered as hot reservoirs of antimicrobial resistance. However, the fates of antibiotic-resistant bacteria during biological treatment processes and relevant influencing factors have not been fully understood. This study evaluated the effects of the sludge loading rate on the growth and release of six kinds of antibiotic-resistant bacteria in an activated sludge system. The results indicated that higher sludge loading rates amplified the growth of all six types of antibiotic resistant bacteria. The release of most antibiotic-resistant bacteria through both the effluent and biosolids was amplified with increased sludge loading rate. Biosolids were the main pattern for all antibiotic-resistant bacteria release in an activated sludge system, which was determined primarily by their growth in the activated sludge. A higher sludge loading rate reactor tended to retain more antibiotic resistance. An activated sludge system with lower sludge loading rates was considered more conducive to the control of antibiotic resistance.

  12. Biodegradation of Organophosphate Chemical Warfare Agents by Activated Sludge

    DTIC Science & Technology

    2012-03-01

    Holmstedt, B. (1963). Structure- activity relationships of the organophosphorus anticholinesterase agents. In: Koelle, G.B. (ed.), Handbuch...BIODEGRADATION OF ORGANOPHOSPHATE CHEMICAL WARFARE AGENTS BY ACTIVATED SLUDGE Steven J. Schuldt...AFIT/GES/ENV/12-M04 BIODEGRADATION OF ORGANOPHOSPHATE CHEMICAL WARFARE AGENTS BY ACTIVATED SLUDGE THESIS Presented to the

  13. Performance and fouling characteristics of different pore-sized submerged ceramic membrane bioreactors (SCMBR).

    PubMed

    Jin, Le; Ng, How Yong; Ong, Say Leong

    2009-01-01

    The membrane bioreactor (MBR), a combination of activated sludge process and the membrane separation system, has been widely used in wastewater treatment. However, 90% of MBR reported were employing polymeric membranes. The usage of ceramic membranes in MBR is quite rare. Four submerged ceramic membrane bioreactors (SCMBRs) with different membrane pore size were used in this study to treat sewage. The results showed that the desirable carbonaceous removal of 95% and ammonia nitrogen removal of 98% were obtained for all the SCMBRs. It was also showed that the ceramic membranes were able to reject some portions of the protein and carbohydrate, whereby the carbohydrate rejection rate was much higher than that of protein. Membrane pore size did not significantly affect the COD and TOC removal efficiencies, the composition of EPS and SMP or the membrane rejection rate, although slight differences were observed. The SCMBR with the biggest membrane pore size fouled fastest, and membrane pore size was a main contributor for the different fouling potential observed.

  14. The effect of enzymatic pre-hydrolysis of dairy wastewater on the granular and immobilized microbial community in anaerobic bioreactors.

    PubMed

    Cammarota, Magali C; Rosa, Daniela R; Duarte, Iolanda C S; Saavedra, Nora K; Varesche, Maria B A; Zaiat, Marcelo; Freire, Denise M G

    2013-01-01

    The effect of a lipase-rich enzyme preparation produced by the fungus Penicillium sp. on solid-state fermentation was evaluated in two anaerobic bioreactors (up-flow anaerobic sludge blanket (UASB) and horizontal-flow anaerobic immobilized biomass (HAIB)) treating dairy wastewater with 1200 mg oil and grease/L. The oil and grease hydrolysis step was carried out with 0.1% (w/v) of the solid enzymatic preparation at 30 degrees C for 24 h. This resulted in a final concentration of free acids eight times higher than the initial value. The bioreactors operated at 30 degrees C with hydraulic retention times of 12 h (HAIB) and 20 h (UASB) for a period of 430 days, and had high chemical oxygen demand (COD) removal efficiencies (around 90%) when fed with pre-hydrolyzed wastewater. There was, however, an increase in the effluent oil and grease concentration (from values as low as 17 mg/L to values above 150 mg/L in the UASB bioreactor, and from 38-242 mg/L in the HAIB bioreactor), and oil and grease accumulation in the biomass throughout the operational period (the oil and grease content reached 1.7 times that found in the inoculum of the UASB bioreactor). The HAIB bioreactor gave better results because the support for biomass immobilization acted as a filter, retaining oil and grease at the entry of the bioreactor. The molecular analysis of the Bacteria and Archaea domains revealed significant differences in the microbial profiles in experiments conducted with and without the pre-hydrolysis step. The differences observed in the overall parameters could be related to the microbial diversity of the anaerobic sludge.

  15. Biomass characterization by dielectric monitoring of viability and oxygen uptake rate measurements in a novel membrane bioreactor.

    PubMed

    Shariati, Farshid Pajoum; Heran, Marc; Sarrafzadeh, Mohammad Hossein; Mehrnia, Mohammad Reza; Sarzana, Gabriele; Ghommidh, Charles; Grasmick, Alain

    2013-07-01

    The application of permittivity and oxygen uptake rate (OUR) as biological process control parameters in a wastewater treatment system was evaluated. Experiments were carried out in a novel airlift oxidation ditch membrane bioreactor under different organic loading rates (OLR). Permittivity as representative of activated sludge viability was measured by a capacitive on-line sensor. OUR was also measured as a representative for respirometric activity. Results showed that the biomass concentration increases with OLR and all biomass related measurements and simulators such as MLSS, permittivity, OUR, ASM1 and ASM3 almost follow the same increasing trends. The viability of biomass decreased when the OLR was reduced from 5 to 4 kg COD m(-3)d(-1). During decreasing of OLR, biomass related parameters generally decreased but not in a similar manner. Also, protein concentration in the system during OLR decreasing changed inversely with the activated sludge viability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Membrane bio-reactor for textile wastewater treatment plant upgrading.

    PubMed

    Lubello, C; Gori, R

    2005-01-01

    Textile industries carry out several fiber treatments using variable quantities of water, from five to forty times the fiber weight, and consequently generate large volumes of wastewater to be disposed of. Membrane Bio-reactors (MBRs) combine membrane technology with biological reactors for the treatment of wastewater: micro or ultrafiltration membranes are used for solid-liquid separation replacing the secondary settling of the traditional activated sludge system. This paper deals with the possibility of realizing a new section of one existing WWTP (activated sludge + clariflocculation + ozonation) for the treatment of treating textile wastewater to be recycled, equipped with an MBR (76 l/s as design capacity) and running in parallel with the existing one. During a 4-month experimental period, a pilot-scale MBR proved to be very effective for wastewater reclamation. On average, removal efficiency of the pilot plant (93% for COD, and over 99% for total suspended solids) was higher than the WWTP ones. Color was removed as in the WWTP. Anionic surfactants removal of pilot plant was lower than that of the WWTP (90.5 and 93.2% respectively), while the BiAS removal was higher in the pilot plant (98.2 vs. 97.1). At the end cost analysis of the proposed upgrade is reported.

  17. Removal of endocrine-disrupting chemicals and conventional pollutants in a continuous-operating activated sludge process integrated with ozonation for excess sludge reduction.

    PubMed

    Nie, Yafeng; Qiang, Zhimin; Ben, Weiwei; Liu, Junxin

    2014-06-01

    Sludge ozonation is considered as a promising technology to achieve a complete reduction of excess sludge, but as yet its effects on the removal of endocrine-disrupting chemicals (EDCs) and conventional pollutants (i.e., COD, N and P) in the activated sludge process are still unclear. In this study, two lab-scale continuous-operating activated sludge treatment systems were established: one was operated in conjunction with ozonation for excess sludge reduction, and the other was operated under normal conditions as control. The results indicate that an ozone dose of 100 mg O₃ g(-1)SS led to a zero yield of excess sludge in the sludge-reduction system during a continuous-operating period of 45d. Although ozonation gave a relatively lower specific oxygen uptake rate of activated sludge, it had little effect on the system's removal performance of COD and nitrogen substances. As a plus, sludge ozonation contributed a little more removal of target EDCs (estrone, 17β-estrodiol, estriol, 17α-ethinylestradiol, bisphenol A, and 4-nonylphenol). However, the total phosphorus removal declined notably due to its accumulation in the sludge-reduction system, which necessitates phosphorus recovery for the activated sludge process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Polyhydroxyalkanoate production potential of heterotrophic bacteria in activated sludge.

    PubMed

    Inoue, Daisuke; Suzuki, Yuta; Uchida, Takahiro; Morohoshi, Jota; Sei, Kazunari

    2016-01-01

    This study was conducted to evaluate the polyhydroxyalkanoate (PHA) production potential of cultivable heterotrophic bacteria in activated sludge by genotypic and phenotypic characterizations. A total of 114 bacterial strains were isolated from four activated sludge samples taken from a lab-scale sequencing batch reactor and three wastewater treatment processes of two municipal wastewater treatment plants. PCR detection of the phaC genes encoding class I and II PHA synthase revealed that 15% of the total isolates possessed phaC genes, all of which had the closest similarities to known phaC genes of α- and β-Proteobacteria and Actinobacteria. PHA production experiments under aerobic and nitrogen-limited conditions showed that 68% of the total isolates were capable of producing PHA from at least one of the six substrates used (acetate, propionate, lactate, butyrate, glucose and glycerol). Genotypic and phenotypic characterizations revealed that 75% of the activated sludge bacteria had PHA production potential. Our results also indicated that short-chain fatty acids would be the preferable substrates for PHA production by activated sludge bacteria, and that there might be a variety of unidentified phaC genes in activated sludge. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. EVALUATION OF ACTIVATED BIOFILTRATION AND ACTIVATED BIOFILTRATION/ACTIVATED SLUDGE TECHNOLOGIES

    EPA Science Inventory

    The paper presents the results of a review and investigation of the activated biofilter (ABF) and activated biofilter/activated sludge (ABF/AS) technologies and a review of operating records of several municipal plants in the U.S. using these technologies. The overall objective o...

  20. Instrumentation, control, and automation for submerged anaerobic membrane bioreactors.

    PubMed

    Robles, Ángel; Durán, Freddy; Ruano, María Victoria; Ribes, Josep; Rosado, Alfredo; Seco, Aurora; Ferrer, José

    2015-01-01

    A submerged anaerobic membrane bioreactor (AnMBR) demonstration plant with two commercial hollow-fibre ultrafiltration systems (PURON®, Koch Membrane Systems, PUR-PSH31) was designed and operated for urban wastewater treatment. An instrumentation, control, and automation (ICA) system was designed and implemented for proper process performance. Several single-input-single-output (SISO) feedback control loops based on conventional on-off and PID algorithms were implemented to control the following operating variables: flow-rates (influent, permeate, sludge recycling and wasting, and recycled biogas through both reactor and membrane tanks), sludge wasting volume, temperature, transmembrane pressure, and gas sparging. The proposed ICA for AnMBRs for urban wastewater treatment enables the optimization of this new technology to be achieved with a high level of process robustness towards disturbances.

  1. Potential of activated sludge disintegration.

    PubMed

    Boehler, M; Siegrist, H

    2006-01-01

    The disposal of sewage sludge and the agricultural use of stabilised sludge are decreasing due to more stringent regulations in Europe. An increasing fraction of sewage sludge must therefore be dewatered, dried, incinerated and the ashes disposed of in landfills. These processes are cost-intensive and also lead to the loss of valuable phosphate resources incorporated in the sludge ash. The implementation of processes that could reduce excess sludge production and recycle phosphate is therefore recommended. Disintegration of biological sludge by mechanical, thermal and physical methods could significantly reduce excess sludge production, improve the settling properties of the sludge and reduce bulking and scumming. The solubilised COD could also improve denitrification if the treated sludge is recycled to the anoxic zone. However, disintegration partly inhibits and kills nitrifiers and could therefore shorten their effective solid retention time, thus reducing the safety of the nitrification. This paper discusses the potential of disintegration on sludge reduction, the operating stability of nitrification, the improvement of denitrification and also presents an energy and cost evaluation.

  2. Biological uptake of phosphorus by activated sludge.

    PubMed

    Yall, I; Boughton, W H; Knudsen, R C; Sinclair, N A

    1970-07-01

    The ability of activated sludge to remove phosphates was studied by adding carrier-free (32)P to raw sewage and measuring incorporation of the radioactivity into the cells over a period of time. Radioisotope determinations indicated that 48% of the (32)P radioactivity was removed by 12 hr. However, chemical methods indicated that only 30% of the orthophosphate apparently disappeared from the sewage during this period. Experiments with sludge prelabeled with (32)P indicated that considerable phosphate turnover occurred. The cells released large amounts of radioactivity as they were incorporating fresh phosphates. Starvation in isotonic saline for 18 hr caused the sludge to dump phosphate. When introduced into fresh sewage containing (32)P, the starved sludge removed about 60% of the radioactivity in 6 hr with little phosphate turnover. The ability of sludge to remove (32)P was inhibited approximately 83% by 10(-3)m 2,4-dinitrophenol. This inhibition was at the expense of the cell fraction that contained ribonucleic acid and deoxyribonucleic acid. The sludge cells released orthophosphate when exposed to the chemical agent. Experiments using (45)Ca indicated that calcium phosphate precipitation plays a minor role in phosphate removal under our experimental conditions.

  3. Extracellular polymers of ozonized waste activated sludge.

    PubMed

    Liu, J C; Lee, C H; Lai, J Y; Wang, K C; Hsu, Y C; Chang, B V

    2001-01-01

    Effect of ozonation on characteristics of waste activated sludge was investigated in the current study. Concentrations of cell-bound extracellular polymers (washed ECPs) did not change much upon ozonation, whereas the sum of cell-bound and soluble extracellular polymers (unwashed ECPs) increased with increasing ozone dose. Washed ECPs in original sludge as divided by molecular weight distribution was 39% < 1,000 Da (low MW), 30% from 1,000 to 10,000 Da (medium MW), and 31% > 10,000 Da (high MW). It was observed that the low-MW fraction decreased, and the high-MW fraction increased in ozonized sludge. The unwashed ECPs were characterized as 44% in low MW, 30% in medium MW, and 26% in high MW. Both low-MW and medium-MW fractions of unwashed ECPs decreased while high-MW fraction increased in ozonized sludge. The dewaterability of ozonized sludge, assessed by capillary suction time (CST) and specific resistance to filtration (SRF), deteriorated with ozone dose. The optimal dose of cationic polyelectrolyte increased with increasing ozone dose. The production rate and the accumulated amount of methane gas of ozonized sludge were also higher.

  4. Comparative study on kinetic adsorption of Cu(II), Cd(II) and Ni(II) ions from aqueous solutions using activated sludge and dried sludge

    NASA Astrophysics Data System (ADS)

    Ong, Soon-An; Toorisaka, Eiichi; Hirata, Makoto; Hano, Tadashi

    2013-03-01

    The adsorption of Cu(II), Cd(II) and Ni(II) ions from aqueous solutions by activated sludge and dried sludge was investigated under laboratory conditions to assess its potential in removing metal ions. The adsorption behavior of metal ions onto activated sludge and dried sludge was analyzed with Weber-Morris intra-particle diffusion model, Lagergren first-order model and pseudo second-order model. The rate constant of intra-particle diffusion on activated sludge and dried sludge increased in the sequence of Cu(II) > Ni(II) > Cd(II). According to the regression coefficients, it was observed that the kinetic adsorption data can fit better by the pseudo second-order model compared to the first-order Lagergren model with R 2 > 0.997. The adsorption capacities of metal ions onto activated sludge and dried sludge followed the sequence Ni(II) ≈ Cu(II) > Cd(II) and Cu(II) > Ni(II) > Cd(II).

  5. Suspended biofilm carrier and activated sludge removal of acidic pharmaceuticals.

    PubMed

    Falås, P; Baillon-Dhumez, A; Andersen, H R; Ledin, A; la Cour Jansen, J

    2012-03-15

    Removal of seven active pharmaceutical substances (ibuprofen, ketoprofen, naproxen, diclofenac, clofibric acid, mefenamic acid, and gemfibrozil) was assessed by batch experiments, with suspended biofilm carriers and activated sludge from several full-scale wastewater treatment plants. A distinct difference between nitrifying activated sludge and suspended biofilm carrier removal of several pharmaceuticals was demonstrated. Biofilm carriers from full-scale nitrifying wastewater treatment plants, demonstrated considerably higher removal rates per unit biomass (i.e. suspended solids for the sludges and attached solids for the carriers) of diclofenac, ketoprofen, gemfibrozil, clofibric acid and mefenamic acid compared to the sludges. Among the target pharmaceuticals, only ibuprofen and naproxen showed similar removal rates per unit biomass for the sludges and biofilm carriers. In contrast to the pharmaceutical removal, the nitrification capacity per unit biomass was lower for the carriers than the sludges, which suggests that neither the nitrite nor the ammonia oxidizing bacteria are primarily responsible for the observed differences in pharmaceutical removal. The low ability of ammonia oxidizing bacteria to degrade or transform the target pharmaceuticals was further demonstrated by the limited pharmaceutical removal in an experiment with continuous nitritation and biofilm carriers from a partial nitritation/anammox sludge liquor treatment process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Investigation on removal pathways of Di 2-ethyl hexyl phthalate from synthetic municipal wastewater using a submerged membrane bioreactor.

    PubMed

    Zolfaghari, Mehdi; Drogui, Patrick; Seyhi, Brahima; Brar, Satinder Kaur; Buelna, Gerardo; Dubé, Rino; Klai, Nouha

    2015-11-01

    Highly hydrophobic Di 2-ethyl hexyl phthalate (DEHP) is one of the most prevalent plasticizers in wastewaters. Since its half-life in biological treatment is around 25days, it can be used as an efficiency indicator of wastewater treatment plant for the removal of hydrophobic emerging contaminants. In this study, the performance of submerged membrane bioreactor was monitored to understand the effect of DEHP on the growth of aerobic microorganisms. The data showed that the chemical oxygen demand (COD) and ammonia concentration were detected below 10 and 1.0mg/L, respectively for operating conditions of hydraulic retention time (HRT)=4 and 6hr, sludge retention time (SRT)=140day and sludge concentration between 11.5 and 15.8g volatile solid (VS)/L. The removal efficiency of DEHP under these conditions was higher and ranged between 91% and 98%. Results also showed that the removal efficiency of DEHP in biological treatment depended on the concentration of sludge, as adsorption is the main mechanism of its removal. For the submerged membrane bioreactor, the pore size is the pivotal factor for DEHP removal, since it determines the amount of soluble microbial products coming out of the process. Highly assimilated microorganisms increase the biodegradation rate, as 74% of inlet DEHP was biodegraded; however, the concentration of DEHP inside sludge was beyond the discharge limit. Understanding the fate of DEHP in membrane bioreactor, which is one of the most promising and futuristic treatment process could provide replacement for conventional processes to satisfy the future stricter regulations on emerging contaminants. Copyright © 2015. Published by Elsevier B.V.

  7. Reduction in excess sludge production in a dairy wastewater treatment plant via nozzle-cavitation treatment: case study of an on-farm wastewater treatment plant.

    PubMed

    Hirooka, Kayako; Asano, Ryoki; Yokoyama, Atsushi; Okazaki, Masao; Sakamoto, Akira; Nakai, Yutaka

    2009-06-01

    Nozzle-cavitation treatment was used to reduce excess sludge production in a dairy wastewater treatment plant. During the 450-d pilot-scale membrane bioreactor (MBR) operation, when 300 l of the sludge mixed liquor (1/10 of the MBR volume) was disintegrated per day by the nozzle-cavitation treatment with the addition of sodium hydrate (final concentration: 0.01% W/W) and returned to the MBR, the amount of excess sludge produced was reduced by 80% compared with that when sludge was not disintegrated. On the basis of the efficiency of CODCr removal and the ammonia oxidation reaction, it was concluded that the nozzle-cavitation treatment did not have a negative impact on the performance of the MBR. The estimation of the inorganic material balance showed that when the mass of the excess sludge was decreased, the inorganic content of the activated sludge increased and some part of the inorganic material was simultaneously solubilized in the effluent.

  8. Disturbance opens recruitment sites for bacterial colonization in activated sludge.

    PubMed

    Vuono, David C; Munakata-Marr, Junko; Spear, John R; Drewes, Jörg E

    2016-01-01

    Little is known about the role of immigration in shaping bacterial communities or the factors that may dictate success or failure of colonization by bacteria from regional species pools. To address these knowledge gaps, the influence of bacterial colonization into an ecosystem (activated sludge bioreactor) was measured through a disturbance gradient (successive decreases in the parameter solids retention time) relative to stable operational conditions. Through a DNA sequencing approach, we show that the most abundant bacteria within the immigrant community have a greater probability of colonizing the receiving ecosystem, but mostly as low abundance community members. Only during the disturbance do some of these bacterial populations significantly increase in abundance beyond background levels and in few cases become dominant community members post-disturbance. Two mechanisms facilitate the enhanced enrichment of immigrant populations during disturbance: (i) the availability of resources left unconsumed by established species and (ii) the increased availability of niche space for colonizers to establish and displace resident populations. Thus, as a disturbance decreases local diversity, recruitment sites become available to promote colonization. This work advances our understanding of microbial resource management and diversity maintenance in complex ecosystems. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Metagenomes reveal microbial structures, functional potentials, and biofouling-related genes in a membrane bioreactor.

    PubMed

    Ma, Jinxing; Wang, Zhiwei; Li, Huan; Park, Hee-Deung; Wu, Zhichao

    2016-06-01

    Metagenomic sequencing was used to investigate the microbial structures, functional potentials, and biofouling-related genes in a membrane bioreactor (MBR). The results showed that the microbial community in the MBR was highly diverse. Notably, function analysis of the dominant genera indicated that common genes from different phylotypes were identified for important functional potentials with the observation of variation of abundances of genes in a certain taxon (e.g., Dechloromonas). Despite maintaining similar metabolic functional potentials with a parallel full-scale conventional activated sludge (CAS) system due to treating the identical wastewater, the MBR had more abundant nitrification-related bacteria and coding genes of ammonia monooxygenase, which could well explain its excellent ammonia removal in the low-temperature period. Furthermore, according to quantification of the genes involved in exopolysaccharide and extracellular polymeric substance (EPS) protein metabolism, the MBR did not show a much different potential in producing EPS compared to the CAS system, and bacteria from the membrane biofilm had lower abundances of genes associated with EPS biosynthesis and transport compared to the activated sludge in the MBR.

  10. Decreasing effect and mechanism of moisture content of sludge biomass by granulation process.

    PubMed

    Zhao, Xia; Xu, Hao; Shen, Jimin; Yu, Bo; Wang, Xiaochun

    2016-01-01

    Disposal of a high volume of sludge significantly raises water treatment costs. A method for cultivating aerobic granules in a sequencing batch airlift bioreactor to significantly produce lower moisture content is described. Results indicate that optimization of settling time and control of the shear stresses acted on the granules. The diameter of the granule was within the range of 1.0-4.0 mm, and its sludge volume index was stabilized at 40-50 mL g(-1). Its specific gravity was increased by a factor of 0.0392, and specific oxygen uptake rate reached 60.126 mg h(-1) g(-1). Moreover, the percentage of its moisture content in the reactor ranged from 96.73% to 97.67%, and sludge volume was reduced to approximately 60%, greatly due to the presence of extracellular polymeric substances in the granules, as well as changes in their hydrophobic protein content. The removal rate of chemical oxygen demand and [Formula: see text] reaches up to 92.6% and 98%, respectively. The removal rates of total phosphorus is over 85%. Therefore, aerobic granular sludge process illustrates a good biological activity.

  11. Performance enhancement with powdered activated carbon (PAC) addition in a membrane bioreactor (MBR) treating distillery effluent.

    PubMed

    Satyawali, Yamini; Balakrishnan, Malini

    2009-10-15

    This work investigated the effect of powdered activated carbon (PAC) addition on the operation of a membrane bioreactor (MBR) treating sugarcane molasses based distillery wastewater (spentwash). The 8L reactor was equipped with a submerged 30 microm nylon mesh filter with 0.05 m(2) filtration area. Detailed characterization of the commercial wood charcoal based PAC was performed before using it in the MBR. The MBR was operated over 200 days at organic loading rates (OLRs) varying from 4.2 to 6.9 kg m(-3)d(-1). PAC addition controlled the reactor foaming during start up and enhanced the critical flux by around 23%; it also prolonged the duration between filter cleaning. Operation at higher loading rates was possible and for a given OLR, the chemical oxygen demand (COD) removal was higher with PAC addition. However, biodegradation in the reactor was limited and the high molecular weight compounds were not affected by PAC supplementation. The functional groups on PAC appear to interact with the polysaccharide portion of the sludge, which may reduce its propensity to interact with the nylon mesh.

  12. Analysis of drug metabolism activities in a miniaturized liver cell bioreactor for use in pharmacological studies.

    PubMed

    Hoffmann, Stefan A; Müller-Vieira, Ursula; Biemel, Klaus; Knobeloch, Daniel; Heydel, Sandra; Lübberstedt, Marc; Nüssler, Andreas K; Andersson, Tommy B; Gerlach, Jörg C; Zeilinger, Katrin

    2012-12-01

    Based on a hollow fiber perfusion technology with internal oxygenation, a miniaturized bioreactor with a volume of 0.5 mL for in vitro studies was recently developed. Here, the suitability of this novel culture system for pharmacological studies was investigated, focusing on the model drug diclofenac. Primary human liver cells were cultivated in bioreactors and in conventional monolayer cultures in parallel over 10 days. From day 3 on, diclofenac was continuously applied at a therapeutic concentration (6.4 µM) for analysis of its metabolism. In addition, the activity and gene expression of the cytochrome P450 (CYP) isoforms CYP1A2, CYP2B6, CYP2C9, CYP2D6, and CYP3A4 were assessed. Diclofenac was metabolized in bioreactor cultures with an initial conversion rate of 230 ± 57 pmol/h/10(6) cells followed by a period of stable conversion of about 100 pmol/h/10(6) cells. All CYP activities tested were maintained until day 10 of bioreactor culture. The expression of corresponding mRNAs correlated well with the degree of preservation. Immunohistochemical characterization showed the formation of neo-tissue with expression of CYP2C9 and CYP3A4 and the drug transporters breast cancer resistance protein (BCRP) and multidrug resistance protein 2 (MRP2) in the bioreactor. In contrast, monolayer cultures showed a rapid decline of diclofenac conversion and cells had largely lost activity and mRNA expression of the assessed CYP isoforms at the end of the culture period. In conclusion, diclofenac metabolism, CYP activities and gene expression levels were considerably more stable in bioreactor cultures, making the novel bioreactor a useful tool for pharmacological or toxicological investigations requiring a highly physiological in vitro representation of the liver. Copyright © 2012 Wiley Periodicals, Inc.

  13. Simultaneous Fluorescent Gram Staining and Activity Assessment of Activated Sludge Bacteria

    PubMed Central

    Forster, Scott; Snape, Jason R.; Lappin-Scott, Hilary M.; Porter, Jonathan

    2002-01-01

    Wastewater treatment is one of the most important commercial biotechnological processes, and yet the component bacterial populations and their associated metabolic activities are poorly understood. The novel fluorescent dye hexidium iodide allows assessment of Gram status by differential absorption through bacterial cell walls. Differentiation between gram-positive and gram-negative wastewater bacteria was achieved after flow cytometric analysis. This study shows that the relative proportions of gram-positive and gram-negative bacterial cells identified by traditional microscopy and hexidium iodide staining were not significantly different. Dual staining of cells for Gram status and activity proved effective in analyzing mixtures of cultured bacteria and wastewater populations. Levels of highly active organisms at two wastewater treatment plants, both gram positive and gram negative, ranged from 1.5% in activated sludge flocs to 16% in the activated sludge fluid. Gram-positive organisms comprised <5% of the total bacterial numbers but accounted for 19 and 55% of the highly active organisms within flocs at the two plants. Assessment of Gram status and activity within activated sludge samples over a 4-day period showed significant differences over time. This method provides a rapid, quantitative measure of Gram status linked with in situ activity within wastewater systems. PMID:12324319

  14. Simultaneous fluorescent gram staining and activity assessment of activated sludge bacteria.

    PubMed

    Forster, Scott; Snape, Jason R; Lappin-Scott, Hilary M; Porter, Jonathan

    2002-10-01

    Wastewater treatment is one of the most important commercial biotechnological processes, and yet the component bacterial populations and their associated metabolic activities are poorly understood. The novel fluorescent dye hexidium iodide allows assessment of Gram status by differential absorption through bacterial cell walls. Differentiation between gram-positive and gram-negative wastewater bacteria was achieved after flow cytometric analysis. This study shows that the relative proportions of gram-positive and gram-negative bacterial cells identified by traditional microscopy and hexidium iodide staining were not significantly different. Dual staining of cells for Gram status and activity proved effective in analyzing mixtures of cultured bacteria and wastewater populations. Levels of highly active organisms at two wastewater treatment plants, both gram positive and gram negative, ranged from 1.5% in activated sludge flocs to 16% in the activated sludge fluid. Gram-positive organisms comprised <5% of the total bacterial numbers but accounted for 19 and 55% of the highly active organisms within flocs at the two plants. Assessment of Gram status and activity within activated sludge samples over a 4-day period showed significant differences over time. This method provides a rapid, quantitative measure of Gram status linked with in situ activity within wastewater systems.

  15. Effect of activated sludge culture conditions on Waxberry wastewater

    NASA Astrophysics Data System (ADS)

    Shi, Liang; He, Lingfeng; Zhang, Yongli

    2018-03-01

    Treated activated sludge is suitable for the treatment of wastewater. Biochemical method is used to treat the wastewater, and the influence of time on the COD index is investigated. The results showed that time had a significant effect on COD, and then affected the performance of activated sludge. Under different time, according to the order of time from short to long, COD decreases in turn. Under the action of activated sludge, the degradation of myrica rubra wastewater samples, after 25 h aeration for 96 h, the effect is better. Under this condition, the COD value was reduced at 72 mg/L, and the COD removal efficiency of myrica rubra wastewater was up to 93.39 %, and reached the two level discharge standard of municipal wastewater treatment.

  16. Start-up period investigation of pilot-scale submerged membrane electro-bioreactor (SMEBR) treating raw municipal wastewater.

    PubMed

    Hasan, Shadi W; Elektorowicz, Maria; Oleszkiewicz, Jan A

    2014-02-01

    Submerged membrane electro-bioreactor (SMEBR) is a new hybrid technology for wastewater treatment employing electrical field and microfiltration in a nutrient-removing activated sludge process. A pilot SMEBR system was located at the wastewater treatment plant in the City of l'Assomption (Quebec, Canada) with the objective of investigating the start-up period performance under variable organic loadings and environmental conditions with respect to effluent quality, membrane fouling, and sludge properties. The pilot SMEBR facility was fed with the raw de-gritted municipal wastewater. At steady state operation, the removal efficiencies of ammonia (as NH3(+)-N), phosphorus (as PO4(3-)-P), and COD were 99%, 99%, and 92%, respectively. No substantial increase in the monitored transmembrane pressure as 0.02kPad(-1) was reported. The time necessary to filter 100mL of the sludge sample has decreased by 78% after treatment whilst the sludge volume index averaged 119mLg(-1). Energy requirements were in the range of 1.1-1.6kWhm(-3) of wastewater. It was concluded that the SMEBR is a very competitive technology when compared to conventional membrane systems as it can enhance treatment performance to an appreciable extent, remove phosphorus and reduce fouling. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  17. Characteristics of aerobic granules grown on glucose and acetate in sequential aerobic sludge blanket reactors.

    PubMed

    Tay, J H; Liu, Q S; Liu, Y

    2002-08-01

    Aerobic granules were cultivated in two column-type sequential aerobic sludge blanket reactors fed with glucose and acetate, respectively. The characteristics of aerobic granules were investigated. Results indicated that the glucose- and acetate-fed granules have comparable characteristics in terms of settling velocity, size, shape, biomass density, hydrophobicity, physical strength, microbial activity and storage stability. Substrate component does not seem to be a key factor on the formation of aerobic granules. However, microbial diversity of the granules is closely associated with the carbon sources supplied to the reactors. Compared with the conventional activated sludge flocs, aerobic granules exhibit excellent physical characteristics that would be essential for industrial application. This research provides a complete set of characteristics data of aerobic granules grown on glucose and acetate, which would be useful for further development of aerobic granules-based compact bioreactor for handling high strength organic wastewater.

  18. Enhancement of activated sludge disintegration and dewaterability by Fenton process

    NASA Astrophysics Data System (ADS)

    Heng, G. C.; Isa, M. H.

    2016-06-01

    Municipal and industrial wastewater treatment plants produce large amounts of sludge. This excess sludge is an inevitable drawback inherent to the activated sludge process. In this study, the waste activated sludge was obtained from the campus wastewater treatment plant at Universiti Teknologi PETRONAS (UTP), Malaysia. Fenton pretreatment was optimized by using the response surface methodology (RSM) to study the effects of three operating conditions including the dosage of H2O2 (g H2O2/kg TS), the molar ratio of H2O2/Fe2+ and reaction time. The optimum operating variables to achieve MLVSS removal 65%, CST reduction 28%, sCOD 11000 mg/L and EPS 500 mg/L were: 1000 g H2O2/kg TS, H2O2/Fe2+ molar ratio 70 and reaction time 45 min. Fenton process was proved to be able to enhance the sludge disintegration and dewaterability.

  19. Microwave pyrolysis of oily sludge with activated carbon.

    PubMed

    Chen, Yi-Rong

    2016-12-01

    The aim of this study is to explore catalytic microwave pyrolysis of crude oil storage tank sludge for fuels using granular activated carbon (GAC) as a catalyst. The effect of GAC loading on the yield of pyrolysis products was also investigated. Heating rate of oily sludge and yield of microwave pyrolysis products such as oil and fuel gas was found to depend on the ratio of GAC to oily sludge. The optimal GAC loading was found to be 10%, while much smaller and larger feed sizes adversely influenced production. During oily sludge pyrolysis, a maximum oil yield of 77.5% was achieved. Pyrolytic oils with high concentrations of diesel oil and gasoline (about 70 wt% in the pyrolytic oil) were obtained. The leaching of heavy metals, such as Cr, As and Pb, was also suppressed in the solid residue after pyrolysis. This technique provides advantages such as harmless treatment of oily sludge and substantial reduction in the consumption of energy, time and cost.

  20. Occurrence, distribution, and potential influencing factors of sewage sludge components derived from nine full-scale wastewater treatment plants of Beijing, China.

    PubMed

    Wang, Xu; Li, Meiyan; Liu, Junxin; Qu, Jiuhui

    2016-07-01

    Millions of tons of waste activated sludge (WAS) produced from biological wastewater treatment processes cause severe adverse environmental consequences. A better understanding of WAS composition is thus very critical for sustainable sludge management. In this work, the occurrence and distribution of several fundamental sludge constituents were explored in WAS samples from nine full-scale wastewater treatment plants (WWTPs) of Beijing, China. Among all the components investigated, active heterotrophic biomass was dominant in the samples (up to 9478mg/L), followed by endogenous residues (6736mg/L), extracellular polymeric substances (2088mg/L), and intracellular storage products (464mg/L) among others. Moreover, significant differences (p<0.05) were observed in composition profiles of sludge samples among the studied WWTPs. To identify the potential parameters affecting the variable fractions of sludge components, wastewater source as well as design and operational parameters of WWTPs were studied using statistical methods. The findings indicated that the component fraction of sewage sludge depends more on wastewater treatment alternatives than on wastewater characteristics among other parameters. A principal component analysis was conducted, which further indicated that there was a greater proportion of residual inert biomass in the sludge produced by the combined system of the conventional anaerobic/anoxic/oxic process and a membrane bioreactor. Additionally, a much longer solids retention time was also found to influence the sludge composition and induce an increase in both endogenous inert residues and extracellular polymeric substances in the sludge. Copyright © 2016. Published by Elsevier B.V.

  1. Removal and fate of micropollutants in a sponge-based moving bed bioreactor.

    PubMed

    Luo, Yunlong; Guo, Wenshan; Ngo, Huu Hao; Nghiem, Long Duc; Hai, Faisal Ibney; Kang, Jinguo; Xia, Siqing; Zhang, Zhiqiang; Price, William Evan

    2014-05-01

    This study investigated the removal of micropollutants using polyurethane sponge as attached-growth carrier. Batch experiments demonstrated that micropollutants could adsorb to non-acclimatized sponge cubes to varying extents. Acclimatized sponge showed significantly enhanced removal of some less hydrophobic compounds (log D<2.5), such as ibuprofen, acetaminophen, naproxen, and estriol, as compared with non-acclimatized sponge. The results for bench-scale sponge-based moving bed bioreactor (MBBR) system elucidated compound-specific variation in removal, ranging from 25.9% (carbamazepine) to 96.8% (β-Estradiol 17-acetate) on average. In the MBBR system, biodegradation served as a major removal pathway for most compounds. However, sorption to sludge phase was also a notable removal mechanism of some persistent micropollutants. Particularly, carbamazepine, ketoprofen and pentachlorophenol were found at high concentrations (7.87, 6.05 and 5.55 μg/g, respectively) on suspended biosolids. As a whole, the effectiveness of MBBR for micropollutant removal was comparable with those of activated sludge processes and MBRs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Improving the amenability of municipal waste activated sludge for biological pretreatment by phase-separated sludge disintegration method.

    PubMed

    Kavitha, S; Adish Kumar, S; Kaliappan, S; Yeom, Ick Tae; Rajesh Banu, J

    2014-10-01

    The significance of citric acid, a cation binding agent, was investigated for the exclusion of extracellular polymeric substance (EPS) from waste activated sludge (WAS) and anaerobic biodegradability following enzymatic bacterial pretreatment. EPS was removed with 0.05 g/g SS of citric acid. The results of pretreatment found that the suspended solids reduction and chemical oxygen demand solubilisation were 21.4% and 16.2% for deflocculated-bacterially pretreated sludge, 14.28% and 10.0% for flocculated sludge (without EPS removal and bacterially pretreated) and 8.5% and 6.5% for control sludge (raw sludge), respectively. Further assessing anaerobic biodegradability, the biogas yield potential of deflocculated and bacterially pretreated, flocculated, and control sludges were found to be 0.455 L/(g VS), 0.343 L/(g VS), and 0.209 L/(g VS), respectively. Thus, phase-separated disintegration enhanced anaerobic biodegradability efficiently. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Sludge Retention Time as a Suitable Operational Parameter to Remove Both Estrogen and Nutrients in an Anaerobic–Anoxic–Aerobic Activated Sludge System

    PubMed Central

    Zeng, Qingling; Li, Yongmei; Yang, Shijia

    2013-01-01

    Abstract Estrogen in wastewater are responsible for a significant part of the endocrine-disrupting effects observed in the aquatic environment. The effect of sludge retention time (SRT) on the removal and fate of 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) in an anaerobic–anoxic–oxic activated sludge system designed for nutrient removal was investigated by laboratory-scale experiments using synthetic wastewater. With a hydraulic retention time of 8 h, when SRT ranged 10–25 days, E2 was almost completely removed from water, and EE2 removal efficiency was 65%–81%. Both estrogens were easily sorbed onto activated sludge. Distribution coefficients (Kd) of estrogens on anaerobic sludge were greater than those on anoxic and aerobic sludges. Mass balance calculation indicated that 99% of influent E2 was degraded by the activated sludge process, and 1% remained in excess sludge; of influent EE2, 62.0%–80.1% was biodegraded; 18.9%–34.7% was released in effluent; and 0.88%–3.31% remained in excess sludge. Optimal SRT was 20 days for both estrogen and nutrient removal. E2 was almost completely degraded, and EE2 was only partly degraded in the activated sludge process. Residual estrogen on excess sludge must be considered in the sludge treatment and disposal processes. The originality of the work is that removal of nutrients and estrogens were linked, and optimal SRT for both estrogen and nutrient removal in an enhanced biological phosphorus removal system was determined. This has an important implication for the design and operation of full-scale wastewater treatment plants. PMID:23633892

  4. Reduction of selenite to elemental selenium nanoparticles by activated sludge.

    PubMed

    Jain, Rohan; Matassa, Silvio; Singh, Satyendra; van Hullebusch, Eric D; Esposito, Giovanni; Lens, Piet N L

    2016-01-01

    Total selenium removal by the activated sludge process, where selenite is reduced to colloidal elemental selenium nanoparticles (BioSeNPs) that remain entrapped in the activated sludge flocs, was studied. Total selenium removal efficiencies with glucose as electron donor (2.0 g chemical oxygen demand (COD) L(-1)) at neutral pH and 30 °C gave 2.9 and 6.8 times higher removal efficiencies as compared to the electron donors lactate and acetate, respectively. Total selenium removal efficiencies of 79 (±3) and 86 (±1) % were achieved in shake flasks and fed batch reactors, respectively, at dissolved oxygen (DO) concentrations above 4.0 mg L(-1) and 30 °C when fed with 172 mg L(-1) (1 mM) Na2SeO3 and 2.0 g L(-1) COD of glucose. Continuously operated reactors operating at neutral pH, 30 °C and a DO >3 mg L(-1) removed 33.98 and 36.65 mg of total selenium per gram of total suspended solids (TSS) at TSS concentrations of 1.3 and 3.0 g L(-1), respectively. However, selenite toxicity to the activated sludge led to failure of a continuously operating activated sludge reactor at the applied loading rates. This suggests that a higher hydraulic retention time (HRT) or different reactor configurations need to be applied for selenium-removing activated sludge processes. Graphical Abstract Scheme representing the possible mechanisms of selenite reduction at high and low DO levels in the activated sludge process.

  5. The effect of pH on solubilization of organic matter and microbial community structures in sludge fermentation.

    PubMed

    Maspolim, Yogananda; Zhou, Yan; Guo, Chenghong; Xiao, Keke; Ng, Wun Jern

    2015-08-01

    Sludge fermentation between pH 4 and 11 was investigated to generate volatile fatty acids (VFA). Despite the highest sludge solubilization of 25.9% at pH 11, VFA accumulation was optimized at pH 8 (12.5% out of 13.1% sludge solubilization). 454 pyrosequencing identified wide diversity of acidogens in bioreactors operated at the various pHs, with Tissierella, Petrimonas, Proteiniphilum, Levilinea, Proteiniborus and Sedimentibacter enriched and contributing to the enhanced fermentation at pH 8. Hydrolytic enzymatic assays determined abiotic effect to be the leading cause for improved solubilization under high alkaline condition but the environmental stress at pH 9 and above might lead to disrupt biological activities and eventually VFA production. Furthermore, molecular weight (MW) characterization of the soluble fractions found large MW aromatic substances at pH 9 and above, that is normally associated with poor biodegradability, making them disadvantageous for subsequent bioprocesses. The findings provided information to better understand and control sludge fermentation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Evaluation of anaerobic digestion processes for short sludge-age waste activated sludge combined with anammox treatment of digestate liquor.

    PubMed

    Ge, Huoqing; Batstone, Damien; Keller, Jurg

    2016-01-01

    The need to reduce energy input and enhance energy recovery from wastewater is driving renewed interest in high-rate activated sludge treatment (i.e. short hydraulic and solids retention times (HRT and SRT, respectively)). This process generates short SRT activated sludge stream, which should be highly degradable. However, the evaluation of anaerobic digestion of short SRT sludge has been limited. This paper assesses anaerobic digestion of short SRT sludge digestion derived from meat processing wastewater under thermophilic and mesophilic conditions. The thermophilic digestion system (55°C) achieved 60 and 68% volatile solids destruction at 8 day and 10 day HRT, respectively, compared with 50% in the mesophilic digestion system (35°C, 10 day HRT). The digestion effluents from the thermophilic (8-10 day HRT) and mesophilic systems were stable, as assessed by residual methane potentials. The ammonia rich sludge dewatering liquor was effectively treated by a batch anammox process, which exhibited comparable nitrogen removal rate as the tests using a control synthetic ammonia solution, indicating that the dewatering liquor did not have inhibiting/toxic effects on the anammox activity.

  7. Biological Uptake of Phosphorus by Activated Sludge 1

    PubMed Central

    Yall, Irving; Boughton, William H.; Knudsen, Richard C.; Sinclair, Norval A.

    1970-01-01

    The ability of activated sludge to remove phosphates was studied by adding carrier-free 32P to raw sewage and measuring incorporation of the radioactivity into the cells over a period of time. Radioisotope determinations indicated that 48% of the 32P radioactivity was removed by 12 hr. However, chemical methods indicated that only 30% of the orthophosphate apparently disappeared from the sewage during this period. Experiments with sludge prelabeled with 32P indicated that considerable phosphate turnover occurred. The cells released large amounts of radioactivity as they were incorporating fresh phosphates. Starvation in isotonic saline for 18 hr caused the sludge to dump phosphate. When introduced into fresh sewage containing 32P, the starved sludge removed about 60% of the radioactivity in 6 hr with little phosphate turnover. The ability of sludge to remove 32P was inhibited approximately 83% by 10−3m 2,4-dinitrophenol. This inhibition was at the expense of the cell fraction that contained ribonucleic acid and deoxyribonucleic acid. The sludge cells released orthophosphate when exposed to the chemical agent. Experiments using 45Ca indicated that calcium phosphate precipitation plays a minor role in phosphate removal under our experimental conditions. PMID:5456935

  8. Partial nitritation of raw anaerobic sludge digester liquor by swim-bed and swim-bed activated sludge processes and comparison of their sludge characteristics.

    PubMed

    Qiao, Sen; Kawakubo, Yuki; Koyama, Toichiro; Furukawa, Kenji

    2008-11-01

    This study evaluated performance of swim-bed (SB) reactors packed with a novel acrylic fiber carrier (BF) and swim-bed activated sludge (SBAS) reactor for partial nitritation of anaerobic sludge digester liquor from a municipal wastewater treatment plant. Comparison of characteristics of sludge obtained from both the reactors was also made. The average conversion rates of ammonium to nitrite were 52.3% and 40.0% under relatively high nitrogen loading rates over 3.0 kg-N/m(3)/d, respectively in two reactors. The average BOD(5) removal efficiencies were 74.3% and 64.4%, respectively in the two reactors. The size of the sludge pellets taken from SB and SBAS reactors was found to be approximately three times (229 mum versus 88 mum) of that of the seed sludge. This sludge also had relatively high extracellular proteins levels indicating better sludge settling capability as compared to the sludge taken from SBAS reactor. Although the effluent nitrite/ammonium ratios had fluctuated in both reactor in some extent, the low dissolved oxygen concentration (average of 2.5 versus 0.35 mg/l), low suspended solids (average of 33.3 versus 33.5 mg/l), and about 50% ammonium conversion to nitrite demonstrated the application potential of anammox process for nitrogen removal.

  9. Influence of iron precipitated condition and light intensity on microalgae activated sludge based wastewater remediation.

    PubMed

    Anbalagan, Anbarasan; Schwede, Sebastian; Lindberg, Carl-Fredrik; Nehrenheim, Emma

    2017-02-01

    The indigenous microalgae-activated sludge (MAAS) process during remediation of municipal wastewater was investigated by studying the influence of iron flocculation step and light intensity. In addition, availability of total phosphorous (P) and photosynthetic activity was examined in fed-batch and batch mode under northern climatic conditions and limited lighting. This was followed by a semi-continuous operation with 4 d of hydraulic retention time and mean cell residence time of 6.75 d in a photo-bioreactor (PBR) with varying P availability. The fed-batch condition showed that P concentrations of 3-4 mg L -1 were effective for photosynthetic chl. a development in iron flocculated conditions. In the PBR, the oxygen evolution rate increased with increase in the concentration of MAAS (from 258 to 573 mg TSS L -1 ) at higher surface photosynthetic active radiation (250 and 500 μmol m -2 s -1 ). Additionally, the rate approached a saturation phase at low MAAS (110 mg L -1 ) with higher light intensities. Semi-continuous operation with luxury P uptake and effective P condition showed stable average total nitrogen removal of 88 and 92% respectively, with residual concentrations of 3.77 and 2.21 mg L -1 . The corresponding average P removal was 68 and 59% with residual concentrations of 2.32 and 1.75 mg L -1 . The semi-continuous operation produced a rapidly settleable MAAS under iron flocculated condition with a settling velocity of 92-106 m h -1 and sludge volume index of 31-43 ml g -1 in the studied cases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. [Effect of different sludge retention time (SRT) on municipal sewage sludge bioleaching continuous plug flow reaction system].

    PubMed

    Liu, Fen-Wu; Zhou, Li-Xiang; Zhou, Jun; Jiang, Feng; Wang, Dian-Zhan

    2012-01-01

    A plug-flow bio-reactor of 700 L working volume for sludge bioleaching was used in this study. The reactor was divided into six sections along the direction of the sludge movement. Fourteen days of continuous operation of sludge bioleaching with different sludge retention time (SRT) under the condition of 1.2 m3 x h(-1) aeration amount and 4 g x L(-1) of microbial nutritional substance was conducted. During sludge bioleaching, the dynamic changes of pH, DO, dewaterability (specific resistance to filtration, SRF) of sewage sludge in different sections were investigated in the present study. The results showed that sludge pH were maintained at 5.00, 3.00, 2.90, 2.70, 2.60 and 2.40 from section 1 to section 6 and the SRF of sludge was drastically decreased from initial 0.64 x 10(13) m x kg(-1) to the final 0.33 x 10(13) m x kg(-1) when bioleaching system reached stable at hour 72 with SRT 2.5d. In addition, the sludge pH were maintained at 5.10, 4.10, 3.20, 2.90, 2.70 and 2.60, the DO value were 0.43, 1.47, 3.29, 4.76, 5.75 and 5.88 mg x L(-1) from section 1 to section 6, and the SRF of sludge was drastically decreased from initial 0.56 x 10(13) to the final 0.20 x 10(13) m x kg(-1) when bioleaching system reached stable at hour 120 with SRT 2 d. The pH value was increased to 3.00 at section 6 at hour 48 h with SRT 1.25 d. The bioleaching system imbalanced in this operation conditions because of the utilization efficiency of microbial nutritional substance by Acidibacillus spp. was decreased. The longer sludge retention time, the easier bioleaching system reached stable. 2 d could be used as the optimum sludge retention time in engineering application. The bioleached sludge was collected and dewatered by plate-and-frame filter press to the moisture content of dewatered sludge cake under 60%. This study would provide the necessary data to the engineering application on municipal sewage sludge bioleaching.

  11. Impact of sludge retention time on the fine composition of the microbial community and extracellular polymeric substances in a membrane bioreactor.

    PubMed

    Silva, Ana F; Antunes, Sílvia; Saunders, Aaron; Freitas, Filomena; Vieira, Anabela; Galinha, Claudia F; Nielsen, Per H; Barreto Crespo, Maria Teresa; Carvalho, Gilda

    2016-10-01

    Membrane bioreactors (MBRs) are an advanced technology for wastewater treatment whose wide application has been hindered by rapid fouling of the membranes. MBRs can be operated with long sludge retention time (SRT), a crucial parameter impacting microbial selection in the reactor. This also affects filtration performance, since a major fouling agent are the extracellular polymeric substances (EPS). In this study, the impact of the SRT on the ecophysiology of the MBRs and, consequently, on membrane fouling was evaluated. A MBR was operated under a SRT of 60 days followed by a SRT of 20 days. A comprehensive analysis of the microbial community structure and EPS proteins and polysaccharide profiles of the mixed liquor and cake layer was carried out throughout both operation periods. The results of this study showed that the imposition of a shorter SRT led to a shift in the dominant bacterial populations. The mixed liquor and cake layer communities were very different, with Actinomycetales order standing out in the cake layer at SRT of 20 days. Overall, higher EPS concentrations (particularly proteins) were found at this SRT. Furthermore, EPS profiles were clearly affected by the SRT: it was possible to correlate a group of soluble EPS proteins with the SRT of 60 days, and a lower sludge age led to a lower diversity of polysaccharide sugar monomers, with an increase of glucose and galactose in the cake layer. This study improves our knowledge regarding the molecular reasons for fouling, which may contribute to improve MBR design and operation.

  12. Cost minimization in a full-scale conventional wastewater treatment plant: associated costs of biological energy consumption versus sludge production.

    PubMed

    Sid, S; Volant, A; Lesage, G; Heran, M

    2017-11-01

    Energy consumption and sludge production minimization represent rising challenges for wastewater treatment plants (WWTPs). The goal of this study is to investigate how energy is consumed throughout the whole plant and how operating conditions affect this energy demand. A WWTP based on the activated sludge process was selected as a case study. Simulations were performed using a pre-compiled model implemented in GPS-X simulation software. Model validation was carried out by comparing experimental and modeling data of the dynamic behavior of the mixed liquor suspended solids (MLSS) concentration and nitrogen compounds concentration, energy consumption for aeration, mixing and sludge treatment and annual sludge production over a three year exercise. In this plant, the energy required for bioreactor aeration was calculated at approximately 44% of the total energy demand. A cost optimization strategy was applied by varying the MLSS concentrations (from 1 to 8 gTSS/L) while recording energy consumption, sludge production and effluent quality. An increase of MLSS led to an increase of the oxygen requirement for biomass aeration, but it also reduced total sludge production. Results permit identification of a key MLSS concentration allowing identification of the best compromise between levels of treatment required, biological energy demand and sludge production while minimizing the overall costs.

  13. Adsorption/desorption of linear alkylbenzenesulfonate (LAS) and azoproteins by/from activated sludge flocs.

    PubMed

    Conrad, A; Cadoret, A; Corteel, P; Leroy, P; Block, J-C

    2006-01-01

    Our study investigated the adsorption/desorption by/from activated sludge flocs, dispersed in river water or in diluted wastewater, of organic compounds (C(11)-LAS, azoalbumin and azocasein) at concentrations relevant to environmental conditions. Activated sludge flocs, used as a model of biological aggregates, are characterized by a very heterogeneous matrix able to sorb the three organic compounds tested at 4 degrees C. The adsorbed amount of C(11)-LAS by activated sludge flocs was higher than that of azocasein or azoalbumin, as shown by the Freundlich parameters (K(ads)=8.6+/-1.7, 1.6+/-0.3 and 0.3+/-0.1 micromol(1-1/n)g(-1)l(1/n) for C(11)-LAS, azocasein and azoalbumin, respectively; n=3 sludges). C(11)-LAS sorption from activated sludge appeared to be partially reversible in river water, while a marked hysteresis phenomenon was observed for azocasein and azoalbumin, implying a low degree of reversibility in their exchange between activated sludge and river water. It has also been displayed that the conductivity variation of bulk water (comprised between 214 and 838 microS cm(-1)) exerted no dramatic effect on the C(11)-LAS desorption from activated sludge flocs, while a little effect of it on azocasein desorption was observed. Thus, biological aggregates as activated sludge flocs can serve as an intermediate carrier for C(11)-LAS, while it represents a sink for proteins.

  14. Isolation, identification of sludge-lysing strain and its utilization in thermophilic aerobic digestion for waste activated sludge.

    PubMed

    Li, Xuesong; Ma, Hongzhi; Wang, Qunhui; Matsumoto, Shoichiro; Maeda, Toshinari; Ogawa, Hiroaki I

    2009-05-01

    A strain of sludge-lysing bacteria was isolated from waste activated sludge (WAS) in this study. The result of 16S rRNA gene analysis demonstrated that it was a species of new genus Brevibacillus (named Brevibacillus sp. KH3). The strain could release the protease with molecule weight of about 40 kDa which could enhance the efficiency of sludge thermophilic aerobic digestion. During the sterilized sludge digestion experiment inoculated with Brevibacillus sp. KH3, the maximum protease activity was 0.41 U/ml at pH 8 and 50 degrees C, and maximum TSS removal ratio achieved 32.8% after 120 h digestion at pH 8 and 50 degrees C. In the case of un-sterilized sludge digestion inoculated with Brevibacillus sp. KH3, TSS removal ratio in inoculated-group was 54.8%, increasing at 11.86% compared with un-inoculation (46.2%). The result demonstrated that inoculation of Brevibacillus sp. KH3 could help to degrade the EPS and promote the collapse of cells and inhibit the growth of certain kinds of microorganisms. It indicated that Brevibacillus sp. KH3 strain had a high potential to enhance WAS-degradation efficiency in thermophilic aerobic digestion.

  15. Investigating the fate of activated sludge extracellular proteins in sludge digestion using sodium dodecyl sulfate polyacrylamide gel electrophoresis.

    PubMed

    Park, Chul; Helm, Richard F; Novak, John T

    2008-12-01

    The fate of activated sludge extracellular proteins in sludge digestion was investigated using three different cation-associated extraction methods and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Extraction methods used were the cation exchange resin (CER) method for extracting calcium (Ca2+) and magnesium (Mg2+), sulfide extraction for removing iron, and base treatment (pH 10.5) for dissolving aluminum. Extracellular polymeric substances extracted were then subjected to SDS-PAGE, and the resultant protein profiles were examined before and after sludge digestion. The SDS-PAGE results showed that three methods led to different SDS-PAGE profiles for both undigested and digested sludges. The results further revealed that CER-extracted proteins remained mainly undegraded in anaerobic digestion, but were degraded in aerobic digestion. While the fate of sulfide- and base-extracted proteins was not clear for aerobic digestion, their changes in anaerobic digestion were elucidated. Most sulfide-extracted proteins were removed by anaerobic digestion, while the increase in protein band intensity and diversity was observed for base-extracted proteins. These results suggest that activated sludge flocs contain different fractions of proteins that are distinguishable by their association with certain cations and that each fraction undergoes different fates in anaerobic and aerobic digestion. The proteins that were resistant to degradation and generated during anaerobic digestion were identified by liquid chromatography tandem mass spectrometry. Protein identification results and their putative roles in activated sludge and anaerobic digestion are discussed in this study.

  16. Resuscitation of starved anaerobic ammonium oxidation sludge system: Impacts of repeated short-term starvation.

    PubMed

    Ye, Lihong; Li, Dong; Zhang, Jie; Zeng, Huiping

    2018-05-04

    Starvation of biomass is common during underloading of bioreactors or sludge storage in biological wastewater treatment industries. The aim of this work was to study the impact of starvation modes on the nitrogen removal capacity of anaerobic ammonium oxidation (anammox) process in sequencing batch reactor (SBR). The repeated short-term starvation and reactivation experiments were performed to evaluate the response of anammox sludge system in the condition of 27 ± 1.5 °C and 320 min HRT. Moreover, the nitrogen removal ability of the anammox process was reactivated rapidly in the low substrate condition, then the total nitrogen (TN) removal efficiency reached 82.5%, with the effluent TN of around 14.6 mgNL -1 . The repeated short-term starvation (1 day-4 days) and recovery mode could improve the tolerance and apparent activity of anammox sludge system. The dominant species of general anaerobic ammonium oxidation bacteria (AnAOB) was Candidatus Brocadia, which had better self-adaption to repeated starvation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Nonoxidative removal of organics in the activated sludge process

    PubMed Central

    Modin, Oskar; Persson, Frank; Wilén, Britt-Marie; Hermansson, Malte

    2016-01-01

    ABSTRACT The activated sludge process is commonly used to treat wastewater by aerobic oxidation of organic pollutants into carbon dioxide and water. However, several nonoxidative mechanisms can also contribute to removal of organics. Sorption onto activated sludge can remove a large fraction of the colloidal and particulate wastewater organics. Intracellular storage of, e.g., polyhydroxyalkanoates (PHA), triacylglycerides (TAG), or wax esters can convert wastewater organics into precursors for high-value products. Recently, several environmental, economic, and technological drivers have stimulated research on nonoxidative removal of organics for wastewater treatment. In this paper, we review these nonoxidative removal mechanisms as well as the existing and emerging process configurations that make use of them for wastewater treatment. Better utilization of nonoxidative processes in activated sludge could reduce the wasteful aerobic oxidation of organic compounds and lead to more resource-efficient wastewater treatment plants. PMID:27453679

  18. Improvement of activated sludge dewaterability by humus soil induced bioflocculation.

    PubMed

    Choi, Young-Gyun; Kim, Seong-Hong; Kim, Hee-Jun; Kim, Gyu Dong; Chung, Tai-Hak

    2004-01-01

    Effects of humus soil particles on the dewaterability of activated sludge were investigated. Cations leaching increased proportionally with the dosage of humus soil, and the leaching was not significant after 2 h. Divalent cations, Ca2+ and Mg2+, leaching from the humus soil played an important role in improving dewaterability of the biological sludge. On the contrary, dewaterability was not affected or slightly deteriorated by the monovalent cations, K+ and Na+ leached from the humus soil. Improvement in dewaterability of the sludge by addition of humus soil was higher than that of equivalent cations mixture. It seemed that the decrease of supracolloidal bio-particles (1 to 100 microm in diameter) resulted in diminishing of the blinding effect on cake and filter medium. SRF (specific resistance to filtration) of the humus soil added sludge varied in parallel with the M/D (monovalent to divalent cation) ratio, and the M/D ratio could be utilized as a useful tool for evaluation of the sludge dewatering characteristics. Long-term effects of humus soil on the improvement of activated sludge dewaterability were clearly identified by continuous operation results of a bench-scale MLE (Modified Ludzack Ettinger) system combined with a humus soil contactor. On the other hand, dewaterability of the control sludge was only slightly improved by a decrease in M/D ratio of the wastewater influent.

  19. Biological treatment of mixtures of toluene and n-hexane vapours in a hollow fibre membrane bioreactor.

    PubMed

    Zhao, Kang; Xiu, Guangli; Xu, Lihang; Zhang, Danian; Zhang, Xiaofeng; Deshusses, Marc A

    2011-04-01

    Membrane bioreactors are gaining interest for the control of contaminated air streams. In this study, the removal of toluene and n-hexane vapours in a hollow fibre membrane bioreactor (HFMB) was investigated. The focus was on quantifying the possible interactions occurring during the simultaneous biotreatment of the two volatile pollutants. Two lab-scale units fitted with microporous polypropylene hollow fibre membranes were connected in series and inoculated with activated sludge. Contaminated air was passed through the lumen at gas residence times ranging from 2.3 to 9.4 s while a pollutant-degrading biofilm developed on the shell side of the fibres. When toluene was treated alone, very high elimination capacities (up to 750 g m(-3) h(-1) based on lumen volume, or 1.25 g m(-2) h(-1) when normalized by the hollow fibre membrane area) were reached. When toluene and hexane were treated simultaneously, toluene biodegradation was partially inhibited by n-hexane, resulting in lower toluene removal rates. On the other hand, hexane removal was only marginally affected by the presence of toluene and was degraded at very high rates (upwards of 440 g m(-3) h(-1) or 0.73 g m(-2) h(-1) without breakthrough). Overall, this study demonstrates that mixtures of toluene and n-hexane vapours can be effectively removed in hollow fibre membrane bioreactors and that complex biological interactions may affect one or more of the pollutants undergoing treatment in gas-phase membrane bioreactors.

  20. Adsorption behavior of sulfamethazine in an activated sludge process treating swine wastewater.

    PubMed

    Ben, Weiwei; Qiang, Zhimin; Yin, Xiaowei; Qu, Jiuhui; Pan, Xun

    2014-08-01

    Swine wastewater is an important pollution source of antibiotics entering the aquatic environment. In this work, the adsorption behavior of sulfamethazine (SMN), a commonly-used sulfonamide antibiotic, on activated sludge from a sequencing batch reactor treating swine wastewater was investigated. The results show that the adsorption of SMN on activated sludge was an initially rapid process and reached equilibrium after 6hr. The removal efficiency of SMN from the water phase increased with an increasing concentration of mixed liquor suspended solids, while the adsorbed concentration of SMN decreased. Solution pH influenced both the speciation of SMN and the surface properties of activated sludge, thus significantly impacting the adsorption process. A linear partition model could give a good fit for the equilibrium concentrations of SMN at the test temperatures (i.e., 10, 20 and 30°C). The partition coefficient (Kd) was determined to be 100.5L/kg at 20°C, indicating a quite high adsorption capacity for SMN. Thermodynamic analysis revealed that SMN adsorption on activated sludge was an exothermic process. This study could help to clarify the fate and behavior of sulfonamide antibiotics in the activated sludge process and assess consequent environmental risks arising from sludge disposal as well. Copyright © 2014. Published by Elsevier B.V.

  1. Dynamics of the Fouling Layer Microbial Community in a Membrane Bioreactor

    PubMed Central

    Ziegler, Anja S.; McIlroy, Simon J.; Larsen, Poul; Albertsen, Mads; Hansen, Aviaja A.; Heinen, Nicolas; Nielsen, Per Halkjær

    2016-01-01

    Membrane fouling presents the greatest challenge to the application of membrane bioreactor (MBR) technology. Formation of biofilms on the membrane surface is the suggested cause, yet little is known of the composition or dynamics of the microbial community responsible. To gain an insight into this important question, we applied 16S rRNA gene amplicon sequencing with a curated taxonomy and fluorescent in situ hybridization to monitor the community of a pilot-scale MBR carrying out enhanced biological nitrogen and phosphorus removal with municipal wastewater. In order to track the dynamics of the fouling process, we concurrently investigated the communities of the biofilm, MBR bulk sludge, and the conventional activated sludge system used to seed the MBR system over several weeks from start-up. As the biofilm matured the initially abundant betaproteobacterial genera Limnohabitans, Hydrogenophaga and Malikia were succeeded by filamentous Chloroflexi and Gordonia as the abundant species. This study indicates that, although putative pioneer species appear, the biofilm became increasingly similar to the bulk community with time. This suggests that the microbial population in bulk water will largely determine the community structure of the mature biofilm. PMID:27399199

  2. Protists as bioindicators in activated sludge: Identification, ecology and future needs.

    PubMed

    Foissner, Wilhelm

    2016-08-01

    When the activated sludge process was developed, operators and scientists soon recognized protists as valuable indicators. However, only when Curds et al. (1968) showed with a few photographs the need of ciliates for a clear plant effluent, sewage protistology began to bloom but was limited by the need of species identification. Still, this is a major problem although several good guides are available. Thus, molecular kits should be developed for identification. Protists are indicators in two stages of wastewater treatment, viz., in the activated sludge and in the environmental water receiving the plant effluent. Continuous control of the protist and bacterial communities can prevent biological sludge foaming and bulking and may greatly save money for sludge oxygenation because several protist species are excellent indicators for the amount of oxygen present. The investigation of the effluent-receiving rivers gives a solid indication about the long term function of sewage works. The literature on protist bioindication in activated sludge is widely distributed. Thus, I compiled the data in a simple Table, showing which communities and species indicate good, mediocre, or poor plant performance. Further, many details on indication are provided, such as sludge loading and nitrifying conditions. Such specific features should be improved by appropriate statistics and more reliable identification of species. Then, protistologists have a fair chance to become important in wastewater works. Activated sludge is a unique habitat for particular species, often poorly or even undescribed. As an example, I present two new species. The first is a minute (∼30μm) Metacystis that makes an up to 300μm-sized mucous envelope mimicking a sludge floc. The second is a Phialina that is unique in having the contractile vacuole slightly posterior to mid-body. Finally, I provide a list of species which have the type locality in sewage plants. Copyright © 2016 Elsevier GmbH. All rights

  3. Studies on the toxic effects of pentachlorophenol on the biological activity of anaerobic granular sludge.

    PubMed

    Liu, Xin-Wen; He, Ruo; Shen, Dong-Sheng

    2008-09-01

    In order to explore the pathway of the anaerobic biotreatment of the wastewater containing pentachlorophenol (PCP) and ensure the normal operation of Upflow Anaerobic Sludge Blanket (UASB) reactor, the anaerobic sludge under different acclimation conditions were selected to seed and start up UASB reactors. Anaerobic toxicity assays were employed to study the biological activity, the tolerance and the capacity to degrade PCP of different anaerobic granular sludge from UASB reactors. Results showed that the anaerobic granular sludge acclimated to chlorophenols (CPs) could degrade PCP more quickly (up to 9.50mg-PCP g(-1)TVS d(-1)). And the anaerobic granular sludge without acclimation to CPs had only a little activity of degrading PCP (less than 0.07 mg-PCP g(-1)TVS d(-1)). Different PCP concentrations (2, 4, 6, 8 mg L(-1)) had different inhibition effects on glucose utilization, volatile fatted acidity (VFA)-degrading and methanogens activity of PCP degradation anaerobic granular sludge, and the biological activity declined with the increase in PCP concentration. The methanogens activity suffered inhibition from PCP more easily. The different acclimation patterns of seeded sludge had distinctly different effects on biological activity of the degradation of PCP of anaerobic granular sludge from UASB reactors. The biological activity of the anaerobic granular sludge acclimated to PCP only was also inhibited. This inhibition was weak compared to that of anaerobic granular sludge acclimated to CPs, further, the activity could recover more quickly in this case. In the same reactor, the anaerobic granular sludge from the mid and base layers showed higher tolerance to PCP than that from super layer or if the sludge is unacclimated to CPs, and the corresponding recovery time of the biological activity in the mid and base layers were short. Acetate-utilizing methanogens and syntrophic propinate degraders were sensitive to PCP, compared to syntrophic butyrate degraders.

  4. MiDAS: the field guide to the microbes of activated sludge.

    PubMed

    McIlroy, Simon Jon; Saunders, Aaron Marc; Albertsen, Mads; Nierychlo, Marta; McIlroy, Bianca; Hansen, Aviaja Anna; Karst, Søren Michael; Nielsen, Jeppe Lund; Nielsen, Per Halkjær

    2015-01-01

    The Microbial Database for Activated Sludge (MiDAS) field guide is a freely available online resource linking the identity of abundant and process critical microorganisms in activated sludge wastewater treatment systems to available data related to their functional importance. Phenotypic properties of some of these genera are described, but most are known only from sequence data. The MiDAS taxonomy is a manual curation of the SILVA taxonomy that proposes a name for all genus-level taxa observed to be abundant by large-scale 16 S rRNA gene amplicon sequencing of full-scale activated sludge communities. The taxonomy can be used to classify unknown sequences, and the online MiDAS field guide links the identity to the available information about their morphology, diversity, physiology and distribution. The use of a common taxonomy across the field will provide a solid foundation for the study of microbial ecology of the activated sludge process and related treatment processes. The online MiDAS field guide is a collaborative workspace intended to facilitate a better understanding of the ecology of activated sludge and related treatment processes--knowledge that will be an invaluable resource for the optimal design and operation of these systems. © The Author(s) 2015. Published by Oxford University Press.

  5. MiDAS: the field guide to the microbes of activated sludge

    PubMed Central

    McIlroy, Simon Jon; Saunders, Aaron Marc; Albertsen, Mads; Nierychlo, Marta; McIlroy, Bianca; Hansen, Aviaja Anna; Karst, Søren Michael; Nielsen, Jeppe Lund; Nielsen, Per Halkjær

    2015-01-01

    The Microbial Database for Activated Sludge (MiDAS) field guide is a freely available online resource linking the identity of abundant and process critical microorganisms in activated sludge wastewater treatment systems to available data related to their functional importance. Phenotypic properties of some of these genera are described, but most are known only from sequence data. The MiDAS taxonomy is a manual curation of the SILVA taxonomy that proposes a name for all genus-level taxa observed to be abundant by large-scale 16 S rRNA gene amplicon sequencing of full-scale activated sludge communities. The taxonomy can be used to classify unknown sequences, and the online MiDAS field guide links the identity to the available information about their morphology, diversity, physiology and distribution. The use of a common taxonomy across the field will provide a solid foundation for the study of microbial ecology of the activated sludge process and related treatment processes. The online MiDAS field guide is a collaborative workspace intended to facilitate a better understanding of the ecology of activated sludge and related treatment processes—knowledge that will be an invaluable resource for the optimal design and operation of these systems. Database URL: http://www.midasfieldguide.org PMID:26120139

  6. Adsorption mechanisms and impact factors of oxytetracycline on activated sludge

    NASA Astrophysics Data System (ADS)

    Xiancai, Song; Dongfang, Liu; Lejun, Zhao

    2017-03-01

    The adsorption mechanisms and the effect of Oxytetracycline (OTC) onto activated sludge were studied. The results show that the adsorption of Oxytetracycline (OTC) onto activated sludge was coincident with the Pseudo-second-order kinetic model which suggested that chemical adsorption mechanism was dominant. The influences including pH and metal ions on the OTC were examined. It was demonstrated that the adsorption process was highly pH-dependant, which indicate that cationic exchange mechanisms may play an important role in the adsorption process. Na+, K+, Ca2+, Mg2+ and Cd2+ ions more or less inhibited the adsorption of OTC on activated sludge while Cu2+ enhanced the adsorption ability. The phenomenon may reflect the result that a surface complexation mechanism could involved in the adsorption.

  7. Characteristics, Process Parameters, and Inner Components of Anaerobic Bioreactors

    PubMed Central

    Abdelgadir, Awad; Chen, Xiaoguang; Liu, Jianshe; Xie, Xuehui; Zhang, Jian; Zhang, Kai; Wang, Heng; Liu, Na

    2014-01-01

    The anaerobic bioreactor applies the principles of biotechnology and microbiology, and nowadays it has been used widely in the wastewater treatment plants due to their high efficiency, low energy use, and green energy generation. Advantages and disadvantages of anaerobic process were shown, and three main characteristics of anaerobic bioreactor (AB), namely, inhomogeneous system, time instability, and space instability were also discussed in this work. For high efficiency of wastewater treatment, the process parameters of anaerobic digestion, such as temperature, pH, Hydraulic retention time (HRT), Organic Loading Rate (OLR), and sludge retention time (SRT) were introduced to take into account the optimum conditions for living, growth, and multiplication of bacteria. The inner components, which can improve SRT, and even enhance mass transfer, were also explained and have been divided into transverse inner components, longitudinal inner components, and biofilm-packing material. At last, the newly developed special inner components were discussed and found more efficient and productive. PMID:24672798

  8. Characteristics, process parameters, and inner components of anaerobic bioreactors.

    PubMed

    Abdelgadir, Awad; Chen, Xiaoguang; Liu, Jianshe; Xie, Xuehui; Zhang, Jian; Zhang, Kai; Wang, Heng; Liu, Na

    2014-01-01

    The anaerobic bioreactor applies the principles of biotechnology and microbiology, and nowadays it has been used widely in the wastewater treatment plants due to their high efficiency, low energy use, and green energy generation. Advantages and disadvantages of anaerobic process were shown, and three main characteristics of anaerobic bioreactor (AB), namely, inhomogeneous system, time instability, and space instability were also discussed in this work. For high efficiency of wastewater treatment, the process parameters of anaerobic digestion, such as temperature, pH, Hydraulic retention time (HRT), Organic Loading Rate (OLR), and sludge retention time (SRT) were introduced to take into account the optimum conditions for living, growth, and multiplication of bacteria. The inner components, which can improve SRT, and even enhance mass transfer, were also explained and have been divided into transverse inner components, longitudinal inner components, and biofilm-packing material. At last, the newly developed special inner components were discussed and found more efficient and productive.

  9. Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues currently being cultured in rotating bioreactors by investigators

  10. Retrofitting activated sludge systems to intermittent aeration for nitrogen removal.

    PubMed

    Hanhan, O; Artan, N; Orhon, D

    2002-01-01

    The paper provides the basis and the conceptual approach of applying process kinetics and modelling to the design of alternating activated sludge systems for retrofitting existing activated sludge plants to intermittent aeration for nitrogen removal. It shows the significant role of the two specific parameters, namely, the aerated fraction and the cycle time ratio on process performance through model simulations and proposes a way to incorporate them into a design procedure using process stoichiometry and mass balance. It illustrates the effect of these parameters, together with the sludge age, in establishing the balance between the denitrification potential and the available nitrogen created in the anoxic/aerobic sequences of system operation.

  11. Electrochemical pretreatment of waste activated sludge: effect of process conditions on sludge disintegration degree and methane production.

    PubMed

    Ye, Caihong; Yuan, Haiping; Dai, Xiaohu; Lou, Ziyang; Zhu, Nanwen

    2016-11-01

    Waste activated sludge (WAS) requires a long digestion time because of a rate-limiting hydrolysis step - the first phase of anaerobic digestion (AD). Pretreatment can be used prior to AD to facilitate the hydrolysis step and improve the efficiency of WAS digestion. This study evaluated a novel application of electrochemical (EC) technology employed as the pretreatment method prior to AD of WAS, focusing on the effect of process conditions on sludge disintegration and subsequent AD process. A superior process condition of EC pretreatment was obtained by reaction time of 30 min, electrolysis voltage of 20 V, and electrode distance of 5 cm, under which the disintegration degree of WAS ranged between 9.02% and 9.72%. In the subsequent batch AD tests, 206 mL/g volatile solid (VS) methane production in EC pretreated sludge was obtained, which was 20.47% higher than that of unpretreated sludge. The AD time was 19 days shorter for EC pretreated sludge compared to the unpretreated sludge. Additionally, the EC + AD reactor achieved 41.84% of VS removal at the end of AD. The analysis of energy consumption showed that EC pretreatment could be effective in enhancing sludge AD with reduced energy consumption when compared to other pretreatment methods.

  12. Effect of Malathion on the Microbial Ecology of Activated Sludge

    DTIC Science & Technology

    2015-03-26

    EFFECT OF MALATHION ON THE MICROBIAL ECOLOGY OF ACTIVATED SLUDGE THESIS Seth K. Martin, Senior Master Sergeant, USAF AFIT-ENV-MS-15-M-095 DEPARTMENT...Government and is not subject to copyright protection in the United States. AFIT-ENV-MS-15-M-095 EFFECT OF MALATHION ON THE MICROBIAL ECOLOGY OF ACTIVATED...UNLIMITED. AFIT-ENV-MS-15-M-095 EFFECT OF MALATHION ON THE MICROBIAL ECOLOGY OF ACTIVATED SLUDGE THESIS Seth K. Martin, B.S. Senior Master Sergeant

  13. Comparison of laboratory-scale thermophilic biofilm and activated sludge processes integrated with a mesophilic activated sludge process.

    PubMed

    Suvilampi, J; Lehtomäki, A; Rintala, J

    2003-07-01

    A combined thermophilic-mesophilic wastewater treatment was studied using a laboratory-scale thermophilic activated sludge process (ASP) followed by mesophilic ASP or a thermophilic suspended carrier biofilm process (SCBP) followed by mesophilic ASP, both systems treating diluted molasses (dilution factor 1:500 corresponding GF/A-filtered COD (COD(filt)) of 1900+/-190 mgl(-1)). With hydraulic retention times (HRTs) of 12-18 h the thermophilic ASP and thermophilic SCBP removed 60+/-13% and 62+/-7% of COD(filt), respectively, with HRT of 8 h the removals were 48+/-1% and 69+/-4%. The sludge volume index (SVI) was notably lower in the thermophilic SCBP (measured from suspended sludge) than in the thermophilic ASP. Under the lowest HRT the mesophilic ASP gave better performance (as SVI, COD(filt), and COD(tot) removals) after the thermophilic SCBP than after the thermophilic ASP. Measured sludge yields were low (less than 0.1 kg suspended solids (SS) kg COD(filt removed)(-1)) in all processes. Both thermophilic treatments removed 80-85% of soluble COD (COD(sol)) whereas suspended COD (COD(susp)) and colloidal COD (COD(col)) were increased. Both mesophilic post-treatments removed all COD(col) and most of the COD(susp) from the thermophilic effluents. In conclusion, combined thermophilic-mesophilic treatment appeared to be easily operable and produced high effluent quality.

  14. Influence of diatomite addition on membrane fouling and performance in a submerged membrane bioreactor.

    PubMed

    Yang, Xiao-Li; Song, Hai-Liang; Lu, Ji-Lai; Fu, Da-Fang; Cheng, Bing

    2010-12-01

    This paper examined the effect of diatomite addition on membrane fouling and process performance in an anoxic/oxic submerged membrane bioreactor (A/O MBR). Particle size distribution, molecular weight distribution and microbial activity have been investigated to characterize the sludge mixed liquor. Results show that diatomite addition is a reliable and effective approach in terms of both membrane fouling mitigation and pollutants removal improvement. The MBR system with diatomite addition of 50 mg/L enhanced the removal of COD, TN and TP by 0.9%, 6.9% and 31.2%, respectively, as compared to the control MBR (without diatomite addition). The NH(4)-N removal always maintained at a high level of over 98% irrespective of diatomite addition. Due to the hybrid effect of adsorption and co-precipitation on fine colloids and dissolved organic matter (DOM) from the addition of diatomite, a reduction in foulants amount, an increase in microbial floc size and an improvement in sludge settleability have been achieved simultaneously. As a result, the membrane fouling rate was mitigated successfully. 2010 Elsevier Ltd. All rights reserved.

  15. Anammox biofilm in activated sludge swine wastewater treatment plants.

    PubMed

    Suto, Ryu; Ishimoto, Chikako; Chikyu, Mikio; Aihara, Yoshito; Matsumoto, Toshimi; Uenishi, Hirohide; Yasuda, Tomoko; Fukumoto, Yasuyuki; Waki, Miyoko

    2017-01-01

    We investigated anammox with a focus on biofilm in 10 wastewater treatment plants (WWTPs) that use activated sludge treatment of swine wastewater. In three plants, we found red biofilms in aeration tanks or final sedimentation tanks. The biofilm had higher anammox 16S rRNA gene copy numbers (up to 1.35 × 10 12 copies/g-VSS) and higher anammox activity (up to 295 μmoL/g-ignition loss/h) than suspended solids in the same tank. Pyrosequencing analysis revealed that Planctomycetes accounted for up to 17.7% of total reads in the biofilm. Most of them were related to Candidatus Brocadia or Ca. Jettenia. The highest copy number and the highest proportion of Planctomycetes were comparable to those of enriched anammox sludge. Thus, swine WWTPs that use activated sludge treatment can fortuitously acquire anammox biofilm. Thus, concentrated anammox can be detected by focusing on red biofilm. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Toxicities of triclosan, phenol, and copper sulfate in activated sludge.

    PubMed

    Neumegen, Rosalind A; Fernández-Alba, Amadeo R; Chisti, Yusuf

    2005-04-01

    The effect of toxicants on the BOD degradation rate constant was used to quantitatively establish the toxicity of triclosan, phenol, and copper (II) against activated sludge microorganisms. Toxicities were tested over the following ranges of concentrations: 0-450 mg/L for phenol, 0-2 mg/L for triclosan, and 0-35 mg/L for copper sulfate (pentahydrate). According to the EC(50) values, triclosan was the most toxic compound tested (EC(50) = 1.82 +/- 0.1 mg/L), copper (II) had intermediate toxicity (EC(50) = 18.3 +/- 0.37 mg/L), and phenol was the least toxic (EC(50) = 270 +/- 0.26 mg/L). The presence of 0.2% DMSO had no toxic effect on the activated sludge. The toxicity evaluation method used was simple, reproducible, and directly relevant to activated sludge wastewater treatment processes.

  17. NASA Classroom Bioreactor

    NASA Technical Reports Server (NTRS)

    Scully, Robert

    2004-01-01

    Exploration of space provides a compelling need for cell-based research into the basic mechanisms that underlie the profound changes that occur in terrestrial life that is transitioned to low gravity environments. Toward that end, NASA developed a rotating bioreactor in which cells are cultured while continuously suspended in a cylinder in which the culture medium rotates with the cylinder. The randomization of the gravity vector accomplished by the continuous rotation, in a low shear environment, provides an analog of microgravity. Because cultures grown in bioreactors develop structures and functions that are much closer to those exhibited by native tissue than can be achieved with traditional culture methods, bioreactors have contributed substantially to advancing research in the fields of cancer, diabetes, infectious disease modeling for vaccine production, drug efficacy, and tissue engineering. NASA has developed a Classroom Bioreactor (CB) that is built from parts that are easily obtained and assembled, user-friendly and versatile. It can be easily used in simple school settings to examine the effect cultures of seeds or cells. An educational brief provides assembly instructions and lesson plans that describes activities in science, math and technology that explore free fall, microgravity, orbits, bioreactors, structure-function relationships and the scientific method.

  18. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Laptop computer sits atop the Experiment Control Computer for a NASA Bioreactor. The flight crew can change operating conditions in the Bioreactor by using the graphical interface on the laptop. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  19. Metaproteomics Provides Functional Insight into Activated Sludge Wastewater Treatment

    PubMed Central

    Wilmes, Paul; Wexler, Margaret; Bond, Philip L.

    2008-01-01

    Background Through identification of highly expressed proteins from a mixed culture activated sludge system this study provides functional evidence of microbial transformations important for enhanced biological phosphorus removal (EBPR). Methodology/Principal Findings A laboratory-scale sequencing batch reactor was successfully operated for different levels of EBPR, removing around 25, 40 and 55 mg/l P. The microbial communities were dominated by the uncultured polyphosphate-accumulating organism “Candidatus Accumulibacter phosphatis”. When EBPR failed, the sludge was dominated by tetrad-forming α-Proteobacteria. Representative and reproducible 2D gel protein separations were obtained for all sludge samples. 638 protein spots were matched across gels generated from the phosphate removing sludges. 111 of these were excised and 46 proteins were identified using recently available sludge metagenomic sequences. Many of these closely match proteins from “Candidatus Accumulibacter phosphatis” and could be directly linked to the EBPR process. They included enzymes involved in energy generation, polyhydroxyalkanoate synthesis, glycolysis, gluconeogenesis, glycogen synthesis, glyoxylate/TCA cycle, fatty acid β oxidation, fatty acid synthesis and phosphate transport. Several proteins involved in cellular stress response were detected. Conclusions/Significance Importantly, this study provides direct evidence linking the metabolic activities of “Accumulibacter” to the chemical transformations observed in EBPR. Finally, the results are discussed in relation to current EBPR metabolic models. PMID:18392150

  20. [Research on the treatment of wastewater containing PVA by ozonation-activated sludge process].

    PubMed

    Xing, Xiao-Qiong; Huang, Cheng-Lan; Liu, Min; Chen, Ying

    2012-11-01

    The wastewater containing polyvinyl alcohol (PVA) was characterized with poor biodegradability, and was difficult to remove. In order to find an economically reasonable and practical technology, the research on the removal efficiency of different concentration wastewater containing PVA by ozonation-activated sludge process was studied, and the result was compared with the traditional activated sludge process. The results showed that the ozonation-activated sludge process was not suitable for treating influent with COD below 500 mg x L(-1) and the wastewater PVA concentration was 10-30 mg x L(-1). When the influent COD was between 500-800 mg x L(-1) and the PVA concentration was 15-60 mg x L(-1), the system had advantages on dealing with this kind of wastewater, and the average removal efficiency of COD and PVA were 92.8% and 57.4%, which were better than the traditional activated sludge process 4.1% and 15.2% respectively. In addition, the effluent concentrations of COD could keep between 30-60 mg x L(-1). When the influent COD was 1 000-1 200 mg x L(-1) and the PVA concentration was 20-70 mg x L(-1), the average removal efficiencies of COD and PVA were 90.9% and 45.3%, which were better than the traditional activated sludge process 12.8% and 12.1% respectively, but the effluent should to be further treated. Compared with the traditional activated sludge process, ozonation-activated sludge process had high treatment efficiency, stable running effect, and effectively in dealing with industrial wastewater containing PVA.

  1. Evaluation of the information content of long-term wastewater characteristics data in relation to activated sludge model parameters.

    PubMed

    Alikhani, Jamal; Takacs, Imre; Al-Omari, Ahmed; Murthy, Sudhir; Massoudieh, Arash

    2017-03-01

    A parameter estimation framework was used to evaluate the ability of observed data from a full-scale nitrification-denitrification bioreactor to reduce the uncertainty associated with the bio-kinetic and stoichiometric parameters of an activated sludge model (ASM). Samples collected over a period of 150 days from the effluent as well as from the reactor tanks were used. A hybrid genetic algorithm and Bayesian inference were used to perform deterministic and parameter estimations, respectively. The main goal was to assess the ability of the data to obtain reliable parameter estimates for a modified version of the ASM. The modified ASM model includes methylotrophic processes which play the main role in methanol-fed denitrification. Sensitivity analysis was also used to explain the ability of the data to provide information about each of the parameters. The results showed that the uncertainty in the estimates of the most sensitive parameters (including growth rate, decay rate, and yield coefficients) decreased with respect to the prior information.

  2. Cultivation of aerobic granular sludge for rubber wastewater treatment.

    PubMed

    Rosman, Noor Hasyimah; Nor Anuar, Aznah; Othman, Inawati; Harun, Hasnida; Sulong Abdul Razak, Muhammad Zuhdi; Elias, Siti Hanna; Mat Hassan, Mohd Arif Hakimi; Chelliapan, Shreesivadass; Ujang, Zaini

    2013-02-01

    Aerobic granular sludge (AGS) was successfully cultivated at 27±1 °C and pH 7.0±1 during the treatment of rubber wastewater using a sequential batch reactor system mode with complete cycle time of 3 h. Results showed aerobic granular sludge had an excellent settling ability and exhibited exceptional performance in the organics and nutrients removal from rubber wastewater. Regular, dense and fast settling granule (average diameter, 1.5 mm; settling velocity, 33 m h(-1); and sludge volume index, 22.3 mL g(-1)) were developed in a single reactor. In addition, 96.5% COD removal efficiency was observed in the system at the end of the granulation period, while its ammonia and total nitrogen removal efficiencies were up to 94.7% and 89.4%, respectively. The study demonstrated the capabilities of AGS development in a single, high and slender column type-bioreactor for the treatment of rubber wastewater. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Electronics control module for the NASA Bioreactor. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  4. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Interior view of the gas supply for the NASA Bioreactor. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  5. Surplus activated sludge dewatering in pilot-scale sludge drying reed beds.

    PubMed

    Stefanakis, A I; Akratos, C S; Melidis, P; Tsihrintzis, V A

    2009-12-30

    A pilot-scale experiment on dewatering of surplus activated sludge (SAS) is presented, where two pilot-scale vertical flow, sludge drying reed beds (SDRBs), planted with Phragmites australis are used. The bottom of the beds is filled with cobbles, connected to the atmosphere through perforated PVC ventilation tubes, in order to achieve oxygen diffusion through the overlying porous medium that is colonized by roots and an abundant nitrifying biomass. Two layers of gravel, of decreasing size from bottom to top, make the drainage layer where the reeds are planted. The two beds were fed according to the following cycle: one week feeding with SAS at rates one 30 kg/m(2)/year and the other 75 kg/m(2)/year, and resting for three weeks. The results show that planted SDRBs can effectively dewater SAS from domestic sewage, the produced residual sludge presents a high dry weight content, the degree of volume reduction depends upon the initial SAS concentration and can be of the order of 90%, and decomposition of organic matter and high levels of mineralization can be achieved. Furthermore, the percolating water is not septic. The fertilizer value of the treated SAS, which contains no added chemicals, is comparable to that of SAS treated by other methods.

  6. Thermodynamic analysis of membrane fouling in a submerged membrane bioreactor and its implications.

    PubMed

    Hong, Huachang; Peng, Wei; Zhang, Meijia; Chen, Jianrong; He, Yiming; Wang, Fangyuan; Weng, Xuexiang; Yu, Haiying; Lin, Hongjun

    2013-10-01

    The thermodynamic interactions between membrane and sludge flocs in a submerged membrane bioreactor (MBR) were investigated. It was found that Lewis acid-base (AB) interaction predominated in the total interactions. The interaction energy composition of membrane-sludge flocs combination was quite similar to that of membrane-bovine serum albumin (BSA) combination, indicating the critical role of proteins in adhesion process. Detailed analysis revealed the existence of a repulsive energy barrier in membrane-foulants interaction. Calculation results demonstrated that small flocs possessed higher attractive interaction energy per unit mass, and therefore adhered to membrane surface more easily as compared to large flocs. Meanwhile, initial sludge adhesion would facilitate the following adhesion due to the reduced repulsive energy barrier. Membrane with high electron donor surface tension component was a favor option for membrane fouling abatement. These findings offered new insights into membrane fouling, and also provided significant implications for fouling control in MBRs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Synthesis and toxicity evaluation of hydrophobic ionic liquids for volatile organic compounds biodegradation in a two-phase partitioning bioreactor.

    PubMed

    Rodriguez Castillo, Alfredo Santiago; Guihéneuf, Solène; Le Guével, Rémy; Biard, Pierre-François; Paquin, Ludovic; Amrane, Abdeltif; Couvert, Annabelle

    2016-04-15

    Synthesis of several hydrophobic ionic liquids (ILs), which might be selected as good candidates for degradation of hydrophobic volatile organic compounds in a two-phase partitioning bioreactor (TPPB), were carried out. Several bioassays were also realized, such as toxicity evaluation on activated sludge and zebrafish, cytotoxicity, fluoride release in aqueous phase and biodegradability in order to verify their possible effects in case of discharge in the aquatic environment and/or human contact during industrial manipulation. The synthesized compounds consist of alkylimidazoliums, functionalized imidazoliums, isoqinoliniums, triazoliums, sulfoniums, pyrrolidiniums and morpholiniums and various counter-ions such as: PF6(-), NTf2(-) and NfO(-). Toxicity evaluation on activated sludge of each compound (5% v/v of IL) was assessed by using a glucose uptake inhibition test. Toxicity against zebrafish and cytotoxicity were evaluated by the ImPACCell platform of Rennes (France). Fluoride release in water was estimated by regular measurements using ion chromatography equipment. IL biodegradability was determined by measuring BOD28 of aqueous samples (compound concentration,1mM). All ILs tested were not biodegradable; while some of them were toxic toward activated sludge. Isoquinolinium ILs were toxic to human cancerous cell lines. Nevertheless no toxicity was found against zebrafish Danio rerio. Only one IL released fluoride after long-time agitation. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Stabilization of waste-activated sludge through the anoxic-aerobic digestion process.

    PubMed

    Hashimoto, S; Fujita, M; Terai, K

    1982-08-01

    During the aerobic digestion process, the nitrogen which had been embedded in the activated sludge is solubilized to form ammoniacal and nitric nitrogen which are in turn transferred to the liquor and cause the increase of nitrogen loading in the sewage treatment plant. In this study, the anoxic-aerobic sludge digestion system which is a modified form of the conventional aerobic sludge digestion is made up of aerobic and anoxic tanks and are designed to remove both the volatile suspended solids and the total nitrogen (TN) simultaneously. The removal efficiencies of both VSS and TN were investigated by feeding waste-activated sludge continuously and semicontinuously. The maximum percent reduction of both VSS and TN was achieved at a Q(r)/Q(s) ratio of 2 in the continuous process. The semicontinuous process was used to improve the nitrogen removal efficiency further. In the semicontinuous process, the VSS reduction efficiency as well as the nitrogen removal efficiency increased remarkably under a constant Q(r)/Q(s) ratio of 2. This process also achieved a VSS reduction efficiency higher than the aerobic digestion process (control). It was suggested that the additional anoxic tank enhanced the sludge digestion. Furthermore, the anoxic-aerobic digestion system can be applied to other treatment media like the primary sludge, industrial sludge, animal manure, etc.

  9. Development of an ATP measurement method suitable for xenobiotic treatment activated sludge biomass.

    PubMed

    Nguyen, Lan Huong; Chong, Nyuk-Min

    2015-09-01

    Activated sludge consumes a large amount of energy to degrade a xenobiotic organic compound. By tracking the energy inventory of activated sludge biomass during the sludge's degradation of a xenobiotic, any disadvantageous effect on the sludge's performance caused by energy deficiency can be observed. The purpose of this study was to develop a reliable and accurate method for measuring the ATP contents of activated sludge cells that were to degrade a xenobiotic organic. Cell disruption and cellular ATP extraction were performed by a protocol with which xenobiotic degrading activated sludge biomass was washed with SDS, treated by Tris and TCA, and followed by bead blasting. The suspension of disrupted cells was filtered before the filtrate was injected into HPLC that was set at optimal conditions to measure the ATP concentration therein. This extraction protocol and HPLC measurement of ATP was evaluated for its linearity, limits of detection, and reproducibility. Evaluation test results reported a R(2) of 0.999 of linear fit of ATP concentration versus activated sludge concentration, a LOD=0.00045mg/L, a LOQ=0.0015mg/L for HPLC measurement of ATP, a MDL=0.46mg/g SS for ATP extraction protocol, and a recovery efficiency of 96.4±2%. This method of ATP measurement was simple, rapid, reliable, and was unburdened of some limitations other methods may have. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Extracellular protein analysis of activated sludge and their functions in wastewater treatment plant by shotgun proteomics.

    PubMed

    Zhang, Peng; Shen, Yu; Guo, Jin-Song; Li, Chun; Wang, Han; Chen, You-Peng; Yan, Peng; Yang, Ji-Xiang; Fang, Fang

    2015-07-10

    In this work, proteins in extracellular polymeric substances extracted from anaerobic, anoxic and aerobic sludges of wastewater treatment plant (WWTP) were analyzed to probe their origins and functions. Extracellular proteins in WWTP sludges were identified using shotgun proteomics, and 130, 108 and 114 proteins in anaerobic, anoxic and aerobic samples were classified, respectively. Most proteins originated from cell and cell part, and their most major molecular functions were catalytic activity and binding activity. The results exhibited that the main roles of extracellular proteins in activated sludges were multivalence cations and organic molecules binding, as well as in catalysis and degradation. The catalytic activity proteins were more widespread in anaerobic sludge compared with those in anoxic and aerobic sludges. The structure difference between anaerobic and aerobic sludges could be associated with their catalytic activities proteins. The results also put forward a relation between the macro characteristics of activated sludges and micro functions of extracellular proteins in biological wastewater treatment process.

  11. Effects of granular activated carbon on methane removal performance and methanotrophic community of a lab-scale bioreactor.

    PubMed

    Lee, Eun-Hee; Choi, Sun-Ah; Yi, Taewoo; Kim, Tae Gwan; Lee, Sang-Don; Cho, Kyung-Suk

    2015-01-01

    Two identical lab-scale bioreactor systems were operated to examine the effects of granular activated carbon (GAC) on methane removal performance and methanotrophic community. Both bioreactor systems removed methane completely at a CH4 loading rate of 71.2 g-CH4·d(-1) for 17 days. However, the methane removal efficiency declined to 88% in the bioreactor without GAC, while the bioreactor amended with GAC showed greater methane removal efficiency of 97% at a CH4 loading rate of 107.5 g-CH4·d(-1). Although quantitative real-time PCR showed that methanotrophic populations were similar levels of 5-10 × 10(8) pmoA gene copy number·VSS(-1) in both systems, GAC addition changed the methanotrophic community composition of the bioreactor systems. Microarray assay revealed that GAC enhanced the type I methanotrophic genera including Methylobacter, Methylomicrobium, and Methylomonas of the system, which suggests that GAC probably provided a favorable environment for type I methanotrophs. These results indicated that GAC is a promising support material in bioreactor systems for CH4 mitigation.

  12. Treatment of textile wastewater with membrane bioreactor: A critical review.

    PubMed

    Jegatheesan, Veeriah; Pramanik, Biplob Kumar; Chen, Jingyu; Navaratna, Dimuth; Chang, Chia-Yuan; Shu, Li

    2016-03-01

    Membrane bioreactor (MBR) technology has been used widely for various industrial wastewater treatments due to its distinct advantages over conventional bioreactors. Treatment of textile wastewater using MBR has been investigated as a simple, reliable and cost-effective process with a significant removal of contaminants. However, a major drawback in the operation of MBR is membrane fouling, which leads to the decline in permeate flux and therefore requires membrane cleaning. This eventually decreases the lifespan of the membrane. In this paper, the application of aerobic and anaerobic MBR for textile wastewater treatment as well as fouling and control of fouling in MBR processes have been reviewed. It has been found that long sludge retention time increases the degradation of pollutants by allowing slow growing microorganisms to establish but also contributes to membrane fouling. Further research aspects of MBR for textile wastewater treatment are also considered for sustainable operations of the process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Effect of gamma-ray irradiation on the dewaterability of waste activated sludge

    NASA Astrophysics Data System (ADS)

    Wu, Yuqi; Jiang, Yinghe; Ke, Guojun; Liu, Yingjiu

    2017-01-01

    The effect of gamma-ray irradiation on waste activated sludge (WAS) dewaterability was investigated with irradiation doses of 0-15 kGy. Time to filter (TTF50), specific resistance of filtration (SRF) and water content of sludge cake were measured to evaluate sludge dewaterability. Soluble chemical oxygen demand (SCOD), soluble extracellular polymeric substances (EPS) concentration and sludge particle size were determined to explain changes in sludge dewaterability. The optimal irradiation dose to obtain the maximum dewaterability characteristics was 1-4 kGy, which generated sludge with optimal disintegration (1.5-4.0%), soluble EPS concentration (590-750 mg/L) and particle size distribution (100-115 μm diameter). The combination of irradiation and cationic polyacrylamide (CPAM) addition exhibited minimal synergistic effect on increasing sludge dewatering rate compared with CPAM conditioning alone.

  14. Micropollutant degradation via extracted native enzymes from activated sludge.

    PubMed

    Krah, Daniel; Ghattas, Ann-Kathrin; Wick, Arne; Bröder, Kathrin; Ternes, Thomas A

    2016-05-15

    A procedure was developed to assess the biodegradation of micropollutants in cell-free lysates produced from activated sludge of a municipal wastewater treatment plant (WWTP). This proof-of-principle provides the basis for further investigations of micropollutant biodegradation via native enzymes in a solution of reduced complexity, facilitating downstream protein analysis. Differently produced lysates, containing a variety of native enzymes, showed significant enzymatic activities of acid phosphatase, β-galactosidase and β-glucuronidase in conventional colorimetric enzyme assays, whereas heat-deactivated controls did not. To determine the enzymatic activity towards micropollutants, 20 compounds were spiked to the cell-free lysates under aerobic conditions and were monitored via LC-ESI-MS/MS. The micropollutants were selected to span a wide range of different biodegradabilities in conventional activated sludge treatment via distinct primary degradation reactions. Of the 20 spiked micropollutants, 18 could be degraded by intact sludge under assay conditions, while six showed reproducible degradation in the lysates compared to the heat-deactivated negative controls: acetaminophen, N-acetyl-sulfamethoxazole (acetyl-SMX), atenolol, bezafibrate, erythromycin and 10,11-dihydro-10-hydroxycarbamazepine (10-OH-CBZ). The primary biotransformation of the first four compounds can be attributed to amide hydrolysis. However, the observed biotransformations in the lysates were differently influenced by experimental parameters such as sludge pre-treatment and the addition of ammonium sulfate or peptidase inhibitors, suggesting that different hydrolase enzymes were involved in the primary degradation, among them possibly peptidases. Furthermore, the transformation of 10-OH-CBZ to 9-CA-ADIN was caused by a biologically-mediated oxidation, which indicates that in addition to hydrolases further enzyme classes (probably oxidoreductases) are present in the native lysates. Although the

  15. Solubilization of municipal sewage waste activated sludge by novel lytic bacterial strains.

    PubMed

    Lakshmi, M Veera; Merrylin, J; Kavitha, S; Kumar, S Adish; Banu, J Rajesh; Yeom, Ick-Tae

    2014-02-01

    Extracellular polymeric substances (EPS) are an extracellular matrix found in sludge which plays a crucial role in flocculation by interacting with the organic solids. Therefore, to enhance pretreatment of sludge, EPS have to be removed. In this study, EPS were removed with a chemical extractant, NaOH, to enhance the bacterial pretreatment. A lysozyme secreting bacterial consortium was isolated from the waste activated sludge (WAS). The result of density gradient gel electrophoresis (DGGE) analysis revealed that the isolated consortium consists of two strains. The two novel strains isolated were named as Jerish03 (NCBI accession number KC597266) and Jerish 04 (NCBI accession number KC597267) and they belong to the genus Bacillus. Pretreatment with these novel strains enhances the efficiency of the aerobic digestion of sludge. Sludge treated with the lysozyme secreting bacterial consortium produced 29 % and 28.5 % increase in suspended solids (SS) reduction and chemical oxygen demand (COD) removal compared to the raw activated sludge (without pretreatment) during aerobic digestion. It is specified that these two novel strains had a high potential to enhance WAS degradation efficiency in aerobic digestion.

  16. Ozonation of return activated sludge for disintegration and solubilisation with synthesized titanium oxide as catalyst

    NASA Astrophysics Data System (ADS)

    Sarif, S. F. Z. Mohd; Alias, S. S.; Ridwan, F. Muhammad; Salim, K. S. Ku; Abidin, C. Z. A.; Ali, U. F. Md.

    2018-03-01

    Ozonation of activated sludge in the present of titanium dioxide (TiO2) as catalyst to enhance the production of hydroxyl radical was evaluated in comparison to the sole ozonation process. In this process, the catalytic ozontion showed improvement in increasing ozone consumption and improving activated sludge disintegration and solubilisation. The reduction of total suspended solid (TSS), volatile suspended solid (VSS) and soluble chemical oxygen demand (SCOD) solubilisation was better in the catalytic ozonation system. Initial pH 7 of activated sludge was found best to disintegrate and solubilise the sludge flocs. However upon additional of sodium hydroxide (NaOH) in pH adjustment enhanced the solubilisation of organic matter from the flocs and cells, making the initial pH 9 is the best condition for activated sludge solubilisation. Yet the initial pH 7 of activated sludge supernatant was the best condition to achieve SCOD solubilisation due to sludge floc disintegration, when it had stronger correlation between TSS reduction and SCOD solubilisation (R2=0.961). Lower amount of catalyst of 100 mgTiO2/gTSS was found to disintegrate and solubilise the activated sludge better with 30.4% TSS reduction and 25.2% SCOD solubilisation efficiency, compared to 200 mgTiO2/gTSS with 21.9% and 17.1% TSS reduction and SCOD solubilisation, respectively.

  17. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Interior of a Biotechnology Refrigerator that preserves samples for use in (or after culturing in) the NASA Bioreactor. The unit is shown extracted from a middeck locker shell. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  18. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Biotechnology Refrigerator that preserves samples for use in (or after culturing in) the NASA Bioreactor. The unit is shown extracted from a middeck locker shell. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  19. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Biotechnology Refrigerator that preserves samples for use in (or after culturing in) the NASA Bioreactor. The unit is shown extracted from a middeck locker shell and with thermal blankets partially removed. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  20. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Close-up view of the interior of a NASA Bioreactor shows the plastic plumbing and valves (cylinders at right center) to control fluid flow. The rotating wall vessel is at top center. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  1. Factors influencing suspended solids concentrations in activated sludge settling tanks.

    PubMed

    Kim, Y; Pipes, W O

    1999-05-31

    A significant fraction of the total mass of sludge in an activated sludge process may be in the settling tanks if the sludge has a high sludge volume index (SVI) or when a hydraulic overload occurs during a rainstorm. Under those conditions, an accurate estimate of the amount of sludge in the settling tanks is needed in order to calculate the mean cell residence time or to determine the capacity of the settling tanks to store sludge. Determination of the amount of sludge in the settling tanks requires estimation of the average concentration of suspended solids in the layer of sludge (XSB) in the bottom of the settling tanks. A widely used reference recommends averaging the concentrations of suspended solids in the mixed liquor (X) and in the underflow (Xu) from the settling tanks (XSB=0. 5{X+Xu}). This method does not take into consideration other pertinent information available to an operator. This is a report of a field study which had the objective of developing a more accurate method for estimation of the XSB in the bottom of the settling tanks. By correlation analysis, it was found that only 44% of the variation in the measured XSB is related to sum of X and Xu. XSB is also influenced by the SVI, the zone settling velocity at X and the overflow and underflow rates of the settling tanks. The method of averaging X and Xu tends to overestimate the XSB. A new empirical estimation technique for XSB was developed. The estimation technique uses dimensionless ratios; i.e., the ratio of XSB to Xu, the ratio of the overflow rate to the sum of the underflow rate and the initial settling velocity of the mixed liquor and sludge compaction expressed as a ratio (dimensionless SVI). The empirical model is compared with the method of averaging X and Xu for the entire range of sludge depths in the settling tanks and for SVI values between 100 and 300 ml/g. Since the empirical model uses dimensionless ratios, the regression parameters are also dimensionless and the model can be

  2. Optimal design of an activated sludge plant: theoretical analysis

    NASA Astrophysics Data System (ADS)

    Islam, M. A.; Amin, M. S. A.; Hoinkis, J.

    2013-06-01

    The design procedure of an activated sludge plant consisting of an activated sludge reactor and settling tank has been theoretically analyzed assuming that (1) the Monod equation completely describes the growth kinetics of microorganisms causing the degradation of biodegradable pollutants and (2) the settling characteristics are fully described by a power law. For a given reactor height, the design parameter of the reactor (reactor volume) is reduced to the reactor area. Then the sum total area of the reactor and the settling tank is expressed as a function of activated sludge concentration X and the recycled ratio α. A procedure has been developed to calculate X opt, for which the total required area of the plant is minimum for given microbiological system and recycled ratio. Mathematical relations have been derived to calculate the α-range in which X opt meets the requirements of F/ M ratio. Results of the analysis have been illustrated for varying X and α. Mathematical formulae have been proposed to recalculate the recycled ratio in the events, when the influent parameters differ from those assumed in the design.

  3. Investigation of Acidithiobacillus ferrooxidans in pure and mixed-species culture for bioleaching of Theisen sludge from former copper smelting.

    PubMed

    Klink, C; Eisen, S; Daus, B; Heim, J; Schlömann, M; Schopf, S

    2016-06-01

    The aim of this study was to investigate the potential of bioleaching for the treatment of an environmentally hazardous waste, a blast-furnace flue dust designated Theisen sludge. Bioleaching of Theisen sludge was investigated at acidic conditions with Acidithiobacillus ferrooxidans in pure and mixed-species culture with Acidiphilium. In shaking-flask experiments, bioleaching parameters (pH, redox potential, zinc extraction from ZnS, ferrous- and ferric-iron concentration) were controlled regularly. The analysis of the dissolved metals showed that 70% zinc and 45% copper were extracted. Investigations regarding the arsenic and antimony species were performed. When iron ions were lacking, animonate (Sb(V)) and total arsenic concentration were highest in solution. The bioleaching approach was scaled up in stirred-tank bioreactors resulting in higher leaching efficiency of valuable trace elements. Concentrations of dissolved antimony were approx. 23 times, and of cobalt, germanium, and rhenium three times higher in comparison to shaking-flask experiments, when considering the difference in solid load of Theisen sludge. The extraction of base and trace metals from Theisen sludge, despite of its high content of heavy metals and organic compounds, was feasible with iron-oxidizing acidophilic bacteria. In stirred-tank bioreactors, the mixed-species culture performed better. To the best of our knowledge, this study is the first providing an appropriate biological technology for the treatment of Theisen sludge to win valuable elements. © 2016 The Society for Applied Microbiology.

  4. Simultaneous effective carbon and nitrogen removals and phosphorus recovery in an intermittently aerated membrane bioreactor integrated system

    PubMed Central

    Wang, Yun-Kun; Pan, Xin-Rong; Geng, Yi-Kun; Sheng, Guo-Ping

    2015-01-01

    Recovering nutrients, especially phosphate resource, from wastewater have attracted increasing interest recently. Herein, an intermittently aerated membrane bioreactor (MBR) with a mesh filter was developed for simultaneous chemical oxygen demand (COD), total nitrogen (TN) and phosphorous removal, followed by phosphorus recovery from the phosphorus-rich sludge. This integrated system showed enhanced performances in nitrification and denitrification and phosphorous removal without excess sludge discharged. The removal of COD, TN and total phosphorus (TP) in a modified MBR were averaged at 94.4 ± 2.5%, 94.2 ± 5.7% and 53.3 ± 29.7%, respectively. The removed TP was stored in biomass, and 68.7% of the stored phosphorous in the sludge could be recovered as concentrated phosphate solution with a concentration of phosphate above 350 mg/L. The sludge after phosphorus release could be returned back to the MBR for phosphorus uptake, and 83.8% of its capacity could be recovered. PMID:26541793

  5. Elimination of Cu(II) toxicity by powdered waste sludge (PWS) addition to an activated sludge unit treating Cu(II) containing synthetic wastewater.

    PubMed

    Pamukoglu, M Yunus; Kargi, Fikret

    2007-09-05

    Copper(II) ion toxicity onto activated sludge organisms was eliminated by addition of powdered waste sludge (PWS) to the feed wastewater for removal of Cu(II) ions by biosorption before biological treatment. The synthetic feed wastewater containing 14 or 22 mgl(-1) Cu(II) was mixed with PWS in a mixing tank where Cu(II) ions were adsorbed onto PWS and the mixture was fed to a sedimentation tank to separate Cu(II) containing PWS from the feed wastewater. The activated sludge unit fed with the effluent of the sedimentation tank was operated at a hydraulic residence time (HRT) of 10h and sludge age (SRT) of 10 days. To investigate Cu(II), COD and toxicity removal performance of the activated sludge unit at different PWS loadings, the system was operated at different PWS loading rates (0.1-1 gPWSh(-1)) while the Cu(II) loading rate was constant throughout the operation. Percent copper, COD and toxicity removals increased with increasing PWS loading rate due to increased adsorption of Cu(II) onto PWS yielding low Cu(II) contents in the feed. Biomass concentration in the aeration tank increased and the sludge volume index (SVI) decreased with increasing PWS loading rate due to elimination of Cu(II) from the feed wastewater by PWS addition. PWS addition to the Cu(II) containing wastewater was proven to be effective for removal of Cu(II) by biosorption before biological treatment. Approximately, 1 gPWSh(-1) should be added for 28 mgCuh(-1) loading rate for complete removal of Cu(II) from the feed wastewater to obtain high COD removals in the activated sludge unit.

  6. [Treatment of carbonization effluent by the ultrasonic radiation and activated sludge process].

    PubMed

    Ning, Ping; Xu, Jinqiu; Huang, Dongbin; Ma, Xiaoli; Xu, Xiaojun; Li, Ziyan

    2003-05-01

    The paper deals with the degradation of organic pollutants by the ultrasonic irradiation-activated sludge process. The treatment of the real coking wastewater of Kunming coke making-gas plant was studied with the water quality model. Using the ultrasonic irradiation-activated sludge process the organic pollutants in the real coking wastewater can be degraded effectively. The influence factors of the ultrasonic degradation effect such as initial concentration, aerated gas and ultrasonic density were investigated and mechanism was explored. The result shows that the ultrasonic degradation effect was high with the decrease of initial concentration of the CODCr, the presence of aerated gas and the increase of ultrasonic density. At the initial CODCr concentration of 807 mg/L, when air acted as aerated gas and only air itself (no ultrasound) was exerted on the wastewater, the degradation rate of the CODCr will be 4.5%. However, when the ultrasound of the intensity of 119.4 kW/m2 was exerted on the wastewater, the degradation rate of the CODCr will be 65%. Compared with the activated sludge process alone, the combination of the ultrasonic irradiation and activated sludge process can increase the degradation rate of the CODCr from 45% to 81%. The oxygen consumption rate of the carbonization effluent obviously decreased in the presence of the activated sludge. This shows the carbonization effluent is not biotoxic behind the ultrasonic irradiation.

  7. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Exterior view of the NASA Bioreactor Engineering Development Unit flown on Mir. The rotating wall vessel is behind the window on the face of the large module. Control electronics are in the module at left; gas supply and cooling fans are in the module at back. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  8. 3D perfusion bioreactor-activated porous granules on implant fixation and early bone formation in sheep.

    PubMed

    Ding, Ming; Henriksen, Susan S; Martinetti, Roberta; Overgaard, Søren

    2017-11-01

    Early fixation of total joint arthroplasties is crucial for ensuring implant survival. An alternative bone graft material in revision surgery is needed to replace the current gold standard, allograft, seeing that the latter is associated with several disadvantages. The incubation of such a construct in a perfusion bioreactor has been shown to produce viable bone graft materials. This study aimed at producing larger amounts of viable bone graft material (hydroxyapatite 70% and β-tricalcium-phosphate 30%) in a novel perfusion bioreactor. The abilities of the bioreactor-activated graft material to induce early implant fixation were tested in a bilateral implant defect model in sheep, with allograft as the control group. Defects were bilaterally created in the distal femurs of the animals, and titanium implants were inserted. The concentric gaps around the implants were randomly filled with either allograft, granules, granules with bone marrow aspirate or bioreactor-activated graft material. Following an observation time of 6 weeks, early implant fixation and bone formation were assessed by micro-CT scanning, mechanical testing, and histomorphometry. Bone formations were seen in all groups, while no significant differences between groups were found regarding early implant fixation. The microarchitecture of the bone formed by the synthetic graft materials resembled that of allograft. Histomorphometry revealed that allograft induced significantly more bone and less fibrous tissue (p < 0.05). In conclusion, bone formation was observed in all groups, while the bioreactor-activated graft material did not reveal additional effects on early implant fixation comparable to allograft in this model. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2465-2476, 2017. © 2016 Wiley Periodicals, Inc.

  9. EFFECT OF VAPOR-PHASE BIOREACTOR OPERATION ON BIOMASS ACCUMULATION, DISTRIBUTION, AND ACTIVITY. (R826168)

    EPA Science Inventory

    Excess biomass accumulation and activity loss in vapor-phase bioreactors (VPBs) can lead to unreliable long-term operation. In this study, temporal and spatial variations in biomass accumulation, distribution and activity in VPBs treating toluene-contaminated air were monitored o...

  10. Stabilization of waste-activated sludge through the anoxic-aerobic digestion process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashimoto, S.; Fujita, M.; Terai, K.

    1982-08-01

    During the aerobic digestion process, the nitrogen which had been embedded in the activated sludge is solubilized to form ammoniacal and nitric nitrogen which are in turn transferred to the liquor and cause the increase of nitrogen loading in the sewage treatment plant. In this study, the anoxic-aerobic sludge digestion system which is a modified form of the conventional aerobic sludge digestion is made up of aerobic and anoxic tanks and are designed to remove both the volatile suspended solids and the total nitrogen (TN) simultaneously. The removal efficiencies of both VSS and TN were investigated by feeding waste-activated sludgemore » continuously and semicontinuously. The maximum percent reduction of both VSS and TN was achieved at a Q /SUB r/ /Q /SUB s/ ratio of 2 in the continuous process. The semicontinuous process was used to improve the nitrogen removal efficiency further. In the semicontinuous process, the VSS reduction efficiency as well as the nitrogen removal efficiency increased remarkably under a constant Q /SUB r/ /Q /SUB s/ ratio of 2. This process also achieved a VSS reduction efficiency higher than the aerobic digestion process (control). It was suggested that the additional anoxic tank enhanced the sludge digestion. Furthermore, the anoxic-aerobic digestion system can be applied to other treatment media like the primary sludge, industrial sludge, animal manure, etc.« less

  11. Industrial activated sludge exhibit unique bacterial community composition at high taxonomic ranks.

    PubMed

    Ibarbalz, Federico M; Figuerola, Eva L M; Erijman, Leonardo

    2013-07-01

    Biological degradation of domestic and industrial wastewater by activated sludge depends on a common process of separation of the diverse self-assembled and self-sustained microbial flocs from the treated wastewater. Previous surveys of bacterial communities indicated the presence of a common core of bacterial phyla in municipal activated sludge, an observation consistent with the concept of ecological coherence of high taxonomic ranks. The aim of this work was to test whether this critical feature brings about a common pattern of abundance distribution of high bacterial taxa in industrial and domestic activated sludge, and to relate the bacterial community structure of industrial activated sludge with relevant operational parameters. We have applied 454 pyrosequencing of 16S rRNA genes to evaluate bacterial communities in full-scale biological wastewater treatment plants sampled at different times, including seven systems treating wastewater from different industries and one plant that treats domestic wastewater, and compared our datasets with the data from municipal wastewater treatment plants obtained by three different laboratories. We observed that each industrial activated sludge system exhibited a unique bacterial community composition, which is clearly distinct from the common profile of bacterial phyla or classes observed in municipal plants. The influence of process parameters on the bacterial community structure was evaluated using constrained analysis of principal coordinates (CAP). Part of the differences in the bacterial community structure between industrial wastewater treatment systems were explained by dissolved oxygen and pH. Despite the ecological relevance of floc formation for the assembly of bacterial communities in activated sludge, the wastewater characteristics are likely to be the major determinant that drives bacterial composition at high taxonomic ranks. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Cloning of a heavy-metal-binding protein derived from activated-sludge microorganisms.

    PubMed

    Sano, Daisuke; Myojo, Ken; Omura, Tatsuo

    2006-09-01

    A gene of the heavy-metal-binding protein (HMBP) was newly isolated from a genetic DNA library of activated-sludge microorganisms. HMBP was produced by transformed Escherichia coli, and the copper-binding ability of HMBP was confirmed. HMBP derived from activated sludge could be available as heavy metal adsorbents in water and wastewater treatments.

  13. Enhancement of waste activated sludge aerobic digestion by electrochemical pre-treatment.

    PubMed

    Song, Li-Jie; Zhu, Nan-Wen; Yuan, Hai-Ping; Hong, Ying; Ding, Jin

    2010-08-01

    Electrochemical technology with a pair of RuO(2)/Ti mesh plate electrode is first applied to pre-treat Waste Activated Sludge (WAS) prior to aerobic digestion in this study. The effects of various operating conditions were investigated including electrolysis time, electric power, current density, initial pH of sludge and sludge concentration. The study showed that the sludge reduction increased with the electrolysis time, electric power or current density, while decreased with the sludge concentration. Additionally, higher or lower pH than 7.0 was propitious to remove organic matters. The electrochemical pre-treatment removed volatile solids (VS) and volatile suspended solids (VSS) by 2.75% and 7.87%, respectively, with a WAS concentration of 12.9 g/L, electrolysis time of 30 min, electric power of 5 W and initial sludge pH of 10. In the subsequent aerobic digestion, the sludge reductions for VS and VSS after solids retention time (SRT) of 17.5 days were 34.25% and 39.59%, respectively. However, a SRT of 23.5 days was necessary to achieve equivalent reductions without electrochemical pre-treatment. Sludge analysis by Scanning Electron Microscope (SEM) images and infrared (IR) spectra indicated that electrochemical pre-treatment can rupture sludge cells, remove and solubilize intracellular substances, especially protein and polysaccharide, and consequently enhance the aerobic digestion. (c) 2010 Elsevier Ltd. All rights reserved.

  14. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The heart of the bioreactor is the rotating wall vessel, shown without its support equipment. Volume is about 125 mL. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  15. Rotating Bioreactor

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues currently being cultured in rotating bioreactors by investigators.

  16. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Close-up view of the interior of a NASA Bioreactor shows the plastic plumbing and valves (cylinders at center) to control fluid flow. A fresh nutrient bag is installed at top; a flattened waste bag behind it will fill as the nutrients are consumed during the course of operation. The drive chain and gears for the rotating wall vessel are visible at bottom center center. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  17. Anaerobic co-digestion of waste activated sludge and greasy sludge from flotation process: batch versus CSTR experiments to investigate optimal design.

    PubMed

    Girault, R; Bridoux, G; Nauleau, F; Poullain, C; Buffet, J; Peu, P; Sadowski, A G; Béline, F

    2012-02-01

    In this study, the maximum ratio of greasy sludge to incorporate with waste activated sludge was investigated in batch and CSTR experiments. In batch experiments, inhibition occurred with a greasy sludge ratio of more than 20-30% of the feed COD. In CSTR experiments, the optimal greasy sludge ratio was 60% of the feed COD and inhibition occurred above a ratio of 80%. Hence, batch experiments can predict the CSTR yield when the degradation phenomenon are additive but cannot be used to determine the maximum ratio to be used in a CSTR configuration. Additionally, when the ratio of greasy sludge increased from 0% to 60% of the feed COD, CSTR methane production increased by more than 60%. When the greasy sludge ratio increased from 60% to 90% of the feed COD, the reactor yield decreased by 75%. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Fouling mechanisms of gel layer in a submerged membrane bioreactor.

    PubMed

    Hong, Huachang; Zhang, Meijia; He, Yiming; Chen, Jianrong; Lin, Hongjun

    2014-08-01

    The fouling mechanisms underlying gel layer formation and its filtration resistance in a submerged membrane bioreactor (MBR) were investigated. It was found that gel layer rather than cake layer was more easily formed when soluble microbial products content in sludge suspension was relatively high. Thermodynamic analyses showed that gel layer formation process should overcome a higher energy barrier as compared with cake layer formation process. However, when separation distance <2.3 nm, attractive interaction energy of gelling foulant-membrane combination was remarkably higher than that of sludge floc-membrane combination. The combined effects were responsible for gel layer formation. Filtration tests showed that specific filtration resistance (SFR) of gel layer was almost 100 times higher than that of cake layer. The unusually high SFR of gel layer could be ascribed to the gelling propensity and osmotic pressure mechanism. These findings shed significant light on fouling mechanisms of gel layer in MBRs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Bioreactor principles

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Cells cultured on Earth (left) typically settle quickly on the bottom of culture vessels due to gravity. In microgravity (right), cells remain suspended and aggregate to form three-dimensional tissue. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  20. Ultrasonic waste activated sludge disintegration for recovering multiple nutrients for biofuel production.

    PubMed

    Xie, Guo-Jun; Liu, Bing-Feng; Wang, Qilin; Ding, Jie; Ren, Nan-Qi

    2016-04-15

    Waste activated sludge is a valuable resource containing multiple nutrients, but is currently treated and disposed of as an important source of pollution. In this work, waste activated sludge after ultrasound pretreatment was reused as multiple nutrients for biofuel production. The nutrients trapped in sludge floc were transferred into liquid medium by ultrasonic disintegration during first 30 min, while further increase of pretreatment time only resulted in slight increase of nutrients release. Hydrogen production by Ethanoligenens harbinense B49 from glucose significantly increased with the concentration of ultrasonic sludge, and reached maximum yield of 1.97 mol H2/mol glucose at sludge concentration of 7.75 g volatile suspended solids/l. Without addition of any other chemicals, waste molasses rich in carbohydrate was efficiently turned into hydrogen with yield of 189.34 ml H2/g total sugar by E. harbinense B49 using ultrasonic sludge as nutrients. The results also showed that hydrogen production using pretreated sludge as multiple nutrients was higher than those using standard nutrients. Acetic acid produced by E. harbinense B49 together with the residual nutrients in the liquid medium were further converted into hydrogen (271.36 ml H2/g total sugar) by Rhodopseudomonas faecalis RLD-53 through photo fermentation, while ethanol was the sole end product with yield of 220.26 mg/g total sugar. Thus, pretreated sludge was an efficient nutrients source for biofuel production, which could replace the standard nutrients. This research provided a novel strategy to achieve environmental friendly sludge disposal and simultaneous efficient biofuel recovery from organic waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Effect of organic matter to nitrogen ratio on membrane bioreactor performance.

    PubMed

    Hao, L; Liao, B Q

    2015-01-01

    Effect of chemical oxygen demand (COD) to nitrogen (COD:N) ratio in feed on the performance of aerobic membrane bioreactor (MBR) for treating a synthetic high-strength industrial waste water containing glucose was studied for over 370 days. The widely recommended nutrients ratio (COD:N:P = 100:5:1) is not necessary for aerobic biological industrial waste water treatment. An increased COD:N ratio from 100:5 to 100:2.5 and 100:1.8 had a limited impact on COD removal efficiency and further led to a significant improvement in membrane performance, a reduced sludge yield, and improved effluent quality in terms of residual nutrients. An increased COD:N ratio will benefit the industrial waste water treatment using MBRs by reducing membrane fouling and sludge yield, saving chemical costs, and reducing secondary pollution by nutrients addition. Optimization of nutrients usage should be conducted for specific industrial waste water streams.

  2. [Detection of anaerobic processes and microorganisms in immobilized activated sludge of a wastewater treatment plant with intense aeration].

    PubMed

    Litti, Iu V; Nekrasova, V K; Kulikov, N I; Siman'kova, M V; Nozhevnikova, A N

    2013-01-01

    Attached activated sludge from the Krasnaya Polyana (Sochi) wastewater treatment plant was studied after the reconstruction by increased aeration and water recycle, as well as by the installation of a bristle carrier for activated sludge immobilization. The activated sludge biofilms developing under conditions of intense aeration were shown to contain both aerobic and anaerobic microorganisms. Activity of a strictly anaerobic methanogenic community was revealed, which degraded organic compounds to methane, further oxidized by aerobic methanotrophs. Volatile fatty acids, the intermediates of anaerobic degradation of complex organic compounds, were used by both aerobic and anaerobic microorganisms. Anaerobic oxidation of ammonium with nitrite (anammox) and the presence of obligate anammox bacteria were revealed in attached activated sludge biofilms. Simultaneous aerobic and anaerobic degradation of organic contaminants by attached activated sludge provides for high rates of water treatment, stability of the activated sludge under variable environmental conditions, and decreased excess sludge formation.

  3. pH-dependent biotransformation of ionizable organic micropollutants in activated sludge.

    PubMed

    Gulde, Rebekka; Helbling, Damian E; Scheidegger, Andreas; Fenner, Kathrin

    2014-12-02

    Removal of micropollutants (MPs) during activated sludge treatment can mainly be attributed to biotransformation and sorption to sludge flocs, whereby the latter process is known to be of minor importance for polar organic micropollutants. In this work, we investigated the influence of pH on the biotransformation of MPs with cationic-neutral speciation in an activated sludge microbial community. We performed batch biotransformation, sorption control, and abiotic control experiments for 15 MPs with cationic-neutral speciation, one control MP with neutral-anionic speciation, and two neutral MPs at pHs 6, 7, and 8. Biotransformation rate constants corrected for sorption and abiotic processes were estimated from measured concentration time series with Bayesian inference. We found that biotransformation is pH-dependent and correlates qualitatively with the neutral fraction of the ionizable MPs. However, a simple speciation model based on the assumption that only the neutral species is efficiently taken up and biotransformed by the cells tends to overpredict the effect of speciation. Therefore, additional mechanisms such as uptake of the ionic species and other more complex attenutation mechanisms are discussed. Finally, we observed that the sorption coefficients derived from our control experiments were small and showed no notable pH-dependence. From this we conclude that pH-dependent removal of polar, ionizable organic MPs in activated sludge systems is less likely an effect of pH-dependent sorption but rather of pH-dependent biotransformation. The latter has the potential to cause marked differences in the removal of polar, ionizable MPs at different operational pHs during activated sludge treatment.

  4. Inhibition of Anaerobic Phosphate Release by Nitric Oxide in Activated Sludge

    PubMed Central

    Van Niel, E. W. J.; Appeldoorn, K. J.; Zehnder, A. J. B.; Kortstee, G. J. J.

    1998-01-01

    Activated sludge not containing significant numbers of denitrifying, polyphosphate [poly(P)]-accumulating bacteria was grown in a fill-and-draw system and exposed to alternating anaerobic and aerobic periods. During the aerobic period, poly(P) accumulated up to 100 mg of P · g of (dry) weight. When portions of the sludge were incubated anaerobically in the presence of acetate, 80 to 90% of the intracellular poly(P) was degraded and released as orthophosphate. Degradation of poly(P) was mainly catalyzed by the concerted action of polyphosphate:AMP phosphotransferase and adenylate kinase, resulting in ATP formation. In the presence of 0.3 mM nitric oxide (NO) in the liquid-phase release of phosphate, uptake of acetate, formation of poly-β-hydroxybutyrate, utilization of glycogen, and formation of ATP were severely inhibited or completely abolished. In cell extracts of the sludge, adenylate kinase activity was completely inhibited by 0.15 mM NO. The nature of this inhibition was probably noncompetitive, similar to that with hog adenylate kinase. Activated sludge polyphosphate glucokinase was also completely inhibited by 0.15 mM NO. It is concluded that the inhibitory effect of NO on acetate-mediated phosphate release by the sludge used in this study is due to the inhibition of adenylate kinase in the phosphate-releasing organisms. The inhibitory effect of nitrate and nitrite on phosphate release is probably due to their conversion to NO. The lack of any inhibitory effect of NO on adenylate kinase of the poly(P)-accumulating Acinetobacter johnsonii 210A suggests that this type of organism is not involved in the enhanced biological phosphate removal by the sludges used. PMID:9687452

  5. Influence of hydraulic retention time on indigenous microalgae and activated sludge process.

    PubMed

    Anbalagan, Anbarasan; Schwede, Sebastian; Lindberg, Carl-Fredrik; Nehrenheim, Emma

    2016-03-15

    Integration of the microalgae and activated sludge (MAAS) process in municipal wastewater treatment and biogas production from recovered MAAS was investigated by studying the hydraulic retention time (HRT) of semi-continuous photo-bioreactors. An average total nitrogen (TN) removal efficiency (RE) of maximum 81.5 ± 5.1 and 64.6 ± 16.2% was achieved at 6 and 4 days HRT. RE of total phosphorous (TP) increased slightly at 6 days (80 ± 12%) HRT and stabilized at 4 days (56 ± 5%) and 2 days (55.5 ± 5.5%) HRT due to the fluctuations in COD and N/P mass ratio of the periodic wastewater. COD and organic carbon were removed efficiently and a rapidly settleable MAAS with a sludge volume index (SVI_10) of less than 117 mL g(-1) was observed at all HRTs. The anaerobic digestion of the untreated MAAS showed a higher biogas yield of 349 ± 10 mL g VS(-1) with 2 days HRT due to a low solids retention time (SRT). Thermal pretreatment of the MAAS (120 °C, 120 min) did not show any improvement with biogas production at 6 days (269 ± 3 (untreated) and 266 ± 16 (treated) mL gVS(-1)), 4 days (258 ± 11(untreated) and 263 ± 10 (treated) mL gVS(-1)) and 2 days (308 ± 19 mL (treated) gVS(-1)) HRT. Hence, the biogas potential tests showed that the untreated MAAS was a feasible substrate for biogas production. Results from this proof of concept support the application of MAAS in wastewater treatment for Swedish conditions to reduce aeration, precipitation chemicals and CO2 emissions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Pilot-scale investigation of sludge reduction in aerobic digestion system with endospore-forming bacteria.

    PubMed

    Seo, Kyu Won; Choi, Yong-Su; Gu, Man Bock; Kwon, Eilhann E; Tsang, Yiu Fai; Rinklebe, Jörg; Park, Chanhyuk

    2017-11-01

    A pilot-scale investigation of membrane-based aerobic digestion system dominated by endospore-forming bacteria was evaluated as one of the potential sludge treatment processes (STP). Most of the organic matter in the sludge was removed (90.1%) by the particular bacteria in the STP, which consisted of mixed liquor suspended solid (MLSS) contact reactor (MCR), MLSS oxidation reactor (MOR), and membrane bioreactor (MBR). The sludge was accumulated in the MBR without wasting, and then the effluent in STP was fed into the first step in water resource recovery facility (WRRF). According to the analysis of microbial communities in all reactors, various Bacillus species were present in the STP, mainly due to their intrinsic resistance to the extreme conditions. As the surviving Bacillus species might consume degraded microorganisms for their growth, these endospore-forming bacteria-based STP could be suitable for the sludge reduction when they operated for a long time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Generation of dissolved organic matter and byproducts from activated sludge during contact with sodium hypochlorite and its implications to on-line chemical cleaning in MBR.

    PubMed

    Cai, Weiwei; Liu, Jiaqi; Zhang, Xiangru; Ng, Wun Jern; Liu, Yu

    2016-11-01

    On-line chemical cleaning of membranes with sodium hypochlorite (NaClO) has been commonly employed for maintaining a constant permeability of membrane bioreactor (MBR) due to its simple and efficient operation. However, activated sludge is inevitably exposed to NaClO during this cleaning process. In spite of the broad applications of on-line chemical cleaning in MBR such as chemical cleaning-in-place (CIP) and chemical enhanced backwash (CEB), little information is currently available for the release of emerging dissolved organic matter (DOM) and byproducts from this prevalent practice. Therefore, in this study, activated sludge suspended in a phosphate buffered saline solution was exposed to different doses of NaClO in order to determine the generation of potential DOM and byproducts. The results showed the occurrence of significant DOM release (up to 24.7 mg/L as dissolved organic carbon) after exposure to NaClO for 30 min. The dominant components of the released DOM were characterized to be humic acid-like as well as protein-like substances by using an excitation-emission matrix fluorescence spectrophotometer. Furthermore, after the contact of activated sludge with NaClO, 19 kinds of chlorinated and brominated byproducts were identified by ultra performance liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry, eight of which were confirmed and characterized with standard compounds. Many byproducts were found to be halogenated aromatic compounds, including halopyrroles and halo(hydro)benzoquinones, which had been reported to be significantly more toxic than the halogenated aliphatic ones. Consequently, this study offers new insights into the practice of on-line chemical cleaning, and opens up a window to re-examine the current operation of MBR by looking into the generation of micropollutants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Tracing the evolution of degraders in activated sludge during the sludge’s acclimation to a xenobiotic organic

    NASA Astrophysics Data System (ADS)

    Chong, N. M.; Fan, C. H.; Yang, Y. C.

    2017-01-01

    The molecular biology method of high-throughput pyrosequencing was employed to examine the change of activated sludge community structures during the process in which activated sludge was acclimated to and degraded a target xenobiotic. The sample xenobiotic organic compound used as the activated sludge acclimation target was the herbicide 2,4-dichlorphenoxyacetic acid (2,4-D). Indigenous activated sludge microorganisms were acclimated to 2,4-D as the sole carbon source in both the batch and the continuous-flow reaction modes. Sludge masses at multiple time points during the course of acclimation were subjected to pyrosequencing targeting the microorganisms’ 16S rRNA genes. With the bacterial 16S rRNA sequencing results the genera that increased in abundance were checked with degradative pathway databases or literature to confirm that they are commonly seen as potent degraders of 2,4-D. From this systematic examination of degrader changes at time points during activated sludge acclimation and degradation of the target xenobiotic, the trend of degrader evolution in activated sludge over the sludge’s acclimation process to a xenobiotic was traced.

  9. Feasibility of a multi-component additive for efficient control of activated sludge filamentous bulking.

    PubMed

    Seka, A M; Van De Wiele, T; Verstraete, W

    2001-08-01

    Instantaneous improvement of the settling of bulking filamentous activated sludge can be achieved by the addition of a polymer or a large amount (up to 100% of the MLSS concentration) of talc powder to the sludge. Long-term improvement relies on repeated additions, as these additives have no adverse effects on the causative filaments. A multi-component additive was compared to the traditional additives in lab-scale activated sludge units using three highly filamentous sludges from different industrial treatment plants. The study demonstrated that the multi-component additive was superior to the traditional remedies. It was shown that, in the case of severe filamentous bulking, a single addition of the new additive immediately improved sludge settling and exerted a destructive effect on the causative filamentous bacteria. Thus, the latter additive also ensured a long-term sludge sedimentation improvement. The traditional additives exhibited an immediate and short-term effect. The novel additive also retarded sludge rising due to denitrification and it improved sludge dewaterability. The study revealed Nostocoido limicola II, with slightly hydrophobic cell wall, to be somewhat resistant to the quaternary ammonium salt present as biocide in the additive.

  10. Pharmaceutically active compounds in sludge stabilization treatments: anaerobic and aerobic digestion, wastewater stabilization ponds and composting.

    PubMed

    Martín, Julia; Santos, Juan Luis; Aparicio, Irene; Alonso, Esteban

    2015-01-15

    Sewage sludge disposal onto lands has been stabilized previously but still many pollutants are not efficiently removed. Special interest has been focused on pharmaceutical compounds due to their potential ecotoxicological effects. Nowadays, there is scarce information about their occurrence in different sludge stabilization treatments. In this work, the occurrence of twenty-two pharmaceutically active compounds has been studied in sludge from four sludge stabilization treatments: anaerobic digestion, aerobic digestion, composting and lagooning. The types of sludge evaluated were primary, secondary, anaerobically-digested and dehydrated, composted, mixed, aerobically-digested and dehydrated and lagoon sludge. Nineteen of the twenty-two pharmaceutically active compounds monitored were detected in sewage sludge. The most contaminated samples were primary sludge, secondary sludge and mixed sludge (the average concentrations of studied compounds in these sludges were 179, 310 and 142 μg/kg dm, respectively) while the mean concentrations found in the other types of sewage sludge were 70 μg/kg dm (aerobically-digested sludge), 63 μg/kg dm (lagoon sludge), 12 μg/kg dm (composted sludge) and 8 μg/kg dm (anaerobically-digested sludge). The antibiotics ciprofloxacin and norfloxacin were found at the highest concentration levels in most of the analyzed sludge samples (up to 2660 and 4328 μg/kg dm, respectively). Anaerobic-digestion treatment reduced more considerably the concentration of most of the studied compounds than aerobic-digestion (especially in the case of bezafibrate and fluoroquinolones) and more than anaerobic stabilization ponds (in the case of acetaminophen, atenolol, bezafibrate, carbamazepine, 17α-ethinylestradiol, naproxen and salicylic acid). Ecotoxicological risk assessment, of sludge application onto soils, has also been evaluated. Risk quotients, expressed as the ratio between the predicted environmental concentration and the predicted non

  11. Effects of mechanical disintegration of activated sludge on the activity of nitrifying and denitrifying bacteria and phosphorus accumulating organisms.

    PubMed

    Zubrowska-Sudol, Monika; Walczak, Justyna

    2014-09-15

    The purpose of the study was to analyse the impact of hydrodynamic disintegration of thickened excess activated sludge, performed at different levels of energy density (70, 140 and 210 kJ/L), on the activity of microorganisms involved in nutrient removal from wastewater, i.e. nitrifiers, denitrifiers and phosphorus accumulating organisms (PAOs). Ammonium and nitrogen utilisation rates and phosphorus release rates for raw and disintegrated sludge were determined using batch tests. The experiment also included: 1) analysis of organic and nutrient compound release from activated sludge flocs, 2) determination of the sludge disintegration degree (DD), and 3) evaluation of respiratory activity of the biomass by using the oxygen uptake rate (OUR) batch test. It was shown that the activity degree of the examined groups of microorganisms depended on energy density and related sludge disintegration degree, and that inactivation of individual groups of microorganisms occurred at different values of DD. Least resistant to the destruction of activated sludge flocs turned out to be phosphorus accumulating organisms, while the most resistant were denitrifiers. A decrease of 20-40% in PAO activity was noted already at DD equal to 3-5%. The threshold values of DD, after crossing which the inactivation of nitrifiers and denitrifiers occurred, were equal to 8% and 10%, respectively. At lesser DD values an increase in the activity of these groups of microorganisms was observed, averaging 20.2-41.7% for nitrifiers and 9.98-36.3% for denitrifiers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Methanogenic community development in anaerobic granular bioreactors treating trichloroethylene (TCE)-contaminated wastewater at 37 °C and 15 °C.

    PubMed

    Siggins, Alma; Enright, Anne-Marie; O'Flaherty, Vincent

    2011-04-01

    Four expanded granular sludge bed (EGSB) bioreactors were seeded with a mesophilically-grown granular sludge and operated in duplicate for mesophilic (37 °C; R1 & R2) and low- (15°; R3 & R4) temperature treatment of a synthetic volatile fatty acid (VFA) based wastewater (3 kg COD m(-3) d(-1)) with one of each pair (R1 & R3) supplemented with increasing concentrations of trichloroethylene (TCE; 10, 20, 40, 60 mg l(-1)) and one acting as a control. Bioreactor performance was evaluated by % COD removal efficiency and % biogas methane (CH(4)) content. Quantitative Polymerase Chain Reaction (qPCR) was used to investigate the methanogenic community composition and dynamics in the bioreactors during the trial, while specific methanogenic activity (SMA) and toxicity assays were utilized to investigate the activity and TCE/dichloroethylene (DCE) toxicity thresholds of key trophic groups, respectively. At both 37 °C and 15 °C, TCE levels of 60 mg l(-1) resulted in the decline of % COD removal efficiencies to 29% (Day 235) and 37% (Day 238), respectively, and in % biogas CH(4) to 54% (Day 235) and 5% (Day 238), respectively. Despite the inhibitory effect of TCE on the anaerobic digestion process, the main drivers influencing methanogenic community development, as determined by qPCR and Non-metric multidimensional scaling analysis, were (i) wastewater composition and (ii) operating temperature. At the apical TCE concentration both SMA and qPCR of methanogenic archaea suggested that acetoclastic methanogens were somewhat inhibited by the presence of TCE and/or its degradation derivatives, while competition by dechlorinating organisms may have limited the availability of H(2) for hydrogenotrophic methanogenesis. In addition, there appeared to be an inverse correlation between SMA levels and TCE tolerance, a finding that was supported by the analysis of the inhibitory effect of TCE on two additional biomass sources. The results indicate that low-temperature anaerobic

  13. Virus elimination in activated sludge systems: from batch tests to mathematical modeling.

    PubMed

    Haun, Emma; Ulbricht, Katharina; Nogueira, Regina; Rosenwinkel, Karl-Heinz

    2014-01-01

    A virus tool based on Activated Sludge Model No. 3 for modeling virus elimination in activated sludge systems was developed and calibrated with the results from laboratory-scale batch tests and from measurements in a municipal wastewater treatment plant (WWTP). The somatic coliphages were used as an indicator for human pathogenic enteric viruses. The extended model was used to simulate the virus concentration in batch tests and in a municipal full-scale WWTP under steady-state and dynamic conditions. The experimental and modeling results suggest that both adsorption and inactivation processes, modeled as reversible first-order reactions, contribute to virus elimination in activated sludge systems. The model should be a useful tool to estimate the number of viruses entering water bodies from the discharge of treated effluents.

  14. Full-scale effects of addition of sludge from water treatment stations into processes of sewage treatment by conventional activated sludge.

    PubMed

    Luiz, Marguti André; Sidney Seckler, Ferreira Filho; Passos, Piveli Roque

    2018-06-01

    An emerging practice for water treatment plant (WTP) sludge is its disposal in wastewater treatment plants (WWTP), an alternative that does not require the installation of sludge treatment facilities in the WTP. This practice can cause both positive and negative impacts in the WWTP processes since the WTP sludge does not have the same characteristics as domestic wastewater. This issue gives plenty of information in laboratory and pilot scales, but lacks data from full-scale studies. The main purpose of this paper is to study the impact of disposing sludge from the Rio Grande conventional WTP into the ABC WWTP, an activated sludge process facility. Both plants are located in São Paulo, Brazil, and are full-scale facilities. The WTP volumetric flow rate (4.5 m³/s) is almost three times that of WWTP (1.6 m³/s). The data used in this study came from monitoring the processes at both plants. The WWTP liquid phase treatment analysis included the variables BOD, COD, TSS, VSS, ammonia, total nitrogen, phosphorus and iron, measured at the inlet, primary effluent, mixed liquor, and effluent. For the WWTP solids treatment, the parameters tested were total and volatile solids. The performance of the WWTP process was analyzed with and without sludge addition: 'without sludge' in years 2005 and 2006 and 'with sludge' from January 2007 to March 2008. During the second period, the WTP sludge addition increased the WWTP removal efficiencies for solids (93%-96%), organic matter (92%-94% for BOD) and phosphorus (52%-88%), when compared to the period 'without sludge'. These improvements can be explained by higher feed concentrations combined to same or lower effluent concentrations in the 'with sludge' period. No critical negative impacts occurred in the sludge treatment facilities, since the treatment units absorbed the extra solids load from the WTP sludge. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Effect of dissolved oxygen and temperature on macromolecular composition and PHB storage of activated sludge.

    PubMed

    Reyes, Paula; Urtubia, Alejandra; Schiappacasse, María C; Chamy, Rolando; Montalvo, Silvio; Borja, Rafael

    2014-01-01

    The macromolecular composition of activated sludge (lipids, intracellular proteins and intracellular polysaccharides) was studied together with its capacity to store macromolecules such as polyhydroxybutyrate (PHB) in a conventional activated sludge system fed with synthetic sewage water at an organic load rate of 1.0 kg COD/(m(3)·d), varying the dissolved oxygen (DO) and temperature. Six DO concentrations (0.8, 1.0, 1.5, 2.0, 2.5 and 8 mg/L) were studied at 20°C with a sludge retention time (SRT) of 6 days. In addition, four temperatures (10ºC, 15ºC, 20ºC and 30ºC) were assessed at constant DO (2 mg/L) with 2 days SRT in a second experimental run. The highest lipid content in the activated sludge was 95.6 mg/g VSS, obtained at 30°C, 2 mg/L of DO and a SRT of 2 days. The highest content of intracellular proteins in the activated sludge was 87.8 mg/g VSS, obtained at 20°C, 8 mg/L of DO and a SRT of 6 days. The highest content of intracellular polysaccharides in the activated sludge was 76.6 mg/g VSS, which was achieved at 20°C, a SRT of 6 days and a wide range of DO. The activated sludge PHB storage was very low for all the conditions studied.

  16. Estrogen Degraders and Estrogen Degradation Pathway Identified in an Activated Sludge.

    PubMed

    Chen, Yi-Lung; Fu, Han-Yi; Lee, Tzong-Huei; Shih, Chao-Jen; Huang, Lina; Wang, Yu-Sheng; Ismail, Wael; Chiang, Yin-Ru

    2018-05-15

    The environmental release and fate of estrogens are becoming an increasing public concern. Bacterial degradation has been considered the main process for eliminating estrogens from wastewater treatment plants. Various bacterial isolates are reportedly capable of aerobic estrogen degradation, and several estrogen degradation pathways have been proposed in proteobacteria and actinobacteria. However, the ecophysiological relevance of estrogen-degrading bacteria in the environment is unclear. In this study, we investigated the estrogen degradation pathway and corresponding degraders in activated sludge collected from the Dihua Sewage Treatment Plant, Taipei, Taiwan. Cultivation-dependent and cultivation-independent methods were used to assess estrogen biodegradation in the collected activated sludge. Estrogen metabolite profile analysis revealed the production of pyridinestrone acid and two A/B-ring cleavage products in activated sludge incubated with estrone (1 mM), which are characteristic of the 4,5- seco pathway. PCR-based functional assays detected sequences closely related to alphaproteobacterial oecC , a key gene of the 4,5- seco pathway. Metagenomic analysis suggested that Novosphingobium spp. are major estrogen degraders in estrone-amended activated sludge. Novosphingobium sp. strain SLCC, an estrone-degrading alphaproteobacterium, was isolated from the examined activated sludge. The general physiology and metabolism of this strain were characterized. Pyridinestrone acid and the A/B-ring cleavage products were detected in estrone-grown strain SLCC cultures. The production of pyridinestrone acid was also observed during the aerobic incubation of strain SLCC with 3.7 nM (1 μg/liter) estrone. This concentration is close to that detected in many natural and engineered aquatic ecosystems. The presented data suggest the ecophysiological relevance of Novosphingobium spp. in activated sludge. IMPORTANCE Estrogens, which persistently contaminate surface water

  17. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Astronaut John Blaha replaces an exhausted media bag and filled waste bag with fresh bags to continue a bioreactor experiment aboard space station Mir in 1996. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. This image is from a video downlink. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC).

  18. Tetrazolium Reduction-Malachite Green Method for Assessing the Viability of Filamentous Bacteria in Activated Sludge

    PubMed Central

    Bitton, Gabriel; Koopman, Ben

    1982-01-01

    A method was developed to assess the activity of filamentous bacteria in activated sludge. It involves the incubation of activated sludge with 2(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride followed by staining with malachite green. Both cells and 2(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride-formazan crystals can be observed in prepared specimens by using bright-field microscopy. This procedure allowed us to distinguish between inactive and actively metabolizing filaments after chlorine application to control the bulking of activated sludge. Images PMID:16345999

  19. Reduction of sludge generation by the addition of support material in a cyclic activated sludge system for municipal wastewater treatment.

    PubMed

    Araujo, Moacir Messias de; Lermontov, André; Araujo, Philippe Lopes da Silva; Zaiat, Marcelo

    2013-09-01

    An innovative biomass carrier (Biobob®) was tested for municipal wastewater treatment in an activated sludge system to evaluate the pollutant removal performance and the sludge generation for different carrier volumes. The experiment was carried out in a pilot-scale cyclic activated sludge system (CASS®) built with three cylindrical tanks in a series: an anoxic selector (2.1 m(3)), an aerobic selector (2.5 m(3)) and the main aerobic reactor (25.1 m(3)). The results showed that by adding the Biobob® carrier decreased the MLVSS concentration, which consequently reduced the waste sludge production of the system. Having 7% and 18% (v/v) support material in the aerobic reactor, the observed biomass yield decreased 18% and 36%, respectively, relative to the reactor operated with suspended biomass. The addition of media did not affect the system's performance for COD and TSS removal. However, TKN and TN removal were improved by 24% and 14%, respectively, using 18% (v/v) carrier. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Physicochemical properties influencing denitrification rate and microbial activity in denitrification bioreactors

    NASA Astrophysics Data System (ADS)

    Schmidt, C. A.

    2012-12-01

    The use of N-based fertilizer will need to increase to meet future demands, yet existing applications have been implicated as the main source of coastal eutrophication and hypoxic zones. Producing sufficient crops to feed a growing planet will require efficient production in combination with sustainable treatment solutions. The long-term success of denitrification bioreactors to effectively remove nitrate (NO¬3), indicates this technology is a feasible treatment option. Assessing and quantifying the media properties that affect NO¬3 removal rate and microbial activity can improve predictions on bioreactor performance. It was hypothesized that denitrification rates and microbial biomass would be correlated with total C, NO¬3 concentration, metrics of organic matter quality, media surface area and laboratory measures of potential denitrification rate. NO¬3 removal rates and microbial biomass were evaluated in mesocosms filled with different wood treatments and the unique influence of these predictor variables was determined using a multiple linear regression analysis. NO3 reduction rates were independent of NO¬3 concentration indicating zero order reaction kinetics. Temperature was strongly correlated with denitrification rate (r2=0.87; Q10=4.7), indicating the variability of bioreactor performance in differing climates. Fiber quality, and media surface area were strong (R>0.50), unique predictors of rates and microbial biomass, although C:N ratio and potential denitrification rate did not predict actual denitrification rate or microbial biomass. Utilizing a stepwise multiple linear regression, indicates that the denitrification rate can be effectively (r2=0.56;p<0.0001) predicted if the groundwater temperature, neutral detergent fiber and surface area alone are quantified. These results will assist with the widespread implementation of denitrification bioreactors to achieve significant N load reductions in large watersheds. The nitrate reduction rate as a

  1. SUMMARY REPORT: THE CAUSES AND CONTROL OF ACTIVATED SLUDGE BULKING AND FOAMING

    EPA Science Inventory

    This 92-page Technology Transfer Summary Report provides reference material on the causes and controls of sludge bulking and foaming in activated sludge treatment that can be readily understood, and it includes sufficient detail to help plant operators control their systems. The ...

  2. Effect of acetic acid on lipid accumulation by glucose-fed activated sludge cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mondala, Andro; Hernandez, Rafael; French, Todd

    2012-01-01

    The effect of acetic acid, a lignocellulose hydrolysis by-product, on lipid accumulation by activated sludge cultures grown on glucose was investigated. This was done to assess the possible application of lignocellulose as low-cost and renewable fermentation substrates for biofuel feedstock production. Results: Biomass yield was reduced by around 54% at a 2 g L -1 acetic acid dosage but was increased by around 18% at 10 g L -1 acetic acid dosage relative to the control run. The final gravimetric lipid contents at 2 and 10 g L -1 acetic acid levels were 12.5 + 0.7% and 8.8 + 3.2%more » w/w, respectively, which were lower than the control (17.8 + 2.8% w/w). However, biodiesel yields from activated sludge grown with acetic acid (5.6 + 0.6% w/w for 2 g L -1 acetic acid and 4.2 + 3.0% w/w for 10 g L -1 acetic acid) were higher than in raw activated sludge (1-2% w/w). The fatty acid profiles of the accumulated lipids were similar with conventional plant oil biodiesel feedstocks. Conclusions: Acetic acid enhanced biomass production by activated sludge at high levels but reduced lipid production. Further studies are needed to enhance acetic acid utilization by activated sludge microorganisms for lipid biosynthesis.« less

  3. Environmental and resource implications of phosphorus recovery from waste activated sludge.

    PubMed

    Sørensen, Birgitte Lilholt; Dall, Ole Leinikka; Habib, Komal

    2015-11-01

    Phosphorus is an essential mineral resource for the growth of crops and thus necessary to feed the ever increasing global population. The essentiality and irreplaceability of phosphorus in food production has raised the concerns regarding the long-term phosphorus availability and the resulting food supply issues in the future. Hence, the recovery of phosphorus from waste activated sludge and other waste streams is getting huge attention as a viable solution to tackle the potential availability issues of phosphorus in the future. This study explores the environmental implications of phosphorus recovery from waste activated sludge in Denmark and further elaborates on the potential availability or scarcity issue of phosphorus today and 2050. Life cycle assessment is used to assess the possibility of phosphorus recovery with little or no environmental impacts compared to the conventional mining. The phosphorus recovery method assessed in this study consists of drying process, and thermal gasification of the waste activated sludge followed by extraction of phosphorus from the ashes. Our results indicate that the environmental impacts of phosphorus recovery in an energy efficient process are comparable to the environmental effects from the re-use of waste activated sludge applied directly on farmland. Moreover, our findings conclude that the general recommendation according to the waste hierarchy, where re-use of the waste sludge on farmland is preferable to material and energy recovery, is wrong in this case. Especially when phosphorus is a critical resource due to its life threatening necessity, lack of substitution options and potential future supply risk originating due to the high level of global supply concentration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Accurate evaluation for the biofilm-activated sludge reactor using graphical techniques

    NASA Astrophysics Data System (ADS)

    Fouad, Moharram; Bhargava, Renu

    2018-05-01

    A complete graphical solution is obtained for the completely mixed biofilm-activated sludge reactor (hybrid reactor). The solution consists of a series of curves deduced from the principal equations of the hybrid system after converting them in dimensionless form. The curves estimate the basic parameters of the hybrid system such as suspended biomass concentration, sludge residence time, wasted mass of sludge, and food to biomass ratio. All of these parameters can be expressed as functions of hydraulic retention time, influent substrate concentration, substrate concentration in the bulk, stagnant liquid layer thickness, and the minimum substrate concentration which can maintain the biofilm growth in addition to the basic kinetics of the activated sludge process in which all these variables are expressed in a dimensionless form. Compared to other solutions of such system these curves are simple, easy to use, and provide an accurate tool for analyzing such system based on fundamental principles. Further, these curves may be used as a quick tool to get the effect of variables change on the other parameters and the whole system.

  5. Bioremediation of heavy metal-contaminated effluent using optimized activated sludge bacteria

    NASA Astrophysics Data System (ADS)

    Bestawy, Ebtesam El.; Helmy, Shacker; Hussien, Hany; Fahmy, Mohamed; Amer, Ranya

    2013-03-01

    Removal of heavy metals from contaminated domestic-industrial effluent using eight resistant indigenous bacteria isolated from acclimatized activated sludge was investigated. Molecular identification using 16S rDNA amplification revealed that all strains were Gram-negative among which two were resistant to each of copper, cadmium and cobalt while one was resistant to each of chromium and the heavy metal mixture. They were identified as Enterobacter sp. (Cu1), Enterobacter sp. (Cu2), Stenotrophomonas sp. (Cd1), Providencia sp. (Cd2), Chryseobacterium sp. (Co1), Comamonas sp. (Co2), Ochrobactrum sp. (Cr) and Delftia sp. (M1) according to their resistance pattern. Strains Cu1, Cd1, Co2 and Cr were able to resist 275 mg Cu/l, 320 mg Cd/l, 140 mg Co/l and 29 mg Cr/l respectively. The four resistant strains were used as a mixture to remove heavy metals (elevated concentrations) and reduce the organic load of wastewater effluent. Results revealed that using the proposed activated sludge with the resistant bacterial mixture was more efficient for heavy metal removal compared to the activated sludge alone. It is therefore recommended that the proposed activated sludge system augmented with the acclimatized strains is the best choice to ensure high treatment efficiency and performance under metal stresses especially when industrial effluents are involved.

  6. EFFECT OF RECYCLING THERMOPHILICALLY DIGESTED SLUDGE ON THE ACTIVATED SLUDGE PROCESS

    EPA Science Inventory

    A full-scale investigation was undertaken at Chicago's Hanover Park Water Reclamation Plant (WRP) to study whether the net sludge production from the WRP could be reduced by implementing a scheme developed by W. Torpey et al. (1984). n this process, sludge is withdrawn from a the...

  7. Use of hydrodynamic disintegration to accelerate anaerobic digestion of surplus activated sludge.

    PubMed

    Grübel, Klaudiusz; Machnicka, Alicja

    2009-12-01

    Hydrodynamic disintegration of activated sludge resulted in organic matter and polymers transfer from the solid phase into the liquid phase. Disintegration by hydrodynamic cavitation had a positive effect on the degree and rate of excess sludge anaerobic digestion. Also, addition of a part of anaerobic digested sludge containing adapted microorganisms resulted in acceleration of the process. The disruption of cells of foam microorganisms and addition to the digestion process led to an increase of biogas production.

  8. Biotransformation and adsorption of pharmaceutical and personal care products by activated sludge after correcting matrix effects.

    PubMed

    Deng, Yu; Li, Bing; Yu, Ke; Zhang, Tong

    2016-02-15

    This study reported significant suppressive matrix effects in analyses of six pharmaceutical and personal care products (PPCPs) in activated sludge, sterilized activated sludge and untreated sewage by ultra-performance liquid chromatography-tandem mass spectrometry. Quantitative matrix evaluation on selected PPCPs supplemented the limited quantification data of matrix effects on mass spectrometric determination of PPCPs in complex environment samples. The observed matrix effects were chemical-specific and matrix-dependent, with the most pronounced average effect (-55%) was found on sulfadiazine in sterilized activated sludge. After correcting the matrix effects by post-spiking known amount of PPCPs, the removal mechanisms and biotransformation kinetics of selected PPCPs in activated sludge system were revealed by batch experiment. Experimental data elucidated that the removal of target PPCPs in the activated sludge process was mainly by biotransformation while contributions of adsorption, hydrolysis and volatilization could be neglected. High biotransformation efficiency (52%) was observed on diclofenac while other three compounds (sulfadiazine, sulfamethoxazole and roxithromycin) were partially biotransformed by ~40%. The other two compounds, trimethoprim and carbamazepine, showed recalcitrant to biotransformation of the activated sludge. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Aged refuse enhances anaerobic digestion of waste activated sludge.

    PubMed

    Zhao, Jianwei; Gui, Lin; Wang, Qilin; Liu, Yiwen; Wang, Dongbo; Ni, Bing-Jie; Li, Xiaoming; Xu, Rui; Zeng, Guangming; Yang, Qi

    2017-10-15

    In this work, a low-cost alternative approach (i.e., adding aged refuse (AR) into waste activated sludge) to significantly enhance anaerobic digestion of sludge was reported. Experimental results showed that with the addition dosage of AR increasing from 0 to 400 mg/g dry sludge soluble chemical oxygen demand (COD) increased from 1150 to 5240 mg/L at the digestion time of 5 d, while the maximal production of volatile fatty acids (VFA) increased from 82.6 to 183.9 mg COD/g volatile suspended solids. Although further increase of AR addition decreased the concentrations of both soluble COD and VFA, their contents in these systems with AR addition at any concentration investigated were still higher than those in the blank, which resulted in higher methane yields in these systems. Mechanism studies revealed that pertinent addition of AR promoted solubilization, hydrolysis, and acidogenesis processes and did not affect methanogenesis significantly. It was found that varieties of enzymes and anaerobes in AR were primary reason for the enhancement of anaerobic digestion. Humic substances in AR benefited hydrolysis and acidogenesis but inhibited methanogenesis. The effect of heavy metals in AR on sludge anaerobic digestion was dosage dependent. Sludge anaerobic digestion was enhanced by appropriate amounts of heavy metals but inhibited by excessive amounts of heavy metals. The relative abundances of microorganisms responsible for sludge hydrolysis and acidogenesis were also observed to be improved in the system with AR addition, which was consistent with the performance of anaerobic digestion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Characterization and biodegradability of sludge from a high rate A-stage contact tank and B-stage membrane bioreactor of a pilot-scale AB system treating municipal wastewaters.

    PubMed

    Trzcinski, Antoine Prandota; Ganda, Lily; Kunacheva, Chinagarn; Zhang, Dong Qing; Lin, Li Leonard; Tao, Guihe; Lee, Yingjie; Ng, Wun Jern

    2016-10-01

    In light of global warming mitigation efforts, increasing sludge disposal costs, and need for reduction in the carbon footprint of wastewater treatment plants, innovation in treatment technology has been tailored towards energy self-sufficiency. The AB process is a promising technology for achieving maximal energy recovery from wastewaters with minimum energy expenditure and therefore inherently reducing excess sludge production. Characterization of this novel sludge and its comparison with the more conventional B-stage sludge are necessary for a deeper understanding of AB treatment process design. This paper presents a case study of a pilot-scale AB system treating municipal wastewaters as well as a bio- (biochemical methane potential and adenosine tri-phosphate analysis) and physico-chemical properties (chemical oxygen demand, sludge volume index, dewaterability, calorific value, zeta potential and particle size distribution) comparison of the organic-rich A-stage against the B-stage activated sludge. Compared to the B-sludge, the A-sludge yielded 1.4 to 4.9 times more methane throughout the 62-week operation.

  11. Hydrodynamic characteristics of airlift nitrifying reactor using carrier-induced granular sludge.

    PubMed

    Jin, Ren-Cun; Zheng, Ping; Mahmood, Qaisar; Zhang, Lei

    2008-09-15

    Since nitrification is the rate-limiting step in the biological nitrogen removal from wastewater, many studies have been conducted on the immobilization of nitrifying bacteria. A laboratory-scale investigation was carried out to scrutinize the effectiveness of activated carbon carrier addition for granulation of nitrifying sludge in a continuous-flow airlift bioreactor and to study the hydrodynamics of the reactor with carrier-induced granules. The results showed that the granular sludge began to appear and matured 60 and 108 days, respectively, after addition of carriers, while no granule was observed in the absence of carriers in the control test. The mature granules had a diameter of 0.5-5 mm (1.6 mm in average), settling velocity 22.3-55.8 m h(-1) and specific gravity of 1.086. The relationship between the two important hydrodynamic coefficients, i.e. gas holdup and liquid circulation velocity, and the superficial gas velocity were established by a simple model and were confirmed experimentally. The model also could predict the critical superficial gas velocity for liquid circulation and that for granules circulation, with respective values of 1.017 and 2.662 cm min(-1), accurately.

  12. Effect of upflow velocity on the performance of an inclined plate membrane bioreactor treating municipal wastewater.

    PubMed

    Fontanos, P M; Yamamoto, K; Nakajima, F

    2011-01-01

    An inclined plate membrane bioreactor (iPMBR) was introduced to meet the challenge of handling high mixed liquor suspended solids when operating at long sludge retention times. During the first 407 days of operation, the iPMBR was able to rezone more sludge (1.5-10.5 times greater) in its upstream, anoxic tank compared to its downstream, aerobic tank. This could extend membrane filtration by diverting most of the sludge from the aerobic zone. During this period, the upflow velocities through the inclined plates of the anoxic tank ranged from 2.3 x 10(-4) to 7.7 x 10(-4) m/s. After Day 407, the operating conditions were changed to determine whether the iPMBR would fail to create a sludge concentration difference between its two tanks. When the upflow velocity was increased to 1.8 x 10(-3) m/s, the sludge concentration difference between the two zones was removed. This indicated that the upflow velocity had increased sufficiently to overcome the settling velocities of most flocs, resulting in more solids being carried from the anoxic to the aerobic tank. For the configuration of this iPMBR, operating at flow rates where the upflow velocity through the inclined plates was less than 1.0 x 10(-3) m/s would be necessary to keep a significant sludge concentration difference between its two zones.

  13. Transesterification of Waste Activated Sludge for Biosolids Reduction and Biodiesel Production.

    PubMed

    Maeng, Min Ho; Cha, Daniel K

    2018-02-01

      Transesterification of waste activated sludge (WAS) was evaluated as a cost-effective technique to reduce excess biosolids and recover biodiesel feedstock from activated sludge treatment processes. A laboratory-scale sequencing batch reactor (SBR) was operated with recycling transesterification-treated WAS back to the aeration basin. Seventy percent recycling of WAS resulted in a 48% reduction of excess biosolids in comparison with a conventional SBR, which was operated in parallel as the control SBR. Biodiesel recovery of 8.0% (dried weight basis) was achieved at an optimum transesterification condition using acidic methanol and xylene as cosolvent. Average effluent soluble chemical oxygen demand (COD) and total suspended solids (TSS) concentrations from the test SBR and control SBR were comparable, indicating that the recycling of transesterification-treated WAS did not have detrimental effect on the effluent quality. This study demonstrated that transesterification and recycling of WAS may be a feasible technique for reducing excess biosolids, while producing valuable biodiesel feedstock from the activated sludge process.

  14. Adsorption of mercury by activated carbon prepared from dried sewage sludge in simulated flue gas.

    PubMed

    Park, Jeongmin; Lee, Sang-Sup

    2018-04-25

    Conversion of sewage sludge to activated carbon is attractive as an alternative method to ocean dumping for the disposal of sewage sludge. Injection of activated carbon upstream of particulate matter control devices has been suggested as a method to remove elemental mercury from flue gas. Activated carbon was prepared using various activation temperatures and times and was tested for their mercury adsorption efficiency using lab-scale systems. To understand the effect of the physical property of the activated carbon, its mercury adsorption efficiency was investigated as a function of their Brunauer-Emmett-Teller (BET) surface area. Two simulated flue gas conditions: (1) without hydrogen chloride (HCl) and (2) with 20 ppm HCl, were used to investigate the effect of flue gas composition on the mercury adsorption capacity of activated carbon. Despite very low BET surface area of the prepared sewage sludge activated carbons, their mercury adsorption efficiencies were comparable under both simulated flue gas conditions to those of pinewood and coal activated carbons. After injecting HCl into the simulated flue gas, all sewage sludge activated carbons demonstrated high adsorption efficiencies, i.e., more than 87%, regardless of their BET surface area. IMPLICATIONS We tested activated carbons prepared from dried sewage sludge to investigate the effect of their physical properties on their mercury adsorption efficiency. Using two simulated flue gas conditions, we conducted mercury speciation for the outlet gas. We found that the sewage sludge activated carbon had comparable mercury adsorption efficiency to pinewood and coal activated carbons, and the presence of HCl minimized the effect of physical property of the activated carbon on its mercury adsorption efficiency.

  15. Chitosan use in chemical conditioning for dewatering municipal-activated sludge.

    PubMed

    Zemmouri, H; Mameri, N; Lounici, H

    2015-01-01

    This work aims to evaluate the potential use of chitosan as an eco-friendly flocculant in chemical conditioning of municipal-activated sludge. Chitosan effectiveness was compared with synthetic cationic polyelectrolyte Sedipur CF802 (Sed CF802) and ferric chloride (FeCl₃). In this context, raw sludge samples from Beni-Messous wastewater treatment plant (WWTP) were tested. The classic jar test method was used to condition sludge samples. Capillary suction time (CST), specific resistance to filtration (SRF), cakes dry solid content and filtrate turbidity were analyzed to determine filterability, dewatering capacity of conditioned sludge and the optimum dose of each conditioner. Data exhibit that chitosan, FeCl₃and Sed CF802 improve sludge dewatering. Optimum dosages of chitosan, Sed CF802 and FeCl₃allowing CST values of 6, 5 and 9 s, were found, respectively, between 2-3, 1.5-3 and 6 kg/t ds. Both polymers have shown faster water removal with more permeable sludge. SRF values were 0.634 × 10¹², 0.932 × 10¹² and 2 × 10¹² m/kg for Sed CF802, chitosan and FeCl₃respectively. A reduction of 94.68 and 87.85% of the filtrate turbidity was obtained with optimal dosage of chitosan and Sed CF802, respectively. In contrast, 54.18% of turbidity abatement has been obtained using optimal dosage of FeCl₃.

  16. SLUDGE BATCH 7B QUALIFICATION ACTIVITIES WITH SRS TANK FARM SLUDGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pareizs, J.; Click, D.; Lambert, D.

    2011-11-16

    Waste Solidification Engineering (WSE) has requested that characterization and a radioactive demonstration of the next batch of sludge slurry - Sludge Batch 7b (SB7b) - be completed in the Shielded Cells Facility of the Savannah River National Laboratory (SRNL) via a Technical Task Request (TTR). This characterization and demonstration, or sludge batch qualification process, is required prior to transfer of the sludge from Tank 51 to the Defense Waste Processing Facility (DWPF) feed tank (Tank 40). The current WSE practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks. Discharges of nuclear materials from Hmore » Canyon are often added to Tank 51 during sludge batch preparation. The sludge is washed and transferred to Tank 40, the current DWPF feed tank. Prior to transfer of Tank 51 to Tank 40, SRNL typically simulates the Tank Farm and DWPF processes with a Tank 51 sample (referred to as the qualification sample). With the tight schedule constraints for SB7b and the potential need for caustic addition to allow for an acceptable glass processing window, the qualification for SB7b was approached differently than past batches. For SB7b, SRNL prepared a Tank 51 and a Tank 40 sample for qualification. SRNL did not receive the qualification sample from Tank 51 nor did it simulate all of the Tank Farm washing and decanting operations. Instead, SRNL prepared a Tank 51 SB7b sample from samples of Tank 7 and Tank 51, along with a wash solution to adjust the supernatant composition to the final SB7b Tank 51 Tank Farm projections. SRNL then prepared a sample to represent SB7b in Tank 40 by combining portions of the SRNL-prepared Tank 51 SB7b sample and a Tank 40 Sludge Batch 7a (SB7a) sample. The blended sample was 71% Tank 40 (SB7a) and 29% Tank 7/Tank 51 on an insoluble solids basis. This sample is referred to as the SB7b Qualification Sample. The blend represented the highest projected Tank 40 heel (as of May 25, 2011), and thus, the

  17. Disintegration of excess activated sludge--evaluation and experience of full-scale applications.

    PubMed

    Zábranská, J; Dohányos, M; Jenícek, P; Kutil, J

    2006-01-01

    Anaerobic digestion of sewage sludge can be improved by introducing a disintegration of excess activated sludge as a pretreatment process. The disintegration brings a deeper degradation of organic matter and less amount of output sludge for disposal, a higher production of biogas and consequently energy yield, in some cases suppression of digesters foaming and better dewaterability. The full-scale application of disintegration by a lysate-thickening centrifuge was monitored long term in three different WWTPs. The evaluation of contribution of disintegration to biogas production and digested sludge quality was assessed and operational experience is discussed. Increment of specific biogas production was evaluated in the range of 15-26%, organic matter in digested sludge significantly decreased to 48-49%. Results proved that the installation of a disintegrating centrifuge in WWTPs of different sizes and conditions would be useful and beneficial.

  18. Tapered bed bioreactor

    DOEpatents

    Scott, Charles D.; Hancher, Charles W.

    1977-01-01

    A vertically oriented conically shaped column is used as a fluidized bed bioreactor wherein biologically catalyzed reactions are conducted in a continuous manner. The column utilizes a packing material a support having attached thereto a biologically active catalytic material.

  19. Enhancing anaerobic digestion of waste activated sludge by pretreatment: effect of volatile to total solids.

    PubMed

    Wang, Xiao; Duan, Xu; Chen, Jianguang; Fang, Kuo; Feng, Leiyu; Yan, Yuanyuan; Zhou, Qi

    2016-01-01

    In this study the effect of volatile to total solids (VS/TS) on anaerobic digestion of waste activated sludge (WAS) pretreated by alkaline, thermal and thermal-alkaline strategies was studied. Experimental results showed that the production of methane from sludge was increased with VS/TS. When anaerobic digesters were fed with sludge pretreated by the thermal-alkaline method, the average methane yield was improved from 2.8 L/d at VS/TS 0.35 to 4.7 L/d at VS/TS 0.56. Also, the efficiency of VS reduction during sludge anaerobic digestion varied between 18.9% and 45.6%, and increased gradually with VS/TS. Mechanism investigation of VS/TS on WAS anaerobic digestion suggested that the general activities of anaerobic microorganisms, activities of key enzymes related to sludge hydrolysis, acidification and methanogenesis, and the ratio of Archaea to Bacteria were all increased with VS/TS, showing good agreement with methane production.

  20. Removal of trace organic chemicals and performance of a novel hybrid ultrafiltration-osmotic membrane bioreactor.

    PubMed

    Holloway, Ryan W; Regnery, Julia; Nghiem, Long D; Cath, Tzahi Y

    2014-09-16

    A hybrid ultrafiltration-osmotic membrane bioreactor (UFO-MBR) was investigated for over 35 days for nutrient and trace organic chemical (TOrC) removal from municipal wastewater. The UFO-MBR system uses both ultrafiltration (UF) and forward osmosis (FO) membranes in parallel to simultaneously extract clean water from an activated sludge reactor for nonpotable (or environmental discharge) and potable reuse, respectively. In the FO stream, water is drawn by osmosis from activated sludge through an FO membrane into a draw solution (DS), which becomes diluted during the process. A reverse osmosis (RO) system is then used to reconcentrate the diluted DS and produce clean water suitable for direct potable reuse. The UF membrane extracts water, dissolved salts, and some nutrients from the system to prevent their accumulation in the activated sludge of the osmotic MBR. The UF permeate can be used for nonpotable reuse purposes (e.g., irrigation and toilet flushing). Results from UFO-MBR investigation illustrated that the chemical oxygen demand, total nitrogen, and total phosphorus removals were greater than 99%, 82%, and 99%, respectively. Twenty TOrCs were detected in the municipal wastewater that was used as feed to the UFO-MBR system. Among these 20 TOrCs, 15 were removed by the hybrid UFO-MBR system to below the detection limit. High FO membrane rejection was observed for all ionic and nonionic hydrophilic TOrCs and lower rejection was observed for nonionic hydrophobic TOrCs. With the exceptions of bisphenol A and DEET, all TOrCs that were detected in the DS were well rejected by the RO membrane. Overall, the UFO-MBR can operate sustainably and has the potential to be utilized for direct potable reuse applications.

  1. Combined System of Activated Sludge and Ozonation for the Treatment of Kraft E1 Effluent

    PubMed Central

    Assalin, Marcia Regina; dos Santos Almeida, Edna; Durán, Nelson

    2009-01-01

    The treatment of paper mill effluent for COD, TOC, total phenols and color removal was investigated using combined activated sludge-ozonation processes and single processes. The combined activated sludge-O3/pH 10 treatment was able to remove around 80% of COD, TOC and color from Kraft E1 effluent. For the total phenols, the efficiency removal was around 70%. The ozonation post treatment carried out at pH 8.3 also showed better results than the single process. The COD, TOC, color and total phenols removal efficiency obtained were 75.5, 59.1, 77 and 52.3%, respectively. The difference in the concentrations of free radical produced by activated sludge-O3/pH 10 and activated sludge-O3/pH 8.3 affected mainly the TOC and total phenol removal values. PMID:19440438

  2. Development of Fundamental Technologies for Micro Bioreactors

    NASA Astrophysics Data System (ADS)

    Sato, Kiichi; Kitamori, Takehiko

    This chapter reviews the development of fundamental technologies required for microchip-based bioreactors utilizing living mammalian cells and pressure driven flow. The most important factor in the bioreactor is the cell culture. For proper cell culturing, continuous medium supply from a microfluidic channel and appropriate modification of the channel surface to accommodate cell attachment is required. Moreover, the medium flow rate should be chosen carefully, because shear stress affects cell activity. The techniques presented here could be applied to the development of micro bioreactors such as microlivers, pigment production by plant cells, and artificial insemination.

  3. Adsorption of organic stormwater pollutants onto activated carbon from sewage sludge.

    PubMed

    Björklund, Karin; Li, Loretta Y

    2017-07-15

    Adsorption filters have the potential to retain suspended pollutants physically, as well as attracting and chemically attaching dissolved compounds onto the adsorbent. This study investigated the adsorption of eight hydrophobic organic compounds (HOCs) frequently detected in stormwater - including four polycyclic aromatic hydrocarbons (PAHs), two phthalates and two alkylphenols - onto activated carbon produced from domestic sewage sludge. Adsorption was studied using batch tests. Kinetic studies indicated that bulk adsorption of HOCs occurred within 10 min. Sludge-based activated carbon (SBAC) was as efficient as tested commercial carbons for adsorbing HOCs; adsorption capacities ranged from 70 to 2800 μg/g (C initial  = 10-300 μg/L; 15 mg SBAC in 150 mL solution; 24 h contact time) for each HOC. In the batch tests, the adsorption capacity was generally negatively correlated to the compounds' hydrophobicity (log K ow ) and positively associated with decreasing molecule size, suggesting that molecular sieving limited adsorption. However, in repeated adsorption tests, where competition between HOCs was more likely to occur, adsorbed pollutant loads exhibited strong positive correlation with log K ow . Sewage sludge as a carbon source for activated carbon has great potential as a sustainable alternative for sludge waste management practices and production of a high-capacity adsorption material. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Zero-valent iron enhanced methanogenic activity in anaerobic digestion of waste activated sludge after heat and alkali pretreatment.

    PubMed

    Zhang, Yaobin; Feng, Yinghong; Quan, Xie

    2015-04-01

    Heat or alkali pretreatment is the effective method to improve hydrolysis of waste sludge and then enhance anaerobic sludge digestion. However the pretreatment may inactivate the methanogens in the sludge. In the present work, zero-valent iron (ZVI) was used to enhance the methanogenic activity in anaerobic sludge digester under two methanogens-suppressing conditions, i.e. heat-pretreatment and alkali condition respectively. With the addition of ZVI, the lag time of methane production was shortened, and the methane yield increased by 91.5% compared to the control group. The consumption of VFA was accelerated by ZVI, especially for acetate, indicating that the acetoclastic methanogenesis was enhanced. In the alkali-condition experiment, the hydrogen produced decreased from 27.6 to 18.8 mL when increasing the ZVI dosage from 0 to 10 g/L. Correspondingly, the methane yield increased from 1.9 to 32.2 mL, which meant that the H2-utilizing methanogenes was enriched. These results suggested that the addition of ZVI into anaerobic digestion of sludge after pretreated by the heat or alkali process could efficiently recover the methanogenic activity and increase the methane production and sludge reduction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Influence of tetracycline on tetracycline-resistant heterotrophs and tet genes in activated sludge process.

    PubMed

    Yu, Jie; Liu, Dongfang; Li, Kexun

    2015-03-01

    The concentrations of tetracycline-intermediate resistant, tetracycline-resistant heterotrophic bacteria, and total heterotrophic bacteria were examined to assess the influence of tetracycline on tetracycline-resistant heterotrophs by the R2A agar cultivation method in the tetracycline fortified activated sludge process and in the natural background. Results showed that the percentages of both tetracycline-intermediate resistant and tetracycline-resistant heterotrophic bacteria in total heterotrophic bacteria were significantly increased, after tetracycline was fed to activated sludge for a 3 months period under four different operating conditions, as compared with the background. In order to investigate the mechanism of activated sludge resistance to tetracycline, polymerase chain reaction experiments were carried out to analyze the existence and evolution of tet genes in the presence of tetracycline. Results revealed that only tet A and tet B genes out of the 11 target tet genes were observed in tetracycline treated activated sludge while no tet gene was detected in background. This indicated that tet A gene could accumulate in activated sludge with slower and continuous influent, while the accumulation of tet B gene could be attributed to shorter hydraulic retention time. Therefore, it was proposed in this study that tetracycline-resistant genes created by efflux pumps spread earlier and quicker to encode resistance to tetracycline, which facilitated the increase in tetracycline-resistance.

  6. Cultivation of activated sludge using sea mud as seed to treat industrial phenolic wastewater with high salinity.

    PubMed

    Tan, Songwen; Cui, Chunzhi; Hou, Yang; Chen, Xuncai; Xu, Aiqin; Li, Weiguo; You, Hong

    2017-01-30

    A technique is proposed to treat saline hazardous wastewater by using marine activated sludge, cultivated with sea mud as seed. Since the developed marine activated sludge had phenol-tolerant microorganisms (MAS-1, MAS-2 and MAS-3) which originated from the ocean, it was envisaged that these bacteria could survive and breakdown phenol in saline environments. In this work, typical phenol-tolerant microorganisms were isolated from the marine activated sludge and identified. After a hierarchical acclimation process, the marine activated sludge was used to treat the industrial phenolic wastewater with high salinity. The marine activated sludge was able to break down phenol and other organic components effectively and efficiently in treating the wastewater with salinity of 5.7% w/v. The results showed a high removal of phenol (99%), COD (80%) and NH 3 -N (68%). Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Degradation of PPCPs in activated sludge from different WWTPs in Denmark.

    PubMed

    Chen, Xijuan; Vollertsen, Jes; Nielsen, Jeppe Lund; Dall, Agnieszka Gieraltowska; Bester, Kai

    2015-12-01

    Pharmaceuticals and Personal care products (PPCPs) are often found in effluents from wastewater treatment plants (WWTPs) due to insufficient removal during wastewater treatment processes. To understand the factors affecting the removal of PPCPs in classical activated sludge WWTPs, the present study was performed to assess the removal of frequently occurring pharmaceuticals (Naproxen, Fenoprofen, Ketoprofen, Dichlofenac, Carbamazepine) and the biocide Triclosan in activated sludge from four different Danish WWTPs. The respective degradation constants were compared to operational parameters previous shown to be of importance for degradation of micropollutants such as biomass concentration, and sludge retention time (SRT). The most rapid degradation, was observed for NSAID pharmaceuticals (55-90% for Fenoprofen, 77-94% for Ketoprofen and 46-90% for Naproxen), followed by Triclosan (61-91%), while Dichlofenac and Carbamazepine were found to be persistent in the systems. Degradation rate constants were calculated as 0.0026-0.0407 for NSAID pharmaceuticals and 0.0022-0.0065 for triclosan. No relationships were observed between degradation rates and biomass concentrations in the diverse sludges. However, for the investigated PPCPs, the optimal SRT was within 14-20 days (for these values degradation of these PPCPs was the most efficient). Though all of these parameters influence the degradation rate, none of them seems to be overall decisive. These observations indicate that the biological composition of the sludge is more important than the design parameters of the respective treatment plant.

  8. Influence of fertilizer draw solution properties on the process performance and microbial community structure in a side-stream anaerobic fertilizer-drawn forward osmosis - ultrafiltration bioreactor.

    PubMed

    Kim, Youngjin; Li, Sheng; Chekli, Laura; Phuntsho, Sherub; Ghaffour, Noreddine; Leiknes, TorOve; Shon, Ho Kyong

    2017-09-01

    In this study, a side-stream anaerobic fertilizer-drawn forward osmosis (FDFO) and ultrafiltration (UF) membrane bioreactor (MBR) hybrid system was proposed and operated for 55days. The FDFO performance was first investigated in terms of flux decline with various fertilizers draw solution. Flux decline was very severe with all fertilizers due to the absence of aeration and the sticky property of sludge. Flux recovery by physical cleaning varied significantly amongst tested fertilizers which seriously affected biofouling in FDFO via reverse salt flux (RSF). Besides, RSF had a significant impact on nutrient accumulation in the bioreactor. These results indicated that nutrient accumulation negatively influenced the anaerobic activity. To elucidate these phenomena, bacterial and archaeal community structures were analyzed by pyrosequencing. Results showed that bacterial community structure was affected by fertilizer properties with less impact on archaeal community structure, which resulted in a reduction in biogas production and an increase in nitrogen content. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Evaluation of Control Parameters for the Activated Sludge Process

    ERIC Educational Resources Information Center

    Stall, T. Ray; Sherrard, Josephy H.

    1978-01-01

    An evaluation of the use of the parameters currently being used to design and operate the activated sludge process is presented. The advantages and disadvantages for the use of each parameter are discussed. (MR)

  10. Inhibition of the nitrification process in activated sludge by trivalent and hexavalent chromium, and partitioning of hexavalent chromium between sludge compartments.

    PubMed

    Novotnik, Breda; Zuliani, Tea; Ščančar, Janez; Milačič, Radmila

    2014-06-01

    The input of wastewater treatment plants (WWTPs) may contain high concentrations of Cr(III) and Cr(VI), which can affect nitrogen removal. In the present study the influence of different Cr(III) and Cr(VI) concentrations towards activated sludge nitrification was studied. To better understand the mechanisms of Cr(VI) toxicity, its reduction, adsorption and uptake in activated sludge was investigated in a batch growth system. Quantification of Cr(VI) was performed by speciated isotope dilution inductively coupled plasma mass spectrometry. It was found that Cr(VI) concentrations above 1.0 mg L(-1) and Cr(III) concentrations higher than 50 mg L(-1) negatively affected nitrification. Speciation studies indicated almost complete reduction of Cr(VI) after 24h of incubation when Cr(VI) concentrations were lower than 2.5 mg L(-1), whereas for Cr(VI) added to 5 mg L(-1) around 40% remained unreduced. The study of the partitioning of Cr in the activated sludge was performed by the addition of Cr(VI) in concentrations of 2.5 and 5.0 mg L(-1). Results revealed that Cr was allocated mainly within the intercellular compartments, whereas intracellular and adsorbed Cr represented less than 0.1% of the Cr sludge concentrations. Cr(VI) was reduced in all compartments, the most efficiently (about 94%) within the intracellular and intercellular fractions. The extent of reduction of adsorbed Cr was 92% and 80% for 2.5 and 5.0mg of Cr(VI) L(-1), respectively. The results of present investigation provide a new insight into the toxicity of Cr species towards activated sludge nitrification, which is of significant importance for the management of WWTPs in order to prevent them from inflows containing harmful Cr(VI) concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Micropollutant removal by attached and suspended growth in a hybrid biofilm-activated sludge process.

    PubMed

    Falås, P; Longrée, P; la Cour Jansen, J; Siegrist, H; Hollender, J; Joss, A

    2013-09-01

    Removal of organic micropollutants in a hybrid biofilm-activated sludge process was investigated through batch experiments, modeling, and full-scale measurements. Batch experiments with carriers and activated sludge from the same full-scale reactor were performed to assess the micropollutant removal rates of the carrier biofilm under oxic conditions and the sludge under oxic and anoxic conditions. Clear differences in the micropollutant removal kinetics of the attached and suspended growth were demonstrated, often with considerably higher removal rates for the biofilm compared to the sludge. For several micropollutants, the removal rates were also affected by the redox conditions, i.e. oxic and anoxic. Removal rates obtained from the batch experiments were used to model the micropollutant removal in the full-scale process. The results from the model and plant measurements showed that the removal efficiency of the process can be predicted with acceptable accuracy (± 25%) for most of the modeled micropollutants. Furthermore, the model estimations indicate that the attached growth in hybrid biofilm-activated sludge processes can contribute significantly to the removal of individual compounds, such as diclofenac. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. A swirling jet-induced cavitation to increase activated sludge solubilisation and aerobic sludge biodegradability.

    PubMed

    Mancuso, Giuseppe; Langone, Michela; Andreottola, Gianni

    2017-03-01

    In this work, a modified swirling jet induced hydrodynamic cavitation (HC) has been used for the pre-treatment of excess sludge. In order to both improve the HC treatment efficiencies and reduce the energy consumption, the effectiveness of the HC reactor on sludge disintegration and on aerobic biodegradability has been investigated at different operating conditions and parameters, such as temperature, inlet pressure, sludge total solid (TS) content and reactor geometry. The inlet pressure was related to the flow velocity and pressure drop. The best results in terms of sludge solubilisation were achieved after 2h of HC treatment, treating a 50.0gTSL -1 and using the three heads Ecowirl system, at 35.0°C and 4.0bar. Chemical and respirometric tests proved that sludge solubilisation and aerobic biodegradability can be efficiently enhanced through HC pre-treatment technique. At the optimum operating conditions, the specific supplied energy has been varied from 3276 to 12,780kJkgTS -1 in the HC treatment, by increasing the treatment time from 2 to 8 h, respectively. Low endogenous decay rates (b H ) were measured on the excess sludge at low specific supplied energy, revealing that only an alteration in floc structure was responsible for the sludge solubilisation. On the contrary, higher b H values were measured at higher specific supplied energy, indicating that the sludge solubilisation was related to a decreasing biomass viability, as consequence of dead cells and/or disrupted cells (cell lysis). Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Enhanced Ethanol Production from De-Ashed Paper Sludge by Simultaneous Saccharification and Fermentation and Simultaneous Saccharification and Co-Fermentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, L.; Wang, W.; Pallapolu, V. R.

    2011-11-01

    A previous study demonstrated that paper sludges with high ash contents can be converted to ethanol by simultaneous saccharification and fermentation (SSF) or simultaneous saccharification and co-fermentation (SSCF). High ash content in the sludge, however, limited solid loading in the bioreactor, causing low product concentration. To overcome this problem, sludges were de-ashed before SSF and SSCF. Low ash content in sludges also increased the ethanol yield to the extent that the enzyme dosage required to achieve 70% yield in the fermentation process was reduced by 30%. High solid loading in SSF and SSCF decreased the ethanol yield. High agitation andmore » de-ashing of the sludges were able to restore the part of the yield loss caused by high solid loading. Substitution of the laboratory fermentation medium (peptone and yeast extract) with corn steep liquor did not bring about any adverse effects in the fermentation. Fed-batch operation of the SSCF and SSF using low-ash content sludges was effective in raising the ethanol concentration, achieving 47.8 g/L and 60.0 g/L, respectively.« less

  14. Activated Sludge. Selected Instructional Activities and References. Instructional Resources Monograph Series.

    ERIC Educational Resources Information Center

    Shepard, Clinton L.; Walasek, James B.

    This monograph contains a variety of selected materials related to wastewater treatment and water quality education and instruction. Part I presents a brief discussion of the activated sludge process in wastewater treatment operations. Part II, Instructional Units, contains selected portions of existing programs which may be utilized in…

  15. [Harvest of the carbon source in wastewater by the adsorption and desorption of activated sludge].

    PubMed

    Liu, Hong-Bo; Wen, Xiang-Hua; Zhao, Fang; Mei, Yi-Jun

    2011-04-01

    The carbon source in municipal wastewater was adsorbed by activated sludge and then harvested through the hydrolysis of activated sludge. Results indicated that activated sludge had high absorbing ability towards organic carbon and phosphorus under continuous operation mode, and the average COD and TP absorption rate reached as high as 63% and 76%, respectively. Moreover, about 50% of the soluble carbon source was outside of the sludge cell and could be released under mild hydrolysis condition. Whereas the absorbed amount of nitrogen was relatively low, and the removal rate of ammonia was only 13% . Furthermore, the releases of organic carbon, nitrogen and phosphorus from the sludge absorbing pollutants in the wastewater were studied. By comparing different hydrolysis conditions of normal (pH 7.5, 20 degrees C), heating (pH 7.5, 60 degrees C) and the alkaline heating (pH 11, 60 degrees C), the last one presented the optimum hydrolysis efficiency. Under which, the release rate of COD could reach 320 mg/g after 24 hours, whereas nitrogen and phosphorus just obtained low release rates of 18 mg/g and 2 mg/g, respectively. Results indicate that the carbon source in wastewater could be harvested by the adsorption and desorption of activated sludge, and the concentrations of nitrogen and phosphorus are low and would not influence the reuse of the harvested carbon source.

  16. Microbial community related to lysozyme digestion process for boosting waste activated sludge biodegradability.

    PubMed

    Xin, Xiao-Dong; He, Jun-Guo; Qiu, Wei; Tang, Jian; Liu, Tian-Tian

    2015-01-01

    Waste activated sludge from a lab-scale sequencing batch reactor was used to investigate the potential relation of microbial community with lysozyme digestion process for sludge solubilization. The results showed the microbial community shifted conspicuously as sludge suffered lysozyme digestion. Soluble protein and polysaccharide kept an increasing trend in solution followed with succession of microbial community. The rise of lysozyme dosage augmented the dissimilarity among communities in various digested sludge. A negative relationship presented between community diversity and lysozyme digestion process under various lysozyme/TS from 0 to 240min (correlation coefficient R(2) exceeded 0.9). Pareto-Lorenz curves demonstrated that microbial community tended to be even with sludge disintegration process by lysozyme. Finally, with diversity (H) decrease and community distribution getting even, the SCOD/TCOD increased steadily in solution which suggested the sludge with high community diversity and uneven population distribution might have tremendous potential for improving their biodegradability by lysozyme digestion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Two-liquid-phase bioreactors.

    PubMed

    Van Sonsbeek, H M; Beeftink, H H; Tramper, J

    1993-09-01

    The application of two liquid phases that are poorly miscible is a fascinating research topic for biocatalytical conversions because of the promising results. Motives for application include an increase of productivity and achievement of continuous processing, but new limitations arise, e.g., interfacial effects such as biocatalyst accumulation and loss of activity, medium component accumulation, and slow coalescence. Centrifuges, membranes, and immobilization are tools that can overcome part of the problems, but more fundamental knowledge about interfaces and coalescence is still necessary for successful application. For scaleup and further development of processes based on the obtained results, a choice must be made for the configuration of the experimental setup of a bioreactor. Aspects like aeration, shear stress, batch or continuous processing, and immobilization can play an important role. This review article describes these aspects and the proposals that have been made in recent years concerning two-liquid-phase bioreactors. It shows some adaptations to existing bioreactors, such as loop reactors and stirred-tank reactors.

  18. Evaluation of plant-wide WWTP control strategies including the effects of filamentous bulking sludge.

    PubMed

    Flores-Alsina, Xavier; Comas, Joaquim; Rodríguez Roda, Ignasi; Poch, Manel; Gernaey, Krist V; Jeppsson, Ulf

    2009-01-01

    The main objective of this paper is to evaluate the effect of filamentous bulking sludge on the predicted performance of simulated plant-wide WWTP control strategies. First, as a reference case, several control strategies are implemented, simulated and evaluated using the IWA Benchmark Simulation Model No. 2 (BSM2). In a second series of simulations the parameters of the secondary settler model in the BSM2 are automatically changed on the basis of an on-line calculated risk of filamentous bulking, in order to mimic the effect of growth of filamentous bacteria in the plant. The results are presented using multivariate analysis. Including the effects of filamentous bulking in the simulation model gives a-more realistic-deterioration of the plant performance during periods when the conditions for development of filamentous bulking sludge are favourable: compared to the reference case where bulking effects are not considered. Thus, there is a decrease of the overall settling velocity, an accumulation of the total suspended solids (TSS) in the middle layers of the settler with a consequent reduction of their degree of compaction in the bottom. As a consequence there is a lower TSS concentration in both return and waste flow, less biomass in the bioreactors and a reduction of the TSS removal efficiency. The control alternatives using a TSS controller substantially increase the food to microorganisms (F/M) ratio in the bioreactor, thereby reducing both risk and effects of bulking sludge. The effects of ammonium (NH(4)(+)), nitrate (NO(3)(-)) and reject water control strategies are rather poor when it comes to handling solids separation problems.

  19. Effect of humic acid in leachate on specific methanogenic activity of anaerobic granular sludge.

    PubMed

    Guo, Mengfei; Xian, Ping; Yang, Longhui; Liu, Xi; Zhan, Longhui; Bu, Guanghui

    2015-01-01

    In order to find out the effects of humic acid (HA) in anaerobic-treated landfill leachate on granular sludge, the anaerobic biodegradability of HA as well as the influences of HA on the total cumulative methane production, the anaerobic methanization process and the specific methanogenic activity (SMA) of granular sludge are studied in this paper. Experimental results show that as a non-biodegradable organic pollutant, HA is also difficult to be decomposed by microbes in the anaerobic reaction process. Presence of HA and changes in the concentration have no significant influences on the total cumulative methane production and the anaerobic methanization process of granular sludge. Besides, the total cumulative methane production cannot reflect the inhibition of toxics on the methanogenic activity of granular sludge on the premise of sufficient reaction time. Results also show that HA plays a promoting role on SMA of granular sludge. Without buffering agent the SMA value increased by 19.2% on average due to the buffering and regulating ability of HA, while with buffering agent the SMA value increased by 5.4% on average due to the retaining effect of HA on the morphology of the sludge particles. However, in the presence of leachate the SMA value decreased by 27.6% on average, because the toxic effect of the toxics in the leachate on granular sludge is much larger than the promoting effect of HA.

  20. Performance of calcium peroxide for removal of endocrine-disrupting compounds in waste activated sludge and promotion of sludge solubilization.

    PubMed

    Zhang, Ai; Wang, Jie; Li, Yongmei

    2015-03-15

    Removal of six phenolic endocrine disrupting compounds (EDCs) (estrone, 17β-estradiol, 17α-ethinylestradiol, estriol, bisphenol A, and 4-nonylphenols) from waste activated sludge (WAS) was investigated using calcium peroxide (CaO2) oxidation. Effects of initial pH and CaO2 dosage were investigated. The impacts of CaO2 treatment on sludge solubilization and anaerobic digestion were also evaluated. Specifically, the role of reactive oxygen species (ROS) in EDC degradation during CaO2 oxidation was tested. Effects of 6 metal ions contained in the sludge matrix on EDC degradation were also evaluated. The results showed that CaO2 treatment can be a promising technology for EDC removal and facilitating sludge reuse. The EDC removal efficiencies increased with the increase in CaO2 dosage. At CaO2 doses of more than 0.34 g per gram of total solid (g g(-1) TS), more than 50% of EDCs were removed in a wide pH range of 2-12. Higher removal efficiencies were achieved at initial pH values of 12 and 2. The products of EDCs during CaO2 oxidation had less estrogenic activity than the originals. Under the conditions of neutral pH and CaO2 dosage = 0.34 g g(-1) TS, the sludge solubilization can be improved by increasing the soluble total organic carbon (STOC) and volatile suspended solids (VSS) reduction by 25% and 27% in 7 d, respectively; the volatile fatty acid (VFA) production was enhanced by 96% in the 15 d following anaerobic digestion. The ROS released by CaO2 are the main factors contributing to EDC removal, among which, hydroxyl radicals (OH) play the most important role. Metal ions contained in the sludge matrix also affected EDC removal. For most cases, Fe, Cu, and Zn had positive effects; Mn and Ag had negative effects; and Mg had an insignificant effect on EDC removal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Ion Trapping of Amines in Protozoa: A Novel Removal Mechanism for Micropollutants in Activated Sludge.

    PubMed

    Gulde, Rebekka; Anliker, Sabine; Kohler, Hans-Peter E; Fenner, Kathrin

    2018-01-02

    To optimize removal of organic micropollutants from the water cycle, understanding the processes during activated sludge treatment is essential. In this study, we hypothesize that aliphatic amines, which are highly abundant among organic micropollutants, are partly removed from the water phase in activated sludge through ion trapping in protozoa. In ion trapping, which has been extensively investigated in medical research, the neutral species of amine-containing compounds diffuse through the cell membrane and further into acidic vesicles present in eukaryotic cells such as protozoa. There they become trapped because diffusion of the positively charged species formed in the acidic vesicles is strongly hindered. We tested our hypothesis with two experiments. First, we studied the distribution of the fluorescent amine acridine orange in activated sludge by confocal fluorescence imaging. We observed intense fluorescence in distinct compartments of the protozoa, but not in the bacterial biomass. Second, we investigated the distribution of 12 amine-containing and eight control micropollutants in both regular activated sludge and sludge where the protozoa had been inactivated. In contrast to most control compounds, the amine-containing micropollutants displayed a distinctly different behavior in the noninhibited sludge compared to the inhibited one: (i) more removal from the liquid phase; (ii) deviation from first-order kinetics for the removal from the liquid phase; and (iii) higher amounts in the solid phase. These results provide strong evidence that ion trapping in protozoa occurs and that it is an important removal mechanism for amine-containing micropollutants in batch experiments with activated sludge that has so far gone unnoticed. We expect that our findings will trigger further investigations on the importance of this process in full-scale wastewater treatment systems, including its relevance for accumulation of ammonium.

  2. Changes in the process performance, sludge production and microbial activity in an activated sludge reactor with addition of a metabolic uncoupler under different operating conditions.

    PubMed

    Ferrer-Polonio, E; Fernández-Navarro, J; Alonso-Molina, J L; Amorós-Muñoz, I; Bes-Piá, A; Mendoza-Roca, J A

    2017-12-01

    Sludge production in wastewater treatment plants is nowadays a big concern due to the high produced amounts and their characteristics. Consequently, the study of techniques that reduce the sludge generation in wastewater treatment plants is becoming of great importance. In this work, four laboratory sequencing batch reactors (SBRs), which treated municipal wastewater, were operated to study the effect of adding the metabolic uncoupler 3,3',4',5-tetrachlorosalicylanilide (TCS) on the sludge reduction, the SBRs performance and the microbial hydrolytic enzymatic activities (MHEA). In addition, different operating conditions of the SBRs were tested to study the effect of the TCS on the process: two dissolved oxygen (DO) concentrations (2 and 9 mg L -1 ) and two F/M ratio (0.18 and 0.35 g COD·g MLVSS -1 ·d -1 ). The sludge production decreased under high DO concentrations. At the same time, the DNA and EPS production increased in the four SBRs. After these stress conditions, the performance of the reactors were recovered when DO was around 2 mg L -1 . From that moment on, results showed that TCS addition implied a reduction of the adenosine triphosphate (ATP) production, which implied a decrease in the sludge production. In spite of this reduction, the SBRs performances did not decay due to the increase in the global MHEA. Additionally, the sludge reduction was enhanced by the increase of the F/M ratio, achieving 28% and 60% of reduction for the low and the high F/M ratio, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Bio-reactor chamber

    NASA Technical Reports Server (NTRS)

    Chandler, Joseph A. (Inventor)

    1989-01-01

    A bioreactor for cell culture is disclosed which provides for the introduction of fresh medium without excessive turbulent action. The fresh medium enters the bioreactor through a filter with a backwash action which prevents the cells from settling on the filter. The bioreactor is sealed and depleted medium is forced out of the container as fresh medium is added.

  4. Effects of total solids content on waste activated sludge thermophilic anaerobic digestion and its sludge dewaterability.

    PubMed

    Wang, Tianfeng; Chen, Jie; Shen, Honglang; An, Dong

    2016-10-01

    The role of total solids content on sludge thermophilic anaerobic digestion was investigated in batch reactors. A range of total solids content from 2% to 10% was evaluated with two replicates. The lowest inhibitory concentration for free ammonia and total ammonia of sludge thermophilic anaerobic digestion was 110.9-171.4mg/L and 1313.1-1806.7mg/L, respectively. The volumetric biogas production rate increased with increasing of total solids content, but the corresponding biogas yield per gram volatile solid decreased. The result of normalized capillary suction time indicated that the dewaterability of digested sludge at high total solids content was poor, while solid content of sediment obtained by centrifuging sludge at 2000g for 10min increased with increasing of total solids content of sludge. The results suggest that thickened sludge mixed with dewatered sludge at an appropriate ratio could get high organic loading rate, high biogas yield and adequate dewatering effort. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Microbial community structure and dynamics in a pilot-scale submerged membrane bioreactor aerobically treating domestic wastewater under real operation conditions.

    PubMed

    Molina-Muñoz, M; Poyatos, J M; Sánchez-Peinado, M; Hontoria, E; González-López, J; Rodelas, B

    2009-06-15

    A pilot scale submerged ultra-filtration membrane bioreactor (MBR) was used for the aerobic treatment of domestic wastewater over 9 months of year 2006 (28th March to 21st December). The MBR was installed at a municipal wastewater facility (EMASAGRA, Granada, Spain) and was fed with real wastewater. The experimental work was divided in 4 stages run under different sets of operation conditions. Operation parameters (total and volatile suspended solids, dissolved oxygen concentration) and environmental variables (temperature, pH, COD and BOD(5) of influent water) were daily monitored. In all the experiments conducted, the MBR generated an effluent of optimal quality complying with the requirements of the European Law (91/271/CEE 1991). A cultivation-independent approach (polymerase chain reaction-temperature gradient gel electrophoresis, PCR-TGGE) was used to analyze changes in the structure of the bacterial communities in the sludge. Cluster analysis of TGGE profiles demonstrated significant differences in community structure related to variations of the operation parameters and environmental factors. Canonical correspondence analysis (CCA) suggested that temperature, hydraulic retention time and concentration of volatile suspended solids were the factors mostly influencing community structure. 23 prominent TGGE bands were successfully reamplified and sequenced, allowing gaining insight into the identities of predominantly present bacterial populations in the sludge. Retrieved partial 16S-rRNA gene sequences were mostly related to the alpha-Proteobacteria, beta-Proteobacteria and gamma-Proteobacteria classes. The community established in the MBR in each of the four stages of operation significantly differed in species composition and the sludge generated displayed dissimilar rates of mineralization, but these differences did not influence the performance of the bioreactor (quality of the permeate). These data indicate that the flexibility of the bacterial community

  6. Enrichment and detection of microorganisms involved in direct and indirect methanogenesis from methanol in an anaerobic thermophilic bioreactor.

    PubMed

    Roest, Kees; Altinbas, Mahmut; Paulo, Paula L; Heilig, H G H J; Akkermans, Antoon D L; Smidt, Hauke; de Vos, Willem M; Stams, Alfons J M

    2005-10-01

    To gain insight into the microorganisms involved in direct and indirect methane formation from methanol in a laboratory-scale thermophilic (55 degrees C) methanogenic bioreactor, reactor sludge was disrupted and serial dilutions were incubated in specific growth media containing methanol and possible intermediates of methanol degradation as substrates. With methanol, growth was observed up to a dilution of 10(8). However, when Methanothermobacter thermoautotrophicus strain Z245 was added for H2 removal, growth was observed up to a 10(10)-fold dilution. With H2/CO2 and acetate, growth was observed up to dilutions of 10(9) and 10(4), respectively. Dominant microorganisms in the different dilutions were identified by 16S rRNA-gene diversity and sequence analysis. Furthermore, dilution polymerase chain reaction (PCR) revealed a similar relative abundance of Archaea and Bacteria in all investigated samples, except in enrichment with acetate, which contained 100 times less archaeal DNA than bacterial DNA. The most abundant bacteria in the culture with methanol and strain Z245 were most closely related to Moorella glycerini. Thermodesulfovibrio relatives were found with high sequence similarity in the H2/CO2 enrichment, but also in the original laboratory-scale bioreactor sludge. Methanothermobacter thermoautotrophicus strains were the most abundant hydrogenotrophic archaea in the H2/CO2 enrichment. The dominant methanol-utilizing methanogen, which was present in the 10(8)-dilution, was most closely related to Methanomethylovorans hollandica. Compared to direct methanogenesis, results of this study indicate that syntrophic, interspecies hydrogen transfer-dependent methanol conversion is equally important in the thermophilic bioreactor, confirming previous findings with labeled substrates and specific inhibitors.

  7. On the Occurrence of Anoxic Microniches, Denitrification, and Sulfate Reduction in Aerated Activated Sludge

    PubMed Central

    Schramm, Andreas; Santegoeds, Cecilia M.; Nielsen, Helle K.; Ploug, Helle; Wagner, Michael; Pribyl, Milan; Wanner, Jiri; Amann, Rudolf; de Beer, Dirk

    1999-01-01

    A combination of different methods was applied to investigate the occurrence of anaerobic processes in aerated activated sludge. Microsensor measurements (O2, NO2−, NO3−, and H2S) were performed on single sludge flocs to detect anoxic niches, nitrate reduction, or sulfate reduction on a microscale. Incubations of activated sludge with 15NO3− and 35SO42− were used to determine denitrification and sulfate reduction rates on a batch scale. In four of six investigated sludges, no anoxic zones developed during aeration, and consequently denitrification rates were very low. However, in two sludges anoxia in flocs coincided with significant denitrification rates. Sulfate reduction could not be detected in any sludge in either the microsensor or the batch investigation, not even under short-term anoxic conditions. In contrast, the presence of sulfate-reducing bacteria was shown by fluorescence in situ hybridization with 16S rRNA-targeted oligonucleotide probes and by PCR-based detection of genes coding for the dissimilatory sulfite reductase. A possible explanation for the absence of anoxia even in most of the larger flocs might be that oxygen transport is not only diffusional but enhanced by advection, i.e., facilitated by flow through pores and channels. This possibility is suggested by the irregularity of some oxygen profiles and by confocal laser scanning microscopy of the three-dimensional floc structures, which showed that flocs from the two sludges in which anoxic zones were found were apparently denser than flocs from the other sludges. PMID:10473433

  8. Monitoring of activated sludge settling ability through image analysis: validation on full-scale wastewater treatment plants.

    PubMed

    Mesquita, D P; Dias, O; Amaral, A L; Ferreira, E C

    2009-04-01

    In recent years, a great deal of attention has been focused on the research of activated sludge processes, where the solid-liquid separation phase is frequently considered of critical importance, due to the different problems that severely affect the compaction and the settling of the sludge. Bearing that in mind, in this work, image analysis routines were developed in Matlab environment, allowing the identification and characterization of microbial aggregates and protruding filaments in eight different wastewater treatment plants, for a combined period of 2 years. The monitoring of the activated sludge contents allowed for the detection of bulking events proving that the developed image analysis methodology is adequate for a continuous examination of the morphological changes in microbial aggregates and subsequent estimation of the sludge volume index. In fact, the obtained results proved that the developed image analysis methodology is a feasible method for the continuous monitoring of activated sludge systems and identification of disturbances.

  9. Pressurised electro-osmotic dewatering of activated and anaerobically digested sludges: electrical variables analysis.

    PubMed

    Citeau, M; Olivier, J; Mahmoud, A; Vaxelaire, J; Larue, O; Vorobiev, E

    2012-09-15

    Pressurised electro-osmotic dewatering (PEOD) of two sewage sludges (activated and anaerobically digested) was studied under constant electric current (C.C.) and constant voltage (C.V.) with a laboratory chamber simulating closely an industrial filter. The influence of sludge characteristics, process parameters, and electrode/filter cloth position was investigated. The next parameters were tested: 40 and 80 A/m², 20, 30, and 50 V-for digested sludge dewatering; and 20, 40 and 80 A/m², 20, 30, and 50 V-for activated sludge dewatering. Effects of filter cloth electric resistance and initial cake thickness were also investigated. The application of PEOD provides a gain of 12 points of dry solids content for the digested sludge (47.0% w/w) and for the activated sludge (31.7% w/w). In PEOD processed at C.C. or at C.V., the dewatering flow rate was similar for the same electric field intensity. In C.C. mode, both the electric resistance of cake and voltage increase, causing a temperature rise by ohmic effect. In C.V. mode, a current intensity peak was observed in the earlier dewatering period. Applying at first a constant current and later on a constant voltage, permitted to have better control of ohmic heating effect. The dewatering rate was not significantly affected by the presence of filter cloth on electrodes, but the use of a thin filter cloth reduced remarkably the energy consumption compared to a thicker one: 69% of reduction energy input at 45% w/w of dry solids content. The reduction of the initial cake thickness is advantageous to increase the final dry solids content. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Buoyant Filter Bio-Reactor (BFBR)--a novel anaerobic wastewater treatment unit.

    PubMed

    Panicker, Soosan J; Philipose, M C; Haridas, Ajit

    2008-01-01

    The Buoyant Filter Bio-Reactor (BFBR) is a novel and very efficient method for the treatment of complex wastewater. Sewage is a complex wastewater containing insoluble COD contributed by fat and proteins. The fat and proteins present in the domestic sewage cause operational problems and underperformance in the Upflow Anaerobic Sludge Blanket Reactor, used now for treating sewage anaerobically. The biogas yield from the BFBR is 0.36 m3/kg COD reduced and the methane content was about 70-80%. Production of methane by anaerobic digestion of organic waste had the benefit of lower energy costs for treatment and is thus environmentally beneficial to the society by providing a clean fuel from renewable feed stocks. The BFBR achieved a COD removal efficiency of 80-90% for an organic loading rate of 4.5 kg/m3/d at a hydraulic retention time of 3.25 hours. The effluent COD was less than 100 mg/l, thus saving on secondary treatment cost. No pretreatment like sedimentation was required for the influent to the BFBR. The BFBR can produce low turbidity effluent as in the activated sludge process (ASP). The land area required for the BFBR treatment plant is less when compared to ASP plant. Hence the problem of scarcity of land for the treatment plant is reduced. The total expenditure for erecting the unit was less than 50% as that of conventional ASP for the same COD removal efficiency including land cost. IWA Publishing 2008.

  11. Biotransformation of RDX and HMX by Anaerobic Granular Sludge with Enriched Sulfate and Nitrate.

    PubMed

    An, Chunjiang; Shi, Yarong; He, Yanling; Huang, Guohe; Liu, Yonghong; Yang, Shucheng

    2017-05-01

      RDX and HMX are widely used energetic materials and they are recognized as environmental contaminants at numerous locations. The present study investigated the biotransformation of RDX and HMX by anaerobic granular sludge under sulfate- and nitrate-enriched conditions. The results showed that RDX and HMX could be transformed by anaerobic granular sludge when nitrate was present. However, the biotransformation of RDX and HMX was negatively influenced, especially with high nitrate concentrations. Sulfate-enriched conditions were more favorable for the removal of ammunition compounds by anaerobic granular sludge than nitrate-enriched conditions. The removal of RDX and HMX under both nitrate- and sulfate-enriched conditions was facilitated by the use of glucose as additional substrate. This knowledge may help identify factors required for rapid removal of RDX and HMX in high-rate bioreactors. These results can also be applied to devise an appropriate and practical biological treatment strategy for explosive contaminated wastewater.

  12. Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron.

    PubMed

    Feng, Yinghong; Zhang, Yaobin; Quan, Xie; Chen, Suo

    2014-04-01

    Anaerobic digestion is promising technology to recover energy from waste activated sludge. However, the sludge digestion is limited by its low efficiency of hydrolysis-acidification. Zero valent iron (ZVI) as a reducing material is expected to enhance anaerobic process including the hydrolysis-acidification process. Considering that, ZVI was added into an anaerobic sludge digestion system to accelerate the sludge digestion in this study. The results indicated that ZVI effectively enhanced the decomposition of protein and cellulose, the two main components of the sludge. Compared to the control test without ZVI, the degradation of protein increased 21.9% and the volatile fatty acids production increased 37.3% with adding ZVI. More acetate and less propionate are found during the hydrolysis-acidification with ZVI. The activities of several key enzymes in the hydrolysis and acidification increased 0.6-1 time. ZVI made the methane production raise 43.5% and sludge reduction ratio increase 12.2 percent points. Fluorescence in situ hybridization analysis showed that the abundances of hydrogen-consuming microorganisms including homoacetogens and hydrogenotrophic methanogens with ZVI were higher than the control, which reduced the H2 accumulation to create a beneficial condition for the sludge digestion in thermodynamics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Pilot-scale testing membrane bioreactor for wastewater reclamation in industrial laundry.

    PubMed

    Andersen, M; Kristensen, G H; Brynjolf, M; Grüttner, H

    2002-01-01

    A pilot-scale study of membrane bioreactor treatment for reclamation of wastewater from Berendsen Textile Service industrial laundry in Søborg, Denmark was carried out over a 4 month period. A satisfactory COD degradation was performed resulting in a low COD in the permeate (< 50 mg/l). To obtain satisfactory treatment, addition of nitrogen was necessary. The biodegradability of the permeate was very low (BOD5 < 2 mg/l). A hydraulic retention time of 1 d turned out to be sufficient at a sludge concentration of 10 g MLSS/l. Through addition of a cationic polymer, a satisfactory dewaterability of the sludge was reached. Membrane tests showed that operating at a trans-membrane pressure of 3 bar and a cross-flow velocity of 4 m/s, a flux of 120 l/m2h can be expected without using chemicals for membrane cleaning. The quality of the permeate was very good when comparing to the reuse quality demands of water to the wash processes. Reuse of the permeate in all rinsing steps requires additional treatment through reverse osmosis.

  14. Incorporation of hydrophobized mineral particles in activated sludge flocs: a way to assess ballasting efficiency.

    PubMed

    Defontaine, G; Thormann, J; Lartiges, B S; El Samrani, A G; Barrs, O

    2005-01-01

    The role of mineral surface hydrophobicity in attachment to activated sludge flocs was investigated. Fluorite and quartz particles of similar granulometry were hydrophobized by adsorbing sodium oleate and dodecylamine chloride, respectively. Mineral hydrophobicity was assessed by flotation expriments. The attachment of particles to microbial flocs was determined by optical microscopy. The results indicate that hydrophobized particles are always better incorporated within activated sludge flocs than non-coated particles. A comparison with Aquatal particles used as sludge ballast reveals that hydrophobized minerals are associated with microbial flocs to the same extent.

  15. Toxicity evaluation and prediction of toxic chemicals on activated sludge system.

    PubMed

    Cai, Bijing; Xie, Li; Yang, Dianhai; Arcangeli, Jean-Pierre

    2010-05-15

    The gaps of data for evaluating toxicity of new or overloaded organic chemicals on activated sludge system resulted in the requirements for methodology of toxicity estimation. In this study, 24 aromatic chemicals typically existed in the industrial wastewater were selected and classified into three groups of benzenes, phenols and anilines. Their toxicity on activated sludge was then investigated. Two indexes of IC(50-M) and IC(50-S) were determined respectively from the respiration rates of activated sludge with different toxicant concentration at mid-term (24h) and short-term (30min) time intervals. Experimental results showed that the group of benzenes was the most toxic, followed by the groups of phenols and anilines. The values of IC(50-M) of the tested chemicals were higher than those of IC(50-S). In addition, quantitative structure-activity relationships (QSARs) models developed from IC(50-M) were more stable and accurate than those of IC(50-S). The multiple linear models based on molecular descriptors and K(ow) presented better reliability than single linear models based on K(ow). Among these molecular descriptors, E(lumo) was the most important impact factor for evaluation of mid-term toxicity. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  16. Polyhydroxyalkanoates (PHA) production using wastewater as carbon source and activated sludge as microorganisms.

    PubMed

    Yan, S; Tyagi, R D; Surampalli, R Y

    2006-01-01

    Activated sludge from different full-scale wastewater treatment plants (municipal, pulp and paper industry, starch manufacturing and cheese manufacturing wastewaters) was used as a source of microorganisms to produce biodegradable plastics in shake flask experiments. Acetate, glucose and different wastewaters were used as carbon sources. Pulp and paper wastewater sludge was found to accumulate maximum concentration (43% of dry weight of suspended solids) of polyhydroxy alkanoates (PHA) with acetate as carbon source. Among the different wastewaters tested as a source of carbon, pulp and paper industry and starch industry wastewaters were found to be the best source of carbon while employing pulp and paper activated sludge for maximum accumulation of PHA. High concentration of volatile fatty acids in these wastewaters was the probable reason.

  17. Application of the International Water Association activated sludge models to describe aerobic sludge digestion.

    PubMed

    Ghorbani, M; Eskicioglu, C

    2011-12-01

    Batch and semi-continuous flow aerobic digesters were used to stabilize thickened waste-activated sludge at different initial conditions and mean solids retention times. Under dynamic conditions, total suspended solids, volatile suspended solids (VSS) and total and particulate chemical oxygen demand (COD and PCOD) were monitored in the batch reactors and effluent from the semi-continuous flow reactors. Activated Sludge Model (ASM) no. 1 and ASM no. 3 were applied to measured data (calibration data set) to evaluate the consistency and performances of models at different flow regimes for digester COD and VSS modelling. The results indicated that both ASM1 and ASM3 predicted digester COD, VSS and PCOD concentrations well (R2, Ra2 > or = 0.93). Parameter estimation concluded that compared to ASM1, ASM3 parameters were more consistent across different batch and semi-continuous flow runs with different operating conditions. Model validation on a data set independent from the calibration data successfully predicted digester COD (R2 = 0.88) and VSS (R2 = 0.94) concentrations by ASM3, while ASM1 overestimated both reactor COD (R2 = 0.74) and VSS concentrations (R2 = 0.79) after 15 days of aerobic batch digestion.

  18. Effect of EPS Content on Activated Sludge Reduction in Process of Predation by T. tubifex

    NASA Astrophysics Data System (ADS)

    Lei, Yingjie; Ai, Cuiling; Zhang, Guochun

    2017-12-01

    A Sludge reduction in a conventional activated sludge process combined with a membrane biofilm inoculated with T. tubifex was investigated. The influence of microbial extracellular polymeric substances (EPS) extracted in forms of LB-EPS and TB-EPS respectively on the surface properties of biomass was studied. Results showed that variations of polysaccharides and protein along with the increasing of EPS feeding would affect the existence of T. tubifex. When the amount of EPS varied from 10 to 50μg/mg, the specific resistance of a sludge suspension was obtained from 3.5×107 to 1.4×107 S2/g. Meanwhile, polysaccharides content in EPS was to be positively correlated with the SSR of sludge suspension whereas protein content would be not. Anyway, it can be argued that an increase in LB-EPS not TB-EPS may affect the performance of activated sludge reduction with efficiency about 40.1% to 31.6%.

  19. Effects of Metal Nanoparticles on Methane Production from Waste-Activated Sludge and Microorganism Community Shift in Anaerobic Granular Sludge

    PubMed Central

    Wang, Tao; Zhang, Dong; Dai, Lingling; Chen, Yinguang; Dai, Xiaohu

    2016-01-01

    Extensive use of nanoparticles (NPs) in consumer and industrial products has led to concerns about their potential environmental impacts; however, the influences of different NPs (e.g., nZVI (nano zero-valent iron), Ag NPs, Fe2O3 NPs and MgO NPs) on the anaerobic digestion of sludge have not yet been studied in depth. Additionally, a new guideline or the use of different NPs in the anaerobic digestion of sludge should be established to improve the anaerobic digestion of sludge and avoid inhibitory effects. This study investigated the effects of four representative NPs (i.e., nZVI, Ag NPs, Fe2O3 NPs and MgO NPs) on methane production during the anaerobic digestion of waste activated sludge (WAS). The presence of 10 mg/g total suspended solids (TSS) nZVI and 100 mg/g TSS Fe2O3 NPs increased methane production to 120% and 117% of the control, respectively, whereas 500 mg/g TSS Ag NPs and 500 mg/g TSS MgO NPs generated lower levels of methane production (73.52% and 1.08% that of the control, respectively). These results showed that low concentrations of nZVI and Fe2O3 NPs promoted the amount of microbes (Bacteria and Archaea) and activities of key enzymes but that higher concentrations of Ag NPs and MgO NPs inhibited them. PMID:27166174

  20. Effects of Metal Nanoparticles on Methane Production from Waste-Activated Sludge and Microorganism Community Shift in Anaerobic Granular Sludge

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Zhang, Dong; Dai, Lingling; Chen, Yinguang; Dai, Xiaohu

    2016-05-01

    Extensive use of nanoparticles (NPs) in consumer and industrial products has led to concerns about their potential environmental impacts; however, the influences of different NPs (e.g., nZVI (nano zero-valent iron), Ag NPs, Fe2O3 NPs and MgO NPs) on the anaerobic digestion of sludge have not yet been studied in depth. Additionally, a new guideline or the use of different NPs in the anaerobic digestion of sludge should be established to improve the anaerobic digestion of sludge and avoid inhibitory effects. This study investigated the effects of four representative NPs (i.e., nZVI, Ag NPs, Fe2O3 NPs and MgO NPs) on methane production during the anaerobic digestion of waste activated sludge (WAS). The presence of 10 mg/g total suspended solids (TSS) nZVI and 100 mg/g TSS Fe2O3 NPs increased methane production to 120% and 117% of the control, respectively, whereas 500 mg/g TSS Ag NPs and 500 mg/g TSS MgO NPs generated lower levels of methane production (73.52% and 1.08% that of the control, respectively). These results showed that low concentrations of nZVI and Fe2O3 NPs promoted the amount of microbes (Bacteria and Archaea) and activities of key enzymes but that higher concentrations of Ag NPs and MgO NPs inhibited them.

  1. Effects of potassium ferrate on extracellular polymeric substances (EPS) and physicochemical properties of excess activated sludge.

    PubMed

    Ye, Fenxia; Liu, Xinwen; Li, Ying

    2012-01-15

    The activated sludge process of wastewater results in the generation of a considerable amount of excess activated sludge. In many wastewater treatment plants, the bottleneck of the sludge handling system is the dewatering operation. This paper investigated the effect of potassium ferrate pretreatment on the physicochemical properties of the excess activated sludge at various dosages of potassium ferrate. The particle size, extracellular polymeric substances (EPS) content and chemical components, and sludge disintegration degree were measured to explain the observed changes of physicochemical properties. It was expected that potassium ferrate could enhance the filterability and dewaterability of the sludge. However, the results showed that potassium ferrate had a negative effect on the filterability by measuring the capillary suction time (CST), but improved the settleability and dewaterability extent by determining the water content in the dewatered cake, although the flocs size reduced slightly. Loosely bound EPS (LB-EPS) content, polysaccharides (PS) and proteins (PN) contents in LB-EPS all increased with increasing the amount of potassium ferrate. However, Tightly bound EPS (TB-EPS) content, PS and PN contents in TB-EPS did not changed significantly at first, and decreased slightly under higher dosage of potassium ferrate. EPS, especially LB-EPS played more important role in the observed changes of the settleability and filterability than the sludge particle size. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Modification of Rhodamine WT tracer tests procedure in activated sludge reactors

    NASA Astrophysics Data System (ADS)

    Knap, Marta; Balbierz, Piotr

    2017-11-01

    One of the tracers recommended for use in wastewater treatment plants and natural waters is Rhodamine WT, which is a fluorescent dye, allowing to work at low concentrations, but may be susceptible to sorption to activated sludge flocs and chemical quenching of fluorescence by dissolved water constituents. Additionally raw sewage may contain other natural materials or pollutants exhibiting limited fluorescent properties, which are responsible for background fluorescence interference. This paper presents the proposed modifications to the Rhodamine WT tracer tests procedure in activated sludge reactors, which allow to reduce problems with background fluorescence and tracer loss over time, developed on the basis of conducted laboratory and field experiments.

  3. Can activated sludge treatments and advanced oxidation processes remove organophosphorus flame retardants?

    PubMed

    Cristale, Joyce; Ramos, Dayana D; Dantas, Renato F; Machulek Junior, Amilcar; Lacorte, Silvia; Sans, Carme; Esplugas, Santiago

    2016-01-01

    This study aims to determine the occurrence of 10 OPFRs (including chlorinated, nonchlorinated alkyl and aryl compounds) in influent, effluent wastewaters and partitioning into sludge of 5 wastewater treatment plants (WWTP) in Catalonia (Spain). All target OPFRs were detected in the WWTPs influents, and the total concentration ranged from 3.67 µg L(-1) to 150 µg L(-1). During activated sludge treatment, most OPFRs were accumulated in the sludge at concentrations from 35.3 to 9980 ng g(-1) dw. Chlorinated compounds tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl) phosphate (TCIPP) and tris(2,3-dichloropropyl) phosphate (TDCPP) were not removed by the conventional activated sludge treatment and they were released by the effluents at approximately the same inlet concentration. On the contrary, aryl compounds tris(methylphenyl) phosphate (TMPP) and 2-ethylhexyl diphenyl phosphate (EHDP) together with alkyl tris(2-ethylhexyl) phosphate (TEHP) were not detected in any of the effluents. Advanced oxidation processes (UV/H2O2 and O3) were applied to investigate the degradability of recalcitrant OPFRs in WWTP effluents. Those detected in the effluent sample (TCEP, TCIPP, TDCPP, tributyl phosphate (TNBP), tri-iso-butyl phosphate (TIBP) and tris(2-butoxyethyl) phosphate (TBOEP)) had very low direct UV-C photolysis rates. TBOEP, TNBP and TIBP were degraded by UV/H2O2 and O3. Chlorinated compounds TCEP, TDCPP and TCIPP were the most recalcitrant OPFR to the advanced oxidation processes applied. The study provides information on the partitioning and degradability pathways of OPFR within conventional activated sludge WWTPs. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Cultivation of a bacterial consortium with the potential to degrade total petroleum hydrocarbon using waste activated sludge.

    PubMed

    Sivakumar, S; Song, Y C; Kim, S H; Jang, S H

    2015-11-01

    Waste activated sludge was aerobically treated to demonstrate multiple uses such as cultivating an oil degrading bacterial consortium; studying the influence of a bulking agent (peat moss) and total petroleum hydrocarbon concentration on bacterial growth and producing a soil conditioner using waste activated sludge. After 30 days of incubation, the concentration of oil-degrading bacteria was 4.3 x 10(8) CFU g(-1) and 4.5 x 10(8) CFU g(-1) for 5 and 10 g of total petroleum hydrocarbon, respectively, in a mixture of waste activated sludge (1 kg) and peat moss (0.1 kg). This accounts for approximately 88.4 and 91.1%, respectively, of the total heterotrophic bacteria (total-HB). The addition of bulking agent enhanced total-HB population and total petroleum hydrocarbon-degrading bacterial population. Over 90% of total petroleum hydrocarbon degradation was achieved by the mixture of waste activated sludge, bulking agent and total petroleum hydrocarbon. The results of physico-chemical parameters of the compost (waste activated sludge with and without added peat moss compost) and a substantial reduction in E. coli showed that the use of this final product did not exhibit risk when used as soil conditioner. Finally, the present study demonstrated that cultivation of total petroleum hydrocarbon-degrading bacterial consortium and production of compost from waste activated sludge by aerobic treatment was feasible.

  5. Optimization of Ozonation Process for the Reduction of Excess Sludge Production from Activated Sludge Process of Sago Industry Wastewater Using Central Composite Design

    PubMed Central

    Subha, B.; Muthukumar, M.

    2012-01-01

    Sago industries effluent containing large amounts of organic content produced excess sludge which is a serious problem in wastewater treatment. In this study ozonation has been employed for the reduction of excess sludge production in activated sludge process. Central composite design is used to study the effect of ozone treatment for the reduction of excess sludge production in sago effluent and to optimise the variables such as pH, ozonation time, and retention time. ANOVA showed that the coefficient determination value (R 2) of VSS and COD reduction were 0.9689 and 0.8838, respectively. VSS reduction (81%) was achieved at acidic pH 6.9, 12 minutes ozonation, and retention time of 10 days. COD reduction (87%) was achieved at acidic pH 6.7, 8 minutes of ozonation time, and retention time of 6 days. Low ozonation time and high retention time influence maximum sludge reduction, whereas low ozonation time with low retention time was effective for COD reduction. PMID:22593666

  6. NASA Bioreactor Demonstration System

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Leland W. K. Chung (left), Director, Molecular Urology Therapeutics Program at the Winship Cancer Institute at Emory University, is principal investigator for the NASA bioreactor demonstration system (BDS-05). With him is Dr. Jun Shu, an assistant professor of Orthopedics Surgery from Kuming Medical University China. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Credit: Emory University.

  7. Correlations between trans-membrane pressure (TMP) and sludge properties in submerged membrane electro-bioreactor (SMEBR) and conventional membrane bioreactor (MBR).

    PubMed

    Hasan, Shadi W; Elektorowicz, Maria; Oleszkiewicz, Jan A

    2012-09-01

    The influence of sludge properties in SMEBR and conventional MBR pilot systems on membrane fouling was investigated. Generated data were analyzed using statistical analysis Pearson's product momentum correlation coefficient (r(p)). Analysis showed that TMP had strong direct (r(p)=0.9182) and inverse (r(p)=-0.9205) correlations to mean particle size diameter in MBR and SMEBR, respectively. TMP in SMEBR had a strong direct correlation to the sludge mixed liquor suspended solids concentration (MLSS) (r(p)=0.7757) while a weak direct correlation (r(p)=0.1940) was observed in MBR. SMEBR showed a moderate inverse correlation (r(p)=-0.6118) between TMP and soluble carbohydrates (EPS(c)) and a very weak direct correlation (r(p)=0.3448) to soluble proteins (EPS(p)). Conversely, EPS(p) in MBR had more significant impact (r(p)=0.4856) on membrane fouling than EPS(c) (r(p)=0.3051). The results provide insight into optimization of operational conditions in SMEBR system to overcome membrane fouling. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Visible light photocatalytic disintegration of waste activated sludge for enhancing biogas production.

    PubMed

    Anjum, Muzammil; Al-Talhi, Hasan A; Mohamed, Saleh A; Kumar, Rajeev; Barakat, M A

    2018-06-15

    Biogas production using waste activated sludge (WAS) is one of the most demanding technologies for sludge treatment and generating energy in sustainable manner. The present study deals with the photocatalytic pretreatment of WAS using ZnO-ZnS@polyaniline (ZnO-ZnS@PANI) nanocomposite as means for increasing its degradability for improved biogas production by anaerobic digestion (AD). Photocatalysis accelerated the hydrolysis of WAS and increased the sCOD by 6.7 folds after 6 h and transform tCOD into bioavailable sCOD. After the AD of WAS, a removal of organic matter (60.6%) and tCOD (69.3%) was achieved in photocatalytic pretreated sludge. The biogas production was 1.6 folds higher in photocatalytic sludge with accumulative biogas up to 1645.1 ml L -1 vs after 45 days compared with the raw sludge (1022.4 ml L -1 VS ). Moreover, the photocatalysis decrease the onset of methanogenesis from 25 to 12 days while achieve the maximum conversion rate of reducing sugars into organic acids at that time. These results suggested that photocatalysis is an efficient pretreatment method and ZnO-ZnS@PANI can degrade sludge efficiently for enhance biogas production in anaerobic digestion process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Can activated sludge treatments and advanced oxidation processes remove organophosphorus flame retardants?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cristale, Joyce; Ramos, Dayana D.; Dantas, Renato F.

    2016-01-15

    This study aims to determine the occurrence of 10 OPFRs (including chlorinated, nonchlorinated alkyl and aryl compounds) in influent, effluent wastewaters and partitioning into sludge of 5 wastewater treatment plants (WWTP) in Catalonia (Spain). All target OPFRs were detected in the WWTPs influents, and the total concentration ranged from 3.67 µg L{sup −1} to 150 µg L{sup −1}. During activated sludge treatment, most OPFRs were accumulated in the sludge at concentrations from 35.3 to 9980 ng g{sup −1} dw. Chlorinated compounds tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl) phosphate (TCIPP) and tris(2,3-dichloropropyl) phosphate (TDCPP) were not removed by the conventional activated sludge treatmentmore » and they were released by the effluents at approximately the same inlet concentration. On the contrary, aryl compounds tris(methylphenyl) phosphate (TMPP) and 2-ethylhexyl diphenyl phosphate (EHDP) together with alkyl tris(2-ethylhexyl) phosphate (TEHP) were not detected in any of the effluents. Advanced oxidation processes (UV/H{sub 2}O{sub 2} and O{sub 3}) were applied to investigate the degradability of recalcitrant OPFRs in WWTP effluents. Those detected in the effluent sample (TCEP, TCIPP, TDCPP, tributyl phosphate (TNBP), tri-iso-butyl phosphate (TIBP) and tris(2-butoxyethyl) phosphate (TBOEP)) had very low direct UV-C photolysis rates. TBOEP, TNBP and TIBP were degraded by UV/H{sub 2}O{sub 2} and O{sub 3}. Chlorinated compounds TCEP, TDCPP and TCIPP were the most recalcitrant OPFR to the advanced oxidation processes applied. The study provides information on the partitioning and degradability pathways of OPFR within conventional activated sludge WWTPs. - Highlights: • OPFRs were detected in wastewater and sludge of all studied WWTPs. • Alkyl and chloroalkyl phosphates were present in secondary treatment effluents. • TBOEP, TNBP and TIBP were degraded by UV/H{sub 2}O{sub 2} and O{sub 3} treatment. • TCEP, TCIPP and TDCPP were

  10. Schisandra lignans production regulated by different bioreactor type.

    PubMed

    Szopa, Agnieszka; Kokotkiewicz, Adam; Luczkiewicz, Maria; Ekiert, Halina

    2017-04-10

    Schisandra chinensis (Chinese magnolia vine) is a rich source of therapeutically relevant dibenzocyclooctadiene lignans with anticancer, immunostimulant and hepatoprotective activities. In this work, shoot cultures of S. chinensis were grown in different types of bioreactors with the aim to select a system suitable for the large scale in vitro production of schisandra lignans. The cultures were maintained in Murashige-Skoog (MS) medium supplemented with 3mg/l 6-benzylaminopurine (BA) and 1mg/l 1-naphthaleneacetic acid (NAA). Five bioreactors differing with respect to cultivation mode were tested: two liquid-phase systems (baloon-type bioreactor and bubble-column bioreactor with biomass immobilization), the gas-phase spray bioreactor and two commercially available temporary immersion systems: RITA ® and Plantform. The experiments were run for 30 and 60 days in batch mode. The harvested shoots were evaluated for growth and lignan content determined by LC-DAD and LC-DAD-ESI-MS. Of the tested bioreactors, temporary immersion systems provided the best results with respect to biomass production and lignan accumulation: RITA ® bioreactor yielded 17.86g/l (dry weight) during 60 day growth period whereas shoots grown for 30 days in Plantform bioreactor contained the highest amount of lignans (546.98mg/100g dry weight), with schisandrin, deoxyschisandrin and gomisin A as the major constituents (118.59, 77.66 and 67.86mg/100g dry weight, respectively). Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Thermo-alkaline pretreatment of waste activated sludge at low-temperatures: effects on sludge disintegration, methane production, and methanogen community structure.

    PubMed

    Kim, Jaai; Yu, Youngseob; Lee, Changsoo

    2013-09-01

    Low-temperature thermo-alkaline pretreatment of waste activated sludge (WAS) was studied, within the region of 0-0.2 M NaOH and 60-90°C, for the effects of NaOH concentration and temperature on sludge degradability in anaerobic digestion (AD). Significant disintegration of sludge solids (up to 75.6%) and an increase in methane production (up to 70.6%) were observed in the pretreatment trials. Two quadratic models were successfully generated by response surface analysis (R(2)>0.9, p<0.05) to approximate how the degree of sludge disintegration (SD) and methane production (MP) respond to changes in the pretreatment conditions. The maximum responses of SD (77.8%) and MP (73.9% increase over the control) were shown at [0.16 M NaOH, 90°C] and [0.10 M NaOH, 73.7°C], respectively. NaOH addition showed a significant influence on the evolution of methanogen community structure during AD, whereas temperature did not. Aceticlastic Methanosaeta and Methanosarcina speceies were likely the major methanogens. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. NASA Bioreactor Schematic

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The schematic depicts the major elements and flow patterns inside the NASA Bioreactor system. Waste and fresh medium are contained in plastic bags placed side-by-side so the waste bag fills as the fresh medium bag is depleted. The compliance vessel contains a bladder to accommodate pressure transients that might damage the system. A peristolic pump moves fluid by squeezing the plastic tubing, thus avoiding potential contamination. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  13. Influence of deflocculation on microwave disintegration and anaerobic biodegradability of waste activated sludge.

    PubMed

    Ebenezer, A Vimala; Kaliappan, S; Adish Kumar, S; Yeom, Ick-Tae; Banu, J Rajesh

    2015-06-01

    In the present study, the potential benefits of deflocculation on microwave pretreatment of waste activated sludge were investigated. Deflocculation in the absence of cell lysis was achieved through the removal of extra polymeric substances (EPS) by sodium citrate (0.1g sodium citrate/g suspended solids), and DNA was used as a marker for monitoring cell lysis. Subsequent microwave pretreatment yielded a chemical oxygen demand (COD) solubilisation of 31% and 21%, suspended solids (SS) reduction of 37% and 22%, for deflocculated and flocculated sludge, respectively, with energy input of 14,000kJ/kg TS. When microwave pretreated sludge was subjected to anaerobic fermentation, greater accumulation of volatile fatty acid (860mg/L) was noticed in deflocculated sludge, indicating better hydrolysis. Among the samples subjected to BMP (Biochemical methane potential test), deflocculated microwave pretreated sludge showed better amenability towards anaerobic digestion with high methane production potential of 0.615L (gVS)(-1). Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Polyhydroxyalkanoate (PHA) accumulation potential and PHA-accumulating microbial communities in various activated sludge processes of municipal wastewater treatment plants.

    PubMed

    Sakai, K; Miyake, S; Iwama, K; Inoue, D; Soda, S; Ike, M

    2015-01-01

    To clarify the polyhydroxyalkanoate (PHA) accumulation potential and the PHA-accumulating microbial community structure in activated sludge in municipal wastewater treatment plants (WWTPs) and to identify their influential factors. Nine activated sludge samples were collected from municipal WWTPs employing various biological treatment processes. In acetate-fed 24-h batch experiments under aerobic and nitrogen- and phosphorus-limited conditions, polyhydroxybutyrate (PHB) content of activated sludge increased from 0-1·3 wt% to 7·9-24 wt%, with PHB yields of 0·22-0·50 C-mol 3-hydroxybutyrate (C-mol acetate)(-1). Microbial community analyses found that activated sludge samples that accumulated >20 wt% of PHB after 24-h PHA accumulation experiments had >5·0 × 10(8) copies g(-1)-mixed liquor-suspended solid of phaC genes. Results indicated that (i) activated sludge in municipal WWTPs can accumulate up to approx. 20 wt% of PHA without enrichment processes, (ii) PHA accumulation potential of activated sludge varied depending on the operational conditions (treatment processes) of WWTPs, and (iii) phaC gene number can provide a simple indication of PHA accumulation potential. This is the first study to compare the PHA accumulation potential and PHA-accumulating microbial communities in activated sludge of various treatment processes. Our findings may be useful for enhancing the resource recovery potential of wastewater treatment systems. © 2014 The Society for Applied Microbiology.

  15. Mesophilic and thermophilic activated sludge post-treatment of paper mill process water.

    PubMed

    Vogelaar, J C T; Bouwhuis, E; Klapwijk, A; Spanjers, H; van Lier, J B

    2002-04-01

    Increasing system closure in paper mills and higher process water temperatures make the applicability of thermophilic treatment systems increasingly important. The use of activated sludge as a suitable thermophilic post-treatment system for anaerobically pre-treated paper process water from a paper mill using recycled wastepaper was studied. Two lab-scale plug flow activated sludge reactors were run in parallel for 6 months; a thermophilic reactor at 55 degrees C and a reference reactor at 30 degrees C. Both reactors were operated simultaneously at 20, 15 and 10 days SRT. The effects of temperature and SRT on sludge settleability and chemical oxygen demand (COD) removal efficiencies of different fractions were studied. Total COD removal percentages over the whole experimental period were 58+/-5% at 30 degrees C and 48 +/- 10% at 55 degrees C. The effect of the SRT on the total COD removal was negligible. Differences in total COD removal between both systems were due to a lesser removal of soluble and colloidal COD at 55 degrees C compared to the reference system. At 30 degrees C, colloidal COD removal percentages were 65+/-25%, 75+/-17% and 86+/-22% at 20, 15 and 10 days SRT, respectively. At 55 degrees C, these percentages were 48+/-34%, 40+/-28% and 70+/-25%, respectively. The effluent concentrations of colloidal COD in both systems were related to the influent concentration of colloidal material. The thermophilic sludge was not able to retain influent colloidal material as well as the mesophilic sludge causing a higher thermophilic effluent turbidity. Sludge settling properties were excellent in both reactor systems. These were neither temperature nor SRT dependent but were rather caused by extensive calcium precipitation in the aeration tanks creating a very dense sludge. For application in the board industry, a thermophilic in line treatment system seems feasible. The higher effluent turbidity is most likely offset by the energy gains of treatment under

  16. In situ identification of nocardioform actinomycetes in activated sludge using fluorescent rRNA-targeted oligonucleotide probes.

    PubMed

    Schuppler, M; Wagner, M; Schön, G; Göbel, U B

    1998-01-01

    Hitherto, few environmental samples have been investigated by a 'full cycle rRNA analysis'. Here the results of in situ hybridization experiments with specific rRNA-targeted oligonucleotide probes developed on the basis of new sequences derived from a previously described comparative 16S rRNA analysis of nocardioform actinomycetes in activated sludge are reported. Application of the specific probes enabled identification and discrimination of the distinct populations of nocardioform actinomycetes in activated sludge. One of the specific probes (DLP) detected rod-shaped bacteria which were found in 13 of the 16 investigated sludge samples from various wastewater treatment plants, suggesting their importance in the wastewater treatment process. Another probe (GLP2) hybridized with typically branched filaments of nocardioforms mainly found in samples from enhanced biological phosphorus removal plants, suggesting that these bacteria are involved in sludge foaming. The combination of in situ hybridization with fluorescently labelled rRNA-targeted oligonucleotide probes and confocal laser scanning microscopy improved the detection of nocardioform actinomycetes, which often showed only weak signals inside the activated-sludge flocs.

  17. Including the effects of filamentous bulking sludge during the simulation of wastewater treatment plants using a risk assessment model.

    PubMed

    Flores-Alsina, Xavier; Comas, Joaquim; Rodriguez-Roda, Ignasi; Gernaey, Krist V; Rosen, Christian

    2009-10-01

    The main objective of this paper is to demonstrate how including the occurrence of filamentous bulking sludge in a secondary clarifier model will affect the predicted process performance during the simulation of WWTPs. The IWA Benchmark Simulation Model No. 2 (BSM2) is hereby used as a simulation case study. Practically, the proposed approach includes a risk assessment model based on a knowledge-based decision tree to detect favourable conditions for the development of filamentous bulking sludge. Once such conditions are detected, the settling characteristics of the secondary clarifier model are automatically changed during the simulation by modifying the settling model parameters to mimic the effect of growth of filamentous bacteria. The simulation results demonstrate that including effects of filamentous bulking in the secondary clarifier model results in a more realistic plant performance. Particularly, during the periods when the conditions for the development of filamentous bulking sludge are favourable--leading to poor activated sludge compaction, low return and waste TSS concentrations and difficulties in maintaining the biomass in the aeration basins--a subsequent reduction in overall pollution removal efficiency is observed. Also, a scenario analysis is conducted to examine i) the influence of sludge retention time (SRT), the external recirculation flow rate (Q(r)) and the air flow rate in the bioreactor (modelled as k(L)a) as factors promoting bulking sludge, and ii) the effect on the model predictions when the settling properties are changed due to a possible proliferation of filamentous microorganisms. Finally, the potentially adverse effects of certain operational procedures are highlighted, since such effects are normally not considered by state-of-the-art models that do not include microbiology-related solids separation problems.

  18. Two-step nitrification in a pure moving bed biofilm reactor-membrane bioreactor for wastewater treatment: nitrifying and denitrifying microbial populations and kinetic modeling.

    PubMed

    Leyva-Díaz, J C; González-Martínez, A; Muñío, M M; Poyatos, J M

    2015-12-01

    The moving bed biofilm reactor-membrane bioreactor (MBBR-MBR) is a novel solution to conventional activated sludge processes and membrane bioreactors. In this study, a pure MBBR-MBR was studied. The pure MBBR-MBR mainly had attached biomass. The bioreactor operated with a hydraulic retention time (HRT) of 9.5 h. The kinetic parameters for heterotrophic and autotrophic biomasses, mainly nitrite-oxidizing bacteria (NOB), were evaluated. The analysis of the bacterial community structure of the ammonium-oxidizing bacteria (AOB), NOB, and denitrifying bacteria (DeNB) from the pure MBBR-MBR was carried out by means of pyrosequencing to detect and quantify the contribution of the nitrifying and denitrifying bacteria in the total bacterial community. The relative abundance of AOB, NOB, and DeNB were 5, 1, and 3%, respectively, in the mixed liquor suspended solids (MLSS), and these percentages were 18, 5, and 2%, respectively, in the biofilm density (BD) attached to carriers. The pure MBBR-MBR had a high efficiency of total nitrogen (TN) removal of 71.81±16.04%, which could reside in the different bacterial assemblages in the fixed biofilm on the carriers. In this regard, the kinetic parameters for autotrophic biomass had values of YA=2.3465 mg O2 mg N(-1), μm, A=0.7169 h(-1), and KNH=2.0748 mg NL(-1).

  19. Recovery of palladium(II) by methanogenic granular sludge.

    PubMed

    Pat-Espadas, Aurora M; Field, James A; Otero-Gonzalez, Lila; Razo-Flores, Elías; Cervantes, Francisco J; Sierra-Alvarez, Reyes

    2016-02-01

    This is the first report that demonstrates the ability of anaerobic methanogenic granular sludge to reduce Pd(II) to Pd(0). Different electron donors were evaluated for their effectiveness in promoting Pd reduction. Formate and H2 fostered both chemically and biologically mediated Pd reduction. Ethanol only promoted the reduction of Pd(II) under biotic conditions and the reduction was likely mediated by H2 released from ethanol fermentation. No reduction was observed in biotic or abiotic assays with all other substrates tested (acetate, lactate and pyruvate) although a large fraction of the total Pd was removed from the liquid medium likely due to biosorption. Pd(II) displayed severe inhibition towards acetoclastic and hydrogenotrophic methanogens, as indicated by 50% inhibiting concentrations as low as 0.96 and 2.7 mg/L, respectively. The results obtained indicate the potential of utilizing anaerobic granular sludge bioreactor technology as a practical and promising option for Pd(II) reduction and recovery offering advantages over pure cultures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Activated Sludge. Instructor's Guide. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Boe, Owen K.

    This instructor's guide contains the materials needed to teach a seven-lesson unit on activated sludge. These materials include an overview of the unit, lesson plans, lecture outlines (keyed to slides designed for use with the lessons), student worksheets for each of the seven lessons (with answers), and two copies of a final quiz (with and…

  1. Aerobic digestion of starch wastewater in a fluidized bed bioreactor with low density biomass support.

    PubMed

    Rajasimman, M; Karthikeyan, C

    2007-05-08

    A solid-liquid-gas, multiphase, fluidized bed bioreactor with low density particles was used in this study to treat the high organic content starch industry wastewater. The characteristics of starch wastewater were studied. It shows high organic content and acidic nature. The performance of a three phase fluidized bed bioreactor with low density biomass support was studied under various average initial substrate concentrations, by varying COD values (2250, 4475, 6730 and 8910 mg/L) and for various hydraulic retention times (8, 16, 24, 32 and 40 h) based on COD removal efficiency. The optimum bed height for the maximum COD reduction was found to be 80 cm. Experiments were carried out in the bioreactor at an optimized bed height, after the formation of biofilm on the surface of low-density particles (density=870 kg/m(3)). Mixed culture obtained from the sludge, taken from starch industry effluent treatment plant, was used as the source for microorganisms. From the results it was observed that increase in initial substrate concentration leads to decrease in COD reduction and COD reduction increases with increase in hydraulic retention time. The optimum COD removal of 93.8% occurs at an initial substrate concentration of 2250 mg/L and for the hydraulic retention time of 24h.

  2. Sorption and Release of Organics by Primary, Anaerobic, and Aerobic Activated Sludge Mixed with Raw Municipal Wastewater

    PubMed Central

    Modin, Oskar; Saheb Alam, Soroush; Persson, Frank; Wilén, Britt-Marie

    2015-01-01

    New activated sludge processes that utilize sorption as a major mechanism for organics removal are being developed to maximize energy recovery from wastewater organics, or as enhanced primary treatment technologies. To model and optimize sorption-based activated sludge processes, further knowledge about sorption of organics onto sludge is needed. This study compared primary-, anaerobic-, and aerobic activated sludge as sorbents, determined sorption capacity and kinetics, and investigated some characteristics of the organics being sorbed. Batch sorption assays were carried out without aeration at a mixing velocity of 200 rpm. Only aerobic activated sludge showed net sorption of organics. Sorption of dissolved organics occurred by a near-instantaneous sorption event followed by a slower process that obeyed 1st order kinetics. Sorption of particulates also followed 1st order kinetics but there was no instantaneous sorption event; instead there was a release of particles upon mixing. The 5-min sorption capacity of activated sludge was 6.5±10.8 mg total organic carbon (TOC) per g volatile suspend solids (VSS) for particulate organics and 5.0±4.7 mgTOC/gVSS for dissolved organics. The observed instantaneous sorption appeared to be mainly due to organics larger than 20 kDa in size being sorbed, although molecules with a size of about 200 Da with strong UV absorbance at 215–230 nm were also rapidly removed. PMID:25768429

  3. Enhanced nitrogen removal in the combined activated sludge-biofilter system of the Southpest Wastewater Treatment Plant.

    PubMed

    Jobbágy, A; Tardy, G M; Literáthy, B

    2004-01-01

    In 1999 the existing activated sludge unit of the Southpest Wastewater Treatment Plant was supplemented by a two-stage biofilter system aiming for nitrification and post-denitrification. In this arrangement excess biomass of the filters is wasted through the activated sludge unit, facilitating backseeding, and recirculation of the nitrate-rich effluent of the N-filter serves for decreasing the methanol demand of the DN-filter and for saving aeration energy at the same time. The paper reports on the development of an ASM1-based mathematical model that proved to be adequate for describing the interactions in the combined system and was used to compare the efficiency of different treatment options. Full-scale results verified that backseeding may considerably improve performance. However, nitrification ability of the activated sludge unit depends on the treatment temperature and, if unexpected, can be limited by insufficient oxygen supply. The upgrading possibilities outlined may serve as a new perspective for implementation of combined activated sludge-biofilter systems.

  4. Production of polyhydroxyalkanoates (PHA) by bacterial consortium from excess sludge fermentation liquid at laboratory and pilot scales.

    PubMed

    Jia, Qianqian; Xiong, Huilei; Wang, Hui; Shi, Hanchang; Sheng, Xinying; Sun, Run; Chen, Guoqiang

    2014-11-01

    The generation of polyhydroxyalkanoates (PHA) from excess sludge fermentation liquid (SFL) was studied at lab and pilot scale. A PHA-accumulated bacterial consortium (S-150) was isolated from activated sludge using simulated SFL (S-SFL) contained high concentration volatile fatty acids (VFA) and nitrogen. The maximal PHA content accounted for 59.18% in S-SFL and dropped to 23.47% in actual SFL (L-SFL) of the dry cell weight (DCW) at lab scale. The pilot-scale integrated system comprised an anaerobic fermentation reactor (AFR), a ceramic membrane system (CMS) and a PHA production bio-reactor (PHAR). The PHA content from pilot-scale SFL (P-SFL) finally reached to 59.47% DCW with the maximal PHA yield coefficient (YP/S) of 0.17 g PHA/g COD. The results indicated that VFA-containing SFL was suitable for PHA production. The adverse impact of excess nitrogen and non-VFAs in SFL might be eliminated by pilot-scale domestication, which might resulted in community structure optimization and substrate selective ability improvement of S-150. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Biotechnology Specimen Temperature Controller (BSTC) will cultivate cells until their turn in the bioreactor; it can also be used in culturing experiments that do not require the bioreactor. The BSTC comprises four incubation/refrigeration chambers individually set at 4 to 50 deg. C (near-freezing to above body temperature). Each chamber holds three rugged tissue chamber modules (12 total), clear Teflon bags holding 30 ml of growth media, all positioned by a metal frame. Every 7 to 21 days (depending on growth rates), an astronaut uses a shrouded syringe and the bags' needleless injection ports to transfer a few cells to a fresh media bag, and to introduce a fixative so that the cells may be studied after flight. The design also lets the crew sample the media to measure glucose, gas, and pH levels, and to inspect cells with a microscope. The controller is monitored by the flight crew through a 23-cm (9-inch) color computer display on the face of the BSTC. This view shows the BTSC with the front panel open. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  6. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Biotechnology Specimen Temperature Controller (BSTC) will cultivate cells until their turn in the bioreactor; it can also be used in culturing experiments that do not require the bioreactor. The BSTC comprises four incubation/refrigeration chambers individually set at 4 to 50 degreesC (near-freezing to above body temperature). Each chamber holds three rugged tissue chamber modules (12 total), clear Teflon bags holding 30 ml of growth media, all positioned by a metal frame. Every 7 to 21 days (depending on growth rates), an astronaut uses a shrouded syringe and the bags' needleless injection ports to transfer a few cells to a fresh media bag, and to introduce a fixative so that the cells may be studied after flight. The design also lets the crew sample the media to measure glucose, gas, and pH levels, and to inspect cells with a microscope. The controller is monitored by the flight crew through a 23-cm (9-inch) color computer display on the face of the BSTC. This view shows the BTSC with the front panel open. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  7. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Bioreactor Demonstration System (BDS) comprises an electronics module, a gas supply module, and the incubator module housing the rotating wall vessel and its support systems. Nutrient media are pumped through an oxygenator and the culture vessel. The shell rotates at 0.5 rpm while the irner filter typically rotates at 11.5 rpm to produce a gentle flow that ensures removal of waste products as fresh media are infused. Periodically, some spent media are pumped into a waste bag and replaced by fresh media. When the waste bag is filled, an astronaut drains the waste bag and refills the supply bag through ports on the face of the incubator. Pinch valves and a perfusion pump ensure that no media are exposed to moving parts. An Experiment Control Computer controls the Bioreactor, records conditions, and alerts the crew when problems occur. The crew operates the system through a laptop computer displaying graphics designed for easy crew training and operation. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. See No. 0101825 for a version with major elements labeled, and No. 0103180 for an operational schematic. 0101816

  8. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Bioreactor Demonstration System (BDS) comprises an electronics module, a gas supply module, and the incubator module housing the rotating wall vessel and its support systems. Nutrient media are pumped through an oxygenator and the culture vessel. The shell rotates at 0.5 rpm while the irner filter typically rotates at 11.5 rpm to produce a gentle flow that ensures removal of waste products as fresh media are infused. Periodically, some spent media are pumped into a waste bag and replaced by fresh media. When the waste bag is filled, an astronaut drains the waste bag and refills the supply bag through ports on the face of the incubator. Pinch valves and a perfusion pump ensure that no media are exposed to moving parts. An Experiment Control Computer controls the Bioreactor, records conditions, and alerts the crew when problems occur. The crew operates the system through a laptop computer displaying graphics designed for easy crew training and operation. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. See No. 0101816 for a version without labels, and No. 0103180 for an operational schematic.

  9. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Bioreactor Demonstration System (BDS) comprises an electronics module, a gas supply module, and the incubator module housing the rotating wall vessel and its support systems. Nutrient media are pumped through an oxygenator and the culture vessel. The shell rotates at 0.5 rpm while the irner filter typically rotates at 11.5 rpm to produce a gentle flow that ensures removal of waste products as fresh media are infused. Periodically, some spent media are pumped into a waste bag and replaced by fresh media. When the waste bag is filled, an astronaut drains the waste bag and refills the supply bag through ports on the face of the incubator. Pinch valves and a perfusion pump ensure that no media are exposed to moving parts. An Experiment Control Computer controls the Bioreactor, records conditions, and alerts the crew when problems occur. The crew operates the system through a laptop computer displaying graphics designed for easy crew training and operation. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. See No. 0101823 for a version without labels, and No. 0103180 for an operational schematic.

  10. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Bioreactor Demonstration System (BDS) comprises an electronics module, a gas supply module, and the incubator module housing the rotating wall vessel and its support systems. Nutrient media are pumped through an oxygenator and the culture vessel. The shell rotates at 0.5 rpm while the irner filter typically rotates at 11.5 rpm to produce a gentle flow that ensures removal of waste products as fresh media are infused. Periodically, some spent media are pumped into a waste bag and replaced by fresh media. When the waste bag is filled, an astronaut drains the waste bag and refills the supply bag through ports on the face of the incubator. Pinch valves and a perfusion pump ensure that no media are exposed to moving parts. An Experiment Control Computer controls the Bioreactor, records conditions, and alerts the crew when problems occur. The crew operates the system through a laptop computer displaying graphics designed for easy crew training and operation. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. See No. 0101824 for a version with labels, and No. 0103180 for an operational schematic.

  11. Bioreactor rotating wall vessel

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Cell constructs grown in a rotating bioreactor on Earth (left) eventually become too large to stay suspended in the nutrient media. In the microgravity of orbit, the cells stay suspended. Rotation then is needed for gentle stirring to replenish the media around the cells.

  12. Fate and removal of pharmaceuticals and illicit drugs in conventional and membrane bioreactor wastewater treatment plants and by riverbank filtration.

    PubMed

    Petrovic, Mira; de Alda, Maria Jose Lopez; Diaz-Cruz, Silvia; Postigo, Cristina; Radjenovic, Jelena; Gros, Meritxell; Barcelo, Damià

    2009-10-13

    Pharmaceutically active compounds (PhACs) and drugs of abuse (DAs) are two important groups of emerging environmental contaminants that have raised an increasing interest in the scientific community. A number of studies revealed their presence in the environment. This is mainly due to the fact that some compounds are not efficiently removed during wastewater treatment processes, being able to reach surface and groundwater and subsequently, drinking waters. This paper reviews the data regarding the levels of pharmaceuticals and illicit drugs detected in wastewaters and gives an overview of their removal by conventional treatment technologies (applying activated sludge) as well as advanced treatments such as membrane bioreactor. The paper also gives an overview of bank filtration practices at managed aquifer recharge sites and discusses the potential of this approach to mitigate the contamination by PhACs and DAs.

  13. Domestic wastewater treatment by a submerged MBR (membrane bio-reactor) with enhanced air sparging.

    PubMed

    Chang, I S; Judd, S J

    2003-01-01

    The air sparging technique has been recognised as an effective way to control membrane fouling. However, its application to a submerged MBR (Membrane Bio-Reactor) has not yet been reported. This paper deals with the performances of air sparging on a submerged MBR for wastewater treatment. Two kinds of air sparging techniques were used respectively. First, air is injected into the membrane tube channels so that mixed liquor can circulate in the bioreactor (air-lift mode). Second, a periodic air-jet into the membrane tube is introduced (air-jet mode). Their applicability was evaluated with a series of lab-scale experiments using domestic wastewater. The flux increased from 23 to 33 l m(-2) h(-1) (43% enhancement) when air was injected for the air-lift module. But further increase of flux was not observed as the gas flow increased. The Rc/(Rc+Rf), ratio of cake resistance (Rc) to sum of Rc and Rf (internal fouling resistance), was 23%, indicating that the Rc is not the predominant resistance unlike other MBR studies. It showed that the cake layer was removed sufficiently due to the air injection. Thus, an increase of airflow could not affect the flux performance. The air-jet module suffered from a clogging problem with accumulated sludge inside the lumen. Because the air-jet module has characteristics of dead end filtration, a periodic air-jet was not enough to blast all the accumulated sludge out. But flux was greater than in the air-lift module if the clogging was prevented by an appropriate cleaning regime such as periodical backwashing.

  14. Pollutant removal characteristics of a two-influent-line BNR process performing denitrifying phosphorus removal: role of sludge recycling ratios.

    PubMed

    Liu, Hongbo; Leng, Feng; Chen, Piao; Kueppers, Stephan

    2016-11-01

    This paper studied denitrifying phosphorus removal of a novel two-line biological nutrient removal process treating low strength domestic wastewater under different sludge recycling ratios. Mass balance of intracellular compounds including polyhydroxyvalerate, polyhydroxybutyrate and glycogen was investigated together with total nitrogen (TN) and total phosphorus (TP). Results showed that sludge recycling ratios had a significant influence on the use of organics along bioreactors and 73.6% of the average removal efficiency was obtained when the influent chemical oxygen demand (COD) ranged from 175.9 mgL -1 to 189.9 mgL -1 . The process performed better under a sludge recycling ratio of 100% compared to 25% and 50% in terms of ammonia and COD removal rates. Overall, TN removal efficiency for 50% and 100% sludge recycling ratios were 56.4% and 61.9%, respectively, unlike the big gap for carbon utilization and the TP removal rates, indicating that the effect of sludge recycling ratio on the anaerobic compartments had been counteracted by change in the efficiency of other compartments. The higher ratio of sludge recycling was conducive to the removal of TN, not in favor of TP, and less influence on COD. Thus, 25% was considered to be the optimal sludge recycling ratio.

  15. Operational Control Procedures for the Activated Sludge Process: Appendix.

    ERIC Educational Resources Information Center

    West, Alfred W.

    This document is the appendix for a series of documents developed by the National Training and Operational Technology Center describing operational control procedures for the activated sludge process used in wastewater treatment. Categories discussed include: control test data, trend charts, moving averages, semi-logarithmic plots, probability…

  16. Effect of magnetic powder on membrane fouling mitigation and microbial community/composition in membrane bioreactors (MBRs) for municipal wastewater treatment.

    PubMed

    Liu, Yi; Liu, Qiang; Li, Jixiang; Ngo, Huu Hao; Guo, Wenshan; Hu, Jiajun; Gao, Min-Tian; Wang, Qiyuan; Hou, Yuansheng

    2018-02-01

    This study aims to investigate the usefulness of magnetic powder addition in membrane bioreactors (MBRs) for membrane fouling mitigation and its effect on microbial community and composition. The comparison between the two MBRs (one with magnetic powder (MAS-MBR) and one without magnetic powder (C-MBR)) was carried out to treat synthetic municipal wastewater. Results showed that bioflocculation and adsorption of magnetic powder contributed only minimally to membrane fouling mitigation while the slower fouling rate might be ascribed to magnetic bio-effect. The macromolecules (larger than 500 kDa and 300-500 kDa) of soluble microbial product from the MAS-MBR were reduced by 24.06% and 11.11%, respectively. High-throughput sequencing demonstrated the most abundant genera of biofilm sludge indicated lower abundance in bulk sludge from the MAS-MBR compared to the C-MBR. It is possible that less membrane fouling is connected to reductions in large molecules and pioneer bacteria from bulk sludge. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Evaluation and characterization during the anaerobic digestion of high-strength kitchen waste slurry via a pilot-scale anaerobic membrane bioreactor.

    PubMed

    Xiao, Xiaolan; Huang, Zhenxing; Ruan, Wenquan; Yan, Lintao; Miao, Hengfeng; Ren, Hongyan; Zhao, Mingxing

    2015-10-01

    The anaerobic digestion of high-strength kitchen waste slurry via a pilot-scale anaerobic membrane bioreactor (AnMBR) was investigated at two different operational modes, including no sludge discharge and daily sludge discharge of 20 L. The AnMBR provided excellent and reliable permeate quality with high COD removal efficiencies over 99%. The obvious accumulations of long chain fatty acids (LCFAs) and Ca(2+) were found in the anaerobic digester by precipitation and agglomeration. Though the physicochemical process contributed to attenuating the free LCFAs toxicity on anaerobic digestion, the digestion efficiency was partly influenced for the low bioavailability of those precipitates. Moreover, higher organic loading rate (OLR) of 5.8 kg COD/(m(3) d) and digestion efficiency of 78% were achieved as the AnMBR was stably operated with sludge discharge, where the membrane fouling propensity was also alleviated, indicating the crucial significance of SRT control on the treatment of high-strength kitchen waste slurry via AnMBRs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. [Improvement of municipal sewage sludge dewaterability by bioleaching: a pilot-scale study with a continuous plug flow reaction model].

    PubMed

    Liu, Fen-Wu; Zhou, Li-Xiang; Zhou, Jun; Jiang, Feng

    2011-10-01

    A plug-flow bio-reactor of 700 L working volume for sludge bioleaching was used in this study. The reactor was operationally divided into six sections along the direction of the sludge movement. Ten duration of continuous operation of sludge bioleaching with Acidibacillus spp. and 1.2 m3 x h(-1) aeration amount was conducted. In this system, sludge retention time was 2.5 d, and the added amount of microbial nutritional substance was 4 g x L(-1). During sludge bioleaching, the dynamic changes of pH, dewaterability (specific resistance to filtration, SRF) of sewage sludge in different sections, the moisture content and moisture evaporation rate of dewatered bioleached sludge cake obtained by chamber filter press were investigated. The results showed that the SRF of sludge significantly decreased from initial 1.50 x 10(13) m x kg(-1) to the final 0.34 x 10(13) m x kg(-1). The wasted bioleached sludge was collected and dewatered by chamber filter press under the following pressures as 0.3 MPa for 4 h (2 h for feeding sludge, 2 h for holding pressure), 3 h (1.5 h for feeding sludge, 1.5 h for holding pressure), 2 h (1 h for feeding sludge, 1 h for holding pressure), and 1 h (0.5 h for feeding sludge, 0.5 h for holding pressure). Correspondingly, the moisture of dewatered sludge was reduced to 57.9%, 59.2%, 59.6%, and 63.4% of initial moisture, respectively. Moreover, the moisture content of bioleached sludge cake was reduced to about 45% and less than 10% if the cake was placed at 25 degrees C for 15 h and 96 h, respectively. Obviously, sludge bioleaching followed by sludge dewatering using chamber filter press is a promising attractive approach for sludge half-dryness treatment in engineering application.

  19. Influences of Different Conditioners on Dehydration Ratio of Activated Sludge

    NASA Astrophysics Data System (ADS)

    Zhuo, Qiongfang; Zheng, Wenli; Yi, Hao; Chen, Sili; Xu, Zhencheng; Jin, Zhong; Lan, Yongzhe; Guo, Qingwei

    2017-11-01

    Excess sludge contains a large quantity of water with water content reaching about 97%-99%. Besides microorganisms and germs, the sludge is of complicated composition, including heavy metals, persistent organic pollutants, PPCPs, endocrine disrupters, etc. It covers a large area with harmfulness, so it needs further treatment. However, due to existence of extracellular polymeric substances in the sludge, the sludge has poor dehydration property, so how to improve dehydration of sludge is a difficult point in water treatment industry. Chemical conditioning—mechanical dehydration method is sludge dehydration technology which has been widely applied in China. Most sludge treatment plants use organic and inorganic conditioners like polyacrylamide (PAM), polyaluminum chloride (PAC) and polymerized ferrous sulfate (PFS), etc. With characteristics of low toxicity and degradation resistance, these conditioners pose potential risks to the environment and they are adverse to follow-up resource utilization. Therefore, influences of 17 conditioners on sludge dehydration ratio were discussed in this paper, expecting to seek for green, environmentally friendly and highly efficient conditioner so as to improve resource utilization ratio of sludge.

  20. Calicivirus Removal in a Membrane Bioreactor Wastewater Treatment Plant▿

    PubMed Central

    Sima, Laura C.; Schaeffer, Julien; Le Saux, Jean-Claude; Parnaudeau, Sylvain; Elimelech, Menachem; Le Guyader, Françoise S.

    2011-01-01

    To evaluate membrane bioreactor wastewater treatment virus removal, a study was conducted in southwest France. Samples collected from plant influent, an aeration basin, membrane effluent, solid sludge, and effluent biweekly from October 2009 to June 2010 were analyzed for calicivirus (norovirus and sapovirus) by real-time reverse transcription-PCR (RT-PCR) using extraction controls to perform quantification. Adenovirus and Escherichia coli also were analyzed to compare removal efficiencies. In the influent, sapovirus was always present, while the norovirus concentration varied temporally, with the highest concentration being detected from February to May. All three human norovirus genogroups (GI, GII, and GIV) were detected in effluent, but GIV was never detected in effluent; GI and GII were detected in 50% of the samples but at low concentrations. In the effluent, sapovirus was identified only once. An adenovirus titer showing temporal variation in influent samples was identified only twice in effluent. E. coli was always below the limit of detection in the effluent. Overall, the removal of calicivirus varied from 3.3 to greater than 6.8 log units, with no difference between the two main genogroups. Our results also demonstrated that the viruses are blocked by the membrane in the treatment plant and are removed from the plant as solid sludge. PMID:21666029

  1. ENHANCED BIODEGRADATION OF IOPROMIDE AND TRIMETHOPRIM IN NITRIFYING ACTIVATED SLUDGE

    EPA Science Inventory

    Iopromide and trimethoprim are frequently detected pharmaceuticals in effluents of wastewater treatment plants and in surface waters due to their persistence and high usage. Laboratory scale experiments showed that a significantly higher removal rate in nutrifying activated sludg...

  2. The enhancement of anaerobic biodegradability of waste activated sludge by surfactant mediated biological pretreatment.

    PubMed

    Kavitha, S; Jayashree, C; Adish Kumar, S; Yeom, Ick Tae; Rajesh Banu, J

    2014-09-01

    In this study, the role of sodium dodecyl sulfate (SDS) was explored for the removal of extracellular polymeric substance (EPS) from waste activated sludge (WAS) followed by enzymatic bacterial pretreatment, which enhanced the subsequent anaerobic biodegradability. EPS was removed with 0.02 g/g SS of SDS. In the results of pretreatment, the suspended solids reduction and chemical oxygen demand solubilization were found to be 25.7% and 19.79% for deflocculated and bacterially pretreated sludge, whereas they were found to be 15.7% and 11% for flocculated sludge (without EPS removal and bacterially pretreated) and 7.85% and 6% for control sludge (raw sludge), respectively. Upon examining the anaerobic biodegradability, the biogas yield potential of deflocculated and bacterially pretreated, flocculated, deflocculated alone, and control sludges were found to be 0.467 L/(g VS), 0.355 L/(g VS), 0.315 L/(g VS), and 0.212 L/(g VS), respectively. Thus, the deflocculation and bacterial pretreatment improved the anaerobic biodegradability efficiently. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Effect on the operation properties of DMBR with the addition of GAC

    NASA Astrophysics Data System (ADS)

    Lin, Jizhi; Zhang, Qian; Hong, Junming

    2017-01-01

    The membrane bioreactor and dynamic membrane bioreactor were used to examine the effect of granular activated carbon (GAC) on the treatment of synthetic wastewater. After the addition of different volume fractions GAC in the DMBR, the operation parameters, effluent COD, NH4 +-N, NO3 --N, TN concentrations and sludge viscosity of the bioreactor was investigated. The results showed that the addition of GAC could relieve the membrane fouling and improve the removal efficiencies of pollutants in the DMBR. The effluent concentrations of pollutants were linear correlation with the addition of volume fractions of GAC in the bioreactor. The value of R2 of each modulation was almost more than 0.9. The sludge viscosity was almost not affected by the volume fractions of GAC in the bioreactor. The best volume fractions of GAC were 20% in the DMBR.

  4. A review of the technological solutions for the treatment of oily sludges from petroleum refineries.

    PubMed

    da Silva, Leonardo Jordão; Alves, Flávia Chaves; de França, Francisca Pessôa

    2012-10-01

    The activities of the oil industry have several impacts on the environment due to the large amounts of oily wastes that are generated. The oily sludges are a semi-solid material composed by a mixture of clay, silica and iron oxides contaminated with oil, produced water and the chemicals used in the production of oil. Nowadays both the treatment and management of these waste materials is essential to promote sustainable management of exploration and exploitation of natural resources. Biological, physical and chemical processes can be used to reduce environmental contamination by petroleum hydrocarbons to acceptable levels. The choice of treatment method depends on the physical and chemical properties of the waste as well as the availability of facilities to process these wastes. Literature provides some operations for treatment of oily sludges, such as landfilling, incineration, co-processing in clinkerization furnaces, microwave liquefaction, centrifugation, destructive distillation, thermal plasma, low-temperature conversion, incorporation in ceramic materials, development of impermeable materials, encapsulation and biodegradation in land farming, biopiles and bioreactors. The management of the technology to be applied for the treatment of oily wastes is essential to promote proper environmental management, and provide alternative methods to reduce, reuse and recycle the wastes.

  5. Roles of magnetite and granular activated carbon in improvement of anaerobic sludge digestion.

    PubMed

    Peng, Hong; Zhang, Yaobin; Tan, Dongmei; Zhao, Zhiqiang; Zhao, Huimin; Quan, Xie

    2018-02-01

    Granular activated carbon (GAC) or magnetite could promote methane production from organic wastes, but their roles in enhancing anaerobic sludge digestion have not been clarified. GAC, magnetite and their combination were complemented into sludge digesters, respectively. Experimental results showed that average methane production increased by 7.3% for magnetite, 13.1% for GAC, and 20% for the combination of magnetite and GAC, and the effluent TCOD of the control, magnetite, GAC and magnetite-GAC digesters on day 56 were 53.2, 49.6, 48.0 and 46.6 g/L, respectively. Scanning electron microscope (SEM), nitrogen adsorption, Fourier transform infrared spectroscopy (FTIR) and microbial analysis indicated that magnetite enriched iron-reducing bacteria responsible for sludge hydrolysis while GAC enhanced syntrophic metabolism between iron-reducing bacteria and methanogens due to its high electrical conductivity and large surface area. Supplementing magnetite and GAC together into an anaerobic digester simultaneously accelerated sludge hydrolysis and methane production, resulting in better sludge digestion performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. [Using Excess Activated Sludge Treated 4-Chlorophenol Contained Waste Water to Cultivate Chlorella vulgaris].

    PubMed

    Wang, Lu; Chen, Xiu-rong; Yan, Long; He, Yi-xuan; Shi, Zhen-dong

    2015-04-01

    Using different rations of sludge extracts and supernate from 4-Chlorophenol (4-CP) simulated wastewater's excess sludge after centrifugation to cultivate the Chlorella vulgaris to achieve the goal of excess sludge utilization together with chlorella cultivating. The experiments were performed in 500 mL flasks with different rations of sludge extracts & BG-11 and supernate & BG-11 in a light growth chamber respectively. Number of algal cells, Chlorophyll, enzyme activity, oil and water total nitrogen (TN), total phosphorus (TP), total organic carbon (TOC), toxicity index were investigated. Result showed that the nutrition supplies and toxicity in the excess sludge were removed efficiently via Chlorella vulgaris, the removal rates of TN and TP were at least 40% and 90% respectively; After 10 days cultivation, the density growth of 50% sludge extracts was 20 times higher of the beginning while its chlorophyll content was lower than that of the blank group. Sludge extracts could promote the proliferation of algae, but were not conducive to the synthesis of chlorophyll. The quantity of SOD in per cell showed Chlorella vulgaris gave a positive response via stimulation from toxicant in sludge extracts and supernate. The best time for collecting chlorella vulgaris was the fifth day of cultivation, taking neutral oil accumulation as the evaluating indicator for its utilization combined with the removal of supplies and toxicity.

  7. An examination of the treatment of iron-dosed waste activated sludge by anaerobic digestion.

    PubMed

    Johnson, D K; Carliell-Marquet, C M; Forster, C F

    2003-08-01

    Anaerobic digestion is an important sludge treatment process enabling stabilisation of the organic fraction of sewage sludge prior to land application. Any practice which might retard the anaerobic digestion process will jeopardize the stability of the resulting digested sludge. This paper reports on an investigation into the relative digestibility of iron-dosed waste activated sludge (WAS) from a sewage treatment works (STW) with chemical phosphorus removal (CPR), in comparison to WAS from a works without phosphorus removal. Two laboratory scale anaerobic digesters (51) were fed initially with non iron-dosed WAS (Works M) at a solids retention time of 19 days. After 2 months the iron-dosed CPR sludge (Works R) was introduced into the second digester, resulting in a 32% decrease in biogas production and an increase in the methane content of the biogas from an average of 74% to 81%. Pre-treatment of the CPR sludge with sodium sulphide and shear, both alone and in combination, caused the gas production to deteriorate further. Pre-acidification and pre-treatment with EDTA did result in an enhanced gas production but it was still not comparable with that of the digester being fed with non-iron-dosed sludge. The daily gas production was found to be linearly related to the amount of bound iron in the sludge.

  8. Microbial dynamics in upflow anaerobic sludge blanket (UASB) bioreactor granules in response to short-term changes in substrate feed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovacik, William P.; Scholten, Johannes C.; Culley, David E.

    2010-08-01

    The complexity and diversity of the microbial communities in biogranules from an upflow anaerobic sludge blanket (UASB) bioreactor were determined in response to short-term changes in substrate feeds. The reactor was fed simulated brewery wastewater (SBWW) (70% ethanol, 15% acetate, 15% propionate) for 1.5 months (phase 1), acetate / sulfate for 2 months (phase 2), acetate-alone for 3 months (phase 3), and then a return to SBWW for 2 months (phase 4). Performance of the reactor remained relatively stable throughout the experiment as shown by COD removal and gas production. 16S rDNA, methanogen-associated mcrA and sulfate reducer-associated dsrAB genes weremore » PCR amplified, then cloned and sequenced. Sequence analysis of 16S clone libraries showed a relatively simple community composed mainly of the methanogenic Archaea (Methanobacterium and Methanosaeta), members of the Green Non-Sulfur (Chloroflexi) group of Bacteria, followed by fewer numbers of Syntrophobacter, Spirochaeta, Acidobacteria and Cytophaga-related Bacterial sequences. Methanogen-related mcrA clone libraries were dominated throughout by Methanobacter and Methanospirillum related sequences. Although not numerous enough to be detected in our 16S rDNA libraries, sulfate reducers were detected in dsrAB clone libraries, with sequences related to Desulfovibrio and Desulfomonile. Community diversity levels (Shannon-Weiner index) generally decreased for all libraries in response to a change from SBWW to acetate-alone feed. But there was a large transitory increase noted in 16S diversity at the two-month sampling on acetate-alone, entirely related to an increase in Bacterial diversity. Upon return to SBWW conditions in phase 4, all diversity measures returned to near phase 1 levels.« less

  9. Basic Activated Sludge. Training Module 2.115.2.77.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with operation of activated sludge wastewater treatment plants. Included are objectives, instructor guides, student handouts, and transparency masters. This is the first of a three module series and considers definition of terms, design…

  10. Intermediate Activated Sludge. Training Module 2.116.3.77.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with operation of activated sludge wastewater treatment plants. Included are objectives, instructor guides, student handouts and transparency masters. This is the second level of a three module series and considers aeration devices,…

  11. Treatment of industrial effluents by a continuous system: electrocoagulation--activated sludge.

    PubMed

    Moisés, Tejocote-Pérez; Patricia, Balderas-Hernández; Barrera-Díaz, C E; Gabriela, Roa-Morales; Natividad-Rangel, Reyna

    2010-10-01

    A continuous system electrocoagulation--active sludge was designed and built for the treatment of industrial wastewater. The system included an electrochemical reactor with aluminum electrodes, a clarifier and a biological reactor. The electrochemical reactor was tested under different flowrates (50, 100 and 200 mL/min). In the biological reactor, the performance of different cultures of active sludge was assessed: coliform bacterial, ciliate and flagellate protozoa and aquatic fungus. Overall treatment efficiencies of color, turbidity and COD removal were 94%, 92% and 80%, respectively, under optimal conditions of 50 mL/min flowrate and using ciliate and flagellate protozoa. It was concluded that the system was efficient for the treatment of industrial wastewater. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. New insights into co-digestion of activated sludge and food waste: Biogas versus biofertilizer.

    PubMed

    Ma, Yingqun; Yin, Yao; Liu, Yu

    2017-10-01

    This study explored two holistic approaches for co-digestion of activated sludge and food waste. In Approach 1, mixed activated sludge and food waste were first hydrolyzed with fungal mash, and produced hydrolysate without separation was directly subject to anaerobic digestion. In Approach 2, solid generated after hydrolysis of food waste by fungal mash was directly converted to biofertilizer, while separated liquid with high soluble COD concentration was further co-digested with activated sludge for biomethane production. Although the potential energy produced from Approach 1 was about 1.8-time higher than that from Approach 2, the total economic revenue generated from Approach 2 was about 1.9-fold of that from Approach 1 due to high market value of biofertilizer. It is expected that this study may lead to a paradigm shift in biosolid management towards environmental and economic sustainability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Combining high-rate aerobic wastewater treatment with anaerobic digestion of waste activated sludge at a pulp and paper mill.

    PubMed

    Magnusson, Björn; Ekstrand, Eva-Maria; Karlsson, Anna; Ejlertsson, Jörgen

    2018-05-01

    The activated sludge process within the pulp and paper industry is generally run to minimize the production of waste activated sludge (WAS), leading to high electricity costs from aeration and relatively large basin volumes. In this study, a pilot-scale activated sludge process was run to evaluate the concept of treating the wastewater at high rate with a low sludge age. Two 150 L containers were used, one for aeration and one for sedimentation and sludge return. The hydraulic retention time was decreased from 24 hours to 7 hours, and the sludge age was lowered from 12 days to 2-4 days. The methane potential of the WAS was evaluated using batch tests, as well as continuous anaerobic digestion (AD) in 4 L reactors in mesophilic and thermophilic conditions. Wastewater treatment capacity was increased almost four-fold at maintained degradation efficiency. The lower sludge age greatly improved the methane potential of the WAS in batch tests, reaching 170 NmL CH 4 /g VS at a sludge age of 2 days. In addition, the continuous AD showed a higher methane production at thermophilic conditions. Thus, the combination of high-rate wastewater treatment and AD of WAS is a promising option for the pulp and paper industry.

  14. Free nitrous acid pre-treatment of waste activated sludge enhances volatile solids destruction and improves sludge dewaterability in continuous anaerobic digestion.

    PubMed

    Wei, Wei; Wang, Qilin; Zhang, Liguo; Laloo, Andrew; Duan, Haoran; Batstone, Damien J; Yuan, Zhiguo

    2018-03-01

    Previous work has demonstrated that pre-treatment of waste activated sludge (WAS) with free nitrous acid (FNA i.e. HNO 2 ) enhances the biodegradability of WAS, identified by a 20-50% increase in specific methane production in biochemical methane potential (BMP) tests. This suggests that FNA pre-treatment would enhance the destruction of volatile solids (VS) in an anaerobic sludge digester, and reduce overall sludge disposal costs, provided that the dewaterability of the digested sludge is not negatively affected. This study experimentally evaluates the impact of FNA pre-treatment on the VS destruction in anaerobic sludge digestion and on the dewaterability of digested sludge, using continuously operated bench-scale anaerobic digesters. Pre-treatment of full-scale WAS for 24 h at an FNA concentration of 1.8 mg NN/L enhanced VS destruction by 17 ± 1% (from 29.2 ± 0.9% to 34.2 ± 1.1%) and increased dewaterability (centrifuge test) from 12.4 ± 0.4% to 14.1 ± 0.4%. Supporting the VS destruction data, methane production increased by 16 ± 1%. Biochemical methane potential tests indicated that the final digestate stability was also improved with a lower potential from FNA treated digestate. Further, a 2.1 ± 0.2 log improvement in pathogen reduction was also achieved. With inorganic solids representing 15-22% of the full-scale WAS used, FNA pre-treatment resulted in a 16-17% reduction in the volume of dewatered sludge for final disposal. This results in significantly reduced costs as assessed by economic analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Bioreactor design concepts

    NASA Technical Reports Server (NTRS)

    Bowie, William

    1987-01-01

    Two parallel lines of work are underway in the bioreactor laboratory. One of the efforts is devoted to the continued development and utilization of a laboratory research system. That system's design is intended to be fluid and dynamic. The sole purpose of such a device is to allow testing and development of equipment concepts and procedures. Some of the results of those processes are discussed. A second effort is designed to produce a flight-like bioreactor contained in a double middeck locker. The result of that effort has been to freeze a particular bioreactor design in order to allow fabrication of the custom parts. The system is expected to be ready for flight in early 1988. However, continued use of the laboratory system will lead to improvements in the space bioreactor. Those improvements can only be integrated after the initial flight series.

  16. Dynamic modeling of nitrogen removal for a three-stage integrated fixed-film activated sludge process treating municipal wastewater.

    PubMed

    Moretti, Paul; Choubert, Jean-Marc; Canler, Jean-Pierre; Buffière, Pierre; Pétrimaux, Olivier; Lessard, Paul

    2018-02-01

    The integrated fixed-film activated sludge (IFAS) process is being increasingly used to enhance nitrogen removal for former activated sludge systems. The aim of this work is to evaluate a numerical model of a new nitrifying/denitrifying IFAS configuration. It consists of two carrier-free reactors (anoxic and aerobic) and one IFAS reactor with a filling ratio of 43% of carriers, followed by a clarifier. Simulations were carried out with GPS-X involving the nitrification reaction combined with a 1D heterogeneous biofilm model, including attachment/detachment processes. An original iterative calibration protocol was created comprising four steps and nine actions. Experimental campaigns were carried out to collect data on the pilot in operation, specifically for modelling purpose. The model used was able to predict properly the variations of the activated sludge (bulk) and the biofilm masses, the nitrification rates of both the activated sludge and the biofilm, and the nitrogen concentration in the effluent for short (4-10 days) and long (300 days) simulation runs. A calibrated parameter set is proposed (biokinetics, detachment, diffusion) related to the activated sludge, the biofilm and the effluent variables to enhance the model prediction on hourly and daily data sets.

  17. Mitigation of Membrane Biofouling in MBR Using a Cellulolytic Bacterium, Undibacterium sp. DM-1, Isolated from Activated Sludge.

    PubMed

    Nahm, Chang Hyun; Lee, Seonki; Lee, Sang Hyun; Lee, Kibaek; Lee, Jaewoo; Kwon, Hyeokpil; Choo, Kwang-Ho; Lee, Jung-Kee; Jang, Jae Young; Lee, Chung-Hak; Park, Pyung-Kyu

    2017-03-28

    Biofilm formation on the membrane surface results in the loss of permeability in membrane bioreactors (MBRs) for wastewater treatment. Studies have revealed that cellulose is not only produced by a number of bacterial species but also plays a key role during formation of their biofilm. Hence, in this study, cellulase was introduced to a MBR as a cellulose-induced biofilm control strategy. For practical application of cellulase to MBR, a cellulolytic ( i.e ., cellulase-producing) bacterium, Undibacterium sp. DM-1, was isolated from a lab-scale MBR for wastewater treatment. Prior to its application to MBR, it was confirmed that the cell-free supernatant of DM-1 was capable of inhibiting biofilm formation and of detaching the mature biofilm of activated sludge and cellulose-producing bacteria. This suggested that cellulase could be an effective anti-biofouling agent for MBRs used in wastewater treatment. Undibacterium sp. DM-1-entrapping beads ( i.e ., cellulolytic-beads) were applied to a continuous MBR to mitigate membrane biofouling 2.2-fold, compared with an MBR with vacant-beads as a control. Subsequent analysis of the cellulose content in the biofilm formed on the membrane surface revealed that this mitigation was associated with an approximately 30% reduction in cellulose by cellulolytic-beads in MBR.

  18. The activated sludge ecosystem contains a core community of abundant organisms

    PubMed Central

    Saunders, Aaron M; Albertsen, Mads; Vollertsen, Jes; Nielsen, Per H

    2016-01-01

    Understanding the microbial ecology of a system requires that the observed population dynamics can be linked to their metabolic functions. However, functional characterization is laborious and the choice of organisms should be prioritized to those that are frequently abundant (core) or transiently abundant, which are therefore putatively make the greatest contribution to carbon turnover in the system. We analyzed the microbial communities in 13 Danish wastewater treatment plants with nutrient removal in consecutive years and a single plant periodically over 6 years, using Illumina sequencing of 16S ribosomal RNA amplicons of the V4 region. The plants contained a core community of 63 abundant genus-level operational taxonomic units (OTUs) that made up 68% of the total reads. A core community consisting of abundant OTUs was also observed within the incoming wastewater to three plants. The net growth rate for individual OTUs was quantified using mass balance, and it was found that 10% of the total reads in the activated sludge were from slow or non-growing OTUs, and that their measured abundance was primarily because of immigration with the wastewater. Transiently abundant organisms were also identified. Among them the genus Nitrotoga (class Betaproteobacteria) was the most abundant putative nitrite oxidizer in a number of activated sludge plants, which challenges previous assumptions that Nitrospira (phylum Nitrospirae) are the primary nitrite-oxidizers in activated sludge systems with nutrient removal. PMID:26262816

  19. Activated-Sludge Nitrification in the Presence of Linear and Branched-Chain Alkyl Benzene Sulfonates

    PubMed Central

    Baillod, Charles R.; Boyle, W. C.

    1968-01-01

    The effects of biodegradable linear alkyl benzene sulfonate and branched-chain alkyl benzene sulfonate detergents on activated-sludge nitrification were investigated by administering a synthetic waste containing up to 23 mg of each detergent per liter to eight bench-scale, batch, activated-sludge units. It was found that both detergents tended to promote complete oxidation of ammonia to nitrate, whereas control units produced approximately equal amounts of nitrite and nitrate. Various hypotheses are offered to explain the phenomenon. PMID:5636474

  20. BIOLOGICALLY ENHANCED OXYGEN TRANSFER IN THE ACTIVATED SLUDGE PROCESS (JOURNAL)

    EPA Science Inventory

    Biologically enhanced oxgyen transfer has been a hypothesis to explain observed oxygen transfer rates in activated sludge systems that were well above that predicted from aerator clean-water testing. The enhanced oxygen transfer rates were based on tests using BOD bottle oxygen ...

  1. Bacteriophages of wastewater foaming-associated filamentous Gordonia reduce host levels in raw activated sludge.

    PubMed

    Liu, Mei; Gill, Jason J; Young, Ry; Summer, Elizabeth J

    2015-09-09

    Filamentous bacteria are a normal and necessary component of the activated sludge wastewater treatment process, but the overgrowth of filamentous bacteria results in foaming and bulking associated disruptions. Bacteriophages, or phages, were investigated for their potential to reduce the titer of foaming bacteria in a mixed-microbial activated sludge matrix. Foaming-associated filamentous bacteria were isolated from activated sludge of a commercial wastewater treatment plan and identified as Gordonia species by 16S rDNA sequencing. Four representative phages were isolated that target G. malaquae and two un-named Gordonia species isolates. Electron microscopy revealed the phages to be siphophages with long tails. Three of the phages--GordTnk2, Gmala1, and GordDuk1--had very similar ~76 kb genomes, with >93% DNA identity. These genomes shared limited synteny with Rhodococcus equi phage ReqiDocB7 and Gordonia phage GTE7. In contrast, the genome of phage Gsput1 was smaller (43 kb) and was not similar enough to any known phage to be placed within an established phage type. Application of these four phages at MOIs of 5-15 significantly reduced Gordonia host levels in a wastewater sludge model by approximately 10-fold as compared to non-phage treated reactors. Phage control was observed for nine days after treatment.

  2. Comparison of biodiesel production from sewage sludge obtained from the A²/O and MBR processes by in situ transesterification.

    PubMed

    Qi, Juanjuan; Zhu, Fenfen; Wei, Xiang; Zhao, Luyao; Xiong, Yiqun; Wu, Xuemin; Yan, Fawei

    2016-03-01

    The potential of two types of sludge obtained from the anaerobic-anoxic-oxic (A(2)/O) and membrane bioreactor (MBR) processes as lipid feedstock for biodiesel production via in situ transesterification was investigated. Experiments were conducted to determine the optimum conditions for biodiesel yield using three-factor and four-level orthogonal and single-factor tests. Several factors, namely, methanol-to-sludge mass ratio, acid concentration, and temperature, were examined. The optimum yield of biodiesel (16.6% with a fatty acid methyl ester purity of 96.7%) from A(2)/O sludge was obtained at a methanol-to-sludge mass ratio of 10:1, a temperature of 60°C, and a H2SO4 concentration of 5% (v/v). Meanwhile, the optimum yield of biodiesel (4.2% with a fatty acid methyl ester purity of 92.7%) from MBR sludge was obtained at a methanol-to-sludge mass ratio of 8:1, a temperature of 50°C, and a H2SO4 concentration of 5% (v/v). In this research, A(2)/O technology with a primary sedimentation tank is more favorable for obtaining energy from wastewater than MBR technology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Effect of activated sludge acclimation aeration time on bayberry wastewater

    NASA Astrophysics Data System (ADS)

    Shi, Liang; He, Lingfeng; Zhang, Yongli

    2018-03-01

    Taking the myrica rubra pickle wastewater of Chaozhou Kang Hui group as the water sample, biochemical method was used to treat the wastewater, after domestication, the biochemical treatment was carried out. The influence of time on COD index was investigated. The results showed that: tap water: sewage: sludge = 1:1:1, 900 mL each. Under the action of 30 min time, the supernatant was taken at 100 mL, and the wastewater was added to 900 mL,. Under the action of activated sludge, the degradation of myrica rubra wastewater samples, after domestication 84 h, the effect is better. Under this condition, the standard of SBR process for wastewater treatment is reached.

  4. Full-scale evaluation of a multi-component additive for efficient control of activated sludge filamentous bulking.

    PubMed

    Seka, M A; Van DeWiele, T; Verstraete, W

    2002-01-01

    A multi-component additive formulated for a more efficient control of activated sludge filamentous bulking was evaluated at a full-scale treatment plant experiencing severe filamentous bulking. It was found that, besides offering an immediate improvement of sludge settling, the multi-component additive was able to eliminate the filamentous bacteria causing the bulking. Hence, contrary to ordinary additives, this novel additive yielded immediate as well as long-term improvements in sludge sedimentation upon a few additions. Preliminary lab-scale toxicity tests showed that the treatment of the sludge by the additive should not impart any toxicity to the resulting effluent.

  5. Study on Adsorption of Chromium (VI) by Activated Carbon from Cassava Sludge

    NASA Astrophysics Data System (ADS)

    Yang, Jinhui; Li, Chuanshu; Yang, Bin; Kang, Sijun; Zhang, Zhen

    2018-03-01

    In this paper, a new type of adsorbent prepared by waste sludge from alcohol production industry was used to adsorb Cr (VI) in activated carbon from cassava sludge. A series of static adsorption experiments were carried out on the initial concentration of solution Cr (VI), pH value of solution, adsorption time and dosage of adsorbent. The results of single factor experiments show that the removal rate of Cr (VI) increases with the initial concentration of Cr(VI), while the adsorption amount is opposite. When the pH value of the solution is low, the adsorption effect of activated carbon is better.The adsorption time should be controlled within 40-60min. When the activated carbon dosage is increased, the removal rate increases but the adsorption capacity decreases.

  6. Modeling microbial products in activated sludge under feast-famine conditions.

    PubMed

    Ni, Bing-Jie; Fang, Fang; Rittmann, Bruce E; Yu, Han-Qing

    2009-04-01

    We develop an expanded unified model that integrates production and consumption of internal storage products (X(STO)) into a unified model for extracellular polymeric substances (EPS), soluble microbial products (SMP), and active and inert biomass in activated sludge. We also conducted independent experiments to find needed parameter values and to test the ability of the expanded unified model to describe all the microbial products, along with original substrate and oxygen uptake. The model simulations match all experimental measurements and provide insights into the dynamics of soluble and solid components in activated sludge exposed to dynamic feast-and-famine conditions in two batch experiments and in one cycle of a sequencing batch reactor. In particular, the model illustrates how X(STO) cycles up and down rapidly during feast and famine periods, while EPS and biomass components are relatively stable despite feast and famine. The agreement between model outputs and experimental EPS, SMP, and X(STO) data from distinctly different experiments supports that the expanded unified model properly captures the relationships among the forms of microbial products.

  7. Long-term effect of ZnO nanoparticles on waste activated sludge anaerobic digestion.

    PubMed

    Mu, Hui; Chen, Yinguang

    2011-11-01

    The increasing use of zinc oxide nanoparticles (ZnO NPs) raises concerns about their environmental impacts, but the potential effect of ZnO NPs on sludge anaerobic digestion remains unknown. In this paper, long-term exposure experiments were carried out to investigate the influence of ZnO NPs on methane production during waste activated sludge (WAS) anaerobic digestion. The presence of 1 mg/g-TSS of ZnO NPs did not affect methane production, but 30 and 150 mg/g-TSS of ZnO NPs induced 18.3% and 75.1% of inhibition respectively, which showed that the impact of ZnO NPs on methane production was dosage dependant. Then, the mechanisms of ZnO NPs affecting sludge anaerobic digestion were investigated. It was found that the toxic effect of ZnO NPs on methane production was mainly due to the release of Zn(2+) from ZnO NPs, which may cause the inhibitory effects on the hydrolysis and methanation steps of sludge anaerobic digestion. Further investigations with enzyme and fluorescence in situ hybridization (FISH) assays indicated that higher concentration of ZnO NPs decreased the activities of protease and coenzyme F(420), and the abundance of methanogenesis Archaea. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Real-time PCR for rapidly detecting aniline-degrading bacteria in activated sludge.

    PubMed

    Kayashima, Takakazu; Suzuki, Hisako; Maeda, Toshinari; Ogawa, Hiroaki I

    2013-05-01

    We developed a detection method that uses quantitative real-time PCR (qPCR) and the TaqMan system to easily and rapidly assess the population of aniline-degrading bacteria in activated sludge prior to conducting a biodegradability test on a chemical compound. A primer and probe set for qPCR was designed by a multiple alignment of conserved amino acid sequences encoding the large (α) subunit of aniline dioxygenase. PCR amplification tests showed that the designed primer and probe set targeted aniline-degrading strains such as Acidovorax sp., Gordonia sp., Rhodococcus sp., and Pseudomonas putida, thereby suggesting that the developed method can detect a wide variety of aniline-degrading bacteria. There was a strong correlation between the relative copy number of the α-aniline dioxygenase gene in activated sludge obtained with the developed qPCR method and the number of aniline-degrading bacteria measured by the Most Probable Number method, which is the conventional method, and a good correlation with the lag time of the BOD curve for aniline degradation produced by the biodegradability test in activated sludge samples collected from eight different wastewater treatment plants in Japan. The developed method will be valuable for the rapid and accurate evaluation of the activity of inocula prior to conducting a ready biodegradability test. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Cycle-time determination and process control of sequencing batch membrane bioreactors.

    PubMed

    Krampe, J

    2013-01-01

    In this paper a method to determine the cycle time for sequencing batch membrane bioreactors (SBMBRs) is introduced. One of the advantages of SBMBRs is the simplicity of adapting them to varying wastewater composition. The benefit of this flexibility can only be fully utilised if the cycle times are optimised for the specific inlet load conditions. This requires either proactive and ongoing operator adjustment or active predictive instrument-based control. Determination of the cycle times for conventional sequencing batch reactor (SBR) plants is usually based on experience. Due to the higher mixed liquor suspended solids concentrations in SBMBRs and the limited experience with their application, a new approach to calculate the cycle time had to be developed. Based on results from a semi-technical pilot plant, the paper presents an approach for calculating the cycle time in relation to the influent concentration according to the Activated Sludge Model No. 1 and the German HSG (Hochschulgruppe) Approach. The approach presented in this paper considers the increased solid contents in the reactor and the resultant shortened reaction times. This allows for an exact calculation of the nitrification and denitrification cycles with a tolerance of only a few minutes. Ultimately the same approach can be used for a predictive control strategy and for conventional SBR plants.

  10. Cells growing in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    For 5 days on the STS-70 mission, a bioreactor cultivated human colon cancer cells, which grew to 30 times the volume of control specimens grown on Earth. This significant result was reproduced on STS-85 which grew mature structures that more closely match what are found in tumors in humans. Shown here, clusters of cells slowly spin inside a bioreactor. On Earth, the cells continually fall through the buffer medium and never hit bottom. In space, they are naturally suspended. Rotation ensures gentle stirring so waste is removed and fresh nutrient and oxygen are supplied. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  11. Exploring the Bioelectrochemical Characteristics of Activated Sludge Using Cyclic Voltammetry.

    PubMed

    Khater, Dena Z; El-Khatib, K M; Hassan, Rabeay Y A

    2018-01-01

    Due to the potential interest, bioelectrochemical responses of activated sludge using the three-electrode system are tested. From the cyclic voltammograms, the oxidation current output is increasing due to incubation time increase, whereas 5, 25 and 39.33 μA are obtained after 3, 72 and 96 h, respectively. Changing the working electrode from glassy carbon to carbon paste led to the increase in the electrochemical signal from 0.3 to be 3.72 μA. On the other hand, the use of the lipophilic redox mediator (2,6-dichlorophenolindophenol (DCIP)) amplified the oxidation current to reach 19.9 μA instead of 2.1 μA. Based on these findings, the mixed microbial community of the activated sludge is exploited as a catalyst for the bio-oxidation of the degradable organic substrates, while DCIP is used as a mobile electron carrier from the intracellular matrix of the metabolically active cells to the carbon paste electrode which served as the final electron acceptor. Therefore, the extracellular electron transfer from the formed active biofilm at the electrode surface is assisted by the existence of DCIP.

  12. Clinical scale rapid expansion of lymphocytes for adoptive cell transfer therapy in the WAVE® bioreactor

    PubMed Central

    2012-01-01

    Background To simplify clinical scale lymphocyte expansions, we investigated the use of the WAVE®, a closed system bioreactor that utilizes active perfusion to generate high cell numbers in minimal volumes. Methods We have developed an optimized rapid expansion protocol for the WAVE bioreactor that produces clinically relevant numbers of cells for our adoptive cell transfer clinical protocols. Results TIL and genetically modified PBL were rapidly expanded to clinically relevant scales in both static bags and the WAVE bioreactor. Both bioreactors produced comparable numbers of cells; however the cultures generated in the WAVE bioreactor had a higher percentage of CD4+ cells and had a less activated phenotype. Conclusions The WAVE bioreactor simplifies the process of rapidly expanding tumor reactive lymphocytes under GMP conditions, and provides an alternate approach to cell generation for ACT protocols. PMID:22475724

  13. Design challenges for space bioreactors

    NASA Technical Reports Server (NTRS)

    Seshan, P. K.; Petersen, G. R.

    1989-01-01

    The design of bioreactors for operation under conditions of microgravity presents problems and challenges. Absence of a significant body force such as gravity can have profound consequences for interfacial phenomena. Marangoni convection can no longer be overlooked. Many speculations on the advantages and benefits of microgravity can be found in the literature. Initial bioreactor research considerations for space applications had little regard for the suitability of the designs for conditions of microgravity. Bioreactors can be classified in terms of their function and type of operation. The complex interaction of parameters leading to optimal design and operation of a bioreactor is illustrated by the JSC mammalian cell culture system. The design of a bioreactor is strongly dependent upon its intended use as a production unit for cell mass and/or biologicals or as a research reactor for the study of cell growth and function. Therefore a variety of bioreactor configurations are presented in rapid summary. Following this, a rationale is presented for not attempting to derive key design parameters such as the oxygen transfer coefficient from ground-based data. A set of themes/objectives for flight experiments to develop the expertise for design of space bioreactors is then proposed for discussion. These experiments, carried out systematically, will provide a database from which engineering tools for space bioreactor design will be derived.

  14. Estimating biodiversity of fungi in activated sludge communities using culture-independent methods.

    PubMed

    Evans, Tegan N; Seviour, Robert J

    2012-05-01

    Fungal diversity of communities in several activated sludge plants treating different influent wastes was determined by comparative sequence analyses of their 18S rRNA genes. Methods for DNA extraction and choice of primers for PCR amplification were both optimised using denaturing gradient gel electrophoresis profile patterns. Phylogenetic analysis revealed that the levels of fungal biodiversity in some communities, like those treating paper pulp wastes, were low, and most of the fungi detected in all communities examined were novel uncultured representatives of the major fungal subdivisions, in particular, the newly described clade Cryptomycota. The fungal populations in activated sludge revealed by these culture-independent methods were markedly different to those based on culture-dependent data. Members of the genera Penicillium, Cladosporium, Aspergillus and Mucor, which have been commonly identified in mixed liquor, were not identified in any of these plant communities. Non-fungal eukaryotic 18S rRNA genes were also amplified with the primer sets used. This is the first report where culture-independent methods have been applied to flocculated activated sludge biomass samples to estimate fungal community composition and, as expected, the data obtained gave a markedly different view of their population biodiversity compared to that based on culture-dependent methods.

  15. Rheology measurement for on-line monitoring of filaments proliferation in activated sludge tanks.

    PubMed

    Tixier, N; Guibaud, G; Baudu, M

    2004-01-01

    Rheological behaviour of filamentous sludges originated from activated sludge reactors was studied. Filamentous bulking was detected via a hysteresis loop developed from rheograms resulting from increasing-decreasing shear rates. The rheological parameter reduced hysteresis area (rHa), corresponding to the loop area developed by rheograms was used to quantify filamentous bulking. Application to the evolution of several bulkings was carried out and it was shown that filaments proliferation and disappearance were correlated with, respectively, the increasing and decreasing of the value of the parameter rHa. In parallel with rheological measurement, parameters used for the study of sludge quality, such as sludge volume index (SVI) and settling initial flow (F0), were determined for comparison during the evolution of several bulkings. It was shown that rHa was more sensitive to the appearance of filamentous bulking than SVI and F0, therefore it was concluded that detection of filamentous bulking can be shown from rHa.

  16. Effect of granular activated carbon on the aerobic granulation of sludge and its mechanism.

    PubMed

    Tao, Jia; Qin, Lian; Liu, Xiaoying; Li, Bolin; Chen, Junnan; You, Juan; Shen, Yitian; Chen, Xiaoguo

    2017-07-01

    The granulation of activated sludge and effect of granular activated carbon (GAC) was investigated under the alternative anaerobic and aerobic conditions. The results showed that GAC accelerated the granulation, but had no obvious effect on the bacterial community structure of granules. The whole granulation process could be categorized into three phases, i.e. lag, granulation and granule maturation phase. During lag period GAC provided nuclei for sludge to attach, and thus enhanced the morphological regularization of sludge. During granulation period the granule size increased significantly due to the growth of bacteria in granules. GAC reduced the compression caused by the inter-particle collisions and thus accelerate the granulation. GAC has no negative effect on the performance of SBR, and thus efficient simultaneous removal of COD, nitrogen and phosphorus were obtained during most of the operating time. Copyright © 2017. Published by Elsevier Ltd.

  17. Enhancement of anaerobic digestibility of waste activated sludge using photo-Fenton pretreatment.

    PubMed

    Heng, Gan Chin; Isa, Mohamed Hasnain; Lim, Jun-Wei; Ho, Yeek-Chia; Zinatizadeh, Ali Akbar Lorestani

    2017-12-01

    Biological treatments, such as activated sludge process, are common methods to treat municipal and industrial wastewaters. However, they produce huge amounts of waste activated sludge (WAS). The excess sludge treatment and disposal are a challenge for wastewater treatment plants due to economic, environmental, and regulatory factors. In this study, photo-Fenton pretreatment (oxidation using hydrogen peroxide and iron catalyst aided with UV light) was optimized using response surface methodology (RSM) and central composite design (CCD) to determine the effects of three operating parameters (H 2 O 2 dosage, H 2 O 2 /Fe 2+ molar ratio, and irradiation time) on disintegration and dewaterability of WAS. MLVSS removal, capillary suction time (CST) reduction, sCOD, and EPS were obtained as 70%, 25%, 12,000 mg/L, and 500 mg/L, respectively, at the optimal conditions, i.e., 725 g H 2 O 2 /kg TS, H 2 O 2 /Fe 2+ molar ratio 80, and irradiation time 40 min. Two batch-fed completely mixed mesophilic anaerobic digesters were then operated at 15-day solid retention time (SRT) and 37 ± 0.5 °C to compare the digestibility of untreated and photo-Fenton pretreated sludge in terms of volatile solids (VS) reduction, COD removal, and biogas production at steady-state operations. Photo-Fenton pretreatment followed by anaerobic digestion of WAS was very effective and yielded 75.7% total VS reduction, 81.5% COD removal, and 0.29-0.31 m 3 /kg VS fed ·d biogas production rate, compared to 40.7% total VS solid reduction, 54.7% COD removal, and 0.12-0.17 m 3 /kg VS fed ·d biogas production rate for control. Thus, photo-Fenton can be a useful pretreatment step in sludge management.

  18. Mitigation of nitrous oxide (N2 O) emission from swine wastewater treatment in an aerobic bioreactor packed with carbon fibers.

    PubMed

    Yamashita, Takahiro; Yamamoto-Ikemoto, Ryoko; Yokoyama, Hiroshi; Kawahara, Hirofumi; Ogino, Akifumi; Osada, Takashi

    2015-03-01

    Mitigation of nitrous oxide (N2 O) emission from swine wastewater treatment was demonstrated in an aerobic bioreactor packed with carbon fibers (CF reactor). The CF reactor had a demonstrated advantage in mitigating N2 O emission and avoiding NOx (NO3  + NO2 ) accumulation. The N2 O emission factor was 0.0003 g N2 O-N/gTN-load in the CF bioreactor compared to 0.03 gN2 O-N/gTN-load in an activated sludge reactor (AS reactor). N2 O and CH4 emissions from the CF reactor were 42 g-CO2 eq/m(3) /day, while those from the AS reactor were 725 g-CO2 eq/m(3) /day. The dissolved inorganic nitrogen (DIN) in the CF reactor removed an average of 156 mg/L of the NH4 -N, and accumulated an average of 14 mg/L of the NO3 -N. In contrast, the DIN in the AS reactor removed an average 144 mg/L of the NH4 -N and accumulated an average 183 mg/L of the NO3 -N. NO2 -N was almost undetectable in both reactors. © 2014 Japanese Society of Animal Science.

  19. Effects of different sludge disintegration methods on sludge moisture distribution and dewatering performance.

    PubMed

    Jin, Lingyun; Zhang, Guangming; Zheng, Xiang

    2015-02-01

    A key step in sludge treatment is sludge dewatering. However, activated sludge is generally very difficult to be dewatered. Sludge dewatering performance is largely affected by the sludge moisture distribution. Sludge disintegration can destroy the sludge structure and cell wall, so as change the sludge floc structure and moisture distribution, thus affecting the dewatering performance of sludge. In this article, the disintegration methods were ultrasound treatment, K2FeO4 oxidation and KMnO4 oxidation. The degree of disintegration (DDCOD), sludge moisture distribution and the final water content of sludge cake after centrifuging were measured. Results showed that three disintegration methods were all effective, and K2FeO4 oxidation was more efficient than KMnO4 oxidation. The content of free water increased obviously with K2FeO4 and KMnO4 oxidations, while it decreased with ultrasound treatment. The changes of free water and interstitial water were in the opposite trend. The content of bounding water decreased with K2FeO4 oxidation, and increased slightly with KMnO4 oxidation, while it increased obviously with ultrasound treatment. The water content of sludge cake after centrifuging decreased with K2FeO4 oxidation, and did not changed with KMnO4 oxidation, but increased obviously with ultrasound treatment. In summary, ultrasound treatment deteriorated the sludge dewaterability, while K2FeO4 and KMnO4 oxidation improved the sludge dewaterability. Copyright © 2014. Published by Elsevier B.V.

  20. Entrapped cells-based-anaerobic membrane bioreactor treating domestic wastewater: Performances, fouling, and bacterial community structure.

    PubMed

    Juntawang, Chaipon; Rongsayamanont, Chaiwat; Khan, Eakalak

    2017-11-01

    A laboratory scale study on treatment performances and fouling of entrapped cells-based-anaerobic membrane bioreactor (E-AnMBR) in comparison with suspended cells-based-bioreactor (S-AnMBR) treating domestic wastewater was conducted. The difference between E-AnMBR and S-AnMBR was the uses of cells entrapped in phosphorylated polyvinyl alcohol versus planktonic cells. Bulk organic removal efficiencies by the two AnMBRs were comparable. Lower concentrations of suspended biomass, bound extracellular polymeric substances and soluble microbial products in E-AnMBR resulted in less fouling compared to S-AnMBR. S-AnMBR provided 7 days of operation time versus 11 days for E-AnMBR before chemical cleaning was required. The less frequent chemical cleaning potentially leads to a longer membrane life-span for E-AnMBR compared to S-AnMBR. Phyla Proteobacteria, Chloroflexi, Bacteroidetes and Acidobacteria were dominant in cake sludge from both AnMBRs but their abundances were different between the two AnMBRs, suggesting influence of cell entrapment on the bacteria community. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. [Improvement of municipal sewage sludge dewaterability by bioleaching: a pilot-scale study with sequence batch reaction model].

    PubMed

    Liu, Fen-Wu; Zhou, Li-Xiang; Zhou, Jun; Jiang, Feng; Wang, Dian-Zhan

    2011-07-01

    To observe the bioleaching effect on sewage sludge dewaterability, three consecutive batch bioleaching experiments were conducted through a bioleaching bio-reactor with 700 L of working volume. Subsequently, the bioleached sludge was dewatered by using chamber filter press. The results show that the 1st batch bioleaching process can be finished within 90 hours if the aeration amount was 1.2 m3/h with the 1: 15 mixing ratio of bioleached sludge to raw sludge. The pH of sludge declines from initial 6.11 to 2.33 while ORP increased from initial -134 mV to finial 507 mV. The specific resistance to filtration (SRF) of the tested sludge was decreased from original 1.00 x 10(13) m/kg to final 0.09 x 10(13) m/kg after bioleaching. For the subsequent two batch trials, the bioleaching process can be finished in 40 hours and 46 hours, respectively. Likewise, sludge SRF is also significantly decreased to 0.19 x 10(13) m/kg and 0.36 x 10(13) m/kg if the mixing ratio of bioleached sludge to fresh sludge is 1:1 although the microbial nutrient substance dosage is reduced by 25% and 50% for 2nd, and 3rd batch experiments, respectively. The harvested bioleached sludge from three batch trails is dewatered by chamber filter press with 0.3-0.4 MPa working pressure for 2 hours. It is found that the moisture of dewatered sludge cake can be reduced to 58%, and that the dewatered sludge cake is of khaki appearance and didn't emit any offensive odor. In addition, it is also observes that sludge organic matter only changed a bit from 52.9% to 48.0%, but 58% of sludge-borne Cu and 88% of sludge-borne Zn can be removed from sludge by bioleaching process. Therefore, dual goals for sludge-borne heavy metal removal and sludge dewatering of high efficiency can be achieved simultaneously through the approach mentioned above. Therefore, bioleaching technique is of great engineering application for the treatment of sewage sludge.

  2. Enhancement of waste activated sludge dewaterability using calcium peroxide pre-oxidation and chemical re-flocculation.

    PubMed

    Chen, Zhan; Zhang, Weijun; Wang, Dongsheng; Ma, Teng; Bai, Runying; Yu, Dezhong

    2016-10-15

    The effects of combined calcium peroxide (CaO2) oxidation with chemical re-flocculation on dewatering performance and physicochemical properties of waste activated sludge was investigated in this study. The evolutions of extracellular polymeric substances (EPS) distribution, composition and morphological properties were analyzed to unravel the sludge conditioning mechanism. It was found that sludge filtration performance was enhanced by calcium peroxide oxidation with the optimal dosage of 20 mg/gTSS. However, this enhancement was not observed at lower dosages due to the absence of oxidation and the performance deteriorated at higher dosages because of the release of excess EPS, mainly as protein-like substances. The variation in soluble EPS (SEPS) component can be fitted well with pseudo-zero-order kinetic model under CaO2 treatment. At the same time, extractable EPS content (SEPS and loosely bound EPS (LB-EPS)) were dramatically increased, indicating sludge flocs were effectively broken and their structure became looser after CaO2 addition. The sludge floc structure was reconstructed and sludge dewaterability was significantly enhanced using chemical re-flocculation (polyaluminium chloride (PACl), ferric iron (FeCl3) and polyacrylamide (PAM)). The inorganic coagulants performed better in improving sludge filtration dewatering performance and reducing cake moisture content than organic polymer, since they could act as skeleton builders and decrease the sludge compressibility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The influence of SRT on phosphorus removal and sludge characteristics in the HA-A/A-MCO sludge reduction process

    NASA Astrophysics Data System (ADS)

    Zuo, N.; Ji, F. Y.

    2013-02-01

    By researching the influence of sludge age (SRT) on phosphorous removal and sludge characteristics in the HA-A/A-MCO (hydrolysis-acidification-anaerobic/anoxic-multistep continuous oxic tank) process, which has the effect of simultaneous phosphorous and nitrogen removal and sludge reduction, it is found that extended SRT is helpful for improving the ability of anaerobic phosphorous release and chemical recovery of phosphate, but the hosphorous removal efficiency is not affected. Extended SRT causes the system to have even more active sludge; it can also lead to the system having a powerful ability of biochemical reaction by using superiority of concentration. Meanwhile, extended SRT can still reduce sludge yield. Extended SRT cannot make soluble metabolic product (SMP) accumulate in the reactor, so that the pollutant removal power is reduced; it also cannot affect the activity of the sludge. However, extended SRT is able to make the coagulation of the sludge hard, and cause the sludge volume index value increase, but cannot cause sludge bulking.

  4. Preparation of thiol-functionalized activated carbon from sewage sludge with coal blending for heavy metal removal from contaminated water.

    PubMed

    Li, Juan; Xing, Xing; Li, Jiao; Shi, Mei; Lin, Aijun; Xu, Congbin; Zheng, Jianzhong; Li, Ronghua

    2018-03-01

    Sewage sludge produced from wastewater treatment is a pressing environmental issue. Mismanagement of the massive amount of sewage sludge would threat our valuble surface and shallow ground water resources. Use of activated carbon prepared from carbonization of these sludges for heavy metal removal can not only minimize and stabilize these hazardous materials but also realize resources reuse. In this study, thiol-functionalized activated carbon was synthesized from coal-blended sewage sludge, and its capacity was examined for removing Cu(II), Pb(II), Cd(II) and Ni(II) from water. Pyrolysis conditions to prepare activated carbons from the sludge and coal mixture were examined, and the synthesized material was found to achieve the highest BET surface area of 1094 m 2 /g under 500 °C and 30 min. Batch equilibrium tests indicated that the thiol-functionalized activated carbon had a maximum sorption capacity of 238.1, 96.2, 87.7 and 52.4 mg/g for Pb(II), Cd(II), Cu(II) and Ni(II) removal from water, respectively. Findings of this study suggest that thiol-functionalized activated carbon prepared from coal-blended sewage sludge would be a promising sorbent material for heavy metal removal from waters contaminated with Cu(II), Pb(II), Cd(II) and Ni(II). Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Characteristics of membrane fouling in submerged membrane bioreactor under sub-critical flux operation.

    PubMed

    Su, Y C; Huang, C P; Pan, Jill R; Lee, H C

    2008-01-01

    Recently, the membrane bioreactor (MBR) process has become one of the novel technologies to enhance the performance of biological treatment of wastewater. Membrane bioreactor process uses the membrane unit to replace a sediment tank, and this can greatly enhance treatment performance. However, membrane fouling in MBR restricts its widespread application because it leads to permeate flux decline, making more frequent membrane cleaning and replacement necessary, which then increases operating and maintenance costs. This study investigated the sludge characteristics in membrane fouling under sub-critical flux operation and also assessed the effect of shear stress on membrane fouling. Membrane fouling was slow under sub-critical flux operation. However, as filamentous microbes became dominant in the reactor, membrane fouling increased dramatically due to the increased viscosity and polysaccharides. A close link was found between membrane fouling and the amount of polysaccharides in soluble EPS. The predominant resistance was the cake resistance which could be minimized by increasing the shear stress. However, the resistance of colloids and solutes was not apparently reduced by increasing shear stress. Therefore, smaller particles such as macromolecules (e.g. polysaccharides) may play an important role in membrane fouling under sub-critical flux operation.

  6. Bioreactor Transient Exposure Activates Specific Neurotrophic Pathway in Cortical Neurons

    NASA Astrophysics Data System (ADS)

    Zimmitti, V.; Benedetti, E.; Caracciolo, V.; Sebastiani, P.; Di Loreto, S.

    2010-02-01

    Altered gravity forces might influence neuroplasticity and can provoke changes in biochemical mechanisms. In this contest, neurotrophins have a pivotal role, particularly nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF). A suspension of dissociated cortical cells from rat embryos was exposed to 24 h of microgravity before plating in normal adherent culture system. Expression and transductional signalling pathways of NGF and BDNF were assessed at the end of maturational process (8-10 days in vitro). Rotating wall vessel bioreactor (RWV) pre-exposition did not induce changes in NGF expression and its high affinity receptor TrkA. On the contrary both BDNF expression and its high affinity receptor TrkB were strongly up-regulated, inducing Erk-5, but not Erk-1/2 activation and, in turn, MEF2C over-expression and activation. According to our previous and present results, we postulate that relatively short microgravitational stimuli, applied to neural cells during the developmental stage, exert a long time activation of specific neurotrophic pathways.

  7. Mechanical and hydraulic properties of sludge deposit on sludge drying reed beds (SDRBs): influence of sludge characteristics and loading rates.

    PubMed

    Vincent, Julie; Forquet, Nicolas; Molle, Pascal; Wisniewski, Christelle

    2012-07-01

    This work was designed to study the hydraulic properties of sludge deposit, focusing on the impact of operating conditions (i.e. loads and feeding frequencies) on air entrance (aerobic mineralization optimization) into the sludge deposit. The studied sludge deposits came from six 2m(2) pilot-scale SDRBs that had been in operation for 50 months with three different loads of 30, 50, and 70 kg of SSm(-2) y(-1). Two influents were assessed (i.e. activated sludge and septage) presenting different characteristics (i.e. pollutant contents, physical properties...). Two experimental approaches were employed based on establishing the water retention curve (capillary pressure versus volumetric water content) and the hydrotextural diagram to determine the hydraulic properties of sludge deposit. The study obtained valuable information for optimizing operating conditions, specifically for efficient management of loading frequency to optimize aerobic conditions within the sludge deposit. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Denitrification in a low-temperature bioreactor system at two different hydraulic residence times: laboratory column studies.

    PubMed

    Nordström, Albin; Herbert, Roger B

    2017-06-01

    Nitrate removal rates in a mixture of pine woodchips and sewage sludge were determined in laboratory column studies at 5°C, 12°C, and 22°C, and at two different hydraulic residence times (HRTs; 58.2-64.0 hours and 18.7-20.6 hours). Baffles installed in the flow path were tested as a measure to reduce preferential flow behavior, and to increase the nitrate removal in the columns. The nitrate removal in the columns was simulated at 5°C and 12°C using a combined Arrhenius-Monod equation controlling the removal rate, and a first-order exchange model for incorporation of stagnant zones. Denitrification in the mixture of pine woodchips and sewage sludge reduced nitrate concentrations of 30 mg N L -1 at 5°C to below detection limits at a HRT of 58.2-64.0 hours. At a HRT of 18.7-20.6 hours, nitrate removal was incomplete. The Arrhenius frequency factor and activation energy retrieved from the low HRT data supported a biochemically controlled reaction rate; the same parameters, however, could not be used to simulate the nitrate removal at high HRT. The results show an inversely proportional relationship between the advection velocity and the nitrate removal rate, suggesting that bioreactor performance could be enhanced by promoting low advection velocities.

  9. Bacteriophages of wastewater foaming-associated filamentous Gordonia reduce host levels in raw activated sludge

    PubMed Central

    Liu, Mei; Gill, Jason J.; Young, Ry; Summer, Elizabeth J.

    2015-01-01

    Filamentous bacteria are a normal and necessary component of the activated sludge wastewater treatment process, but the overgrowth of filamentous bacteria results in foaming and bulking associated disruptions. Bacteriophages, or phages, were investigated for their potential to reduce the titer of foaming bacteria in a mixed-microbial activated sludge matrix. Foaming-associated filamentous bacteria were isolated from activated sludge of a commercial wastewater treatment plan and identified as Gordonia species by 16S rDNA sequencing. Four representative phages were isolated that target G. malaquae and two un-named Gordonia species isolates. Electron microscopy revealed the phages to be siphophages with long tails. Three of the phages - GordTnk2, Gmala1, and GordDuk1 - had very similar ~76 kb genomes, with >93% DNA identity. These genomes shared limited synteny with Rhodococcus equi phage ReqiDocB7 and Gordonia phage GTE7. In contrast, the genome of phage Gsput1 was smaller (43 kb) and was not similar enough to any known phage to be placed within an established phage type. Application of these four phages at MOIs of 5–15 significantly reduced Gordonia host levels in a wastewater sludge model by approximately 10-fold as compared to non-phage treated reactors. Phage control was observed for nine days after treatment. PMID:26349678

  10. Quantitative response of nitrifying and denitrifying communities to environmental variables in a full-scale membrane bioreactor.

    PubMed

    Gómez-Silván, C; Vílchez-Vargas, R; Arévalo, J; Gómez, M A; González-López, J; Pieper, D H; Rodelas, B

    2014-10-01

    The abundance and transcription levels of specific gene markers of total bacteria, ammonia-oxidizing Betaproteobacteria, nitrite-oxidizing bacteria (Nitrospira-like) and denitrifiers (N2O-reducers) were analyzed using quantitative PCR (qPCR) and reverse-transcription qPCR during 9 months in a full-scale membrane bioreactor treating urban wastewater. A stable community of N-removal key players was developed; however, the abundance of active populations experienced sharper shifts, demonstrating their fast adaptation to changing conditions. Despite constituting a small percentage of the total bacterial community, the larger abundances of active populations of nitrifiers explained the high N-removal accomplished by the MBR. Multivariate analyses revealed that temperature, accumulation of volatile suspended solids in the sludge, BOD5, NH4(+) concentration and C/N ratio of the wastewater contributed significantly (23-38%) to explain changes in the abundance of nitrifiers and denitrifiers. However, each targeted group showed different responses to shifts in these parameters, evidencing the complexity of the balance among them for successful biological N-removal. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Effect of sudden addition of PCE and bioreactor coupling to ZVI filters on performance of fluidized bed bioreactors operated in simultaneous electron acceptor modes.

    PubMed

    Moreno-Medina, C U; Poggi-Varaldo, Hector M; Breton-Deval, L; Rinderknecht-Seijas, N

    2017-11-01

    The present work evaluated the effects of (i) feeding a water contaminated with 80 mg/L PCE to bioreactors seeded with inoculum not acclimated to PCE, (ii) coupling ZVI side filters to bioreactors, and (iii) working in different biological regimes, i.e., simultaneous methanogenic aeration and simultaneous methanogenic-denitrifying regimes, on fluidized bed bioreactor performance. Simultaneous electron acceptors refer to the simultaneous presence of two compounds operating as final electron acceptors in the biological respiratory chain (e.g., use of either O 2 or NO 3 - in combination with a methanogenic environment) in a bioreactor or environmental niche. Four lab-scale, mesophilic, fluidized bed bioreactors (bioreactors) were implemented. Two bioreactors were operated as simultaneous methanogenic-denitrifying (MD) units, whereas the other two were operated in partially aerated methanogenic (PAM) mode. In the first period, all bioreactors received a wastewater with 1 g chemical oxygen demand of methanol per liter (COD-methanol/L). In a second period, all the bioreactors received the wastewater plus 80 mg perchloroethylene (PCE)/L; at the start of period 2, one MD and one PAM were coupled to side sand-zero valent iron filters (ZVI). All bioreactors were inoculated with a microbial consortium not acclimated to PCE. In this work, the performance of the full period 1 and the first 60 days of period 2 is reported and discussed. The COD removal efficiency and the nitrate removal efficiency of the bioreactors essentially did not change between period 1 and period 2, i.e., upon PCE addition. On the contrary, specific methanogenic activity in PAM bioreactors (both with and without coupled ZVI filter) significantly decreased. This was consistent with a sharp fall of methane productivity in those bioreactors in period 2. During period 2, PCE removals in the range 86 to 97 % were generally observed; the highest removal corresponded to PAM bioreactors along with the

  12. Enhancing dewaterability of waste activated sludge by combined oxidative conditioning process with zero-valent iron and peroxymonosulfate.

    PubMed

    Zhou, Xu; Jin, Wenbiao; Chen, Hongyi; Chen, Chuan; Han, Songfang; Tu, Renjie; Wei, Wei; Gao, Shu-Hong; Xie, Guo-Jun; Wang, Qilin

    2017-11-01

    The enhancement of sludge dewaterability is of great importance for facilitating the sludge disposal during the operation of wastewater treatment plants. In this study, a novel oxidative conditioning approach was applied to enhance the dewaterability of waste activated sludge by the combination of zero-valent iron (ZVI) and peroxymonosulfate (PMS). It was found that the dewaterability of sludge was significantly improved after the addition of ZVI (0-4 g/g TSS) (TSS: total suspended solids) and PMS (0-1 g/g TSS). The optimal addition amount of ZVI and PMS was 0.25 g/g TSS and 0.1 g/g TSS, respectively, under which the capillary suction time of the sludge was reduced by approximately 50%. The decomposition of sludge flocs could contribute to the improved sludge dewaterability. Economic analysis demonstrated that the proposed conditioning process with ZVI and PMS was more economical than the ZVI + peroxydisulfate and the traditional Fenton conditioning processes.

  13. Understanding and mitigating the toxicity of cadmium to the anaerobic fermentation of waste activated sludge.

    PubMed

    Xu, Qiuxiang; Li, Xiaoming; Ding, Rongrong; Wang, Dongbo; Liu, Yiwen; Wang, Qilin; Zhao, Jianwei; Chen, Fei; Zeng, Guangming; Yang, Qi; Li, Hailong

    2017-11-01

    Cadmium (Cd) is present in significant levels in waste activated sludge, but its potential toxicities on anaerobic fermentation of sludge remain largely unknown. This work therefore aims to provide such support. Experimental results showed that the impact of Cd on short-chain fatty acids (SCFA) production from sludge anaerobic fermentation was dose-dependent. The presence of environmentally relevant level of Cd (e.g., 0.1 mg/g VSS) enhanced SCFA production by 10.6%, but 10 mg/g VSS of Cd caused 68.1% of inhibition. Mechanism exploration revealed that although all levels of Cd did not cause extra leakage of intracellular substrates, 0.1 mg/g VSS Cd increased the contents of both soluble and loosely-bound extracellular polymeric substances (EPS), thereby benefitting sludge solubilization. On the contrary, 10 mg/g VSS Cd decreased the levels of all EPS layers, which reduced the content of soluble substrates. It was also found that 0.1 mg/g VSS Cd benefited both the hydrolysis and acidogenesis but 10 mg/g VSS Cd inhibited all the hydrolysis, acidogenesis, and methanogenesis processes. Further investigations with microbial community and enzyme analysis showed that the pertinent presence of Cd enhanced the activities of protease, acetate kinase, and oxaloacetate transcarboxylase whereas 10 mg/g VSS Cd decreased the microbial diversity, the abundances of functional microbes, and the activities of key enzymes. Finally, one strategy that could effectively mitigate the adverse impact of high Cd levels on SCFA production was proposed and examined. This work provides insights into Cd-present sludge fermentation systems, and the findings obtained may guide engineers to manipulate sludge treatment systems in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Catalytic bioreactors and methods of using same

    DOEpatents

    Worden, Robert Mark; Liu, Yangmu Chloe

    2017-07-25

    Various embodiments provide a bioreactor for producing a bioproduct comprising one or more catalytically active zones located in a housing and adapted to keep two incompatible gaseous reactants separated when in a gas phase, wherein each of the one or more catalytically active zones may comprise a catalytic component retainer and a catalytic component retained within and/or thereon. Each of the catalytically active zones may additionally or alternatively comprise a liquid medium located on either side of the catalytic component retainer. Catalytic component may include a microbial cell culture located within and/or on the catalytic component retainer, a suspended catalytic component suspended in the liquid medium, or a combination thereof. Methods of using various embodiments of the bioreactor to produce a bioproduct, such as isobutanol, are also provided.

  15. Submerged anaerobic membrane bioreactor for wastewater treatment and energy generation.

    PubMed

    Bornare, J B; Adhyapak, U S; Minde, G P; Kalyan Raman, V; Sapkal, V S; Sapkal, R S

    2015-01-01

    Compared with conventional wastewater treatment processes, membrane bioreactors (MBRs) offer several advantages including high biodegradation efficiency, excellent effluent quality and smaller footprint. However, it has some limitations on account of its energy intensive operation. In recent years, there has been growing interest in use of anaerobic membrane bioreactors (AnMBRs) due to their potential advantages over aerobic systems, which include low sludge production and energy generation in terms of biogas. The aim of this study was to evaluate the performance of a submerged AnMBR for the treatment of synthetic wastewater having 4,759 mg/l chemical oxygen demand (COD). The COD removal efficiency was over 95% during the performance evaluation study. Treated effluent with COD concentration of 231 mg/l was obtained for 25.5 hours hydraulic retention time. The obtained total organic carbon concentrations in feed and permeate were 1,812 mg/l and 89 mg/l, respectively. An average biogas generation and yield were 25.77 l/d and 0.36 m3/kg COD, respectively. Evolution of trans-membrane pressure (TMP) as a function of time was studied and an average TMP of 15 kPa was found suitable to achieve membrane flux of 12.17 l/(m2h). Almost weekly back-flow chemical cleaning of the membrane was found necessary to control TMP within the permissible limit of 20 kPa.

  16. Key process parameters involved in the treatment of olive mill wastewater by membrane bioreactor.

    PubMed

    Jaouad, Y; Villain-Gambier, M; Mandi, L; Marrot, B; Ouazzani, N

    2018-04-18

    The Olive Mill Wastewater (OMWW) biodegradation in an external ceramic membrane bioreactor (MBR) was investigated with a starting acclimation step with a Ultrafiltration (UF) membrane (150 kDa) and no sludge discharge in order to develop a specific biomass adapted to OMWW biodegradation. After acclimation step, UF was replaced by an Microfiltration (MF) membrane (0.1 µm). Sludge Retention Time (SRT) was set around 25 days and Food to Microorganisms ratio (F/M) was fixed at 0.2 kg COD  kg MLVSS -1  d -1 . At stable state, removal of the main phenolic compounds (hydroxytyrosol and tyrosol) and Chemical Oxygen Demand (COD) were successfully reached (95% both). Considered as a predominant fouling factor, but never quantified in MBR treated OMWW, Soluble Microbial Products (SMP) proteins, polysaccharides and humic substances concentrations were determined (80, 110 and 360 mg L -1 respectively). At the same time, fouling was easily managed due to favourable hydraulic conditions of external ceramic MBR. Therefore, OMWW could be efficiently and durably treated by an MF MBR process under adapted operating parameters.

  17. Synergetic pretreatment of waste activated sludge by hydrodynamic cavitation combined with Fenton reaction for enhanced dewatering.

    PubMed

    Cai, Meiqiang; Hu, Jianqiang; Lian, Guanghu; Xiao, Ruiyang; Song, Zhijun; Jin, Micong; Dong, Chunying; Wang, Quanyuan; Luo, Dewen; Wei, Zongsu

    2018-04-01

    The dewatering of waste activated sludge by integrated hydrodynamic cavitation (HC) and Fenton reaction was explored in this study. We first investigated the effects of initial pH, sludge concentration, flow rate, and H 2 O 2 concentration on the sludge dewaterability represented by water content, capillary suction time and specific resistance to filtration. The results of dewatering tests showed that acidic pH and low sludge concentration were favorable to improve dewatering performance in the HC/Fenton system, whereas optimal flow rate and H 2 O 2 concentration applied depended on the system operation. To reveal the synergism of HC/Fenton treatment, a suite of analysis were implemented: three-dimensional excitation emission matrix (3-DEEM) spectra of extracellular polymeric substances (EPS) such as proteins and polysaccharides, zeta potential and particle size of sludge flocs, and SEM/TEM imaging of sludge morphology. The characterization results indicate a three-step mechanism, namely HC fracture of different EPS in sludge flocs, Fenton oxidation of the released EPS, and Fe(III) re-flocculation, that is responsible for the synergistically enhanced sludge dewatering. Results of current study provide a basis to improve our understanding on the sludge dewatering performance by HC/Fenton treatment and possible scale-up of the technology for use in wastewater treatment plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of catalytic ultrasound oxidation and membrane bioreactor.

    PubMed

    Jia, Shengyong; Han, Hongjun; Zhuang, Haifeng; Xu, Peng; Hou, Baolin

    2015-01-01

    Laboratorial scale experiments were conducted to investigate a novel system integrating catalytic ultrasound oxidation (CUO) with membrane bioreactor (CUO-MBR) on advanced treatment of biologically pretreated coal gasification wastewater. Results indicated that CUO with catalyst of FeOx/SBAC (sewage sludge based activated carbon (SBAC) which loaded Fe oxides) represented high efficiencies in eliminating TOC as well as improving the biodegradability. The integrated CUO-MBR system with low energy intensity and high frequency was more effective in eliminating COD, BOD5, TOC and reducing transmembrane pressure than either conventional MBR or ultrasound oxidation integrated MBR. The enhanced hydroxyl radical oxidation, facilitation of substrate diffusion and improvement of cell enzyme secretion were the mechanisms for CUO-MBR performance. Therefore, the integrated CUO-MBR was the promising technology for advanced treatment in engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Effect of humic acids with different characteristics on fermentative short-chain fatty acids production from waste activated sludge.

    PubMed

    Liu, Kun; Chen, Yinguang; Xiao, Naidong; Zheng, Xiong; Li, Mu

    2015-04-21

    Recently, the use of waste activated sludge to bioproduce short-chain fatty acids (SCFA) has attracted much attention as the sludge-derived SCFA can be used as a preferred carbon source to drive biological nutrient removal or biopolymer (polyhydroxyalkanoates) synthesis. Although large number of humic acid (HA) has been reported in sludge, the influence of HA on SCFA production has never been documented. This study investigated the effects on sludge-derived SCFA production of two commercially available humic acids (referred to as SHHA and SAHA purchased respectively from Shanghai Reagent Company and Sigma-Aldrich) that differ in chemical structure, hydrophobicity, surfactant properties, and degree of aromaticity. It was found that SHHA remarkably enhanced SCFA production (1.7-3.5 folds), while SAHA had no obvious effect. Mechanisms study revealed that all four steps (solubilization, hydrolysis, acidification, and methanogenesis) involved in sludge fermentation were unaffected by SAHA. However, SHHA remarkably improved the solubilization of sludge protein and carbohydrate and the activity of hydrolysis enzymes (protease and α-glucosidase) owing to its greater hydrophobicity and protection of enzyme activity. SHHA also enhanced the acidification step by accelerating the bioreactions of glyceradehyde-3P → d-glycerate 1,3-diphosphate, and pyruvate → acetyl-CoA due to its abundant quinone groups which served as electron acceptor. Further investigation showed that SHHA negatively influenced the activity of acetoclastic methanogens for its competition for electrons and inhibition on the reaction of acetyl-CoA → 5-methyl-THMPT, which caused less SCFA being consumed. All these observations were in correspondence with SHHA significantly enhancing the production of sludge derived SCFA.

  20. Oxygen transfer and uptake, nutrient removal, and energy footprint of parallel full-scale IFAS and activated sludge processes.

    PubMed

    Rosso, Diego; Lothman, Sarah E; Jeung, Matthew K; Pitt, Paul; Gellner, W James; Stone, Alan L; Howard, Don

    2011-11-15

    Integrated fixed-film activated sludge (IFAS) processes are becoming more popular for both secondary and sidestream treatment in wastewater facilities. These processes are a combination of biofilm reactors and activated sludge processes, achieved by introducing and retaining biofilm carrier media in activated sludge reactors. A full-scale train of three IFAS reactors equipped with AnoxKaldnes media and coarse-bubble aeration was tested using off-gas analysis. This was operated independently in parallel to an existing full-scale activated sludge process. Both processes achieved the same percent removal of COD and ammonia, despite the double oxygen demand on the IFAS reactors. In order to prevent kinetic limitations associated with DO diffusional gradients through the IFAS biofilm, this systems was operated at an elevated dissolved oxygen concentration, in line with the manufacturer's recommendation. Also, to avoid media coalescence on the reactor surface and promote biofilm contact with the substrate, high mixing requirements are specified. Therefore, the air flux in the IFAS reactors was much higher than that of the parallel activated sludge reactors. However, the standardized oxygen transfer efficiency in process water was almost same for both processes. In theory, when the oxygen transfer efficiency is the same, the air used per unit load removed should be the same. However, due to the high DO and mixing requirements, the IFAS reactors were characterized by elevated air flux and air use per unit load treated. This directly reflected in the relative energy footprint for aeration, which in this case was much higher for the IFAS system than activated sludge. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Biodegradation of paint stripper solvents in a modified gas lift loop bioreactor.

    PubMed

    Vanderberg-Twary, L; Steenhoudt, K; Travis, B J; Hanners, J L; Foreman, T M; Brainard, J R

    1997-07-05

    Paint stripping wastes generated during the decontamination and decommissioning of former nuclear facilities contain paint stripping organics (dichloromethane, 2-propanol, and methanol) and bulk materials containing paint pigments. It is desirable to degrade the organic residues as part of an integrated chemical-biological treatment system. We have developed a modified gas lift loop bioreactor employing a defined consortium of Rhodococcus rhodochrous strain OFS and Hyphomicrobium sp. DM-2 that degrades paint stripper organics. Mass transfer coefficients and kinetic constants for biodegradation in the system were determined. It was found that transfer of organic substrates from surrogate waste into the air and further into the liquid medium in the bioreactor were rapid processes, occurring within minutes. Monod kinetics was employed to model the biodegradation of paint stripping organics. Analysis of the bioreactor process was accomplished with BIOLAB, a mathematical code that simulates coupled mass transfer and biodegradation processes. This code was used to fit experimental data to Monod kinetics and to determine kinetic parameters. The BIOLAB code was also employed to compare activities in the bioreactor of individual microbial cultures to the activities of combined cultures in the bioreactor. This code is of benefit for further optimization and scale-up of the bioreactor for treatment of paint stripping and other volatile organic wastes in bulk materials.

  2. K basins sludge removal sludge pretreatment system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, H.L.

    1997-06-12

    The Spent Nuclear Fuels Program is in the process of planning activities to remove spent nuclear fuel and other materials from the 100-K Basins as a remediation effort for clean closure. The 105 K- East and K-West Basins store spent fuel, sludge, and debris. Sludge has accumulated in the 1 00 K Basins as a result of fuel oxidation and a slight amount of general debris being deposited, by settling, in the basin water. The ultimate intent in removing the sludge and fuel is to eliminate the environmental risk posed by storing fuel at the K Basins. The task formore » this project is to disposition specific constituents of sludge (metallic fuel) to produce a product stream through a pretreatment process that will meet the requirements, including a final particle size acceptable to the Tank Waste Remediation System (TWRS). The purpose of this task is to develop a preconceptual design package for the K Basin sludge pretreatment system. The process equipment/system is at a preconceptual stage, as shown in sketch ES-SNF-01 , while a more refined process system and material/energy balances are ongoing (all sketches are shown in Appendix C). Thus, the overall process and 0535 associated equipment have been conservatively selected and sized, respectively, to establish the cost basis and equipment layout as shown in sketches ES- SNF-02 through 08.« less

  3. Behaviour and occurrence of estrogens in municipal sewage treatment plants--II. Aerobic batch experiments with activated sludge.

    PubMed

    Ternes, T A; Kreckel, P; Mueller, J

    1999-01-12

    Aerobic batch experiments containing a diluted slurry of activated sludge from a real sewage treatment plant (STP) near Frankfurt/Main were undertaken, in order to investigate the persistence of natural estrogens and contraceptives under aerobic conditions. The batch experiments showed that while in contact with activated sludge the natural estrogen 17 beta-estradiol was oxidized to estrone, which was further eliminated in the batch experiments in an approximate linear time dependence. Further degradation products of estrone were not observed. 16 alpha-hydroxyestrone was rapidly eliminated, again without detection of further degradation products. The contraceptive 17 alpha-ethinylestradiol was principally persistent under the selected aerobic conditions, whereas mestranol was rapidly eliminated and small portions of 17 alpha-ethinylestradiol were formed by demethylation. Additionally, two glucuronides of 17 beta-estradiol (17 beta-estradiol-17-glucuronide and 17 beta-estradiol-3-glucuronide) were cleaved in contact with the diluted activated sludge solution and thus 17 beta-estradiol was released. The glucuronidase activity of the activated sludge was further confirmed by the cleavage of 4-methylumbelliferyl-beta-D-glucuronide (MUF-beta-glucuronide) in a solution of a activated sludge slurry and Milli-Q-water (1:100, v/v). The turnover rate obtained was approximately steady state, with a turnover rate of 0.1 mumol/l for the released MUF. Hence, it is very likely that the glucuronic acid moiety of 17 beta-estradiol glucuronides and other estrogen glucuronides become cleaved in a real municipal STP, so that the concentrations of the free estrogens increase.

  4. Effects of alkali types on waste activated sludge (WAS) fermentation and microbial communities.

    PubMed

    Li, Xiaoling; Peng, Yongzhen; Li, Baikun; Wu, Changyong; Zhang, Liang; Zhao, Yaqian

    2017-11-01

    The effects of two alkali agents, NaOH and Ca(OH) 2 , on enhancing waste activated sludge (WAS) fermentation and short chain fatty acids (SCFAs) accumulation were studied in semi-continuous stirred tank reactors (semi-CSTR) at different sludge retention time (SRT) (2-10 d). The optimum SRT for SCFAs accumulation of NaOH and Ca(OH) 2 adding system was 8 d and 10 d, respectively. Results showed that the average organics yields including soluble chemical oxygen demand (SCOD), protein, and carbohydrate in the NaOH system were as almost twice as that in the Ca(OH) 2 system. For Ca(OH) 2 system, sludge hydrolysis and protein acidification efficiencies were negatively affected by Ca 2+ precipitation, which was revealed by the decrease of Ca 2+ concentration, the rise of zeta potential and better sludge dewaterability in Ca(OH) 2 system. In addition, Firmicutes, Proteobacteria and Actinobacteria were the main microbial functional groups in both types of alkali systems. NaOH system obtained higher microbial quantities which led to better acidification. For application, however, Ca(OH) 2 was more economically feasible owning to its lower price and better dewaterability of residual sludge. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Treatment of wastewater containing phenol using a tubular ceramic membrane bioreactor.

    PubMed

    Ersu, C B; Ong, S K

    2008-02-01

    The performance of a membrane bioreactor (MBR) with a tubular ceramic membrane for phenol removal was evaluated under varying hydraulic retention times (HRT) and a fixed sludge residence time (SRT) of 30 days. The tubular ceramic membrane was operated with a mode of 15 minutes of filtration followed by 15 seconds of permeate backwashing at a flux of 250 l m(-2)hr(-1) along with an extended backwashing of 30 seconds every 3 hours of operation, which maintained the transmembrane pressure (TMP) below 100 kPa. Using a simulated municipal wastewater with varying phenol concentrations, the chemical oxygen demand (COD) and phenol removals observed were greater than 88% with excellent suspended solids (SS) removal of 100% at low phenol concentrations (approx. 100 mg l(-1) of phenol). Step increases in phenol concentration showed that inhibition was observed between 600 to 800 mg l(-1) of phenol with decreased sludge production rate, mixed liquor suspended solids (MLSS) concentration, and removal performance. The sludge volume index (SVI) of the biomass increased to about 450 ml g(-1) for a phenol input concentration of 800 mg l(-1). When the phenol concentration was decreased to 100 mg l(-1), the ceramic tubular MBR was found to recover rapidly indicating that the MBR is a robust system retaining most of the biomass. Experimental runs using wastewater containing phenol indicated that the MBR can be operated safely without upsets for concentrations up to 600 mg l(-1) of phenol at 2-4 hours HRT and 30 days SRT.

  6. Microscopic Analysis of Plankton, Periphyton, and Activated Sludge. Training Manual.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Water Programs.

    This manual is intended for professional personnel in the fields of water pollution control, limnology, water supply and waste treatment. Primary emphasis is given to practice in the identification and enumeration of microscopic organisms which may be encountered in water and activated sludge. Methods for the chemical and instrumental evaluation…

  7. Rapid adaptation of activated sludge bacteria into a glycogen accumulating biofilm enabling anaerobic BOD uptake.

    PubMed

    Hossain, Md Iqbal; Paparini, Andrea; Cord-Ruwisch, Ralf

    2017-03-01

    Glycogen accumulating organisms (GAO) are known to allow anaerobic uptake of biological oxygen demand (BOD) in activated sludge wastewater treatment systems. In this study, we report a rapid transition of suspended activated sludge biomass to a GAO dominated biofilm by selective enrichment using sequences of anaerobic loading followed by aerobic exposure of the biofilm to air. The study showed that within eight weeks, a fully operational, GAO dominated biofilm had developed, enabling complete anaerobic BOD uptake at a rate of 256mg/L/h. The oxygen uptake by the biofilm directly from the atmosphere had been calculated to provide significant energy savings. This study suggests that wastewater treatment plant operators can convert activated sludge systems readily into a "passive aeration" biofilm that avoids costly oxygen transfer to bulk wastewater solution. The described energy efficient BOD removal system provides an opportunity to be coupled with novel nitrogen removal processes such as anammox. Copyright © 2016. Published by Elsevier Ltd.

  8. Adsorptive immobilization of a Pseudomonas strain on solid carriers for augmented decolourization in a chemostat bioreactor.

    PubMed

    Tse, Siu-Wah; Yu, Jian

    2003-08-01

    Pseudomonas GM3, a highly efficient strain in cleavage of azo bonds of synthetic dyes under anoxic conditions, was immobilized via adsorption on two types of carriers, porous glass beads and solid PVA particles. The cells were cultivated in a nutrient medium, adsorbed on sterile carriers, stabilized as biofilms in repeated batch cultures, and introduced into a chemostat activated sludge reactor for augmented decolourization. The microbial cells were quickly adsorbed and fixed on the PVA surface, compared to a slow and linear immobilization on the glass surface. The porous structure of glass beads provided shelter for the embedded cells, giving a high biomass loading or thick biofilm (13.3 mg VS ml-1 carrier) in comparison with PVA particles (4.8 mg VS ml-1 carrier), but the mass transfer of substrate in the biofilm became a significant limiting factorin the thicker biofilms (effectiveness factor eta = 0.31). The microbial decolourization rate per volume of carriers was 0.15 and 0.17 mg dye ml-1 of glass beads and PVA particles, respectively. In augmented decomposition of a recalcitrant azo dye (60 mg l-1), the immobilized Pseudomonas cells in porous glass beads gave a stable decolourization efficiency (80-81%), but cells fixed on solid PVA particles showed an initial high colour removal of 90% which then declined to a stable removal efficiency of 81%. In both cases, the colour removal efficiency of the chemostat bioreactor was increased from < 10% by an activated sludge to approximately 80% by the augmented system.

  9. Computational fluid model incorporating liver metabolic activities in perfusion bioreactor.

    PubMed

    Hsu, Myat Noe; Tan, Guo-Dong Sean; Tania, Marshella; Birgersson, Erik; Leo, Hwa Liang

    2014-05-01

    The importance of in vitro hepatotoxicity testing during early stages of drug development in the pharmaceutical industry demands effective bioreactor models with optimized conditions. While perfusion bioreactors have been proven to enhance mass transfer and liver specific functions over a long period of culture, the flow-induced shear stress has less desirable effects on the hepatocytes liver-specific functions. In this paper, a two-dimensional human liver hepatocellular carcinoma (HepG2) cell culture flow model, under a specified flow rate of 0.03 mL/min, was investigated. Besides computing the distribution of shear stresses acting on the surface of the cell culture, our numerical model also investigated the cell culture metabolic functions such as the oxygen consumption, glucose consumption, glutamine consumption, and ammonia production to provide a fuller analysis of the interaction among the various metabolites within the cell culture. The computed albumin production of our 2D flow model was verified by the experimental HepG2 culture results obtained over 3 days of culture. The results showed good agreement between our experimental data and numerical predictions with corresponding cumulative albumin production of 2.9 × 10(-5) and 3.0 × 10(-5)  mol/m(3) , respectively. The results are of importance in making rational design choices for development of future bioreactors with more complex geometries. © 2013 Wiley Periodicals, Inc.

  10. Fate of sulfonamide antibiotics in contact with activated sludge--sorption and biodegradation.

    PubMed

    Yang, Sheng-Fu; Lin, Cheng-Fang; Wu, Chien-Ju; Ng, Kok-Kwang; Lin, Angela Yu-Chen; Hong, Pui-Kwan Andy

    2012-03-15

    The sorption and biodegradation of three sulfonamide antibiotics, namely sulfamethoxazole (SMX), sulfadimethoxine (SDM), and sulfamonomethoxine (SMM), in an activated sludge system were investigated. Experiments were carried out by contacting 100 μg/L of each sulfonamide compound individually with 2.56 g/L of MLSS at 25±0.5 °C, pH 7.0, and dissolved oxygen of 3.0±0.1 mg/L in a batch reactor over different periods of 2 d and 14 d. All sulfonamides were removed completely over 11-13 d. Sorptive equilibrium was established well within the first few hours, followed by a lag period of 1-3 days before biodegradation was to deplete the antibiotic compounds linearly in the ensuing 10 days. Apparent zeroth-order rate constants were obtained by regression analysis of measured aqueous concentration vs. time profiles to a kinetic model accounting for sorption and biodegradation; they were 8.1, 7.9, and 7.7 μg/L/d for SDM, SMX, and SMM, respectively, at activated sludge concentration of 2.56 g/L. The measured kinetics implied that with typical hydraulic retention time (e.g. 6 h) provided by WWTP the removal of sulfonamide compounds from the wastewater during the activated sludge process would approximate 2 μg/L. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. More than a decade of experience of landfill leachate treatment with a full-scale anammox plant combining activated sludge and activated carbon biofilm.

    PubMed

    Azari, Mohammad; Walter, Uwe; Rekers, Volker; Gu, Ji-Dong; Denecke, Martin

    2017-05-01

    The performance of biological treatment for high ammonium removal from landfill leachate has been demonstrated. The plant was upgraded combining the activated sludge process followed by activated carbon reactor. Based on a long-term analysis of data collected from 2006 to 2015, the average total nitrogen removal efficiency of 94% was achieved for wastewaters with a C: N ratio varying from 1 to 5 kg-COD kg-TN -1 . But without the presence of activated carbon reactor, the average of biological removal efficiency for total nitrogen was only 82% ± 6% for the activated sludge stage. It means that up to 20% of the nitrogen in the influent can only be eliminated by microorganisms attached to granular activated carbon. After upgrades of the plant, the energy efficiency showed a reduction in the specific energy demand from 1.6 to less than 0.2 kWh m -3 . Methanol consumption and sludge production was reduced by 91% and 96%, respectively. Fluorescent in situ Hybridization was used for microbial diversity analysis on floccular sludge and granular biofilm samples. Anaerobic ammonium oxidation (anammox) bacteria and nitrifiers were detected and Candidatus Scalindua was found in two forms of flocs and biofilms. Due to stochastic risk assessment based on the long-term data analysis given in this research, the treatment criteria were achieved and the combination of granular activated carbon biofilm process and activated sludge can be a novel and sought approach to better enrich anammox biomass for full-scale treatment applications to reduce operating costs and promote nutrient removal stability and efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Evaluation of two pilot scale membrane bioreactors for the elimination of selected surfactants from municipal wastewaters

    NASA Astrophysics Data System (ADS)

    González, Susana; Petrovic, Mira; Barceló, Damiá

    2008-07-01

    SummaryThe removal of selected surfactants, linear alkylbenzene sulfonates (LAS), coconut diethanol amides (CDEA) and alkylphenol ethoxylates and their degradation products were investigated using a two membrane bioreactor (MBR) with hollow fiber and plate and frame membranes. The two pilot plants MBR run in parallel to a full-scale conventional activated sludge (CAS) treatment. A total of eight influent samples with the corresponding effluent samples were analysed by solid phase extraction-liquid chromatography-tandem mass spectrometry (SPE-LC-MS-MS). The results indicate that both MBR have a better effluent quality in terms of chemical and biological oxygen demand (COD and BOD), NH4+ , concentration and total suspended solids (TSS). MBR showed a better similar performance in the overall elimination of the total nonylphenolic compounds, achieving a 75% of elimination or a 65% (the same elimination reached by CAS). LAS and CDEA showed similar elimination in the three systems investigated and no significant differences were observed.

  13. Stimulating short-chain fatty acids production from waste activated sludge by nano zero-valent iron.

    PubMed

    Luo, Jingyang; Feng, Leiyu; Chen, Yinguang; Li, Xiang; Chen, Hong; Xiao, Naidong; Wang, Dongbo

    2014-10-10

    An efficient and green strategy, i.e. adding nano zero-valent iron into anaerobic fermentation systems to remarkably stimulate the accumulation of short-chain fatty acids from waste activated sludge via accelerating the solubilization and hydrolysis processes has been developed. In the presence of nano zero-valent iron, not only the short-chain fatty acids production was significantly improved, but also the fermentation time for maximal short-chain fatty acids was shortened compared with those in the absence of nano zero-valent iron. Mechanism investigations showed that the solubilization of sludge, hydrolysis of solubilized substances and acidification of hydrolyzed products were all enhanced by addition of nano zero-valent iron. Also, the general microbial activity of anaerobes and relative activities of key enzymes with hydrolysis and acidification of organic matters were improved than those in the control. 454 high-throughput pyrosequencing analysis suggested that the abundance of bacteria responsible for waste activated sludge hydrolysis and short-chain fatty acids production was greatly enhanced due to nano zero-valent iron addition. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Long-term operation of submerged membrane bioreactor (MBR) for the treatment of synthetic wastewater containing styrene as volatile organic compound (VOC): Effect of hydraulic retention time (HRT).

    PubMed

    Fallah, N; Bonakdarpour, B; Nasernejad, B; Alavi Moghadam, M R

    2010-06-15

    In this study, the membrane bioreactor (MBR) was utilized to remove styrene from a synthetic wastewater having a chemical oxygen demand (COD) and styrene concentration of 1500 mg/L and 50 mg/L, respectively. At two hydraulic retention times (HRTs) of 24 h and 18 h, the MBR was operated for a period in excess of 100 days. The HRT effects were studied and it was found out that the removal efficiency of COD and styrene for both HRTs was consistently higher than 99%. Unlike conventional activated sludge processes (CASPs), no styrene was detected in the exhaust air, which meant that biodegradation was the major styrene removal mechanism at both HRTs. The transmembrane pressure (TMP) profile during the operation of the MBR showed a fairly low and constant TMP up to day 70, after which, the TMP showed a dramatic rise, as a result of the occurrence of severe membrane fouling. It was thought that an increase in styrene loading rate, when HRT was reduced to 18 h, resulted in the release of extracellular polymeric substance (EPS) from the bacterial cells, which in turn was responsible for the rise in soluble microbial product (SMP) and sludge deflocculation. The severe fouling observed during operation of MBR at HRT of 18 h was attributed to the rise in SMP concentrations and decrease in mean floc size and increase in the proportion of small particles in the activated sludge. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Entomotoxicity, protease and chitinase activity of Bacillus thuringiensis fermented wastewater sludge with a high solids content.

    PubMed

    Brar, Satinder K; Verma, M; Tyagi, R D; Valéro, J R; Surampalli, R Y

    2009-10-01

    This study investigated the production of biopesticides, protease and chitinase activity by Bacillus thuringiensis grown in raw wastewater sludge at high solids concentration (30 g/L). The rheology of wastewater sludge was modified with addition of Tween-80 (0.2% v/v). This addition resulted in 1.6 and 1.3-fold increase in cell and spore count, respectively. The maximum specific growth rate (micro(max)) augmented from 0.17 to 0.22 h(-1) and entomotoxicity (Tx) increased by 29.7%. Meanwhile, volumetric mass transfer coefficient (k(L)a) showed marked variations during fermentation, and oxygen uptake rate (OUR) increased 2-fold. The proteolytic activity increased while chitinase decreased for Tween amended wastewater sludge, but the entomotoxicity increased. The specific entomotoxicity followed power law when plotted against spore concentration and the relation between Tx and protease activity was linear. The viscosity varied and volume percent of particles increased in Tween-80 amended wastewater sludge and particle size (D(50)) decreased at the end of fermentation. Thus, there was an increase in entomotoxicity at higher suspended solids (30 g/L) as Tween addition improved rheology (viscosity, particle size, surface tension); enhanced maximum growth rate and OUR.

  16. Proposal for a screening test to evaluate the fate of organic micropollutants in activated sludge.

    PubMed

    Salvetti, Roberta; Vismara, Renato; Dal Ben, Ilaria; Gorla, Elena; Romele, Laura

    2011-04-01

    The concentrations of organic micropollutants are usually low in wastewaters (order of magnitude of mg L(-1)). However, their emission standards, especially in the case of carcinogenic and bioaccumulating substances, are often much lower (order of magnitude of microg L(-1)). Since these substances, in some cases, can be adsorbable or volatile, their removal via volatilization, biodegradation or sludge adsorption in a wastewater treatment plant (WWTP) becomes a significant feature to include in the usual design process, in order to verify the emission standards in gas and sludge too. In this study a simple screening batch test for the evaluation of the fate of organic micropollutants in water, air and sludge is presented. The test is set up by means of simple laboratory instruments and simulates an activated sludge tank process. In this study the results obtained for four substances with different chemical properties (i.e. toluene, benz(a)anthracene, phenol and benzene) are presented. The screening test proposed can be a useful tool to assess in about one month the fate of organic micropollutants in an activated sludge tank of a WWTP. Moreover, the test can constitute a useful support in the use of mathematical models, since it allows the verification of model results and the calibration of the reactions involved in the removal process.

  17. Comparison of bacteriophage and enteric virus removal in pilot scale activated sludge plants.

    PubMed

    Arraj, A; Bohatier, J; Laveran, H; Traore, O

    2005-01-01

    The aim of this experimental study was to determine comparatively the removal of two types of bacteriophages, a somatic coliphage and an F-specific RNA phage and of three types of enteric viruses, hepatitis A virus (HAV), poliovirus and rotavirus during sewage treatment by activated sludge using laboratory pilot plants. The cultivable simian rotavirus SA11, the HAV HM 175/18f cytopathic strain and poliovirus were quantified by cell culture. The bacteriophages were quantified by plaque formation on the host bacterium in agar medium. In each experiment, two pilots simulating full-scale activated sludge plants were inoculated with viruses at known concentrations, and mixed liquor and effluent samples were analysed regularly. In the mixed liquor, liquid and solid fractions were analysed separately. The viral behaviour in both the liquid and solid phases was similar between pilots of each experiment. Viral concentrations decreased rapidly following viral injection in the pilots. Ten minutes after the injections, viral concentrations in the liquid phase had decreased from 1.0 +/- 0.4 log to 2.2 +/- 0.3 log. Poliovirus and HAV were predominantly adsorbed on the solid matters of the mixed liquor while rotavirus was not detectable in the solid phase. In our model, the estimated mean log viral reductions after 3-day experiment were 9.2 +/- 0.4 for rotavirus, 6.6 +/- 2.4 for poliovirus, 5.9 +/- 3.5 for HAV, 3.2 +/- 1.2 for MS2 and 2.3 +/- 0.5 for PhiX174. This study demonstrates that the pilots are useful models to assess the removal of infectious enteric viruses and bacteriophages by activated sludge treatment. Our results show the efficacy of the activated sludge treatment on the five viruses and suggest that coliphages could be an acceptable indicator of viral removal in this treatment system.

  18. Influence of different anoxic time exposures on active biomass, protozoa and filamentous bacteria in activated sludge.

    PubMed

    Rodriguez-Perez, S; Fermoso, F G; Arnaiz, C

    Medium-sized wastewater treatment plants are considered too small to implement anaerobic digestion technologies and too large for extensive treatments. A promising option as a sewage sludge reduction method is the inclusion of anoxic time exposures. In the present study, three different anoxic time exposures of 12, 6 and 4 hours have been studied to reduce sewage sludge production. The best anoxic time exposure was observed under anoxic/oxic cycles of 6 hours, which reduced 29.63% of the biomass production compared with the oxic control conditions. The sludge under different anoxic time exposures, even with a lower active biomass concentration than the oxic control conditions, showed a much higher metabolic activity than the oxic control conditions. Microbiological results suggested that both protozoa density and abundance of filamentous bacteria decrease under anoxic time exposures compared to oxic control conditions. The anoxic time exposures 6/6 showed the highest reduction in both protozoa density, 37.5%, and abundance of filamentous bacteria, 41.1%, in comparison to the oxic control conditions. The groups of crawling ciliates, carnivorous ciliates and filamentous bacteria were highly influenced by the anoxic time exposures. Protozoa density and abundance of filamentous bacteria have been shown as promising bioindicators of biomass production reduction.

  19. Analysis of polyhydroxyalkanoate (PHA) synthase gene and PHA-producing bacteria in activated sludge that produces PHA containing 3-hydroxydodecanoate.

    PubMed

    Yang, Chao; Zhang, Wei; Liu, Ruihua; Zhang, Chi; Gong, Ting; Li, Qiang; Wang, Shufang; Song, Cunjiang

    2013-09-01

    Activated sludge is an alternative to pure cultures for polyhydroxyalkanoate (PHA) production due to the presence of many PHA-producing bacteria in activated sludge community. In this study, activated sludge was submitted to aerobic dynamic feeding in a sequencing batch reactor. During domestication, the changes of bacterial community structure were observed by terminal restriction fragment length polymorphism analysis. Furthermore, some potential PHA-producing bacteria, such as Thauera, Acinetobacter and Pseudomonas, were identified by denaturing gradient gel electrophoresis analysis. The constructed PHA synthase gene library was analyzed by DNA sequencing. Of the 80 phaC genes obtained, 76 belonged to the Class I PHA synthase, and four to the Class II PHA synthase. Gas chromatography-mass spectrometry analysis showed that PHA produced by activated sludge was composed of three types of monomers: 3-hydroxybutyrate, 3-hydroxyvalerate and 3-hydroxydodecanoate (3HDD). This is the first report of production of medium-chain-length PHAs (PHAMCL ) containing 3HDD by activated sludge. Further studies suggested that a Pseudomonas strain may play an important role in the production of PHAMCL containing 3HDD. Moreover, a Class II PHA synthase was found to have a correlation with the production of 3HDD-containing PHAMCL . © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  20. Prostate tumor grown in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This prostate cancer construct was grown during NASA-sponsored bioreactor studies on Earth. Cells are attached to a biodegradable plastic lattice that gives them a head start in growth. Prostate tumor cells are to be grown in a NASA-sponsored Bioreactor experiment aboard the STS-107 Research-1 mission in 2002. Dr. Leland Chung of the University of Virginia is the principal investigator. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Credit: NASA and the University of Virginia.

  1. Formaldehyde removal from air by a biodegradation system.

    PubMed

    Xu, Zhongjun; Hou, Haiping

    2010-07-01

    A biodegradation system was used for the treatment of formaldehyde-polluted air. Air pressure dropped 12 mm water in the trickling biofilter during the experiment of about 4 months. In the range 20-300 mg m(-3) influent formaldehyde, this biodegradation system obtained 4.0-40.0 mg h(-1) degradation capacity, with 100%-66.7% degradation efficiency. The amount of formaldehyde degraded by the trickling biofilter was more than that by the activated sludge bioreactor below 200 mg m(-3) influent gaseous formaldehyde while the amount by the trickling biofilter was less than that by the activated sludge bioreactor over 200 mg m(-3) influent gaseous formaldehyde.

  2. A pilot-scale study on PVA gel beads based integrated fixed film activated sludge (IFAS) plant for municipal wastewater treatment.

    PubMed

    Kumar Singh, Nitin; Singh, Jasdeep; Bhatia, Aakansha; Kazmi, A A

    2016-01-01

    In the present study, a pilot-scale reactor incorporating polyvinyl alcohol gel beads as biomass carrier and operating in biological activated sludge mode (a combination of moving bed biofilm reactor (MBBR) and activated sludge) was investigated for the treatment of actual municipal wastewater. The results, during a monitoring period of 4 months, showed effective removal of chemical oxygen demand (COD), biological oxygen demand (BOD) and NH3-N at optimum conditions with 91%, ∼92% and ∼90% removal efficiencies, respectively. Sludge volume index (SVI) values of activated sludge varied in the range of 25-72 mL/g, indicating appreciable settling characteristics. Furthermore, soluble COD and BOD in the effluent of the pilot plant were reduced to levels well below discharge limits of the Punjab Pollution Control Board, India. A culture dependent method was used to enrich and isolate abundant heterotrophic bacteria in activated sludge. In addition to this, 16S rRNA genes analysis was performed to identify diverse dominant bacterial species in suspended and attached biomass. Results revealed that Escherichia coli, Pseudomonas sp. and Nitrosomonas communis played a significant role in biomass carrier, while Acinetobactor sp. were dominant in activated sludge of the pilot plant. Identification of ciliated protozoa populations rendered six species of ciliates in the plant, among which Vorticella was the most dominant.

  3. Comparison and distribution of copper oxide nanoparticles and copper ions in activated sludge reactors.

    PubMed

    Zhang, Dongqing; Trzcinski, Antoine P; Oh, Hyun-Suk; Chew, Evelyn; Tan, Soon Keat; Ng, Wun Jern; Liu, Yu

    2017-05-12

    Copper oxide nanoparticles (CuO NPs) are being increasingly applied in the industry which results inevitably in the release of these materials into the hydrosphere. In this study, simulated waste-activated sludge experiments were conducted to investigate the effects of Copper Oxide NPs at concentrations of 0.1, 1, 10 and 50 mg/L and to compare it with its ionic counterpart (CuSO 4 ). It was found that 0.1 mg/L of CuO NPs had negligible effects on Chemical Oxygen Demand (COD) and ammonia removal. However, the presence of 1, 10 and 50 mg/L of CuO NPs decreased COD removal from 78.7% to 77%, 52.1% and 39.2%, respectively (P < 0.05). The corresponding effluent ammonium (NH 4 -N) concentration increased from 14.9 mg/L to 18, 25.1 and 30.8 mg/L, respectively. Under equal Cu concentration, copper ions were more toxic towards microorganisms compared to CuO NPs. CuO NPs were removed effectively (72-93.2%) from wastewater due to a greater biosorption capacity of CuO NPs onto activated sludge, compared to the copper ions (55.1-83.4%). The SEM images clearly showed the accumulation and adsorption of CuO NPs onto activated sludge. The decrease in Live/dead ratio after 5 h of exposure of CuO NPs and Cu 2+ indicated the loss of cell viability in sludge flocs.

  4. Space bioreactor: Design/process flow

    NASA Technical Reports Server (NTRS)

    Cross, John H.

    1987-01-01

    The design of the space bioreactor stems from three considerations. First, and foremost, it must sustain cells in microgravity. Closely related is the ability to take advantage of the weightlessness and microgravity. Lastly, it should fit into a bioprocess. The design of the space bioreactor is described in view of these considerations. A flow chart of the bioreactor is presented and discussed.

  5. A submerged tubular ceramic membrane bioreactor for high strength wastewater treatment.

    PubMed

    Sun, D D; Zeng, J L; Tay, J H

    2003-01-01

    A 4 L submerged tubular ceramic membrane bioreactor (MBR) was applied in laboratory scale to treat 2,400 mg-COD/L high strength wastewater. A prolonged sludge retention time (SRT) of 200 day, in contrast to the conventional SRT of 5 to 15 days, was explored in this study, aiming to reduce substantially the amount of disposed sludge. The MBR system was operated for a period of 142 days in four runs, differentiated by specific oxygen utilization rate (SOUR) and hydraulic retention time (HRT). It was found that the MBR system produced more than 99% of suspended solid reduction. Mixed liquor suspended solids (MLSS) was found to be adversely proportional to HRT, and in general higher than the value from a conventional wastewater treatment plant. A chemical oxygen demand (COD) removal efficiency was achieved as high as 98% in Run 1, when SOUR was in the range of 100-200 mg-O/g-MLVSS/hr. Unexpectedly, the COD removal efficiency in Run 2 to 4 was higher than 92%, on average, where higher HRT and abnormally low SOUR of 20-30 mg-O/g-MLVSS/hr prevailed. It was noted that the ceramic membrane presented a significant soluble nutrient rejection when the microbial metabolism of biological treatment broke down.

  6. Innovative combination of electrolysis and Fe(II)-activated persulfate oxidation for improving the dewaterability of waste activated sludge.

    PubMed

    Zhen, Guang-Yin; Lu, Xue-Qin; Li, Yu-You; Zhao, You-Cai

    2013-05-01

    The feasibility of electrolysis integrated with Fe(II)-activated persulfate (S2O8(2-)) oxidation to improve waste activated sludge (WAS) dewaterability was evaluated. The physicochemical properties (sludge volume (SV), total suspended solids (TSS) and volatile suspended solids (VSS)) and extracellular polymeric substances (EPS), including slime EPS, loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) were characterized to identify their exact roles in sludge dewatering. While dewaterability negatively corresponded to LB-EPS, TB-EPS, protein (PN) and polysaccharide (PS) in LB-EPS and TB-EPS, it was independent of SV, TSS, VSS, slime EPS and PN/PS. Further study through scanning electron microscope (SEM) verified the entrapment of bacterial cells by TB-EPS, protecting them against electrolysis disruption. Comparatively, electrolysis integrated with S2O8(2-)/Fe(II) oxidation was able to effectively disrupt the protective barrier and crack the entrapped cells, releasing the water inside EPS and cells. Therefore, the destruction of both TB-EPS and cells is the fundamental reason for the enhanced dewaterability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Influence of activated carbon and biochar on phytotoxicity of air-dried sewage sludges to Lepidium sativum.

    PubMed

    Oleszczuk, Patryk; Rycaj, Marcin; Lehmann, Johannes; Cornelissen, Gerard

    2012-06-01

    The goal of the research was to determine the phytotoxicity (using Lepidium sativum) of two activated carbon/biochar-amended sewage sludges. Apart from the impact of the AC/biochar dose, the influence of biochar particle diameter (<300, 300-500 and >500 μm) and the influence of the contact time (7, 60, 90 days) between AC/biochar and sewage sludges on their phytotoxicity was also assessed. No negative impact of sewage sludges on seed germination was observed (P>0.05). The application of AC or biochar to the sludges positively affected root growth by reducing the harmful effect by 7.8 to 42% depending on the material used. Furthermore, the reduction range clearly depended on the type of sewage sludge. No differences were observed in the inhibition of the toxic effect between both biochar types used and the biochar particle size. The extension of the contact time between AC/biochar and sewage sludges had a negative impact on root growth. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Sorption of biodegradation end products of nonylphenol polyethoxylates onto activated sludge.

    PubMed

    Hung, Nguyen Viet; Tateda, Masafumi; Ike, Michihiko; Fujita, Masanori; Tsunoi, Shinji; Tanaka, Minoru

    2004-01-01

    Nonylphenol(NP), nonylphenoxy acetic acid (NP1EC), nonylphenol monoethoxy acetic acid (NP2EC), nonylphenol monoethoxylate (NP1EO) and nonylphenol diethoxylate (NP2EO) are biodegradation end products (BEPs) of nonionic surfactant nonylphenolpolyethoxylates (NPnEO). In this research, sorption of these compounds onto model activated sludge was characterized. Sorption equilibrium experiments showed that NP, NP1EO and NP2EO reached equilibrium in about 12 h, while equilibrium of NP1EC and NP2EC were reached earlier, in about 4 h. In sorption isotherm experiments, obtained equilibrium data at 28 degrees C fitted well to Freundlich sorption model for all investigated compounds. For NP1EC, in addition to Freundlich, equilibrium data also fitted well to Langmuir model. Linear sorption model was also tried, and equilibrium data of all NP, NP1EO, NP2EO and NP2EC except NP1EC fitted well to this model. Calculated Freundlich coefficient (K(F)) and linear sorption coefficient (K(D)) showed that sorption capacity of the investigated compounds were in order NP > NP2EO > NP1EO > NP1EC approximately NP2EC. For NP, NP1EO and NP2EO, high values of calculated K(F) and K(D) indicated an easy uptake of these compounds from aqueous phase onto activated sludge. Whereas, NP1EC and NP2EC with low values of K(F) and K(D) absorbed weakly to activated sludge and tended to preferably remain in aqueous phase.

  9. The Potential for Microalgae as Bioreactors to Produce Pharmaceuticals

    PubMed Central

    Yan, Na; Fan, Chengming; Chen, Yuhong; Hu, Zanmin

    2016-01-01

    As photosynthetic organisms, microalgae can efficiently convert solar energy into biomass. Microalgae are currently used as an important source of valuable natural biologically active molecules, such as carotenoids, chlorophyll, long-chain polyunsaturated fatty acids, phycobiliproteins, carotenoids and enzymes. Significant advances have been achieved in microalgae biotechnology over the last decade, and the use of microalgae as bioreactors for expressing recombinant proteins is receiving increased interest. Compared with the bioreactor systems that are currently in use, microalgae may be an attractive alternative for the production of pharmaceuticals, recombinant proteins and other valuable products. Products synthesized via the genetic engineering of microalgae include vaccines, antibodies, enzymes, blood-clotting factors, immune regulators, growth factors, hormones, and other valuable products, such as the anticancer agent Taxol. In this paper, we briefly compare the currently used bioreactor systems, summarize the progress in genetic engineering of microalgae, and discuss the potential for microalgae as bioreactors to produce pharmaceuticals. PMID:27322258

  10. Monitoring and optimizing the co-composting of dewatered sludge: a mixture experimental design approach.

    PubMed

    Komilis, Dimitrios; Evangelou, Alexandros; Voudrias, Evangelos

    2011-09-01

    The management of dewatered wastewater sludge is a major issue worldwide. Sludge disposal to landfills is not sustainable and thus alternative treatment techniques are being sought. The objective of this work was to determine optimal mixing ratios of dewatered sludge with other organic amendments in order to maximize the degradability of the mixtures during composting. This objective was achieved using mixture experimental design principles. An additional objective was to study the impact of the initial C/N ratio and moisture contents on the co-composting process of dewatered sludge. The composting process was monitored through measurements of O(2) uptake rates, CO(2) evolution, temperature profile and solids reduction. Eight (8) runs were performed in 100 L insulated air-tight bioreactors under a dynamic air flow regime. The initial mixtures were prepared using dewatered wastewater sludge, mixed paper wastes, food wastes, tree branches and sawdust at various initial C/N ratios and moisture contents. According to empirical modeling, mixtures of sludge and food waste mixtures at 1:1 ratio (ww, wet weight) maximize degradability. Structural amendments should be maintained below 30% to reach thermophilic temperatures. The initial C/N ratio and initial moisture content of the mixture were not found to influence the decomposition process. The bio C/bio N ratio started from around 10, for all runs, decreased during the middle of the process and increased to up to 20 at the end of the process. The solid carbon reduction of the mixtures without the branches ranged from 28% to 62%, whilst solid N reductions ranged from 30% to 63%. Respiratory quotients had a decreasing trend throughout the composting process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Study of the effect of electron irradiation on the density of the activated sludge in aqueous solution

    NASA Astrophysics Data System (ADS)

    Kupchishin, A. I.; Niyazov, M. N.; Taipova, B. G.; Voronova, N. A.; Khodarina, N. N.

    2018-01-01

    Complex experimental studies on the effect of electron irradiation on the deposition rate of active sludge in aqueous systems by the optical method have been carried out. The obtained dependences of density (ρ) on time (t) are of the same nature for different radiation sources. The experimental curves of the dependence of the active sludge density on time are satisfactorily described by an exponential model.

  12. Space Bioreactor Science Workshop

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Editor)

    1987-01-01

    The first space bioreactor has been designed for microprocessor control, no gaseous headspace, circulation and resupply of culture medium, and a slow mixing in very low shear regimes. Various ground based bioreactors are being used to test reactor vessel design, on-line sensors, effects of shear, nutrient supply, and waste removal from continuous culture of human cells attached to microcarriers. The small (500 ml) bioreactor is being constructed for flight experiments in the Shuttle middeck to verify systems operation under microgravity conditions and to measure the efficiencies of mass transport, gas transfer, oxygen consumption, and control of low shear stress on cells. Applications of microcarrier cultures, development of the first space bioreactor flight system, shear and mixing effects on cells, process control, and methods to monitor cell metabolism and nutrient requirements are among the topics covered.

  13. Mechanisms and kinetics models for ultrasonic waste activated sludge disintegration.

    PubMed

    Wang, Fen; Wang, Yong; Ji, Min

    2005-08-31

    Ultrasonic energy can be applied as pre-treatment to disintegrate sludge flocs and disrupt bacterial cells' walls, and the hydrolysis can be improved, so that the rate of sludge digestion and methane production is improved. In this paper, by adding NaHCO3 to mask the oxidizing effect of OH, the mechanisms of disintegration are investigated. In addition, kinetics models for ultrasonic sludge disintegration are established by applying multi-variable linear regression method. It has been found that hydro-mechanical shear forces predominantly responsible for the disintegration, and the contribution of oxidizing effect of OH increases with the amount of the ultrasonic density and ultrasonic intensity. It has also been inferred from the kinetics model which dependent variable is SCOD+ that both sludge pH and sludge concentration significantly affect the disintegration.

  14. A new flat sheet membrane bioreactor hybrid system for advanced treatment of effluent, reverse osmosis pretreatment and fouling mitigation.

    PubMed

    Hosseinzadeh, Majid; Bidhendi, Gholamreza Nabi; Torabian, Ali; Mehrdadi, Naser; Pourabdullah, Mehdi

    2015-09-01

    This paper introduces a new hybrid electro membrane bioreactor (HEMBR) for reverse osmosis (RO) pretreatment and advanced treatment of effluent by simultaneously integrating electrical coagulation (EC) with a membrane bioreactor (MBR) and its performance was compared with conventional MBR. Experimental results and their statistical analysis showed removal efficiency for suspended solids (SS) of almost 100% for both reactors. HEMBR removal of chemical oxygen demand (COD) improved by 4% and membrane fouling was alleviated according to transmembrane pressure (TMP). The average silt density index (SDI) of HEMBR permeate samples was slightly better indicating less RO membrane fouling. Moreover, based on the SVI comparison of two reactor biomass samples, HEMBR showed better settling characteristics which improved the dewaterability and filterability of the sludge. Analysis the change of membrane surfaces and the cake layer formed over them through field emission scanning electron microscopy (FESEM) and X-ray fluorescence spectrometer (XRF) were also discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Quantitative analysis of microbial biomass yield in aerobic bioreactor.

    PubMed

    Watanabe, Osamu; Isoda, Satoru

    2013-12-01

    We have studied the integrated model of reaction rate equations with thermal energy balance in aerobic bioreactor for food waste decomposition and showed that the integrated model has the capability both of monitoring microbial activity in real time and of analyzing biodegradation kinetics and thermal-hydrodynamic properties. On the other hand, concerning microbial metabolism, it was known that balancing catabolic reactions with anabolic reactions in terms of energy and electron flow provides stoichiometric metabolic reactions and enables the estimation of microbial biomass yield (stoichiometric reaction model). We have studied a method for estimating real-time microbial biomass yield in the bioreactor during food waste decomposition by combining the integrated model with the stoichiometric reaction model. As a result, it was found that the time course of microbial biomass yield in the bioreactor during decomposition can be evaluated using the operational data of the bioreactor (weight of input food waste and bed temperature) by the combined model. The combined model can be applied to manage a food waste decomposition not only for controlling system operation to keep microbial activity stable, but also for producing value-added products such as compost on optimum condition. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  16. Recovery of Stored Aerobic Granular Sludge and Its Contaminants Removal Efficiency under Different Operation Conditions

    PubMed Central

    Zhao, Zhiwei; Shi, Wenxin; Li, Ji

    2013-01-01

    The quick recovery process of contaminants removal of aerobic granular sludge (AGS) is complex, and the influencing factors are still not clear. The effects of dissolved oxygen (DO, air intensive aeration rate), organic loading rate (OLR), and C/N on contaminants removal characteristics of AGS and subsequently long-term operation of AGS bioreactor were investigated in this study. DO had a major impact on the recovery of AGS. The granules reactivated at air intensive aeration rate of 100 L/h achieved better settling property and contaminants removal efficiency. Moreover, protein content in extracellular polymeric substance (EPS) was almost unchanged, which demonstrated that an aeration rate of 100 L/h was more suitable for maintaining the biomass and the structure of AGS. Higher OLR caused polysaccharides content increase in EPS, and unstable C/N resulted in the overgrowth of filamentous bacteria, which presented worse NH4 +-N and PO4 3−-P removal. Correspondingly, quick recovery of contaminants removal was accomplished in 12 days at the optimized operation conditions of aeration rate 100 L/h, OLR 4 g/L·d, and C/N 100 : 10, with COD, NH4 +-N, and PO4 3−-P removal efficiencies of 87.2%, 86.9%, and 86.5%, respectively. The renovation of AGS could be successfully utilized as the seed sludge for the rapid start-up of AGS bioreactor. PMID:24106695

  17. Effect of textile auxiliaries on the biodegradation of dyehouse effluent in activated sludge.

    PubMed

    Arslan Alaton, Idil; Insel, Güçlü; Eremektar, Gülen; Germirli Babuna, Fatos; Orhon, Derin

    2006-03-01

    The textile industry is confronted with serious environmental problems associated with its immense wastewater discharge, substantial pollution load, extremely high salinity, and alkaline, heavily coloured effluent. Particular sources of recalcitrance and toxicity in dyehouse effluent are two frequently used textile auxiliaries; i.e. dye carriers and biocidal finishing agents. The present experimental work reports the observation of scientific and practical significance related with the effect of two commercially important textile dye carriers and two biocidal finishing agents on biological activated sludge treatment at a textile preparation, dyeing and finishing plant in Istanbul. Respirometric measurements of the dyehouse effluent spiked with the selected textile chemicals were carried out for the assessment of the "readily biodegradable COD fraction" of the wastewater. The respirometric data obtained to visualize the effect of the selected textile auxiliaries on biomass activity was evaluated by an adopted activated sludge model. Results have indicated that the tested biocides did not exert any significant inhibitory effect on the treatment performance of the activated sludge reactor at the concentrations usually encountered in the final, total dyehouse effluent. The situation with the dye carriers was inherently different; one dye carrier appeared to be highly toxic and caused serious inhibition of the microbial respirometric activity, whereas the other dye carrier, also known as the more ecological alternative, i.e. the "Eco-Carrier", appeared to be biodegradable. Finally, the respirometric profile obtained for the Eco-Carrier was described by a simplified respirometric model.

  18. Effect of enzyme secreting bacterial pretreatment on enhancement of aerobic digestion potential of waste activated sludge interceded through EDTA.

    PubMed

    Kavitha, S; Adish Kumar, S; Yogalakshmi, K N; Kaliappan, S; Rajesh Banu, J

    2013-12-01

    In this study, the effect of Ethylene diamine tetra acetic acid (EDTA) on Extracellular polymeric substance (EPS) removal tailed with bacterial enzymatic pretreatment on aerobic digestion of activated sludge was studied. In order to enhance the accessibility of sludge to the enzyme secreting bacteria; the extracellular polymeric substances were removed using EDTA. EDTA efficiently removed the EPS with limited cell lysis and enhanced the sludge enzyme activity at its lower concentration of 0.2 g/g SS. The sludge was then subjected to bacterial pretreatment to enhance the aerobic digestion. In aerobic digestion the best results in terms of Suspended solids (SS) reduction (48.5%) and COD (Chemical oxygen demand) solubilization (47.3%) was obtained in experimental reactor than in control. These results imply that aerobic digestion can be enhanced efficiently through bacterial pretreatment of EPS removed sludge. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Textile wastewater treatment: aerobic granular sludge vs activated sludge systems.

    PubMed

    Lotito, Adriana Maria; De Sanctis, Marco; Di Iaconi, Claudio; Bergna, Giovanni

    2014-05-01

    Textile effluents are characterised by high content of recalcitrant compounds and are often discharged (together with municipal wastewater to increase their treatability) into centralized wastewater treatment plants with a complex treatment scheme. This paper reports the results achieved adopting a granular sludge system (sequencing batch biofilter granular reactor - SBBGR) to treat mixed municipal-textile wastewater. Thanks to high average removals in SBBGR (82.1% chemical oxygen demand, 94.7% total suspended solids, 87.5% total Kjeldahl nitrogen, 77.1% surfactants), the Italian limits for discharge into a water receiver can be complied with the biological stage alone. The comparison with the performance of the centralized plant treating the same wastewater has showed that SBBGR system is able to produce an effluent of comparable quality with a simpler treatment scheme, a much lower hydraulic residence time (11 h against 30 h) and a lower sludge production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Fabrication of high flux and antifouling mixed matrix fumarate-alumoxane/PAN membranes via electrospinning for application in membrane bioreactors

    NASA Astrophysics Data System (ADS)

    Moradi, Golshan; Zinadini, Sirus; Rajabi, Laleh; Dadari, Soheil

    2018-01-01

    The nanofibrous Polyacrylonitrile (PAN) membranes embedded with fumarate-alumoxane (Fum-A) nanoparticles were prepared via electrospinning technique as high flux and antifouling membranes for membrane bioreactor (MBR) applications. The effect of Fum-A nanoparticles on membrane morphology, surface hydrophilicity, pure water flux, effluent turbidity and the antifouling property was investigated. Fum-A is a carboxylate-alumoxane nanoparticle covered by extra hydroxyl and carboxylate groups on its surface. By embedding Fum-A nanoparticles into the spinning solution, the surface hydrophilicity and pure water flux of the resulted membranes were improved. The smooth surface of fibers at the low amount of nanoparticles and the agglomeration of nanoparticles at their high concentration were shown in SEM images of the membranes surface. The energy dispersive spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) analysis of the prepared Fum-A/PAN membrane confirmed the presence of carboxylate and hydroxyl functional groups of Fum-A nanoparticles on the surface of the Fum-A nanoparticles containing membrane. The results obtained from the filtration of activated sludge suspension revealed that by addition of a low amount of Fum-A nanoparticles, the irreversible fouling was significantly decreased due to the higher hydrophilicity. The Fum-A/PAN membranes showed superior permeate flux and antifouling properties compared to bare electrospun PAN membrane. Finally, 2 wt.% Fum-A/PAN membrane exhibited the highest FRR of 96% and the lowest irreversible fouling of 4% with excellent durability of antifouling property during twenty repeated activated sludge filtrations.

  1. Cobalt sorption onto anaerobic granular sludge: isotherm and spatial localization analysis.

    PubMed

    van Hullebusch, Eric D; Gieteling, Jarno; Zhang, Min; Zandvoort, Marcel H; Daele, Wim Van; Defrancq, Jacques; Lens, Piet N L

    2006-01-24

    This study investigated the effect of different feeding regimes on the cobalt sorption capacity of anaerobic granular sludge from a full-scale bioreactor treating paper mill wastewater. Adsorption experiments were done with non-fed granules in monometal (only Co) and competitive conditions (Co and Ni in equimolar concentrations). In order to modify the extracellular polymeric substances and sulfides content of the granules, the sludge was fed for 30 days with glucose (pH 7, 30 degrees C, organic loading rate=1.2 g glucose l(-1) day-1) in the presence (COD/SO4(2-)=1) or absence of sulfate. The partitioning of the sorbed cobalt between the exchangeable, carbonates, organic matter/sulfides and residual fractions was determined using a sequential extraction procedure (modified Tessier). Experimental equilibrium sorption data for cobalt were analysed by the Langmuir, Freundlich and Redlich-Peterson isotherm equations. The total Langmuir maximal sorption capacity of the sludge fed with glucose and sulfate loaded with cobalt alone displayed a significantly higher maximal cobalt sorption (Qmax =18.76 mg g-1 TSS) than the sludge fed with glucose alone (Qmax =13.21 mg g-1 TSS), essentially due to an increased sorption capacity of the exchangeable (30-107%) and organic/sulfides fractions (70-30%). Environmental scanning electron microscopy coupled with an energy dispersive X-ray analysis of granular cross-sections showed that mainly iron minerals (i.e. iron sulfides) were involved in the cobalt accumulation. Moreover, the sorbed cobalt was mainly located at the edge of the granules. The sorption characteristics of the exchangeable and carbonates fractions fitted well to the Redlich-Peterson model (intermediate multi-layer sorption behaviour), whereas the sorption characteristics of the organic matter/sulfides and residual fractions fitted well to the Langmuir model (monolayer sorption behaviour). The organic matter/sulfides fraction displayed the highest affinity for cobalt

  2. Enhancement of aerobic biodegradability potential of municipal waste activated sludge by ultrasonic aided bacterial disintegration.

    PubMed

    Kavitha, S; Jessin Brindha, G M; Sally Gloriana, A; Rajashankar, K; Yeom, Ick Tae; Rajesh Banu, J

    2016-01-01

    An investigation was performed to study the influence of ultrasonic aided bacterial disintegration on the aerobic degradability of sludge. In first phase of the study, effective floc disruption was achieved at an ultrasonic specific energy input of 2.45kJ/kg TS with 44.5mg/L of Extracellular Polymeric Substance (EPS) release including 0.035U/mL and 0.025U/mL protease and amylase activity respectively. In second phase, experimental outcomes revealed bacterial disintegration of floc disrupted-sludge showing a maximum solubilization of about 23% and was observed to be superior to bacterially disintegrated (11%) and control (6%), respectively. The result of aerobic biodegradability of ultrasonic aided bacterially pretreated sludge showed volatile solids (VS) degradation of about 40.2%. The kinetic study of aerobic biodegradability through non linear regression modelling reveals that floc disrupted sludge showed better biodegradability with decay constant of about 0.19d(-1) relatively higher than the control (0.14d(-1)) and bacterially disintegrated (0.17d(-1)) sludges. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Rapid establishment of phenol- and quinoline-degrading consortia driven by the scoured cake layer in an anaerobic baffled ceramic membrane bioreactor.

    PubMed

    Wang, Wei; Wang, Shun; Ren, Xuesong; Hu, Zhenhu; Yuan, Shoujun

    2017-11-01

    Although toxic and refractory organics, such as phenol and quinoline, are decomposed by anaerobic bacteria, the establishment of specific degrading consortia is a relatively slow process. An anaerobic membrane bioreactor allows for complete biomass retention that can aid the establishment of phenol- and quinoline-degrading consortia. In this study, the anaerobic digestion of phenol (500 mg L -1 ) and quinoline (50 mg L -1 ) was investigated using an anaerobic baffled ceramic membrane bioreactor (ABCMBR). The results showed that, within 30 days, 99% of phenol, 98% of quinoline and 88% of chemical oxygen demand (COD) were removed. The substrate utilisation rates of the cake layer for phenol and quinoline, and specific methanogenic activity of the cake layer, were 7.58 mg phenol g -1  mixed liquor volatile suspended solids (MLVSS) day -1 , 8.23 mg quinoline g -1  MLVSS day -1 and 0.55 g COD CH4  g -1  MLVSS day -1 , respectively. The contribution of the cake layer to the removals of phenol and quinoline was extremely underestimated because the uncounted scoured cake layer was disregarded. Syntrophus was the key population for phenol and quinoline degradation, and it was more abundant in the cake layer than in the bulk sludge. The highly active scattered cake layer sped up the establishment of phenol- and quinoline-degrading consortia in the ABCMBR.

  4. Assessing the removal of pharmaceuticals and personal care products in a full-scale activated sludge plant.

    PubMed

    Salgado, R; Marques, R; Noronha, J P; Carvalho, G; Oehmen, A; Reis, M A M

    2012-06-01

    This study aimed to investigate the removal mechanisms of pharmaceutical active compounds (PhACs) and musks in a wastewater treatment plant (WWTP). Biological removal and adsorption in the activated sludge tank as well as the effect of UV radiation used for disinfection purposes were considered when performing a mass balance on the WWTP throughout a 2-week sampling campaign. Solid-phase extraction (SPE) was carried out to analyse the PhACs in the influent and effluent samples. Ultrasonic solvent extraction was used before SPE for PhACs analysis in sludge samples. PhAC extracts were analysed by LC-MS. Solid-phase microextraction of liquid and sludge samples was used for the analysis of musks, which were detected by GC-MS. The fluxes of the most abundant compounds (13 PhACs and 5 musks) out of 79 compounds studied were used to perform the mass balance on the WWTP. Results show that incomplete removal of diclofenac, the compound that was found in the highest abundance, was observed via biodegradation and adsorption, and that UV photolysis was the main removal mechanism for this compound. The effect of adsorption to the secondary sludge was often negligible for the PhACs, with the exceptions of diclofenac, etofenamate, hydroxyzine and indapamide. However, the musks showed a high level of adsorption to the sludge. UV radiation had an important role in reducing the concentration of some of the target compounds (e.g. diclofenac, ibuprofen, clorazepate, indapamide, enalapril and atenolol) not removed in the activated sludge tank. The main removal mechanism of PhACs and musks studied in the WWTP was most often biological (45%), followed by adsorption (33%) and by UV radiation (22%). In the majority of the cases, the WWTP achieved >75% removal of the most detected PhACs and musks, with the exception of diclofenac.

  5. Ten years of industrial and municipal membrane bioreactor (MBR) systems - lessons from the field.

    PubMed

    Larrea, Asun; Rambor, Andre; Fabiyi, Malcolm

    2014-01-01

    The use of membrane bioreactors (MBRs) in activated sludge wastewater treatment has grown significantly in the last decade. While there is growing awareness and knowledge about the application of MBR technology in municipal wastewater treatment, not much information is available on the application of MBRs in industrial wastewater treatment. A comparative study of design data, operating conditions and the major challenges associated with MBR operations in 24 MBR plants treating both municipal and industrial wastewater, built by and/or operated by Praxair, Inc., is presented. Of the 24 MBR systems described, 12 of the plants used high purity oxygen (HPO). By enabling a wide range of food/microorganism ratios and loading conditions in the same system, HPO MBR systems can extend the options available to industrial plant operators to meet the challenges of wide fluctuations in organic loading and footprint limitations. While fouling in industrial MBR systems can be an issue, adequate flux and permeability values can be reliably maintained by the use of good maintenance strategies and effective process controls (pretreatment, cleaning and membrane autopsies).

  6. Degradation of slime extracellular polymeric substances and inhibited sludge flocs destruction contribute to sludge dewaterability enhancement during fungal treatment of sludge using filamentous fungus Mucor sp. GY-1.

    PubMed

    Wang, Zhenyu; Zheng, Guanyu; Zhou, Lixiang

    2015-09-01

    Mechanisms responsible for the sludge dewaterability enhanced by filamentous fungi during fungal treatment of sludge were investigated in the present study. The filamentous fungus Mucor sp. GY-1, isolated from waste activated sludge, enhanced sludge dewaterability by 82.1% to achieve the lowest value of normalized sludge specific resistance to filtration (SRF), 8.18 × 10(10) m · L/kg · g-TSS. During the fungal treatment of sludge, 57.8% of slime extracellular polymeric substances (EPS) and 51.1% of polysaccharide in slime EPS were degraded, respectively, by Mucor sp. GY-1, contributing to the improvement of sludge dewaterability. Slime EPS is much more available for Mucor sp. GY-1 than either LB-EPS or TB-EPS that bound with microbial cells. In addition, filamentous fungus Mucor sp. GY-1 entrapped small sludge particles and inhibited the destruction of sludge flocs larger than 100 μm, thus enhancing sludge dewaterability, during fungal treatment of sludge using Mucor sp. GY-1. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Integration of aerobic granular sludge and mesh filter membrane bioreactor for cost-effective wastewater treatment.

    PubMed

    Li, Wen-Wei; Wang, Yun-Kun; Sheng, Guo-Ping; Gui, Yong-Xin; Yu, Lei; Xie, Tong-Qing; Yu, Han-Qing

    2012-10-01

    Conventional MBR has been mostly based on floc sludge and the use of costly microfiltration membranes. Here, a novel aerobic granule (AG)-mesh filter MBR (MMBR) process was developed for cost-effective wastewater treatment. During 32-day continuous operation, a predominance of granules was maintained in the system, and good filtration performance was achieved at a low trans-membrane pressure (TMP) of below 0.025 m. The granules showed a lower fouling propensity than sludge flocs, attributed to the formation of more porous biocake layer at mesh surface. A low-flux and low-TMP filtration favored a stable system operation. In addition, the reactor had high pollutant removal efficiencies, with a 91.4% chemical oxygen demand removal, 95.7% NH(4)(+) removal, and a low effluent turbidity of 4.1 NTU at the stable stage. This AG-MMBR process offers a promising technology for low-cost and efficient treatment of wastewaters. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. High-strength N-methyl-2-pyrrolidone-containing process wastewater treatment using sequencing batch reactor and membrane bioreactor: A feasibility study.

    PubMed

    Loh, Chun Heng; Wu, Bing; Ge, Liya; Pan, Chaozhi; Wang, Rong

    2018-03-01

    N-methyl-2-pyrrolidone (NMP) is widely used as a solvent in polymeric membrane fabrication process, its elimination from the process wastewater (normally at a high concentration > 1000 mg/L) prior to discharge is essential because of environmental concern. This study investigated the feasibility of treating high-strength NMP-containing process wastewater in a sequencing batch reactor (SBR; i.e., batch feeding and intermittent aerobic/anoxic condition) and a membrane bioreactor (MBR; i.e., continuous feeding and aeration), respectively. The results showed that the SBR with the acclimated sludge was capable of removing >90% of dissolved organic carbon (DOC) and almost 98% of NMP within 2 h. In contrast, the MBR with the acclimated sludge showed a decreasing NMP removal efficiency from 100% to 40% over 15-day operation. The HPLC and LC-MS/MS analytical results showed that NMP degradation in SBR and MBR could undergo different pathways. This may be attributed to the dissimilar bacterial community compositions in the SBR and MBR as identified by 16s rRNA gene sequencing analysis. Interestingly, the NMP-degrading capability of the activated sludge derived from MBR could be recovered to >98% after they were operated at the SBR mode (batch feeding mode with intermittent aerobic/anoxic condition). This study reveals that SBR is probably a more feasible process to treat high-strength NMP-containing wastewater, but residual NMP metabolites in the SBR effluent need to be post-treated by an oxidation or adsorption process in order to achieve zero-discharge of toxic chemicals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. [Adsorption of a dye by sludges and the roles of extracellular polymeric substances].

    PubMed

    Kong, Wang-sheng; Liu, Yan

    2007-12-01

    This paper investigated the adsorption of a dye, acid turquoise blue A, by four kinds of sludges including activated sludge, anaerobic sludge, dried activated sludge, and dried anaerobic sludge, respectively. The roles of extracellular polymeric substances (EPS) including the soluble EPS (SEPS) and bound EPS (BEPS) for the biosorption of activated sludge and anaerobic sludge were further studied. Results show that the relation between four kinds of sludge adsorption amount and remained concentration of the dye fitted well both Freundlich model (R2: 0.921-0.995) and Langmuir model (R2: 0.958-0.993), but not quite fitted BET model (R2: 0.07-0.863). The adsorption capability of dried anaerobic sludge ranked the highest, and dried activated sludge was the lowest. According to Langmuir isotherm, the maximum adsorption amount of dried anaerobic, anaerobic, activated, and dried activated sludge was 104 mg/g, 86 mg/g, 65 mg/g, 20 mg/g, respectively. The amount of the dye found in EPS for both activated sludge and anaerobic sludge were over 50%, illustrating that EPS adsorption was predominant in adsorption of the dye by sludge. The amount of adsorbed dye by BEPS was greater than that by SEPS for anaerobic sludge, but for activated sludge the result was quite opposite. The amount of adsorbed dye by unit mass SEPS was much higher than the corresponding values of BEPS for both sludges. The average amount of adsorbed dye by unit mass SEPS was 52 times of the corresponding value of BEPS for activated sludge, and 10 times for anaerobic sludge. The relation between adsorption amount of dye by BEPS from anaerobic sludge and remained concentration of the dye in mixed liquor was best fitted to Langmuir model (R2: 0.9986).

  10. FATE OF WATER SOLUBLE AZO DYES IN THE ACTIVATED SLUDGE PROCESS

    EPA Science Inventory

    The objective of this study was to determine the partitioning of water soluble azo dyes in the activated sludge process (ASP). Azo dyes are of concern because some of the dyes, dye precursors , and/or their degradation products such as aromatic amines (which are also dye precurso...

  11. Sewage sludge treatment system

    NASA Technical Reports Server (NTRS)

    Kalvinskas, John J. (Inventor); Mueller, William A. (Inventor)

    1976-01-01

    Raw sewage may be presently treated by mixing screened raw sewage with activated carbon. The mixture is then allowed to stand in a first tank for a period required to settle the suspended matter to the bottom of the tank as a sludge. Thereafter, the remaining liquid is again mixed with activated carbon and the mixture is transferred to a secondary settling tank, where it is permitted to stand for a period required for the remaining floating material to settle as sludge and for adsorption of sewage carbon as well as other impurities to take place. The sludge from the bottom of both tanks is removed and pyrolyzed to form activated carbon and ash, which is mixed with the incoming raw sewage and also mixed with the liquid being transferred from the primary to the secondary settling tank. It has been found that the output obtained by the pyrolysis process contains an excess amount of ash. Removal of this excess amount of ash usually also results in removing an excess amount of carbon thereby requiring adding carbon to maintain the treatment process. By separately pyrolyzing the respective sludges from the first and second settling tanks, and returning the separately obtained pyrolyzed material to the respective first and second tanks from which they came, it has been found that the adverse effects of the excessive ash buildup is minimized, the carbon yield is increased, and the sludge from the secondary tank can be pyrolyzed into activated carbon to be used as indicated many more times than was done before exhaustion occurs.

  12. Removal of naproxen and bezafibrate by activated sludge under aerobic conditions: kinetics and effect of substrates.

    PubMed

    Tang, Ying; Li, Xiao-Ming; Xu, Zhen-Cheng; Guo, Qing-Wei; Hong, Cheng-Yang; Bing, Yong-Xin

    2014-01-01

    Naproxen and bezafibrate fall into the category of pharmaceuticals that have been widely detected in the aquatic environment, and one of the major sources is the effluent discharge from wastewater treatment plants. This study investigated the sorption and degradation kinetics of naproxen and bezafibrate in the presence of activated sludge under aerobic conditions. Experimental results indicated that the adsorption of pharmaceuticals by activated sludge was rapid, and the relative adsorbabilities of the two-target compounds were based on their log Kow and pKa values. The adsorption data could be well interpreted by the pseudo-second-order kinetic model. The degradation process could be described by the pseudo-first-order kinetic model, whereas the pseudo-second-order kinetics were also well suited to describe the degradation process of the selected compounds at low concentrations. Bezafibrate was more easily degraded by activated sludge compared with naproxen. The spiked concentration of the two-target compounds was negatively correlated with k1 and k2s , indicating that the substrate inhibition effect occurred at the range of studied concentrations. Chemical oxygen demand (COD) did not associate with naproxen degradation; thus, COD is not an alternative method that could be applied to investigate natural organic matter's impact on degradation of pharmaceuticals by activated sludge. © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  13. Biotransformation of arsenic species by activated sludge and removal of bio-oxidised arsenate from wastewater by coagulation with ferric chloride.

    PubMed

    Andrianisa, Harinaivo Anderson; Ito, Ayumi; Sasaki, Atsushi; Aizawa, Jiro; Umita, Teruyuki

    2008-12-01

    The potential of activated sludge to catalyse bio-oxidation of arsenite [As(III)] to arsenate [As(V)] and bio-reduction of As(V) to As(III) was investigated. In batch experiments (pH 7, 25 degrees C) using activated sludge taken from a treatment plant receiving municipal wastewater non-contaminated with As, As(III) and As(V) were rapidly biotransformed to As(V) under aerobic condition and As(III) under anaerobic one without acclimatisation, respectively. Sub-culture of the activated sludge using a minimal liquid medium containing 100mg As(III)/L and no organic carbon source showed that aerobic arsenic-resistant bacteria were present in the activated sludge and one of the isolated bacteria was able to chemoautotrophically oxidise As(III) to As(V). Analysis of arsenic species in a full-scale oxidation ditch plant receiving As-contaminated wastewater revealed that both As(III) and As(V) were present in the influent, As(III) was almost completely oxidised to As(V) after supply of oxygen by the aerator in the oxidation ditch, As(V) oxidised was reduced to As(III) in the anaerobic zone in the ditch and in the return sludge pipe, and As(V) was the dominant species in the effluent. Furthermore, co-precipitation of As(V) bio-oxidised by activated sludge in the plant with ferric hydroxide was assessed by jar tests. It was shown that the addition of ferric chloride to mixed liquor as well as effluent achieved high removal efficiencies (>95%) of As and could decrease the residual total As concentrations in the supernatant from about 200 microg/L to less than 5 microg/L. It was concluded that a treatment process combining bio-oxidation with activated sludge and coagulation with ferric chloride could be applied as an alternative technology to treat As-contaminated wastewater.

  14. Up-to-date modification of the anaerobic sludge digestion process introducing a separate sludge digestion mode.

    PubMed

    Sato, K; Ochi, S; Mizuochi, M

    2001-01-01

    Sewage treatment plants in Japan are subjected to advanced treatment to remove nutrients and hence control eutrophication problems in lakes and bays. This paper discusses the advantages and disadvantages of the separate digestion treatment mode for sludge generated from advanced wastewater treatment. In the separate digestion only primary sludge is digested and the excess activated sludge is directly dewatered. Separate digestion can reduce the return load of nutrients to approximately one third, and has major potential for the beneficial use of sludge.

  15. New functional biocarriers for enhancing the performance of a hybrid moving bed biofilm reactor-membrane bioreactor system.

    PubMed

    Deng, Lijuan; Guo, Wenshan; Ngo, Huu Hao; Zhang, Xinbo; Wang, Xiaochang C; Zhang, Qionghua; Chen, Rong

    2016-05-01

    In this study, new sponge modified plastic carriers for moving bed biofilm reactor (MBBR) was developed. The performance and membrane fouling behavior of a hybrid MBBR-membrane bioreactor (MBBR-MBR) system were also evaluated. Comparing to the MBBR with plastic carriers (MBBR), the MBBR with sponge modified biocarriers (S-MBBR) showed better effluent quality and enhanced nutrient removal at HRTs of 12h and 6h. Regarding fouling issue of the hybrid systems, soluble microbial products (SMP) of the MBR unit greatly influenced membrane fouling. The sponge modified biocarriers could lower the levels of SMP in mixed liquor and extracellular polymeric substances in activated sludge, thereby mitigating cake layer and pore blocking resistances of the membrane. The reduced SMP and biopolymer clusters in membrane cake layer were also observed. The results demonstrated that the sponge modified biocarriers were capable of improving overall MBBR performance and substantially alleviated membrane fouling of the subsequent MBR unit. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Toluene inhibition on an anaerobic reactor sludge in terms of potential activity and composition of acetoclastic methanogens.

    PubMed

    Ince, Orhan; Kolukirik, Mustafa; Cetecioglu, Zeynep; Eyice, Ozge; Inceoglu, Ozgul; Ince, Bahar

    2009-12-01

    The aim of this study was to determine the effect of toluene on an anaerobic sludge taken from a full-scale upflow anaerobic sludge blanket (UASB) reactor in terms of potential activity and composition of acetoclastic methanogens. Specific methanogenic activity (SMA) test results showed that 5%, 9.5%, 14%, 24%, 29%, 38% and 62% inhibition occurred in the potential methane production (PMP) rate of the sludge at toluene concentrations of 0.1 mM, 0.2 mM, 0.3 mM, 0.4 mM, 0.5 mM, 0.6 mM and 1 mM, respectively. Fluorescence in situ hybridization (FISH) results showed that relative abundance of archaeal cells was approx. 19% throughout the SMA tests. The anaerobic sludge was dominated by acetoclastic genus Methanosaeta which were slightly affected by increasing toluene concentrations do not have any effect on relative abundance of Methanosaeta spp., which was between 73% +/- 1.6 and 68% +/- 2.1 of the archaeal population.

  17. Sorption and biodegradation of sulfonamide antibiotics by activated sludge: experimental assessment using batch data obtained under aerobic conditions.

    PubMed

    Yang, Sheng-Fu; Lin, Cheng-Fang; Lin, Angela Yu-Chen; Hong, Pui-Kwan Andy

    2011-05-01

    This study investigated the adsorption, desorption, and biodegradation characteristics of sulfonamide antibiotics in the presence of activated sludge with and without being subjected to NaN(3) biocide. Batch experiments were conducted and the relative contributions of adsorption and biodegradation to the observed removal of sulfonamide antibiotics were determined. Three sulfonamide antibiotics including sulfamethoxazole (SMX), sulfadimethoxine (SDM), and sulfamonomethoxine (SMM), which had been detected in the influent and the activated sludge of wastewater treatment plants (WWTP) in Taiwan, were selected for this study. Experimental results showed that the antibiotic compounds were removed via sorption and biodegradation by the activated sludge, though biodegradation was inhibited in the first 12 h possibly due to competitive inhibition of xenobiotic oxidation by readily biodegradable substances. The affinity of sulfonamides to sterilized sludge was in the order of SDM > SMM > SMX. The sulfonamides existed predominantly as anions at the study pH of 6.8, which resulted in a low level of adsorption to the activated sludge. The adsorption/desorption isotherms were of a linear form, as well described by the Freundlich isotherm with the n value approximating unity. The linear distribution coefficients (K(d)) were determined from batch equilibrium experiments with values of 28.6 ± 1.9, 55.7 ± 2.2, and 110.0 ± 4.6 mL/g for SMX, SMM, and SDM, respectively. SMX, SMM, and SDM desorb reversibly from the activated sludge leaving behind on the solids 0.9%, 1.6%, and 5.2% of the original sorption dose of 100 μg/L. The sorbed antibiotics can be introduced into the environment if no further treatments were employed to remove them from the biomass. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Chemically coupled microwave and ultrasonic pre-hydrolysis of pulp and paper mill waste-activated sludge: effect on sludge solubilisation and anaerobic digestion.

    PubMed

    Tyagi, Vinay Kumar; Lo, Shang-Lien; Rajpal, Ankur

    2014-05-01

    The effects of alkali-enhanced microwave (MW; 50-175 °C) and ultrasonic (US) (0.75 W/mL, 15-60 min) pretreatments, on solubilisation and subsequent anaerobic digestion efficiency of pulp and paper mill waste-activated sludge, were investigated. Improvements in total chemical oxygen demand and volatile suspended solids (VSS) solubilisation were limited to 33 and 39 % in MW pretreatment only (175 °C). It reached 78 and 66 % in combined MW-alkali pretreatment (pH 12 + 175 °C), respectively. Similarly, chemical oxygen demand and VSS solubilisation were 58 and 37 % in US pretreatment alone (60 min) and it improved by 66 and 49 % after US-alkali pretreatment (pH 12 + 60 min), respectively. The biogas yield for US 60 min-alkali (pH 12)-pretreated sludge was significantly improved by 47 and 20 % over the control and US 60 reactors, respectively. The biogas generation for MW (150 °C)-alkali (pH 12)-pretreated sludge was only 6.3 % higher than control; however, it was 8.3 % lower than the MW (150 °C) reactor, which was due to the inhibition of anaerobic activity under harsh thermal-alkali treatment condition.

  19. Waste activated sludge hydrolysis and acidification: A comparison between sodium hydroxide and steel slag addition.

    PubMed

    Zhang, Ying; Zhang, Chaojie; Zhang, Xuan; Feng, Leiyu; Li, Yongmei; Zhou, Qi

    2016-10-01

    Alkaline treatment with steel slag and NaOH addition were investigated under different pH conditions for the fermentation of waste activated sludge. Better performance was achieved in steel slag addition scenarios for both sludge hydrolysis and acidification. More solubilization of organic matters and much production of higher VFA (volatile fatty acid) in a shorter time can be achieved at pH10 when adjusted by steel slag. Higher enzyme activities were also observed in steel slag addition scenarios under the same pH conditions. Phosphorus concentration in the supernatant increased with fermentation time and pH in NaOH addition scenarios, while in contrast most phosphorus was released and captured by steel slag simultaneously in steel slag addition scenarios. These results suggest that steel slag can be used as a substitute for NaOH in sludge alkaline treatment. Copyright © 2016. Published by Elsevier B.V.

  20. Improved solubilization of activated sludge by ozonation in pressure cycles.

    PubMed

    Cheng, Chia-Jung; Hong, P K Andy; Lin, Cheng-Fang

    2012-05-01

    The generation of a large volume of activated sludge (AS) from wastewater treatment has increasingly become a great burden on the environment. Anaerobic digestion is routinely practiced for excess waste sludge; however, the process retention time is long because of kinetic limitation in the hydrolysis step. We tested the feasibility of applying ozone in pressure cycles to enhance the disintegration and solubilization of AS with the goal to prepare them for digestion using reduced ozone dose and contact time. The AS was subjected to repetitive pressure cycles in a closed vessel in which an ozone gas mixture was compressed into the slurry to reach 1040 kPa in the headspace to be followed by rapid venting. For a returned AS with total COD (tCOD) of 8200 mg L(-1), a dose of 0.01 gO(3)g(-1) total suspended solids (TSS) delivered via 20 pressure cycles within 16 min resulted in a 37-fold increase of the sCOD/tCOD ratio (due to increased soluble COD, i.e. sCOD) and a 25% reduction of TSS, in comparison to a dose of 0.08 gO(3)g(-1) TSS via bubbling contact over 15 min that resulted in a 15-fold increase of the sCOD/tCOD ratio and a 12% reduction of TSS. Sludge solubilization was evidenced by increased dissolved contents of total phosphorous (from 10 to 64 mg L(-1)), total nitrogen (from 14 to 120 mg L(-1)), and protein (from <15 to 39 mg L(-1)) in the sludge suspension after treatment, indicating significant solubilization of AS. Copyright © 2012 Elsevier Ltd. All rights reserved.